1 //===-- tsan_interceptors_posix.cpp ---------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 // FIXME: move as many interceptors as possible into
12 // sanitizer_common/sanitizer_common_interceptors.inc
13 //===----------------------------------------------------------------------===//
15 #include "sanitizer_common/sanitizer_atomic.h"
16 #include "sanitizer_common/sanitizer_errno.h"
17 #include "sanitizer_common/sanitizer_libc.h"
18 #include "sanitizer_common/sanitizer_linux.h"
19 #include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
20 #include "sanitizer_common/sanitizer_platform_limits_posix.h"
21 #include "sanitizer_common/sanitizer_placement_new.h"
22 #include "sanitizer_common/sanitizer_posix.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_tls_get_addr.h"
25 #include "interception/interception.h"
26 #include "tsan_interceptors.h"
27 #include "tsan_interface.h"
28 #include "tsan_platform.h"
29 #include "tsan_suppressions.h"
31 #include "tsan_mman.h"
36 using namespace __tsan
;
38 #if SANITIZER_FREEBSD || SANITIZER_APPLE
39 #define stdout __stdoutp
40 #define stderr __stderrp
44 #define dirfd(dirp) (*(int *)(dirp))
45 #define fileno_unlocked(fp) \
46 (((__sanitizer_FILE *)fp)->_file == -1 \
48 : (int)(unsigned short)(((__sanitizer_FILE *)fp)->_file))
50 #define stdout ((__sanitizer_FILE*)&__sF[1])
51 #define stderr ((__sanitizer_FILE*)&__sF[2])
53 #define nanosleep __nanosleep50
54 #define vfork __vfork14
58 const int kSigCount
= 129;
60 const int kSigCount
= 65;
65 u64 opaque
[768 / sizeof(u64
) + 1];
69 // The size is determined by looking at sizeof of real ucontext_t on linux.
70 u64 opaque
[936 / sizeof(u64
) + 1];
74 #if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1 || \
76 #define PTHREAD_ABI_BASE "GLIBC_2.3.2"
77 #elif defined(__aarch64__) || SANITIZER_PPC64V2
78 #define PTHREAD_ABI_BASE "GLIBC_2.17"
79 #elif SANITIZER_LOONGARCH64
80 #define PTHREAD_ABI_BASE "GLIBC_2.36"
83 extern "C" int pthread_attr_init(void *attr
);
84 extern "C" int pthread_attr_destroy(void *attr
);
85 DECLARE_REAL(int, pthread_attr_getdetachstate
, void *, void *)
86 extern "C" int pthread_attr_setstacksize(void *attr
, uptr stacksize
);
87 extern "C" int pthread_atfork(void (*prepare
)(void), void (*parent
)(void),
89 extern "C" int pthread_key_create(unsigned *key
, void (*destructor
)(void* v
));
90 extern "C" int pthread_setspecific(unsigned key
, const void *v
);
91 DECLARE_REAL(int, pthread_mutexattr_gettype
, void *, void *)
92 DECLARE_REAL(int, fflush
, __sanitizer_FILE
*fp
)
93 DECLARE_REAL_AND_INTERCEPTOR(void *, malloc
, uptr size
)
94 DECLARE_REAL_AND_INTERCEPTOR(void, free
, void *ptr
)
95 extern "C" int pthread_equal(void *t1
, void *t2
);
96 extern "C" void *pthread_self();
97 extern "C" void _exit(int status
);
99 extern "C" int fileno_unlocked(void *stream
);
100 extern "C" int dirfd(void *dirp
);
103 extern __sanitizer_FILE __sF
[];
105 extern __sanitizer_FILE
*stdout
, *stderr
;
107 #if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD
108 const int PTHREAD_MUTEX_RECURSIVE
= 1;
109 const int PTHREAD_MUTEX_RECURSIVE_NP
= 1;
111 const int PTHREAD_MUTEX_RECURSIVE
= 2;
112 const int PTHREAD_MUTEX_RECURSIVE_NP
= 2;
114 #if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD
115 const int EPOLL_CTL_ADD
= 1;
117 const int SIGILL
= 4;
118 const int SIGTRAP
= 5;
119 const int SIGABRT
= 6;
120 const int SIGFPE
= 8;
121 const int SIGSEGV
= 11;
122 const int SIGPIPE
= 13;
123 const int SIGTERM
= 15;
124 #if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_APPLE || SANITIZER_NETBSD
125 const int SIGBUS
= 10;
126 const int SIGSYS
= 12;
128 const int SIGBUS
= 7;
129 const int SIGSYS
= 31;
131 const int SI_TIMER
= -2;
132 void *const MAP_FAILED
= (void*)-1;
134 const int PTHREAD_BARRIER_SERIAL_THREAD
= 1234567;
135 #elif !SANITIZER_APPLE
136 const int PTHREAD_BARRIER_SERIAL_THREAD
= -1;
138 const int MAP_FIXED
= 0x10;
140 typedef __sanitizer::u16 mode_t
;
142 // From /usr/include/unistd.h
143 # define F_ULOCK 0 /* Unlock a previously locked region. */
144 # define F_LOCK 1 /* Lock a region for exclusive use. */
145 # define F_TLOCK 2 /* Test and lock a region for exclusive use. */
146 # define F_TEST 3 /* Test a region for other processes locks. */
148 #if SANITIZER_FREEBSD || SANITIZER_APPLE || SANITIZER_NETBSD
149 const int SA_SIGINFO
= 0x40;
150 const int SIG_SETMASK
= 3;
151 #elif defined(__mips__)
152 const int SA_SIGINFO
= 8;
153 const int SIG_SETMASK
= 3;
155 const int SA_SIGINFO
= 4;
156 const int SIG_SETMASK
= 2;
159 #define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \
160 (!cur_thread_init()->is_inited)
165 __sanitizer_siginfo siginfo
;
169 struct ThreadSignalContext
{
171 SignalDesc pending_signals
[kSigCount
];
172 // emptyset and oldset are too big for stack.
173 __sanitizer_sigset_t emptyset
;
174 __sanitizer_sigset_t oldset
;
177 void EnterBlockingFunc(ThreadState
*thr
) {
179 // The order is important to not delay a signal infinitely if it's
180 // delivered right before we set in_blocking_func. Note: we can't call
181 // ProcessPendingSignals when in_blocking_func is set, or we can handle
182 // a signal synchronously when we are already handling a signal.
183 atomic_store(&thr
->in_blocking_func
, 1, memory_order_relaxed
);
184 if (atomic_load(&thr
->pending_signals
, memory_order_relaxed
) == 0)
186 atomic_store(&thr
->in_blocking_func
, 0, memory_order_relaxed
);
187 ProcessPendingSignals(thr
);
191 // The sole reason tsan wraps atexit callbacks is to establish synchronization
192 // between callback setup and callback execution.
199 // InterceptorContext holds all global data required for interceptors.
200 // It's explicitly constructed in InitializeInterceptors with placement new
201 // and is never destroyed. This allows usage of members with non-trivial
202 // constructors and destructors.
203 struct InterceptorContext
{
204 // The object is 64-byte aligned, because we want hot data to be located
205 // in a single cache line if possible (it's accessed in every interceptor).
206 ALIGNED(64) LibIgnore libignore
;
207 __sanitizer_sigaction sigactions
[kSigCount
];
208 #if !SANITIZER_APPLE && !SANITIZER_NETBSD
209 unsigned finalize_key
;
213 Vector
<struct AtExitCtx
*> AtExitStack
;
215 InterceptorContext() : libignore(LINKER_INITIALIZED
), atexit_mu(MutexTypeAtExit
), AtExitStack() {}
218 static ALIGNED(64) char interceptor_placeholder
[sizeof(InterceptorContext
)];
219 InterceptorContext
*interceptor_ctx() {
220 return reinterpret_cast<InterceptorContext
*>(&interceptor_placeholder
[0]);
223 LibIgnore
*libignore() {
224 return &interceptor_ctx()->libignore
;
227 void InitializeLibIgnore() {
228 const SuppressionContext
&supp
= *Suppressions();
229 const uptr n
= supp
.SuppressionCount();
230 for (uptr i
= 0; i
< n
; i
++) {
231 const Suppression
*s
= supp
.SuppressionAt(i
);
232 if (0 == internal_strcmp(s
->type
, kSuppressionLib
))
233 libignore()->AddIgnoredLibrary(s
->templ
);
235 if (flags()->ignore_noninstrumented_modules
)
236 libignore()->IgnoreNoninstrumentedModules(true);
237 libignore()->OnLibraryLoaded(0);
240 // The following two hooks can be used by for cooperative scheduling when
242 #ifdef TSAN_EXTERNAL_HOOKS
243 void OnPotentiallyBlockingRegionBegin();
244 void OnPotentiallyBlockingRegionEnd();
246 SANITIZER_WEAK_CXX_DEFAULT_IMPL
void OnPotentiallyBlockingRegionBegin() {}
247 SANITIZER_WEAK_CXX_DEFAULT_IMPL
void OnPotentiallyBlockingRegionEnd() {}
250 } // namespace __tsan
252 static ThreadSignalContext
*SigCtx(ThreadState
*thr
) {
253 // This function may be called reentrantly if it is interrupted by a signal
254 // handler. Use CAS to handle the race.
255 uptr ctx
= atomic_load(&thr
->signal_ctx
, memory_order_relaxed
);
256 if (ctx
== 0 && !thr
->is_dead
) {
258 (uptr
)MmapOrDie(sizeof(ThreadSignalContext
), "ThreadSignalContext");
259 MemoryResetRange(thr
, (uptr
)&SigCtx
, pctx
, sizeof(ThreadSignalContext
));
260 if (atomic_compare_exchange_strong(&thr
->signal_ctx
, &ctx
, pctx
,
261 memory_order_relaxed
)) {
264 UnmapOrDie((ThreadSignalContext
*)pctx
, sizeof(ThreadSignalContext
));
267 return (ThreadSignalContext
*)ctx
;
270 ScopedInterceptor::ScopedInterceptor(ThreadState
*thr
, const char *fname
,
274 if (UNLIKELY(atomic_load(&thr
->in_blocking_func
, memory_order_relaxed
))) {
275 // pthread_join is marked as blocking, but it's also known to call other
276 // intercepted functions (mmap, free). If we don't reset in_blocking_func
277 // we can get deadlocks and memory corruptions if we deliver a synchronous
278 // signal inside of an mmap/free interceptor.
279 // So reset it and restore it back in the destructor.
280 // See https://github.com/google/sanitizers/issues/1540
281 atomic_store(&thr
->in_blocking_func
, 0, memory_order_relaxed
);
282 in_blocking_func_
= true;
284 if (!thr_
->is_inited
) return;
285 if (!thr_
->ignore_interceptors
) FuncEntry(thr
, pc
);
286 DPrintf("#%d: intercept %s()\n", thr_
->tid
, fname
);
288 !thr_
->in_ignored_lib
&& (flags()->ignore_interceptors_accesses
||
289 libignore()->IsIgnored(pc
, &in_ignored_lib_
));
293 ScopedInterceptor::~ScopedInterceptor() {
294 if (!thr_
->is_inited
) return;
296 if (UNLIKELY(in_blocking_func_
))
297 EnterBlockingFunc(thr_
);
298 if (!thr_
->ignore_interceptors
) {
299 ProcessPendingSignals(thr_
);
301 CheckedMutex::CheckNoLocks();
306 void ScopedInterceptor::EnableIgnoresImpl() {
307 ThreadIgnoreBegin(thr_
, 0);
308 if (flags()->ignore_noninstrumented_modules
)
309 thr_
->suppress_reports
++;
310 if (in_ignored_lib_
) {
311 DCHECK(!thr_
->in_ignored_lib
);
312 thr_
->in_ignored_lib
= true;
317 void ScopedInterceptor::DisableIgnoresImpl() {
318 ThreadIgnoreEnd(thr_
);
319 if (flags()->ignore_noninstrumented_modules
)
320 thr_
->suppress_reports
--;
321 if (in_ignored_lib_
) {
322 DCHECK(thr_
->in_ignored_lib
);
323 thr_
->in_ignored_lib
= false;
327 #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
328 #if SANITIZER_FREEBSD || SANITIZER_NETBSD
329 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
331 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
333 #if SANITIZER_FREEBSD
334 # define TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(func) \
335 INTERCEPT_FUNCTION(_pthread_##func)
337 # define TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(func)
340 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) \
341 INTERCEPT_FUNCTION(__libc_##func)
342 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) \
343 INTERCEPT_FUNCTION(__libc_thr_##func)
345 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
346 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
349 #define READ_STRING_OF_LEN(thr, pc, s, len, n) \
350 MemoryAccessRange((thr), (pc), (uptr)(s), \
351 common_flags()->strict_string_checks ? (len) + 1 : (n), false)
353 #define READ_STRING(thr, pc, s, n) \
354 READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
356 #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
358 struct BlockingCall
{
359 explicit BlockingCall(ThreadState
*thr
)
361 EnterBlockingFunc(thr
);
362 // When we are in a "blocking call", we process signals asynchronously
363 // (right when they arrive). In this context we do not expect to be
364 // executing any user/runtime code. The known interceptor sequence when
365 // this is not true is: pthread_join -> munmap(stack). It's fine
366 // to ignore munmap in this case -- we handle stack shadow separately.
367 thr
->ignore_interceptors
++;
371 thr
->ignore_interceptors
--;
372 atomic_store(&thr
->in_blocking_func
, 0, memory_order_relaxed
);
378 TSAN_INTERCEPTOR(unsigned, sleep
, unsigned sec
) {
379 SCOPED_TSAN_INTERCEPTOR(sleep
, sec
);
380 unsigned res
= BLOCK_REAL(sleep
)(sec
);
385 TSAN_INTERCEPTOR(int, usleep
, long_t usec
) {
386 SCOPED_TSAN_INTERCEPTOR(usleep
, usec
);
387 int res
= BLOCK_REAL(usleep
)(usec
);
392 TSAN_INTERCEPTOR(int, nanosleep
, void *req
, void *rem
) {
393 SCOPED_TSAN_INTERCEPTOR(nanosleep
, req
, rem
);
394 int res
= BLOCK_REAL(nanosleep
)(req
, rem
);
399 TSAN_INTERCEPTOR(int, pause
, int fake
) {
400 SCOPED_TSAN_INTERCEPTOR(pause
, fake
);
401 return BLOCK_REAL(pause
)(fake
);
404 // Note: we specifically call the function in such strange way
405 // with "installed_at" because in reports it will appear between
406 // callback frames and the frame that installed the callback.
407 static void at_exit_callback_installed_at() {
410 // Ensure thread-safety.
