1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Accessibility
; use Accessibility
;
27 with Aspects
; use Aspects
;
28 with Atree
; use Atree
;
29 with Checks
; use Checks
;
30 with Contracts
; use Contracts
;
31 with Einfo
; use Einfo
;
32 with Einfo
.Entities
; use Einfo
.Entities
;
33 with Einfo
.Utils
; use Einfo
.Utils
;
34 with Errout
; use Errout
;
35 with Expander
; use Expander
;
36 with Exp_Aggr
; use Exp_Aggr
;
37 with Exp_Atag
; use Exp_Atag
;
38 with Exp_Ch4
; use Exp_Ch4
;
39 with Exp_Ch6
; use Exp_Ch6
;
40 with Exp_Ch7
; use Exp_Ch7
;
41 with Exp_Ch9
; use Exp_Ch9
;
42 with Exp_Dbug
; use Exp_Dbug
;
43 with Exp_Disp
; use Exp_Disp
;
44 with Exp_Dist
; use Exp_Dist
;
46 with Exp_Smem
; use Exp_Smem
;
47 with Exp_Strm
; use Exp_Strm
;
48 with Exp_Util
; use Exp_Util
;
49 with Freeze
; use Freeze
;
50 with Ghost
; use Ghost
;
52 with Namet
; use Namet
;
53 with Nlists
; use Nlists
;
54 with Nmake
; use Nmake
;
56 with Restrict
; use Restrict
;
57 with Rident
; use Rident
;
58 with Rtsfind
; use Rtsfind
;
60 with Sem_Aux
; use Sem_Aux
;
61 with Sem_Attr
; use Sem_Attr
;
62 with Sem_Cat
; use Sem_Cat
;
63 with Sem_Ch3
; use Sem_Ch3
;
64 with Sem_Ch6
; use Sem_Ch6
;
65 with Sem_Ch8
; use Sem_Ch8
;
66 with Sem_Disp
; use Sem_Disp
;
67 with Sem_Eval
; use Sem_Eval
;
68 with Sem_Mech
; use Sem_Mech
;
69 with Sem_Res
; use Sem_Res
;
70 with Sem_SCIL
; use Sem_SCIL
;
71 with Sem_Type
; use Sem_Type
;
72 with Sem_Util
; use Sem_Util
;
73 with Sinfo
; use Sinfo
;
74 with Sinfo
.Nodes
; use Sinfo
.Nodes
;
75 with Sinfo
.Utils
; use Sinfo
.Utils
;
76 with Stand
; use Stand
;
77 with Snames
; use Snames
;
78 with Tbuild
; use Tbuild
;
79 with Ttypes
; use Ttypes
;
80 with Validsw
; use Validsw
;
82 package body Exp_Ch3
is
84 -----------------------
85 -- Local Subprograms --
86 -----------------------
88 procedure Adjust_Discriminants
(Rtype
: Entity_Id
);
89 -- This is used when freezing a record type. It attempts to construct
90 -- more restrictive subtypes for discriminants so that the max size of
91 -- the record can be calculated more accurately. See the body of this
92 -- procedure for details.
94 procedure Build_Array_Init_Proc
(A_Type
: Entity_Id
; Nod
: Node_Id
);
95 -- Build initialization procedure for given array type. Nod is a node
96 -- used for attachment of any actions required in its construction.
97 -- It also supplies the source location used for the procedure.
99 function Build_Discriminant_Formals
101 Use_Dl
: Boolean) return List_Id
;
102 -- This function uses the discriminants of a type to build a list of
103 -- formal parameters, used in Build_Init_Procedure among other places.
104 -- If the flag Use_Dl is set, the list is built using the already
105 -- defined discriminals of the type, as is the case for concurrent
106 -- types with discriminants. Otherwise new identifiers are created,
107 -- with the source names of the discriminants.
109 procedure Build_Discr_Checking_Funcs
(N
: Node_Id
);
110 -- For each variant component, builds a function which checks whether
111 -- the component name is consistent with the current discriminants
112 -- and sets the component's Dcheck_Function attribute to refer to it.
113 -- N is the full type declaration node; the discriminant checking
114 -- functions are inserted after this node.
116 function Build_Equivalent_Array_Aggregate
(T
: Entity_Id
) return Node_Id
;
117 -- This function builds a static aggregate that can serve as the initial
118 -- value for an array type whose bounds are static, and whose component
119 -- type is a composite type that has a static equivalent aggregate.
120 -- The equivalent array aggregate is used both for object initialization
121 -- and for component initialization, when used in the following function.
123 function Build_Equivalent_Record_Aggregate
(T
: Entity_Id
) return Node_Id
;
124 -- This function builds a static aggregate that can serve as the initial
125 -- value for a record type whose components are scalar and initialized
126 -- with compile-time values, or arrays with similar initialization or
127 -- defaults. When possible, initialization of an object of the type can
128 -- be achieved by using a copy of the aggregate as an initial value, thus
129 -- removing the implicit call that would otherwise constitute elaboration
132 procedure Build_Record_Init_Proc
(N
: Node_Id
; Rec_Ent
: Entity_Id
);
133 -- Build record initialization procedure. N is the type declaration
134 -- node, and Rec_Ent is the corresponding entity for the record type.
136 procedure Build_Slice_Assignment
(Typ
: Entity_Id
);
137 -- Build assignment procedure for one-dimensional arrays of controlled
138 -- types. Other array and slice assignments are expanded in-line, but
139 -- the code expansion for controlled components (when control actions
140 -- are active) can lead to very large blocks that GCC handles poorly.
142 procedure Build_Untagged_Record_Equality
(Typ
: Entity_Id
);
143 -- AI05-0123: Equality on untagged records composes. This procedure
144 -- builds the equality routine for an untagged record that has components
145 -- of a record type that has user-defined primitive equality operations.
146 -- The resulting operation is a TSS subprogram.
148 procedure Check_Stream_Attributes
(Typ
: Entity_Id
);
149 -- Check that if a limited extension has a parent with user-defined stream
150 -- attributes, and does not itself have user-defined stream-attributes,
151 -- then any limited component of the extension also has the corresponding
152 -- user-defined stream attributes.
154 procedure Clean_Task_Names
156 Proc_Id
: Entity_Id
);
157 -- If an initialization procedure includes calls to generate names
158 -- for task subcomponents, indicate that secondary stack cleanup is
159 -- needed after an initialization. Typ is the component type, and Proc_Id
160 -- the initialization procedure for the enclosing composite type.
162 procedure Copy_Discr_Checking_Funcs
(N
: Node_Id
);
163 -- For a derived untagged type, copy the attributes that were set
164 -- for the components of the parent type onto the components of the
165 -- derived type. No new subprograms are constructed.
166 -- N is the full type declaration node, as for Build_Discr_Checking_Funcs.
168 procedure Expand_Freeze_Array_Type
(N
: Node_Id
);
169 -- Freeze an array type. Deals with building the initialization procedure,
170 -- creating the packed array type for a packed array and also with the
171 -- creation of the controlling procedures for the controlled case. The
172 -- argument N is the N_Freeze_Entity node for the type.
174 procedure Expand_Freeze_Class_Wide_Type
(N
: Node_Id
);
175 -- Freeze a class-wide type. Build routine Finalize_Address for the purpose
176 -- of finalizing controlled derivations from the class-wide's root type.
178 procedure Expand_Freeze_Enumeration_Type
(N
: Node_Id
);
179 -- Freeze enumeration type with non-standard representation. Builds the
180 -- array and function needed to convert between enumeration pos and
181 -- enumeration representation values. N is the N_Freeze_Entity node
184 procedure Expand_Freeze_Record_Type
(N
: Node_Id
);
185 -- Freeze record type. Builds all necessary discriminant checking
186 -- and other ancillary functions, and builds dispatch tables where
187 -- needed. The argument N is the N_Freeze_Entity node. This processing
188 -- applies only to E_Record_Type entities, not to class wide types,
189 -- record subtypes, or private types.
191 procedure Expand_Tagged_Root
(T
: Entity_Id
);
192 -- Add a field _Tag at the beginning of the record. This field carries
193 -- the value of the access to the Dispatch table. This procedure is only
194 -- called on root type, the _Tag field being inherited by the descendants.
196 procedure Freeze_Stream_Operations
(N
: Node_Id
; Typ
: Entity_Id
);
197 -- Treat user-defined stream operations as renaming_as_body if the
198 -- subprogram they rename is not frozen when the type is frozen.
200 package Initialization_Control
is
202 function Requires_Late_Init
203 (Decl
: Node_Id
; Rec_Type
: Entity_Id
) return Boolean;
204 -- Return True iff the given component declaration requires late
205 -- initialization, as defined by 3.3.1 (8.1/5).
207 function Has_Late_Init_Component
208 (Tagged_Rec_Type
: Entity_Id
) return Boolean;
209 -- Return True iff the given tagged record type has at least one
210 -- component that requires late initialization; this includes
211 -- components of ancestor types.
213 type Initialization_Mode
is
214 (Full_Init
, Full_Init_Except_Tag
, Early_Init_Only
, Late_Init_Only
);
215 -- The initialization routine for a tagged type is passed in a
216 -- formal parameter of this type, indicating what initialization
217 -- is to be performed. This parameter defaults to Full_Init in all
218 -- cases except when the init proc of a type extension (let's call
219 -- that type T2) calls the init proc of its parent (let's call that
220 -- type T1). In that case, one of the other 3 values will
221 -- be passed in. In all three of those cases, the Tag component has
222 -- already been initialized before the call and is therefore not to be
223 -- modified. T2's init proc will either call T1's init proc
224 -- once (with Full_Init_Except_Tag as the parameter value) or twice
225 -- (first with Early_Init_Only, then later with Late_Init_Only),
226 -- depending on the result returned by Has_Late_Init_Component (T1).
227 -- In the latter case, the first call does not initialize any
228 -- components that require late initialization and the second call
229 -- then performs that deferred initialization.
230 -- Strictly speaking, the formal parameter subtype is actually Natural
231 -- but calls will only pass in values corresponding to literals
232 -- of this enumeration type.
234 function Make_Mode_Literal
235 (Loc
: Source_Ptr
; Mode
: Initialization_Mode
) return Node_Id
236 is (Make_Integer_Literal
(Loc
, Initialization_Mode
'Pos (Mode
)));
237 -- Generate an integer literal for a given mode value.
239 function Tag_Init_Condition
241 Init_Control_Formal
: Entity_Id
) return Node_Id
;
242 function Early_Init_Condition
244 Init_Control_Formal
: Entity_Id
) return Node_Id
;
245 function Late_Init_Condition
247 Init_Control_Formal
: Entity_Id
) return Node_Id
;
248 -- These three functions each return a Boolean expression that
249 -- can be used to determine whether a given call to the initialization
250 -- expression for a tagged type should initialize (respectively)
251 -- the Tag component, the non-Tag components that do not require late
252 -- initialization, and the components that do require late
255 end Initialization_Control
;
257 procedure Initialization_Warning
(E
: Entity_Id
);
258 -- If static elaboration of the package is requested, indicate
259 -- when a type does meet the conditions for static initialization. If
260 -- E is a type, it has components that have no static initialization.
261 -- if E is an entity, its initial expression is not compile-time known.
263 function Init_Formals
(Typ
: Entity_Id
; Proc_Id
: Entity_Id
) return List_Id
;
264 -- This function builds the list of formals for an initialization routine.
265 -- The first formal is always _Init with the given type. For task value
266 -- record types and types containing tasks, three additional formals are
267 -- added and Proc_Id is decorated with attribute Has_Master_Entity:
269 -- _Master : Master_Id
270 -- _Chain : in out Activation_Chain
271 -- _Task_Name : String
273 -- The caller must append additional entries for discriminants if required.
275 function Inline_Init_Proc
(Typ
: Entity_Id
) return Boolean;
276 -- Returns true if the initialization procedure of Typ should be inlined
278 function In_Runtime
(E
: Entity_Id
) return Boolean;
279 -- Check if E is defined in the RTL (in a child of Ada or System). Used
280 -- to avoid to bring in the overhead of _Input, _Output for tagged types.
282 function Is_Null_Statement_List
(Stmts
: List_Id
) return Boolean;
283 -- Returns true if Stmts is made of null statements only, possibly wrapped
284 -- in a case statement, recursively. This latter pattern may occur for the
285 -- initialization procedure of an unchecked union.
287 function Make_Eq_Body
289 Eq_Name
: Name_Id
) return Node_Id
;
290 -- Build the body of a primitive equality operation for a tagged record
291 -- type, or in Ada 2012 for any record type that has components with a
292 -- user-defined equality. Factored out of Predefined_Primitive_Bodies.
294 function Make_Eq_Case
297 Discrs
: Elist_Id
:= New_Elmt_List
) return List_Id
;
298 -- Building block for variant record equality. Defined to share the code
299 -- between the tagged and untagged case. Given a Component_List node CL,
300 -- it generates an 'if' followed by a 'case' statement that compares all
301 -- components of local temporaries named X and Y (that are declared as
302 -- formals at some upper level). E provides the Sloc to be used for the
305 -- IF E is an unchecked_union, Discrs is the list of formals created for
306 -- the inferred discriminants of one operand. These formals are used in
307 -- the generated case statements for each variant of the unchecked union.
311 L
: List_Id
) return Node_Id
;
312 -- Building block for variant record equality. Defined to share the code
313 -- between the tagged and untagged case. Given the list of components
314 -- (or discriminants) L, it generates a return statement that compares all
315 -- components of local temporaries named X and Y (that are declared as
316 -- formals at some upper level). E provides the Sloc to be used for the
319 function Make_Neq_Body
(Tag_Typ
: Entity_Id
) return Node_Id
;
320 -- Search for a renaming of the inequality dispatching primitive of
321 -- this tagged type. If found then build and return the corresponding
322 -- rename-as-body inequality subprogram; otherwise return Empty.
324 procedure Make_Predefined_Primitive_Specs
325 (Tag_Typ
: Entity_Id
;
326 Predef_List
: out List_Id
;
327 Renamed_Eq
: out Entity_Id
);
328 -- Create a list with the specs of the predefined primitive operations.
329 -- For tagged types that are interfaces all these primitives are defined
332 -- The following entries are present for all tagged types, and provide
333 -- the results of the corresponding attribute applied to the object.
334 -- Dispatching is required in general, since the result of the attribute
335 -- will vary with the actual object subtype.
337 -- _size provides result of 'Size attribute
338 -- typSR provides result of 'Read attribute
339 -- typSW provides result of 'Write attribute
340 -- typSI provides result of 'Input attribute
341 -- typSO provides result of 'Output attribute
342 -- typPI provides result of 'Put_Image attribute
344 -- The following entries are additionally present for non-limited tagged
345 -- types, and implement additional dispatching operations for predefined
348 -- _equality implements "=" operator
349 -- _assign implements assignment operation
350 -- typDF implements deep finalization
351 -- typDA implements deep adjust
353 -- The latter two are empty procedures unless the type contains some
354 -- controlled components that require finalization actions (the deep
355 -- in the name refers to the fact that the action applies to components).
357 -- The list of specs is returned in Predef_List
359 function Has_New_Non_Standard_Rep
(T
: Entity_Id
) return Boolean;
360 -- Returns True if there are representation clauses for type T that are not
361 -- inherited. If the result is false, the init_proc and the discriminant
362 -- checking functions of the parent can be reused by a derived type.
364 function Make_Null_Procedure_Specs
(Tag_Typ
: Entity_Id
) return List_Id
;
365 -- Ada 2005 (AI-251): Makes specs for null procedures associated with any
366 -- null procedures inherited from an interface type that have not been
367 -- overridden. Only one null procedure will be created for a given set of
368 -- inherited null procedures with homographic profiles.
370 function Predef_Spec_Or_Body
375 Ret_Type
: Entity_Id
:= Empty
;
376 For_Body
: Boolean := False) return Node_Id
;
377 -- This function generates the appropriate expansion for a predefined
378 -- primitive operation specified by its name, parameter profile and
379 -- return type (Empty means this is a procedure). If For_Body is false,
380 -- then the returned node is a subprogram declaration. If For_Body is
381 -- true, then the returned node is a empty subprogram body containing
382 -- no declarations and no statements.
384 function Predef_Stream_Attr_Spec
387 Name
: TSS_Name_Type
) return Node_Id
;
388 -- Specialized version of Predef_Spec_Or_Body that apply to read, write,
389 -- input and output attribute whose specs are constructed in Exp_Strm.
391 function Predef_Deep_Spec
394 Name
: TSS_Name_Type
;
395 For_Body
: Boolean := False) return Node_Id
;
396 -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
397 -- and _deep_finalize
399 function Predefined_Primitive_Bodies
400 (Tag_Typ
: Entity_Id
;
401 Renamed_Eq
: Entity_Id
) return List_Id
;
402 -- Create the bodies of the predefined primitives that are described in
403 -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
404 -- the defining unit name of the type's predefined equality as returned
405 -- by Make_Predefined_Primitive_Specs.
407 function Predefined_Primitive_Freeze
(Tag_Typ
: Entity_Id
) return List_Id
;
408 -- Freeze entities of all predefined primitive operations. This is needed
409 -- because the bodies of these operations do not normally do any freezing.
411 --------------------------
412 -- Adjust_Discriminants --
413 --------------------------
415 -- This procedure attempts to define subtypes for discriminants that are
416 -- more restrictive than those declared. Such a replacement is possible if
417 -- we can demonstrate that values outside the restricted range would cause
418 -- constraint errors in any case. The advantage of restricting the
419 -- discriminant types in this way is that the maximum size of the variant
420 -- record can be calculated more conservatively.
422 -- An example of a situation in which we can perform this type of
423 -- restriction is the following:
425 -- subtype B is range 1 .. 10;
426 -- type Q is array (B range <>) of Integer;
428 -- type V (N : Natural) is record
432 -- In this situation, we can restrict the upper bound of N to 10, since
433 -- any larger value would cause a constraint error in any case.
435 -- There are many situations in which such restriction is possible, but
436 -- for now, we just look for cases like the above, where the component
437 -- in question is a one dimensional array whose upper bound is one of
438 -- the record discriminants. Also the component must not be part of
439 -- any variant part, since then the component does not always exist.
441 procedure Adjust_Discriminants
(Rtype
: Entity_Id
) is
442 Loc
: constant Source_Ptr
:= Sloc
(Rtype
);
459 Comp
:= First_Component
(Rtype
);
460 while Present
(Comp
) loop
462 -- If our parent is a variant, quit, we do not look at components
463 -- that are in variant parts, because they may not always exist.
465 P
:= Parent
(Comp
); -- component declaration
466 P
:= Parent
(P
); -- component list
468 exit when Nkind
(Parent
(P
)) = N_Variant
;
470 -- We are looking for a one dimensional array type
472 Ctyp
:= Etype
(Comp
);
474 if not Is_Array_Type
(Ctyp
) or else Number_Dimensions
(Ctyp
) > 1 then
478 -- The lower bound must be constant, and the upper bound is a
479 -- discriminant (which is a discriminant of the current record).
481 Ityp
:= Etype
(First_Index
(Ctyp
));
482 Lo
:= Type_Low_Bound
(Ityp
);
483 Hi
:= Type_High_Bound
(Ityp
);
485 if not Compile_Time_Known_Value
(Lo
)
486 or else Nkind
(Hi
) /= N_Identifier
487 or else No
(Entity
(Hi
))
488 or else Ekind
(Entity
(Hi
)) /= E_Discriminant
493 -- We have an array with appropriate bounds
495 Loval
:= Expr_Value
(Lo
);
496 Discr
:= Entity
(Hi
);
497 Dtyp
:= Etype
(Discr
);
499 -- See if the discriminant has a known upper bound
501 Dhi
:= Type_High_Bound
(Dtyp
);
503 if not Compile_Time_Known_Value
(Dhi
) then
507 Dhiv
:= Expr_Value
(Dhi
);
509 -- See if base type of component array has known upper bound
511 Ahi
:= Type_High_Bound
(Etype
(First_Index
(Base_Type
(Ctyp
))));
513 if not Compile_Time_Known_Value
(Ahi
) then
517 Ahiv
:= Expr_Value
(Ahi
);
519 -- The condition for doing the restriction is that the high bound
520 -- of the discriminant is greater than the low bound of the array,
521 -- and is also greater than the high bound of the base type index.
523 if Dhiv
> Loval
and then Dhiv
> Ahiv
then
525 -- We can reset the upper bound of the discriminant type to
526 -- whichever is larger, the low bound of the component, or
527 -- the high bound of the base type array index.
529 -- We build a subtype that is declared as
531 -- subtype Tnn is discr_type range discr_type'First .. max;
533 -- And insert this declaration into the tree. The type of the
534 -- discriminant is then reset to this more restricted subtype.
536 Tnn
:= Make_Temporary
(Loc
, 'T');
538 Insert_Action
(Declaration_Node
(Rtype
),
539 Make_Subtype_Declaration
(Loc
,
540 Defining_Identifier
=> Tnn
,
541 Subtype_Indication
=>
542 Make_Subtype_Indication
(Loc
,
543 Subtype_Mark
=> New_Occurrence_Of
(Dtyp
, Loc
),
545 Make_Range_Constraint
(Loc
,
549 Make_Attribute_Reference
(Loc
,
550 Attribute_Name
=> Name_First
,
551 Prefix
=> New_Occurrence_Of
(Dtyp
, Loc
)),
553 Make_Integer_Literal
(Loc
,
554 Intval
=> UI_Max
(Loval
, Ahiv
)))))));
556 Set_Etype
(Discr
, Tnn
);
560 Next_Component
(Comp
);
562 end Adjust_Discriminants
;
564 ------------------------------------------
565 -- Build_Access_Subprogram_Wrapper_Body --
566 ------------------------------------------
568 procedure Build_Access_Subprogram_Wrapper_Body
572 Loc
: constant Source_Ptr
:= Sloc
(Decl
);
573 Actuals
: constant List_Id
:= New_List
;
574 Type_Def
: constant Node_Id
:= Type_Definition
(Decl
);
575 Type_Id
: constant Entity_Id
:= Defining_Identifier
(Decl
);
576 Spec_Node
: constant Node_Id
:=
577 Copy_Subprogram_Spec
(Specification
(New_Decl
));
578 -- This copy creates new identifiers for formals and subprogram.
586 -- Create List of actuals for indirect call. The last parameter of the
587 -- subprogram declaration is the access value for the indirect call.
589 Act
:= First
(Parameter_Specifications
(Spec_Node
));
591 while Present
(Act
) loop
592 exit when Act
= Last
(Parameter_Specifications
(Spec_Node
));
594 Make_Identifier
(Loc
, Chars
(Defining_Identifier
(Act
))));
600 (Last
(Parameter_Specifications
(Specification
(New_Decl
))));
602 if Nkind
(Type_Def
) = N_Access_Procedure_Definition
then
603 Call_Stmt
:= Make_Procedure_Call_Statement
(Loc
,
605 Make_Explicit_Dereference
606 (Loc
, New_Occurrence_Of
(Ptr
, Loc
)),
607 Parameter_Associations
=> Actuals
);
609 Call_Stmt
:= Make_Simple_Return_Statement
(Loc
,
611 Make_Function_Call
(Loc
,
612 Name
=> Make_Explicit_Dereference
613 (Loc
, New_Occurrence_Of
(Ptr
, Loc
)),
614 Parameter_Associations
=> Actuals
));
617 Body_Node
:= Make_Subprogram_Body
(Loc
,
618 Specification
=> Spec_Node
,
619 Declarations
=> New_List
,
620 Handled_Statement_Sequence
=>
621 Make_Handled_Sequence_Of_Statements
(Loc
,
622 Statements
=> New_List
(Call_Stmt
)));
624 -- Place body in list of freeze actions for the type.
626 Append_Freeze_Action
(Type_Id
, Body_Node
);
627 end Build_Access_Subprogram_Wrapper_Body
;
629 ---------------------------
630 -- Build_Array_Init_Proc --
631 ---------------------------
633 procedure Build_Array_Init_Proc
(A_Type
: Entity_Id
; Nod
: Node_Id
) is
634 Comp_Type
: constant Entity_Id
:= Component_Type
(A_Type
);
635 Comp_Simple_Init
: constant Boolean :=
636 Needs_Simple_Initialization
639 not (Validity_Check_Copies
and Is_Bit_Packed_Array
(A_Type
)));
640 -- True if the component needs simple initialization, based on its type,
641 -- plus the fact that we do not do simple initialization for components
642 -- of bit-packed arrays when validity checks are enabled, because the
643 -- initialization with deliberately out-of-range values would raise
646 Body_Stmts
: List_Id
;
647 Has_Default_Init
: Boolean;
648 Index_List
: List_Id
;
650 Parameters
: List_Id
;
653 function Init_Component
return List_Id
;
654 -- Create one statement to initialize one array component, designated
655 -- by a full set of indexes.
657 function Init_One_Dimension
(N
: Int
) return List_Id
;
658 -- Create loop to initialize one dimension of the array. The single
659 -- statement in the loop body initializes the inner dimensions if any,
660 -- or else the single component. Note that this procedure is called
661 -- recursively, with N being the dimension to be initialized. A call
662 -- with N greater than the number of dimensions simply generates the
663 -- component initialization, terminating the recursion.
669 function Init_Component
return List_Id
is
674 Make_Indexed_Component
(Loc
,
675 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
676 Expressions
=> Index_List
);
678 if Has_Default_Aspect
(A_Type
) then
679 Set_Assignment_OK
(Comp
);
681 Make_Assignment_Statement
(Loc
,
684 Convert_To
(Comp_Type
,
685 Default_Aspect_Component_Value
(First_Subtype
(A_Type
)))));
687 elsif Comp_Simple_Init
then
688 Set_Assignment_OK
(Comp
);
690 Make_Assignment_Statement
(Loc
,
696 Size
=> Component_Size
(A_Type
))));
699 Clean_Task_Names
(Comp_Type
, Proc_Id
);
701 Build_Initialization_Call
705 In_Init_Proc
=> True,
706 Enclos_Type
=> A_Type
);
710 ------------------------
711 -- Init_One_Dimension --
712 ------------------------
714 function Init_One_Dimension
(N
: Int
) return List_Id
is
717 Result_List
: List_Id
;
719 function Possible_DIC_Call
return Node_Id
;
720 -- If the component type has Default_Initial_Conditions and a DIC
721 -- procedure that is not an empty body, then builds a call to the
722 -- DIC procedure and returns it.
724 -----------------------
725 -- Possible_DIC_Call --
726 -----------------------
728 function Possible_DIC_Call
return Node_Id
is
730 -- When the component's type has a Default_Initial_Condition, then
731 -- create a call for the DIC check.
733 if Has_DIC
(Comp_Type
)
734 -- In GNATprove mode, the component DICs are checked by other
735 -- means. They should not be added to the record type DIC
736 -- procedure, so that the procedure can be used to check the
737 -- record type invariants or DICs if any.
739 and then not GNATprove_Mode
741 -- DIC checks for components of controlled types are done later
742 -- (see Exp_Ch7.Make_Deep_Array_Body).
744 and then not Is_Controlled
(Comp_Type
)
746 and then Present
(DIC_Procedure
(Comp_Type
))
748 and then not Has_Null_Body
(DIC_Procedure
(Comp_Type
))
752 Make_Indexed_Component
(Loc
,
753 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
754 Expressions
=> Index_List
),
759 end Possible_DIC_Call
;
761 -- Start of processing for Init_One_Dimension
764 -- If the component does not need initializing, then there is nothing
765 -- to do here, so we return a null body. This occurs when generating
766 -- the dummy Init_Proc needed for Initialize_Scalars processing.
767 -- An exception is if component type has a Default_Initial_Condition,
768 -- in which case we generate a call to the type's DIC procedure.
770 if not Has_Non_Null_Base_Init_Proc
(Comp_Type
)
771 and then not Comp_Simple_Init
772 and then not Has_Task
(Comp_Type
)
773 and then not Has_Default_Aspect
(A_Type
)
774 and then (not Has_DIC
(Comp_Type
)
775 or else N
> Number_Dimensions
(A_Type
))
777 DIC_Call
:= Possible_DIC_Call
;
779 if Present
(DIC_Call
) then
780 return New_List
(DIC_Call
);
782 return New_List
(Make_Null_Statement
(Loc
));
785 -- If all dimensions dealt with, we simply initialize the component
786 -- and append a call to component type's DIC procedure when needed.
788 elsif N
> Number_Dimensions
(A_Type
) then
789 DIC_Call
:= Possible_DIC_Call
;
791 if Present
(DIC_Call
) then
792 Result_List
:= Init_Component
;
793 Append
(DIC_Call
, Result_List
);
797 return Init_Component
;
800 -- Here we generate the required loop
804 Make_Defining_Identifier
(Loc
, New_External_Name
('J', N
));
806 Append
(New_Occurrence_Of
(Index
, Loc
), Index_List
);
809 Make_Implicit_Loop_Statement
(Nod
,
812 Make_Iteration_Scheme
(Loc
,
813 Loop_Parameter_Specification
=>
814 Make_Loop_Parameter_Specification
(Loc
,
815 Defining_Identifier
=> Index
,
816 Discrete_Subtype_Definition
=>
817 Make_Attribute_Reference
(Loc
,
819 Make_Identifier
(Loc
, Name_uInit
),
820 Attribute_Name
=> Name_Range
,
821 Expressions
=> New_List
(
822 Make_Integer_Literal
(Loc
, N
))))),
823 Statements
=> Init_One_Dimension
(N
+ 1)));
825 end Init_One_Dimension
;
827 -- Start of processing for Build_Array_Init_Proc
830 -- The init proc is created when analyzing the freeze node for the type,
831 -- but it properly belongs with the array type declaration. However, if
832 -- the freeze node is for a subtype of a type declared in another unit
833 -- it seems preferable to use the freeze node as the source location of
834 -- the init proc. In any case this is preferable for gcov usage, and
835 -- the Sloc is not otherwise used by the compiler.
837 if In_Open_Scopes
(Scope
(A_Type
)) then
838 Loc
:= Sloc
(A_Type
);
843 -- Nothing to generate in the following cases:
845 -- 1. Initialization is suppressed for the type
846 -- 2. An initialization already exists for the base type
848 if Initialization_Suppressed
(A_Type
)
849 or else Present
(Base_Init_Proc
(A_Type
))
854 Index_List
:= New_List
;
856 -- We need an initialization procedure if any of the following is true:
858 -- 1. The component type has an initialization procedure
859 -- 2. The component type needs simple initialization
860 -- 3. Tasks are present
861 -- 4. The type is marked as a public entity
862 -- 5. The array type has a Default_Component_Value aspect
863 -- 6. The array component type has a Default_Initialization_Condition
865 -- The reason for the public entity test is to deal properly with the
866 -- Initialize_Scalars pragma. This pragma can be set in the client and
867 -- not in the declaring package, this means the client will make a call
868 -- to the initialization procedure (because one of conditions 1-3 must
869 -- apply in this case), and we must generate a procedure (even if it is
870 -- null) to satisfy the call in this case.
872 -- Exception: do not build an array init_proc for a type whose root
873 -- type is Standard.String or Standard.Wide_[Wide_]String, since there
874 -- is no place to put the code, and in any case we handle initialization
875 -- of such types (in the Initialize_Scalars case, that's the only time
876 -- the issue arises) in a special manner anyway which does not need an
879 Has_Default_Init
:= Has_Non_Null_Base_Init_Proc
(Comp_Type
)
880 or else Comp_Simple_Init
881 or else Has_Task
(Comp_Type
)
882 or else Has_Default_Aspect
(A_Type
)
883 or else Has_DIC
(Comp_Type
);
886 or else (not Restriction_Active
(No_Initialize_Scalars
)
887 and then Is_Public
(A_Type
)
888 and then not Is_Standard_String_Type
(A_Type
))
891 Make_Defining_Identifier
(Loc
,
892 Chars
=> Make_Init_Proc_Name
(A_Type
));
894 -- If No_Default_Initialization restriction is active, then we don't
895 -- want to build an init_proc, but we need to mark that an init_proc
896 -- would be needed if this restriction was not active (so that we can
897 -- detect attempts to call it), so set a dummy init_proc in place.
898 -- This is only done though when actual default initialization is
899 -- needed (and not done when only Is_Public is True), since otherwise
900 -- objects such as arrays of scalars could be wrongly flagged as
901 -- violating the restriction.
903 if Restriction_Active
(No_Default_Initialization
) then
904 if Has_Default_Init
then
905 Set_Init_Proc
(A_Type
, Proc_Id
);
911 Body_Stmts
:= Init_One_Dimension
(1);
912 Parameters
:= Init_Formals
(A_Type
, Proc_Id
);
915 Make_Subprogram_Body
(Loc
,
917 Make_Procedure_Specification
(Loc
,
918 Defining_Unit_Name
=> Proc_Id
,
919 Parameter_Specifications
=> Parameters
),
920 Declarations
=> New_List
,
921 Handled_Statement_Sequence
=>
922 Make_Handled_Sequence_Of_Statements
(Loc
,
923 Statements
=> Body_Stmts
)));
925 Mutate_Ekind
(Proc_Id
, E_Procedure
);
926 Set_Is_Public
(Proc_Id
, Is_Public
(A_Type
));
927 Set_Is_Internal
(Proc_Id
);
928 Set_Has_Completion
(Proc_Id
);
930 if not Debug_Generated_Code
then
931 Set_Debug_Info_Off
(Proc_Id
);
934 -- Set Inlined on Init_Proc if it is set on the Init_Proc of the
935 -- component type itself (see also Build_Record_Init_Proc).
937 Set_Is_Inlined
(Proc_Id
, Inline_Init_Proc
(Comp_Type
));
939 -- Associate Init_Proc with type, and determine if the procedure
940 -- is null (happens because of the Initialize_Scalars pragma case,
941 -- where we have to generate a null procedure in case it is called
942 -- by a client with Initialize_Scalars set). Such procedures have
943 -- to be generated, but do not have to be called, so we mark them
944 -- as null to suppress the call. Kill also warnings for the _Init
945 -- out parameter, which is left entirely uninitialized.
947 Set_Init_Proc
(A_Type
, Proc_Id
);
949 if Is_Null_Statement_List
(Body_Stmts
) then
950 Set_Is_Null_Init_Proc
(Proc_Id
);
951 Set_Warnings_Off
(Defining_Identifier
(First
(Parameters
)));
954 -- Try to build a static aggregate to statically initialize
955 -- objects of the type. This can only be done for constrained
956 -- one-dimensional arrays with static bounds.
958 Set_Static_Initialization
960 Build_Equivalent_Array_Aggregate
(First_Subtype
(A_Type
)));
963 end Build_Array_Init_Proc
;
965 --------------------------------
966 -- Build_Discr_Checking_Funcs --
967 --------------------------------
969 procedure Build_Discr_Checking_Funcs
(N
: Node_Id
) is
972 Enclosing_Func_Id
: Entity_Id
;
977 function Build_Case_Statement
978 (Case_Id
: Entity_Id
;
979 Variant
: Node_Id
) return Node_Id
;
980 -- Build a case statement containing only two alternatives. The first
981 -- alternative corresponds to the discrete choices given on the variant
982 -- that contains the components that we are generating the checks
983 -- for. If the discriminant is one of these return False. The second
984 -- alternative is an OTHERS choice that returns True indicating the
985 -- discriminant did not match.
987 function Build_Dcheck_Function
988 (Case_Id
: Entity_Id
;
989 Variant
: Node_Id
) return Entity_Id
;
990 -- Build the discriminant checking function for a given variant
992 procedure Build_Dcheck_Functions
(Variant_Part_Node
: Node_Id
);
993 -- Builds the discriminant checking function for each variant of the
994 -- given variant part of the record type.
996 --------------------------
997 -- Build_Case_Statement --
998 --------------------------
1000 function Build_Case_Statement
1001 (Case_Id
: Entity_Id
;
1002 Variant
: Node_Id
) return Node_Id
1004 Alt_List
: constant List_Id
:= New_List
;
1005 Actuals_List
: List_Id
;
1006 Case_Node
: Node_Id
;
1007 Case_Alt_Node
: Node_Id
;
1009 Choice_List
: List_Id
;
1011 Return_Node
: Node_Id
;
1014 Case_Node
:= New_Node
(N_Case_Statement
, Loc
);
1015 Set_End_Span
(Case_Node
, Uint_0
);
1017 -- Replace the discriminant which controls the variant with the name
1018 -- of the formal of the checking function.
1020 Set_Expression
(Case_Node
, Make_Identifier
(Loc
, Chars
(Case_Id
)));
1022 Choice
:= First
(Discrete_Choices
(Variant
));
1024 if Nkind
(Choice
) = N_Others_Choice
then
1025 Choice_List
:= New_Copy_List
(Others_Discrete_Choices
(Choice
));
1027 Choice_List
:= New_Copy_List
(Discrete_Choices
(Variant
));
1030 if not Is_Empty_List
(Choice_List
) then
1031 Case_Alt_Node
:= New_Node
(N_Case_Statement_Alternative
, Loc
);
1032 Set_Discrete_Choices
(Case_Alt_Node
, Choice_List
);
1034 -- In case this is a nested variant, we need to return the result
1035 -- of the discriminant checking function for the immediately
1036 -- enclosing variant.
1038 if Present
(Enclosing_Func_Id
) then
1039 Actuals_List
:= New_List
;
1041 D
:= First_Discriminant
(Rec_Id
);
1042 while Present
(D
) loop
1043 Append
(Make_Identifier
(Loc
, Chars
(D
)), Actuals_List
);
1044 Next_Discriminant
(D
);
1048 Make_Simple_Return_Statement
(Loc
,
1050 Make_Function_Call
(Loc
,
1052 New_Occurrence_Of
(Enclosing_Func_Id
, Loc
),
1053 Parameter_Associations
=>
1058 Make_Simple_Return_Statement
(Loc
,
1060 New_Occurrence_Of
(Standard_False
, Loc
));
1063 Set_Statements
(Case_Alt_Node
, New_List
(Return_Node
));
1064 Append
(Case_Alt_Node
, Alt_List
);
1067 Case_Alt_Node
:= New_Node
(N_Case_Statement_Alternative
, Loc
);
1068 Choice_List
:= New_List
(New_Node
(N_Others_Choice
, Loc
));
1069 Set_Discrete_Choices
(Case_Alt_Node
, Choice_List
);
1072 Make_Simple_Return_Statement
(Loc
,
1074 New_Occurrence_Of
(Standard_True
, Loc
));
1076 Set_Statements
(Case_Alt_Node
, New_List
(Return_Node
));
1077 Append
(Case_Alt_Node
, Alt_List
);
1079 Set_Alternatives
(Case_Node
, Alt_List
);
1081 end Build_Case_Statement
;
1083 ---------------------------
1084 -- Build_Dcheck_Function --
1085 ---------------------------
1087 function Build_Dcheck_Function
1088 (Case_Id
: Entity_Id
;
1089 Variant
: Node_Id
) return Entity_Id
1091 Body_Node
: Node_Id
;
1092 Func_Id
: Entity_Id
;
1093 Parameter_List
: List_Id
;
1094 Spec_Node
: Node_Id
;
1097 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
1098 Sequence
:= Sequence
+ 1;
1101 Make_Defining_Identifier
(Loc
,
1102 Chars
=> New_External_Name
(Chars
(Rec_Id
), 'D', Sequence
));
1103 Set_Is_Discriminant_Check_Function
(Func_Id
);
1105 Spec_Node
:= New_Node
(N_Function_Specification
, Loc
);
1106 Set_Defining_Unit_Name
(Spec_Node
, Func_Id
);
1108 Parameter_List
:= Build_Discriminant_Formals
(Rec_Id
, False);
1110 Set_Parameter_Specifications
(Spec_Node
, Parameter_List
);
1111 Set_Result_Definition
(Spec_Node
,
1112 New_Occurrence_Of
(Standard_Boolean
, Loc
));
1113 Set_Specification
(Body_Node
, Spec_Node
);
1114 Set_Declarations
(Body_Node
, New_List
);
1116 Set_Handled_Statement_Sequence
(Body_Node
,
1117 Make_Handled_Sequence_Of_Statements
(Loc
,
1118 Statements
=> New_List
(
1119 Build_Case_Statement
(Case_Id
, Variant
))));
1121 Mutate_Ekind
(Func_Id
, E_Function
);
1122 Set_Mechanism
(Func_Id
, Default_Mechanism
);
1123 Set_Is_Inlined
(Func_Id
, True);
1124 Set_Is_Pure
(Func_Id
, True);
1125 Set_Is_Public
(Func_Id
, Is_Public
(Rec_Id
));
1126 Set_Is_Internal
(Func_Id
, True);
1128 if not Debug_Generated_Code
then
1129 Set_Debug_Info_Off
(Func_Id
);
1132 Analyze
(Body_Node
);
1134 Append_Freeze_Action
(Rec_Id
, Body_Node
);
1135 Set_Dcheck_Function
(Variant
, Func_Id
);
1137 end Build_Dcheck_Function
;
1139 ----------------------------
1140 -- Build_Dcheck_Functions --
1141 ----------------------------
1143 procedure Build_Dcheck_Functions
(Variant_Part_Node
: Node_Id
) is
1144 Component_List_Node
: Node_Id
;
1146 Discr_Name
: Entity_Id
;
1147 Func_Id
: Entity_Id
;
1149 Saved_Enclosing_Func_Id
: Entity_Id
;
1152 -- Build the discriminant-checking function for each variant, and
1153 -- label all components of that variant with the function's name.
1154 -- We only Generate a discriminant-checking function when the
1155 -- variant is not empty, to prevent the creation of dead code.
1157 Discr_Name
:= Entity
(Name
(Variant_Part_Node
));
1158 Variant
:= First_Non_Pragma
(Variants
(Variant_Part_Node
));
1160 while Present
(Variant
) loop
1161 Component_List_Node
:= Component_List
(Variant
);
1163 if not Null_Present
(Component_List_Node
) then
1164 Func_Id
:= Build_Dcheck_Function
(Discr_Name
, Variant
);
1167 First_Non_Pragma
(Component_Items
(Component_List_Node
));
1168 while Present
(Decl
) loop
1169 Set_Discriminant_Checking_Func
1170 (Defining_Identifier
(Decl
), Func_Id
);
1171 Next_Non_Pragma
(Decl
);
1174 if Present
(Variant_Part
(Component_List_Node
)) then
1175 Saved_Enclosing_Func_Id
:= Enclosing_Func_Id
;
1176 Enclosing_Func_Id
:= Func_Id
;
1177 Build_Dcheck_Functions
(Variant_Part
(Component_List_Node
));
1178 Enclosing_Func_Id
:= Saved_Enclosing_Func_Id
;
1182 Next_Non_Pragma
(Variant
);
1184 end Build_Dcheck_Functions
;
1186 -- Start of processing for Build_Discr_Checking_Funcs
1189 -- Only build if not done already
1191 if not Discr_Check_Funcs_Built
(N
) then
1192 Type_Def
:= Type_Definition
(N
);
1194 if Nkind
(Type_Def
) = N_Record_Definition
then
1195 if No
(Component_List
(Type_Def
)) then -- null record.
1198 V
:= Variant_Part
(Component_List
(Type_Def
));
1201 else pragma Assert
(Nkind
(Type_Def
) = N_Derived_Type_Definition
);
1202 if No
(Component_List
(Record_Extension_Part
(Type_Def
))) then
1206 (Component_List
(Record_Extension_Part
(Type_Def
)));
1210 Rec_Id
:= Defining_Identifier
(N
);
1212 if Present
(V
) and then not Is_Unchecked_Union
(Rec_Id
) then
1214 Enclosing_Func_Id
:= Empty
;
1215 Build_Dcheck_Functions
(V
);
1218 Set_Discr_Check_Funcs_Built
(N
);
1220 end Build_Discr_Checking_Funcs
;
1222 ----------------------------------------
1223 -- Build_Or_Copy_Discr_Checking_Funcs --
1224 ----------------------------------------
1226 procedure Build_Or_Copy_Discr_Checking_Funcs
(N
: Node_Id
) is
1227 Typ
: constant Entity_Id
:= Defining_Identifier
(N
);
1229 if Is_Unchecked_Union
(Typ
) or else not Has_Discriminants
(Typ
) then
1231 elsif not Is_Derived_Type
(Typ
)
1232 or else Has_New_Non_Standard_Rep
(Typ
)
1233 or else Is_Tagged_Type
(Typ
)
1235 Build_Discr_Checking_Funcs
(N
);
1237 Copy_Discr_Checking_Funcs
(N
);
1239 end Build_Or_Copy_Discr_Checking_Funcs
;
1241 --------------------------------
1242 -- Build_Discriminant_Formals --
1243 --------------------------------
1245 function Build_Discriminant_Formals
1246 (Rec_Id
: Entity_Id
;
1247 Use_Dl
: Boolean) return List_Id
1249 Loc
: Source_Ptr
:= Sloc
(Rec_Id
);
1250 Parameter_List
: constant List_Id
:= New_List
;
1253 Formal_Type
: Entity_Id
;
1254 Param_Spec_Node
: Node_Id
;
1257 if Has_Discriminants
(Rec_Id
) then
1258 D
:= First_Discriminant
(Rec_Id
);
1259 while Present
(D
) loop
1263 Formal
:= Discriminal
(D
);
1264 Formal_Type
:= Etype
(Formal
);
1266 Formal
:= Make_Defining_Identifier
(Loc
, Chars
(D
));
1267 Formal_Type
:= Etype
(D
);
1271 Make_Parameter_Specification
(Loc
,
1272 Defining_Identifier
=> Formal
,
1274 New_Occurrence_Of
(Formal_Type
, Loc
));
1275 Append
(Param_Spec_Node
, Parameter_List
);
1276 Next_Discriminant
(D
);
1280 return Parameter_List
;
1281 end Build_Discriminant_Formals
;
1283 --------------------------------------
1284 -- Build_Equivalent_Array_Aggregate --
1285 --------------------------------------
1287 function Build_Equivalent_Array_Aggregate
(T
: Entity_Id
) return Node_Id
is
1288 Loc
: constant Source_Ptr
:= Sloc
(T
);
1289 Comp_Type
: constant Entity_Id
:= Component_Type
(T
);
1290 Index_Type
: constant Entity_Id
:= Etype
(First_Index
(T
));
1291 Proc
: constant Entity_Id
:= Base_Init_Proc
(T
);
1297 if not Is_Constrained
(T
)
1298 or else Number_Dimensions
(T
) > 1
1301 Initialization_Warning
(T
);
1305 Lo
:= Type_Low_Bound
(Index_Type
);
1306 Hi
:= Type_High_Bound
(Index_Type
);
1308 if not Compile_Time_Known_Value
(Lo
)
1309 or else not Compile_Time_Known_Value
(Hi
)
1311 Initialization_Warning
(T
);
1315 if Is_Record_Type
(Comp_Type
)
1316 and then Present
(Base_Init_Proc
(Comp_Type
))
1318 Expr
:= Static_Initialization
(Base_Init_Proc
(Comp_Type
));
1321 Initialization_Warning
(T
);
1326 Initialization_Warning
(T
);
1330 Aggr
:= Make_Aggregate
(Loc
, No_List
, New_List
);
1331 Set_Etype
(Aggr
, T
);
1332 Set_Aggregate_Bounds
(Aggr
,
1334 Low_Bound
=> New_Copy
(Lo
),
1335 High_Bound
=> New_Copy
(Hi
)));
1336 Set_Parent
(Aggr
, Parent
(Proc
));
1338 Append_To
(Component_Associations
(Aggr
),
1339 Make_Component_Association
(Loc
,
1343 Low_Bound
=> New_Copy
(Lo
),
1344 High_Bound
=> New_Copy
(Hi
))),
1345 Expression
=> Expr
));
1347 if Static_Array_Aggregate
(Aggr
) then
1350 Initialization_Warning
(T
);
1353 end Build_Equivalent_Array_Aggregate
;
1355 ---------------------------------------
1356 -- Build_Equivalent_Record_Aggregate --
1357 ---------------------------------------
1359 function Build_Equivalent_Record_Aggregate
(T
: Entity_Id
) return Node_Id
is
1362 Comp_Type
: Entity_Id
;
1365 if not Is_Record_Type
(T
)
1366 or else Has_Discriminants
(T
)
1367 or else Is_Limited_Type
(T
)
1368 or else Has_Non_Standard_Rep
(T
)
1370 Initialization_Warning
(T
);
1374 Comp
:= First_Component
(T
);
1376 -- A null record needs no warning
1382 while Present
(Comp
) loop
1384 -- Array components are acceptable if initialized by a positional
1385 -- aggregate with static components.
1387 if Is_Array_Type
(Etype
(Comp
)) then
1388 Comp_Type
:= Component_Type
(Etype
(Comp
));
1390 if Nkind
(Parent
(Comp
)) /= N_Component_Declaration
1391 or else No
(Expression
(Parent
(Comp
)))
1392 or else Nkind
(Expression
(Parent
(Comp
))) /= N_Aggregate
1394 Initialization_Warning
(T
);
1397 elsif Is_Scalar_Type
(Component_Type
(Etype
(Comp
)))
1399 (not Compile_Time_Known_Value
(Type_Low_Bound
(Comp_Type
))
1401 not Compile_Time_Known_Value
(Type_High_Bound
(Comp_Type
)))
1403 Initialization_Warning
(T
);
1407 not Static_Array_Aggregate
(Expression
(Parent
(Comp
)))
1409 Initialization_Warning
(T
);
1412 -- We need to return empty if the type has predicates because
1413 -- this would otherwise duplicate calls to the predicate
1414 -- function. If the type hasn't been frozen before being
1415 -- referenced in the current record, the extraneous call to
1416 -- the predicate function would be inserted somewhere before
1417 -- the predicate function is elaborated, which would result in
1420 elsif Has_Predicates
(Etype
(Comp
)) then
1424 elsif Is_Scalar_Type
(Etype
(Comp
)) then
1425 Comp_Type
:= Etype
(Comp
);
1427 if Nkind
(Parent
(Comp
)) /= N_Component_Declaration
1428 or else No
(Expression
(Parent
(Comp
)))
1429 or else not Compile_Time_Known_Value
(Expression
(Parent
(Comp
)))
1430 or else not Compile_Time_Known_Value
(Type_Low_Bound
(Comp_Type
))
1432 Compile_Time_Known_Value
(Type_High_Bound
(Comp_Type
))
1434 Initialization_Warning
(T
);
1438 -- For now, other types are excluded
1441 Initialization_Warning
(T
);
1445 Next_Component
(Comp
);
1448 -- All components have static initialization. Build positional aggregate
1449 -- from the given expressions or defaults.
1451 Agg
:= Make_Aggregate
(Sloc
(T
), New_List
, New_List
);
1452 Set_Parent
(Agg
, Parent
(T
));
1454 Comp
:= First_Component
(T
);
1455 while Present
(Comp
) loop
1457 (New_Copy_Tree
(Expression
(Parent
(Comp
))), Expressions
(Agg
));
1458 Next_Component
(Comp
);
1461 Analyze_And_Resolve
(Agg
, T
);
1463 end Build_Equivalent_Record_Aggregate
;
1465 ----------------------------
1466 -- Init_Proc_Level_Formal --
1467 ----------------------------
1469 function Init_Proc_Level_Formal
(Proc
: Entity_Id
) return Entity_Id
is
1472 -- Move through the formals of the initialization procedure Proc to find
1473 -- the extra accessibility level parameter associated with the object
1474 -- being initialized.
1476 Form
:= First_Formal
(Proc
);
1477 while Present
(Form
) loop
1478 if Chars
(Form
) = Name_uInit_Level
then
1485 -- No formal was found, return Empty
1488 end Init_Proc_Level_Formal
;
1490 -------------------------------
1491 -- Build_Initialization_Call --
1492 -------------------------------
1494 -- References to a discriminant inside the record type declaration can
1495 -- appear either in the subtype_indication to constrain a record or an
1496 -- array, or as part of a larger expression given for the initial value
1497 -- of a component. In both of these cases N appears in the record
1498 -- initialization procedure and needs to be replaced by the formal
1499 -- parameter of the initialization procedure which corresponds to that
1502 -- In the example below, references to discriminants D1 and D2 in proc_1
1503 -- are replaced by references to formals with the same name
1506 -- A similar replacement is done for calls to any record initialization
1507 -- procedure for any components that are themselves of a record type.
