[5/77] Small tweak to array_value_type
[official-gcc.git] / gcc / tree-switch-conversion.c
blob85d6816d11902192f39281735ee329322d38b3ee
1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006-2017 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
23 load, or a series of bit-test-and-branch expressions. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "insn-codes.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "cfghooks.h"
34 #include "tree-pass.h"
35 #include "ssa.h"
36 #include "optabs-tree.h"
37 #include "cgraph.h"
38 #include "gimple-pretty-print.h"
39 #include "params.h"
40 #include "fold-const.h"
41 #include "varasm.h"
42 #include "stor-layout.h"
43 #include "cfganal.h"
44 #include "gimplify.h"
45 #include "gimple-iterator.h"
46 #include "gimplify-me.h"
47 #include "tree-cfg.h"
48 #include "cfgloop.h"
49 #include "alloc-pool.h"
50 #include "target.h"
51 #include "tree-into-ssa.h"
53 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
54 type in the GIMPLE type system that is language-independent? */
55 #include "langhooks.h"
58 /* Maximum number of case bit tests.
59 FIXME: This should be derived from PARAM_CASE_VALUES_THRESHOLD and
60 targetm.case_values_threshold(), or be its own param. */
61 #define MAX_CASE_BIT_TESTS 3
63 /* Split the basic block at the statement pointed to by GSIP, and insert
64 a branch to the target basic block of E_TRUE conditional on tree
65 expression COND.
67 It is assumed that there is already an edge from the to-be-split
68 basic block to E_TRUE->dest block. This edge is removed, and the
69 profile information on the edge is re-used for the new conditional
70 jump.
72 The CFG is updated. The dominator tree will not be valid after
73 this transformation, but the immediate dominators are updated if
74 UPDATE_DOMINATORS is true.
76 Returns the newly created basic block. */
78 static basic_block
79 hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
80 tree cond, edge e_true,
81 bool update_dominators)
83 tree tmp;
84 gcond *cond_stmt;
85 edge e_false;
86 basic_block new_bb, split_bb = gsi_bb (*gsip);
87 bool dominated_e_true = false;
89 gcc_assert (e_true->src == split_bb);
91 if (update_dominators
92 && get_immediate_dominator (CDI_DOMINATORS, e_true->dest) == split_bb)
93 dominated_e_true = true;
95 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
96 /*before=*/true, GSI_SAME_STMT);
97 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
98 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
100 e_false = split_block (split_bb, cond_stmt);
101 new_bb = e_false->dest;
102 redirect_edge_pred (e_true, split_bb);
104 e_true->flags &= ~EDGE_FALLTHRU;
105 e_true->flags |= EDGE_TRUE_VALUE;
107 e_false->flags &= ~EDGE_FALLTHRU;
108 e_false->flags |= EDGE_FALSE_VALUE;
109 e_false->probability = e_true->probability.invert ();
110 e_false->count = split_bb->count - e_true->count;
111 new_bb->count = e_false->count;
113 if (update_dominators)
115 if (dominated_e_true)
116 set_immediate_dominator (CDI_DOMINATORS, e_true->dest, split_bb);
117 set_immediate_dominator (CDI_DOMINATORS, e_false->dest, split_bb);
120 return new_bb;
124 /* Return true if a switch should be expanded as a bit test.
125 RANGE is the difference between highest and lowest case.
126 UNIQ is number of unique case node targets, not counting the default case.
127 COUNT is the number of comparisons needed, not counting the default case. */
129 static bool
130 expand_switch_using_bit_tests_p (tree range,
131 unsigned int uniq,
132 unsigned int count, bool speed_p)
134 return (((uniq == 1 && count >= 3)
135 || (uniq == 2 && count >= 5)
136 || (uniq == 3 && count >= 6))
137 && lshift_cheap_p (speed_p)
138 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
139 && compare_tree_int (range, 0) > 0);
142 /* Implement switch statements with bit tests
144 A GIMPLE switch statement can be expanded to a short sequence of bit-wise
145 comparisons. "switch(x)" is converted into "if ((1 << (x-MINVAL)) & CST)"
146 where CST and MINVAL are integer constants. This is better than a series
147 of compare-and-banch insns in some cases, e.g. we can implement:
149 if ((x==4) || (x==6) || (x==9) || (x==11))
151 as a single bit test:
153 if ((1<<x) & ((1<<4)|(1<<6)|(1<<9)|(1<<11)))
155 This transformation is only applied if the number of case targets is small,
156 if CST constains at least 3 bits, and "1 << x" is cheap. The bit tests are
157 performed in "word_mode".
159 The following example shows the code the transformation generates:
161 int bar(int x)
163 switch (x)
165 case '0': case '1': case '2': case '3': case '4':
166 case '5': case '6': case '7': case '8': case '9':
167 case 'A': case 'B': case 'C': case 'D': case 'E':
168 case 'F':
169 return 1;
171 return 0;
176 bar (int x)
178 tmp1 = x - 48;
179 if (tmp1 > (70 - 48)) goto L2;
180 tmp2 = 1 << tmp1;
181 tmp3 = 0b11111100000001111111111;
182 if ((tmp2 & tmp3) != 0) goto L1 ; else goto L2;
184 return 1;
186 return 0;
189 TODO: There are still some improvements to this transformation that could
190 be implemented:
192 * A narrower mode than word_mode could be used if that is cheaper, e.g.
193 for x86_64 where a narrower-mode shift may result in smaller code.
195 * The compounded constant could be shifted rather than the one. The
196 test would be either on the sign bit or on the least significant bit,
197 depending on the direction of the shift. On some machines, the test
198 for the branch would be free if the bit to test is already set by the
199 shift operation.
201 This transformation was contributed by Roger Sayle, see this e-mail:
202 http://gcc.gnu.org/ml/gcc-patches/2003-01/msg01950.html
205 /* A case_bit_test represents a set of case nodes that may be
206 selected from using a bit-wise comparison. HI and LO hold
207 the integer to be tested against, TARGET_EDGE contains the
208 edge to the basic block to jump to upon success and BITS
209 counts the number of case nodes handled by this test,
210 typically the number of bits set in HI:LO. The LABEL field
211 is used to quickly identify all cases in this set without
212 looking at label_to_block for every case label. */
214 struct case_bit_test
216 wide_int mask;
217 edge target_edge;
218 tree label;
219 int bits;
222 /* Comparison function for qsort to order bit tests by decreasing
223 probability of execution. Our best guess comes from a measured
224 profile. If the profile counts are equal, break even on the
225 number of case nodes, i.e. the node with the most cases gets
226 tested first.
228 TODO: Actually this currently runs before a profile is available.
229 Therefore the case-as-bit-tests transformation should be done
230 later in the pass pipeline, or something along the lines of
231 "Efficient and effective branch reordering using profile data"
232 (Yang et. al., 2002) should be implemented (although, how good
233 is a paper is called "Efficient and effective ..." when the
234 latter is implied by the former, but oh well...). */
236 static int
237 case_bit_test_cmp (const void *p1, const void *p2)
239 const struct case_bit_test *const d1 = (const struct case_bit_test *) p1;
240 const struct case_bit_test *const d2 = (const struct case_bit_test *) p2;
242 if (d2->target_edge->count < d1->target_edge->count)
243 return -1;
244 if (d2->target_edge->count > d1->target_edge->count)
245 return 1;
246 if (d2->bits != d1->bits)
247 return d2->bits - d1->bits;
249 /* Stabilize the sort. */
250 return LABEL_DECL_UID (d2->label) - LABEL_DECL_UID (d1->label);
253 /* Expand a switch statement by a short sequence of bit-wise
254 comparisons. "switch(x)" is effectively converted into
255 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
256 integer constants.
258 INDEX_EXPR is the value being switched on.
260 MINVAL is the lowest case value of in the case nodes,
261 and RANGE is highest value minus MINVAL. MINVAL and RANGE
262 are not guaranteed to be of the same type as INDEX_EXPR
263 (the gimplifier doesn't change the type of case label values,
264 and MINVAL and RANGE are derived from those values).
265 MAXVAL is MINVAL + RANGE.
267 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
268 node targets. */
270 static void
271 emit_case_bit_tests (gswitch *swtch, tree index_expr,
272 tree minval, tree range, tree maxval)
274 struct case_bit_test test[MAX_CASE_BIT_TESTS] = { {} };
275 unsigned int i, j, k;
276 unsigned int count;
278 basic_block switch_bb = gimple_bb (swtch);
279 basic_block default_bb, new_default_bb, new_bb;
280 edge default_edge;
281 bool update_dom = dom_info_available_p (CDI_DOMINATORS);
283 vec<basic_block> bbs_to_fix_dom = vNULL;
285 tree index_type = TREE_TYPE (index_expr);
286 tree unsigned_index_type = unsigned_type_for (index_type);
287 unsigned int branch_num = gimple_switch_num_labels (swtch);
289 gimple_stmt_iterator gsi;
290 gassign *shift_stmt;
292 tree idx, tmp, csui;
293 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
294 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
295 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
296 int prec = TYPE_PRECISION (word_type_node);
297 wide_int wone = wi::one (prec);
299 /* Get the edge for the default case. */
300 tmp = gimple_switch_default_label (swtch);
301 default_bb = label_to_block (CASE_LABEL (tmp));
302 default_edge = find_edge (switch_bb, default_bb);
304 /* Go through all case labels, and collect the case labels, profile
305 counts, and other information we need to build the branch tests. */
306 count = 0;
307 for (i = 1; i < branch_num; i++)
309 unsigned int lo, hi;
310 tree cs = gimple_switch_label (swtch, i);
311 tree label = CASE_LABEL (cs);
312 edge e = find_edge (switch_bb, label_to_block (label));
313 for (k = 0; k < count; k++)
314 if (e == test[k].target_edge)
315 break;
317 if (k == count)
319 gcc_checking_assert (count < MAX_CASE_BIT_TESTS);
320 test[k].mask = wi::zero (prec);
321 test[k].target_edge = e;
322 test[k].label = label;
323 test[k].bits = 1;
324 count++;
326 else
327 test[k].bits++;
329 lo = tree_to_uhwi (int_const_binop (MINUS_EXPR,
330 CASE_LOW (cs), minval));
331 if (CASE_HIGH (cs) == NULL_TREE)
332 hi = lo;
333 else
334 hi = tree_to_uhwi (int_const_binop (MINUS_EXPR,
335 CASE_HIGH (cs), minval));
337 for (j = lo; j <= hi; j++)
338 test[k].mask |= wi::lshift (wone, j);
341 qsort (test, count, sizeof (*test), case_bit_test_cmp);
343 /* If all values are in the 0 .. BITS_PER_WORD-1 range, we can get rid of
344 the minval subtractions, but it might make the mask constants more
345 expensive. So, compare the costs. */
346 if (compare_tree_int (minval, 0) > 0
347 && compare_tree_int (maxval, GET_MODE_BITSIZE (word_mode)) < 0)
349 int cost_diff;
350 HOST_WIDE_INT m = tree_to_uhwi (minval);
351 rtx reg = gen_raw_REG (word_mode, 10000);
352 bool speed_p = optimize_bb_for_speed_p (gimple_bb (swtch));
353 cost_diff = set_rtx_cost (gen_rtx_PLUS (word_mode, reg,
354 GEN_INT (-m)), speed_p);
355 for (i = 0; i < count; i++)
357 rtx r = immed_wide_int_const (test[i].mask, word_mode);
358 cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r),
359 word_mode, speed_p);
360 r = immed_wide_int_const (wi::lshift (test[i].mask, m), word_mode);
361 cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r),
362 word_mode, speed_p);
364 if (cost_diff > 0)
366 for (i = 0; i < count; i++)
367 test[i].mask = wi::lshift (test[i].mask, m);
368 minval = build_zero_cst (TREE_TYPE (minval));
369 range = maxval;
373 /* We generate two jumps to the default case label.
