1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
24 #include "coretypes.h"
32 #include "hard-reg-set.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
44 #include "typeclass.h"
47 #include "langhooks.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
56 /* Decide whether a function's arguments should be processed
57 from first to last or from last to first.
59 They should if the stack and args grow in opposite directions, but
60 only if we have push insns. */
64 #ifndef PUSH_ARGS_REVERSED
65 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
66 #define PUSH_ARGS_REVERSED /* If it's last to first. */
72 #ifndef STACK_PUSH_CODE
73 #ifdef STACK_GROWS_DOWNWARD
74 #define STACK_PUSH_CODE PRE_DEC
76 #define STACK_PUSH_CODE PRE_INC
81 /* If this is nonzero, we do not bother generating VOLATILE
82 around volatile memory references, and we are willing to
83 output indirect addresses. If cse is to follow, we reject
84 indirect addresses so a useful potential cse is generated;
85 if it is used only once, instruction combination will produce
86 the same indirect address eventually. */
89 /* This structure is used by move_by_pieces to describe the move to
100 int explicit_inc_from
;
101 unsigned HOST_WIDE_INT len
;
102 HOST_WIDE_INT offset
;
106 /* This structure is used by store_by_pieces to describe the clear to
109 struct store_by_pieces
115 unsigned HOST_WIDE_INT len
;
116 HOST_WIDE_INT offset
;
117 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
122 static unsigned HOST_WIDE_INT
move_by_pieces_ninsns (unsigned HOST_WIDE_INT
,
125 static void move_by_pieces_1 (rtx (*) (rtx
, ...), enum machine_mode
,
126 struct move_by_pieces
*);
127 static bool block_move_libcall_safe_for_call_parm (void);
128 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned);
129 static rtx
emit_block_move_via_libcall (rtx
, rtx
, rtx
, bool);
130 static tree
emit_block_move_libcall_fn (int);
131 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
132 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
133 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
134 static void store_by_pieces_1 (struct store_by_pieces
*, unsigned int);
135 static void store_by_pieces_2 (rtx (*) (rtx
, ...), enum machine_mode
,
136 struct store_by_pieces
*);
137 static rtx
clear_storage_via_libcall (rtx
, rtx
, bool);
138 static tree
clear_storage_libcall_fn (int);
139 static rtx
compress_float_constant (rtx
, rtx
);
140 static rtx
get_subtarget (rtx
);
141 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
142 HOST_WIDE_INT
, enum machine_mode
,
143 tree
, tree
, int, int);
144 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
145 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
, enum machine_mode
,
148 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (tree
, tree
);
150 static int is_aligning_offset (tree
, tree
);
151 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
152 enum expand_modifier
);
153 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
154 static rtx
do_store_flag (tree
, rtx
, enum machine_mode
, int);
156 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
158 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
);
159 static rtx
const_vector_from_tree (tree
);
160 static void write_complex_part (rtx
, rtx
, bool);
162 /* Record for each mode whether we can move a register directly to or
163 from an object of that mode in memory. If we can't, we won't try
164 to use that mode directly when accessing a field of that mode. */
166 static char direct_load
[NUM_MACHINE_MODES
];
167 static char direct_store
[NUM_MACHINE_MODES
];
169 /* Record for each mode whether we can float-extend from memory. */
171 static bool float_extend_from_mem
[NUM_MACHINE_MODES
][NUM_MACHINE_MODES
];
173 /* This macro is used to determine whether move_by_pieces should be called
174 to perform a structure copy. */
175 #ifndef MOVE_BY_PIECES_P
176 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
177 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
178 < (unsigned int) MOVE_RATIO)
181 /* This macro is used to determine whether clear_by_pieces should be
182 called to clear storage. */
183 #ifndef CLEAR_BY_PIECES_P
184 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
185 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
186 < (unsigned int) CLEAR_RATIO)
189 /* This macro is used to determine whether store_by_pieces should be
190 called to "memset" storage with byte values other than zero, or
191 to "memcpy" storage when the source is a constant string. */
192 #ifndef STORE_BY_PIECES_P
193 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
194 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
195 < (unsigned int) MOVE_RATIO)
198 /* This array records the insn_code of insns to perform block moves. */
199 enum insn_code movmem_optab
[NUM_MACHINE_MODES
];
201 /* This array records the insn_code of insns to perform block sets. */
202 enum insn_code setmem_optab
[NUM_MACHINE_MODES
];
204 /* These arrays record the insn_code of three different kinds of insns
205 to perform block compares. */
206 enum insn_code cmpstr_optab
[NUM_MACHINE_MODES
];
207 enum insn_code cmpstrn_optab
[NUM_MACHINE_MODES
];
208 enum insn_code cmpmem_optab
[NUM_MACHINE_MODES
];
210 /* Synchronization primitives. */
211 enum insn_code sync_add_optab
[NUM_MACHINE_MODES
];
212 enum insn_code sync_sub_optab
[NUM_MACHINE_MODES
];
213 enum insn_code sync_ior_optab
[NUM_MACHINE_MODES
];
214 enum insn_code sync_and_optab
[NUM_MACHINE_MODES
];
215 enum insn_code sync_xor_optab
[NUM_MACHINE_MODES
];
216 enum insn_code sync_nand_optab
[NUM_MACHINE_MODES
];
217 enum insn_code sync_old_add_optab
[NUM_MACHINE_MODES
];
218 enum insn_code sync_old_sub_optab
[NUM_MACHINE_MODES
];
219 enum insn_code sync_old_ior_optab
[NUM_MACHINE_MODES
];
220 enum insn_code sync_old_and_optab
[NUM_MACHINE_MODES
];
221 enum insn_code sync_old_xor_optab
[NUM_MACHINE_MODES
];
222 enum insn_code sync_old_nand_optab
[NUM_MACHINE_MODES
];
223 enum insn_code sync_new_add_optab
[NUM_MACHINE_MODES
];
224 enum insn_code sync_new_sub_optab
[NUM_MACHINE_MODES
];
225 enum insn_code sync_new_ior_optab
[NUM_MACHINE_MODES
];
226 enum insn_code sync_new_and_optab
[NUM_MACHINE_MODES
];
227 enum insn_code sync_new_xor_optab
[NUM_MACHINE_MODES
];
228 enum insn_code sync_new_nand_optab
[NUM_MACHINE_MODES
];
229 enum insn_code sync_compare_and_swap
[NUM_MACHINE_MODES
];
230 enum insn_code sync_compare_and_swap_cc
[NUM_MACHINE_MODES
];
231 enum insn_code sync_lock_test_and_set
[NUM_MACHINE_MODES
];
232 enum insn_code sync_lock_release
[NUM_MACHINE_MODES
];
234 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
236 #ifndef SLOW_UNALIGNED_ACCESS
237 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
240 /* This is run once per compilation to set up which modes can be used
241 directly in memory and to initialize the block move optab. */
244 init_expr_once (void)
247 enum machine_mode mode
;
252 /* Try indexing by frame ptr and try by stack ptr.
253 It is known that on the Convex the stack ptr isn't a valid index.
254 With luck, one or the other is valid on any machine. */
255 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
256 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
258 /* A scratch register we can modify in-place below to avoid
259 useless RTL allocations. */
260 reg
= gen_rtx_REG (VOIDmode
, -1);
262 insn
= rtx_alloc (INSN
);
263 pat
= gen_rtx_SET (0, NULL_RTX
, NULL_RTX
);
264 PATTERN (insn
) = pat
;
266 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
267 mode
= (enum machine_mode
) ((int) mode
+ 1))
271 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
272 PUT_MODE (mem
, mode
);
273 PUT_MODE (mem1
, mode
);
274 PUT_MODE (reg
, mode
);
276 /* See if there is some register that can be used in this mode and
277 directly loaded or stored from memory. */
279 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
280 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
281 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
284 if (! HARD_REGNO_MODE_OK (regno
, mode
))
290 SET_DEST (pat
) = reg
;
291 if (recog (pat
, insn
, &num_clobbers
) >= 0)
292 direct_load
[(int) mode
] = 1;
294 SET_SRC (pat
) = mem1
;
295 SET_DEST (pat
) = reg
;
296 if (recog (pat
, insn
, &num_clobbers
) >= 0)
297 direct_load
[(int) mode
] = 1;
300 SET_DEST (pat
) = mem
;
301 if (recog (pat
, insn
, &num_clobbers
) >= 0)
302 direct_store
[(int) mode
] = 1;
305 SET_DEST (pat
) = mem1
;
306 if (recog (pat
, insn
, &num_clobbers
) >= 0)
307 direct_store
[(int) mode
] = 1;
311 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
313 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
314 mode
= GET_MODE_WIDER_MODE (mode
))
316 enum machine_mode srcmode
;
317 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
318 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
322 ic
= can_extend_p (mode
, srcmode
, 0);
323 if (ic
== CODE_FOR_nothing
)
326 PUT_MODE (mem
, srcmode
);
328 if ((*insn_data
[ic
].operand
[1].predicate
) (mem
, srcmode
))
329 float_extend_from_mem
[mode
][srcmode
] = true;
334 /* This is run at the start of compiling a function. */
339 cfun
->expr
= ggc_alloc_cleared (sizeof (struct expr_status
));
342 /* Copy data from FROM to TO, where the machine modes are not the same.
343 Both modes may be integer, or both may be floating.
344 UNSIGNEDP should be nonzero if FROM is an unsigned type.
345 This causes zero-extension instead of sign-extension. */
348 convert_move (rtx to
, rtx from
, int unsignedp
)
350 enum machine_mode to_mode
= GET_MODE (to
);
351 enum machine_mode from_mode
= GET_MODE (from
);
352 int to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
353 int from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
357 /* rtx code for making an equivalent value. */
358 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
359 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
362 gcc_assert (to_real
== from_real
);
364 /* If the source and destination are already the same, then there's
369 /* If FROM is a SUBREG that indicates that we have already done at least
370 the required extension, strip it. We don't handle such SUBREGs as
373 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
374 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from
)))
375 >= GET_MODE_SIZE (to_mode
))
376 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
377 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
379 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
381 if (to_mode
== from_mode
382 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
384 emit_move_insn (to
, from
);
388 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
390 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
392 if (VECTOR_MODE_P (to_mode
))
393 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
395 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
397 emit_move_insn (to
, from
);
401 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
403 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
404 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
413 gcc_assert (GET_MODE_PRECISION (from_mode
)
414 != GET_MODE_PRECISION (to_mode
));
416 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
421 /* Try converting directly if the insn is supported. */
423 code
= tab
->handlers
[to_mode
][from_mode
].insn_code
;
424 if (code
!= CODE_FOR_nothing
)
426 emit_unop_insn (code
, to
, from
,
427 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
431 /* Otherwise use a libcall. */
432 libcall
= tab
->handlers
[to_mode
][from_mode
].libfunc
;
434 /* Is this conversion implemented yet? */
435 gcc_assert (libcall
);
438 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
440 insns
= get_insns ();
442 emit_libcall_block (insns
, to
, value
,
443 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
445 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
449 /* Handle pointer conversion. */ /* SPEE 900220. */
450 /* Targets are expected to provide conversion insns between PxImode and
451 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
452 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
454 enum machine_mode full_mode
455 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
457 gcc_assert (trunc_optab
->handlers
[to_mode
][full_mode
].insn_code
458 != CODE_FOR_nothing
);
460 if (full_mode
!= from_mode
)
461 from
= convert_to_mode (full_mode
, from
, unsignedp
);
462 emit_unop_insn (trunc_optab
->handlers
[to_mode
][full_mode
].insn_code
,
466 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
469 enum machine_mode full_mode
470 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
472 gcc_assert (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
473 != CODE_FOR_nothing
);
475 if (to_mode
== full_mode
)
477 emit_unop_insn (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
,
482 new_from
= gen_reg_rtx (full_mode
);
483 emit_unop_insn (sext_optab
->handlers
[full_mode
][from_mode
].insn_code
,
484 new_from
, from
, UNKNOWN
);
486 /* else proceed to integer conversions below. */
487 from_mode
= full_mode
;
491 /* Now both modes are integers. */
493 /* Handle expanding beyond a word. */
494 if (GET_MODE_BITSIZE (from_mode
) < GET_MODE_BITSIZE (to_mode
)
495 && GET_MODE_BITSIZE (to_mode
) > BITS_PER_WORD
)
502 enum machine_mode lowpart_mode
;
503 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
505 /* Try converting directly if the insn is supported. */
506 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
509 /* If FROM is a SUBREG, put it into a register. Do this
510 so that we always generate the same set of insns for
511 better cse'ing; if an intermediate assignment occurred,
512 we won't be doing the operation directly on the SUBREG. */
513 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
514 from
= force_reg (from_mode
, from
);
515 emit_unop_insn (code
, to
, from
, equiv_code
);
518 /* Next, try converting via full word. */
519 else if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
520 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
521 != CODE_FOR_nothing
))
525 if (reg_overlap_mentioned_p (to
, from
))
526 from
= force_reg (from_mode
, from
);
527 emit_insn (gen_rtx_CLOBBER (VOIDmode
, to
));
529 convert_move (gen_lowpart (word_mode
, to
), from
, unsignedp
);
530 emit_unop_insn (code
, to
,
531 gen_lowpart (word_mode
, to
), equiv_code
);
535 /* No special multiword conversion insn; do it by hand. */
538 /* Since we will turn this into a no conflict block, we must ensure
539 that the source does not overlap the target. */
541 if (reg_overlap_mentioned_p (to
, from
))
542 from
= force_reg (from_mode
, from
);
544 /* Get a copy of FROM widened to a word, if necessary. */
545 if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
)
546 lowpart_mode
= word_mode
;
548 lowpart_mode
= from_mode
;
550 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
552 lowpart
= gen_lowpart (lowpart_mode
, to
);
553 emit_move_insn (lowpart
, lowfrom
);
555 /* Compute the value to put in each remaining word. */
557 fill_value
= const0_rtx
;
562 && insn_data
[(int) CODE_FOR_slt
].operand
[0].mode
== word_mode
563 && STORE_FLAG_VALUE
== -1)
565 emit_cmp_insn (lowfrom
, const0_rtx
, NE
, NULL_RTX
,
567 fill_value
= gen_reg_rtx (word_mode
);
568 emit_insn (gen_slt (fill_value
));
574 = expand_shift (RSHIFT_EXPR
, lowpart_mode
, lowfrom
,
575 size_int (GET_MODE_BITSIZE (lowpart_mode
) - 1),
577 fill_value
= convert_to_mode (word_mode
, fill_value
, 1);
581 /* Fill the remaining words. */
582 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
584 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
585 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
587 gcc_assert (subword
);
589 if (fill_value
!= subword
)
590 emit_move_insn (subword
, fill_value
);
593 insns
= get_insns ();
596 emit_no_conflict_block (insns
, to
, from
, NULL_RTX
,
597 gen_rtx_fmt_e (equiv_code
, to_mode
, copy_rtx (from
)));
601 /* Truncating multi-word to a word or less. */
602 if (GET_MODE_BITSIZE (from_mode
) > BITS_PER_WORD
603 && GET_MODE_BITSIZE (to_mode
) <= BITS_PER_WORD
)
606 && ! MEM_VOLATILE_P (from
)
607 && direct_load
[(int) to_mode
]
608 && ! mode_dependent_address_p (XEXP (from
, 0)))
610 || GET_CODE (from
) == SUBREG
))
611 from
= force_reg (from_mode
, from
);
612 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
616 /* Now follow all the conversions between integers
617 no more than a word long. */
619 /* For truncation, usually we can just refer to FROM in a narrower mode. */
620 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
621 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
622 GET_MODE_BITSIZE (from_mode
)))
625 && ! MEM_VOLATILE_P (from
)
626 && direct_load
[(int) to_mode
]
627 && ! mode_dependent_address_p (XEXP (from
, 0)))
629 || GET_CODE (from
) == SUBREG
))
630 from
= force_reg (from_mode
, from
);
631 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
632 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
633 from
= copy_to_reg (from
);
634 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
638 /* Handle extension. */
639 if (GET_MODE_BITSIZE (to_mode
) > GET_MODE_BITSIZE (from_mode
))
641 /* Convert directly if that works. */
642 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
645 emit_unop_insn (code
, to
, from
, equiv_code
);
650 enum machine_mode intermediate
;
654 /* Search for a mode to convert via. */
655 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
656 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
657 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
659 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
660 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
661 GET_MODE_BITSIZE (intermediate
))))
662 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
663 != CODE_FOR_nothing
))
665 convert_move (to
, convert_to_mode (intermediate
, from
,
666 unsignedp
), unsignedp
);
670 /* No suitable intermediate mode.
671 Generate what we need with shifts. */
672 shift_amount
= build_int_cst (NULL_TREE
,
673 GET_MODE_BITSIZE (to_mode
)
674 - GET_MODE_BITSIZE (from_mode
));
675 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
676 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
678 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
681 emit_move_insn (to
, tmp
);
686 /* Support special truncate insns for certain modes. */
687 if (trunc_optab
->handlers
[to_mode
][from_mode
].insn_code
!= CODE_FOR_nothing
)
689 emit_unop_insn (trunc_optab
->handlers
[to_mode
][from_mode
].insn_code
,
694 /* Handle truncation of volatile memrefs, and so on;
695 the things that couldn't be truncated directly,
696 and for which there was no special instruction.
698 ??? Code above formerly short-circuited this, for most integer
699 mode pairs, with a force_reg in from_mode followed by a recursive
700 call to this routine. Appears always to have been wrong. */
701 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
))
703 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
704 emit_move_insn (to
, temp
);
708 /* Mode combination is not recognized. */
712 /* Return an rtx for a value that would result
713 from converting X to mode MODE.
714 Both X and MODE may be floating, or both integer.
715 UNSIGNEDP is nonzero if X is an unsigned value.
716 This can be done by referring to a part of X in place
717 or by copying to a new temporary with conversion. */
720 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
722 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
725 /* Return an rtx for a value that would result
726 from converting X from mode OLDMODE to mode MODE.
727 Both modes may be floating, or both integer.
728 UNSIGNEDP is nonzero if X is an unsigned value.
730 This can be done by referring to a part of X in place
731 or by copying to a new temporary with conversion.
733 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
736 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
740 /* If FROM is a SUBREG that indicates that we have already done at least
741 the required extension, strip it. */
743 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
744 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
745 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
746 x
= gen_lowpart (mode
, x
);
748 if (GET_MODE (x
) != VOIDmode
)
749 oldmode
= GET_MODE (x
);
754 /* There is one case that we must handle specially: If we are converting
755 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
756 we are to interpret the constant as unsigned, gen_lowpart will do
757 the wrong if the constant appears negative. What we want to do is
758 make the high-order word of the constant zero, not all ones. */
760 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
761 && GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
762 && GET_CODE (x
) == CONST_INT
&& INTVAL (x
) < 0)
764 HOST_WIDE_INT val
= INTVAL (x
);
766 if (oldmode
!= VOIDmode
767 && HOST_BITS_PER_WIDE_INT
> GET_MODE_BITSIZE (oldmode
))
769 int width
= GET_MODE_BITSIZE (oldmode
);
771 /* We need to zero extend VAL. */
772 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
775 return immed_double_const (val
, (HOST_WIDE_INT
) 0, mode
);
778 /* We can do this with a gen_lowpart if both desired and current modes
779 are integer, and this is either a constant integer, a register, or a
780 non-volatile MEM. Except for the constant case where MODE is no
781 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
783 if ((GET_CODE (x
) == CONST_INT
784 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
785 || (GET_MODE_CLASS (mode
) == MODE_INT
786 && GET_MODE_CLASS (oldmode
) == MODE_INT
787 && (GET_CODE (x
) == CONST_DOUBLE
788 || (GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (oldmode
)
789 && ((MEM_P (x
) && ! MEM_VOLATILE_P (x
)
790 && direct_load
[(int) mode
])
792 && (! HARD_REGISTER_P (x
)
793 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
794 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
795 GET_MODE_BITSIZE (GET_MODE (x
)))))))))
797 /* ?? If we don't know OLDMODE, we have to assume here that
798 X does not need sign- or zero-extension. This may not be
799 the case, but it's the best we can do. */
800 if (GET_CODE (x
) == CONST_INT
&& oldmode
!= VOIDmode
801 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (oldmode
))
803 HOST_WIDE_INT val
= INTVAL (x
);
804 int width
= GET_MODE_BITSIZE (oldmode
);
806 /* We must sign or zero-extend in this case. Start by
807 zero-extending, then sign extend if we need to. */
808 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
810 && (val
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
811 val
|= (HOST_WIDE_INT
) (-1) << width
;
813 return gen_int_mode (val
, mode
);
816 return gen_lowpart (mode
, x
);
819 /* Converting from integer constant into mode is always equivalent to an
821 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
823 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
824 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
827 temp
= gen_reg_rtx (mode
);
828 convert_move (temp
, x
, unsignedp
);
832 /* STORE_MAX_PIECES is the number of bytes at a time that we can
833 store efficiently. Due to internal GCC limitations, this is
834 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
835 for an immediate constant. */
837 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
839 /* Determine whether the LEN bytes can be moved by using several move
840 instructions. Return nonzero if a call to move_by_pieces should
844 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
845 unsigned int align ATTRIBUTE_UNUSED
)
847 return MOVE_BY_PIECES_P (len
, align
);
850 /* Generate several move instructions to copy LEN bytes from block FROM to
851 block TO. (These are MEM rtx's with BLKmode).
853 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
854 used to push FROM to the stack.
856 ALIGN is maximum stack alignment we can assume.
858 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
859 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
863 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
864 unsigned int align
, int endp
)
866 struct move_by_pieces data
;
867 rtx to_addr
, from_addr
= XEXP (from
, 0);
868 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
869 enum machine_mode mode
= VOIDmode
, tmode
;
870 enum insn_code icode
;
872 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
875 data
.from_addr
= from_addr
;
878 to_addr
= XEXP (to
, 0);
881 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
882 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
884 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
891 #ifdef STACK_GROWS_DOWNWARD
897 data
.to_addr
= to_addr
;
900 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
901 || GET_CODE (from_addr
) == POST_INC
902 || GET_CODE (from_addr
) == POST_DEC
);
904 data
.explicit_inc_from
= 0;
905 data
.explicit_inc_to
= 0;
906 if (data
.reverse
) data
.offset
= len
;
909 /* If copying requires more than two move insns,
910 copy addresses to registers (to make displacements shorter)
911 and use post-increment if available. */
912 if (!(data
.autinc_from
&& data
.autinc_to
)
913 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
915 /* Find the mode of the largest move... */
916 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
917 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
918 if (GET_MODE_SIZE (tmode
) < max_size
)
921 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
923 data
.from_addr
= copy_addr_to_reg (plus_constant (from_addr
, len
));
924 data
.autinc_from
= 1;
925 data
.explicit_inc_from
= -1;
927 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
929 data
.from_addr
= copy_addr_to_reg (from_addr
);
930 data
.autinc_from
= 1;
931 data
.explicit_inc_from
= 1;
933 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
934 data
.from_addr
= copy_addr_to_reg (from_addr
);
935 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
937 data
.to_addr
= copy_addr_to_reg (plus_constant (to_addr
, len
));
939 data
.explicit_inc_to
= -1;
941 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
943 data
.to_addr
= copy_addr_to_reg (to_addr
);
945 data
.explicit_inc_to
= 1;
947 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
948 data
.to_addr
= copy_addr_to_reg (to_addr
);
951 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
952 if (align
>= GET_MODE_ALIGNMENT (tmode
))
953 align
= GET_MODE_ALIGNMENT (tmode
);
956 enum machine_mode xmode
;
958 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
960 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
961 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
962 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
965 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
968 /* First move what we can in the largest integer mode, then go to
969 successively smaller modes. */
973 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
974 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
975 if (GET_MODE_SIZE (tmode
) < max_size
)
978 if (mode
== VOIDmode
)
981 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
982 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
983 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
985 max_size
= GET_MODE_SIZE (mode
);
988 /* The code above should have handled everything. */
989 gcc_assert (!data
.len
);
995 gcc_assert (!data
.reverse
);
1000 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
1001 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
1003 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
1006 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
1013 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
1021 /* Return number of insns required to move L bytes by pieces.
1022 ALIGN (in bits) is maximum alignment we can assume. */
1024 static unsigned HOST_WIDE_INT
1025 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
1026 unsigned int max_size
)
1028 unsigned HOST_WIDE_INT n_insns
= 0;
1029 enum machine_mode tmode
;
1031 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
1032 if (align
>= GET_MODE_ALIGNMENT (tmode
))
1033 align
= GET_MODE_ALIGNMENT (tmode
);
1036 enum machine_mode tmode
, xmode
;
1038 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
1040 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
1041 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
1042 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
1045 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
1048 while (max_size
> 1)
1050 enum machine_mode mode
= VOIDmode
;
1051 enum insn_code icode
;
1053 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1054 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
1055 if (GET_MODE_SIZE (tmode
) < max_size
)
1058 if (mode
== VOIDmode
)
1061 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
1062 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1063 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1065 max_size
= GET_MODE_SIZE (mode
);
1072 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1073 with move instructions for mode MODE. GENFUN is the gen_... function
1074 to make a move insn for that mode. DATA has all the other info. */
1077 move_by_pieces_1 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
1078 struct move_by_pieces
*data
)
1080 unsigned int size
= GET_MODE_SIZE (mode
);
1081 rtx to1
= NULL_RTX
, from1
;
1083 while (data
->len
>= size
)
1086 data
->offset
-= size
;
1090 if (data
->autinc_to
)
1091 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1094 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1097 if (data
->autinc_from
)
1098 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1101 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1103 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1104 emit_insn (gen_add2_insn (data
->to_addr
,
1105 GEN_INT (-(HOST_WIDE_INT
)size
)));
1106 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1107 emit_insn (gen_add2_insn (data
->from_addr
,
1108 GEN_INT (-(HOST_WIDE_INT
)size
)));
1111 emit_insn ((*genfun
) (to1
, from1
));
1114 #ifdef PUSH_ROUNDING
1115 emit_single_push_insn (mode
, from1
, NULL
);
1121 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1122 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
1123 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1124 emit_insn (gen_add2_insn (data
->from_addr
, GEN_INT (size
)));
1126 if (! data
->reverse
)
1127 data
->offset
+= size
;
1133 /* Emit code to move a block Y to a block X. This may be done with
1134 string-move instructions, with multiple scalar move instructions,
1135 or with a library call.
1137 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1138 SIZE is an rtx that says how long they are.
1139 ALIGN is the maximum alignment we can assume they have.
1140 METHOD describes what kind of copy this is, and what mechanisms may be used.
1142 Return the address of the new block, if memcpy is called and returns it,
1146 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1154 case BLOCK_OP_NORMAL
:
1155 case BLOCK_OP_TAILCALL
:
1156 may_use_call
= true;
1159 case BLOCK_OP_CALL_PARM
:
1160 may_use_call
= block_move_libcall_safe_for_call_parm ();
1162 /* Make inhibit_defer_pop nonzero around the library call
1163 to force it to pop the arguments right away. */
1167 case BLOCK_OP_NO_LIBCALL
:
1168 may_use_call
= false;
1175 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1177 gcc_assert (MEM_P (x
));
1178 gcc_assert (MEM_P (y
));
1181 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1182 block copy is more efficient for other large modes, e.g. DCmode. */
1183 x
= adjust_address (x
, BLKmode
, 0);
1184 y
= adjust_address (y
, BLKmode
, 0);
1186 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1187 can be incorrect is coming from __builtin_memcpy. */
1188 if (GET_CODE (size
) == CONST_INT
)
1190 if (INTVAL (size
) == 0)
1193 x
= shallow_copy_rtx (x
);
1194 y
= shallow_copy_rtx (y
);
1195 set_mem_size (x
, size
);
1196 set_mem_size (y
, size
);
1199 if (GET_CODE (size
) == CONST_INT
&& MOVE_BY_PIECES_P (INTVAL (size
), align
))
1200 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1201 else if (emit_block_move_via_movmem (x
, y
, size
, align
))
1203 else if (may_use_call
)
1204 retval
= emit_block_move_via_libcall (x
, y
, size
,
1205 method
== BLOCK_OP_TAILCALL
);
1207 emit_block_move_via_loop (x
, y
, size
, align
);
1209 if (method
== BLOCK_OP_CALL_PARM
)
1215 /* A subroutine of emit_block_move. Returns true if calling the
1216 block move libcall will not clobber any parameters which may have
1217 already been placed on the stack. */
1220 block_move_libcall_safe_for_call_parm (void)
1222 /* If arguments are pushed on the stack, then they're safe. */
1226 /* If registers go on the stack anyway, any argument is sure to clobber
1227 an outgoing argument. */
1228 #if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
1230 tree fn
= emit_block_move_libcall_fn (false);
1232 if (REG_PARM_STACK_SPACE (fn
) != 0)
1237 /* If any argument goes in memory, then it might clobber an outgoing
1240 CUMULATIVE_ARGS args_so_far
;
1243 fn
= emit_block_move_libcall_fn (false);
1244 INIT_CUMULATIVE_ARGS (args_so_far
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1246 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1247 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1249 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1250 rtx tmp
= FUNCTION_ARG (args_so_far
, mode
, NULL_TREE
, 1);
1251 if (!tmp
|| !REG_P (tmp
))
1253 if (targetm
.calls
.arg_partial_bytes (&args_so_far
, mode
, NULL
, 1))
1255 FUNCTION_ARG_ADVANCE (args_so_far
, mode
, NULL_TREE
, 1);
1261 /* A subroutine of emit_block_move. Expand a movmem pattern;
1262 return true if successful. */
1265 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
)
1267 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
1268 int save_volatile_ok
= volatile_ok
;
1269 enum machine_mode mode
;
1271 /* Since this is a move insn, we don't care about volatility. */
1274 /* Try the most limited insn first, because there's no point
1275 including more than one in the machine description unless
1276 the more limited one has some advantage. */
1278 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1279 mode
= GET_MODE_WIDER_MODE (mode
))
1281 enum insn_code code
= movmem_optab
[(int) mode
];
1282 insn_operand_predicate_fn pred
;
1284 if (code
!= CODE_FOR_nothing
1285 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1286 here because if SIZE is less than the mode mask, as it is
1287 returned by the macro, it will definitely be less than the
1288 actual mode mask. */
1289 && ((GET_CODE (size
) == CONST_INT
1290 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1291 <= (GET_MODE_MASK (mode
) >> 1)))
1292 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
1293 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
1294 || (*pred
) (x
, BLKmode
))
1295 && ((pred
= insn_data
[(int) code
].operand
[1].predicate
) == 0
1296 || (*pred
) (y
, BLKmode
))
1297 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
1298 || (*pred
) (opalign
, VOIDmode
)))
1301 rtx last
= get_last_insn ();
1304 op2
= convert_to_mode (mode
, size
, 1);
1305 pred
= insn_data
[(int) code
].operand
[2].predicate
;
1306 if (pred
!= 0 && ! (*pred
) (op2
, mode
))
1307 op2
= copy_to_mode_reg (mode
, op2
);
1309 /* ??? When called via emit_block_move_for_call, it'd be
1310 nice if there were some way to inform the backend, so
1311 that it doesn't fail the expansion because it thinks
1312 emitting the libcall would be more efficient. */
1314 pat
= GEN_FCN ((int) code
) (x
, y
, op2
, opalign
);
1318 volatile_ok
= save_volatile_ok
;
1322 delete_insns_since (last
);
1326 volatile_ok
= save_volatile_ok
;
1330 /* A subroutine of emit_block_move. Expand a call to memcpy.