1509 -- type R (D1, D2 : Integer) is record
1510 -- X : Integer := F * D1;
1511 -- Y : Integer := F * D2;
1514 -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
1518 -- Out_2.X := F * D1;
1519 -- Out_2.Y := F * D2;
1522 function Build_Initialization_Call
1526 In_Init_Proc
: Boolean := False;
1527 Enclos_Type
: Entity_Id
:= Empty
;
1528 Discr_Map
: Elist_Id
:= New_Elmt_List
;
1529 With_Default_Init
: Boolean := False;
1530 Constructor_Ref
: Node_Id
:= Empty
;
1531 Init_Control_Actual
: Entity_Id
:= Empty
) return List_Id
1533 Res
: constant List_Id
:= New_List
;
1535 Full_Type
: Entity_Id
;
1537 procedure Check_Predicated_Discriminant
1540 -- Discriminants whose subtypes have predicates are checked in two
1542 -- a) When an object is default-initialized and assertions are enabled
1543 -- we check that the value of the discriminant obeys the predicate.
1545 -- b) In all cases, if the discriminant controls a variant and the
1546 -- variant has no others_choice, Constraint_Error must be raised if
1547 -- the predicate is violated, because there is no variant covered
1548 -- by the illegal discriminant value.
1550 -----------------------------------
1551 -- Check_Predicated_Discriminant --
1552 -----------------------------------
1554 procedure Check_Predicated_Discriminant
1558 Typ
: constant Entity_Id
:= Etype
(Discr
);
1560 procedure Check_Missing_Others
(V
: Node_Id
);
1561 -- Check that a given variant and its nested variants have an others
1562 -- choice, and generate a constraint error raise when it does not.
1564 --------------------------
1565 -- Check_Missing_Others --
1566 --------------------------
1568 procedure Check_Missing_Others
(V
: Node_Id
) is
1574 Last_Var
:= Last_Non_Pragma
(Variants
(V
));
1575 Choice
:= First
(Discrete_Choices
(Last_Var
));
1577 -- An others_choice is added during expansion for gcc use, but
1578 -- does not cover the illegality.
1580 if Entity
(Name
(V
)) = Discr
then
1582 and then (Nkind
(Choice
) /= N_Others_Choice
1583 or else not Comes_From_Source
(Choice
))
1585 Check_Expression_Against_Static_Predicate
(Val
, Typ
);
1587 if not Is_Static_Expression
(Val
) then
1589 Make_Raise_Constraint_Error
(Loc
,
1592 Right_Opnd
=> Make_Predicate_Call
(Typ
, Val
)),
1593 Reason
=> CE_Invalid_Data
));
1598 -- Check whether some nested variant is ruled by the predicated
1601 Alt
:= First
(Variants
(V
));
1602 while Present
(Alt
) loop
1603 if Nkind
(Alt
) = N_Variant
1604 and then Present
(Variant_Part
(Component_List
(Alt
)))
1606 Check_Missing_Others
1607 (Variant_Part
(Component_List
(Alt
)));
1612 end Check_Missing_Others
;
1618 -- Start of processing for Check_Predicated_Discriminant
1621 if Ekind
(Base_Type
(Full_Type
)) = E_Record_Type
then
1622 Def
:= Type_Definition
(Parent
(Base_Type
(Full_Type
)));
1627 if Policy_In_Effect
(Name_Assert
) = Name_Check
1628 and then not Predicates_Ignored
(Etype
(Discr
))
1630 Prepend_To
(Res
, Make_Predicate_Check
(Typ
, Val
));
1633 -- If discriminant controls a variant, verify that predicate is
1634 -- obeyed or else an Others_Choice is present.
1636 if Nkind
(Def
) = N_Record_Definition
1637 and then Present
(Variant_Part
(Component_List
(Def
)))
1638 and then Policy_In_Effect
(Name_Assert
) = Name_Ignore
1640 Check_Missing_Others
(Variant_Part
(Component_List
(Def
)));
1642 end Check_Predicated_Discriminant
;
1651 First_Arg
: Node_Id
;
1652 Full_Init_Type
: Entity_Id
;
1653 Init_Call
: Node_Id
;
1654 Init_Type
: Entity_Id
;
1657 -- Start of processing for Build_Initialization_Call
1660 pragma Assert
(Constructor_Ref
= Empty
1661 or else Is_CPP_Constructor_Call
(Constructor_Ref
));
1663 if No
(Constructor_Ref
) then
1664 Proc
:= Base_Init_Proc
(Typ
);
1666 Proc
:= Base_Init_Proc
(Typ
, Entity
(Name
(Constructor_Ref
)));
1669 pragma Assert
(Present
(Proc
));
1670 Init_Type
:= Etype
(First_Formal
(Proc
));
1671 Full_Init_Type
:= Underlying_Type
(Init_Type
);
1673 -- Nothing to do if the Init_Proc is null, unless Initialize_Scalars
1674 -- is active (in which case we make the call anyway, since in the
1675 -- actual compiled client it may be non null).
1677 if Is_Null_Init_Proc
(Proc
) and then not Init_Or_Norm_Scalars
then
1680 -- Nothing to do for an array of controlled components that have only
1681 -- the inherited Initialize primitive. This is a useful optimization
1684 elsif Is_Trivial_Subprogram
(Proc
)
1685 and then Is_Array_Type
(Full_Init_Type
)
1687 return New_List
(Make_Null_Statement
(Loc
));
1690 -- Use the [underlying] full view when dealing with a private type. This
1691 -- may require several steps depending on derivations.
1695 if Is_Private_Type
(Full_Type
) then
1696 if Present
(Full_View
(Full_Type
)) then
1697 Full_Type
:= Full_View
(Full_Type
);
1699 elsif Present
(Underlying_Full_View
(Full_Type
)) then
1700 Full_Type
:= Underlying_Full_View
(Full_Type
);
1702 -- When a private type acts as a generic actual and lacks a full
1703 -- view, use the base type.
1705 elsif Is_Generic_Actual_Type
(Full_Type
) then
1706 Full_Type
:= Base_Type
(Full_Type
);
1708 elsif Ekind
(Full_Type
) = E_Private_Subtype
1709 and then (not Has_Discriminants
(Full_Type
)
1710 or else No
(Discriminant_Constraint
(Full_Type
)))
1712 Full_Type
:= Etype
(Full_Type
);
1714 -- The loop has recovered the [underlying] full view, stop the
1721 -- The type is not private, nothing to do
1728 -- If Typ is derived, the procedure is the initialization procedure for
1729 -- the root type. Wrap the argument in an conversion to make it type
1730 -- honest. Actually it isn't quite type honest, because there can be
1731 -- conflicts of views in the private type case. That is why we set
1732 -- Conversion_OK in the conversion node.
1734 if (Is_Record_Type
(Typ
)
1735 or else Is_Array_Type
(Typ
)
1736 or else Is_Private_Type
(Typ
))
1737 and then Init_Type
/= Base_Type
(Typ
)
1739 First_Arg
:= OK_Convert_To
(Etype
(Init_Type
), Id_Ref
);
1740 Set_Etype
(First_Arg
, Init_Type
);
1743 First_Arg
:= Id_Ref
;
1746 Args
:= New_List
(Convert_Concurrent
(First_Arg
, Typ
));
1748 -- In the tasks case, add _Master as the value of the _Master parameter
1749 -- and _Chain as the value of the _Chain parameter. At the outer level,
1750 -- these will be variables holding the corresponding values obtained
1751 -- from GNARL. At inner levels, they will be the parameters passed down
1752 -- through the outer routines.
1754 if Has_Task
(Full_Type
) then
1755 if Restriction_Active
(No_Task_Hierarchy
) then
1756 Append_To
(Args
, Make_Integer_Literal
(Loc
, Library_Task_Level
));
1758 Append_To
(Args
, Make_Identifier
(Loc
, Name_uMaster
));
1761 -- Add _Chain (not done for sequential elaboration policy, see
1762 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
1764 if Partition_Elaboration_Policy
/= 'S' then
1765 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
1768 -- Ada 2005 (AI-287): In case of default initialized components
1769 -- with tasks, we generate a null string actual parameter.
1770 -- This is just a workaround that must be improved later???
1772 if With_Default_Init
then
1774 Make_String_Literal
(Loc
,
1779 Build_Task_Image_Decls
(Loc
, Id_Ref
, Enclos_Type
, In_Init_Proc
);
1780 Decl
:= Last
(Decls
);
1783 New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
));
1784 Append_List
(Decls
, Res
);
1792 -- Handle the optionally generated formal *_skip_null_excluding_checks
1794 -- Look at the associated node for the object we are referencing and
1795 -- verify that we are expanding a call to an Init_Proc for an internally
1796 -- generated object declaration before passing True and skipping the
1799 if Needs_Conditional_Null_Excluding_Check
(Full_Init_Type
)
1800 and then Nkind
(Id_Ref
) in N_Has_Entity
1801 and then (Comes_From_Source
(Id_Ref
)
1802 or else (Present
(Associated_Node
(Id_Ref
))
1803 and then Comes_From_Source
1804 (Associated_Node
(Id_Ref
))))
1806 Append_To
(Args
, New_Occurrence_Of
(Standard_True
, Loc
));
1809 -- Add discriminant values if discriminants are present
1811 if Has_Discriminants
(Full_Init_Type
) then
1812 Discr
:= First_Discriminant
(Full_Init_Type
);
1813 while Present
(Discr
) loop
1815 -- If this is a discriminated concurrent type, the init_proc
1816 -- for the corresponding record is being called. Use that type
1817 -- directly to find the discriminant value, to handle properly
1818 -- intervening renamed discriminants.
1821 T
: Entity_Id
:= Full_Type
;
1824 if Is_Protected_Type
(T
) then
1825 T
:= Corresponding_Record_Type
(T
);
1829 Get_Discriminant_Value
(
1832 Discriminant_Constraint
(Full_Type
));
1835 -- If the target has access discriminants, and is constrained by
1836 -- an access to the enclosing construct, i.e. a current instance,
1837 -- replace the reference to the type by a reference to the object.
1839 if Nkind
(Arg
) = N_Attribute_Reference
1840 and then Is_Access_Type
(Etype
(Arg
))
1841 and then Is_Entity_Name
(Prefix
(Arg
))
1842 and then Is_Type
(Entity
(Prefix
(Arg
)))
1845 Make_Attribute_Reference
(Loc
,
1846 Prefix
=> New_Copy
(Prefix
(Id_Ref
)),
1847 Attribute_Name
=> Name_Unrestricted_Access
);
1849 elsif In_Init_Proc
then
1851 -- Replace any possible references to the discriminant in the
1852 -- call to the record initialization procedure with references
1853 -- to the appropriate formal parameter.
1855 if Nkind
(Arg
) = N_Identifier
1856 and then Ekind
(Entity
(Arg
)) = E_Discriminant
1858 Arg
:= New_Occurrence_Of
(Discriminal
(Entity
(Arg
)), Loc
);
1860 -- Otherwise make a copy of the default expression. Note that
1861 -- we use the current Sloc for this, because we do not want the
1862 -- call to appear to be at the declaration point. Within the
1863 -- expression, replace discriminants with their discriminals.
1867 New_Copy_Tree
(Arg
, Map
=> Discr_Map
, New_Sloc
=> Loc
);
1871 if Is_Constrained
(Full_Type
) then
1872 Arg
:= Duplicate_Subexpr_No_Checks
(Arg
);
1874 -- The constraints come from the discriminant default exps,
1875 -- they must be reevaluated, so we use New_Copy_Tree but we
1876 -- ensure the proper Sloc (for any embedded calls).
1877 -- In addition, if a predicate check is needed on the value
1878 -- of the discriminant, insert it ahead of the call.
1880 Arg
:= New_Copy_Tree
(Arg
, New_Sloc
=> Loc
);
1883 if Has_Predicates
(Etype
(Discr
)) then
1884 Check_Predicated_Discriminant
(Arg
, Discr
);
1888 -- Ada 2005 (AI-287): In case of default initialized components,
1889 -- if the component is constrained with a discriminant of the
1890 -- enclosing type, we need to generate the corresponding selected
1891 -- component node to access the discriminant value. In other cases
1892 -- this is not required, either because we are inside the init
1893 -- proc and we use the corresponding formal, or else because the
1894 -- component is constrained by an expression.
1896 if With_Default_Init
1897 and then Nkind
(Id_Ref
) = N_Selected_Component
1898 and then Nkind
(Arg
) = N_Identifier
1899 and then Ekind
(Entity
(Arg
)) = E_Discriminant
1902 Make_Selected_Component
(Loc
,
1903 Prefix
=> New_Copy_Tree
(Prefix
(Id_Ref
)),
1904 Selector_Name
=> Arg
));
1906 Append_To
(Args
, Arg
);
1909 Next_Discriminant
(Discr
);
1913 -- If this is a call to initialize the parent component of a derived
1914 -- tagged type, indicate that the tag should not be set in the parent.
1915 -- This is done via the actual parameter value for the Init_Control
1916 -- formal parameter, which is also used to deal with late initialization
1919 -- We pass in Full_Init_Except_Tag unless the caller tells us to do
1920 -- otherwise (by passing in a nonempty Init_Control_Actual parameter).
1922 if Is_Tagged_Type
(Full_Init_Type
)
1923 and then not Is_CPP_Class
(Full_Init_Type
)
1924 and then Nkind
(Id_Ref
) = N_Selected_Component
1925 and then Chars
(Selector_Name
(Id_Ref
)) = Name_uParent
1928 use Initialization_Control
;
1931 (if Present
(Init_Control_Actual
)
1932 then Init_Control_Actual
1933 else Make_Mode_Literal
(Loc
, Full_Init_Except_Tag
)));
1935 elsif Present
(Constructor_Ref
) then
1936 Append_List_To
(Args
,
1937 New_Copy_List
(Parameter_Associations
(Constructor_Ref
)));
1940 -- Pass the extra accessibility level parameter associated with the
1941 -- level of the object being initialized when required.
1943 if Is_Entity_Name
(Id_Ref
)
1944 and then Present
(Init_Proc_Level_Formal
(Proc
))
1947 Make_Parameter_Association
(Loc
,
1949 Make_Identifier
(Loc
, Name_uInit_Level
),
1950 Explicit_Actual_Parameter
=>
1951 Accessibility_Level
(Id_Ref
, Dynamic_Level
)));
1955 Make_Procedure_Call_Statement
(Loc
,
1956 Name
=> New_Occurrence_Of
(Proc
, Loc
),
1957 Parameter_Associations
=> Args
));
1959 if Needs_Finalization
(Typ
)
1960 and then Nkind
(Id_Ref
) = N_Selected_Component
1962 if Chars
(Selector_Name
(Id_Ref
)) /= Name_uParent
then
1965 (Obj_Ref
=> New_Copy_Tree
(First_Arg
),
1968 -- Guard against a missing [Deep_]Initialize when the type was not
1971 if Present
(Init_Call
) then
1972 Append_To
(Res
, Init_Call
);
1980 when RE_Not_Available
=>
1982 end Build_Initialization_Call
;
1984 ----------------------------
1985 -- Build_Record_Init_Proc --
1986 ----------------------------
1988 procedure Build_Record_Init_Proc
(N
: Node_Id
; Rec_Ent
: Entity_Id
) is
1989 Decls
: constant List_Id
:= New_List
;
1990 Discr_Map
: constant Elist_Id
:= New_Elmt_List
;
1991 Loc
: constant Source_Ptr
:= Sloc
(Rec_Ent
);
1993 Proc_Id
: Entity_Id
;
1994 Rec_Type
: Entity_Id
;
1996 Init_Control_Formal
: Entity_Id
:= Empty
; -- set in Build_Init_Statements
1997 Has_Late_Init_Comp
: Boolean := False; -- set in Build_Init_Statements
1999 function Build_Assignment
2001 Default
: Node_Id
) return List_Id
;
2002 -- Build an assignment statement that assigns the default expression to
2003 -- its corresponding record component if defined. The left-hand side of
2004 -- the assignment is marked Assignment_OK so that initialization of
2005 -- limited private records works correctly. This routine may also build
2006 -- an adjustment call if the component is controlled.
2008 procedure Build_Discriminant_Assignments
(Statement_List
: List_Id
);
2009 -- If the record has discriminants, add assignment statements to
2010 -- Statement_List to initialize the discriminant values from the
2011 -- arguments of the initialization procedure.
2013 function Build_Init_Statements
(Comp_List
: Node_Id
) return List_Id
;
2014 -- Build a list representing a sequence of statements which initialize
2015 -- components of the given component list. This may involve building
2016 -- case statements for the variant parts. Append any locally declared
2017 -- objects on list Decls.
2019 function Build_Init_Call_Thru
(Parameters
: List_Id
) return List_Id
;
2020 -- Given an untagged type-derivation that declares discriminants, e.g.
2022 -- type R (R1, R2 : Integer) is record ... end record;
2023 -- type D (D1 : Integer) is new R (1, D1);
2025 -- we make the _init_proc of D be
2027 -- procedure _init_proc (X : D; D1 : Integer) is
2029 -- _init_proc (R (X), 1, D1);
2032 -- This function builds the call statement in this _init_proc.
2034 procedure Build_CPP_Init_Procedure
;
2035 -- Build the tree corresponding to the procedure specification and body
2036 -- of the IC procedure that initializes the C++ part of the dispatch
2037 -- table of an Ada tagged type that is a derivation of a CPP type.
2038 -- Install it as the CPP_Init TSS.
2040 procedure Build_Init_Procedure
;
2041 -- Build the tree corresponding to the procedure specification and body
2042 -- of the initialization procedure and install it as the _init TSS.
2044 procedure Build_Offset_To_Top_Functions
;
2045 -- Ada 2005 (AI-251): Build the tree corresponding to the procedure spec
2046 -- and body of Offset_To_Top, a function used in conjuction with types
2047 -- having secondary dispatch tables.
2049 procedure Build_Record_Checks
(S
: Node_Id
; Check_List
: List_Id
);
2050 -- Add range checks to components of discriminated records. S is a
2051 -- subtype indication of a record component. Check_List is a list
2052 -- to which the check actions are appended.
2054 function Component_Needs_Simple_Initialization
2055 (T
: Entity_Id
) return Boolean;
2056 -- Determine if a component needs simple initialization, given its type
2057 -- T. This routine is the same as Needs_Simple_Initialization except for
2058 -- components of type Tag and Interface_Tag. These two access types do
2059 -- not require initialization since they are explicitly initialized by
2062 function Parent_Subtype_Renaming_Discrims
return Boolean;
2063 -- Returns True for base types N that rename discriminants, else False
2065 function Requires_Init_Proc
(Rec_Id
: Entity_Id
) return Boolean;
2066 -- Determine whether a record initialization procedure needs to be
2067 -- generated for the given record type.
2069 ----------------------
2070 -- Build_Assignment --
2071 ----------------------
2073 function Build_Assignment
2075 Default
: Node_Id
) return List_Id
2077 Default_Loc
: constant Source_Ptr
:= Sloc
(Default
);
2078 Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Id
));
2088 Make_Selected_Component
(Default_Loc
,
2089 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2090 Selector_Name
=> New_Occurrence_Of
(Id
, Default_Loc
));
2091 Set_Assignment_OK
(Lhs
);
2093 -- Take copy of Default to ensure that later copies of this component
2094 -- declaration in derived types see the original tree, not a node
2095 -- rewritten during expansion of the init_proc. If the copy contains
2096 -- itypes, the scope of the new itypes is the init_proc being built.
2099 Map
: Elist_Id
:= No_Elist
;
2102 if Has_Late_Init_Comp
then
2103 -- Map the type to the _Init parameter in order to
2104 -- handle "current instance" references.
2106 Map
:= New_Elmt_List
2108 Elmt2
=> Defining_Identifier
(First
2109 (Parameter_Specifications
2110 (Parent
(Proc_Id
)))));
2112 -- If the type has an incomplete view, a current instance
2113 -- may have an incomplete type. In that case, it must also be
2114 -- replaced by the formal of the Init_Proc.
2116 if Nkind
(Parent
(Rec_Type
)) = N_Full_Type_Declaration
2117 and then Present
(Incomplete_View
(Parent
(Rec_Type
)))
2120 N
=> Incomplete_View
(Parent
(Rec_Type
)),
2123 N
=> Defining_Identifier
2125 (Parameter_Specifications
2126 (Parent
(Proc_Id
)))),
2131 Exp
:= New_Copy_Tree
(Default
, New_Scope
=> Proc_Id
, Map
=> Map
);
2135 Make_Assignment_Statement
(Loc
,
2137 Expression
=> Exp
));
2139 Set_No_Ctrl_Actions
(First
(Res
));
2141 Exp_Q
:= Unqualify
(Exp
);
2143 -- Adjust the tag if tagged (because of possible view conversions).
2144 -- Suppress the tag adjustment when not Tagged_Type_Expansion because
2145 -- tags are represented implicitly in objects, and when the record is
2146 -- initialized with a raise expression.
2148 if Is_Tagged_Type
(Typ
)
2149 and then Tagged_Type_Expansion
2150 and then Nkind
(Exp_Q
) /= N_Raise_Expression
2153 Make_Tag_Assignment_From_Type
2155 New_Copy_Tree
(Lhs
, New_Scope
=> Proc_Id
),
2156 Underlying_Type
(Typ
)));
2159 -- Adjust the component if controlled except if it is an aggregate
2160 -- that will be expanded inline.
2162 if Needs_Finalization
(Typ
)
2163 and then Nkind
(Exp_Q
) not in N_Aggregate | N_Extension_Aggregate
2164 and then not Is_Build_In_Place_Function_Call
(Exp
)
2168 (Obj_Ref
=> New_Copy_Tree
(Lhs
),
2171 -- Guard against a missing [Deep_]Adjust when the component type
2172 -- was not properly frozen.
2174 if Present
(Adj_Call
) then
2175 Append_To
(Res
, Adj_Call
);
2182 when RE_Not_Available
=>
2184 end Build_Assignment
;
2186 ------------------------------------
2187 -- Build_Discriminant_Assignments --
2188 ------------------------------------
2190 procedure Build_Discriminant_Assignments
(Statement_List
: List_Id
) is
2191 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Rec_Type
);
2196 if Has_Discriminants
(Rec_Type
)
2197 and then not Is_Unchecked_Union
(Rec_Type
)
2199 D
:= First_Discriminant
(Rec_Type
);
2200 while Present
(D
) loop
2202 -- Don't generate the assignment for discriminants in derived
2203 -- tagged types if the discriminant is a renaming of some
2204 -- ancestor discriminant. This initialization will be done
2205 -- when initializing the _parent field of the derived record.
2208 and then Present
(Corresponding_Discriminant
(D
))
2214 Append_List_To
(Statement_List
,
2215 Build_Assignment
(D
,
2216 New_Occurrence_Of
(Discriminal
(D
), D_Loc
)));
2219 Next_Discriminant
(D
);
2222 end Build_Discriminant_Assignments
;
2224 --------------------------
2225 -- Build_Init_Call_Thru --
2226 --------------------------
2228 function Build_Init_Call_Thru
(Parameters
: List_Id
) return List_Id
is
2229 Parent_Proc
: constant Entity_Id
:=
2230 Base_Init_Proc
(Etype
(Rec_Type
));
2232 Parent_Type
: constant Entity_Id
:=
2233 Etype
(First_Formal
(Parent_Proc
));
2235 Uparent_Type
: constant Entity_Id
:=
2236 Underlying_Type
(Parent_Type
);
2238 First_Discr_Param
: Node_Id
;
2242 First_Arg
: Node_Id
;
2243 Parent_Discr
: Entity_Id
;
2247 -- First argument (_Init) is the object to be initialized.
2248 -- ??? not sure where to get a reasonable Loc for First_Arg
2251 OK_Convert_To
(Parent_Type
,
2253 (Defining_Identifier
(First
(Parameters
)), Loc
));
2255 Set_Etype
(First_Arg
, Parent_Type
);
2257 Args
:= New_List
(Convert_Concurrent
(First_Arg
, Rec_Type
));
2259 -- In the tasks case,
2260 -- add _Master as the value of the _Master parameter
2261 -- add _Chain as the value of the _Chain parameter.
2262 -- add _Task_Name as the value of the _Task_Name parameter.
2263 -- At the outer level, these will be variables holding the
2264 -- corresponding values obtained from GNARL or the expander.
2266 -- At inner levels, they will be the parameters passed down through
2267 -- the outer routines.
2269 First_Discr_Param
:= Next
(First
(Parameters
));
2271 if Has_Task
(Rec_Type
) then
2272 if Restriction_Active
(No_Task_Hierarchy
) then
2274 (Args
, Make_Integer_Literal
(Loc
, Library_Task_Level
));
2276 Append_To
(Args
, Make_Identifier
(Loc
, Name_uMaster
));
2279 -- Add _Chain (not done for sequential elaboration policy, see
2280 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
2282 if Partition_Elaboration_Policy
/= 'S' then
2283 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
2286 Append_To
(Args
, Make_Identifier
(Loc
, Name_uTask_Name
));
2287 First_Discr_Param
:= Next
(Next
(Next
(First_Discr_Param
)));
2290 -- Append discriminant values
2292 if Has_Discriminants
(Uparent_Type
) then
2293 pragma Assert
(not Is_Tagged_Type
(Uparent_Type
));
2295 Parent_Discr
:= First_Discriminant
(Uparent_Type
);
2296 while Present
(Parent_Discr
) loop
2298 -- Get the initial value for this discriminant
2299 -- ??? needs to be cleaned up to use parent_Discr_Constr
2303 Discr
: Entity_Id
:=
2304 First_Stored_Discriminant
(Uparent_Type
);
2306 Discr_Value
: Elmt_Id
:=
2307 First_Elmt
(Stored_Constraint
(Rec_Type
));
2310 while Original_Record_Component
(Parent_Discr
) /= Discr
loop
2311 Next_Stored_Discriminant
(Discr
);
2312 Next_Elmt
(Discr_Value
);
2315 Arg
:= Node
(Discr_Value
);
2318 -- Append it to the list
2320 if Nkind
(Arg
) = N_Identifier
2321 and then Ekind
(Entity
(Arg
)) = E_Discriminant
2324 New_Occurrence_Of
(Discriminal
(Entity
(Arg
)), Loc
));
2326 -- Case of access discriminants. We replace the reference
2327 -- to the type by a reference to the actual object.
2329 -- Is above comment right??? Use of New_Copy below seems mighty
2333 Append_To
(Args
, New_Copy
(Arg
));
2336 Next_Discriminant
(Parent_Discr
);
2342 Make_Procedure_Call_Statement
(Loc
,
2344 New_Occurrence_Of
(Parent_Proc
, Loc
),
2345 Parameter_Associations
=> Args
));
2348 end Build_Init_Call_Thru
;
2350 -----------------------------------
2351 -- Build_Offset_To_Top_Functions --
2352 -----------------------------------
2354 procedure Build_Offset_To_Top_Functions
is
2356 procedure Build_Offset_To_Top_Function
(Iface_Comp
: Entity_Id
);
2358 -- function Fxx (O : Address) return Storage_Offset is
2359 -- type Acc is access all <Typ>;
2361 -- return Acc!(O).Iface_Comp'Position;
2364 ----------------------------------
2365 -- Build_Offset_To_Top_Function --
2366 ----------------------------------
2368 procedure Build_Offset_To_Top_Function
(Iface_Comp
: Entity_Id
) is
2369 Body_Node
: Node_Id
;
2370 Func_Id
: Entity_Id
;
2371 Spec_Node
: Node_Id
;
2372 Acc_Type
: Entity_Id
;
2375 Func_Id
:= Make_Temporary
(Loc
, 'F');
2376 Set_DT_Offset_To_Top_Func
(Iface_Comp
, Func_Id
);
2379 -- function Fxx (O : in Rec_Typ) return Storage_Offset;
2381 Spec_Node
:= New_Node
(N_Function_Specification
, Loc
);
2382 Set_Defining_Unit_Name
(Spec_Node
, Func_Id
);
2383 Set_Parameter_Specifications
(Spec_Node
, New_List
(
2384 Make_Parameter_Specification
(Loc
,
2385 Defining_Identifier
=>
2386 Make_Defining_Identifier
(Loc
, Name_uO
),
2389 New_Occurrence_Of
(RTE
(RE_Address
), Loc
))));
2390 Set_Result_Definition
(Spec_Node
,
2391 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
2394 -- function Fxx (O : in Rec_Typ) return Storage_Offset is
2396 -- return -O.Iface_Comp'Position;
2399 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
2400 Set_Specification
(Body_Node
, Spec_Node
);
2402 Acc_Type
:= Make_Temporary
(Loc
, 'T');
2403 Set_Declarations
(Body_Node
, New_List
(
2404 Make_Full_Type_Declaration
(Loc
,
2405 Defining_Identifier
=> Acc_Type
,
2407 Make_Access_To_Object_Definition
(Loc
,
2408 All_Present
=> True,
2409 Null_Exclusion_Present
=> False,
2410 Constant_Present
=> False,
2411 Subtype_Indication
=>
2412 New_Occurrence_Of
(Rec_Type
, Loc
)))));
2414 Set_Handled_Statement_Sequence
(Body_Node
,
2415 Make_Handled_Sequence_Of_Statements
(Loc
,
2416 Statements
=> New_List
(
2417 Make_Simple_Return_Statement
(Loc
,
2420 Make_Attribute_Reference
(Loc
,
2422 Make_Selected_Component
(Loc
,
2424 Make_Explicit_Dereference
(Loc
,
2425 Unchecked_Convert_To
(Acc_Type
,
2426 Make_Identifier
(Loc
, Name_uO
))),
2428 New_Occurrence_Of
(Iface_Comp
, Loc
)),
2429 Attribute_Name
=> Name_Position
))))));
2431 Mutate_Ekind
(Func_Id
, E_Function
);
2432 Set_Mechanism
(Func_Id
, Default_Mechanism
);
2433 Set_Is_Internal
(Func_Id
, True);
2435 if not Debug_Generated_Code
then
2436 Set_Debug_Info_Off
(Func_Id
);
2439 Analyze
(Body_Node
);
2441 Append_Freeze_Action
(Rec_Type
, Body_Node
);
2442 end Build_Offset_To_Top_Function
;
2446 Iface_Comp
: Node_Id
;
2447 Iface_Comp_Elmt
: Elmt_Id
;
2448 Ifaces_Comp_List
: Elist_Id
;
2450 -- Start of processing for Build_Offset_To_Top_Functions
2453 -- Offset_To_Top_Functions are built only for derivations of types
2454 -- with discriminants that cover interface types.
2455 -- Nothing is needed either in case of virtual targets, since
2456 -- interfaces are handled directly by the target.
2458 if not Is_Tagged_Type
(Rec_Type
)
2459 or else Etype
(Rec_Type
) = Rec_Type
2460 or else not Has_Discriminants
(Etype
(Rec_Type
))
2461 or else not Tagged_Type_Expansion
2466 Collect_Interface_Components
(Rec_Type
, Ifaces_Comp_List
);
2468 -- For each interface type with secondary dispatch table we generate
2469 -- the Offset_To_Top_Functions (required to displace the pointer in
2470 -- interface conversions)
2472 Iface_Comp_Elmt
:= First_Elmt
(Ifaces_Comp_List
);
2473 while Present
(Iface_Comp_Elmt
) loop
2474 Iface_Comp
:= Node
(Iface_Comp_Elmt
);
2475 pragma Assert
(Is_Interface
(Related_Type
(Iface_Comp
)));
2477 -- If the interface is a parent of Rec_Type it shares the primary
2478 -- dispatch table and hence there is no need to build the function
2480 if not Is_Ancestor
(Related_Type
(Iface_Comp
), Rec_Type
,
2481 Use_Full_View
=> True)
2483 Build_Offset_To_Top_Function
(Iface_Comp
);
2486 Next_Elmt
(Iface_Comp_Elmt
);
2488 end Build_Offset_To_Top_Functions
;
2490 ------------------------------
2491 -- Build_CPP_Init_Procedure --
2492 ------------------------------
2494 procedure Build_CPP_Init_Procedure
is
2495 Body_Node
: Node_Id
;
2496 Body_Stmts
: List_Id
;
2497 Flag_Id
: Entity_Id
;
2498 Handled_Stmt_Node
: Node_Id
;
2499 Init_Tags_List
: List_Id
;
2500 Proc_Id
: Entity_Id
;
2501 Proc_Spec_Node
: Node_Id
;
2504 -- Check cases requiring no IC routine
2506 if not Is_CPP_Class
(Root_Type
(Rec_Type
))
2507 or else Is_CPP_Class
(Rec_Type
)
2508 or else CPP_Num_Prims
(Rec_Type
) = 0
2509 or else not Tagged_Type_Expansion
2510 or else No_Run_Time_Mode
2517 -- Flag : Boolean := False;
2519 -- procedure Typ_IC is
2522 -- Copy C++ dispatch table slots from parent
2523 -- Update C++ slots of overridden primitives
2527 Flag_Id
:= Make_Temporary
(Loc
, 'F');
2529 Append_Freeze_Action
(Rec_Type
,
2530 Make_Object_Declaration
(Loc
,
2531 Defining_Identifier
=> Flag_Id
,
2532 Object_Definition
=>
2533 New_Occurrence_Of
(Standard_Boolean
, Loc
),
2535 New_Occurrence_Of
(Standard_True
, Loc
)));
2537 Body_Stmts
:= New_List
;
2538 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
2540 Proc_Spec_Node
:= New_Node
(N_Procedure_Specification
, Loc
);
2543 Make_Defining_Identifier
(Loc
,
2544 Chars
=> Make_TSS_Name
(Rec_Type
, TSS_CPP_Init_Proc
));
2546 Mutate_Ekind
(Proc_Id
, E_Procedure
);
2547 Set_Is_Internal
(Proc_Id
);
2549 Set_Defining_Unit_Name
(Proc_Spec_Node
, Proc_Id
);
2551 Set_Parameter_Specifications
(Proc_Spec_Node
, New_List
);
2552 Set_Specification
(Body_Node
, Proc_Spec_Node
);
2553 Set_Declarations
(Body_Node
, New_List
);
2555 Init_Tags_List
:= Build_Inherit_CPP_Prims
(Rec_Type
);
2557 Append_To
(Init_Tags_List
,
2558 Make_Assignment_Statement
(Loc
,
2560 New_Occurrence_Of
(Flag_Id
, Loc
),
2562 New_Occurrence_Of
(Standard_False
, Loc
)));
2564 Append_To
(Body_Stmts
,
2565 Make_If_Statement
(Loc
,
2566 Condition
=> New_Occurrence_Of
(Flag_Id
, Loc
),
2567 Then_Statements
=> Init_Tags_List
));
2569 Handled_Stmt_Node
:=
2570 New_Node
(N_Handled_Sequence_Of_Statements
, Loc
);
2571 Set_Statements
(Handled_Stmt_Node
, Body_Stmts
);
2572 Set_Exception_Handlers
(Handled_Stmt_Node
, No_List
);
2573 Set_Handled_Statement_Sequence
(Body_Node
, Handled_Stmt_Node
);
2575 if not Debug_Generated_Code
then
2576 Set_Debug_Info_Off
(Proc_Id
);
2579 -- Associate CPP_Init_Proc with type
2581 Set_Init_Proc
(Rec_Type
, Proc_Id
);
2582 end Build_CPP_Init_Procedure
;
2584 --------------------------
2585 -- Build_Init_Procedure --
2586 --------------------------
2588 procedure Build_Init_Procedure
is
2589 Body_Stmts
: List_Id
;
2590 Body_Node
: Node_Id
;
2591 Handled_Stmt_Node
: Node_Id
;
2592 Init_Tags_List
: List_Id
;
2593 Parameters
: List_Id
;
2594 Proc_Spec_Node
: Node_Id
;
2595 Record_Extension_Node
: Node_Id
;
2597 use Initialization_Control
;
2599 Body_Stmts
:= New_List
;
2600 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
2601 Mutate_Ekind
(Proc_Id
, E_Procedure
);
2603 Proc_Spec_Node
:= New_Node
(N_Procedure_Specification
, Loc
);
2604 Set_Defining_Unit_Name
(Proc_Spec_Node
, Proc_Id
);
2606 Parameters
:= Init_Formals
(Rec_Type
, Proc_Id
);
2607 Append_List_To
(Parameters
,
2608 Build_Discriminant_Formals
(Rec_Type
, True));
2610 -- For tagged types, we add a parameter to indicate what
2611 -- portion of the object's initialization is to be performed.
2612 -- This is used for two purposes:
2613 -- 1) When a type extension's initialization procedure calls
2614 -- the initialization procedure of the parent type, we do
2615 -- not want the parent to initialize the Tag component;
2616 -- it has been set already.
2617 -- 2) If an ancestor type has at least one component that requires
2618 -- late initialization, then we need to be able to initialize
2619 -- those components separately after initializing any other
2622 if Is_Tagged_Type
(Rec_Type
) then
2623 Init_Control_Formal
:= Make_Temporary
(Loc
, 'P');
2625 Append_To
(Parameters
,
2626 Make_Parameter_Specification
(Loc
,
2627 Defining_Identifier
=> Init_Control_Formal
,
2629 New_Occurrence_Of
(Standard_Natural
, Loc
),
2630 Expression
=> Make_Mode_Literal
(Loc
, Full_Init
)));
2633 -- Create an extra accessibility parameter to capture the level of
2634 -- the object being initialized when its type is a limited record.
2636 if Is_Limited_Record
(Rec_Type
) then
2637 Append_To
(Parameters
,
2638 Make_Parameter_Specification
(Loc
,
2639 Defining_Identifier
=> Make_Defining_Identifier
2640 (Loc
, Name_uInit_Level
),
2642 New_Occurrence_Of
(Standard_Natural
, Loc
),
2644 Make_Integer_Literal
2645 (Loc
, Scope_Depth
(Standard_Standard
))));
2648 Set_Parameter_Specifications
(Proc_Spec_Node
, Parameters
);
2649 Set_Specification
(Body_Node
, Proc_Spec_Node
);
2650 Set_Declarations
(Body_Node
, Decls
);
2652 -- N is a Derived_Type_Definition that renames the parameters of the
2653 -- ancestor type. We initialize it by expanding our discriminants and
2654 -- call the ancestor _init_proc with a type-converted object.
2656 if Parent_Subtype_Renaming_Discrims
then
2657 Append_List_To
(Body_Stmts
, Build_Init_Call_Thru
(Parameters
));
2659 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
2660 Build_Discriminant_Assignments
(Body_Stmts
);
2662 if not Null_Present
(Type_Definition
(N
)) then
2663 Append_List_To
(Body_Stmts
,
2664 Build_Init_Statements
(Component_List
(Type_Definition
(N
))));
2667 -- N is a Derived_Type_Definition with a possible non-empty
2668 -- extension. The initialization of a type extension consists in the
2669 -- initialization of the components in the extension.
2672 Build_Discriminant_Assignments
(Body_Stmts
);
2674 Record_Extension_Node
:=
2675 Record_Extension_Part
(Type_Definition
(N
));
2677 if not Null_Present
(Record_Extension_Node
) then
2679 Stmts
: constant List_Id
:=
2680 Build_Init_Statements
(
2681 Component_List
(Record_Extension_Node
));
2684 -- The parent field must be initialized first because the
2685 -- offset of the new discriminants may depend on it. This is
2686 -- not needed if the parent is an interface type because in
2687 -- such case the initialization of the _parent field was not
2690 if not Is_Interface
(Etype
(Rec_Ent
)) then
2692 Parent_IP
: constant Name_Id
:=
2693 Make_Init_Proc_Name
(Etype
(Rec_Ent
));
2694 Stmt
: Node_Id
:= First
(Stmts
);
2695 IP_Call
: Node_Id
:= Empty
;
2697 -- Look for a call to the parent IP associated with
2698 -- the record extension.
2699 -- The call will be inside not one but two
2700 -- if-statements (with the same condition). Testing
2701 -- the same Early_Init condition twice might seem
2702 -- redundant. However, as soon as we exit this loop,
2703 -- we are going to hoist the inner if-statement out
2704 -- of the outer one; the "redundant" test was built
2705 -- in anticipation of this hoisting.
2707 while Present
(Stmt
) loop
2708 if Nkind
(Stmt
) = N_If_Statement
then
2710 Then_Stmt1
: Node_Id
:=
2711 First
(Then_Statements
(Stmt
));
2712 Then_Stmt2
: Node_Id
;
2714 while Present
(Then_Stmt1
) loop
2715 if Nkind
(Then_Stmt1
) = N_If_Statement
then
2717 First
(Then_Statements
(Then_Stmt1
));
2719 if Nkind
(Then_Stmt2
) =
2720 N_Procedure_Call_Statement
2721 and then Chars
(Name
(Then_Stmt2
)) =
2724 -- IP_Call is a call wrapped in an
2726 IP_Call
:= Then_Stmt1
;
2738 -- If found then move it to the beginning of the
2739 -- statements of this IP routine
2741 if Present
(IP_Call
) then
2743 Prepend_List_To
(Body_Stmts
, New_List
(IP_Call
));
2748 Append_List_To
(Body_Stmts
, Stmts
);
2753 -- Add here the assignment to instantiate the Tag
2755 -- The assignment corresponds to the code:
2757 -- _Init._Tag := Typ'Tag;
2759 -- Suppress the tag assignment when not Tagged_Type_Expansion because
2760 -- tags are represented implicitly in objects. It is also suppressed
2761 -- in case of CPP_Class types because in this case the tag is
2762 -- initialized in the C++ side.
2764 if Is_Tagged_Type
(Rec_Type
)
2765 and then Tagged_Type_Expansion
2766 and then not No_Run_Time_Mode
2768 -- Case 1: Ada tagged types with no CPP ancestor. Set the tags of
2769 -- the actual object and invoke the IP of the parent (in this
2770 -- order). The tag must be initialized before the call to the IP
2771 -- of the parent and the assignments to other components because
2772 -- the initial value of the components may depend on the tag (eg.
2773 -- through a dispatching operation on an access to the current
2774 -- type). The tag assignment is not done when initializing the
2775 -- parent component of a type extension, because in that case the
2776 -- tag is set in the extension.
2778 if not Is_CPP_Class
(Root_Type
(Rec_Type
)) then
2780 -- Initialize the primary tag component
2782 Init_Tags_List
:= New_List
(
2783 Make_Tag_Assignment_From_Type
2784 (Loc
, Make_Identifier
(Loc
, Name_uInit
), Rec_Type
));
2786 -- Ada 2005 (AI-251): Initialize the secondary tags components
2787 -- located at fixed positions (tags whose position depends on
2788 -- variable size components are initialized later ---see below)
2790 if Ada_Version
>= Ada_2005
2791 and then not Is_Interface
(Rec_Type
)
2792 and then Has_Interfaces
(Rec_Type
)
2795 Elab_Sec_DT_Stmts_List
: constant List_Id
:= New_List
;
2796 Elab_List
: List_Id
:= New_List
;
2801 Target
=> Make_Identifier
(Loc
, Name_uInit
),
2802 Init_Tags_List
=> Init_Tags_List
,
2803 Stmts_List
=> Elab_Sec_DT_Stmts_List
,
2804 Fixed_Comps
=> True,
2805 Variable_Comps
=> False);
2807 Elab_List
:= New_List
(
2808 Make_If_Statement
(Loc
,
2810 Tag_Init_Condition
(Loc
, Init_Control_Formal
),
2811 Then_Statements
=> Init_Tags_List
));
2813 if Elab_Flag_Needed
(Rec_Type
) then
2814 Append_To
(Elab_Sec_DT_Stmts_List
,
2815 Make_Assignment_Statement
(Loc
,
2818 (Access_Disp_Table_Elab_Flag
(Rec_Type
),
2821 New_Occurrence_Of
(Standard_False
, Loc
)));
2823 Append_To
(Elab_List
,
2824 Make_If_Statement
(Loc
,
2827 (Access_Disp_Table_Elab_Flag
(Rec_Type
), Loc
),
2828 Then_Statements
=> Elab_Sec_DT_Stmts_List
));
2831 Prepend_List_To
(Body_Stmts
, Elab_List
);
2834 Prepend_To
(Body_Stmts
,
2835 Make_If_Statement
(Loc
,
2837 Tag_Init_Condition
(Loc
, Init_Control_Formal
),
2838 Then_Statements
=> Init_Tags_List
));
2841 -- Case 2: CPP type. The imported C++ constructor takes care of
2842 -- tags initialization. No action needed here because the IP
2843 -- is built by Set_CPP_Constructors; in this case the IP is a
2844 -- wrapper that invokes the C++ constructor and copies the C++
2845 -- tags locally. Done to inherit the C++ slots in Ada derivations
2848 elsif Is_CPP_Class
(Rec_Type
) then
2849 pragma Assert
(False);
2852 -- Case 3: Combined hierarchy containing C++ types and Ada tagged
2853 -- type derivations. Derivations of imported C++ classes add a
2854 -- complication, because we cannot inhibit tag setting in the
2855 -- constructor for the parent. Hence we initialize the tag after
2856 -- the call to the parent IP (that is, in reverse order compared
2857 -- with pure Ada hierarchies ---see comment on case 1).
2860 -- Initialize the primary tag
2862 Init_Tags_List
:= New_List
(
2863 Make_Tag_Assignment_From_Type
2864 (Loc
, Make_Identifier
(Loc
, Name_uInit
), Rec_Type
));
2866 -- Ada 2005 (AI-251): Initialize the secondary tags components
2867 -- located at fixed positions (tags whose position depends on
2868 -- variable size components are initialized later ---see below)
2870 if Ada_Version
>= Ada_2005
2871 and then not Is_Interface
(Rec_Type
)
2872 and then Has_Interfaces
(Rec_Type
)
2876 Target
=> Make_Identifier
(Loc
, Name_uInit
),
2877 Init_Tags_List
=> Init_Tags_List
,
2878 Stmts_List
=> Init_Tags_List
,
2879 Fixed_Comps
=> True,
2880 Variable_Comps
=> False);
2883 -- Initialize the tag component after invocation of parent IP.
2886 -- parent_IP(_init.parent); // Invokes the C++ constructor
2887 -- [ typIC; ] // Inherit C++ slots from parent
2894 -- Search for the call to the IP of the parent. We assume
2895 -- that the first init_proc call is for the parent.
2896 -- It is wrapped in an "if Early_Init_Condition"
2899 Ins_Nod
:= First
(Body_Stmts
);
2900 while Present
(Next
(Ins_Nod
))
2902 (Nkind
(Ins_Nod
) /= N_If_Statement
2903 or else Nkind
(First
(Then_Statements
(Ins_Nod
)))
2904 /= N_Procedure_Call_Statement
2905 or else not Is_Init_Proc
2906 (Name
(First
(Then_Statements
2912 -- The IC routine copies the inherited slots of the C+ part
2913 -- of the dispatch table from the parent and updates the
2914 -- overridden C++ slots.
2916 if CPP_Num_Prims
(Rec_Type
) > 0 then
2918 Init_DT
: Entity_Id
;
2922 Init_DT
:= CPP_Init_Proc
(Rec_Type
);
2923 pragma Assert
(Present
(Init_DT
));
2926 Make_Procedure_Call_Statement
(Loc
,
2927 New_Occurrence_Of
(Init_DT
, Loc
));
2928 Insert_After
(Ins_Nod
, New_Nod
);
2930 -- Update location of init tag statements
2936 Insert_List_After
(Ins_Nod
, Init_Tags_List
);
2940 -- Ada 2005 (AI-251): Initialize the secondary tag components
2941 -- located at variable positions. We delay the generation of this
2942 -- code until here because the value of the attribute 'Position
2943 -- applied to variable size components of the parent type that
2944 -- depend on discriminants is only safely read at runtime after
2945 -- the parent components have been initialized.
2947 if Ada_Version
>= Ada_2005
2948 and then not Is_Interface
(Rec_Type
)
2949 and then Has_Interfaces
(Rec_Type
)
2950 and then Has_Discriminants
(Etype
(Rec_Type
))
2951 and then Is_Variable_Size_Record
(Etype
(Rec_Type
))
2953 Init_Tags_List
:= New_List
;
2957 Target
=> Make_Identifier
(Loc
, Name_uInit
),
2958 Init_Tags_List
=> Init_Tags_List
,
2959 Stmts_List
=> Init_Tags_List
,
2960 Fixed_Comps
=> False,
2961 Variable_Comps
=> True);
2963 Append_List_To
(Body_Stmts
, Init_Tags_List
);
2967 Handled_Stmt_Node
:= New_Node
(N_Handled_Sequence_Of_Statements
, Loc
);
2968 Set_Statements
(Handled_Stmt_Node
, Body_Stmts
);
2971 -- Deep_Finalize (_init, C1, ..., CN);
2975 and then Needs_Finalization
(Rec_Type
)
2976 and then not Is_Abstract_Type
(Rec_Type
)
2977 and then not Restriction_Active
(No_Exception_Propagation
)
2984 -- Create a local version of Deep_Finalize which has indication
2985 -- of partial initialization state.
2988 Make_Defining_Identifier
(Loc
,
2989 Chars
=> New_External_Name
(Name_uFinalizer
));
2991 Append_To
(Decls
, Make_Local_Deep_Finalize
(Rec_Type
, DF_Id
));
2994 Make_Procedure_Call_Statement
(Loc
,
2995 Name
=> New_Occurrence_Of
(DF_Id
, Loc
),
2996 Parameter_Associations
=> New_List
(
2997 Make_Identifier
(Loc
, Name_uInit
),
2998 New_Occurrence_Of
(Standard_False
, Loc
)));
3000 -- Do not emit warnings related to the elaboration order when a
3001 -- controlled object is declared before the body of Finalize is
3004 if Legacy_Elaboration_Checks
then
3005 Set_No_Elaboration_Check
(DF_Call
);
3008 Set_Exception_Handlers
(Handled_Stmt_Node
, New_List
(
3009 Make_Exception_Handler
(Loc
,
3010 Exception_Choices
=> New_List
(
3011 Make_Others_Choice
(Loc
)),
3012 Statements
=> New_List
(
3014 Make_Raise_Statement
(Loc
)))));
3017 Set_Exception_Handlers
(Handled_Stmt_Node
, No_List
);
3020 Set_Handled_Statement_Sequence
(Body_Node
, Handled_Stmt_Node
);
3022 if not Debug_Generated_Code
then
3023 Set_Debug_Info_Off
(Proc_Id
);
3026 -- Associate Init_Proc with type, and determine if the procedure
3027 -- is null (happens because of the Initialize_Scalars pragma case,
3028 -- where we have to generate a null procedure in case it is called
3029 -- by a client with Initialize_Scalars set). Such procedures have
3030 -- to be generated, but do not have to be called, so we mark them
3031 -- as null to suppress the call. Kill also warnings for the _Init
3032 -- out parameter, which is left entirely uninitialized.
3034 Set_Init_Proc
(Rec_Type
, Proc_Id
);
3036 if Is_Null_Statement_List
(Body_Stmts
) then
3037 Set_Is_Null_Init_Proc
(Proc_Id
);
3038 Set_Warnings_Off
(Defining_Identifier
(First
(Parameters
)));
3040 end Build_Init_Procedure
;
3042 ---------------------------
3043 -- Build_Init_Statements --
3044 ---------------------------
3046 function Build_Init_Statements
(Comp_List
: Node_Id
) return List_Id
is
3047 Checks
: constant List_Id
:= New_List
;
3048 Actions
: List_Id
:= No_List
;
3049 Counter_Id
: Entity_Id
:= Empty
;
3050 Comp_Loc
: Source_Ptr
;
3053 Parent_Stmts
: List_Id
;
3054 Parent_Id
: Entity_Id
:= Empty
;
3055 Stmts
, Late_Stmts
: List_Id
:= Empty_List
;
3058 procedure Increment_Counter
3059 (Loc
: Source_Ptr
; Late
: Boolean := False);
3060 -- Generate an "increment by one" statement for the current counter
3061 -- and append it to the appropriate statement list.
3063 procedure Make_Counter
(Loc
: Source_Ptr
);
3064 -- Create a new counter for the current component list. The routine
3065 -- creates a new defining Id, adds an object declaration and sets
3066 -- the Id generator for the next variant.
