1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
47 #include "coretypes.h"
52 #include "double-int.h"
60 #include "hard-reg-set.h"
64 #include "insn-config.h"
65 #include "insn-attr.h"
67 #include "conditions.h"
72 #include "rtl-error.h"
73 #include "toplev.h" /* exact_log2, floor_log2 */
77 #include "dominance.h"
80 #include "basic-block.h"
82 #include "targhooks.h"
85 #include "statistics.h"
87 #include "fixed-value.h"
95 #include "tree-pass.h"
98 #include "plugin-api.h"
101 #include "tree-ssa.h"
102 #include "coverage.h"
107 #include "tree-pretty-print.h" /* for dump_function_header */
109 #include "wide-int-print.h"
110 #include "rtl-iter.h"
112 #ifdef XCOFF_DEBUGGING_INFO
113 #include "xcoffout.h" /* Needed for external data
114 declarations for e.g. AIX 4.x. */
117 #include "dwarf2out.h"
119 #ifdef DBX_DEBUGGING_INFO
123 #ifdef SDB_DEBUGGING_INFO
127 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
128 So define a null default for it to save conditionalization later. */
129 #ifndef CC_STATUS_INIT
130 #define CC_STATUS_INIT
133 /* Is the given character a logical line separator for the assembler? */
134 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
135 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
138 #ifndef JUMP_TABLES_IN_TEXT_SECTION
139 #define JUMP_TABLES_IN_TEXT_SECTION 0
142 /* Bitflags used by final_scan_insn. */
144 #define SEEN_EMITTED 2
146 /* Last insn processed by final_scan_insn. */
147 static rtx_insn
*debug_insn
;
148 rtx_insn
*current_output_insn
;
150 /* Line number of last NOTE. */
151 static int last_linenum
;
153 /* Last discriminator written to assembly. */
154 static int last_discriminator
;
156 /* Discriminator of current block. */
157 static int discriminator
;
159 /* Highest line number in current block. */
160 static int high_block_linenum
;
162 /* Likewise for function. */
163 static int high_function_linenum
;
165 /* Filename of last NOTE. */
166 static const char *last_filename
;
168 /* Override filename and line number. */
169 static const char *override_filename
;
170 static int override_linenum
;
172 /* Whether to force emission of a line note before the next insn. */
173 static bool force_source_line
= false;
175 extern const int length_unit_log
; /* This is defined in insn-attrtab.c. */
177 /* Nonzero while outputting an `asm' with operands.
178 This means that inconsistencies are the user's fault, so don't die.
179 The precise value is the insn being output, to pass to error_for_asm. */
180 const rtx_insn
*this_is_asm_operands
;
182 /* Number of operands of this insn, for an `asm' with operands. */
183 static unsigned int insn_noperands
;
185 /* Compare optimization flag. */
187 static rtx last_ignored_compare
= 0;
189 /* Assign a unique number to each insn that is output.
190 This can be used to generate unique local labels. */
192 static int insn_counter
= 0;
195 /* This variable contains machine-dependent flags (defined in tm.h)
196 set and examined by output routines
197 that describe how to interpret the condition codes properly. */
201 /* During output of an insn, this contains a copy of cc_status
202 from before the insn. */
204 CC_STATUS cc_prev_status
;
207 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
209 static int block_depth
;
211 /* Nonzero if have enabled APP processing of our assembler output. */
215 /* If we are outputting an insn sequence, this contains the sequence rtx.
218 rtx_sequence
*final_sequence
;
220 #ifdef ASSEMBLER_DIALECT
222 /* Number of the assembler dialect to use, starting at 0. */
223 static int dialect_number
;
226 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
227 rtx current_insn_predicate
;
229 /* True if printing into -fdump-final-insns= dump. */
230 bool final_insns_dump_p
;
232 /* True if profile_function should be called, but hasn't been called yet. */
233 static bool need_profile_function
;
235 static int asm_insn_count (rtx
);
236 static void profile_function (FILE *);
237 static void profile_after_prologue (FILE *);
238 static bool notice_source_line (rtx_insn
*, bool *);
239 static rtx
walk_alter_subreg (rtx
*, bool *);
240 static void output_asm_name (void);
241 static void output_alternate_entry_point (FILE *, rtx_insn
*);
242 static tree
get_mem_expr_from_op (rtx
, int *);
243 static void output_asm_operand_names (rtx
*, int *, int);
244 #ifdef LEAF_REGISTERS
245 static void leaf_renumber_regs (rtx_insn
*);
248 static int alter_cond (rtx
);
250 #ifndef ADDR_VEC_ALIGN
251 static int final_addr_vec_align (rtx
);
253 static int align_fuzz (rtx
, rtx
, int, unsigned);
254 static void collect_fn_hard_reg_usage (void);
255 static tree
get_call_fndecl (rtx_insn
*);
257 /* Initialize data in final at the beginning of a compilation. */
260 init_final (const char *filename ATTRIBUTE_UNUSED
)
265 #ifdef ASSEMBLER_DIALECT
266 dialect_number
= ASSEMBLER_DIALECT
;
270 /* Default target function prologue and epilogue assembler output.
272 If not overridden for epilogue code, then the function body itself
273 contains return instructions wherever needed. */
275 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
276 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
281 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED
,
282 tree decl ATTRIBUTE_UNUSED
,
283 bool new_is_cold ATTRIBUTE_UNUSED
)
287 /* Default target hook that outputs nothing to a stream. */
289 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
293 /* Enable APP processing of subsequent output.
294 Used before the output from an `asm' statement. */
301 fputs (ASM_APP_ON
, asm_out_file
);
306 /* Disable APP processing of subsequent output.
307 Called from varasm.c before most kinds of output. */
314 fputs (ASM_APP_OFF
, asm_out_file
);
319 /* Return the number of slots filled in the current
320 delayed branch sequence (we don't count the insn needing the
321 delay slot). Zero if not in a delayed branch sequence. */
325 dbr_sequence_length (void)
327 if (final_sequence
!= 0)
328 return XVECLEN (final_sequence
, 0) - 1;
334 /* The next two pages contain routines used to compute the length of an insn
335 and to shorten branches. */
337 /* Arrays for insn lengths, and addresses. The latter is referenced by
338 `insn_current_length'. */
340 static int *insn_lengths
;
342 vec
<int> insn_addresses_
;
344 /* Max uid for which the above arrays are valid. */
345 static int insn_lengths_max_uid
;
347 /* Address of insn being processed. Used by `insn_current_length'. */
348 int insn_current_address
;
350 /* Address of insn being processed in previous iteration. */
351 int insn_last_address
;
353 /* known invariant alignment of insn being processed. */
354 int insn_current_align
;
356 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
357 gives the next following alignment insn that increases the known
358 alignment, or NULL_RTX if there is no such insn.
359 For any alignment obtained this way, we can again index uid_align with
360 its uid to obtain the next following align that in turn increases the
361 alignment, till we reach NULL_RTX; the sequence obtained this way
362 for each insn we'll call the alignment chain of this insn in the following
365 struct label_alignment
371 static rtx
*uid_align
;
372 static int *uid_shuid
;
373 static struct label_alignment
*label_align
;
375 /* Indicate that branch shortening hasn't yet been done. */
378 init_insn_lengths (void)
389 insn_lengths_max_uid
= 0;
391 if (HAVE_ATTR_length
)
392 INSN_ADDRESSES_FREE ();
400 /* Obtain the current length of an insn. If branch shortening has been done,
401 get its actual length. Otherwise, use FALLBACK_FN to calculate the
404 get_attr_length_1 (rtx_insn
*insn
, int (*fallback_fn
) (rtx_insn
*))
410 if (!HAVE_ATTR_length
)
413 if (insn_lengths_max_uid
> INSN_UID (insn
))
414 return insn_lengths
[INSN_UID (insn
)];
416 switch (GET_CODE (insn
))
426 length
= fallback_fn (insn
);
430 body
= PATTERN (insn
);
431 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
434 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
435 length
= asm_insn_count (body
) * fallback_fn (insn
);
436 else if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (body
))
437 for (i
= 0; i
< seq
->len (); i
++)
438 length
+= get_attr_length_1 (seq
->insn (i
), fallback_fn
);
440 length
= fallback_fn (insn
);
447 #ifdef ADJUST_INSN_LENGTH
448 ADJUST_INSN_LENGTH (insn
, length
);
453 /* Obtain the current length of an insn. If branch shortening has been done,
454 get its actual length. Otherwise, get its maximum length. */
456 get_attr_length (rtx_insn
*insn
)
458 return get_attr_length_1 (insn
, insn_default_length
);
461 /* Obtain the current length of an insn. If branch shortening has been done,
462 get its actual length. Otherwise, get its minimum length. */
464 get_attr_min_length (rtx_insn
*insn
)
466 return get_attr_length_1 (insn
, insn_min_length
);
469 /* Code to handle alignment inside shorten_branches. */
471 /* Here is an explanation how the algorithm in align_fuzz can give
474 Call a sequence of instructions beginning with alignment point X
475 and continuing until the next alignment point `block X'. When `X'
476 is used in an expression, it means the alignment value of the
479 Call the distance between the start of the first insn of block X, and
480 the end of the last insn of block X `IX', for the `inner size of X'.
481 This is clearly the sum of the instruction lengths.
483 Likewise with the next alignment-delimited block following X, which we
486 Call the distance between the start of the first insn of block X, and
487 the start of the first insn of block Y `OX', for the `outer size of X'.
489 The estimated padding is then OX - IX.
491 OX can be safely estimated as
496 OX = round_up(IX, X) + Y - X
498 Clearly est(IX) >= real(IX), because that only depends on the
499 instruction lengths, and those being overestimated is a given.
501 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
502 we needn't worry about that when thinking about OX.
504 When X >= Y, the alignment provided by Y adds no uncertainty factor
505 for branch ranges starting before X, so we can just round what we have.
506 But when X < Y, we don't know anything about the, so to speak,
507 `middle bits', so we have to assume the worst when aligning up from an
508 address mod X to one mod Y, which is Y - X. */
511 #define LABEL_ALIGN(LABEL) align_labels_log
515 #define LOOP_ALIGN(LABEL) align_loops_log
518 #ifndef LABEL_ALIGN_AFTER_BARRIER
519 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
523 #define JUMP_ALIGN(LABEL) align_jumps_log
527 default_label_align_after_barrier_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
533 default_loop_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
535 return align_loops_max_skip
;
539 default_label_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
541 return align_labels_max_skip
;
545 default_jump_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
547 return align_jumps_max_skip
;
550 #ifndef ADDR_VEC_ALIGN
552 final_addr_vec_align (rtx addr_vec
)
554 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
556 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
557 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
558 return exact_log2 (align
);
562 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
565 #ifndef INSN_LENGTH_ALIGNMENT
566 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
569 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
571 static int min_labelno
, max_labelno
;
573 #define LABEL_TO_ALIGNMENT(LABEL) \
574 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
576 #define LABEL_TO_MAX_SKIP(LABEL) \
577 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
579 /* For the benefit of port specific code do this also as a function. */
582 label_to_alignment (rtx label
)
584 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
585 return LABEL_TO_ALIGNMENT (label
);
590 label_to_max_skip (rtx label
)
592 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
593 return LABEL_TO_MAX_SKIP (label
);
597 /* The differences in addresses
598 between a branch and its target might grow or shrink depending on
599 the alignment the start insn of the range (the branch for a forward
600 branch or the label for a backward branch) starts out on; if these
601 differences are used naively, they can even oscillate infinitely.
602 We therefore want to compute a 'worst case' address difference that
603 is independent of the alignment the start insn of the range end
604 up on, and that is at least as large as the actual difference.
605 The function align_fuzz calculates the amount we have to add to the
606 naively computed difference, by traversing the part of the alignment
607 chain of the start insn of the range that is in front of the end insn
608 of the range, and considering for each alignment the maximum amount
609 that it might contribute to a size increase.
611 For casesi tables, we also want to know worst case minimum amounts of
612 address difference, in case a machine description wants to introduce
613 some common offset that is added to all offsets in a table.
614 For this purpose, align_fuzz with a growth argument of 0 computes the
615 appropriate adjustment. */
617 /* Compute the maximum delta by which the difference of the addresses of
618 START and END might grow / shrink due to a different address for start
619 which changes the size of alignment insns between START and END.
620 KNOWN_ALIGN_LOG is the alignment known for START.
621 GROWTH should be ~0 if the objective is to compute potential code size
622 increase, and 0 if the objective is to compute potential shrink.
623 The return value is undefined for any other value of GROWTH. */
626 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
628 int uid
= INSN_UID (start
);
630 int known_align
= 1 << known_align_log
;
631 int end_shuid
= INSN_SHUID (end
);
634 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
636 int align_addr
, new_align
;
638 uid
= INSN_UID (align_label
);
639 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
640 if (uid_shuid
[uid
] > end_shuid
)
642 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
643 new_align
= 1 << known_align_log
;
644 if (new_align
< known_align
)
646 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
647 known_align
= new_align
;
652 /* Compute a worst-case reference address of a branch so that it
653 can be safely used in the presence of aligned labels. Since the
654 size of the branch itself is unknown, the size of the branch is
655 not included in the range. I.e. for a forward branch, the reference
656 address is the end address of the branch as known from the previous
657 branch shortening pass, minus a value to account for possible size
658 increase due to alignment. For a backward branch, it is the start
659 address of the branch as known from the current pass, plus a value
660 to account for possible size increase due to alignment.
661 NB.: Therefore, the maximum offset allowed for backward branches needs
662 to exclude the branch size. */
665 insn_current_reference_address (rtx_insn
*branch
)
670 if (! INSN_ADDRESSES_SET_P ())
673 seq
= NEXT_INSN (PREV_INSN (branch
));
674 seq_uid
= INSN_UID (seq
);
675 if (!JUMP_P (branch
))
676 /* This can happen for example on the PA; the objective is to know the
677 offset to address something in front of the start of the function.
678 Thus, we can treat it like a backward branch.
679 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
680 any alignment we'd encounter, so we skip the call to align_fuzz. */
681 return insn_current_address
;
682 dest
= JUMP_LABEL (branch
);
684 /* BRANCH has no proper alignment chain set, so use SEQ.