374 Split the default edge, so that we don't have to do any PHI node
375 updating. */
376 new_default_bb = split_edge (default_edge);
378 if (update_dom)
380 bbs_to_fix_dom.create (10);
381 bbs_to_fix_dom.quick_push (switch_bb);
382 bbs_to_fix_dom.quick_push (default_bb);
383 bbs_to_fix_dom.quick_push (new_default_bb);
386 /* Now build the test-and-branch code. */
388 gsi = gsi_last_bb (switch_bb);
390 /* idx = (unsigned)x - minval. */
391 idx = fold_convert (unsigned_index_type, index_expr);
392 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
393 fold_convert (unsigned_index_type, minval));
394 idx = force_gimple_operand_gsi (&gsi, idx,
395 /*simple=*/true, NULL_TREE,
396 /*before=*/true, GSI_SAME_STMT);
398 /* if (idx > range) goto default */
399 range = force_gimple_operand_gsi (&gsi,
400 fold_convert (unsigned_index_type, range),
401 /*simple=*/true, NULL_TREE,
402 /*before=*/true, GSI_SAME_STMT);
403 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
404 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, default_edge, update_dom);
405 if (update_dom)
406 bbs_to_fix_dom.quick_push (new_bb);
407 gcc_assert (gimple_bb (swtch) == new_bb);
408 gsi = gsi_last_bb (new_bb);
410 /* Any blocks dominated by the GIMPLE_SWITCH, but that are not successors
411 of NEW_BB, are still immediately dominated by SWITCH_BB. Make it so. */
412 if (update_dom)
414 vec<basic_block> dom_bbs;
415 basic_block dom_son;
417 dom_bbs = get_dominated_by (CDI_DOMINATORS, new_bb);
418 FOR_EACH_VEC_ELT (dom_bbs, i, dom_son)
420 edge e = find_edge (new_bb, dom_son);
421 if (e && single_pred_p (e->dest))
422 continue;
423 set_immediate_dominator (CDI_DOMINATORS, dom_son, switch_bb);
424 bbs_to_fix_dom.safe_push (dom_son);
426 dom_bbs.release ();
429 /* csui = (1 << (word_mode) idx) */
430 csui = make_ssa_name (word_type_node);
431 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
432 fold_convert (word_type_node, idx));
433 tmp = force_gimple_operand_gsi (&gsi, tmp,
434 /*simple=*/false, NULL_TREE,
435 /*before=*/true, GSI_SAME_STMT);
436 shift_stmt = gimple_build_assign (csui, tmp);
437 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
438 update_stmt (shift_stmt);
440 /* for each unique set of cases:
441 if (const & csui) goto target */
442 for (k = 0; k < count; k++)
444 tmp = wide_int_to_tree (word_type_node, test[k].mask);
445 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
446 tmp = force_gimple_operand_gsi (&gsi, tmp,
447 /*simple=*/true, NULL_TREE,
448 /*before=*/true, GSI_SAME_STMT);
449 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
450 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_edge,
451 update_dom);
452 if (update_dom)
453 bbs_to_fix_dom.safe_push (new_bb);
454 gcc_assert (gimple_bb (swtch) == new_bb);
455 gsi = gsi_last_bb (new_bb);
458 /* We should have removed all edges now. */
459 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
461 /* If nothing matched, go to the default label. */
462 make_edge (gsi_bb (gsi), new_default_bb, EDGE_FALLTHRU);
464 /* The GIMPLE_SWITCH is now redundant. */
465 gsi_remove (&gsi, true);
467 if (update_dom)
469 /* Fix up the dominator tree. */
470 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
471 bbs_to_fix_dom.release ();
476 Switch initialization conversion
478 The following pass changes simple initializations of scalars in a switch
479 statement into initializations from a static array. Obviously, the values
480 must be constant and known at compile time and a default branch must be
481 provided. For example, the following code:
483 int a,b;
485 switch (argc)
487 case 1:
488 case 2:
489 a_1 = 8;
490 b_1 = 6;
491 break;
492 case 3:
493 a_2 = 9;
494 b_2 = 5;
495 break;
496 case 12:
497 a_3 = 10;
498 b_3 = 4;
499 break;
500 default:
501 a_4 = 16;
502 b_4 = 1;
503 break;
505 a_5 = PHI <a_1, a_2, a_3, a_4>
506 b_5 = PHI <b_1, b_2, b_3, b_4>
509 is changed into:
511 static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
512 static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
513 16, 16, 10};
515 if (((unsigned) argc) - 1 < 11)
517 a_6 = CSWTCH02[argc - 1];
518 b_6 = CSWTCH01[argc - 1];
520 else
522 a_7 = 16;
523 b_7 = 1;
525 a_5 = PHI <a_6, a_7>
526 b_b = PHI <b_6, b_7>
528 There are further constraints. Specifically, the range of values across all
529 case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
530 eight) times the number of the actual switch branches.
532 This transformation was contributed by Martin Jambor, see this e-mail:
533 http://gcc.gnu.org/ml/gcc-patches/2008-07/msg00011.html */
535 /* The main structure of the pass. */
536 struct switch_conv_info
538 /* The expression used to decide the switch branch. */
539 tree index_expr;
541 /* The following integer constants store the minimum and maximum value
542 covered by the case labels. */
543 tree range_min;
544 tree range_max;
546 /* The difference between the above two numbers. Stored here because it
547 is used in all the conversion heuristics, as well as for some of the
548 transformation, and it is expensive to re-compute it all the time. */
549 tree range_size;
551 /* Basic block that contains the actual GIMPLE_SWITCH. */
552 basic_block switch_bb;
554 /* Basic block that is the target of the default case. */
555 basic_block default_bb;
557 /* The single successor block of all branches out of the GIMPLE_SWITCH,
558 if such a block exists. Otherwise NULL. */
559 basic_block final_bb;
561 /* The probability of the default edge in the replaced switch. */
562 profile_probability default_prob;
564 /* The count of the default edge in the replaced switch. */
565 profile_count default_count;
567 /* Combined count of all other (non-default) edges in the replaced switch. */
568 profile_count other_count;
570 /* Number of phi nodes in the final bb (that we'll be replacing). */
571 int phi_count;
573 /* Array of default values, in the same order as phi nodes. */
574 tree *default_values;
576 /* Constructors of new static arrays. */
577 vec<constructor_elt, va_gc> **constructors;
579 /* Array of ssa names that are initialized with a value from a new static
580 array. */
581 tree *target_inbound_names;
583 /* Array of ssa names that are initialized with the default value if the
584 switch expression is out of range. */
585 tree *target_outbound_names;
587 /* VOP SSA_NAME. */
588 tree target_vop;
590 /* The first load statement that loads a temporary from a new static array.
592 gimple *arr_ref_first;
594 /* The last load statement that loads a temporary from a new static array. */
595 gimple *arr_ref_last;
597 /* String reason why the case wasn't a good candidate that is written to the
598 dump file, if there is one. */
599 const char *reason;
601 /* True if default case is not used for any value between range_min and
602 range_max inclusive. */
603 bool contiguous_range;
605 /* True if default case does not have the required shape for other case
606 labels. */
607 bool default_case_nonstandard;
609 /* Parameters for expand_switch_using_bit_tests. Should be computed
610 the same way as in expand_case. */
611 unsigned int uniq;
612 unsigned int count;
615 /* Collect information about GIMPLE_SWITCH statement SWTCH into INFO. */
617 static void
618 collect_switch_conv_info (gswitch *swtch, struct switch_conv_info *info)
620 unsigned int branch_num = gimple_switch_num_labels (swtch);
621 tree min_case, max_case;
622 unsigned int count, i;
623 edge e, e_default, e_first;
624 edge_iterator ei;
625 basic_block first;
627 memset (info, 0, sizeof (*info));
629 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
630 is a default label which is the first in the vector.
631 Collect the bits we can deduce from the CFG. */
632 info->index_expr = gimple_switch_index (swtch);
633 info->switch_bb = gimple_bb (swtch);
634 info->default_bb
635 = label_to_block (CASE_LABEL (gimple_switch_default_label (swtch)));
636 e_default = find_edge (info->switch_bb, info->default_bb);
637 info->default_prob = e_default->probability;
638 info->default_count = e_default->count;
639 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
640 if (e != e_default)
641 info->other_count += e->count;
643 /* Get upper and lower bounds of case values, and the covered range. */
644 min_case = gimple_switch_label (swtch, 1);
645 max_case = gimple_switch_label (swtch, branch_num - 1);
647 info->range_min = CASE_LOW (min_case);
648 if (CASE_HIGH (max_case) != NULL_TREE)
649 info->range_max = CASE_HIGH (max_case);
650 else
651 info->range_max = CASE_LOW (max_case);
653 info->contiguous_range = true;
654 tree last = CASE_HIGH (min_case) ? CASE_HIGH (min_case) : info->range_min;
655 for (i = 2; i < branch_num; i++)
657 tree elt = gimple_switch_label (swtch, i);
658 wide_int w = last;
659 if (w + 1 != CASE_LOW (elt))
661 info->contiguous_range = false;
662 break;
664 last = CASE_HIGH (elt) ? CASE_HIGH (elt) : CASE_LOW (elt);
667 if (info->contiguous_range)
669 first = label_to_block (CASE_LABEL (gimple_switch_label (swtch, 1)));
670 e_first = find_edge (info->switch_bb, first);
672 else
674 first = info->default_bb;
675 e_first = e_default;
678 /* See if there is one common successor block for all branch
679 targets. If it exists, record it in FINAL_BB.