3068 -----------------------
3069 -- Increment_Counter --
3070 -----------------------
3072 procedure Increment_Counter
3073 (Loc
: Source_Ptr
; Late
: Boolean := False) is
3076 -- Counter := Counter + 1;
3078 Append_To
((if Late
then Late_Stmts
else Stmts
),
3079 Make_Assignment_Statement
(Loc
,
3080 Name
=> New_Occurrence_Of
(Counter_Id
, Loc
),
3083 Left_Opnd
=> New_Occurrence_Of
(Counter_Id
, Loc
),
3084 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1))));
3085 end Increment_Counter
;
3091 procedure Make_Counter
(Loc
: Source_Ptr
) is
3093 -- Increment the Id generator
3095 Counter
:= Counter
+ 1;
3097 -- Create the entity and declaration
3100 Make_Defining_Identifier
(Loc
,
3101 Chars
=> New_External_Name
('C', Counter
));
3104 -- Cnn : Integer := 0;
3107 Make_Object_Declaration
(Loc
,
3108 Defining_Identifier
=> Counter_Id
,
3109 Object_Definition
=>
3110 New_Occurrence_Of
(Standard_Integer
, Loc
),
3112 Make_Integer_Literal
(Loc
, 0)));
3115 -- Start of processing for Build_Init_Statements
3118 if Null_Present
(Comp_List
) then
3119 return New_List
(Make_Null_Statement
(Loc
));
3122 Parent_Stmts
:= New_List
;
3125 -- Loop through visible declarations of task types and protected
3126 -- types moving any expanded code from the spec to the body of the
3129 if Is_Concurrent_Record_Type
(Rec_Type
) then
3131 Decl
: constant Node_Id
:=
3132 Parent
(Corresponding_Concurrent_Type
(Rec_Type
));
3138 if Is_Task_Record_Type
(Rec_Type
) then
3139 Def
:= Task_Definition
(Decl
);
3141 Def
:= Protected_Definition
(Decl
);
3144 if Present
(Def
) then
3145 N1
:= First
(Visible_Declarations
(Def
));
3146 while Present
(N1
) loop
3150 if Nkind
(N2
) in N_Statement_Other_Than_Procedure_Call
3151 or else Nkind
(N2
) in N_Raise_xxx_Error
3152 or else Nkind
(N2
) = N_Procedure_Call_Statement
3155 New_Copy_Tree
(N2
, New_Scope
=> Proc_Id
));
3156 Rewrite
(N2
, Make_Null_Statement
(Sloc
(N2
)));
3164 -- Loop through components, skipping pragmas, in 2 steps. The first
3165 -- step deals with regular components. The second step deals with
3166 -- components that require late initialization.
3168 -- First pass : regular components
3170 Decl
:= First_Non_Pragma
(Component_Items
(Comp_List
));
3171 while Present
(Decl
) loop
3172 Comp_Loc
:= Sloc
(Decl
);
3174 (Subtype_Indication
(Component_Definition
(Decl
)), Checks
);
3176 Id
:= Defining_Identifier
(Decl
);
3179 -- Leave any processing of component requiring late initialization
3180 -- for the second pass.
3182 if Initialization_Control
.Requires_Late_Init
(Decl
, Rec_Type
) then
3183 if not Has_Late_Init_Comp
then
3184 Late_Stmts
:= New_List
;
3186 Has_Late_Init_Comp
:= True;
3188 -- Regular component cases
3191 -- In the context of the init proc, references to discriminants
3192 -- resolve to denote the discriminals: this is where we can
3193 -- freeze discriminant dependent component subtypes.
3195 if not Is_Frozen
(Typ
) then
3196 Append_List_To
(Stmts
, Freeze_Entity
(Typ
, N
));
3199 -- Explicit initialization
3201 if Present
(Expression
(Decl
)) then
3202 if Is_CPP_Constructor_Call
(Expression
(Decl
)) then
3204 Build_Initialization_Call
3207 Make_Selected_Component
(Comp_Loc
,
3209 Make_Identifier
(Comp_Loc
, Name_uInit
),
3211 New_Occurrence_Of
(Id
, Comp_Loc
)),
3213 In_Init_Proc
=> True,
3214 Enclos_Type
=> Rec_Type
,
3215 Discr_Map
=> Discr_Map
,
3216 Constructor_Ref
=> Expression
(Decl
));
3218 Actions
:= Build_Assignment
(Id
, Expression
(Decl
));
3221 -- CPU, Dispatching_Domain, Priority, and Secondary_Stack_Size
3222 -- components are filled in with the corresponding rep-item
3223 -- expression of the concurrent type (if any).
3225 elsif Ekind
(Scope
(Id
)) = E_Record_Type
3226 and then Present
(Corresponding_Concurrent_Type
(Scope
(Id
)))
3227 and then Chars
(Id
) in Name_uCPU
3228 | Name_uDispatching_Domain
3230 | Name_uSecondary_Stack_Size
3235 pragma Warnings
(Off
, Nam
);
3239 if Chars
(Id
) = Name_uCPU
then
3242 elsif Chars
(Id
) = Name_uDispatching_Domain
then
3243 Nam
:= Name_Dispatching_Domain
;
3245 elsif Chars
(Id
) = Name_uPriority
then
3246 Nam
:= Name_Priority
;
3248 elsif Chars
(Id
) = Name_uSecondary_Stack_Size
then
3249 Nam
:= Name_Secondary_Stack_Size
;
3252 -- Get the Rep Item (aspect specification, attribute
3253 -- definition clause or pragma) of the corresponding
3258 (Corresponding_Concurrent_Type
(Scope
(Id
)),
3260 Check_Parents
=> False);
3262 if Present
(Ritem
) then
3266 if Nkind
(Ritem
) = N_Pragma
then
3269 (First
(Pragma_Argument_Associations
(Ritem
)));
3271 -- Conversion for Priority expression
3273 if Nam
= Name_Priority
then
3274 if Pragma_Name
(Ritem
) = Name_Priority
3275 and then not GNAT_Mode
3277 Exp
:= Convert_To
(RTE
(RE_Priority
), Exp
);
3280 Convert_To
(RTE
(RE_Any_Priority
), Exp
);
3284 -- Aspect/Attribute definition clause case
3287 Exp
:= Expression
(Ritem
);
3289 -- Conversion for Priority expression
3291 if Nam
= Name_Priority
then
3292 if Chars
(Ritem
) = Name_Priority
3293 and then not GNAT_Mode
3295 Exp
:= Convert_To
(RTE
(RE_Priority
), Exp
);
3298 Convert_To
(RTE
(RE_Any_Priority
), Exp
);
3303 -- Conversion for Dispatching_Domain value
3305 if Nam
= Name_Dispatching_Domain
then
3307 Unchecked_Convert_To
3308 (RTE
(RE_Dispatching_Domain_Access
), Exp
);
3310 -- Conversion for Secondary_Stack_Size value
3312 elsif Nam
= Name_Secondary_Stack_Size
then
3313 Exp
:= Convert_To
(RTE
(RE_Size_Type
), Exp
);
3316 Actions
:= Build_Assignment
(Id
, Exp
);
3318 -- Nothing needed if no Rep Item
3325 -- Composite component with its own Init_Proc
3327 elsif not Is_Interface
(Typ
)
3328 and then Has_Non_Null_Base_Init_Proc
(Typ
)
3331 use Initialization_Control
;
3332 Init_Control_Actual
: Node_Id
:= Empty
;
3333 Is_Parent
: constant Boolean := Chars
(Id
) = Name_uParent
;
3334 Init_Call_Stmts
: List_Id
;
3336 if Is_Parent
and then Has_Late_Init_Component
(Etype
(Id
))
3338 Init_Control_Actual
:=
3339 Make_Mode_Literal
(Comp_Loc
, Early_Init_Only
);
3340 -- Parent_Id used later in second call to parent's
3341 -- init proc to initialize late-init components.
3346 Build_Initialization_Call
3348 Make_Selected_Component
(Comp_Loc
,
3350 Make_Identifier
(Comp_Loc
, Name_uInit
),
3351 Selector_Name
=> New_Occurrence_Of
(Id
, Comp_Loc
)),
3353 In_Init_Proc
=> True,
3354 Enclos_Type
=> Rec_Type
,
3355 Discr_Map
=> Discr_Map
,
3356 Init_Control_Actual
=> Init_Control_Actual
);
3359 -- This is tricky. At first it looks like
3360 -- we are going to end up with nested
3361 -- if-statements with the same condition:
3362 -- if Early_Init_Condition then
3363 -- if Early_Init_Condition then
3364 -- Parent_TypeIP (...);
3367 -- But later we will hoist the inner if-statement
3368 -- out of the outer one; we do this because the
3369 -- init-proc call for the _Parent component of a type
3370 -- extension has to precede any other initialization.
3372 New_List
(Make_If_Statement
(Loc
,
3374 Early_Init_Condition
(Loc
, Init_Control_Formal
),
3375 Then_Statements
=> Init_Call_Stmts
));
3377 Actions
:= Init_Call_Stmts
;
3381 Clean_Task_Names
(Typ
, Proc_Id
);
3383 -- Simple initialization. If the Esize is not yet set, we pass
3384 -- Uint_0 as expected by Get_Simple_Init_Val.
3386 elsif Component_Needs_Simple_Initialization
(Typ
) then
3395 (if Known_Esize
(Id
) then Esize
(Id
)
3398 -- Nothing needed for this case
3404 -- When the component's type has a Default_Initial_Condition,
3405 -- and the component is default initialized, then check the
3409 and then No
(Expression
(Decl
))
3410 and then Present
(DIC_Procedure
(Typ
))
3411 and then not Has_Null_Body
(DIC_Procedure
(Typ
))
3413 -- The DICs of ancestors are checked as part of the type's
3416 and then Chars
(Id
) /= Name_uParent
3418 -- In GNATprove mode, the component DICs are checked by other
3419 -- means. They should not be added to the record type DIC
3420 -- procedure, so that the procedure can be used to check the
3421 -- record type invariants or DICs if any.
3423 and then not GNATprove_Mode
3425 Append_New_To
(Actions
,
3428 Make_Selected_Component
(Comp_Loc
,
3430 Make_Identifier
(Comp_Loc
, Name_uInit
),
3432 New_Occurrence_Of
(Id
, Comp_Loc
)),
3436 if Present
(Checks
) then
3437 if Chars
(Id
) = Name_uParent
then
3438 Append_List_To
(Parent_Stmts
, Checks
);
3440 Append_List_To
(Stmts
, Checks
);
3444 if Present
(Actions
) then
3445 if Chars
(Id
) = Name_uParent
then
3446 Append_List_To
(Parent_Stmts
, Actions
);
3448 Append_List_To
(Stmts
, Actions
);
3450 -- Preserve initialization state in the current counter
3452 if Needs_Finalization
(Typ
) then
3453 if No
(Counter_Id
) then
3454 Make_Counter
(Comp_Loc
);
3457 Increment_Counter
(Comp_Loc
);
3463 Next_Non_Pragma
(Decl
);
3466 -- The parent field must be initialized first because variable
3467 -- size components of the parent affect the location of all the
3470 Prepend_List_To
(Stmts
, Parent_Stmts
);
3472 -- Set up tasks and protected object support. This needs to be done
3473 -- before any component with a per-object access discriminant
3474 -- constraint, or any variant part (which may contain such
3475 -- components) is initialized, because the initialization of these
3476 -- components may reference the enclosing concurrent object.
3478 -- For a task record type, add the task create call and calls to bind
3479 -- any interrupt (signal) entries.
3481 if Is_Task_Record_Type
(Rec_Type
) then
3483 -- In the case of the restricted run time the ATCB has already
3484 -- been preallocated.
3486 if Restricted_Profile
then
3488 Make_Assignment_Statement
(Loc
,
3490 Make_Selected_Component
(Loc
,
3491 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
3492 Selector_Name
=> Make_Identifier
(Loc
, Name_uTask_Id
)),
3494 Make_Attribute_Reference
(Loc
,
3496 Make_Selected_Component
(Loc
,
3497 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
3498 Selector_Name
=> Make_Identifier
(Loc
, Name_uATCB
)),
3499 Attribute_Name
=> Name_Unchecked_Access
)));
3502 Append_To
(Stmts
, Make_Task_Create_Call
(Rec_Type
));
3505 Task_Type
: constant Entity_Id
:=
3506 Corresponding_Concurrent_Type
(Rec_Type
);
3507 Task_Decl
: constant Node_Id
:= Parent
(Task_Type
);
3508 Task_Def
: constant Node_Id
:= Task_Definition
(Task_Decl
);
3509 Decl_Loc
: Source_Ptr
;
3514 if Present
(Task_Def
) then
3515 Vis_Decl
:= First
(Visible_Declarations
(Task_Def
));
3516 while Present
(Vis_Decl
) loop
3517 Decl_Loc
:= Sloc
(Vis_Decl
);
3519 if Nkind
(Vis_Decl
) = N_Attribute_Definition_Clause
then
3520 if Get_Attribute_Id
(Chars
(Vis_Decl
)) =
3523 Ent
:= Entity
(Name
(Vis_Decl
));
3525 if Ekind
(Ent
) = E_Entry
then
3527 Make_Procedure_Call_Statement
(Decl_Loc
,
3529 New_Occurrence_Of
(RTE
(
3530 RE_Bind_Interrupt_To_Entry
), Decl_Loc
),
3531 Parameter_Associations
=> New_List
(
3532 Make_Selected_Component
(Decl_Loc
,
3534 Make_Identifier
(Decl_Loc
, Name_uInit
),
3537 (Decl_Loc
, Name_uTask_Id
)),
3538 Entry_Index_Expression
3539 (Decl_Loc
, Ent
, Empty
, Task_Type
),
3540 Expression
(Vis_Decl
))));
3550 -- For a protected type, add statements generated by
3551 -- Make_Initialize_Protection.
3553 elsif Is_Protected_Record_Type
(Rec_Type
) then
3554 Append_List_To
(Stmts
,
3555 Make_Initialize_Protection
(Rec_Type
));
3558 -- Second pass: components that require late initialization
3560 if Present
(Parent_Id
) then
3562 Parent_Loc
: constant Source_Ptr
:= Sloc
(Parent
(Parent_Id
));
3563 use Initialization_Control
;
3565 -- We are building the init proc for a type extension.
3566 -- Call the parent type's init proc a second time, this
3567 -- time to initialize the parent's components that require
3568 -- late initialization.
3570 Append_List_To
(Late_Stmts
,
3571 Build_Initialization_Call
3574 Make_Selected_Component
(Parent_Loc
,
3575 Prefix
=> Make_Identifier
3576 (Parent_Loc
, Name_uInit
),
3577 Selector_Name
=> New_Occurrence_Of
(Parent_Id
,
3579 Typ
=> Etype
(Parent_Id
),
3580 In_Init_Proc
=> True,
3581 Enclos_Type
=> Rec_Type
,
3582 Discr_Map
=> Discr_Map
,
3583 Init_Control_Actual
=> Make_Mode_Literal
3584 (Parent_Loc
, Late_Init_Only
)));
3588 if Has_Late_Init_Comp
then
3589 Decl
:= First_Non_Pragma
(Component_Items
(Comp_List
));
3590 while Present
(Decl
) loop
3591 Comp_Loc
:= Sloc
(Decl
);
3592 Id
:= Defining_Identifier
(Decl
);
3595 if Initialization_Control
.Requires_Late_Init
(Decl
, Rec_Type
)
3597 if Present
(Expression
(Decl
)) then
3598 Append_List_To
(Late_Stmts
,
3599 Build_Assignment
(Id
, Expression
(Decl
)));
3601 elsif Has_Non_Null_Base_Init_Proc
(Typ
) then
3602 Append_List_To
(Late_Stmts
,
3603 Build_Initialization_Call
(Comp_Loc
,
3604 Make_Selected_Component
(Comp_Loc
,
3606 Make_Identifier
(Comp_Loc
, Name_uInit
),
3607 Selector_Name
=> New_Occurrence_Of
(Id
, Comp_Loc
)),
3609 In_Init_Proc
=> True,
3610 Enclos_Type
=> Rec_Type
,
3611 Discr_Map
=> Discr_Map
));
3613 Clean_Task_Names
(Typ
, Proc_Id
);
3615 -- Preserve initialization state in the current counter
3617 if Needs_Finalization
(Typ
) then
3618 if No
(Counter_Id
) then
3619 Make_Counter
(Comp_Loc
);
3622 Increment_Counter
(Comp_Loc
, Late
=> True);
3624 elsif Component_Needs_Simple_Initialization
(Typ
) then
3625 Append_List_To
(Late_Stmts
,
3632 Size
=> Esize
(Id
))));
3636 Next_Non_Pragma
(Decl
);
3640 -- Process the variant part (incorrectly ignoring late
3641 -- initialization requirements for components therein).
3643 if Present
(Variant_Part
(Comp_List
)) then
3645 Variant_Alts
: constant List_Id
:= New_List
;
3646 Var_Loc
: Source_Ptr
:= No_Location
;
3651 First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
3652 while Present
(Variant
) loop
3653 Var_Loc
:= Sloc
(Variant
);
3654 Append_To
(Variant_Alts
,
3655 Make_Case_Statement_Alternative
(Var_Loc
,
3657 New_Copy_List
(Discrete_Choices
(Variant
)),
3659 Build_Init_Statements
(Component_List
(Variant
))));
3660 Next_Non_Pragma
(Variant
);
3663 -- The expression of the case statement which is a reference
3664 -- to one of the discriminants is replaced by the appropriate
3665 -- formal parameter of the initialization procedure.
3668 Make_Case_Statement
(Var_Loc
,
3670 New_Occurrence_Of
(Discriminal
(
3671 Entity
(Name
(Variant_Part
(Comp_List
)))), Var_Loc
),
3672 Alternatives
=> Variant_Alts
));
3676 if No
(Init_Control_Formal
) then
3677 Append_List_To
(Stmts
, Late_Stmts
);
3679 -- If no initializations were generated for component declarations
3680 -- and included in Stmts, then append a null statement to Stmts
3681 -- to make it a valid Ada tree.
3683 if Is_Empty_List
(Stmts
) then
3684 Append
(Make_Null_Statement
(Loc
), Stmts
);
3690 use Initialization_Control
;
3692 If_Early
: constant Node_Id
:=
3693 (if Is_Empty_List
(Stmts
) then
3694 Make_Null_Statement
(Loc
)
3696 Make_If_Statement
(Loc
,
3698 Early_Init_Condition
(Loc
, Init_Control_Formal
),
3699 Then_Statements
=> Stmts
));
3700 If_Late
: constant Node_Id
:=
3701 (if Is_Empty_List
(Late_Stmts
) then
3702 Make_Null_Statement
(Loc
)
3704 Make_If_Statement
(Loc
,
3706 Late_Init_Condition
(Loc
, Init_Control_Formal
),
3707 Then_Statements
=> Late_Stmts
));
3709 return New_List
(If_Early
, If_Late
);
3713 when RE_Not_Available
=>
3715 end Build_Init_Statements
;
3717 -------------------------
3718 -- Build_Record_Checks --
3719 -------------------------
3721 procedure Build_Record_Checks
(S
: Node_Id
; Check_List
: List_Id
) is
3722 Subtype_Mark_Id
: Entity_Id
;
3724 procedure Constrain_Array
3726 Check_List
: List_Id
);
3727 -- Apply a list of index constraints to an unconstrained array type.
3728 -- The first parameter is the entity for the resulting subtype.
3729 -- Check_List is a list to which the check actions are appended.
3731 ---------------------
3732 -- Constrain_Array --
3733 ---------------------
3735 procedure Constrain_Array
3737 Check_List
: List_Id
)
3739 C
: constant Node_Id
:= Constraint
(SI
);
3740 Number_Of_Constraints
: Nat
:= 0;
3744 procedure Constrain_Index
3747 Check_List
: List_Id
);
3748 -- Process an index constraint in a constrained array declaration.
3749 -- The constraint can be either a subtype name or a range with or
3750 -- without an explicit subtype mark. Index is the corresponding
3751 -- index of the unconstrained array. S is the range expression.
3752 -- Check_List is a list to which the check actions are appended.
3754 ---------------------
3755 -- Constrain_Index --
3756 ---------------------
3758 procedure Constrain_Index
3761 Check_List
: List_Id
)
3763 T
: constant Entity_Id
:= Etype
(Index
);
3766 if Nkind
(S
) = N_Range
then
3767 Process_Range_Expr_In_Decl
(S
, T
, Check_List
=> Check_List
);
3769 end Constrain_Index
;
3771 -- Start of processing for Constrain_Array
3774 T
:= Entity
(Subtype_Mark
(SI
));
3776 if Is_Access_Type
(T
) then
3777 T
:= Designated_Type
(T
);
3780 S
:= First
(Constraints
(C
));
3781 while Present
(S
) loop
3782 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
3786 -- In either case, the index constraint must provide a discrete
3787 -- range for each index of the array type and the type of each
3788 -- discrete range must be the same as that of the corresponding
3789 -- index. (RM 3.6.1)
3791 S
:= First
(Constraints
(C
));
3792 Index
:= First_Index
(T
);
3795 -- Apply constraints to each index type
3797 for J
in 1 .. Number_Of_Constraints
loop
3798 Constrain_Index
(Index
, S
, Check_List
);
3802 end Constrain_Array
;
3804 -- Start of processing for Build_Record_Checks
3807 if Nkind
(S
) = N_Subtype_Indication
then
3808 Find_Type
(Subtype_Mark
(S
));
3809 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
3811 -- Remaining processing depends on type
3813 case Ekind
(Subtype_Mark_Id
) is
3815 Constrain_Array
(S
, Check_List
);
3821 end Build_Record_Checks
;
3823 -------------------------------------------
3824 -- Component_Needs_Simple_Initialization --
3825 -------------------------------------------
3827 function Component_Needs_Simple_Initialization
3828 (T
: Entity_Id
) return Boolean
3832 Needs_Simple_Initialization
(T
)
3833 and then not Is_RTE
(T
, RE_Tag
)
3835 -- Ada 2005 (AI-251): Check also the tag of abstract interfaces
3837 and then not Is_RTE
(T
, RE_Interface_Tag
);
3838 end Component_Needs_Simple_Initialization
;
3840 --------------------------------------
3841 -- Parent_Subtype_Renaming_Discrims --
3842 --------------------------------------
3844 function Parent_Subtype_Renaming_Discrims
return Boolean is
3849 if Base_Type
(Rec_Ent
) /= Rec_Ent
then
3853 if Etype
(Rec_Ent
) = Rec_Ent
3854 or else not Has_Discriminants
(Rec_Ent
)
3855 or else Is_Constrained
(Rec_Ent
)
3856 or else Is_Tagged_Type
(Rec_Ent
)
3861 -- If there are no explicit stored discriminants we have inherited
3862 -- the root type discriminants so far, so no renamings occurred.
3864 if First_Discriminant
(Rec_Ent
) =
3865 First_Stored_Discriminant
(Rec_Ent
)
3870 -- Check if we have done some trivial renaming of the parent
3871 -- discriminants, i.e. something like
3873 -- type DT (X1, X2: int) is new PT (X1, X2);
3875 De
:= First_Discriminant
(Rec_Ent
);
3876 Dp
:= First_Discriminant
(Etype
(Rec_Ent
));
3877 while Present
(De
) loop
3878 pragma Assert
(Present
(Dp
));
3880 if Corresponding_Discriminant
(De
) /= Dp
then
3884 Next_Discriminant
(De
);
3885 Next_Discriminant
(Dp
);
3888 return Present
(Dp
);
3889 end Parent_Subtype_Renaming_Discrims
;
3891 ------------------------
3892 -- Requires_Init_Proc --
3893 ------------------------
3895 function Requires_Init_Proc
(Rec_Id
: Entity_Id
) return Boolean is
3896 Comp_Decl
: Node_Id
;
3901 -- Definitely do not need one if specifically suppressed
3903 if Initialization_Suppressed
(Rec_Id
) then
3907 -- If it is a type derived from a type with unknown discriminants,
3908 -- we cannot build an initialization procedure for it.
3910 if Has_Unknown_Discriminants
(Rec_Id
)
3911 or else Has_Unknown_Discriminants
(Etype
(Rec_Id
))
3916 -- Otherwise we need to generate an initialization procedure if
3917 -- Is_CPP_Class is False and at least one of the following applies:
3919 -- 1. Discriminants are present, since they need to be initialized
3920 -- with the appropriate discriminant constraint expressions.
3921 -- However, the discriminant of an unchecked union does not
3922 -- count, since the discriminant is not present.
3924 -- 2. The type is a tagged type, since the implicit Tag component
3925 -- needs to be initialized with a pointer to the dispatch table.
3927 -- 3. The type contains tasks
3929 -- 4. One or more components has an initial value
3931 -- 5. One or more components is for a type which itself requires
3932 -- an initialization procedure.
3934 -- 6. One or more components is a type that requires simple
3935 -- initialization (see Needs_Simple_Initialization), except
3936 -- that types Tag and Interface_Tag are excluded, since fields
3937 -- of these types are initialized by other means.
3939 -- 7. The type is the record type built for a task type (since at
3940 -- the very least, Create_Task must be called)
3942 -- 8. The type is the record type built for a protected type (since
3943 -- at least Initialize_Protection must be called)
3945 -- 9. The type is marked as a public entity. The reason we add this
3946 -- case (even if none of the above apply) is to properly handle
3947 -- Initialize_Scalars. If a package is compiled without an IS
3948 -- pragma, and the client is compiled with an IS pragma, then
3949 -- the client will think an initialization procedure is present
3950 -- and call it, when in fact no such procedure is required, but
3951 -- since the call is generated, there had better be a routine
3952 -- at the other end of the call, even if it does nothing).
3954 -- Note: the reason we exclude the CPP_Class case is because in this
3955 -- case the initialization is performed by the C++ constructors, and
3956 -- the IP is built by Set_CPP_Constructors.
3958 if Is_CPP_Class
(Rec_Id
) then
3961 elsif Is_Interface
(Rec_Id
) then
3964 elsif (Has_Discriminants
(Rec_Id
)
3965 and then not Is_Unchecked_Union
(Rec_Id
))
3966 or else Is_Tagged_Type
(Rec_Id
)
3967 or else Is_Concurrent_Record_Type
(Rec_Id
)
3968 or else Has_Task
(Rec_Id
)
3973 Id
:= First_Component
(Rec_Id
);
3974 while Present
(Id
) loop
3975 Comp_Decl
:= Parent
(Id
);
3978 if Present
(Expression
(Comp_Decl
))
3979 or else Has_Non_Null_Base_Init_Proc
(Typ
)
3980 or else Component_Needs_Simple_Initialization
(Typ
)
3985 Next_Component
(Id
);
3988 -- As explained above, a record initialization procedure is needed
3989 -- for public types in case Initialize_Scalars applies to a client.
3990 -- However, such a procedure is not needed in the case where either
3991 -- of restrictions No_Initialize_Scalars or No_Default_Initialization
3992 -- applies. No_Initialize_Scalars excludes the possibility of using
3993 -- Initialize_Scalars in any partition, and No_Default_Initialization
3994 -- implies that no initialization should ever be done for objects of
3995 -- the type, so is incompatible with Initialize_Scalars.
3997 if not Restriction_Active
(No_Initialize_Scalars
)
3998 and then not Restriction_Active
(No_Default_Initialization
)
3999 and then Is_Public
(Rec_Id
)
4005 end Requires_Init_Proc
;
4007 -- Start of processing for Build_Record_Init_Proc
4010 Rec_Type
:= Defining_Identifier
(N
);
4012 -- This may be full declaration of a private type, in which case
4013 -- the visible entity is a record, and the private entity has been
4014 -- exchanged with it in the private part of the current package.
4015 -- The initialization procedure is built for the record type, which
4016 -- is retrievable from the private entity.
4018 if Is_Incomplete_Or_Private_Type
(Rec_Type
) then
4019 Rec_Type
:= Underlying_Type
(Rec_Type
);
4022 -- If we have a variant record with restriction No_Implicit_Conditionals
4023 -- in effect, then we skip building the procedure. This is safe because
4024 -- if we can see the restriction, so can any caller, calls to initialize
4025 -- such records are not allowed for variant records if this restriction
4028 if Has_Variant_Part
(Rec_Type
)
4029 and then Restriction_Active
(No_Implicit_Conditionals
)
4034 -- If there are discriminants, build the discriminant map to replace
4035 -- discriminants by their discriminals in complex bound expressions.
4036 -- These only arise for the corresponding records of synchronized types.
4038 if Is_Concurrent_Record_Type
(Rec_Type
)
4039 and then Has_Discriminants
(Rec_Type
)
4044 Disc
:= First_Discriminant
(Rec_Type
);
4045 while Present
(Disc
) loop
4046 Append_Elmt
(Disc
, Discr_Map
);
4047 Append_Elmt
(Discriminal
(Disc
), Discr_Map
);
4048 Next_Discriminant
(Disc
);
4053 -- Derived types that have no type extension can use the initialization
4054 -- procedure of their parent and do not need a procedure of their own.
4055 -- This is only correct if there are no representation clauses for the
4056 -- type or its parent, and if the parent has in fact been frozen so
4057 -- that its initialization procedure exists.
4059 if Is_Derived_Type
(Rec_Type
)
4060 and then not Is_Tagged_Type
(Rec_Type
)
4061 and then not Is_Unchecked_Union
(Rec_Type
)
4062 and then not Has_New_Non_Standard_Rep
(Rec_Type
)
4063 and then not Parent_Subtype_Renaming_Discrims
4064 and then Present
(Base_Init_Proc
(Etype
(Rec_Type
)))
4066 Copy_TSS
(Base_Init_Proc
(Etype
(Rec_Type
)), Rec_Type
);
4068 -- Otherwise if we need an initialization procedure, then build one,
4069 -- mark it as public and inlinable and as having a completion.
4071 elsif Requires_Init_Proc
(Rec_Type
)
4072 or else Is_Unchecked_Union
(Rec_Type
)
4075 Make_Defining_Identifier
(Loc
,
4076 Chars
=> Make_Init_Proc_Name
(Rec_Type
));
4078 -- If No_Default_Initialization restriction is active, then we don't
4079 -- want to build an init_proc, but we need to mark that an init_proc
4080 -- would be needed if this restriction was not active (so that we can
4081 -- detect attempts to call it), so set a dummy init_proc in place.
4083 if Restriction_Active
(No_Default_Initialization
) then
4084 Set_Init_Proc
(Rec_Type
, Proc_Id
);
4088 Build_Offset_To_Top_Functions
;
4089 Build_CPP_Init_Procedure
;
4090 Build_Init_Procedure
;
4092 Set_Is_Public
(Proc_Id
, Is_Public
(Rec_Ent
));
4093 Set_Is_Internal
(Proc_Id
);
4094 Set_Has_Completion
(Proc_Id
);
4096 if not Debug_Generated_Code
then
4097 Set_Debug_Info_Off
(Proc_Id
);
4100 Set_Is_Inlined
(Proc_Id
, Inline_Init_Proc
(Rec_Type
));
4102 -- Do not build an aggregate if Modify_Tree_For_C, this isn't
4103 -- needed and may generate early references to non frozen types
4104 -- since we expand aggregate much more systematically.
4106 if Modify_Tree_For_C
then
4111 Agg
: constant Node_Id
:=
4112 Build_Equivalent_Record_Aggregate
(Rec_Type
);
4114 procedure Collect_Itypes
(Comp
: Node_Id
);
4115 -- Generate references to itypes in the aggregate, because
4116 -- the first use of the aggregate may be in a nested scope.
4118 --------------------
4119 -- Collect_Itypes --
4120 --------------------
4122 procedure Collect_Itypes
(Comp
: Node_Id
) is
4125 Typ
: constant Entity_Id
:= Etype
(Comp
);
4128 if Is_Array_Type
(Typ
) and then Is_Itype
(Typ
) then
4129 Ref
:= Make_Itype_Reference
(Loc
);
4130 Set_Itype
(Ref
, Typ
);
4131 Append_Freeze_Action
(Rec_Type
, Ref
);
4133 Ref
:= Make_Itype_Reference
(Loc
);
4134 Set_Itype
(Ref
, Etype
(First_Index
(Typ
)));
4135 Append_Freeze_Action
(Rec_Type
, Ref
);
4137 -- Recurse on nested arrays
4139 Sub_Aggr
:= First
(Expressions
(Comp
));
4140 while Present
(Sub_Aggr
) loop
4141 Collect_Itypes
(Sub_Aggr
);
4148 -- If there is a static initialization aggregate for the type,
4149 -- generate itype references for the types of its (sub)components,
4150 -- to prevent out-of-scope errors in the resulting tree.
4151 -- The aggregate may have been rewritten as a Raise node, in which
4152 -- case there are no relevant itypes.
4154 if Present
(Agg
) and then Nkind
(Agg
) = N_Aggregate
then
4155 Set_Static_Initialization
(Proc_Id
, Agg
);
4160 Comp
:= First
(Component_Associations
(Agg
));
4161 while Present
(Comp
) loop
4162 Collect_Itypes
(Expression
(Comp
));
4169 end Build_Record_Init_Proc
;
4171 ----------------------------
4172 -- Build_Slice_Assignment --
4173 ----------------------------
4175 -- Generates the following subprogram:
4177 -- procedure array_typeSA
4178 -- (Source, Target : Array_Type,
4179 -- Left_Lo, Left_Hi : Index;
4180 -- Right_Lo, Right_Hi : Index;
4187 -- if Left_Hi < Left_Lo then
4200 -- Target (Li1) := Source (Ri1);
4203 -- exit when Li1 = Left_Lo;
4204 -- Li1 := Index'pred (Li1);
4205 -- Ri1 := Index'pred (Ri1);
4207 -- exit when Li1 = Left_Hi;
4208 -- Li1 := Index'succ (Li1);
4209 -- Ri1 := Index'succ (Ri1);
4212 -- end array_typeSA;
4214 procedure Build_Slice_Assignment
(Typ
: Entity_Id
) is
4215 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
4216 Index
: constant Entity_Id
:= Base_Type
(Etype
(First_Index
(Typ
)));
4218 Larray
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
4219 Rarray
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
4220 Left_Lo
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L');
4221 Left_Hi
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L');
4222 Right_Lo
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
4223 Right_Hi
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
4224 Rev
: constant Entity_Id
:= Make_Temporary
(Loc
, 'D');
4225 -- Formal parameters of procedure
4227 Proc_Name
: constant Entity_Id
:=
4228 Make_Defining_Identifier
(Loc
,
4229 Chars
=> Make_TSS_Name
(Typ
, TSS_Slice_Assign
));
4231 Lnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L');
4232 Rnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
4233 -- Subscripts for left and right sides
4240 -- Build declarations for indexes
4245 Make_Object_Declaration
(Loc
,
4246 Defining_Identifier
=> Lnn
,
4247 Object_Definition
=>
4248 New_Occurrence_Of
(Index
, Loc
)));
4251 Make_Object_Declaration
(Loc
,
4252 Defining_Identifier
=> Rnn
,
4253 Object_Definition
=>
4254 New_Occurrence_Of
(Index
, Loc
)));
4258 -- Build test for empty slice case
4261 Make_If_Statement
(Loc
,
4264 Left_Opnd
=> New_Occurrence_Of
(Left_Hi
, Loc
),
4265 Right_Opnd
=> New_Occurrence_Of
(Left_Lo
, Loc
)),
4266 Then_Statements
=> New_List
(Make_Simple_Return_Statement
(Loc
))));
4268 -- Build initializations for indexes
4271 F_Init
: constant List_Id
:= New_List
;
4272 B_Init
: constant List_Id
:= New_List
;
4276 Make_Assignment_Statement
(Loc
,
4277 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
4278 Expression
=> New_Occurrence_Of
(Left_Lo
, Loc
)));
4281 Make_Assignment_Statement
(Loc
,
4282 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
4283 Expression
=> New_Occurrence_Of
(Right_Lo
, Loc
)));
4286 Make_Assignment_Statement
(Loc
,
4287 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
4288 Expression
=> New_Occurrence_Of
(Left_Hi
, Loc
)));
4291 Make_Assignment_Statement
(Loc
,
4292 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
4293 Expression
=> New_Occurrence_Of
(Right_Hi
, Loc
)));
4296 Make_If_Statement
(Loc
,
4297 Condition
=> New_Occurrence_Of
(Rev
, Loc
),
4298 Then_Statements
=> B_Init
,
4299 Else_Statements
=> F_Init
));
4302 -- Now construct the assignment statement
4305 Make_Loop_Statement
(Loc
,
4306 Statements
=> New_List
(
4307 Make_Assignment_Statement
(Loc
,
4309 Make_Indexed_Component
(Loc
,
4310 Prefix
=> New_Occurrence_Of
(Larray
, Loc
),
4311 Expressions
=> New_List
(New_Occurrence_Of
(Lnn
, Loc
))),
4313 Make_Indexed_Component
(Loc
,
4314 Prefix
=> New_Occurrence_Of
(Rarray
, Loc
),
4315 Expressions
=> New_List
(New_Occurrence_Of
(Rnn
, Loc
))))),
4316 End_Label
=> Empty
);
4318 -- Build the exit condition and increment/decrement statements
4321 F_Ass
: constant List_Id
:= New_List
;
4322 B_Ass
: constant List_Id
:= New_List
;
4326 Make_Exit_Statement
(Loc
,
4329 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
4330 Right_Opnd
=> New_Occurrence_Of
(Left_Hi
, Loc
))));
4333 Make_Assignment_Statement
(Loc
,
4334 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
4336 Make_Attribute_Reference
(Loc
,
4338 New_Occurrence_Of
(Index
, Loc
),
4339 Attribute_Name
=> Name_Succ
,
4340 Expressions
=> New_List
(
4341 New_Occurrence_Of
(Lnn
, Loc
)))));
4344 Make_Assignment_Statement
(Loc
,
4345 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
4347 Make_Attribute_Reference
(Loc
,
4349 New_Occurrence_Of
(Index
, Loc
),
4350 Attribute_Name
=> Name_Succ
,
4351 Expressions
=> New_List
(
4352 New_Occurrence_Of
(Rnn
, Loc
)))));
4355 Make_Exit_Statement
(Loc
,
4358 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
4359 Right_Opnd
=> New_Occurrence_Of
(Left_Lo
, Loc
))));
4362 Make_Assignment_Statement
(Loc
,
4363 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
4365 Make_Attribute_Reference
(Loc
,
4367 New_Occurrence_Of
(Index
, Loc
),
4368 Attribute_Name
=> Name_Pred
,
4369 Expressions
=> New_List
(
4370 New_Occurrence_Of
(Lnn
, Loc
)))));
4373 Make_Assignment_Statement
(Loc
,
4374 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
4376 Make_Attribute_Reference
(Loc
,
4378 New_Occurrence_Of
(Index
, Loc
),
4379 Attribute_Name
=> Name_Pred
,
4380 Expressions
=> New_List
(
4381 New_Occurrence_Of
(Rnn
, Loc
)))));
4383 Append_To
(Statements
(Loops
),
4384 Make_If_Statement
(Loc
,
4385 Condition
=> New_Occurrence_Of
(Rev
, Loc
),
4386 Then_Statements
=> B_Ass
,
4387 Else_Statements
=> F_Ass
));
4390 Append_To
(Stats
, Loops
);
4397 Formals
:= New_List
(
4398 Make_Parameter_Specification
(Loc
,
4399 Defining_Identifier
=> Larray
,
4400 Out_Present
=> True,
4402 New_Occurrence_Of
(Base_Type
(Typ
), Loc
)),
4404 Make_Parameter_Specification
(Loc
,
4405 Defining_Identifier
=> Rarray
,
4407 New_Occurrence_Of
(Base_Type
(Typ
), Loc
)),
4409 Make_Parameter_Specification
(Loc
,
4410 Defining_Identifier
=> Left_Lo
,
4412 New_Occurrence_Of
(Index
, Loc
)),
4414 Make_Parameter_Specification
(Loc
,
4415 Defining_Identifier
=> Left_Hi
,
4417 New_Occurrence_Of
(Index
, Loc
)),
4419 Make_Parameter_Specification
(Loc
,
4420 Defining_Identifier
=> Right_Lo
,
4422 New_Occurrence_Of
(Index
, Loc
)),
4424 Make_Parameter_Specification
(Loc
,
4425 Defining_Identifier
=> Right_Hi
,
4427 New_Occurrence_Of
(Index
, Loc
)));
4430 Make_Parameter_Specification
(Loc
,
4431 Defining_Identifier
=> Rev
,
4433 New_Occurrence_Of
(Standard_Boolean
, Loc
)));
4436 Make_Procedure_Specification
(Loc
,
4437 Defining_Unit_Name
=> Proc_Name
,
4438 Parameter_Specifications
=> Formals
);
4441 Make_Subprogram_Body
(Loc
,
4442 Specification
=> Spec
,
4443 Declarations
=> Decls
,
4444 Handled_Statement_Sequence
=>
4445 Make_Handled_Sequence_Of_Statements
(Loc
,
4446 Statements
=> Stats
)));
4449 Set_TSS
(Typ
, Proc_Name
);
4450 Set_Is_Pure
(Proc_Name
);
4451 end Build_Slice_Assignment
;
4453 ------------------------------------
4454 -- Build_Untagged_Record_Equality --
4455 ------------------------------------
4457 procedure Build_Untagged_Record_Equality
(Typ
: Entity_Id
) is
4464 function User_Defined_Eq
(T
: Entity_Id
) return Entity_Id
;
4465 -- Check whether the type T has a user-defined primitive equality. If so
4466 -- return it, else return Empty. If true for a component of Typ, we have
4467 -- to build the primitive equality for it.
4469 ---------------------
4470 -- User_Defined_Eq --
4471 ---------------------
4473 function User_Defined_Eq
(T
: Entity_Id
) return Entity_Id
is
4474 Op
: constant Entity_Id
:= TSS
(T
, TSS_Composite_Equality
);
4477 if Present
(Op
) then
4480 return Get_User_Defined_Equality
(T
);
4482 end User_Defined_Eq
;
4484 -- Start of processing for Build_Untagged_Record_Equality
4487 -- If a record component has a primitive equality operation, we must
4488 -- build the corresponding one for the current type.
4491 Comp
:= First_Component
(Typ
);
4492 while Present
(Comp
) loop
4493 if Is_Record_Type
(Etype
(Comp
))
4494 and then Present
(User_Defined_Eq
(Etype
(Comp
)))
4500 Next_Component
(Comp
);
4503 -- If there is a user-defined equality for the type, we do not create
4504 -- the implicit one.
4506 Eq_Op
:= Get_User_Defined_Equality
(Typ
);
4507 if Present
(Eq_Op
) then
4508 if Comes_From_Source
(Eq_Op
) then
4515 -- If the type is derived, inherit the operation, if present, from the
4516 -- parent type. It may have been declared after the type derivation. If
4517 -- the parent type itself is derived, it may have inherited an operation
4518 -- that has itself been overridden, so update its alias and related
4519 -- flags. Ditto for inequality.
4521 if No
(Eq_Op
) and then Is_Derived_Type
(Typ
) then
4522 Eq_Op
:= Get_User_Defined_Equality
(Etype
(Typ
));
4523 if Present
(Eq_Op
) then
4524 Copy_TSS
(Eq_Op
, Typ
);
4528 Op
: constant Entity_Id
:= User_Defined_Eq
(Typ
);
4529 NE_Op
: constant Entity_Id
:= Next_Entity
(Eq_Op
);
4532 if Present
(Op
) then
4533 Set_Alias
(Op
, Eq_Op
);
4534 Set_Is_Abstract_Subprogram
4535 (Op
, Is_Abstract_Subprogram
(Eq_Op
));
4537 if Chars
(Next_Entity
(Op
)) = Name_Op_Ne
then
4538 Set_Is_Abstract_Subprogram
4539 (Next_Entity
(Op
), Is_Abstract_Subprogram
(NE_Op
));
4546 -- If not inherited and not user-defined, build body as for a type with
4547 -- components of record type (i.e. a type for which "=" composes when
4548 -- used as a component in an outer composite type).
4552 Make_Eq_Body
(Typ
, Make_TSS_Name
(Typ
, TSS_Composite_Equality
));
4553 Op
:= Defining_Entity
(Decl
);
4557 if Is_Library_Level_Entity
(Typ
) then
4561 end Build_Untagged_Record_Equality
;
4563 -----------------------------------
4564 -- Build_Variant_Record_Equality --
4565 -----------------------------------
4569 -- function <<Body_Id>> (Left, Right : T) return Boolean is
4570 -- [ X : T renames Left; ]
4571 -- [ Y : T renames Right; ]
4572 -- -- The above renamings are generated only if the parameters of
4573 -- -- this built function (which are passed by the caller) are not
4574 -- -- named 'X' and 'Y'; these names are required to reuse several
4575 -- -- expander routines when generating this body.
4578 -- -- Compare discriminants
4580 -- if X.D1 /= Y.D1 or else X.D2 /= Y.D2 or else ... then
4584 -- -- Compare components
4586 -- if X.C1 /= Y.C1 or else X.C2 /= Y.C2 or else ... then
4590 -- -- Compare variant part
4594 -- if X.C2 /= Y.C2 or else X.C3 /= Y.C3 or else ... then
4599 -- if X.Cn /= Y.Cn or else ... then
4607 function Build_Variant_Record_Equality
4609 Spec_Id
: Entity_Id
;
4610 Body_Id
: Entity_Id
;
4611 Param_Specs
: List_Id
) return Node_Id
4613 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
4614 Def
: constant Node_Id
:= Parent
(Typ
);
4615 Comps
: constant Node_Id
:= Component_List
(Type_Definition
(Def
));
4616 Left
: constant Entity_Id
:= Defining_Identifier
(First
(Param_Specs
));
4617 Right
: constant Entity_Id
:=
4618 Defining_Identifier
(Next
(First
(Param_Specs
)));
4619 Decls
: constant List_Id
:= New_List
;
4620 Stmts
: constant List_Id
:= New_List
;
4622 Subp_Body
: Node_Id
;
4625 pragma Assert
(not Is_Tagged_Type
(Typ
));
4627 -- In order to reuse the expander routines Make_Eq_If and Make_Eq_Case
4628 -- the name of the formals must be X and Y; otherwise we generate two
4629 -- renaming declarations for such purpose.
4631 if Chars
(Left
) /= Name_X
then
4633 Make_Object_Renaming_Declaration
(Loc
,
4634 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
4635 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
4636 Name
=> Make_Identifier
(Loc
, Chars
(Left
))));
4639 if Chars
(Right
) /= Name_Y
then
4641 Make_Object_Renaming_Declaration
(Loc
,
4642 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_Y
),
4643 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
4644 Name
=> Make_Identifier
(Loc
, Chars
(Right
))));
4647 -- Unchecked_Unions require additional machinery to support equality.
4648 -- Two extra parameters (A and B) are added to the equality function
4649 -- parameter list for each discriminant of the type, in order to
4650 -- capture the inferred values of the discriminants in equality calls.
4651 -- The names of the parameters match the names of the corresponding
4652 -- discriminant, with an added suffix.
4654 if Is_Unchecked_Union
(Typ
) then
4656 Right_Formal
: constant Entity_Id
:=
4657 (if Present
(Spec_Id
) then Last_Formal
(Spec_Id
) else Right
);
4658 Scop
: constant Entity_Id
:=
4659 (if Present
(Spec_Id
) then Spec_Id
else Body_Id
);
4661 procedure Decorate_Extra_Formal
(F
, F_Typ
: Entity_Id
);
4662 -- Decorate extra formal F with type F_Typ
4664 ---------------------------
4665 -- Decorate_Extra_Formal --
4666 ---------------------------
4668 procedure Decorate_Extra_Formal
(F
, F_Typ
: Entity_Id
) is
4670 Mutate_Ekind
(F
, E_In_Parameter
);
4671 Set_Etype
(F
, F_Typ
);
4672 Set_Scope
(F
, Scop
);
4673 Set_Mechanism
(F
, By_Copy
);
4674 end Decorate_Extra_Formal
;
4679 Discr_Type
: Entity_Id
;
4680 Last_Extra
: Entity_Id
:= Empty
;
4681 New_Discrs
: Elist_Id
;
4684 Mutate_Ekind
(Body_Id
, E_Subprogram_Body
);
4685 New_Discrs
:= New_Elmt_List
;
4687 Discr
:= First_Discriminant
(Typ
);
4688 while Present
(Discr
) loop
4689 Discr_Type
:= Etype
(Discr
);
4691 -- Add the new parameters as extra formals
4694 Make_Defining_Identifier
(Loc
,
4695 Chars
=> New_External_Name
(Chars
(Discr
), 'A'));
4697 Decorate_Extra_Formal
(A
, Discr_Type
);
4699 if Present
(Last_Extra
) then
4700 Set_Extra_Formal
(Last_Extra
, A
);
4702 Set_Extra_Formal
(Right_Formal
, A
);
4703 Set_Extra_Formals
(Scop
, A
);
4706 Append_Elmt
(A
, New_Discrs
);
4709 Make_Defining_Identifier
(Loc
,
4710 Chars
=> New_External_Name
(Chars
(Discr
), 'B'));
4712 Decorate_Extra_Formal
(B
, Discr_Type
);
4714 Set_Extra_Formal
(A
, B
);
4717 -- Generate the following code to compare each of the inferred
4725 Make_If_Statement
(Loc
,
4728 Left_Opnd
=> New_Occurrence_Of
(A
, Loc
),
4729 Right_Opnd
=> New_Occurrence_Of
(B
, Loc
)),
4730 Then_Statements
=> New_List
(
4731 Make_Simple_Return_Statement
(Loc
,
4733 New_Occurrence_Of
(Standard_False
, Loc
)))));
4735 Next_Discriminant
(Discr
);
4738 -- Generate component-by-component comparison. Note that we must
4739 -- propagate the inferred discriminants formals to act as the case
4740 -- statement switch. Their value is added when an equality call on
4741 -- unchecked unions is expanded.
4743 Append_List_To
(Stmts
, Make_Eq_Case
(Typ
, Comps
, New_Discrs
));
4746 -- Normal case (not unchecked union)
4750 Make_Eq_If
(Typ
, Discriminant_Specifications
(Def
)));
4751 Append_List_To
(Stmts
, Make_Eq_Case
(Typ
, Comps
));
4755 Make_Simple_Return_Statement
(Loc
,
4756 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
4759 Make_Subprogram_Body
(Loc
,
4761 Make_Function_Specification
(Loc
,
4762 Defining_Unit_Name
=> Body_Id
,
4763 Parameter_Specifications
=> Param_Specs
,
4764 Result_Definition
=>
4765 New_Occurrence_Of
(Standard_Boolean
, Loc
)),
4766 Declarations
=> Decls
,
4767 Handled_Statement_Sequence
=>
4768 Make_Handled_Sequence_Of_Statements
(Loc
,
4769 Statements
=> Stmts
));
4772 end Build_Variant_Record_Equality
;
4774 -----------------------------
4775 -- Check_Stream_Attributes --
4776 -----------------------------
4778 procedure Check_Stream_Attributes
(Typ
: Entity_Id
) is
4780 Par_Read
: constant Boolean :=
4781 Stream_Attribute_Available
(Typ
, TSS_Stream_Read
)
4782 and then not Has_Specified_Stream_Read
(Typ
);
4783 Par_Write
: constant Boolean :=
4784 Stream_Attribute_Available
(Typ
, TSS_Stream_Write
)
4785 and then not Has_Specified_Stream_Write
(Typ
);
4787 procedure Check_Attr
(Nam
: Name_Id
; TSS_Nam
: TSS_Name_Type
);
4788 -- Check that Comp has a user-specified Nam stream attribute
4794 procedure Check_Attr
(Nam
: Name_Id
; TSS_Nam
: TSS_Name_Type
) is
4796 -- Move this check to sem???