685 BRANCH also has no INSN_SHUID. */
686 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
688 /* Forward branch. */
689 return (insn_last_address
+ insn_lengths
[seq_uid
]
690 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
694 /* Backward branch. */
695 return (insn_current_address
696 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
700 /* Compute branch alignments based on frequency information in the
704 compute_alignments (void)
706 int log
, max_skip
, max_log
;
709 int freq_threshold
= 0;
717 max_labelno
= max_label_num ();
718 min_labelno
= get_first_label_num ();
719 label_align
= XCNEWVEC (struct label_alignment
, max_labelno
- min_labelno
+ 1);
721 /* If not optimizing or optimizing for size, don't assign any alignments. */
722 if (! optimize
|| optimize_function_for_size_p (cfun
))
727 dump_reg_info (dump_file
);
728 dump_flow_info (dump_file
, TDF_DETAILS
);
729 flow_loops_dump (dump_file
, NULL
, 1);
731 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
732 FOR_EACH_BB_FN (bb
, cfun
)
733 if (bb
->frequency
> freq_max
)
734 freq_max
= bb
->frequency
;
735 freq_threshold
= freq_max
/ PARAM_VALUE (PARAM_ALIGN_THRESHOLD
);
738 fprintf (dump_file
, "freq_max: %i\n",freq_max
);
739 FOR_EACH_BB_FN (bb
, cfun
)
741 rtx_insn
*label
= BB_HEAD (bb
);
742 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
747 || optimize_bb_for_size_p (bb
))
751 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
752 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
756 max_log
= LABEL_ALIGN (label
);
757 max_skip
= targetm
.asm_out
.label_align_max_skip (label
);
759 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
761 if (e
->flags
& EDGE_FALLTHRU
)
762 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
764 branch_frequency
+= EDGE_FREQUENCY (e
);
768 fprintf (dump_file
, "BB %4i freq %4i loop %2i loop_depth"
769 " %2i fall %4i branch %4i",
770 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
772 fallthru_frequency
, branch_frequency
);
773 if (!bb
->loop_father
->inner
&& bb
->loop_father
->num
)
774 fprintf (dump_file
, " inner_loop");
775 if (bb
->loop_father
->header
== bb
)
776 fprintf (dump_file
, " loop_header");
777 fprintf (dump_file
, "\n");
780 /* There are two purposes to align block with no fallthru incoming edge:
781 1) to avoid fetch stalls when branch destination is near cache boundary
782 2) to improve cache efficiency in case the previous block is not executed
783 (so it does not need to be in the cache).
785 We to catch first case, we align frequently executed blocks.
786 To catch the second, we align blocks that are executed more frequently
787 than the predecessor and the predecessor is likely to not be executed
788 when function is called. */
791 && (branch_frequency
> freq_threshold
792 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
793 && (bb
->prev_bb
->frequency
794 <= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
/ 2))))
796 log
= JUMP_ALIGN (label
);
798 fprintf (dump_file
, " jump alignment added.\n");
802 max_skip
= targetm
.asm_out
.jump_align_max_skip (label
);
805 /* In case block is frequent and reached mostly by non-fallthru edge,
806 align it. It is most likely a first block of loop. */
808 && !(single_succ_p (bb
)
809 && single_succ (bb
) == EXIT_BLOCK_PTR_FOR_FN (cfun
))
810 && optimize_bb_for_speed_p (bb
)
811 && branch_frequency
+ fallthru_frequency
> freq_threshold
813 > fallthru_frequency
* PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS
)))
815 log
= LOOP_ALIGN (label
);
817 fprintf (dump_file
, " internal loop alignment added.\n");
821 max_skip
= targetm
.asm_out
.loop_align_max_skip (label
);
824 LABEL_TO_ALIGNMENT (label
) = max_log
;
825 LABEL_TO_MAX_SKIP (label
) = max_skip
;
828 loop_optimizer_finalize ();
829 free_dominance_info (CDI_DOMINATORS
);
833 /* Grow the LABEL_ALIGN array after new labels are created. */
836 grow_label_align (void)
838 int old
= max_labelno
;
842 max_labelno
= max_label_num ();
844 n_labels
= max_labelno
- min_labelno
+ 1;
845 n_old_labels
= old
- min_labelno
+ 1;
847 label_align
= XRESIZEVEC (struct label_alignment
, label_align
, n_labels
);
849 /* Range of labels grows monotonically in the function. Failing here
850 means that the initialization of array got lost. */
851 gcc_assert (n_old_labels
<= n_labels
);
853 memset (label_align
+ n_old_labels
, 0,
854 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
857 /* Update the already computed alignment information. LABEL_PAIRS is a vector
858 made up of pairs of labels for which the alignment information of the first
859 element will be copied from that of the second element. */
862 update_alignments (vec
<rtx
> &label_pairs
)
865 rtx iter
, label
= NULL_RTX
;
867 if (max_labelno
!= max_label_num ())
870 FOR_EACH_VEC_ELT (label_pairs
, i
, iter
)
873 LABEL_TO_ALIGNMENT (label
) = LABEL_TO_ALIGNMENT (iter
);
874 LABEL_TO_MAX_SKIP (label
) = LABEL_TO_MAX_SKIP (iter
);
882 const pass_data pass_data_compute_alignments
=
885 "alignments", /* name */
886 OPTGROUP_NONE
, /* optinfo_flags */
888 0, /* properties_required */
889 0, /* properties_provided */
890 0, /* properties_destroyed */
891 0, /* todo_flags_start */
892 0, /* todo_flags_finish */
895 class pass_compute_alignments
: public rtl_opt_pass
898 pass_compute_alignments (gcc::context
*ctxt
)
899 : rtl_opt_pass (pass_data_compute_alignments
, ctxt
)
902 /* opt_pass methods: */
903 virtual unsigned int execute (function
*) { return compute_alignments (); }
905 }; // class pass_compute_alignments
910 make_pass_compute_alignments (gcc::context
*ctxt
)
912 return new pass_compute_alignments (ctxt
);
916 /* Make a pass over all insns and compute their actual lengths by shortening
917 any branches of variable length if possible. */
919 /* shorten_branches might be called multiple times: for example, the SH
920 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
921 In order to do this, it needs proper length information, which it obtains
922 by calling shorten_branches. This cannot be collapsed with
923 shorten_branches itself into a single pass unless we also want to integrate
924 reorg.c, since the branch splitting exposes new instructions with delay
928 shorten_branches (rtx_insn
*first
)
935 #define MAX_CODE_ALIGN 16
937 int something_changed
= 1;
938 char *varying_length
;
941 rtx align_tab
[MAX_CODE_ALIGN
];
943 /* Compute maximum UID and allocate label_align / uid_shuid. */
944 max_uid
= get_max_uid ();
946 /* Free uid_shuid before reallocating it. */
949 uid_shuid
= XNEWVEC (int, max_uid
);
951 if (max_labelno
!= max_label_num ())
954 /* Initialize label_align and set up uid_shuid to be strictly
955 monotonically rising with insn order. */
956 /* We use max_log here to keep track of the maximum alignment we want to
957 impose on the next CODE_LABEL (or the current one if we are processing
958 the CODE_LABEL itself). */
963 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
967 INSN_SHUID (insn
) = i
++;
974 bool next_is_jumptable
;
976 /* Merge in alignments computed by compute_alignments. */
977 log
= LABEL_TO_ALIGNMENT (insn
);
981 max_skip
= LABEL_TO_MAX_SKIP (insn
);
984 next
= next_nonnote_insn (insn
);
985 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
986 if (!next_is_jumptable
)
988 log
= LABEL_ALIGN (insn
);
992 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
995 /* ADDR_VECs only take room if read-only data goes into the text
997 if ((JUMP_TABLES_IN_TEXT_SECTION
998 || readonly_data_section
== text_section
)
999 && next_is_jumptable
)
1001 log
= ADDR_VEC_ALIGN (next
);
1005 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
1008 LABEL_TO_ALIGNMENT (insn
) = max_log
;
1009 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
1013 else if (BARRIER_P (insn
))
1017 for (label
= insn
; label
&& ! INSN_P (label
);
1018 label
= NEXT_INSN (label
))
1019 if (LABEL_P (label
))
1021 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
1025 max_skip
= targetm
.asm_out
.label_align_after_barrier_max_skip (label
);
1031 if (!HAVE_ATTR_length
)
1034 /* Allocate the rest of the arrays. */
1035 insn_lengths
= XNEWVEC (int, max_uid
);
1036 insn_lengths_max_uid
= max_uid
;
1037 /* Syntax errors can lead to labels being outside of the main insn stream.
1038 Initialize insn_addresses, so that we get reproducible results. */
1039 INSN_ADDRESSES_ALLOC (max_uid
);
1041 varying_length
= XCNEWVEC (char, max_uid
);
1043 /* Initialize uid_align. We scan instructions
1044 from end to start, and keep in align_tab[n] the last seen insn
1045 that does an alignment of at least n+1, i.e. the successor
1046 in the alignment chain for an insn that does / has a known
1048 uid_align
= XCNEWVEC (rtx
, max_uid
);
1050 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
1051 align_tab
[i
] = NULL_RTX
;
1052 seq
= get_last_insn ();
1053 for (; seq
; seq
= PREV_INSN (seq
))
1055 int uid
= INSN_UID (seq
);
1057 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
1058 uid_align
[uid
] = align_tab
[0];
1061 /* Found an alignment label. */
1062 uid_align
[uid
] = align_tab
[log
];
1063 for (i
= log
- 1; i
>= 0; i
--)
1068 /* When optimizing, we start assuming minimum length, and keep increasing
1069 lengths as we find the need for this, till nothing changes.
1070 When not optimizing, we start assuming maximum lengths, and
1071 do a single pass to update the lengths. */
1072 bool increasing
= optimize
!= 0;
1074 #ifdef CASE_VECTOR_SHORTEN_MODE
1077 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1080 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
1081 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
1084 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
1086 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
1087 int len
, i
, min
, max
, insn_shuid
;
1089 addr_diff_vec_flags flags
;
1091 if (! JUMP_TABLE_DATA_P (insn
)
1092 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
1094 pat
= PATTERN (insn
);
1095 len
= XVECLEN (pat
, 1);
1096 gcc_assert (len
> 0);
1097 min_align
= MAX_CODE_ALIGN
;
1098 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
1100 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
1101 int shuid
= INSN_SHUID (lab
);
1112 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1113 min_align
= LABEL_TO_ALIGNMENT (lab
);
1115 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
1116 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
1117 insn_shuid
= INSN_SHUID (insn
);
1118 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1119 memset (&flags
, 0, sizeof (flags
));
1120 flags
.min_align
= min_align
;
1121 flags
.base_after_vec
= rel
> insn_shuid
;
1122 flags
.min_after_vec
= min
> insn_shuid
;
1123 flags
.max_after_vec
= max
> insn_shuid
;
1124 flags
.min_after_base
= min
> rel
;
1125 flags
.max_after_base
= max
> rel
;
1126 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1129 PUT_MODE (pat
, CASE_VECTOR_SHORTEN_MODE (0, 0, pat
));
1132 #endif /* CASE_VECTOR_SHORTEN_MODE */
1134 /* Compute initial lengths, addresses, and varying flags for each insn. */
1135 int (*length_fun
) (rtx_insn
*) = increasing
? insn_min_length
: insn_default_length
;
1137 for (insn_current_address
= 0, insn
= first
;
1139 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1141 uid
= INSN_UID (insn
);
1143 insn_lengths
[uid
] = 0;
1147 int log
= LABEL_TO_ALIGNMENT (insn
);
1150 int align
= 1 << log
;
1151 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1152 insn_lengths
[uid
] = new_address
- insn_current_address
;
1156 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1158 if (NOTE_P (insn
) || BARRIER_P (insn
)
1159 || LABEL_P (insn
) || DEBUG_INSN_P (insn
))
1161 if (insn
->deleted ())
1164 body
= PATTERN (insn
);
1165 if (JUMP_TABLE_DATA_P (insn
))
1167 /* This only takes room if read-only data goes into the text
1169 if (JUMP_TABLES_IN_TEXT_SECTION
1170 || readonly_data_section
== text_section
)
1171 insn_lengths
[uid
] = (XVECLEN (body
,
1172 GET_CODE (body
) == ADDR_DIFF_VEC
)
1173 * GET_MODE_SIZE (GET_MODE (body
)));
1174 /* Alignment is handled by ADDR_VEC_ALIGN. */
1176 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1177 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1178 else if (rtx_sequence
*body_seq
= dyn_cast
<rtx_sequence
*> (body
))
1181 int const_delay_slots
;
1183 const_delay_slots
= const_num_delay_slots (body_seq
->insn (0));
1185 const_delay_slots
= 0;
1187 int (*inner_length_fun
) (rtx_insn
*)
1188 = const_delay_slots
? length_fun
: insn_default_length
;
1189 /* Inside a delay slot sequence, we do not do any branch shortening
1190 if the shortening could change the number of delay slots
1192 for (i
= 0; i
< body_seq
->len (); i
++)
1194 rtx_insn
*inner_insn
= body_seq
->insn (i
);
1195 int inner_uid
= INSN_UID (inner_insn
);
1198 if (GET_CODE (body
) == ASM_INPUT
1199 || asm_noperands (PATTERN (inner_insn
)) >= 0)
1200 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1201 * insn_default_length (inner_insn
));
1203 inner_length
= inner_length_fun (inner_insn
);
1205 insn_lengths
[inner_uid
] = inner_length
;
1206 if (const_delay_slots
)
1208 if ((varying_length
[inner_uid
]
1209 = insn_variable_length_p (inner_insn
)) != 0)
1210 varying_length
[uid
] = 1;
1211 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1212 + insn_lengths
[uid
]);
1215 varying_length
[inner_uid
] = 0;
1216 insn_lengths
[uid
] += inner_length
;
1219 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1221 insn_lengths
[uid
] = length_fun (insn
);
1222 varying_length
[uid
] = insn_variable_length_p (insn
);
1225 /* If needed, do any adjustment. */
1226 #ifdef ADJUST_INSN_LENGTH
1227 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1228 if (insn_lengths
[uid
] < 0)
1229 fatal_insn ("negative insn length", insn
);
1233 /* Now loop over all the insns finding varying length insns. For each,
1234 get the current insn length. If it has changed, reflect the change.