1331 Return the return value from memcpy, 0 otherwise. */
1334 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1336 rtx dst_addr
, src_addr
;
1337 tree call_expr
, arg_list
, fn
, src_tree
, dst_tree
, size_tree
;
1338 enum machine_mode size_mode
;
1341 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1342 pseudos. We can then place those new pseudos into a VAR_DECL and
1345 dst_addr
= copy_to_mode_reg (Pmode
, XEXP (dst
, 0));
1346 src_addr
= copy_to_mode_reg (Pmode
, XEXP (src
, 0));
1348 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1349 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1351 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1352 src_tree
= make_tree (ptr_type_node
, src_addr
);
1354 size_mode
= TYPE_MODE (sizetype
);
1356 size
= convert_to_mode (size_mode
, size
, 1);
1357 size
= copy_to_mode_reg (size_mode
, size
);
1359 /* It is incorrect to use the libcall calling conventions to call
1360 memcpy in this context. This could be a user call to memcpy and
1361 the user may wish to examine the return value from memcpy. For
1362 targets where libcalls and normal calls have different conventions
1363 for returning pointers, we could end up generating incorrect code. */
1365 size_tree
= make_tree (sizetype
, size
);
1367 fn
= emit_block_move_libcall_fn (true);
1368 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
1369 arg_list
= tree_cons (NULL_TREE
, src_tree
, arg_list
);
1370 arg_list
= tree_cons (NULL_TREE
, dst_tree
, arg_list
);
1372 /* Now we have to build up the CALL_EXPR itself. */
1373 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
1374 call_expr
= build3 (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
1375 call_expr
, arg_list
, NULL_TREE
);
1376 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1378 retval
= expand_expr (call_expr
, NULL_RTX
, VOIDmode
, 0);
1383 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1384 for the function we use for block copies. The first time FOR_CALL
1385 is true, we call assemble_external. */
1387 static GTY(()) tree block_move_fn
;
1390 init_block_move_fn (const char *asmspec
)
1396 fn
= get_identifier ("memcpy");
1397 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1398 const_ptr_type_node
, sizetype
,
1401 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
1402 DECL_EXTERNAL (fn
) = 1;
1403 TREE_PUBLIC (fn
) = 1;
1404 DECL_ARTIFICIAL (fn
) = 1;
1405 TREE_NOTHROW (fn
) = 1;
1411 set_user_assembler_name (block_move_fn
, asmspec
);
1415 emit_block_move_libcall_fn (int for_call
)
1417 static bool emitted_extern
;
1420 init_block_move_fn (NULL
);
1422 if (for_call
&& !emitted_extern
)
1424 emitted_extern
= true;
1425 make_decl_rtl (block_move_fn
);
1426 assemble_external (block_move_fn
);
1429 return block_move_fn
;
1432 /* A subroutine of emit_block_move. Copy the data via an explicit
1433 loop. This is used only when libcalls are forbidden. */
1434 /* ??? It'd be nice to copy in hunks larger than QImode. */
1437 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1438 unsigned int align ATTRIBUTE_UNUSED
)
1440 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
1441 enum machine_mode iter_mode
;
1443 iter_mode
= GET_MODE (size
);
1444 if (iter_mode
== VOIDmode
)
1445 iter_mode
= word_mode
;
1447 top_label
= gen_label_rtx ();
1448 cmp_label
= gen_label_rtx ();
1449 iter
= gen_reg_rtx (iter_mode
);
1451 emit_move_insn (iter
, const0_rtx
);
1453 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1454 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1455 do_pending_stack_adjust ();
1457 emit_jump (cmp_label
);
1458 emit_label (top_label
);
1460 tmp
= convert_modes (Pmode
, iter_mode
, iter
, true);
1461 x_addr
= gen_rtx_PLUS (Pmode
, x_addr
, tmp
);
1462 y_addr
= gen_rtx_PLUS (Pmode
, y_addr
, tmp
);
1463 x
= change_address (x
, QImode
, x_addr
);
1464 y
= change_address (y
, QImode
, y_addr
);
1466 emit_move_insn (x
, y
);
1468 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1469 true, OPTAB_LIB_WIDEN
);
1471 emit_move_insn (iter
, tmp
);
1473 emit_label (cmp_label
);
1475 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1479 /* Copy all or part of a value X into registers starting at REGNO.
1480 The number of registers to be filled is NREGS. */
1483 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
1486 #ifdef HAVE_load_multiple
1494 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
1495 x
= validize_mem (force_const_mem (mode
, x
));
1497 /* See if the machine can do this with a load multiple insn. */
1498 #ifdef HAVE_load_multiple
1499 if (HAVE_load_multiple
)
1501 last
= get_last_insn ();
1502 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1510 delete_insns_since (last
);
1514 for (i
= 0; i
< nregs
; i
++)
1515 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1516 operand_subword_force (x
, i
, mode
));
1519 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1520 The number of registers to be filled is NREGS. */
1523 move_block_from_reg (int regno
, rtx x
, int nregs
)
1530 /* See if the machine can do this with a store multiple insn. */
1531 #ifdef HAVE_store_multiple
1532 if (HAVE_store_multiple
)
1534 rtx last
= get_last_insn ();
1535 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1543 delete_insns_since (last
);
1547 for (i
= 0; i
< nregs
; i
++)
1549 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1553 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1557 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1558 ORIG, where ORIG is a non-consecutive group of registers represented by
1559 a PARALLEL. The clone is identical to the original except in that the
1560 original set of registers is replaced by a new set of pseudo registers.
1561 The new set has the same modes as the original set. */
1564 gen_group_rtx (rtx orig
)
1569 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1571 length
= XVECLEN (orig
, 0);
1572 tmps
= alloca (sizeof (rtx
) * length
);
1574 /* Skip a NULL entry in first slot. */
1575 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1580 for (; i
< length
; i
++)
1582 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1583 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1585 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1588 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1591 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1592 except that values are placed in TMPS[i], and must later be moved
1593 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1596 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1600 enum machine_mode m
= GET_MODE (orig_src
);
1602 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1605 && !SCALAR_INT_MODE_P (m
)
1606 && !MEM_P (orig_src
)
1607 && GET_CODE (orig_src
) != CONCAT
)
1609 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1610 if (imode
== BLKmode
)
1611 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
, 0);
1613 src
= gen_reg_rtx (imode
);
1614 if (imode
!= BLKmode
)
1615 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1616 emit_move_insn (src
, orig_src
);
1617 /* ...and back again. */
1618 if (imode
!= BLKmode
)
1619 src
= gen_lowpart (imode
, src
);
1620 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1624 /* Check for a NULL entry, used to indicate that the parameter goes
1625 both on the stack and in registers. */
1626 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1631 /* Process the pieces. */
1632 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1634 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1635 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1636 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1639 /* Handle trailing fragments that run over the size of the struct. */
1640 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1642 /* Arrange to shift the fragment to where it belongs.
1643 extract_bit_field loads to the lsb of the reg. */
1645 #ifdef BLOCK_REG_PADDING
1646 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1647 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1652 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1653 bytelen
= ssize
- bytepos
;
1654 gcc_assert (bytelen
> 0);
1657 /* If we won't be loading directly from memory, protect the real source
1658 from strange tricks we might play; but make sure that the source can
1659 be loaded directly into the destination. */
1661 if (!MEM_P (orig_src
)
1662 && (!CONSTANT_P (orig_src
)
1663 || (GET_MODE (orig_src
) != mode
1664 && GET_MODE (orig_src
) != VOIDmode
)))
1666 if (GET_MODE (orig_src
) == VOIDmode
)
1667 src
= gen_reg_rtx (mode
);
1669 src
= gen_reg_rtx (GET_MODE (orig_src
));
1671 emit_move_insn (src
, orig_src
);
1674 /* Optimize the access just a bit. */
1676 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1677 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1678 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1679 && bytelen
== GET_MODE_SIZE (mode
))
1681 tmps
[i
] = gen_reg_rtx (mode
);
1682 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1684 else if (COMPLEX_MODE_P (mode
)
1685 && GET_MODE (src
) == mode
1686 && bytelen
== GET_MODE_SIZE (mode
))
1687 /* Let emit_move_complex do the bulk of the work. */
1689 else if (GET_CODE (src
) == CONCAT
)
1691 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1692 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1694 if ((bytepos
== 0 && bytelen
== slen0
)
1695 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1697 /* The following assumes that the concatenated objects all
1698 have the same size. In this case, a simple calculation
1699 can be used to determine the object and the bit field
1701 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1702 if (! CONSTANT_P (tmps
[i
])
1703 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1704 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1705 (bytepos
% slen0
) * BITS_PER_UNIT
,
1706 1, NULL_RTX
, mode
, mode
);
1712 gcc_assert (!bytepos
);
1713 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1714 emit_move_insn (mem
, src
);
1715 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1716 0, 1, NULL_RTX
, mode
, mode
);
1719 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1720 SIMD register, which is currently broken. While we get GCC
1721 to emit proper RTL for these cases, let's dump to memory. */
1722 else if (VECTOR_MODE_P (GET_MODE (dst
))
1725 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1728 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1729 emit_move_insn (mem
, src
);
1730 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1732 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1733 && XVECLEN (dst
, 0) > 1)
1734 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE(dst
), bytepos
);
1735 else if (CONSTANT_P (src
)
1736 || (REG_P (src
) && GET_MODE (src
) == mode
))
1739 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1740 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1744 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1745 build_int_cst (NULL_TREE
, shift
), tmps
[i
], 0);
1749 /* Emit code to move a block SRC of type TYPE to a block DST,
1750 where DST is non-consecutive registers represented by a PARALLEL.
1751 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1755 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1760 tmps
= alloca (sizeof (rtx
) * XVECLEN (dst
, 0));
1761 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1763 /* Copy the extracted pieces into the proper (probable) hard regs. */
1764 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1766 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1769 emit_move_insn (d
, tmps
[i
]);
1773 /* Similar, but load SRC into new pseudos in a format that looks like
1774 PARALLEL. This can later be fed to emit_group_move to get things
1775 in the right place. */
1778 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1783 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1784 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1786 /* Convert the vector to look just like the original PARALLEL, except
1787 with the computed values. */
1788 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1790 rtx e
= XVECEXP (parallel
, 0, i
);
1791 rtx d
= XEXP (e
, 0);
1795 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1796 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1798 RTVEC_ELT (vec
, i
) = e
;
1801 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1804 /* Emit code to move a block SRC to block DST, where SRC and DST are
1805 non-consecutive groups of registers, each represented by a PARALLEL. */
1808 emit_group_move (rtx dst
, rtx src
)
1812 gcc_assert (GET_CODE (src
) == PARALLEL
1813 && GET_CODE (dst
) == PARALLEL
1814 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1816 /* Skip first entry if NULL. */
1817 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1818 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1819 XEXP (XVECEXP (src
, 0, i
), 0));
1822 /* Move a group of registers represented by a PARALLEL into pseudos. */
1825 emit_group_move_into_temps (rtx src
)
1827 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1830 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1832 rtx e
= XVECEXP (src
, 0, i
);
1833 rtx d
= XEXP (e
, 0);
1836 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1837 RTVEC_ELT (vec
, i
) = e
;
1840 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1843 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1844 where SRC is non-consecutive registers represented by a PARALLEL.
1845 SSIZE represents the total size of block ORIG_DST, or -1 if not
1849 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1853 enum machine_mode m
= GET_MODE (orig_dst
);
1855 gcc_assert (GET_CODE (src
) == PARALLEL
);
1857 if (!SCALAR_INT_MODE_P (m
)
1858 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1860 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1861 if (imode
== BLKmode
)
1862 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
, 0);
1864 dst
= gen_reg_rtx (imode
);
1865 emit_group_store (dst
, src
, type
, ssize
);
1866 if (imode
!= BLKmode
)
1867 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1868 emit_move_insn (orig_dst
, dst
);
1872 /* Check for a NULL entry, used to indicate that the parameter goes
1873 both on the stack and in registers. */
1874 if (XEXP (XVECEXP (src
, 0, 0), 0))
1879 tmps
= alloca (sizeof (rtx
) * XVECLEN (src
, 0));
1881 /* Copy the (probable) hard regs into pseudos. */
1882 for (i
= start
; i
< XVECLEN (src
, 0); i
++)
1884 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1885 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1886 emit_move_insn (tmps
[i
], reg
);
1889 /* If we won't be storing directly into memory, protect the real destination
1890 from strange tricks we might play. */
1892 if (GET_CODE (dst
) == PARALLEL
)
1896 /* We can get a PARALLEL dst if there is a conditional expression in
1897 a return statement. In that case, the dst and src are the same,
1898 so no action is necessary. */
1899 if (rtx_equal_p (dst
, src
))
1902 /* It is unclear if we can ever reach here, but we may as well handle
1903 it. Allocate a temporary, and split this into a store/load to/from
1906 temp
= assign_stack_temp (GET_MODE (dst
), ssize
, 0);
1907 emit_group_store (temp
, src
, type
, ssize
);
1908 emit_group_load (dst
, temp
, type
, ssize
);
1911 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1913 dst
= gen_reg_rtx (GET_MODE (orig_dst
));
1914 /* Make life a bit easier for combine. */
1915 emit_move_insn (dst
, CONST0_RTX (GET_MODE (orig_dst
)));
1918 /* Process the pieces. */
1919 for (i
= start
; i
< XVECLEN (src
, 0); i
++)
1921 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
1922 enum machine_mode mode
= GET_MODE (tmps
[i
]);
1923 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1926 /* Handle trailing fragments that run over the size of the struct. */
1927 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1929 /* store_bit_field always takes its value from the lsb.
1930 Move the fragment to the lsb if it's not already there. */
1932 #ifdef BLOCK_REG_PADDING
1933 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
1934 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1940 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1941 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
1942 build_int_cst (NULL_TREE
, shift
),
1945 bytelen
= ssize
- bytepos
;
1948 if (GET_CODE (dst
) == CONCAT
)
1950 if (bytepos
+ bytelen
<= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
1951 dest
= XEXP (dst
, 0);
1952 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
1954 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
1955 dest
= XEXP (dst
, 1);
1959 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
1960 dest
= assign_stack_temp (GET_MODE (dest
),
1961 GET_MODE_SIZE (GET_MODE (dest
)), 0);
1962 emit_move_insn (adjust_address (dest
, GET_MODE (tmps
[i
]), bytepos
),
1969 /* Optimize the access just a bit. */
1971 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
1972 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
1973 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1974 && bytelen
== GET_MODE_SIZE (mode
))
1975 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
1977 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
1981 /* Copy from the pseudo into the (probable) hard reg. */
1982 if (orig_dst
!= dst
)
1983 emit_move_insn (orig_dst
, dst
);
1986 /* Generate code to copy a BLKmode object of TYPE out of a
1987 set of registers starting with SRCREG into TGTBLK. If TGTBLK
1988 is null, a stack temporary is created. TGTBLK is returned.
1990 The purpose of this routine is to handle functions that return
1991 BLKmode structures in registers. Some machines (the PA for example)
1992 want to return all small structures in registers regardless of the
1993 structure's alignment. */
1996 copy_blkmode_from_reg (rtx tgtblk
, rtx srcreg
, tree type
)
1998 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
1999 rtx src
= NULL
, dst
= NULL
;
2000 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2001 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2005 tgtblk
= assign_temp (build_qualified_type (type
,
2007 | TYPE_QUAL_CONST
)),
2009 preserve_temp_slots (tgtblk
);
2012 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2013 into a new pseudo which is a full word. */
2015 if (GET_MODE (srcreg
) != BLKmode
2016 && GET_MODE_SIZE (GET_MODE (srcreg
)) < UNITS_PER_WORD
)
2017 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2019 /* If the structure doesn't take up a whole number of words, see whether
2020 SRCREG is padded on the left or on the right. If it's on the left,
2021 set PADDING_CORRECTION to the number of bits to skip.
2023 In most ABIs, the structure will be returned at the least end of
2024 the register, which translates to right padding on little-endian
2025 targets and left padding on big-endian targets. The opposite
2026 holds if the structure is returned at the most significant
2027 end of the register. */
2028 if (bytes
% UNITS_PER_WORD
!= 0
2029 && (targetm
.calls
.return_in_msb (type
)
2031 : BYTES_BIG_ENDIAN
))
2033 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2035 /* Copy the structure BITSIZE bites at a time.
2037 We could probably emit more efficient code for machines which do not use
2038 strict alignment, but it doesn't seem worth the effort at the current
2040 for (bitpos
= 0, xbitpos
= padding_correction
;
2041 bitpos
< bytes
* BITS_PER_UNIT
;
2042 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2044 /* We need a new source operand each time xbitpos is on a
2045 word boundary and when xbitpos == padding_correction
2046 (the first time through). */
2047 if (xbitpos
% BITS_PER_WORD
== 0
2048 || xbitpos
== padding_correction
)
2049 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
,
2052 /* We need a new destination operand each time bitpos is on
2054 if (bitpos
% BITS_PER_WORD
== 0)
2055 dst
= operand_subword (tgtblk
, bitpos
/ BITS_PER_WORD
, 1, BLKmode
);
2057 /* Use xbitpos for the source extraction (right justified) and
2058 xbitpos for the destination store (left justified). */
2059 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, word_mode
,
2060 extract_bit_field (src
, bitsize
,
2061 xbitpos
% BITS_PER_WORD
, 1,
2062 NULL_RTX
, word_mode
, word_mode
));
2068 /* Add a USE expression for REG to the (possibly empty) list pointed
2069 to by CALL_FUSAGE. REG must denote a hard register. */
2072 use_reg (rtx
*call_fusage
, rtx reg
)
2074 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2077 = gen_rtx_EXPR_LIST (VOIDmode
,
2078 gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2081 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2082 starting at REGNO. All of these registers must be hard registers. */
2085 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2089 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2091 for (i
= 0; i
< nregs
; i
++)
2092 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2095 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2096 PARALLEL REGS. This is for calls that pass values in multiple
2097 non-contiguous locations. The Irix 6 ABI has examples of this. */
2100 use_group_regs (rtx
*call_fusage
, rtx regs
)
2104 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2106 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2108 /* A NULL entry means the parameter goes both on the stack and in
2109 registers. This can also be a MEM for targets that pass values
2110 partially on the stack and partially in registers. */
2111 if (reg
!= 0 && REG_P (reg
))
2112 use_reg (call_fusage
, reg
);
2117 /* Determine whether the LEN bytes generated by CONSTFUN can be
2118 stored to memory using several move instructions. CONSTFUNDATA is
2119 a pointer which will be passed as argument in every CONSTFUN call.
2120 ALIGN is maximum alignment we can assume. Return nonzero if a
2121 call to store_by_pieces should succeed. */
2124 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2125 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2126 void *constfundata
, unsigned int align
)
2128 unsigned HOST_WIDE_INT l
;
2129 unsigned int max_size
;
2130 HOST_WIDE_INT offset
= 0;
2131 enum machine_mode mode
, tmode
;
2132 enum insn_code icode
;
2139 if (! STORE_BY_PIECES_P (len
, align
))
2142 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2143 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2144 align
= GET_MODE_ALIGNMENT (tmode
);
2147 enum machine_mode xmode
;
2149 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2151 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2152 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2153 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2156 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2159 /* We would first store what we can in the largest integer mode, then go to
2160 successively smaller modes. */
2163 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2168 max_size
= STORE_MAX_PIECES
+ 1;
2169 while (max_size
> 1)
2171 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2172 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2173 if (GET_MODE_SIZE (tmode
) < max_size
)
2176 if (mode
== VOIDmode
)
2179 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2180 if (icode
!= CODE_FOR_nothing
2181 && align
>= GET_MODE_ALIGNMENT (mode
))
2183 unsigned int size
= GET_MODE_SIZE (mode
);
2190 cst
= (*constfun
) (constfundata
, offset
, mode
);
2191 if (!LEGITIMATE_CONSTANT_P (cst
))
2201 max_size
= GET_MODE_SIZE (mode
);
2204 /* The code above should have handled everything. */
2211 /* Generate several move instructions to store LEN bytes generated by
2212 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2213 pointer which will be passed as argument in every CONSTFUN call.
2214 ALIGN is maximum alignment we can assume.
2215 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2216 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2220 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2221 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2222 void *constfundata
, unsigned int align
, int endp
)
2224 struct store_by_pieces data
;
2228 gcc_assert (endp
!= 2);
2232 gcc_assert (STORE_BY_PIECES_P (len
, align
));
2233 data
.constfun
= constfun
;
2234 data
.constfundata
= constfundata
;
2237 store_by_pieces_1 (&data
, align
);
2242 gcc_assert (!data
.reverse
);
2247 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2248 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2250 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
2253 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2260 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2268 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2269 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2272 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2274 struct store_by_pieces data
;
2279 data
.constfun
= clear_by_pieces_1
;
2280 data
.constfundata
= NULL
;
2283 store_by_pieces_1 (&data
, align
);
2286 /* Callback routine for clear_by_pieces.
2287 Return const0_rtx unconditionally. */
2290 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2291 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2292 enum machine_mode mode ATTRIBUTE_UNUSED
)
2297 /* Subroutine of clear_by_pieces and store_by_pieces.
2298 Generate several move instructions to store LEN bytes of block TO. (A MEM
2299 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2302 store_by_pieces_1 (struct store_by_pieces
*data ATTRIBUTE_UNUSED
,
2303 unsigned int align ATTRIBUTE_UNUSED
)
2305 rtx to_addr
= XEXP (data
->to
, 0);
2306 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2307 enum machine_mode mode
= VOIDmode
, tmode
;
2308 enum insn_code icode
;
2311 data
->to_addr
= to_addr
;
2313 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2314 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2316 data
->explicit_inc_to
= 0;
2318 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2320 data
->offset
= data
->len
;
2322 /* If storing requires more than two move insns,
2323 copy addresses to registers (to make displacements shorter)
2324 and use post-increment if available. */
2325 if (!data
->autinc_to
2326 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2328 /* Determine the main mode we'll be using. */
2329 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2330 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2331 if (GET_MODE_SIZE (tmode
) < max_size
)
2334 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2336 data
->to_addr
= copy_addr_to_reg (plus_constant (to_addr
, data
->len
));
2337 data
->autinc_to
= 1;
2338 data
->explicit_inc_to
= -1;
2341 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2342 && ! data
->autinc_to
)
2344 data
->to_addr
= copy_addr_to_reg (to_addr
);
2345 data
->autinc_to
= 1;
2346 data
->explicit_inc_to
= 1;
2349 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2350 data
->to_addr
= copy_addr_to_reg (to_addr
);
2353 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2354 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2355 align
= GET_MODE_ALIGNMENT (tmode
);
2358 enum machine_mode xmode
;
2360 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2362 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2363 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2364 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2367 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2370 /* First store what we can in the largest integer mode, then go to
2371 successively smaller modes. */
2373 while (max_size
> 1)
2375 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2376 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2377 if (GET_MODE_SIZE (tmode
) < max_size
)
2380 if (mode
== VOIDmode
)
2383 icode
= mov_optab
->handlers
[(int) mode
].insn_code
;
2384 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2385 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2387 max_size
= GET_MODE_SIZE (mode
);
2390 /* The code above should have handled everything. */
2391 gcc_assert (!data
->len
);
2394 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2395 with move instructions for mode MODE. GENFUN is the gen_... function
2396 to make a move insn for that mode. DATA has all the other info. */
2399 store_by_pieces_2 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
2400 struct store_by_pieces
*data
)
2402 unsigned int size
= GET_MODE_SIZE (mode
);
2405 while (data
->len
>= size
)
2408 data
->offset
-= size
;
2410 if (data
->autinc_to
)
2411 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2414 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2416 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2417 emit_insn (gen_add2_insn (data
->to_addr
,
2418 GEN_INT (-(HOST_WIDE_INT
) size
)));
2420 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2421 emit_insn ((*genfun
) (to1
, cst
));
2423 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2424 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
2426 if (! data
->reverse
)
2427 data
->offset
+= size
;
2433 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2434 its length in bytes. */
2437 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2439 enum machine_mode mode
= GET_MODE (object
);
2442 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2444 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2445 just move a zero. Otherwise, do this a piece at a time. */
2447 && GET_CODE (size
) == CONST_INT
2448 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2450 rtx zero
= CONST0_RTX (mode
);
2453 emit_move_insn (object
, zero
);
2457 if (COMPLEX_MODE_P (mode
))
2459 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2462 write_complex_part (object
, zero
, 0);
2463 write_complex_part (object
, zero
, 1);
2469 if (size
== const0_rtx
)
2472 align
= MEM_ALIGN (object
);
2474 if (GET_CODE (size
) == CONST_INT
2475 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2476 clear_by_pieces (object
, INTVAL (size
), align
);
2477 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
))
2480 return clear_storage_via_libcall (object
, size
,
2481 method
== BLOCK_OP_TAILCALL
);
2486 /* A subroutine of clear_storage. Expand a call to memset.
2487 Return the return value of memset, 0 otherwise. */
2490 clear_storage_via_libcall (rtx object
, rtx size
, bool tailcall
)
2492 tree call_expr
, arg_list
, fn
, object_tree
, size_tree
;
2493 enum machine_mode size_mode
;
2496 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2497 place those into new pseudos into a VAR_DECL and use them later. */
2499 object
= copy_to_mode_reg (Pmode
, XEXP (object
, 0));
2501 size_mode
= TYPE_MODE (sizetype
);
2502 size
= convert_to_mode (size_mode
, size
, 1);
2503 size
= copy_to_mode_reg (size_mode
, size
);
2505 /* It is incorrect to use the libcall calling conventions to call
2506 memset in this context. This could be a user call to memset and
2507 the user may wish to examine the return value from memset. For
2508 targets where libcalls and normal calls have different conventions
2509 for returning pointers, we could end up generating incorrect code. */
2511 object_tree
= make_tree (ptr_type_node
, object
);
2512 size_tree
= make_tree (sizetype
, size
);
2514 fn
= clear_storage_libcall_fn (true);
2515 arg_list
= tree_cons (NULL_TREE
, size_tree
, NULL_TREE
);
2516 arg_list
= tree_cons (NULL_TREE
, integer_zero_node
, arg_list
);
2517 arg_list
= tree_cons (NULL_TREE
, object_tree
, arg_list
);
2519 /* Now we have to build up the CALL_EXPR itself. */
2520 call_expr
= build1 (ADDR_EXPR
, build_pointer_type (TREE_TYPE (fn
)), fn
);
2521 call_expr
= build3 (CALL_EXPR
, TREE_TYPE (TREE_TYPE (fn
)),
2522 call_expr
, arg_list
, NULL_TREE
);
2523 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2525 retval
= expand_expr (call_expr
, NULL_RTX
, VOIDmode
, 0);
2530 /* A subroutine of clear_storage_via_libcall. Create the tree node
2531 for the function we use for block clears. The first time FOR_CALL
2532 is true, we call assemble_external. */
2534 static GTY(()) tree block_clear_fn
;
2537 init_block_clear_fn (const char *asmspec
)
2539 if (!block_clear_fn
)
2543 fn
= get_identifier ("memset");
2544 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2545 integer_type_node
, sizetype
,
2548 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
2549 DECL_EXTERNAL (fn
) = 1;
2550 TREE_PUBLIC (fn
) = 1;
2551 DECL_ARTIFICIAL (fn
) = 1;
2552 TREE_NOTHROW (fn
) = 1;
2554 block_clear_fn
= fn
;
2558 set_user_assembler_name (block_clear_fn
, asmspec
);
2562 clear_storage_libcall_fn (int for_call
)
2564 static bool emitted_extern
;
2566 if (!block_clear_fn
)
2567 init_block_clear_fn (NULL
);
2569 if (for_call
&& !emitted_extern
)
2571 emitted_extern
= true;
2572 make_decl_rtl (block_clear_fn
);
2573 assemble_external (block_clear_fn
);
2576 return block_clear_fn
;
2579 /* Expand a setmem pattern; return true if successful. */
2582 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
)
2584 /* Try the most limited insn first, because there's no point
2585 including more than one in the machine description unless
2586 the more limited one has some advantage. */
2588 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
2589 enum machine_mode mode
;
2591 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2592 mode
= GET_MODE_WIDER_MODE (mode
))
2594 enum insn_code code
= setmem_optab
[(int) mode
];
2595 insn_operand_predicate_fn pred
;
2597 if (code
!= CODE_FOR_nothing
2598 /* We don't need MODE to be narrower than
2599 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2600 the mode mask, as it is returned by the macro, it will
2601 definitely be less than the actual mode mask. */
2602 && ((GET_CODE (size
) == CONST_INT
2603 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2604 <= (GET_MODE_MASK (mode
) >> 1)))
2605 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
2606 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
2607 || (*pred
) (object
, BLKmode
))
2608 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
2609 || (*pred
) (opalign
, VOIDmode
)))
2612 enum machine_mode char_mode
;
2613 rtx last
= get_last_insn ();
2616 opsize
= convert_to_mode (mode
, size
, 1);
2617 pred
= insn_data
[(int) code
].operand
[1].predicate
;
2618 if (pred
!= 0 && ! (*pred
) (opsize
, mode
))
2619 opsize
= copy_to_mode_reg (mode
, opsize
);
2622 char_mode
= insn_data
[(int) code
].operand
[2].mode
;
2623 if (char_mode
!= VOIDmode
)
2625 opchar
= convert_to_mode (char_mode
, opchar
, 1);
2626 pred
= insn_data
[(int) code
].operand
[2].predicate
;
2627 if (pred
!= 0 && ! (*pred
) (opchar
, char_mode
))
2628 opchar
= copy_to_mode_reg (char_mode
, opchar
);
2631 pat
= GEN_FCN ((int) code
) (object
, opsize
, opchar
, opalign
);
2638 delete_insns_since (last
);
2646 /* Write to one of the components of the complex value CPLX. Write VAL to
2647 the real part if IMAG_P is false, and the imaginary part if its true. */
2650 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
2652 enum machine_mode cmode
;
2653 enum machine_mode imode
;
2656 if (GET_CODE (cplx
) == CONCAT
)
2658 emit_move_insn (XEXP (cplx
, imag_p
), val
);
2662 cmode
= GET_MODE (cplx
);
2663 imode
= GET_MODE_INNER (cmode
);
2664 ibitsize
= GET_MODE_BITSIZE (imode
);
2666 /* For MEMs simplify_gen_subreg may generate an invalid new address
2667 because, e.g., the original address is considered mode-dependent
2668 by the target, which restricts simplify_subreg from invoking
2669 adjust_address_nv. Instead of preparing fallback support for an
2670 invalid address, we call adjust_address_nv directly. */
2673 emit_move_insn (adjust_address_nv (cplx
, imode
,
2674 imag_p
? GET_MODE_SIZE (imode
) : 0),
2679 /* If the sub-object is at least word sized, then we know that subregging
2680 will work. This special case is important, since store_bit_field
2681 wants to operate on integer modes, and there's rarely an OImode to
2682 correspond to TCmode. */
2683 if (ibitsize
>= BITS_PER_WORD
2684 /* For hard regs we have exact predicates. Assume we can split
2685 the original object if it spans an even number of hard regs.