680 Start with the destination of the first non-default case
681 if the range is contiguous and default case otherwise as
682 guess or its destination in case it is a forwarder block. */
683 if (! single_pred_p (e_first->dest))
684 info->final_bb = e_first->dest;
685 else if (single_succ_p (e_first->dest)
686 && ! single_pred_p (single_succ (e_first->dest)))
687 info->final_bb = single_succ (e_first->dest);
688 /* Require that all switch destinations are either that common
689 FINAL_BB or a forwarder to it, except for the default
690 case if contiguous range. */
691 if (info->final_bb)
692 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
694 if (e->dest == info->final_bb)
695 continue;
697 if (single_pred_p (e->dest)
698 && single_succ_p (e->dest)
699 && single_succ (e->dest) == info->final_bb)
700 continue;
702 if (e == e_default && info->contiguous_range)
704 info->default_case_nonstandard = true;
705 continue;
708 info->final_bb = NULL;
709 break;
712 info->range_size
713 = int_const_binop (MINUS_EXPR, info->range_max, info->range_min);
715 /* Get a count of the number of case labels. Single-valued case labels
716 simply count as one, but a case range counts double, since it may
717 require two compares if it gets lowered as a branching tree. */
718 count = 0;
719 for (i = 1; i < branch_num; i++)
721 tree elt = gimple_switch_label (swtch, i);
722 count++;
723 if (CASE_HIGH (elt)
724 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
725 count++;
727 info->count = count;
729 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
730 block. Assume a CFG cleanup would have already removed degenerate
731 switch statements, this allows us to just use EDGE_COUNT. */
732 info->uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
735 /* Checks whether the range given by individual case statements of the SWTCH
736 switch statement isn't too big and whether the number of branches actually
737 satisfies the size of the new array. */
739 static bool
740 check_range (struct switch_conv_info *info)
742 gcc_assert (info->range_size);
743 if (!tree_fits_uhwi_p (info->range_size))
745 info->reason = "index range way too large or otherwise unusable";
746 return false;
749 if (tree_to_uhwi (info->range_size)
750 > ((unsigned) info->count * SWITCH_CONVERSION_BRANCH_RATIO))
752 info->reason = "the maximum range-branch ratio exceeded";
753 return false;
756 return true;
759 /* Checks whether all but the FINAL_BB basic blocks are empty. */
761 static bool
762 check_all_empty_except_final (struct switch_conv_info *info)
764 edge e, e_default = find_edge (info->switch_bb, info->default_bb);
765 edge_iterator ei;
767 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
769 if (e->dest == info->final_bb)
770 continue;
772 if (!empty_block_p (e->dest))
774 if (info->contiguous_range && e == e_default)
776 info->default_case_nonstandard = true;
777 continue;
780 info->reason = "bad case - a non-final BB not empty";
781 return false;
785 return true;
788 /* This function checks whether all required values in phi nodes in final_bb
789 are constants. Required values are those that correspond to a basic block
790 which is a part of the examined switch statement. It returns true if the
791 phi nodes are OK, otherwise false. */
793 static bool
794 check_final_bb (gswitch *swtch, struct switch_conv_info *info)
796 gphi_iterator gsi;
798 info->phi_count = 0;
799 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
801 gphi *phi = gsi.phi ();
802 unsigned int i;
804 if (virtual_operand_p (gimple_phi_result (phi)))
805 continue;
807 info->phi_count++;
809 for (i = 0; i < gimple_phi_num_args (phi); i++)
811 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
813 if (bb == info->switch_bb
814 || (single_pred_p (bb)
815 && single_pred (bb) == info->switch_bb
816 && (!info->default_case_nonstandard
817 || empty_block_p (bb))))
819 tree reloc, val;
820 const char *reason = NULL;
822 val = gimple_phi_arg_def (phi, i);
823 if (!is_gimple_ip_invariant (val))
824 reason = "non-invariant value from a case";
825 else
827 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
828 if ((flag_pic && reloc != null_pointer_node)
829 || (!flag_pic && reloc == NULL_TREE))
831 if (reloc)
832 reason
833 = "value from a case would need runtime relocations";
834 else
835 reason
836 = "value from a case is not a valid initializer";
839 if (reason)
841 /* For contiguous range, we can allow non-constant
842 or one that needs relocation, as long as it is
843 only reachable from the default case. */
844 if (bb == info->switch_bb)
845 bb = info->final_bb;
846 if (!info->contiguous_range || bb != info->default_bb)
848 info->reason = reason;
849 return false;
852 unsigned int branch_num = gimple_switch_num_labels (swtch);
853 for (unsigned int i = 1; i < branch_num; i++)
855 tree lab = CASE_LABEL (gimple_switch_label (swtch, i));
856 if (label_to_block (lab) == bb)
858 info->reason = reason;
859 return false;
862 info->default_case_nonstandard = true;
868 return true;
871 /* The following function allocates default_values, target_{in,out}_names and
872 constructors arrays. The last one is also populated with pointers to
873 vectors that will become constructors of new arrays. */
875 static void
876 create_temp_arrays (struct switch_conv_info *info)
878 int i;
880 info->default_values = XCNEWVEC (tree, info->phi_count * 3);
881 /* ??? Macros do not support multi argument templates in their
882 argument list. We create a typedef to work around that problem. */
883 typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
884 info->constructors = XCNEWVEC (vec_constructor_elt_gc, info->phi_count);
885 info->target_inbound_names = info->default_values + info->phi_count;
886 info->target_outbound_names = info->target_inbound_names + info->phi_count;
887 for (i = 0; i < info->phi_count; i++)
888 vec_alloc (info->constructors[i], tree_to_uhwi (info->range_size) + 1);
891 /* Free the arrays created by create_temp_arrays(). The vectors that are
892 created by that function are not freed here, however, because they have
893 already become constructors and must be preserved. */
895 static void
896 free_temp_arrays (struct switch_conv_info *info)
898 XDELETEVEC (info->constructors);
899 XDELETEVEC (info->default_values);
902 /* Populate the array of default values in the order of phi nodes.
903 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch
904 if the range is non-contiguous or the default case has standard
905 structure, otherwise it is the first non-default case instead. */
907 static void
908 gather_default_values (tree default_case, struct switch_conv_info *info)
910 gphi_iterator gsi;
911 basic_block bb = label_to_block (CASE_LABEL (default_case));
912 edge e;
913 int i = 0;
915 gcc_assert (CASE_LOW (default_case) == NULL_TREE
916 || info->default_case_nonstandard);
918 if (bb == info->final_bb)
919 e = find_edge (info->switch_bb, bb);
920 else
921 e = single_succ_edge (bb);
923 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
925 gphi *phi = gsi.phi ();
926 if (virtual_operand_p (gimple_phi_result (phi)))
927 continue;
928 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
929 gcc_assert (val);
930 info->default_values[i++] = val;
934 /* The following function populates the vectors in the constructors array with
935 future contents of the static arrays. The vectors are populated in the
936 order of phi nodes. SWTCH is the switch statement being converted. */
938 static void
939 build_constructors (gswitch *swtch, struct switch_conv_info *info)
941 unsigned i, branch_num = gimple_switch_num_labels (swtch);
942 tree pos = info->range_min;
943 tree pos_one = build_int_cst (TREE_TYPE (pos), 1);
945 for (i = 1; i < branch_num; i++)
947 tree cs = gimple_switch_label (swtch, i);
948 basic_block bb = label_to_block (CASE_LABEL (cs));
949 edge e;
950 tree high;
951 gphi_iterator gsi;
952 int j;
954 if (bb == info->final_bb)
955 e = find_edge (info->switch_bb, bb);
956 else
957 e = single_succ_edge (bb);
958 gcc_assert (e);
960 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
962 int k;
963 gcc_assert (!info->contiguous_range);
964 for (k = 0; k < info->phi_count; k++)
966 constructor_elt elt;
968 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
969 elt.value
970 = unshare_expr_without_location (info->default_values[k]);
971 info->constructors[k]->quick_push (elt);
974 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
976 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
978 j = 0;
979 if (CASE_HIGH (cs))
980 high = CASE_HIGH (cs);
981 else
982 high = CASE_LOW (cs);
983 for (gsi = gsi_start_phis (info->final_bb);
984 !gsi_end_p (gsi); gsi_next (&gsi))
986 gphi *phi = gsi.phi ();
987 if (virtual_operand_p (gimple_phi_result (phi)))
988 continue;
989 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
990 tree low = CASE_LOW (cs);
991 pos = CASE_LOW (cs);
995 constructor_elt elt;
997 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
998 elt.value = unshare_expr_without_location (val);
999 info->constructors[j]->quick_push (elt);
1001 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
1002 } while (!tree_int_cst_lt (high, pos)
1003 && tree_int_cst_lt (low, pos));
1004 j++;
1009 /* If all values in the constructor vector are the same, return the value.
1010 Otherwise return NULL_TREE. Not supposed to be called for empty
1011 vectors. */
1013 static tree
1014 constructor_contains_same_values_p (vec<constructor_elt, va_gc> *vec)
1016 unsigned int i;
1017 tree prev = NULL_TREE;
1018 constructor_elt *elt;
1020 FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
1022 if (!prev)
1023 prev = elt->value;
1024 else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST))
1025 return NULL_TREE;
1027 return prev;
1030 /* Return type which should be used for array elements, either TYPE's
1031 main variant or, for integral types, some smaller integral type
1032 that can still hold all the constants. */
1034 static tree
1035 array_value_type (gswitch *swtch, tree type, int num,
1036 struct switch_conv_info *info)
1038 unsigned int i, len = vec_safe_length (info->constructors[num]);
1039 constructor_elt *elt;
1040 int sign = 0;
1041 tree smaller_type;
1043 /* Types with alignments greater than their size can reach here, e.g. out of
1044 SRA. We couldn't use these as an array component type so get back to the
1045 main variant first, which, for our purposes, is fine for other types as
1046 well. */
1048 type = TYPE_MAIN_VARIANT (type);
1050 if (!INTEGRAL_TYPE_P (type))
1051 return type;
1053 machine_mode type_mode = TYPE_MODE (type);
1054 machine_mode mode = get_narrowest_mode (type_mode);
1055 if (GET_MODE_SIZE (type_mode) <= GET_MODE_SIZE (mode))
1056 return type;
1058 if (len < (optimize_bb_for_size_p (gimple_bb (swtch)) ? 2 : 32))
1059 return type;
1061 FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
1063 wide_int cst;
1065 if (TREE_CODE (elt->value) != INTEGER_CST)
1066 return type;
1068 cst = elt->value;
1069 while (1)
1071 unsigned int prec = GET_MODE_BITSIZE (mode);
1072 if (prec > HOST_BITS_PER_WIDE_INT)
1073 return type;
1075 if (sign >= 0 && cst == wi::zext (cst, prec))
1077 if (sign == 0 && cst == wi::sext (cst, prec))
1078 break;
1079 sign = 1;
1080 break;
1082 if (sign <= 0 && cst == wi::sext (cst, prec))
1084 sign = -1;
1085 break;
1088 if (sign == 1)
1089 sign = 0;
1091 mode = GET_MODE_WIDER_MODE (mode);
1092 if (mode == VOIDmode
1093 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (type_mode))
1094 return type;
1098 if (sign == 0)
1099 sign = TYPE_UNSIGNED (type) ? 1 : -1;
1100 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
1101 if (GET_MODE_SIZE (TYPE_MODE (type))
1102 <= GET_MODE_SIZE (TYPE_MODE (smaller_type)))
1103 return type;
1105 return smaller_type;
1108 /* Create an appropriate array type and declaration and assemble a static array
1109 variable. Also create a load statement that initializes the variable in
1110 question with a value from the static array. SWTCH is the switch statement
1111 being converted, NUM is the index to arrays of constructors, default values