1235 When nothing changes for a full pass, we are done. */
1237 while (something_changed
)
1239 something_changed
= 0;
1240 insn_current_align
= MAX_CODE_ALIGN
- 1;
1241 for (insn_current_address
= 0, insn
= first
;
1243 insn
= NEXT_INSN (insn
))
1246 #ifdef ADJUST_INSN_LENGTH
1251 uid
= INSN_UID (insn
);
1255 int log
= LABEL_TO_ALIGNMENT (insn
);
1257 #ifdef CASE_VECTOR_SHORTEN_MODE
1258 /* If the mode of a following jump table was changed, we
1259 may need to update the alignment of this label. */
1261 bool next_is_jumptable
;
1263 next
= next_nonnote_insn (insn
);
1264 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
1265 if ((JUMP_TABLES_IN_TEXT_SECTION
1266 || readonly_data_section
== text_section
)
1267 && next_is_jumptable
)
1269 int newlog
= ADDR_VEC_ALIGN (next
);
1273 LABEL_TO_ALIGNMENT (insn
) = log
;
1274 something_changed
= 1;
1279 if (log
> insn_current_align
)
1281 int align
= 1 << log
;
1282 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1283 insn_lengths
[uid
] = new_address
- insn_current_address
;
1284 insn_current_align
= log
;
1285 insn_current_address
= new_address
;
1288 insn_lengths
[uid
] = 0;
1289 INSN_ADDRESSES (uid
) = insn_current_address
;
1293 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1294 if (length_align
< insn_current_align
)
1295 insn_current_align
= length_align
;
1297 insn_last_address
= INSN_ADDRESSES (uid
);
1298 INSN_ADDRESSES (uid
) = insn_current_address
;
1300 #ifdef CASE_VECTOR_SHORTEN_MODE
1302 && JUMP_TABLE_DATA_P (insn
)
1303 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1305 rtx body
= PATTERN (insn
);
1306 int old_length
= insn_lengths
[uid
];
1308 safe_as_a
<rtx_insn
*> (XEXP (XEXP (body
, 0), 0));
1309 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1310 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1311 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1312 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1313 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1316 addr_diff_vec_flags flags
;
1317 machine_mode vec_mode
;
1319 /* Avoid automatic aggregate initialization. */
1320 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1322 /* Try to find a known alignment for rel_lab. */
1323 for (prev
= rel_lab
;
1325 && ! insn_lengths
[INSN_UID (prev
)]
1326 && ! (varying_length
[INSN_UID (prev
)] & 1);
1327 prev
= PREV_INSN (prev
))
1328 if (varying_length
[INSN_UID (prev
)] & 2)
1330 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1334 /* See the comment on addr_diff_vec_flags in rtl.h for the
1335 meaning of the flags values. base: REL_LAB vec: INSN */
1336 /* Anything after INSN has still addresses from the last
1337 pass; adjust these so that they reflect our current
1338 estimate for this pass. */
1339 if (flags
.base_after_vec
)
1340 rel_addr
+= insn_current_address
- insn_last_address
;
1341 if (flags
.min_after_vec
)
1342 min_addr
+= insn_current_address
- insn_last_address
;
1343 if (flags
.max_after_vec
)
1344 max_addr
+= insn_current_address
- insn_last_address
;
1345 /* We want to know the worst case, i.e. lowest possible value
1346 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1347 its offset is positive, and we have to be wary of code shrink;
1348 otherwise, it is negative, and we have to be vary of code
1350 if (flags
.min_after_base
)
1352 /* If INSN is between REL_LAB and MIN_LAB, the size
1353 changes we are about to make can change the alignment
1354 within the observed offset, therefore we have to break
1355 it up into two parts that are independent. */
1356 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1358 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1359 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1362 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1366 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1368 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1369 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1372 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1374 /* Likewise, determine the highest lowest possible value
1375 for the offset of MAX_LAB. */
1376 if (flags
.max_after_base
)
1378 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1380 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1381 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1384 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1388 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1390 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1391 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1394 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1396 vec_mode
= CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1397 max_addr
- rel_addr
, body
);
1399 || (GET_MODE_SIZE (vec_mode
)
1400 >= GET_MODE_SIZE (GET_MODE (body
))))
1401 PUT_MODE (body
, vec_mode
);
1402 if (JUMP_TABLES_IN_TEXT_SECTION
1403 || readonly_data_section
== text_section
)
1406 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1407 insn_current_address
+= insn_lengths
[uid
];
1408 if (insn_lengths
[uid
] != old_length
)
1409 something_changed
= 1;
1414 #endif /* CASE_VECTOR_SHORTEN_MODE */
1416 if (! (varying_length
[uid
]))
1418 if (NONJUMP_INSN_P (insn
)
1419 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1423 body
= PATTERN (insn
);
1424 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1426 rtx inner_insn
= XVECEXP (body
, 0, i
);
1427 int inner_uid
= INSN_UID (inner_insn
);
1429 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1431 insn_current_address
+= insn_lengths
[inner_uid
];
1435 insn_current_address
+= insn_lengths
[uid
];
1440 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1442 rtx_sequence
*seqn
= as_a
<rtx_sequence
*> (PATTERN (insn
));
1445 body
= PATTERN (insn
);
1447 for (i
= 0; i
< seqn
->len (); i
++)
1449 rtx_insn
*inner_insn
= seqn
->insn (i
);
1450 int inner_uid
= INSN_UID (inner_insn
);
1453 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1455 /* insn_current_length returns 0 for insns with a
1456 non-varying length. */
1457 if (! varying_length
[inner_uid
])
1458 inner_length
= insn_lengths
[inner_uid
];
1460 inner_length
= insn_current_length (inner_insn
);
1462 if (inner_length
!= insn_lengths
[inner_uid
])
1464 if (!increasing
|| inner_length
> insn_lengths
[inner_uid
])
1466 insn_lengths
[inner_uid
] = inner_length
;
1467 something_changed
= 1;
1470 inner_length
= insn_lengths
[inner_uid
];
1472 insn_current_address
+= inner_length
;
1473 new_length
+= inner_length
;
1478 new_length
= insn_current_length (insn
);
1479 insn_current_address
+= new_length
;
1482 #ifdef ADJUST_INSN_LENGTH
1483 /* If needed, do any adjustment. */
1484 tmp_length
= new_length
;
1485 ADJUST_INSN_LENGTH (insn
, new_length
);
1486 insn_current_address
+= (new_length
- tmp_length
);
1489 if (new_length
!= insn_lengths
[uid
]
1490 && (!increasing
|| new_length
> insn_lengths
[uid
]))
1492 insn_lengths
[uid
] = new_length
;
1493 something_changed
= 1;
1496 insn_current_address
+= insn_lengths
[uid
] - new_length
;
1498 /* For a non-optimizing compile, do only a single pass. */
1503 free (varying_length
);
1506 /* Given the body of an INSN known to be generated by an ASM statement, return
1507 the number of machine instructions likely to be generated for this insn.
1508 This is used to compute its length. */
1511 asm_insn_count (rtx body
)
1515 if (GET_CODE (body
) == ASM_INPUT
)
1516 templ
= XSTR (body
, 0);
1518 templ
= decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
, NULL
);
1520 return asm_str_count (templ
);
1523 /* Return the number of machine instructions likely to be generated for the
1524 inline-asm template. */
1526 asm_str_count (const char *templ
)
1533 for (; *templ
; templ
++)
1534 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ
, templ
)
1541 /* ??? This is probably the wrong place for these. */
1542 /* Structure recording the mapping from source file and directory
1543 names at compile time to those to be embedded in debug
1545 typedef struct debug_prefix_map
1547 const char *old_prefix
;
1548 const char *new_prefix
;
1551 struct debug_prefix_map
*next
;
1554 /* Linked list of such structures. */
1555 static debug_prefix_map
*debug_prefix_maps
;
1558 /* Record a debug file prefix mapping. ARG is the argument to
1559 -fdebug-prefix-map and must be of the form OLD=NEW. */
1562 add_debug_prefix_map (const char *arg
)
1564 debug_prefix_map
*map
;
1567 p
= strchr (arg
, '=');
1570 error ("invalid argument %qs to -fdebug-prefix-map", arg
);
1573 map
= XNEW (debug_prefix_map
);
1574 map
->old_prefix
= xstrndup (arg
, p
- arg
);
1575 map
->old_len
= p
- arg
;
1577 map
->new_prefix
= xstrdup (p
);
1578 map
->new_len
= strlen (p
);
1579 map
->next
= debug_prefix_maps
;
1580 debug_prefix_maps
= map
;
1583 /* Perform user-specified mapping of debug filename prefixes. Return
1584 the new name corresponding to FILENAME. */
1587 remap_debug_filename (const char *filename
)
1589 debug_prefix_map
*map
;
1594 for (map
= debug_prefix_maps
; map
; map
= map
->next
)
1595 if (filename_ncmp (filename
, map
->old_prefix
, map
->old_len
) == 0)
1599 name
= filename
+ map
->old_len
;
1600 name_len
= strlen (name
) + 1;
1601 s
= (char *) alloca (name_len
+ map
->new_len
);
1602 memcpy (s
, map
->new_prefix
, map
->new_len
);
1603 memcpy (s
+ map
->new_len
, name
, name_len
);
1604 return ggc_strdup (s
);
1607 /* Return true if DWARF2 debug info can be emitted for DECL. */
1610 dwarf2_debug_info_emitted_p (tree decl
)
1612 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1615 if (DECL_IGNORED_P (decl
))
1621 /* Return scope resulting from combination of S1 and S2. */
1623 choose_inner_scope (tree s1
, tree s2
)
1629 if (BLOCK_NUMBER (s1
) > BLOCK_NUMBER (s2
))
1634 /* Emit lexical block notes needed to change scope from S1 to S2. */
1637 change_scope (rtx_insn
*orig_insn
, tree s1
, tree s2
)
1639 rtx_insn
*insn
= orig_insn
;
1640 tree com
= NULL_TREE
;
1641 tree ts1
= s1
, ts2
= s2
;
1646 gcc_assert (ts1
&& ts2
);
1647 if (BLOCK_NUMBER (ts1
) > BLOCK_NUMBER (ts2
))
1648 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1649 else if (BLOCK_NUMBER (ts1
) < BLOCK_NUMBER (ts2
))
1650 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1653 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1654 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1663 rtx_note
*note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1664 NOTE_BLOCK (note
) = s
;
1665 s
= BLOCK_SUPERCONTEXT (s
);
1672 insn
= emit_note_before (NOTE_INSN_BLOCK_BEG
, insn
);
1673 NOTE_BLOCK (insn
) = s
;
1674 s
= BLOCK_SUPERCONTEXT (s
);
1678 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1679 on the scope tree and the newly reordered instructions. */
1682 reemit_insn_block_notes (void)
1684 tree cur_block
= DECL_INITIAL (cfun
->decl
);
1688 insn
= get_insns ();
1689 for (; insn
; insn
= NEXT_INSN (insn
))
1693 /* Prevent lexical blocks from straddling section boundaries. */
1694 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
1696 for (tree s
= cur_block
; s
!= DECL_INITIAL (cfun
->decl
);
1697 s
= BLOCK_SUPERCONTEXT (s
))
1699 rtx_note
*note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1700 NOTE_BLOCK (note
) = s
;
1701 note
= emit_note_after (NOTE_INSN_BLOCK_BEG
, insn
);
1702 NOTE_BLOCK (note
) = s
;
1706 if (!active_insn_p (insn
))
1709 /* Avoid putting scope notes between jump table and its label. */
1710 if (JUMP_TABLE_DATA_P (insn
))
1713 this_block
= insn_scope (insn
);
1714 /* For sequences compute scope resulting from merging all scopes
1715 of instructions nested inside. */
1716 if (rtx_sequence
*body
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
1721 for (i
= 0; i
< body
->len (); i
++)
1722 this_block
= choose_inner_scope (this_block
,
1723 insn_scope (body
->insn (i
)));
1727 if (INSN_LOCATION (insn
) == UNKNOWN_LOCATION
)
1730 this_block
= DECL_INITIAL (cfun
->decl
);
1733 if (this_block
!= cur_block
)
1735 change_scope (insn
, cur_block
, this_block
);
1736 cur_block
= this_block
;
1740 /* change_scope emits before the insn, not after. */
1741 note
= emit_note (NOTE_INSN_DELETED
);
1742 change_scope (note
, cur_block
, DECL_INITIAL (cfun
->decl
));
1748 static const char *some_local_dynamic_name
;
1750 /* Locate some local-dynamic symbol still in use by this function
1751 so that we can print its name in local-dynamic base patterns.
1752 Return null if there are no local-dynamic references. */
1755 get_some_local_dynamic_name ()
1757 subrtx_iterator::array_type array
;
1760 if (some_local_dynamic_name
)
1761 return some_local_dynamic_name
;
1763 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1764 if (NONDEBUG_INSN_P (insn
))
1765 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), ALL
)
1767 const_rtx x
= *iter
;
1768 if (GET_CODE (x
) == SYMBOL_REF
)
1770 if (SYMBOL_REF_TLS_MODEL (x
) == TLS_MODEL_LOCAL_DYNAMIC
)
1771 return some_local_dynamic_name
= XSTR (x
, 0);
1772 if (CONSTANT_POOL_ADDRESS_P (x
))
1773 iter
.substitute (get_pool_constant (x
));
1780 /* Output assembler code for the start of a function,
1781 and initialize some of the variables in this file
1782 for the new function. The label for the function and associated
1783 assembler pseudo-ops have already been output in `assemble_start_function'.