4798 if not Stream_Attribute_Available
(Etype
(Comp
), TSS_Nam
) then
4799 Error_Msg_Name_1
:= Nam
;
4801 ("|component& in limited extension must have% attribute", Comp
);
4805 -- Start of processing for Check_Stream_Attributes
4808 if Par_Read
or else Par_Write
then
4809 Comp
:= First_Component
(Typ
);
4810 while Present
(Comp
) loop
4811 if Comes_From_Source
(Comp
)
4812 and then Original_Record_Component
(Comp
) = Comp
4813 and then Is_Limited_Type
(Etype
(Comp
))
4816 Check_Attr
(Name_Read
, TSS_Stream_Read
);
4820 Check_Attr
(Name_Write
, TSS_Stream_Write
);
4824 Next_Component
(Comp
);
4827 end Check_Stream_Attributes
;
4829 ----------------------
4830 -- Clean_Task_Names --
4831 ----------------------
4833 procedure Clean_Task_Names
4835 Proc_Id
: Entity_Id
)
4839 and then not Restriction_Active
(No_Implicit_Heap_Allocations
)
4840 and then not Global_Discard_Names
4841 and then Tagged_Type_Expansion
4843 Set_Uses_Sec_Stack
(Proc_Id
);
4845 end Clean_Task_Names
;
4847 -------------------------------
4848 -- Copy_Discr_Checking_Funcs --
4849 -------------------------------
4851 procedure Copy_Discr_Checking_Funcs
(N
: Node_Id
) is
4852 Typ
: constant Entity_Id
:= Defining_Identifier
(N
);
4853 Comp
: Entity_Id
:= First_Component
(Typ
);
4854 Old_Comp
: Entity_Id
:= First_Component
4855 (Base_Type
(Underlying_Type
(Etype
(Typ
))));
4857 while Present
(Comp
) loop
4858 if Chars
(Comp
) = Chars
(Old_Comp
) then
4859 Set_Discriminant_Checking_Func
4860 (Comp
, Discriminant_Checking_Func
(Old_Comp
));
4863 Next_Component
(Old_Comp
);
4864 Next_Component
(Comp
);
4866 end Copy_Discr_Checking_Funcs
;
4868 ------------------------------
4869 -- Expand_Freeze_Array_Type --
4870 ------------------------------
4872 procedure Expand_Freeze_Array_Type
(N
: Node_Id
) is
4873 Typ
: constant Entity_Id
:= Entity
(N
);
4874 Base
: constant Entity_Id
:= Base_Type
(Typ
);
4875 Comp_Typ
: constant Entity_Id
:= Component_Type
(Typ
);
4878 if not Is_Bit_Packed_Array
(Typ
) then
4880 -- If the component contains tasks, so does the array type. This may
4881 -- not be indicated in the array type because the component may have
4882 -- been a private type at the point of definition. Same if component
4883 -- type is controlled or contains protected objects.
4885 Propagate_Concurrent_Flags
(Base
, Comp_Typ
);
4886 Set_Has_Controlled_Component
4887 (Base
, Has_Controlled_Component
(Comp_Typ
)
4888 or else Is_Controlled
(Comp_Typ
));
4890 if No
(Init_Proc
(Base
)) then
4892 -- If this is an anonymous array created for a declaration with
4893 -- an initial value, its init_proc will never be called. The
4894 -- initial value itself may have been expanded into assignments,
4895 -- in which case the object declaration is carries the
4896 -- No_Initialization flag.
4899 and then Nkind
(Associated_Node_For_Itype
(Base
)) =
4900 N_Object_Declaration
4902 (Present
(Expression
(Associated_Node_For_Itype
(Base
)))
4903 or else No_Initialization
(Associated_Node_For_Itype
(Base
)))
4907 -- We do not need an init proc for string or wide [wide] string,
4908 -- since the only time these need initialization in normalize or
4909 -- initialize scalars mode, and these types are treated specially
4910 -- and do not need initialization procedures.
4912 elsif Is_Standard_String_Type
(Base
) then
4915 -- Otherwise we have to build an init proc for the subtype
4918 Build_Array_Init_Proc
(Base
, N
);
4922 if Typ
= Base
and then Has_Controlled_Component
(Base
) then
4923 Build_Controlling_Procs
(Base
);
4925 if not Is_Limited_Type
(Comp_Typ
)
4926 and then Number_Dimensions
(Typ
) = 1
4928 Build_Slice_Assignment
(Typ
);
4932 -- For packed case, default initialization, except if the component type
4933 -- is itself a packed structure with an initialization procedure, or
4934 -- initialize/normalize scalars active, and we have a base type, or the
4935 -- type is public, because in that case a client might specify
4936 -- Normalize_Scalars and there better be a public Init_Proc for it.
4938 elsif (Present
(Init_Proc
(Component_Type
(Base
)))
4939 and then No
(Base_Init_Proc
(Base
)))
4940 or else (Init_Or_Norm_Scalars
and then Base
= Typ
)
4941 or else Is_Public
(Typ
)
4943 Build_Array_Init_Proc
(Base
, N
);
4945 end Expand_Freeze_Array_Type
;
4947 -----------------------------------
4948 -- Expand_Freeze_Class_Wide_Type --
4949 -----------------------------------
4951 procedure Expand_Freeze_Class_Wide_Type
(N
: Node_Id
) is
4952 function Is_C_Derivation
(Typ
: Entity_Id
) return Boolean;
4953 -- Given a type, determine whether it is derived from a C or C++ root
4955 ---------------------
4956 -- Is_C_Derivation --
4957 ---------------------
4959 function Is_C_Derivation
(Typ
: Entity_Id
) return Boolean is
4966 or else Convention
(T
) = Convention_C
4967 or else Convention
(T
) = Convention_CPP
4972 exit when T
= Etype
(T
);
4978 end Is_C_Derivation
;
4982 Typ
: constant Entity_Id
:= Entity
(N
);
4983 Root
: constant Entity_Id
:= Root_Type
(Typ
);
4985 -- Start of processing for Expand_Freeze_Class_Wide_Type
4988 -- Certain run-time configurations and targets do not provide support
4989 -- for controlled types.
4991 if Restriction_Active
(No_Finalization
) then
4994 -- Do not create TSS routine Finalize_Address when dispatching calls are
4995 -- disabled since the core of the routine is a dispatching call.
4997 elsif Restriction_Active
(No_Dispatching_Calls
) then
5000 -- Do not create TSS routine Finalize_Address for concurrent class-wide
5001 -- types. Ignore C, C++, CIL and Java types since it is assumed that the
5002 -- non-Ada side will handle their destruction.
5004 elsif Is_Concurrent_Type
(Root
)
5005 or else Is_C_Derivation
(Root
)
5006 or else Convention
(Typ
) = Convention_CPP
5010 -- Do not create TSS routine Finalize_Address when compiling in CodePeer
5011 -- mode since the routine contains an Unchecked_Conversion.
5013 elsif CodePeer_Mode
then
5017 -- Create the body of TSS primitive Finalize_Address. This automatically
5018 -- sets the TSS entry for the class-wide type.
5020 Make_Finalize_Address_Body
(Typ
);
5021 end Expand_Freeze_Class_Wide_Type
;
5023 ------------------------------------
5024 -- Expand_Freeze_Enumeration_Type --
5025 ------------------------------------
5027 procedure Expand_Freeze_Enumeration_Type
(N
: Node_Id
) is
5028 Typ
: constant Entity_Id
:= Entity
(N
);
5029 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
5034 Is_Contiguous
: Boolean;
5035 Index_Typ
: Entity_Id
;
5043 pragma Warnings
(Off
, Func
);
5046 -- Various optimizations possible if given representation is contiguous
5048 Is_Contiguous
:= True;
5050 Ent
:= First_Literal
(Typ
);
5051 Last_Repval
:= Enumeration_Rep
(Ent
);
5055 while Present
(Ent
) loop
5056 if Enumeration_Rep
(Ent
) - Last_Repval
/= 1 then
5057 Is_Contiguous
:= False;
5059 Last_Repval
:= Enumeration_Rep
(Ent
);
5066 if Is_Contiguous
then
5067 Set_Has_Contiguous_Rep
(Typ
);
5069 -- Now build a subtype declaration
5071 -- subtype typI is new Natural range 0 .. num - 1
5074 Make_Defining_Identifier
(Loc
,
5075 Chars
=> New_External_Name
(Chars
(Typ
), 'I'));
5077 Append_Freeze_Action
(Typ
,
5078 Make_Subtype_Declaration
(Loc
,
5079 Defining_Identifier
=> Index_Typ
,
5080 Subtype_Indication
=>
5081 Make_Subtype_Indication
(Loc
,
5083 New_Occurrence_Of
(Standard_Natural
, Loc
),
5085 Make_Range_Constraint
(Loc
,
5089 Make_Integer_Literal
(Loc
, 0),
5091 Make_Integer_Literal
(Loc
, Num
- 1))))));
5093 Set_Enum_Pos_To_Rep
(Typ
, Index_Typ
);
5096 -- Build list of literal references
5099 Ent
:= First_Literal
(Typ
);
5100 while Present
(Ent
) loop
5101 Append_To
(Lst
, New_Occurrence_Of
(Ent
, Sloc
(Ent
)));
5105 -- Now build an array declaration
5107 -- typA : constant array (Natural range 0 .. num - 1) of typ :=
5108 -- (v, v, v, v, v, ....)
5111 Make_Defining_Identifier
(Loc
,
5112 Chars
=> New_External_Name
(Chars
(Typ
), 'A'));
5114 Append_Freeze_Action
(Typ
,
5115 Make_Object_Declaration
(Loc
,
5116 Defining_Identifier
=> Arr
,
5117 Constant_Present
=> True,
5119 Object_Definition
=>
5120 Make_Constrained_Array_Definition
(Loc
,
5121 Discrete_Subtype_Definitions
=> New_List
(
5122 Make_Subtype_Indication
(Loc
,
5124 New_Occurrence_Of
(Standard_Natural
, Loc
),
5126 Make_Range_Constraint
(Loc
,
5130 Make_Integer_Literal
(Loc
, 0),
5132 Make_Integer_Literal
(Loc
, Num
- 1))))),
5134 Component_Definition
=>
5135 Make_Component_Definition
(Loc
,
5136 Aliased_Present
=> False,
5137 Subtype_Indication
=> New_Occurrence_Of
(Typ
, Loc
))),
5140 Make_Aggregate
(Loc
,
5141 Expressions
=> Lst
)));
5143 Set_Enum_Pos_To_Rep
(Typ
, Arr
);
5146 -- Now we build the function that converts representation values to
5147 -- position values. This function has the form:
5149 -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
5152 -- when enum-lit'Enum_Rep => return posval;
5153 -- when enum-lit'Enum_Rep => return posval;
5156 -- [raise Constraint_Error when F "invalid data"]
5161 -- Note: the F parameter determines whether the others case (no valid
5162 -- representation) raises Constraint_Error or returns a unique value
5163 -- of minus one. The latter case is used, e.g. in 'Valid code.
5165 -- Note: the reason we use Enum_Rep values in the case here is to avoid
5166 -- the code generator making inappropriate assumptions about the range
5167 -- of the values in the case where the value is invalid. ityp is a
5168 -- signed or unsigned integer type of appropriate width.
5170 -- Note: if exceptions are not supported, then we suppress the raise
5171 -- and return -1 unconditionally (this is an erroneous program in any
5172 -- case and there is no obligation to raise Constraint_Error here). We
5173 -- also do this if pragma Restrictions (No_Exceptions) is active.
5175 -- Is this right??? What about No_Exception_Propagation???
5177 -- The underlying type is signed. Reset the Is_Unsigned_Type explicitly
5178 -- because it might have been inherited from the parent type.
5180 if Enumeration_Rep
(First_Literal
(Typ
)) < 0 then
5181 Set_Is_Unsigned_Type
(Typ
, False);
5184 Ityp
:= Integer_Type_For
(Esize
(Typ
), Is_Unsigned_Type
(Typ
));
5186 -- The body of the function is a case statement. First collect case
5187 -- alternatives, or optimize the contiguous case.
5191 -- If representation is contiguous, Pos is computed by subtracting
5192 -- the representation of the first literal.
5194 if Is_Contiguous
then
5195 Ent
:= First_Literal
(Typ
);
5197 if Enumeration_Rep
(Ent
) = Last_Repval
then
5199 -- Another special case: for a single literal, Pos is zero
5201 Pos_Expr
:= Make_Integer_Literal
(Loc
, Uint_0
);
5205 Convert_To
(Standard_Integer
,
5206 Make_Op_Subtract
(Loc
,
5208 Unchecked_Convert_To
5209 (Ityp
, Make_Identifier
(Loc
, Name_uA
)),
5211 Make_Integer_Literal
(Loc
,
5212 Intval
=> Enumeration_Rep
(First_Literal
(Typ
)))));
5216 Make_Case_Statement_Alternative
(Loc
,
5217 Discrete_Choices
=> New_List
(
5218 Make_Range
(Sloc
(Enumeration_Rep_Expr
(Ent
)),
5220 Make_Integer_Literal
(Loc
,
5221 Intval
=> Enumeration_Rep
(Ent
)),
5223 Make_Integer_Literal
(Loc
, Intval
=> Last_Repval
))),
5225 Statements
=> New_List
(
5226 Make_Simple_Return_Statement
(Loc
,
5227 Expression
=> Pos_Expr
))));
5230 Ent
:= First_Literal
(Typ
);
5231 while Present
(Ent
) loop
5233 Make_Case_Statement_Alternative
(Loc
,
5234 Discrete_Choices
=> New_List
(
5235 Make_Integer_Literal
(Sloc
(Enumeration_Rep_Expr
(Ent
)),
5236 Intval
=> Enumeration_Rep
(Ent
))),
5238 Statements
=> New_List
(
5239 Make_Simple_Return_Statement
(Loc
,
5241 Make_Integer_Literal
(Loc
,
5242 Intval
=> Enumeration_Pos
(Ent
))))));
5248 -- In normal mode, add the others clause with the test.
5249 -- If Predicates_Ignored is True, validity checks do not apply to
5252 if not No_Exception_Handlers_Set
5253 and then not Predicates_Ignored
(Typ
)
5256 Make_Case_Statement_Alternative
(Loc
,
5257 Discrete_Choices
=> New_List
(Make_Others_Choice
(Loc
)),
5258 Statements
=> New_List
(
5259 Make_Raise_Constraint_Error
(Loc
,
5260 Condition
=> Make_Identifier
(Loc
, Name_uF
),
5261 Reason
=> CE_Invalid_Data
),
5262 Make_Simple_Return_Statement
(Loc
,
5263 Expression
=> Make_Integer_Literal
(Loc
, -1)))));
5265 -- If either of the restrictions No_Exceptions_Handlers/Propagation is
5266 -- active then return -1 (we cannot usefully raise Constraint_Error in
5267 -- this case). See description above for further details.
5271 Make_Case_Statement_Alternative
(Loc
,
5272 Discrete_Choices
=> New_List
(Make_Others_Choice
(Loc
)),
5273 Statements
=> New_List
(
5274 Make_Simple_Return_Statement
(Loc
,
5275 Expression
=> Make_Integer_Literal
(Loc
, -1)))));
5278 -- Now we can build the function body
5281 Make_Defining_Identifier
(Loc
, Make_TSS_Name
(Typ
, TSS_Rep_To_Pos
));
5284 Make_Subprogram_Body
(Loc
,
5286 Make_Function_Specification
(Loc
,
5287 Defining_Unit_Name
=> Fent
,
5288 Parameter_Specifications
=> New_List
(
5289 Make_Parameter_Specification
(Loc
,
5290 Defining_Identifier
=>
5291 Make_Defining_Identifier
(Loc
, Name_uA
),
5292 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)),
5293 Make_Parameter_Specification
(Loc
,
5294 Defining_Identifier
=>
5295 Make_Defining_Identifier
(Loc
, Name_uF
),
5297 New_Occurrence_Of
(Standard_Boolean
, Loc
))),
5299 Result_Definition
=> New_Occurrence_Of
(Standard_Integer
, Loc
)),
5301 Declarations
=> Empty_List
,
5303 Handled_Statement_Sequence
=>
5304 Make_Handled_Sequence_Of_Statements
(Loc
,
5305 Statements
=> New_List
(
5306 Make_Case_Statement
(Loc
,
5308 Unchecked_Convert_To
5309 (Ityp
, Make_Identifier
(Loc
, Name_uA
)),
5310 Alternatives
=> Lst
))));
5312 Set_TSS
(Typ
, Fent
);
5314 -- Set Pure flag (it will be reset if the current context is not Pure).
5315 -- We also pretend there was a pragma Pure_Function so that for purposes
5316 -- of optimization and constant-folding, we will consider the function
5317 -- Pure even if we are not in a Pure context).
5320 Set_Has_Pragma_Pure_Function
(Fent
);
5322 -- Unless we are in -gnatD mode, where we are debugging generated code,
5323 -- this is an internal entity for which we don't need debug info.
5325 if not Debug_Generated_Code
then
5326 Set_Debug_Info_Off
(Fent
);
5329 Set_Is_Inlined
(Fent
);
5332 when RE_Not_Available
=>
5334 end Expand_Freeze_Enumeration_Type
;
5336 -------------------------------
5337 -- Expand_Freeze_Record_Type --
5338 -------------------------------
5340 procedure Expand_Freeze_Record_Type
(N
: Node_Id
) is
5342 procedure Build_Class_Condition_Subprograms
(Typ
: Entity_Id
);
5343 -- Create internal subprograms of Typ primitives that have class-wide
5344 -- preconditions or postconditions; they are invoked by the caller to
5345 -- evaluate the conditions.
5347 procedure Build_Variant_Record_Equality
(Typ
: Entity_Id
);
5348 -- Create an equality function for the untagged variant record Typ and
5349 -- attach it to the TSS list.
5351 procedure Register_Dispatch_Table_Wrappers
(Typ
: Entity_Id
);
5352 -- Register dispatch-table wrappers in the dispatch table of Typ
5354 procedure Validate_Tagged_Type_Extra_Formals
(Typ
: Entity_Id
);
5355 -- Check extra formals of dispatching primitives of tagged type Typ.
5356 -- Used in pragma Debug.
5358 ---------------------------------------
5359 -- Build_Class_Condition_Subprograms --
5360 ---------------------------------------
5362 procedure Build_Class_Condition_Subprograms
(Typ
: Entity_Id
) is
5363 Prim_List
: constant Elist_Id
:= Primitive_Operations
(Typ
);
5364 Prim_Elmt
: Elmt_Id
:= First_Elmt
(Prim_List
);
5368 while Present
(Prim_Elmt
) loop
5369 Prim
:= Node
(Prim_Elmt
);
5371 -- Primitive with class-wide preconditions
5373 if Comes_From_Source
(Prim
)
5374 and then Has_Significant_Contract
(Prim
)
5376 (Present
(Class_Preconditions
(Prim
))
5377 or else Present
(Ignored_Class_Preconditions
(Prim
)))
5379 if Expander_Active
then
5380 Make_Class_Precondition_Subps
(Prim
);
5383 -- Wrapper of a primitive that has or inherits class-wide
5386 elsif Is_Primitive_Wrapper
(Prim
)
5388 (Present
(Nearest_Class_Condition_Subprogram
5390 Kind
=> Class_Precondition
))
5392 Present
(Nearest_Class_Condition_Subprogram
5394 Kind
=> Ignored_Class_Precondition
)))
5396 if Expander_Active
then
5397 Make_Class_Precondition_Subps
(Prim
);
5401 Next_Elmt
(Prim_Elmt
);
5403 end Build_Class_Condition_Subprograms
;
5405 -----------------------------------
5406 -- Build_Variant_Record_Equality --
5407 -----------------------------------
5409 procedure Build_Variant_Record_Equality
(Typ
: Entity_Id
) is
5410 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
5411 F
: constant Entity_Id
:=
5412 Make_Defining_Identifier
(Loc
,
5413 Chars
=> Make_TSS_Name
(Typ
, TSS_Composite_Equality
));
5415 -- For a variant record with restriction No_Implicit_Conditionals
5416 -- in effect we skip building the procedure. This is safe because
5417 -- if we can see the restriction, so can any caller, and calls to
5418 -- equality test routines are not allowed for variant records if
5419 -- this restriction is active.
5421 if Restriction_Active
(No_Implicit_Conditionals
) then
5425 -- Derived Unchecked_Union types no longer inherit the equality
5426 -- function of their parent.
5428 if Is_Derived_Type
(Typ
)
5429 and then not Is_Unchecked_Union
(Typ
)
5430 and then not Has_New_Non_Standard_Rep
(Typ
)
5433 Parent_Eq
: constant Entity_Id
:=
5434 TSS
(Root_Type
(Typ
), TSS_Composite_Equality
);
5436 if Present
(Parent_Eq
) then
5437 Copy_TSS
(Parent_Eq
, Typ
);
5444 Build_Variant_Record_Equality
5448 Param_Specs
=> New_List
(
5449 Make_Parameter_Specification
(Loc
,
5450 Defining_Identifier
=>
5451 Make_Defining_Identifier
(Loc
, Name_X
),
5452 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)),
5454 Make_Parameter_Specification
(Loc
,
5455 Defining_Identifier
=>
5456 Make_Defining_Identifier
(Loc
, Name_Y
),
5457 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)))));
5462 if not Debug_Generated_Code
then
5463 Set_Debug_Info_Off
(F
);
5465 end Build_Variant_Record_Equality
;
5467 --------------------------------------
5468 -- Register_Dispatch_Table_Wrappers --
5469 --------------------------------------
5471 procedure Register_Dispatch_Table_Wrappers
(Typ
: Entity_Id
) is
5472 Elmt
: Elmt_Id
:= First_Elmt
(Primitive_Operations
(Typ
));
5476 while Present
(Elmt
) loop
5477 Subp
:= Node
(Elmt
);
5479 if Is_Dispatch_Table_Wrapper
(Subp
) then
5480 Append_Freeze_Actions
(Typ
,
5481 Register_Primitive
(Sloc
(Subp
), Subp
));
5486 end Register_Dispatch_Table_Wrappers
;
5488 ----------------------------------------
5489 -- Validate_Tagged_Type_Extra_Formals --
5490 ----------------------------------------
5492 procedure Validate_Tagged_Type_Extra_Formals
(Typ
: Entity_Id
) is
5493 Ovr_Subp
: Entity_Id
;
5498 pragma Assert
(not Is_Class_Wide_Type
(Typ
));
5500 -- No check required if expansion is not active since we never
5501 -- generate extra formals in such case.
5503 if not Expander_Active
then
5507 Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
5508 while Present
(Elmt
) loop
5509 Subp
:= Node
(Elmt
);
5511 -- Extra formals of a dispatching primitive must match:
5513 -- 1) The extra formals of its covered interface primitive
5515 if Present
(Interface_Alias
(Subp
)) then
5517 (Extra_Formals_Match_OK
5518 (E
=> Interface_Alias
(Subp
),
5519 Ref_E
=> Alias
(Subp
)));
5522 -- 2) The extra formals of its renamed primitive
5524 if Present
(Alias
(Subp
)) then
5526 (Extra_Formals_Match_OK
5528 Ref_E
=> Ultimate_Alias
(Subp
)));
5531 -- 3) The extra formals of its overridden primitive
5533 if Present
(Overridden_Operation
(Subp
)) then
5534 Ovr_Subp
:= Overridden_Operation
(Subp
);
5536 -- Handle controlling function wrapper
5538 if Is_Wrapper
(Subp
)
5539 and then Ultimate_Alias
(Ovr_Subp
) = Subp
5541 if Present
(Overridden_Operation
(Ovr_Subp
)) then
5543 (Extra_Formals_Match_OK
5545 Ref_E
=> Overridden_Operation
(Ovr_Subp
)));
5550 (Extra_Formals_Match_OK
5552 Ref_E
=> Ovr_Subp
));
5558 end Validate_Tagged_Type_Extra_Formals
;
5562 Typ
: constant Node_Id
:= Entity
(N
);
5563 Typ_Decl
: constant Node_Id
:= Parent
(Typ
);
5566 Comp_Typ
: Entity_Id
;
5567 Predef_List
: List_Id
;
5569 Wrapper_Decl_List
: List_Id
;
5570 Wrapper_Body_List
: List_Id
:= No_List
;
5572 Renamed_Eq
: Node_Id
:= Empty
;
5573 -- Defining unit name for the predefined equality function in the case
5574 -- where the type has a primitive operation that is a renaming of
5575 -- predefined equality (but only if there is also an overriding
5576 -- user-defined equality function). Used to pass this entity from
5577 -- Make_Predefined_Primitive_Specs to Predefined_Primitive_Bodies.
5579 -- Start of processing for Expand_Freeze_Record_Type
5582 -- Build discriminant checking functions if not a derived type (for
5583 -- derived types that are not tagged types, always use the discriminant
5584 -- checking functions of the parent type). However, for untagged types
5585 -- the derivation may have taken place before the parent was frozen, so
5586 -- we copy explicitly the discriminant checking functions from the
5587 -- parent into the components of the derived type.
5589 Build_Or_Copy_Discr_Checking_Funcs
(Typ_Decl
);
5591 if Is_Derived_Type
(Typ
)
5592 and then Is_Limited_Type
(Typ
)
5593 and then Is_Tagged_Type
(Typ
)
5595 Check_Stream_Attributes
(Typ
);
5598 -- Update task, protected, and controlled component flags, because some
5599 -- of the component types may have been private at the point of the
5600 -- record declaration. Detect anonymous access-to-controlled components.
5602 Comp
:= First_Component
(Typ
);
5603 while Present
(Comp
) loop
5604 Comp_Typ
:= Etype
(Comp
);
5606 Propagate_Concurrent_Flags
(Typ
, Comp_Typ
);
5608 -- Do not set Has_Controlled_Component on a class-wide equivalent
5609 -- type. See Make_CW_Equivalent_Type.
5611 if not Is_Class_Wide_Equivalent_Type
(Typ
)
5613 (Has_Controlled_Component
(Comp_Typ
)
5614 or else (Chars
(Comp
) /= Name_uParent
5615 and then Is_Controlled
(Comp_Typ
)))
5617 Set_Has_Controlled_Component
(Typ
);
5620 Next_Component
(Comp
);
5623 -- Handle constructors of untagged CPP_Class types
5625 if not Is_Tagged_Type
(Typ
) and then Is_CPP_Class
(Typ
) then
5626 Set_CPP_Constructors
(Typ
);
5629 -- Creation of the Dispatch Table. Note that a Dispatch Table is built
5630 -- for regular tagged types as well as for Ada types deriving from a C++
5631 -- Class, but not for tagged types directly corresponding to C++ classes
5632 -- In the later case we assume that it is created in the C++ side and we
5635 if Is_Tagged_Type
(Typ
) then
5637 -- Add the _Tag component
5639 if Underlying_Type
(Etype
(Typ
)) = Typ
then
5640 Expand_Tagged_Root
(Typ
);
5643 if Is_CPP_Class
(Typ
) then
5644 Set_All_DT_Position
(Typ
);
5646 -- Create the tag entities with a minimum decoration
5648 if Tagged_Type_Expansion
then
5649 Append_Freeze_Actions
(Typ
, Make_Tags
(Typ
));
5652 Set_CPP_Constructors
(Typ
);
5655 if not Building_Static_DT
(Typ
) then
5657 -- Usually inherited primitives are not delayed but the first
5658 -- Ada extension of a CPP_Class is an exception since the
5659 -- address of the inherited subprogram has to be inserted in
5660 -- the new Ada Dispatch Table and this is a freezing action.
5662 -- Similarly, if this is an inherited operation whose parent is
5663 -- not frozen yet, it is not in the DT of the parent, and we
5664 -- generate an explicit freeze node for the inherited operation
5665 -- so it is properly inserted in the DT of the current type.
5672 Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
5673 while Present
(Elmt
) loop
5674 Subp
:= Node
(Elmt
);
5676 if Present
(Alias
(Subp
)) then
5677 if Is_CPP_Class
(Etype
(Typ
)) then
5678 Set_Has_Delayed_Freeze
(Subp
);
5680 elsif Has_Delayed_Freeze
(Alias
(Subp
))
5681 and then not Is_Frozen
(Alias
(Subp
))
5683 Set_Is_Frozen
(Subp
, False);
5684 Set_Has_Delayed_Freeze
(Subp
);
5693 -- Unfreeze momentarily the type to add the predefined primitives
5694 -- operations. The reason we unfreeze is so that these predefined
5695 -- operations will indeed end up as primitive operations (which
5696 -- must be before the freeze point).
5698 Set_Is_Frozen
(Typ
, False);
5700 -- Do not add the spec of predefined primitives in case of
5701 -- CPP tagged type derivations that have convention CPP.
5703 if Is_CPP_Class
(Root_Type
(Typ
))
5704 and then Convention
(Typ
) = Convention_CPP
5708 -- Do not add the spec of the predefined primitives if we are
5709 -- compiling under restriction No_Dispatching_Calls.
5711 elsif not Restriction_Active
(No_Dispatching_Calls
) then
5712 Make_Predefined_Primitive_Specs
(Typ
, Predef_List
, Renamed_Eq
);
5713 Insert_List_Before_And_Analyze
(N
, Predef_List
);
5716 -- Ada 2005 (AI-391): For a nonabstract null extension, create
5717 -- wrapper functions for each nonoverridden inherited function
5718 -- with a controlling result of the type. The wrapper for such
5719 -- a function returns an extension aggregate that invokes the
5722 if Ada_Version
>= Ada_2005
5723 and then not Is_Abstract_Type
(Typ
)
5724 and then Is_Null_Extension
(Typ
)
5726 Make_Controlling_Function_Wrappers
5727 (Typ
, Wrapper_Decl_List
, Wrapper_Body_List
);
5728 Insert_List_Before_And_Analyze
(N
, Wrapper_Decl_List
);
5731 -- Ada 2005 (AI-251): For a nonabstract type extension, build
5732 -- null procedure declarations for each set of homographic null
5733 -- procedures that are inherited from interface types but not
5734 -- overridden. This is done to ensure that the dispatch table
5735 -- entry associated with such null primitives are properly filled.
5737 if Ada_Version
>= Ada_2005
5738 and then Etype
(Typ
) /= Typ
5739 and then not Is_Abstract_Type
(Typ
)
5740 and then Has_Interfaces
(Typ
)
5742 Insert_Actions
(N
, Make_Null_Procedure_Specs
(Typ
));
5745 Set_Is_Frozen
(Typ
);
5747 if not Is_Derived_Type
(Typ
)
5748 or else Is_Tagged_Type
(Etype
(Typ
))
5750 Set_All_DT_Position
(Typ
);
5752 -- If this is a type derived from an untagged private type whose
5753 -- full view is tagged, the type is marked tagged for layout
5754 -- reasons, but it has no dispatch table.
5756 elsif Is_Derived_Type
(Typ
)
5757 and then Is_Private_Type
(Etype
(Typ
))
5758 and then not Is_Tagged_Type
(Etype
(Typ
))
5763 -- Create and decorate the tags. Suppress their creation when
5764 -- not Tagged_Type_Expansion because the dispatching mechanism is
5765 -- handled internally by the virtual target.
5767 if Tagged_Type_Expansion
then
5768 Append_Freeze_Actions
(Typ
, Make_Tags
(Typ
));
5770 -- Generate dispatch table of locally defined tagged type.
5771 -- Dispatch tables of library level tagged types are built
5772 -- later (see Build_Static_Dispatch_Tables).
5774 if not Building_Static_DT
(Typ
) then
5775 Append_Freeze_Actions
(Typ
, Make_DT
(Typ
));
5777 -- Register dispatch table wrappers in the dispatch table.
5778 -- It could not be done when these wrappers were built
5779 -- because, at that stage, the dispatch table was not
5782 Register_Dispatch_Table_Wrappers
(Typ
);
5786 -- If the type has unknown discriminants, propagate dispatching
5787 -- information to its underlying record view, which does not get
5788 -- its own dispatch table.
5790 if Is_Derived_Type
(Typ
)
5791 and then Has_Unknown_Discriminants
(Typ
)
5792 and then Present
(Underlying_Record_View
(Typ
))
5795 Rep
: constant Entity_Id
:= Underlying_Record_View
(Typ
);
5797 Set_Access_Disp_Table
5798 (Rep
, Access_Disp_Table
(Typ
));
5799 Set_Dispatch_Table_Wrappers
5800 (Rep
, Dispatch_Table_Wrappers
(Typ
));
5801 Set_Direct_Primitive_Operations
5802 (Rep
, Direct_Primitive_Operations
(Typ
));
5806 -- Make sure that the primitives Initialize, Adjust and Finalize
5807 -- are Frozen before other TSS subprograms. We don't want them
5810 if Is_Controlled
(Typ
) then
5811 if not Is_Limited_Type
(Typ
) then
5812 Append_Freeze_Actions
(Typ
,
5813 Freeze_Entity
(Find_Prim_Op
(Typ
, Name_Adjust
), Typ
));
5816 Append_Freeze_Actions
(Typ
,
5817 Freeze_Entity
(Find_Prim_Op
(Typ
, Name_Initialize
), Typ
));
5819 Append_Freeze_Actions
(Typ
,
5820 Freeze_Entity
(Find_Prim_Op
(Typ
, Name_Finalize
), Typ
));
5823 -- Freeze rest of primitive operations. There is no need to handle
5824 -- the predefined primitives if we are compiling under restriction
5825 -- No_Dispatching_Calls.
5827 if not Restriction_Active
(No_Dispatching_Calls
) then
5828 Append_Freeze_Actions
(Typ
, Predefined_Primitive_Freeze
(Typ
));
5832 -- In the untagged case, ever since Ada 83 an equality function must
5833 -- be provided for variant records that are not unchecked unions.
5835 elsif Has_Discriminants
(Typ
)
5836 and then not Is_Limited_Type
(Typ
)
5837 and then Present
(Component_List
(Type_Definition
(Typ_Decl
)))
5839 Present
(Variant_Part
(Component_List
(Type_Definition
(Typ_Decl
))))
5841 Build_Variant_Record_Equality
(Typ
);
5843 -- In Ada 2012 the equality function composes, and thus must be built
5844 -- explicitly just as for tagged records.
5846 -- This is done unconditionally to ensure that tools can be linked
5847 -- properly with user programs compiled with older language versions.
5848 -- In addition, this is needed because "=" composes for bounded strings
5849 -- in all language versions (see Exp_Ch4.Expand_Composite_Equality).
5851 elsif Comes_From_Source
(Typ
)
5852 and then Convention
(Typ
) = Convention_Ada
5853 and then not Is_Limited_Type
(Typ
)
5855 Build_Untagged_Record_Equality
(Typ
);
5858 -- Before building the record initialization procedure, if we are
5859 -- dealing with a concurrent record value type, then we must go through
5860 -- the discriminants, exchanging discriminals between the concurrent
5861 -- type and the concurrent record value type. See the section "Handling
5862 -- of Discriminants" in the Einfo spec for details.
5864 if Is_Concurrent_Record_Type
(Typ
) and then Has_Discriminants
(Typ
) then
5866 Ctyp
: constant Entity_Id
:=
5867 Corresponding_Concurrent_Type
(Typ
);
5868 Conc_Discr
: Entity_Id
;
5869 Rec_Discr
: Entity_Id
;
5873 Conc_Discr
:= First_Discriminant
(Ctyp
);
5874 Rec_Discr
:= First_Discriminant
(Typ
);
5875 while Present
(Conc_Discr
) loop
5876 Temp
:= Discriminal
(Conc_Discr
);
5877 Set_Discriminal
(Conc_Discr
, Discriminal
(Rec_Discr
));
5878 Set_Discriminal
(Rec_Discr
, Temp
);
5880 Set_Discriminal_Link
(Discriminal
(Conc_Discr
), Conc_Discr
);
5881 Set_Discriminal_Link
(Discriminal
(Rec_Discr
), Rec_Discr
);
5883 Next_Discriminant
(Conc_Discr
);
5884 Next_Discriminant
(Rec_Discr
);
5889 if Has_Controlled_Component
(Typ
) then
5890 Build_Controlling_Procs
(Typ
);
5893 Adjust_Discriminants
(Typ
);
5895 -- Do not need init for interfaces on virtual targets since they're
5898 if Tagged_Type_Expansion
or else not Is_Interface
(Typ
) then
5899 Build_Record_Init_Proc
(Typ_Decl
, Typ
);
5902 -- For tagged type that are not interfaces, build bodies of primitive
5903 -- operations. Note: do this after building the record initialization
5904 -- procedure, since the primitive operations may need the initialization
5905 -- routine. There is no need to add predefined primitives of interfaces
5906 -- because all their predefined primitives are abstract.
5908 if Is_Tagged_Type
(Typ
) and then not Is_Interface
(Typ
) then
5910 -- Do not add the body of predefined primitives in case of CPP tagged
5911 -- type derivations that have convention CPP.
5913 if Is_CPP_Class
(Root_Type
(Typ
))
5914 and then Convention
(Typ
) = Convention_CPP
5918 -- Do not add the body of the predefined primitives if we are
5919 -- compiling under restriction No_Dispatching_Calls or if we are
5920 -- compiling a CPP tagged type.
5922 elsif not Restriction_Active
(No_Dispatching_Calls
) then
5924 -- Create the body of TSS primitive Finalize_Address. This must
5925 -- be done before the bodies of all predefined primitives are
5926 -- created. If Typ is limited, Stream_Input and Stream_Read may
5927 -- produce build-in-place allocations and for those the expander
5928 -- needs Finalize_Address.
5930 Make_Finalize_Address_Body
(Typ
);
5931 Predef_List
:= Predefined_Primitive_Bodies
(Typ
, Renamed_Eq
);
5932 Append_Freeze_Actions
(Typ
, Predef_List
);
5935 -- Ada 2005 (AI-391): If any wrappers were created for nonoverridden
5936 -- inherited functions, then add their bodies to the freeze actions.
5938 Append_Freeze_Actions
(Typ
, Wrapper_Body_List
);
5941 -- Create extra formals for the primitive operations of the type.
5942 -- This must be done before analyzing the body of the initialization
5943 -- procedure, because a self-referential type might call one of these
5944 -- primitives in the body of the init_proc itself.
5946 -- This is not needed:
5947 -- 1) If expansion is disabled, because extra formals are only added
5948 -- when we are generating code.
5950 -- 2) For types with foreign convention since primitives with foreign
5951 -- convention don't have extra formals and AI95-117 requires that
5952 -- all primitives of a tagged type inherit the convention.
5955 and then Is_Tagged_Type
(Typ
)
5956 and then not Has_Foreign_Convention
(Typ
)
5963 -- Add extra formals to primitive operations
5965 Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
5966 while Present
(Elmt
) loop
5967 Create_Extra_Formals
(Node
(Elmt
));
5971 -- Add extra formals to renamings of primitive operations. The
5972 -- addition of extra formals is done in two steps to minimize
5973 -- the compile time required for this action; the evaluation of
5974 -- Find_Dispatching_Type() and Contains() is only done here for
5975 -- renamings that are not primitive operations.
5977 E
:= First_Entity
(Scope
(Typ
));
5978 while Present
(E
) loop
5979 if Is_Dispatching_Operation
(E
)
5980 and then Present
(Alias
(E
))
5981 and then Find_Dispatching_Type
(E
) = Typ
5982 and then not Contains
(Primitive_Operations
(Typ
), E
)
5984 Create_Extra_Formals
(E
);
5990 pragma Debug
(Validate_Tagged_Type_Extra_Formals
(Typ
));
5994 -- Build internal subprograms of primitives with class-wide
5995 -- pre/postconditions.
5997 if Is_Tagged_Type
(Typ
) then
5998 Build_Class_Condition_Subprograms
(Typ
);
6000 end Expand_Freeze_Record_Type
;
6002 ------------------------------------
6003 -- Expand_N_Full_Type_Declaration --
6004 ------------------------------------
6006 procedure Expand_N_Full_Type_Declaration
(N
: Node_Id
) is
6007 procedure Build_Master
(Ptr_Typ
: Entity_Id
);
6008 -- Create the master associated with Ptr_Typ
6014 procedure Build_Master
(Ptr_Typ
: Entity_Id
) is
6015 Desig_Typ
: Entity_Id
:= Designated_Type
(Ptr_Typ
);
6018 -- If the designated type is an incomplete view coming from a
6019 -- limited-with'ed package, we need to use the nonlimited view in
6020 -- case it has tasks.
6022 if Is_Incomplete_Type
(Desig_Typ
)
6023 and then Present
(Non_Limited_View
(Desig_Typ
))
6025 Desig_Typ
:= Non_Limited_View
(Desig_Typ
);
6028 -- Anonymous access types are created for the components of the
6029 -- record parameter for an entry declaration. No master is created
6032 if Has_Task
(Desig_Typ
) then
6033 Build_Master_Entity
(Ptr_Typ
);
6034 Build_Master_Renaming
(Ptr_Typ
);
6036 -- Create a class-wide master because a Master_Id must be generated
6037 -- for access-to-limited-class-wide types whose root may be extended
6038 -- with task components.
6040 -- Note: This code covers access-to-limited-interfaces because they
6041 -- can be used to reference tasks implementing them.
6043 -- Suppress the master creation for access types created for entry
6044 -- formal parameters (parameter block component types). Seems like
6045 -- suppression should be more general for compiler-generated types,
6046 -- but testing Comes_From_Source may be too general in this case
6047 -- (affects some test output)???
6049 elsif not Is_Param_Block_Component_Type
(Ptr_Typ
)
6050 and then Is_Limited_Class_Wide_Type
(Desig_Typ
)
6052 Build_Class_Wide_Master
(Ptr_Typ
);
6056 -- Local declarations
6058 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
6059 B_Id
: constant Entity_Id
:= Base_Type
(Def_Id
);
6063 -- Start of processing for Expand_N_Full_Type_Declaration
6066 if Is_Access_Type
(Def_Id
) then
6067 Build_Master
(Def_Id
);
6069 if Ekind
(Def_Id
) = E_Access_Protected_Subprogram_Type
then
6070 Expand_Access_Protected_Subprogram_Type
(N
);
6073 -- Array of anonymous access-to-task pointers
6075 elsif Ada_Version
>= Ada_2005
6076 and then Is_Array_Type
(Def_Id
)
6077 and then Is_Access_Type
(Component_Type
(Def_Id
))
6078 and then Ekind
(Component_Type
(Def_Id
)) = E_Anonymous_Access_Type
6080 Build_Master
(Component_Type
(Def_Id
));
6082 elsif Has_Task
(Def_Id
) then
6083 Expand_Previous_Access_Type
(Def_Id
);
6085 -- Check the components of a record type or array of records for
6086 -- anonymous access-to-task pointers.
6088 elsif Ada_Version
>= Ada_2005
6089 and then (Is_Record_Type
(Def_Id
)
6091 (Is_Array_Type
(Def_Id
)
6092 and then Is_Record_Type
(Component_Type
(Def_Id
))))
6097 M_Id
: Entity_Id
:= Empty
;
6101 if Is_Array_Type
(Def_Id
) then
6102 Comp
:= First_Entity
(Component_Type
(Def_Id
));
6104 Comp
:= First_Entity
(Def_Id
);
6107 -- Examine all components looking for anonymous access-to-task
6111 while Present
(Comp
) loop
6112 Typ
:= Etype
(Comp
);
6114 if Ekind
(Typ
) = E_Anonymous_Access_Type
6115 and then Might_Have_Tasks
6116 (Available_View
(Designated_Type
(Typ
)))
6117 and then No
(Master_Id
(Typ
))
6119 -- Ensure that the record or array type have a _master
6122 Build_Master_Entity
(Def_Id
);
6123 Build_Master_Renaming
(Typ
);
6124 M_Id
:= Master_Id
(Typ
);
6128 -- Reuse the same master to service any additional types
6131 pragma Assert
(Present
(M_Id
));
6132 Set_Master_Id
(Typ
, M_Id
);
6141 Par_Id
:= Etype
(B_Id
);
6143 -- The parent type is private then we need to inherit any TSS operations
6144 -- from the full view.
6146 if Is_Private_Type
(Par_Id
)
6147 and then Present
(Full_View
(Par_Id
))
6149 Par_Id
:= Base_Type
(Full_View
(Par_Id
));
6152 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
6153 and then not Is_Tagged_Type
(Def_Id
)
6154 and then Present
(Freeze_Node
(Par_Id
))
6155 and then Present
(TSS_Elist
(Freeze_Node
(Par_Id
)))
6157 Ensure_Freeze_Node
(B_Id
);
6158 FN
:= Freeze_Node
(B_Id
);
6160 if No
(TSS_Elist
(FN
)) then
6161 Set_TSS_Elist
(FN
, New_Elmt_List
);
6165 T_E
: constant Elist_Id
:= TSS_Elist
(FN
);
6169 Elmt
:= First_Elmt
(TSS_Elist
(Freeze_Node
(Par_Id
)));
6170 while Present
(Elmt
) loop
6171 if Chars
(Node
(Elmt
)) /= Name_uInit
then
6172 Append_Elmt
(Node
(Elmt
), T_E
);
6178 -- If the derived type itself is private with a full view, then
6179 -- associate the full view with the inherited TSS_Elist as well.
6181 if Is_Private_Type
(B_Id
)
6182 and then Present
(Full_View
(B_Id
))
6184 Ensure_Freeze_Node
(Base_Type
(Full_View
(B_Id
)));
6186 (Freeze_Node
(Base_Type
(Full_View
(B_Id
))), TSS_Elist
(FN
));
6190 end Expand_N_Full_Type_Declaration
;
6192 ---------------------------------
6193 -- Expand_N_Object_Declaration --
6194 ---------------------------------
6196 procedure Expand_N_Object_Declaration
(N
: Node_Id
) is
6197 Loc
: constant Source_Ptr
:= Sloc
(N
);
6198 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
6199 Expr
: constant Node_Id
:= Expression
(N
);
6200 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
6201 Typ
: constant Entity_Id
:= Etype
(Def_Id
);
6202 Base_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
6203 Next_N
: constant Node_Id
:= Next
(N
);
6205 Special_Ret_Obj
: constant Boolean := Is_Special_Return_Object
(Def_Id
);
6206 -- If this is a special return object, it will be allocated differently
6207 -- and ultimately rewritten as a renaming, so initialization activities
6208 -- need to be deferred until after that is done.
6210 Func_Id
: constant Entity_Id
:=
6211 (if Special_Ret_Obj
then Return_Applies_To
(Scope
(Def_Id
)) else Empty
);
6212 -- The function if this is a special return object, otherwise Empty
6214 function Build_Equivalent_Aggregate
return Boolean;
6215 -- If the object has a constrained discriminated type and no initial
6216 -- value, it may be possible to build an equivalent aggregate instead,
6217 -- and prevent an actual call to the initialization procedure.
6219 function Build_Heap_Or_Pool_Allocator
6220 (Temp_Id
: Entity_Id
;
6221 Temp_Typ
: Entity_Id
;
6222 Ret_Typ
: Entity_Id
;
6223 Alloc_Expr
: Node_Id
) return Node_Id
;
6224 -- Create the statements necessary to allocate a return object on the
6225 -- heap or user-defined storage pool. The object may need finalization
6226 -- actions depending on the return type.
6228 -- * Controlled case
6230 -- if BIPfinalizationmaster = null then
6231 -- Temp_Id := <Alloc_Expr>;
6234 -- type Ptr_Typ is access Ret_Typ;
6235 -- for Ptr_Typ'Storage_Pool use
6236 -- Base_Pool (BIPfinalizationmaster.all).all;
6240 -- procedure Allocate (...) is
6242 -- System.Storage_Pools.Subpools.Allocate_Any (...);
6245 -- Local := <Alloc_Expr>;
6246 -- Temp_Id := Temp_Typ (Local);
6250 -- * Non-controlled case
6252 -- Temp_Id := <Alloc_Expr>;
6254 -- Temp_Id is the temporary which is used to reference the internally
6255 -- created object in all allocation forms. Temp_Typ is the type of the
6256 -- temporary. Func_Id is the enclosing function. Ret_Typ is the return
6257 -- type of Func_Id. Alloc_Expr is the actual allocator.
6259 function BIP_Function_Call_Id
return Entity_Id
;
6260 -- If the object initialization expression is a call to a build-in-place
6261 -- function, return the id of the called function; otherwise return
6264 procedure Count_Default_Sized_Task_Stacks
6266 Pri_Stacks
: out Int
;
6267 Sec_Stacks
: out Int
);
6268 -- Count the number of default-sized primary and secondary task stacks
6269 -- required for task objects contained within type Typ. If the number of
6270 -- task objects contained within the type is not known at compile time
6271 -- the procedure will return the stack counts of zero.
6273 procedure Default_Initialize_Object
(After
: Node_Id
);
6274 -- Generate all default initialization actions for object Def_Id. Any
6275 -- new code is inserted after node After.
6277 procedure Initialize_Return_Object
6278 (Tag_Assign
: Node_Id
;
6281 Init_Stmt
: Node_Id
;
6283 -- Generate all initialization actions for return object Def_Id. Any
6284 -- new code is inserted after node After.
6286 function Is_Renamable_Function_Call
(Expr
: Node_Id
) return Boolean;
6287 -- If we are not at library level and the object declaration originally
6288 -- appears in the form:
6290 -- Obj : Typ := Func (...);
6292 -- and has been rewritten as the dereference of a captured reference
6293 -- to the function result built either on the primary or the secondary
6294 -- stack, then the declaration can be rewritten as the renaming of this
6297 -- type Ann is access all Typ;
6298 -- Rnn : constant Axx := Func (...)'reference;
6299 -- Obj : Typ renames Rnn.all;
6301 -- This will avoid making an extra copy and, in the case where Typ needs
6302 -- finalization, a pair of calls to the Adjust and Finalize primitives,
6303 -- or Deep_Adjust and Deep_Finalize routines, depending on whether Typ
6304 -- has components that themselves need finalization.
6306 -- However, in the case of a special return object, we need to make sure
6307 -- that the object Rnn is recognized by the Is_Related_To_Func_Return
6308 -- predicate; otherwise, if it is of a type that needs finalization,
6309 -- then Requires_Cleanup_Actions would return true because of this and
6310 -- Build_Finalizer would finalize it prematurely because of this (see
6311 -- also Expand_Simple_Function_Return for the same test in the case of
6312 -- a simple return).
6314 -- Finally, in the case of a special return object, we also need to make
6315 -- sure that the two functions return on the same stack, otherwise we
6316 -- would create a dangling reference.
6318 function Make_Allocator_For_Return
(Expr
: Node_Id
) return Node_Id
;
6319 -- Make an allocator for a return object initialized with Expr
6321 function OK_To_Rename_Ref
(N
: Node_Id
) return Boolean;
6322 -- Return True if N denotes an entity with OK_To_Rename set
6324 --------------------------------
6325 -- Build_Equivalent_Aggregate --
6326 --------------------------------
6328 function Build_Equivalent_Aggregate
return Boolean is
6332 Full_Type
: Entity_Id
;
6337 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
6338 Full_Type
:= Full_View
(Typ
);
6341 -- Only perform this transformation if Elaboration_Code is forbidden
6342 -- or undesirable, and if this is a global entity of a constrained
6345 -- If Initialize_Scalars might be active this transformation cannot
6346 -- be performed either, because it will lead to different semantics
6347 -- or because elaboration code will in fact be created.
6349 if Ekind
(Full_Type
) /= E_Record_Subtype
6350 or else not Has_Discriminants
(Full_Type
)
6351 or else not Is_Constrained
(Full_Type
)
6352 or else Is_Controlled
(Full_Type
)
6353 or else Is_Limited_Type
(Full_Type
)
6354 or else not Restriction_Active
(No_Initialize_Scalars
)
6359 if Ekind
(Current_Scope
) = E_Package
6361 (Restriction_Active
(No_Elaboration_Code
)
6362 or else Is_Preelaborated
(Current_Scope
))
6364 -- Building a static aggregate is possible if the discriminants
6365 -- have static values and the other components have static
6366 -- defaults or none.
6368 Discr
:= First_Elmt
(Discriminant_Constraint
(Full_Type
));
6369 while Present
(Discr
) loop
6370 if not Is_OK_Static_Expression
(Node
(Discr
)) then
6377 -- Check that initialized components are OK, and that non-
6378 -- initialized components do not require a call to their own
6379 -- initialization procedure.