1112 and target SSA names for this particular array. ARR_INDEX_TYPE is the type
1113 of the index of the new array, PHI is the phi node of the final BB that
1114 corresponds to the value that will be loaded from the created array. TIDX
1115 is an ssa name of a temporary variable holding the index for loads from the
1116 new array. */
1118 static void
1119 build_one_array (gswitch *swtch, int num, tree arr_index_type,
1120 gphi *phi, tree tidx, struct switch_conv_info *info)
1122 tree name, cst;
1123 gimple *load;
1124 gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
1125 location_t loc = gimple_location (swtch);
1127 gcc_assert (info->default_values[num]);
1129 name = copy_ssa_name (PHI_RESULT (phi));
1130 info->target_inbound_names[num] = name;
1132 cst = constructor_contains_same_values_p (info->constructors[num]);
1133 if (cst)
1134 load = gimple_build_assign (name, cst);
1135 else
1137 tree array_type, ctor, decl, value_type, fetch, default_type;
1139 default_type = TREE_TYPE (info->default_values[num]);
1140 value_type = array_value_type (swtch, default_type, num, info);
1141 array_type = build_array_type (value_type, arr_index_type);
1142 if (default_type != value_type)
1144 unsigned int i;
1145 constructor_elt *elt;
1147 FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
1148 elt->value = fold_convert (value_type, elt->value);
1150 ctor = build_constructor (array_type, info->constructors[num]);
1151 TREE_CONSTANT (ctor) = true;
1152 TREE_STATIC (ctor) = true;
1154 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
1155 TREE_STATIC (decl) = 1;
1156 DECL_INITIAL (decl) = ctor;
1158 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
1159 DECL_ARTIFICIAL (decl) = 1;
1160 DECL_IGNORED_P (decl) = 1;
1161 TREE_CONSTANT (decl) = 1;
1162 TREE_READONLY (decl) = 1;
1163 DECL_IGNORED_P (decl) = 1;
1164 varpool_node::finalize_decl (decl);
1166 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
1167 NULL_TREE);
1168 if (default_type != value_type)
1170 fetch = fold_convert (default_type, fetch);
1171 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
1172 true, GSI_SAME_STMT);
1174 load = gimple_build_assign (name, fetch);
1177 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1178 update_stmt (load);
1179 info->arr_ref_last = load;
1182 /* Builds and initializes static arrays initialized with values gathered from
1183 the SWTCH switch statement. Also creates statements that load values from
1184 them. */
1186 static void
1187 build_arrays (gswitch *swtch, struct switch_conv_info *info)
1189 tree arr_index_type;
1190 tree tidx, sub, utype;
1191 gimple *stmt;
1192 gimple_stmt_iterator gsi;
1193 gphi_iterator gpi;
1194 int i;
1195 location_t loc = gimple_location (swtch);
1197 gsi = gsi_for_stmt (swtch);
1199 /* Make sure we do not generate arithmetics in a subrange. */
1200 utype = TREE_TYPE (info->index_expr);
1201 if (TREE_TYPE (utype))
1202 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
1203 else
1204 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
1206 arr_index_type = build_index_type (info->range_size);
1207 tidx = make_ssa_name (utype);
1208 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
1209 fold_convert_loc (loc, utype, info->index_expr),
1210 fold_convert_loc (loc, utype, info->range_min));
1211 sub = force_gimple_operand_gsi (&gsi, sub,
1212 false, NULL, true, GSI_SAME_STMT);
1213 stmt = gimple_build_assign (tidx, sub);
1215 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1216 update_stmt (stmt);
1217 info->arr_ref_first = stmt;
1219 for (gpi = gsi_start_phis (info->final_bb), i = 0;
1220 !gsi_end_p (gpi); gsi_next (&gpi))
1222 gphi *phi = gpi.phi ();
1223 if (!virtual_operand_p (gimple_phi_result (phi)))
1224 build_one_array (swtch, i++, arr_index_type, phi, tidx, info);
1225 else
1227 edge e;
1228 edge_iterator ei;
1229 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
1231 if (e->dest == info->final_bb)
1232 break;
1233 if (!info->default_case_nonstandard
1234 || e->dest != info->default_bb)
1236 e = single_succ_edge (e->dest);
1237 break;
1240 gcc_assert (e && e->dest == info->final_bb);
1241 info->target_vop = PHI_ARG_DEF_FROM_EDGE (phi, e);
1246 /* Generates and appropriately inserts loads of default values at the position
1247 given by BSI. Returns the last inserted statement. */
1249 static gassign *
1250 gen_def_assigns (gimple_stmt_iterator *gsi, struct switch_conv_info *info)
1252 int i;
1253 gassign *assign = NULL;
1255 for (i = 0; i < info->phi_count; i++)
1257 tree name = copy_ssa_name (info->target_inbound_names[i]);
1258 info->target_outbound_names[i] = name;
1259 assign = gimple_build_assign (name, info->default_values[i]);
1260 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
1261 update_stmt (assign);
1263 return assign;
1266 /* Deletes the unused bbs and edges that now contain the switch statement and
1267 its empty branch bbs. BBD is the now dead BB containing the original switch
1268 statement, FINAL is the last BB of the converted switch statement (in terms
1269 of succession). */
1271 static void
1272 prune_bbs (basic_block bbd, basic_block final, basic_block default_bb)
1274 edge_iterator ei;
1275 edge e;
1277 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
1279 basic_block bb;
1280 bb = e->dest;
1281 remove_edge (e);
1282 if (bb != final && bb != default_bb)
1283 delete_basic_block (bb);
1285 delete_basic_block (bbd);
1288 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
1289 from the basic block loading values from an array and E2F from the basic
1290 block loading default values. BBF is the last switch basic block (see the
1291 bbf description in the comment below). */
1293 static void
1294 fix_phi_nodes (edge e1f, edge e2f, basic_block bbf,
1295 struct switch_conv_info *info)
1297 gphi_iterator gsi;
1298 int i;
1300 for (gsi = gsi_start_phis (bbf), i = 0;
1301 !gsi_end_p (gsi); gsi_next (&gsi))
1303 gphi *phi = gsi.phi ();
1304 tree inbound, outbound;
1305 if (virtual_operand_p (gimple_phi_result (phi)))
1306 inbound = outbound = info->target_vop;
1307 else
1309 inbound = info->target_inbound_names[i];
1310 outbound = info->target_outbound_names[i++];
1312 add_phi_arg (phi, inbound, e1f, UNKNOWN_LOCATION);
1313 if (!info->default_case_nonstandard)
1314 add_phi_arg (phi, outbound, e2f, UNKNOWN_LOCATION);
1318 /* Creates a check whether the switch expression value actually falls into the
1319 range given by all the cases. If it does not, the temporaries are loaded
1320 with default values instead. SWTCH is the switch statement being converted.
1322 bb0 is the bb with the switch statement, however, we'll end it with a
1323 condition instead.
1325 bb1 is the bb to be used when the range check went ok. It is derived from
1326 the switch BB
1328 bb2 is the bb taken when the expression evaluated outside of the range
1329 covered by the created arrays. It is populated by loads of default
1330 values.
1332 bbF is a fall through for both bb1 and bb2 and contains exactly what
1333 originally followed the switch statement.
1335 bbD contains the switch statement (in the end). It is unreachable but we
1336 still need to strip off its edges.
1339 static void
1340 gen_inbound_check (gswitch *swtch, struct switch_conv_info *info)
1342 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
1343 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
1344 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
1345 glabel *label1, *label2, *label3;
1346 tree utype, tidx;
1347 tree bound;
1349 gcond *cond_stmt;
1351 gassign *last_assign = NULL;
1352 gimple_stmt_iterator gsi;
1353 basic_block bb0, bb1, bb2, bbf, bbd;
1354 edge e01 = NULL, e02, e21, e1d, e1f, e2f;
1355 location_t loc = gimple_location (swtch);
1357 gcc_assert (info->default_values);
1359 bb0 = gimple_bb (swtch);
1361 tidx = gimple_assign_lhs (info->arr_ref_first);
1362 utype = TREE_TYPE (tidx);
1364 /* (end of) block 0 */
1365 gsi = gsi_for_stmt (info->arr_ref_first);
1366 gsi_next (&gsi);
1368 bound = fold_convert_loc (loc, utype, info->range_size);
1369 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
1370 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
1371 update_stmt (cond_stmt);
1373 /* block 2 */
1374 if (!info->default_case_nonstandard)
1376 label2 = gimple_build_label (label_decl2);
1377 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
1378 last_assign = gen_def_assigns (&gsi, info);
1381 /* block 1 */
1382 label1 = gimple_build_label (label_decl1);
1383 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
1385 /* block F */
1386 gsi = gsi_start_bb (info->final_bb);
1387 label3 = gimple_build_label (label_decl3);
1388 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
1390 /* cfg fix */
1391 e02 = split_block (bb0, cond_stmt);
1392 bb2 = e02->dest;
1394 if (info->default_case_nonstandard)
1396 bb1 = bb2;
1397 bb2 = info->default_bb;
1398 e01 = e02;
1399 e01->flags = EDGE_TRUE_VALUE;
1400 e02 = make_edge (bb0, bb2, EDGE_FALSE_VALUE);
1401 edge e_default = find_edge (bb1, bb2);
1402 for (gphi_iterator gsi = gsi_start_phis (bb2);
1403 !gsi_end_p (gsi); gsi_next (&gsi))
1405 gphi *phi = gsi.phi ();
1406 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e_default);
1407 add_phi_arg (phi, arg, e02,
1408 gimple_phi_arg_location_from_edge (phi, e_default));
1410 /* Partially fix the dominator tree, if it is available. */
1411 if (dom_info_available_p (CDI_DOMINATORS))
1412 redirect_immediate_dominators (CDI_DOMINATORS, bb1, bb0);
1414 else
1416 e21 = split_block (bb2, last_assign);
1417 bb1 = e21->dest;
1418 remove_edge (e21);
1421 e1d = split_block (bb1, info->arr_ref_last);
1422 bbd = e1d->dest;
1423 remove_edge (e1d);
1425 /* flags and profiles of the edge for in-range values */
1426 if (!info->default_case_nonstandard)
1427 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
1428 e01->probability = info->default_prob.invert ();
1429 e01->count = info->other_count;
1431 /* flags and profiles of the edge taking care of out-of-range values */
1432 e02->flags &= ~EDGE_FALLTHRU;
1433 e02->flags |= EDGE_FALSE_VALUE;
1434 e02->probability = info->default_prob;
1435 e02->count = info->default_count;
1437 bbf = info->final_bb;
1439 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
1440 e1f->probability = profile_probability::always ();
1441 e1f->count = info->other_count;
1443 if (info->default_case_nonstandard)
1444 e2f = NULL;
1445 else
1447 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
1448 e2f->probability = profile_probability::always ();
1449 e2f->count = info->default_count;
1452 /* frequencies of the new BBs */
1453 bb1->frequency = EDGE_FREQUENCY (e01);
1454 bb2->frequency = EDGE_FREQUENCY (e02);
1455 if (!info->default_case_nonstandard)
1456 bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f);
1458 /* Tidy blocks that have become unreachable. */
1459 prune_bbs (bbd, info->final_bb,
1460 info->default_case_nonstandard ? info->default_bb : NULL);
1462 /* Fixup the PHI nodes in bbF. */
1463 fix_phi_nodes (e1f, e2f, bbf, info);
1465 /* Fix the dominator tree, if it is available. */
1466 if (dom_info_available_p (CDI_DOMINATORS))
1468 vec<basic_block> bbs_to_fix_dom;
1470 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
1471 if (!info->default_case_nonstandard)
1472 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
1473 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
1474 /* If bbD was the immediate dominator ... */
1475 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
1477 bbs_to_fix_dom.create (3 + (bb2 != bbf));
1478 bbs_to_fix_dom.quick_push (bb0);
1479 bbs_to_fix_dom.quick_push (bb1);
1480 if (bb2 != bbf)
1481 bbs_to_fix_dom.quick_push (bb2);
1482 bbs_to_fix_dom.quick_push (bbf);
1484 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
1485 bbs_to_fix_dom.release ();
1489 /* The following function is invoked on every switch statement (the current one
1490 is given in SWTCH) and runs the individual phases of switch conversion on it
1491 one after another until one fails or the conversion is completed.