2686 This special case is important for SCmode on 64-bit platforms
2687 where the natural size of floating-point regs is 32-bit. */
2689 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2690 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2692 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
2693 imag_p
? GET_MODE_SIZE (imode
) : 0);
2696 emit_move_insn (part
, val
);
2700 /* simplify_gen_subreg may fail for sub-word MEMs. */
2701 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2704 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, imode
, val
);
2707 /* Extract one of the components of the complex value CPLX. Extract the
2708 real part if IMAG_P is false, and the imaginary part if it's true. */
2711 read_complex_part (rtx cplx
, bool imag_p
)
2713 enum machine_mode cmode
, imode
;
2716 if (GET_CODE (cplx
) == CONCAT
)
2717 return XEXP (cplx
, imag_p
);
2719 cmode
= GET_MODE (cplx
);
2720 imode
= GET_MODE_INNER (cmode
);
2721 ibitsize
= GET_MODE_BITSIZE (imode
);
2723 /* Special case reads from complex constants that got spilled to memory. */
2724 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
2726 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
2727 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
2729 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
2730 if (CONSTANT_CLASS_P (part
))
2731 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
2735 /* For MEMs simplify_gen_subreg may generate an invalid new address
2736 because, e.g., the original address is considered mode-dependent
2737 by the target, which restricts simplify_subreg from invoking
2738 adjust_address_nv. Instead of preparing fallback support for an
2739 invalid address, we call adjust_address_nv directly. */
2741 return adjust_address_nv (cplx
, imode
,
2742 imag_p
? GET_MODE_SIZE (imode
) : 0);
2744 /* If the sub-object is at least word sized, then we know that subregging
2745 will work. This special case is important, since extract_bit_field
2746 wants to operate on integer modes, and there's rarely an OImode to
2747 correspond to TCmode. */
2748 if (ibitsize
>= BITS_PER_WORD
2749 /* For hard regs we have exact predicates. Assume we can split
2750 the original object if it spans an even number of hard regs.
2751 This special case is important for SCmode on 64-bit platforms
2752 where the natural size of floating-point regs is 32-bit. */
2754 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2755 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2757 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
2758 imag_p
? GET_MODE_SIZE (imode
) : 0);
2762 /* simplify_gen_subreg may fail for sub-word MEMs. */
2763 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2766 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
2767 true, NULL_RTX
, imode
, imode
);
2770 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2771 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2772 represented in NEW_MODE. If FORCE is true, this will never happen, as
2773 we'll force-create a SUBREG if needed. */
2776 emit_move_change_mode (enum machine_mode new_mode
,
2777 enum machine_mode old_mode
, rtx x
, bool force
)
2781 if (reload_in_progress
&& MEM_P (x
))
2783 /* We can't use gen_lowpart here because it may call change_address
2784 which is not appropriate if we were called when a reload was in
2785 progress. We don't have to worry about changing the address since
2786 the size in bytes is supposed to be the same. Copy the MEM to
2787 change the mode and move any substitutions from the old MEM to
2790 ret
= adjust_address_nv (x
, new_mode
, 0);
2791 copy_replacements (x
, ret
);
2795 /* Note that we do want simplify_subreg's behavior of validating
2796 that the new mode is ok for a hard register. If we were to use
2797 simplify_gen_subreg, we would create the subreg, but would
2798 probably run into the target not being able to implement it. */
2799 /* Except, of course, when FORCE is true, when this is exactly what
2800 we want. Which is needed for CCmodes on some targets. */
2802 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
2804 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
2810 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2811 an integer mode of the same size as MODE. Returns the instruction
2812 emitted, or NULL if such a move could not be generated. */
2815 emit_move_via_integer (enum machine_mode mode
, rtx x
, rtx y
, bool force
)
2817 enum machine_mode imode
;
2818 enum insn_code code
;
2820 /* There must exist a mode of the exact size we require. */
2821 imode
= int_mode_for_mode (mode
);
2822 if (imode
== BLKmode
)
2825 /* The target must support moves in this mode. */
2826 code
= mov_optab
->handlers
[imode
].insn_code
;
2827 if (code
== CODE_FOR_nothing
)
2830 x
= emit_move_change_mode (imode
, mode
, x
, force
);
2833 y
= emit_move_change_mode (imode
, mode
, y
, force
);
2836 return emit_insn (GEN_FCN (code
) (x
, y
));
2839 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2840 Return an equivalent MEM that does not use an auto-increment. */
2843 emit_move_resolve_push (enum machine_mode mode
, rtx x
)
2845 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
2846 HOST_WIDE_INT adjust
;
2849 adjust
= GET_MODE_SIZE (mode
);
2850 #ifdef PUSH_ROUNDING
2851 adjust
= PUSH_ROUNDING (adjust
);
2853 if (code
== PRE_DEC
|| code
== POST_DEC
)
2856 /* Do not use anti_adjust_stack, since we don't want to update
2857 stack_pointer_delta. */
2858 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
2859 GEN_INT (adjust
), stack_pointer_rtx
,
2860 0, OPTAB_LIB_WIDEN
);
2861 if (temp
!= stack_pointer_rtx
)
2862 emit_move_insn (stack_pointer_rtx
, temp
);
2868 temp
= stack_pointer_rtx
;
2871 temp
= plus_constant (stack_pointer_rtx
, -GET_MODE_SIZE (mode
));
2874 temp
= plus_constant (stack_pointer_rtx
, GET_MODE_SIZE (mode
));
2880 return replace_equiv_address (x
, temp
);
2883 /* A subroutine of emit_move_complex. Generate a move from Y into X.
2884 X is known to satisfy push_operand, and MODE is known to be complex.
2885 Returns the last instruction emitted. */
2888 emit_move_complex_push (enum machine_mode mode
, rtx x
, rtx y
)
2890 enum machine_mode submode
= GET_MODE_INNER (mode
);
2893 #ifdef PUSH_ROUNDING
2894 unsigned int submodesize
= GET_MODE_SIZE (submode
);
2896 /* In case we output to the stack, but the size is smaller than the
2897 machine can push exactly, we need to use move instructions. */
2898 if (PUSH_ROUNDING (submodesize
) != submodesize
)
2900 x
= emit_move_resolve_push (mode
, x
);
2901 return emit_move_insn (x
, y
);
2905 /* Note that the real part always precedes the imag part in memory
2906 regardless of machine's endianness. */
2907 switch (GET_CODE (XEXP (x
, 0)))
2921 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
2922 read_complex_part (y
, imag_first
));
2923 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
2924 read_complex_part (y
, !imag_first
));
2927 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2928 MODE is known to be complex. Returns the last instruction emitted. */
2931 emit_move_complex (enum machine_mode mode
, rtx x
, rtx y
)
2935 /* Need to take special care for pushes, to maintain proper ordering
2936 of the data, and possibly extra padding. */
2937 if (push_operand (x
, mode
))
2938 return emit_move_complex_push (mode
, x
, y
);
2940 /* See if we can coerce the target into moving both values at once. */
2942 /* Move floating point as parts. */
2943 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
2944 && mov_optab
->handlers
[GET_MODE_INNER (mode
)].insn_code
!= CODE_FOR_nothing
)
2946 /* Not possible if the values are inherently not adjacent. */
2947 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
2949 /* Is possible if both are registers (or subregs of registers). */
2950 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
2952 /* If one of the operands is a memory, and alignment constraints
2953 are friendly enough, we may be able to do combined memory operations.
2954 We do not attempt this if Y is a constant because that combination is
2955 usually better with the by-parts thing below. */
2956 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
2957 && (!STRICT_ALIGNMENT
2958 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
2967 /* For memory to memory moves, optimal behavior can be had with the
2968 existing block move logic. */
2969 if (MEM_P (x
) && MEM_P (y
))
2971 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
2972 BLOCK_OP_NO_LIBCALL
);
2973 return get_last_insn ();
2976 ret
= emit_move_via_integer (mode
, x
, y
, true);
2981 /* Show the output dies here. This is necessary for SUBREGs
2982 of pseudos since we cannot track their lifetimes correctly;
2983 hard regs shouldn't appear here except as return values. */
2984 if (!reload_completed
&& !reload_in_progress
2985 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
2986 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
2988 write_complex_part (x
, read_complex_part (y
, false), false);
2989 write_complex_part (x
, read_complex_part (y
, true), true);
2990 return get_last_insn ();
2993 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2994 MODE is known to be MODE_CC. Returns the last instruction emitted. */
2997 emit_move_ccmode (enum machine_mode mode
, rtx x
, rtx y
)
3001 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3004 enum insn_code code
= mov_optab
->handlers
[CCmode
].insn_code
;
3005 if (code
!= CODE_FOR_nothing
)
3007 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3008 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3009 return emit_insn (GEN_FCN (code
) (x
, y
));
3013 /* Otherwise, find the MODE_INT mode of the same width. */
3014 ret
= emit_move_via_integer (mode
, x
, y
, false);
3015 gcc_assert (ret
!= NULL
);
3019 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3020 MODE is any multi-word or full-word mode that lacks a move_insn
3021 pattern. Note that you will get better code if you define such
3022 patterns, even if they must turn into multiple assembler instructions. */
3025 emit_move_multi_word (enum machine_mode mode
, rtx x
, rtx y
)
3032 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3034 /* If X is a push on the stack, do the push now and replace
3035 X with a reference to the stack pointer. */
3036 if (push_operand (x
, mode
))
3037 x
= emit_move_resolve_push (mode
, x
);
3039 /* If we are in reload, see if either operand is a MEM whose address
3040 is scheduled for replacement. */
3041 if (reload_in_progress
&& MEM_P (x
)
3042 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3043 x
= replace_equiv_address_nv (x
, inner
);
3044 if (reload_in_progress
&& MEM_P (y
)
3045 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3046 y
= replace_equiv_address_nv (y
, inner
);
3050 need_clobber
= false;
3052 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3055 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3056 rtx ypart
= operand_subword (y
, i
, 1, mode
);
3058 /* If we can't get a part of Y, put Y into memory if it is a
3059 constant. Otherwise, force it into a register. Then we must
3060 be able to get a part of Y. */
3061 if (ypart
== 0 && CONSTANT_P (y
))
3063 y
= force_const_mem (mode
, y
);
3064 ypart
= operand_subword (y
, i
, 1, mode
);
3066 else if (ypart
== 0)
3067 ypart
= operand_subword_force (y
, i
, mode
);
3069 gcc_assert (xpart
&& ypart
);
3071 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3073 last_insn
= emit_move_insn (xpart
, ypart
);
3079 /* Show the output dies here. This is necessary for SUBREGs
3080 of pseudos since we cannot track their lifetimes correctly;
3081 hard regs shouldn't appear here except as return values.
3082 We never want to emit such a clobber after reload. */
3084 && ! (reload_in_progress
|| reload_completed
)
3085 && need_clobber
!= 0)
3086 emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
3093 /* Low level part of emit_move_insn.
3094 Called just like emit_move_insn, but assumes X and Y
3095 are basically valid. */
3098 emit_move_insn_1 (rtx x
, rtx y
)
3100 enum machine_mode mode
= GET_MODE (x
);
3101 enum insn_code code
;
3103 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3105 code
= mov_optab
->handlers
[mode
].insn_code
;
3106 if (code
!= CODE_FOR_nothing
)
3107 return emit_insn (GEN_FCN (code
) (x
, y
));
3109 /* Expand complex moves by moving real part and imag part. */
3110 if (COMPLEX_MODE_P (mode
))
3111 return emit_move_complex (mode
, x
, y
);
3113 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3114 return emit_move_ccmode (mode
, x
, y
);
3116 /* Try using a move pattern for the corresponding integer mode. This is
3117 only safe when simplify_subreg can convert MODE constants into integer
3118 constants. At present, it can only do this reliably if the value
3119 fits within a HOST_WIDE_INT. */
3120 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3122 rtx ret
= emit_move_via_integer (mode
, x
, y
, false);
3127 return emit_move_multi_word (mode
, x
, y
);
3130 /* Generate code to copy Y into X.
3131 Both Y and X must have the same mode, except that
3132 Y can be a constant with VOIDmode.
3133 This mode cannot be BLKmode; use emit_block_move for that.
3135 Return the last instruction emitted. */
3138 emit_move_insn (rtx x
, rtx y
)
3140 enum machine_mode mode
= GET_MODE (x
);
3141 rtx y_cst
= NULL_RTX
;
3144 gcc_assert (mode
!= BLKmode
3145 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3150 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3151 && (last_insn
= compress_float_constant (x
, y
)))
3156 if (!LEGITIMATE_CONSTANT_P (y
))
3158 y
= force_const_mem (mode
, y
);
3160 /* If the target's cannot_force_const_mem prevented the spill,
3161 assume that the target's move expanders will also take care
3162 of the non-legitimate constant. */
3168 /* If X or Y are memory references, verify that their addresses are valid
3171 && ((! memory_address_p (GET_MODE (x
), XEXP (x
, 0))
3172 && ! push_operand (x
, GET_MODE (x
)))
3174 && CONSTANT_ADDRESS_P (XEXP (x
, 0)))))
3175 x
= validize_mem (x
);
3178 && (! memory_address_p (GET_MODE (y
), XEXP (y
, 0))
3180 && CONSTANT_ADDRESS_P (XEXP (y
, 0)))))
3181 y
= validize_mem (y
);
3183 gcc_assert (mode
!= BLKmode
);
3185 last_insn
= emit_move_insn_1 (x
, y
);
3187 if (y_cst
&& REG_P (x
)
3188 && (set
= single_set (last_insn
)) != NULL_RTX
3189 && SET_DEST (set
) == x
3190 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3191 set_unique_reg_note (last_insn
, REG_EQUAL
, y_cst
);
3196 /* If Y is representable exactly in a narrower mode, and the target can
3197 perform the extension directly from constant or memory, then emit the
3198 move as an extension. */
3201 compress_float_constant (rtx x
, rtx y
)
3203 enum machine_mode dstmode
= GET_MODE (x
);
3204 enum machine_mode orig_srcmode
= GET_MODE (y
);
3205 enum machine_mode srcmode
;
3207 int oldcost
, newcost
;
3209 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3211 if (LEGITIMATE_CONSTANT_P (y
))
3212 oldcost
= rtx_cost (y
, SET
);
3214 oldcost
= rtx_cost (force_const_mem (dstmode
, y
), SET
);
3216 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3217 srcmode
!= orig_srcmode
;
3218 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3221 rtx trunc_y
, last_insn
;
3223 /* Skip if the target can't extend this way. */
3224 ic
= can_extend_p (dstmode
, srcmode
, 0);
3225 if (ic
== CODE_FOR_nothing
)
3228 /* Skip if the narrowed value isn't exact. */
3229 if (! exact_real_truncate (srcmode
, &r
))
3232 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3234 if (LEGITIMATE_CONSTANT_P (trunc_y
))
3236 /* Skip if the target needs extra instructions to perform
3238 if (! (*insn_data
[ic
].operand
[1].predicate
) (trunc_y
, srcmode
))
3240 /* This is valid, but may not be cheaper than the original. */
3241 newcost
= rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
), SET
);
3242 if (oldcost
< newcost
)
3245 else if (float_extend_from_mem
[dstmode
][srcmode
])
3247 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3248 /* This is valid, but may not be cheaper than the original. */
3249 newcost
= rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
), SET
);
3250 if (oldcost
< newcost
)
3252 trunc_y
= validize_mem (trunc_y
);
3257 emit_unop_insn (ic
, x
, trunc_y
, UNKNOWN
);
3258 last_insn
= get_last_insn ();
3261 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3269 /* Pushing data onto the stack. */
3271 /* Push a block of length SIZE (perhaps variable)
3272 and return an rtx to address the beginning of the block.
3273 The value may be virtual_outgoing_args_rtx.
3275 EXTRA is the number of bytes of padding to push in addition to SIZE.
3276 BELOW nonzero means this padding comes at low addresses;
3277 otherwise, the padding comes at high addresses. */
3280 push_block (rtx size
, int extra
, int below
)
3284 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3285 if (CONSTANT_P (size
))
3286 anti_adjust_stack (plus_constant (size
, extra
));
3287 else if (REG_P (size
) && extra
== 0)
3288 anti_adjust_stack (size
);
3291 temp
= copy_to_mode_reg (Pmode
, size
);
3293 temp
= expand_binop (Pmode
, add_optab
, temp
, GEN_INT (extra
),
3294 temp
, 0, OPTAB_LIB_WIDEN
);
3295 anti_adjust_stack (temp
);
3298 #ifndef STACK_GROWS_DOWNWARD
3304 temp
= virtual_outgoing_args_rtx
;
3305 if (extra
!= 0 && below
)
3306 temp
= plus_constant (temp
, extra
);
3310 if (GET_CODE (size
) == CONST_INT
)
3311 temp
= plus_constant (virtual_outgoing_args_rtx
,
3312 -INTVAL (size
) - (below
? 0 : extra
));
3313 else if (extra
!= 0 && !below
)
3314 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3315 negate_rtx (Pmode
, plus_constant (size
, extra
)));
3317 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3318 negate_rtx (Pmode
, size
));
3321 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3324 #ifdef PUSH_ROUNDING
3326 /* Emit single push insn. */
3329 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
3332 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3334 enum insn_code icode
;
3335 insn_operand_predicate_fn pred
;
3337 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3338 /* If there is push pattern, use it. Otherwise try old way of throwing
3339 MEM representing push operation to move expander. */
3340 icode
= push_optab
->handlers
[(int) mode
].insn_code
;
3341 if (icode
!= CODE_FOR_nothing
)
3343 if (((pred
= insn_data
[(int) icode
].operand
[0].predicate
)
3344 && !((*pred
) (x
, mode
))))
3345 x
= force_reg (mode
, x
);
3346 emit_insn (GEN_FCN (icode
) (x
));
3349 if (GET_MODE_SIZE (mode
) == rounded_size
)
3350 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
3351 /* If we are to pad downward, adjust the stack pointer first and
3352 then store X into the stack location using an offset. This is
3353 because emit_move_insn does not know how to pad; it does not have
3355 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
3357 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
3358 HOST_WIDE_INT offset
;
3360 emit_move_insn (stack_pointer_rtx
,
3361 expand_binop (Pmode
,
3362 #ifdef STACK_GROWS_DOWNWARD
3368 GEN_INT (rounded_size
),
3369 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
3371 offset
= (HOST_WIDE_INT
) padding_size
;
3372 #ifdef STACK_GROWS_DOWNWARD
3373 if (STACK_PUSH_CODE
== POST_DEC
)
3374 /* We have already decremented the stack pointer, so get the
3376 offset
+= (HOST_WIDE_INT
) rounded_size
;
3378 if (STACK_PUSH_CODE
== POST_INC
)
3379 /* We have already incremented the stack pointer, so get the
3381 offset
-= (HOST_WIDE_INT
) rounded_size
;
3383 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
, GEN_INT (offset
));
3387 #ifdef STACK_GROWS_DOWNWARD
3388 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3389 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3390 GEN_INT (-(HOST_WIDE_INT
) rounded_size
));
3392 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3393 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3394 GEN_INT (rounded_size
));
3396 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
3399 dest
= gen_rtx_MEM (mode
, dest_addr
);
3403 set_mem_attributes (dest
, type
, 1);
3405 if (flag_optimize_sibling_calls
)
3406 /* Function incoming arguments may overlap with sibling call
3407 outgoing arguments and we cannot allow reordering of reads
3408 from function arguments with stores to outgoing arguments
3409 of sibling calls. */
3410 set_mem_alias_set (dest
, 0);
3412 emit_move_insn (dest
, x
);
3416 /* Generate code to push X onto the stack, assuming it has mode MODE and
3418 MODE is redundant except when X is a CONST_INT (since they don't
3420 SIZE is an rtx for the size of data to be copied (in bytes),
3421 needed only if X is BLKmode.
3423 ALIGN (in bits) is maximum alignment we can assume.
3425 If PARTIAL and REG are both nonzero, then copy that many of the first
3426 bytes of X into registers starting with REG, and push the rest of X.
3427 The amount of space pushed is decreased by PARTIAL bytes.
3428 REG must be a hard register in this case.
3429 If REG is zero but PARTIAL is not, take any all others actions for an
3430 argument partially in registers, but do not actually load any
3433 EXTRA is the amount in bytes of extra space to leave next to this arg.
3434 This is ignored if an argument block has already been allocated.
3436 On a machine that lacks real push insns, ARGS_ADDR is the address of
3437 the bottom of the argument block for this call. We use indexing off there
3438 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3439 argument block has not been preallocated.
3441 ARGS_SO_FAR is the size of args previously pushed for this call.
3443 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3444 for arguments passed in registers. If nonzero, it will be the number
3445 of bytes required. */
3448 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
3449 unsigned int align
, int partial
, rtx reg
, int extra
,
3450 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
3454 enum direction stack_direction
3455 #ifdef STACK_GROWS_DOWNWARD
3461 /* Decide where to pad the argument: `downward' for below,
3462 `upward' for above, or `none' for don't pad it.
3463 Default is below for small data on big-endian machines; else above. */
3464 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
3466 /* Invert direction if stack is post-decrement.
3468 if (STACK_PUSH_CODE
== POST_DEC
)
3469 if (where_pad
!= none
)
3470 where_pad
= (where_pad
== downward
? upward
: downward
);
3474 if (mode
== BLKmode
)
3476 /* Copy a block into the stack, entirely or partially. */
3483 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3484 used
= partial
- offset
;
3488 /* USED is now the # of bytes we need not copy to the stack
3489 because registers will take care of them. */
3492 xinner
= adjust_address (xinner
, BLKmode
, used
);
3494 /* If the partial register-part of the arg counts in its stack size,
3495 skip the part of stack space corresponding to the registers.
3496 Otherwise, start copying to the beginning of the stack space,
3497 by setting SKIP to 0. */
3498 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
3500 #ifdef PUSH_ROUNDING
3501 /* Do it with several push insns if that doesn't take lots of insns
3502 and if there is no difficulty with push insns that skip bytes
3503 on the stack for alignment purposes. */
3506 && GET_CODE (size
) == CONST_INT
3508 && MEM_ALIGN (xinner
) >= align
3509 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
3510 /* Here we avoid the case of a structure whose weak alignment
3511 forces many pushes of a small amount of data,
3512 and such small pushes do rounding that causes trouble. */
3513 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
3514 || align
>= BIGGEST_ALIGNMENT
3515 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
3516 == (align
/ BITS_PER_UNIT
)))
3517 && PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
3519 /* Push padding now if padding above and stack grows down,
3520 or if padding below and stack grows up.
3521 But if space already allocated, this has already been done. */
3522 if (extra
&& args_addr
== 0
3523 && where_pad
!= none
&& where_pad
!= stack_direction
)
3524 anti_adjust_stack (GEN_INT (extra
));
3526 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
3529 #endif /* PUSH_ROUNDING */
3533 /* Otherwise make space on the stack and copy the data
3534 to the address of that space. */
3536 /* Deduct words put into registers from the size we must copy. */
3539 if (GET_CODE (size
) == CONST_INT
)
3540 size
= GEN_INT (INTVAL (size
) - used
);
3542 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
3543 GEN_INT (used
), NULL_RTX
, 0,
3547 /* Get the address of the stack space.
3548 In this case, we do not deal with EXTRA separately.
3549 A single stack adjust will do. */
3552 temp
= push_block (size
, extra
, where_pad
== downward
);
3555 else if (GET_CODE (args_so_far
) == CONST_INT
)
3556 temp
= memory_address (BLKmode
,
3557 plus_constant (args_addr
,
3558 skip
+ INTVAL (args_so_far
)));
3560 temp
= memory_address (BLKmode
,
3561 plus_constant (gen_rtx_PLUS (Pmode
,
3566 if (!ACCUMULATE_OUTGOING_ARGS
)
3568 /* If the source is referenced relative to the stack pointer,
3569 copy it to another register to stabilize it. We do not need
3570 to do this if we know that we won't be changing sp. */
3572 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
3573 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
3574 temp
= copy_to_reg (temp
);
3577 target
= gen_rtx_MEM (BLKmode
, temp
);
3579 /* We do *not* set_mem_attributes here, because incoming arguments
3580 may overlap with sibling call outgoing arguments and we cannot
3581 allow reordering of reads from function arguments with stores
3582 to outgoing arguments of sibling calls. We do, however, want
3583 to record the alignment of the stack slot. */
3584 /* ALIGN may well be better aligned than TYPE, e.g. due to
3585 PARM_BOUNDARY. Assume the caller isn't lying. */
3586 set_mem_align (target
, align
);
3588 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
3591 else if (partial
> 0)
3593 /* Scalar partly in registers. */
3595 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
3598 /* # bytes of start of argument
3599 that we must make space for but need not store. */
3600 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3601 int args_offset
= INTVAL (args_so_far
);
3604 /* Push padding now if padding above and stack grows down,
3605 or if padding below and stack grows up.
3606 But if space already allocated, this has already been done. */
3607 if (extra
&& args_addr
== 0
3608 && where_pad
!= none
&& where_pad
!= stack_direction
)
3609 anti_adjust_stack (GEN_INT (extra
));
3611 /* If we make space by pushing it, we might as well push
3612 the real data. Otherwise, we can leave OFFSET nonzero
3613 and leave the space uninitialized. */
3617 /* Now NOT_STACK gets the number of words that we don't need to
3618 allocate on the stack. Convert OFFSET to words too. */
3619 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
3620 offset
/= UNITS_PER_WORD
;
3622 /* If the partial register-part of the arg counts in its stack size,
3623 skip the part of stack space corresponding to the registers.
3624 Otherwise, start copying to the beginning of the stack space,
3625 by setting SKIP to 0. */
3626 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
3628 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
3629 x
= validize_mem (force_const_mem (mode
, x
));
3631 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3632 SUBREGs of such registers are not allowed. */
3633 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3634 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
3635 x
= copy_to_reg (x
);
3637 /* Loop over all the words allocated on the stack for this arg. */
3638 /* We can do it by words, because any scalar bigger than a word
3639 has a size a multiple of a word. */
3640 #ifndef PUSH_ARGS_REVERSED
3641 for (i
= not_stack
; i
< size
; i
++)
3643 for (i
= size
- 1; i
>= not_stack
; i
--)
3645 if (i
>= not_stack
+ offset
)
3646 emit_push_insn (operand_subword_force (x
, i
, mode
),
3647 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
3649 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
3651 reg_parm_stack_space
, alignment_pad
);
3658 /* Push padding now if padding above and stack grows down,
3659 or if padding below and stack grows up.
3660 But if space already allocated, this has already been done. */
3661 if (extra
&& args_addr
== 0
3662 && where_pad
!= none
&& where_pad
!= stack_direction
)
3663 anti_adjust_stack (GEN_INT (extra
));
3665 #ifdef PUSH_ROUNDING
3666 if (args_addr
== 0 && PUSH_ARGS
)
3667 emit_single_push_insn (mode
, x
, type
);
3671 if (GET_CODE (args_so_far
) == CONST_INT
)
3673 = memory_address (mode
,
3674 plus_constant (args_addr
,
3675 INTVAL (args_so_far
)));
3677 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
3679 dest
= gen_rtx_MEM (mode
, addr
);
3681 /* We do *not* set_mem_attributes here, because incoming arguments
3682 may overlap with sibling call outgoing arguments and we cannot
3683 allow reordering of reads from function arguments with stores
3684 to outgoing arguments of sibling calls. We do, however, want
3685 to record the alignment of the stack slot. */
3686 /* ALIGN may well be better aligned than TYPE, e.g. due to
3687 PARM_BOUNDARY. Assume the caller isn't lying. */
3688 set_mem_align (dest
, align
);
3690 emit_move_insn (dest
, x
);
3694 /* If part should go in registers, copy that part
3695 into the appropriate registers. Do this now, at the end,
3696 since mem-to-mem copies above may do function calls. */
3697 if (partial
> 0 && reg
!= 0)
3699 /* Handle calls that pass values in multiple non-contiguous locations.
3700 The Irix 6 ABI has examples of this. */
3701 if (GET_CODE (reg
) == PARALLEL
)
3702 emit_group_load (reg
, x
, type
, -1);
3705 gcc_assert (partial
% UNITS_PER_WORD
== 0);
3706 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
3710 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
3711 anti_adjust_stack (GEN_INT (extra
));
3713 if (alignment_pad
&& args_addr
== 0)
3714 anti_adjust_stack (alignment_pad
);
3717 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3721 get_subtarget (rtx x
)
3725 /* Only registers can be subtargets. */
3727 /* Don't use hard regs to avoid extending their life. */
3728 || REGNO (x
) < FIRST_PSEUDO_REGISTER
3732 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3733 FIELD is a bitfield. Returns true if the optimization was successful,
3734 and there's nothing else to do. */
3737 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
3738 unsigned HOST_WIDE_INT bitpos
,
3739 enum machine_mode mode1
, rtx str_rtx
,
3742 enum machine_mode str_mode
= GET_MODE (str_rtx
);
3743 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
3748 if (mode1
!= VOIDmode
3749 || bitsize
>= BITS_PER_WORD
3750 || str_bitsize
> BITS_PER_WORD
3751 || TREE_SIDE_EFFECTS (to
)
3752 || TREE_THIS_VOLATILE (to
))
3756 if (!BINARY_CLASS_P (src
)
3757 || TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
3760 op0
= TREE_OPERAND (src
, 0);
3761 op1
= TREE_OPERAND (src
, 1);
3764 if (!operand_equal_p (to
, op0
, 0))
3767 if (MEM_P (str_rtx
))
3769 unsigned HOST_WIDE_INT offset1
;
3771 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
3772 str_mode
= word_mode
;
3773 str_mode
= get_best_mode (bitsize
, bitpos
,
3774 MEM_ALIGN (str_rtx
), str_mode
, 0);
3775 if (str_mode
== VOIDmode
)
3777 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
3780 bitpos
%= str_bitsize
;
3781 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
3782 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
3784 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
3787 /* If the bit field covers the whole REG/MEM, store_field
3788 will likely generate better code. */
3789 if (bitsize
>= str_bitsize
)
3792 /* We can't handle fields split across multiple entities. */
3793 if (bitpos
+ bitsize
> str_bitsize
)
3796 if (BYTES_BIG_ENDIAN
)
3797 bitpos
= str_bitsize
- bitpos
- bitsize
;
3799 switch (TREE_CODE (src
))
3803 /* For now, just optimize the case of the topmost bitfield
3804 where we don't need to do any masking and also
3805 1 bit bitfields where xor can be used.