6381 Comp
:= First_Component
(Full_Type
);
6382 while Present
(Comp
) loop
6383 if Present
(Expression
(Parent
(Comp
)))
6385 not Is_OK_Static_Expression
(Expression
(Parent
(Comp
)))
6389 elsif Has_Non_Null_Base_Init_Proc
(Etype
(Comp
)) then
6394 Next_Component
(Comp
);
6397 -- Everything is static, assemble the aggregate, discriminant
6401 Make_Aggregate
(Loc
,
6402 Expressions
=> New_List
,
6403 Component_Associations
=> New_List
);
6405 Discr
:= First_Elmt
(Discriminant_Constraint
(Full_Type
));
6406 while Present
(Discr
) loop
6407 Append_To
(Expressions
(Aggr
), New_Copy
(Node
(Discr
)));
6411 -- Now collect values of initialized components
6413 Comp
:= First_Component
(Full_Type
);
6414 while Present
(Comp
) loop
6415 if Present
(Expression
(Parent
(Comp
))) then
6416 Append_To
(Component_Associations
(Aggr
),
6417 Make_Component_Association
(Loc
,
6418 Choices
=> New_List
(New_Occurrence_Of
(Comp
, Loc
)),
6419 Expression
=> New_Copy_Tree
6420 (Expression
(Parent
(Comp
)))));
6423 Next_Component
(Comp
);
6426 -- Finally, box-initialize remaining components
6428 Append_To
(Component_Associations
(Aggr
),
6429 Make_Component_Association
(Loc
,
6430 Choices
=> New_List
(Make_Others_Choice
(Loc
)),
6431 Expression
=> Empty
));
6432 Set_Box_Present
(Last
(Component_Associations
(Aggr
)));
6433 Set_Expression
(N
, Aggr
);
6435 if Typ
/= Full_Type
then
6436 Analyze_And_Resolve
(Aggr
, Full_View
(Base_Type
(Full_Type
)));
6437 Rewrite
(Aggr
, Unchecked_Convert_To
(Typ
, Aggr
));
6438 Analyze_And_Resolve
(Aggr
, Typ
);
6440 Analyze_And_Resolve
(Aggr
, Full_Type
);
6448 end Build_Equivalent_Aggregate
;
6450 ----------------------------------
6451 -- Build_Heap_Or_Pool_Allocator --
6452 ----------------------------------
6454 function Build_Heap_Or_Pool_Allocator
6455 (Temp_Id
: Entity_Id
;
6456 Temp_Typ
: Entity_Id
;
6457 Ret_Typ
: Entity_Id
;
6458 Alloc_Expr
: Node_Id
) return Node_Id
6461 pragma Assert
(Is_Build_In_Place_Function
(Func_Id
));
6463 -- Processing for objects that require finalization actions
6465 if Needs_Finalization
(Ret_Typ
) then
6467 Decls
: constant List_Id
:= New_List
;
6468 Fin_Mas_Id
: constant Entity_Id
:=
6469 Build_In_Place_Formal
(Func_Id
, BIP_Finalization_Master
);
6470 Orig_Expr
: constant Node_Id
:= New_Copy_Tree
(Alloc_Expr
);
6471 Stmts
: constant List_Id
:= New_List
;
6472 Local_Id
: Entity_Id
;
6473 Pool_Id
: Entity_Id
;
6474 Ptr_Typ
: Entity_Id
;
6478 -- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
6480 Pool_Id
:= Make_Temporary
(Loc
, 'P');
6483 Make_Object_Renaming_Declaration
(Loc
,
6484 Defining_Identifier
=> Pool_Id
,
6486 New_Occurrence_Of
(RTE
(RE_Root_Storage_Pool
), Loc
),
6488 Make_Explicit_Dereference
(Loc
,
6490 Make_Function_Call
(Loc
,
6492 New_Occurrence_Of
(RTE
(RE_Base_Pool
), Loc
),
6493 Parameter_Associations
=> New_List
(
6494 Make_Explicit_Dereference
(Loc
,
6496 New_Occurrence_Of
(Fin_Mas_Id
, Loc
)))))));
6498 -- Create an access type which uses the storage pool of the
6499 -- caller's master. This additional type is necessary because
6500 -- the finalization master cannot be associated with the type
6501 -- of the temporary. Otherwise the secondary stack allocation
6505 -- type Ptr_Typ is access Ret_Typ;
6507 Ptr_Typ
:= Make_Temporary
(Loc
, 'P');
6510 Make_Full_Type_Declaration
(Loc
,
6511 Defining_Identifier
=> Ptr_Typ
,
6513 Make_Access_To_Object_Definition
(Loc
,
6514 Subtype_Indication
=>
6515 New_Occurrence_Of
(Ret_Typ
, Loc
))));
6517 -- Perform minor decoration in order to set the master and the
6518 -- storage pool attributes.
6520 Mutate_Ekind
(Ptr_Typ
, E_Access_Type
);
6521 Set_Finalization_Master
(Ptr_Typ
, Fin_Mas_Id
);
6522 Set_Associated_Storage_Pool
(Ptr_Typ
, Pool_Id
);
6524 -- Create the temporary, generate:
6525 -- Local_Id : Ptr_Typ;
6527 Local_Id
:= Make_Temporary
(Loc
, 'T');
6530 Make_Object_Declaration
(Loc
,
6531 Defining_Identifier
=> Local_Id
,
6532 Object_Definition
=>
6533 New_Occurrence_Of
(Ptr_Typ
, Loc
)));
6535 -- Allocate the object, generate:
6536 -- Local_Id := <Alloc_Expr>;
6539 Make_Assignment_Statement
(Loc
,
6540 Name
=> New_Occurrence_Of
(Local_Id
, Loc
),
6541 Expression
=> Alloc_Expr
));
6544 -- Temp_Id := Temp_Typ (Local_Id);
6547 Make_Assignment_Statement
(Loc
,
6548 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
6550 Unchecked_Convert_To
(Temp_Typ
,
6551 New_Occurrence_Of
(Local_Id
, Loc
))));
6553 -- Wrap the allocation in a block. This is further conditioned
6554 -- by checking the caller finalization master at runtime. A
6555 -- null value indicates a non-existent master, most likely due
6556 -- to a Finalize_Storage_Only allocation.
6559 -- if BIPfinalizationmaster = null then
6560 -- Temp_Id := <Orig_Expr>;
6570 Make_If_Statement
(Loc
,
6573 Left_Opnd
=> New_Occurrence_Of
(Fin_Mas_Id
, Loc
),
6574 Right_Opnd
=> Make_Null
(Loc
)),
6576 Then_Statements
=> New_List
(
6577 Make_Assignment_Statement
(Loc
,
6578 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
6579 Expression
=> Orig_Expr
)),
6581 Else_Statements
=> New_List
(
6582 Make_Block_Statement
(Loc
,
6583 Declarations
=> Decls
,
6584 Handled_Statement_Sequence
=>
6585 Make_Handled_Sequence_Of_Statements
(Loc
,
6586 Statements
=> Stmts
))));
6589 -- For all other cases, generate:
6590 -- Temp_Id := <Alloc_Expr>;
6594 Make_Assignment_Statement
(Loc
,
6595 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
6596 Expression
=> Alloc_Expr
);
6598 end Build_Heap_Or_Pool_Allocator
;
6600 --------------------------
6601 -- BIP_Function_Call_Id --
6602 --------------------------
6604 function BIP_Function_Call_Id
return Entity_Id
is
6606 function Func_Call_Id
(Function_Call
: Node_Id
) return Entity_Id
;
6607 -- Return the id of the called function.
6609 function Func_Call_Id
(Function_Call
: Node_Id
) return Entity_Id
is
6610 Call_Node
: constant Node_Id
:= Unqual_Conv
(Function_Call
);
6613 if Is_Entity_Name
(Name
(Call_Node
)) then
6614 return Entity
(Name
(Call_Node
));
6616 elsif Nkind
(Name
(Call_Node
)) = N_Explicit_Dereference
then
6617 return Etype
(Name
(Call_Node
));
6620 pragma Assert
(Nkind
(Name
(Call_Node
)) = N_Selected_Component
);
6621 return Etype
(Entity
(Selector_Name
(Name
(Call_Node
))));
6625 -- Local declarations
6627 BIP_Func_Call
: Node_Id
;
6628 Expr_Q
: constant Node_Id
:= Unqual_Conv
(Expr
);
6630 -- Start of processing for BIP_Function_Call_Id
6633 if Is_Build_In_Place_Function_Call
(Expr_Q
) then
6634 return Func_Call_Id
(Expr_Q
);
6637 BIP_Func_Call
:= Unqual_BIP_Iface_Function_Call
(Expr_Q
);
6639 if Present
(BIP_Func_Call
) then
6641 -- In the case of an explicitly dereferenced call, return the
6644 if Nkind
(Name
(BIP_Func_Call
)) = N_Explicit_Dereference
then
6645 return Etype
(Name
(BIP_Func_Call
));
6647 pragma Assert
(Is_Entity_Name
(Name
(BIP_Func_Call
)));
6648 return Entity
(Name
(BIP_Func_Call
));
6651 elsif Nkind
(Expr_Q
) = N_Reference
6652 and then Is_Build_In_Place_Function_Call
(Prefix
(Expr_Q
))
6654 return Func_Call_Id
(Prefix
(Expr_Q
));
6659 end BIP_Function_Call_Id
;
6661 -------------------------------------
6662 -- Count_Default_Sized_Task_Stacks --
6663 -------------------------------------
6665 procedure Count_Default_Sized_Task_Stacks
6667 Pri_Stacks
: out Int
;
6668 Sec_Stacks
: out Int
)
6670 Component
: Entity_Id
;
6673 -- To calculate the number of default-sized task stacks required for
6674 -- an object of Typ, a depth-first recursive traversal of the AST
6675 -- from the Typ entity node is undertaken. Only type nodes containing
6676 -- task objects are visited.
6681 if not Has_Task
(Typ
) then
6689 -- A task type is found marking the bottom of the descent. If
6690 -- the type has no representation aspect for the corresponding
6691 -- stack then that stack is using the default size.
6693 if Present
(Get_Rep_Item
(Typ
, Name_Storage_Size
)) then
6699 if Present
(Get_Rep_Item
(Typ
, Name_Secondary_Stack_Size
)) then
6705 when E_Array_Subtype
6708 -- First find the number of default stacks contained within an
6711 Count_Default_Sized_Task_Stacks
6712 (Component_Type
(Typ
),
6716 -- Then multiply the result by the size of the array
6719 Quantity
: constant Int
:= Number_Of_Elements_In_Array
(Typ
);
6720 -- Number_Of_Elements_In_Array is non-trival, consequently
6721 -- its result is captured as an optimization.
6724 Pri_Stacks
:= Pri_Stacks
* Quantity
;
6725 Sec_Stacks
:= Sec_Stacks
* Quantity
;
6728 when E_Protected_Subtype
6733 Component
:= First_Component_Or_Discriminant
(Typ
);
6735 -- Recursively descend each component of the composite type
6736 -- looking for tasks, but only if the component is marked as
6739 while Present
(Component
) loop
6740 if Has_Task
(Etype
(Component
)) then
6746 Count_Default_Sized_Task_Stacks
6747 (Etype
(Component
), P
, S
);
6748 Pri_Stacks
:= Pri_Stacks
+ P
;
6749 Sec_Stacks
:= Sec_Stacks
+ S
;
6753 Next_Component_Or_Discriminant
(Component
);
6756 when E_Limited_Private_Subtype
6757 | E_Limited_Private_Type
6758 | E_Record_Subtype_With_Private
6759 | E_Record_Type_With_Private
6761 -- Switch to the full view of the private type to continue
6764 Count_Default_Sized_Task_Stacks
6765 (Full_View
(Typ
), Pri_Stacks
, Sec_Stacks
);
6767 -- Other types should not contain tasks
6770 raise Program_Error
;
6772 end Count_Default_Sized_Task_Stacks
;
6774 -------------------------------
6775 -- Default_Initialize_Object --
6776 -------------------------------
6778 procedure Default_Initialize_Object
(After
: Node_Id
) is
6779 function New_Object_Reference
return Node_Id
;
6780 -- Return a new reference to Def_Id with attributes Assignment_OK and
6781 -- Must_Not_Freeze already set.
6783 function Simple_Initialization_OK
6784 (Init_Typ
: Entity_Id
) return Boolean;
6785 -- Determine whether object declaration N with entity Def_Id needs
6786 -- simple initialization, assuming that it is of type Init_Typ.
6788 --------------------------
6789 -- New_Object_Reference --
6790 --------------------------
6792 function New_Object_Reference
return Node_Id
is
6793 Obj_Ref
: constant Node_Id
:= New_Occurrence_Of
(Def_Id
, Loc
);
6796 -- The call to the type init proc or [Deep_]Finalize must not
6797 -- freeze the related object as the call is internally generated.
6798 -- This way legal rep clauses that apply to the object will not be
6799 -- flagged. Note that the initialization call may be removed if
6800 -- pragma Import is encountered or moved to the freeze actions of
6801 -- the object because of an address clause.
6803 Set_Assignment_OK
(Obj_Ref
);
6804 Set_Must_Not_Freeze
(Obj_Ref
);
6807 end New_Object_Reference
;
6809 ------------------------------
6810 -- Simple_Initialization_OK --
6811 ------------------------------
6813 function Simple_Initialization_OK
6814 (Init_Typ
: Entity_Id
) return Boolean
6817 -- Do not consider the object declaration if it comes with an
6818 -- initialization expression, or is internal in which case it
6819 -- will be assigned later.
6822 not Is_Internal
(Def_Id
)
6823 and then not Has_Init_Expression
(N
)
6824 and then Needs_Simple_Initialization
6828 and then No
(Following_Address_Clause
(N
)));
6829 end Simple_Initialization_OK
;
6833 Exceptions_OK
: constant Boolean :=
6834 not Restriction_Active
(No_Exception_Propagation
);
6836 Aggr_Init
: Node_Id
;
6837 Comp_Init
: List_Id
:= No_List
;
6838 Fin_Block
: Node_Id
;
6840 Init_Stmts
: List_Id
:= No_List
;
6841 Obj_Init
: Node_Id
:= Empty
;
6844 -- Start of processing for Default_Initialize_Object
6847 -- Default initialization is suppressed for objects that are already
6848 -- known to be imported (i.e. whose declaration specifies the Import
6849 -- aspect). Note that for objects with a pragma Import, we generate
6850 -- initialization here, and then remove it downstream when processing
6851 -- the pragma. It is also suppressed for variables for which a pragma
6852 -- Suppress_Initialization has been explicitly given
6854 if Is_Imported
(Def_Id
) or else Suppress_Initialization
(Def_Id
) then
6857 -- Nothing to do if the object being initialized is of a task type
6858 -- and restriction No_Tasking is in effect, because this is a direct
6859 -- violation of the restriction.
6861 elsif Is_Task_Type
(Base_Typ
)
6862 and then Restriction_Active
(No_Tasking
)
6867 -- The expansion performed by this routine is as follows:
6871 -- Type_Init_Proc (Obj);
6874 -- [Deep_]Initialize (Obj);
6878 -- [Deep_]Finalize (Obj, Self => False);
6882 -- Abort_Undefer_Direct;
6885 -- Initialize the components of the object
6887 if Has_Non_Null_Base_Init_Proc
(Typ
)
6888 and then not No_Initialization
(N
)
6889 and then not Initialization_Suppressed
(Typ
)
6891 -- Do not initialize the components if No_Default_Initialization
6892 -- applies as the actual restriction check will occur later when
6893 -- the object is frozen as it is not known yet whether the object
6894 -- is imported or not.
6896 if not Restriction_Active
(No_Default_Initialization
) then
6898 -- If the values of the components are compile-time known, use
6899 -- their prebuilt aggregate form directly.
6901 Aggr_Init
:= Static_Initialization
(Base_Init_Proc
(Typ
));
6903 if Present
(Aggr_Init
) then
6905 New_Copy_Tree
(Aggr_Init
, New_Scope
=> Current_Scope
));
6907 -- If type has discriminants, try to build an equivalent
6908 -- aggregate using discriminant values from the declaration.
6909 -- This is a useful optimization, in particular if restriction
6910 -- No_Elaboration_Code is active.
6912 elsif Build_Equivalent_Aggregate
then
6915 -- Optimize the default initialization of an array object when
6916 -- pragma Initialize_Scalars or Normalize_Scalars is in effect.
6917 -- Construct an in-place initialization aggregate which may be
6918 -- convert into a fast memset by the backend.
6920 elsif Init_Or_Norm_Scalars
6921 and then Is_Array_Type
(Typ
)
6923 -- The array must lack atomic components because they are
6924 -- treated as non-static, and as a result the backend will
6925 -- not initialize the memory in one go.
6927 and then not Has_Atomic_Components
(Typ
)
6929 -- The array must not be packed because the invalid values
6930 -- in System.Scalar_Values are multiples of Storage_Unit.
6932 and then not Is_Packed
(Typ
)
6934 -- The array must have static non-empty ranges, otherwise
6935 -- the backend cannot initialize the memory in one go.
6937 and then Has_Static_Non_Empty_Array_Bounds
(Typ
)
6939 -- The optimization is only relevant for arrays of scalar
6942 and then Is_Scalar_Type
(Component_Type
(Typ
))
6944 -- Similar to regular array initialization using a type
6945 -- init proc, predicate checks are not performed because the
6946 -- initialization values are intentionally invalid, and may
6947 -- violate the predicate.
6949 and then not Has_Predicates
(Component_Type
(Typ
))
6951 -- Array default component value takes precedence over
6952 -- Init_Or_Norm_Scalars.
6954 and then No
(Find_Aspect
(Typ
,
6955 Aspect_Default_Component_Value
))
6957 -- The component type must have a single initialization value
6959 and then Simple_Initialization_OK
(Component_Type
(Typ
))
6961 Set_No_Initialization
(N
, False);
6966 Size
=> (if Known_Esize
(Def_Id
) then Esize
(Def_Id
)
6970 (Expression
(N
), Typ
, Suppress
=> All_Checks
);
6972 -- Otherwise invoke the type init proc, generate:
6973 -- Type_Init_Proc (Obj);
6976 Obj_Ref
:= New_Object_Reference
;
6978 if Comes_From_Source
(Def_Id
) then
6979 Initialization_Warning
(Obj_Ref
);
6982 Comp_Init
:= Build_Initialization_Call
(Loc
, Obj_Ref
, Typ
);
6986 -- Provide a default value if the object needs simple initialization
6988 elsif Simple_Initialization_OK
(Typ
) then
6989 Set_No_Initialization
(N
, False);
6995 (if Known_Esize
(Def_Id
) then Esize
(Def_Id
) else Uint_0
)));
6997 Analyze_And_Resolve
(Expression
(N
), Typ
);
7000 -- Initialize the object, generate:
7001 -- [Deep_]Initialize (Obj);
7003 if Needs_Finalization
(Typ
) and then not No_Initialization
(N
) then
7006 (Obj_Ref
=> New_Object_Reference
,
7010 -- Build a special finalization block when both the object and its
7011 -- controlled components are to be initialized. The block finalizes
7012 -- the components if the object initialization fails. Generate:
7023 if Has_Controlled_Component
(Typ
)
7024 and then Present
(Comp_Init
)
7025 and then Present
(Obj_Init
)
7026 and then Exceptions_OK
7028 Init_Stmts
:= Comp_Init
;
7032 (Obj_Ref
=> New_Object_Reference
,
7036 if Present
(Fin_Call
) then
7038 -- Do not emit warnings related to the elaboration order when a
7039 -- controlled object is declared before the body of Finalize is
7042 if Legacy_Elaboration_Checks
then
7043 Set_No_Elaboration_Check
(Fin_Call
);
7047 Make_Block_Statement
(Loc
,
7048 Declarations
=> No_List
,
7050 Handled_Statement_Sequence
=>
7051 Make_Handled_Sequence_Of_Statements
(Loc
,
7052 Statements
=> New_List
(Obj_Init
),
7054 Exception_Handlers
=> New_List
(
7055 Make_Exception_Handler
(Loc
,
7056 Exception_Choices
=> New_List
(
7057 Make_Others_Choice
(Loc
)),
7059 Statements
=> New_List
(
7061 Make_Raise_Statement
(Loc
))))));
7063 -- Signal the ABE mechanism that the block carries out
7064 -- initialization actions.
7066 Set_Is_Initialization_Block
(Fin_Block
);
7068 Append_To
(Init_Stmts
, Fin_Block
);
7071 -- Otherwise finalization is not required, the initialization calls
7072 -- are passed to the abort block building circuitry, generate:
7074 -- Type_Init_Proc (Obj);
7075 -- [Deep_]Initialize (Obj);
7078 if Present
(Comp_Init
) then
7079 Init_Stmts
:= Comp_Init
;
7082 if Present
(Obj_Init
) then
7083 if No
(Init_Stmts
) then
7084 Init_Stmts
:= New_List
;
7087 Append_To
(Init_Stmts
, Obj_Init
);
7091 -- Build an abort block to protect the initialization calls
7094 and then Present
(Comp_Init
)
7095 and then Present
(Obj_Init
)
7100 Prepend_To
(Init_Stmts
, Build_Runtime_Call
(Loc
, RE_Abort_Defer
));
7102 -- When exceptions are propagated, abort deferral must take place
7103 -- in the presence of initialization or finalization exceptions.
7110 -- Abort_Undefer_Direct;
7113 if Exceptions_OK
then
7114 Init_Stmts
:= New_List
(
7115 Build_Abort_Undefer_Block
(Loc
,
7116 Stmts
=> Init_Stmts
,
7119 -- Otherwise exceptions are not propagated. Generate:
7126 Append_To
(Init_Stmts
,
7127 Build_Runtime_Call
(Loc
, RE_Abort_Undefer
));
7131 -- Insert the whole initialization sequence into the tree. If the
7132 -- object has a delayed freeze, as will be the case when it has
7133 -- aspect specifications, the initialization sequence is part of
7134 -- the freeze actions.
7136 if Present
(Init_Stmts
) then
7137 if Has_Delayed_Freeze
(Def_Id
) then
7138 Append_Freeze_Actions
(Def_Id
, Init_Stmts
);
7140 Insert_Actions_After
(After
, Init_Stmts
);
7143 end Default_Initialize_Object
;
7145 ------------------------------
7146 -- Initialize_Return_Object --
7147 ------------------------------
7149 procedure Initialize_Return_Object
7150 (Tag_Assign
: Node_Id
;
7153 Init_Stmt
: Node_Id
;
7157 if Present
(Tag_Assign
) then
7158 Insert_Action_After
(After
, Tag_Assign
);
7161 if Present
(Adj_Call
) then
7162 Insert_Action_After
(After
, Adj_Call
);
7166 Default_Initialize_Object
(After
);
7168 elsif Is_Delayed_Aggregate
(Expr
)
7169 and then not No_Initialization
(N
)
7171 Convert_Aggr_In_Object_Decl
(N
);
7173 elsif Present
(Init_Stmt
) then
7174 Insert_Action_After
(After
, Init_Stmt
);
7175 Set_Expression
(N
, Empty
);
7177 end Initialize_Return_Object
;
7179 --------------------------------
7180 -- Is_Renamable_Function_Call --
7181 --------------------------------
7183 function Is_Renamable_Function_Call
(Expr
: Node_Id
) return Boolean is
7185 return not Is_Library_Level_Entity
(Def_Id
)
7186 and then Is_Captured_Function_Call
(Expr
)
7187 and then (not Special_Ret_Obj
7189 (Is_Related_To_Func_Return
(Entity
(Prefix
(Expr
)))
7190 and then Needs_Secondary_Stack
(Etype
(Expr
)) =
7191 Needs_Secondary_Stack
(Etype
(Func_Id
))));
7192 end Is_Renamable_Function_Call
;
7194 -------------------------------
7195 -- Make_Allocator_For_Return --
7196 -------------------------------
7198 function Make_Allocator_For_Return
(Expr
: Node_Id
) return Node_Id
is
7200 Alloc_Expr
: Entity_Id
;
7201 Alloc_Typ
: Entity_Id
;
7204 -- If the return object's declaration does not include an expression,
7205 -- then we use its subtype for the allocation. Likewise in the case
7206 -- of a degenerate expression like a raise expression.
7209 or else Nkind
(Original_Node
(Expr
)) = N_Raise_Expression
7213 -- If the return object's declaration includes an expression, then
7214 -- there are two cases: either the nominal subtype of the object is
7215 -- definite and we can use it for the allocation directly, or it is
7216 -- not and Analyze_Object_Declaration should have built an actual
7217 -- subtype from the expression.
7219 -- However, there are exceptions in the latter case for interfaces
7220 -- (see Analyze_Object_Declaration), as well as class-wide types and
7221 -- types with unknown discriminants if they are additionally limited
7222 -- (see Expand_Subtype_From_Expr), so we must cope with them.
7224 elsif Is_Interface
(Typ
) then
7225 pragma Assert
(Is_Class_Wide_Type
(Typ
));
7227 -- For interfaces, we use the type of the expression, except if
7228 -- we need to put back a conversion that we have removed earlier
7229 -- in the processing.
7231 if Is_Class_Wide_Type
(Etype
(Expr
)) then
7234 Alloc_Typ
:= Etype
(Expr
);
7237 elsif Is_Class_Wide_Type
(Typ
) then
7239 -- For class-wide types, we have to make sure that we use the
7240 -- dynamic type of the expression for the allocation, either by
7241 -- means of its (static) subtype or through the actual subtype.
7243 if Has_Tag_Of_Type
(Expr
) then
7244 Alloc_Typ
:= Etype
(Expr
);
7246 else pragma Assert
(Ekind
(Typ
) = E_Class_Wide_Subtype
7247 and then Present
(Equivalent_Type
(Typ
)));
7252 else pragma Assert
(Is_Definite_Subtype
(Typ
)
7253 or else (Has_Unknown_Discriminants
(Typ
)
7254 and then Is_Limited_View
(Typ
)));
7259 -- If the return object's declaration includes an expression and the
7260 -- declaration isn't marked as No_Initialization, then we generate an
7261 -- allocator with a qualified expression. Although this is necessary
7262 -- only in the case where the result type is an interface (or class-
7263 -- wide interface), we do it in all cases for the sake of consistency
7264 -- instead of subsequently generating a separate assignment.
7267 and then not Is_Delayed_Aggregate
(Expr
)
7268 and then not No_Initialization
(N
)
7270 -- Ada 2005 (AI95-344): If the result type is class-wide, insert
7271 -- a check that the level of the return expression's underlying
7272 -- type is not deeper than the level of the master enclosing the
7275 -- AI12-043: The check is made immediately after the return object
7278 if Is_Class_Wide_Type
(Etype
(Func_Id
)) then
7279 Apply_CW_Accessibility_Check
(Expr
, Func_Id
);
7282 Alloc_Expr
:= New_Copy_Tree
(Expr
);
7284 if Etype
(Alloc_Expr
) /= Alloc_Typ
then
7285 Alloc_Expr
:= Convert_To
(Alloc_Typ
, Alloc_Expr
);
7289 Make_Allocator
(Loc
,
7291 Make_Qualified_Expression
(Loc
,
7293 New_Occurrence_Of
(Alloc_Typ
, Loc
),
7294 Expression
=> Alloc_Expr
));
7298 Make_Allocator
(Loc
,
7299 Expression
=> New_Occurrence_Of
(Alloc_Typ
, Loc
));
7301 -- If the return object requires default initialization, then it
7302 -- will happen later following the elaboration of the renaming.
7303 -- If we don't turn it off here, then the object will be default
7304 -- initialized twice.
7306 Set_No_Initialization
(Alloc
);
7309 -- Set the flag indicating that the allocator is made for a special
7310 -- return object. This is used to bypass various legality checks as
7311 -- well as to make sure that the result is not adjusted twice.
7313 Set_For_Special_Return_Object
(Alloc
);
7316 end Make_Allocator_For_Return
;
7318 ----------------------
7319 -- OK_To_Rename_Ref --
7320 ----------------------
7322 function OK_To_Rename_Ref
(N
: Node_Id
) return Boolean is
7324 return Is_Entity_Name
(N
)
7325 and then Ekind
(Entity
(N
)) = E_Variable
7326 and then OK_To_Rename
(Entity
(N
));
7327 end OK_To_Rename_Ref
;
7331 Adj_Call
: Node_Id
:= Empty
;
7332 Expr_Q
: Node_Id
:= Empty
;
7333 Tag_Assign
: Node_Id
:= Empty
;
7335 Init_After
: Node_Id
:= N
;
7336 -- Node after which the initialization actions are to be inserted. This
7337 -- is normally N, except for the case of a shared passive variable, in
7338 -- which case the init proc call must be inserted only after the bodies
7339 -- of the shared variable procedures have been seen.
7341 Has_BIP_Init_Expr
: Boolean := False;
7342 -- Whether the object is initialized with a BIP function call
7344 Rewrite_As_Renaming
: Boolean := False;
7345 -- Whether to turn the declaration into a renaming at the end
7347 Nominal_Subtype_Is_Constrained_Array
: constant Boolean :=
7348 Comes_From_Source
(Obj_Def
)
7349 and then Is_Array_Type
(Typ
) and then Is_Constrained
(Typ
);
7350 -- Used to avoid rewriting as a renaming for constrained arrays,
7351 -- which is only a problem for source arrays; others have the
7352 -- correct bounds (see below).
7354 -- Start of processing for Expand_N_Object_Declaration
7357 -- Don't do anything for deferred constants. All proper actions will be
7358 -- expanded during the full declaration.
7360 if No
(Expr
) and Constant_Present
(N
) then
7364 -- The type of the object cannot be abstract. This is diagnosed at the
7365 -- point the object is frozen, which happens after the declaration is
7366 -- fully expanded, so simply return now.
7368 if Is_Abstract_Type
(Typ
) then
7372 -- No action needed for the internal imported dummy object added by
7373 -- Make_DT to compute the offset of the components that reference
7374 -- secondary dispatch tables; required to avoid never-ending loop
7375 -- processing this internal object declaration.
7377 if Tagged_Type_Expansion
7378 and then Is_Internal
(Def_Id
)
7379 and then Is_Imported
(Def_Id
)
7380 and then Related_Type
(Def_Id
) = Implementation_Base_Type
(Typ
)
7385 -- Make shared memory routines for shared passive variable
7387 if Is_Shared_Passive
(Def_Id
) then
7388 Init_After
:= Make_Shared_Var_Procs
(N
);
7391 -- Determine whether the object is initialized with a BIP function call
7393 if Present
(Expr
) then
7394 Expr_Q
:= Unqualify
(Expr
);
7396 Has_BIP_Init_Expr
:=
7397 Is_Build_In_Place_Function_Call
(Expr_Q
)
7398 or else Present
(Unqual_BIP_Iface_Function_Call
(Expr_Q
))
7399 or else (Nkind
(Expr_Q
) = N_Reference
7401 Is_Build_In_Place_Function_Call
(Prefix
(Expr_Q
)));
7404 -- If tasks are being declared, make sure we have an activation chain
7405 -- defined for the tasks (has no effect if we already have one), and
7406 -- also that a Master variable is established (and that the appropriate
7407 -- enclosing construct is established as a task master).
7410 or else Might_Have_Tasks
(Typ
)
7411 or else (Has_BIP_Init_Expr
7412 and then Needs_BIP_Task_Actuals
(BIP_Function_Call_Id
))
7414 Build_Activation_Chain_Entity
(N
);
7416 if Has_Task
(Typ
) then
7417 Build_Master_Entity
(Def_Id
);
7419 -- Handle objects initialized with BIP function calls
7421 elsif Has_BIP_Init_Expr
then
7422 Build_Master_Entity
(Def_Id
);
7426 -- If No_Implicit_Heap_Allocations or No_Implicit_Task_Allocations
7427 -- restrictions are active then default-sized secondary stacks are
7428 -- generated by the binder and allocated by SS_Init. To provide the
7429 -- binder the number of stacks to generate, the number of default-sized
7430 -- stacks required for task objects contained within the object
7431 -- declaration N is calculated here as it is at this point where
7432 -- unconstrained types become constrained. The result is stored in the
7433 -- enclosing unit's Unit_Record.
7435 -- Note if N is an array object declaration that has an initialization
7436 -- expression, a second object declaration for the initialization
7437 -- expression is created by the compiler. To prevent double counting
7438 -- of the stacks in this scenario, the stacks of the first array are
7441 if Might_Have_Tasks
(Typ
)
7442 and then not Restriction_Active
(No_Secondary_Stack
)
7443 and then (Restriction_Active
(No_Implicit_Heap_Allocations
)
7444 or else Restriction_Active
(No_Implicit_Task_Allocations
))
7445 and then not (Ekind
(Typ
) in E_Array_Type | E_Array_Subtype
7446 and then Has_Init_Expression
(N
))
7449 PS_Count
, SS_Count
: Int
:= 0;
7451 Count_Default_Sized_Task_Stacks
(Typ
, PS_Count
, SS_Count
);
7452 Increment_Primary_Stack_Count
(PS_Count
);
7453 Increment_Sec_Stack_Count
(SS_Count
);
7457 -- Default initialization required, and no expression present
7460 -- If we have a type with a variant part, the initialization proc
7461 -- will contain implicit tests of the discriminant values, which
7462 -- counts as a violation of the restriction No_Implicit_Conditionals.
7464 if Has_Variant_Part
(Typ
) then
7469 Check_Restriction
(Msg
, No_Implicit_Conditionals
, Obj_Def
);
7473 ("\initialization of variant record tests discriminants",
7480 -- For the default initialization case, if we have a private type
7481 -- with invariants, and invariant checks are enabled, then insert an
7482 -- invariant check after the object declaration. Note that it is OK
7483 -- to clobber the object with an invalid value since if the exception
7484 -- is raised, then the object will go out of scope. In the case where
7485 -- an array object is initialized with an aggregate, the expression
7486 -- is removed. Check flag Has_Init_Expression to avoid generating a
7487 -- junk invariant check and flag No_Initialization to avoid checking
7488 -- an uninitialized object such as a compiler temporary used for an
7491 if Has_Invariants
(Base_Typ
)
7492 and then Present
(Invariant_Procedure
(Base_Typ
))
7493 and then not Has_Init_Expression
(N
)
7494 and then not No_Initialization
(N
)
7496 -- If entity has an address clause or aspect, make invariant
7497 -- call into a freeze action for the explicit freeze node for
7498 -- object. Otherwise insert invariant check after declaration.
7500 if Present
(Following_Address_Clause
(N
))
7501 or else Has_Aspect
(Def_Id
, Aspect_Address
)
7503 Ensure_Freeze_Node
(Def_Id
);
7504 Set_Has_Delayed_Freeze
(Def_Id
);
7505 Set_Is_Frozen
(Def_Id
, False);
7507 if not Partial_View_Has_Unknown_Discr
(Typ
) then
7508 Append_Freeze_Action
(Def_Id
,
7509 Make_Invariant_Call
(New_Occurrence_Of
(Def_Id
, Loc
)));
7512 elsif not Partial_View_Has_Unknown_Discr
(Typ
) then
7514 Make_Invariant_Call
(New_Occurrence_Of
(Def_Id
, Loc
)));
7518 if not Special_Ret_Obj
then
7519 Default_Initialize_Object
(Init_After
);
7522 -- Generate attribute for Persistent_BSS if needed
7524 if Persistent_BSS_Mode
7525 and then Comes_From_Source
(N
)
7526 and then Is_Potentially_Persistent_Type
(Typ
)
7527 and then not Has_Init_Expression
(N
)
7528 and then Is_Library_Level_Entity
(Def_Id
)
7534 Make_Linker_Section_Pragma
7535 (Def_Id
, Sloc
(N
), ".persistent.bss");
7536 Insert_After
(N
, Prag
);
7541 -- If access type, then we know it is null if not initialized
7543 if Is_Access_Type
(Typ
) then
7544 Set_Is_Known_Null
(Def_Id
);
7547 -- Explicit initialization present
7550 -- Obtain actual expression from qualified expression
7552 Expr_Q
:= Unqualify
(Expr
);
7554 -- When we have the appropriate type of aggregate in the expression
7555 -- (it has been determined during analysis of the aggregate by
7556 -- setting the delay flag), let's perform in place assignment and
7557 -- thus avoid creating a temporary.
7559 if Is_Delayed_Aggregate
(Expr_Q
) then
7561 -- An aggregate that must be built in place is not resolved and
7562 -- expanded until the enclosing construct is expanded. This will
7563 -- happen when the aggregate is limited and the declared object
7564 -- has a following address clause; it happens also when generating
7565 -- C code for an aggregate that has an alignment or address clause
7566 -- (see Analyze_Object_Declaration). Resolution is done without
7567 -- expansion because it will take place when the declaration
7568 -- itself is expanded.
7570 if (Is_Limited_Type
(Typ
) or else Modify_Tree_For_C
)
7571 and then not Analyzed
(Expr
)
7573 Expander_Mode_Save_And_Set
(False);
7574 Resolve
(Expr
, Typ
);
7575 Expander_Mode_Restore
;
7578 if not Special_Ret_Obj
then
7579 Convert_Aggr_In_Object_Decl
(N
);
7582 -- Ada 2005 (AI-318-02): If the initialization expression is a call
7583 -- to a build-in-place function, then access to the declared object
7584 -- must be passed to the function. Currently we limit such functions
7585 -- to those with constrained limited result subtypes, but eventually
7586 -- plan to expand the allowed forms of functions that are treated as
7589 elsif Is_Build_In_Place_Function_Call
(Expr_Q
) then
7590 Make_Build_In_Place_Call_In_Object_Declaration
(N
, Expr_Q
);
7592 -- The previous call expands the expression initializing the
7593 -- built-in-place object into further code that will be analyzed
7594 -- later. No further expansion needed here.
7598 -- This is the same as the previous 'elsif', except that the call has
7599 -- been transformed by other expansion activities into something like
7600 -- F(...)'Reference.
7602 elsif Nkind
(Expr_Q
) = N_Reference
7603 and then Is_Build_In_Place_Function_Call
(Prefix
(Expr_Q
))
7604 and then not Is_Expanded_Build_In_Place_Call
7605 (Unqual_Conv
(Prefix
(Expr_Q
)))
7607 Make_Build_In_Place_Call_In_Anonymous_Context
(Prefix
(Expr_Q
));
7609 -- The previous call expands the expression initializing the
7610 -- built-in-place object into further code that will be analyzed
7611 -- later. No further expansion needed here.
7615 -- Ada 2005 (AI-318-02): Specialization of the previous case for
7616 -- expressions containing a build-in-place function call whose
7617 -- returned object covers interface types, and Expr_Q has calls to
7618 -- Ada.Tags.Displace to displace the pointer to the returned build-
7619 -- in-place object to reference the secondary dispatch table of a
7620 -- covered interface type.
7622 elsif Present
(Unqual_BIP_Iface_Function_Call
(Expr_Q
)) then
7623 Make_Build_In_Place_Iface_Call_In_Object_Declaration
(N
, Expr_Q
);
7625 -- The previous call expands the expression initializing the
7626 -- built-in-place object into further code that will be analyzed
7627 -- later. No further expansion needed here.
7631 -- Ada 2005 (AI-251): Rewrite the expression that initializes a
7632 -- class-wide interface object to ensure that we copy the full
7633 -- object, unless we are targetting a VM where interfaces are handled
7634 -- by VM itself. Note that if the root type of Typ is an ancestor of
7635 -- Expr's type, both types share the same dispatch table and there is
7636 -- no need to displace the pointer.
7638 elsif Is_Interface
(Typ
)
7640 -- Avoid never-ending recursion because if Equivalent_Type is set
7641 -- then we've done it already and must not do it again.
7644 (Nkind
(Obj_Def
) = N_Identifier
7645 and then Present
(Equivalent_Type
(Entity
(Obj_Def
))))
7647 pragma Assert
(Is_Class_Wide_Type
(Typ
));
7649 -- If the original node of the expression was a conversion
7650 -- to this specific class-wide interface type then restore
7651 -- the original node because we must copy the object before
7652 -- displacing the pointer to reference the secondary tag
7653 -- component. This code must be kept synchronized with the
7654 -- expansion done by routine Expand_Interface_Conversion
7656 if not Comes_From_Source
(Expr
)
7657 and then Nkind
(Expr
) = N_Explicit_Dereference
7658 and then Nkind
(Original_Node
(Expr
)) = N_Type_Conversion
7659 and then Etype
(Original_Node
(Expr
)) = Typ
7661 Rewrite
(Expr
, Original_Node
(Expression
(N
)));
7664 -- Avoid expansion of redundant interface conversion
7666 if Nkind
(Expr
) = N_Type_Conversion
7667 and then Etype
(Expr
) = Typ
7669 Expr_Q
:= Expression
(Expr
);
7674 -- We may use a renaming if the initialization expression is a
7675 -- captured function call that meets a few conditions.
7677 Rewrite_As_Renaming
:= Is_Renamable_Function_Call
(Expr_Q
);
7679 -- If the object is a special return object, then bypass special
7680 -- treatment of class-wide interface initialization below. In this
7681 -- case, the expansion of the return object will take care of this
7682 -- initialization via the expansion of the allocator.
7684 if Special_Ret_Obj
and then not Rewrite_As_Renaming
then
7686 -- If the type needs finalization and is not inherently
7687 -- limited, then the target is adjusted after the copy
7688 -- and attached to the finalization list.
7690 if Needs_Finalization
(Typ
)
7691 and then not Is_Limited_View
(Typ
)
7695 Obj_Ref
=> New_Occurrence_Of
(Def_Id
, Loc
),
7699 -- Renaming an expression of the object's type is immediate
7701 elsif Rewrite_As_Renaming
7702 and then Base_Type
(Etype
(Expr_Q
)) = Base_Type
(Typ
)
7706 elsif Tagged_Type_Expansion
then
7708 Iface
: constant Entity_Id
:= Root_Type
(Typ
);
7710 Expr_Typ
: Entity_Id
;
7713 Ptr_Obj_Decl
: Node_Id
;
7714 Ptr_Obj_Id
: Entity_Id
;
7718 Expr_Typ
:= Base_Type
(Etype
(Expr_Q
));
7719 if Is_Class_Wide_Type
(Expr_Typ
) then
7720 Expr_Typ
:= Root_Type
(Expr_Typ
);
7723 -- Rename limited objects since they cannot be copied
7725 if Is_Limited_Record
(Expr_Typ
) then
7726 Rewrite_As_Renaming
:= True;
7729 Obj_Id
:= Make_Temporary
(Loc
, 'D', Expr_Q
);
7732 -- IW : I'Class := Expr;
7734 -- Dnn : Tag renames Tag_Ptr!(Expr'Address).all;
7735 -- type Ityp is not null access I'Class;
7736 -- Rnn : constant Ityp :=
7737 -- Ityp!(Displace (Dnn'Address, I'Tag));
7738 -- IW : I'Class renames Rnn.all;
7740 if Rewrite_As_Renaming
then
7742 Make_Explicit_Dereference
(Loc
,
7743 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
7744 Make_Attribute_Reference
(Loc
,
7745 Prefix
=> Relocate_Node
(Expr_Q
),
7746 Attribute_Name
=> Name_Address
)));
7748 -- Suppress junk access checks on RE_Tag_Ptr
7751 Make_Object_Renaming_Declaration
(Loc
,
7752 Defining_Identifier
=> Obj_Id
,
7754 New_Occurrence_Of
(RTE
(RE_Tag
), Loc
),
7756 Suppress
=> Access_Check
);
7758 -- Dynamically reference the tag associated with the
7762 Make_Function_Call
(Loc
,
7763 Name
=> New_Occurrence_Of
(RTE
(RE_Displace
), Loc
),
7764 Parameter_Associations
=> New_List
(
7765 Make_Attribute_Reference
(Loc
,
7766 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
7767 Attribute_Name
=> Name_Address
),
7769 (Node
(First_Elmt
(Access_Disp_Table
(Iface
))),
7773 -- IW : I'Class := Expr;
7775 -- Dnn : Typ := Expr;
7776 -- type Ityp is not null access I'Class;
7777 -- Rnn : constant Ityp := Ityp (Dnn.I_Tag'Address);
7778 -- IW : I'Class renames Rnn.all;
7780 elsif Has_Tag_Of_Type
(Expr_Q
)
7781 and then Interface_Present_In_Ancestor
(Expr_Typ
, Typ
)
7782 and then (Expr_Typ
= Etype
(Expr_Typ
)
7784 Is_Variable_Size_Record
(Etype
(Expr_Typ
)))
7787 Make_Object_Declaration
(Loc
,
7788 Defining_Identifier
=> Obj_Id
,
7789 Object_Definition
=>
7790 New_Occurrence_Of
(Expr_Typ
, Loc
),
7791 Expression
=> Relocate_Node
(Expr_Q
)));
7793 -- Statically reference the tag associated with the
7797 Make_Selected_Component
(Loc
,
7798 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
7801 (Find_Interface_Tag
(Expr_Typ
, Iface
), Loc
));
7804 -- IW : I'Class := Expr;
7806 -- type Equiv_Record is record ... end record;
7807 -- implicit subtype CW is <Class_Wide_Subtype>;
7808 -- Dnn : CW := CW!(Expr);
7809 -- type Ityp is not null access I'Class;
7810 -- Rnn : constant Ityp :=
7811 -- Ityp!(Displace (Dnn'Address, I'Tag));
7812 -- IW : I'Class renames Rnn.all;
7815 -- Generate the equivalent record type and update the
7816 -- subtype indication to reference it.
7818 Expand_Subtype_From_Expr
7821 Subtype_Indic
=> Obj_Def
,
7824 -- For interface types we use 'Address which displaces
7825 -- the pointer to the base of the object (if required).
7827 if Is_Interface
(Etype
(Expr_Q
)) then
7829 Unchecked_Convert_To
(Etype
(Obj_Def
),
7830 Make_Explicit_Dereference
(Loc
,
7831 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
7832 Make_Attribute_Reference
(Loc
,
7833 Prefix
=> Relocate_Node
(Expr_Q
),
7834 Attribute_Name
=> Name_Address
))));
7836 -- For other types, no displacement is needed
7839 New_Expr
:= Relocate_Node
(Expr_Q
);
7842 -- Suppress junk access checks on RE_Tag_Ptr
7845 Make_Object_Declaration
(Loc
,
7846 Defining_Identifier
=> Obj_Id
,
7847 Object_Definition
=>
7848 New_Occurrence_Of
(Etype
(Obj_Def
), Loc
),
7849 Expression
=> New_Expr
),
7850 Suppress
=> Access_Check
);
7852 -- Dynamically reference the tag associated with the
7856 Make_Function_Call
(Loc
,
7857 Name
=> New_Occurrence_Of
(RTE
(RE_Displace
), Loc
),
7858 Parameter_Associations
=> New_List
(
7859 Make_Attribute_Reference
(Loc
,
7860 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
7861 Attribute_Name
=> Name_Address
),
7863 (Node
(First_Elmt
(Access_Disp_Table
(Iface
))),
7867 -- As explained in Exp_Disp, we use Convert_Tag_To_Interface
7868 -- to do the final conversion, but we insert an intermediate
7869 -- temporary before the dereference so that we can process
7870 -- the expansion as part of the analysis of the declaration
7871 -- of this temporary, and then rewrite manually the original
7872 -- object as the simple renaming of this dereference.
7874 Tag_Comp
:= Convert_Tag_To_Interface
(Typ
, Tag_Comp
);
7875 pragma Assert
(Nkind
(Tag_Comp
) = N_Explicit_Dereference
7877 Nkind
(Prefix
(Tag_Comp
)) = N_Unchecked_Type_Conversion
);
7879 Ptr_Obj_Id
:= Make_Temporary
(Loc
, 'R');
7882 Make_Object_Declaration
(Loc
,
7883 Defining_Identifier
=> Ptr_Obj_Id
,
7884 Constant_Present
=> True,
7885 Object_Definition
=>
7887 (Entity
(Subtype_Mark
(Prefix
(Tag_Comp
))), Loc
),
7888 Expression
=> Prefix
(Tag_Comp
));
7890 Insert_Action
(N
, Ptr_Obj_Decl
, Suppress
=> All_Checks
);
7892 Set_Prefix
(Tag_Comp
, New_Occurrence_Of
(Ptr_Obj_Id
, Loc
));
7894 Set_Etype
(Expr_Q
, Typ
);
7895 Set_Parent
(Expr_Q
, N
);
7897 Rewrite_As_Renaming
:= True;
7904 -- Common case of explicit object initialization
7907 -- Small optimization: if the expression is a function call and
7908 -- the object is stand-alone, not declared at library level and of
7909 -- a class-wide type, then we capture the result of the call into
7910 -- a temporary, with the benefit that, if the result's type does
7911 -- not need finalization, nothing will be finalized and, if it
7912 -- does, the temporary only will be finalized by means of a direct
7913 -- call to the Finalize primitive if the result's type is not a
7914 -- class-wide type; whereas, in both cases, the stand-alone object
7915 -- itself would be finalized by means of a dispatching call to the
7916 -- Deep_Finalize routine.
7918 if Nkind
(Expr_Q
) = N_Function_Call
7919 and then not Special_Ret_Obj
7920 and then not Is_Library_Level_Entity
(Def_Id
)
7921 and then Is_Class_Wide_Type
(Typ
)
7923 Remove_Side_Effects
(Expr_Q
);
7926 -- In most cases, we must check that the initial value meets any
7927 -- constraint imposed by the declared type. However, there is one
7928 -- very important exception to this rule. If the entity has an
7929 -- unconstrained nominal subtype, then it acquired its constraints
7930 -- from the expression in the first place, and not only does this
7931 -- mean that the constraint check is not needed, but an attempt to
7932 -- perform the constraint check can cause order of elaboration
7935 if not Is_Constr_Subt_For_U_Nominal
(Typ
) then
7937 -- If this is an allocator for an aggregate that has been
7938 -- allocated in place, delay checks until assignments are
7939 -- made, because the discriminants are not initialized.
7941 if Nkind
(Expr
) = N_Allocator
7942 and then No_Initialization
(Expr
)
7946 -- Otherwise apply a constraint check now if no prev error
7948 elsif Nkind
(Expr
) /= N_Error
then
7949 Apply_Constraint_Check
(Expr
, Typ
);
7951 -- Deal with possible range check
7953 if Do_Range_Check
(Expr
) then
7955 -- If assignment checks are suppressed, turn off flag
7957 if Suppress_Assignment_Checks
(N
) then
7958 Set_Do_Range_Check
(Expr
, False);
7960 -- Otherwise generate the range check
7963 Generate_Range_Check
7964 (Expr
, Typ
, CE_Range_Check_Failed
);
7970 -- For tagged types, when an init value is given, the tag has to
7971 -- be re-initialized separately in order to avoid the propagation
7972 -- of a wrong tag coming from a view conversion unless the type
7973 -- is class wide (in this case the tag comes from the init value).
7974 -- Suppress the tag assignment when not Tagged_Type_Expansion
7975 -- because tags are represented implicitly in objects. Ditto for
7976 -- types that are CPP_CLASS, and for initializations that are
7977 -- aggregates, because they have to have the right tag.
7979 -- The re-assignment of the tag has to be done even if the object
7980 -- is a constant. The assignment must be analyzed after the
7981 -- declaration. If an address clause follows, this is handled as
7982 -- part of the freeze actions for the object, otherwise insert
7983 -- tag assignment here.
7985 Tag_Assign
:= Make_Tag_Assignment
(N
);
7987 if Present
(Tag_Assign
) then
7988 if Present
(Following_Address_Clause
(N
)) then
7989 Ensure_Freeze_Node
(Def_Id
);
7990 elsif not Special_Ret_Obj
then
7991 Insert_Action_After
(Init_After
, Tag_Assign
);
7994 -- Handle C++ constructor calls. Note that we do not check that
7995 -- Typ is a tagged type since the equivalent Ada type of a C++
7996 -- class that has no virtual methods is an untagged limited
7999 elsif Is_CPP_Constructor_Call
(Expr
) then
8001 Id_Ref
: constant Node_Id
:= New_Occurrence_Of
(Def_Id
, Loc
);
8004 -- The call to the initialization procedure does NOT freeze
8005 -- the object being initialized.
8007 Set_Must_Not_Freeze
(Id_Ref
);
8008 Set_Assignment_OK
(Id_Ref
);
8010 Insert_Actions_After
(Init_After
,
8011 Build_Initialization_Call
(Loc
, Id_Ref
, Typ
,
8012 Constructor_Ref
=> Expr
));
8014 -- We remove here the original call to the constructor
8015 -- to avoid its management in the backend
8017 Set_Expression
(N
, Empty
);
8021 -- Handle initialization of limited tagged types
8023 elsif Is_Tagged_Type
(Typ
)
8024 and then Is_Class_Wide_Type
(Typ
)
8025 and then Is_Limited_Record
(Typ
)
8026 and then not Is_Limited_Interface
(Typ
)
8028 -- Given that the type is limited we cannot perform a copy. If
8029 -- Expr_Q is the reference to a variable we mark the variable
8030 -- as OK_To_Rename to expand this declaration into a renaming
8031 -- declaration (see below).