411 Lock
l(&interceptor_ctx()->atexit_mu
);
413 // Pop AtExitCtx from the top of the stack of callback functions
414 uptr element
= interceptor_ctx()->AtExitStack
.Size() - 1;
415 ctx
= interceptor_ctx()->AtExitStack
[element
];
416 interceptor_ctx()->AtExitStack
.PopBack();
419 ThreadState
*thr
= cur_thread();
420 Acquire(thr
, ctx
->pc
, (uptr
)ctx
);
421 FuncEntry(thr
, ctx
->pc
);
422 ((void(*)())ctx
->f
)();
427 static void cxa_at_exit_callback_installed_at(void *arg
) {
428 ThreadState
*thr
= cur_thread();
429 AtExitCtx
*ctx
= (AtExitCtx
*)arg
;
430 Acquire(thr
, ctx
->pc
, (uptr
)arg
);
431 FuncEntry(thr
, ctx
->pc
);
432 ((void(*)(void *arg
))ctx
->f
)(ctx
->arg
);
437 static int setup_at_exit_wrapper(ThreadState
*thr
, uptr pc
, void(*f
)(),
438 void *arg
, void *dso
);
440 #if !SANITIZER_ANDROID
441 TSAN_INTERCEPTOR(int, atexit
, void (*f
)()) {
444 // We want to setup the atexit callback even if we are in ignored lib
446 SCOPED_INTERCEPTOR_RAW(atexit
, f
);
447 return setup_at_exit_wrapper(thr
, GET_CALLER_PC(), (void (*)())f
, 0, 0);
451 TSAN_INTERCEPTOR(int, __cxa_atexit
, void (*f
)(void *a
), void *arg
, void *dso
) {
454 SCOPED_TSAN_INTERCEPTOR(__cxa_atexit
, f
, arg
, dso
);
455 return setup_at_exit_wrapper(thr
, GET_CALLER_PC(), (void (*)())f
, arg
, dso
);
458 static int setup_at_exit_wrapper(ThreadState
*thr
, uptr pc
, void(*f
)(),
459 void *arg
, void *dso
) {
460 auto *ctx
= New
<AtExitCtx
>();
464 Release(thr
, pc
, (uptr
)ctx
);
465 // Memory allocation in __cxa_atexit will race with free during exit,
466 // because we do not see synchronization around atexit callback list.
467 ThreadIgnoreBegin(thr
, pc
);
470 // NetBSD does not preserve the 2nd argument if dso is equal to 0
471 // Store ctx in a local stack-like structure
473 // Ensure thread-safety.
474 Lock
l(&interceptor_ctx()->atexit_mu
);
475 // __cxa_atexit calls calloc. If we don't ignore interceptors, we will fail
476 // due to atexit_mu held on exit from the calloc interceptor.
477 ScopedIgnoreInterceptors ignore
;
479 res
= REAL(__cxa_atexit
)((void (*)(void *a
))at_exit_callback_installed_at
,
481 // Push AtExitCtx on the top of the stack of callback functions
483 interceptor_ctx()->AtExitStack
.PushBack(ctx
);
486 res
= REAL(__cxa_atexit
)(cxa_at_exit_callback_installed_at
, ctx
, dso
);
488 ThreadIgnoreEnd(thr
);
492 #if !SANITIZER_APPLE && !SANITIZER_NETBSD
493 static void on_exit_callback_installed_at(int status
, void *arg
) {
494 ThreadState
*thr
= cur_thread();
495 AtExitCtx
*ctx
= (AtExitCtx
*)arg
;
496 Acquire(thr
, ctx
->pc
, (uptr
)arg
);
497 FuncEntry(thr
, ctx
->pc
);
498 ((void(*)(int status
, void *arg
))ctx
->f
)(status
, ctx
->arg
);
503 TSAN_INTERCEPTOR(int, on_exit
, void(*f
)(int, void*), void *arg
) {
506 SCOPED_TSAN_INTERCEPTOR(on_exit
, f
, arg
);
507 auto *ctx
= New
<AtExitCtx
>();
508 ctx
->f
= (void(*)())f
;
510 ctx
->pc
= GET_CALLER_PC();
511 Release(thr
, pc
, (uptr
)ctx
);
512 // Memory allocation in __cxa_atexit will race with free during exit,
513 // because we do not see synchronization around atexit callback list.
514 ThreadIgnoreBegin(thr
, pc
);
515 int res
= REAL(on_exit
)(on_exit_callback_installed_at
, ctx
);
516 ThreadIgnoreEnd(thr
);
519 #define TSAN_MAYBE_INTERCEPT_ON_EXIT TSAN_INTERCEPT(on_exit)
521 #define TSAN_MAYBE_INTERCEPT_ON_EXIT
525 static void JmpBufGarbageCollect(ThreadState
*thr
, uptr sp
) {
526 for (uptr i
= 0; i
< thr
->jmp_bufs
.Size(); i
++) {
527 JmpBuf
*buf
= &thr
->jmp_bufs
[i
];
529 uptr sz
= thr
->jmp_bufs
.Size();
530 internal_memcpy(buf
, &thr
->jmp_bufs
[sz
- 1], sizeof(*buf
));
531 thr
->jmp_bufs
.PopBack();
537 static void SetJmp(ThreadState
*thr
, uptr sp
) {
538 if (!thr
->is_inited
) // called from libc guts during bootstrap
541 JmpBufGarbageCollect(thr
, sp
);
543 JmpBuf
*buf
= thr
->jmp_bufs
.PushBack();
545 buf
->shadow_stack_pos
= thr
->shadow_stack_pos
;
546 ThreadSignalContext
*sctx
= SigCtx(thr
);
547 buf
->int_signal_send
= sctx
? sctx
->int_signal_send
: 0;
548 buf
->in_blocking_func
= atomic_load(&thr
->in_blocking_func
, memory_order_relaxed
);
549 buf
->in_signal_handler
= atomic_load(&thr
->in_signal_handler
,
550 memory_order_relaxed
);
553 static void LongJmp(ThreadState
*thr
, uptr
*env
) {
554 uptr sp
= ExtractLongJmpSp(env
);
555 // Find the saved buf with matching sp.
556 for (uptr i
= 0; i
< thr
->jmp_bufs
.Size(); i
++) {
557 JmpBuf
*buf
= &thr
->jmp_bufs
[i
];
559 CHECK_GE(thr
->shadow_stack_pos
, buf
->shadow_stack_pos
);
561 while (thr
->shadow_stack_pos
> buf
->shadow_stack_pos
)
563 ThreadSignalContext
*sctx
= SigCtx(thr
);
565 sctx
->int_signal_send
= buf
->int_signal_send
;
566 atomic_store(&thr
->in_blocking_func
, buf
->in_blocking_func
,
567 memory_order_relaxed
);
568 atomic_store(&thr
->in_signal_handler
, buf
->in_signal_handler
,
569 memory_order_relaxed
);
570 JmpBufGarbageCollect(thr
, buf
->sp
- 1); // do not collect buf->sp
574 Printf("ThreadSanitizer: can't find longjmp buf\n");
578 // FIXME: put everything below into a common extern "C" block?
579 extern "C" void __tsan_setjmp(uptr sp
) { SetJmp(cur_thread_init(), sp
); }
582 TSAN_INTERCEPTOR(int, setjmp
, void *env
);
583 TSAN_INTERCEPTOR(int, _setjmp
, void *env
);
584 TSAN_INTERCEPTOR(int, sigsetjmp
, void *env
);
585 #else // SANITIZER_APPLE
588 #define setjmp_symname __setjmp14
589 #define sigsetjmp_symname __sigsetjmp14
591 #define setjmp_symname setjmp
592 #define sigsetjmp_symname sigsetjmp
595 #define TSAN_INTERCEPTOR_SETJMP_(x) __interceptor_ ## x
596 #define TSAN_INTERCEPTOR_SETJMP__(x) TSAN_INTERCEPTOR_SETJMP_(x)
597 #define TSAN_INTERCEPTOR_SETJMP TSAN_INTERCEPTOR_SETJMP__(setjmp_symname)
598 #define TSAN_INTERCEPTOR_SIGSETJMP TSAN_INTERCEPTOR_SETJMP__(sigsetjmp_symname)
600 #define TSAN_STRING_SETJMP SANITIZER_STRINGIFY(setjmp_symname)
601 #define TSAN_STRING_SIGSETJMP SANITIZER_STRINGIFY(sigsetjmp_symname)
603 // Not called. Merely to satisfy TSAN_INTERCEPT().
604 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
605 int TSAN_INTERCEPTOR_SETJMP(void *env
);
606 extern "C" int TSAN_INTERCEPTOR_SETJMP(void *env
) {
611 // FIXME: any reason to have a separate declaration?
612 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
613 int __interceptor__setjmp(void *env
);
614 extern "C" int __interceptor__setjmp(void *env
) {
619 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
620 int TSAN_INTERCEPTOR_SIGSETJMP(void *env
);
621 extern "C" int TSAN_INTERCEPTOR_SIGSETJMP(void *env
) {
626 #if !SANITIZER_NETBSD
627 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
628 int __interceptor___sigsetjmp(void *env
);
629 extern "C" int __interceptor___sigsetjmp(void *env
) {
635 extern "C" int setjmp_symname(void *env
);
636 extern "C" int _setjmp(void *env
);
637 extern "C" int sigsetjmp_symname(void *env
);
638 #if !SANITIZER_NETBSD
639 extern "C" int __sigsetjmp(void *env
);
641 DEFINE_REAL(int, setjmp_symname
, void *env
)
642 DEFINE_REAL(int, _setjmp
, void *env
)
643 DEFINE_REAL(int, sigsetjmp_symname
, void *env
)
644 #if !SANITIZER_NETBSD
645 DEFINE_REAL(int, __sigsetjmp
, void *env
)
647 #endif // SANITIZER_APPLE
650 #define longjmp_symname __longjmp14
651 #define siglongjmp_symname __siglongjmp14
653 #define longjmp_symname longjmp
654 #define siglongjmp_symname siglongjmp
657 TSAN_INTERCEPTOR(void, longjmp_symname
, uptr
*env
, int val
) {
658 // Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
659 // bad things will happen. We will jump over ScopedInterceptor dtor and can
660 // leave thr->in_ignored_lib set.
662 SCOPED_INTERCEPTOR_RAW(longjmp_symname
, env
, val
);
664 LongJmp(cur_thread(), env
);
665 REAL(longjmp_symname
)(env
, val
);
668 TSAN_INTERCEPTOR(void, siglongjmp_symname
, uptr
*env
, int val
) {
670 SCOPED_INTERCEPTOR_RAW(siglongjmp_symname
, env
, val
);
672 LongJmp(cur_thread(), env
);
673 REAL(siglongjmp_symname
)(env
, val
);
677 TSAN_INTERCEPTOR(void, _longjmp
, uptr
*env
, int val
) {
679 SCOPED_INTERCEPTOR_RAW(_longjmp
, env
, val
);
681 LongJmp(cur_thread(), env
);
682 REAL(_longjmp
)(env
, val
);
687 TSAN_INTERCEPTOR(void*, malloc
, uptr size
) {
689 return InternalAlloc(size
);
692 SCOPED_INTERCEPTOR_RAW(malloc
, size
);
693 p
= user_alloc(thr
, pc
, size
);
695 invoke_malloc_hook(p
, size
);
699 // In glibc<2.25, dynamic TLS blocks are allocated by __libc_memalign. Intercept
700 // __libc_memalign so that (1) we can detect races (2) free will not be called
701 // on libc internally allocated blocks.
702 TSAN_INTERCEPTOR(void*, __libc_memalign
, uptr align
, uptr sz
) {
703 SCOPED_INTERCEPTOR_RAW(__libc_memalign
, align
, sz
);
704 return user_memalign(thr
, pc
, align
, sz
);
707 TSAN_INTERCEPTOR(void*, calloc
, uptr size
, uptr n
) {
709 return InternalCalloc(size
, n
);
712 SCOPED_INTERCEPTOR_RAW(calloc
, size
, n
);
713 p
= user_calloc(thr
, pc
, size
, n
);
715 invoke_malloc_hook(p
, n
* size
);
719 TSAN_INTERCEPTOR(void*, realloc
, void *p
, uptr size
) {
721 return InternalRealloc(p
, size
);
725 SCOPED_INTERCEPTOR_RAW(realloc
, p
, size
);
726 p
= user_realloc(thr
, pc
, p
, size
);
728 invoke_malloc_hook(p
, size
);
732 TSAN_INTERCEPTOR(void*, reallocarray
, void *p
, uptr size
, uptr n
) {
734 return InternalReallocArray(p
, size
, n
);
738 SCOPED_INTERCEPTOR_RAW(reallocarray
, p
, size
, n
);
739 p
= user_reallocarray(thr
, pc
, p
, size
, n
);
741 invoke_malloc_hook(p
, size
);
745 TSAN_INTERCEPTOR(void, free
, void *p
) {
749 return InternalFree(p
);
751 SCOPED_INTERCEPTOR_RAW(free
, p
);
752 user_free(thr
, pc
, p
);
755 TSAN_INTERCEPTOR(void, cfree
, void *p
) {
759 return InternalFree(p
);
761 SCOPED_INTERCEPTOR_RAW(cfree
, p
);
762 user_free(thr
, pc
, p
);
765 TSAN_INTERCEPTOR(uptr
, malloc_usable_size
, void *p
) {
766 SCOPED_INTERCEPTOR_RAW(malloc_usable_size
, p
);
767 return user_alloc_usable_size(p
);
771 TSAN_INTERCEPTOR(char *, strcpy
, char *dst
, const char *src
) {
772 SCOPED_TSAN_INTERCEPTOR(strcpy
, dst
, src
);
773 uptr srclen
= internal_strlen(src
);
774 MemoryAccessRange(thr
, pc
, (uptr
)dst
, srclen
+ 1, true);
775 MemoryAccessRange(thr
, pc
, (uptr
)src
, srclen
+ 1, false);
776 return REAL(strcpy
)(dst
, src
);
779 TSAN_INTERCEPTOR(char*, strncpy
, char *dst
, char *src
, uptr n
) {
780 SCOPED_TSAN_INTERCEPTOR(strncpy
, dst
, src
, n
);
781 uptr srclen
= internal_strnlen(src
, n
);
782 MemoryAccessRange(thr
, pc
, (uptr
)dst
, n
, true);
783 MemoryAccessRange(thr
, pc
, (uptr
)src
, min(srclen
+ 1, n
), false);
784 return REAL(strncpy
)(dst
, src
, n
);
787 TSAN_INTERCEPTOR(char*, strdup
, const char *str
) {
788 SCOPED_TSAN_INTERCEPTOR(strdup
, str
);
789 // strdup will call malloc, so no instrumentation is required here.
790 return REAL(strdup
)(str
);
793 // Zero out addr if it points into shadow memory and was provided as a hint
794 // only, i.e., MAP_FIXED is not set.
