3 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
4 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
5 * Copyright (c) 2000 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
20 # include "private/gc_pmark.h"
22 /* We put this here to minimize the risk of inlining. */
25 void GC_noop(void *p
, ...) {}
30 /* Single argument version, robust against whole program analysis. */
34 static VOLATILE word sink
;
39 /* mark_proc GC_mark_procs[MAX_MARK_PROCS] = {0} -- declared in gc_priv.h */
41 word GC_n_mark_procs
= GC_RESERVED_MARK_PROCS
;
43 /* Initialize GC_obj_kinds properly and standard free lists properly. */
44 /* This must be done statically since they may be accessed before */
45 /* GC_init is called. */
46 /* It's done here, since we need to deal with mark descriptors. */
47 struct obj_kind GC_obj_kinds
[MAXOBJKINDS
] = {
48 /* PTRFREE */ { &GC_aobjfreelist
[0], 0 /* filled in dynamically */,
49 0 | GC_DS_LENGTH
, FALSE
, FALSE
},
50 /* NORMAL */ { &GC_objfreelist
[0], 0,
51 0 | GC_DS_LENGTH
, /* Adjusted in GC_init_inner for EXTRA_BYTES */
52 TRUE
/* add length to descr */, TRUE
},
54 { &GC_uobjfreelist
[0], 0,
55 0 | GC_DS_LENGTH
, TRUE
/* add length to descr */, TRUE
},
56 # ifdef ATOMIC_UNCOLLECTABLE
58 { &GC_auobjfreelist
[0], 0,
59 0 | GC_DS_LENGTH
, FALSE
/* add length to descr */, FALSE
},
61 # ifdef STUBBORN_ALLOC
62 /*STUBBORN*/ { &GC_sobjfreelist
[0], 0,
63 0 | GC_DS_LENGTH
, TRUE
/* add length to descr */, TRUE
},
67 # ifdef ATOMIC_UNCOLLECTABLE
68 # ifdef STUBBORN_ALLOC
74 # ifdef STUBBORN_ALLOC
82 # ifndef INITIAL_MARK_STACK_SIZE
83 # define INITIAL_MARK_STACK_SIZE (1*HBLKSIZE)
84 /* INITIAL_MARK_STACK_SIZE * sizeof(mse) should be a */
85 /* multiple of HBLKSIZE. */
86 /* The incremental collector actually likes a larger */
87 /* size, since it want to push all marked dirty objs */
88 /* before marking anything new. Currently we let it */
89 /* grow dynamically. */
93 * Limits of stack for GC_mark routine.
94 * All ranges between GC_mark_stack(incl.) and GC_mark_stack_top(incl.) still
95 * need to be marked from.
98 word GC_n_rescuing_pages
; /* Number of dirty pages we marked from */
99 /* excludes ptrfree pages, etc. */
103 mse
* GC_mark_stack_limit
;
105 word GC_mark_stack_size
= 0;
108 mse
* VOLATILE GC_mark_stack_top
;
110 mse
* GC_mark_stack_top
;
113 static struct hblk
* scan_ptr
;
115 mark_state_t GC_mark_state
= MS_NONE
;
117 GC_bool GC_mark_stack_too_small
= FALSE
;
119 GC_bool GC_objects_are_marked
= FALSE
; /* Are there collectable marked */
120 /* objects in the heap? */
122 /* Is a collection in progress? Note that this can return true in the */
123 /* nonincremental case, if a collection has been abandoned and the */
124 /* mark state is now MS_INVALID. */
125 GC_bool
GC_collection_in_progress()
127 return(GC_mark_state
!= MS_NONE
);
130 /* clear all mark bits in the header */
131 void GC_clear_hdr_marks(hhdr
)
134 # ifdef USE_MARK_BYTES
135 BZERO(hhdr
-> hb_marks
, MARK_BITS_SZ
);
137 BZERO(hhdr
-> hb_marks
, MARK_BITS_SZ
*sizeof(word
));
141 /* Set all mark bits in the header. Used for uncollectable blocks. */
142 void GC_set_hdr_marks(hhdr
)
147 for (i
= 0; i
< MARK_BITS_SZ
; ++i
) {
148 # ifdef USE_MARK_BYTES
149 hhdr
-> hb_marks
[i
] = 1;
151 hhdr
-> hb_marks
[i
] = ONES
;
157 * Clear all mark bits associated with block h.
160 # if defined(__STDC__) || defined(__cplusplus)
161 static void clear_marks_for_block(struct hblk
*h
, word dummy
)
163 static void clear_marks_for_block(h
, dummy
)
168 register hdr
* hhdr
= HDR(h
);
170 if (IS_UNCOLLECTABLE(hhdr
-> hb_obj_kind
)) return;
171 /* Mark bit for these is cleared only once the object is */
172 /* explicitly deallocated. This either frees the block, or */
173 /* the bit is cleared once the object is on the free list. */
174 GC_clear_hdr_marks(hhdr
);
177 /* Slow but general routines for setting/clearing/asking about mark bits */
178 void GC_set_mark_bit(p
)
181 register struct hblk
*h
= HBLKPTR(p
);
182 register hdr
* hhdr
= HDR(h
);
183 register int word_no
= (word
*)p
- (word
*)h
;
185 set_mark_bit_from_hdr(hhdr
, word_no
);
188 void GC_clear_mark_bit(p
)
191 register struct hblk
*h
= HBLKPTR(p
);
192 register hdr
* hhdr
= HDR(h
);
193 register int word_no
= (word
*)p
- (word
*)h
;
195 clear_mark_bit_from_hdr(hhdr
, word_no
);
198 GC_bool
GC_is_marked(p
)
201 register struct hblk
*h
= HBLKPTR(p
);
202 register hdr
* hhdr
= HDR(h
);
203 register int word_no
= (word
*)p
- (word
*)h
;
205 return(mark_bit_from_hdr(hhdr
, word_no
));
210 * Clear mark bits in all allocated heap blocks. This invalidates
211 * the marker invariant, and sets GC_mark_state to reflect this.
212 * (This implicitly starts marking to reestablish the invariant.)