1785 FIRST is the first insn of the rtl for the function being compiled.
1786 FILE is the file to write assembler code to.
1787 OPTIMIZE_P is nonzero if we should eliminate redundant
1788 test and compare insns. */
1791 final_start_function (rtx_insn
*first
, FILE *file
,
1792 int optimize_p ATTRIBUTE_UNUSED
)
1796 this_is_asm_operands
= 0;
1798 need_profile_function
= false;
1800 last_filename
= LOCATION_FILE (prologue_location
);
1801 last_linenum
= LOCATION_LINE (prologue_location
);
1802 last_discriminator
= discriminator
= 0;
1804 high_block_linenum
= high_function_linenum
= last_linenum
;
1806 if (flag_sanitize
& SANITIZE_ADDRESS
)
1807 asan_function_start ();
1809 if (!DECL_IGNORED_P (current_function_decl
))
1810 debug_hooks
->begin_prologue (last_linenum
, last_filename
);
1812 if (!dwarf2_debug_info_emitted_p (current_function_decl
))
1813 dwarf2out_begin_prologue (0, NULL
);
1815 #ifdef LEAF_REG_REMAP
1816 if (crtl
->uses_only_leaf_regs
)
1817 leaf_renumber_regs (first
);
1820 /* The Sun386i and perhaps other machines don't work right
1821 if the profiling code comes after the prologue. */
1822 if (targetm
.profile_before_prologue () && crtl
->profile
)
1824 if (targetm
.asm_out
.function_prologue
1825 == default_function_pro_epilogue
1826 #ifdef HAVE_prologue
1832 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1838 else if (NOTE_KIND (insn
) == NOTE_INSN_BASIC_BLOCK
1839 || NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
)
1841 else if (NOTE_KIND (insn
) == NOTE_INSN_DELETED
1842 || NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
)
1851 need_profile_function
= true;
1853 profile_function (file
);
1856 profile_function (file
);
1859 /* If debugging, assign block numbers to all of the blocks in this
1863 reemit_insn_block_notes ();
1864 number_blocks (current_function_decl
);
1865 /* We never actually put out begin/end notes for the top-level
1866 block in the function. But, conceptually, that block is
1868 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1871 if (warn_frame_larger_than
1872 && get_frame_size () > frame_larger_than_size
)
1874 /* Issue a warning */
1875 warning (OPT_Wframe_larger_than_
,
1876 "the frame size of %wd bytes is larger than %wd bytes",
1877 get_frame_size (), frame_larger_than_size
);
1880 /* First output the function prologue: code to set up the stack frame. */
1881 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1883 /* If the machine represents the prologue as RTL, the profiling code must
1884 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1885 #ifdef HAVE_prologue
1886 if (! HAVE_prologue
)
1888 profile_after_prologue (file
);
1892 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1894 if (!targetm
.profile_before_prologue () && crtl
->profile
)
1895 profile_function (file
);
1899 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1901 #ifndef NO_PROFILE_COUNTERS
1902 # define NO_PROFILE_COUNTERS 0
1904 #ifdef ASM_OUTPUT_REG_PUSH
1905 rtx sval
= NULL
, chain
= NULL
;
1907 if (cfun
->returns_struct
)
1908 sval
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
),
1910 if (cfun
->static_chain_decl
)
1911 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
1912 #endif /* ASM_OUTPUT_REG_PUSH */
1914 if (! NO_PROFILE_COUNTERS
)
1916 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1917 switch_to_section (data_section
);
1918 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1919 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1920 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1923 switch_to_section (current_function_section ());
1925 #ifdef ASM_OUTPUT_REG_PUSH
1926 if (sval
&& REG_P (sval
))
1927 ASM_OUTPUT_REG_PUSH (file
, REGNO (sval
));
1928 if (chain
&& REG_P (chain
))
1929 ASM_OUTPUT_REG_PUSH (file
, REGNO (chain
));
1932 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1934 #ifdef ASM_OUTPUT_REG_PUSH
1935 if (chain
&& REG_P (chain
))
1936 ASM_OUTPUT_REG_POP (file
, REGNO (chain
));
1937 if (sval
&& REG_P (sval
))
1938 ASM_OUTPUT_REG_POP (file
, REGNO (sval
));
1942 /* Output assembler code for the end of a function.
1943 For clarity, args are same as those of `final_start_function'
1944 even though not all of them are needed. */
1947 final_end_function (void)
1951 if (!DECL_IGNORED_P (current_function_decl
))
1952 debug_hooks
->end_function (high_function_linenum
);
1954 /* Finally, output the function epilogue:
1955 code to restore the stack frame and return to the caller. */
1956 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1958 /* And debug output. */
1959 if (!DECL_IGNORED_P (current_function_decl
))
1960 debug_hooks
->end_epilogue (last_linenum
, last_filename
);
1962 if (!dwarf2_debug_info_emitted_p (current_function_decl
)
1963 && dwarf2out_do_frame ())
1964 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1966 some_local_dynamic_name
= 0;
1970 /* Dumper helper for basic block information. FILE is the assembly
1971 output file, and INSN is the instruction being emitted. */
1974 dump_basic_block_info (FILE *file
, rtx_insn
*insn
, basic_block
*start_to_bb
,
1975 basic_block
*end_to_bb
, int bb_map_size
, int *bb_seqn
)
1979 if (!flag_debug_asm
)
1982 if (INSN_UID (insn
) < bb_map_size
1983 && (bb
= start_to_bb
[INSN_UID (insn
)]) != NULL
)
1988 fprintf (file
, "%s BLOCK %d", ASM_COMMENT_START
, bb
->index
);
1990 fprintf (file
, " freq:%d", bb
->frequency
);
1992 fprintf (file
, " count:%"PRId64
,
1994 fprintf (file
, " seq:%d", (*bb_seqn
)++);
1995 fprintf (file
, "\n%s PRED:", ASM_COMMENT_START
);
1996 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1998 dump_edge_info (file
, e
, TDF_DETAILS
, 0);
2000 fprintf (file
, "\n");
2002 if (INSN_UID (insn
) < bb_map_size
2003 && (bb
= end_to_bb
[INSN_UID (insn
)]) != NULL
)
2008 fprintf (asm_out_file
, "%s SUCC:", ASM_COMMENT_START
);
2009 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2011 dump_edge_info (asm_out_file
, e
, TDF_DETAILS
, 1);
2013 fprintf (file
, "\n");
2017 /* Output assembler code for some insns: all or part of a function.
2018 For description of args, see `final_start_function', above. */
2021 final (rtx_insn
*first
, FILE *file
, int optimize_p
)
2023 rtx_insn
*insn
, *next
;
2026 /* Used for -dA dump. */
2027 basic_block
*start_to_bb
= NULL
;
2028 basic_block
*end_to_bb
= NULL
;
2029 int bb_map_size
= 0;
2032 last_ignored_compare
= 0;
2035 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2037 /* If CC tracking across branches is enabled, record the insn which
2038 jumps to each branch only reached from one place. */
2039 if (optimize_p
&& JUMP_P (insn
))
2041 rtx lab
= JUMP_LABEL (insn
);
2042 if (lab
&& LABEL_P (lab
) && LABEL_NUSES (lab
) == 1)
2044 LABEL_REFS (lab
) = insn
;
2058 bb_map_size
= get_max_uid () + 1;
2059 start_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
2060 end_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
2062 /* There is no cfg for a thunk. */
2063 if (!cfun
->is_thunk
)
2064 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
2066 start_to_bb
[INSN_UID (BB_HEAD (bb
))] = bb
;
2067 end_to_bb
[INSN_UID (BB_END (bb
))] = bb
;
2071 /* Output the insns. */
2072 for (insn
= first
; insn
;)
2074 if (HAVE_ATTR_length
)
2076 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
2078 /* This can be triggered by bugs elsewhere in the compiler if
2079 new insns are created after init_insn_lengths is called. */
2080 gcc_assert (NOTE_P (insn
));
2081 insn_current_address
= -1;
2084 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
2087 dump_basic_block_info (file
, insn
, start_to_bb
, end_to_bb
,
2088 bb_map_size
, &bb_seqn
);
2089 insn
= final_scan_insn (insn
, file
, optimize_p
, 0, &seen
);
2098 /* Remove CFI notes, to avoid compare-debug failures. */
2099 for (insn
= first
; insn
; insn
= next
)
2101 next
= NEXT_INSN (insn
);
2103 && (NOTE_KIND (insn
) == NOTE_INSN_CFI
2104 || NOTE_KIND (insn
) == NOTE_INSN_CFI_LABEL
))
2110 get_insn_template (int code
, rtx insn
)
2112 switch (insn_data
[code
].output_format
)
2114 case INSN_OUTPUT_FORMAT_SINGLE
:
2115 return insn_data
[code
].output
.single
;
2116 case INSN_OUTPUT_FORMAT_MULTI
:
2117 return insn_data
[code
].output
.multi
[which_alternative
];
2118 case INSN_OUTPUT_FORMAT_FUNCTION
:
2120 return (*insn_data
[code
].output
.function
) (recog_data
.operand
,
2121 as_a
<rtx_insn
*> (insn
));
2128 /* Emit the appropriate declaration for an alternate-entry-point
2129 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2130 LABEL_KIND != LABEL_NORMAL.
2132 The case fall-through in this function is intentional. */
2134 output_alternate_entry_point (FILE *file
, rtx_insn
*insn
)
2136 const char *name
= LABEL_NAME (insn
);
2138 switch (LABEL_KIND (insn
))
2140 case LABEL_WEAK_ENTRY
:
2141 #ifdef ASM_WEAKEN_LABEL
2142 ASM_WEAKEN_LABEL (file
, name
);
2144 case LABEL_GLOBAL_ENTRY
:
2145 targetm
.asm_out
.globalize_label (file
, name
);
2146 case LABEL_STATIC_ENTRY
:
2147 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2148 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
2150 ASM_OUTPUT_LABEL (file
, name
);
2159 /* Given a CALL_INSN, find and return the nested CALL. */
2161 call_from_call_insn (rtx_call_insn
*insn
)
2164 gcc_assert (CALL_P (insn
));
2167 while (GET_CODE (x
) != CALL
)
2169 switch (GET_CODE (x
))
2174 x
= COND_EXEC_CODE (x
);
2177 x
= XVECEXP (x
, 0, 0);
2187 /* The final scan for one insn, INSN.
2188 Args are same as in `final', except that INSN
2189 is the insn being scanned.
2190 Value returned is the next insn to be scanned.
2192 NOPEEPHOLES is the flag to disallow peephole processing (currently
2193 used for within delayed branch sequence output).
2195 SEEN is used to track the end of the prologue, for emitting
2196 debug information. We force the emission of a line note after
2197 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2200 final_scan_insn (rtx_insn
*insn
, FILE *file
, int optimize_p ATTRIBUTE_UNUSED
,
2201 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
2210 /* Ignore deleted insns. These can occur when we split insns (due to a
2211 template of "#") while not optimizing. */
2212 if (insn
->deleted ())
2213 return NEXT_INSN (insn
);
2215 switch (GET_CODE (insn
))
2218 switch (NOTE_KIND (insn
))
2220 case NOTE_INSN_DELETED
:
2223 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
2224 in_cold_section_p
= !in_cold_section_p
;
2226 if (dwarf2out_do_frame ())
2227 dwarf2out_switch_text_section ();
2228 else if (!DECL_IGNORED_P (current_function_decl
))
2229 debug_hooks
->switch_text_section ();
2231 switch_to_section (current_function_section ());
2232 targetm
.asm_out
.function_switched_text_sections (asm_out_file
,
2233 current_function_decl
,
2235 /* Emit a label for the split cold section. Form label name by
2236 suffixing "cold" to the original function's name. */
2237 if (in_cold_section_p
)
2239 tree cold_function_name
2240 = clone_function_name (current_function_decl
, "cold");
2241 ASM_OUTPUT_LABEL (asm_out_file
,
2242 IDENTIFIER_POINTER (cold_function_name
));
2246 case NOTE_INSN_BASIC_BLOCK
:
2247 if (need_profile_function
)
2249 profile_function (asm_out_file
);
2250 need_profile_function
= false;
2253 if (targetm
.asm_out
.unwind_emit
)
2254 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2256 discriminator
= NOTE_BASIC_BLOCK (insn
)->discriminator
;
2260 case NOTE_INSN_EH_REGION_BEG
:
2261 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
2262 NOTE_EH_HANDLER (insn
));
2265 case NOTE_INSN_EH_REGION_END
:
2266 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
2267 NOTE_EH_HANDLER (insn
));
2270 case NOTE_INSN_PROLOGUE_END
:
2271 targetm
.asm_out
.function_end_prologue (file
);
2272 profile_after_prologue (file
);
2274 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2276 *seen
|= SEEN_EMITTED
;
2277 force_source_line
= true;
2284 case NOTE_INSN_EPILOGUE_BEG
:
2285 if (!DECL_IGNORED_P (current_function_decl
))
2286 (*debug_hooks
->begin_epilogue
) (last_linenum
, last_filename
);
2287 targetm
.asm_out
.function_begin_epilogue (file
);
2291 dwarf2out_emit_cfi (NOTE_CFI (insn
));
2294 case NOTE_INSN_CFI_LABEL
:
2295 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LCFI",
2296 NOTE_LABEL_NUMBER (insn
));
2299 case NOTE_INSN_FUNCTION_BEG
:
2300 if (need_profile_function
)
2302 profile_function (asm_out_file
);
2303 need_profile_function
= false;
2307 if (!DECL_IGNORED_P (current_function_decl
))
2308 debug_hooks
->end_prologue (last_linenum
, last_filename
);
2310 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2312 *seen
|= SEEN_EMITTED
;
2313 force_source_line
= true;
2320 case NOTE_INSN_BLOCK_BEG
:
2321 if (debug_info_level
== DINFO_LEVEL_NORMAL
2322 || debug_info_level
== DINFO_LEVEL_VERBOSE
2323 || write_symbols
== DWARF2_DEBUG
2324 || write_symbols
== VMS_AND_DWARF2_DEBUG
2325 || write_symbols
== VMS_DEBUG
)
2327 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2331 high_block_linenum
= last_linenum
;
2333 /* Output debugging info about the symbol-block beginning. */
2334 if (!DECL_IGNORED_P (current_function_decl
))
2335 debug_hooks
->begin_block (last_linenum
, n
);
2337 /* Mark this block as output. */
2338 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
2340 if (write_symbols
== DBX_DEBUG
2341 || write_symbols
== SDB_DEBUG
)
2343 location_t
*locus_ptr
2344 = block_nonartificial_location (NOTE_BLOCK (insn
));
2346 if (locus_ptr
!= NULL
)
2348 override_filename
= LOCATION_FILE (*locus_ptr
);
2349 override_linenum
= LOCATION_LINE (*locus_ptr
);
2354 case NOTE_INSN_BLOCK_END
:
2355 if (debug_info_level
== DINFO_LEVEL_NORMAL
2356 || debug_info_level
== DINFO_LEVEL_VERBOSE
2357 || write_symbols
== DWARF2_DEBUG
2358 || write_symbols
== VMS_AND_DWARF2_DEBUG
2359 || write_symbols
== VMS_DEBUG
)
2361 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2365 /* End of a symbol-block. */
2367 gcc_assert (block_depth
>= 0);
2369 if (!DECL_IGNORED_P (current_function_decl
))
2370 debug_hooks
->end_block (high_block_linenum
, n
);
2372 if (write_symbols
== DBX_DEBUG
2373 || write_symbols
== SDB_DEBUG
)
2375 tree outer_block
= BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn
));
2376 location_t
*locus_ptr
2377 = block_nonartificial_location (outer_block
);
2379 if (locus_ptr
!= NULL
)
2381 override_filename
= LOCATION_FILE (*locus_ptr
);
2382 override_linenum
= LOCATION_LINE (*locus_ptr
);
2386 override_filename
= NULL
;
2387 override_linenum
= 0;
2392 case NOTE_INSN_DELETED_LABEL
:
2393 /* Emit the label. We may have deleted the CODE_LABEL because
2394 the label could be proved to be unreachable, though still
2395 referenced (in the form of having its address taken. */
2396 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2399 case NOTE_INSN_DELETED_DEBUG_LABEL
:
2400 /* Similarly, but need to use different namespace for it. */
2401 if (CODE_LABEL_NUMBER (insn
) != -1)
2402 ASM_OUTPUT_DEBUG_LABEL (file
, "LDL", CODE_LABEL_NUMBER (insn
));
2405 case NOTE_INSN_VAR_LOCATION
:
2406 case NOTE_INSN_CALL_ARG_LOCATION
:
2407 if (!DECL_IGNORED_P (current_function_decl
))
2408 debug_hooks
->var_location (insn
);
2421 /* The target port might emit labels in the output function for
2422 some insn, e.g. sh.c output_branchy_insn. */
2423 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
2425 int align
= LABEL_TO_ALIGNMENT (insn
);
2426 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2427 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
2430 if (align
&& NEXT_INSN (insn
))
2432 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2433 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
2435 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2436 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
2438 ASM_OUTPUT_ALIGN (file
, align
);
2445 if (!DECL_IGNORED_P (current_function_decl
) && LABEL_NAME (insn
))
2446 debug_hooks
->label (as_a
<rtx_code_label
*> (insn
));
2450 next
= next_nonnote_insn (insn
);
2451 /* If this label is followed by a jump-table, make sure we put
2452 the label in the read-only section. Also possibly write the
2453 label and jump table together. */
2454 if (next
!= 0 && JUMP_TABLE_DATA_P (next
))
2456 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2457 /* In this case, the case vector is being moved by the
2458 target, so don't output the label at all. Leave that
2459 to the back end macros. */
2461 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2465 switch_to_section (targetm
.asm_out
.function_rodata_section
2466 (current_function_decl
));
2468 #ifdef ADDR_VEC_ALIGN
2469 log_align
= ADDR_VEC_ALIGN (next
);
2471 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
2473 ASM_OUTPUT_ALIGN (file
, log_align
);
2476 switch_to_section (current_function_section ());
2478 #ifdef ASM_OUTPUT_CASE_LABEL
2479 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
2482 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2487 if (LABEL_ALT_ENTRY_P (insn
))
2488 output_alternate_entry_point (file
, insn
);
2490 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2495 rtx body
= PATTERN (insn
);
2496 int insn_code_number
;
2500 /* Reset this early so it is correct for ASM statements. */
2501 current_insn_predicate
= NULL_RTX
;
2503 /* An INSN, JUMP_INSN or CALL_INSN.