795 static bool fix_mmap_addr(void **addr
, long_t sz
, int flags
) {
797 if (!IsAppMem((uptr
)*addr
) || !IsAppMem((uptr
)*addr
+ sz
- 1)) {
798 if (flags
& MAP_FIXED
) {
799 errno
= errno_EINVAL
;
809 template <class Mmap
>
810 static void *mmap_interceptor(ThreadState
*thr
, uptr pc
, Mmap real_mmap
,
811 void *addr
, SIZE_T sz
, int prot
, int flags
,
812 int fd
, OFF64_T off
) {
813 if (!fix_mmap_addr(&addr
, sz
, flags
)) return MAP_FAILED
;
814 void *res
= real_mmap(addr
, sz
, prot
, flags
, fd
, off
);
815 if (res
!= MAP_FAILED
) {
816 if (!IsAppMem((uptr
)res
) || !IsAppMem((uptr
)res
+ sz
- 1)) {
817 Report("ThreadSanitizer: mmap at bad address: addr=%p size=%p res=%p\n",
818 addr
, (void*)sz
, res
);
821 if (fd
> 0) FdAccess(thr
, pc
, fd
);
822 MemoryRangeImitateWriteOrResetRange(thr
, pc
, (uptr
)res
, sz
);
827 TSAN_INTERCEPTOR(int, munmap
, void *addr
, long_t sz
) {
828 SCOPED_TSAN_INTERCEPTOR(munmap
, addr
, sz
);
829 UnmapShadow(thr
, (uptr
)addr
, sz
);
830 int res
= REAL(munmap
)(addr
, sz
);
835 TSAN_INTERCEPTOR(void*, memalign
, uptr align
, uptr sz
) {
836 SCOPED_INTERCEPTOR_RAW(memalign
, align
, sz
);
837 return user_memalign(thr
, pc
, align
, sz
);
839 #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
841 #define TSAN_MAYBE_INTERCEPT_MEMALIGN
845 TSAN_INTERCEPTOR(void*, aligned_alloc
, uptr align
, uptr sz
) {
847 return InternalAlloc(sz
, nullptr, align
);
848 SCOPED_INTERCEPTOR_RAW(aligned_alloc
, align
, sz
);
849 return user_aligned_alloc(thr
, pc
, align
, sz
);
852 TSAN_INTERCEPTOR(void*, valloc
, uptr sz
) {
854 return InternalAlloc(sz
, nullptr, GetPageSizeCached());
855 SCOPED_INTERCEPTOR_RAW(valloc
, sz
);
856 return user_valloc(thr
, pc
, sz
);
861 TSAN_INTERCEPTOR(void*, pvalloc
, uptr sz
) {
862 if (in_symbolizer()) {
863 uptr PageSize
= GetPageSizeCached();
864 sz
= sz
? RoundUpTo(sz
, PageSize
) : PageSize
;
865 return InternalAlloc(sz
, nullptr, PageSize
);
867 SCOPED_INTERCEPTOR_RAW(pvalloc
, sz
);
868 return user_pvalloc(thr
, pc
, sz
);
870 #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
872 #define TSAN_MAYBE_INTERCEPT_PVALLOC
876 TSAN_INTERCEPTOR(int, posix_memalign
, void **memptr
, uptr align
, uptr sz
) {
877 if (in_symbolizer()) {
878 void *p
= InternalAlloc(sz
, nullptr, align
);
884 SCOPED_INTERCEPTOR_RAW(posix_memalign
, memptr
, align
, sz
);
885 return user_posix_memalign(thr
, pc
, memptr
, align
, sz
);
889 // Both __cxa_guard_acquire and pthread_once 0-initialize
890 // the object initially. pthread_once does not have any
891 // other ABI requirements. __cxa_guard_acquire assumes
892 // that any non-0 value in the first byte means that
893 // initialization is completed. Contents of the remaining
894 // bytes are up to us.
895 constexpr u32 kGuardInit
= 0;
896 constexpr u32 kGuardDone
= 1;
897 constexpr u32 kGuardRunning
= 1 << 16;
898 constexpr u32 kGuardWaiter
= 1 << 17;
900 static int guard_acquire(ThreadState
*thr
, uptr pc
, atomic_uint32_t
*g
,
901 bool blocking_hooks
= true) {
903 OnPotentiallyBlockingRegionBegin();
904 auto on_exit
= at_scope_exit([blocking_hooks
] {
906 OnPotentiallyBlockingRegionEnd();
910 u32 cmp
= atomic_load(g
, memory_order_acquire
);
911 if (cmp
== kGuardInit
) {
912 if (atomic_compare_exchange_strong(g
, &cmp
, kGuardRunning
,
913 memory_order_relaxed
))
915 } else if (cmp
== kGuardDone
) {
916 if (!thr
->in_ignored_lib
)
917 Acquire(thr
, pc
, (uptr
)g
);
920 if ((cmp
& kGuardWaiter
) ||
921 atomic_compare_exchange_strong(g
, &cmp
, cmp
| kGuardWaiter
,
922 memory_order_relaxed
))
923 FutexWait(g
, cmp
| kGuardWaiter
);
928 static void guard_release(ThreadState
*thr
, uptr pc
, atomic_uint32_t
*g
,
930 if (!thr
->in_ignored_lib
)
931 Release(thr
, pc
, (uptr
)g
);
932 u32 old
= atomic_exchange(g
, v
, memory_order_release
);
933 if (old
& kGuardWaiter
)
934 FutexWake(g
, 1 << 30);
937 // __cxa_guard_acquire and friends need to be intercepted in a special way -
938 // regular interceptors will break statically-linked libstdc++. Linux
939 // interceptors are especially defined as weak functions (so that they don't
940 // cause link errors when user defines them as well). So they silently
941 // auto-disable themselves when such symbol is already present in the binary. If
942 // we link libstdc++ statically, it will bring own __cxa_guard_acquire which
943 // will silently replace our interceptor. That's why on Linux we simply export
944 // these interceptors with INTERFACE_ATTRIBUTE.
945 // On OS X, we don't support statically linking, so we just use a regular
948 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
950 #define STDCXX_INTERCEPTOR(rettype, name, ...) \
951 extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
954 // Used in thread-safe function static initialization.
955 STDCXX_INTERCEPTOR(int, __cxa_guard_acquire
, atomic_uint32_t
*g
) {
956 SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire
, g
);
957 return guard_acquire(thr
, pc
, g
);
960 STDCXX_INTERCEPTOR(void, __cxa_guard_release
, atomic_uint32_t
*g
) {
961 SCOPED_INTERCEPTOR_RAW(__cxa_guard_release
, g
);
962 guard_release(thr
, pc
, g
, kGuardDone
);
965 STDCXX_INTERCEPTOR(void, __cxa_guard_abort
, atomic_uint32_t
*g
) {
966 SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort
, g
);
967 guard_release(thr
, pc
, g
, kGuardInit
);
971 void DestroyThreadState() {
972 ThreadState
*thr
= cur_thread();
973 Processor
*proc
= thr
->proc();
975 ProcUnwire(proc
, thr
);
978 cur_thread_finalize();
981 void PlatformCleanUpThreadState(ThreadState
*thr
) {
982 ThreadSignalContext
*sctx
= (ThreadSignalContext
*)atomic_load(
983 &thr
->signal_ctx
, memory_order_relaxed
);
985 atomic_store(&thr
->signal_ctx
, 0, memory_order_relaxed
);
986 UnmapOrDie(sctx
, sizeof(*sctx
));
989 } // namespace __tsan
991 #if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
992 static void thread_finalize(void *v
) {
995 if (pthread_setspecific(interceptor_ctx()->finalize_key
,
996 (void*)(iter
- 1))) {
997 Printf("ThreadSanitizer: failed to set thread key\n");
1002 DestroyThreadState();
1007 struct ThreadParam
{
1008 void* (*callback
)(void *arg
);
1015 extern "C" void *__tsan_thread_start_func(void *arg
) {
1016 ThreadParam
*p
= (ThreadParam
*)arg
;
1017 void* (*callback
)(void *arg
) = p
->callback
;
1018 void *param
= p
->param
;
1020 ThreadState
*thr
= cur_thread_init();
1021 // Thread-local state is not initialized yet.
1022 ScopedIgnoreInterceptors ignore
;
1023 #if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
1024 ThreadIgnoreBegin(thr
, 0);
1025 if (pthread_setspecific(interceptor_ctx()->finalize_key
,
1026 (void *)GetPthreadDestructorIterations())) {
1027 Printf("ThreadSanitizer: failed to set thread key\n");
1030 ThreadIgnoreEnd(thr
);
1033 Processor
*proc
= ProcCreate();
1034 ProcWire(proc
, thr
);
1035 ThreadStart(thr
, p
->tid
, GetTid(), ThreadType::Regular
);
1038 void *res
= callback(param
);
1039 // Prevent the callback from being tail called,
1040 // it mixes up stack traces.
1041 volatile int foo
= 42;
1046 TSAN_INTERCEPTOR(int, pthread_create
,
1047 void *th
, void *attr
, void *(*callback
)(void*), void * param
) {
1048 SCOPED_INTERCEPTOR_RAW(pthread_create
, th
, attr
, callback
, param
);
1050 MaybeSpawnBackgroundThread();
1052 if (ctx
->after_multithreaded_fork
) {
1053 if (flags()->die_after_fork
) {
1054 Report("ThreadSanitizer: starting new threads after multi-threaded "
1055 "fork is not supported. Dying (set die_after_fork=0 to override)\n");
1059 "ThreadSanitizer: starting new threads after multi-threaded "
1060 "fork is not supported (pid %lu). Continuing because of "
1061 "die_after_fork=0, but you are on your own\n",
1065 __sanitizer_pthread_attr_t myattr
;
1067 pthread_attr_init(&myattr
);
1071 REAL(pthread_attr_getdetachstate
)(attr
, &detached
);
1072 AdjustStackSize(attr
);
1075 p
.callback
= callback
;
1080 // Otherwise we see false positives in pthread stack manipulation.
1081 ScopedIgnoreInterceptors ignore
;
1082 ThreadIgnoreBegin(thr
, pc
);
1083 res
= REAL(pthread_create
)(th
, attr
, __tsan_thread_start_func
, &p
);
1084 ThreadIgnoreEnd(thr
);
1087 p
.tid
= ThreadCreate(thr
, pc
, *(uptr
*)th
, IsStateDetached(detached
));
1088 CHECK_NE(p
.tid
, kMainTid
);
1089 // Synchronization on p.tid serves two purposes:
1090 // 1. ThreadCreate must finish before the new thread starts.
1091 // Otherwise the new thread can call pthread_detach, but the pthread_t
1092 // identifier is not yet registered in ThreadRegistry by ThreadCreate.
1093 // 2. ThreadStart must finish before this thread continues.
1094 // Otherwise, this thread can call pthread_detach and reset thr->sync
1095 // before the new thread got a chance to acquire from it in ThreadStart.
1099 if (attr
== &myattr
)
1100 pthread_attr_destroy(&myattr
);
1104 TSAN_INTERCEPTOR(int, pthread_join
, void *th
, void **ret
) {
1105 SCOPED_INTERCEPTOR_RAW(pthread_join
, th
, ret
);
1106 Tid tid
= ThreadConsumeTid(thr
, pc
, (uptr
)th
);
1107 ThreadIgnoreBegin(thr
, pc
);
1108 int res
= BLOCK_REAL(pthread_join
)(th
, ret
);
1109 ThreadIgnoreEnd(thr
);
1111 ThreadJoin(thr
, pc
, tid
);
1116 DEFINE_REAL_PTHREAD_FUNCTIONS
1118 TSAN_INTERCEPTOR(int, pthread_detach
, void *th
) {
1119 SCOPED_INTERCEPTOR_RAW(pthread_detach
, th
);
1120 Tid tid
= ThreadConsumeTid(thr
, pc
, (uptr
)th
);
1121 int res
= REAL(pthread_detach
)(th
);
1123 ThreadDetach(thr
, pc
, tid
);
1128 TSAN_INTERCEPTOR(void, pthread_exit
, void *retval
) {
1130 SCOPED_INTERCEPTOR_RAW(pthread_exit
, retval
);
1131 #if !SANITIZER_APPLE && !SANITIZER_ANDROID
1132 CHECK_EQ(thr
, &cur_thread_placeholder
);
1135 REAL(pthread_exit
)(retval
);
1139 TSAN_INTERCEPTOR(int, pthread_tryjoin_np
, void *th
, void **ret
) {
1140 SCOPED_INTERCEPTOR_RAW(pthread_tryjoin_np
, th
, ret
);
1141 Tid tid
= ThreadConsumeTid(thr
, pc
, (uptr
)th
);
1142 ThreadIgnoreBegin(thr
, pc
);
1143 int res
= REAL(pthread_tryjoin_np
)(th
, ret
);
1144 ThreadIgnoreEnd(thr
);
1146 ThreadJoin(thr
, pc
, tid
);
1148 ThreadNotJoined(thr
, pc
, tid
, (uptr
)th
);
1152 TSAN_INTERCEPTOR(int, pthread_timedjoin_np
, void *th
, void **ret
,
1153 const struct timespec
*abstime
) {
1154 SCOPED_INTERCEPTOR_RAW(pthread_timedjoin_np
, th
, ret
, abstime
);
1155 Tid tid
= ThreadConsumeTid(thr
, pc
, (uptr
)th
);
1156 ThreadIgnoreBegin(thr
, pc
);
1157 int res
= BLOCK_REAL(pthread_timedjoin_np
)(th
, ret
, abstime
);
1158 ThreadIgnoreEnd(thr
);
1160 ThreadJoin(thr
, pc
, tid
);
1162 ThreadNotJoined(thr
, pc
, tid
, (uptr
)th
);
1168 // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
1169 // pthread_cond_t has different size in the different versions.
1170 // If call new REAL functions for old pthread_cond_t, they will corrupt memory
1171 // after pthread_cond_t (old cond is smaller).
1172 // If we call old REAL functions for new pthread_cond_t, we will lose some
1173 // functionality (e.g. old functions do not support waiting against
1175 // Proper handling would require to have 2 versions of interceptors as well.
1176 // But this is messy, in particular requires linker scripts when sanitizer
1177 // runtime is linked into a shared library.
1178 // Instead we assume we don't have dynamic libraries built against old
1179 // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
1180 // that allows to work with old libraries (but this mode does not support
1181 // some features, e.g. pthread_condattr_getpshared).
1182 static void *init_cond(void *c
, bool force
= false) {
1183 // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
1184 // So we allocate additional memory on the side large enough to hold
1185 // any pthread_cond_t object. Always call new REAL functions, but pass
1186 // the aux object to them.
1187 // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
1188 // first word of pthread_cond_t to zero.
1189 // It's all relevant only for linux.
1190 if (!common_flags()->legacy_pthread_cond
)
1192 atomic_uintptr_t
*p
= (atomic_uintptr_t
*)c
;
1193 uptr cond
= atomic_load(p
, memory_order_acquire
);
1194 if (!force
&& cond
!= 0)
1196 void *newcond
= WRAP(malloc
)(pthread_cond_t_sz
);
1197 internal_memset(newcond
, 0, pthread_cond_t_sz
);
1198 if (atomic_compare_exchange_strong(p
, &cond
, (uptr
)newcond
,
1199 memory_order_acq_rel
))
1201 WRAP(free
)(newcond
);
1208 struct CondMutexUnlockCtx
{
1209 ScopedInterceptor
*si
;
1216 int Cancel() const { return fn(); }
1217 void Unlock() const;
1221 void CondMutexUnlockCtx
<Fn
>::Unlock() const {
1222 // pthread_cond_wait interceptor has enabled async signal delivery
1223 // (see BlockingCall below). Disable async signals since we are running
1224 // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
1225 // since the thread is cancelled, so we have to manually execute them
1226 // (the thread still can run some user code due to pthread_cleanup_push).
1227 CHECK_EQ(atomic_load(&thr
->in_blocking_func
, memory_order_relaxed
), 1);
1228 atomic_store(&thr
->in_blocking_func
, 0, memory_order_relaxed
);
1229 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagDoPreLockOnPostLock
);
1230 // Undo BlockingCall ctor effects.
1231 thr
->ignore_interceptors
--;
1232 si
->~ScopedInterceptor();
1236 INTERCEPTOR(int, pthread_cond_init
, void *c
, void *a
) {
1237 void *cond
= init_cond(c
, true);
1238 SCOPED_TSAN_INTERCEPTOR(pthread_cond_init
, cond
, a
);
1239 MemoryAccessRange(thr
, pc
, (uptr
)c
, sizeof(uptr
), true);
1240 return REAL(pthread_cond_init
)(cond
, a
);
1244 int cond_wait(ThreadState
*thr
, uptr pc
, ScopedInterceptor
*si
, const Fn
&fn
,
1246 MemoryAccessRange(thr
, pc
, (uptr
)c
, sizeof(uptr
), false);
1247 MutexUnlock(thr
, pc
, (uptr
)m
);
1249 // This ensures that we handle mutex lock even in case of pthread_cancel.