1492 Returns NULL on success, or a pointer to a string with the reason why the
1493 conversion failed. */
1495 static const char *
1496 process_switch (gswitch *swtch)
1498 struct switch_conv_info info;
1500 /* Group case labels so that we get the right results from the heuristics
1501 that decide on the code generation approach for this switch. */
1502 group_case_labels_stmt (swtch);
1504 /* If this switch is now a degenerate case with only a default label,
1505 there is nothing left for us to do. */
1506 if (gimple_switch_num_labels (swtch) < 2)
1507 return "switch is a degenerate case";
1509 collect_switch_conv_info (swtch, &info);
1511 /* No error markers should reach here (they should be filtered out
1512 during gimplification). */
1513 gcc_checking_assert (TREE_TYPE (info.index_expr) != error_mark_node);
1515 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
1516 gcc_checking_assert (! TREE_CONSTANT (info.index_expr));
1518 if (info.uniq <= MAX_CASE_BIT_TESTS)
1520 if (expand_switch_using_bit_tests_p (info.range_size,
1521 info.uniq, info.count,
1522 optimize_bb_for_speed_p
1523 (gimple_bb (swtch))))
1525 if (dump_file)
1526 fputs (" expanding as bit test is preferable\n", dump_file);
1527 emit_case_bit_tests (swtch, info.index_expr, info.range_min,
1528 info.range_size, info.range_max);
1529 loops_state_set (LOOPS_NEED_FIXUP);
1530 return NULL;
1533 if (info.uniq <= 2)
1534 /* This will be expanded as a decision tree in stmt.c:expand_case. */
1535 return " expanding as jumps is preferable";
1538 /* If there is no common successor, we cannot do the transformation. */
1539 if (! info.final_bb)
1540 return "no common successor to all case label target blocks found";
1542 /* Check the case label values are within reasonable range: */
1543 if (!check_range (&info))
1545 gcc_assert (info.reason);
1546 return info.reason;
1549 /* For all the cases, see whether they are empty, the assignments they
1550 represent constant and so on... */
1551 if (! check_all_empty_except_final (&info))
1553 gcc_assert (info.reason);
1554 return info.reason;
1556 if (!check_final_bb (swtch, &info))
1558 gcc_assert (info.reason);
1559 return info.reason;
1562 /* At this point all checks have passed and we can proceed with the
1563 transformation. */
1565 create_temp_arrays (&info);
1566 gather_default_values (info.default_case_nonstandard
1567 ? gimple_switch_label (swtch, 1)
1568 : gimple_switch_default_label (swtch), &info);
1569 build_constructors (swtch, &info);
1571 build_arrays (swtch, &info); /* Build the static arrays and assignments. */
1572 gen_inbound_check (swtch, &info); /* Build the bounds check. */
1574 /* Cleanup: */
1575 free_temp_arrays (&info);
1576 return NULL;
1579 /* The main function of the pass scans statements for switches and invokes
1580 process_switch on them. */
1582 namespace {
1584 const pass_data pass_data_convert_switch =
1586 GIMPLE_PASS, /* type */
1587 "switchconv", /* name */
1588 OPTGROUP_NONE, /* optinfo_flags */
1589 TV_TREE_SWITCH_CONVERSION, /* tv_id */
1590 ( PROP_cfg | PROP_ssa ), /* properties_required */
1591 0, /* properties_provided */
1592 0, /* properties_destroyed */
1593 0, /* todo_flags_start */
1594 TODO_update_ssa, /* todo_flags_finish */
1597 class pass_convert_switch : public gimple_opt_pass
1599 public:
1600 pass_convert_switch (gcc::context *ctxt)
1601 : gimple_opt_pass (pass_data_convert_switch, ctxt)
1604 /* opt_pass methods: */
1605 virtual bool gate (function *) { return flag_tree_switch_conversion != 0; }
1606 virtual unsigned int execute (function *);
1608 }; // class pass_convert_switch
1610 unsigned int
1611 pass_convert_switch::execute (function *fun)
1613 basic_block bb;
1615 FOR_EACH_BB_FN (bb, fun)
1617 const char *failure_reason;
1618 gimple *stmt = last_stmt (bb);
1619 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1621 if (dump_file)
1623 expanded_location loc = expand_location (gimple_location (stmt));
1625 fprintf (dump_file, "beginning to process the following "
1626 "SWITCH statement (%s:%d) : ------- \n",
1627 loc.file, loc.line);
1628 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1629 putc ('\n', dump_file);
1632 failure_reason = process_switch (as_a <gswitch *> (stmt));
1633 if (! failure_reason)
1635 if (dump_file)
1637 fputs ("Switch converted\n", dump_file);
1638 fputs ("--------------------------------\n", dump_file);
1641 /* Make no effort to update the post-dominator tree. It is actually not
1642 that hard for the transformations we have performed, but it is not
1643 supported by iterate_fix_dominators. */
1644 free_dominance_info (CDI_POST_DOMINATORS);
1646 else
1648 if (dump_file)
1650 fputs ("Bailing out - ", dump_file);
1651 fputs (failure_reason, dump_file);
1652 fputs ("\n--------------------------------\n", dump_file);
1658 return 0;
1661 } // anon namespace
1663 gimple_opt_pass *
1664 make_pass_convert_switch (gcc::context *ctxt)
1666 return new pass_convert_switch (ctxt);
1669 struct case_node
1671 case_node *left; /* Left son in binary tree. */
1672 case_node *right; /* Right son in binary tree;
1673 also node chain. */
1674 case_node *parent; /* Parent of node in binary tree. */
1675 tree low; /* Lowest index value for this label. */
1676 tree high; /* Highest index value for this label. */
1677 basic_block case_bb; /* Label to jump to when node matches. */
1678 tree case_label; /* Label to jump to when node matches. */
1679 profile_probability prob; /* Probability of taking this case. */
1680 profile_probability subtree_prob; /* Probability of reaching subtree
1681 rooted at this node. */
1684 typedef case_node *case_node_ptr;
1686 static basic_block emit_case_nodes (basic_block, tree, case_node_ptr,
1687 basic_block, tree, profile_probability,
1688 tree, hash_map<tree, tree> *);
1689 static bool node_has_low_bound (case_node_ptr, tree);
1690 static bool node_has_high_bound (case_node_ptr, tree);
1691 static bool node_is_bounded (case_node_ptr, tree);
1693 /* Return the smallest number of different values for which it is best to use a
1694 jump-table instead of a tree of conditional branches. */
1696 static unsigned int
1697 case_values_threshold (void)
1699 unsigned int threshold = PARAM_VALUE (PARAM_CASE_VALUES_THRESHOLD);
1701 if (threshold == 0)
1702 threshold = targetm.case_values_threshold ();
1704 return threshold;
1707 /* Reset the aux field of all outgoing edges of basic block BB. */
1709 static inline void
1710 reset_out_edges_aux (basic_block bb)
1712 edge e;
1713 edge_iterator ei;
1714 FOR_EACH_EDGE (e, ei, bb->succs)
1715 e->aux = (void *) 0;
1718 /* Compute the number of case labels that correspond to each outgoing edge of
1719 STMT. Record this information in the aux field of the edge. */
1721 static inline void
1722 compute_cases_per_edge (gswitch *stmt)
1724 basic_block bb = gimple_bb (stmt);
1725 reset_out_edges_aux (bb);
1726 int ncases = gimple_switch_num_labels (stmt);
1727 for (int i = ncases - 1; i >= 1; --i)
1729 tree elt = gimple_switch_label (stmt, i);
1730 tree lab = CASE_LABEL (elt);
1731 basic_block case_bb = label_to_block_fn (cfun, lab);
1732 edge case_edge = find_edge (bb, case_bb);
1733 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + 1);
1737 /* Do the insertion of a case label into case_list. The labels are
1738 fed to us in descending order from the sorted vector of case labels used
1739 in the tree part of the middle end. So the list we construct is
1740 sorted in ascending order.
1742 LABEL is the case label to be inserted. LOW and HIGH are the bounds
1743 against which the index is compared to jump to LABEL and PROB is the
1744 estimated probability LABEL is reached from the switch statement. */
1746 static case_node *
1747 add_case_node (case_node *head, tree low, tree high, basic_block case_bb,
1748 tree case_label, profile_probability prob,
1749 object_allocator<case_node> &case_node_pool)
1751 case_node *r;
1753 gcc_checking_assert (low);
1754 gcc_checking_assert (high && (TREE_TYPE (low) == TREE_TYPE (high)));
1756 /* Add this label to the chain. */
1757 r = case_node_pool.allocate ();
1758 r->low = low;
1759 r->high = high;
1760 r->case_bb = case_bb;
1761 r->case_label = case_label;
1762 r->parent = r->left = NULL;
1763 r->prob = prob;
1764 r->subtree_prob = prob;
1765 r->right = head;
1766 return r;
1769 /* Dump ROOT, a list or tree of case nodes, to file. */
1771 static void
1772 dump_case_nodes (FILE *f, case_node *root, int indent_step, int indent_level)
1774 if (root == 0)
1775 return;
1776 indent_level++;
1778 dump_case_nodes (f, root->left, indent_step, indent_level);
1780 fputs (";; ", f);
1781 fprintf (f, "%*s", indent_step * indent_level, "");
1782 print_dec (root->low, f, TYPE_SIGN (TREE_TYPE (root->low)));
1783 if (!tree_int_cst_equal (root->low, root->high))
1785 fprintf (f, " ... ");
1786 print_dec (root->high, f, TYPE_SIGN (TREE_TYPE (root->high)));
1788 fputs ("\n", f);
1790 dump_case_nodes (f, root->right, indent_step, indent_level);
1793 /* Take an ordered list of case nodes
1794 and transform them into a near optimal binary tree,
1795 on the assumption that any target code selection value is as
1796 likely as any other.
1798 The transformation is performed by splitting the ordered
1799 list into two equal sections plus a pivot. The parts are
1800 then attached to the pivot as left and right branches. Each
1801 branch is then transformed recursively. */
1803 static void
1804 balance_case_nodes (case_node_ptr *head, case_node_ptr parent)
1806 case_node_ptr np;
1808 np = *head;
1809 if (np)
1811 int i = 0;
1812 int ranges = 0;
1813 case_node_ptr *npp;
1814 case_node_ptr left;
1816 /* Count the number of entries on branch. Also count the ranges. */
1818 while (np)
1820 if (!tree_int_cst_equal (np->low, np->high))
1821 ranges++;
1823 i++;
1824 np = np->right;
1827 if (i > 2)
1829 /* Split this list if it is long enough for that to help. */
1830 npp = head;
1831 left = *npp;
1833 /* If there are just three nodes, split at the middle one. */
1834 if (i == 3)
1835 npp = &(*npp)->right;
1836 else
1838 /* Find the place in the list that bisects the list's total cost,
1839 where ranges count as 2.
