* config/arm/elf.h (ASM_OUTPUT_ALIGNED_COMMON): Remove definition.
[official-gcc.git] / gcc / function.c
blobc5c0d03c5590acf8130a26fa5b3429ab67cf9302
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
41 #include "config.h"
42 #include "system.h"
43 #include "coretypes.h"
44 #include "tm.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "flags.h"
48 #include "except.h"
49 #include "function.h"
50 #include "expr.h"
51 #include "libfuncs.h"
52 #include "regs.h"
53 #include "hard-reg-set.h"
54 #include "insn-config.h"
55 #include "recog.h"
56 #include "output.h"
57 #include "basic-block.h"
58 #include "toplev.h"
59 #include "hashtab.h"
60 #include "ggc.h"
61 #include "tm_p.h"
62 #include "integrate.h"
63 #include "langhooks.h"
65 #ifndef TRAMPOLINE_ALIGNMENT
66 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
67 #endif
69 #ifndef LOCAL_ALIGNMENT
70 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
71 #endif
73 #ifndef STACK_ALIGNMENT_NEEDED
74 #define STACK_ALIGNMENT_NEEDED 1
75 #endif
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
95 during rtl generation. If they are different register numbers, this is
96 always true. It may also be true if
97 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
98 generation. See fix_lexical_addr for details. */
100 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
101 #define NEED_SEPARATE_AP
102 #endif
104 /* Nonzero if function being compiled doesn't contain any calls
105 (ignoring the prologue and epilogue). This is set prior to
106 local register allocation and is valid for the remaining
107 compiler passes. */
108 int current_function_is_leaf;
110 /* Nonzero if function being compiled doesn't contain any instructions
111 that can throw an exception. This is set prior to final. */
113 int current_function_nothrow;
115 /* Nonzero if function being compiled doesn't modify the stack pointer
116 (ignoring the prologue and epilogue). This is only valid after
117 life_analysis has run. */
118 int current_function_sp_is_unchanging;
120 /* Nonzero if the function being compiled is a leaf function which only
121 uses leaf registers. This is valid after reload (specifically after
122 sched2) and is useful only if the port defines LEAF_REGISTERS. */
123 int current_function_uses_only_leaf_regs;
125 /* Nonzero once virtual register instantiation has been done.
126 assign_stack_local uses frame_pointer_rtx when this is nonzero.
127 calls.c:emit_library_call_value_1 uses it to set up
128 post-instantiation libcalls. */
129 int virtuals_instantiated;
131 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
132 static GTY(()) int funcdef_no;
134 /* These variables hold pointers to functions to create and destroy
135 target specific, per-function data structures. */
136 struct machine_function * (*init_machine_status) PARAMS ((void));
138 /* The FUNCTION_DECL for an inline function currently being expanded. */
139 tree inline_function_decl;
141 /* The currently compiled function. */
142 struct function *cfun = 0;
144 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
145 static GTY(()) varray_type prologue;
146 static GTY(()) varray_type epilogue;
148 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
149 in this function. */
150 static GTY(()) varray_type sibcall_epilogue;
152 /* In order to evaluate some expressions, such as function calls returning
153 structures in memory, we need to temporarily allocate stack locations.
154 We record each allocated temporary in the following structure.
156 Associated with each temporary slot is a nesting level. When we pop up
157 one level, all temporaries associated with the previous level are freed.
158 Normally, all temporaries are freed after the execution of the statement
159 in which they were created. However, if we are inside a ({...}) grouping,
160 the result may be in a temporary and hence must be preserved. If the
161 result could be in a temporary, we preserve it if we can determine which
162 one it is in. If we cannot determine which temporary may contain the
163 result, all temporaries are preserved. A temporary is preserved by
164 pretending it was allocated at the previous nesting level.