1250 // See test/tsan/cond_cancel.cpp.
1252 // Enable signal delivery while the thread is blocked.
1253 BlockingCall
bc(thr
);
1254 CondMutexUnlockCtx
<Fn
> arg
= {si
, thr
, pc
, m
, c
, fn
};
1255 res
= call_pthread_cancel_with_cleanup(
1256 [](void *arg
) -> int {
1257 return ((const CondMutexUnlockCtx
<Fn
> *)arg
)->Cancel();
1259 [](void *arg
) { ((const CondMutexUnlockCtx
<Fn
> *)arg
)->Unlock(); },
1262 if (res
== errno_EOWNERDEAD
) MutexRepair(thr
, pc
, (uptr
)m
);
1263 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagDoPreLockOnPostLock
);
1267 INTERCEPTOR(int, pthread_cond_wait
, void *c
, void *m
) {
1268 void *cond
= init_cond(c
);
1269 SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait
, cond
, m
);
1271 thr
, pc
, &si
, [=]() { return REAL(pthread_cond_wait
)(cond
, m
); }, cond
,
1275 INTERCEPTOR(int, pthread_cond_timedwait
, void *c
, void *m
, void *abstime
) {
1276 void *cond
= init_cond(c
);
1277 SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait
, cond
, m
, abstime
);
1280 [=]() { return REAL(pthread_cond_timedwait
)(cond
, m
, abstime
); }, cond
,
1285 INTERCEPTOR(int, pthread_cond_clockwait
, void *c
, void *m
,
1286 __sanitizer_clockid_t clock
, void *abstime
) {
1287 void *cond
= init_cond(c
);
1288 SCOPED_TSAN_INTERCEPTOR(pthread_cond_clockwait
, cond
, m
, clock
, abstime
);
1291 [=]() { return REAL(pthread_cond_clockwait
)(cond
, m
, clock
, abstime
); },
1294 #define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT TSAN_INTERCEPT(pthread_cond_clockwait)
1296 #define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT
1300 INTERCEPTOR(int, pthread_cond_timedwait_relative_np
, void *c
, void *m
,
1302 void *cond
= init_cond(c
);
1303 SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np
, cond
, m
, reltime
);
1307 return REAL(pthread_cond_timedwait_relative_np
)(cond
, m
, reltime
);
1313 INTERCEPTOR(int, pthread_cond_signal
, void *c
) {
1314 void *cond
= init_cond(c
);
1315 SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal
, cond
);
1316 MemoryAccessRange(thr
, pc
, (uptr
)c
, sizeof(uptr
), false);
1317 return REAL(pthread_cond_signal
)(cond
);
1320 INTERCEPTOR(int, pthread_cond_broadcast
, void *c
) {
1321 void *cond
= init_cond(c
);
1322 SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast
, cond
);
1323 MemoryAccessRange(thr
, pc
, (uptr
)c
, sizeof(uptr
), false);
1324 return REAL(pthread_cond_broadcast
)(cond
);
1327 INTERCEPTOR(int, pthread_cond_destroy
, void *c
) {
1328 void *cond
= init_cond(c
);
1329 SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy
, cond
);
1330 MemoryAccessRange(thr
, pc
, (uptr
)c
, sizeof(uptr
), true);
1331 int res
= REAL(pthread_cond_destroy
)(cond
);
1332 if (common_flags()->legacy_pthread_cond
) {
1333 // Free our aux cond and zero the pointer to not leave dangling pointers.
1335 atomic_store((atomic_uintptr_t
*)c
, 0, memory_order_relaxed
);
1340 TSAN_INTERCEPTOR(int, pthread_mutex_init
, void *m
, void *a
) {
1341 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init
, m
, a
);
1342 int res
= REAL(pthread_mutex_init
)(m
, a
);
1347 if (REAL(pthread_mutexattr_gettype
)(a
, &type
) == 0)
1348 if (type
== PTHREAD_MUTEX_RECURSIVE
||
1349 type
== PTHREAD_MUTEX_RECURSIVE_NP
)
1350 flagz
|= MutexFlagWriteReentrant
;
1352 MutexCreate(thr
, pc
, (uptr
)m
, flagz
);
1357 TSAN_INTERCEPTOR(int, pthread_mutex_destroy
, void *m
) {
1358 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy
, m
);
1359 int res
= REAL(pthread_mutex_destroy
)(m
);
1360 if (res
== 0 || res
== errno_EBUSY
) {
1361 MutexDestroy(thr
, pc
, (uptr
)m
);
1366 TSAN_INTERCEPTOR(int, pthread_mutex_lock
, void *m
) {
1367 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_lock
, m
);
1368 MutexPreLock(thr
, pc
, (uptr
)m
);
1369 int res
= REAL(pthread_mutex_lock
)(m
);
1370 if (res
== errno_EOWNERDEAD
)
1371 MutexRepair(thr
, pc
, (uptr
)m
);
1372 if (res
== 0 || res
== errno_EOWNERDEAD
)
1373 MutexPostLock(thr
, pc
, (uptr
)m
);
1374 if (res
== errno_EINVAL
)
1375 MutexInvalidAccess(thr
, pc
, (uptr
)m
);
1379 TSAN_INTERCEPTOR(int, pthread_mutex_trylock
, void *m
) {
1380 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock
, m
);
1381 int res
= REAL(pthread_mutex_trylock
)(m
);
1382 if (res
== errno_EOWNERDEAD
)
1383 MutexRepair(thr
, pc
, (uptr
)m
);
1384 if (res
== 0 || res
== errno_EOWNERDEAD
)
1385 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagTryLock
);
1389 #if !SANITIZER_APPLE
1390 TSAN_INTERCEPTOR(int, pthread_mutex_timedlock
, void *m
, void *abstime
) {
1391 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock
, m
, abstime
);
1392 int res
= REAL(pthread_mutex_timedlock
)(m
, abstime
);
1394 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagTryLock
);
1400 TSAN_INTERCEPTOR(int, pthread_mutex_unlock
, void *m
) {
1401 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_unlock
, m
);
1402 MutexUnlock(thr
, pc
, (uptr
)m
);
1403 int res
= REAL(pthread_mutex_unlock
)(m
);
1404 if (res
== errno_EINVAL
)
1405 MutexInvalidAccess(thr
, pc
, (uptr
)m
);
1410 # if !__GLIBC_PREREQ(2, 34)
1411 // glibc 2.34 applies a non-default version for the two functions. They are no
1412 // longer expected to be intercepted by programs.
1413 TSAN_INTERCEPTOR(int, __pthread_mutex_lock
, void *m
) {
1414 SCOPED_TSAN_INTERCEPTOR(__pthread_mutex_lock
, m
);
1415 MutexPreLock(thr
, pc
, (uptr
)m
);
1416 int res
= REAL(__pthread_mutex_lock
)(m
);
1417 if (res
== errno_EOWNERDEAD
)
1418 MutexRepair(thr
, pc
, (uptr
)m
);
1419 if (res
== 0 || res
== errno_EOWNERDEAD
)
1420 MutexPostLock(thr
, pc
, (uptr
)m
);
1421 if (res
== errno_EINVAL
)
1422 MutexInvalidAccess(thr
, pc
, (uptr
)m
);
1426 TSAN_INTERCEPTOR(int, __pthread_mutex_unlock
, void *m
) {
1427 SCOPED_TSAN_INTERCEPTOR(__pthread_mutex_unlock
, m
);
1428 MutexUnlock(thr
, pc
, (uptr
)m
);
1429 int res
= REAL(__pthread_mutex_unlock
)(m
);
1430 if (res
== errno_EINVAL
)
1431 MutexInvalidAccess(thr
, pc
, (uptr
)m
);
1437 #if !SANITIZER_APPLE
1438 TSAN_INTERCEPTOR(int, pthread_spin_init
, void *m
, int pshared
) {
1439 SCOPED_TSAN_INTERCEPTOR(pthread_spin_init
, m
, pshared
);
1440 int res
= REAL(pthread_spin_init
)(m
, pshared
);
1442 MutexCreate(thr
, pc
, (uptr
)m
);
1447 TSAN_INTERCEPTOR(int, pthread_spin_destroy
, void *m
) {
1448 SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy
, m
);
1449 int res
= REAL(pthread_spin_destroy
)(m
);
1451 MutexDestroy(thr
, pc
, (uptr
)m
);
1456 TSAN_INTERCEPTOR(int, pthread_spin_lock
, void *m
) {
1457 SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock
, m
);
1458 MutexPreLock(thr
, pc
, (uptr
)m
);
1459 int res
= REAL(pthread_spin_lock
)(m
);
1461 MutexPostLock(thr
, pc
, (uptr
)m
);
1466 TSAN_INTERCEPTOR(int, pthread_spin_trylock
, void *m
) {
1467 SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock
, m
);
1468 int res
= REAL(pthread_spin_trylock
)(m
);
1470 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagTryLock
);
1475 TSAN_INTERCEPTOR(int, pthread_spin_unlock
, void *m
) {
1476 SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock
, m
);
1477 MutexUnlock(thr
, pc
, (uptr
)m
);
1478 int res
= REAL(pthread_spin_unlock
)(m
);
1483 TSAN_INTERCEPTOR(int, pthread_rwlock_init
, void *m
, void *a
) {
1484 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init
, m
, a
);
1485 int res
= REAL(pthread_rwlock_init
)(m
, a
);
1487 MutexCreate(thr
, pc
, (uptr
)m
);
1492 TSAN_INTERCEPTOR(int, pthread_rwlock_destroy
, void *m
) {
1493 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy
, m
);
1494 int res
= REAL(pthread_rwlock_destroy
)(m
);
1496 MutexDestroy(thr
, pc
, (uptr
)m
);
1501 TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock
, void *m
) {
1502 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock
, m
);
1503 MutexPreReadLock(thr
, pc
, (uptr
)m
);
1504 int res
= REAL(pthread_rwlock_rdlock
)(m
);
1506 MutexPostReadLock(thr
, pc
, (uptr
)m
);
1511 TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock
, void *m
) {
1512 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock
, m
);
1513 int res
= REAL(pthread_rwlock_tryrdlock
)(m
);
1515 MutexPostReadLock(thr
, pc
, (uptr
)m
, MutexFlagTryLock
);
1520 #if !SANITIZER_APPLE
1521 TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock
, void *m
, void *abstime
) {
1522 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock
, m
, abstime
);
1523 int res
= REAL(pthread_rwlock_timedrdlock
)(m
, abstime
);
1525 MutexPostReadLock(thr
, pc
, (uptr
)m
);
1531 TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock
, void *m
) {
1532 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock
, m
);
1533 MutexPreLock(thr
, pc
, (uptr
)m
);
1534 int res
= REAL(pthread_rwlock_wrlock
)(m
);
1536 MutexPostLock(thr
, pc
, (uptr
)m
);
1541 TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock
, void *m
) {
1542 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock
, m
);
1543 int res
= REAL(pthread_rwlock_trywrlock
)(m
);
1545 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagTryLock
);
1550 #if !SANITIZER_APPLE
1551 TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock
, void *m
, void *abstime
) {
1552 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock
, m
, abstime
);
1553 int res
= REAL(pthread_rwlock_timedwrlock
)(m
, abstime
);
1555 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagTryLock
);
1561 TSAN_INTERCEPTOR(int, pthread_rwlock_unlock
, void *m
) {
1562 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock
, m
);
1563 MutexReadOrWriteUnlock(thr
, pc
, (uptr
)m
);
1564 int res
= REAL(pthread_rwlock_unlock
)(m
);
1568 #if !SANITIZER_APPLE
1569 TSAN_INTERCEPTOR(int, pthread_barrier_init
, void *b
, void *a
, unsigned count
) {
1570 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init
, b
, a
, count
);
1571 MemoryAccess(thr
, pc
, (uptr
)b
, 1, kAccessWrite
);
1572 int res
= REAL(pthread_barrier_init
)(b
, a
, count
);
1576 TSAN_INTERCEPTOR(int, pthread_barrier_destroy
, void *b
) {
1577 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy
, b
);
1578 MemoryAccess(thr
, pc
, (uptr
)b
, 1, kAccessWrite
);
1579 int res
= REAL(pthread_barrier_destroy
)(b
);
1583 TSAN_INTERCEPTOR(int, pthread_barrier_wait
, void *b
) {
1584 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait
, b
);
1585 Release(thr
, pc
, (uptr
)b
);
1586 MemoryAccess(thr
, pc
, (uptr
)b
, 1, kAccessRead
);
1587 int res
= REAL(pthread_barrier_wait
)(b
);
1588 MemoryAccess(thr
, pc
, (uptr
)b
, 1, kAccessRead
);
1589 if (res
== 0 || res
== PTHREAD_BARRIER_SERIAL_THREAD
) {
1590 Acquire(thr
, pc
, (uptr
)b
);
1596 TSAN_INTERCEPTOR(int, pthread_once
, void *o
, void (*f
)()) {
1597 SCOPED_INTERCEPTOR_RAW(pthread_once
, o
, f
);
1598 if (o
== 0 || f
== 0)
1599 return errno_EINVAL
;
1602 if (SANITIZER_APPLE
)
1603 a
= static_cast<atomic_uint32_t
*>((void *)((char *)o
+ sizeof(long_t
)));
1604 else if (SANITIZER_NETBSD
)
1605 a
= static_cast<atomic_uint32_t
*>
1606 ((void *)((char *)o
+ __sanitizer::pthread_mutex_t_sz
));
1608 a
= static_cast<atomic_uint32_t
*>(o
);
1610 // Mac OS X appears to use pthread_once() where calling BlockingRegion hooks
1611 // result in crashes due to too little stack space.