214 void GC_clear_marks()
216 GC_apply_to_all_blocks(clear_marks_for_block
, (word
)0);
217 GC_objects_are_marked
= FALSE
;
218 GC_mark_state
= MS_INVALID
;
221 /* Counters reflect currently marked objects: reset here */
222 GC_composite_in_use
= 0;
223 GC_atomic_in_use
= 0;
228 /* Initiate a garbage collection. Initiates a full collection if the */
229 /* mark state is invalid. */
231 void GC_initiate_gc()
233 if (GC_dirty_maintained
) GC_read_dirty();
234 # ifdef STUBBORN_ALLOC
239 extern void GC_check_dirty();
241 if (GC_dirty_maintained
) GC_check_dirty();
244 GC_n_rescuing_pages
= 0;
245 if (GC_mark_state
== MS_NONE
) {
246 GC_mark_state
= MS_PUSH_RESCUERS
;
247 } else if (GC_mark_state
!= MS_INVALID
) {
248 ABORT("unexpected state");
249 } /* else this is really a full collection, and mark */
250 /* bits are invalid. */
255 static void alloc_mark_stack();
257 /* Perform a small amount of marking. */
258 /* We try to touch roughly a page of memory. */
259 /* Return TRUE if we just finished a mark phase. */
260 /* Cold_gc_frame is an address inside a GC frame that */
261 /* remains valid until all marking is complete. */
262 /* A zero value indicates that it's OK to miss some */
263 /* register values. */
264 GC_bool
GC_mark_some(cold_gc_frame
)
268 /* Windows 98 appears to asynchronously create and remove writable */
269 /* memory mappings, for reasons we haven't yet understood. Since */
270 /* we look for writable regions to determine the root set, we may */
271 /* try to mark from an address range that disappeared since we */
272 /* started the collection. Thus we have to recover from faults here. */
273 /* This code does not appear to be necessary for Windows 95/NT/2000. */
274 /* Note that this code should never generate an incremental GC write */
278 switch(GC_mark_state
) {
282 case MS_PUSH_RESCUERS
:
283 if (GC_mark_stack_top
284 >= GC_mark_stack_limit
- INITIAL_MARK_STACK_SIZE
/2) {
285 /* Go ahead and mark, even though that might cause us to */
286 /* see more marked dirty objects later on. Avoid this */
288 GC_mark_stack_too_small
= TRUE
;
289 MARK_FROM_MARK_STACK();
292 scan_ptr
= GC_push_next_marked_dirty(scan_ptr
);
295 if (GC_print_stats
) {
296 GC_printf1("Marked from %lu dirty pages\n",
297 (unsigned long)GC_n_rescuing_pages
);
300 GC_push_roots(FALSE
, cold_gc_frame
);
301 GC_objects_are_marked
= TRUE
;
302 if (GC_mark_state
!= MS_INVALID
) {
303 GC_mark_state
= MS_ROOTS_PUSHED
;
309 case MS_PUSH_UNCOLLECTABLE
:
310 if (GC_mark_stack_top
311 >= GC_mark_stack
+ GC_mark_stack_size
/4) {
312 # ifdef PARALLEL_MARK
313 /* Avoid this, since we don't parallelize the marker */
315 if (GC_parallel
) GC_mark_stack_too_small
= TRUE
;
317 MARK_FROM_MARK_STACK();
320 scan_ptr
= GC_push_next_marked_uncollectable(scan_ptr
);
322 GC_push_roots(TRUE
, cold_gc_frame
);
323 GC_objects_are_marked
= TRUE
;
324 if (GC_mark_state
!= MS_INVALID
) {
325 GC_mark_state
= MS_ROOTS_PUSHED
;
331 case MS_ROOTS_PUSHED
:
332 # ifdef PARALLEL_MARK
333 /* In the incremental GC case, this currently doesn't */
334 /* quite do the right thing, since it runs to */
335 /* completion. On the other hand, starting a */
336 /* parallel marker is expensive, so perhaps it is */
337 /* the right thing? */
338 /* Eventually, incremental marking should run */
339 /* asynchronously in multiple threads, without grabbing */
340 /* the allocation lock. */
342 GC_do_parallel_mark();
343 GC_ASSERT(GC_mark_stack_top
< GC_first_nonempty
);
344 GC_mark_stack_top
= GC_mark_stack
- 1;
345 if (GC_mark_stack_too_small
) {
346 alloc_mark_stack(2*GC_mark_stack_size
);
348 if (GC_mark_state
== MS_ROOTS_PUSHED
) {
349 GC_mark_state
= MS_NONE
;
356 if (GC_mark_stack_top
>= GC_mark_stack
) {
357 MARK_FROM_MARK_STACK();
360 GC_mark_state
= MS_NONE
;
361 if (GC_mark_stack_too_small
) {
362 alloc_mark_stack(2*GC_mark_stack_size
);
368 case MS_PARTIALLY_INVALID
:
369 if (!GC_objects_are_marked
) {
370 GC_mark_state
= MS_PUSH_UNCOLLECTABLE
;
373 if (GC_mark_stack_top
>= GC_mark_stack
) {
374 MARK_FROM_MARK_STACK();
377 if (scan_ptr
== 0 && GC_mark_state
== MS_INVALID
) {
378 /* About to start a heap scan for marked objects. */
379 /* Mark stack is empty. OK to reallocate. */
380 if (GC_mark_stack_too_small
) {
381 alloc_mark_stack(2*GC_mark_stack_size
);
383 GC_mark_state
= MS_PARTIALLY_INVALID
;
385 scan_ptr
= GC_push_next_marked(scan_ptr
);
386 if (scan_ptr
== 0 && GC_mark_state
== MS_PARTIALLY_INVALID
) {
387 GC_push_roots(TRUE
, cold_gc_frame
);
388 GC_objects_are_marked
= TRUE
;
389 if (GC_mark_state
!= MS_INVALID
) {
390 GC_mark_state
= MS_ROOTS_PUSHED
;
395 ABORT("GC_mark_some: bad state");
399 } __except (GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION
?
400 EXCEPTION_EXECUTE_HANDLER
: EXCEPTION_CONTINUE_SEARCH
) {
402 if (GC_print_stats
) {
403 GC_printf0("Caught ACCESS_VIOLATION in marker. "
404 "Memory mapping disappeared.\n");
406 # endif /* CONDPRINT */
407 /* We have bad roots on the stack. Discard mark stack. */
408 /* Rescan from marked objects. Redetermine roots. */
409 GC_invalidate_mark_state();
417 GC_bool
GC_mark_stack_empty()
419 return(GC_mark_stack_top
< GC_mark_stack
);
423 word GC_prof_array
[10];
424 # define PROF(n) GC_prof_array[n]++
429 /* Given a pointer to someplace other than a small object page or the */
430 /* first page of a large object, return a pointer either to the */
431 /* start of the large object or NIL. */
432 /* In the latter case black list the address current. */
433 /* Returns NIL without black listing if current points to a block */
434 /* with IGNORE_OFF_PAGE set. */
436 # ifdef PRINT_BLACK_LIST
437 ptr_t
GC_find_start(current
, hhdr
, source
)
440 ptr_t
GC_find_start(current
, hhdr
)
443 register ptr_t current
;
446 if (GC_all_interior_pointers
) {
448 register ptr_t orig
= current
;
450 current
= (ptr_t
)HBLKPTR(current
);
452 current
= current
- HBLKSIZE
*(word
)hhdr
;
454 } while(IS_FORWARDING_ADDR_OR_NIL(hhdr
));
455 /* current points to the start of the large object */
456 if (hhdr
-> hb_flags
& IGNORE_OFF_PAGE
) return(0);
457 if ((word
*)orig
- (word
*)current
458 >= (ptrdiff_t)(hhdr
->hb_sz
)) {
459 /* Pointer past the end of the block */
460 GC_ADD_TO_BLACK_LIST_NORMAL((word
)orig
, source
);
465 GC_ADD_TO_BLACK_LIST_NORMAL((word
)current
, source
);
469 GC_ADD_TO_BLACK_LIST_NORMAL((word
)current
, source
);
475 void GC_invalidate_mark_state()
477 GC_mark_state
= MS_INVALID
;
478 GC_mark_stack_top
= GC_mark_stack
-1;
481 mse
* GC_signal_mark_stack_overflow(msp
)
484 GC_mark_state
= MS_INVALID
;
485 GC_mark_stack_too_small
= TRUE
;
487 if (GC_print_stats
) {
488 GC_printf1("Mark stack overflow; current size = %lu entries\n",
492 return(msp
- GC_MARK_STACK_DISCARDS
);
496 * Mark objects pointed to by the regions described by
497 * mark stack entries between GC_mark_stack and GC_mark_stack_top,
498 * inclusive. Assumes the upper limit of a mark stack entry
499 * is never 0. A mark stack entry never has size 0.