3806 We might win by one instruction for the other bitfields
3807 too if insv/extv instructions aren't used, so that
3808 can be added later. */
3809 if (bitpos
+ bitsize
!= str_bitsize
3810 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
3813 value
= expand_expr (op1
, NULL_RTX
, str_mode
, 0);
3814 value
= convert_modes (str_mode
,
3815 TYPE_MODE (TREE_TYPE (op1
)), value
,
3816 TYPE_UNSIGNED (TREE_TYPE (op1
)));
3818 /* We may be accessing data outside the field, which means
3819 we can alias adjacent data. */
3820 if (MEM_P (str_rtx
))
3822 str_rtx
= shallow_copy_rtx (str_rtx
);
3823 set_mem_alias_set (str_rtx
, 0);
3824 set_mem_expr (str_rtx
, 0);
3827 binop
= TREE_CODE (src
) == PLUS_EXPR
? add_optab
: sub_optab
;
3828 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
3830 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
3833 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
,
3834 build_int_cst (NULL_TREE
, bitpos
),
3836 result
= expand_binop (str_mode
, binop
, str_rtx
,
3837 value
, str_rtx
, 1, OPTAB_WIDEN
);
3838 if (result
!= str_rtx
)
3839 emit_move_insn (str_rtx
, result
);
3844 if (TREE_CODE (op1
) != INTEGER_CST
)
3846 value
= expand_expr (op1
, NULL_RTX
, GET_MODE (str_rtx
), 0);
3847 value
= convert_modes (GET_MODE (str_rtx
),
3848 TYPE_MODE (TREE_TYPE (op1
)), value
,
3849 TYPE_UNSIGNED (TREE_TYPE (op1
)));
3851 /* We may be accessing data outside the field, which means
3852 we can alias adjacent data. */
3853 if (MEM_P (str_rtx
))
3855 str_rtx
= shallow_copy_rtx (str_rtx
);
3856 set_mem_alias_set (str_rtx
, 0);
3857 set_mem_expr (str_rtx
, 0);
3860 binop
= TREE_CODE (src
) == BIT_IOR_EXPR
? ior_optab
: xor_optab
;
3861 if (bitpos
+ bitsize
!= GET_MODE_BITSIZE (GET_MODE (str_rtx
)))
3863 rtx mask
= GEN_INT (((unsigned HOST_WIDE_INT
) 1 << bitsize
)
3865 value
= expand_and (GET_MODE (str_rtx
), value
, mask
,
3868 value
= expand_shift (LSHIFT_EXPR
, GET_MODE (str_rtx
), value
,
3869 build_int_cst (NULL_TREE
, bitpos
),
3871 result
= expand_binop (GET_MODE (str_rtx
), binop
, str_rtx
,
3872 value
, str_rtx
, 1, OPTAB_WIDEN
);
3873 if (result
!= str_rtx
)
3874 emit_move_insn (str_rtx
, result
);
3885 /* Expand an assignment that stores the value of FROM into TO. */
3888 expand_assignment (tree to
, tree from
)
3893 /* Don't crash if the lhs of the assignment was erroneous. */
3895 if (TREE_CODE (to
) == ERROR_MARK
)
3897 result
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
3901 /* Assignment of a structure component needs special treatment
3902 if the structure component's rtx is not simply a MEM.
3903 Assignment of an array element at a constant index, and assignment of
3904 an array element in an unaligned packed structure field, has the same
3906 if (handled_component_p (to
)
3907 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
3909 enum machine_mode mode1
;
3910 HOST_WIDE_INT bitsize
, bitpos
;
3917 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
3918 &unsignedp
, &volatilep
, true);
3920 /* If we are going to use store_bit_field and extract_bit_field,
3921 make sure to_rtx will be safe for multiple use. */
3923 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, 0);
3929 if (!MEM_P (to_rtx
))
3931 /* We can get constant negative offsets into arrays with broken
3932 user code. Translate this to a trap instead of ICEing. */
3933 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
3934 expand_builtin_trap ();
3935 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
3938 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
3939 #ifdef POINTERS_EXTEND_UNSIGNED
3940 if (GET_MODE (offset_rtx
) != Pmode
)
3941 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
3943 if (GET_MODE (offset_rtx
) != ptr_mode
)
3944 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
3947 /* A constant address in TO_RTX can have VOIDmode, we must not try
3948 to call force_reg for that case. Avoid that case. */
3950 && GET_MODE (to_rtx
) == BLKmode
3951 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
3953 && (bitpos
% bitsize
) == 0
3954 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
3955 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
3957 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
3961 to_rtx
= offset_address (to_rtx
, offset_rtx
,
3962 highest_pow2_factor_for_target (to
,
3966 /* Handle expand_expr of a complex value returning a CONCAT. */
3967 if (GET_CODE (to_rtx
) == CONCAT
)
3969 if (TREE_CODE (TREE_TYPE (from
)) == COMPLEX_TYPE
)
3971 gcc_assert (bitpos
== 0);
3972 result
= store_expr (from
, to_rtx
, false);
3976 gcc_assert (bitpos
== 0 || bitpos
== GET_MODE_BITSIZE (mode1
));
3977 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false);
3984 /* If the field is at offset zero, we could have been given the
3985 DECL_RTX of the parent struct. Don't munge it. */
3986 to_rtx
= shallow_copy_rtx (to_rtx
);
3988 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
3990 /* Deal with volatile and readonly fields. The former is only
3991 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
3993 MEM_VOLATILE_P (to_rtx
) = 1;
3994 if (component_uses_parent_alias_set (to
))
3995 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
3998 if (optimize_bitfield_assignment_op (bitsize
, bitpos
, mode1
,
4002 result
= store_field (to_rtx
, bitsize
, bitpos
, mode1
, from
,
4003 TREE_TYPE (tem
), get_alias_set (to
));
4007 preserve_temp_slots (result
);
4013 /* If the rhs is a function call and its value is not an aggregate,
4014 call the function before we start to compute the lhs.
4015 This is needed for correct code for cases such as
4016 val = setjmp (buf) on machines where reference to val
4017 requires loading up part of an address in a separate insn.
4019 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4020 since it might be a promoted variable where the zero- or sign- extension
4021 needs to be done. Handling this in the normal way is safe because no
4022 computation is done before the call. */
4023 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
4024 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
4025 && ! ((TREE_CODE (to
) == VAR_DECL
|| TREE_CODE (to
) == PARM_DECL
)
4026 && REG_P (DECL_RTL (to
))))
4031 value
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
4033 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4035 /* Handle calls that return values in multiple non-contiguous locations.
4036 The Irix 6 ABI has examples of this. */
4037 if (GET_CODE (to_rtx
) == PARALLEL
)
4038 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
4039 int_size_in_bytes (TREE_TYPE (from
)));
4040 else if (GET_MODE (to_rtx
) == BLKmode
)
4041 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
4044 if (POINTER_TYPE_P (TREE_TYPE (to
)))
4045 value
= convert_memory_address (GET_MODE (to_rtx
), value
);
4046 emit_move_insn (to_rtx
, value
);
4048 preserve_temp_slots (to_rtx
);
4054 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4055 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4058 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4060 /* Don't move directly into a return register. */
4061 if (TREE_CODE (to
) == RESULT_DECL
4062 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
4067 temp
= expand_expr (from
, 0, GET_MODE (to_rtx
), 0);
4069 if (GET_CODE (to_rtx
) == PARALLEL
)
4070 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
4071 int_size_in_bytes (TREE_TYPE (from
)));
4073 emit_move_insn (to_rtx
, temp
);
4075 preserve_temp_slots (to_rtx
);
4081 /* In case we are returning the contents of an object which overlaps
4082 the place the value is being stored, use a safe function when copying
4083 a value through a pointer into a structure value return block. */
4084 if (TREE_CODE (to
) == RESULT_DECL
&& TREE_CODE (from
) == INDIRECT_REF
4085 && current_function_returns_struct
4086 && !current_function_returns_pcc_struct
)
4091 size
= expr_size (from
);
4092 from_rtx
= expand_expr (from
, NULL_RTX
, VOIDmode
, 0);
4094 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
4095 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
4096 XEXP (from_rtx
, 0), Pmode
,
4097 convert_to_mode (TYPE_MODE (sizetype
),
4098 size
, TYPE_UNSIGNED (sizetype
)),
4099 TYPE_MODE (sizetype
));
4101 preserve_temp_slots (to_rtx
);
4107 /* Compute FROM and store the value in the rtx we got. */
4110 result
= store_expr (from
, to_rtx
, 0);
4111 preserve_temp_slots (result
);
4117 /* Generate code for computing expression EXP,
4118 and storing the value into TARGET.
4120 If the mode is BLKmode then we may return TARGET itself.
4121 It turns out that in BLKmode it doesn't cause a problem.
4122 because C has no operators that could combine two different
4123 assignments into the same BLKmode object with different values
4124 with no sequence point. Will other languages need this to
4127 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4128 stack, and block moves may need to be treated specially. */
4131 store_expr (tree exp
, rtx target
, int call_param_p
)
4134 rtx alt_rtl
= NULL_RTX
;
4135 int dont_return_target
= 0;
4137 if (VOID_TYPE_P (TREE_TYPE (exp
)))
4139 /* C++ can generate ?: expressions with a throw expression in one
4140 branch and an rvalue in the other. Here, we resolve attempts to
4141 store the throw expression's nonexistent result. */
4142 gcc_assert (!call_param_p
);
4143 expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
4146 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
4148 /* Perform first part of compound expression, then assign from second
4150 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
4151 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4152 return store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
);
4154 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
4156 /* For conditional expression, get safe form of the target. Then
4157 test the condition, doing the appropriate assignment on either
4158 side. This avoids the creation of unnecessary temporaries.
4159 For non-BLKmode, it is more efficient not to do this. */
4161 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
4163 do_pending_stack_adjust ();
4165 jumpifnot (TREE_OPERAND (exp
, 0), lab1
);
4166 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
);
4167 emit_jump_insn (gen_jump (lab2
));
4170 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
);
4176 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
4177 /* If this is a scalar in a register that is stored in a wider mode
4178 than the declared mode, compute the result into its declared mode
4179 and then convert to the wider mode. Our value is the computed
4182 rtx inner_target
= 0;
4184 /* We can do the conversion inside EXP, which will often result
4185 in some optimizations. Do the conversion in two steps: first
4186 change the signedness, if needed, then the extend. But don't
4187 do this if the type of EXP is a subtype of something else
4188 since then the conversion might involve more than just
4189 converting modes. */
4190 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
4191 && TREE_TYPE (TREE_TYPE (exp
)) == 0
4192 && (!lang_hooks
.reduce_bit_field_operations
4193 || (GET_MODE_PRECISION (GET_MODE (target
))
4194 == TYPE_PRECISION (TREE_TYPE (exp
)))))
4196 if (TYPE_UNSIGNED (TREE_TYPE (exp
))
4197 != SUBREG_PROMOTED_UNSIGNED_P (target
))
4199 (lang_hooks
.types
.signed_or_unsigned_type
4200 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)), exp
);
4202 exp
= convert (lang_hooks
.types
.type_for_mode
4203 (GET_MODE (SUBREG_REG (target
)),
4204 SUBREG_PROMOTED_UNSIGNED_P (target
)),
4207 inner_target
= SUBREG_REG (target
);
4210 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
4211 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4213 /* If TEMP is a VOIDmode constant, use convert_modes to make
4214 sure that we properly convert it. */
4215 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
4217 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4218 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
4219 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
4220 GET_MODE (target
), temp
,
4221 SUBREG_PROMOTED_UNSIGNED_P (target
));
4224 convert_move (SUBREG_REG (target
), temp
,
4225 SUBREG_PROMOTED_UNSIGNED_P (target
));
4231 temp
= expand_expr_real (exp
, target
, GET_MODE (target
),
4233 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
4235 /* Return TARGET if it's a specified hardware register.
4236 If TARGET is a volatile mem ref, either return TARGET
4237 or return a reg copied *from* TARGET; ANSI requires this.
4239 Otherwise, if TEMP is not TARGET, return TEMP
4240 if it is constant (for efficiency),
4241 or if we really want the correct value. */
4242 if (!(target
&& REG_P (target
)
4243 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)
4244 && !(MEM_P (target
) && MEM_VOLATILE_P (target
))
4245 && ! rtx_equal_p (temp
, target
)
4246 && CONSTANT_P (temp
))
4247 dont_return_target
= 1;
4250 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4251 the same as that of TARGET, adjust the constant. This is needed, for
4252 example, in case it is a CONST_DOUBLE and we want only a word-sized
4254 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
4255 && TREE_CODE (exp
) != ERROR_MARK
4256 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
4257 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4258 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
4260 /* If value was not generated in the target, store it there.
4261 Convert the value to TARGET's type first if necessary and emit the
4262 pending incrementations that have been queued when expanding EXP.
4263 Note that we cannot emit the whole queue blindly because this will
4264 effectively disable the POST_INC optimization later.
4266 If TEMP and TARGET compare equal according to rtx_equal_p, but
4267 one or both of them are volatile memory refs, we have to distinguish
4269 - expand_expr has used TARGET. In this case, we must not generate
4270 another copy. This can be detected by TARGET being equal according
4272 - expand_expr has not used TARGET - that means that the source just
4273 happens to have the same RTX form. Since temp will have been created
4274 by expand_expr, it will compare unequal according to == .
4275 We must generate a copy in this case, to reach the correct number
4276 of volatile memory references. */
4278 if ((! rtx_equal_p (temp
, target
)
4279 || (temp
!= target
&& (side_effects_p (temp
)
4280 || side_effects_p (target
))))
4281 && TREE_CODE (exp
) != ERROR_MARK
4282 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4283 but TARGET is not valid memory reference, TEMP will differ
4284 from TARGET although it is really the same location. */
4285 && !(alt_rtl
&& rtx_equal_p (alt_rtl
, target
))
4286 /* If there's nothing to copy, don't bother. Don't call
4287 expr_size unless necessary, because some front-ends (C++)
4288 expr_size-hook must not be given objects that are not
4289 supposed to be bit-copied or bit-initialized. */
4290 && expr_size (exp
) != const0_rtx
)
4292 if (GET_MODE (temp
) != GET_MODE (target
)
4293 && GET_MODE (temp
) != VOIDmode
)
4295 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
4296 if (dont_return_target
)
4298 /* In this case, we will return TEMP,
4299 so make sure it has the proper mode.
4300 But don't forget to store the value into TARGET. */
4301 temp
= convert_to_mode (GET_MODE (target
), temp
, unsignedp
);
4302 emit_move_insn (target
, temp
);
4305 convert_move (target
, temp
, unsignedp
);
4308 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
4310 /* Handle copying a string constant into an array. The string
4311 constant may be shorter than the array. So copy just the string's
4312 actual length, and clear the rest. First get the size of the data
4313 type of the string, which is actually the size of the target. */
4314 rtx size
= expr_size (exp
);
4316 if (GET_CODE (size
) == CONST_INT
4317 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
4318 emit_block_move (target
, temp
, size
,
4320 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4323 /* Compute the size of the data to copy from the string. */
4325 = size_binop (MIN_EXPR
,
4326 make_tree (sizetype
, size
),
4327 size_int (TREE_STRING_LENGTH (exp
)));
4329 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
4331 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
4334 /* Copy that much. */
4335 copy_size_rtx
= convert_to_mode (ptr_mode
, copy_size_rtx
,
4336 TYPE_UNSIGNED (sizetype
));
4337 emit_block_move (target
, temp
, copy_size_rtx
,
4339 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4341 /* Figure out how much is left in TARGET that we have to clear.
4342 Do all calculations in ptr_mode. */
4343 if (GET_CODE (copy_size_rtx
) == CONST_INT
)
4345 size
= plus_constant (size
, -INTVAL (copy_size_rtx
));
4346 target
= adjust_address (target
, BLKmode
,
4347 INTVAL (copy_size_rtx
));
4351 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
4352 copy_size_rtx
, NULL_RTX
, 0,
4355 #ifdef POINTERS_EXTEND_UNSIGNED
4356 if (GET_MODE (copy_size_rtx
) != Pmode
)
4357 copy_size_rtx
= convert_to_mode (Pmode
, copy_size_rtx
,
4358 TYPE_UNSIGNED (sizetype
));
4361 target
= offset_address (target
, copy_size_rtx
,
4362 highest_pow2_factor (copy_size
));
4363 label
= gen_label_rtx ();
4364 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
4365 GET_MODE (size
), 0, label
);
4368 if (size
!= const0_rtx
)
4369 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
4375 /* Handle calls that return values in multiple non-contiguous locations.
4376 The Irix 6 ABI has examples of this. */
4377 else if (GET_CODE (target
) == PARALLEL
)
4378 emit_group_load (target
, temp
, TREE_TYPE (exp
),
4379 int_size_in_bytes (TREE_TYPE (exp
)));
4380 else if (GET_MODE (temp
) == BLKmode
)
4381 emit_block_move (target
, temp
, expr_size (exp
),
4383 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4386 temp
= force_operand (temp
, target
);
4388 emit_move_insn (target
, temp
);
4395 /* Examine CTOR to discover:
4396 * how many scalar fields are set to nonzero values,
4397 and place it in *P_NZ_ELTS;
4398 * how many scalar fields are set to non-constant values,
4399 and place it in *P_NC_ELTS; and
4400 * how many scalar fields in total are in CTOR,
4401 and place it in *P_ELT_COUNT.
4402 * if a type is a union, and the initializer from the constructor
4403 is not the largest element in the union, then set *p_must_clear. */
4406 categorize_ctor_elements_1 (tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4407 HOST_WIDE_INT
*p_nc_elts
,
4408 HOST_WIDE_INT
*p_elt_count
,
4411 unsigned HOST_WIDE_INT idx
;
4412 HOST_WIDE_INT nz_elts
, nc_elts
, elt_count
;
4413 tree value
, purpose
;
4419 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
4424 if (TREE_CODE (purpose
) == RANGE_EXPR
)
4426 tree lo_index
= TREE_OPERAND (purpose
, 0);
4427 tree hi_index
= TREE_OPERAND (purpose
, 1);
4429 if (host_integerp (lo_index
, 1) && host_integerp (hi_index
, 1))
4430 mult
= (tree_low_cst (hi_index
, 1)
4431 - tree_low_cst (lo_index
, 1) + 1);
4434 switch (TREE_CODE (value
))
4438 HOST_WIDE_INT nz
= 0, nc
= 0, ic
= 0;
4439 categorize_ctor_elements_1 (value
, &nz
, &nc
, &ic
, p_must_clear
);
4440 nz_elts
+= mult
* nz
;
4441 nc_elts
+= mult
* nc
;
4442 elt_count
+= mult
* ic
;
4448 if (!initializer_zerop (value
))
4454 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
4455 elt_count
+= mult
* TREE_STRING_LENGTH (value
);
4459 if (!initializer_zerop (TREE_REALPART (value
)))
4461 if (!initializer_zerop (TREE_IMAGPART (value
)))
4469 for (v
= TREE_VECTOR_CST_ELTS (value
); v
; v
= TREE_CHAIN (v
))
4471 if (!initializer_zerop (TREE_VALUE (v
)))
4481 if (!initializer_constant_valid_p (value
, TREE_TYPE (value
)))
4488 && (TREE_CODE (TREE_TYPE (ctor
)) == UNION_TYPE
4489 || TREE_CODE (TREE_TYPE (ctor
)) == QUAL_UNION_TYPE
))
4492 bool clear_this
= true;
4494 if (!VEC_empty (constructor_elt
, CONSTRUCTOR_ELTS (ctor
)))
4496 /* We don't expect more than one element of the union to be
4497 initialized. Not sure what we should do otherwise... */
4498 gcc_assert (VEC_length (constructor_elt
, CONSTRUCTOR_ELTS (ctor
))
4501 init_sub_type
= TREE_TYPE (VEC_index (constructor_elt
,
4502 CONSTRUCTOR_ELTS (ctor
),
4505 /* ??? We could look at each element of the union, and find the
4506 largest element. Which would avoid comparing the size of the
4507 initialized element against any tail padding in the union.
4508 Doesn't seem worth the effort... */
4509 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor
)),
4510 TYPE_SIZE (init_sub_type
)) == 1)
4512 /* And now we have to find out if the element itself is fully
4513 constructed. E.g. for union { struct { int a, b; } s; } u
4514 = { .s = { .a = 1 } }. */
4515 if (elt_count
== count_type_elements (init_sub_type
, false))
4520 *p_must_clear
= clear_this
;
4523 *p_nz_elts
+= nz_elts
;
4524 *p_nc_elts
+= nc_elts
;
4525 *p_elt_count
+= elt_count
;
4529 categorize_ctor_elements (tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4530 HOST_WIDE_INT
*p_nc_elts
,
4531 HOST_WIDE_INT
*p_elt_count
,
4537 *p_must_clear
= false;
4538 categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_nc_elts
, p_elt_count
,
4542 /* Count the number of scalars in TYPE. Return -1 on overflow or
4543 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4544 array member at the end of the structure. */
4547 count_type_elements (tree type
, bool allow_flexarr
)
4549 const HOST_WIDE_INT max
= ~((HOST_WIDE_INT
)1 << (HOST_BITS_PER_WIDE_INT
-1));
4550 switch (TREE_CODE (type
))
4554 tree telts
= array_type_nelts (type
);
4555 if (telts
&& host_integerp (telts
, 1))
4557 HOST_WIDE_INT n
= tree_low_cst (telts
, 1) + 1;
4558 HOST_WIDE_INT m
= count_type_elements (TREE_TYPE (type
), false);
4561 else if (max
/ n
> m
)
4569 HOST_WIDE_INT n
= 0, t
;
4572 for (f
= TYPE_FIELDS (type
); f
; f
= TREE_CHAIN (f
))
4573 if (TREE_CODE (f
) == FIELD_DECL
)
4575 t
= count_type_elements (TREE_TYPE (f
), false);
4578 /* Check for structures with flexible array member. */
4579 tree tf
= TREE_TYPE (f
);
4581 && TREE_CHAIN (f
) == NULL
4582 && TREE_CODE (tf
) == ARRAY_TYPE
4584 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
4585 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
4586 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
4587 && int_size_in_bytes (type
) >= 0)
4599 case QUAL_UNION_TYPE
:
4601 /* Ho hum. How in the world do we guess here? Clearly it isn't
4602 right to count the fields. Guess based on the number of words. */
4603 HOST_WIDE_INT n
= int_size_in_bytes (type
);
4606 return n
/ UNITS_PER_WORD
;
4613 return TYPE_VECTOR_SUBPARTS (type
);
4622 case REFERENCE_TYPE
:
4634 /* Return 1 if EXP contains mostly (3/4) zeros. */
4637 mostly_zeros_p (tree exp
)
4639 if (TREE_CODE (exp
) == CONSTRUCTOR
)
4642 HOST_WIDE_INT nz_elts
, nc_elts
, count
, elts
;
4645 categorize_ctor_elements (exp
, &nz_elts
, &nc_elts
, &count
, &must_clear
);
4649 elts
= count_type_elements (TREE_TYPE (exp
), false);
4651 return nz_elts
< elts
/ 4;
4654 return initializer_zerop (exp
);
4657 /* Return 1 if EXP contains all zeros. */
4660 all_zeros_p (tree exp
)
4662 if (TREE_CODE (exp
) == CONSTRUCTOR
)
4665 HOST_WIDE_INT nz_elts
, nc_elts
, count
;
4668 categorize_ctor_elements (exp
, &nz_elts
, &nc_elts
, &count
, &must_clear
);
4669 return nz_elts
== 0;
4672 return initializer_zerop (exp
);
4675 /* Helper function for store_constructor.
4676 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4677 TYPE is the type of the CONSTRUCTOR, not the element type.
4678 CLEARED is as for store_constructor.
4679 ALIAS_SET is the alias set to use for any stores.
4681 This provides a recursive shortcut back to store_constructor when it isn't
4682 necessary to go through store_field. This is so that we can pass through
4683 the cleared field to let store_constructor know that we may not have to
4684 clear a substructure if the outer structure has already been cleared. */
4687 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
4688 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
4689 tree exp
, tree type
, int cleared
, int alias_set
)
4691 if (TREE_CODE (exp
) == CONSTRUCTOR
4692 /* We can only call store_constructor recursively if the size and
4693 bit position are on a byte boundary. */
4694 && bitpos
% BITS_PER_UNIT
== 0
4695 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
4696 /* If we have a nonzero bitpos for a register target, then we just
4697 let store_field do the bitfield handling. This is unlikely to
4698 generate unnecessary clear instructions anyways. */
4699 && (bitpos
== 0 || MEM_P (target
)))
4703 = adjust_address (target
,
4704 GET_MODE (target
) == BLKmode
4706 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
4707 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
4710 /* Update the alias set, if required. */
4711 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
4712 && MEM_ALIAS_SET (target
) != 0)
4714 target
= copy_rtx (target
);
4715 set_mem_alias_set (target
, alias_set
);
4718 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
4721 store_field (target
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
);
4724 /* Store the value of constructor EXP into the rtx TARGET.
4725 TARGET is either a REG or a MEM; we know it cannot conflict, since
4726 safe_from_p has been called.