166 Automatic variables are also assigned temporary slots, at the nesting
167 level where they are defined. They are marked a "kept" so that
168 free_temp_slots will not free them. */
170 struct temp_slot GTY(())
172 /* Points to next temporary slot. */
173 struct temp_slot *next;
174 /* The rtx to used to reference the slot. */
175 rtx slot;
176 /* The rtx used to represent the address if not the address of the
177 slot above. May be an EXPR_LIST if multiple addresses exist. */
178 rtx address;
179 /* The alignment (in bits) of the slot. */
180 unsigned int align;
181 /* The size, in units, of the slot. */
182 HOST_WIDE_INT size;
183 /* The type of the object in the slot, or zero if it doesn't correspond
184 to a type. We use this to determine whether a slot can be reused.
185 It can be reused if objects of the type of the new slot will always
186 conflict with objects of the type of the old slot. */
187 tree type;
188 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
189 tree rtl_expr;
190 /* Nonzero if this temporary is currently in use. */
191 char in_use;
192 /* Nonzero if this temporary has its address taken. */
193 char addr_taken;
194 /* Nesting level at which this slot is being used. */
195 int level;
196 /* Nonzero if this should survive a call to free_temp_slots. */
197 int keep;
198 /* The offset of the slot from the frame_pointer, including extra space
199 for alignment. This info is for combine_temp_slots. */
200 HOST_WIDE_INT base_offset;
201 /* The size of the slot, including extra space for alignment. This
202 info is for combine_temp_slots. */
203 HOST_WIDE_INT full_size;
206 /* This structure is used to record MEMs or pseudos used to replace VAR, any
207 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
208 maintain this list in case two operands of an insn were required to match;
209 in that case we must ensure we use the same replacement. */
211 struct fixup_replacement GTY(())
213 rtx old;
214 rtx new;
215 struct fixup_replacement *next;
218 struct insns_for_mem_entry
220 /* A MEM. */
221 rtx key;
222 /* These are the INSNs which reference the MEM. */
223 rtx insns;
226 /* Forward declarations. */
228 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
229 int, struct function *));
230 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
231 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
232 enum machine_mode, enum machine_mode,
233 int, unsigned int, int,
234 htab_t));
235 static void schedule_fixup_var_refs PARAMS ((struct function *, rtx, tree,
236 enum machine_mode,
237 htab_t));
238 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int, rtx,
239 htab_t));
240 static struct fixup_replacement
241 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
242 static void fixup_var_refs_insns PARAMS ((rtx, rtx, enum machine_mode,
243 int, int, rtx));
244 static void fixup_var_refs_insns_with_hash
245 PARAMS ((htab_t, rtx,
246 enum machine_mode, int, rtx));
247 static void fixup_var_refs_insn PARAMS ((rtx, rtx, enum machine_mode,
248 int, int, rtx));
249 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
250 struct fixup_replacement **, rtx));
251 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, enum machine_mode, int));
252 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, enum machine_mode,
253 int));
254 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
255 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
256 static void instantiate_decls PARAMS ((tree, int));
257 static void instantiate_decls_1 PARAMS ((tree, int));
258 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
259 static rtx instantiate_new_reg PARAMS ((rtx, HOST_WIDE_INT *));
260 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
261 static void delete_handlers PARAMS ((void));
262 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
263 struct args_size *));
264 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
265 tree));
266 static rtx round_trampoline_addr PARAMS ((rtx));
267 static rtx adjust_trampoline_addr PARAMS ((rtx));
268 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
269 static void reorder_blocks_0 PARAMS ((tree));
270 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
271 static void reorder_fix_fragments PARAMS ((tree));
272 static tree blocks_nreverse PARAMS ((tree));
273 static int all_blocks PARAMS ((tree, tree *));