500 * We try to traverse on the order of a hblk of memory before we return.
501 * Caller is responsible for calling this until the mark stack is empty.
502 * Note that this is the most performance critical routine in the
503 * collector. Hence it contains all sorts of ugly hacks to speed
504 * things up. In particular, we avoid procedure calls on the common
505 * path, we take advantage of peculiarities of the mark descriptor
506 * encoding, we optionally maintain a cache for the block address to
507 * header mapping, we prefetch when an object is "grayed", etc.
509 mse
* GC_mark_from(mark_stack_top
, mark_stack
, mark_stack_limit
)
510 mse
* mark_stack_top
;
512 mse
* mark_stack_limit
;
514 int credit
= HBLKSIZE
; /* Remaining credit for marking work */
515 register word
* current_p
; /* Pointer to current candidate ptr. */
516 register word current
; /* Candidate pointer. */
517 register word
* limit
; /* (Incl) limit of current candidate */
520 register ptr_t greatest_ha
= GC_greatest_plausible_heap_addr
;
521 register ptr_t least_ha
= GC_least_plausible_heap_addr
;
524 # define SPLIT_RANGE_WORDS 128 /* Must be power of 2. */
526 GC_objects_are_marked
= TRUE
;
528 # ifdef OS2 /* Use untweaked version to circumvent compiler problem */
529 while (mark_stack_top
>= mark_stack
&& credit
>= 0) {
531 while ((((ptr_t
)mark_stack_top
- (ptr_t
)mark_stack
) | credit
)
534 current_p
= mark_stack_top
-> mse_start
;
535 descr
= mark_stack_top
-> mse_descr
;
537 /* current_p and descr describe the current object. */
538 /* *mark_stack_top is vacant. */
539 /* The following is 0 only for small objects described by a simple */
540 /* length descriptor. For many applications this is the common */
541 /* case, so we try to detect it quickly. */
542 if (descr
& ((~(WORDS_TO_BYTES(SPLIT_RANGE_WORDS
) - 1)) | GC_DS_TAGS
)) {
543 word tag
= descr
& GC_DS_TAGS
;
548 /* Process part of the range to avoid pushing too much on the */
550 # ifdef PARALLEL_MARK
551 # define SHARE_BYTES 2048
552 if (descr
> SHARE_BYTES
&& GC_parallel
553 && mark_stack_top
< mark_stack_limit
- 1) {
554 int new_size
= (descr
/2) & ~(sizeof(word
)-1);
555 GC_ASSERT(descr
< GC_greatest_plausible_heap_addr
556 - GC_least_plausible_heap_addr
);
557 mark_stack_top
-> mse_start
= current_p
;
558 mark_stack_top
-> mse_descr
= new_size
+ sizeof(word
);
559 /* makes sure we handle */
560 /* misaligned pointers. */
562 current_p
= (word
*) ((char *)current_p
+ new_size
);
566 # endif /* PARALLEL_MARK */
567 mark_stack_top
-> mse_start
=
568 limit
= current_p
+ SPLIT_RANGE_WORDS
-1;
569 mark_stack_top
-> mse_descr
=
570 descr
- WORDS_TO_BYTES(SPLIT_RANGE_WORDS
-1);
571 /* Make sure that pointers overlapping the two ranges are */
573 limit
= (word
*)((char *)limit
+ sizeof(word
) - ALIGNMENT
);
577 descr
&= ~GC_DS_TAGS
;
578 credit
-= WORDS_TO_BYTES(WORDSZ
/2); /* guess */
580 if ((signed_word
)descr
< 0) {
581 current
= *current_p
;
582 if ((ptr_t
)current
>= least_ha
&& (ptr_t
)current
< greatest_ha
) {
584 HC_PUSH_CONTENTS((ptr_t
)current
, mark_stack_top
,
585 mark_stack_limit
, current_p
, exit1
);
594 credit
-= GC_PROC_BYTES
;
597 (current_p
, mark_stack_top
,
598 mark_stack_limit
, ENV(descr
));
600 case GC_DS_PER_OBJECT
:
601 if ((signed_word
)descr
>= 0) {
602 /* Descriptor is in the object. */
603 descr
= *(word
*)((ptr_t
)current_p
+ descr
- GC_DS_PER_OBJECT
);
605 /* Descriptor is in type descriptor pointed to by first */
606 /* word in object. */
607 ptr_t type_descr
= *(ptr_t
*)current_p
;
608 /* type_descr is either a valid pointer to the descriptor */
609 /* structure, or this object was on a free list. If it */
610 /* it was anything but the last object on the free list, */
611 /* we will misinterpret the next object on the free list as */
612 /* the type descriptor, and get a 0 GC descriptor, which */
613 /* is ideal. Unfortunately, we need to check for the last */
614 /* object case explicitly. */
615 if (0 == type_descr
) {
616 /* Rarely executed. */
620 descr
= *(word
*)(type_descr
621 - (descr
- (GC_DS_PER_OBJECT
622 - GC_INDIR_PER_OBJ_BIAS
)));
625 /* Can happen either because we generated a 0 descriptor */
626 /* or we saw a pointer to a free object. */
632 } else /* Small object with length descriptor */ {
634 limit
= (word
*)(((ptr_t
)current_p
) + (word
)descr
);
636 /* The simple case in which we're scanning a range. */
637 GC_ASSERT(!((word
)current_p
& (ALIGNMENT
-1)));
638 credit
-= (ptr_t
)limit
- (ptr_t
)current_p
;
643 # ifndef SMALL_CONFIG
646 /* Try to prefetch the next pointer to be examined asap. */
647 /* Empirically, this also seems to help slightly without */
648 /* prefetches, at least on linux/X86. Presumably this loop */
649 /* ends up with less register pressure, and gcc thus ends up */
650 /* generating slightly better code. Overall gcc code quality */
651 /* for this loop is still not great. */
653 PREFETCH((ptr_t
)limit
- PREF_DIST
*CACHE_LINE_SIZE
);
654 GC_ASSERT(limit
>= current_p
);
656 limit
= (word
*)((char *)limit
- ALIGNMENT
);
657 if ((ptr_t
)deferred
>= least_ha
&& (ptr_t
)deferred
< greatest_ha
) {
661 if (current_p
> limit
) goto next_object
;
662 /* Unroll once, so we don't do too many of the prefetches */
663 /* based on limit. */
665 limit
= (word
*)((char *)limit
- ALIGNMENT
);
666 if ((ptr_t
)deferred
>= least_ha
&& (ptr_t
)deferred
< greatest_ha
) {
670 if (current_p
> limit
) goto next_object
;
674 while (current_p
<= limit
) {
675 /* Empirically, unrolling this loop doesn't help a lot. */
676 /* Since HC_PUSH_CONTENTS expands to a lot of code, */
678 current
= *current_p
;
679 PREFETCH((ptr_t
)current_p
+ PREF_DIST