4727 CLEARED is true if TARGET is known to have been zero'd.
4728 SIZE is the number of bytes of TARGET we are allowed to modify: this
4729 may not be the same as the size of EXP if we are assigning to a field
4730 which has been packed to exclude padding bits. */
4733 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
4735 tree type
= TREE_TYPE (exp
);
4736 #ifdef WORD_REGISTER_OPERATIONS
4737 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
4740 switch (TREE_CODE (type
))
4744 case QUAL_UNION_TYPE
:
4746 unsigned HOST_WIDE_INT idx
;
4749 /* If size is zero or the target is already cleared, do nothing. */
4750 if (size
== 0 || cleared
)
4752 /* We either clear the aggregate or indicate the value is dead. */
4753 else if ((TREE_CODE (type
) == UNION_TYPE
4754 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
4755 && ! CONSTRUCTOR_ELTS (exp
))
4756 /* If the constructor is empty, clear the union. */
4758 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
4762 /* If we are building a static constructor into a register,
4763 set the initial value as zero so we can fold the value into
4764 a constant. But if more than one register is involved,
4765 this probably loses. */
4766 else if (REG_P (target
) && TREE_STATIC (exp
)
4767 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
4769 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
4773 /* If the constructor has fewer fields than the structure or
4774 if we are initializing the structure to mostly zeros, clear
4775 the whole structure first. Don't do this if TARGET is a
4776 register whose mode size isn't equal to SIZE since
4777 clear_storage can't handle this case. */
4779 && (((int)VEC_length (constructor_elt
, CONSTRUCTOR_ELTS (exp
))
4780 != fields_length (type
))
4781 || mostly_zeros_p (exp
))
4783 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
4786 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
4791 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
4793 /* Store each element of the constructor into the
4794 corresponding field of TARGET. */
4795 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
4797 enum machine_mode mode
;
4798 HOST_WIDE_INT bitsize
;
4799 HOST_WIDE_INT bitpos
= 0;
4801 rtx to_rtx
= target
;
4803 /* Just ignore missing fields. We cleared the whole
4804 structure, above, if any fields are missing. */
4808 if (cleared
&& initializer_zerop (value
))
4811 if (host_integerp (DECL_SIZE (field
), 1))
4812 bitsize
= tree_low_cst (DECL_SIZE (field
), 1);
4816 mode
= DECL_MODE (field
);
4817 if (DECL_BIT_FIELD (field
))
4820 offset
= DECL_FIELD_OFFSET (field
);
4821 if (host_integerp (offset
, 0)
4822 && host_integerp (bit_position (field
), 0))
4824 bitpos
= int_bit_position (field
);
4828 bitpos
= tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 0);
4835 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
4836 make_tree (TREE_TYPE (exp
),
4839 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, 0);
4840 gcc_assert (MEM_P (to_rtx
));
4842 #ifdef POINTERS_EXTEND_UNSIGNED
4843 if (GET_MODE (offset_rtx
) != Pmode
)
4844 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
4846 if (GET_MODE (offset_rtx
) != ptr_mode
)
4847 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
4850 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4851 highest_pow2_factor (offset
));
4854 #ifdef WORD_REGISTER_OPERATIONS
4855 /* If this initializes a field that is smaller than a
4856 word, at the start of a word, try to widen it to a full
4857 word. This special case allows us to output C++ member
4858 function initializations in a form that the optimizers
4861 && bitsize
< BITS_PER_WORD
4862 && bitpos
% BITS_PER_WORD
== 0
4863 && GET_MODE_CLASS (mode
) == MODE_INT
4864 && TREE_CODE (value
) == INTEGER_CST
4866 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
4868 tree type
= TREE_TYPE (value
);
4870 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
4872 type
= lang_hooks
.types
.type_for_size
4873 (BITS_PER_WORD
, TYPE_UNSIGNED (type
));
4874 value
= convert (type
, value
);
4877 if (BYTES_BIG_ENDIAN
)
4879 = fold_build2 (LSHIFT_EXPR
, type
, value
,
4880 build_int_cst (NULL_TREE
,
4881 BITS_PER_WORD
- bitsize
));
4882 bitsize
= BITS_PER_WORD
;
4887 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
4888 && DECL_NONADDRESSABLE_P (field
))
4890 to_rtx
= copy_rtx (to_rtx
);
4891 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
4894 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
4895 value
, type
, cleared
,
4896 get_alias_set (TREE_TYPE (field
)));
4903 unsigned HOST_WIDE_INT i
;
4906 tree elttype
= TREE_TYPE (type
);
4908 HOST_WIDE_INT minelt
= 0;
4909 HOST_WIDE_INT maxelt
= 0;
4911 domain
= TYPE_DOMAIN (type
);
4912 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
4913 && TYPE_MAX_VALUE (domain
)
4914 && host_integerp (TYPE_MIN_VALUE (domain
), 0)
4915 && host_integerp (TYPE_MAX_VALUE (domain
), 0));
4917 /* If we have constant bounds for the range of the type, get them. */
4920 minelt
= tree_low_cst (TYPE_MIN_VALUE (domain
), 0);
4921 maxelt
= tree_low_cst (TYPE_MAX_VALUE (domain
), 0);
4924 /* If the constructor has fewer elements than the array, clear
4925 the whole array first. Similarly if this is static
4926 constructor of a non-BLKmode object. */
4929 else if (REG_P (target
) && TREE_STATIC (exp
))
4933 unsigned HOST_WIDE_INT idx
;
4935 HOST_WIDE_INT count
= 0, zero_count
= 0;
4936 need_to_clear
= ! const_bounds_p
;
4938 /* This loop is a more accurate version of the loop in
4939 mostly_zeros_p (it handles RANGE_EXPR in an index). It
4940 is also needed to check for missing elements. */
4941 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
4943 HOST_WIDE_INT this_node_count
;
4948 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
4950 tree lo_index
= TREE_OPERAND (index
, 0);
4951 tree hi_index
= TREE_OPERAND (index
, 1);
4953 if (! host_integerp (lo_index
, 1)
4954 || ! host_integerp (hi_index
, 1))
4960 this_node_count
= (tree_low_cst (hi_index
, 1)
4961 - tree_low_cst (lo_index
, 1) + 1);
4964 this_node_count
= 1;
4966 count
+= this_node_count
;
4967 if (mostly_zeros_p (value
))
4968 zero_count
+= this_node_count
;
4971 /* Clear the entire array first if there are any missing
4972 elements, or if the incidence of zero elements is >=
4975 && (count
< maxelt
- minelt
+ 1
4976 || 4 * zero_count
>= 3 * count
))
4980 if (need_to_clear
&& size
> 0)
4983 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
4985 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
4989 if (!cleared
&& REG_P (target
))
4990 /* Inform later passes that the old value is dead. */
4991 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
4993 /* Store each element of the constructor into the
4994 corresponding element of TARGET, determined by counting the
4996 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
4998 enum machine_mode mode
;
4999 HOST_WIDE_INT bitsize
;
5000 HOST_WIDE_INT bitpos
;
5002 rtx xtarget
= target
;
5004 if (cleared
&& initializer_zerop (value
))
5007 unsignedp
= TYPE_UNSIGNED (elttype
);
5008 mode
= TYPE_MODE (elttype
);
5009 if (mode
== BLKmode
)
5010 bitsize
= (host_integerp (TYPE_SIZE (elttype
), 1)
5011 ? tree_low_cst (TYPE_SIZE (elttype
), 1)
5014 bitsize
= GET_MODE_BITSIZE (mode
);
5016 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
5018 tree lo_index
= TREE_OPERAND (index
, 0);
5019 tree hi_index
= TREE_OPERAND (index
, 1);
5020 rtx index_r
, pos_rtx
;
5021 HOST_WIDE_INT lo
, hi
, count
;
5024 /* If the range is constant and "small", unroll the loop. */
5026 && host_integerp (lo_index
, 0)
5027 && host_integerp (hi_index
, 0)
5028 && (lo
= tree_low_cst (lo_index
, 0),
5029 hi
= tree_low_cst (hi_index
, 0),
5030 count
= hi
- lo
+ 1,
5033 || (host_integerp (TYPE_SIZE (elttype
), 1)
5034 && (tree_low_cst (TYPE_SIZE (elttype
), 1) * count
5037 lo
-= minelt
; hi
-= minelt
;
5038 for (; lo
<= hi
; lo
++)
5040 bitpos
= lo
* tree_low_cst (TYPE_SIZE (elttype
), 0);
5043 && !MEM_KEEP_ALIAS_SET_P (target
)
5044 && TREE_CODE (type
) == ARRAY_TYPE
5045 && TYPE_NONALIASED_COMPONENT (type
))
5047 target
= copy_rtx (target
);
5048 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5051 store_constructor_field
5052 (target
, bitsize
, bitpos
, mode
, value
, type
, cleared
,
5053 get_alias_set (elttype
));
5058 rtx loop_start
= gen_label_rtx ();
5059 rtx loop_end
= gen_label_rtx ();
5062 expand_expr (hi_index
, NULL_RTX
, VOIDmode
, 0);
5063 unsignedp
= TYPE_UNSIGNED (domain
);
5065 index
= build_decl (VAR_DECL
, NULL_TREE
, domain
);
5068 = gen_reg_rtx (promote_mode (domain
, DECL_MODE (index
),
5070 SET_DECL_RTL (index
, index_r
);
5071 store_expr (lo_index
, index_r
, 0);
5073 /* Build the head of the loop. */
5074 do_pending_stack_adjust ();
5075 emit_label (loop_start
);
5077 /* Assign value to element index. */
5079 = convert (ssizetype
,
5080 fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
5081 index
, TYPE_MIN_VALUE (domain
)));
5082 position
= size_binop (MULT_EXPR
, position
,
5084 TYPE_SIZE_UNIT (elttype
)));
5086 pos_rtx
= expand_expr (position
, 0, VOIDmode
, 0);
5087 xtarget
= offset_address (target
, pos_rtx
,
5088 highest_pow2_factor (position
));
5089 xtarget
= adjust_address (xtarget
, mode
, 0);
5090 if (TREE_CODE (value
) == CONSTRUCTOR
)
5091 store_constructor (value
, xtarget
, cleared
,
5092 bitsize
/ BITS_PER_UNIT
);
5094 store_expr (value
, xtarget
, 0);
5096 /* Generate a conditional jump to exit the loop. */
5097 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
5099 jumpif (exit_cond
, loop_end
);
5101 /* Update the loop counter, and jump to the head of
5103 expand_assignment (index
,
5104 build2 (PLUS_EXPR
, TREE_TYPE (index
),
5105 index
, integer_one_node
));
5107 emit_jump (loop_start
);
5109 /* Build the end of the loop. */
5110 emit_label (loop_end
);
5113 else if ((index
!= 0 && ! host_integerp (index
, 0))
5114 || ! host_integerp (TYPE_SIZE (elttype
), 1))
5119 index
= ssize_int (1);
5122 index
= fold_convert (ssizetype
,
5123 fold_build2 (MINUS_EXPR
,
5126 TYPE_MIN_VALUE (domain
)));
5128 position
= size_binop (MULT_EXPR
, index
,
5130 TYPE_SIZE_UNIT (elttype
)));
5131 xtarget
= offset_address (target
,
5132 expand_expr (position
, 0, VOIDmode
, 0),
5133 highest_pow2_factor (position
));
5134 xtarget
= adjust_address (xtarget
, mode
, 0);
5135 store_expr (value
, xtarget
, 0);
5140 bitpos
= ((tree_low_cst (index
, 0) - minelt
)
5141 * tree_low_cst (TYPE_SIZE (elttype
), 1));
5143 bitpos
= (i
* tree_low_cst (TYPE_SIZE (elttype
), 1));
5145 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
5146 && TREE_CODE (type
) == ARRAY_TYPE
5147 && TYPE_NONALIASED_COMPONENT (type
))
5149 target
= copy_rtx (target
);
5150 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5152 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
5153 type
, cleared
, get_alias_set (elttype
));
5161 unsigned HOST_WIDE_INT idx
;
5162 constructor_elt
*ce
;
5166 tree elttype
= TREE_TYPE (type
);
5167 int elt_size
= tree_low_cst (TYPE_SIZE (elttype
), 1);
5168 enum machine_mode eltmode
= TYPE_MODE (elttype
);
5169 HOST_WIDE_INT bitsize
;
5170 HOST_WIDE_INT bitpos
;
5171 rtvec vector
= NULL
;
5174 gcc_assert (eltmode
!= BLKmode
);
5176 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
5177 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
5179 enum machine_mode mode
= GET_MODE (target
);
5181 icode
= (int) vec_init_optab
->handlers
[mode
].insn_code
;
5182 if (icode
!= CODE_FOR_nothing
)
5186 vector
= rtvec_alloc (n_elts
);
5187 for (i
= 0; i
< n_elts
; i
++)
5188 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
5192 /* If the constructor has fewer elements than the vector,
5193 clear the whole array first. Similarly if this is static
5194 constructor of a non-BLKmode object. */
5197 else if (REG_P (target
) && TREE_STATIC (exp
))
5201 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
5204 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
5206 int n_elts_here
= tree_low_cst
5207 (int_const_binop (TRUNC_DIV_EXPR
,
5208 TYPE_SIZE (TREE_TYPE (value
)),
5209 TYPE_SIZE (elttype
), 0), 1);
5211 count
+= n_elts_here
;
5212 if (mostly_zeros_p (value
))
5213 zero_count
+= n_elts_here
;
5216 /* Clear the entire vector first if there are any missing elements,
5217 or if the incidence of zero elements is >= 75%. */
5218 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
5221 if (need_to_clear
&& size
> 0 && !vector
)
5224 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5226 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5230 /* Inform later passes that the old value is dead. */
5231 if (!cleared
&& REG_P (target
))
5232 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5234 /* Store each element of the constructor into the corresponding
5235 element of TARGET, determined by counting the elements. */
5236 for (idx
= 0, i
= 0;
5237 VEC_iterate (constructor_elt
, CONSTRUCTOR_ELTS (exp
), idx
, ce
);
5238 idx
++, i
+= bitsize
/ elt_size
)
5240 HOST_WIDE_INT eltpos
;
5241 tree value
= ce
->value
;
5243 bitsize
= tree_low_cst (TYPE_SIZE (TREE_TYPE (value
)), 1);
5244 if (cleared
&& initializer_zerop (value
))
5248 eltpos
= tree_low_cst (ce
->index
, 1);
5254 /* Vector CONSTRUCTORs should only be built from smaller
5255 vectors in the case of BLKmode vectors. */
5256 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
5257 RTVEC_ELT (vector
, eltpos
)
5258 = expand_expr (value
, NULL_RTX
, VOIDmode
, 0);
5262 enum machine_mode value_mode
=
5263 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
5264 ? TYPE_MODE (TREE_TYPE (value
))
5266 bitpos
= eltpos
* elt_size
;
5267 store_constructor_field (target
, bitsize
, bitpos
,
5268 value_mode
, value
, type
,
5269 cleared
, get_alias_set (elttype
));
5274 emit_insn (GEN_FCN (icode
)
5276 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
5285 /* Store the value of EXP (an expression tree)
5286 into a subfield of TARGET which has mode MODE and occupies
5287 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5288 If MODE is VOIDmode, it means that we are storing into a bit-field.
5290 Always return const0_rtx unless we have something particular to
5293 TYPE is the type of the underlying object,
5295 ALIAS_SET is the alias set for the destination. This value will
5296 (in general) be different from that for TARGET, since TARGET is a
5297 reference to the containing structure. */
5300 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
5301 enum machine_mode mode
, tree exp
, tree type
, int alias_set
)
5303 HOST_WIDE_INT width_mask
= 0;
5305 if (TREE_CODE (exp
) == ERROR_MARK
)
5308 /* If we have nothing to store, do nothing unless the expression has
5311 return expand_expr (exp
, const0_rtx
, VOIDmode
, 0);
5312 else if (bitsize
>= 0 && bitsize
< HOST_BITS_PER_WIDE_INT
)
5313 width_mask
= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
5315 /* If we are storing into an unaligned field of an aligned union that is
5316 in a register, we may have the mode of TARGET being an integer mode but
5317 MODE == BLKmode. In that case, get an aligned object whose size and
5318 alignment are the same as TARGET and store TARGET into it (we can avoid
5319 the store if the field being stored is the entire width of TARGET). Then
5320 call ourselves recursively to store the field into a BLKmode version of
5321 that object. Finally, load from the object into TARGET. This is not
5322 very efficient in general, but should only be slightly more expensive
5323 than the otherwise-required unaligned accesses. Perhaps this can be
5324 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5325 twice, once with emit_move_insn and once via store_field. */
5328 && (REG_P (target
) || GET_CODE (target
) == SUBREG
))
5330 rtx object
= assign_temp (type
, 0, 1, 1);
5331 rtx blk_object
= adjust_address (object
, BLKmode
, 0);
5333 if (bitsize
!= (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (target
)))
5334 emit_move_insn (object
, target
);
5336 store_field (blk_object
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
);
5338 emit_move_insn (target
, object
);
5340 /* We want to return the BLKmode version of the data. */
5344 if (GET_CODE (target
) == CONCAT
)
5346 /* We're storing into a struct containing a single __complex. */
5348 gcc_assert (!bitpos
);
5349 return store_expr (exp
, target
, 0);
5352 /* If the structure is in a register or if the component
5353 is a bit field, we cannot use addressing to access it.
5354 Use bit-field techniques or SUBREG to store in it. */
5356 if (mode
== VOIDmode
5357 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
5358 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
5359 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
5361 || GET_CODE (target
) == SUBREG
5362 /* If the field isn't aligned enough to store as an ordinary memref,
5363 store it as a bit field. */
5365 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
5366 || bitpos
% GET_MODE_ALIGNMENT (mode
))
5367 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
5368 || (bitpos
% BITS_PER_UNIT
!= 0)))
5369 /* If the RHS and field are a constant size and the size of the
5370 RHS isn't the same size as the bitfield, we must use bitfield
5373 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
5374 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0))
5378 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5379 implies a mask operation. If the precision is the same size as
5380 the field we're storing into, that mask is redundant. This is
5381 particularly common with bit field assignments generated by the
5383 if (TREE_CODE (exp
) == NOP_EXPR
)
5385 tree type
= TREE_TYPE (exp
);
5386 if (INTEGRAL_TYPE_P (type
)
5387 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
5388 && bitsize
== TYPE_PRECISION (type
))
5390 type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
5391 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
5392 exp
= TREE_OPERAND (exp
, 0);
5396 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, 0);
5398 /* If BITSIZE is narrower than the size of the type of EXP
5399 we will be narrowing TEMP. Normally, what's wanted are the
5400 low-order bits. However, if EXP's type is a record and this is
5401 big-endian machine, we want the upper BITSIZE bits. */
5402 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
5403 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
5404 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
5405 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
5406 size_int (GET_MODE_BITSIZE (GET_MODE (temp
))
5410 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5412 if (mode
!= VOIDmode
&& mode
!= BLKmode
5413 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
5414 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
5416 /* If the modes of TARGET and TEMP are both BLKmode, both
5417 must be in memory and BITPOS must be aligned on a byte
5418 boundary. If so, we simply do a block copy. */
5419 if (GET_MODE (target
) == BLKmode
&& GET_MODE (temp
) == BLKmode
)
5421 gcc_assert (MEM_P (target
) && MEM_P (temp
)
5422 && !(bitpos
% BITS_PER_UNIT
));
5424 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5425 emit_block_move (target
, temp
,
5426 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
5433 /* Store the value in the bitfield. */
5434 store_bit_field (target
, bitsize
, bitpos
, mode
, temp
);
5440 /* Now build a reference to just the desired component. */
5441 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
5443 if (to_rtx
== target
)
5444 to_rtx
= copy_rtx (to_rtx
);
5446 MEM_SET_IN_STRUCT_P (to_rtx
, 1);
5447 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
5448 set_mem_alias_set (to_rtx
, alias_set
);
5450 return store_expr (exp
, to_rtx
, 0);
5454 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5455 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5456 codes and find the ultimate containing object, which we return.
5458 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5459 bit position, and *PUNSIGNEDP to the signedness of the field.
5460 If the position of the field is variable, we store a tree
5461 giving the variable offset (in units) in *POFFSET.
5462 This offset is in addition to the bit position.
5463 If the position is not variable, we store 0 in *POFFSET.
5465 If any of the extraction expressions is volatile,
5466 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5468 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5469 is a mode that can be used to access the field. In that case, *PBITSIZE
5472 If the field describes a variable-sized object, *PMODE is set to
5473 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5474 this case, but the address of the object can be found.
5476 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5477 look through nodes that serve as markers of a greater alignment than
5478 the one that can be deduced from the expression. These nodes make it
5479 possible for front-ends to prevent temporaries from being created by
5480 the middle-end on alignment considerations. For that purpose, the
5481 normal operating mode at high-level is to always pass FALSE so that
5482 the ultimate containing object is really returned; moreover, the
5483 associated predicate handled_component_p will always return TRUE
5484 on these nodes, thus indicating that they are essentially handled
5485 by get_inner_reference. TRUE should only be passed when the caller
5486 is scanning the expression in order to build another representation
5487 and specifically knows how to handle these nodes; as such, this is
5488 the normal operating mode in the RTL expanders. */
5491 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
5492 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
5493 enum machine_mode
*pmode
, int *punsignedp
,
5494 int *pvolatilep
, bool keep_aligning
)
5497 enum machine_mode mode
= VOIDmode
;
5498 tree offset
= size_zero_node
;
5499 tree bit_offset
= bitsize_zero_node
;
5502 /* First get the mode, signedness, and size. We do this from just the
5503 outermost expression. */
5504 if (TREE_CODE (exp
) == COMPONENT_REF
)
5506 size_tree
= DECL_SIZE (TREE_OPERAND (exp
, 1));
5507 if (! DECL_BIT_FIELD (TREE_OPERAND (exp
, 1)))
5508 mode
= DECL_MODE (TREE_OPERAND (exp
, 1));
5510 *punsignedp
= DECL_UNSIGNED (TREE_OPERAND (exp
, 1));
5512 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
5514 size_tree
= TREE_OPERAND (exp
, 1);
5515 *punsignedp
= BIT_FIELD_REF_UNSIGNED (exp
);
5519 mode
= TYPE_MODE (TREE_TYPE (exp
));
5520 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
5522 if (mode
== BLKmode
)
5523 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
5525 *pbitsize
= GET_MODE_BITSIZE (mode
);
5530 if (! host_integerp (size_tree
, 1))
5531 mode
= BLKmode
, *pbitsize
= -1;
5533 *pbitsize
= tree_low_cst (size_tree
, 1);
5536 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5537 and find the ultimate containing object. */
5540 switch (TREE_CODE (exp
))
5543 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5544 TREE_OPERAND (exp
, 2));
5549 tree field
= TREE_OPERAND (exp
, 1);
5550 tree this_offset
= component_ref_field_offset (exp
);
5552 /* If this field hasn't been filled in yet, don't go past it.
5553 This should only happen when folding expressions made during
5554 type construction. */
5555 if (this_offset
== 0)
5558 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
5559 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5560 DECL_FIELD_BIT_OFFSET (field
));
5562 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5567 case ARRAY_RANGE_REF
:
5569 tree index
= TREE_OPERAND (exp
, 1);
5570 tree low_bound
= array_ref_low_bound (exp
);
5571 tree unit_size
= array_ref_element_size (exp
);
5573 /* We assume all arrays have sizes that are a multiple of a byte.
5574 First subtract the lower bound, if any, in the type of the
5575 index, then convert to sizetype and multiply by the size of
5576 the array element. */
5577 if (! integer_zerop (low_bound
))
5578 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
5581 offset
= size_binop (PLUS_EXPR
, offset
,
5582 size_binop (MULT_EXPR
,
5583 convert (sizetype
, index
),
5592 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5593 bitsize_int (*pbitsize
));
5596 case VIEW_CONVERT_EXPR
:
5597 if (keep_aligning
&& STRICT_ALIGNMENT
5598 && (TYPE_ALIGN (TREE_TYPE (exp
))
5599 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
5600 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
5601 < BIGGEST_ALIGNMENT
)
5602 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
5603 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
5611 /* If any reference in the chain is volatile, the effect is volatile. */
5612 if (TREE_THIS_VOLATILE (exp
))
5615 exp
= TREE_OPERAND (exp
, 0);
5619 /* If OFFSET is constant, see if we can return the whole thing as a
5620 constant bit position. Otherwise, split it up. */
5621 if (host_integerp (offset
, 0)
5622 && 0 != (tem
= size_binop (MULT_EXPR
, convert (bitsizetype
, offset
),
5624 && 0 != (tem
= size_binop (PLUS_EXPR
, tem
, bit_offset
))
5625 && host_integerp (tem
, 0))
5626 *pbitpos
= tree_low_cst (tem
, 0), *poffset
= 0;
5628 *pbitpos
= tree_low_cst (bit_offset
, 0), *poffset
= offset
;
5634 /* Return a tree of sizetype representing the size, in bytes, of the element
5635 of EXP, an ARRAY_REF. */
5638 array_ref_element_size (tree exp
)
5640 tree aligned_size
= TREE_OPERAND (exp
, 3);
5641 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5643 /* If a size was specified in the ARRAY_REF, it's the size measured
5644 in alignment units of the element type. So multiply by that value. */
5647 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5648 sizetype from another type of the same width and signedness. */
5649 if (TREE_TYPE (aligned_size
) != sizetype
)
5650 aligned_size
= fold_convert (sizetype
, aligned_size
);
5651 return size_binop (MULT_EXPR
, aligned_size
,
5652 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
5655 /* Otherwise, take the size from that of the element type. Substitute
5656 any PLACEHOLDER_EXPR that we have. */
5658 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
5661 /* Return a tree representing the lower bound of the array mentioned in
5662 EXP, an ARRAY_REF. */
5665 array_ref_low_bound (tree exp
)
5667 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5669 /* If a lower bound is specified in EXP, use it. */
5670 if (TREE_OPERAND (exp
, 2))
5671 return TREE_OPERAND (exp
, 2);
5673 /* Otherwise, if there is a domain type and it has a lower bound, use it,
5674 substituting for a PLACEHOLDER_EXPR as needed. */
5675 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
5676 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
5678 /* Otherwise, return a zero of the appropriate type. */
5679 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
5682 /* Return a tree representing the upper bound of the array mentioned in
5683 EXP, an ARRAY_REF. */
5686 array_ref_up_bound (tree exp
)
5688 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
5690 /* If there is a domain type and it has an upper bound, use it, substituting
5691 for a PLACEHOLDER_EXPR as needed. */
5692 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
5693 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
5695 /* Otherwise fail. */
5699 /* Return a tree representing the offset, in bytes, of the field referenced
5700 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
5703 component_ref_field_offset (tree exp
)
5705 tree aligned_offset
= TREE_OPERAND (exp
, 2);
5706 tree field
= TREE_OPERAND (exp
, 1);
5708 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
5709 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
5713 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5714 sizetype from another type of the same width and signedness. */
5715 if (TREE_TYPE (aligned_offset
) != sizetype
)
5716 aligned_offset
= fold_convert (sizetype
, aligned_offset
);
5717 return size_binop (MULT_EXPR
, aligned_offset
,
5718 size_int (DECL_OFFSET_ALIGN (field
) / BITS_PER_UNIT
));
5721 /* Otherwise, take the offset from that of the field. Substitute
5722 any PLACEHOLDER_EXPR that we have. */
5724 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
5727 /* Return 1 if T is an expression that get_inner_reference handles. */
5730 handled_component_p (tree t
)
5732 switch (TREE_CODE (t
))
5737 case ARRAY_RANGE_REF
:
5738 case VIEW_CONVERT_EXPR
:
5748 /* Given an rtx VALUE that may contain additions and multiplications, return
5749 an equivalent value that just refers to a register, memory, or constant.
5750 This is done by generating instructions to perform the arithmetic and
5751 returning a pseudo-register containing the value.
5753 The returned value may be a REG, SUBREG, MEM or constant. */
5756 force_operand (rtx value
, rtx target
)
5759 /* Use subtarget as the target for operand 0 of a binary operation. */
5760 rtx subtarget
= get_subtarget (target
);
5761 enum rtx_code code
= GET_CODE (value
);
5763 /* Check for subreg applied to an expression produced by loop optimizer. */
5765 && !REG_P (SUBREG_REG (value
))
5766 && !MEM_P (SUBREG_REG (value
)))
5768 value
= simplify_gen_subreg (GET_MODE (value
),
5769 force_reg (GET_MODE (SUBREG_REG (value
)),
5770 force_operand (SUBREG_REG (value
),
5772 GET_MODE (SUBREG_REG (value
)),
5773 SUBREG_BYTE (value
));
5774 code
= GET_CODE (value
);
5777 /* Check for a PIC address load. */
5778 if ((code
== PLUS
|| code
== MINUS
)
5779 && XEXP (value
, 0) == pic_offset_table_rtx
5780 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
5781 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
5782 || GET_CODE (XEXP (value
, 1)) == CONST
))
5785 subtarget
= gen_reg_rtx (GET_MODE (value
));
5786 emit_move_insn (subtarget
, value
);
5790 if (code
== ZERO_EXTEND
|| code
== SIGN_EXTEND
)
5793 target
= gen_reg_rtx (GET_MODE (value
));
5794 convert_move (target
, force_operand (XEXP (value
, 0), NULL
),
5795 code
== ZERO_EXTEND
);
5799 if (ARITHMETIC_P (value
))
5801 op2
= XEXP (value
, 1);
5802 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
5804 if (code
== MINUS
&& GET_CODE (op2
) == CONST_INT
)
5807 op2
= negate_rtx (GET_MODE (value
), op2
);
5810 /* Check for an addition with OP2 a constant integer and our first
5811 operand a PLUS of a virtual register and something else. In that
5812 case, we want to emit the sum of the virtual register and the
5813 constant first and then add the other value. This allows virtual
5814 register instantiation to simply modify the constant rather than
5815 creating another one around this addition. */
5816 if (code
== PLUS
&& GET_CODE (op2
) == CONST_INT
5817 && GET_CODE (XEXP (value
, 0)) == PLUS
5818 && REG_P (XEXP (XEXP (value
, 0), 0))
5819 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5820 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
5822 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
5823 XEXP (XEXP (value
, 0), 0), op2
,
5824 subtarget
, 0, OPTAB_LIB_WIDEN
);
5825 return expand_simple_binop (GET_MODE (value
), code
, temp
,
5826 force_operand (XEXP (XEXP (value
,
5828 target
, 0, OPTAB_LIB_WIDEN
);
5831 op1
= force_operand (XEXP (value
, 0), subtarget
);
5832 op2
= force_operand (op2
, NULL_RTX
);
5836 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
5838 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
5839 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5840 target
, 1, OPTAB_LIB_WIDEN
);
5842 return expand_divmod (0,
5843 FLOAT_MODE_P (GET_MODE (value
))
5844 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
5845 GET_MODE (value
), op1
, op2
, target
, 0);
5848 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
5852 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
5856 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
5860 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5861 target
, 0, OPTAB_LIB_WIDEN
);
5864 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
5865 target
, 1, OPTAB_LIB_WIDEN
);
5868 if (UNARY_P (value
))
5870 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
5871 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
5874 #ifdef INSN_SCHEDULING
5875 /* On machines that have insn scheduling, we want all memory reference to be
5876 explicit, so we need to deal with such paradoxical SUBREGs. */
5877 if (GET_CODE (value
) == SUBREG
&& MEM_P (SUBREG_REG (value
))
5878 && (GET_MODE_SIZE (GET_MODE (value
))
5879 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value
)))))
5881 = simplify_gen_subreg (GET_MODE (value
),
5882 force_reg (GET_MODE (SUBREG_REG (value
)),
5883 force_operand (SUBREG_REG (value
),
5885 GET_MODE (SUBREG_REG (value
)),
5886 SUBREG_BYTE (value
));
5892 /* Subroutine of expand_expr: return nonzero iff there is no way that
5893 EXP can reference X, which is being modified. TOP_P is nonzero if this
5894 call is going to be used to determine whether we need a temporary
5895 for EXP, as opposed to a recursive call to this function.
5897 It is always safe for this routine to return zero since it merely
5898 searches for optimization opportunities. */
5901 safe_from_p (rtx x
, tree exp
, int top_p
)
5907 /* If EXP has varying size, we MUST use a target since we currently
5908 have no way of allocating temporaries of variable size
5909 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
5910 So we assume here that something at a higher level has prevented a
5911 clash. This is somewhat bogus, but the best we can do. Only
5912 do this when X is BLKmode and when we are at the top level. */
5913 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
5914 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
5915 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
5916 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
5917 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
5919 && GET_MODE (x
) == BLKmode
)
5920 /* If X is in the outgoing argument area, it is always safe. */
5922 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
5923 || (GET_CODE (XEXP (x
, 0)) == PLUS
5924 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
5927 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
5928 find the underlying pseudo. */
5929 if (GET_CODE (x
) == SUBREG
)
5932 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
5936 /* Now look at our tree code and possibly recurse. */
5937 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
5939 case tcc_declaration
:
5940 exp_rtl
= DECL_RTL_IF_SET (exp
);
5946 case tcc_exceptional
:
5947 if (TREE_CODE (exp
) == TREE_LIST
)
5951 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
5953 exp
= TREE_CHAIN (exp
);
5956 if (TREE_CODE (exp
) != TREE_LIST
)
5957 return safe_from_p (x
, exp
, 0);
5960 else if (TREE_CODE (exp
) == ERROR_MARK
)
5961 return 1; /* An already-visited SAVE_EXPR? */
5966 /* The only case we look at here is the DECL_INITIAL inside a
5968 return (TREE_CODE (exp
) != DECL_EXPR
5969 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
5970 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
5971 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
5974 case tcc_comparison
:
5975 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
5980 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
5982 case tcc_expression
:
5984 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
5985 the expression. If it is set, we conflict iff we are that rtx or
5986 both are in memory. Otherwise, we check all operands of the
5987 expression recursively. */
5989 switch (TREE_CODE (exp
))
5992 /* If the operand is static or we are static, we can't conflict.
5993 Likewise if we don't conflict with the operand at all. */
5994 if (staticp (TREE_OPERAND (exp
, 0))
5995 || TREE_STATIC (exp
)
5996 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
5999 /* Otherwise, the only way this can conflict is if we are taking
6000 the address of a DECL a that address if part of X, which is
6002 exp
= TREE_OPERAND (exp
, 0);
6005 if (!DECL_RTL_SET_P (exp
)
6006 || !MEM_P (DECL_RTL (exp
)))
6009 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
6013 case MISALIGNED_INDIRECT_REF
:
6014 case ALIGN_INDIRECT_REF
:
6017 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
6018 get_alias_set (exp
)))
6023 /* Assume that the call will clobber all hard registers and
6025 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
6030 case WITH_CLEANUP_EXPR
:
6031 case CLEANUP_POINT_EXPR
:
6032 /* Lowered by gimplify.c. */
6036 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
6042 /* If we have an rtx, we do not need to scan our operands. */
6046 nops
= TREE_CODE_LENGTH (TREE_CODE (exp
));
6047 for (i
= 0; i
< nops
; i
++)
6048 if (TREE_OPERAND (exp
, i
) != 0
6049 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
6052 /* If this is a language-specific tree code, it may require
6053 special handling. */
6054 if ((unsigned int) TREE_CODE (exp
)
6055 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
6056 && !lang_hooks
.safe_from_p (x
, exp
))
6061 /* Should never get a type here. */
6065 /* If we have an rtl, find any enclosed object. Then see if we conflict
6069 if (GET_CODE (exp_rtl
) == SUBREG
)
6071 exp_rtl
= SUBREG_REG (exp_rtl
);
6073 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
6077 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6078 are memory and they conflict. */
6079 return ! (rtx_equal_p (x
, exp_rtl
)
6080 || (MEM_P (x
) && MEM_P (exp_rtl
)
6081 && true_dependence (exp_rtl
, VOIDmode
, x
,
6082 rtx_addr_varies_p
)));
6085 /* If we reach here, it is safe. */
6090 /* Return the highest power of two that EXP is known to be a multiple of.