274 static tree *get_block_vector PARAMS ((tree, int *));
275 extern tree debug_find_var_in_block_tree PARAMS ((tree, tree));
276 /* We always define `record_insns' even if its not used so that we
277 can always export `prologue_epilogue_contains'. */
278 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
279 static int contains PARAMS ((rtx, varray_type));
280 #ifdef HAVE_return
281 static void emit_return_into_block PARAMS ((basic_block, rtx));
282 #endif
283 static void put_addressof_into_stack PARAMS ((rtx, htab_t));
284 static bool purge_addressof_1 PARAMS ((rtx *, rtx, int, int, int, htab_t));
285 static void purge_single_hard_subreg_set PARAMS ((rtx));
286 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
287 static rtx keep_stack_depressed PARAMS ((rtx));
288 #endif
289 static int is_addressof PARAMS ((rtx *, void *));
290 static hashval_t insns_for_mem_hash PARAMS ((const void *));
291 static int insns_for_mem_comp PARAMS ((const void *, const void *));
292 static int insns_for_mem_walk PARAMS ((rtx *, void *));
293 static void compute_insns_for_mem PARAMS ((rtx, rtx, htab_t));
294 static void prepare_function_start PARAMS ((void));
295 static void do_clobber_return_reg PARAMS ((rtx, void *));
296 static void do_use_return_reg PARAMS ((rtx, void *));
297 static void instantiate_virtual_regs_lossage PARAMS ((rtx));
299 /* Pointer to chain of `struct function' for containing functions. */
300 static GTY(()) struct function *outer_function_chain;
302 /* List of insns that were postponed by purge_addressof_1. */
303 static rtx postponed_insns;
305 /* Given a function decl for a containing function,
306 return the `struct function' for it. */
308 struct function *
309 find_function_data (decl)
310 tree decl;
312 struct function *p;
314 for (p = outer_function_chain; p; p = p->outer)
315 if (p->decl == decl)
316 return p;
318 abort ();
321 /* Save the current context for compilation of a nested function.
322 This is called from language-specific code. The caller should use
323 the enter_nested langhook to save any language-specific state,
324 since this function knows only about language-independent
325 variables. */
327 void
328 push_function_context_to (context)
329 tree context;
331 struct function *p;
333 if (context)
335 if (context == current_function_decl)
336 cfun->contains_functions = 1;
337 else
339 struct function *containing = find_function_data (context);
340 containing->contains_functions = 1;
344 if (cfun == 0)
345 init_dummy_function_start ();
346 p = cfun;
348 p->outer = outer_function_chain;
349 outer_function_chain = p;
350 p->fixup_var_refs_queue = 0;
352 (*lang_hooks.function.enter_nested) (p);
354 cfun = 0;
357 void
358 push_function_context ()
360 push_function_context_to (current_function_decl);
363 /* Restore the last saved context, at the end of a nested function.
364 This function is called from language-specific code. */
366 void
367 pop_function_context_from (context)
368 tree context ATTRIBUTE_UNUSED;
370 struct function *p = outer_function_chain;
371 struct var_refs_queue *queue;
373 cfun = p;
374 outer_function_chain = p->outer;
376 current_function_decl = p->decl;
377 reg_renumber = 0;
379 restore_emit_status (p);
381 (*lang_hooks.function.leave_nested) (p);
383 /* Finish doing put_var_into_stack for any of our variables which became
384 addressable during the nested function. If only one entry has to be
385 fixed up, just do that one. Otherwise, first make a list of MEMs that
386 are not to be unshared. */
387 if (p->fixup_var_refs_queue == 0)
389 else if (p->fixup_var_refs_queue->next == 0)
390 fixup_var_refs (p->fixup_var_refs_queue->modified,
391 p->fixup_var_refs_queue->promoted_mode,
392 p->fixup_var_refs_queue->unsignedp,
393 p->fixup_var_refs_queue->modified, 0);
394 else
396 rtx list = 0;
398 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
399 list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);
401 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
402 fixup_var_refs (queue->modified, queue->promoted_mode,
403 queue->unsignedp, list, 0);
407 p->fixup_var_refs_queue = 0;
409 /* Reset variables that have known state during rtx generation. */
410 rtx_equal_function_value_matters = 1;
411 virtuals_instantiated = 0;
412 generating_concat_p = 1;
415 void
416 pop_function_context ()