*CACHE_LINE_SIZE
);
680 if ((ptr_t
)current
>= least_ha
&& (ptr_t
)current
< greatest_ha
) {
681 /* Prefetch the contents of the object we just pushed. It's */
682 /* likely we will need them soon. */
684 HC_PUSH_CONTENTS((ptr_t
)current
, mark_stack_top
,
685 mark_stack_limit
, current_p
, exit2
);
687 current_p
= (word
*)((char *)current_p
+ ALIGNMENT
);
690 # ifndef SMALL_CONFIG
691 /* We still need to mark the entry we previously prefetched. */
692 /* We alrady know that it passes the preliminary pointer */
694 HC_PUSH_CONTENTS((ptr_t
)deferred
, mark_stack_top
,
695 mark_stack_limit
, current_p
, exit4
);
700 return mark_stack_top
;
705 /* We assume we have an ANSI C Compiler. */
706 GC_bool GC_help_wanted
= FALSE
;
707 unsigned GC_helper_count
= 0;
708 unsigned GC_active_count
= 0;
709 mse
* VOLATILE GC_first_nonempty
;
712 #define LOCAL_MARK_STACK_SIZE HBLKSIZE
713 /* Under normal circumstances, this is big enough to guarantee */
714 /* We don't overflow half of it in a single call to */
718 /* Steal mark stack entries starting at mse low into mark stack local */
719 /* until we either steal mse high, or we have max entries. */
720 /* Return a pointer to the top of the local mark stack. */
721 /* *next is replaced by a pointer to the next unscanned mark stack */
723 mse
* GC_steal_mark_stack(mse
* low
, mse
* high
, mse
* local
,
724 unsigned max
, mse
**next
)
727 mse
*top
= local
- 1;
730 GC_ASSERT(high
>= low
-1 && high
- low
+ 1 <= GC_mark_stack_size
);
731 for (p
= low
; p
<= high
&& i
<= max
; ++p
) {
732 word descr
= *(volatile word
*) &(p
-> mse_descr
);
734 *(volatile word
*) &(p
-> mse_descr
) = 0;
736 top
-> mse_descr
= descr
;
737 top
-> mse_start
= p
-> mse_start
;
738 GC_ASSERT( top
-> mse_descr
& GC_DS_TAGS
!= GC_DS_LENGTH
||
739 top
-> mse_descr
< GC_greatest_plausible_heap_addr
740 - GC_least_plausible_heap_addr
);
741 /* There is no synchronization here. We assume that at */
742 /* least one thread will see the original descriptor. */
743 /* Otherwise we need a barrier. */
744 /* More than one thread may get this entry, but that's only */
745 /* a minor performance problem. */
746 /* If this is a big object, count it as */
747 /* size/256 + 1 objects. */
749 if ((descr
& GC_DS_TAGS
) == GC_DS_LENGTH
) i
+= (descr
>> 8);
756 /* Copy back a local mark stack. */
757 /* low and high are inclusive bounds. */
758 void GC_return_mark_stack(mse
* low
, mse
* high
)
764 if (high
< low
) return;
765 stack_size
= high
- low
+ 1;
766 GC_acquire_mark_lock();
767 my_top
= GC_mark_stack_top
;
768 my_start
= my_top
+ 1;
769 if (my_start
- GC_mark_stack
+ stack_size
> GC_mark_stack_size
) {
771 if (GC_print_stats
) {
772 GC_printf0("No room to copy back mark stack.");
775 GC_mark_state
= MS_INVALID
;
776 GC_mark_stack_too_small
= TRUE
;
777 /* We drop the local mark stack. We'll fix things later. */
779 BCOPY(low
, my_start
, stack_size
* sizeof(mse
));
780 GC_ASSERT(GC_mark_stack_top
= my_top
);
781 # if !defined(IA64) && !defined(HP_PA)
782 GC_memory_write_barrier();
784 /* On IA64, the volatile write acts as a release barrier. */
785 GC_mark_stack_top
= my_top
+ stack_size
;
787 GC_release_mark_lock();
788 GC_notify_all_marker();
791 /* Mark from the local mark stack. */
792 /* On return, the local mark stack is empty. */
793 /* But this may be achieved by copying the */
794 /* local mark stack back into the global one. */
795 void GC_do_local_mark(mse
*local_mark_stack
, mse
*local_top
)
798 # define N_LOCAL_ITERS 1
800 # ifdef GC_ASSERTIONS
801 /* Make sure we don't hold mark lock. */
802 GC_acquire_mark_lock();
803 GC_release_mark_lock();
806 for (n
= 0; n
< N_LOCAL_ITERS
; ++n
) {
807 local_top
= GC_mark_from(local_top
, local_mark_stack
,
808 local_mark_stack
+ LOCAL_MARK_STACK_SIZE
);
809 if (local_top
< local_mark_stack
) return;
810 if (local_top
- local_mark_stack
>= LOCAL_MARK_STACK_SIZE
/2) {
811 GC_return_mark_stack(local_mark_stack
, local_top
);
815 if (GC_mark_stack_top
< GC_first_nonempty
&&
816 GC_active_count
< GC_helper_count
817 && local_top
> local_mark_stack
+ 1) {
818 /* Try to share the load, since the main stack is empty, */
819 /* and helper threads are waiting for a refill. */
820 /* The entries near the bottom of the stack are likely */
821 /* to require more work. Thus we return those, eventhough */
824 mse
* new_bottom
= local_mark_stack
825 + (local_top
- local_mark_stack
)/2;
826 GC_ASSERT(new_bottom
> local_mark_stack
827 && new_bottom
< local_top
);
828 GC_return_mark_stack(local_mark_stack
, new_bottom
- 1);
829 memmove(local_mark_stack
, new_bottom
,
830 (local_top
- new_bottom
+ 1) * sizeof(mse
));
831 local_top
-= (new_bottom
- local_mark_stack
);
836 #define ENTRIES_TO_GET 5
838 long GC_markers
= 2; /* Normally changed by thread-library- */
839 /* -specific code. */
841 /* Mark using the local mark stack until the global mark stack is empty */
842 /* and ther are no active workers. Update GC_first_nonempty to reflect */
844 /* Caller does not hold mark lock. */
845 /* Caller has already incremented GC_helper_count. We decrement it, */
846 /* and maintain GC_active_count. */
847 void GC_mark_local(mse
*local_mark_stack
, int id
)
849 mse
* my_first_nonempty
;
851 GC_acquire_mark_lock();
853 my_first_nonempty
= GC_first_nonempty
;
854 GC_ASSERT(GC_first_nonempty
>= GC_mark_stack
&&
855 GC_first_nonempty
<= GC_mark_stack_top
+ 1);
857 GC_printf1("Starting mark helper %lu\n", (unsigned long)id
);
859 GC_release_mark_lock();
866 mse
* global_first_nonempty
= GC_first_nonempty
;
868 GC_ASSERT(my_first_nonempty
>= GC_mark_stack
&&
869 my_first_nonempty
<= GC_mark_stack_top
+ 1);