1840 Here I gets half the total cost. */
1841 i = (i + ranges + 1) / 2;
1842 while (1)
1844 /* Skip nodes while their cost does not reach that amount. */
1845 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
1846 i--;
1847 i--;
1848 if (i <= 0)
1849 break;
1850 npp = &(*npp)->right;
1853 *head = np = *npp;
1854 *npp = 0;
1855 np->parent = parent;
1856 np->left = left;
1858 /* Optimize each of the two split parts. */
1859 balance_case_nodes (&np->left, np);
1860 balance_case_nodes (&np->right, np);
1861 np->subtree_prob = np->prob;
1862 np->subtree_prob += np->left->subtree_prob;
1863 np->subtree_prob += np->right->subtree_prob;
1865 else
1867 /* Else leave this branch as one level,
1868 but fill in `parent' fields. */
1869 np = *head;
1870 np->parent = parent;
1871 np->subtree_prob = np->prob;
1872 for (; np->right; np = np->right)
1874 np->right->parent = np;
1875 (*head)->subtree_prob += np->right->subtree_prob;
1881 /* Return true if a switch should be expanded as a decision tree.
1882 RANGE is the difference between highest and lowest case.
1883 UNIQ is number of unique case node targets, not counting the default case.
1884 COUNT is the number of comparisons needed, not counting the default case. */
1886 static bool
1887 expand_switch_as_decision_tree_p (tree range,
1888 unsigned int uniq ATTRIBUTE_UNUSED,
1889 unsigned int count)
1891 int max_ratio;
1893 /* If neither casesi or tablejump is available, or flag_jump_tables
1894 over-ruled us, we really have no choice. */
1895 if (!targetm.have_casesi () && !targetm.have_tablejump ())
1896 return true;
1897 if (!flag_jump_tables)
1898 return true;
1899 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
1900 if (flag_pic)
1901 return true;
1902 #endif
1904 /* If the switch is relatively small such that the cost of one
1905 indirect jump on the target are higher than the cost of a
1906 decision tree, go with the decision tree.
1908 If range of values is much bigger than number of values,
1909 or if it is too large to represent in a HOST_WIDE_INT,
1910 make a sequence of conditional branches instead of a dispatch.
1912 The definition of "much bigger" depends on whether we are
1913 optimizing for size or for speed. If the former, the maximum
1914 ratio range/count = 3, because this was found to be the optimal
1915 ratio for size on i686-pc-linux-gnu, see PR11823. The ratio
1916 10 is much older, and was probably selected after an extensive
1917 benchmarking investigation on numerous platforms. Or maybe it
1918 just made sense to someone at some point in the history of GCC,
1919 who knows... */
1920 max_ratio = optimize_insn_for_size_p () ? 3 : 10;
1921 if (count < case_values_threshold () || !tree_fits_uhwi_p (range)
1922 || compare_tree_int (range, max_ratio * count) > 0)
1923 return true;
1925 return false;
1928 static void
1929 fix_phi_operands_for_edge (edge e, hash_map<tree, tree> *phi_mapping)
1931 basic_block bb = e->dest;
1932 gphi_iterator gsi;
1933 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1935 gphi *phi = gsi.phi ();
1937 tree *definition = phi_mapping->get (gimple_phi_result (phi));
1938 if (definition)
1939 add_phi_arg (phi, *definition, e, UNKNOWN_LOCATION);
1944 /* Add an unconditional jump to CASE_BB that happens in basic block BB. */
1946 static void
1947 emit_jump (basic_block bb, basic_block case_bb,
1948 hash_map<tree, tree> *phi_mapping)
1950 edge e = single_succ_edge (bb);
1951 redirect_edge_succ (e, case_bb);
1952 fix_phi_operands_for_edge (e, phi_mapping);
1955 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
1956 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
1957 DEFAULT_PROB is the estimated probability that it jumps to
1958 DEFAULT_LABEL.
1960 We generate a binary decision tree to select the appropriate target
1961 code. */
1963 static void
1964 emit_case_decision_tree (gswitch *s, tree index_expr, tree index_type,
1965 case_node_ptr case_list, basic_block default_bb,
1966 tree default_label, profile_probability default_prob,
1967 hash_map<tree, tree> *phi_mapping)
1969 balance_case_nodes (&case_list, NULL);
1971 if (dump_file)
1972 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1973 if (dump_file && (dump_flags & TDF_DETAILS))
1975 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
1976 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
1977 dump_case_nodes (dump_file, case_list, indent_step, 0);
1980 basic_block bb = gimple_bb (s);
1981 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1982 edge e;
1983 if (gsi_end_p (gsi))
1984 e = split_block_after_labels (bb);
1985 else
1987 gsi_prev (&gsi);
1988 e = split_block (bb, gsi_stmt (gsi));
1990 bb = split_edge (e);
1992 bb = emit_case_nodes (bb, index_expr, case_list, default_bb, default_label,
1993 default_prob, index_type, phi_mapping);
1995 if (bb)
1996 emit_jump (bb, default_bb, phi_mapping);
1998 /* Remove all edges and do just an edge that will reach default_bb. */
1999 gsi = gsi_last_bb (gimple_bb (s));
2000 gsi_remove (&gsi, true);
2003 static void
2004 record_phi_operand_mapping (const vec<basic_block> bbs, basic_block switch_bb,
2005 hash_map <tree, tree> *map)
2007 /* Record all PHI nodes that have to be fixed after conversion. */
2008 for (unsigned i = 0; i < bbs.length (); i++)
2010 basic_block bb = bbs[i];
2012 gphi_iterator gsi;
2013 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2015 gphi *phi = gsi.phi ();
2017 for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
2019 basic_block phi_src_bb = gimple_phi_arg_edge (phi, i)->src;
2020 if (phi_src_bb == switch_bb)
2022 tree def = gimple_phi_arg_def (phi, i);
2023 tree result = gimple_phi_result (phi);
2024 map->put (result, def);
2025 break;
2032 /* Attempt to expand gimple switch STMT to a decision tree. */
2034 static bool
2035 try_switch_expansion (gswitch *stmt)
2037 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE;
2038 basic_block default_bb;
2039 unsigned int count, uniq;
2040 int i;
2041 int ncases = gimple_switch_num_labels (stmt);
2042 tree index_expr = gimple_switch_index (stmt);
2043 tree index_type = TREE_TYPE (index_expr);
2044 tree elt;
2045 basic_block bb = gimple_bb (stmt);
2047 hash_map<tree, tree> phi_mapping;
2048 auto_vec<basic_block> case_bbs;
2050 /* A list of case labels; it is first built as a list and it may then
2051 be rearranged into a nearly balanced binary tree. */
2052 case_node *case_list = 0;
2054 /* A pool for case nodes. */
2055 object_allocator<case_node> case_node_pool ("struct case_node pool");
2057 /* cleanup_tree_cfg removes all SWITCH_EXPR with their index
2058 expressions being INTEGER_CST. */
2059 gcc_assert (TREE_CODE (index_expr) != INTEGER_CST);
2061 /* Optimization of switch statements with only one label has already
2062 occurred, so we should never see them at this point. */
2063 gcc_assert (ncases > 1);
2065 /* Find the default case target label. */
2066 tree default_label = CASE_LABEL (gimple_switch_default_label (stmt));
2067 default_bb = label_to_block_fn (cfun, default_label);
2068 edge default_edge = find_edge (bb, default_bb);
2069 profile_probability default_prob = default_edge->probability;
2070 case_bbs.safe_push (default_bb);
2072 /* Get upper and lower bounds of case values. */
2073 elt = gimple_switch_label (stmt, 1);
2074 minval = fold_convert (index_type, CASE_LOW (elt));
2075 elt = gimple_switch_label (stmt, ncases - 1);
2076 if (CASE_HIGH (elt))
2077 maxval = fold_convert (index_type, CASE_HIGH (elt));
2078 else
2079 maxval = fold_convert (index_type, CASE_LOW (elt));
2081 /* Compute span of values. */
2082 range = fold_build2 (MINUS_EXPR, index_type, maxval, minval);
2084 /* Listify the labels queue and gather some numbers to decide
2085 how to expand this switch. */
2086 uniq = 0;
2087 count = 0;
2088 hash_set<tree> seen_labels;
2089 compute_cases_per_edge (stmt);
2091 for (i = ncases - 1; i >= 1; --i)
2093 elt = gimple_switch_label (stmt, i);
2094 tree low = CASE_LOW (elt);
2095 gcc_assert (low);
2096 tree high = CASE_HIGH (elt);
2097 gcc_assert (!high || tree_int_cst_lt (low, high));
2098 tree lab = CASE_LABEL (elt);
2100 /* Count the elements.
2101 A range counts double, since it requires two compares. */
2102 count++;
2103 if (high)
2104 count++;
2106 /* If we have not seen this label yet, then increase the
2107 number of unique case node targets seen. */
2108 if (!seen_labels.add (lab))
2109 uniq++;
2111 /* The bounds on the case range, LOW and HIGH, have to be converted
2112 to case's index type TYPE. Note that the original type of the
2113 case index in the source code is usually "lost" during
2114 gimplification due to type promotion, but the case labels retain the
2115 original type. Make sure to drop overflow flags. */
2116 low = fold_convert (index_type, low);
2117 if (TREE_OVERFLOW (low))
2118 low = wide_int_to_tree (index_type, low);
2120 /* The canonical from of a case label in GIMPLE is that a simple case
2121 has an empty CASE_HIGH. For the casesi and tablejump expanders,
2122 the back ends want simple cases to have high == low. */
2123 if (!high)
2124 high = low;
2125 high = fold_convert (index_type, high);
2126 if (TREE_OVERFLOW (high))
2127 high = wide_int_to_tree (index_type, high);
2129 basic_block case_bb = label_to_block_fn (cfun, lab);
2130 edge case_edge = find_edge (bb, case_bb);
2131 case_list = add_case_node (
2132 case_list, low, high, case_bb, lab,
2133 case_edge->probability.apply_scale (1, (intptr_t) (case_edge->aux)),
2134 case_node_pool);
2136 case_bbs.safe_push (case_bb);
2138 reset_out_edges_aux (bb);
2139 record_phi_operand_mapping (case_bbs, bb, &phi_mapping);
2141 /* cleanup_tree_cfg removes all SWITCH_EXPR with a single
2142 destination, such as one with a default case only.
2143 It also removes cases that are out of range for the switch
2144 type, so we should never get a zero here. */
2145 gcc_assert (count > 0);
2147 /* Decide how to expand this switch.