2504 First check for special kinds that recog doesn't recognize. */
2506 if (GET_CODE (body
) == USE
/* These are just declarations. */
2507 || GET_CODE (body
) == CLOBBER
)
2512 /* If there is a REG_CC_SETTER note on this insn, it means that
2513 the setting of the condition code was done in the delay slot
2514 of the insn that branched here. So recover the cc status
2515 from the insn that set it. */
2517 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2520 rtx_insn
*other
= as_a
<rtx_insn
*> (XEXP (note
, 0));
2521 NOTICE_UPDATE_CC (PATTERN (other
), other
);
2522 cc_prev_status
= cc_status
;
2527 /* Detect insns that are really jump-tables
2528 and output them as such. */
2530 if (JUMP_TABLE_DATA_P (insn
))
2532 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2536 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2537 switch_to_section (targetm
.asm_out
.function_rodata_section
2538 (current_function_decl
));
2540 switch_to_section (current_function_section ());
2544 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2545 if (GET_CODE (body
) == ADDR_VEC
)
2547 #ifdef ASM_OUTPUT_ADDR_VEC
2548 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2555 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2556 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2562 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2563 for (idx
= 0; idx
< vlen
; idx
++)
2565 if (GET_CODE (body
) == ADDR_VEC
)
2567 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2568 ASM_OUTPUT_ADDR_VEC_ELT
2569 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2576 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2577 ASM_OUTPUT_ADDR_DIFF_ELT
2580 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2581 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2587 #ifdef ASM_OUTPUT_CASE_END
2588 ASM_OUTPUT_CASE_END (file
,
2589 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2594 switch_to_section (current_function_section ());
2598 /* Output this line note if it is the first or the last line
2600 if (!DECL_IGNORED_P (current_function_decl
)
2601 && notice_source_line (insn
, &is_stmt
))
2602 (*debug_hooks
->source_line
) (last_linenum
, last_filename
,
2603 last_discriminator
, is_stmt
);
2605 if (GET_CODE (body
) == ASM_INPUT
)
2607 const char *string
= XSTR (body
, 0);
2609 /* There's no telling what that did to the condition codes. */
2614 expanded_location loc
;
2617 loc
= expand_location (ASM_INPUT_SOURCE_LOCATION (body
));
2618 if (*loc
.file
&& loc
.line
)
2619 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2620 ASM_COMMENT_START
, loc
.line
, loc
.file
);
2621 fprintf (asm_out_file
, "\t%s\n", string
);
2622 #if HAVE_AS_LINE_ZERO
2623 if (*loc
.file
&& loc
.line
)
2624 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2630 /* Detect `asm' construct with operands. */
2631 if (asm_noperands (body
) >= 0)
2633 unsigned int noperands
= asm_noperands (body
);
2634 rtx
*ops
= XALLOCAVEC (rtx
, noperands
);
2637 expanded_location expanded
;
2639 /* There's no telling what that did to the condition codes. */
2642 /* Get out the operand values. */
2643 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
, &loc
);
2644 /* Inhibit dying on what would otherwise be compiler bugs. */
2645 insn_noperands
= noperands
;
2646 this_is_asm_operands
= insn
;
2647 expanded
= expand_location (loc
);
2649 #ifdef FINAL_PRESCAN_INSN
2650 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2653 /* Output the insn using them. */
2657 if (expanded
.file
&& expanded
.line
)
2658 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2659 ASM_COMMENT_START
, expanded
.line
, expanded
.file
);
2660 output_asm_insn (string
, ops
);
2661 #if HAVE_AS_LINE_ZERO
2662 if (expanded
.file
&& expanded
.line
)
2663 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2667 if (targetm
.asm_out
.final_postscan_insn
)
2668 targetm
.asm_out
.final_postscan_insn (file
, insn
, ops
,
2671 this_is_asm_operands
= 0;
2677 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (body
))
2679 /* A delayed-branch sequence */
2682 final_sequence
= seq
;
2684 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2685 force the restoration of a comparison that was previously
2686 thought unnecessary. If that happens, cancel this sequence
2687 and cause that insn to be restored. */
2689 next
= final_scan_insn (seq
->insn (0), file
, 0, 1, seen
);
2690 if (next
!= seq
->insn (1))
2696 for (i
= 1; i
< seq
->len (); i
++)
2698 rtx_insn
*insn
= seq
->insn (i
);
2699 rtx_insn
*next
= NEXT_INSN (insn
);
2700 /* We loop in case any instruction in a delay slot gets
2703 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2704 while (insn
!= next
);
2706 #ifdef DBR_OUTPUT_SEQEND
2707 DBR_OUTPUT_SEQEND (file
);
2711 /* If the insn requiring the delay slot was a CALL_INSN, the
2712 insns in the delay slot are actually executed before the
2713 called function. Hence we don't preserve any CC-setting
2714 actions in these insns and the CC must be marked as being
2715 clobbered by the function. */
2716 if (CALL_P (seq
->insn (0)))
2723 /* We have a real machine instruction as rtl. */
2725 body
= PATTERN (insn
);
2728 set
= single_set (insn
);
2730 /* Check for redundant test and compare instructions
2731 (when the condition codes are already set up as desired).
2732 This is done only when optimizing; if not optimizing,
2733 it should be possible for the user to alter a variable
2734 with the debugger in between statements
2735 and the next statement should reexamine the variable
2736 to compute the condition codes. */
2741 && GET_CODE (SET_DEST (set
)) == CC0
2742 && insn
!= last_ignored_compare
)
2745 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2746 SET_SRC (set
) = alter_subreg (&SET_SRC (set
), true);
2748 src1
= SET_SRC (set
);
2750 if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2752 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2753 XEXP (SET_SRC (set
), 0)
2754 = alter_subreg (&XEXP (SET_SRC (set
), 0), true);
2755 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2756 XEXP (SET_SRC (set
), 1)
2757 = alter_subreg (&XEXP (SET_SRC (set
), 1), true);
2758 if (XEXP (SET_SRC (set
), 1)
2759 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set
), 0))))
2760 src2
= XEXP (SET_SRC (set
), 0);
2762 if ((cc_status
.value1
!= 0
2763 && rtx_equal_p (src1
, cc_status
.value1
))
2764 || (cc_status
.value2
!= 0
2765 && rtx_equal_p (src1
, cc_status
.value2
))
2766 || (src2
!= 0 && cc_status
.value1
!= 0
2767 && rtx_equal_p (src2
, cc_status
.value1
))
2768 || (src2
!= 0 && cc_status
.value2
!= 0
2769 && rtx_equal_p (src2
, cc_status
.value2
)))
2771 /* Don't delete insn if it has an addressing side-effect. */
2772 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2773 /* or if anything in it is volatile. */
2774 && ! volatile_refs_p (PATTERN (insn
)))
2776 /* We don't really delete the insn; just ignore it. */
2777 last_ignored_compare
= insn
;
2784 /* If this is a conditional branch, maybe modify it
2785 if the cc's are in a nonstandard state
2786 so that it accomplishes the same thing that it would
2787 do straightforwardly if the cc's were set up normally. */
2789 if (cc_status
.flags
!= 0
2791 && GET_CODE (body
) == SET
2792 && SET_DEST (body
) == pc_rtx
2793 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2794 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2795 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2797 /* This function may alter the contents of its argument
2798 and clear some of the cc_status.flags bits.
2799 It may also return 1 meaning condition now always true
2800 or -1 meaning condition now always false
2801 or 2 meaning condition nontrivial but altered. */
2802 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2803 /* If condition now has fixed value, replace the IF_THEN_ELSE
2804 with its then-operand or its else-operand. */
2806 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2808 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2810 /* The jump is now either unconditional or a no-op.
2811 If it has become a no-op, don't try to output it.
2812 (It would not be recognized.) */
2813 if (SET_SRC (body
) == pc_rtx
)
2818 else if (ANY_RETURN_P (SET_SRC (body
)))
2819 /* Replace (set (pc) (return)) with (return). */
2820 PATTERN (insn
) = body
= SET_SRC (body
);
2822 /* Rerecognize the instruction if it has changed. */
2824 INSN_CODE (insn
) = -1;
2827 /* If this is a conditional trap, maybe modify it if the cc's
2828 are in a nonstandard state so that it accomplishes the same
2829 thing that it would do straightforwardly if the cc's were
2831 if (cc_status
.flags
!= 0
2832 && NONJUMP_INSN_P (insn
)
2833 && GET_CODE (body
) == TRAP_IF
2834 && COMPARISON_P (TRAP_CONDITION (body
))
2835 && XEXP (TRAP_CONDITION (body
), 0) == cc0_rtx
)
2837 /* This function may alter the contents of its argument
2838 and clear some of the cc_status.flags bits.
2839 It may also return 1 meaning condition now always true
2840 or -1 meaning condition now always false
2841 or 2 meaning condition nontrivial but altered. */
2842 int result
= alter_cond (TRAP_CONDITION (body
));
2844 /* If TRAP_CONDITION has become always false, delete the
2852 /* If TRAP_CONDITION has become always true, replace
2853 TRAP_CONDITION with const_true_rtx. */
2855 TRAP_CONDITION (body
) = const_true_rtx
;
2857 /* Rerecognize the instruction if it has changed. */
2859 INSN_CODE (insn
) = -1;
2862 /* Make same adjustments to instructions that examine the
2863 condition codes without jumping and instructions that
2864 handle conditional moves (if this machine has either one). */
2866 if (cc_status
.flags
!= 0
2869 rtx cond_rtx
, then_rtx
, else_rtx
;
2872 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2874 cond_rtx
= XEXP (SET_SRC (set
), 0);
2875 then_rtx
= XEXP (SET_SRC (set
), 1);
2876 else_rtx
= XEXP (SET_SRC (set
), 2);
2880 cond_rtx
= SET_SRC (set
);
2881 then_rtx
= const_true_rtx
;
2882 else_rtx
= const0_rtx
;
2885 if (COMPARISON_P (cond_rtx
)
2886 && XEXP (cond_rtx
, 0) == cc0_rtx
)
2889 result
= alter_cond (cond_rtx
);
2891 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2892 else if (result
== -1)
2893 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2894 else if (result
== 2)
2895 INSN_CODE (insn
) = -1;
2896 if (SET_DEST (set
) == SET_SRC (set
))
2903 #ifdef HAVE_peephole
2904 /* Do machine-specific peephole optimizations if desired. */
2906 if (optimize_p
&& !flag_no_peephole
&& !nopeepholes
)
2908 rtx_insn
*next
= peephole (insn
);
2909 /* When peepholing, if there were notes within the peephole,
2910 emit them before the peephole. */
2911 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2913 rtx_insn
*note
, *prev
= PREV_INSN (insn
);
2915 for (note
= NEXT_INSN (insn
); note
!= next
;
2916 note
= NEXT_INSN (note
))
2917 final_scan_insn (note
, file
, optimize_p
, nopeepholes
, seen
);
2919 /* Put the notes in the proper position for a later
2920 rescan. For example, the SH target can do this
2921 when generating a far jump in a delayed branch
2923 note
= NEXT_INSN (insn
);
2924 SET_PREV_INSN (note
) = prev
;
2925 SET_NEXT_INSN (prev
) = note
;
2926 SET_NEXT_INSN (PREV_INSN (next
)) = insn
;
2927 SET_PREV_INSN (insn
) = PREV_INSN (next
);
2928 SET_NEXT_INSN (insn
) = next
;
2929 SET_PREV_INSN (next
) = insn
;
2932 /* PEEPHOLE might have changed this. */
2933 body
= PATTERN (insn
);
2937 /* Try to recognize the instruction.