870 GC_ASSERT(global_first_nonempty
>= GC_mark_stack
&&
871 global_first_nonempty
<= GC_mark_stack_top
+ 1);
872 if (my_first_nonempty
< global_first_nonempty
) {
873 my_first_nonempty
= global_first_nonempty
;
874 } else if (global_first_nonempty
< my_first_nonempty
) {
875 GC_compare_and_exchange((word
*)(&GC_first_nonempty
),
876 (word
) global_first_nonempty
,
877 (word
) my_first_nonempty
);
878 /* If this fails, we just go ahead, without updating */
879 /* GC_first_nonempty. */
881 /* Perhaps we should also update GC_first_nonempty, if it */
882 /* is less. But that would require using atomic updates. */
883 my_top
= GC_mark_stack_top
;
884 n_on_stack
= my_top
- my_first_nonempty
+ 1;
885 if (0 == n_on_stack
) {
886 GC_acquire_mark_lock();
887 my_top
= GC_mark_stack_top
;
888 n_on_stack
= my_top
- my_first_nonempty
+ 1;
889 if (0 == n_on_stack
) {
891 GC_ASSERT(GC_active_count
<= GC_helper_count
);
892 /* Other markers may redeposit objects */
894 if (0 == GC_active_count
) GC_notify_all_marker();
895 while (GC_active_count
> 0
896 && GC_first_nonempty
> GC_mark_stack_top
) {
897 /* We will be notified if either GC_active_count */
898 /* reaches zero, or if more objects are pushed on */
899 /* the global mark stack. */
902 if (GC_active_count
== 0 &&
903 GC_first_nonempty
> GC_mark_stack_top
) {
904 GC_bool need_to_notify
= FALSE
;
905 /* The above conditions can't be falsified while we */
906 /* hold the mark lock, since neither */
907 /* GC_active_count nor GC_mark_stack_top can */
908 /* change. GC_first_nonempty can only be */
909 /* incremented asynchronously. Thus we know that */
910 /* both conditions actually held simultaneously. */
912 if (0 == GC_helper_count
) need_to_notify
= TRUE
;
915 "Finished mark helper %lu\n", (unsigned long)id
);
917 GC_release_mark_lock();
918 if (need_to_notify
) GC_notify_all_marker();
921 /* else there's something on the stack again, or */
922 /* another help may push something. */
924 GC_ASSERT(GC_active_count
> 0);
925 GC_release_mark_lock();
928 GC_release_mark_lock();
931 n_to_get
= ENTRIES_TO_GET
;
932 if (n_on_stack
< 2 * ENTRIES_TO_GET
) n_to_get
= 1;
933 local_top
= GC_steal_mark_stack(my_first_nonempty
, my_top
,
934 local_mark_stack
, n_to_get
,
936 GC_ASSERT(my_first_nonempty
>= GC_mark_stack
&&
937 my_first_nonempty
<= GC_mark_stack_top
+ 1);
938 GC_do_local_mark(local_mark_stack
, local_top
);
942 /* Perform Parallel mark. */
943 /* We hold the GC lock, not the mark lock. */
944 /* Currently runs until the mark stack is */
946 void GC_do_parallel_mark()
948 mse local_mark_stack
[LOCAL_MARK_STACK_SIZE
];
952 GC_acquire_mark_lock();
953 GC_ASSERT(I_HOLD_LOCK());
954 GC_ASSERT(!GC_help_wanted
);
955 GC_ASSERT(GC_active_count
== 0);
957 GC_printf1("Starting marking for mark phase number %lu\n",
958 (unsigned long)GC_mark_no
);
960 GC_first_nonempty
= GC_mark_stack
;
963 GC_help_wanted
= TRUE
;
964 GC_release_mark_lock();
965 GC_notify_all_marker();
966 /* Wake up potential helpers. */
967 GC_mark_local(local_mark_stack
, 0);
968 GC_acquire_mark_lock();
969 GC_help_wanted
= FALSE
;
970 /* Done; clean up. */
971 while (GC_helper_count
> 0) GC_wait_marker();
972 /* GC_helper_count cannot be incremented while GC_help_wanted == FALSE */
975 "Finished marking for mark phase number %lu\n",
976 (unsigned long)GC_mark_no
);
979 GC_release_mark_lock();
980 GC_notify_all_marker();
984 /* Try to help out the marker, if it's running. */
985 /* We do not hold the GC lock, but the requestor does. */
986 void GC_help_marker(word my_mark_no
)
988 mse local_mark_stack
[LOCAL_MARK_STACK_SIZE
];
990 mse
* my_first_nonempty
;
992 if (!GC_parallel
) return;
993 GC_acquire_mark_lock();
994 while (GC_mark_no
< my_mark_no
995 || !GC_help_wanted
&& GC_mark_no
== my_mark_no
) {
998 my_id
= GC_helper_count
;
999 if (GC_mark_no
!= my_mark_no
|| my_id
>= GC_markers
) {
1000 /* Second test is useful only if original threads can also */
1001 /* act as helpers. Under Linux they can't. */
1002 GC_release_mark_lock();
1005 GC_helper_count
= my_id
+ 1;
1006 GC_release_mark_lock();
1007 GC_mark_local(local_mark_stack
, my_id
);
1008 /* GC_mark_local decrements GC_helper_count. */
1011 #endif /* PARALLEL_MARK */
1013 /* Allocate or reallocate space for mark stack of size s words */
1014 /* May silently fail. */
1015 static void alloc_mark_stack(n
)
1018 mse
* new_stack
= (mse
*)GC_scratch_alloc(n
* sizeof(struct GC_ms_entry
));
1020 GC_mark_stack_too_small
= FALSE
;
1021 if (GC_mark_stack_size
!= 0) {
1022 if (new_stack
!= 0) {
1023 word displ
= (word
)GC_mark_stack
& (GC_page_size
- 1);
1024 signed_word size
= GC_mark_stack_size
* sizeof(struct GC_ms_entry
);
1026 /* Recycle old space */
1027 if (0 != displ
) displ
= GC_page_size
- displ
;
1028 size
= (size
- displ
) & ~(GC_page_size
- 1);
1030 GC_add_to_heap((struct hblk
*)
1031 ((word
)GC_mark_stack
+ displ
), (word
)size
);
1033 GC_mark_stack
= new_stack
;
1034 GC_mark_stack_size
= n
;
1035 GC_mark_stack_limit
= new_stack
+ n
;
1037 if (GC_print_stats
) {
1038 GC_printf1("Grew mark stack to %lu frames\n",
1039 (unsigned long) GC_mark_stack_size
);
1044 if (GC_print_stats
) {
1045 GC_printf1("Failed to grow mark stack to %lu frames\n",
1051 if (new_stack
== 0) {
1052 GC_err_printf0("No space for mark stack\n");
1055 GC_mark_stack
= new_stack
;
1056 GC_mark_stack_size
= n
;
1057 GC_mark_stack_limit
= new_stack
+ n
;
1059 GC_mark_stack_top
= GC_mark_stack
-1;
1064 alloc_mark_stack(INITIAL_MARK_STACK_SIZE
);
1068 * Push all locations between b and t onto the mark stack.
1069 * b is the first location to be checked. t is one past the last
1070 * location to be checked.