1612 if (guard_acquire(thr
, pc
, a
, !SANITIZER_APPLE
)) {
1614 guard_release(thr
, pc
, a
, kGuardDone
);
1620 TSAN_INTERCEPTOR(int, __fxstat
, int version
, int fd
, void *buf
) {
1621 SCOPED_TSAN_INTERCEPTOR(__fxstat
, version
, fd
, buf
);
1623 FdAccess(thr
, pc
, fd
);
1624 return REAL(__fxstat
)(version
, fd
, buf
);
1626 #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
1628 #define TSAN_MAYBE_INTERCEPT___FXSTAT
1631 TSAN_INTERCEPTOR(int, fstat
, int fd
, void *buf
) {
1633 SCOPED_TSAN_INTERCEPTOR(__fxstat
, 0, fd
, buf
);
1635 FdAccess(thr
, pc
, fd
);
1636 return REAL(__fxstat
)(0, fd
, buf
);
1638 SCOPED_TSAN_INTERCEPTOR(fstat
, fd
, buf
);
1640 FdAccess(thr
, pc
, fd
);
1641 return REAL(fstat
)(fd
, buf
);
1646 TSAN_INTERCEPTOR(int, __fxstat64
, int version
, int fd
, void *buf
) {
1647 SCOPED_TSAN_INTERCEPTOR(__fxstat64
, version
, fd
, buf
);
1649 FdAccess(thr
, pc
, fd
);
1650 return REAL(__fxstat64
)(version
, fd
, buf
);
1652 #define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
1654 #define TSAN_MAYBE_INTERCEPT___FXSTAT64
1658 TSAN_INTERCEPTOR(int, fstat64
, int fd
, void *buf
) {
1659 SCOPED_TSAN_INTERCEPTOR(__fxstat64
, 0, fd
, buf
);
1661 FdAccess(thr
, pc
, fd
);
1662 return REAL(__fxstat64
)(0, fd
, buf
);
1664 #define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
1666 #define TSAN_MAYBE_INTERCEPT_FSTAT64
1669 TSAN_INTERCEPTOR(int, open
, const char *name
, int oflag
, ...) {
1671 va_start(ap
, oflag
);
1672 mode_t mode
= va_arg(ap
, int);
1674 SCOPED_TSAN_INTERCEPTOR(open
, name
, oflag
, mode
);
1675 READ_STRING(thr
, pc
, name
, 0);
1676 int fd
= REAL(open
)(name
, oflag
, mode
);
1678 FdFileCreate(thr
, pc
, fd
);
1683 TSAN_INTERCEPTOR(int, open64
, const char *name
, int oflag
, ...) {
1685 va_start(ap
, oflag
);
1686 mode_t mode
= va_arg(ap
, int);
1688 SCOPED_TSAN_INTERCEPTOR(open64
, name
, oflag
, mode
);
1689 READ_STRING(thr
, pc
, name
, 0);
1690 int fd
= REAL(open64
)(name
, oflag
, mode
);
1692 FdFileCreate(thr
, pc
, fd
);
1695 #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
1697 #define TSAN_MAYBE_INTERCEPT_OPEN64
1700 TSAN_INTERCEPTOR(int, creat
, const char *name
, int mode
) {
1701 SCOPED_TSAN_INTERCEPTOR(creat
, name
, mode
);
1702 READ_STRING(thr
, pc
, name
, 0);
1703 int fd
= REAL(creat
)(name
, mode
);
1705 FdFileCreate(thr
, pc
, fd
);
1710 TSAN_INTERCEPTOR(int, creat64
, const char *name
, int mode
) {
1711 SCOPED_TSAN_INTERCEPTOR(creat64
, name
, mode
);
1712 READ_STRING(thr
, pc
, name
, 0);
1713 int fd
= REAL(creat64
)(name
, mode
);
1715 FdFileCreate(thr
, pc
, fd
);
1718 #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
1720 #define TSAN_MAYBE_INTERCEPT_CREAT64
1723 TSAN_INTERCEPTOR(int, dup
, int oldfd
) {
1724 SCOPED_TSAN_INTERCEPTOR(dup
, oldfd
);
1725 int newfd
= REAL(dup
)(oldfd
);
1726 if (oldfd
>= 0 && newfd
>= 0 && newfd
!= oldfd
)
1727 FdDup(thr
, pc
, oldfd
, newfd
, true);
1731 TSAN_INTERCEPTOR(int, dup2
, int oldfd
, int newfd
) {
1732 SCOPED_TSAN_INTERCEPTOR(dup2
, oldfd
, newfd
);
1733 int newfd2
= REAL(dup2
)(oldfd
, newfd
);
1734 if (oldfd
>= 0 && newfd2
>= 0 && newfd2
!= oldfd
)
1735 FdDup(thr
, pc
, oldfd
, newfd2
, false);
1739 #if !SANITIZER_APPLE
1740 TSAN_INTERCEPTOR(int, dup3
, int oldfd
, int newfd
, int flags
) {
1741 SCOPED_TSAN_INTERCEPTOR(dup3
, oldfd
, newfd
, flags
);
1742 int newfd2
= REAL(dup3
)(oldfd
, newfd
, flags
);
1743 if (oldfd
>= 0 && newfd2
>= 0 && newfd2
!= oldfd
)
1744 FdDup(thr
, pc
, oldfd
, newfd2
, false);
1750 TSAN_INTERCEPTOR(int, eventfd
, unsigned initval
, int flags
) {
1751 SCOPED_TSAN_INTERCEPTOR(eventfd
, initval
, flags
);
1752 int fd
= REAL(eventfd
)(initval
, flags
);
1754 FdEventCreate(thr
, pc
, fd
);
1757 #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
1759 #define TSAN_MAYBE_INTERCEPT_EVENTFD
1763 TSAN_INTERCEPTOR(int, signalfd
, int fd
, void *mask
, int flags
) {
1764 SCOPED_INTERCEPTOR_RAW(signalfd
, fd
, mask
, flags
);
1765 FdClose(thr
, pc
, fd
);
1766 fd
= REAL(signalfd
)(fd
, mask
, flags
);
1767 if (!MustIgnoreInterceptor(thr
))
1768 FdSignalCreate(thr
, pc
, fd
);
1771 #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
1773 #define TSAN_MAYBE_INTERCEPT_SIGNALFD
1777 TSAN_INTERCEPTOR(int, inotify_init
, int fake
) {
1778 SCOPED_TSAN_INTERCEPTOR(inotify_init
, fake
);
1779 int fd
= REAL(inotify_init
)(fake
);
1781 FdInotifyCreate(thr
, pc
, fd
);
1784 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
1786 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
1790 TSAN_INTERCEPTOR(int, inotify_init1
, int flags
) {
1791 SCOPED_TSAN_INTERCEPTOR(inotify_init1
, flags
);
1792 int fd
= REAL(inotify_init1
)(flags
);
1794 FdInotifyCreate(thr
, pc
, fd
);
1797 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
1799 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
1802 TSAN_INTERCEPTOR(int, socket
, int domain
, int type
, int protocol
) {
1803 SCOPED_TSAN_INTERCEPTOR(socket
, domain
, type
, protocol
);
1804 int fd
= REAL(socket
)(domain
, type
, protocol
);
1806 FdSocketCreate(thr
, pc
, fd
);
1810 TSAN_INTERCEPTOR(int, socketpair
, int domain
, int type
, int protocol
, int *fd
) {
1811 SCOPED_TSAN_INTERCEPTOR(socketpair
, domain
, type
, protocol
, fd
);
1812 int res
= REAL(socketpair
)(domain
, type
, protocol
, fd
);
1813 if (res
== 0 && fd
[0] >= 0 && fd
[1] >= 0)
1814 FdPipeCreate(thr
, pc
, fd
[0], fd
[1]);
1818 TSAN_INTERCEPTOR(int, connect
, int fd
, void *addr
, unsigned addrlen
) {
1819 SCOPED_TSAN_INTERCEPTOR(connect
, fd
, addr
, addrlen
);
1820 FdSocketConnecting(thr
, pc
, fd
);
1821 int res
= REAL(connect
)(fd
, addr
, addrlen
);
1822 if (res
== 0 && fd
>= 0)
1823 FdSocketConnect(thr
, pc
, fd
);
1827 TSAN_INTERCEPTOR(int, bind
, int fd
, void *addr
, unsigned addrlen
) {
1828 SCOPED_TSAN_INTERCEPTOR(bind
, fd
, addr
, addrlen
);
1829 int res
= REAL(bind
)(fd
, addr
, addrlen
);
1830 if (fd
> 0 && res
== 0)
1831 FdAccess(thr
, pc
, fd
);
1835 TSAN_INTERCEPTOR(int, listen
, int fd
, int backlog
) {
1836 SCOPED_TSAN_INTERCEPTOR(listen
, fd
, backlog
);
1837 int res
= REAL(listen
)(fd
, backlog
);
1838 if (fd
> 0 && res
== 0)
1839 FdAccess(thr
, pc
, fd
);
1843 TSAN_INTERCEPTOR(int, close
, int fd
) {
1844 SCOPED_INTERCEPTOR_RAW(close
, fd
);
1845 if (!in_symbolizer())
1846 FdClose(thr
, pc
, fd
);
1847 return REAL(close
)(fd
);
1851 TSAN_INTERCEPTOR(int, __close
, int fd
) {
1852 SCOPED_INTERCEPTOR_RAW(__close
, fd
);
1853 FdClose(thr
, pc
, fd
);
1854 return REAL(__close
)(fd
);
1856 #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
1858 #define TSAN_MAYBE_INTERCEPT___CLOSE
1862 #if SANITIZER_LINUX && !SANITIZER_ANDROID
1863 TSAN_INTERCEPTOR(void, __res_iclose
, void *state
, bool free_addr
) {
1864 SCOPED_INTERCEPTOR_RAW(__res_iclose
, state
, free_addr
);
1866 int cnt
= ExtractResolvFDs(state
, fds
, ARRAY_SIZE(fds
));
1867 for (int i
= 0; i
< cnt
; i
++) FdClose(thr
, pc
, fds
[i
]);
1868 REAL(__res_iclose
)(state
, free_addr
);
1870 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
1872 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
1875 TSAN_INTERCEPTOR(int, pipe
, int *pipefd
) {
1876 SCOPED_TSAN_INTERCEPTOR(pipe
, pipefd
);
1877 int res
= REAL(pipe
)(pipefd
);
1878 if (res
== 0 && pipefd
[0] >= 0 && pipefd
[1] >= 0)
1879 FdPipeCreate(thr
, pc
, pipefd
[0], pipefd
[1]);
1883 #if !SANITIZER_APPLE
1884 TSAN_INTERCEPTOR(int, pipe2
, int *pipefd
, int flags
) {
1885 SCOPED_TSAN_INTERCEPTOR(pipe2
, pipefd
, flags
);
1886 int res
= REAL(pipe2
)(pipefd
, flags
);
1887 if (res
== 0 && pipefd
[0] >= 0 && pipefd
[1] >= 0)
1888 FdPipeCreate(thr
, pc
, pipefd
[0], pipefd
[1]);
1893 TSAN_INTERCEPTOR(int, unlink
, char *path
) {
1894 SCOPED_TSAN_INTERCEPTOR(unlink
, path
);
1895 Release(thr
, pc
, File2addr(path
));
1896 int res
= REAL(unlink
)(path
);
1900 TSAN_INTERCEPTOR(void*, tmpfile
, int fake
) {
1901 SCOPED_TSAN_INTERCEPTOR(tmpfile
, fake
);
1902 void *res
= REAL(tmpfile
)(fake
);
1904 int fd
= fileno_unlocked(res
);
1906 FdFileCreate(thr
, pc
, fd
);
1912 TSAN_INTERCEPTOR(void*, tmpfile64
, int fake
) {
1913 SCOPED_TSAN_INTERCEPTOR(tmpfile64
, fake
);
1914 void *res
= REAL(tmpfile64
)(fake
);
1916 int fd
= fileno_unlocked(res
);
1918 FdFileCreate(thr
, pc
, fd
);
1922 #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
1924 #define TSAN_MAYBE_INTERCEPT_TMPFILE64
1927 static void FlushStreams() {
1928 // Flushing all the streams here may freeze the process if a child thread is
1929 // performing file stream operations at the same time.
1930 REAL(fflush
)(stdout
);
1931 REAL(fflush
)(stderr
);
1934 TSAN_INTERCEPTOR(void, abort
, int fake
) {
1935 SCOPED_TSAN_INTERCEPTOR(abort
, fake
);
1940 TSAN_INTERCEPTOR(int, rmdir
, char *path
) {
1941 SCOPED_TSAN_INTERCEPTOR(rmdir
, path
);
1942 Release(thr
, pc
, Dir2addr(path
));
1943 int res
= REAL(rmdir
)(path
);
1947 TSAN_INTERCEPTOR(int, closedir
, void *dirp
) {
1948 SCOPED_INTERCEPTOR_RAW(closedir
, dirp
);
1950 int fd
= dirfd(dirp
);
1951 FdClose(thr
, pc
, fd
);
1953 return REAL(closedir
)(dirp
);
1957 TSAN_INTERCEPTOR(int, epoll_create
, int size
) {
1958 SCOPED_TSAN_INTERCEPTOR(epoll_create
, size
);
1959 int fd
= REAL(epoll_create
)(size
);
1961 FdPollCreate(thr
, pc
, fd
);
1965 TSAN_INTERCEPTOR(int, epoll_create1
, int flags
) {
1966 SCOPED_TSAN_INTERCEPTOR(epoll_create1
, flags
);
1967 int fd
= REAL(epoll_create1
)(flags
);
1969 FdPollCreate(thr
, pc
, fd
);
1973 TSAN_INTERCEPTOR(int, epoll_ctl
, int epfd
, int op
, int fd
, void *ev
) {
1974 SCOPED_TSAN_INTERCEPTOR(epoll_ctl
, epfd
, op
, fd
, ev
);
1976 FdAccess(thr
, pc
, epfd
);
1977 if (epfd
>= 0 && fd
>= 0)
1978 FdAccess(thr
, pc
, fd
);
1979 if (op
== EPOLL_CTL_ADD
&& epfd
>= 0) {
1980 FdPollAdd(thr
, pc
, epfd
, fd
);
1981 FdRelease(thr
, pc
, epfd
);
1983 int res
= REAL(epoll_ctl
)(epfd
, op
, fd
, ev
);
1987 TSAN_INTERCEPTOR(int, epoll_wait
, int epfd
, void *ev
, int cnt
, int timeout
) {
1988 SCOPED_TSAN_INTERCEPTOR(epoll_wait
, epfd
, ev
, cnt
, timeout
);
1990 FdAccess(thr
, pc
, epfd
);
1991 int res
= BLOCK_REAL(epoll_wait
)(epfd
, ev
, cnt
, timeout
);
1992 if (res
> 0 && epfd
>= 0)
1993 FdAcquire(thr
, pc
, epfd
);
1997 TSAN_INTERCEPTOR(int, epoll_pwait
, int epfd
, void *ev
, int cnt
, int timeout
,
1999 SCOPED_TSAN_INTERCEPTOR(epoll_pwait
, epfd
, ev
, cnt
, timeout
, sigmask
);
2001 FdAccess(thr
, pc
, epfd
);
2002 int res
= BLOCK_REAL(epoll_pwait
)(epfd
, ev
, cnt
, timeout
, sigmask
);
2003 if (res
> 0 && epfd
>= 0)
2004 FdAcquire(thr
, pc
, epfd
);
2008 TSAN_INTERCEPTOR(int, epoll_pwait2
, int epfd
, void *ev
, int cnt
, void *timeout
,
2010 SCOPED_INTERCEPTOR_RAW(epoll_pwait2
, epfd
, ev
, cnt
, timeout
, sigmask
);
2011 // This function is new and may not be present in libc and/or kernel.
2012 // Since we effectively add it to libc (as will be probed by the program
2013 // using dlsym or a weak function pointer) we need to handle the case
2014 // when it's not present in the actual libc.
2015 if (!REAL(epoll_pwait2
)) {
2016 errno
= errno_ENOSYS
;
2019 if (MustIgnoreInterceptor(thr
))
2020 REAL(epoll_pwait2
)(epfd
, ev
, cnt
, timeout
, sigmask
);
2022 FdAccess(thr
, pc
, epfd
);
2023 int res
= BLOCK_REAL(epoll_pwait2
)(epfd
, ev
, cnt
, timeout
, sigmask
);
2024 if (res
> 0 && epfd
>= 0)
2025 FdAcquire(thr
, pc
, epfd
);
2029 # define TSAN_MAYBE_INTERCEPT_EPOLL \
2030 TSAN_INTERCEPT(epoll_create); \
2031 TSAN_INTERCEPT(epoll_create1); \
2032 TSAN_INTERCEPT(epoll_ctl); \
2033 TSAN_INTERCEPT(epoll_wait); \
2034 TSAN_INTERCEPT(epoll_pwait); \
2035 TSAN_INTERCEPT(epoll_pwait2)
2037 #define TSAN_MAYBE_INTERCEPT_EPOLL
2040 // The following functions are intercepted merely to process pending signals.