6091 This is used in updating alignment of MEMs in array references. */
6093 unsigned HOST_WIDE_INT
6094 highest_pow2_factor (tree exp
)
6096 unsigned HOST_WIDE_INT c0
, c1
;
6098 switch (TREE_CODE (exp
))
6101 /* We can find the lowest bit that's a one. If the low
6102 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6103 We need to handle this case since we can find it in a COND_EXPR,
6104 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6105 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6107 if (TREE_CONSTANT_OVERFLOW (exp
))
6108 return BIGGEST_ALIGNMENT
;
6111 /* Note: tree_low_cst is intentionally not used here,
6112 we don't care about the upper bits. */
6113 c0
= TREE_INT_CST_LOW (exp
);
6115 return c0
? c0
: BIGGEST_ALIGNMENT
;
6119 case PLUS_EXPR
: case MINUS_EXPR
: case MIN_EXPR
: case MAX_EXPR
:
6120 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6121 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6122 return MIN (c0
, c1
);
6125 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6126 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6129 case ROUND_DIV_EXPR
: case TRUNC_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6131 if (integer_pow2p (TREE_OPERAND (exp
, 1))
6132 && host_integerp (TREE_OPERAND (exp
, 1), 1))
6134 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6135 c1
= tree_low_cst (TREE_OPERAND (exp
, 1), 1);
6136 return MAX (1, c0
/ c1
);
6140 case NON_LVALUE_EXPR
: case NOP_EXPR
: case CONVERT_EXPR
:
6142 return highest_pow2_factor (TREE_OPERAND (exp
, 0));
6145 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
6148 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6149 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 2));
6150 return MIN (c0
, c1
);
6159 /* Similar, except that the alignment requirements of TARGET are
6160 taken into account. Assume it is at least as aligned as its
6161 type, unless it is a COMPONENT_REF in which case the layout of
6162 the structure gives the alignment. */
6164 static unsigned HOST_WIDE_INT
6165 highest_pow2_factor_for_target (tree target
, tree exp
)
6167 unsigned HOST_WIDE_INT target_align
, factor
;
6169 factor
= highest_pow2_factor (exp
);
6170 if (TREE_CODE (target
) == COMPONENT_REF
)
6171 target_align
= DECL_ALIGN_UNIT (TREE_OPERAND (target
, 1));
6173 target_align
= TYPE_ALIGN_UNIT (TREE_TYPE (target
));
6174 return MAX (factor
, target_align
);
6177 /* Expands variable VAR. */
6180 expand_var (tree var
)
6182 if (DECL_EXTERNAL (var
))
6185 if (TREE_STATIC (var
))
6186 /* If this is an inlined copy of a static local variable,
6187 look up the original decl. */
6188 var
= DECL_ORIGIN (var
);
6190 if (TREE_STATIC (var
)
6191 ? !TREE_ASM_WRITTEN (var
)
6192 : !DECL_RTL_SET_P (var
))
6194 if (TREE_CODE (var
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (var
))
6195 /* Should be ignored. */;
6196 else if (lang_hooks
.expand_decl (var
))
6198 else if (TREE_CODE (var
) == VAR_DECL
&& !TREE_STATIC (var
))
6200 else if (TREE_CODE (var
) == VAR_DECL
&& TREE_STATIC (var
))
6201 rest_of_decl_compilation (var
, 0, 0);
6203 /* No expansion needed. */
6204 gcc_assert (TREE_CODE (var
) == TYPE_DECL
6205 || TREE_CODE (var
) == CONST_DECL
6206 || TREE_CODE (var
) == FUNCTION_DECL
6207 || TREE_CODE (var
) == LABEL_DECL
);
6211 /* Subroutine of expand_expr. Expand the two operands of a binary
6212 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6213 The value may be stored in TARGET if TARGET is nonzero. The
6214 MODIFIER argument is as documented by expand_expr. */
6217 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
6218 enum expand_modifier modifier
)
6220 if (! safe_from_p (target
, exp1
, 1))
6222 if (operand_equal_p (exp0
, exp1
, 0))
6224 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6225 *op1
= copy_rtx (*op0
);
6229 /* If we need to preserve evaluation order, copy exp0 into its own
6230 temporary variable so that it can't be clobbered by exp1. */
6231 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
6232 exp0
= save_expr (exp0
);
6233 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6234 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
6239 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6240 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6243 expand_expr_addr_expr_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6244 enum expand_modifier modifier
)
6246 rtx result
, subtarget
;
6248 HOST_WIDE_INT bitsize
, bitpos
;
6249 int volatilep
, unsignedp
;
6250 enum machine_mode mode1
;
6252 /* If we are taking the address of a constant and are at the top level,
6253 we have to use output_constant_def since we can't call force_const_mem
6255 /* ??? This should be considered a front-end bug. We should not be
6256 generating ADDR_EXPR of something that isn't an LVALUE. The only
6257 exception here is STRING_CST. */
6258 if (TREE_CODE (exp
) == CONSTRUCTOR
6259 || CONSTANT_CLASS_P (exp
))
6260 return XEXP (output_constant_def (exp
, 0), 0);
6262 /* Everything must be something allowed by is_gimple_addressable. */
6263 switch (TREE_CODE (exp
))
6266 /* This case will happen via recursion for &a->b. */
6267 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, EXPAND_NORMAL
);
6270 /* Recurse and make the output_constant_def clause above handle this. */
6271 return expand_expr_addr_expr_1 (DECL_INITIAL (exp
), target
,
6275 /* The real part of the complex number is always first, therefore
6276 the address is the same as the address of the parent object. */
6279 inner
= TREE_OPERAND (exp
, 0);
6283 /* The imaginary part of the complex number is always second.
6284 The expression is therefore always offset by the size of the
6287 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
6288 inner
= TREE_OPERAND (exp
, 0);
6292 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6293 expand_expr, as that can have various side effects; LABEL_DECLs for
6294 example, may not have their DECL_RTL set yet. Assume language
6295 specific tree nodes can be expanded in some interesting way. */
6297 || TREE_CODE (exp
) >= LAST_AND_UNUSED_TREE_CODE
)
6299 result
= expand_expr (exp
, target
, tmode
,
6300 modifier
== EXPAND_INITIALIZER
6301 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
6303 /* If the DECL isn't in memory, then the DECL wasn't properly
6304 marked TREE_ADDRESSABLE, which will be either a front-end
6305 or a tree optimizer bug. */
6306 gcc_assert (MEM_P (result
));
6307 result
= XEXP (result
, 0);
6309 /* ??? Is this needed anymore? */
6310 if (DECL_P (exp
) && !TREE_USED (exp
) == 0)
6312 assemble_external (exp
);
6313 TREE_USED (exp
) = 1;
6316 if (modifier
!= EXPAND_INITIALIZER
6317 && modifier
!= EXPAND_CONST_ADDRESS
)
6318 result
= force_operand (result
, target
);
6322 /* Pass FALSE as the last argument to get_inner_reference although
6323 we are expanding to RTL. The rationale is that we know how to
6324 handle "aligning nodes" here: we can just bypass them because
6325 they won't change the final object whose address will be returned
6326 (they actually exist only for that purpose). */
6327 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
6328 &mode1
, &unsignedp
, &volatilep
, false);
6332 /* We must have made progress. */
6333 gcc_assert (inner
!= exp
);
6335 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
6336 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
);
6342 if (modifier
!= EXPAND_NORMAL
)
6343 result
= force_operand (result
, NULL
);
6344 tmp
= expand_expr (offset
, NULL
, tmode
, EXPAND_NORMAL
);
6346 result
= convert_memory_address (tmode
, result
);
6347 tmp
= convert_memory_address (tmode
, tmp
);
6349 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
6350 result
= gen_rtx_PLUS (tmode
, result
, tmp
);
6353 subtarget
= bitpos
? NULL_RTX
: target
;
6354 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
6355 1, OPTAB_LIB_WIDEN
);
6361 /* Someone beforehand should have rejected taking the address
6362 of such an object. */
6363 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
6365 result
= plus_constant (result
, bitpos
/ BITS_PER_UNIT
);
6366 if (modifier
< EXPAND_SUM
)
6367 result
= force_operand (result
, target
);
6373 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6374 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6377 expand_expr_addr_expr (tree exp
, rtx target
, enum machine_mode tmode
,
6378 enum expand_modifier modifier
)
6380 enum machine_mode rmode
;
6383 /* Target mode of VOIDmode says "whatever's natural". */
6384 if (tmode
== VOIDmode
)
6385 tmode
= TYPE_MODE (TREE_TYPE (exp
));
6387 /* We can get called with some Weird Things if the user does silliness
6388 like "(short) &a". In that case, convert_memory_address won't do
6389 the right thing, so ignore the given target mode. */
6390 if (tmode
!= Pmode
&& tmode
!= ptr_mode
)
6393 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
6396 /* Despite expand_expr claims concerning ignoring TMODE when not
6397 strictly convenient, stuff breaks if we don't honor it. Note
6398 that combined with the above, we only do this for pointer modes. */
6399 rmode
= GET_MODE (result
);
6400 if (rmode
== VOIDmode
)
6403 result
= convert_memory_address (tmode
, result
);
6409 /* expand_expr: generate code for computing expression EXP.
6410 An rtx for the computed value is returned. The value is never null.
6411 In the case of a void EXP, const0_rtx is returned.
6413 The value may be stored in TARGET if TARGET is nonzero.
6414 TARGET is just a suggestion; callers must assume that
6415 the rtx returned may not be the same as TARGET.
6417 If TARGET is CONST0_RTX, it means that the value will be ignored.
6419 If TMODE is not VOIDmode, it suggests generating the
6420 result in mode TMODE. But this is done only when convenient.
6421 Otherwise, TMODE is ignored and the value generated in its natural mode.
6422 TMODE is just a suggestion; callers must assume that
6423 the rtx returned may not have mode TMODE.
6425 Note that TARGET may have neither TMODE nor MODE. In that case, it
6426 probably will not be used.
6428 If MODIFIER is EXPAND_SUM then when EXP is an addition
6429 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6430 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6431 products as above, or REG or MEM, or constant.
6432 Ordinarily in such cases we would output mul or add instructions
6433 and then return a pseudo reg containing the sum.
6435 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6436 it also marks a label as absolutely required (it can't be dead).
6437 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6438 This is used for outputting expressions used in initializers.
6440 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6441 with a constant address even if that address is not normally legitimate.
6442 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6444 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6445 a call parameter. Such targets require special care as we haven't yet
6446 marked TARGET so that it's safe from being trashed by libcalls. We
6447 don't want to use TARGET for anything but the final result;
6448 Intermediate values must go elsewhere. Additionally, calls to
6449 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
6451 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
6452 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
6453 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
6454 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
6457 static rtx
expand_expr_real_1 (tree
, rtx
, enum machine_mode
,
6458 enum expand_modifier
, rtx
*);
6461 expand_expr_real (tree exp
, rtx target
, enum machine_mode tmode
,
6462 enum expand_modifier modifier
, rtx
*alt_rtl
)
6465 rtx ret
, last
= NULL
;
6467 /* Handle ERROR_MARK before anybody tries to access its type. */
6468 if (TREE_CODE (exp
) == ERROR_MARK
6469 || TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
)
6471 ret
= CONST0_RTX (tmode
);
6472 return ret
? ret
: const0_rtx
;
6475 if (flag_non_call_exceptions
)
6477 rn
= lookup_stmt_eh_region (exp
);
6478 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
6480 last
= get_last_insn ();
6483 /* If this is an expression of some kind and it has an associated line
6484 number, then emit the line number before expanding the expression.
6486 We need to save and restore the file and line information so that
6487 errors discovered during expansion are emitted with the right
6488 information. It would be better of the diagnostic routines
6489 used the file/line information embedded in the tree nodes rather
6491 if (cfun
&& cfun
->ib_boundaries_block
&& EXPR_HAS_LOCATION (exp
))
6493 location_t saved_location
= input_location
;
6494 input_location
= EXPR_LOCATION (exp
);
6495 emit_line_note (input_location
);
6497 /* Record where the insns produced belong. */
6498 record_block_change (TREE_BLOCK (exp
));
6500 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
6502 input_location
= saved_location
;
6506 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
6509 /* If using non-call exceptions, mark all insns that may trap.
6510 expand_call() will mark CALL_INSNs before we get to this code,
6511 but it doesn't handle libcalls, and these may trap. */
6515 for (insn
= next_real_insn (last
); insn
;
6516 insn
= next_real_insn (insn
))
6518 if (! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
6519 /* If we want exceptions for non-call insns, any
6520 may_trap_p instruction may throw. */
6521 && GET_CODE (PATTERN (insn
)) != CLOBBER
6522 && GET_CODE (PATTERN (insn
)) != USE
6523 && (CALL_P (insn
) || may_trap_p (PATTERN (insn
))))
6525 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_EH_REGION
, GEN_INT (rn
),
6535 expand_expr_real_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6536 enum expand_modifier modifier
, rtx
*alt_rtl
)
6539 tree type
= TREE_TYPE (exp
);
6541 enum machine_mode mode
;
6542 enum tree_code code
= TREE_CODE (exp
);
6544 rtx subtarget
, original_target
;
6546 tree context
, subexp0
, subexp1
;
6547 bool reduce_bit_field
= false;
6548 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
6549 ? reduce_to_bit_field_precision ((expr), \
6554 mode
= TYPE_MODE (type
);
6555 unsignedp
= TYPE_UNSIGNED (type
);
6556 if (lang_hooks
.reduce_bit_field_operations
6557 && TREE_CODE (type
) == INTEGER_TYPE
6558 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
))
6560 /* An operation in what may be a bit-field type needs the
6561 result to be reduced to the precision of the bit-field type,
6562 which is narrower than that of the type's mode. */
6563 reduce_bit_field
= true;
6564 if (modifier
== EXPAND_STACK_PARM
)
6568 /* Use subtarget as the target for operand 0 of a binary operation. */
6569 subtarget
= get_subtarget (target
);
6570 original_target
= target
;
6571 ignore
= (target
== const0_rtx
6572 || ((code
== NON_LVALUE_EXPR
|| code
== NOP_EXPR
6573 || code
== CONVERT_EXPR
|| code
== COND_EXPR
6574 || code
== VIEW_CONVERT_EXPR
)
6575 && TREE_CODE (type
) == VOID_TYPE
));
6577 /* If we are going to ignore this result, we need only do something
6578 if there is a side-effect somewhere in the expression. If there
6579 is, short-circuit the most common cases here. Note that we must
6580 not call expand_expr with anything but const0_rtx in case this
6581 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6585 if (! TREE_SIDE_EFFECTS (exp
))
6588 /* Ensure we reference a volatile object even if value is ignored, but
6589 don't do this if all we are doing is taking its address. */
6590 if (TREE_THIS_VOLATILE (exp
)
6591 && TREE_CODE (exp
) != FUNCTION_DECL
6592 && mode
!= VOIDmode
&& mode
!= BLKmode
6593 && modifier
!= EXPAND_CONST_ADDRESS
)
6595 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
6597 temp
= copy_to_reg (temp
);
6601 if (TREE_CODE_CLASS (code
) == tcc_unary
6602 || code
== COMPONENT_REF
|| code
== INDIRECT_REF
)
6603 return expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
6606 else if (TREE_CODE_CLASS (code
) == tcc_binary
6607 || TREE_CODE_CLASS (code
) == tcc_comparison
6608 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
6610 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6611 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6614 else if (code
== BIT_FIELD_REF
)
6616 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
6617 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
6618 expand_expr (TREE_OPERAND (exp
, 2), const0_rtx
, VOIDmode
, modifier
);
6630 tree function
= decl_function_context (exp
);
6632 temp
= label_rtx (exp
);
6633 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
6635 if (function
!= current_function_decl
6637 LABEL_REF_NONLOCAL_P (temp
) = 1;
6639 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
6644 return expand_expr_real_1 (SSA_NAME_VAR (exp
), target
, tmode
, modifier
,
6649 /* If a static var's type was incomplete when the decl was written,
6650 but the type is complete now, lay out the decl now. */
6651 if (DECL_SIZE (exp
) == 0
6652 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
6653 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
6654 layout_decl (exp
, 0);
6656 /* ... fall through ... */
6660 gcc_assert (DECL_RTL (exp
));
6662 /* Ensure variable marked as used even if it doesn't go through
6663 a parser. If it hasn't be used yet, write out an external
6665 if (! TREE_USED (exp
))
6667 assemble_external (exp
);
6668 TREE_USED (exp
) = 1;
6671 /* Show we haven't gotten RTL for this yet. */
6674 /* Variables inherited from containing functions should have
6675 been lowered by this point. */
6676 context
= decl_function_context (exp
);
6677 gcc_assert (!context
6678 || context
== current_function_decl
6679 || TREE_STATIC (exp
)
6680 /* ??? C++ creates functions that are not TREE_STATIC. */
6681 || TREE_CODE (exp
) == FUNCTION_DECL
);
6683 /* This is the case of an array whose size is to be determined
6684 from its initializer, while the initializer is still being parsed.
6687 if (MEM_P (DECL_RTL (exp
))
6688 && REG_P (XEXP (DECL_RTL (exp
), 0)))
6689 temp
= validize_mem (DECL_RTL (exp
));
6691 /* If DECL_RTL is memory, we are in the normal case and either
6692 the address is not valid or it is not a register and -fforce-addr
6693 is specified, get the address into a register. */
6695 else if (MEM_P (DECL_RTL (exp
))
6696 && modifier
!= EXPAND_CONST_ADDRESS
6697 && modifier
!= EXPAND_SUM
6698 && modifier
!= EXPAND_INITIALIZER
6699 && (! memory_address_p (DECL_MODE (exp
),
6700 XEXP (DECL_RTL (exp
), 0))
6702 && !REG_P (XEXP (DECL_RTL (exp
), 0)))))
6705 *alt_rtl
= DECL_RTL (exp
);
6706 temp
= replace_equiv_address (DECL_RTL (exp
),
6707 copy_rtx (XEXP (DECL_RTL (exp
), 0)));
6710 /* If we got something, return it. But first, set the alignment
6711 if the address is a register. */
6714 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
6715 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
6720 /* If the mode of DECL_RTL does not match that of the decl, it
6721 must be a promoted value. We return a SUBREG of the wanted mode,
6722 but mark it so that we know that it was already extended. */
6724 if (REG_P (DECL_RTL (exp
))
6725 && GET_MODE (DECL_RTL (exp
)) != DECL_MODE (exp
))
6727 enum machine_mode pmode
;
6729 /* Get the signedness used for this variable. Ensure we get the
6730 same mode we got when the variable was declared. */
6731 pmode
= promote_mode (type
, DECL_MODE (exp
), &unsignedp
,
6732 (TREE_CODE (exp
) == RESULT_DECL
? 1 : 0));
6733 gcc_assert (GET_MODE (DECL_RTL (exp
)) == pmode
);
6735 temp
= gen_lowpart_SUBREG (mode
, DECL_RTL (exp
));
6736 SUBREG_PROMOTED_VAR_P (temp
) = 1;
6737 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
6741 return DECL_RTL (exp
);
6744 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
6745 TREE_INT_CST_HIGH (exp
), mode
);
6747 /* ??? If overflow is set, fold will have done an incomplete job,
6748 which can result in (plus xx (const_int 0)), which can get
6749 simplified by validate_replace_rtx during virtual register
6750 instantiation, which can result in unrecognizable insns.
6751 Avoid this by forcing all overflows into registers. */
6752 if (TREE_CONSTANT_OVERFLOW (exp
)
6753 && modifier
!= EXPAND_INITIALIZER
)
6754 temp
= force_reg (mode
, temp
);
6759 if (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp
))) == MODE_VECTOR_INT
6760 || GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp
))) == MODE_VECTOR_FLOAT
)
6761 return const_vector_from_tree (exp
);
6763 return expand_expr (build_constructor_from_list
6765 TREE_VECTOR_CST_ELTS (exp
)),
6766 ignore
? const0_rtx
: target
, tmode
, modifier
);
6769 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
6772 /* If optimized, generate immediate CONST_DOUBLE
6773 which will be turned into memory by reload if necessary.
6775 We used to force a register so that loop.c could see it. But
6776 this does not allow gen_* patterns to perform optimizations with
6777 the constants. It also produces two insns in cases like "x = 1.0;".
6778 On most machines, floating-point constants are not permitted in
6779 many insns, so we'd end up copying it to a register in any case.
6781 Now, we do the copying in expand_binop, if appropriate. */
6782 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
6783 TYPE_MODE (TREE_TYPE (exp
)));
6786 /* Handle evaluating a complex constant in a CONCAT target. */
6787 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
6789 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
6792 rtarg
= XEXP (original_target
, 0);
6793 itarg
= XEXP (original_target
, 1);
6795 /* Move the real and imaginary parts separately. */
6796 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, 0);
6797 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, 0);
6800 emit_move_insn (rtarg
, op0
);
6802 emit_move_insn (itarg
, op1
);
6804 return original_target
;
6807 /* ... fall through ... */
6810 temp
= output_constant_def (exp
, 1);
6812 /* temp contains a constant address.
6813 On RISC machines where a constant address isn't valid,
6814 make some insns to get that address into a register. */
6815 if (modifier
!= EXPAND_CONST_ADDRESS
6816 && modifier
!= EXPAND_INITIALIZER
6817 && modifier
!= EXPAND_SUM
6818 && (! memory_address_p (mode
, XEXP (temp
, 0))
6819 || flag_force_addr
))
6820 return replace_equiv_address (temp
,
6821 copy_rtx (XEXP (temp
, 0)));
6826 tree val
= TREE_OPERAND (exp
, 0);
6827 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
);
6829 if (!SAVE_EXPR_RESOLVED_P (exp
))
6831 /* We can indeed still hit this case, typically via builtin
6832 expanders calling save_expr immediately before expanding
6833 something. Assume this means that we only have to deal
6834 with non-BLKmode values. */
6835 gcc_assert (GET_MODE (ret
) != BLKmode
);
6837 val
= build_decl (VAR_DECL
, NULL
, TREE_TYPE (exp
));
6838 DECL_ARTIFICIAL (val
) = 1;
6839 DECL_IGNORED_P (val
) = 1;
6840 TREE_OPERAND (exp
, 0) = val
;
6841 SAVE_EXPR_RESOLVED_P (exp
) = 1;
6843 if (!CONSTANT_P (ret
))
6844 ret
= copy_to_reg (ret
);
6845 SET_DECL_RTL (val
, ret
);
6852 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == LABEL_DECL
)
6853 expand_goto (TREE_OPERAND (exp
, 0));
6855 expand_computed_goto (TREE_OPERAND (exp
, 0));
6859 /* If we don't need the result, just ensure we evaluate any
6863 unsigned HOST_WIDE_INT idx
;
6866 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6867 expand_expr (value
, const0_rtx
, VOIDmode
, 0);
6872 /* Try to avoid creating a temporary at all. This is possible
6873 if all of the initializer is zero.
6874 FIXME: try to handle all [0..255] initializers we can handle
6876 else if (TREE_STATIC (exp
)
6877 && !TREE_ADDRESSABLE (exp
)
6878 && target
!= 0 && mode
== BLKmode
6879 && all_zeros_p (exp
))
6881 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
6885 /* All elts simple constants => refer to a constant in memory. But
6886 if this is a non-BLKmode mode, let it store a field at a time
6887 since that should make a CONST_INT or CONST_DOUBLE when we
6888 fold. Likewise, if we have a target we can use, it is best to
6889 store directly into the target unless the type is large enough
6890 that memcpy will be used. If we are making an initializer and
6891 all operands are constant, put it in memory as well.
6893 FIXME: Avoid trying to fill vector constructors piece-meal.
6894 Output them with output_constant_def below unless we're sure
6895 they're zeros. This should go away when vector initializers
6896 are treated like VECTOR_CST instead of arrays.
6898 else if ((TREE_STATIC (exp
)
6899 && ((mode
== BLKmode
6900 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
6901 || TREE_ADDRESSABLE (exp
)
6902 || (host_integerp (TYPE_SIZE_UNIT (type
), 1)
6903 && (! MOVE_BY_PIECES_P
6904 (tree_low_cst (TYPE_SIZE_UNIT (type
), 1),
6906 && ! mostly_zeros_p (exp
))))
6907 || ((modifier
== EXPAND_INITIALIZER
6908 || modifier
== EXPAND_CONST_ADDRESS
)
6909 && TREE_CONSTANT (exp
)))
6911 rtx constructor
= output_constant_def (exp
, 1);
6913 if (modifier
!= EXPAND_CONST_ADDRESS
6914 && modifier
!= EXPAND_INITIALIZER
6915 && modifier
!= EXPAND_SUM
)
6916 constructor
= validize_mem (constructor
);
6922 /* Handle calls that pass values in multiple non-contiguous
6923 locations. The Irix 6 ABI has examples of this. */
6924 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
6925 || GET_CODE (target
) == PARALLEL
6926 || modifier
== EXPAND_STACK_PARM
)
6928 = assign_temp (build_qualified_type (type
,
6930 | (TREE_READONLY (exp
)
6931 * TYPE_QUAL_CONST
))),
6932 0, TREE_ADDRESSABLE (exp
), 1);
6934 store_constructor (exp
, target
, 0, int_expr_size (exp
));
6938 case MISALIGNED_INDIRECT_REF
:
6939 case ALIGN_INDIRECT_REF
:
6942 tree exp1
= TREE_OPERAND (exp
, 0);
6944 if (modifier
!= EXPAND_WRITE
)
6948 t
= fold_read_from_constant_string (exp
);
6950 return expand_expr (t
, target
, tmode
, modifier
);
6953 op0
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
6954 op0
= memory_address (mode
, op0
);
6956 if (code
== ALIGN_INDIRECT_REF
)
6958 int align
= TYPE_ALIGN_UNIT (type
);
6959 op0
= gen_rtx_AND (Pmode
, op0
, GEN_INT (-align
));
6960 op0
= memory_address (mode
, op0
);
6963 temp
= gen_rtx_MEM (mode
, op0
);
6965 set_mem_attributes (temp
, exp
, 0);
6967 /* Resolve the misalignment now, so that we don't have to remember
6968 to resolve it later. Of course, this only works for reads. */
6969 /* ??? When we get around to supporting writes, we'll have to handle
6970 this in store_expr directly. The vectorizer isn't generating
6971 those yet, however. */
6972 if (code
== MISALIGNED_INDIRECT_REF
)
6977 gcc_assert (modifier
== EXPAND_NORMAL
6978 || modifier
== EXPAND_STACK_PARM
);
6980 /* The vectorizer should have already checked the mode. */
6981 icode
= movmisalign_optab
->handlers
[mode
].insn_code
;
6982 gcc_assert (icode
!= CODE_FOR_nothing
);
6984 /* We've already validated the memory, and we're creating a
6985 new pseudo destination. The predicates really can't fail. */
6986 reg
= gen_reg_rtx (mode
);
6988 /* Nor can the insn generator. */
6989 insn
= GEN_FCN (icode
) (reg
, temp
);
6998 case TARGET_MEM_REF
:
7000 struct mem_address addr
;
7002 get_address_description (exp
, &addr
);
7003 op0
= addr_for_mem_ref (&addr
, true);
7004 op0
= memory_address (mode
, op0
);
7005 temp
= gen_rtx_MEM (mode
, op0
);
7006 set_mem_attributes (temp
, TMR_ORIGINAL (exp
), 0);
7013 tree array
= TREE_OPERAND (exp
, 0);
7014 tree index
= TREE_OPERAND (exp
, 1);
7016 /* Fold an expression like: "foo"[2].