1071 * Should only be used if there is no possibility of mark stack
1074 void GC_push_all(bottom
, top
)
1078 register word length
;
1080 bottom
= (ptr_t
)(((word
) bottom
+ ALIGNMENT
-1) & ~(ALIGNMENT
-1));
1081 top
= (ptr_t
)(((word
) top
) & ~(ALIGNMENT
-1));
1082 if (top
== 0 || bottom
== top
) return;
1083 GC_mark_stack_top
++;
1084 if (GC_mark_stack_top
>= GC_mark_stack_limit
) {
1085 ABORT("unexpected mark stack overflow");
1087 length
= top
- bottom
;
1088 # if GC_DS_TAGS > ALIGNMENT - 1
1089 length
+= GC_DS_TAGS
;
1090 length
&= ~GC_DS_TAGS
;
1092 GC_mark_stack_top
-> mse_start
= (word
*)bottom
;
1093 GC_mark_stack_top
-> mse_descr
= length
;
1097 * Analogous to the above, but push only those pages h with dirty_fn(h) != 0.
1098 * We use push_fn to actually push the block.
1099 * Used both to selectively push dirty pages, or to push a block
1100 * in piecemeal fashion, to allow for more marking concurrency.
1101 * Will not overflow mark stack if push_fn pushes a small fixed number
1102 * of entries. (This is invoked only if push_fn pushes a single entry,
1103 * or if it marks each object before pushing it, thus ensuring progress
1104 * in the event of a stack overflow.)
1106 void GC_push_selected(bottom
, top
, dirty_fn
, push_fn
)
1109 int (*dirty_fn
) GC_PROTO((struct hblk
* h
));
1110 void (*push_fn
) GC_PROTO((ptr_t bottom
, ptr_t top
));
1112 register struct hblk
* h
;
1114 bottom
= (ptr_t
)(((long) bottom
+ ALIGNMENT
-1) & ~(ALIGNMENT
-1));
1115 top
= (ptr_t
)(((long) top
) & ~(ALIGNMENT
-1));
1117 if (top
== 0 || bottom
== top
) return;
1118 h
= HBLKPTR(bottom
+ HBLKSIZE
);
1119 if (top
<= (ptr_t
) h
) {
1120 if ((*dirty_fn
)(h
-1)) {
1121 (*push_fn
)(bottom
, top
);
1125 if ((*dirty_fn
)(h
-1)) {
1126 (*push_fn
)(bottom
, (ptr_t
)h
);
1128 while ((ptr_t
)(h
+1) <= top
) {
1129 if ((*dirty_fn
)(h
)) {
1130 if ((word
)(GC_mark_stack_top
- GC_mark_stack
)
1131 > 3 * GC_mark_stack_size
/ 4) {
1132 /* Danger of mark stack overflow */
1133 (*push_fn
)((ptr_t
)h
, top
);
1136 (*push_fn
)((ptr_t
)h
, (ptr_t
)(h
+1));
1141 if ((ptr_t
)h
!= top
) {
1142 if ((*dirty_fn
)(h
)) {
1143 (*push_fn
)((ptr_t
)h
, top
);
1146 if (GC_mark_stack_top
>= GC_mark_stack_limit
) {
1147 ABORT("unexpected mark stack overflow");
1151 # ifndef SMALL_CONFIG
1153 #ifdef PARALLEL_MARK
1154 /* Break up root sections into page size chunks to better spread */
1156 GC_bool
GC_true_func(struct hblk
*h
) { return TRUE
; }
1157 # define GC_PUSH_ALL(b,t) GC_push_selected(b,t,GC_true_func,GC_push_all);
1159 # define GC_PUSH_ALL(b,t) GC_push_all(b,t);
1163 void GC_push_conditional(bottom
, top
, all
)
1169 if (GC_dirty_maintained
) {
1171 /* Pages that were never dirtied cannot contain pointers */
1172 GC_push_selected(bottom
, top
, GC_page_was_ever_dirty
, GC_push_all
);
1174 GC_push_all(bottom
, top
);
1177 GC_push_all(bottom
, top
);
1180 GC_push_selected(bottom
, top
, GC_page_was_dirty
, GC_push_all
);
1185 # if defined(MSWIN32) || defined(MSWINCE)
1186 void __cdecl
GC_push_one(p
)
1192 GC_PUSH_ONE_STACK(p
, MARKED_FROM_REGISTER
);
1195 struct GC_ms_entry
*GC_mark_and_push(obj
, mark_stack_ptr
, mark_stack_limit
, src
)
1197 struct GC_ms_entry
* mark_stack_ptr
;
1198 struct GC_ms_entry
* mark_stack_limit
;
1202 PUSH_CONTENTS(obj
, mark_stack_ptr
/* modified */, mark_stack_limit
, src
,
1203 was_marked
/* internally generated exit label */);
1204 return mark_stack_ptr
;
1208 # define BASE(p) (word)GC_base((void *)(p))
1210 # define BASE(p) (word)GC_base((char *)(p))
1213 /* Mark and push (i.e. gray) a single object p onto the main */
1214 /* mark stack. Consider p to be valid if it is an interior */
1216 /* The object p has passed a preliminary pointer validity */
1217 /* test, but we do not definitely know whether it is valid. */
1218 /* Mark bits are NOT atomically updated. Thus this must be the */
1219 /* only thread setting them. */
1220 # if defined(PRINT_BLACK_LIST) || defined(KEEP_BACK_PTRS)
1221 void GC_mark_and_push_stack(p
, source
)
1224 void GC_mark_and_push_stack(p
)
1230 register hdr
* hhdr
;
1234 if (IS_FORWARDING_ADDR_OR_NIL(hhdr
)) {
1238 displ
= BYTES_TO_WORDS(HBLKDISPL(r
));
1241 register map_entry_type map_entry
;
1243 displ
= HBLKDISPL(p
);
1244 map_entry
= MAP_ENTRY((hhdr
-> hb_map
), displ
);
1245 if (map_entry
>= MAX_OFFSET
) {
1246 if (map_entry
== OFFSET_TOO_BIG
|| !GC_all_interior_pointers
) {
1248 displ
= BYTES_TO_WORDS(HBLKDISPL(r
));
1249 if (r
== 0) hhdr
= 0;
1251 /* Offset invalid, but map reflects interior pointers */
1255 displ
= BYTES_TO_WORDS(displ
);
1257 r
= (word
)((word
*)(HBLKPTR(p
)) + displ
);
1260 /* If hhdr != 0 then r == GC_base(p), only we did it faster. */
1261 /* displ is the word index within the block. */
1263 # ifdef PRINT_BLACK_LIST
1264 GC_add_to_black_list_stack(p
, source
);
1266 GC_add_to_black_list_stack(p
);
1268 # undef source /* In case we had to define it. */
1270 if (!mark_bit_from_hdr(hhdr
, displ
)) {
1271 set_mark_bit_from_hdr(hhdr
, displ
);
1272 GC_STORE_BACK_PTR(source
, (ptr_t
)r
);
1273 PUSH_OBJ((word
*)r
, hhdr
, GC_mark_stack_top
,
1274 GC_mark_stack_limit
);
1281 # define TRACE_ENTRIES 1000
1283 struct trace_entry
{
1289 } GC_trace_buf