8033 if Is_Entity_Name
(Expr_Q
) then
8034 Set_OK_To_Rename
(Entity
(Expr_Q
));
8036 -- If we cannot convert the expression into a renaming we must
8037 -- consider it an internal error because the backend does not
8038 -- have support to handle it. But avoid crashing on a raise
8039 -- expression or conditional expression.
8041 elsif Nkind
(Original_Node
(Expr_Q
)) not in
8042 N_Raise_Expression | N_If_Expression | N_Case_Expression
8044 raise Program_Error
;
8047 -- For discrete types, set the Is_Known_Valid flag if the
8048 -- initializing value is known to be valid. Only do this for
8049 -- source assignments, since otherwise we can end up turning
8050 -- on the known valid flag prematurely from inserted code.
8052 elsif Comes_From_Source
(N
)
8053 and then Is_Discrete_Type
(Typ
)
8054 and then Expr_Known_Valid
(Expr
)
8055 and then Safe_To_Capture_Value
(N
, Def_Id
)
8057 Set_Is_Known_Valid
(Def_Id
);
8059 -- For access types, set the Is_Known_Non_Null flag if the
8060 -- initializing value is known to be non-null. We can also
8061 -- set Can_Never_Be_Null if this is a constant.
8063 elsif Is_Access_Type
(Typ
) and then Known_Non_Null
(Expr
) then
8064 Set_Is_Known_Non_Null
(Def_Id
, True);
8066 if Constant_Present
(N
) then
8067 Set_Can_Never_Be_Null
(Def_Id
);
8071 -- If validity checking on copies, validate initial expression.
8072 -- But skip this if declaration is for a generic type, since it
8073 -- makes no sense to validate generic types. Not clear if this
8074 -- can happen for legal programs, but it definitely can arise
8075 -- from previous instantiation errors.
8077 if Validity_Checks_On
8078 and then Comes_From_Source
(N
)
8079 and then Validity_Check_Copies
8080 and then not Is_Generic_Type
(Typ
)
8082 Ensure_Valid
(Expr
);
8084 if Safe_To_Capture_Value
(N
, Def_Id
) then
8085 Set_Is_Known_Valid
(Def_Id
);
8089 -- Now determine whether we will use a renaming
8091 Rewrite_As_Renaming
:=
8093 -- The declaration cannot be rewritten if it has got constraints
8095 Is_Entity_Name
(Original_Node
(Obj_Def
))
8097 -- Nor if it is effectively an unconstrained declaration
8099 and then not (Is_Array_Type
(Typ
)
8100 and then Is_Constr_Subt_For_UN_Aliased
(Typ
))
8102 -- We may use a renaming if the initialization expression is a
8103 -- captured function call that meets a few conditions.
8106 (Is_Renamable_Function_Call
(Expr_Q
)
8108 -- Or else if it is a variable with OK_To_Rename set
8110 or else (OK_To_Rename_Ref
(Expr_Q
)
8111 and then not Special_Ret_Obj
)
8113 -- Or else if it is a slice of such a variable
8115 or else (Nkind
(Expr_Q
) = N_Slice
8116 and then OK_To_Rename_Ref
(Prefix
(Expr_Q
))
8117 and then not Special_Ret_Obj
))
8119 -- If we have "X : S := ...;", and S is a constrained array
8120 -- subtype, then we cannot rename, because renamings ignore
8121 -- the constraints of S, so that would change the semantics
8122 -- (sliding would not occur on the initial value).
8124 and then not Nominal_Subtype_Is_Constrained_Array
;
8126 -- If the type needs finalization and is not inherently limited,
8127 -- then the target is adjusted after the copy and attached to the
8128 -- finalization list. However, no adjustment is needed in the case
8129 -- where the object has been initialized by a call to a function
8130 -- returning on the primary stack (see Expand_Ctrl_Function_Call)
8131 -- since no copy occurred, given that the type is by-reference.
8132 -- Similarly, no adjustment is needed if we are going to rewrite
8133 -- the object declaration into a renaming declaration.
8135 if Needs_Finalization
(Typ
)
8136 and then not Is_Limited_View
(Typ
)
8137 and then Nkind
(Expr_Q
) /= N_Function_Call
8138 and then not Rewrite_As_Renaming
8142 Obj_Ref
=> New_Occurrence_Of
(Def_Id
, Loc
),
8145 if Present
(Adj_Call
) and then not Special_Ret_Obj
then
8146 Insert_Action_After
(Init_After
, Adj_Call
);
8151 -- Cases where the back end cannot handle the initialization
8152 -- directly. In such cases, we expand an assignment that will
8153 -- be appropriately handled by Expand_N_Assignment_Statement.
8155 -- The exclusion of the unconstrained case is wrong, but for now it
8156 -- is too much trouble ???
8158 if (Is_Possibly_Unaligned_Slice
(Expr
)
8159 or else (Is_Possibly_Unaligned_Object
(Expr
)
8160 and then not Represented_As_Scalar
(Etype
(Expr
))))
8161 and then not (Is_Array_Type
(Etype
(Expr
))
8162 and then not Is_Constrained
(Etype
(Expr
)))
8165 Stat
: constant Node_Id
:=
8166 Make_Assignment_Statement
(Loc
,
8167 Name
=> New_Occurrence_Of
(Def_Id
, Loc
),
8168 Expression
=> Relocate_Node
(Expr
));
8170 Set_Assignment_OK
(Name
(Stat
));
8171 Set_No_Ctrl_Actions
(Stat
);
8172 Insert_Action_After
(Init_After
, Stat
);
8173 Set_Expression
(N
, Empty
);
8174 Set_No_Initialization
(N
);
8179 if Nkind
(Obj_Def
) = N_Access_Definition
8180 and then not Is_Local_Anonymous_Access
(Typ
)
8182 -- An Ada 2012 stand-alone object of an anonymous access type
8185 Loc
: constant Source_Ptr
:= Sloc
(N
);
8187 Level
: constant Entity_Id
:=
8188 Make_Defining_Identifier
(Sloc
(N
),
8190 New_External_Name
(Chars
(Def_Id
), Suffix
=> "L"));
8192 Level_Decl
: Node_Id
;
8193 Level_Expr
: Node_Id
;
8196 Mutate_Ekind
(Level
, Ekind
(Def_Id
));
8197 Set_Etype
(Level
, Standard_Natural
);
8198 Set_Scope
(Level
, Scope
(Def_Id
));
8200 -- Set accessibility level of null
8204 Make_Integer_Literal
8205 (Loc
, Scope_Depth
(Standard_Standard
));
8207 -- When the expression of the object is a function which returns
8208 -- an anonymous access type the master of the call is the object
8209 -- being initialized instead of the type.
8211 elsif Nkind
(Expr
) = N_Function_Call
8212 and then Ekind
(Etype
(Name
(Expr
))) = E_Anonymous_Access_Type
8214 Level_Expr
:= Accessibility_Level
8215 (Def_Id
, Object_Decl_Level
);
8220 Level_Expr
:= Accessibility_Level
(Expr
, Dynamic_Level
);
8224 Make_Object_Declaration
(Loc
,
8225 Defining_Identifier
=> Level
,
8226 Object_Definition
=>
8227 New_Occurrence_Of
(Standard_Natural
, Loc
),
8228 Expression
=> Level_Expr
,
8229 Constant_Present
=> Constant_Present
(N
),
8230 Has_Init_Expression
=> True);
8232 Insert_Action_After
(Init_After
, Level_Decl
);
8234 Set_Extra_Accessibility
(Def_Id
, Level
);
8238 -- If the object is default initialized and its type is subject to
8239 -- pragma Default_Initial_Condition, add a runtime check to verify
8240 -- the assumption of the pragma (SPARK RM 7.3.3). Generate:
8242 -- <Base_Typ>DIC (<Base_Typ> (Def_Id));
8244 -- Note that the check is generated for source objects only
8246 if Comes_From_Source
(Def_Id
)
8247 and then Has_DIC
(Typ
)
8248 and then Present
(DIC_Procedure
(Typ
))
8249 and then not Has_Null_Body
(DIC_Procedure
(Typ
))
8250 and then not Has_Init_Expression
(N
)
8252 and then not Is_Imported
(Def_Id
)
8255 DIC_Call
: constant Node_Id
:=
8257 (Loc
, New_Occurrence_Of
(Def_Id
, Loc
), Typ
);
8259 if Present
(Next_N
) then
8260 Insert_Before_And_Analyze
(Next_N
, DIC_Call
);
8262 -- The object declaration is the last node in a declarative or a
8266 Append_To
(List_Containing
(N
), DIC_Call
);
8272 -- If this is the return object of a build-in-place function, locate the
8273 -- implicit BIPaccess parameter designating the caller-supplied return
8274 -- object and convert the declaration to a renaming of a dereference of
8275 -- this parameter. If the declaration includes an expression, add an
8276 -- assignment statement to ensure the return object gets initialized.
8278 -- Result : T [:= <expression>];
8282 -- Result : T renames BIPaccess.all;
8283 -- [Result := <expression>;]
8285 -- in the constrained case, or to
8287 -- type Txx is access all ...;
8288 -- Rxx : Txx := null;
8290 -- if BIPalloc = 1 then
8291 -- Rxx := BIPaccess;
8292 -- Rxx.all := <expression>;
8293 -- elsif BIPalloc = 2 then
8294 -- Rxx := new <expression-type>'(<expression>)[storage_pool =
8295 -- system__secondary_stack__ss_pool][procedure_to_call =
8296 -- system__secondary_stack__ss_allocate];
8297 -- elsif BIPalloc = 3 then
8298 -- Rxx := new <expression-type>'(<expression>)
8299 -- elsif BIPalloc = 4 then
8300 -- Pxx : system__storage_pools__root_storage_pool renames
8301 -- BIPstoragepool.all;
8302 -- Rxx := new <expression-type>'(<expression>)[storage_pool =
8303 -- Pxx][procedure_to_call =
8304 -- system__storage_pools__allocate_any];
8306 -- [program_error "build in place mismatch"]
8309 -- Result : T renames Rxx.all;
8311 -- in the unconstrained case.
8313 if Is_Build_In_Place_Return_Object
(Def_Id
) then
8315 Init_Stmt
: Node_Id
;
8316 Obj_Acc_Formal
: Entity_Id
;
8319 -- Retrieve the implicit access parameter passed by the caller
8322 Build_In_Place_Formal
(Func_Id
, BIP_Object_Access
);
8324 -- If the return object's declaration includes an expression
8325 -- and the declaration isn't marked as No_Initialization, then
8326 -- we need to generate an assignment to the object and insert
8327 -- it after the declaration before rewriting it as a renaming
8328 -- (otherwise we'll lose the initialization). The case where
8329 -- the result type is an interface (or class-wide interface)
8330 -- is also excluded because the context of the function call
8331 -- must be unconstrained, so the initialization will always
8332 -- be done as part of an allocator evaluation (storage pool
8333 -- or secondary stack), never to a constrained target object
8334 -- passed in by the caller. Besides the assignment being
8335 -- unneeded in this case, it avoids problems with trying to
8336 -- generate a dispatching assignment when the return expression
8337 -- is a nonlimited descendant of a limited interface (the
8338 -- interface has no assignment operation).
8341 and then not Is_Delayed_Aggregate
(Expr_Q
)
8342 and then not No_Initialization
(N
)
8343 and then not Is_Interface
(Typ
)
8345 if Is_Class_Wide_Type
(Typ
)
8346 and then not Is_Class_Wide_Type
(Etype
(Expr_Q
))
8349 Make_Assignment_Statement
(Loc
,
8350 Name
=> New_Occurrence_Of
(Def_Id
, Loc
),
8352 Make_Type_Conversion
(Loc
,
8354 New_Occurrence_Of
(Typ
, Loc
),
8355 Expression
=> New_Copy_Tree
(Expr_Q
)));
8359 Make_Assignment_Statement
(Loc
,
8360 Name
=> New_Occurrence_Of
(Def_Id
, Loc
),
8361 Expression
=> New_Copy_Tree
(Expr_Q
));
8364 Set_Assignment_OK
(Name
(Init_Stmt
));
8365 Set_No_Ctrl_Actions
(Init_Stmt
);
8371 -- When the function's subtype is unconstrained, a run-time
8372 -- test may be needed to decide the form of allocation to use
8373 -- for the return object. The function has an implicit formal
8374 -- parameter indicating this. If the BIP_Alloc_Form formal has
8375 -- the value one, then the caller has passed access to an
8376 -- existing object for use as the return object. If the value
8377 -- is two, then the return object must be allocated on the
8378 -- secondary stack. If the value is three, then the return
8379 -- object must be allocated on the heap. Otherwise, the object
8380 -- must be allocated in a storage pool. We generate an if
8381 -- statement to test the BIP_Alloc_Form formal and initialize
8382 -- a local access value appropriately.
8384 if Needs_BIP_Alloc_Form
(Func_Id
) then
8386 Desig_Typ
: constant Entity_Id
:=
8387 (if Ekind
(Typ
) = E_Array_Subtype
8388 then Etype
(Func_Id
) else Typ
);
8389 -- Ensure that the we use a fat pointer when allocating
8390 -- an unconstrained array on the heap. In this case the
8391 -- result object's type is a constrained array type even
8392 -- though the function's type is unconstrained.
8394 Obj_Alloc_Formal
: constant Entity_Id
:=
8395 Build_In_Place_Formal
(Func_Id
, BIP_Alloc_Form
);
8396 Pool_Id
: constant Entity_Id
:=
8397 Make_Temporary
(Loc
, 'P');
8399 Acc_Typ
: Entity_Id
;
8400 Alloc_Obj_Decl
: Node_Id
;
8401 Alloc_Obj_Id
: Entity_Id
;
8402 Alloc_Stmt
: Node_Id
;
8403 Guard_Except
: Node_Id
;
8404 Heap_Allocator
: Node_Id
;
8405 Pool_Allocator
: Node_Id
;
8406 Pool_Decl
: Node_Id
;
8407 Ptr_Typ_Decl
: Node_Id
;
8408 SS_Allocator
: Node_Id
;
8411 -- Create an access type designating the function's
8414 Acc_Typ
:= Make_Temporary
(Loc
, 'A');
8417 Make_Full_Type_Declaration
(Loc
,
8418 Defining_Identifier
=> Acc_Typ
,
8420 Make_Access_To_Object_Definition
(Loc
,
8421 All_Present
=> True,
8422 Subtype_Indication
=>
8423 New_Occurrence_Of
(Desig_Typ
, Loc
)));
8425 Insert_Action
(N
, Ptr_Typ_Decl
, Suppress
=> All_Checks
);
8427 -- Create an access object that will be initialized to an
8428 -- access value denoting the return object, either coming
8429 -- from an implicit access value passed in by the caller
8430 -- or from the result of an allocator.
8432 Alloc_Obj_Id
:= Make_Temporary
(Loc
, 'R');
8435 Make_Object_Declaration
(Loc
,
8436 Defining_Identifier
=> Alloc_Obj_Id
,
8437 Object_Definition
=>
8438 New_Occurrence_Of
(Acc_Typ
, Loc
));
8440 Insert_Action
(N
, Alloc_Obj_Decl
, Suppress
=> All_Checks
);
8442 -- First create the Heap_Allocator
8444 Heap_Allocator
:= Make_Allocator_For_Return
(Expr_Q
);
8446 -- The Pool_Allocator is just like the Heap_Allocator,
8447 -- except we set Storage_Pool and Procedure_To_Call so
8448 -- it will use the user-defined storage pool.
8450 Pool_Allocator
:= Make_Allocator_For_Return
(Expr_Q
);
8452 -- Do not generate the renaming of the build-in-place
8453 -- pool parameter on ZFP because the parameter is not
8454 -- created in the first place.
8456 if RTE_Available
(RE_Root_Storage_Pool_Ptr
) then
8458 Make_Object_Renaming_Declaration
(Loc
,
8459 Defining_Identifier
=> Pool_Id
,
8462 (RTE
(RE_Root_Storage_Pool
), Loc
),
8464 Make_Explicit_Dereference
(Loc
,
8466 (Build_In_Place_Formal
8467 (Func_Id
, BIP_Storage_Pool
), Loc
)));
8468 Set_Storage_Pool
(Pool_Allocator
, Pool_Id
);
8469 Set_Procedure_To_Call
8470 (Pool_Allocator
, RTE
(RE_Allocate_Any
));
8472 Pool_Decl
:= Make_Null_Statement
(Loc
);
8475 -- If the No_Allocators restriction is active, then only
8476 -- an allocator for secondary stack allocation is needed.
8477 -- It's OK for such allocators to have Comes_From_Source
8478 -- set to False, because gigi knows not to flag them as
8479 -- being a violation of No_Implicit_Heap_Allocations.
8481 if Restriction_Active
(No_Allocators
) then
8482 SS_Allocator
:= Heap_Allocator
;
8483 Heap_Allocator
:= Make_Null
(Loc
);
8484 Pool_Allocator
:= Make_Null
(Loc
);
8486 -- Otherwise the heap and pool allocators may be needed,
8487 -- so we make another allocator for secondary stack
8491 SS_Allocator
:= Make_Allocator_For_Return
(Expr_Q
);
8493 -- The heap and pool allocators are marked as
8494 -- Comes_From_Source since they correspond to an
8495 -- explicit user-written allocator (that is, it will
8496 -- only be executed on behalf of callers that call the
8497 -- function as initialization for such an allocator).
8498 -- Prevents errors when No_Implicit_Heap_Allocations
8501 Set_Comes_From_Source
(Heap_Allocator
, True);
8502 Set_Comes_From_Source
(Pool_Allocator
, True);
8505 -- The allocator is returned on the secondary stack
8507 Check_Restriction
(No_Secondary_Stack
, N
);
8508 Set_Storage_Pool
(SS_Allocator
, RTE
(RE_SS_Pool
));
8509 Set_Procedure_To_Call
8510 (SS_Allocator
, RTE
(RE_SS_Allocate
));
8512 -- The allocator is returned on the secondary stack,
8513 -- so indicate that the function return, as well as
8514 -- all blocks that encloses the allocator, must not
8515 -- release it. The flags must be set now because
8516 -- the decision to use the secondary stack is done
8517 -- very late in the course of expanding the return
8518 -- statement, past the point where these flags are
8521 Set_Uses_Sec_Stack
(Func_Id
);
8522 Set_Uses_Sec_Stack
(Scope
(Def_Id
));
8523 Set_Sec_Stack_Needed_For_Return
(Scope
(Def_Id
));
8525 -- Guard against poor expansion on the caller side by
8526 -- using a raise statement to catch out-of-range values
8527 -- of formal parameter BIP_Alloc_Form.
8529 if Exceptions_OK
then
8531 Make_Raise_Program_Error
(Loc
,
8532 Reason
=> PE_Build_In_Place_Mismatch
);
8534 Guard_Except
:= Make_Null_Statement
(Loc
);
8537 -- Create an if statement to test the BIP_Alloc_Form
8538 -- formal and initialize the access object to either the
8539 -- BIP_Object_Access formal (BIP_Alloc_Form =
8540 -- Caller_Allocation), the result of allocating the
8541 -- object in the secondary stack (BIP_Alloc_Form =
8542 -- Secondary_Stack), or else an allocator to create the
8543 -- return object in the heap or user-defined pool
8544 -- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
8546 -- ??? An unchecked type conversion must be made in the
8547 -- case of assigning the access object formal to the
8548 -- local access object, because a normal conversion would
8549 -- be illegal in some cases (such as converting access-
8550 -- to-unconstrained to access-to-constrained), but the
8551 -- the unchecked conversion will presumably fail to work
8552 -- right in just such cases. It's not clear at all how to
8556 Make_If_Statement
(Loc
,
8560 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
8562 Make_Integer_Literal
(Loc
,
8563 UI_From_Int
(BIP_Allocation_Form
'Pos
8564 (Caller_Allocation
)))),
8566 Then_Statements
=> New_List
(
8567 Make_Assignment_Statement
(Loc
,
8569 New_Occurrence_Of
(Alloc_Obj_Id
, Loc
),
8571 Unchecked_Convert_To
8573 New_Occurrence_Of
(Obj_Acc_Formal
, Loc
)))),
8575 Elsif_Parts
=> New_List
(
8576 Make_Elsif_Part
(Loc
,
8580 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
8582 Make_Integer_Literal
(Loc
,
8583 UI_From_Int
(BIP_Allocation_Form
'Pos
8584 (Secondary_Stack
)))),
8586 Then_Statements
=> New_List
(
8587 Make_Assignment_Statement
(Loc
,
8589 New_Occurrence_Of
(Alloc_Obj_Id
, Loc
),
8590 Expression
=> SS_Allocator
))),
8592 Make_Elsif_Part
(Loc
,
8596 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
8598 Make_Integer_Literal
(Loc
,
8599 UI_From_Int
(BIP_Allocation_Form
'Pos
8602 Then_Statements
=> New_List
(
8603 Build_Heap_Or_Pool_Allocator
8604 (Temp_Id
=> Alloc_Obj_Id
,
8605 Temp_Typ
=> Acc_Typ
,
8606 Ret_Typ
=> Desig_Typ
,
8607 Alloc_Expr
=> Heap_Allocator
))),
8609 -- ??? If all is well, we can put the following
8610 -- 'elsif' in the 'else', but this is a useful
8611 -- self-check in case caller and callee don't agree
8612 -- on whether BIPAlloc and so on should be passed.
8614 Make_Elsif_Part
(Loc
,
8618 New_Occurrence_Of
(Obj_Alloc_Formal
, Loc
),
8620 Make_Integer_Literal
(Loc
,
8621 UI_From_Int
(BIP_Allocation_Form
'Pos
8622 (User_Storage_Pool
)))),
8624 Then_Statements
=> New_List
(
8626 Build_Heap_Or_Pool_Allocator
8627 (Temp_Id
=> Alloc_Obj_Id
,
8628 Temp_Typ
=> Acc_Typ
,
8629 Ret_Typ
=> Desig_Typ
,
8630 Alloc_Expr
=> Pool_Allocator
)))),
8632 -- Raise Program_Error if it's none of the above;
8633 -- this is a compiler bug.
8635 Else_Statements
=> New_List
(Guard_Except
));
8637 -- If a separate initialization assignment was created
8638 -- earlier, append that following the assignment of the
8639 -- implicit access formal to the access object, to ensure
8640 -- that the return object is initialized in that case. In
8641 -- this situation, the target of the assignment must be
8642 -- rewritten to denote a dereference of the access to the
8643 -- return object passed in by the caller.
8645 if Present
(Init_Stmt
) then
8646 Set_Name
(Init_Stmt
,
8647 Make_Explicit_Dereference
(Loc
,
8648 Prefix
=> New_Occurrence_Of
(Alloc_Obj_Id
, Loc
)));
8649 Set_Assignment_OK
(Name
(Init_Stmt
));
8651 Append_To
(Then_Statements
(Alloc_Stmt
), Init_Stmt
);
8655 Insert_Action
(N
, Alloc_Stmt
, Suppress
=> All_Checks
);
8657 -- From now on, the type of the return object is the
8660 if Desig_Typ
/= Typ
then
8661 Set_Etype
(Def_Id
, Desig_Typ
);
8662 Set_Actual_Subtype
(Def_Id
, Typ
);
8665 -- Remember the local access object for use in the
8666 -- dereference of the renaming created below.
8668 Obj_Acc_Formal
:= Alloc_Obj_Id
;
8671 -- When the function's type is unconstrained and a run-time test
8672 -- is not needed, we nevertheless need to build the return using
8673 -- the return object's type.
8675 elsif not Is_Constrained
(Underlying_Type
(Etype
(Func_Id
))) then
8677 Acc_Typ
: Entity_Id
;
8678 Alloc_Obj_Decl
: Node_Id
;
8679 Alloc_Obj_Id
: Entity_Id
;
8680 Ptr_Typ_Decl
: Node_Id
;
8683 -- Create an access type designating the function's
8686 Acc_Typ
:= Make_Temporary
(Loc
, 'A');
8689 Make_Full_Type_Declaration
(Loc
,
8690 Defining_Identifier
=> Acc_Typ
,
8692 Make_Access_To_Object_Definition
(Loc
,
8693 All_Present
=> True,
8694 Subtype_Indication
=>
8695 New_Occurrence_Of
(Typ
, Loc
)));
8697 Insert_Action
(N
, Ptr_Typ_Decl
, Suppress
=> All_Checks
);
8699 -- Create an access object initialized to the conversion
8700 -- of the implicit access value passed in by the caller.
8702 Alloc_Obj_Id
:= Make_Temporary
(Loc
, 'R');
8704 -- See the ??? comment a few lines above about the use of
8705 -- an unchecked conversion here.
8708 Make_Object_Declaration
(Loc
,
8709 Defining_Identifier
=> Alloc_Obj_Id
,
8710 Constant_Present
=> True,
8711 Object_Definition
=>
8712 New_Occurrence_Of
(Acc_Typ
, Loc
),
8714 Unchecked_Convert_To
8715 (Acc_Typ
, New_Occurrence_Of
(Obj_Acc_Formal
, Loc
)));
8717 Insert_Action
(N
, Alloc_Obj_Decl
, Suppress
=> All_Checks
);
8719 -- Remember the local access object for use in the
8720 -- dereference of the renaming created below.
8722 Obj_Acc_Formal
:= Alloc_Obj_Id
;
8726 -- Initialize the object now that it has got its final subtype,
8727 -- but before rewriting it as a renaming.
8729 Initialize_Return_Object
8730 (Tag_Assign
, Adj_Call
, Expr_Q
, Init_Stmt
, Init_After
);
8732 -- Replace the return object declaration with a renaming of a
8733 -- dereference of the access value designating the return object.
8736 Make_Explicit_Dereference
(Loc
,
8737 Prefix
=> New_Occurrence_Of
(Obj_Acc_Formal
, Loc
));
8738 Set_Etype
(Expr_Q
, Etype
(Def_Id
));
8740 Rewrite_As_Renaming
:= True;
8743 -- If we can rename the initialization expression, we need to make sure
8744 -- that we use the proper type in the case of a return object that lives
8745 -- on the secondary stack (see other cases below for a similar handling)
8746 -- and that the tag is assigned in the case of any return object.
8748 elsif Rewrite_As_Renaming
then
8749 if Special_Ret_Obj
then
8751 Desig_Typ
: constant Entity_Id
:=
8752 (if Ekind
(Typ
) = E_Array_Subtype
8753 then Etype
(Func_Id
) else Typ
);
8756 -- From now on, the type of the return object is the
8759 if Desig_Typ
/= Typ
then
8760 Set_Etype
(Def_Id
, Desig_Typ
);
8761 Set_Actual_Subtype
(Def_Id
, Typ
);
8764 if Present
(Tag_Assign
) then
8765 Insert_Action_After
(Init_After
, Tag_Assign
);
8768 -- Ada 2005 (AI95-344): If the result type is class-wide,
8769 -- insert a check that the level of the return expression's
8770 -- underlying type is not deeper than the level of the master
8771 -- enclosing the function.
8773 -- AI12-043: The check is made immediately after the return
8774 -- object is created.
8776 if Is_Class_Wide_Type
(Etype
(Func_Id
)) then
8777 Apply_CW_Accessibility_Check
(Expr_Q
, Func_Id
);
8782 -- If this is the return object of a function returning on the secondary
8783 -- stack, convert the declaration to a renaming of the dereference of ah
8784 -- allocator for the secondary stack.
8786 -- Result : T [:= <expression>];
8790 -- type Txx is access all ...;
8791 -- Rxx : constant Txx :=
8792 -- new <expression-type>['(<expression>)][storage_pool =
8793 -- system__secondary_stack__ss_pool][procedure_to_call =
8794 -- system__secondary_stack__ss_allocate];
8796 -- Result : T renames Rxx.all;
8798 elsif Is_Secondary_Stack_Return_Object
(Def_Id
) then
8800 Desig_Typ
: constant Entity_Id
:=
8801 (if Ekind
(Typ
) = E_Array_Subtype
8802 then Etype
(Func_Id
) else Typ
);
8803 -- Ensure that the we use a fat pointer when allocating
8804 -- an unconstrained array on the heap. In this case the
8805 -- result object's type is a constrained array type even
8806 -- though the function's type is unconstrained.
8808 Acc_Typ
: Entity_Id
;
8809 Alloc_Obj_Decl
: Node_Id
;
8810 Alloc_Obj_Id
: Entity_Id
;
8811 Ptr_Type_Decl
: Node_Id
;
8814 -- Create an access type designating the function's
8817 Acc_Typ
:= Make_Temporary
(Loc
, 'A');
8820 Make_Full_Type_Declaration
(Loc
,
8821 Defining_Identifier
=> Acc_Typ
,
8823 Make_Access_To_Object_Definition
(Loc
,
8824 All_Present
=> True,
8825 Subtype_Indication
=>
8826 New_Occurrence_Of
(Desig_Typ
, Loc
)));
8828 Insert_Action
(N
, Ptr_Type_Decl
, Suppress
=> All_Checks
);
8830 Set_Associated_Storage_Pool
(Acc_Typ
, RTE
(RE_SS_Pool
));
8832 Alloc_Obj_Id
:= Make_Temporary
(Loc
, 'R');
8835 Make_Object_Declaration
(Loc
,
8836 Defining_Identifier
=> Alloc_Obj_Id
,
8837 Constant_Present
=> True,
8838 Object_Definition
=>
8839 New_Occurrence_Of
(Acc_Typ
, Loc
),
8840 Expression
=> Make_Allocator_For_Return
(Expr_Q
));
8842 Insert_Action
(N
, Alloc_Obj_Decl
, Suppress
=> All_Checks
);
8844 Set_Uses_Sec_Stack
(Func_Id
);
8845 Set_Uses_Sec_Stack
(Scope
(Def_Id
));
8846 Set_Sec_Stack_Needed_For_Return
(Scope
(Def_Id
));
8848 -- From now on, the type of the return object is the
8851 if Desig_Typ
/= Typ
then
8852 Set_Etype
(Def_Id
, Desig_Typ
);
8853 Set_Actual_Subtype
(Def_Id
, Typ
);
8856 -- Initialize the object now that it has got its final subtype,
8857 -- but before rewriting it as a renaming.
8859 Initialize_Return_Object
8860 (Tag_Assign
, Adj_Call
, Expr_Q
, Empty
, Init_After
);
8862 -- Replace the return object declaration with a renaming of a
8863 -- dereference of the access value designating the return object.
8866 Make_Explicit_Dereference
(Loc
,
8867 Prefix
=> New_Occurrence_Of
(Alloc_Obj_Id
, Loc
));
8868 Set_Etype
(Expr_Q
, Etype
(Def_Id
));
8870 Rewrite_As_Renaming
:= True;
8873 -- If this is the return object of a function returning a by-reference
8874 -- type, convert the declaration to a renaming of the dereference of ah
8875 -- allocator for the return stack.
8877 -- Result : T [:= <expression>];
8881 -- type Txx is access all ...;
8882 -- Rxx : constant Txx :=
8883 -- new <expression-type>['(<expression>)][storage_pool =
8884 -- system__return_stack__rs_pool][procedure_to_call =
8885 -- system__return_stack__rs_allocate];
8887 -- Result : T renames Rxx.all;
8889 elsif Back_End_Return_Slot
8890 and then Is_By_Reference_Return_Object
(Def_Id
)
8893 Acc_Typ
: Entity_Id
;
8894 Alloc_Obj_Decl
: Node_Id
;
8895 Alloc_Obj_Id
: Entity_Id
;
8896 Ptr_Type_Decl
: Node_Id
;
8899 -- Create an access type designating the function's
8902 Acc_Typ
:= Make_Temporary
(Loc
, 'A');
8905 Make_Full_Type_Declaration
(Loc
,
8906 Defining_Identifier
=> Acc_Typ
,
8908 Make_Access_To_Object_Definition
(Loc
,
8909 All_Present
=> True,
8910 Subtype_Indication
=>
8911 New_Occurrence_Of
(Typ
, Loc
)));
8913 Insert_Action
(N
, Ptr_Type_Decl
, Suppress
=> All_Checks
);
8915 Set_Associated_Storage_Pool
(Acc_Typ
, RTE
(RE_RS_Pool
));
8917 Alloc_Obj_Id
:= Make_Temporary
(Loc
, 'R');
8920 Make_Object_Declaration
(Loc
,
8921 Defining_Identifier
=> Alloc_Obj_Id
,
8922 Constant_Present
=> True,
8923 Object_Definition
=>
8924 New_Occurrence_Of
(Acc_Typ
, Loc
),
8925 Expression
=> Make_Allocator_For_Return
(Expr_Q
));
8927 Insert_Action
(N
, Alloc_Obj_Decl
, Suppress
=> All_Checks
);
8929 -- Initialize the object now that it has got its final subtype,
8930 -- but before rewriting it as a renaming.
8932 Initialize_Return_Object
8933 (Tag_Assign
, Adj_Call
, Expr_Q
, Empty
, Init_After
);
8935 -- Replace the return object declaration with a renaming of a
8936 -- dereference of the access value designating the return object.
8939 Make_Explicit_Dereference
(Loc
,
8940 Prefix
=> New_Occurrence_Of
(Alloc_Obj_Id
, Loc
));
8941 Set_Etype
(Expr_Q
, Etype
(Def_Id
));
8943 Rewrite_As_Renaming
:= True;
8947 -- Final transformation - turn the object declaration into a renaming
8948 -- if appropriate. If this is the completion of a deferred constant
8949 -- declaration, then this transformation generates what would be
8950 -- illegal code if written by hand, but that's OK.
8952 if Rewrite_As_Renaming
then
8954 Make_Object_Renaming_Declaration
(Loc
,
8955 Defining_Identifier
=> Def_Id
,
8956 Subtype_Mark
=> New_Occurrence_Of
(Etype
(Def_Id
), Loc
),
8959 -- We do not analyze this renaming declaration, because all its
8960 -- components have already been analyzed, and if we were to go
8961 -- ahead and analyze it, we would in effect be trying to generate
8962 -- another declaration of X, which won't do.
8964 Set_Renamed_Object
(Def_Id
, Expr_Q
);
8967 -- We do need to deal with debug issues for this renaming
8969 -- First, if entity comes from source, then mark it as needing
8970 -- debug information, even though it is defined by a generated
8971 -- renaming that does not come from source.
8973 Set_Debug_Info_Defining_Id
(N
);
8975 -- Now call the routine to generate debug info for the renaming
8977 Insert_Action
(N
, Debug_Renaming_Declaration
(N
));
8980 -- Exception on library entity not available
8983 when RE_Not_Available
=>
8985 end Expand_N_Object_Declaration
;
8987 ---------------------------------
8988 -- Expand_N_Subtype_Indication --
8989 ---------------------------------
8991 -- Add a check on the range of the subtype and deal with validity checking
8993 procedure Expand_N_Subtype_Indication
(N
: Node_Id
) is
8994 Ran
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
8995 Typ
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
8998 if Nkind
(Constraint
(N
)) = N_Range_Constraint
then
8999 Validity_Check_Range
(Range_Expression
(Constraint
(N
)));
9002 -- Do not duplicate the work of Process_Range_Expr_In_Decl in Sem_Ch3
9004 if Nkind
(Parent
(N
)) in N_Constrained_Array_Definition | N_Slice
9005 and then Nkind
(Parent
(Parent
(N
))) not in
9006 N_Full_Type_Declaration | N_Object_Declaration
9008 Apply_Range_Check
(Ran
, Typ
);
9010 end Expand_N_Subtype_Indication
;
9012 ---------------------------
9013 -- Expand_N_Variant_Part --
9014 ---------------------------
9016 -- Note: this procedure no longer has any effect. It used to be that we
9017 -- would replace the choices in the last variant by a when others, and
9018 -- also expanded static predicates in variant choices here, but both of
9019 -- those activities were being done too early, since we can't check the
9020 -- choices until the statically predicated subtypes are frozen, which can
9021 -- happen as late as the free point of the record, and we can't change the
9022 -- last choice to an others before checking the choices, which is now done
9023 -- at the freeze point of the record.
9025 procedure Expand_N_Variant_Part
(N
: Node_Id
) is
9028 end Expand_N_Variant_Part
;
9030 ---------------------------------
9031 -- Expand_Previous_Access_Type --
9032 ---------------------------------
9034 procedure Expand_Previous_Access_Type
(Def_Id
: Entity_Id
) is
9035 Ptr_Typ
: Entity_Id
;
9038 -- Find all access types in the current scope whose designated type is
9039 -- Def_Id and build master renamings for them.
9041 Ptr_Typ
:= First_Entity
(Current_Scope
);
9042 while Present
(Ptr_Typ
) loop
9043 if Is_Access_Type
(Ptr_Typ
)
9044 and then Designated_Type
(Ptr_Typ
) = Def_Id
9045 and then No
(Master_Id
(Ptr_Typ
))
9047 -- Ensure that the designated type has a master
9049 Build_Master_Entity
(Def_Id
);
9051 -- Private and incomplete types complicate the insertion of master
9052 -- renamings because the access type may precede the full view of
9053 -- the designated type. For this reason, the master renamings are
9054 -- inserted relative to the designated type.
9056 Build_Master_Renaming
(Ptr_Typ
, Ins_Nod
=> Parent
(Def_Id
));
9059 Next_Entity
(Ptr_Typ
);
9061 end Expand_Previous_Access_Type
;
9063 -----------------------------
9064 -- Expand_Record_Extension --
9065 -----------------------------
9067 -- Add a field _parent at the beginning of the record extension. This is
9068 -- used to implement inheritance. Here are some examples of expansion:
9070 -- 1. no discriminants
9071 -- type T2 is new T1 with null record;
9073 -- type T2 is new T1 with record
9077 -- 2. renamed discriminants
9078 -- type T2 (B, C : Int) is new T1 (A => B) with record
9079 -- _Parent : T1 (A => B);
9083 -- 3. inherited discriminants
9084 -- type T2 is new T1 with record -- discriminant A inherited
9085 -- _Parent : T1 (A);
9089 procedure Expand_Record_Extension
(T
: Entity_Id
; Def
: Node_Id
) is
9090 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
9091 Loc
: constant Source_Ptr
:= Sloc
(Def
);
9092 Rec_Ext_Part
: Node_Id
:= Record_Extension_Part
(Def
);
9093 Par_Subtype
: Entity_Id
;
9094 Comp_List
: Node_Id
;
9095 Comp_Decl
: Node_Id
;
9098 List_Constr
: constant List_Id
:= New_List
;
9101 -- Expand_Record_Extension is called directly from the semantics, so
9102 -- we must check to see whether expansion is active before proceeding,
9103 -- because this affects the visibility of selected components in bodies
9104 -- of instances. Within a generic we still need to set Parent_Subtype
9105 -- link because the visibility of inherited components will have to be
9106 -- verified in subsequent instances.
9108 if not Expander_Active
then
9109 if Inside_A_Generic
and then Ekind
(T
) = E_Record_Type
then
9110 Set_Parent_Subtype
(T
, Etype
(T
));
9115 -- This may be a derivation of an untagged private type whose full
9116 -- view is tagged, in which case the Derived_Type_Definition has no
9117 -- extension part. Build an empty one now.
9119 if No
(Rec_Ext_Part
) then
9121 Make_Record_Definition
(Loc
,
9123 Component_List
=> Empty
,
9124 Null_Present
=> True);
9126 Set_Record_Extension_Part
(Def
, Rec_Ext_Part
);
9127 Mark_Rewrite_Insertion
(Rec_Ext_Part
);
9130 Comp_List
:= Component_List
(Rec_Ext_Part
);
9132 Parent_N
:= Make_Defining_Identifier
(Loc
, Name_uParent
);
9134 -- If the derived type inherits its discriminants the type of the
9135 -- _parent field must be constrained by the inherited discriminants
9137 if Has_Discriminants
(T
)
9138 and then Nkind
(Indic
) /= N_Subtype_Indication
9139 and then not Is_Constrained
(Entity
(Indic
))
9141 D
:= First_Discriminant
(T
);
9142 while Present
(D
) loop
9143 Append_To
(List_Constr
, New_Occurrence_Of
(D
, Loc
));
9144 Next_Discriminant
(D
);
9149 Make_Subtype_Indication
(Loc
,
9150 Subtype_Mark
=> New_Occurrence_Of
(Entity
(Indic
), Loc
),
9152 Make_Index_Or_Discriminant_Constraint
(Loc
,
9153 Constraints
=> List_Constr
)),
9156 -- Otherwise the original subtype_indication is just what is needed
9159 Par_Subtype
:= Process_Subtype
(New_Copy_Tree
(Indic
), Def
);
9162 Set_Parent_Subtype
(T
, Par_Subtype
);
9165 Make_Component_Declaration
(Loc
,
9166 Defining_Identifier
=> Parent_N
,
9167 Component_Definition
=>
9168 Make_Component_Definition
(Loc
,
9169 Aliased_Present
=> False,
9170 Subtype_Indication
=> New_Occurrence_Of
(Par_Subtype
, Loc
)));
9172 if Null_Present
(Rec_Ext_Part
) then
9173 Set_Component_List
(Rec_Ext_Part
,
9174 Make_Component_List
(Loc
,
9175 Component_Items
=> New_List
(Comp_Decl
),
9176 Variant_Part
=> Empty
,
9177 Null_Present
=> False));
9178 Set_Null_Present
(Rec_Ext_Part
, False);
9180 elsif Null_Present
(Comp_List
)
9181 or else Is_Empty_List
(Component_Items
(Comp_List
))
9183 Set_Component_Items
(Comp_List
, New_List
(Comp_Decl
));
9184 Set_Null_Present
(Comp_List
, False);
9187 Insert_Before
(First
(Component_Items
(Comp_List
)), Comp_Decl
);
9190 Analyze
(Comp_Decl
);
9191 end Expand_Record_Extension
;
9193 ------------------------
9194 -- Expand_Tagged_Root --
9195 ------------------------
9197 procedure Expand_Tagged_Root
(T
: Entity_Id
) is
9198 Def
: constant Node_Id
:= Type_Definition
(Parent
(T
));
9199 Comp_List
: Node_Id
;
9200 Comp_Decl
: Node_Id
;
9201 Sloc_N
: Source_Ptr
;
9204 if Null_Present
(Def
) then
9205 Set_Component_List
(Def
,
9206 Make_Component_List
(Sloc
(Def
),
9207 Component_Items
=> Empty_List
,
9208 Variant_Part
=> Empty
,
9209 Null_Present
=> True));
9212 Comp_List
:= Component_List
(Def
);
9214 if Null_Present
(Comp_List
)
9215 or else Is_Empty_List
(Component_Items
(Comp_List
))
9217 Sloc_N
:= Sloc
(Comp_List
);
9219 Sloc_N
:= Sloc
(First
(Component_Items
(Comp_List
)));
9223 Make_Component_Declaration
(Sloc_N
,
9224 Defining_Identifier
=> First_Tag_Component
(T
),
9225 Component_Definition
=>
9226 Make_Component_Definition
(Sloc_N
,
9227 Aliased_Present
=> False,
9228 Subtype_Indication
=> New_Occurrence_Of
(RTE
(RE_Tag
), Sloc_N
)));
9230 if Null_Present
(Comp_List
)
9231 or else Is_Empty_List
(Component_Items
(Comp_List
))
9233 Set_Component_Items
(Comp_List
, New_List
(Comp_Decl
));
9234 Set_Null_Present
(Comp_List
, False);
9237 Insert_Before
(First
(Component_Items
(Comp_List
)), Comp_Decl
);
9240 -- We don't Analyze the whole expansion because the tag component has
9241 -- already been analyzed previously. Here we just insure that the tree
9242 -- is coherent with the semantic decoration
9244 Find_Type
(Subtype_Indication
(Component_Definition
(Comp_Decl
)));
9247 when RE_Not_Available
=>
9249 end Expand_Tagged_Root
;
9251 ------------------------------
9252 -- Freeze_Stream_Operations --
9253 ------------------------------
9255 procedure Freeze_Stream_Operations
(N
: Node_Id
; Typ
: Entity_Id
) is
9256 Names
: constant array (1 .. 4) of TSS_Name_Type
:=
9261 Stream_Op
: Entity_Id
;
9264 -- Primitive operations of tagged types are frozen when the dispatch
9265 -- table is constructed.
9267 if not Comes_From_Source
(Typ
) or else Is_Tagged_Type
(Typ
) then
9271 for J
in Names
'Range loop
9272 Stream_Op
:= TSS
(Typ
, Names
(J
));
9274 if Present
(Stream_Op
)
9275 and then Is_Subprogram
(Stream_Op
)
9276 and then Nkind
(Unit_Declaration_Node
(Stream_Op
)) =
9277 N_Subprogram_Declaration
9278 and then not Is_Frozen
(Stream_Op
)
9280 Append_Freeze_Actions
(Typ
, Freeze_Entity
(Stream_Op
, N
));
9283 end Freeze_Stream_Operations
;
9289 -- Full type declarations are expanded at the point at which the type is
9290 -- frozen. The formal N is the Freeze_Node for the type. Any statements or
9291 -- declarations generated by the freezing (e.g. the procedure generated
9292 -- for initialization) are chained in the Actions field list of the freeze
9293 -- node using Append_Freeze_Actions.
9295 -- WARNING: This routine manages Ghost regions. Return statements must be
9296 -- replaced by gotos which jump to the end of the routine and restore the
9299 function Freeze_Type
(N
: Node_Id
) return Boolean is
9300 procedure Process_RACW_Types
(Typ
: Entity_Id
);
9301 -- Validate and generate stubs for all RACW types associated with type
9304 procedure Process_Pending_Access_Types
(Typ
: Entity_Id
);
9305 -- Associate type Typ's Finalize_Address primitive with the finalization
9306 -- masters of pending access-to-Typ types.
9308 ------------------------
9309 -- Process_RACW_Types --
9310 ------------------------
9312 procedure Process_RACW_Types
(Typ
: Entity_Id
) is
9313 List
: constant Elist_Id
:= Access_Types_To_Process
(N
);
9315 Seen
: Boolean := False;
9318 if Present
(List
) then
9319 E
:= First_Elmt
(List
);
9320 while Present
(E
) loop
9321 if Is_Remote_Access_To_Class_Wide_Type
(Node
(E
)) then
9322 Validate_RACW_Primitives
(Node
(E
));
9330 -- If there are RACWs designating this type, make stubs now
9333 Remote_Types_Tagged_Full_View_Encountered
(Typ
);
9335 end Process_RACW_Types
;
9337 ----------------------------------
9338 -- Process_Pending_Access_Types --
9339 ----------------------------------
9341 procedure Process_Pending_Access_Types
(Typ
: Entity_Id
) is
9345 -- Finalize_Address is not generated in CodePeer mode because the
9346 -- body contains address arithmetic. This processing is disabled.
9348 if CodePeer_Mode
then
9351 -- Certain itypes are generated for contexts that cannot allocate
9352 -- objects and should not set primitive Finalize_Address.
9354 elsif Is_Itype
(Typ
)
9355 and then Nkind
(Associated_Node_For_Itype
(Typ
)) =
9356 N_Explicit_Dereference
9360 -- When an access type is declared after the incomplete view of a
9361 -- Taft-amendment type, the access type is considered pending in
9362 -- case the full view of the Taft-amendment type is controlled. If
9363 -- this is indeed the case, associate the Finalize_Address routine
9364 -- of the full view with the finalization masters of all pending
9365 -- access types. This scenario applies to anonymous access types as
9366 -- well. But the Finalize_Address routine is missing if the type is
9367 -- class-wide and we are under restriction No_Dispatching_Calls, see
9368 -- Expand_Freeze_Class_Wide_Type above for the rationale.
9370 elsif Needs_Finalization
(Typ
)
9371 and then (not Is_Class_Wide_Type
(Typ
)
9372 or else not Restriction_Active
(No_Dispatching_Calls
))
9373 and then Present
(Pending_Access_Types
(Typ
))
9375 E
:= First_Elmt
(Pending_Access_Types
(Typ
));
9376 while Present
(E
) loop
9379 -- Set_Finalize_Address
9380 -- (Ptr_Typ, <Typ>FD'Unrestricted_Access);
9382 Append_Freeze_Action
(Typ
,
9383 Make_Set_Finalize_Address_Call
9385 Ptr_Typ
=> Node
(E
)));
9390 end Process_Pending_Access_Types
;
9394 Def_Id
: constant Entity_Id
:= Entity
(N
);
9396 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
9397 Saved_IGR
: constant Node_Id
:= Ignored_Ghost_Region
;
9398 -- Save the Ghost-related attributes to restore on exit
9400 Result
: Boolean := False;
9402 -- Start of processing for Freeze_Type
9405 -- The type being frozen may be subject to pragma Ghost. Set the mode
9406 -- now to ensure that any nodes generated during freezing are properly
9409 Set_Ghost_Mode
(Def_Id
);
9411 -- Process any remote access-to-class-wide types designating the type
9414 Process_RACW_Types
(Def_Id
);
9416 -- Freeze processing for record types
9418 if Is_Record_Type
(Def_Id
) then
9419 if Ekind
(Def_Id
) = E_Record_Type
then
9420 Expand_Freeze_Record_Type
(N
);
9421 elsif Is_Class_Wide_Type
(Def_Id
) then
9422 Expand_Freeze_Class_Wide_Type
(N
);
9425 -- Freeze processing for array types
9427 elsif Is_Array_Type
(Def_Id
) then
9428 Expand_Freeze_Array_Type
(N
);
9430 -- Freeze processing for access types
9432 -- For pool-specific access types, find out the pool object used for
9433 -- this type, needs actual expansion of it in some cases. Here are the
9434 -- different cases :
9436 -- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
9437 -- ---> don't use any storage pool
9439 -- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
9441 -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
9443 -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
9444 -- ---> Storage Pool is the specified one
9446 -- See GNAT Pool packages in the Run-Time for more details
9448 elsif Ekind
(Def_Id
) in E_Access_Type | E_General_Access_Type
then
9450 Loc
: constant Source_Ptr
:= Sloc
(N
);
9451 Desig_Type
: constant Entity_Id
:= Designated_Type
(Def_Id
);
9453 Freeze_Action_Typ
: Entity_Id
;
9454 Pool_Object
: Entity_Id
;
9459 -- Rep Clause "for Def_Id'Storage_Size use 0;"
9460 -- ---> don't use any storage pool
9462 if No_Pool_Assigned
(Def_Id
) then
9467 -- Rep Clause : for Def_Id'Storage_Size use Expr.
9469 -- Def_Id__Pool : Stack_Bounded_Pool
9470 -- (Expr, DT'Size, DT'Alignment);
9472 elsif Has_Storage_Size_Clause
(Def_Id
) then
9478 -- For unconstrained composite types we give a size of zero
9479 -- so that the pool knows that it needs a special algorithm
9480 -- for variable size object allocation.
9482 if Is_Composite_Type
(Desig_Type
)
9483 and then not Is_Constrained
(Desig_Type
)
9485 DT_Size
:= Make_Integer_Literal
(Loc
, 0);
9486 DT_Align
:= Make_Integer_Literal
(Loc
, Maximum_Alignment
);
9490 Make_Attribute_Reference
(Loc
,
9491 Prefix
=> New_Occurrence_Of
(Desig_Type
, Loc
),
9492 Attribute_Name
=> Name_Max_Size_In_Storage_Elements
);
9495 Make_Attribute_Reference
(Loc
,
9496 Prefix
=> New_Occurrence_Of
(Desig_Type
, Loc
),
9497 Attribute_Name
=> Name_Alignment
);
9501 Make_Defining_Identifier
(Loc
,
9502 Chars
=> New_External_Name
(Chars
(Def_Id
), 'P'));
9504 -- We put the code associated with the pools in the entity
9505 -- that has the later freeze node, usually the access type
9506 -- but it can also be the designated_type; because the pool
9507 -- code requires both those types to be frozen
9509 if Is_Frozen
(Desig_Type
)
9510 and then (No
(Freeze_Node
(Desig_Type
))
9511 or else Analyzed
(Freeze_Node
(Desig_Type
)))
9513 Freeze_Action_Typ
:= Def_Id
;
9515 -- A Taft amendment type cannot get the freeze actions
9516 -- since the full view is not there.