2041 // If program blocks signal X, we must deliver the signal before the function
2042 // returns. Similarly, if program unblocks a signal (or returns from sigsuspend)
2043 // it's better to deliver the signal straight away.
2044 TSAN_INTERCEPTOR(int, sigsuspend
, const __sanitizer_sigset_t
*mask
) {
2045 SCOPED_TSAN_INTERCEPTOR(sigsuspend
, mask
);
2046 return REAL(sigsuspend
)(mask
);
2049 TSAN_INTERCEPTOR(int, sigblock
, int mask
) {
2050 SCOPED_TSAN_INTERCEPTOR(sigblock
, mask
);
2051 return REAL(sigblock
)(mask
);
2054 TSAN_INTERCEPTOR(int, sigsetmask
, int mask
) {
2055 SCOPED_TSAN_INTERCEPTOR(sigsetmask
, mask
);
2056 return REAL(sigsetmask
)(mask
);
2059 TSAN_INTERCEPTOR(int, pthread_sigmask
, int how
, const __sanitizer_sigset_t
*set
,
2060 __sanitizer_sigset_t
*oldset
) {
2061 SCOPED_TSAN_INTERCEPTOR(pthread_sigmask
, how
, set
, oldset
);
2062 return REAL(pthread_sigmask
)(how
, set
, oldset
);
2067 static void ReportErrnoSpoiling(ThreadState
*thr
, uptr pc
, int sig
) {
2068 VarSizeStackTrace stack
;
2069 // StackTrace::GetNestInstructionPc(pc) is used because return address is
2070 // expected, OutputReport() will undo this.
2071 ObtainCurrentStack(thr
, StackTrace::GetNextInstructionPc(pc
), &stack
);
2072 ThreadRegistryLock
l(&ctx
->thread_registry
);
2073 ScopedReport
rep(ReportTypeErrnoInSignal
);
2075 if (!IsFiredSuppression(ctx
, ReportTypeErrnoInSignal
, stack
)) {
2076 rep
.AddStack(stack
, true);
2077 OutputReport(thr
, rep
);
2081 static void CallUserSignalHandler(ThreadState
*thr
, bool sync
, bool acquire
,
2082 int sig
, __sanitizer_siginfo
*info
,
2085 __sanitizer_sigaction
*sigactions
= interceptor_ctx()->sigactions
;
2087 Acquire(thr
, 0, (uptr
)&sigactions
[sig
]);
2088 // Signals are generally asynchronous, so if we receive a signals when
2089 // ignores are enabled we should disable ignores. This is critical for sync
2090 // and interceptors, because otherwise we can miss synchronization and report
2092 int ignore_reads_and_writes
= thr
->ignore_reads_and_writes
;
2093 int ignore_interceptors
= thr
->ignore_interceptors
;
2094 int ignore_sync
= thr
->ignore_sync
;
2095 // For symbolizer we only process SIGSEGVs synchronously
2096 // (bug in symbolizer or in tsan). But we want to reset
2097 // in_symbolizer to fail gracefully. Symbolizer and user code
2098 // use different memory allocators, so if we don't reset
2099 // in_symbolizer we can get memory allocated with one being
2100 // feed with another, which can cause more crashes.
2101 int in_symbolizer
= thr
->in_symbolizer
;
2102 if (!ctx
->after_multithreaded_fork
) {
2103 thr
->ignore_reads_and_writes
= 0;
2104 thr
->fast_state
.ClearIgnoreBit();
2105 thr
->ignore_interceptors
= 0;
2106 thr
->ignore_sync
= 0;
2107 thr
->in_symbolizer
= 0;
2109 // Ensure that the handler does not spoil errno.
2110 const int saved_errno
= errno
;
2112 // This code races with sigaction. Be careful to not read sa_sigaction twice.
2113 // Also need to remember pc for reporting before the call,
2114 // because the handler can reset it.
2115 volatile uptr pc
= (sigactions
[sig
].sa_flags
& SA_SIGINFO
)
2116 ? (uptr
)sigactions
[sig
].sigaction
2117 : (uptr
)sigactions
[sig
].handler
;
2118 if (pc
!= sig_dfl
&& pc
!= sig_ign
) {
2119 // The callback can be either sa_handler or sa_sigaction.
2120 // They have different signatures, but we assume that passing
2121 // additional arguments to sa_handler works and is harmless.
2122 ((__sanitizer_sigactionhandler_ptr
)pc
)(sig
, info
, uctx
);
2124 if (!ctx
->after_multithreaded_fork
) {
2125 thr
->ignore_reads_and_writes
= ignore_reads_and_writes
;
2126 if (ignore_reads_and_writes
)
2127 thr
->fast_state
.SetIgnoreBit();
2128 thr
->ignore_interceptors
= ignore_interceptors
;
2129 thr
->ignore_sync
= ignore_sync
;
2130 thr
->in_symbolizer
= in_symbolizer
;
2132 // We do not detect errno spoiling for SIGTERM,
2133 // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
2134 // tsan reports false positive in such case.
2135 // It's difficult to properly detect this situation (reraise),
2136 // because in async signal processing case (when handler is called directly
2137 // from rtl_generic_sighandler) we have not yet received the reraised
2138 // signal; and it looks too fragile to intercept all ways to reraise a signal.
2139 if (ShouldReport(thr
, ReportTypeErrnoInSignal
) && !sync
&& sig
!= SIGTERM
&&
2141 ReportErrnoSpoiling(thr
, pc
, sig
);
2142 errno
= saved_errno
;
2145 void ProcessPendingSignalsImpl(ThreadState
*thr
) {
2146 atomic_store(&thr
->pending_signals
, 0, memory_order_relaxed
);
2147 ThreadSignalContext
*sctx
= SigCtx(thr
);
2150 atomic_fetch_add(&thr
->in_signal_handler
, 1, memory_order_relaxed
);
2151 internal_sigfillset(&sctx
->emptyset
);
2152 int res
= REAL(pthread_sigmask
)(SIG_SETMASK
, &sctx
->emptyset
, &sctx
->oldset
);
2154 for (int sig
= 0; sig
< kSigCount
; sig
++) {
2155 SignalDesc
*signal
= &sctx
->pending_signals
[sig
];
2156 if (signal
->armed
) {
2157 signal
->armed
= false;
2158 CallUserSignalHandler(thr
, false, true, sig
, &signal
->siginfo
,
2162 res
= REAL(pthread_sigmask
)(SIG_SETMASK
, &sctx
->oldset
, 0);
2164 atomic_fetch_add(&thr
->in_signal_handler
, -1, memory_order_relaxed
);
2167 } // namespace __tsan
2169 static bool is_sync_signal(ThreadSignalContext
*sctx
, int sig
,
2170 __sanitizer_siginfo
*info
) {
2171 // If we are sending signal to ourselves, we must process it now.
2172 if (sctx
&& sig
== sctx
->int_signal_send
)
2174 #if SANITIZER_HAS_SIGINFO
2175 // POSIX timers can be configured to send any kind of signal; however, it
2176 // doesn't make any sense to consider a timer signal as synchronous!
2177 if (info
->si_code
== SI_TIMER
)
2180 return sig
== SIGSEGV
|| sig
== SIGBUS
|| sig
== SIGILL
|| sig
== SIGTRAP
||
2181 sig
== SIGABRT
|| sig
== SIGFPE
|| sig
== SIGPIPE
|| sig
== SIGSYS
;
2184 void sighandler(int sig
, __sanitizer_siginfo
*info
, void *ctx
) {
2185 ThreadState
*thr
= cur_thread_init();
2186 ThreadSignalContext
*sctx
= SigCtx(thr
);
2187 if (sig
< 0 || sig
>= kSigCount
) {
2188 VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig
);
2191 // Don't mess with synchronous signals.
2192 const bool sync
= is_sync_signal(sctx
, sig
, info
);
2194 // If we are in blocking function, we can safely process it now
2195 // (but check if we are in a recursive interceptor,
2196 // i.e. pthread_join()->munmap()).
2197 atomic_load(&thr
->in_blocking_func
, memory_order_relaxed
)) {
2198 atomic_fetch_add(&thr
->in_signal_handler
, 1, memory_order_relaxed
);
2199 if (atomic_load(&thr
->in_blocking_func
, memory_order_relaxed
)) {
2200 atomic_store(&thr
->in_blocking_func
, 0, memory_order_relaxed
);
2201 CallUserSignalHandler(thr
, sync
, true, sig
, info
, ctx
);
2202 atomic_store(&thr
->in_blocking_func
, 1, memory_order_relaxed
);
2204 // Be very conservative with when we do acquire in this case.
2205 // It's unsafe to do acquire in async handlers, because ThreadState
2206 // can be in inconsistent state.
2207 // SIGSYS looks relatively safe -- it's synchronous and can actually
2208 // need some global state.
2209 bool acq
= (sig
== SIGSYS
);
2210 CallUserSignalHandler(thr
, sync
, acq
, sig
, info
, ctx
);
2212 atomic_fetch_add(&thr
->in_signal_handler
, -1, memory_order_relaxed
);
2218 SignalDesc
*signal
= &sctx
->pending_signals
[sig
];
2219 if (signal
->armed
== false) {
2220 signal
->armed
= true;
2221 internal_memcpy(&signal
->siginfo
, info
, sizeof(*info
));
2222 internal_memcpy(&signal
->ctx
, ctx
, sizeof(signal
->ctx
));
2223 atomic_store(&thr
->pending_signals
, 1, memory_order_relaxed
);
2227 TSAN_INTERCEPTOR(int, raise
, int sig
) {
2228 SCOPED_TSAN_INTERCEPTOR(raise
, sig
);
2229 ThreadSignalContext
*sctx
= SigCtx(thr
);
2231 int prev
= sctx
->int_signal_send
;
2232 sctx
->int_signal_send
= sig
;
2233 int res
= REAL(raise
)(sig
);
2234 CHECK_EQ(sctx
->int_signal_send
, sig
);
2235 sctx
->int_signal_send
= prev
;
2239 TSAN_INTERCEPTOR(int, kill
, int pid
, int sig
) {
2240 SCOPED_TSAN_INTERCEPTOR(kill
, pid
, sig
);
2241 ThreadSignalContext
*sctx
= SigCtx(thr
);
2243 int prev
= sctx
->int_signal_send
;
2244 if (pid
== (int)internal_getpid()) {
2245 sctx
->int_signal_send
= sig
;
2247 int res
= REAL(kill
)(pid
, sig
);
2248 if (pid
== (int)internal_getpid()) {
2249 CHECK_EQ(sctx
->int_signal_send
, sig
);
2250 sctx
->int_signal_send
= prev
;
2255 TSAN_INTERCEPTOR(int, pthread_kill
, void *tid
, int sig
) {
2256 SCOPED_TSAN_INTERCEPTOR(pthread_kill
, tid
, sig
);
2257 ThreadSignalContext
*sctx
= SigCtx(thr
);
2259 int prev
= sctx
->int_signal_send
;
2260 bool self
= pthread_equal(tid
, pthread_self());
2262 sctx
->int_signal_send
= sig
;
2263 int res
= REAL(pthread_kill
)(tid
, sig
);
2265 CHECK_EQ(sctx
->int_signal_send
, sig
);
2266 sctx
->int_signal_send
= prev
;
2271 TSAN_INTERCEPTOR(int, gettimeofday
, void *tv
, void *tz
) {
2272 SCOPED_TSAN_INTERCEPTOR(gettimeofday
, tv
, tz
);
2273 // It's intercepted merely to process pending signals.
2274 return REAL(gettimeofday
)(tv
, tz
);
2277 TSAN_INTERCEPTOR(int, getaddrinfo
, void *node
, void *service
,
2278 void *hints
, void *rv
) {
2279 SCOPED_TSAN_INTERCEPTOR(getaddrinfo
, node
, service
, hints
, rv
);
2280 // We miss atomic synchronization in getaddrinfo,
2281 // and can report false race between malloc and free
2282 // inside of getaddrinfo. So ignore memory accesses.
2283 ThreadIgnoreBegin(thr
, pc
);
2284 int res
= REAL(getaddrinfo
)(node
, service
, hints
, rv
);
2285 ThreadIgnoreEnd(thr
);
2289 TSAN_INTERCEPTOR(int, fork
, int fake
) {
2290 if (in_symbolizer())
2291 return REAL(fork
)(fake
);
2292 SCOPED_INTERCEPTOR_RAW(fork
, fake
);
2293 return REAL(fork
)(fake
);
2296 void atfork_prepare() {
2297 if (in_symbolizer())
2299 ThreadState
*thr
= cur_thread();
2300 const uptr pc
= StackTrace::GetCurrentPc();
2301 ForkBefore(thr
, pc
);
2304 void atfork_parent() {
2305 if (in_symbolizer())
2307 ThreadState
*thr
= cur_thread();
2308 const uptr pc
= StackTrace::GetCurrentPc();
2309 ForkParentAfter(thr
, pc
);
2312 void atfork_child() {
2313 if (in_symbolizer())
2315 ThreadState
*thr
= cur_thread();
2316 const uptr pc
= StackTrace::GetCurrentPc();
2317 ForkChildAfter(thr
, pc
, true);
2322 TSAN_INTERCEPTOR(int, vfork
, int fake
) {
2323 // Some programs (e.g. openjdk) call close for all file descriptors
2324 // in the child process. Under tsan it leads to false positives, because
2325 // address space is shared, so the parent process also thinks that
2326 // the descriptors are closed (while they are actually not).
2327 // This leads to false positives due to missed synchronization.
2328 // Strictly saying this is undefined behavior, because vfork child is not
2329 // allowed to call any functions other than exec/exit. But this is what
2330 // openjdk does, so we want to handle it.
2331 // We could disable interceptors in the child process. But it's not possible
2332 // to simply intercept and wrap vfork, because vfork child is not allowed
2333 // to return from the function that calls vfork, and that's exactly what
2334 // we would do. So this would require some assembly trickery as well.
2335 // Instead we simply turn vfork into fork.
2336 return WRAP(fork
)(fake
);
2341 TSAN_INTERCEPTOR(int, clone
, int (*fn
)(void *), void *stack
, int flags
,
2342 void *arg
, int *parent_tid
, void *tls
, pid_t
*child_tid
) {
2343 SCOPED_INTERCEPTOR_RAW(clone
, fn
, stack
, flags
, arg
, parent_tid
, tls
,
2349 auto wrapper
= +[](void *p
) -> int {
2350 auto *thr
= cur_thread();
2351 uptr pc
= GET_CURRENT_PC();
2352 // Start the background thread for fork, but not for clone.
2353 // For fork we did this always and it's known to work (or user code has
2354 // adopted). But if we do this for the new clone interceptor some code
2355 // (sandbox2) fails. So model we used to do for years and don't start the
2356 // background thread after clone.
2357 ForkChildAfter(thr
, pc
, false);
2359 auto *arg
= static_cast<Arg
*>(p
);
2360 return arg
->fn(arg
->arg
);
2362 ForkBefore(thr
, pc
);
2363 Arg arg_wrapper
= {fn
, arg
};
2364 int pid
= REAL(clone
)(wrapper
, stack
, flags
, &arg_wrapper
, parent_tid
, tls
,
2366 ForkParentAfter(thr
, pc
);
2371 #if !SANITIZER_APPLE && !SANITIZER_ANDROID
2372 typedef int (*dl_iterate_phdr_cb_t
)(__sanitizer_dl_phdr_info
*info
, SIZE_T size
,
2374 struct dl_iterate_phdr_data
{
2377 dl_iterate_phdr_cb_t cb
;
2381 static bool IsAppNotRodata(uptr addr
) {
2382 return IsAppMem(addr
) && *MemToShadow(addr
) != Shadow::kRodata
;
2385 static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info
*info
, SIZE_T size
,
2387 dl_iterate_phdr_data
*cbdata
= (dl_iterate_phdr_data
*)data
;
2388 // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
2389 // accessible in dl_iterate_phdr callback. But we don't see synchronization
2390 // inside of dynamic linker, so we "unpoison" it here in order to not
2391 // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
2392 // because some libc functions call __libc_dlopen.