7017 This is not done in fold so it won't happen inside &.
7018 Don't fold if this is for wide characters since it's too
7019 difficult to do correctly and this is a very rare case. */
7021 if (modifier
!= EXPAND_CONST_ADDRESS
7022 && modifier
!= EXPAND_INITIALIZER
7023 && modifier
!= EXPAND_MEMORY
)
7025 tree t
= fold_read_from_constant_string (exp
);
7028 return expand_expr (t
, target
, tmode
, modifier
);
7031 /* If this is a constant index into a constant array,
7032 just get the value from the array. Handle both the cases when
7033 we have an explicit constructor and when our operand is a variable
7034 that was declared const. */
7036 if (modifier
!= EXPAND_CONST_ADDRESS
7037 && modifier
!= EXPAND_INITIALIZER
7038 && modifier
!= EXPAND_MEMORY
7039 && TREE_CODE (array
) == CONSTRUCTOR
7040 && ! TREE_SIDE_EFFECTS (array
)
7041 && TREE_CODE (index
) == INTEGER_CST
)
7043 unsigned HOST_WIDE_INT ix
;
7046 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
7048 if (tree_int_cst_equal (field
, index
))
7050 if (!TREE_SIDE_EFFECTS (value
))
7051 return expand_expr (fold (value
), target
, tmode
, modifier
);
7056 else if (optimize
>= 1
7057 && modifier
!= EXPAND_CONST_ADDRESS
7058 && modifier
!= EXPAND_INITIALIZER
7059 && modifier
!= EXPAND_MEMORY
7060 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
7061 && TREE_CODE (array
) == VAR_DECL
&& DECL_INITIAL (array
)
7062 && TREE_CODE (DECL_INITIAL (array
)) != ERROR_MARK
7063 && targetm
.binds_local_p (array
))
7065 if (TREE_CODE (index
) == INTEGER_CST
)
7067 tree init
= DECL_INITIAL (array
);
7069 if (TREE_CODE (init
) == CONSTRUCTOR
)
7071 unsigned HOST_WIDE_INT ix
;
7074 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
7076 if (tree_int_cst_equal (field
, index
))
7078 if (!TREE_SIDE_EFFECTS (value
))
7079 return expand_expr (fold (value
), target
, tmode
,
7084 else if (TREE_CODE (init
) == STRING_CST
7085 && 0 > compare_tree_int (index
,
7086 TREE_STRING_LENGTH (init
)))
7088 tree type
= TREE_TYPE (TREE_TYPE (init
));
7089 enum machine_mode mode
= TYPE_MODE (type
);
7091 if (GET_MODE_CLASS (mode
) == MODE_INT
7092 && GET_MODE_SIZE (mode
) == 1)
7093 return gen_int_mode (TREE_STRING_POINTER (init
)
7094 [TREE_INT_CST_LOW (index
)], mode
);
7099 goto normal_inner_ref
;
7102 /* If the operand is a CONSTRUCTOR, we can just extract the
7103 appropriate field if it is present. */
7104 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == CONSTRUCTOR
)
7106 unsigned HOST_WIDE_INT idx
;
7109 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp
, 0)),
7111 if (field
== TREE_OPERAND (exp
, 1)
7112 /* We can normally use the value of the field in the
7113 CONSTRUCTOR. However, if this is a bitfield in
7114 an integral mode that we can fit in a HOST_WIDE_INT,
7115 we must mask only the number of bits in the bitfield,
7116 since this is done implicitly by the constructor. If
7117 the bitfield does not meet either of those conditions,
7118 we can't do this optimization. */
7119 && (! DECL_BIT_FIELD (field
)
7120 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
7121 && (GET_MODE_BITSIZE (DECL_MODE (field
))
7122 <= HOST_BITS_PER_WIDE_INT
))))
7124 if (DECL_BIT_FIELD (field
)
7125 && modifier
== EXPAND_STACK_PARM
)
7127 op0
= expand_expr (value
, target
, tmode
, modifier
);
7128 if (DECL_BIT_FIELD (field
))
7130 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
7131 enum machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
7133 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
7135 op1
= GEN_INT (((HOST_WIDE_INT
) 1 << bitsize
) - 1);
7136 op0
= expand_and (imode
, op0
, op1
, target
);
7141 = build_int_cst (NULL_TREE
,
7142 GET_MODE_BITSIZE (imode
) - bitsize
);
7144 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
7146 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
7154 goto normal_inner_ref
;
7157 case ARRAY_RANGE_REF
:
7160 enum machine_mode mode1
;
7161 HOST_WIDE_INT bitsize
, bitpos
;
7164 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7165 &mode1
, &unsignedp
, &volatilep
, true);
7168 /* If we got back the original object, something is wrong. Perhaps
7169 we are evaluating an expression too early. In any event, don't
7170 infinitely recurse. */
7171 gcc_assert (tem
!= exp
);
7173 /* If TEM's type is a union of variable size, pass TARGET to the inner
7174 computation, since it will need a temporary and TARGET is known
7175 to have to do. This occurs in unchecked conversion in Ada. */
7179 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
7180 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
7182 && modifier
!= EXPAND_STACK_PARM
7183 ? target
: NULL_RTX
),
7185 (modifier
== EXPAND_INITIALIZER
7186 || modifier
== EXPAND_CONST_ADDRESS
7187 || modifier
== EXPAND_STACK_PARM
)
7188 ? modifier
: EXPAND_NORMAL
);
7190 /* If this is a constant, put it into a register if it is a legitimate
7191 constant, OFFSET is 0, and we won't try to extract outside the
7192 register (in case we were passed a partially uninitialized object
7193 or a view_conversion to a larger size). Force the constant to
7194 memory otherwise. */
7195 if (CONSTANT_P (op0
))
7197 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (tem
));
7198 if (mode
!= BLKmode
&& LEGITIMATE_CONSTANT_P (op0
)
7200 && bitpos
+ bitsize
<= GET_MODE_BITSIZE (mode
))
7201 op0
= force_reg (mode
, op0
);
7203 op0
= validize_mem (force_const_mem (mode
, op0
));
7206 /* Otherwise, if this object not in memory and we either have an
7207 offset, a BLKmode result, or a reference outside the object, put it
7208 there. Such cases can occur in Ada if we have unchecked conversion
7209 of an expression from a scalar type to an array or record type or
7210 for an ARRAY_RANGE_REF whose type is BLKmode. */
7211 else if (!MEM_P (op0
)
7213 || (bitpos
+ bitsize
> GET_MODE_BITSIZE (GET_MODE (op0
)))
7214 || (code
== ARRAY_RANGE_REF
&& mode
== BLKmode
)))
7216 tree nt
= build_qualified_type (TREE_TYPE (tem
),
7217 (TYPE_QUALS (TREE_TYPE (tem
))
7218 | TYPE_QUAL_CONST
));
7219 rtx memloc
= assign_temp (nt
, 1, 1, 1);
7221 emit_move_insn (memloc
, op0
);
7227 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
7230 gcc_assert (MEM_P (op0
));
7232 #ifdef POINTERS_EXTEND_UNSIGNED
7233 if (GET_MODE (offset_rtx
) != Pmode
)
7234 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
7236 if (GET_MODE (offset_rtx
) != ptr_mode
)
7237 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
7240 if (GET_MODE (op0
) == BLKmode
7241 /* A constant address in OP0 can have VOIDmode, we must
7242 not try to call force_reg in that case. */
7243 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
7245 && (bitpos
% bitsize
) == 0
7246 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
7247 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
7249 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7253 op0
= offset_address (op0
, offset_rtx
,
7254 highest_pow2_factor (offset
));
7257 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7258 record its alignment as BIGGEST_ALIGNMENT. */
7259 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
7260 && is_aligning_offset (offset
, tem
))
7261 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
7263 /* Don't forget about volatility even if this is a bitfield. */
7264 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
7266 if (op0
== orig_op0
)
7267 op0
= copy_rtx (op0
);
7269 MEM_VOLATILE_P (op0
) = 1;
7272 /* The following code doesn't handle CONCAT.
7273 Assume only bitpos == 0 can be used for CONCAT, due to
7274 one element arrays having the same mode as its element. */
7275 if (GET_CODE (op0
) == CONCAT
)
7277 gcc_assert (bitpos
== 0
7278 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)));
7282 /* In cases where an aligned union has an unaligned object
7283 as a field, we might be extracting a BLKmode value from
7284 an integer-mode (e.g., SImode) object. Handle this case
7285 by doing the extract into an object as wide as the field
7286 (which we know to be the width of a basic mode), then
7287 storing into memory, and changing the mode to BLKmode. */
7288 if (mode1
== VOIDmode
7289 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
7290 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
7291 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7292 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
7293 && modifier
!= EXPAND_CONST_ADDRESS
7294 && modifier
!= EXPAND_INITIALIZER
)
7295 /* If the field isn't aligned enough to fetch as a memref,
7296 fetch it as a bit field. */
7297 || (mode1
!= BLKmode
7298 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
7299 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
7301 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
7302 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
7303 && ((modifier
== EXPAND_CONST_ADDRESS
7304 || modifier
== EXPAND_INITIALIZER
)
7306 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
7307 || (bitpos
% BITS_PER_UNIT
!= 0)))
7308 /* If the type and the field are a constant size and the
7309 size of the type isn't the same size as the bitfield,
7310 we must use bitfield operations. */
7312 && TYPE_SIZE (TREE_TYPE (exp
))
7313 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
7314 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
7317 enum machine_mode ext_mode
= mode
;
7319 if (ext_mode
== BLKmode
7320 && ! (target
!= 0 && MEM_P (op0
)
7322 && bitpos
% BITS_PER_UNIT
== 0))
7323 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
7325 if (ext_mode
== BLKmode
)
7328 target
= assign_temp (type
, 0, 1, 1);
7333 /* In this case, BITPOS must start at a byte boundary and
7334 TARGET, if specified, must be a MEM. */
7335 gcc_assert (MEM_P (op0
)
7336 && (!target
|| MEM_P (target
))
7337 && !(bitpos
% BITS_PER_UNIT
));
7339 emit_block_move (target
,
7340 adjust_address (op0
, VOIDmode
,
7341 bitpos
/ BITS_PER_UNIT
),
7342 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
7344 (modifier
== EXPAND_STACK_PARM
7345 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7350 op0
= validize_mem (op0
);
7352 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
7353 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7355 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
7356 (modifier
== EXPAND_STACK_PARM
7357 ? NULL_RTX
: target
),
7358 ext_mode
, ext_mode
);
7360 /* If the result is a record type and BITSIZE is narrower than
7361 the mode of OP0, an integral mode, and this is a big endian
7362 machine, we must put the field into the high-order bits. */
7363 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
7364 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
7365 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
7366 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
7367 size_int (GET_MODE_BITSIZE (GET_MODE (op0
))
7371 /* If the result type is BLKmode, store the data into a temporary
7372 of the appropriate type, but with the mode corresponding to the
7373 mode for the data we have (op0's mode). It's tempting to make
7374 this a constant type, since we know it's only being stored once,
7375 but that can cause problems if we are taking the address of this
7376 COMPONENT_REF because the MEM of any reference via that address
7377 will have flags corresponding to the type, which will not
7378 necessarily be constant. */
7379 if (mode
== BLKmode
)
7382 = assign_stack_temp_for_type
7383 (ext_mode
, GET_MODE_BITSIZE (ext_mode
), 0, type
);
7385 emit_move_insn (new, op0
);
7386 op0
= copy_rtx (new);
7387 PUT_MODE (op0
, BLKmode
);
7388 set_mem_attributes (op0
, exp
, 1);
7394 /* If the result is BLKmode, use that to access the object
7396 if (mode
== BLKmode
)
7399 /* Get a reference to just this component. */
7400 if (modifier
== EXPAND_CONST_ADDRESS
7401 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7402 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7404 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7406 if (op0
== orig_op0
)
7407 op0
= copy_rtx (op0
);
7409 set_mem_attributes (op0
, exp
, 0);
7410 if (REG_P (XEXP (op0
, 0)))
7411 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7413 MEM_VOLATILE_P (op0
) |= volatilep
;
7414 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
7415 || modifier
== EXPAND_CONST_ADDRESS
7416 || modifier
== EXPAND_INITIALIZER
)
7418 else if (target
== 0)
7419 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
7421 convert_move (target
, op0
, unsignedp
);
7426 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
7429 /* Check for a built-in function. */
7430 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
7431 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7433 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7435 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7436 == BUILT_IN_FRONTEND
)
7437 return lang_hooks
.expand_expr (exp
, original_target
,
7441 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
7444 return expand_call (exp
, target
, ignore
);
7446 case NON_LVALUE_EXPR
:
7449 if (TREE_OPERAND (exp
, 0) == error_mark_node
)
7452 if (TREE_CODE (type
) == UNION_TYPE
)
7454 tree valtype
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7456 /* If both input and output are BLKmode, this conversion isn't doing
7457 anything except possibly changing memory attribute. */
7458 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
7460 rtx result
= expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
,
7463 result
= copy_rtx (result
);
7464 set_mem_attributes (result
, exp
, 0);
7470 if (TYPE_MODE (type
) != BLKmode
)
7471 target
= gen_reg_rtx (TYPE_MODE (type
));
7473 target
= assign_temp (type
, 0, 1, 1);
7477 /* Store data into beginning of memory target. */
7478 store_expr (TREE_OPERAND (exp
, 0),
7479 adjust_address (target
, TYPE_MODE (valtype
), 0),
7480 modifier
== EXPAND_STACK_PARM
);
7484 gcc_assert (REG_P (target
));
7486 /* Store this field into a union of the proper type. */
7487 store_field (target
,
7488 MIN ((int_size_in_bytes (TREE_TYPE
7489 (TREE_OPERAND (exp
, 0)))
7491 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
7492 0, TYPE_MODE (valtype
), TREE_OPERAND (exp
, 0),
7496 /* Return the entire union. */
7500 if (mode
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
7502 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
,
7505 /* If the signedness of the conversion differs and OP0 is
7506 a promoted SUBREG, clear that indication since we now
7507 have to do the proper extension. */
7508 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))) != unsignedp
7509 && GET_CODE (op0
) == SUBREG
)
7510 SUBREG_PROMOTED_VAR_P (op0
) = 0;
7512 return REDUCE_BIT_FIELD (op0
);
7515 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
7516 if (GET_MODE (op0
) == mode
)
7519 /* If OP0 is a constant, just convert it into the proper mode. */
7520 else if (CONSTANT_P (op0
))
7522 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7523 enum machine_mode inner_mode
= TYPE_MODE (inner_type
);
7525 if (modifier
== EXPAND_INITIALIZER
)
7526 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
7527 subreg_lowpart_offset (mode
,
7530 op0
= convert_modes (mode
, inner_mode
, op0
,
7531 TYPE_UNSIGNED (inner_type
));
7534 else if (modifier
== EXPAND_INITIALIZER
)
7535 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
7537 else if (target
== 0)
7538 op0
= convert_to_mode (mode
, op0
,
7539 TYPE_UNSIGNED (TREE_TYPE
7540 (TREE_OPERAND (exp
, 0))));
7543 convert_move (target
, op0
,
7544 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7548 return REDUCE_BIT_FIELD (op0
);
7550 case VIEW_CONVERT_EXPR
:
7551 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
7553 /* If the input and output modes are both the same, we are done. */
7554 if (TYPE_MODE (type
) == GET_MODE (op0
))
7556 /* If neither mode is BLKmode, and both modes are the same size
7557 then we can use gen_lowpart. */
7558 else if (TYPE_MODE (type
) != BLKmode
&& GET_MODE (op0
) != BLKmode
7559 && GET_MODE_SIZE (TYPE_MODE (type
))
7560 == GET_MODE_SIZE (GET_MODE (op0
)))
7562 if (GET_CODE (op0
) == SUBREG
)
7563 op0
= force_reg (GET_MODE (op0
), op0
);
7564 op0
= gen_lowpart (TYPE_MODE (type
), op0
);
7566 /* If both modes are integral, then we can convert from one to the
7568 else if (SCALAR_INT_MODE_P (GET_MODE (op0
))
7569 && SCALAR_INT_MODE_P (TYPE_MODE (type
)))
7570 op0
= convert_modes (TYPE_MODE (type
), GET_MODE (op0
), op0
,
7571 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7572 /* As a last resort, spill op0 to memory, and reload it in a
7574 else if (!MEM_P (op0
))
7576 /* If the operand is not a MEM, force it into memory. Since we
7577 are going to be be changing the mode of the MEM, don't call
7578 force_const_mem for constants because we don't allow pool
7579 constants to change mode. */
7580 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7582 gcc_assert (!TREE_ADDRESSABLE (exp
));
7584 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
7586 = assign_stack_temp_for_type
7587 (TYPE_MODE (inner_type
),
7588 GET_MODE_SIZE (TYPE_MODE (inner_type
)), 0, inner_type
);
7590 emit_move_insn (target
, op0
);
7594 /* At this point, OP0 is in the correct mode. If the output type is such
7595 that the operand is known to be aligned, indicate that it is.
7596 Otherwise, we need only be concerned about alignment for non-BLKmode
7600 op0
= copy_rtx (op0
);
7602 if (TYPE_ALIGN_OK (type
))
7603 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
7604 else if (TYPE_MODE (type
) != BLKmode
&& STRICT_ALIGNMENT
7605 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
)))
7607 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
7608 HOST_WIDE_INT temp_size
7609 = MAX (int_size_in_bytes (inner_type
),
7610 (HOST_WIDE_INT
) GET_MODE_SIZE (TYPE_MODE (type
)));
7611 rtx
new = assign_stack_temp_for_type (TYPE_MODE (type
),
7612 temp_size
, 0, type
);
7613 rtx new_with_op0_mode
= adjust_address (new, GET_MODE (op0
), 0);
7615 gcc_assert (!TREE_ADDRESSABLE (exp
));
7617 if (GET_MODE (op0
) == BLKmode
)
7618 emit_block_move (new_with_op0_mode
, op0
,
7619 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type
))),
7620 (modifier
== EXPAND_STACK_PARM
7621 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7623 emit_move_insn (new_with_op0_mode
, op0
);
7628 op0
= adjust_address (op0
, TYPE_MODE (type
), 0);
7634 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7635 something else, make sure we add the register to the constant and
7636 then to the other thing. This case can occur during strength
7637 reduction and doing it this way will produce better code if the
7638 frame pointer or argument pointer is eliminated.
7640 fold-const.c will ensure that the constant is always in the inner
7641 PLUS_EXPR, so the only case we need to do anything about is if
7642 sp, ap, or fp is our second argument, in which case we must swap
7643 the innermost first argument and our second argument. */
7645 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == PLUS_EXPR
7646 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 1)) == INTEGER_CST
7647 && TREE_CODE (TREE_OPERAND (exp
, 1)) == VAR_DECL
7648 && (DECL_RTL (TREE_OPERAND (exp
, 1)) == frame_pointer_rtx
7649 || DECL_RTL (TREE_OPERAND (exp
, 1)) == stack_pointer_rtx
7650 || DECL_RTL (TREE_OPERAND (exp
, 1)) == arg_pointer_rtx
))
7652 tree t
= TREE_OPERAND (exp
, 1);
7654 TREE_OPERAND (exp
, 1) = TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
7655 TREE_OPERAND (TREE_OPERAND (exp
, 0), 0) = t
;
7658 /* If the result is to be ptr_mode and we are adding an integer to
7659 something, we might be forming a constant. So try to use
7660 plus_constant. If it produces a sum and we can't accept it,
7661 use force_operand. This allows P = &ARR[const] to generate
7662 efficient code on machines where a SYMBOL_REF is not a valid
7665 If this is an EXPAND_SUM call, always return the sum. */
7666 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
7667 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
7669 if (modifier
== EXPAND_STACK_PARM
)
7671 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
7672 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
7673 && TREE_CONSTANT (TREE_OPERAND (exp
, 1)))
7677 op1
= expand_expr (TREE_OPERAND (exp
, 1), subtarget
, VOIDmode
,
7679 /* Use immed_double_const to ensure that the constant is
7680 truncated according to the mode of OP1, then sign extended
7681 to a HOST_WIDE_INT. Using the constant directly can result
7682 in non-canonical RTL in a 64x32 cross compile. */
7684 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 0)),
7686 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))));
7687 op1
= plus_constant (op1
, INTVAL (constant_part
));
7688 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7689 op1
= force_operand (op1
, target
);
7690 return REDUCE_BIT_FIELD (op1
);
7693 else if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
7694 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
7695 && TREE_CONSTANT (TREE_OPERAND (exp
, 0)))
7699 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
7700 (modifier
== EXPAND_INITIALIZER
7701 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
7702 if (! CONSTANT_P (op0
))
7704 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
,
7705 VOIDmode
, modifier
);
7706 /* Return a PLUS if modifier says it's OK. */
7707 if (modifier
== EXPAND_SUM
7708 || modifier
== EXPAND_INITIALIZER
)
7709 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
7712 /* Use immed_double_const to ensure that the constant is
7713 truncated according to the mode of OP1, then sign extended
7714 to a HOST_WIDE_INT. Using the constant directly can result
7715 in non-canonical RTL in a 64x32 cross compile. */
7717 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1)),
7719 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7720 op0
= plus_constant (op0
, INTVAL (constant_part
));
7721 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7722 op0
= force_operand (op0
, target
);
7723 return REDUCE_BIT_FIELD (op0
);
7727 /* No sense saving up arithmetic to be done
7728 if it's all in the wrong mode to form part of an address.
7729 And force_operand won't know whether to sign-extend or
7731 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7732 || mode
!= ptr_mode
)
7734 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7735 subtarget
, &op0
, &op1
, 0);
7736 if (op0
== const0_rtx
)
7738 if (op1
== const0_rtx
)
7743 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7744 subtarget
, &op0
, &op1
, modifier
);
7745 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
7748 /* For initializers, we are allowed to return a MINUS of two
7749 symbolic constants. Here we handle all cases when both operands
7751 /* Handle difference of two symbolic constants,
7752 for the sake of an initializer. */
7753 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7754 && really_constant_p (TREE_OPERAND (exp
, 0))
7755 && really_constant_p (TREE_OPERAND (exp
, 1)))
7757 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7758 NULL_RTX
, &op0
, &op1
, modifier
);
7760 /* If the last operand is a CONST_INT, use plus_constant of
7761 the negated constant. Else make the MINUS. */
7762 if (GET_CODE (op1
) == CONST_INT
)
7763 return REDUCE_BIT_FIELD (plus_constant (op0
, - INTVAL (op1
)));
7765 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
7768 /* No sense saving up arithmetic to be done
7769 if it's all in the wrong mode to form part of an address.
7770 And force_operand won't know whether to sign-extend or
7772 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
7773 || mode
!= ptr_mode
)
7776 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7777 subtarget
, &op0
, &op1
, modifier
);
7779 /* Convert A - const to A + (-const). */
7780 if (GET_CODE (op1
) == CONST_INT
)
7782 op1
= negate_rtx (mode
, op1
);
7783 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
7789 /* If first operand is constant, swap them.
7790 Thus the following special case checks need only
7791 check the second operand. */
7792 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
)
7794 tree t1
= TREE_OPERAND (exp
, 0);
7795 TREE_OPERAND (exp
, 0) = TREE_OPERAND (exp
, 1);
7796 TREE_OPERAND (exp
, 1) = t1
;
7799 /* Attempt to return something suitable for generating an
7800 indexed address, for machines that support that. */
7802 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
7803 && host_integerp (TREE_OPERAND (exp
, 1), 0))
7805 tree exp1
= TREE_OPERAND (exp
, 1);
7807 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
7811 op0
= force_operand (op0
, NULL_RTX
);
7813 op0
= copy_to_mode_reg (mode
, op0
);
7815 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
7816 gen_int_mode (tree_low_cst (exp1
, 0),
7817 TYPE_MODE (TREE_TYPE (exp1
)))));
7820 if (modifier
== EXPAND_STACK_PARM
)
7823 /* Check for multiplying things that have been extended
7824 from a narrower type. If this machine supports multiplying
7825 in that narrower type with a result in the desired type,
7826 do it that way, and avoid the explicit type-conversion. */
7828 subexp0
= TREE_OPERAND (exp
, 0);
7829 subexp1
= TREE_OPERAND (exp
, 1);
7830 /* First, check if we have a multiplication of one signed and one
7831 unsigned operand. */
7832 if (TREE_CODE (subexp0
) == NOP_EXPR
7833 && TREE_CODE (subexp1
) == NOP_EXPR
7834 && TREE_CODE (type
) == INTEGER_TYPE
7835 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0
, 0)))
7836 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))))
7837 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0
, 0)))
7838 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1
, 0))))
7839 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0
, 0)))
7840 != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1
, 0)))))
7842 enum machine_mode innermode
7843 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0
, 0)));
7844 this_optab
= usmul_widen_optab
;
7845 if (mode
== GET_MODE_WIDER_MODE (innermode
))
7847 if (this_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
7849 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0
, 0))))
7850 expand_operands (TREE_OPERAND (subexp0
, 0),
7851 TREE_OPERAND (subexp1
, 0),
7852 NULL_RTX
, &op0
, &op1
, 0);
7854 expand_operands (TREE_OPERAND (subexp0
, 0),
7855 TREE_OPERAND (subexp1
, 0),
7856 NULL_RTX
, &op1
, &op0
, 0);
7862 /* Check for a multiplication with matching signedness. */
7863 else if (TREE_CODE (TREE_OPERAND (exp
, 0)) == NOP_EXPR
7864 && TREE_CODE (type
) == INTEGER_TYPE
7865 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7866 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))))
7867 && ((TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
7868 && int_fits_type_p (TREE_OPERAND (exp
, 1),
7869 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
7870 /* Don't use a widening multiply if a shift will do. */
7871 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
7872 > HOST_BITS_PER_WIDE_INT
)
7873 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1))) < 0))
7875 (TREE_CODE (TREE_OPERAND (exp
, 1)) == NOP_EXPR
7876 && (TYPE_PRECISION (TREE_TYPE
7877 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
7878 == TYPE_PRECISION (TREE_TYPE
7880 (TREE_OPERAND (exp
, 0), 0))))
7881 /* If both operands are extended, they must either both
7882 be zero-extended or both be sign-extended. */
7883 && (TYPE_UNSIGNED (TREE_TYPE
7884 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
7885 == TYPE_UNSIGNED (TREE_TYPE
7887 (TREE_OPERAND (exp
, 0), 0)))))))
7889 tree op0type
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0));
7890 enum machine_mode innermode
= TYPE_MODE (op0type
);
7891 bool zextend_p
= TYPE_UNSIGNED (op0type
);
7892 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
7893 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
7895 if (mode
== GET_MODE_2XWIDER_MODE (innermode
))
7897 if (this_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
)
7899 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
7900 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7901 TREE_OPERAND (exp
, 1),
7902 NULL_RTX
, &op0
, &op1
, 0);
7904 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7905 TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
7906 NULL_RTX
, &op0
, &op1
, 0);
7909 else if (other_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
7910 && innermode
== word_mode
)
7913 op0
= expand_expr (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
7914 NULL_RTX
, VOIDmode
, 0);
7915 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
7916 op1
= convert_modes (innermode
, mode
,
7917 expand_expr (TREE_OPERAND (exp
, 1),
7918 NULL_RTX
, VOIDmode
, 0),
7921 op1
= expand_expr (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
7922 NULL_RTX
, VOIDmode
, 0);
7923 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
7924 unsignedp
, OPTAB_LIB_WIDEN
);
7925 hipart
= gen_highpart (innermode
, temp
);
7926 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
7930 emit_move_insn (hipart
, htem
);
7931 return REDUCE_BIT_FIELD (temp
);
7935 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7936 subtarget
, &op0
, &op1
, 0);
7937 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
7939 case TRUNC_DIV_EXPR
:
7940 case FLOOR_DIV_EXPR
:
7942 case ROUND_DIV_EXPR
:
7943 case EXACT_DIV_EXPR
:
7944 if (modifier
== EXPAND_STACK_PARM
)
7946 /* Possible optimization: compute the dividend with EXPAND_SUM
7947 then if the divisor is constant can optimize the case
7948 where some terms of the dividend have coeffs divisible by it. */
7949 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7950 subtarget
, &op0
, &op1
, 0);
7951 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
7956 case TRUNC_MOD_EXPR
:
7957 case FLOOR_MOD_EXPR
:
7959 case ROUND_MOD_EXPR
:
7960 if (modifier
== EXPAND_STACK_PARM
)
7962 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
7963 subtarget
, &op0
, &op1
, 0);
7964 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
7966 case FIX_ROUND_EXPR
:
7967 case FIX_FLOOR_EXPR
:
7969 gcc_unreachable (); /* Not used for C. */
7971 case FIX_TRUNC_EXPR
:
7972 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
, 0);
7973 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
7974 target
= gen_reg_rtx (mode
);
7975 expand_fix (target
, op0
, unsignedp
);
7979 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
, 0);
7980 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
7981 target
= gen_reg_rtx (mode
);
7982 /* expand_float can't figure out what to do if FROM has VOIDmode.
7983 So give it the correct mode. With -O, cse will optimize this. */
7984 if (GET_MODE (op0
) == VOIDmode
)
7985 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))),
7987 expand_float (target
, op0
,
7988 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
7992 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
7993 if (modifier
== EXPAND_STACK_PARM
)
7995 temp
= expand_unop (mode
,
7996 optab_for_tree_code (NEGATE_EXPR
, type
),
7999 return REDUCE_BIT_FIELD (temp
);
8002 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8003 if (modifier
== EXPAND_STACK_PARM
)
8006 /* ABS_EXPR is not valid for complex arguments. */
8007 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8008 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
8010 /* Unsigned abs is simply the operand. Testing here means we don't
8011 risk generating incorrect code below. */
8012 if (TYPE_UNSIGNED (type
))
8015 return expand_abs (mode
, op0
, target
, unsignedp
,
8016 safe_from_p (target
, TREE_OPERAND (exp
, 0), 1));
8020 target
= original_target
;
8022 || modifier
== EXPAND_STACK_PARM
8023 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
8024 || GET_MODE (target
) != mode
8026 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8027 target
= gen_reg_rtx (mode
);
8028 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8029 target
, &op0
, &op1
, 0);
8031 /* First try to do it with a special MIN or MAX instruction.
8032 If that does not win, use a conditional jump to select the proper
8034 this_optab
= optab_for_tree_code (code
, type
);
8035 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8040 /* At this point, a MEM target is no longer useful; we will get better
8043 if (! REG_P (target
))
8044 target
= gen_reg_rtx (mode
);
8046 /* If op1 was placed in target, swap op0 and op1. */
8047 if (target
!= op0
&& target
== op1
)
8054 /* We generate better code and avoid problems with op1 mentioning
8055 target by forcing op1 into a pseudo if it isn't a constant. */
8056 if (! CONSTANT_P (op1
))
8057 op1
= force_reg (mode
, op1
);
8060 enum rtx_code comparison_code
;
8063 if (code
== MAX_EXPR
)
8064 comparison_code
= unsignedp
? GEU
: GE
;
8066 comparison_code
= unsignedp
? LEU
: LE
;
8068 /* Canonicalize to comparsions against 0. */
8069 if (op1
== const1_rtx
)
8071 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8072 or (a != 0 ? a : 1) for unsigned.
8073 For MIN we are safe converting (a <= 1 ? a : 1)
8074 into (a <= 0 ? a : 1) */
8075 cmpop1
= const0_rtx
;
8076 if (code
== MAX_EXPR
)
8077 comparison_code
= unsignedp
? NE
: GT
;
8079 if (op1
== constm1_rtx
&& !unsignedp
)
8081 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8082 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8083 cmpop1
= const0_rtx
;
8084 if (code
== MIN_EXPR
)
8085 comparison_code
= LT
;
8087 #ifdef HAVE_conditional_move
8088 /* Use a conditional move if possible. */
8089 if (can_conditionally_move_p (mode
))
8093 /* ??? Same problem as in expmed.c: emit_conditional_move
8094 forces a stack adjustment via compare_from_rtx, and we
8095 lose the stack adjustment if the sequence we are about
8096 to create is discarded. */
8097 do_pending_stack_adjust ();
8101 /* Try to emit the conditional move. */
8102 insn
= emit_conditional_move (target
, comparison_code
,
8107 /* If we could do the conditional move, emit the sequence,
8111 rtx seq
= get_insns ();
8117 /* Otherwise discard the sequence and fall back to code with
8123 emit_move_insn (target
, op0
);
8125 temp
= gen_label_rtx ();
8127 /* If this mode is an integer too wide to compare properly,
8128 compare word by word. Rely on cse to optimize constant cases. */
8129 if (GET_MODE_CLASS (mode
) == MODE_INT
8130 && ! can_compare_p (GE
, mode
, ccp_jump
))
8132 if (code
== MAX_EXPR
)
8133 do_jump_by_parts_greater_rtx (mode
, unsignedp
, target
, op1
,
8136 do_jump_by_parts_greater_rtx (mode
, unsignedp
, op1
, target
,
8141 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
8142 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
);
8145 emit_move_insn (target
, op1
);
8150 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8151 if (modifier
== EXPAND_STACK_PARM
)
8153 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8157 /* ??? Can optimize bitwise operations with one arg constant.