2148 The two options at this point are a dispatch table (casesi or
2149 tablejump) or a decision tree. */
2151 if (expand_switch_as_decision_tree_p (range, uniq, count))
2153 emit_case_decision_tree (stmt, index_expr, index_type, case_list,
2154 default_bb, default_label, default_prob,
2155 &phi_mapping);
2156 return true;
2159 return false;
2162 /* The main function of the pass scans statements for switches and invokes
2163 process_switch on them. */
2165 namespace {
2167 const pass_data pass_data_lower_switch =
2169 GIMPLE_PASS, /* type */
2170 "switchlower", /* name */
2171 OPTGROUP_NONE, /* optinfo_flags */
2172 TV_TREE_SWITCH_LOWERING, /* tv_id */
2173 ( PROP_cfg | PROP_ssa ), /* properties_required */
2174 0, /* properties_provided */
2175 0, /* properties_destroyed */
2176 0, /* todo_flags_start */
2177 TODO_update_ssa | TODO_cleanup_cfg, /* todo_flags_finish */
2180 class pass_lower_switch : public gimple_opt_pass
2182 public:
2183 pass_lower_switch (gcc::context *ctxt)
2184 : gimple_opt_pass (pass_data_lower_switch, ctxt)
2187 /* opt_pass methods: */
2188 virtual bool gate (function *) { return true; }
2189 virtual unsigned int execute (function *);
2191 }; // class pass_lower_switch
2193 unsigned int
2194 pass_lower_switch::execute (function *fun)
2196 basic_block bb;
2197 bool expanded = false;
2199 FOR_EACH_BB_FN (bb, fun)
2201 gimple *stmt = last_stmt (bb);
2202 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
2204 if (dump_file)
2206 expanded_location loc = expand_location (gimple_location (stmt));
2208 fprintf (dump_file, "beginning to process the following "
2209 "SWITCH statement (%s:%d) : ------- \n",
2210 loc.file, loc.line);
2211 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2212 putc ('\n', dump_file);
2215 expanded |= try_switch_expansion (as_a<gswitch *> (stmt));
2219 if (expanded)
2221 free_dominance_info (CDI_DOMINATORS);
2222 free_dominance_info (CDI_POST_DOMINATORS);
2223 mark_virtual_operands_for_renaming (cfun);
2226 return 0;
2229 } // anon namespace
2231 gimple_opt_pass *
2232 make_pass_lower_switch (gcc::context *ctxt)
2234 return new pass_lower_switch (ctxt);
2237 /* Generate code to jump to LABEL if OP0 and OP1 are equal in mode MODE.
2238 PROB is the probability of jumping to LABEL. */
2239 static basic_block
2240 do_jump_if_equal (basic_block bb, tree op0, tree op1, basic_block label_bb,
2241 profile_probability prob, hash_map<tree, tree> *phi_mapping)
2243 gcond *cond = gimple_build_cond (EQ_EXPR, op0, op1, NULL_TREE, NULL_TREE);
2244 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2245 gsi_insert_before (&gsi, cond, GSI_SAME_STMT);
2247 gcc_assert (single_succ_p (bb));
2249 /* Make a new basic block where false branch will take place. */
2250 edge false_edge = split_block (bb, cond);
2251 false_edge->flags = EDGE_FALSE_VALUE;
2252 false_edge->probability = prob.invert ();
2254 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2255 fix_phi_operands_for_edge (true_edge, phi_mapping);
2256 true_edge->probability = prob;
2258 return false_edge->dest;
2261 /* Generate code to compare X with Y so that the condition codes are
2262 set and to jump to LABEL if the condition is true. If X is a
2263 constant and Y is not a constant, then the comparison is swapped to
2264 ensure that the comparison RTL has the canonical form.
2266 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
2267 need to be widened. UNSIGNEDP is also used to select the proper
2268 branch condition code.
2270 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
2272 MODE is the mode of the inputs (in case they are const_int).
2274 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
2275 It will be potentially converted into an unsigned variant based on
2276 UNSIGNEDP to select a proper jump instruction.
2278 PROB is the probability of jumping to LABEL. */
2280 static basic_block
2281 emit_cmp_and_jump_insns (basic_block bb, tree op0, tree op1,
2282 tree_code comparison, basic_block label_bb,
2283 profile_probability prob,
2284 hash_map<tree, tree> *phi_mapping)
2286 gcond *cond = gimple_build_cond (comparison, op0, op1, NULL_TREE, NULL_TREE);
2287 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2288 gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
2290 gcc_assert (single_succ_p (bb));
2292 /* Make a new basic block where false branch will take place. */
2293 edge false_edge = split_block (bb, cond);
2294 false_edge->flags = EDGE_FALSE_VALUE;
2295 false_edge->probability = prob.invert ();
2297 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2298 fix_phi_operands_for_edge (true_edge, phi_mapping);
2299 true_edge->probability = prob;
2301 return false_edge->dest;
2304 /* Computes the conditional probability of jumping to a target if the branch
2305 instruction is executed.
2306 TARGET_PROB is the estimated probability of jumping to a target relative
2307 to some basic block BB.
2308 BASE_PROB is the probability of reaching the branch instruction relative
2309 to the same basic block BB. */
2311 static inline profile_probability
2312 conditional_probability (profile_probability target_prob,
2313 profile_probability base_prob)
2315 return target_prob / base_prob;
2318 /* Emit step-by-step code to select a case for the value of INDEX.
2319 The thus generated decision tree follows the form of the
2320 case-node binary tree NODE, whose nodes represent test conditions.
2321 INDEX_TYPE is the type of the index of the switch.
2323 Care is taken to prune redundant tests from the decision tree
2324 by detecting any boundary conditions already checked by
2325 emitted rtx. (See node_has_high_bound, node_has_low_bound
2326 and node_is_bounded, above.)
2328 Where the test conditions can be shown to be redundant we emit
2329 an unconditional jump to the target code. As a further
2330 optimization, the subordinates of a tree node are examined to
2331 check for bounded nodes. In this case conditional and/or
2332 unconditional jumps as a result of the boundary check for the
2333 current node are arranged to target the subordinates associated
2334 code for out of bound conditions on the current node.
2336 We can assume that when control reaches the code generated here,
2337 the index value has already been compared with the parents
2338 of this node, and determined to be on the same side of each parent
2339 as this node is. Thus, if this node tests for the value 51,
2340 and a parent tested for 52, we don't need to consider
2341 the possibility of a value greater than 51. If another parent
2342 tests for the value 50, then this node need not test anything. */
2344 static basic_block
2345 emit_case_nodes (basic_block bb, tree index, case_node_ptr node,
2346 basic_block default_bb, tree default_label,
2347 profile_probability default_prob, tree index_type,
2348 hash_map<tree, tree> *phi_mapping)
2350 /* If INDEX has an unsigned type, we must make unsigned branches. */
2351 profile_probability probability;
2352 profile_probability prob = node->prob, subtree_prob = node->subtree_prob;
2354 /* See if our parents have already tested everything for us.
2355 If they have, emit an unconditional jump for this node. */
2356 if (node_is_bounded (node, index_type))
2358 emit_jump (bb, node->case_bb, phi_mapping);
2359 return NULL;
2362 else if (tree_int_cst_equal (node->low, node->high))
2364 probability = conditional_probability (prob, subtree_prob + default_prob);
2365 /* Node is single valued. First see if the index expression matches
2366 this node and then check our children, if any. */
2367 bb = do_jump_if_equal (bb, index, node->low, node->case_bb, probability,
2368 phi_mapping);
2369 /* Since this case is taken at this point, reduce its weight from
2370 subtree_weight. */
2371 subtree_prob -= prob;
2372 if (node->right != 0 && node->left != 0)
2374 /* This node has children on both sides.
2375 Dispatch to one side or the other
2376 by comparing the index value with this node's value.
2377 If one subtree is bounded, check that one first,
2378 so we can avoid real branches in the tree. */
2380 if (node_is_bounded (node->right, index_type))
2382 probability
2383 = conditional_probability (node->right->prob,
2384 subtree_prob + default_prob);
2385 bb = emit_cmp_and_jump_insns (bb, index, node->high, GT_EXPR,
2386 node->right->case_bb, probability,
2387 phi_mapping);
2388 bb = emit_case_nodes (bb, index, node->left, default_bb,
2389 default_label, default_prob, index_type,
2390 phi_mapping);
2393 else if (node_is_bounded (node->left, index_type))
2395 probability
2396 = conditional_probability (node->left->prob,
2397 subtree_prob + default_prob);
2398 bb = emit_cmp_and_jump_insns (bb, index, node->high, LT_EXPR,
2399 node->left->case_bb, probability,
2400 phi_mapping);
2401 bb = emit_case_nodes (bb, index, node->right, default_bb,
2402 default_label, default_prob, index_type,
2403 phi_mapping);
2406 /* If both children are single-valued cases with no
2407 children, finish up all the work. This way, we can save
2408 one ordered comparison. */
2409 else if (tree_int_cst_equal (node->right->low, node->right->high)
2410 && node->right->left == 0 && node->right->right == 0
2411 && tree_int_cst_equal (node->left->low, node->left->high)
2412 && node->left->left == 0 && node->left->right == 0)
2414 /* Neither node is bounded. First distinguish the two sides;
2415 then emit the code for one side at a time. */
2417 /* See if the value matches what the right hand side
2418 wants. */
2419 probability
2420 = conditional_probability (node->right->prob,
2421 subtree_prob + default_prob);
2422 bb = do_jump_if_equal (bb, index, node->right->low,
2423 node->right->case_bb, probability,
2424 phi_mapping);
2426 /* See if the value matches what the left hand side
2427 wants. */
2428 probability
2429 = conditional_probability (node->left->prob,
2430 subtree_prob + default_prob);
2431 bb = do_jump_if_equal (bb, index, node->left->low,
2432 node->left->case_bb, probability,
2433 phi_mapping);
2436 else
2438 /* Neither node is bounded. First distinguish the two sides;
2439 then emit the code for one side at a time. */
2441 basic_block test_bb = split_edge (single_succ_edge (bb));
2442 redirect_edge_succ (single_pred_edge (test_bb),
2443 single_succ_edge (bb)->dest);
2445 /* The default label could be reached either through the right
2446 subtree or the left subtree. Divide the probability
2447 equally. */
2448 probability
2449 = conditional_probability (node->right->subtree_prob
2450 + default_prob.apply_scale (1, 2),
2451 subtree_prob + default_prob);
2452 /* See if the value is on the right. */
2453 bb = emit_cmp_and_jump_insns (bb, index, node->high, GT_EXPR,
2454 test_bb, probability, phi_mapping);
2455 default_prob = default_prob.apply_scale (1, 2);
2457 /* Value must be on the left.
2458 Handle the left-hand subtree. */
2459 bb = emit_case_nodes (bb, index, node->left, default_bb,
2460 default_label, default_prob, index_type,
2461 phi_mapping);
2462 /* If left-hand subtree does nothing,
2463 go to default. */
2465 if (bb && default_bb)
2466 emit_jump (bb, default_bb, phi_mapping);
2468 /* Code branches here for the right-hand subtree. */
2469 bb = emit_case_nodes (test_bb, index, node->right, default_bb,
2470 default_label, default_prob, index_type,
2471 phi_mapping);
2474 else if (node->right != 0 && node->left == 0)
2476 /* Here we have a right child but no left so we issue a conditional
2477 branch to default and process the right child.