2938 If successful, verify that the operands satisfy the
2939 constraints for the instruction. Crash if they don't,
2940 since `reload' should have changed them so that they do. */
2942 insn_code_number
= recog_memoized (insn
);
2943 cleanup_subreg_operands (insn
);
2945 /* Dump the insn in the assembly for debugging (-dAP).
2946 If the final dump is requested as slim RTL, dump slim
2947 RTL to the assembly file also. */
2948 if (flag_dump_rtl_in_asm
)
2950 print_rtx_head
= ASM_COMMENT_START
;
2951 if (! (dump_flags
& TDF_SLIM
))
2952 print_rtl_single (asm_out_file
, insn
);
2954 dump_insn_slim (asm_out_file
, insn
);
2955 print_rtx_head
= "";
2958 if (! constrain_operands_cached (insn
, 1))
2959 fatal_insn_not_found (insn
);
2961 /* Some target machines need to prescan each insn before
2964 #ifdef FINAL_PRESCAN_INSN
2965 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2968 if (targetm
.have_conditional_execution ()
2969 && GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2970 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2973 cc_prev_status
= cc_status
;
2975 /* Update `cc_status' for this instruction.
2976 The instruction's output routine may change it further.
2977 If the output routine for a jump insn needs to depend
2978 on the cc status, it should look at cc_prev_status. */
2980 NOTICE_UPDATE_CC (body
, insn
);
2983 current_output_insn
= debug_insn
= insn
;
2985 /* Find the proper template for this insn. */
2986 templ
= get_insn_template (insn_code_number
, insn
);
2988 /* If the C code returns 0, it means that it is a jump insn
2989 which follows a deleted test insn, and that test insn
2990 needs to be reinserted. */
2995 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2997 /* We have already processed the notes between the setter and
2998 the user. Make sure we don't process them again, this is
2999 particularly important if one of the notes is a block
3000 scope note or an EH note. */
3002 prev
!= last_ignored_compare
;
3003 prev
= PREV_INSN (prev
))
3006 delete_insn (prev
); /* Use delete_note. */
3012 /* If the template is the string "#", it means that this insn must
3014 if (templ
[0] == '#' && templ
[1] == '\0')
3016 rtx_insn
*new_rtx
= try_split (body
, insn
, 0);
3018 /* If we didn't split the insn, go away. */
3019 if (new_rtx
== insn
&& PATTERN (new_rtx
) == body
)
3020 fatal_insn ("could not split insn", insn
);
3022 /* If we have a length attribute, this instruction should have
3023 been split in shorten_branches, to ensure that we would have
3024 valid length info for the splitees. */
3025 gcc_assert (!HAVE_ATTR_length
);
3030 /* ??? This will put the directives in the wrong place if
3031 get_insn_template outputs assembly directly. However calling it
3032 before get_insn_template breaks if the insns is split. */
3033 if (targetm
.asm_out
.unwind_emit_before_insn
3034 && targetm
.asm_out
.unwind_emit
)
3035 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
3037 if (rtx_call_insn
*call_insn
= dyn_cast
<rtx_call_insn
*> (insn
))
3039 rtx x
= call_from_call_insn (call_insn
);
3041 if (x
&& MEM_P (x
) && GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
3045 t
= SYMBOL_REF_DECL (x
);
3047 assemble_external (t
);
3049 if (!DECL_IGNORED_P (current_function_decl
))
3050 debug_hooks
->var_location (insn
);
3053 /* Output assembler code from the template. */
3054 output_asm_insn (templ
, recog_data
.operand
);
3056 /* Some target machines need to postscan each insn after
3058 if (targetm
.asm_out
.final_postscan_insn
)
3059 targetm
.asm_out
.final_postscan_insn (file
, insn
, recog_data
.operand
,
3060 recog_data
.n_operands
);
3062 if (!targetm
.asm_out
.unwind_emit_before_insn
3063 && targetm
.asm_out
.unwind_emit
)
3064 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
3066 current_output_insn
= debug_insn
= 0;
3069 return NEXT_INSN (insn
);
3072 /* Return whether a source line note needs to be emitted before INSN.
3073 Sets IS_STMT to TRUE if the line should be marked as a possible
3074 breakpoint location. */
3077 notice_source_line (rtx_insn
*insn
, bool *is_stmt
)
3079 const char *filename
;
3082 if (override_filename
)
3084 filename
= override_filename
;
3085 linenum
= override_linenum
;
3087 else if (INSN_HAS_LOCATION (insn
))
3089 expanded_location xloc
= insn_location (insn
);
3090 filename
= xloc
.file
;
3091 linenum
= xloc
.line
;
3099 if (filename
== NULL
)
3102 if (force_source_line
3103 || filename
!= last_filename
3104 || last_linenum
!= linenum
)
3106 force_source_line
= false;
3107 last_filename
= filename
;
3108 last_linenum
= linenum
;
3109 last_discriminator
= discriminator
;
3111 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
3112 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
3116 if (SUPPORTS_DISCRIMINATOR
&& last_discriminator
!= discriminator
)
3118 /* If the discriminator changed, but the line number did not,
3119 output the line table entry with is_stmt false so the
3120 debugger does not treat this as a breakpoint location. */
3121 last_discriminator
= discriminator
;
3129 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3130 directly to the desired hard register. */
3133 cleanup_subreg_operands (rtx_insn
*insn
)
3136 bool changed
= false;
3137 extract_insn_cached (insn
);
3138 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3140 /* The following test cannot use recog_data.operand when testing
3141 for a SUBREG: the underlying object might have been changed
3142 already if we are inside a match_operator expression that
3143 matches the else clause. Instead we test the underlying
3144 expression directly. */
3145 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
3147 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
], true);
3150 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
3151 || GET_CODE (recog_data
.operand
[i
]) == MULT
3152 || MEM_P (recog_data
.operand
[i
]))
3153 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
], &changed
);
3156 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3158 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
3160 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
], true);
3163 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
3164 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
3165 || MEM_P (*recog_data
.dup_loc
[i
]))
3166 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
], &changed
);
3169 df_insn_rescan (insn
);
3172 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3173 the thing it is a subreg of. Do it anyway if FINAL_P. */
3176 alter_subreg (rtx
*xp
, bool final_p
)
3179 rtx y
= SUBREG_REG (x
);
3181 /* simplify_subreg does not remove subreg from volatile references.
3182 We are required to. */
3185 int offset
= SUBREG_BYTE (x
);
3187 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3188 contains 0 instead of the proper offset. See simplify_subreg. */
3190 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
3192 int difference
= GET_MODE_SIZE (GET_MODE (y
))
3193 - GET_MODE_SIZE (GET_MODE (x
));
3194 if (WORDS_BIG_ENDIAN
)
3195 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3196 if (BYTES_BIG_ENDIAN
)
3197 offset
+= difference
% UNITS_PER_WORD
;
3201 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
3203 *xp
= adjust_address_nv (y
, GET_MODE (x
), offset
);
3205 else if (REG_P (y
) && HARD_REGISTER_P (y
))
3207 rtx new_rtx
= simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
3212 else if (final_p
&& REG_P (y
))
3214 /* Simplify_subreg can't handle some REG cases, but we have to. */
3216 HOST_WIDE_INT offset
;
3218 regno
= subreg_regno (x
);
3219 if (subreg_lowpart_p (x
))
3220 offset
= byte_lowpart_offset (GET_MODE (x
), GET_MODE (y
));
3222 offset
= SUBREG_BYTE (x
);
3223 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, offset
);
3230 /* Do alter_subreg on all the SUBREGs contained in X. */
3233 walk_alter_subreg (rtx
*xp
, bool *changed
)
3236 switch (GET_CODE (x
))
3241 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3242 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1), changed
);
3247 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3252 return alter_subreg (xp
, true);
3263 /* Given BODY, the body of a jump instruction, alter the jump condition
3264 as required by the bits that are set in cc_status.flags.
3265 Not all of the bits there can be handled at this level in all cases.
3267 The value is normally 0.
3268 1 means that the condition has become always true.
3269 -1 means that the condition has become always false.
3270 2 means that COND has been altered. */
3273 alter_cond (rtx cond
)
3277 if (cc_status
.flags
& CC_REVERSED
)
3280 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
3283 if (cc_status
.flags
& CC_INVERTED
)
3286 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
3289 if (cc_status
.flags
& CC_NOT_POSITIVE
)
3290 switch (GET_CODE (cond
))
3295 /* Jump becomes unconditional. */
3301 /* Jump becomes no-op. */
3305 PUT_CODE (cond
, EQ
);
3310 PUT_CODE (cond
, NE
);
3318 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
3319 switch (GET_CODE (cond
))
3323 /* Jump becomes unconditional. */
3328 /* Jump becomes no-op. */
3333 PUT_CODE (cond
, EQ
);
3339 PUT_CODE (cond
, NE
);
3347 if (cc_status
.flags
& CC_NO_OVERFLOW
)
3348 switch (GET_CODE (cond
))
3351 /* Jump becomes unconditional. */
3355 PUT_CODE (cond
, EQ
);
3360 PUT_CODE (cond
, NE
);
3365 /* Jump becomes no-op. */
3372 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
3373 switch (GET_CODE (cond
))
3379 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
3384 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
3389 if (cc_status
.flags
& CC_NOT_SIGNED
)
3390 /* The flags are valid if signed condition operators are converted
3392 switch (GET_CODE (cond
))
3395 PUT_CODE (cond
, LEU
);
3400 PUT_CODE (cond
, LTU
);
3405 PUT_CODE (cond
, GTU
);
3410 PUT_CODE (cond
, GEU
);
3422 /* Report inconsistency between the assembler template and the operands.
3423 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3426 output_operand_lossage (const char *cmsgid
, ...)
3430 const char *pfx_str
;
3433 va_start (ap
, cmsgid
);
3435 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
3436 fmt_string
= xasprintf ("%s%s", pfx_str
, _(cmsgid
));
3437 new_message
= xvasprintf (fmt_string
, ap
);
3439 if (this_is_asm_operands
)
3440 error_for_asm (this_is_asm_operands
, "%s", new_message
);
3442 internal_error ("%s", new_message
);
3449 /* Output of assembler code from a template, and its subroutines. */
3451 /* Annotate the assembly with a comment describing the pattern and
3452 alternative used. */
3455 output_asm_name (void)
3459 int num
= INSN_CODE (debug_insn
);
3460 fprintf (asm_out_file
, "\t%s %d\t%s",
3461 ASM_COMMENT_START
, INSN_UID (debug_insn
),
3462 insn_data
[num
].name
);
3463 if (insn_data
[num
].n_alternatives
> 1)
3464 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
3466 if (HAVE_ATTR_length
)
3467 fprintf (asm_out_file
, "\t[length = %d]",
3468 get_attr_length (debug_insn
));
3470 /* Clear this so only the first assembler insn
3471 of any rtl insn will get the special comment for -dp. */
3476 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3477 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3478 corresponds to the address of the object and 0 if to the object. */
3481 get_mem_expr_from_op (rtx op
, int *paddressp
)
3489 return REG_EXPR (op
);
3490 else if (!MEM_P (op
))
3493 if (MEM_EXPR (op
) != 0)
3494 return MEM_EXPR (op
);
3496 /* Otherwise we have an address, so indicate it and look at the address. */
3500 /* First check if we have a decl for the address, then look at the right side
3501 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3502 But don't allow the address to itself be indirect. */
3503 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
3505 else if (GET_CODE (op
) == PLUS
3506 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
3510 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
3513 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
3514 return inner_addressp
? 0 : expr
;
3517 /* Output operand names for assembler instructions. OPERANDS is the
3518 operand vector, OPORDER is the order to write the operands, and NOPS
3519 is the number of operands to write. */
3522 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
3527 for (i
= 0; i
< nops
; i
++)
3530 rtx op
= operands
[oporder
[i
]];
3531 tree expr
= get_mem_expr_from_op (op
, &addressp
);
3533 fprintf (asm_out_file
, "%c%s",
3534 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
3538 fprintf (asm_out_file
, "%s",
3539 addressp
? "*" : "");
3540 print_mem_expr (asm_out_file
, expr
);
3543 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
3544 && ORIGINAL_REGNO (op
) != REGNO (op
))
3545 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
3549 #ifdef ASSEMBLER_DIALECT
3550 /* Helper function to parse assembler dialects in the asm string.
3551 This is called from output_asm_insn and asm_fprintf. */
3553 do_assembler_dialects (const char *p
, int *dialect
)
3564 output_operand_lossage ("nested assembly dialect alternatives");
3568 /* If we want the first dialect, do nothing. Otherwise, skip
3569 DIALECT_NUMBER of strings ending with '|'. */
3570 for (i
= 0; i
< dialect_number
; i
++)
3572 while (*p
&& *p
!= '}')
3580 /* Skip over any character after a percent sign. */
3592 output_operand_lossage ("unterminated assembly dialect alternative");
3599 /* Skip to close brace. */
3604 output_operand_lossage ("unterminated assembly dialect alternative");
3608 /* Skip over any character after a percent sign. */
3609 if (*p
== '%' && p
[1])
3623 putc (c
, asm_out_file
);
3628 putc (c
, asm_out_file
);
3639 /* Output text from TEMPLATE to the assembler output file,
3640 obeying %-directions to substitute operands taken from
3641 the vector OPERANDS.
3643 %N (for N a digit) means print operand N in usual manner.
3644 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3645 and print the label name with no punctuation.
3646 %cN means require operand N to be a constant
3647 and print the constant expression with no punctuation.