9518 elsif Is_Incomplete_Or_Private_Type
(Desig_Type
)
9519 and then No
(Full_View
(Desig_Type
))
9521 Freeze_Action_Typ
:= Def_Id
;
9524 Freeze_Action_Typ
:= Desig_Type
;
9527 Append_Freeze_Action
(Freeze_Action_Typ
,
9528 Make_Object_Declaration
(Loc
,
9529 Defining_Identifier
=> Pool_Object
,
9530 Object_Definition
=>
9531 Make_Subtype_Indication
(Loc
,
9534 (RTE
(RE_Stack_Bounded_Pool
), Loc
),
9537 Make_Index_Or_Discriminant_Constraint
(Loc
,
9538 Constraints
=> New_List
(
9540 -- First discriminant is the Pool Size
9543 Storage_Size_Variable
(Def_Id
), Loc
),
9545 -- Second discriminant is the element size
9549 -- Third discriminant is the alignment
9554 Set_Associated_Storage_Pool
(Def_Id
, Pool_Object
);
9558 -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
9559 -- ---> Storage Pool is the specified one
9561 -- When compiling in Ada 2012 mode, ensure that the accessibility
9562 -- level of the subpool access type is not deeper than that of the
9563 -- pool_with_subpools.
9565 elsif Ada_Version
>= Ada_2012
9566 and then Present
(Associated_Storage_Pool
(Def_Id
))
9567 and then RTU_Loaded
(System_Storage_Pools_Subpools
)
9570 Loc
: constant Source_Ptr
:= Sloc
(Def_Id
);
9571 Pool
: constant Entity_Id
:=
9572 Associated_Storage_Pool
(Def_Id
);
9575 -- It is known that the accessibility level of the access
9576 -- type is deeper than that of the pool.
9578 if Type_Access_Level
(Def_Id
)
9579 > Static_Accessibility_Level
(Pool
, Object_Decl_Level
)
9580 and then Is_Class_Wide_Type
(Etype
(Pool
))
9581 and then not Accessibility_Checks_Suppressed
(Def_Id
)
9582 and then not Accessibility_Checks_Suppressed
(Pool
)
9584 -- When the pool is of a class-wide type, it may or may
9585 -- not support subpools depending on the path of
9586 -- derivation. Generate:
9588 -- if Def_Id in RSPWS'Class then
9589 -- raise Program_Error;
9592 Append_Freeze_Action
(Def_Id
,
9593 Make_If_Statement
(Loc
,
9596 Left_Opnd
=> New_Occurrence_Of
(Pool
, Loc
),
9601 (RE_Root_Storage_Pool_With_Subpools
)),
9603 Then_Statements
=> New_List
(
9604 Make_Raise_Program_Error
(Loc
,
9605 Reason
=> PE_Accessibility_Check_Failed
))));
9610 -- For access-to-controlled types (including class-wide types and
9611 -- Taft-amendment types, which potentially have controlled
9612 -- components), expand the list controller object that will store
9613 -- the dynamically allocated objects. Don't do this transformation
9614 -- for expander-generated access types, except do it for types
9615 -- that are the full view of types derived from other private
9616 -- types and for access types used to implement indirect temps.
9617 -- Also suppress the list controller in the case of a designated
9618 -- type with convention Java, since this is used when binding to
9619 -- Java API specs, where there's no equivalent of a finalization
9620 -- list and we don't want to pull in the finalization support if
9623 if not Comes_From_Source
(Def_Id
)
9624 and then not Has_Private_Declaration
(Def_Id
)
9625 and then not Old_Attr_Util
.Indirect_Temps
9626 .Is_Access_Type_For_Indirect_Temp
(Def_Id
)
9630 -- An exception is made for types defined in the run-time because
9631 -- Ada.Tags.Tag itself is such a type and cannot afford this
9632 -- unnecessary overhead that would generates a loop in the
9633 -- expansion scheme. Another exception is if Restrictions
9634 -- (No_Finalization) is active, since then we know nothing is
9637 elsif Restriction_Active
(No_Finalization
)
9638 or else In_Runtime
(Def_Id
)
9642 -- Create a finalization master for an access-to-controlled type
9643 -- or an access-to-incomplete type. It is assumed that the full
9644 -- view will be controlled.
9646 elsif Needs_Finalization
(Desig_Type
)
9647 or else (Is_Incomplete_Type
(Desig_Type
)
9648 and then No
(Full_View
(Desig_Type
)))
9650 Build_Finalization_Master
(Def_Id
);
9652 -- Create a finalization master when the designated type contains
9653 -- a private component. It is assumed that the full view will be
9656 elsif Has_Private_Component
(Desig_Type
) then
9657 Build_Finalization_Master
9659 For_Private
=> True,
9660 Context_Scope
=> Scope
(Def_Id
),
9661 Insertion_Node
=> Declaration_Node
(Desig_Type
));
9665 -- Freeze processing for enumeration types
9667 elsif Ekind
(Def_Id
) = E_Enumeration_Type
then
9669 -- We only have something to do if we have a non-standard
9670 -- representation (i.e. at least one literal whose pos value
9671 -- is not the same as its representation)
9673 if Has_Non_Standard_Rep
(Def_Id
) then
9674 Expand_Freeze_Enumeration_Type
(N
);
9677 -- Private types that are completed by a derivation from a private
9678 -- type have an internally generated full view, that needs to be
9679 -- frozen. This must be done explicitly because the two views share
9680 -- the freeze node, and the underlying full view is not visible when
9681 -- the freeze node is analyzed.
9683 elsif Is_Private_Type
(Def_Id
)
9684 and then Is_Derived_Type
(Def_Id
)
9685 and then Present
(Full_View
(Def_Id
))
9686 and then Is_Itype
(Full_View
(Def_Id
))
9687 and then Has_Private_Declaration
(Full_View
(Def_Id
))
9688 and then Freeze_Node
(Full_View
(Def_Id
)) = N
9690 Set_Entity
(N
, Full_View
(Def_Id
));
9691 Result
:= Freeze_Type
(N
);
9692 Set_Entity
(N
, Def_Id
);
9694 -- All other types require no expander action. There are such cases
9695 -- (e.g. task types and protected types). In such cases, the freeze
9696 -- nodes are there for use by Gigi.
9700 -- Complete the initialization of all pending access types' finalization
9701 -- masters now that the designated type has been is frozen and primitive
9702 -- Finalize_Address generated.
9704 Process_Pending_Access_Types
(Def_Id
);
9705 Freeze_Stream_Operations
(N
, Def_Id
);
9707 -- Generate the [spec and] body of the invariant procedure tasked with
9708 -- the runtime verification of all invariants that pertain to the type.
9709 -- This includes invariants on the partial and full view, inherited
9710 -- class-wide invariants from parent types or interfaces, and invariants
9711 -- on array elements or record components. But skip internal types.
9713 if Is_Itype
(Def_Id
) then
9716 elsif Is_Interface
(Def_Id
) then
9718 -- Interfaces are treated as the partial view of a private type in
9719 -- order to achieve uniformity with the general case. As a result, an
9720 -- interface receives only a "partial" invariant procedure which is
9723 if Has_Own_Invariants
(Def_Id
) then
9724 Build_Invariant_Procedure_Body
9726 Partial_Invariant
=> Is_Interface
(Def_Id
));
9729 -- Non-interface types
9731 -- Do not generate invariant procedure within other assertion
9732 -- subprograms, which may involve local declarations of local
9733 -- subtypes to which these checks do not apply.
9736 if Has_Invariants
(Def_Id
) then
9737 if not Predicate_Check_In_Scope
(Def_Id
)
9738 or else (Ekind
(Current_Scope
) = E_Function
9739 and then Is_Predicate_Function
(Current_Scope
))
9743 Build_Invariant_Procedure_Body
(Def_Id
);
9747 -- Generate the [spec and] body of the procedure tasked with the
9748 -- run-time verification of pragma Default_Initial_Condition's
9751 if Has_DIC
(Def_Id
) then
9752 Build_DIC_Procedure_Body
(Def_Id
);
9756 Restore_Ghost_Region
(Saved_GM
, Saved_IGR
);
9761 when RE_Not_Available
=>
9762 Restore_Ghost_Region
(Saved_GM
, Saved_IGR
);
9767 -------------------------
9768 -- Get_Simple_Init_Val --
9769 -------------------------
9771 function Get_Simple_Init_Val
9774 Size
: Uint
:= No_Uint
) return Node_Id
9776 IV_Attribute
: constant Boolean :=
9777 Nkind
(N
) = N_Attribute_Reference
9778 and then Attribute_Name
(N
) = Name_Invalid_Value
;
9780 Loc
: constant Source_Ptr
:= Sloc
(N
);
9782 procedure Extract_Subtype_Bounds
9783 (Lo_Bound
: out Uint
;
9784 Hi_Bound
: out Uint
);
9785 -- Inspect subtype Typ as well its ancestor subtypes and derived types
9786 -- to determine the best known information about the bounds of the type.
9787 -- The output parameters are set as follows:
9789 -- * Lo_Bound - Set to No_Unit when there is no information available,
9790 -- or to the known low bound.
9792 -- * Hi_Bound - Set to No_Unit when there is no information available,
9793 -- or to the known high bound.
9795 function Simple_Init_Array_Type
return Node_Id
;
9796 -- Build an expression to initialize array type Typ
9798 function Simple_Init_Defaulted_Type
return Node_Id
;
9799 -- Build an expression to initialize type Typ which is subject to
9800 -- aspect Default_Value.
9802 function Simple_Init_Initialize_Scalars_Type
9803 (Size_To_Use
: Uint
) return Node_Id
;
9804 -- Build an expression to initialize scalar type Typ which is subject to
9805 -- pragma Initialize_Scalars. Size_To_Use is the size of the object.
9807 function Simple_Init_Normalize_Scalars_Type
9808 (Size_To_Use
: Uint
) return Node_Id
;
9809 -- Build an expression to initialize scalar type Typ which is subject to
9810 -- pragma Normalize_Scalars. Size_To_Use is the size of the object.
9812 function Simple_Init_Private_Type
return Node_Id
;
9813 -- Build an expression to initialize private type Typ
9815 function Simple_Init_Scalar_Type
return Node_Id
;
9816 -- Build an expression to initialize scalar type Typ
9818 ----------------------------
9819 -- Extract_Subtype_Bounds --
9820 ----------------------------
9822 procedure Extract_Subtype_Bounds
9823 (Lo_Bound
: out Uint
;
9824 Hi_Bound
: out Uint
)
9834 Lo_Bound
:= No_Uint
;
9835 Hi_Bound
:= No_Uint
;
9837 -- Loop to climb ancestor subtypes and derived types
9841 if not Is_Discrete_Type
(ST1
) then
9845 Lo
:= Type_Low_Bound
(ST1
);
9846 Hi
:= Type_High_Bound
(ST1
);
9848 if Compile_Time_Known_Value
(Lo
) then
9849 Lo_Val
:= Expr_Value
(Lo
);
9851 if No
(Lo_Bound
) or else Lo_Bound
< Lo_Val
then
9856 if Compile_Time_Known_Value
(Hi
) then
9857 Hi_Val
:= Expr_Value
(Hi
);
9859 if No
(Hi_Bound
) or else Hi_Bound
> Hi_Val
then
9864 ST2
:= Ancestor_Subtype
(ST1
);
9870 exit when ST1
= ST2
;
9873 end Extract_Subtype_Bounds
;
9875 ----------------------------
9876 -- Simple_Init_Array_Type --
9877 ----------------------------
9879 function Simple_Init_Array_Type
return Node_Id
is
9880 Comp_Typ
: constant Entity_Id
:= Component_Type
(Typ
);
9882 function Simple_Init_Dimension
(Index
: Node_Id
) return Node_Id
;
9883 -- Initialize a single array dimension with index constraint Index
9885 --------------------
9886 -- Simple_Init_Dimension --
9887 --------------------
9889 function Simple_Init_Dimension
(Index
: Node_Id
) return Node_Id
is
9891 -- Process the current dimension
9893 if Present
(Index
) then
9895 -- Build a suitable "others" aggregate for the next dimension,
9896 -- or initialize the component itself. Generate:
9901 Make_Aggregate
(Loc
,
9902 Component_Associations
=> New_List
(
9903 Make_Component_Association
(Loc
,
9904 Choices
=> New_List
(Make_Others_Choice
(Loc
)),
9906 Simple_Init_Dimension
(Next_Index
(Index
)))));
9908 -- Otherwise all dimensions have been processed. Initialize the
9909 -- component itself.
9916 Size
=> Esize
(Comp_Typ
));
9918 end Simple_Init_Dimension
;
9920 -- Start of processing for Simple_Init_Array_Type
9923 return Simple_Init_Dimension
(First_Index
(Typ
));
9924 end Simple_Init_Array_Type
;
9926 --------------------------------
9927 -- Simple_Init_Defaulted_Type --
9928 --------------------------------
9930 function Simple_Init_Defaulted_Type
return Node_Id
is
9931 Subtyp
: Entity_Id
:= First_Subtype
(Typ
);
9934 -- When the first subtype is private, retrieve the expression of the
9935 -- Default_Value from the underlying type.
9937 if Is_Private_Type
(Subtyp
) then
9938 Subtyp
:= Full_View
(Subtyp
);
9941 -- Use the Sloc of the context node when constructing the initial
9942 -- value because the expression of Default_Value may come from a
9943 -- different unit. Updating the Sloc will result in accurate error
9951 (Source
=> Default_Aspect_Value
(Subtyp
),
9953 end Simple_Init_Defaulted_Type
;
9955 -----------------------------------------
9956 -- Simple_Init_Initialize_Scalars_Type --
9957 -----------------------------------------
9959 function Simple_Init_Initialize_Scalars_Type
9960 (Size_To_Use
: Uint
) return Node_Id
9962 Float_Typ
: Entity_Id
;
9965 Scal_Typ
: Scalar_Id
;
9968 Extract_Subtype_Bounds
(Lo_Bound
, Hi_Bound
);
9972 if Is_Floating_Point_Type
(Typ
) then
9973 Float_Typ
:= Root_Type
(Typ
);
9975 if Float_Typ
= Standard_Short_Float
then
9976 Scal_Typ
:= Name_Short_Float
;
9977 elsif Float_Typ
= Standard_Float
then
9978 Scal_Typ
:= Name_Float
;
9979 elsif Float_Typ
= Standard_Long_Float
then
9980 Scal_Typ
:= Name_Long_Float
;
9981 else pragma Assert
(Float_Typ
= Standard_Long_Long_Float
);
9982 Scal_Typ
:= Name_Long_Long_Float
;
9985 -- If zero is invalid, it is a convenient value to use that is for
9986 -- sure an appropriate invalid value in all situations.
9988 elsif Present
(Lo_Bound
) and then Lo_Bound
> Uint_0
then
9989 return Make_Integer_Literal
(Loc
, 0);
9993 elsif Is_Unsigned_Type
(Typ
) then
9994 if Size_To_Use
<= 8 then
9995 Scal_Typ
:= Name_Unsigned_8
;
9996 elsif Size_To_Use
<= 16 then
9997 Scal_Typ
:= Name_Unsigned_16
;
9998 elsif Size_To_Use
<= 32 then
9999 Scal_Typ
:= Name_Unsigned_32
;
10000 elsif Size_To_Use
<= 64 then
10001 Scal_Typ
:= Name_Unsigned_64
;
10003 Scal_Typ
:= Name_Unsigned_128
;
10009 if Size_To_Use
<= 8 then
10010 Scal_Typ
:= Name_Signed_8
;
10011 elsif Size_To_Use
<= 16 then
10012 Scal_Typ
:= Name_Signed_16
;
10013 elsif Size_To_Use
<= 32 then
10014 Scal_Typ
:= Name_Signed_32
;
10015 elsif Size_To_Use
<= 64 then
10016 Scal_Typ
:= Name_Signed_64
;
10018 Scal_Typ
:= Name_Signed_128
;
10022 -- Use the values specified by pragma Initialize_Scalars or the ones
10023 -- provided by the binder. Higher precedence is given to the pragma.
10025 return Invalid_Scalar_Value
(Loc
, Scal_Typ
);
10026 end Simple_Init_Initialize_Scalars_Type
;
10028 ----------------------------------------
10029 -- Simple_Init_Normalize_Scalars_Type --
10030 ----------------------------------------
10032 function Simple_Init_Normalize_Scalars_Type
10033 (Size_To_Use
: Uint
) return Node_Id
10035 Signed_Size
: constant Uint
:= UI_Min
(Uint_63
, Size_To_Use
- 1);
10042 Extract_Subtype_Bounds
(Lo_Bound
, Hi_Bound
);
10044 -- If zero is invalid, it is a convenient value to use that is for
10045 -- sure an appropriate invalid value in all situations.
10047 if Present
(Lo_Bound
) and then Lo_Bound
> Uint_0
then
10048 Expr
:= Make_Integer_Literal
(Loc
, 0);
10050 -- Cases where all one bits is the appropriate invalid value
10052 -- For modular types, all 1 bits is either invalid or valid. If it
10053 -- is valid, then there is nothing that can be done since there are
10054 -- no invalid values (we ruled out zero already).
10056 -- For signed integer types that have no negative values, either
10057 -- there is room for negative values, or there is not. If there
10058 -- is, then all 1-bits may be interpreted as minus one, which is
10059 -- certainly invalid. Alternatively it is treated as the largest
10060 -- positive value, in which case the observation for modular types
10063 -- For float types, all 1-bits is a NaN (not a number), which is
10064 -- certainly an appropriately invalid value.
10066 elsif Is_Enumeration_Type
(Typ
)
10067 or else Is_Floating_Point_Type
(Typ
)
10068 or else Is_Unsigned_Type
(Typ
)
10070 Expr
:= Make_Integer_Literal
(Loc
, 2 ** Size_To_Use
- 1);
10072 -- Resolve as Long_Long_Long_Unsigned, because the largest number
10073 -- we can generate is out of range of universal integer.
10075 Analyze_And_Resolve
(Expr
, Standard_Long_Long_Long_Unsigned
);
10077 -- Case of signed types
10080 -- Normally we like to use the most negative number. The one
10081 -- exception is when this number is in the known subtype range and
10082 -- the largest positive number is not in the known subtype range.
10084 -- For this exceptional case, use largest positive value
10086 if Present
(Lo_Bound
) and then Present
(Hi_Bound
)
10087 and then Lo_Bound
<= (-(2 ** Signed_Size
))
10088 and then Hi_Bound
< 2 ** Signed_Size
10090 Expr
:= Make_Integer_Literal
(Loc
, 2 ** Signed_Size
- 1);
10092 -- Normal case of largest negative value
10095 Expr
:= Make_Integer_Literal
(Loc
, -(2 ** Signed_Size
));
10100 end Simple_Init_Normalize_Scalars_Type
;
10102 ------------------------------
10103 -- Simple_Init_Private_Type --
10104 ------------------------------
10106 function Simple_Init_Private_Type
return Node_Id
is
10107 Under_Typ
: constant Entity_Id
:= Underlying_Type
(Typ
);
10111 -- The availability of the underlying view must be checked by routine
10112 -- Needs_Simple_Initialization.
10114 pragma Assert
(Present
(Under_Typ
));
10116 Expr
:= Get_Simple_Init_Val
(Under_Typ
, N
, Size
);
10118 -- If the initial value is null or an aggregate, qualify it with the
10119 -- underlying type in order to provide a proper context.
10121 if Nkind
(Expr
) in N_Aggregate | N_Null
then
10123 Make_Qualified_Expression
(Loc
,
10124 Subtype_Mark
=> New_Occurrence_Of
(Under_Typ
, Loc
),
10125 Expression
=> Expr
);
10128 Expr
:= Unchecked_Convert_To
(Typ
, Expr
);
10130 -- Do not truncate the result when scalar types are involved and
10131 -- Initialize/Normalize_Scalars is in effect.
10133 if Nkind
(Expr
) = N_Unchecked_Type_Conversion
10134 and then Is_Scalar_Type
(Under_Typ
)
10136 Set_No_Truncation
(Expr
);
10140 end Simple_Init_Private_Type
;
10142 -----------------------------
10143 -- Simple_Init_Scalar_Type --
10144 -----------------------------
10146 function Simple_Init_Scalar_Type
return Node_Id
is
10148 Size_To_Use
: Uint
;
10151 pragma Assert
(Init_Or_Norm_Scalars
or IV_Attribute
);
10153 -- Determine the size of the object. This is either the size provided
10154 -- by the caller, or the Esize of the scalar type.
10156 if No
(Size
) or else Size
<= Uint_0
then
10157 Size_To_Use
:= UI_Max
(Uint_1
, Esize
(Typ
));
10159 Size_To_Use
:= Size
;
10162 -- The maximum size to use is System_Max_Integer_Size bits. This
10163 -- will create values of type Long_Long_Long_Unsigned and the range
10164 -- must fit this type.
10166 if Present
(Size_To_Use
)
10167 and then Size_To_Use
> System_Max_Integer_Size
10169 Size_To_Use
:= UI_From_Int
(System_Max_Integer_Size
);
10172 if Normalize_Scalars
and then not IV_Attribute
then
10173 Expr
:= Simple_Init_Normalize_Scalars_Type
(Size_To_Use
);
10175 Expr
:= Simple_Init_Initialize_Scalars_Type
(Size_To_Use
);
10178 -- The final expression is obtained by doing an unchecked conversion
10179 -- of this result to the base type of the required subtype. Use the
10180 -- base type to prevent the unchecked conversion from chopping bits,
10181 -- and then we set Kill_Range_Check to preserve the "bad" value.
10183 Expr
:= Unchecked_Convert_To
(Base_Type
(Typ
), Expr
);
10185 -- Ensure that the expression is not truncated since the "bad" bits
10186 -- are desired, and also kill the range checks.
10188 if Nkind
(Expr
) = N_Unchecked_Type_Conversion
then
10189 Set_Kill_Range_Check
(Expr
);
10190 Set_No_Truncation
(Expr
);
10194 end Simple_Init_Scalar_Type
;
10196 -- Start of processing for Get_Simple_Init_Val
10199 if Is_Private_Type
(Typ
) then
10200 return Simple_Init_Private_Type
;
10202 elsif Is_Scalar_Type
(Typ
) then
10203 if Has_Default_Aspect
(Typ
) then
10204 return Simple_Init_Defaulted_Type
;
10206 return Simple_Init_Scalar_Type
;
10209 -- Array type with Initialize or Normalize_Scalars
10211 elsif Is_Array_Type
(Typ
) then
10212 pragma Assert
(Init_Or_Norm_Scalars
);
10213 return Simple_Init_Array_Type
;
10215 -- Access type is initialized to null
10217 elsif Is_Access_Type
(Typ
) then
10218 return Make_Null
(Loc
);
10220 -- No other possibilities should arise, since we should only be calling
10221 -- Get_Simple_Init_Val if Needs_Simple_Initialization returned True,
10222 -- indicating one of the above cases held.
10225 raise Program_Error
;
10229 when RE_Not_Available
=>
10231 end Get_Simple_Init_Val
;
10233 ------------------------------
10234 -- Has_New_Non_Standard_Rep --
10235 ------------------------------
10237 function Has_New_Non_Standard_Rep
(T
: Entity_Id
) return Boolean is
10239 if not Is_Derived_Type
(T
) then
10240 return Has_Non_Standard_Rep
(T
)
10241 or else Has_Non_Standard_Rep
(Root_Type
(T
));
10243 -- If Has_Non_Standard_Rep is not set on the derived type, the
10244 -- representation is fully inherited.
10246 elsif not Has_Non_Standard_Rep
(T
) then
10250 return First_Rep_Item
(T
) /= First_Rep_Item
(Root_Type
(T
));
10252 -- May need a more precise check here: the First_Rep_Item may be a
10253 -- stream attribute, which does not affect the representation of the
10257 end Has_New_Non_Standard_Rep
;
10259 ----------------------
10260 -- Inline_Init_Proc --
10261 ----------------------
10263 function Inline_Init_Proc
(Typ
: Entity_Id
) return Boolean is
10265 -- The initialization proc of protected records is not worth inlining.
10266 -- In addition, when compiled for another unit for inlining purposes,
10267 -- it may make reference to entities that have not been elaborated yet.
10268 -- The initialization proc of records that need finalization contains
10269 -- a nested clean-up procedure that makes it impractical to inline as
10270 -- well, except for simple controlled types themselves. And similar
10271 -- considerations apply to task types.
10273 if Is_Concurrent_Type
(Typ
) then
10276 elsif Needs_Finalization
(Typ
) and then not Is_Controlled
(Typ
) then
10279 elsif Has_Task
(Typ
) then
10285 end Inline_Init_Proc
;
10291 function In_Runtime
(E
: Entity_Id
) return Boolean is
10296 while Scope
(S1
) /= Standard_Standard
loop
10300 return Is_RTU
(S1
, System
) or else Is_RTU
(S1
, Ada
);
10303 package body Initialization_Control
is
10305 ------------------------
10306 -- Requires_Late_Init --
10307 ------------------------
10309 function Requires_Late_Init
10311 Rec_Type
: Entity_Id
) return Boolean
10313 References_Current_Instance
: Boolean := False;
10314 Has_Access_Discriminant
: Boolean := False;
10315 Has_Internal_Call
: Boolean := False;
10317 function Find_Access_Discriminant
10318 (N
: Node_Id
) return Traverse_Result
;
10319 -- Look for a name denoting an access discriminant
10321 function Find_Current_Instance
10322 (N
: Node_Id
) return Traverse_Result
;
10323 -- Look for a reference to the current instance of the type
10325 function Find_Internal_Call
10326 (N
: Node_Id
) return Traverse_Result
;
10327 -- Look for an internal protected function call
10329 ------------------------------
10330 -- Find_Access_Discriminant --
10331 ------------------------------
10333 function Find_Access_Discriminant
10334 (N
: Node_Id
) return Traverse_Result
is
10336 if Is_Entity_Name
(N
)
10337 and then Denotes_Discriminant
(N
)
10338 and then Is_Access_Type
(Etype
(N
))
10340 Has_Access_Discriminant
:= True;
10345 end Find_Access_Discriminant
;
10347 ---------------------------
10348 -- Find_Current_Instance --
10349 ---------------------------
10351 function Find_Current_Instance
10352 (N
: Node_Id
) return Traverse_Result
is
10354 if Is_Entity_Name
(N
)
10355 and then Present
(Entity
(N
))
10356 and then Is_Current_Instance
(N
)
10358 References_Current_Instance
:= True;
10363 end Find_Current_Instance
;
10365 ------------------------
10366 -- Find_Internal_Call --
10367 ------------------------
10369 function Find_Internal_Call
(N
: Node_Id
) return Traverse_Result
is
10371 function Call_Scope
(N
: Node_Id
) return Entity_Id
;
10372 -- Return the scope enclosing a given call node N
10378 function Call_Scope
(N
: Node_Id
) return Entity_Id
is
10379 Nam
: constant Node_Id
:= Name
(N
);
10381 if Nkind
(Nam
) = N_Selected_Component
then
10382 return Scope
(Entity
(Prefix
(Nam
)));
10384 return Scope
(Entity
(Nam
));
10389 if Nkind
(N
) = N_Function_Call
10390 and then Call_Scope
(N
)
10391 = Corresponding_Concurrent_Type
(Rec_Type
)
10393 Has_Internal_Call
:= True;
10398 end Find_Internal_Call
;
10400 procedure Search_Access_Discriminant
is new
10401 Traverse_Proc
(Find_Access_Discriminant
);
10403 procedure Search_Current_Instance
is new
10404 Traverse_Proc
(Find_Current_Instance
);
10406 procedure Search_Internal_Call
is new
10407 Traverse_Proc
(Find_Internal_Call
);
10409 -- Start of processing for Requires_Late_Init
10412 -- A component of an object is said to require late initialization
10415 -- it has an access discriminant value constrained by a per-object
10418 if Has_Access_Constraint
(Defining_Identifier
(Decl
))
10419 and then No
(Expression
(Decl
))
10423 elsif Present
(Expression
(Decl
)) then
10425 -- it has an initialization expression that includes a name
10426 -- denoting an access discriminant;
10428 Search_Access_Discriminant
(Expression
(Decl
));
10430 if Has_Access_Discriminant
then
10434 -- or it has an initialization expression that includes a
10435 -- reference to the current instance of the type either by
10438 Search_Current_Instance
(Expression
(Decl
));
10440 if References_Current_Instance
then
10444 -- ...or implicitly as the target object of a call.
10446 if Is_Protected_Record_Type
(Rec_Type
) then
10447 Search_Internal_Call
(Expression
(Decl
));
10449 if Has_Internal_Call
then
10456 end Requires_Late_Init
;
10458 -----------------------------
10459 -- Has_Late_Init_Component --
10460 -----------------------------
10462 function Has_Late_Init_Component
10463 (Tagged_Rec_Type
: Entity_Id
) return Boolean
10465 Comp_Id
: Entity_Id
:=
10466 First_Component
(Implementation_Base_Type
(Tagged_Rec_Type
));
10468 while Present
(Comp_Id
) loop
10469 if Requires_Late_Init
(Decl
=> Parent
(Comp_Id
),
10470 Rec_Type
=> Tagged_Rec_Type
)
10472 return True; -- found a component that requires late init
10474 elsif Chars
(Comp_Id
) = Name_uParent
10475 and then Has_Late_Init_Component
(Etype
(Comp_Id
))
10477 return True; -- an ancestor type has a late init component
10480 Next_Component
(Comp_Id
);
10484 end Has_Late_Init_Component
;
10486 ------------------------
10487 -- Tag_Init_Condition --
10488 ------------------------
10490 function Tag_Init_Condition
10492 Init_Control_Formal
: Entity_Id
) return Node_Id
is
10494 return Make_Op_Eq
(Loc
,
10495 New_Occurrence_Of
(Init_Control_Formal
, Loc
),
10496 Make_Mode_Literal
(Loc
, Full_Init
));
10497 end Tag_Init_Condition
;
10499 --------------------------
10500 -- Early_Init_Condition --
10501 --------------------------
10503 function Early_Init_Condition
10505 Init_Control_Formal
: Entity_Id
) return Node_Id
is
10507 return Make_Op_Ne
(Loc
,
10508 New_Occurrence_Of
(Init_Control_Formal
, Loc
),
10509 Make_Mode_Literal
(Loc
, Late_Init_Only
));
10510 end Early_Init_Condition
;
10512 -------------------------
10513 -- Late_Init_Condition --
10514 -------------------------
10516 function Late_Init_Condition
10518 Init_Control_Formal
: Entity_Id
) return Node_Id
is
10520 return Make_Op_Ne
(Loc
,
10521 New_Occurrence_Of
(Init_Control_Formal
, Loc
),
10522 Make_Mode_Literal
(Loc
, Early_Init_Only
));
10523 end Late_Init_Condition
;
10525 end Initialization_Control
;
10527 ----------------------------
10528 -- Initialization_Warning --
10529 ----------------------------
10531 procedure Initialization_Warning
(E
: Entity_Id
) is
10532 Warning_Needed
: Boolean;
10535 Warning_Needed
:= False;
10537 if Ekind
(Current_Scope
) = E_Package
10538 and then Static_Elaboration_Desired
(Current_Scope
)
10540 if Is_Type
(E
) then
10541 if Is_Record_Type
(E
) then
10542 if Has_Discriminants
(E
)
10543 or else Is_Limited_Type
(E
)
10544 or else Has_Non_Standard_Rep
(E
)
10546 Warning_Needed
:= True;
10549 -- Verify that at least one component has an initialization
10550 -- expression. No need for a warning on a type if all its
10551 -- components have no initialization.
10557 Comp
:= First_Component
(E
);
10558 while Present
(Comp
) loop
10560 (Nkind
(Parent
(Comp
)) = N_Component_Declaration
);
10562 if Present
(Expression
(Parent
(Comp
))) then
10563 Warning_Needed
:= True;
10567 Next_Component
(Comp
);
10572 if Warning_Needed
then
10574 ("objects of the type cannot be initialized statically "
10575 & "by default??", Parent
(E
));
10580 Error_Msg_N
("object cannot be initialized statically??", E
);
10583 end Initialization_Warning
;
10589 function Init_Formals
(Typ
: Entity_Id
; Proc_Id
: Entity_Id
) return List_Id
10591 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
10592 Unc_Arr
: constant Boolean :=
10593 Is_Array_Type
(Typ
) and then not Is_Constrained
(Typ
);
10594 With_Prot
: constant Boolean :=
10595 Has_Protected
(Typ
)
10596 or else (Is_Record_Type
(Typ
)
10597 and then Is_Protected_Record_Type
(Typ
));
10598 With_Task
: constant Boolean :=
10599 not Global_No_Tasking
10602 or else (Is_Record_Type
(Typ
)
10603 and then Is_Task_Record_Type
(Typ
)));
10607 -- The first parameter is always _Init : [in] out Typ. Note that we need
10608 -- it to be in/out in the case of an unconstrained array, because of the
10609 -- need to have the bounds, and in the case of protected or task record
10610 -- value, because there are default record fields that may be referenced
10611 -- in the generated initialization routine.
10613 Formals
:= New_List
(
10614 Make_Parameter_Specification
(Loc
,
10615 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_uInit
),
10616 In_Present
=> Unc_Arr
or else With_Prot
or else With_Task
,
10617 Out_Present
=> True,
10618 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
10620 -- For task record value, or type that contains tasks, add two more
10621 -- formals, _Master : Master_Id and _Chain : in out Activation_Chain
10622 -- We also add these parameters for the task record type case.
10625 Append_To
(Formals
,
10626 Make_Parameter_Specification
(Loc
,
10627 Defining_Identifier
=>
10628 Make_Defining_Identifier
(Loc
, Name_uMaster
),
10630 New_Occurrence_Of
(Standard_Integer
, Loc
)));
10632 Set_Has_Master_Entity
(Proc_Id
);
10634 -- Add _Chain (not done for sequential elaboration policy, see
10635 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
10637 if Partition_Elaboration_Policy
/= 'S' then
10638 Append_To
(Formals
,
10639 Make_Parameter_Specification
(Loc
,
10640 Defining_Identifier
=>
10641 Make_Defining_Identifier
(Loc
, Name_uChain
),
10642 In_Present
=> True,
10643 Out_Present
=> True,
10645 New_Occurrence_Of
(RTE
(RE_Activation_Chain
), Loc
)));
10648 Append_To
(Formals
,
10649 Make_Parameter_Specification
(Loc
,
10650 Defining_Identifier
=>
10651 Make_Defining_Identifier
(Loc
, Name_uTask_Name
),
10652 In_Present
=> True,
10653 Parameter_Type
=> New_Occurrence_Of
(Standard_String
, Loc
)));
10656 -- Due to certain edge cases such as arrays with null-excluding
10657 -- components being built with the secondary stack it becomes necessary
10658 -- to add a formal to the Init_Proc which controls whether we raise
10659 -- Constraint_Errors on generated calls for internal object
10662 if Needs_Conditional_Null_Excluding_Check
(Typ
) then
10663 Append_To
(Formals
,
10664 Make_Parameter_Specification
(Loc
,
10665 Defining_Identifier
=>
10666 Make_Defining_Identifier
(Loc
,
10667 New_External_Name
(Chars
10668 (Component_Type
(Typ
)), "_skip_null_excluding_check")),
10669 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
),
10670 In_Present
=> True,
10672 New_Occurrence_Of
(Standard_Boolean
, Loc
)));
10678 when RE_Not_Available
=>
10682 -------------------------
10683 -- Init_Secondary_Tags --
10684 -------------------------
10686 procedure Init_Secondary_Tags
10689 Init_Tags_List
: List_Id
;
10690 Stmts_List
: List_Id
;
10691 Fixed_Comps
: Boolean := True;
10692 Variable_Comps
: Boolean := True)
10694 Loc
: constant Source_Ptr
:= Sloc
(Target
);
10696 -- Inherit the C++ tag of the secondary dispatch table of Typ associated
10697 -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
10699 procedure Initialize_Tag
10702 Tag_Comp
: Entity_Id
;
10703 Iface_Tag
: Node_Id
);
10704 -- Initialize the tag of the secondary dispatch table of Typ associated
10705 -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
10706 -- Compiling under the CPP full ABI compatibility mode, if the ancestor
10707 -- of Typ CPP tagged type we generate code to inherit the contents of
10708 -- the dispatch table directly from the ancestor.
10710 --------------------
10711 -- Initialize_Tag --
10712 --------------------
10714 procedure Initialize_Tag
10717 Tag_Comp
: Entity_Id
;
10718 Iface_Tag
: Node_Id
)
10720 Comp_Typ
: Entity_Id
;
10721 Offset_To_Top_Comp
: Entity_Id
:= Empty
;
10724 -- Initialize pointer to secondary DT associated with the interface
10726 if not Is_Ancestor
(Iface
, Typ
, Use_Full_View
=> True) then
10727 Append_To
(Init_Tags_List
,
10728 Make_Assignment_Statement
(Loc
,
10730 Make_Selected_Component
(Loc
,
10731 Prefix
=> New_Copy_Tree
(Target
),
10732 Selector_Name
=> New_Occurrence_Of
(Tag_Comp
, Loc
)),
10734 New_Occurrence_Of
(Iface_Tag
, Loc
)));
10737 Comp_Typ
:= Scope
(Tag_Comp
);
10739 -- Initialize the entries of the table of interfaces. We generate a
10740 -- different call when the parent of the type has variable size
10743 if Comp_Typ
/= Etype
(Comp_Typ
)
10744 and then Is_Variable_Size_Record
(Etype
(Comp_Typ
))
10745 and then Chars
(Tag_Comp
) /= Name_uTag
10747 pragma Assert
(Present
(DT_Offset_To_Top_Func
(Tag_Comp
)));
10749 -- Issue error if Set_Dynamic_Offset_To_Top is not available in a
10750 -- configurable run-time environment.
10752 if not RTE_Available
(RE_Set_Dynamic_Offset_To_Top
) then
10754 ("variable size record with interface types", Typ
);
10759 -- Set_Dynamic_Offset_To_Top
10761 -- Prim_T => Typ'Tag,
10762 -- Interface_T => Iface'Tag,
10763 -- Offset_Value => n,
10764 -- Offset_Func => Fn'Unrestricted_Access)
10766 Append_To
(Stmts_List
,
10767 Make_Procedure_Call_Statement
(Loc
,
10769 New_Occurrence_Of
(RTE
(RE_Set_Dynamic_Offset_To_Top
), Loc
),
10770 Parameter_Associations
=> New_List
(
10771 Make_Attribute_Reference
(Loc
,
10772 Prefix
=> New_Copy_Tree
(Target
),
10773 Attribute_Name
=> Name_Address
),
10775 Unchecked_Convert_To
(RTE
(RE_Tag
),
10777 (Node
(First_Elmt
(Access_Disp_Table
(Typ
))), Loc
)),
10779 Unchecked_Convert_To
(RTE
(RE_Tag
),
10781 (Node
(First_Elmt
(Access_Disp_Table
(Iface
))),
10784 Unchecked_Convert_To
10785 (RTE
(RE_Storage_Offset
),
10786 Make_Op_Minus
(Loc
,
10787 Make_Attribute_Reference
(Loc
,
10789 Make_Selected_Component
(Loc
,
10790 Prefix
=> New_Copy_Tree
(Target
),
10792 New_Occurrence_Of
(Tag_Comp
, Loc
)),
10793 Attribute_Name
=> Name_Position
))),
10795 Unchecked_Convert_To
(RTE
(RE_Offset_To_Top_Function_Ptr
),
10796 Make_Attribute_Reference
(Loc
,
10797 Prefix
=> New_Occurrence_Of
10798 (DT_Offset_To_Top_Func
(Tag_Comp
), Loc
),
10799 Attribute_Name
=> Name_Unrestricted_Access
)))));
10801 -- In this case the next component stores the value of the offset
10804 Offset_To_Top_Comp
:= Next_Entity
(Tag_Comp
);
10805 pragma Assert
(Present
(Offset_To_Top_Comp
));
10807 Append_To
(Init_Tags_List
,
10808 Make_Assignment_Statement
(Loc
,
10810 Make_Selected_Component
(Loc
,
10811 Prefix
=> New_Copy_Tree
(Target
),
10813 New_Occurrence_Of
(Offset_To_Top_Comp
, Loc
)),
10816 Make_Op_Minus
(Loc
,
10817 Make_Attribute_Reference
(Loc
,
10819 Make_Selected_Component
(Loc
,
10820 Prefix
=> New_Copy_Tree
(Target
),
10821 Selector_Name
=> New_Occurrence_Of
(Tag_Comp
, Loc
)),
10822 Attribute_Name
=> Name_Position
))));
10824 -- Normal case: No discriminants in the parent type
10827 -- Don't need to set any value if the offset-to-top field is
10828 -- statically set or if this interface shares the primary
10831 if not Building_Static_Secondary_DT
(Typ
)
10832 and then not Is_Ancestor
(Iface
, Typ
, Use_Full_View
=> True)
10834 Append_To
(Stmts_List
,
10835 Build_Set_Static_Offset_To_Top
(Loc
,
10836 Iface_Tag
=> New_Occurrence_Of
(Iface_Tag
, Loc
),
10838 Unchecked_Convert_To
(RTE
(RE_Storage_Offset
),
10839 Make_Op_Minus
(Loc
,
10840 Make_Attribute_Reference
(Loc
,
10842 Make_Selected_Component
(Loc
,
10843 Prefix
=> New_Copy_Tree
(Target
),
10845 New_Occurrence_Of
(Tag_Comp
, Loc
)),
10846 Attribute_Name
=> Name_Position
)))));
10850 -- Register_Interface_Offset
10851 -- (Prim_T => Typ'Tag,
10852 -- Interface_T => Iface'Tag,
10853 -- Is_Constant => True,
10854 -- Offset_Value => n,
10855 -- Offset_Func => null);
10857 if not Building_Static_Secondary_DT
(Typ
)
10858 and then RTE_Available
(RE_Register_Interface_Offset
)
10860 Append_To
(Stmts_List
,
10861 Make_Procedure_Call_Statement
(Loc
,
10864 (RTE
(RE_Register_Interface_Offset
), Loc
),
10865 Parameter_Associations
=> New_List
(
10866 Unchecked_Convert_To
(RTE
(RE_Tag
),
10868 (Node
(First_Elmt
(Access_Disp_Table
(Typ
))), Loc
)),
10870 Unchecked_Convert_To
(RTE
(RE_Tag
),
10872 (Node
(First_Elmt
(Access_Disp_Table
(Iface
))), Loc
)),
10874 New_Occurrence_Of
(Standard_True
, Loc
),
10876 Unchecked_Convert_To
(RTE
(RE_Storage_Offset
),
10877 Make_Op_Minus
(Loc
,
10878 Make_Attribute_Reference
(Loc
,
10880 Make_Selected_Component
(Loc
,
10881 Prefix
=> New_Copy_Tree
(Target
),
10883 New_Occurrence_Of
(Tag_Comp
, Loc
)),
10884 Attribute_Name
=> Name_Position
))),
10886 Make_Null
(Loc
))));
10889 end Initialize_Tag
;
10893 Full_Typ
: Entity_Id
;
10894 Ifaces_List
: Elist_Id
;
10895 Ifaces_Comp_List
: Elist_Id
;
10896 Ifaces_Tag_List
: Elist_Id
;
10897 Iface_Elmt
: Elmt_Id
;
10898 Iface_Comp_Elmt
: Elmt_Id
;
10899 Iface_Tag_Elmt
: Elmt_Id
;
10900 Tag_Comp
: Node_Id
;
10901 In_Variable_Pos
: Boolean;
10903 -- Start of processing for Init_Secondary_Tags
10906 -- Handle private types
10908 if Present
(Full_View
(Typ
)) then
10909 Full_Typ
:= Full_View
(Typ
);
10914 Collect_Interfaces_Info
10915 (Full_Typ
, Ifaces_List
, Ifaces_Comp_List
, Ifaces_Tag_List
);
10917 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
10918 Iface_Comp_Elmt
:= First_Elmt
(Ifaces_Comp_List
);
10919 Iface_Tag_Elmt
:= First_Elmt
(Ifaces_Tag_List
);
10920 while Present
(Iface_Elmt
) loop
10921 Tag_Comp
:= Node
(Iface_Comp_Elmt
);
10923 -- Check if parent of record type has variable size components
10925 In_Variable_Pos
:= Scope
(Tag_Comp
) /= Etype
(Scope
(Tag_Comp
))
10926 and then Is_Variable_Size_Record
(Etype
(Scope
(Tag_Comp
)));
10928 -- If we are compiling under the CPP full ABI compatibility mode and
10929 -- the ancestor is a CPP_Pragma tagged type then we generate code to
10930 -- initialize the secondary tag components from tags that reference
10931 -- secondary tables filled with copy of parent slots.
10933 if Is_CPP_Class
(Root_Type
(Full_Typ
)) then
10935 -- Reject interface components located at variable offset in
10936 -- C++ derivations. This is currently unsupported.
10938 if not Fixed_Comps
and then In_Variable_Pos
then
10940 -- Locate the first dynamic component of the record. Done to
10941 -- improve the text of the warning.
10945 Comp_Typ
: Entity_Id
;
10948 Comp
:= First_Entity
(Typ
);
10949 while Present
(Comp
) loop
10950 Comp_Typ
:= Etype
(Comp
);
10952 if Ekind
(Comp
) /= E_Discriminant
10953 and then not Is_Tag
(Comp
)
10956 (Is_Record_Type
(Comp_Typ
)
10958 Is_Variable_Size_Record
(Base_Type
(Comp_Typ
)))
10960 (Is_Array_Type
(Comp_Typ
)
10961 and then Is_Variable_Size_Array
(Comp_Typ
));
10964 Next_Entity
(Comp
);
10967 pragma Assert
(Present
(Comp
));
10969 -- Move this check to sem???
10970 Error_Msg_Node_2
:= Comp
;
10972 ("parent type & with dynamic component & cannot be parent"
10973 & " of 'C'P'P derivation if new interfaces are present",
10974 Typ
, Scope
(Original_Record_Component
(Comp
)));
10977 Sloc
(Scope
(Original_Record_Component
(Comp
)));
10979 ("type derived from 'C'P'P type & defined #",
10980 Typ
, Scope
(Original_Record_Component
(Comp
)));
10982 -- Avoid duplicated warnings
10987 -- Initialize secondary tags
10992 Iface
=> Node
(Iface_Elmt
),
10993 Tag_Comp
=> Tag_Comp
,
10994 Iface_Tag
=> Node
(Iface_Tag_Elmt
));
10997 -- Otherwise generate code to initialize the tag
11000 if (In_Variable_Pos
and then Variable_Comps
)
11001 or else (not In_Variable_Pos
and then Fixed_Comps
)
11005 Iface
=> Node
(Iface_Elmt
),
11006 Tag_Comp
=> Tag_Comp
,
11007 Iface_Tag
=> Node
(Iface_Tag_Elmt
));
11011 Next_Elmt
(Iface_Elmt
);
11012 Next_Elmt
(Iface_Comp_Elmt
);
11013 Next_Elmt
(Iface_Tag_Elmt
);
11015 end Init_Secondary_Tags
;
11017 ----------------------------
11018 -- Is_Null_Statement_List --
11019 ----------------------------
11021 function Is_Null_Statement_List
(Stmts
: List_Id
) return Boolean is
11025 -- We must skip SCIL nodes because they may have been added to the list
11026 -- by Insert_Actions.
11028 Stmt
:= First_Non_SCIL_Node
(Stmts
);
11029 while Present
(Stmt
) loop
11030 if Nkind
(Stmt
) = N_Case_Statement
then
11034 Alt
:= First
(Alternatives
(Stmt
));
11035 while Present
(Alt
) loop
11036 if not Is_Null_Statement_List
(Statements
(Alt
)) then
11044 elsif Nkind
(Stmt
) /= N_Null_Statement
then
11048 Stmt
:= Next_Non_SCIL_Node
(Stmt
);
11052 end Is_Null_Statement_List
;
11054 ----------------------------------------
11055 -- Make_Controlling_Function_Wrappers --
11056 ----------------------------------------
11058 procedure Make_Controlling_Function_Wrappers
11059 (Tag_Typ
: Entity_Id
;
11060 Decl_List
: out List_Id
;
11061 Body_List
: out List_Id
)
11063 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
11065 function Make_Wrapper_Specification
(Subp
: Entity_Id
) return Node_Id
;
11066 -- Returns a function specification with the same profile as Subp
11068 --------------------------------
11069 -- Make_Wrapper_Specification --
11070 --------------------------------
11072 function Make_Wrapper_Specification
(Subp
: Entity_Id
) return Node_Id
is
11075 Make_Function_Specification
(Loc
,
11076 Defining_Unit_Name
=>
11077 Make_Defining_Identifier
(Loc
,
11078 Chars
=> Chars
(Subp
)),
11079 Parameter_Specifications
=>
11080 Copy_Parameter_List
(Subp
),
11081 Result_Definition
=>
11082 New_Occurrence_Of
(Etype
(Subp
), Loc
));
11083 end Make_Wrapper_Specification
;
11085 Prim_Elmt
: Elmt_Id
;
11087 Actual_List
: List_Id
;
11088 Formal
: Entity_Id
;
11089 Par_Formal
: Entity_Id
;
11090 Ext_Aggr
: Node_Id
;
11091 Formal_Node
: Node_Id
;
11092 Func_Body
: Node_Id
;
11093 Func_Decl
: Node_Id
;
11094 Func_Id
: Entity_Id
;
11096 -- Start of processing for Make_Controlling_Function_Wrappers
11099 Decl_List
:= New_List
;
11100 Body_List
:= New_List
;
11102 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
11103 while Present
(Prim_Elmt
) loop
11104 Subp
:= Node
(Prim_Elmt
);
11106 -- If a primitive function with a controlling result of the type has
11107 -- not been overridden by the user, then we must create a wrapper
11108 -- function here that effectively overrides it and invokes the
11109 -- (non-abstract) parent function. This can only occur for a null
11110 -- extension. Note that functions with anonymous controlling access
11111 -- results don't qualify and must be overridden. We also exclude
11112 -- Input attributes, since each type will have its own version of
11113 -- Input constructed by the expander. The test for Comes_From_Source
11114 -- is needed to distinguish inherited operations from renamings
11115 -- (which also have Alias set). We exclude internal entities with
11116 -- Interface_Alias to avoid generating duplicated wrappers since
11117 -- the primitive which covers the interface is also available in
11118 -- the list of primitive operations.
11120 -- The function may be abstract, or require_Overriding may be set
11121 -- for it, because tests for null extensions may already have reset
11122 -- the Is_Abstract_Subprogram_Flag. If Requires_Overriding is not
11123 -- set, functions that need wrappers are recognized by having an
11124 -- alias that returns the parent type.
11126 if Comes_From_Source
(Subp
)
11127 or else No
(Alias
(Subp
))
11128 or else Present
(Interface_Alias
(Subp
))
11129 or else Ekind
(Subp
) /= E_Function
11130 or else not Has_Controlling_Result
(Subp
)
11131 or else Is_Access_Type
(Etype
(Subp
))
11132 or else Is_Abstract_Subprogram
(Alias
(Subp
))
11133 or else Is_TSS
(Subp
, TSS_Stream_Input
)
11137 elsif Is_Abstract_Subprogram
(Subp
)
11138 or else Requires_Overriding
(Subp
)
11140 (Is_Null_Extension
(Etype
(Subp
))
11141 and then Etype
(Alias
(Subp
)) /= Etype
(Subp
))
11143 -- If there is a non-overloadable homonym in the current
11144 -- scope, the implicit declaration remains invisible.
11145 -- We check the current entity with the same name, or its
11146 -- homonym in case the derivation takes place after the
11147 -- hiding object declaration.
11149 if Present
(Current_Entity
(Subp
)) then
11151 Curr
: constant Entity_Id
:= Current_Entity
(Subp
);
11152 Prev
: constant Entity_Id
:= Homonym
(Curr
);
11154 if (Comes_From_Source
(Curr
)
11155 and then Scope
(Curr
) = Current_Scope
11156 and then not Is_Overloadable
(Curr
))
11159 and then Comes_From_Source
(Prev
)
11160 and then Scope
(Prev
) = Current_Scope
11161 and then not Is_Overloadable
(Prev
))
11169 Make_Subprogram_Declaration
(Loc
,
11170 Specification
=> Make_Wrapper_Specification
(Subp
));
11172 Append_To
(Decl_List
, Func_Decl
);
11174 -- Build a wrapper body that calls the parent function. The body
11175 -- contains a single return statement that returns an extension
11176 -- aggregate whose ancestor part is a call to the parent function,
11177 -- passing the formals as actuals (with any controlling arguments
11178 -- converted to the types of the corresponding formals of the
11179 -- parent function, which might be anonymous access types), and
11180 -- having a null extension.