2479 Omit the conditional branch to default if the right child
2480 does not have any children and is single valued; it would
2481 cost too much space to save so little time. */
2483 if (node->right->right || node->right->left
2484 || !tree_int_cst_equal (node->right->low, node->right->high))
2486 if (!node_has_low_bound (node, index_type))
2488 probability
2489 = conditional_probability (default_prob.apply_scale (1, 2),
2490 subtree_prob + default_prob);
2491 bb = emit_cmp_and_jump_insns (bb, index, node->high, LT_EXPR,
2492 default_bb, probability,
2493 phi_mapping);
2494 default_prob = default_prob.apply_scale (1, 2);
2497 bb = emit_case_nodes (bb, index, node->right, default_bb,
2498 default_label, default_prob, index_type,
2499 phi_mapping);
2501 else
2503 probability
2504 = conditional_probability (node->right->subtree_prob,
2505 subtree_prob + default_prob);
2506 /* We cannot process node->right normally
2507 since we haven't ruled out the numbers less than
2508 this node's value. So handle node->right explicitly. */
2509 bb = do_jump_if_equal (bb, index, node->right->low,
2510 node->right->case_bb, probability,
2511 phi_mapping);
2515 else if (node->right == 0 && node->left != 0)
2517 /* Just one subtree, on the left. */
2518 if (node->left->left || node->left->right
2519 || !tree_int_cst_equal (node->left->low, node->left->high))
2521 if (!node_has_high_bound (node, index_type))
2523 probability
2524 = conditional_probability (default_prob.apply_scale (1, 2),
2525 subtree_prob + default_prob);
2526 bb = emit_cmp_and_jump_insns (bb, index, node->high, GT_EXPR,
2527 default_bb, probability,
2528 phi_mapping);
2529 default_prob = default_prob.apply_scale (1, 2);
2532 bb = emit_case_nodes (bb, index, node->left, default_bb,
2533 default_label, default_prob, index_type,
2534 phi_mapping);
2536 else
2538 probability
2539 = conditional_probability (node->left->subtree_prob,
2540 subtree_prob + default_prob);
2541 /* We cannot process node->left normally
2542 since we haven't ruled out the numbers less than
2543 this node's value. So handle node->left explicitly. */
2544 do_jump_if_equal (bb, index, node->left->low, node->left->case_bb,
2545 probability, phi_mapping);
2549 else
2551 /* Node is a range. These cases are very similar to those for a single
2552 value, except that we do not start by testing whether this node
2553 is the one to branch to. */
2555 if (node->right != 0 && node->left != 0)
2557 /* Node has subtrees on both sides.
2558 If the right-hand subtree is bounded,
2559 test for it first, since we can go straight there.
2560 Otherwise, we need to make a branch in the control structure,
2561 then handle the two subtrees. */
2562 basic_block test_bb = NULL;
2564 if (node_is_bounded (node->right, index_type))
2566 /* Right hand node is fully bounded so we can eliminate any
2567 testing and branch directly to the target code. */
2568 probability
2569 = conditional_probability (node->right->subtree_prob,
2570 subtree_prob + default_prob);
2571 bb = emit_cmp_and_jump_insns (bb, index, node->high, GT_EXPR,
2572 node->right->case_bb, probability,
2573 phi_mapping);
2575 else
2577 /* Right hand node requires testing.
2578 Branch to a label where we will handle it later. */
2580 test_bb = split_edge (single_succ_edge (bb));
2581 redirect_edge_succ (single_pred_edge (test_bb),
2582 single_succ_edge (bb)->dest);
2584 probability
2585 = conditional_probability (node->right->subtree_prob
2586 + default_prob.apply_scale (1, 2),
2587 subtree_prob + default_prob);
2588 bb = emit_cmp_and_jump_insns (bb, index, node->high, GT_EXPR,
2589 test_bb, probability, phi_mapping);
2590 default_prob = default_prob.apply_scale (1, 2);
2593 /* Value belongs to this node or to the left-hand subtree. */
2595 probability
2596 = conditional_probability (prob, subtree_prob + default_prob);
2597 bb = emit_cmp_and_jump_insns (bb, index, node->low, GE_EXPR,
2598 node->case_bb, probability,
2599 phi_mapping);
2601 /* Handle the left-hand subtree. */
2602 bb = emit_case_nodes (bb, index, node->left, default_bb,
2603 default_label, default_prob, index_type,
2604 phi_mapping);
2606 /* If right node had to be handled later, do that now. */
2607 if (test_bb)
2609 /* If the left-hand subtree fell through,
2610 don't let it fall into the right-hand subtree. */
2611 if (bb && default_bb)
2612 emit_jump (bb, default_bb, phi_mapping);
2614 bb = emit_case_nodes (test_bb, index, node->right, default_bb,
2615 default_label, default_prob, index_type,
2616 phi_mapping);
2620 else if (node->right != 0 && node->left == 0)
2622 /* Deal with values to the left of this node,
2623 if they are possible. */
2624 if (!node_has_low_bound (node, index_type))
2626 probability
2627 = conditional_probability (default_prob.apply_scale (1, 2),
2628 subtree_prob + default_prob);
2629 bb = emit_cmp_and_jump_insns (bb, index, node->low, LT_EXPR,
2630 default_bb, probability,
2631 phi_mapping);
2632 default_prob = default_prob.apply_scale (1, 2);
2635 /* Value belongs to this node or to the right-hand subtree. */
2637 probability
2638 = conditional_probability (prob, subtree_prob + default_prob);
2639 bb = emit_cmp_and_jump_insns (bb, index, node->high, LE_EXPR,
2640 node->case_bb, probability,
2641 phi_mapping);
2643 bb = emit_case_nodes (bb, index, node->right, default_bb,
2644 default_label, default_prob, index_type,
2645 phi_mapping);
2648 else if (node->right == 0 && node->left != 0)
2650 /* Deal with values to the right of this node,
2651 if they are possible. */
2652 if (!node_has_high_bound (node, index_type))
2654 probability
2655 = conditional_probability (default_prob.apply_scale (1, 2),
2656 subtree_prob + default_prob);
2657 bb = emit_cmp_and_jump_insns (bb, index, node->high, GT_EXPR,
2658 default_bb, probability,
2659 phi_mapping);
2660 default_prob = default_prob.apply_scale (1, 2);
2663 /* Value belongs to this node or to the left-hand subtree. */
2665 probability
2666 = conditional_probability (prob, subtree_prob + default_prob);
2667 bb = emit_cmp_and_jump_insns (bb, index, node->low, GE_EXPR,
2668 node->case_bb, probability,
2669 phi_mapping);
2671 bb = emit_case_nodes (bb, index, node->left, default_bb,
2672 default_label, default_prob, index_type,
2673 phi_mapping);
2676 else
2678 /* Node has no children so we check low and high bounds to remove
2679 redundant tests. Only one of the bounds can exist,
2680 since otherwise this node is bounded--a case tested already. */
2681 bool high_bound = node_has_high_bound (node, index_type);
2682 bool low_bound = node_has_low_bound (node, index_type);
2684 if (!high_bound && low_bound)
2686 probability
2687 = conditional_probability (default_prob,
2688 subtree_prob + default_prob);
2689 bb = emit_cmp_and_jump_insns (bb, index, node->high, GT_EXPR,
2690 default_bb, probability,
2691 phi_mapping);
2694 else if (!low_bound && high_bound)
2696 probability
2697 = conditional_probability (default_prob,
2698 subtree_prob + default_prob);
2699 bb = emit_cmp_and_jump_insns (bb, index, node->low, LT_EXPR,
2700 default_bb, probability,
2701 phi_mapping);
2703 else if (!low_bound && !high_bound)
2705 tree type = TREE_TYPE (index);
2706 tree utype = unsigned_type_for (type);
2708 tree lhs = make_ssa_name (type);
2709 gassign *sub1
2710 = gimple_build_assign (lhs, MINUS_EXPR, index, node->low);
2712 tree converted = make_ssa_name (utype);
2713 gassign *a = gimple_build_assign (converted, NOP_EXPR, lhs);
2715 tree rhs = fold_build2 (MINUS_EXPR, utype,
2716 fold_convert (type, node->high),
2717 fold_convert (type, node->low));
2718 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2719 gsi_insert_before (&gsi, sub1, GSI_SAME_STMT);
2720 gsi_insert_before (&gsi, a, GSI_SAME_STMT);
2722 probability
2723 = conditional_probability (default_prob,
2724 subtree_prob + default_prob);
2725 bb = emit_cmp_and_jump_insns (bb, converted, rhs, GT_EXPR,
2726 default_bb, probability,
2727 phi_mapping);
2730 emit_jump (bb, node->case_bb, phi_mapping);
2731 return NULL;
2735 return bb;
2738 /* Search the parent sections of the case node tree
2739 to see if a test for the lower bound of NODE would be redundant.
2740 INDEX_TYPE is the type of the index expression.
2742 The instructions to generate the case decision tree are
2743 output in the same order as nodes are processed so it is
2744 known that if a parent node checks the range of the current
2745 node minus one that the current node is bounded at its lower
2746 span. Thus the test would be redundant. */
2748 static bool
2749 node_has_low_bound (case_node_ptr node, tree index_type)
2751 tree low_minus_one;
2752 case_node_ptr pnode;
2754 /* If the lower bound of this node is the lowest value in the index type,
2755 we need not test it. */
2757 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
2758 return true;
2760 /* If this node has a left branch, the value at the left must be less
2761 than that at this node, so it cannot be bounded at the bottom and
2762 we need not bother testing any further. */
2764 if (node->left)
2765 return false;
2767 low_minus_one = fold_build2 (MINUS_EXPR, TREE_TYPE (node->low), node->low,
2768 build_int_cst (TREE_TYPE (node->low), 1));
2770 /* If the subtraction above overflowed, we can't verify anything.
2771 Otherwise, look for a parent that tests our value - 1. */
2773 if (!tree_int_cst_lt (low_minus_one, node->low))
2774 return false;
2776 for (pnode = node->parent; pnode; pnode = pnode->parent)
2777 if (tree_int_cst_equal (low_minus_one, pnode->high))
2778 return true;
2780 return false;
2783 /* Search the parent sections of the case node tree
2784 to see if a test for the upper bound of NODE would be redundant.
2785 INDEX_TYPE is the type of the index expression.
2787 The instructions to generate the case decision tree are
2788 output in the same order as nodes are processed so it is
2789 known that if a parent node checks the range of the current
2790 node plus one that the current node is bounded at its upper
2791 span. Thus the test would be redundant. */
2793 static bool
2794 node_has_high_bound (case_node_ptr node, tree index_type)
2796 tree high_plus_one;
2797 case_node_ptr pnode;
2799 /* If there is no upper bound, obviously no test is needed. */
2801 if (TYPE_MAX_VALUE (index_type) == NULL)
2802 return true;
2804 /* If the upper bound of this node is the highest value in the type
2805 of the index expression, we need not test against it. */
2807 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
2808 return true;
2810 /* If this node has a right branch, the value at the right must be greater
2811 than that at this node, so it cannot be bounded at the top and
2812 we need not bother testing any further. */
2814 if (node->right)
2815 return false;
2817 high_plus_one = fold_build2 (PLUS_EXPR, TREE_TYPE (node->high), node->high,
2818 build_int_cst (TREE_TYPE (node->high), 1));
2820 /* If the addition above overflowed, we can't verify anything.
2821 Otherwise, look for a parent that tests our value + 1. */
2823 if (!tree_int_cst_lt (node->high, high_plus_one))
2824 return false;
2826 for (pnode = node->parent; pnode; pnode = pnode->parent)
2827 if (tree_int_cst_equal (high_plus_one, pnode->low))
2828 return true;
2830 return false;
2833 /* Search the parent sections of the
2834 case node tree to see if both tests for the upper and lower
2835 bounds of NODE would be redundant. */
2837 static bool
2838 node_is_bounded (case_node_ptr node, tree index_type)
2840 return (node_has_low_bound (node, index_type)
2841 && node_has_high_bound (node, index_type));