1 /* adler32.c -- compute the Adler-32 checksum of a data stream
2 * Copyright (C) 1995-2007 Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
6 /* @(#) $Id: adler32.c,v 1.1.1.2 2002/03/11 21:53:23 tromey Exp $ */
12 local uLong
adler32_combine_(uLong adler1
, uLong adler2
, z_off64_t len2
);
14 #define BASE 65521UL /* largest prime smaller than 65536 */
16 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
18 #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
19 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
20 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
21 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
22 #define DO16(buf) DO8(buf,0); DO8(buf,8);
24 /* use NO_DIVIDE if your processor does not do division in hardware */
28 if (a >= (BASE << 16)) a -= (BASE << 16); \
29 if (a >= (BASE << 15)) a -= (BASE << 15); \
30 if (a >= (BASE << 14)) a -= (BASE << 14); \
31 if (a >= (BASE << 13)) a -= (BASE << 13); \
32 if (a >= (BASE << 12)) a -= (BASE << 12); \
33 if (a >= (BASE << 11)) a -= (BASE << 11); \
34 if (a >= (BASE << 10)) a -= (BASE << 10); \
35 if (a >= (BASE << 9)) a -= (BASE << 9); \
36 if (a >= (BASE << 8)) a -= (BASE << 8); \
37 if (a >= (BASE << 7)) a -= (BASE << 7); \
38 if (a >= (BASE << 6)) a -= (BASE << 6); \
39 if (a >= (BASE << 5)) a -= (BASE << 5); \
40 if (a >= (BASE << 4)) a -= (BASE << 4); \
41 if (a >= (BASE << 3)) a -= (BASE << 3); \
42 if (a >= (BASE << 2)) a -= (BASE << 2); \
43 if (a >= (BASE << 1)) a -= (BASE << 1); \
44 if (a >= BASE) a -= BASE; \
48 if (a >= (BASE << 4)) a -= (BASE << 4); \
49 if (a >= (BASE << 3)) a -= (BASE << 3); \
50 if (a >= (BASE << 2)) a -= (BASE << 2); \
51 if (a >= (BASE << 1)) a -= (BASE << 1); \
52 if (a >= BASE) a -= BASE; \
55 # define MOD(a) a %= BASE
56 # define MOD4(a) a %= BASE
59 /* ========================================================================= */
60 uLong ZEXPORT
adler32(adler
, buf
, len
)
68 /* split Adler-32 into component sums */
69 sum2
= (adler
>> 16) & 0xffff;
72 /* in case user likes doing a byte at a time, keep it fast */
80 return adler
| (sum2
<< 16);
83 /* initial Adler-32 value (deferred check for len == 1 speed) */
87 /* in case short lengths are provided, keep it somewhat fast */
95 MOD4(sum2
); /* only added so many BASE's */
96 return adler
| (sum2
<< 16);
99 /* do length NMAX blocks -- requires just one modulo operation */
100 while (len
>= NMAX
) {
102 n
= NMAX
/ 16; /* NMAX is divisible by 16 */
104 DO16(buf
); /* 16 sums unrolled */
111 /* do remaining bytes (less than NMAX, still just one modulo) */
112 if (len
) { /* avoid modulos if none remaining */
126 /* return recombined sums */
127 return adler
| (sum2
<< 16);
130 /* ========================================================================= */
131 local uLong
adler32_combine_(adler1
, adler2
, len2
)
140 /* the derivation of this formula is left as an exercise for the reader */
141 rem
= (unsigned)(len2
% BASE
);
142 sum1
= adler1
& 0xffff;
145 sum1
+= (adler2
& 0xffff) + BASE
- 1;
146 sum2
+= ((adler1
>> 16) & 0xffff) + ((adler2
>> 16) & 0xffff) + BASE
- rem
;
147 if (sum1
>= BASE
) sum1
-= BASE
;
148 if (sum1
>= BASE
) sum1
-= BASE
;
149 if (sum2
>= (BASE
<< 1)) sum2
-= (BASE
<< 1);
150 if (sum2
>= BASE
) sum2
-= BASE
;
151 return sum1
| (sum2
<< 16);
154 /* ========================================================================= */
155 uLong ZEXPORT
adler32_combine(adler1
, adler2
, len2
)
160 return adler32_combine_(adler1
, adler2
, len2
);
163 uLong ZEXPORT
adler32_combine64(adler1
, adler2
, len2
)
168 return adler32_combine_(adler1
, adler2
, len2
);