11182 Formal
:= First_Formal
(Subp
);
11183 Par_Formal
:= First_Formal
(Alias
(Subp
));
11185 First
(Parameter_Specifications
(Specification
(Func_Decl
)));
11187 if Present
(Formal
) then
11188 Actual_List
:= New_List
;
11190 while Present
(Formal
) loop
11191 if Is_Controlling_Formal
(Formal
) then
11192 Append_To
(Actual_List
,
11193 Make_Type_Conversion
(Loc
,
11195 New_Occurrence_Of
(Etype
(Par_Formal
), Loc
),
11198 (Defining_Identifier
(Formal_Node
), Loc
)));
11203 (Defining_Identifier
(Formal_Node
), Loc
));
11206 Next_Formal
(Formal
);
11207 Next_Formal
(Par_Formal
);
11208 Next
(Formal_Node
);
11211 Actual_List
:= No_List
;
11215 Make_Extension_Aggregate
(Loc
,
11217 Make_Function_Call
(Loc
,
11219 New_Occurrence_Of
(Alias
(Subp
), Loc
),
11220 Parameter_Associations
=> Actual_List
),
11221 Null_Record_Present
=> True);
11223 -- GNATprove will use expression of an expression function as an
11224 -- implicit postcondition. GNAT will also benefit from expression
11225 -- function to avoid premature freezing, but would struggle if we
11226 -- added an expression function to freezing actions, so we create
11227 -- the expanded form directly.
11229 if GNATprove_Mode
then
11231 Make_Expression_Function
(Loc
,
11233 Make_Wrapper_Specification
(Subp
),
11234 Expression
=> Ext_Aggr
);
11237 Make_Subprogram_Body
(Loc
,
11239 Make_Wrapper_Specification
(Subp
),
11240 Declarations
=> Empty_List
,
11241 Handled_Statement_Sequence
=>
11242 Make_Handled_Sequence_Of_Statements
(Loc
,
11243 Statements
=> New_List
(
11244 Make_Simple_Return_Statement
(Loc
,
11245 Expression
=> Ext_Aggr
))));
11246 Set_Was_Expression_Function
(Func_Body
);
11249 Append_To
(Body_List
, Func_Body
);
11251 -- Replace the inherited function with the wrapper function in the
11252 -- primitive operations list. We add the minimum decoration needed
11253 -- to override interface primitives.
11255 Func_Id
:= Defining_Unit_Name
(Specification
(Func_Decl
));
11257 Mutate_Ekind
(Func_Id
, E_Function
);
11258 Set_Is_Wrapper
(Func_Id
);
11260 -- Corresponding_Spec will be set again to the same value during
11261 -- analysis, but we need this information earlier.
11262 -- Expand_N_Freeze_Entity needs to know whether a subprogram body
11263 -- is a wrapper's body in order to get check suppression right.
11265 Set_Corresponding_Spec
(Func_Body
, Func_Id
);
11269 Next_Elmt
(Prim_Elmt
);
11271 end Make_Controlling_Function_Wrappers
;
11277 function Make_Eq_Body
11279 Eq_Name
: Name_Id
) return Node_Id
11281 Loc
: constant Source_Ptr
:= Sloc
(Parent
(Typ
));
11283 Def
: constant Node_Id
:= Parent
(Typ
);
11284 Stmts
: constant List_Id
:= New_List
;
11285 Variant_Case
: Boolean := Has_Discriminants
(Typ
);
11286 Comps
: Node_Id
:= Empty
;
11287 Typ_Def
: Node_Id
:= Type_Definition
(Def
);
11291 Predef_Spec_Or_Body
(Loc
,
11294 Profile
=> New_List
(
11295 Make_Parameter_Specification
(Loc
,
11296 Defining_Identifier
=>
11297 Make_Defining_Identifier
(Loc
, Name_X
),
11298 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)),
11300 Make_Parameter_Specification
(Loc
,
11301 Defining_Identifier
=>
11302 Make_Defining_Identifier
(Loc
, Name_Y
),
11303 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
11305 Ret_Type
=> Standard_Boolean
,
11308 if Variant_Case
then
11309 if Nkind
(Typ_Def
) = N_Derived_Type_Definition
then
11310 Typ_Def
:= Record_Extension_Part
(Typ_Def
);
11313 if Present
(Typ_Def
) then
11314 Comps
:= Component_List
(Typ_Def
);
11318 Present
(Comps
) and then Present
(Variant_Part
(Comps
));
11321 if Variant_Case
then
11323 Make_Eq_If
(Typ
, Discriminant_Specifications
(Def
)));
11324 Append_List_To
(Stmts
, Make_Eq_Case
(Typ
, Comps
));
11326 Make_Simple_Return_Statement
(Loc
,
11327 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
11331 Make_Simple_Return_Statement
(Loc
,
11333 Expand_Record_Equality
11336 Lhs
=> Make_Identifier
(Loc
, Name_X
),
11337 Rhs
=> Make_Identifier
(Loc
, Name_Y
))));
11340 Set_Handled_Statement_Sequence
11341 (Decl
, Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
));
11349 -- <Make_Eq_If shared components>
11352 -- when V1 => <Make_Eq_Case> on subcomponents
11354 -- when Vn => <Make_Eq_Case> on subcomponents
11357 function Make_Eq_Case
11360 Discrs
: Elist_Id
:= New_Elmt_List
) return List_Id
11362 Loc
: constant Source_Ptr
:= Sloc
(E
);
11363 Result
: constant List_Id
:= New_List
;
11365 Alt_List
: List_Id
;
11367 function Corresponding_Formal
(C
: Node_Id
) return Entity_Id
;
11368 -- Given the discriminant that controls a given variant of an unchecked
11369 -- union, find the formal of the equality function that carries the
11370 -- inferred value of the discriminant.
11372 function External_Name
(E
: Entity_Id
) return Name_Id
;
11373 -- The value of a given discriminant is conveyed in the corresponding
11374 -- formal parameter of the equality routine. The name of this formal
11375 -- parameter carries a one-character suffix which is removed here.
11377 --------------------------
11378 -- Corresponding_Formal --
11379 --------------------------
11381 function Corresponding_Formal
(C
: Node_Id
) return Entity_Id
is
11382 Discr
: constant Entity_Id
:= Entity
(Name
(Variant_Part
(C
)));
11386 Elm
:= First_Elmt
(Discrs
);
11387 while Present
(Elm
) loop
11388 if Chars
(Discr
) = External_Name
(Node
(Elm
)) then
11395 -- A formal of the proper name must be found
11397 raise Program_Error
;
11398 end Corresponding_Formal
;
11400 -------------------
11401 -- External_Name --
11402 -------------------
11404 function External_Name
(E
: Entity_Id
) return Name_Id
is
11406 Get_Name_String
(Chars
(E
));
11407 Name_Len
:= Name_Len
- 1;
11411 -- Start of processing for Make_Eq_Case
11414 Append_To
(Result
, Make_Eq_If
(E
, Component_Items
(CL
)));
11416 if No
(Variant_Part
(CL
)) then
11420 Variant
:= First_Non_Pragma
(Variants
(Variant_Part
(CL
)));
11422 if No
(Variant
) then
11426 Alt_List
:= New_List
;
11427 while Present
(Variant
) loop
11428 Append_To
(Alt_List
,
11429 Make_Case_Statement_Alternative
(Loc
,
11430 Discrete_Choices
=> New_Copy_List
(Discrete_Choices
(Variant
)),
11432 Make_Eq_Case
(E
, Component_List
(Variant
), Discrs
)));
11433 Next_Non_Pragma
(Variant
);
11436 -- If we have an Unchecked_Union, use one of the parameters of the
11437 -- enclosing equality routine that captures the discriminant, to use
11438 -- as the expression in the generated case statement.
11440 if Is_Unchecked_Union
(E
) then
11442 Make_Case_Statement
(Loc
,
11444 New_Occurrence_Of
(Corresponding_Formal
(CL
), Loc
),
11445 Alternatives
=> Alt_List
));
11449 Make_Case_Statement
(Loc
,
11451 Make_Selected_Component
(Loc
,
11452 Prefix
=> Make_Identifier
(Loc
, Name_X
),
11453 Selector_Name
=> New_Copy
(Name
(Variant_Part
(CL
)))),
11454 Alternatives
=> Alt_List
));
11475 -- or a null statement if the list L is empty
11477 -- Equality may be user-defined for a given component type, in which case
11478 -- a function call is constructed instead of an operator node. This is an
11479 -- Ada 2012 change in the composability of equality for untagged composite
11482 function Make_Eq_If
11484 L
: List_Id
) return Node_Id
11486 Loc
: constant Source_Ptr
:= Sloc
(E
);
11490 Field_Name
: Name_Id
;
11491 Next_Test
: Node_Id
;
11496 return Make_Null_Statement
(Loc
);
11501 C
:= First_Non_Pragma
(L
);
11502 while Present
(C
) loop
11503 Typ
:= Etype
(Defining_Identifier
(C
));
11504 Field_Name
:= Chars
(Defining_Identifier
(C
));
11506 -- The tags must not be compared: they are not part of the value.
11507 -- Ditto for parent interfaces because their equality operator is
11510 -- Note also that in the following, we use Make_Identifier for
11511 -- the component names. Use of New_Occurrence_Of to identify the
11512 -- components would be incorrect because the wrong entities for
11513 -- discriminants could be picked up in the private type case.
11515 if Field_Name
= Name_uParent
11516 and then Is_Interface
(Typ
)
11520 elsif Field_Name
/= Name_uTag
then
11522 Lhs
: constant Node_Id
:=
11523 Make_Selected_Component
(Loc
,
11524 Prefix
=> Make_Identifier
(Loc
, Name_X
),
11525 Selector_Name
=> Make_Identifier
(Loc
, Field_Name
));
11527 Rhs
: constant Node_Id
:=
11528 Make_Selected_Component
(Loc
,
11529 Prefix
=> Make_Identifier
(Loc
, Name_Y
),
11530 Selector_Name
=> Make_Identifier
(Loc
, Field_Name
));
11534 -- Build equality code with a user-defined operator, if
11535 -- available, and with the predefined "=" otherwise. For
11536 -- compatibility with older Ada versions, we also use the
11537 -- predefined operation if the component-type equality is
11538 -- abstract, rather than raising Program_Error.
11540 if Ada_Version
< Ada_2012
then
11541 Next_Test
:= Make_Op_Ne
(Loc
, Lhs
, Rhs
);
11544 Eq_Call
:= Build_Eq_Call
(Typ
, Loc
, Lhs
, Rhs
);
11546 if No
(Eq_Call
) then
11547 Next_Test
:= Make_Op_Ne
(Loc
, Lhs
, Rhs
);
11549 -- If a component has a defined abstract equality, its
11550 -- application raises Program_Error on that component
11551 -- and therefore on the current variant.
11553 elsif Nkind
(Eq_Call
) = N_Raise_Program_Error
then
11554 Set_Etype
(Eq_Call
, Standard_Boolean
);
11555 Next_Test
:= Make_Op_Not
(Loc
, Eq_Call
);
11558 Next_Test
:= Make_Op_Not
(Loc
, Eq_Call
);
11563 Evolve_Or_Else
(Cond
, Next_Test
);
11566 Next_Non_Pragma
(C
);
11570 return Make_Null_Statement
(Loc
);
11574 Make_Implicit_If_Statement
(E
,
11576 Then_Statements
=> New_List
(
11577 Make_Simple_Return_Statement
(Loc
,
11578 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
))));
11583 -------------------
11584 -- Make_Neq_Body --
11585 -------------------
11587 function Make_Neq_Body
(Tag_Typ
: Entity_Id
) return Node_Id
is
11589 function Is_Predefined_Neq_Renaming
(Prim
: Node_Id
) return Boolean;
11590 -- Returns true if Prim is a renaming of an unresolved predefined
11591 -- inequality operation.
11593 --------------------------------
11594 -- Is_Predefined_Neq_Renaming --
11595 --------------------------------
11597 function Is_Predefined_Neq_Renaming
(Prim
: Node_Id
) return Boolean is
11599 return Chars
(Prim
) /= Name_Op_Ne
11600 and then Present
(Alias
(Prim
))
11601 and then Comes_From_Source
(Prim
)
11602 and then Is_Intrinsic_Subprogram
(Alias
(Prim
))
11603 and then Chars
(Alias
(Prim
)) = Name_Op_Ne
;
11604 end Is_Predefined_Neq_Renaming
;
11608 Loc
: constant Source_Ptr
:= Sloc
(Parent
(Tag_Typ
));
11610 Eq_Prim
: Entity_Id
;
11611 Left_Op
: Entity_Id
;
11612 Renaming_Prim
: Entity_Id
;
11613 Right_Op
: Entity_Id
;
11614 Target
: Entity_Id
;
11616 -- Start of processing for Make_Neq_Body
11619 -- For a call on a renaming of a dispatching subprogram that is
11620 -- overridden, if the overriding occurred before the renaming, then
11621 -- the body executed is that of the overriding declaration, even if the
11622 -- overriding declaration is not visible at the place of the renaming;
11623 -- otherwise, the inherited or predefined subprogram is called, see
11626 -- Stage 1: Search for a renaming of the inequality primitive and also
11627 -- search for an overriding of the equality primitive located before the
11628 -- renaming declaration.
11636 Renaming_Prim
:= Empty
;
11638 Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
11639 while Present
(Elmt
) loop
11640 Prim
:= Node
(Elmt
);
11642 if Is_User_Defined_Equality
(Prim
) and then No
(Alias
(Prim
)) then
11643 if No
(Renaming_Prim
) then
11644 pragma Assert
(No
(Eq_Prim
));
11648 elsif Is_Predefined_Neq_Renaming
(Prim
) then
11649 Renaming_Prim
:= Prim
;
11656 -- No further action needed if no renaming was found
11658 if No
(Renaming_Prim
) then
11662 -- Stage 2: Replace the renaming declaration by a subprogram declaration
11663 -- (required to add its body)
11665 Decl
:= Parent
(Parent
(Renaming_Prim
));
11667 Make_Subprogram_Declaration
(Loc
,
11668 Specification
=> Specification
(Decl
)));
11669 Set_Analyzed
(Decl
);
11671 -- Remove the decoration of intrinsic renaming subprogram
11673 Set_Is_Intrinsic_Subprogram
(Renaming_Prim
, False);
11674 Set_Convention
(Renaming_Prim
, Convention_Ada
);
11675 Set_Alias
(Renaming_Prim
, Empty
);
11676 Set_Has_Completion
(Renaming_Prim
, False);
11678 -- Stage 3: Build the corresponding body
11680 Left_Op
:= First_Formal
(Renaming_Prim
);
11681 Right_Op
:= Next_Formal
(Left_Op
);
11684 Predef_Spec_Or_Body
(Loc
,
11685 Tag_Typ
=> Tag_Typ
,
11686 Name
=> Chars
(Renaming_Prim
),
11687 Profile
=> New_List
(
11688 Make_Parameter_Specification
(Loc
,
11689 Defining_Identifier
=>
11690 Make_Defining_Identifier
(Loc
, Chars
(Left_Op
)),
11691 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)),
11693 Make_Parameter_Specification
(Loc
,
11694 Defining_Identifier
=>
11695 Make_Defining_Identifier
(Loc
, Chars
(Right_Op
)),
11696 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
11698 Ret_Type
=> Standard_Boolean
,
11701 -- If the overriding of the equality primitive occurred before the
11702 -- renaming, then generate:
11704 -- function <Neq_Name> (X : Y : Typ) return Boolean is
11706 -- return not Oeq (X, Y);
11709 if Present
(Eq_Prim
) then
11712 -- Otherwise build a nested subprogram which performs the predefined
11713 -- evaluation of the equality operator. That is, generate:
11715 -- function <Neq_Name> (X : Y : Typ) return Boolean is
11716 -- function Oeq (X : Y) return Boolean is
11718 -- <<body of default implementation>>
11721 -- return not Oeq (X, Y);
11726 Local_Subp
: Node_Id
;
11728 Local_Subp
:= Make_Eq_Body
(Tag_Typ
, Name_Op_Eq
);
11729 Set_Declarations
(Decl
, New_List
(Local_Subp
));
11730 Target
:= Defining_Entity
(Local_Subp
);
11734 Set_Handled_Statement_Sequence
11736 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
11737 Make_Simple_Return_Statement
(Loc
,
11740 Make_Function_Call
(Loc
,
11741 Name
=> New_Occurrence_Of
(Target
, Loc
),
11742 Parameter_Associations
=> New_List
(
11743 Make_Identifier
(Loc
, Chars
(Left_Op
)),
11744 Make_Identifier
(Loc
, Chars
(Right_Op
)))))))));
11749 -------------------------------
11750 -- Make_Null_Procedure_Specs --
11751 -------------------------------
11753 function Make_Null_Procedure_Specs
(Tag_Typ
: Entity_Id
) return List_Id
is
11754 Decl_List
: constant List_Id
:= New_List
;
11755 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
11756 Formal
: Entity_Id
;
11757 New_Param_Spec
: Node_Id
;
11758 New_Spec
: Node_Id
;
11759 Parent_Subp
: Entity_Id
;
11760 Prim_Elmt
: Elmt_Id
;
11764 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
11765 while Present
(Prim_Elmt
) loop
11766 Subp
:= Node
(Prim_Elmt
);
11768 -- If a null procedure inherited from an interface has not been
11769 -- overridden, then we build a null procedure declaration to
11770 -- override the inherited procedure.
11772 Parent_Subp
:= Alias
(Subp
);
11774 if Present
(Parent_Subp
)
11775 and then Is_Null_Interface_Primitive
(Parent_Subp
)
11777 -- The null procedure spec is copied from the inherited procedure,
11778 -- except for the IS NULL (which must be added) and the overriding
11779 -- indicators (which must be removed, if present).
11782 Copy_Subprogram_Spec
(Subprogram_Specification
(Subp
), Loc
);
11784 Set_Null_Present
(New_Spec
, True);
11785 Set_Must_Override
(New_Spec
, False);
11786 Set_Must_Not_Override
(New_Spec
, False);
11788 Formal
:= First_Formal
(Subp
);
11789 New_Param_Spec
:= First
(Parameter_Specifications
(New_Spec
));
11791 while Present
(Formal
) loop
11793 -- For controlling arguments we must change their parameter
11794 -- type to reference the tagged type (instead of the interface
11797 if Is_Controlling_Formal
(Formal
) then
11798 if Nkind
(Parameter_Type
(Parent
(Formal
))) = N_Identifier
11800 Set_Parameter_Type
(New_Param_Spec
,
11801 New_Occurrence_Of
(Tag_Typ
, Loc
));
11804 (Nkind
(Parameter_Type
(Parent
(Formal
))) =
11805 N_Access_Definition
);
11806 Set_Subtype_Mark
(Parameter_Type
(New_Param_Spec
),
11807 New_Occurrence_Of
(Tag_Typ
, Loc
));
11811 Next_Formal
(Formal
);
11812 Next
(New_Param_Spec
);
11815 Append_To
(Decl_List
,
11816 Make_Subprogram_Declaration
(Loc
,
11817 Specification
=> New_Spec
));
11820 Next_Elmt
(Prim_Elmt
);
11824 end Make_Null_Procedure_Specs
;
11826 ---------------------------------------
11827 -- Make_Predefined_Primitive_Eq_Spec --
11828 ---------------------------------------
11830 procedure Make_Predefined_Primitive_Eq_Spec
11831 (Tag_Typ
: Entity_Id
;
11832 Predef_List
: List_Id
;
11833 Renamed_Eq
: out Entity_Id
)
11835 function Is_Predefined_Eq_Renaming
(Prim
: Node_Id
) return Boolean;
11836 -- Returns true if Prim is a renaming of an unresolved predefined
11837 -- equality operation.
11839 -------------------------------
11840 -- Is_Predefined_Eq_Renaming --
11841 -------------------------------
11843 function Is_Predefined_Eq_Renaming
(Prim
: Node_Id
) return Boolean is
11845 return Chars
(Prim
) /= Name_Op_Eq
11846 and then Present
(Alias
(Prim
))
11847 and then Comes_From_Source
(Prim
)
11848 and then Is_Intrinsic_Subprogram
(Alias
(Prim
))
11849 and then Chars
(Alias
(Prim
)) = Name_Op_Eq
;
11850 end Is_Predefined_Eq_Renaming
;
11854 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
11856 Eq_Name
: Name_Id
:= Name_Op_Eq
;
11857 Eq_Needed
: Boolean := True;
11861 Has_Predef_Eq_Renaming
: Boolean := False;
11862 -- Set to True if Tag_Typ has a primitive that renames the predefined
11863 -- equality operator. Used to implement (RM 8-5-4(8)).
11865 -- Start of processing for Make_Predefined_Primitive_Specs
11868 Renamed_Eq
:= Empty
;
11870 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
11871 while Present
(Prim
) loop
11873 -- If a primitive is encountered that renames the predefined equality
11874 -- operator before reaching any explicit equality primitive, then we
11875 -- still need to create a predefined equality function, because calls
11876 -- to it can occur via the renaming. A new name is created for the
11877 -- equality to avoid conflicting with any user-defined equality.
11878 -- (Note that this doesn't account for renamings of equality nested
11879 -- within subpackages???)
11881 if Is_Predefined_Eq_Renaming
(Node
(Prim
)) then
11882 Has_Predef_Eq_Renaming
:= True;
11883 Eq_Name
:= New_External_Name
(Chars
(Node
(Prim
)), 'E');
11885 -- User-defined equality
11887 elsif Is_User_Defined_Equality
(Node
(Prim
)) then
11888 if No
(Alias
(Node
(Prim
)))
11889 or else Nkind
(Unit_Declaration_Node
(Node
(Prim
))) =
11890 N_Subprogram_Renaming_Declaration
11892 Eq_Needed
:= False;
11895 -- If the parent is not an interface type and has an abstract
11896 -- equality function explicitly defined in the sources, then the
11897 -- inherited equality is abstract as well, and no body can be
11900 elsif not Is_Interface
(Etype
(Tag_Typ
))
11901 and then Present
(Alias
(Node
(Prim
)))
11902 and then Comes_From_Source
(Alias
(Node
(Prim
)))
11903 and then Is_Abstract_Subprogram
(Alias
(Node
(Prim
)))
11905 Eq_Needed
:= False;
11908 -- If the type has an equality function corresponding with a
11909 -- primitive defined in an interface type, the inherited equality
11910 -- is abstract as well, and no body can be created for it.
11912 elsif Present
(Alias
(Node
(Prim
)))
11913 and then Comes_From_Source
(Ultimate_Alias
(Node
(Prim
)))
11916 (Find_Dispatching_Type
(Ultimate_Alias
(Node
(Prim
))))
11918 Eq_Needed
:= False;
11926 -- If a renaming of predefined equality was found but there was no
11927 -- user-defined equality (so Eq_Needed is still true), then set the name
11928 -- back to Name_Op_Eq. But in the case where a user-defined equality was
11929 -- located after such a renaming, then the predefined equality function
11930 -- is still needed, so Eq_Needed must be set back to True.
11932 if Eq_Name
/= Name_Op_Eq
then
11934 Eq_Name
:= Name_Op_Eq
;
11941 Eq_Spec
:= Predef_Spec_Or_Body
(Loc
,
11942 Tag_Typ
=> Tag_Typ
,
11944 Profile
=> New_List
(
11945 Make_Parameter_Specification
(Loc
,
11946 Defining_Identifier
=>
11947 Make_Defining_Identifier
(Loc
, Name_X
),
11948 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)),
11950 Make_Parameter_Specification
(Loc
,
11951 Defining_Identifier
=>
11952 Make_Defining_Identifier
(Loc
, Name_Y
),
11953 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
11954 Ret_Type
=> Standard_Boolean
);
11955 Append_To
(Predef_List
, Eq_Spec
);
11957 if Has_Predef_Eq_Renaming
then
11958 Renamed_Eq
:= Defining_Unit_Name
(Specification
(Eq_Spec
));
11960 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
11961 while Present
(Prim
) loop
11963 -- Any renamings of equality that appeared before an overriding
11964 -- equality must be updated to refer to the entity for the
11965 -- predefined equality, otherwise calls via the renaming would
11966 -- get incorrectly resolved to call the user-defined equality
11969 if Is_Predefined_Eq_Renaming
(Node
(Prim
)) then
11970 Set_Alias
(Node
(Prim
), Renamed_Eq
);
11972 -- Exit upon encountering a user-defined equality
11974 elsif Chars
(Node
(Prim
)) = Name_Op_Eq
11975 and then No
(Alias
(Node
(Prim
)))
11984 end Make_Predefined_Primitive_Eq_Spec
;
11986 -------------------------------------
11987 -- Make_Predefined_Primitive_Specs --
11988 -------------------------------------
11990 procedure Make_Predefined_Primitive_Specs
11991 (Tag_Typ
: Entity_Id
;
11992 Predef_List
: out List_Id
;
11993 Renamed_Eq
: out Entity_Id
)
11995 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
11996 Res
: constant List_Id
:= New_List
;
12001 Renamed_Eq
:= Empty
;
12005 Append_To
(Res
, Predef_Spec_Or_Body
(Loc
,
12006 Tag_Typ
=> Tag_Typ
,
12007 Name
=> Name_uSize
,
12008 Profile
=> New_List
(
12009 Make_Parameter_Specification
(Loc
,
12010 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
12011 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
12013 Ret_Type
=> Standard_Long_Long_Integer
));
12015 -- Spec of Put_Image
12017 if not No_Run_Time_Mode
12018 and then RTE_Available
(RE_Root_Buffer_Type
)
12020 -- No_Run_Time_Mode implies that the declaration of Tag_Typ
12021 -- (like any tagged type) will be rejected. Given this, avoid
12022 -- cascading errors associated with the Tag_Typ's TSS_Put_Image
12025 Append_To
(Res
, Predef_Spec_Or_Body
(Loc
,
12026 Tag_Typ
=> Tag_Typ
,
12027 Name
=> Make_TSS_Name
(Tag_Typ
, TSS_Put_Image
),
12028 Profile
=> Build_Put_Image_Profile
(Loc
, Tag_Typ
)));
12031 -- Specs for dispatching stream attributes
12034 Stream_Op_TSS_Names
:
12035 constant array (Positive range <>) of TSS_Name_Type
:=
12039 TSS_Stream_Output
);
12042 for Op
in Stream_Op_TSS_Names
'Range loop
12043 if Stream_Operation_OK
(Tag_Typ
, Stream_Op_TSS_Names
(Op
)) then
12045 Predef_Stream_Attr_Spec
(Loc
, Tag_Typ
,
12046 Stream_Op_TSS_Names
(Op
)));
12051 -- Spec of "=" is expanded if the type is not limited and if a user
12052 -- defined "=" was not already declared for the non-full view of a
12053 -- private extension.
12055 if not Is_Limited_Type
(Tag_Typ
) then
12056 Make_Predefined_Primitive_Eq_Spec
(Tag_Typ
, Res
, Renamed_Eq
);
12058 -- Spec for dispatching assignment
12060 Append_To
(Res
, Predef_Spec_Or_Body
(Loc
,
12061 Tag_Typ
=> Tag_Typ
,
12062 Name
=> Name_uAssign
,
12063 Profile
=> New_List
(
12064 Make_Parameter_Specification
(Loc
,
12065 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
12066 Out_Present
=> True,
12067 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)),
12069 Make_Parameter_Specification
(Loc
,
12070 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_Y
),
12071 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)))));
12074 -- Ada 2005: Generate declarations for the following primitive
12075 -- operations for limited interfaces and synchronized types that
12076 -- implement a limited interface.
12078 -- Disp_Asynchronous_Select
12079 -- Disp_Conditional_Select
12080 -- Disp_Get_Prim_Op_Kind
12081 -- Disp_Get_Task_Id
12083 -- Disp_Timed_Select
12085 -- Disable the generation of these bodies if Ravenscar or ZFP is active
12087 if Ada_Version
>= Ada_2005
12088 and then not Restriction_Active
(No_Select_Statements
)
12089 and then RTE_Available
(RE_Select_Specific_Data
)
12091 -- These primitives are defined abstract in interface types
12093 if Is_Interface
(Tag_Typ
)
12094 and then Is_Limited_Record
(Tag_Typ
)
12097 Make_Abstract_Subprogram_Declaration
(Loc
,
12099 Make_Disp_Asynchronous_Select_Spec
(Tag_Typ
)));
12102 Make_Abstract_Subprogram_Declaration
(Loc
,
12104 Make_Disp_Conditional_Select_Spec
(Tag_Typ
)));
12107 Make_Abstract_Subprogram_Declaration
(Loc
,
12109 Make_Disp_Get_Prim_Op_Kind_Spec
(Tag_Typ
)));
12112 Make_Abstract_Subprogram_Declaration
(Loc
,
12114 Make_Disp_Get_Task_Id_Spec
(Tag_Typ
)));
12117 Make_Abstract_Subprogram_Declaration
(Loc
,
12119 Make_Disp_Requeue_Spec
(Tag_Typ
)));
12122 Make_Abstract_Subprogram_Declaration
(Loc
,
12124 Make_Disp_Timed_Select_Spec
(Tag_Typ
)));
12126 -- If ancestor is an interface type, declare non-abstract primitives
12127 -- to override the abstract primitives of the interface type.
12129 -- In VM targets we define these primitives in all root tagged types
12130 -- that are not interface types. Done because in VM targets we don't
12131 -- have secondary dispatch tables and any derivation of Tag_Typ may
12132 -- cover limited interfaces (which always have these primitives since
12133 -- they may be ancestors of synchronized interface types).
12135 elsif (not Is_Interface
(Tag_Typ
)
12136 and then Is_Interface
(Etype
(Tag_Typ
))
12137 and then Is_Limited_Record
(Etype
(Tag_Typ
)))
12139 (Is_Concurrent_Record_Type
(Tag_Typ
)
12140 and then Has_Interfaces
(Tag_Typ
))
12142 (not Tagged_Type_Expansion
12143 and then not Is_Interface
(Tag_Typ
)
12144 and then Tag_Typ
= Root_Type
(Tag_Typ
))
12147 Make_Subprogram_Declaration
(Loc
,
12149 Make_Disp_Asynchronous_Select_Spec
(Tag_Typ
)));
12152 Make_Subprogram_Declaration
(Loc
,
12154 Make_Disp_Conditional_Select_Spec
(Tag_Typ
)));
12157 Make_Subprogram_Declaration
(Loc
,
12159 Make_Disp_Get_Prim_Op_Kind_Spec
(Tag_Typ
)));
12162 Make_Subprogram_Declaration
(Loc
,
12164 Make_Disp_Get_Task_Id_Spec
(Tag_Typ
)));
12167 Make_Subprogram_Declaration
(Loc
,
12169 Make_Disp_Requeue_Spec
(Tag_Typ
)));
12172 Make_Subprogram_Declaration
(Loc
,
12174 Make_Disp_Timed_Select_Spec
(Tag_Typ
)));
12178 -- All tagged types receive their own Deep_Adjust and Deep_Finalize
12179 -- regardless of whether they are controlled or may contain controlled
12182 -- Do not generate the routines if finalization is disabled
12184 if Restriction_Active
(No_Finalization
) then
12188 if not Is_Limited_Type
(Tag_Typ
) then
12189 Append_To
(Res
, Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Adjust
));
12192 Append_To
(Res
, Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Finalize
));
12195 Predef_List
:= Res
;
12196 end Make_Predefined_Primitive_Specs
;
12198 -------------------------
12199 -- Make_Tag_Assignment --
12200 -------------------------
12202 function Make_Tag_Assignment
(N
: Node_Id
) return Node_Id
is
12203 Loc
: constant Source_Ptr
:= Sloc
(N
);
12204 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
12205 Expr
: constant Node_Id
:= Expression
(N
);
12206 Typ
: constant Entity_Id
:= Etype
(Def_Id
);
12207 Full_Typ
: constant Entity_Id
:= Underlying_Type
(Typ
);
12210 -- This expansion activity is called during analysis
12212 if Is_Tagged_Type
(Typ
)
12213 and then not Is_Class_Wide_Type
(Typ
)
12214 and then not Is_CPP_Class
(Typ
)
12215 and then Tagged_Type_Expansion
12216 and then Nkind
(Unqualify
(Expr
)) /= N_Aggregate
12219 Make_Tag_Assignment_From_Type
12220 (Loc
, New_Occurrence_Of
(Def_Id
, Loc
), Full_Typ
);
12225 end Make_Tag_Assignment
;
12227 ----------------------
12228 -- Predef_Deep_Spec --
12229 ----------------------
12231 function Predef_Deep_Spec
12233 Tag_Typ
: Entity_Id
;
12234 Name
: TSS_Name_Type
;
12235 For_Body
: Boolean := False) return Node_Id
12240 -- V : in out Tag_Typ
12242 Formals
:= New_List
(
12243 Make_Parameter_Specification
(Loc
,
12244 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_V
),
12245 In_Present
=> True,
12246 Out_Present
=> True,
12247 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)));
12249 -- F : Boolean := True
12251 if Name
= TSS_Deep_Adjust
12252 or else Name
= TSS_Deep_Finalize
12254 Append_To
(Formals
,
12255 Make_Parameter_Specification
(Loc
,
12256 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_F
),
12257 Parameter_Type
=> New_Occurrence_Of
(Standard_Boolean
, Loc
),
12258 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
12262 Predef_Spec_Or_Body
(Loc
,
12263 Name
=> Make_TSS_Name
(Tag_Typ
, Name
),
12264 Tag_Typ
=> Tag_Typ
,
12265 Profile
=> Formals
,
12266 For_Body
=> For_Body
);
12269 when RE_Not_Available
=>
12271 end Predef_Deep_Spec
;
12273 -------------------------
12274 -- Predef_Spec_Or_Body --
12275 -------------------------
12277 function Predef_Spec_Or_Body
12279 Tag_Typ
: Entity_Id
;
12282 Ret_Type
: Entity_Id
:= Empty
;
12283 For_Body
: Boolean := False) return Node_Id
12285 Id
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name
);
12289 Set_Is_Public
(Id
, Is_Public
(Tag_Typ
));
12291 -- The internal flag is set to mark these declarations because they have
12292 -- specific properties. First, they are primitives even if they are not
12293 -- defined in the type scope (the freezing point is not necessarily in
12294 -- the same scope). Second, the predefined equality can be overridden by
12295 -- a user-defined equality, no body will be generated in this case.
12297 Set_Is_Internal
(Id
);
12299 if not Debug_Generated_Code
then
12300 Set_Debug_Info_Off
(Id
);
12303 if No
(Ret_Type
) then
12305 Make_Procedure_Specification
(Loc
,
12306 Defining_Unit_Name
=> Id
,
12307 Parameter_Specifications
=> Profile
);
12310 Make_Function_Specification
(Loc
,
12311 Defining_Unit_Name
=> Id
,
12312 Parameter_Specifications
=> Profile
,
12313 Result_Definition
=> New_Occurrence_Of
(Ret_Type
, Loc
));
12316 -- Declare an abstract subprogram for primitive subprograms of an
12317 -- interface type (except for "=").
12319 if Is_Interface
(Tag_Typ
) then
12320 if Name
/= Name_Op_Eq
then
12321 return Make_Abstract_Subprogram_Declaration
(Loc
, Spec
);
12323 -- The equality function (if any) for an interface type is defined
12324 -- to be nonabstract, so we create an expression function for it that
12325 -- always returns False. Note that the function can never actually be
12326 -- invoked because interface types are abstract, so there aren't any
12327 -- objects of such types (and their equality operation will always
12331 return Make_Expression_Function
12332 (Loc
, Spec
, New_Occurrence_Of
(Standard_False
, Loc
));
12335 -- If body case, return empty subprogram body. Note that this is ill-
12336 -- formed, because there is not even a null statement, and certainly not
12337 -- a return in the function case. The caller is expected to do surgery
12338 -- on the body to add the appropriate stuff.
12340 elsif For_Body
then
12341 return Make_Subprogram_Body
(Loc
, Spec
, Empty_List
, Empty
);
12343 -- For the case of an Input attribute predefined for an abstract type,
12344 -- generate an abstract specification. This will never be called, but we
12345 -- need the slot allocated in the dispatching table so that attributes
12346 -- typ'Class'Input and typ'Class'Output will work properly.
12348 elsif Is_TSS
(Name
, TSS_Stream_Input
)
12349 and then Is_Abstract_Type
(Tag_Typ
)
12351 return Make_Abstract_Subprogram_Declaration
(Loc
, Spec
);
12353 -- Normal spec case, where we return a subprogram declaration
12356 return Make_Subprogram_Declaration
(Loc
, Spec
);
12358 end Predef_Spec_Or_Body
;
12360 -----------------------------
12361 -- Predef_Stream_Attr_Spec --
12362 -----------------------------
12364 function Predef_Stream_Attr_Spec
12366 Tag_Typ
: Entity_Id
;
12367 Name
: TSS_Name_Type
) return Node_Id
12369 Ret_Type
: Entity_Id
;
12372 if Name
= TSS_Stream_Input
then
12373 Ret_Type
:= Tag_Typ
;
12379 Predef_Spec_Or_Body
12381 Name
=> Make_TSS_Name
(Tag_Typ
, Name
),
12382 Tag_Typ
=> Tag_Typ
,
12383 Profile
=> Build_Stream_Attr_Profile
(Loc
, Tag_Typ
, Name
),
12384 Ret_Type
=> Ret_Type
,
12385 For_Body
=> False);
12386 end Predef_Stream_Attr_Spec
;
12388 ----------------------------------
12389 -- Predefined_Primitive_Eq_Body --
12390 ----------------------------------
12392 procedure Predefined_Primitive_Eq_Body
12393 (Tag_Typ
: Entity_Id
;
12394 Predef_List
: List_Id
;
12395 Renamed_Eq
: Entity_Id
)
12398 Eq_Needed
: Boolean;
12403 -- See if we have a predefined "=" operator
12405 if Present
(Renamed_Eq
) then
12407 Eq_Name
:= Chars
(Renamed_Eq
);
12409 -- If the parent is an interface type then it has defined all the
12410 -- predefined primitives abstract and we need to check if the type
12411 -- has some user defined "=" function which matches the profile of
12412 -- the Ada predefined equality operator to avoid generating it.
12414 elsif Is_Interface
(Etype
(Tag_Typ
)) then
12416 Eq_Name
:= Name_Op_Eq
;
12418 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
12419 while Present
(Prim
) loop
12420 if Is_User_Defined_Equality
(Node
(Prim
))
12421 and then not Is_Internal
(Node
(Prim
))
12423 Eq_Needed
:= False;
12424 Eq_Name
:= No_Name
;
12432 Eq_Needed
:= False;
12433 Eq_Name
:= No_Name
;
12435 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
12436 while Present
(Prim
) loop
12437 if Is_User_Defined_Equality
(Node
(Prim
))
12438 and then Is_Internal
(Node
(Prim
))
12441 Eq_Name
:= Name_Op_Eq
;
12449 -- If equality is needed, we will have its name
12451 pragma Assert
(Eq_Needed
= Present
(Eq_Name
));
12453 -- Body for equality
12456 Decl
:= Make_Eq_Body
(Tag_Typ
, Eq_Name
);
12457 Append_To
(Predef_List
, Decl
);
12460 -- Body for inequality (if required)
12462 Decl
:= Make_Neq_Body
(Tag_Typ
);
12464 if Present
(Decl
) then
12465 Append_To
(Predef_List
, Decl
);
12467 end Predefined_Primitive_Eq_Body
;
12469 ---------------------------------
12470 -- Predefined_Primitive_Bodies --
12471 ---------------------------------
12473 function Predefined_Primitive_Bodies
12474 (Tag_Typ
: Entity_Id
;
12475 Renamed_Eq
: Entity_Id
) return List_Id
12477 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
12478 Res
: constant List_Id
:= New_List
;
12479 Adj_Call
: Node_Id
;
12481 Fin_Call
: Node_Id
;
12484 pragma Warnings
(Off
, Ent
);
12489 pragma Assert
(not Is_Interface
(Tag_Typ
));
12493 Decl
:= Predef_Spec_Or_Body
(Loc
,
12494 Tag_Typ
=> Tag_Typ
,
12495 Name
=> Name_uSize
,
12496 Profile
=> New_List
(
12497 Make_Parameter_Specification
(Loc
,
12498 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
12499 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
12501 Ret_Type
=> Standard_Long_Long_Integer
,
12504 Set_Handled_Statement_Sequence
(Decl
,
12505 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
12506 Make_Simple_Return_Statement
(Loc
,
12508 Make_Attribute_Reference
(Loc
,
12509 Prefix
=> Make_Identifier
(Loc
, Name_X
),
12510 Attribute_Name
=> Name_Size
)))));
12512 Append_To
(Res
, Decl
);
12514 -- Body of Put_Image
12516 if No
(TSS
(Tag_Typ
, TSS_Put_Image
))
12517 and then not No_Run_Time_Mode
12518 and then RTE_Available
(RE_Root_Buffer_Type
)
12520 Build_Record_Put_Image_Procedure
(Loc
, Tag_Typ
, Decl
, Ent
);
12521 Append_To
(Res
, Decl
);
12524 -- Bodies for Dispatching stream IO routines. We need these only for
12525 -- non-limited types (in the limited case there is no dispatching).
12526 -- We also skip them if dispatching or finalization are not available
12527 -- or if stream operations are prohibited by restriction No_Streams or
12528 -- from use of pragma/aspect No_Tagged_Streams.
12530 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Read
)
12531 and then No
(TSS
(Tag_Typ
, TSS_Stream_Read
))
12533 Build_Record_Read_Procedure
(Tag_Typ
, Decl
, Ent
);
12534 Append_To
(Res
, Decl
);
12537 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Write
)
12538 and then No
(TSS
(Tag_Typ
, TSS_Stream_Write
))
12540 Build_Record_Write_Procedure
(Tag_Typ
, Decl
, Ent
);
12541 Append_To
(Res
, Decl
);
12544 -- Skip body of _Input for the abstract case, since the corresponding
12545 -- spec is abstract (see Predef_Spec_Or_Body).
12547 if not Is_Abstract_Type
(Tag_Typ
)
12548 and then Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Input
)
12549 and then No
(TSS
(Tag_Typ
, TSS_Stream_Input
))
12551 Build_Record_Or_Elementary_Input_Function
12552 (Tag_Typ
, Decl
, Ent
);
12553 Append_To
(Res
, Decl
);
12556 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Output
)
12557 and then No
(TSS
(Tag_Typ
, TSS_Stream_Output
))
12559 Build_Record_Or_Elementary_Output_Procedure
(Tag_Typ
, Decl
, Ent
);
12560 Append_To
(Res
, Decl
);
12563 -- Ada 2005: Generate bodies for the following primitive operations for
12564 -- limited interfaces and synchronized types that implement a limited
12567 -- disp_asynchronous_select
12568 -- disp_conditional_select
12569 -- disp_get_prim_op_kind
12570 -- disp_get_task_id
12571 -- disp_timed_select
12573 -- The interface versions will have null bodies
12575 -- Disable the generation of these bodies if Ravenscar or ZFP is active
12577 -- In VM targets we define these primitives in all root tagged types
12578 -- that are not interface types. Done because in VM targets we don't
12579 -- have secondary dispatch tables and any derivation of Tag_Typ may
12580 -- cover limited interfaces (which always have these primitives since
12581 -- they may be ancestors of synchronized interface types).
12583 if Ada_Version
>= Ada_2005
12585 ((Is_Interface
(Etype
(Tag_Typ
))
12586 and then Is_Limited_Record
(Etype
(Tag_Typ
)))
12588 (Is_Concurrent_Record_Type
(Tag_Typ
)
12589 and then Has_Interfaces
(Tag_Typ
))
12591 (not Tagged_Type_Expansion
12592 and then Tag_Typ
= Root_Type
(Tag_Typ
)))
12593 and then not Restriction_Active
(No_Select_Statements
)
12594 and then RTE_Available
(RE_Select_Specific_Data
)
12596 Append_To
(Res
, Make_Disp_Asynchronous_Select_Body
(Tag_Typ
));
12597 Append_To
(Res
, Make_Disp_Conditional_Select_Body
(Tag_Typ
));
12598 Append_To
(Res
, Make_Disp_Get_Prim_Op_Kind_Body
(Tag_Typ
));
12599 Append_To
(Res
, Make_Disp_Get_Task_Id_Body
(Tag_Typ
));
12600 Append_To
(Res
, Make_Disp_Requeue_Body
(Tag_Typ
));
12601 Append_To
(Res
, Make_Disp_Timed_Select_Body
(Tag_Typ
));
12604 if not Is_Limited_Type
(Tag_Typ
) then
12605 -- Body for equality and inequality
12607 Predefined_Primitive_Eq_Body
(Tag_Typ
, Res
, Renamed_Eq
);
12609 -- Body for dispatching assignment
12612 Predef_Spec_Or_Body
(Loc
,
12613 Tag_Typ
=> Tag_Typ
,
12614 Name
=> Name_uAssign
,
12615 Profile
=> New_List
(
12616 Make_Parameter_Specification
(Loc
,
12617 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
12618 Out_Present
=> True,
12619 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)),
12621 Make_Parameter_Specification
(Loc
,
12622 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_Y
),
12623 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
12626 Set_Handled_Statement_Sequence
(Decl
,
12627 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
12628 Make_Assignment_Statement
(Loc
,
12629 Name
=> Make_Identifier
(Loc
, Name_X
),
12630 Expression
=> Make_Identifier
(Loc
, Name_Y
)))));
12632 Append_To
(Res
, Decl
);
12635 -- Generate empty bodies of routines Deep_Adjust and Deep_Finalize for
12636 -- tagged types which do not contain controlled components.
12638 -- Do not generate the routines if finalization is disabled
12640 if Restriction_Active
(No_Finalization
) then
12643 elsif not Has_Controlled_Component
(Tag_Typ
) then
12644 if not Is_Limited_Type
(Tag_Typ
) then
12646 Decl
:= Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Adjust
, True);
12648 if Is_Controlled
(Tag_Typ
) then
12651 Obj_Ref
=> Make_Identifier
(Loc
, Name_V
),
12655 if No
(Adj_Call
) then
12656 Adj_Call
:= Make_Null_Statement
(Loc
);
12659 Set_Handled_Statement_Sequence
(Decl
,
12660 Make_Handled_Sequence_Of_Statements
(Loc
,
12661 Statements
=> New_List
(Adj_Call
)));
12663 Append_To
(Res
, Decl
);
12667 Decl
:= Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Finalize
, True);
12669 if Is_Controlled
(Tag_Typ
) then
12672 (Obj_Ref
=> Make_Identifier
(Loc
, Name_V
),
12676 if No
(Fin_Call
) then
12677 Fin_Call
:= Make_Null_Statement
(Loc
);
12680 Set_Handled_Statement_Sequence
(Decl
,
12681 Make_Handled_Sequence_Of_Statements
(Loc
,
12682 Statements
=> New_List
(Fin_Call
)));
12684 Append_To
(Res
, Decl
);
12688 end Predefined_Primitive_Bodies
;
12690 ---------------------------------
12691 -- Predefined_Primitive_Freeze --
12692 ---------------------------------
12694 function Predefined_Primitive_Freeze
12695 (Tag_Typ
: Entity_Id
) return List_Id
12697 Res
: constant List_Id
:= New_List
;
12702 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
12703 while Present
(Prim
) loop
12704 if Is_Predefined_Dispatching_Operation
(Node
(Prim
)) then
12705 Frnodes
:= Freeze_Entity
(Node
(Prim
), Tag_Typ
);
12707 if Present
(Frnodes
) then
12708 Append_List_To
(Res
, Frnodes
);
12716 end Predefined_Primitive_Freeze
;
12718 -------------------------
12719 -- Stream_Operation_OK --
12720 -------------------------
12722 function Stream_Operation_OK
12724 Operation
: TSS_Name_Type
) return Boolean
12726 Has_Predefined_Or_Specified_Stream_Attribute
: Boolean := False;
12729 -- Special case of a limited type extension: a default implementation
12730 -- of the stream attributes Read or Write exists if that attribute
12731 -- has been specified or is available for an ancestor type; a default
12732 -- implementation of the attribute Output (resp. Input) exists if the
12733 -- attribute has been specified or Write (resp. Read) is available for
12734 -- an ancestor type. The last condition only applies under Ada 2005.
12736 if Is_Limited_Type
(Typ
) and then Is_Tagged_Type
(Typ
) then
12737 if Operation
= TSS_Stream_Read
then
12738 Has_Predefined_Or_Specified_Stream_Attribute
:=
12739 Has_Specified_Stream_Read
(Typ
);
12741 elsif Operation
= TSS_Stream_Write
then
12742 Has_Predefined_Or_Specified_Stream_Attribute
:=
12743 Has_Specified_Stream_Write
(Typ
);
12745 elsif Operation
= TSS_Stream_Input
then
12746 Has_Predefined_Or_Specified_Stream_Attribute
:=
12747 Has_Specified_Stream_Input
(Typ
)
12749 (Ada_Version
>= Ada_2005
12750 and then Stream_Operation_OK
(Typ
, TSS_Stream_Read
));
12752 elsif Operation
= TSS_Stream_Output
then
12753 Has_Predefined_Or_Specified_Stream_Attribute
:=
12754 Has_Specified_Stream_Output
(Typ
)
12756 (Ada_Version
>= Ada_2005
12757 and then Stream_Operation_OK
(Typ
, TSS_Stream_Write
));
12760 -- Case of inherited TSS_Stream_Read or TSS_Stream_Write
12762 if not Has_Predefined_Or_Specified_Stream_Attribute
12763 and then Is_Derived_Type
(Typ
)
12764 and then (Operation
= TSS_Stream_Read
12765 or else Operation
= TSS_Stream_Write
)
12767 Has_Predefined_Or_Specified_Stream_Attribute
:=
12769 (Find_Inherited_TSS
(Base_Type
(Etype
(Typ
)), Operation
));
12773 -- If the type is not limited, or else is limited but the attribute is
12774 -- explicitly specified or is predefined for the type, then return True,
12775 -- unless other conditions prevail, such as restrictions prohibiting
12776 -- streams or dispatching operations. We also return True for limited
12777 -- interfaces, because they may be extended by nonlimited types and
12778 -- permit inheritance in this case (addresses cases where an abstract
12779 -- extension doesn't get 'Input declared, as per comments below, but
12780 -- 'Class'Input must still be allowed). Note that attempts to apply
12781 -- stream attributes to a limited interface or its class-wide type
12782 -- (or limited extensions thereof) will still get properly rejected
12783 -- by Check_Stream_Attribute.
12785 -- We exclude the Input operation from being a predefined subprogram in
12786 -- the case where the associated type is an abstract extension, because
12787 -- the attribute is not callable in that case, per 13.13.2(49/2). Also,
12788 -- we don't want an abstract version created because types derived from
12789 -- the abstract type may not even have Input available (for example if
12790 -- derived from a private view of the abstract type that doesn't have
12791 -- a visible Input).
12793 -- Do not generate stream routines for type Finalization_Master because
12794 -- a master may never appear in types and therefore cannot be read or
12798 (not Is_Limited_Type
(Typ
)
12799 or else Is_Interface
(Typ
)
12800 or else Has_Predefined_Or_Specified_Stream_Attribute
)
12802 (Operation
/= TSS_Stream_Input
12803 or else not Is_Abstract_Type
(Typ
)
12804 or else not Is_Derived_Type
(Typ
))
12805 and then not Has_Unknown_Discriminants
(Typ
)
12806 and then not Is_Concurrent_Interface
(Typ
)
12807 and then not Restriction_Active
(No_Streams
)
12808 and then not Restriction_Active
(No_Dispatch
)
12809 and then No
(No_Tagged_Streams_Pragma
(Typ
))
12810 and then not No_Run_Time_Mode
12811 and then RTE_Available
(RE_Tag
)
12812 and then No
(Type_Without_Stream_Operation
(Typ
))
12813 and then RTE_Available
(RE_Root_Stream_Type
)
12814 and then not Is_RTE
(Typ
, RE_Finalization_Master
);
12815 end Stream_Operation_OK
;