[TRACE_ENTRIES
];
1291 int GC_trace_buf_ptr
= 0;
1293 void GC_add_trace_entry(char *kind
, word arg1
, word arg2
)
1295 GC_trace_buf
[GC_trace_buf_ptr
].kind
= kind
;
1296 GC_trace_buf
[GC_trace_buf_ptr
].gc_no
= GC_gc_no
;
1297 GC_trace_buf
[GC_trace_buf_ptr
].words_allocd
= GC_words_allocd
;
1298 GC_trace_buf
[GC_trace_buf_ptr
].arg1
= arg1
^ 0x80000000;
1299 GC_trace_buf
[GC_trace_buf_ptr
].arg2
= arg2
^ 0x80000000;
1301 if (GC_trace_buf_ptr
>= TRACE_ENTRIES
) GC_trace_buf_ptr
= 0;
1304 void GC_print_trace(word gc_no
, GC_bool lock
)
1307 struct trace_entry
*p
;
1310 for (i
= GC_trace_buf_ptr
-1; i
!= GC_trace_buf_ptr
; i
--) {
1311 if (i
< 0) i
= TRACE_ENTRIES
-1;
1312 p
= GC_trace_buf
+ i
;
1313 if (p
-> gc_no
< gc_no
|| p
-> kind
== 0) return;
1314 printf("Trace:%s (gc:%d,words:%d) 0x%X, 0x%X\n",
1315 p
-> kind
, p
-> gc_no
, p
-> words_allocd
,
1316 (p
-> arg1
) ^ 0x80000000, (p
-> arg2
) ^ 0x80000000);
1318 printf("Trace incomplete\n");
1322 # endif /* TRACE_BUF */
1325 * A version of GC_push_all that treats all interior pointers as valid
1326 * and scans the entire region immediately, in case the contents
1329 void GC_push_all_eager(bottom
, top
)
1333 word
* b
= (word
*)(((long) bottom
+ ALIGNMENT
-1) & ~(ALIGNMENT
-1));
1334 word
* t
= (word
*)(((long) top
) & ~(ALIGNMENT
-1));
1338 register ptr_t greatest_ha
= GC_greatest_plausible_heap_addr
;
1339 register ptr_t least_ha
= GC_least_plausible_heap_addr
;
1340 # define GC_greatest_plausible_heap_addr greatest_ha
1341 # define GC_least_plausible_heap_addr least_ha
1343 if (top
== 0) return;
1344 /* check all pointers in range and put in push if they appear */
1346 lim
= t
- 1 /* longword */;
1347 for (p
= b
; p
<= lim
; p
= (word
*)(((char *)p
) + ALIGNMENT
)) {
1349 GC_PUSH_ONE_STACK(q
, p
);
1351 # undef GC_greatest_plausible_heap_addr
1352 # undef GC_least_plausible_heap_addr
1357 * A version of GC_push_all that treats all interior pointers as valid
1358 * and scans part of the area immediately, to make sure that saved
1359 * register values are not lost.
1360 * Cold_gc_frame delimits the stack section that must be scanned
1361 * eagerly. A zero value indicates that no eager scanning is needed.
1363 void GC_push_all_stack_partially_eager(bottom
, top
, cold_gc_frame
)
1366 ptr_t cold_gc_frame
;
1368 if (GC_all_interior_pointers
) {
1369 # define EAGER_BYTES 1024
1370 /* Push the hot end of the stack eagerly, so that register values */
1371 /* saved inside GC frames are marked before they disappear. */
1372 /* The rest of the marking can be deferred until later. */
1373 if (0 == cold_gc_frame
) {
1374 GC_push_all_stack(bottom
, top
);
1377 # ifdef STACK_GROWS_DOWN
1378 GC_push_all_eager(bottom
, cold_gc_frame
);
1379 GC_push_all(cold_gc_frame
- sizeof(ptr_t
), top
);
1380 # else /* STACK_GROWS_UP */
1381 GC_push_all_eager(cold_gc_frame
, top
);
1382 GC_push_all(bottom
, cold_gc_frame
+ sizeof(ptr_t
));
1383 # endif /* STACK_GROWS_UP */
1385 GC_push_all_eager(bottom
, top
);
1388 GC_add_trace_entry("GC_push_all_stack", bottom
, top
);
1391 #endif /* !THREADS */
1393 void GC_push_all_stack(bottom
, top
)
1397 if (GC_all_interior_pointers
) {
1398 GC_push_all(bottom
, top
);
1400 GC_push_all_eager(bottom
, top
);
1404 #if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
1405 /* Push all objects reachable from marked objects in the given block */
1406 /* of size 1 objects. */
1407 void GC_push_marked1(h
, hhdr
)
1409 register hdr
* hhdr
;
1411 word
* mark_word_addr
= &(hhdr
->hb_marks
[0]);
1416 register word mark_word
;
1417 register ptr_t greatest_ha
= GC_greatest_plausible_heap_addr
;
1418 register ptr_t least_ha
= GC_least_plausible_heap_addr
;
1419 register mse
* mark_stack_top
= GC_mark_stack_top
;
1420 register mse
* mark_stack_limit
= GC_mark_stack_limit
;
1421 # define GC_mark_stack_top mark_stack_top
1422 # define GC_mark_stack_limit mark_stack_limit
1423 # define GC_greatest_plausible_heap_addr greatest_ha
1424 # define GC_least_plausible_heap_addr least_ha
1426 p
= (word
*)(h
->hb_body
);
1427 plim
= (word
*)(((word
)h
) + HBLKSIZE
);
1429 /* go through all words in block */
1431 mark_word
= *mark_word_addr
++;
1433 while(mark_word
!= 0) {
1434 if (mark_word
& 1) {
1436 GC_PUSH_ONE_HEAP(q
, p
+ i
);
1443 # undef GC_greatest_plausible_heap_addr
1444 # undef GC_least_plausible_heap_addr
1445 # undef GC_mark_stack_top
1446 # undef GC_mark_stack_limit
1447 GC_mark_stack_top
= mark_stack_top
;
1453 /* Push all objects reachable from marked objects in the given block */
1454 /* of size 2 objects. */
1455 void GC_push_marked2(h
, hhdr
)
1457 register hdr
* hhdr
;
1459 word
* mark_word_addr
= &(hhdr
->hb_marks
[0]);
1464 register word mark_word
;
1465 register ptr_t greatest_ha
= GC_greatest_plausible_heap_addr
;
1466 register ptr_t least_ha
= GC_least_plausible_heap_addr
;
1467 register mse
* mark_stack_top
= GC_mark_stack_top
;
1468 register mse
* mark_stack_limit
= GC_mark_stack_limit
;
1469 # define GC_mark_stack_top mark_stack_top
1470 # define GC_mark_stack_limit mark_stack_limit
1471 # define GC_greatest_plausible_heap_addr greatest_ha
1472 # define GC_least_plausible_heap_addr least_ha
1474 p
= (word
*)(h