3648 %aN means expect operand N to be a memory address
3649 (not a memory reference!) and print a reference
3651 %nN means expect operand N to be a constant
3652 and print a constant expression for minus the value
3653 of the operand, with no other punctuation. */
3656 output_asm_insn (const char *templ
, rtx
*operands
)
3660 #ifdef ASSEMBLER_DIALECT
3663 int oporder
[MAX_RECOG_OPERANDS
];
3664 char opoutput
[MAX_RECOG_OPERANDS
];
3667 /* An insn may return a null string template
3668 in a case where no assembler code is needed. */
3672 memset (opoutput
, 0, sizeof opoutput
);
3674 putc ('\t', asm_out_file
);
3676 #ifdef ASM_OUTPUT_OPCODE
3677 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3684 if (flag_verbose_asm
)
3685 output_asm_operand_names (operands
, oporder
, ops
);
3686 if (flag_print_asm_name
)
3690 memset (opoutput
, 0, sizeof opoutput
);
3692 putc (c
, asm_out_file
);
3693 #ifdef ASM_OUTPUT_OPCODE
3694 while ((c
= *p
) == '\t')
3696 putc (c
, asm_out_file
);
3699 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3703 #ifdef ASSEMBLER_DIALECT
3707 p
= do_assembler_dialects (p
, &dialect
);
3712 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3713 if ASSEMBLER_DIALECT defined and these characters have a special
3714 meaning as dialect delimiters.*/
3716 #ifdef ASSEMBLER_DIALECT
3717 || *p
== '{' || *p
== '}' || *p
== '|'
3721 putc (*p
, asm_out_file
);
3724 /* %= outputs a number which is unique to each insn in the entire
3725 compilation. This is useful for making local labels that are
3726 referred to more than once in a given insn. */
3730 fprintf (asm_out_file
, "%d", insn_counter
);
3732 /* % followed by a letter and some digits
3733 outputs an operand in a special way depending on the letter.
3734 Letters `acln' are implemented directly.
3735 Other letters are passed to `output_operand' so that
3736 the TARGET_PRINT_OPERAND hook can define them. */
3737 else if (ISALPHA (*p
))
3740 unsigned long opnum
;
3743 opnum
= strtoul (p
, &endptr
, 10);
3746 output_operand_lossage ("operand number missing "
3748 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3749 output_operand_lossage ("operand number out of range");
3750 else if (letter
== 'l')
3751 output_asm_label (operands
[opnum
]);
3752 else if (letter
== 'a')
3753 output_address (operands
[opnum
]);
3754 else if (letter
== 'c')
3756 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3757 output_addr_const (asm_out_file
, operands
[opnum
]);
3759 output_operand (operands
[opnum
], 'c');
3761 else if (letter
== 'n')
3763 if (CONST_INT_P (operands
[opnum
]))
3764 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3765 - INTVAL (operands
[opnum
]));
3768 putc ('-', asm_out_file
);
3769 output_addr_const (asm_out_file
, operands
[opnum
]);
3773 output_operand (operands
[opnum
], letter
);
3775 if (!opoutput
[opnum
])
3776 oporder
[ops
++] = opnum
;
3777 opoutput
[opnum
] = 1;
3782 /* % followed by a digit outputs an operand the default way. */
3783 else if (ISDIGIT (*p
))
3785 unsigned long opnum
;
3788 opnum
= strtoul (p
, &endptr
, 10);
3789 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3790 output_operand_lossage ("operand number out of range");
3792 output_operand (operands
[opnum
], 0);
3794 if (!opoutput
[opnum
])
3795 oporder
[ops
++] = opnum
;
3796 opoutput
[opnum
] = 1;
3801 /* % followed by punctuation: output something for that
3802 punctuation character alone, with no operand. The
3803 TARGET_PRINT_OPERAND hook decides what is actually done. */
3804 else if (targetm
.asm_out
.print_operand_punct_valid_p ((unsigned char) *p
))
3805 output_operand (NULL_RTX
, *p
++);
3807 output_operand_lossage ("invalid %%-code");
3811 putc (c
, asm_out_file
);
3814 /* Write out the variable names for operands, if we know them. */
3815 if (flag_verbose_asm
)
3816 output_asm_operand_names (operands
, oporder
, ops
);
3817 if (flag_print_asm_name
)
3820 putc ('\n', asm_out_file
);
3823 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3826 output_asm_label (rtx x
)
3830 if (GET_CODE (x
) == LABEL_REF
)
3831 x
= LABEL_REF_LABEL (x
);
3834 && NOTE_KIND (x
) == NOTE_INSN_DELETED_LABEL
))
3835 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3837 output_operand_lossage ("'%%l' operand isn't a label");
3839 assemble_name (asm_out_file
, buf
);
3842 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3845 mark_symbol_refs_as_used (rtx x
)
3847 subrtx_iterator::array_type array
;
3848 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
3850 const_rtx x
= *iter
;
3851 if (GET_CODE (x
) == SYMBOL_REF
)
3852 if (tree t
= SYMBOL_REF_DECL (x
))
3853 assemble_external (t
);
3857 /* Print operand X using machine-dependent assembler syntax.
3858 CODE is a non-digit that preceded the operand-number in the % spec,
3859 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3860 between the % and the digits.
3861 When CODE is a non-letter, X is 0.
3863 The meanings of the letters are machine-dependent and controlled
3864 by TARGET_PRINT_OPERAND. */
3867 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3869 if (x
&& GET_CODE (x
) == SUBREG
)
3870 x
= alter_subreg (&x
, true);
3872 /* X must not be a pseudo reg. */
3873 if (!targetm
.no_register_allocation
)
3874 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3876 targetm
.asm_out
.print_operand (asm_out_file
, x
, code
);
3881 mark_symbol_refs_as_used (x
);
3884 /* Print a memory reference operand for address X using
3885 machine-dependent assembler syntax. */
3888 output_address (rtx x
)
3890 bool changed
= false;
3891 walk_alter_subreg (&x
, &changed
);
3892 targetm
.asm_out
.print_operand_address (asm_out_file
, x
);
3895 /* Print an integer constant expression in assembler syntax.
3896 Addition and subtraction are the only arithmetic
3897 that may appear in these expressions. */
3900 output_addr_const (FILE *file
, rtx x
)
3905 switch (GET_CODE (x
))
3912 if (SYMBOL_REF_DECL (x
))
3913 assemble_external (SYMBOL_REF_DECL (x
));
3914 #ifdef ASM_OUTPUT_SYMBOL_REF
3915 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3917 assemble_name (file
, XSTR (x
, 0));
3922 x
= LABEL_REF_LABEL (x
);
3925 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3926 #ifdef ASM_OUTPUT_LABEL_REF
3927 ASM_OUTPUT_LABEL_REF (file
, buf
);
3929 assemble_name (file
, buf
);
3934 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3938 /* This used to output parentheses around the expression,
3939 but that does not work on the 386 (either ATT or BSD assembler). */
3940 output_addr_const (file
, XEXP (x
, 0));
3943 case CONST_WIDE_INT
:
3944 /* We do not know the mode here so we have to use a round about
3945 way to build a wide-int to get it printed properly. */
3947 wide_int w
= wide_int::from_array (&CONST_WIDE_INT_ELT (x
, 0),
3948 CONST_WIDE_INT_NUNITS (x
),
3949 CONST_WIDE_INT_NUNITS (x
)
3950 * HOST_BITS_PER_WIDE_INT
,
3952 print_decs (w
, file
);
3957 if (CONST_DOUBLE_AS_INT_P (x
))
3959 /* We can use %d if the number is one word and positive. */
3960 if (CONST_DOUBLE_HIGH (x
))
3961 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3962 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_HIGH (x
),
3963 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3964 else if (CONST_DOUBLE_LOW (x
) < 0)
3965 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3966 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3968 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3971 /* We can't handle floating point constants;
3972 PRINT_OPERAND must handle them. */
3973 output_operand_lossage ("floating constant misused");
3977 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_FIXED_VALUE_LOW (x
));
3981 /* Some assemblers need integer constants to appear last (eg masm). */
3982 if (CONST_INT_P (XEXP (x
, 0)))
3984 output_addr_const (file
, XEXP (x
, 1));
3985 if (INTVAL (XEXP (x
, 0)) >= 0)
3986 fprintf (file
, "+");
3987 output_addr_const (file
, XEXP (x
, 0));
3991 output_addr_const (file
, XEXP (x
, 0));
3992 if (!CONST_INT_P (XEXP (x
, 1))
3993 || INTVAL (XEXP (x
, 1)) >= 0)
3994 fprintf (file
, "+");
3995 output_addr_const (file
, XEXP (x
, 1));
4000 /* Avoid outputting things like x-x or x+5-x,
4001 since some assemblers can't handle that. */
4002 x
= simplify_subtraction (x
);
4003 if (GET_CODE (x
) != MINUS
)
4006 output_addr_const (file
, XEXP (x
, 0));
4007 fprintf (file
, "-");
4008 if ((CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0)
4009 || GET_CODE (XEXP (x
, 1)) == PC
4010 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
4011 output_addr_const (file
, XEXP (x
, 1));
4014 fputs (targetm
.asm_out
.open_paren
, file
);
4015 output_addr_const (file
, XEXP (x
, 1));
4016 fputs (targetm
.asm_out
.close_paren
, file
);
4024 output_addr_const (file
, XEXP (x
, 0));
4028 if (targetm
.asm_out
.output_addr_const_extra (file
, x
))
4031 output_operand_lossage ("invalid expression as operand");
4035 /* Output a quoted string. */
4038 output_quoted_string (FILE *asm_file
, const char *string
)
4040 #ifdef OUTPUT_QUOTED_STRING
4041 OUTPUT_QUOTED_STRING (asm_file
, string
);
4045 putc ('\"', asm_file
);
4046 while ((c
= *string
++) != 0)
4050 if (c
== '\"' || c
== '\\')
4051 putc ('\\', asm_file
);
4055 fprintf (asm_file
, "\\%03o", (unsigned char) c
);
4057 putc ('\"', asm_file
);
4061 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4064 fprint_whex (FILE *f
, unsigned HOST_WIDE_INT value
)
4066 char buf
[2 + CHAR_BIT
* sizeof (value
) / 4];
4071 char *p
= buf
+ sizeof (buf
);
4073 *--p
= "0123456789abcdef"[value
% 16];
4074 while ((value
/= 16) != 0);
4077 fwrite (p
, 1, buf
+ sizeof (buf
) - p
, f
);
4081 /* Internal function that prints an unsigned long in decimal in reverse.
4082 The output string IS NOT null-terminated. */
4085 sprint_ul_rev (char *s
, unsigned long value
)
4090 s
[i
] = "0123456789"[value
% 10];
4093 /* alternate version, without modulo */
4094 /* oldval = value; */
4096 /* s[i] = "0123456789" [oldval - 10*value]; */
4103 /* Write an unsigned long as decimal to a file, fast. */
4106 fprint_ul (FILE *f
, unsigned long value
)
4108 /* python says: len(str(2**64)) == 20 */
4112 i
= sprint_ul_rev (s
, value
);
4114 /* It's probably too small to bother with string reversal and fputs. */
4123 /* Write an unsigned long as decimal to a string, fast.
4124 s must be wide enough to not overflow, at least 21 chars.
4125 Returns the length of the string (without terminating '\0'). */
4128 sprint_ul (char *s
, unsigned long value
)
4135 len
= sprint_ul_rev (s
, value
);
4138 /* Reverse the string. */
4152 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4153 %R prints the value of REGISTER_PREFIX.
4154 %L prints the value of LOCAL_LABEL_PREFIX.
4155 %U prints the value of USER_LABEL_PREFIX.
4156 %I prints the value of IMMEDIATE_PREFIX.
4157 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4158 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4160 We handle alternate assembler dialects here, just like output_asm_insn. */
4163 asm_fprintf (FILE *file
, const char *p
, ...)
4167 #ifdef ASSEMBLER_DIALECT
4172 va_start (argptr
, p
);
4179 #ifdef ASSEMBLER_DIALECT
4183 p
= do_assembler_dialects (p
, &dialect
);
4190 while (strchr ("-+ #0", c
))
4195 while (ISDIGIT (c
) || c
== '.')
4206 case 'd': case 'i': case 'u':
4207 case 'x': case 'X': case 'o':
4211 fprintf (file
, buf
, va_arg (argptr
, int));
4215 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4216 'o' cases, but we do not check for those cases. It
4217 means that the value is a HOST_WIDE_INT, which may be
4218 either `long' or `long long'. */
4219 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
4220 q
+= strlen (HOST_WIDE_INT_PRINT
);
4223 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
4228 #ifdef HAVE_LONG_LONG
4234 fprintf (file
, buf
, va_arg (argptr
, long long));
4241 fprintf (file
, buf
, va_arg (argptr
, long));
4249 fprintf (file
, buf
, va_arg (argptr
, char *));
4253 #ifdef ASM_OUTPUT_OPCODE
4254 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
4259 #ifdef REGISTER_PREFIX
4260 fprintf (file
, "%s", REGISTER_PREFIX
);
4265 #ifdef IMMEDIATE_PREFIX
4266 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
4271 #ifdef LOCAL_LABEL_PREFIX
4272 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
4277 fputs (user_label_prefix
, file
);
4280 #ifdef ASM_FPRINTF_EXTENSIONS
4281 /* Uppercase letters are reserved for general use by asm_fprintf
4282 and so are not available to target specific code. In order to
4283 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4284 they are defined here. As they get turned into real extensions
4285 to asm_fprintf they should be removed from this list. */
4286 case 'A': case 'B': case 'C': case 'D': case 'E':
4287 case 'F': case 'G': case 'H': case 'J': case 'K':
4288 case 'M': case 'N': case 'P': case 'Q': case 'S':
4289 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4292 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
4305 /* Return nonzero if this function has no function calls. */
4308 leaf_function_p (void)
4312 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4313 functions even if they call mcount. */
4314 if (crtl
->profile
&& !targetm
.keep_leaf_when_profiled ())
4317 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4320 && ! SIBLING_CALL_P (insn
))
4322 if (NONJUMP_INSN_P (insn
)
4323 && GET_CODE (PATTERN (insn
)) == SEQUENCE
4324 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
4325 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
4332 /* Return 1 if branch is a forward branch.
4333 Uses insn_shuid array, so it works only in the final pass. May be used by
4334 output templates to customary add branch prediction hints.
4337 final_forward_branch_p (rtx_insn
*insn
)
4339 int insn_id
, label_id
;
4341 gcc_assert (uid_shuid
);
4342 insn_id
= INSN_SHUID (insn
);
4343 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
4344 /* We've hit some insns that does not have id information available. */
4345 gcc_assert (insn_id
&& label_id
);
4346 return insn_id
< label_id
;
4349 /* On some machines, a function with no call insns
4350 can run faster if it doesn't create its own register window.
4351 When output, the leaf function should use only the "output"
4352 registers. Ordinarily, the function would be compiled to use
4353 the "input" registers to find its arguments; it is a candidate
4354 for leaf treatment if it uses only the "input" registers.