2393 if (info
&& IsAppNotRodata((uptr
)info
->dlpi_name
))
2394 MemoryResetRange(cbdata
->thr
, cbdata
->pc
, (uptr
)info
->dlpi_name
,
2395 internal_strlen(info
->dlpi_name
));
2396 int res
= cbdata
->cb(info
, size
, cbdata
->data
);
2397 // Perform the check one more time in case info->dlpi_name was overwritten
2398 // by user callback.
2399 if (info
&& IsAppNotRodata((uptr
)info
->dlpi_name
))
2400 MemoryResetRange(cbdata
->thr
, cbdata
->pc
, (uptr
)info
->dlpi_name
,
2401 internal_strlen(info
->dlpi_name
));
2405 TSAN_INTERCEPTOR(int, dl_iterate_phdr
, dl_iterate_phdr_cb_t cb
, void *data
) {
2406 SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr
, cb
, data
);
2407 dl_iterate_phdr_data cbdata
;
2412 int res
= REAL(dl_iterate_phdr
)(dl_iterate_phdr_cb
, &cbdata
);
2417 static int OnExit(ThreadState
*thr
) {
2418 int status
= Finalize(thr
);
2423 struct TsanInterceptorContext
{
2428 #if !SANITIZER_APPLE
2429 static void HandleRecvmsg(ThreadState
*thr
, uptr pc
,
2430 __sanitizer_msghdr
*msg
) {
2432 int cnt
= ExtractRecvmsgFDs(msg
, fds
, ARRAY_SIZE(fds
));
2433 for (int i
= 0; i
< cnt
; i
++)
2434 FdEventCreate(thr
, pc
, fds
[i
]);
2438 #include "sanitizer_common/sanitizer_platform_interceptors.h"
2439 // Causes interceptor recursion (getaddrinfo() and fopen())
2440 #undef SANITIZER_INTERCEPT_GETADDRINFO
2441 // We define our own.
2442 #if SANITIZER_INTERCEPT_TLS_GET_ADDR
2443 #define NEED_TLS_GET_ADDR
2445 #undef SANITIZER_INTERCEPT_TLS_GET_ADDR
2446 #define SANITIZER_INTERCEPT_TLS_GET_OFFSET 1
2447 #undef SANITIZER_INTERCEPT_PTHREAD_SIGMASK
2449 #define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
2450 #define COMMON_INTERCEPT_FUNCTION_VER(name, ver) \
2451 INTERCEPT_FUNCTION_VER(name, ver)
2452 #define COMMON_INTERCEPT_FUNCTION_VER_UNVERSIONED_FALLBACK(name, ver) \
2453 (INTERCEPT_FUNCTION_VER(name, ver) || INTERCEPT_FUNCTION(name))
2455 #define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size) \
2456 MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr, \
2457 ((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
2460 #define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size) \
2461 MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr, \
2462 ((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
2465 #define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \
2466 SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__); \
2467 TsanInterceptorContext _ctx = {thr, pc}; \
2468 ctx = (void *)&_ctx; \
2471 #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
2472 SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \
2473 TsanInterceptorContext _ctx = {thr, pc}; \
2474 ctx = (void *)&_ctx; \
2477 #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
2479 Acquire(thr, pc, File2addr(path)); \
2481 int fd = fileno_unlocked(file); \
2482 if (fd >= 0) FdFileCreate(thr, pc, fd); \
2485 #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
2487 int fd = fileno_unlocked(file); \
2488 FdClose(thr, pc, fd); \
2491 #define COMMON_INTERCEPTOR_DLOPEN(filename, flag) \
2493 CheckNoDeepBind(filename, flag); \
2494 ThreadIgnoreBegin(thr, 0); \
2495 void *res = REAL(dlopen)(filename, flag); \
2496 ThreadIgnoreEnd(thr); \
2500 // Ignore interceptors in OnLibraryLoaded()/Unloaded(). These hooks use code
2501 // (ListOfModules::init, MemoryMappingLayout::DumpListOfModules) that make
2502 // intercepted calls, which can cause deadlockes with ReportRace() which also
2504 #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
2506 ScopedIgnoreInterceptors ignore_interceptors; \
2507 libignore()->OnLibraryLoaded(filename); \
2510 #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
2512 ScopedIgnoreInterceptors ignore_interceptors; \
2513 libignore()->OnLibraryUnloaded(); \
2516 #define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
2517 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
2519 #define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
2520 Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
2522 #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
2523 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
2525 #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
2526 FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2528 #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
2529 FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2531 #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
2532 FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2534 #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
2535 FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
2537 #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
2538 ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
2540 #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
2541 if (pthread_equal(pthread_self(), reinterpret_cast<void *>(thread))) \
2542 COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name); \
2544 __tsan::ctx->thread_registry.SetThreadNameByUserId(thread, name)
2546 #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
2548 #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
2549 OnExit(((TsanInterceptorContext *) ctx)->thr)
2551 #define COMMON_INTERCEPTOR_MMAP_IMPL(ctx, mmap, addr, sz, prot, flags, fd, \
2554 return mmap_interceptor(thr, pc, REAL(mmap), addr, sz, prot, flags, fd, \
2558 #if !SANITIZER_APPLE
2559 #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
2560 HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
2561 ((TsanInterceptorContext *)ctx)->pc, msg)
2564 #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end) \
2565 if (TsanThread *t = GetCurrentThread()) { \
2566 *begin = t->tls_begin(); \
2567 *end = t->tls_end(); \
2569 *begin = *end = 0; \
2572 #define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
2573 SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()
2575 #define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
2576 SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()
2578 #include "sanitizer_common/sanitizer_common_interceptors.inc"
2580 static int sigaction_impl(int sig
, const __sanitizer_sigaction
*act
,
2581 __sanitizer_sigaction
*old
);
2582 static __sanitizer_sighandler_ptr
signal_impl(int sig
,
2583 __sanitizer_sighandler_ptr h
);
2585 #define SIGNAL_INTERCEPTOR_SIGACTION_IMPL(signo, act, oldact) \
2586 { return sigaction_impl(signo, act, oldact); }
2588 #define SIGNAL_INTERCEPTOR_SIGNAL_IMPL(func, signo, handler) \
2589 { return (uptr)signal_impl(signo, (__sanitizer_sighandler_ptr)handler); }
2591 #include "sanitizer_common/sanitizer_signal_interceptors.inc"
2593 int sigaction_impl(int sig
, const __sanitizer_sigaction
*act
,
2594 __sanitizer_sigaction
*old
) {
2595 // Note: if we call REAL(sigaction) directly for any reason without proxying
2596 // the signal handler through sighandler, very bad things will happen.
2597 // The handler will run synchronously and corrupt tsan per-thread state.
2598 SCOPED_INTERCEPTOR_RAW(sigaction
, sig
, act
, old
);
2599 if (sig
<= 0 || sig
>= kSigCount
) {
2600 errno
= errno_EINVAL
;
2603 __sanitizer_sigaction
*sigactions
= interceptor_ctx()->sigactions
;
2604 __sanitizer_sigaction old_stored
;
2605 if (old
) internal_memcpy(&old_stored
, &sigactions
[sig
], sizeof(old_stored
));
2606 __sanitizer_sigaction newact
;
2608 // Copy act into sigactions[sig].
2609 // Can't use struct copy, because compiler can emit call to memcpy.
2610 // Can't use internal_memcpy, because it copies byte-by-byte,
2611 // and signal handler reads the handler concurrently. It it can read
2612 // some bytes from old value and some bytes from new value.
2613 // Use volatile to prevent insertion of memcpy.
2614 sigactions
[sig
].handler
=
2615 *(volatile __sanitizer_sighandler_ptr
const *)&act
->handler
;
2616 sigactions
[sig
].sa_flags
= *(volatile int const *)&act
->sa_flags
;
2617 internal_memcpy(&sigactions
[sig
].sa_mask
, &act
->sa_mask
,
2618 sizeof(sigactions
[sig
].sa_mask
));
2619 #if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD
2620 sigactions
[sig
].sa_restorer
= act
->sa_restorer
;
2622 internal_memcpy(&newact
, act
, sizeof(newact
));
2623 internal_sigfillset(&newact
.sa_mask
);
2624 if ((act
->sa_flags
& SA_SIGINFO
) ||
2625 ((uptr
)act
->handler
!= sig_ign
&& (uptr
)act
->handler
!= sig_dfl
)) {
2626 newact
.sa_flags
|= SA_SIGINFO
;
2627 newact
.sigaction
= sighandler
;
2629 ReleaseStore(thr
, pc
, (uptr
)&sigactions
[sig
]);
2632 int res
= REAL(sigaction
)(sig
, act
, old
);
2633 if (res
== 0 && old
&& old
->sigaction
== sighandler
)
2634 internal_memcpy(old
, &old_stored
, sizeof(*old
));
2638 static __sanitizer_sighandler_ptr
signal_impl(int sig
,
2639 __sanitizer_sighandler_ptr h
) {
2640 __sanitizer_sigaction act
;
2642 internal_memset(&act
.sa_mask
, -1, sizeof(act
.sa_mask
));
2644 __sanitizer_sigaction old
;
2645 int res
= sigaction_symname(sig
, &act
, &old
);
2646 if (res
) return (__sanitizer_sighandler_ptr
)sig_err
;
2650 #define TSAN_SYSCALL() \
2651 ThreadState *thr = cur_thread(); \
2652 if (thr->ignore_interceptors) \
2654 ScopedSyscall scoped_syscall(thr)
2656 struct ScopedSyscall
{
2659 explicit ScopedSyscall(ThreadState
*thr
) : thr(thr
) { LazyInitialize(thr
); }
2662 ProcessPendingSignals(thr
);
2666 #if !SANITIZER_FREEBSD && !SANITIZER_APPLE
2667 static void syscall_access_range(uptr pc
, uptr p
, uptr s
, bool write
) {
2669 MemoryAccessRange(thr
, pc
, p
, s
, write
);
2672 static USED
void syscall_acquire(uptr pc
, uptr addr
) {
2674 Acquire(thr
, pc
, addr
);
2675 DPrintf("syscall_acquire(0x%zx))\n", addr
);
2678 static USED
void syscall_release(uptr pc
, uptr addr
) {
2680 DPrintf("syscall_release(0x%zx)\n", addr
);
2681 Release(thr
, pc
, addr
);
2684 static void syscall_fd_close(uptr pc
, int fd
) {
2685 auto *thr
= cur_thread();
2686 FdClose(thr
, pc
, fd
);
2689 static USED
void syscall_fd_acquire(uptr pc
, int fd
) {
2691 FdAcquire(thr
, pc
, fd
);
2692 DPrintf("syscall_fd_acquire(%d)\n", fd
);
2695 static USED
void syscall_fd_release(uptr pc
, int fd
) {
2697 DPrintf("syscall_fd_release(%d)\n", fd
);
2698 FdRelease(thr
, pc
, fd
);
2701 static void syscall_pre_fork(uptr pc
) { ForkBefore(cur_thread(), pc
); }
2703 static void syscall_post_fork(uptr pc
, int pid
) {
2704 ThreadState
*thr
= cur_thread();
2707 ForkChildAfter(thr
, pc
, true);
2709 } else if (pid
> 0) {
2711 ForkParentAfter(thr
, pc
);
2714 ForkParentAfter(thr
, pc
);
2719 #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
2720 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
2722 #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
2723 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
2725 #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
2731 #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
2737 #define COMMON_SYSCALL_ACQUIRE(addr) \
2738 syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
2740 #define COMMON_SYSCALL_RELEASE(addr) \
2741 syscall_release(GET_CALLER_PC(), (uptr)(addr))
2743 #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
2745 #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
2747 #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
2749 #define COMMON_SYSCALL_PRE_FORK() \
2750 syscall_pre_fork(GET_CALLER_PC())
2752 #define COMMON_SYSCALL_POST_FORK(res) \
2753 syscall_post_fork(GET_CALLER_PC(), res)
2755 #include "sanitizer_common/sanitizer_common_syscalls.inc"
2756 #include "sanitizer_common/sanitizer_syscalls_netbsd.inc"
2758 #ifdef NEED_TLS_GET_ADDR
2760 static void handle_tls_addr(void *arg
, void *res
) {
2761 ThreadState
*thr
= cur_thread();
2764 DTLS::DTV
*dtv
= DTLS_on_tls_get_addr(arg
, res
, thr
->tls_addr
,
2765 thr
->tls_addr
+ thr
->tls_size
);
2768 // New DTLS block has been allocated.
2769 MemoryResetRange(thr
, 0, dtv
->beg
, dtv
->size
);
2773 // Define own interceptor instead of sanitizer_common's for three reasons:
2774 // 1. It must not process pending signals.
2775 // Signal handlers may contain MOVDQA instruction (see below).
2776 // 2. It must be as simple as possible to not contain MOVDQA.
2777 // 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
2778 // is empty for tsan (meant only for msan).
2779 // Note: __tls_get_addr can be called with mis-aligned stack due to:
2780 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
2781 // So the interceptor must work with mis-aligned stack, in particular, does not
2782 // execute MOVDQA with stack addresses.
2783 TSAN_INTERCEPTOR(void *, __tls_get_addr
, void *arg
) {
2784 void *res
= REAL(__tls_get_addr
)(arg
);
2785 handle_tls_addr(arg
, res
);
2788 #else // SANITIZER_S390
2789 TSAN_INTERCEPTOR(uptr
, __tls_get_addr_internal
, void *arg
) {
2790 uptr res
= __tls_get_offset_wrapper(arg
, REAL(__tls_get_offset
));
2791 char *tp
= static_cast<char *>(__builtin_thread_pointer());
2792 handle_tls_addr(arg
, res
+ tp
);
2798 #if SANITIZER_NETBSD
2799 TSAN_INTERCEPTOR(void, _lwp_exit
) {
2800 SCOPED_TSAN_INTERCEPTOR(_lwp_exit
);
2801 DestroyThreadState();
2804 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT TSAN_INTERCEPT(_lwp_exit)
2806 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT
2809 #if SANITIZER_FREEBSD
2810 TSAN_INTERCEPTOR(void, thr_exit
, tid_t
*state
) {
2811 SCOPED_TSAN_INTERCEPTOR(thr_exit
, state
);
2812 DestroyThreadState();
2813 REAL(thr_exit(state
));
2815 #define TSAN_MAYBE_INTERCEPT_THR_EXIT TSAN_INTERCEPT(thr_exit)
2817 #define TSAN_MAYBE_INTERCEPT_THR_EXIT
2820 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_init
, void *c
, void *a
)
2821 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_destroy
, void *c
)
2822 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_signal
, void *c
)
2823 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_broadcast
, void *c
)
2824 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_wait
, void *c
, void *m
)
2825 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_init
, void *m
, void *a
)
2826 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_destroy
, void *m
)
2827 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_lock
, void *m
)
2828 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_trylock
, void *m
)
2829 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_unlock
, void *m
)
2830 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_init
, void *l
, void *a
)
2831 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_destroy
, void *l
)
2832 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_rdlock
, void *l
)
2833 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_tryrdlock
, void *l
)
2834 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_wrlock
, void *l
)
2835 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_trywrlock
, void *l
)
2836 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_unlock
, void *l
)
2837 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, once
, void *o
, void (*i
)())
2838 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, sigmask
, int f
, void *n
, void *o
)
2840 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_init
, void *c
, void *a
)
2841 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_signal
, void *c
)
2842 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_broadcast
, void *c
)
2843 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_wait
, void *c
, void *m
)
2844 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_destroy
, void *c
)
2845 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_init
, void *m
, void *a
)
2846 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_destroy
, void *m
)
2847 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_lock
, void *m
)
2848 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_trylock
, void *m
)
2849 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_unlock
, void *m
)
2850 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_init
, void *m
, void *a
)
2851 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_destroy
, void *m
)
2852 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_rdlock
, void *m
)
2853 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_tryrdlock
, void *m
)
2854 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_wrlock
, void *m
)
2855 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_trywrlock
, void *m
)
2856 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_unlock
, void *m
)
2857 TSAN_INTERCEPTOR_NETBSD_ALIAS_THR(int, once
, void *o
, void (*f
)())
2858 TSAN_INTERCEPTOR_NETBSD_ALIAS_THR2(int, sigsetmask
, sigmask
, int a
, void *b
,
2863 static void finalize(void *arg
) {
2864 ThreadState
*thr
= cur_thread();
2865 int status
= Finalize(thr
);
2866 // Make sure the output is not lost.