->hb_body
);
1475 plim
= (word
*)(((word
)h
) + HBLKSIZE
);
1477 /* go through all words in block */
1479 mark_word
= *mark_word_addr
++;
1481 while(mark_word
!= 0) {
1482 if (mark_word
& 1) {
1484 GC_PUSH_ONE_HEAP(q
, p
+ i
);
1486 GC_PUSH_ONE_HEAP(q
, p
+ i
);
1493 # undef GC_greatest_plausible_heap_addr
1494 # undef GC_least_plausible_heap_addr
1495 # undef GC_mark_stack_top
1496 # undef GC_mark_stack_limit
1497 GC_mark_stack_top
= mark_stack_top
;
1500 /* Push all objects reachable from marked objects in the given block */
1501 /* of size 4 objects. */
1502 /* There is a risk of mark stack overflow here. But we handle that. */
1503 /* And only unmarked objects get pushed, so it's not very likely. */
1504 void GC_push_marked4(h
, hhdr
)
1506 register hdr
* hhdr
;
1508 word
* mark_word_addr
= &(hhdr
->hb_marks
[0]);
1513 register word mark_word
;
1514 register ptr_t greatest_ha
= GC_greatest_plausible_heap_addr
;
1515 register ptr_t least_ha
= GC_least_plausible_heap_addr
;
1516 register mse
* mark_stack_top
= GC_mark_stack_top
;
1517 register mse
* mark_stack_limit
= GC_mark_stack_limit
;
1518 # define GC_mark_stack_top mark_stack_top
1519 # define GC_mark_stack_limit mark_stack_limit
1520 # define GC_greatest_plausible_heap_addr greatest_ha
1521 # define GC_least_plausible_heap_addr least_ha
1523 p
= (word
*)(h
->hb_body
);
1524 plim
= (word
*)(((word
)h
) + HBLKSIZE
);
1526 /* go through all words in block */
1528 mark_word
= *mark_word_addr
++;
1530 while(mark_word
!= 0) {
1531 if (mark_word
& 1) {
1533 GC_PUSH_ONE_HEAP(q
, p
+ i
);
1535 GC_PUSH_ONE_HEAP(q
, p
+ i
+ 1);
1537 GC_PUSH_ONE_HEAP(q
, p
+ i
+ 2);
1539 GC_PUSH_ONE_HEAP(q
, p
+ i
+ 3);
1546 # undef GC_greatest_plausible_heap_addr
1547 # undef GC_least_plausible_heap_addr
1548 # undef GC_mark_stack_top
1549 # undef GC_mark_stack_limit
1550 GC_mark_stack_top
= mark_stack_top
;
1553 #endif /* UNALIGNED */
1555 #endif /* SMALL_CONFIG */
1557 /* Push all objects reachable from marked objects in the given block */
1558 void GC_push_marked(h
, hhdr
)
1560 register hdr
* hhdr
;
1562 register int sz
= hhdr
-> hb_sz
;
1563 register int descr
= hhdr
-> hb_descr
;
1565 register int word_no
;
1566 register word
* lim
;
1567 register mse
* GC_mark_stack_top_reg
;
1568 register mse
* mark_stack_limit
= GC_mark_stack_limit
;
1570 /* Some quick shortcuts: */
1571 if ((0 | GC_DS_LENGTH
) == descr
) return;
1572 if (GC_block_empty(hhdr
)/* nothing marked */) return;
1573 GC_n_rescuing_pages
++;
1574 GC_objects_are_marked
= TRUE
;
1575 if (sz
> MAXOBJSZ
) {
1578 lim
= (word
*)(h
+ 1) - sz
;
1582 # if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
1584 GC_push_marked1(h
, hhdr
);
1587 # if !defined(SMALL_CONFIG) && !defined(UNALIGNED) && \
1588 !defined(USE_MARK_BYTES)
1590 GC_push_marked2(h
, hhdr
);
1593 GC_push_marked4(h
, hhdr
);
1597 GC_mark_stack_top_reg
= GC_mark_stack_top
;
1598 for (p
= (word
*)h
, word_no
= 0; p
<= lim
; p
+= sz
, word_no
+= sz
) {
1599 if (mark_bit_from_hdr(hhdr
, word_no
)) {
1600 /* Mark from fields inside the object */
1601 PUSH_OBJ((word
*)p
, hhdr
, GC_mark_stack_top_reg
, mark_stack_limit
);
1603 /* Subtract this object from total, since it was */
1604 /* added in twice. */
1605 GC_composite_in_use
-= sz
;
1609 GC_mark_stack_top
= GC_mark_stack_top_reg
;
1613 #ifndef SMALL_CONFIG
1614 /* Test whether any page in the given block is dirty */
1615 GC_bool
GC_block_was_dirty(h
, hhdr
)
1617 register hdr
* hhdr
;
1619 register int sz
= hhdr
-> hb_sz
;
1621 if (sz
< MAXOBJSZ
) {
1622 return(GC_page_was_dirty(h
));
1624 register ptr_t p
= (ptr_t
)h
;
1625 sz
= WORDS_TO_BYTES(sz
);
1626 while (p
< (ptr_t
)h
+ sz
) {
1627 if (GC_page_was_dirty((struct hblk
*)p
)) return(TRUE
);
1633 #endif /* SMALL_CONFIG */
1635 /* Similar to GC_push_next_marked, but return address of next block */
1636 struct hblk
* GC_push_next_marked(h
)
1639 register hdr
* hhdr
;
1641 h
= GC_next_used_block(h
);
1642 if (h
== 0) return(0);
1644 GC_push_marked(h
, hhdr
);
1645 return(h
+ OBJ_SZ_TO_BLOCKS(hhdr
-> hb_sz
));
1648 #ifndef SMALL_CONFIG
1649 /* Identical to above, but mark only from dirty pages */
1650 struct hblk
* GC_push_next_marked_dirty(h
)
1653 register hdr
* hhdr
;
1655 if (!GC_dirty_maintained
) { ABORT("dirty bits not set up"); }
1657 h
= GC_next_used_block(h
);
1658 if (h
== 0) return(0);
1660 # ifdef STUBBORN_ALLOC
1661 if (hhdr
-> hb_obj_kind
== STUBBORN
) {
1662 if (GC_page_was_changed(h
) && GC_block_was_dirty(h
, hhdr
)) {
1666 if (GC_block_was_dirty(h
, hhdr
)) break;
1669 if (GC_block_was_dirty(h
, hhdr
)) break;
1671 h
+= OBJ_SZ_TO_BLOCKS(hhdr
-> hb_sz
);
1673 GC_push_marked(h
, hhdr
);
1674 return(h
+ OBJ_SZ_TO_BLOCKS(hhdr
-> hb_sz
));
1678 /* Similar to above, but for uncollectable pages. Needed since we */
1679 /* do not clear marks for such pages, even for full collections. */
1680 struct hblk
* GC_push_next_marked_uncollectable(h
)
1683 register hdr
* hhdr
= HDR(h
);
1686 h
= GC_next_used_block(h
);
1687 if (h
== 0) return(0);
1689 if (hhdr
-> hb_obj_kind
== UNCOLLECTABLE
) break;
1690 h
+= OBJ_SZ_TO_BLOCKS(hhdr
-> hb_sz
);
1692 GC_push_marked(h
, hhdr
);
1693 return(h
+ OBJ_SZ_TO_BLOCKS(hhdr
-> hb_sz
));