4355 Leaf function treatment means renumbering so the function
4356 uses the "output" registers instead. */
4358 #ifdef LEAF_REGISTERS
4360 /* Return 1 if this function uses only the registers that can be
4361 safely renumbered. */
4364 only_leaf_regs_used (void)
4367 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
4369 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4370 if ((df_regs_ever_live_p (i
) || global_regs
[i
])
4371 && ! permitted_reg_in_leaf_functions
[i
])
4374 if (crtl
->uses_pic_offset_table
4375 && pic_offset_table_rtx
!= 0
4376 && REG_P (pic_offset_table_rtx
)
4377 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
4383 /* Scan all instructions and renumber all registers into those
4384 available in leaf functions. */
4387 leaf_renumber_regs (rtx_insn
*first
)
4391 /* Renumber only the actual patterns.
4392 The reg-notes can contain frame pointer refs,
4393 and renumbering them could crash, and should not be needed. */
4394 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4396 leaf_renumber_regs_insn (PATTERN (insn
));
4399 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4400 available in leaf functions. */
4403 leaf_renumber_regs_insn (rtx in_rtx
)
4406 const char *format_ptr
;
4411 /* Renumber all input-registers into output-registers.
4412 renumbered_regs would be 1 for an output-register;
4419 /* Don't renumber the same reg twice. */
4423 newreg
= REGNO (in_rtx
);
4424 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4425 to reach here as part of a REG_NOTE. */
4426 if (newreg
>= FIRST_PSEUDO_REGISTER
)
4431 newreg
= LEAF_REG_REMAP (newreg
);
4432 gcc_assert (newreg
>= 0);
4433 df_set_regs_ever_live (REGNO (in_rtx
), false);
4434 df_set_regs_ever_live (newreg
, true);
4435 SET_REGNO (in_rtx
, newreg
);
4439 if (INSN_P (in_rtx
))
4441 /* Inside a SEQUENCE, we find insns.
4442 Renumber just the patterns of these insns,
4443 just as we do for the top-level insns. */
4444 leaf_renumber_regs_insn (PATTERN (in_rtx
));
4448 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
4450 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
4451 switch (*format_ptr
++)
4454 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
4458 if (NULL
!= XVEC (in_rtx
, i
))
4460 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
4461 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
4480 /* Turn the RTL into assembly. */
4482 rest_of_handle_final (void)
4484 const char *fnname
= get_fnname_from_decl (current_function_decl
);
4486 assemble_start_function (current_function_decl
, fnname
);
4487 final_start_function (get_insns (), asm_out_file
, optimize
);
4488 final (get_insns (), asm_out_file
, optimize
);
4490 collect_fn_hard_reg_usage ();
4491 final_end_function ();
4493 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4494 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4495 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4496 output_function_exception_table (fnname
);
4498 assemble_end_function (current_function_decl
, fnname
);
4500 user_defined_section_attribute
= false;
4502 /* Free up reg info memory. */
4506 fflush (asm_out_file
);
4508 /* Write DBX symbols if requested. */
4510 /* Note that for those inline functions where we don't initially
4511 know for certain that we will be generating an out-of-line copy,
4512 the first invocation of this routine (rest_of_compilation) will
4513 skip over this code by doing a `goto exit_rest_of_compilation;'.
4514 Later on, wrapup_global_declarations will (indirectly) call
4515 rest_of_compilation again for those inline functions that need
4516 to have out-of-line copies generated. During that call, we
4517 *will* be routed past here. */
4519 timevar_push (TV_SYMOUT
);
4520 if (!DECL_IGNORED_P (current_function_decl
))
4521 debug_hooks
->function_decl (current_function_decl
);
4522 timevar_pop (TV_SYMOUT
);
4524 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4525 DECL_INITIAL (current_function_decl
) = error_mark_node
;
4527 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
4528 && targetm
.have_ctors_dtors
)
4529 targetm
.asm_out
.constructor (XEXP (DECL_RTL (current_function_decl
), 0),
4530 decl_init_priority_lookup
4531 (current_function_decl
));
4532 if (DECL_STATIC_DESTRUCTOR (current_function_decl
)
4533 && targetm
.have_ctors_dtors
)
4534 targetm
.asm_out
.destructor (XEXP (DECL_RTL (current_function_decl
), 0),
4535 decl_fini_priority_lookup
4536 (current_function_decl
));
4542 const pass_data pass_data_final
=
4544 RTL_PASS
, /* type */
4546 OPTGROUP_NONE
, /* optinfo_flags */
4547 TV_FINAL
, /* tv_id */
4548 0, /* properties_required */
4549 0, /* properties_provided */
4550 0, /* properties_destroyed */
4551 0, /* todo_flags_start */
4552 0, /* todo_flags_finish */
4555 class pass_final
: public rtl_opt_pass
4558 pass_final (gcc::context
*ctxt
)
4559 : rtl_opt_pass (pass_data_final
, ctxt
)
4562 /* opt_pass methods: */
4563 virtual unsigned int execute (function
*) { return rest_of_handle_final (); }
4565 }; // class pass_final
4570 make_pass_final (gcc::context
*ctxt
)
4572 return new pass_final (ctxt
);
4577 rest_of_handle_shorten_branches (void)
4579 /* Shorten branches. */
4580 shorten_branches (get_insns ());
4586 const pass_data pass_data_shorten_branches
=
4588 RTL_PASS
, /* type */
4589 "shorten", /* name */
4590 OPTGROUP_NONE
, /* optinfo_flags */
4591 TV_SHORTEN_BRANCH
, /* tv_id */
4592 0, /* properties_required */
4593 0, /* properties_provided */
4594 0, /* properties_destroyed */
4595 0, /* todo_flags_start */
4596 0, /* todo_flags_finish */
4599 class pass_shorten_branches
: public rtl_opt_pass
4602 pass_shorten_branches (gcc::context
*ctxt
)
4603 : rtl_opt_pass (pass_data_shorten_branches
, ctxt
)
4606 /* opt_pass methods: */
4607 virtual unsigned int execute (function
*)
4609 return rest_of_handle_shorten_branches ();
4612 }; // class pass_shorten_branches
4617 make_pass_shorten_branches (gcc::context
*ctxt
)
4619 return new pass_shorten_branches (ctxt
);
4624 rest_of_clean_state (void)
4626 rtx_insn
*insn
, *next
;
4627 FILE *final_output
= NULL
;
4628 int save_unnumbered
= flag_dump_unnumbered
;
4629 int save_noaddr
= flag_dump_noaddr
;
4631 if (flag_dump_final_insns
)
4633 final_output
= fopen (flag_dump_final_insns
, "a");
4636 error ("could not open final insn dump file %qs: %m",
4637 flag_dump_final_insns
);
4638 flag_dump_final_insns
= NULL
;
4642 flag_dump_noaddr
= flag_dump_unnumbered
= 1;
4643 if (flag_compare_debug_opt
|| flag_compare_debug
)
4644 dump_flags
|= TDF_NOUID
;
4645 dump_function_header (final_output
, current_function_decl
,
4647 final_insns_dump_p
= true;
4649 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4651 INSN_UID (insn
) = CODE_LABEL_NUMBER (insn
);
4655 set_block_for_insn (insn
, NULL
);
4656 INSN_UID (insn
) = 0;
4661 /* It is very important to decompose the RTL instruction chain here:
4662 debug information keeps pointing into CODE_LABEL insns inside the function
4663 body. If these remain pointing to the other insns, we end up preserving
4664 whole RTL chain and attached detailed debug info in memory. */
4665 for (insn
= get_insns (); insn
; insn
= next
)
4667 next
= NEXT_INSN (insn
);
4668 SET_NEXT_INSN (insn
) = NULL
;
4669 SET_PREV_INSN (insn
) = NULL
;
4672 && (!NOTE_P (insn
) ||
4673 (NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
4674 && NOTE_KIND (insn
) != NOTE_INSN_CALL_ARG_LOCATION
4675 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_BEG
4676 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_END
4677 && NOTE_KIND (insn
) != NOTE_INSN_DELETED_DEBUG_LABEL
)))
4678 print_rtl_single (final_output
, insn
);
4683 flag_dump_noaddr
= save_noaddr
;
4684 flag_dump_unnumbered
= save_unnumbered
;
4685 final_insns_dump_p
= false;
4687 if (fclose (final_output
))
4689 error ("could not close final insn dump file %qs: %m",
4690 flag_dump_final_insns
);
4691 flag_dump_final_insns
= NULL
;
4695 /* In case the function was not output,
4696 don't leave any temporary anonymous types
4697 queued up for sdb output. */
4698 #ifdef SDB_DEBUGGING_INFO
4699 if (write_symbols
== SDB_DEBUG
)
4700 sdbout_types (NULL_TREE
);
4703 flag_rerun_cse_after_global_opts
= 0;
4704 reload_completed
= 0;
4705 epilogue_completed
= 0;
4707 regstack_completed
= 0;
4710 /* Clear out the insn_length contents now that they are no
4712 init_insn_lengths ();
4714 /* Show no temporary slots allocated. */
4717 free_bb_for_insn ();
4721 /* We can reduce stack alignment on call site only when we are sure that
4722 the function body just produced will be actually used in the final
4724 if (decl_binds_to_current_def_p (current_function_decl
))
4726 unsigned int pref
= crtl
->preferred_stack_boundary
;
4727 if (crtl
->stack_alignment_needed
> crtl
->preferred_stack_boundary
)
4728 pref
= crtl
->stack_alignment_needed
;
4729 cgraph_node::rtl_info (current_function_decl
)
4730 ->preferred_incoming_stack_boundary
= pref
;
4733 /* Make sure volatile mem refs aren't considered valid operands for
4734 arithmetic insns. We must call this here if this is a nested inline
4735 function, since the above code leaves us in the init_recog state,
4736 and the function context push/pop code does not save/restore volatile_ok.
4738 ??? Maybe it isn't necessary for expand_start_function to call this
4739 anymore if we do it here? */
4741 init_recog_no_volatile ();
4743 /* We're done with this function. Free up memory if we can. */
4744 free_after_parsing (cfun
);
4745 free_after_compilation (cfun
);
4751 const pass_data pass_data_clean_state
=
4753 RTL_PASS
, /* type */
4754 "*clean_state", /* name */
4755 OPTGROUP_NONE
, /* optinfo_flags */
4756 TV_FINAL
, /* tv_id */
4757 0, /* properties_required */
4758 0, /* properties_provided */
4759 PROP_rtl
, /* properties_destroyed */
4760 0, /* todo_flags_start */
4761 0, /* todo_flags_finish */
4764 class pass_clean_state
: public rtl_opt_pass
4767 pass_clean_state (gcc::context
*ctxt
)
4768 : rtl_opt_pass (pass_data_clean_state
, ctxt
)
4771 /* opt_pass methods: */
4772 virtual unsigned int execute (function
*)
4774 return rest_of_clean_state ();
4777 }; // class pass_clean_state
4782 make_pass_clean_state (gcc::context
*ctxt
)
4784 return new pass_clean_state (ctxt
);
4787 /* Return true if INSN is a call to the the current function. */
4790 self_recursive_call_p (rtx_insn
*insn
)
4792 tree fndecl
= get_call_fndecl (insn
);
4793 return (fndecl
== current_function_decl
4794 && decl_binds_to_current_def_p (fndecl
));
4797 /* Collect hard register usage for the current function. */
4800 collect_fn_hard_reg_usage (void)
4806 struct cgraph_rtl_info
*node
;
4807 HARD_REG_SET function_used_regs
;
4809 /* ??? To be removed when all the ports have been fixed. */
4810 if (!targetm
.call_fusage_contains_non_callee_clobbers
)
4813 CLEAR_HARD_REG_SET (function_used_regs
);
4815 for (insn
= get_insns (); insn
!= NULL_RTX
; insn
= next_insn (insn
))
4817 HARD_REG_SET insn_used_regs
;
4819 if (!NONDEBUG_INSN_P (insn
))
4823 && !self_recursive_call_p (insn
))
4825 if (!get_call_reg_set_usage (insn
, &insn_used_regs
,
4829 IOR_HARD_REG_SET (function_used_regs
, insn_used_regs
);
4832 find_all_hard_reg_sets (insn
, &insn_used_regs
, false);
4833 IOR_HARD_REG_SET (function_used_regs
, insn_used_regs
);
4836 /* Be conservative - mark fixed and global registers as used. */
4837 IOR_HARD_REG_SET (function_used_regs
, fixed_reg_set
);
4840 /* Handle STACK_REGS conservatively, since the df-framework does not
4841 provide accurate information for them. */
4843 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
4844 SET_HARD_REG_BIT (function_used_regs
, i
);
4847 /* The information we have gathered is only interesting if it exposes a
4848 register from the call_used_regs that is not used in this function. */
4849 if (hard_reg_set_subset_p (call_used_reg_set
, function_used_regs
))
4852 node
= cgraph_node::rtl_info (current_function_decl
);
4853 gcc_assert (node
!= NULL
);
4855 COPY_HARD_REG_SET (node
->function_used_regs
, function_used_regs
);
4856 node
->function_used_regs_valid
= 1;
4859 /* Get the declaration of the function called by INSN. */
4862 get_call_fndecl (rtx_insn
*insn
)
4866 note
= find_reg_note (insn
, REG_CALL_DECL
, NULL_RTX
);
4867 if (note
== NULL_RTX
)
4870 datum
= XEXP (note
, 0);
4871 if (datum
!= NULL_RTX
)
4872 return SYMBOL_REF_DECL (datum
);
4877 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4878 call targets that can be overwritten. */
4880 static struct cgraph_rtl_info
*
4881 get_call_cgraph_rtl_info (rtx_insn
*insn
)
4885 if (insn
== NULL_RTX
)
4888 fndecl
= get_call_fndecl (insn
);
4889 if (fndecl
== NULL_TREE
4890 || !decl_binds_to_current_def_p (fndecl
))
4893 return cgraph_node::rtl_info (fndecl
);
4896 /* Find hard registers used by function call instruction INSN, and return them
4897 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4900 get_call_reg_set_usage (rtx_insn
*insn
, HARD_REG_SET
*reg_set
,
4901 HARD_REG_SET default_set
)
4905 struct cgraph_rtl_info
*node
= get_call_cgraph_rtl_info (insn
);
4907 && node
->function_used_regs_valid
)
4909 COPY_HARD_REG_SET (*reg_set
, node
->function_used_regs
);
4910 AND_HARD_REG_SET (*reg_set
, default_set
);
4915 COPY_HARD_REG_SET (*reg_set
, default_set
);