2872 #if !SANITIZER_APPLE && !SANITIZER_ANDROID
2873 static void unreachable() {
2874 Report("FATAL: ThreadSanitizer: unreachable called\n");
2879 // Define default implementation since interception of libdispatch is optional.
2880 SANITIZER_WEAK_ATTRIBUTE
void InitializeLibdispatchInterceptors() {}
2882 void InitializeInterceptors() {
2883 #if !SANITIZER_APPLE
2884 // We need to setup it early, because functions like dlsym() can call it.
2885 REAL(memset
) = internal_memset
;
2886 REAL(memcpy
) = internal_memcpy
;
2889 new(interceptor_ctx()) InterceptorContext();
2891 InitializeCommonInterceptors();
2892 InitializeSignalInterceptors();
2893 InitializeLibdispatchInterceptors();
2895 #if !SANITIZER_APPLE
2896 // We can not use TSAN_INTERCEPT to get setjmp addr,
2897 // because it does &setjmp and setjmp is not present in some versions of libc.
2898 using __interception::InterceptFunction
;
2899 InterceptFunction(TSAN_STRING_SETJMP
, (uptr
*)&REAL(setjmp_symname
), 0, 0);
2900 InterceptFunction("_setjmp", (uptr
*)&REAL(_setjmp
), 0, 0);
2901 InterceptFunction(TSAN_STRING_SIGSETJMP
, (uptr
*)&REAL(sigsetjmp_symname
), 0,
2903 #if !SANITIZER_NETBSD
2904 InterceptFunction("__sigsetjmp", (uptr
*)&REAL(__sigsetjmp
), 0, 0);
2908 TSAN_INTERCEPT(longjmp_symname
);
2909 TSAN_INTERCEPT(siglongjmp_symname
);
2910 #if SANITIZER_NETBSD
2911 TSAN_INTERCEPT(_longjmp
);
2914 TSAN_INTERCEPT(malloc
);
2915 TSAN_INTERCEPT(__libc_memalign
);
2916 TSAN_INTERCEPT(calloc
);
2917 TSAN_INTERCEPT(realloc
);
2918 TSAN_INTERCEPT(reallocarray
);
2919 TSAN_INTERCEPT(free
);
2920 TSAN_INTERCEPT(cfree
);
2921 TSAN_INTERCEPT(munmap
);
2922 TSAN_MAYBE_INTERCEPT_MEMALIGN
;
2923 TSAN_INTERCEPT(valloc
);
2924 TSAN_MAYBE_INTERCEPT_PVALLOC
;
2925 TSAN_INTERCEPT(posix_memalign
);
2927 TSAN_INTERCEPT(strcpy
);
2928 TSAN_INTERCEPT(strncpy
);
2929 TSAN_INTERCEPT(strdup
);
2931 TSAN_INTERCEPT(pthread_create
);
2932 TSAN_INTERCEPT(pthread_join
);
2933 TSAN_INTERCEPT(pthread_detach
);
2934 TSAN_INTERCEPT(pthread_exit
);
2936 TSAN_INTERCEPT(pthread_tryjoin_np
);
2937 TSAN_INTERCEPT(pthread_timedjoin_np
);
2940 TSAN_INTERCEPT_VER(pthread_cond_init
, PTHREAD_ABI_BASE
);
2941 TSAN_INTERCEPT_VER(pthread_cond_signal
, PTHREAD_ABI_BASE
);
2942 TSAN_INTERCEPT_VER(pthread_cond_broadcast
, PTHREAD_ABI_BASE
);
2943 TSAN_INTERCEPT_VER(pthread_cond_wait
, PTHREAD_ABI_BASE
);
2944 TSAN_INTERCEPT_VER(pthread_cond_timedwait
, PTHREAD_ABI_BASE
);
2945 TSAN_INTERCEPT_VER(pthread_cond_destroy
, PTHREAD_ABI_BASE
);
2947 TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT
;
2949 TSAN_INTERCEPT(pthread_mutex_init
);
2950 TSAN_INTERCEPT(pthread_mutex_destroy
);
2951 TSAN_INTERCEPT(pthread_mutex_lock
);
2952 TSAN_INTERCEPT(pthread_mutex_trylock
);
2953 TSAN_INTERCEPT(pthread_mutex_timedlock
);
2954 TSAN_INTERCEPT(pthread_mutex_unlock
);
2956 # if !__GLIBC_PREREQ(2, 34)
2957 TSAN_INTERCEPT(__pthread_mutex_lock
);
2958 TSAN_INTERCEPT(__pthread_mutex_unlock
);
2962 TSAN_INTERCEPT(pthread_spin_init
);
2963 TSAN_INTERCEPT(pthread_spin_destroy
);
2964 TSAN_INTERCEPT(pthread_spin_lock
);
2965 TSAN_INTERCEPT(pthread_spin_trylock
);
2966 TSAN_INTERCEPT(pthread_spin_unlock
);
2968 TSAN_INTERCEPT(pthread_rwlock_init
);
2969 TSAN_INTERCEPT(pthread_rwlock_destroy
);
2970 TSAN_INTERCEPT(pthread_rwlock_rdlock
);
2971 TSAN_INTERCEPT(pthread_rwlock_tryrdlock
);
2972 TSAN_INTERCEPT(pthread_rwlock_timedrdlock
);
2973 TSAN_INTERCEPT(pthread_rwlock_wrlock
);
2974 TSAN_INTERCEPT(pthread_rwlock_trywrlock
);
2975 TSAN_INTERCEPT(pthread_rwlock_timedwrlock
);
2976 TSAN_INTERCEPT(pthread_rwlock_unlock
);
2978 TSAN_INTERCEPT(pthread_barrier_init
);
2979 TSAN_INTERCEPT(pthread_barrier_destroy
);
2980 TSAN_INTERCEPT(pthread_barrier_wait
);
2982 TSAN_INTERCEPT(pthread_once
);
2984 TSAN_INTERCEPT(fstat
);
2985 TSAN_MAYBE_INTERCEPT___FXSTAT
;
2986 TSAN_MAYBE_INTERCEPT_FSTAT64
;
2987 TSAN_MAYBE_INTERCEPT___FXSTAT64
;
2988 TSAN_INTERCEPT(open
);
2989 TSAN_MAYBE_INTERCEPT_OPEN64
;
2990 TSAN_INTERCEPT(creat
);
2991 TSAN_MAYBE_INTERCEPT_CREAT64
;
2992 TSAN_INTERCEPT(dup
);
2993 TSAN_INTERCEPT(dup2
);
2994 TSAN_INTERCEPT(dup3
);
2995 TSAN_MAYBE_INTERCEPT_EVENTFD
;
2996 TSAN_MAYBE_INTERCEPT_SIGNALFD
;
2997 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
;
2998 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
;
2999 TSAN_INTERCEPT(socket
);
3000 TSAN_INTERCEPT(socketpair
);
3001 TSAN_INTERCEPT(connect
);
3002 TSAN_INTERCEPT(bind
);
3003 TSAN_INTERCEPT(listen
);
3004 TSAN_MAYBE_INTERCEPT_EPOLL
;
3005 TSAN_INTERCEPT(close
);
3006 TSAN_MAYBE_INTERCEPT___CLOSE
;
3007 TSAN_MAYBE_INTERCEPT___RES_ICLOSE
;
3008 TSAN_INTERCEPT(pipe
);
3009 TSAN_INTERCEPT(pipe2
);
3011 TSAN_INTERCEPT(unlink
);
3012 TSAN_INTERCEPT(tmpfile
);
3013 TSAN_MAYBE_INTERCEPT_TMPFILE64
;
3014 TSAN_INTERCEPT(abort
);
3015 TSAN_INTERCEPT(rmdir
);
3016 TSAN_INTERCEPT(closedir
);
3018 TSAN_INTERCEPT(sigsuspend
);
3019 TSAN_INTERCEPT(sigblock
);
3020 TSAN_INTERCEPT(sigsetmask
);
3021 TSAN_INTERCEPT(pthread_sigmask
);
3022 TSAN_INTERCEPT(raise
);
3023 TSAN_INTERCEPT(kill
);
3024 TSAN_INTERCEPT(pthread_kill
);
3025 TSAN_INTERCEPT(sleep
);
3026 TSAN_INTERCEPT(usleep
);
3027 TSAN_INTERCEPT(nanosleep
);
3028 TSAN_INTERCEPT(pause
);
3029 TSAN_INTERCEPT(gettimeofday
);
3030 TSAN_INTERCEPT(getaddrinfo
);
3032 TSAN_INTERCEPT(fork
);
3033 TSAN_INTERCEPT(vfork
);
3035 TSAN_INTERCEPT(clone
);
3037 #if !SANITIZER_ANDROID
3038 TSAN_INTERCEPT(dl_iterate_phdr
);
3040 TSAN_MAYBE_INTERCEPT_ON_EXIT
;
3041 TSAN_INTERCEPT(__cxa_atexit
);
3042 TSAN_INTERCEPT(_exit
);
3044 #ifdef NEED_TLS_GET_ADDR
3046 TSAN_INTERCEPT(__tls_get_addr
);
3048 TSAN_INTERCEPT(__tls_get_addr_internal
);
3049 TSAN_INTERCEPT(__tls_get_offset
);
3053 TSAN_MAYBE_INTERCEPT__LWP_EXIT
;
3054 TSAN_MAYBE_INTERCEPT_THR_EXIT
;
3056 #if !SANITIZER_APPLE && !SANITIZER_ANDROID
3057 // Need to setup it, because interceptors check that the function is resolved.
3058 // But atexit is emitted directly into the module, so can't be resolved.
3059 REAL(atexit
) = (int(*)(void(*)()))unreachable
;
3062 if (REAL(__cxa_atexit
)(&finalize
, 0, 0)) {
3063 Printf("ThreadSanitizer: failed to setup atexit callback\n");
3066 if (pthread_atfork(atfork_prepare
, atfork_parent
, atfork_child
)) {
3067 Printf("ThreadSanitizer: failed to setup atfork callbacks\n");
3071 #if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
3072 if (pthread_key_create(&interceptor_ctx()->finalize_key
, &thread_finalize
)) {
3073 Printf("ThreadSanitizer: failed to create thread key\n");
3078 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_init
);
3079 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_destroy
);
3080 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_signal
);
3081 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_broadcast
);
3082 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_wait
);
3083 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_init
);
3084 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_destroy
);
3085 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_lock
);
3086 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_trylock
);
3087 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_unlock
);
3088 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_init
);
3089 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_destroy
);
3090 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_rdlock
);
3091 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_tryrdlock
);
3092 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_wrlock
);
3093 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_trywrlock
);
3094 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_unlock
);
3095 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(once
);
3096 TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(sigmask
);
3098 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_init
);
3099 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_signal
);
3100 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_broadcast
);
3101 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_wait
);
3102 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_destroy
);
3103 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_init
);
3104 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_destroy
);
3105 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_lock
);
3106 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_trylock
);
3107 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_unlock
);
3108 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_init
);
3109 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_destroy
);
3110 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_rdlock
);
3111 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_tryrdlock
);
3112 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_wrlock
);
3113 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_trywrlock
);
3114 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_unlock
);
3115 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(once
);
3116 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(sigsetmask
);
3121 } // namespace __tsan
3123 // Invisible barrier for tests.
3124 // There were several unsuccessful iterations for this functionality:
3125 // 1. Initially it was implemented in user code using
3126 // REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
3127 // MacOS. Futexes are linux-specific for this matter.
3128 // 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
3129 // "as-if synchronized via sleep" messages in reports which failed some
3131 // 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
3132 // visible events, which lead to "failed to restore stack trace" failures.
3133 // Note that no_sanitize_thread attribute does not turn off atomic interception
3134 // so attaching it to the function defined in user code does not help.
3135 // That's why we now have what we have.
3136 constexpr u32 kBarrierThreadBits
= 10;
3137 constexpr u32 kBarrierThreads
= 1 << kBarrierThreadBits
;
3141 SANITIZER_INTERFACE_ATTRIBUTE
void __tsan_testonly_barrier_init(
3142 atomic_uint32_t
*barrier
, u32 num_threads
) {
3143 if (num_threads
>= kBarrierThreads
) {
3144 Printf("barrier_init: count is too large (%d)\n", num_threads
);
3147 // kBarrierThreadBits lsb is thread count,
3148 // the remaining are count of entered threads.
3149 atomic_store(barrier
, num_threads
, memory_order_relaxed
);
3152 static u32
barrier_epoch(u32 value
) {
3153 return (value
>> kBarrierThreadBits
) / (value
& (kBarrierThreads
- 1));
3156 SANITIZER_INTERFACE_ATTRIBUTE
void __tsan_testonly_barrier_wait(
3157 atomic_uint32_t
*barrier
) {
3158 u32 old
= atomic_fetch_add(barrier
, kBarrierThreads
, memory_order_relaxed
);
3159 u32 old_epoch
= barrier_epoch(old
);
3160 if (barrier_epoch(old
+ kBarrierThreads
) != old_epoch
) {
3161 FutexWake(barrier
, (1 << 30));
3165 u32 cur
= atomic_load(barrier
, memory_order_relaxed
);
3166 if (barrier_epoch(cur
) != old_epoch
)
3168 FutexWait(barrier
, cur
);
3172 void *__tsan_memcpy(void *dst
, const void *src
, uptr size
) {
3174 #if PLATFORM_HAS_DIFFERENT_MEMCPY_AND_MEMMOVE
3175 COMMON_INTERCEPTOR_MEMCPY_IMPL(ctx
, dst
, src
, size
);
3177 COMMON_INTERCEPTOR_MEMMOVE_IMPL(ctx
, dst
, src
, size
);
3181 void *__tsan_memset(void *dst
, int c
, uptr size
) {
3183 COMMON_INTERCEPTOR_MEMSET_IMPL(ctx
, dst
, c
, size
);
3186 void *__tsan_memmove(void *dst
, const void *src
, uptr size
) {
3188 COMMON_INTERCEPTOR_MEMMOVE_IMPL(ctx
, dst
, src
, size
);