8158 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8159 and (a bitwise1 b) bitwise2 b (etc)
8160 but that is probably not worth while. */
8162 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8163 boolean values when we want in all cases to compute both of them. In
8164 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8165 as actual zero-or-1 values and then bitwise anding. In cases where
8166 there cannot be any side effects, better code would be made by
8167 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8168 how to recognize those cases. */
8170 case TRUTH_AND_EXPR
:
8171 code
= BIT_AND_EXPR
;
8176 code
= BIT_IOR_EXPR
;
8180 case TRUTH_XOR_EXPR
:
8181 code
= BIT_XOR_EXPR
;
8189 if (! safe_from_p (subtarget
, TREE_OPERAND (exp
, 1), 1))
8191 if (modifier
== EXPAND_STACK_PARM
)
8193 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
, 0);
8194 return expand_shift (code
, mode
, op0
, TREE_OPERAND (exp
, 1), target
,
8197 /* Could determine the answer when only additive constants differ. Also,
8198 the addition of one can be handled by changing the condition. */
8205 case UNORDERED_EXPR
:
8213 temp
= do_store_flag (exp
,
8214 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
8215 tmode
!= VOIDmode
? tmode
: mode
, 0);
8219 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
8220 if (code
== NE_EXPR
&& integer_zerop (TREE_OPERAND (exp
, 1))
8222 && REG_P (original_target
)
8223 && (GET_MODE (original_target
)
8224 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
8226 temp
= expand_expr (TREE_OPERAND (exp
, 0), original_target
,
8229 /* If temp is constant, we can just compute the result. */
8230 if (GET_CODE (temp
) == CONST_INT
)
8232 if (INTVAL (temp
) != 0)
8233 emit_move_insn (target
, const1_rtx
);
8235 emit_move_insn (target
, const0_rtx
);
8240 if (temp
!= original_target
)
8242 enum machine_mode mode1
= GET_MODE (temp
);
8243 if (mode1
== VOIDmode
)
8244 mode1
= tmode
!= VOIDmode
? tmode
: mode
;
8246 temp
= copy_to_mode_reg (mode1
, temp
);
8249 op1
= gen_label_rtx ();
8250 emit_cmp_and_jump_insns (temp
, const0_rtx
, EQ
, NULL_RTX
,
8251 GET_MODE (temp
), unsignedp
, op1
);
8252 emit_move_insn (temp
, const1_rtx
);
8257 /* If no set-flag instruction, must generate a conditional store
8258 into a temporary variable. Drop through and handle this
8263 || modifier
== EXPAND_STACK_PARM
8264 || ! safe_from_p (target
, exp
, 1)
8265 /* Make sure we don't have a hard reg (such as function's return
8266 value) live across basic blocks, if not optimizing. */
8267 || (!optimize
&& REG_P (target
)
8268 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
8269 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8272 emit_move_insn (target
, const0_rtx
);
8274 op1
= gen_label_rtx ();
8275 jumpifnot (exp
, op1
);
8278 emit_move_insn (target
, const1_rtx
);
8281 return ignore
? const0_rtx
: target
;
8283 case TRUTH_NOT_EXPR
:
8284 if (modifier
== EXPAND_STACK_PARM
)
8286 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
, 0);
8287 /* The parser is careful to generate TRUTH_NOT_EXPR
8288 only with operands that are always zero or one. */
8289 temp
= expand_binop (mode
, xor_optab
, op0
, const1_rtx
,
8290 target
, 1, OPTAB_LIB_WIDEN
);
8294 case STATEMENT_LIST
:
8296 tree_stmt_iterator iter
;
8298 gcc_assert (ignore
);
8300 for (iter
= tsi_start (exp
); !tsi_end_p (iter
); tsi_next (&iter
))
8301 expand_expr (tsi_stmt (iter
), const0_rtx
, VOIDmode
, modifier
);
8306 /* A COND_EXPR with its type being VOID_TYPE represents a
8307 conditional jump and is handled in
8308 expand_gimple_cond_expr. */
8309 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp
)));
8311 /* Note that COND_EXPRs whose type is a structure or union
8312 are required to be constructed to contain assignments of
8313 a temporary variable, so that we can evaluate them here
8314 for side effect only. If type is void, we must do likewise. */
8316 gcc_assert (!TREE_ADDRESSABLE (type
)
8318 && TREE_TYPE (TREE_OPERAND (exp
, 1)) != void_type_node
8319 && TREE_TYPE (TREE_OPERAND (exp
, 2)) != void_type_node
);
8321 /* If we are not to produce a result, we have no target. Otherwise,
8322 if a target was specified use it; it will not be used as an
8323 intermediate target unless it is safe. If no target, use a
8326 if (modifier
!= EXPAND_STACK_PARM
8328 && safe_from_p (original_target
, TREE_OPERAND (exp
, 0), 1)
8329 && GET_MODE (original_target
) == mode
8330 #ifdef HAVE_conditional_move
8331 && (! can_conditionally_move_p (mode
)
8332 || REG_P (original_target
))
8334 && !MEM_P (original_target
))
8335 temp
= original_target
;
8337 temp
= assign_temp (type
, 0, 0, 1);
8339 do_pending_stack_adjust ();
8341 op0
= gen_label_rtx ();
8342 op1
= gen_label_rtx ();
8343 jumpifnot (TREE_OPERAND (exp
, 0), op0
);
8344 store_expr (TREE_OPERAND (exp
, 1), temp
,
8345 modifier
== EXPAND_STACK_PARM
);
8347 emit_jump_insn (gen_jump (op1
));
8350 store_expr (TREE_OPERAND (exp
, 2), temp
,
8351 modifier
== EXPAND_STACK_PARM
);
8358 target
= expand_vec_cond_expr (exp
, target
);
8363 tree lhs
= TREE_OPERAND (exp
, 0);
8364 tree rhs
= TREE_OPERAND (exp
, 1);
8366 gcc_assert (ignore
);
8368 /* Check for |= or &= of a bitfield of size one into another bitfield
8369 of size 1. In this case, (unless we need the result of the
8370 assignment) we can do this more efficiently with a
8371 test followed by an assignment, if necessary.
8373 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8374 things change so we do, this code should be enhanced to
8376 if (TREE_CODE (lhs
) == COMPONENT_REF
8377 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
8378 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
8379 && TREE_OPERAND (rhs
, 0) == lhs
8380 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
8381 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
8382 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
8384 rtx label
= gen_label_rtx ();
8386 do_jump (TREE_OPERAND (rhs
, 1),
8387 TREE_CODE (rhs
) == BIT_IOR_EXPR
? label
: 0,
8388 TREE_CODE (rhs
) == BIT_AND_EXPR
? label
: 0);
8389 expand_assignment (lhs
, convert (TREE_TYPE (rhs
),
8390 (TREE_CODE (rhs
) == BIT_IOR_EXPR
8392 : integer_zero_node
)));
8393 do_pending_stack_adjust ();
8398 expand_assignment (lhs
, rhs
);
8404 if (!TREE_OPERAND (exp
, 0))
8405 expand_null_return ();
8407 expand_return (TREE_OPERAND (exp
, 0));
8411 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
8414 /* Get the rtx code of the operands. */
8415 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8416 op1
= expand_expr (TREE_OPERAND (exp
, 1), 0, VOIDmode
, 0);
8419 target
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp
)));
8421 /* Move the real (op0) and imaginary (op1) parts to their location. */
8422 write_complex_part (target
, op0
, false);
8423 write_complex_part (target
, op1
, true);
8428 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8429 return read_complex_part (op0
, false);
8432 op0
= expand_expr (TREE_OPERAND (exp
, 0), 0, VOIDmode
, 0);
8433 return read_complex_part (op0
, true);
8436 expand_resx_expr (exp
);
8439 case TRY_CATCH_EXPR
:
8441 case EH_FILTER_EXPR
:
8442 case TRY_FINALLY_EXPR
:
8443 /* Lowered by tree-eh.c. */
8446 case WITH_CLEANUP_EXPR
:
8447 case CLEANUP_POINT_EXPR
:
8449 case CASE_LABEL_EXPR
:
8455 case PREINCREMENT_EXPR
:
8456 case PREDECREMENT_EXPR
:
8457 case POSTINCREMENT_EXPR
:
8458 case POSTDECREMENT_EXPR
:
8461 case TRUTH_ANDIF_EXPR
:
8462 case TRUTH_ORIF_EXPR
:
8463 /* Lowered by gimplify.c. */
8467 return get_exception_pointer (cfun
);
8470 return get_exception_filter (cfun
);
8473 /* Function descriptors are not valid except for as
8474 initialization constants, and should not be expanded. */
8482 expand_label (TREE_OPERAND (exp
, 0));
8486 expand_asm_expr (exp
);
8489 case WITH_SIZE_EXPR
:
8490 /* WITH_SIZE_EXPR expands to its first argument. The caller should
8491 have pulled out the size to use in whatever context it needed. */
8492 return expand_expr_real (TREE_OPERAND (exp
, 0), original_target
, tmode
,
8495 case REALIGN_LOAD_EXPR
:
8497 tree oprnd0
= TREE_OPERAND (exp
, 0);
8498 tree oprnd1
= TREE_OPERAND (exp
, 1);
8499 tree oprnd2
= TREE_OPERAND (exp
, 2);
8502 this_optab
= optab_for_tree_code (code
, type
);
8503 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, 0);
8504 op2
= expand_expr (oprnd2
, NULL_RTX
, VOIDmode
, 0);
8505 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
8511 case REDUC_MAX_EXPR
:
8512 case REDUC_MIN_EXPR
:
8513 case REDUC_PLUS_EXPR
:
8515 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, VOIDmode
, 0);
8516 this_optab
= optab_for_tree_code (code
, type
);
8517 temp
= expand_unop (mode
, this_optab
, op0
, target
, unsignedp
);
8522 case VEC_LSHIFT_EXPR
:
8523 case VEC_RSHIFT_EXPR
:
8525 target
= expand_vec_shift_expr (exp
, target
);
8530 return lang_hooks
.expand_expr (exp
, original_target
, tmode
,
8534 /* Here to do an ordinary binary operator. */
8536 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8537 subtarget
, &op0
, &op1
, 0);
8539 this_optab
= optab_for_tree_code (code
, type
);
8541 if (modifier
== EXPAND_STACK_PARM
)
8543 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
8544 unsignedp
, OPTAB_LIB_WIDEN
);
8546 return REDUCE_BIT_FIELD (temp
);
8548 #undef REDUCE_BIT_FIELD
8550 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
8551 signedness of TYPE), possibly returning the result in TARGET. */
8553 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
8555 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
8556 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
8558 if (TYPE_UNSIGNED (type
))
8561 if (prec
< HOST_BITS_PER_WIDE_INT
)
8562 mask
= immed_double_const (((unsigned HOST_WIDE_INT
) 1 << prec
) - 1, 0,
8565 mask
= immed_double_const ((unsigned HOST_WIDE_INT
) -1,
8566 ((unsigned HOST_WIDE_INT
) 1
8567 << (prec
- HOST_BITS_PER_WIDE_INT
)) - 1,
8569 return expand_and (GET_MODE (exp
), exp
, mask
, target
);
8573 tree count
= build_int_cst (NULL_TREE
,
8574 GET_MODE_BITSIZE (GET_MODE (exp
)) - prec
);
8575 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
8576 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
8580 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
8581 when applied to the address of EXP produces an address known to be
8582 aligned more than BIGGEST_ALIGNMENT. */
8585 is_aligning_offset (tree offset
, tree exp
)
8587 /* Strip off any conversions. */
8588 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8589 || TREE_CODE (offset
) == NOP_EXPR
8590 || TREE_CODE (offset
) == CONVERT_EXPR
)
8591 offset
= TREE_OPERAND (offset
, 0);
8593 /* We must now have a BIT_AND_EXPR with a constant that is one less than
8594 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
8595 if (TREE_CODE (offset
) != BIT_AND_EXPR
8596 || !host_integerp (TREE_OPERAND (offset
, 1), 1)
8597 || compare_tree_int (TREE_OPERAND (offset
, 1),
8598 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
8599 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset
, 1), 1) + 1) < 0)
8602 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
8603 It must be NEGATE_EXPR. Then strip any more conversions. */
8604 offset
= TREE_OPERAND (offset
, 0);
8605 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8606 || TREE_CODE (offset
) == NOP_EXPR
8607 || TREE_CODE (offset
) == CONVERT_EXPR
)
8608 offset
= TREE_OPERAND (offset
, 0);
8610 if (TREE_CODE (offset
) != NEGATE_EXPR
)
8613 offset
= TREE_OPERAND (offset
, 0);
8614 while (TREE_CODE (offset
) == NON_LVALUE_EXPR
8615 || TREE_CODE (offset
) == NOP_EXPR
8616 || TREE_CODE (offset
) == CONVERT_EXPR
)
8617 offset
= TREE_OPERAND (offset
, 0);
8619 /* This must now be the address of EXP. */
8620 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
8623 /* Return the tree node if an ARG corresponds to a string constant or zero
8624 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
8625 in bytes within the string that ARG is accessing. The type of the
8626 offset will be `sizetype'. */
8629 string_constant (tree arg
, tree
*ptr_offset
)
8634 if (TREE_CODE (arg
) == ADDR_EXPR
)
8636 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
8638 *ptr_offset
= size_zero_node
;
8639 return TREE_OPERAND (arg
, 0);
8641 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
8643 array
= TREE_OPERAND (arg
, 0);
8644 offset
= size_zero_node
;
8646 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
8648 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
8649 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
8650 if (TREE_CODE (array
) != STRING_CST
8651 && TREE_CODE (array
) != VAR_DECL
)
8657 else if (TREE_CODE (arg
) == PLUS_EXPR
)
8659 tree arg0
= TREE_OPERAND (arg
, 0);
8660 tree arg1
= TREE_OPERAND (arg
, 1);
8665 if (TREE_CODE (arg0
) == ADDR_EXPR
8666 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
8667 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
8669 array
= TREE_OPERAND (arg0
, 0);
8672 else if (TREE_CODE (arg1
) == ADDR_EXPR
8673 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
8674 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
8676 array
= TREE_OPERAND (arg1
, 0);
8685 if (TREE_CODE (array
) == STRING_CST
)
8687 *ptr_offset
= convert (sizetype
, offset
);
8690 else if (TREE_CODE (array
) == VAR_DECL
)
8694 /* Variables initialized to string literals can be handled too. */
8695 if (DECL_INITIAL (array
) == NULL_TREE
8696 || TREE_CODE (DECL_INITIAL (array
)) != STRING_CST
)
8699 /* If they are read-only, non-volatile and bind locally. */
8700 if (! TREE_READONLY (array
)
8701 || TREE_SIDE_EFFECTS (array
)
8702 || ! targetm
.binds_local_p (array
))
8705 /* Avoid const char foo[4] = "abcde"; */
8706 if (DECL_SIZE_UNIT (array
) == NULL_TREE
8707 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
8708 || (length
= TREE_STRING_LENGTH (DECL_INITIAL (array
))) <= 0
8709 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
8712 /* If variable is bigger than the string literal, OFFSET must be constant
8713 and inside of the bounds of the string literal. */
8714 offset
= convert (sizetype
, offset
);
8715 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
8716 && (! host_integerp (offset
, 1)
8717 || compare_tree_int (offset
, length
) >= 0))
8720 *ptr_offset
= offset
;
8721 return DECL_INITIAL (array
);
8727 /* Generate code to calculate EXP using a store-flag instruction
8728 and return an rtx for the result. EXP is either a comparison
8729 or a TRUTH_NOT_EXPR whose operand is a comparison.
8731 If TARGET is nonzero, store the result there if convenient.
8733 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
8736 Return zero if there is no suitable set-flag instruction
8737 available on this machine.
8739 Once expand_expr has been called on the arguments of the comparison,
8740 we are committed to doing the store flag, since it is not safe to
8741 re-evaluate the expression. We emit the store-flag insn by calling
8742 emit_store_flag, but only expand the arguments if we have a reason
8743 to believe that emit_store_flag will be successful. If we think that
8744 it will, but it isn't, we have to simulate the store-flag with a
8745 set/jump/set sequence. */
8748 do_store_flag (tree exp
, rtx target
, enum machine_mode mode
, int only_cheap
)
8751 tree arg0
, arg1
, type
;
8753 enum machine_mode operand_mode
;
8757 enum insn_code icode
;
8758 rtx subtarget
= target
;
8761 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
8762 result at the end. We can't simply invert the test since it would
8763 have already been inverted if it were valid. This case occurs for
8764 some floating-point comparisons. */
8766 if (TREE_CODE (exp
) == TRUTH_NOT_EXPR
)
8767 invert
= 1, exp
= TREE_OPERAND (exp
, 0);
8769 arg0
= TREE_OPERAND (exp
, 0);
8770 arg1
= TREE_OPERAND (exp
, 1);
8772 /* Don't crash if the comparison was erroneous. */
8773 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
8776 type
= TREE_TYPE (arg0
);
8777 operand_mode
= TYPE_MODE (type
);
8778 unsignedp
= TYPE_UNSIGNED (type
);
8780 /* We won't bother with BLKmode store-flag operations because it would mean
8781 passing a lot of information to emit_store_flag. */
8782 if (operand_mode
== BLKmode
)
8785 /* We won't bother with store-flag operations involving function pointers
8786 when function pointers must be canonicalized before comparisons. */
8787 #ifdef HAVE_canonicalize_funcptr_for_compare
8788 if (HAVE_canonicalize_funcptr_for_compare
8789 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == POINTER_TYPE
8790 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8792 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 1))) == POINTER_TYPE
8793 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
8794 == FUNCTION_TYPE
))))
8801 /* Get the rtx comparison code to use. We know that EXP is a comparison
8802 operation of some type. Some comparisons against 1 and -1 can be
8803 converted to comparisons with zero. Do so here so that the tests
8804 below will be aware that we have a comparison with zero. These
8805 tests will not catch constants in the first operand, but constants
8806 are rarely passed as the first operand. */
8808 switch (TREE_CODE (exp
))
8817 if (integer_onep (arg1
))
8818 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
8820 code
= unsignedp
? LTU
: LT
;
8823 if (! unsignedp
&& integer_all_onesp (arg1
))
8824 arg1
= integer_zero_node
, code
= LT
;
8826 code
= unsignedp
? LEU
: LE
;
8829 if (! unsignedp
&& integer_all_onesp (arg1
))
8830 arg1
= integer_zero_node
, code
= GE
;
8832 code
= unsignedp
? GTU
: GT
;
8835 if (integer_onep (arg1
))
8836 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
8838 code
= unsignedp
? GEU
: GE
;
8841 case UNORDERED_EXPR
:
8870 /* Put a constant second. */
8871 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
)
8873 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
8874 code
= swap_condition (code
);
8877 /* If this is an equality or inequality test of a single bit, we can
8878 do this by shifting the bit being tested to the low-order bit and
8879 masking the result with the constant 1. If the condition was EQ,
8880 we xor it with 1. This does not require an scc insn and is faster
8881 than an scc insn even if we have it.
8883 The code to make this transformation was moved into fold_single_bit_test,
8884 so we just call into the folder and expand its result. */
8886 if ((code
== NE
|| code
== EQ
)
8887 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
8888 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
8890 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
8891 return expand_expr (fold_single_bit_test (code
== NE
? NE_EXPR
: EQ_EXPR
,
8893 target
, VOIDmode
, EXPAND_NORMAL
);
8896 /* Now see if we are likely to be able to do this. Return if not. */
8897 if (! can_compare_p (code
, operand_mode
, ccp_store_flag
))
8900 icode
= setcc_gen_code
[(int) code
];
8901 if (icode
== CODE_FOR_nothing
8902 || (only_cheap
&& insn_data
[(int) icode
].operand
[0].mode
!= mode
))
8904 /* We can only do this if it is one of the special cases that
8905 can be handled without an scc insn. */
8906 if ((code
== LT
&& integer_zerop (arg1
))
8907 || (! only_cheap
&& code
== GE
&& integer_zerop (arg1
)))
8909 else if (! only_cheap
&& (code
== NE
|| code
== EQ
)
8910 && TREE_CODE (type
) != REAL_TYPE
8911 && ((abs_optab
->handlers
[(int) operand_mode
].insn_code
8912 != CODE_FOR_nothing
)
8913 || (ffs_optab
->handlers
[(int) operand_mode
].insn_code
8914 != CODE_FOR_nothing
)))
8920 if (! get_subtarget (target
)
8921 || GET_MODE (subtarget
) != operand_mode
)
8924 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, 0);
8927 target
= gen_reg_rtx (mode
);
8929 result
= emit_store_flag (target
, code
, op0
, op1
,
8930 operand_mode
, unsignedp
, 1);
8935 result
= expand_binop (mode
, xor_optab
, result
, const1_rtx
,
8936 result
, 0, OPTAB_LIB_WIDEN
);
8940 /* If this failed, we have to do this with set/compare/jump/set code. */
8942 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
8943 target
= gen_reg_rtx (GET_MODE (target
));
8945 emit_move_insn (target
, invert
? const0_rtx
: const1_rtx
);
8946 result
= compare_from_rtx (op0
, op1
, code
, unsignedp
,
8947 operand_mode
, NULL_RTX
);
8948 if (GET_CODE (result
) == CONST_INT
)
8949 return (((result
== const0_rtx
&& ! invert
)
8950 || (result
!= const0_rtx
&& invert
))
8951 ? const0_rtx
: const1_rtx
);
8953 /* The code of RESULT may not match CODE if compare_from_rtx
8954 decided to swap its operands and reverse the original code.
8956 We know that compare_from_rtx returns either a CONST_INT or
8957 a new comparison code, so it is safe to just extract the
8958 code from RESULT. */
8959 code
= GET_CODE (result
);
8961 label
= gen_label_rtx ();
8962 gcc_assert (bcc_gen_fctn
[(int) code
]);
8964 emit_jump_insn ((*bcc_gen_fctn
[(int) code
]) (label
));
8965 emit_move_insn (target
, invert
? const1_rtx
: const0_rtx
);
8972 /* Stubs in case we haven't got a casesi insn. */
8974 # define HAVE_casesi 0
8975 # define gen_casesi(a, b, c, d, e) (0)
8976 # define CODE_FOR_casesi CODE_FOR_nothing
8979 /* If the machine does not have a case insn that compares the bounds,
8980 this means extra overhead for dispatch tables, which raises the
8981 threshold for using them. */
8982 #ifndef CASE_VALUES_THRESHOLD
8983 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
8984 #endif /* CASE_VALUES_THRESHOLD */
8987 case_values_threshold (void)
8989 return CASE_VALUES_THRESHOLD
;
8992 /* Attempt to generate a casesi instruction. Returns 1 if successful,
8993 0 otherwise (i.e. if there is no casesi instruction). */
8995 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
8996 rtx table_label ATTRIBUTE_UNUSED
, rtx default_label
)
8998 enum machine_mode index_mode
= SImode
;
8999 int index_bits
= GET_MODE_BITSIZE (index_mode
);
9000 rtx op1
, op2
, index
;
9001 enum machine_mode op_mode
;
9006 /* Convert the index to SImode. */
9007 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
9009 enum machine_mode omode
= TYPE_MODE (index_type
);
9010 rtx rangertx
= expand_expr (range
, NULL_RTX
, VOIDmode
, 0);
9012 /* We must handle the endpoints in the original mode. */
9013 index_expr
= build2 (MINUS_EXPR
, index_type
,
9014 index_expr
, minval
);
9015 minval
= integer_zero_node
;
9016 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
9017 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
9018 omode
, 1, default_label
);
9019 /* Now we can safely truncate. */
9020 index
= convert_to_mode (index_mode
, index
, 0);
9024 if (TYPE_MODE (index_type
) != index_mode
)
9026 index_expr
= convert (lang_hooks
.types
.type_for_size
9027 (index_bits
, 0), index_expr
);
9028 index_type
= TREE_TYPE (index_expr
);
9031 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
9034 do_pending_stack_adjust ();
9036 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[0].mode
;
9037 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[0].predicate
)
9039 index
= copy_to_mode_reg (op_mode
, index
);
9041 op1
= expand_expr (minval
, NULL_RTX
, VOIDmode
, 0);
9043 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[1].mode
;
9044 op1
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (minval
)),
9045 op1
, TYPE_UNSIGNED (TREE_TYPE (minval
)));
9046 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[1].predicate
)
9048 op1
= copy_to_mode_reg (op_mode
, op1
);
9050 op2
= expand_expr (range
, NULL_RTX
, VOIDmode
, 0);
9052 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[2].mode
;
9053 op2
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (range
)),
9054 op2
, TYPE_UNSIGNED (TREE_TYPE (range
)));
9055 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[2].predicate
)
9057 op2
= copy_to_mode_reg (op_mode
, op2
);
9059 emit_jump_insn (gen_casesi (index
, op1
, op2
,
9060 table_label
, default_label
));
9064 /* Attempt to generate a tablejump instruction; same concept. */
9065 #ifndef HAVE_tablejump
9066 #define HAVE_tablejump 0
9067 #define gen_tablejump(x, y) (0)
9070 /* Subroutine of the next function.
9072 INDEX is the value being switched on, with the lowest value
9073 in the table already subtracted.
9074 MODE is its expected mode (needed if INDEX is constant).
9075 RANGE is the length of the jump table.
9076 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
9078 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
9079 index value is out of range. */
9082 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
9087 if (INTVAL (range
) > cfun
->max_jumptable_ents
)
9088 cfun
->max_jumptable_ents
= INTVAL (range
);
9090 /* Do an unsigned comparison (in the proper mode) between the index
9091 expression and the value which represents the length of the range.
9092 Since we just finished subtracting the lower bound of the range
9093 from the index expression, this comparison allows us to simultaneously
9094 check that the original index expression value is both greater than
9095 or equal to the minimum value of the range and less than or equal to
9096 the maximum value of the range. */
9098 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
9101 /* If index is in range, it must fit in Pmode.
9102 Convert to Pmode so we can index with it. */
9104 index
= convert_to_mode (Pmode
, index
, 1);
9106 /* Don't let a MEM slip through, because then INDEX that comes
9107 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
9108 and break_out_memory_refs will go to work on it and mess it up. */
9109 #ifdef PIC_CASE_VECTOR_ADDRESS
9110 if (flag_pic
&& !REG_P (index
))
9111 index
= copy_to_mode_reg (Pmode
, index
);
9114 /* If flag_force_addr were to affect this address
9115 it could interfere with the tricky assumptions made
9116 about addresses that contain label-refs,
9117 which may be valid only very near the tablejump itself. */
9118 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
9119 GET_MODE_SIZE, because this indicates how large insns are. The other
9120 uses should all be Pmode, because they are addresses. This code
9121 could fail if addresses and insns are not the same size. */
9122 index
= gen_rtx_PLUS (Pmode
,
9123 gen_rtx_MULT (Pmode
, index
,
9124 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE
))),
9125 gen_rtx_LABEL_REF (Pmode
, table_label
));
9126 #ifdef PIC_CASE_VECTOR_ADDRESS
9128 index
= PIC_CASE_VECTOR_ADDRESS (index
);
9131 index
= memory_address_noforce (CASE_VECTOR_MODE
, index
);
9132 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
9133 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
9134 convert_move (temp
, vector
, 0);
9136 emit_jump_insn (gen_tablejump (temp
, table_label
));
9138 /* If we are generating PIC code or if the table is PC-relative, the
9139 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
9140 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
9145 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
9146 rtx table_label
, rtx default_label
)
9150 if (! HAVE_tablejump
)
9153 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
9154 convert (index_type
, index_expr
),
9155 convert (index_type
, minval
));
9156 index
= expand_expr (index_expr
, NULL_RTX
, VOIDmode
, 0);
9157 do_pending_stack_adjust ();
9159 do_tablejump (index
, TYPE_MODE (index_type
),
9160 convert_modes (TYPE_MODE (index_type
),
9161 TYPE_MODE (TREE_TYPE (range
)),
9162 expand_expr (range
, NULL_RTX
,
9164 TYPE_UNSIGNED (TREE_TYPE (range
))),
9165 table_label
, default_label
);
9169 /* Nonzero if the mode is a valid vector mode for this architecture.
9170 This returns nonzero even if there is no hardware support for the
9171 vector mode, but we can emulate with narrower modes. */
9174 vector_mode_valid_p (enum machine_mode mode
)
9176 enum mode_class
class = GET_MODE_CLASS (mode
);
9177 enum machine_mode innermode
;
9179 /* Doh! What's going on? */
9180 if (class != MODE_VECTOR_INT
9181 && class != MODE_VECTOR_FLOAT
)
9184 /* Hardware support. Woo hoo! */
9185 if (targetm
.vector_mode_supported_p (mode
))
9188 innermode
= GET_MODE_INNER (mode
);
9190 /* We should probably return 1 if requesting V4DI and we have no DI,
9191 but we have V2DI, but this is probably very unlikely. */
9193 /* If we have support for the inner mode, we can safely emulate it.
9194 We may not have V2DI, but me can emulate with a pair of DIs. */
9195 return targetm
.scalar_mode_supported_p (innermode
);
9198 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
9200 const_vector_from_tree (tree exp
)
9205 enum machine_mode inner
, mode
;
9207 mode
= TYPE_MODE (TREE_TYPE (exp
));
9209 if (initializer_zerop (exp
))
9210 return CONST0_RTX (mode
);
9212 units
= GET_MODE_NUNITS (mode
);
9213 inner
= GET_MODE_INNER (mode
);
9215 v
= rtvec_alloc (units
);
9217 link
= TREE_VECTOR_CST_ELTS (exp
);
9218 for (i
= 0; link
; link
= TREE_CHAIN (link
), ++i
)
9220 elt
= TREE_VALUE (link
);
9222 if (TREE_CODE (elt
) == REAL_CST
)
9223 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
9226 RTVEC_ELT (v
, i
) = immed_double_const (TREE_INT_CST_LOW (elt
),
9227 TREE_INT_CST_HIGH (elt
),
9231 /* Initialize remaining elements to 0. */
9232 for (; i
< units
; ++i
)
9233 RTVEC_ELT (v
, i
) = CONST0_RTX (inner
);
9235 return gen_rtx_CONST_VECTOR (mode
, v
);
9237 #include "gt-expr.h"