418 pop_function_context_from (current_function_decl);
421 /* Clear out all parts of the state in F that can safely be discarded
422 after the function has been parsed, but not compiled, to let
423 garbage collection reclaim the memory. */
425 void
426 free_after_parsing (f)
427 struct function *f;
429 /* f->expr->forced_labels is used by code generation. */
430 /* f->emit->regno_reg_rtx is used by code generation. */
431 /* f->varasm is used by code generation. */
432 /* f->eh->eh_return_stub_label is used by code generation. */
434 (*lang_hooks.function.final) (f);
435 f->stmt = NULL;
438 /* Clear out all parts of the state in F that can safely be discarded
439 after the function has been compiled, to let garbage collection
440 reclaim the memory. */
442 void
443 free_after_compilation (f)
444 struct function *f;
446 f->eh = NULL;
447 f->expr = NULL;
448 f->emit = NULL;
449 f->varasm = NULL;
450 f->machine = NULL;
452 f->x_temp_slots = NULL;
453 f->arg_offset_rtx = NULL;
454 f->return_rtx = NULL;
455 f->internal_arg_pointer = NULL;
456 f->x_nonlocal_labels = NULL;
457 f->x_nonlocal_goto_handler_slots = NULL;
458 f->x_nonlocal_goto_handler_labels = NULL;
459 f->x_nonlocal_goto_stack_level = NULL;
460 f->x_cleanup_label = NULL;
461 f->x_return_label = NULL;
462 f->computed_goto_common_label = NULL;
463 f->computed_goto_common_reg = NULL;
464 f->x_save_expr_regs = NULL;
465 f->x_stack_slot_list = NULL;
466 f->x_rtl_expr_chain = NULL;
467 f->x_tail_recursion_label = NULL;
468 f->x_tail_recursion_reentry = NULL;
469 f->x_arg_pointer_save_area = NULL;
470 f->x_clobber_return_insn = NULL;
471 f->x_context_display = NULL;
472 f->x_trampoline_list = NULL;
473 f->x_parm_birth_insn = NULL;
474 f->x_last_parm_insn = NULL;
475 f->x_parm_reg_stack_loc = NULL;
476 f->fixup_var_refs_queue = NULL;
477 f->original_arg_vector = NULL;
478 f->original_decl_initial = NULL;
479 f->inl_last_parm_insn = NULL;
480 f->epilogue_delay_list = NULL;
483 /* Allocate fixed slots in the stack frame of the current function. */
485 /* Return size needed for stack frame based on slots so far allocated in
486 function F.
487 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
488 the caller may have to do that. */
490 HOST_WIDE_INT
491 get_func_frame_size (f)
492 struct function *f;
494 #ifdef FRAME_GROWS_DOWNWARD
495 return -f->x_frame_offset;
496 #else
497 return f->x_frame_offset;
498 #endif
501 /* Return size needed for stack frame based on slots so far allocated.
502 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
503 the caller may have to do that. */
504 HOST_WIDE_INT
505 get_frame_size ()
507 return get_func_frame_size (cfun);
510 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
511 with machine mode MODE.
513 ALIGN controls the amount of alignment for the address of the slot:
514 0 means according to MODE,
515 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
516 positive specifies alignment boundary in bits.
518 We do not round to stack_boundary here.
520 FUNCTION specifies the function to allocate in. */
522 static rtx
523 assign_stack_local_1 (mode, size, align, function)
524 enum machine_mode mode;
525 HOST_WIDE_INT size;
526 int align;
527 struct function *function;
529 rtx x, addr;
530 int bigend_correction = 0;
531 int alignment;
532 int frame_off, frame_alignment, frame_phase;
534 if (align == 0)
536 tree type;
538 if (mode == BLKmode)
539 alignment = BIGGEST_ALIGNMENT;
540 else
541 alignment = GET_MODE_ALIGNMENT (mode);
543 /* Allow the target to (possibly) increase the alignment of this
544 stack slot. */
545 type = (*lang_hooks.types.type_for_mode) (mode, 0);
546 if (type)
547 alignment = LOCAL_ALIGNMENT (type, alignment);
549 alignment /= BITS_PER_UNIT;
551 else if (align == -1)
553 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
554 size = CEIL_ROUND (size, alignment);
556 else
557 alignment = align / BITS_PER_UNIT;
559 #ifdef FRAME_GROWS_DOWNWARD
560 function->x_frame_offset -= size;
561 #endif
563 /* Ignore alignment we can't do with expected alignment of the boundary. */
564 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
565 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
567 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
568 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
570 /* Calculate how many bytes the start of local variables is off from
571 stack alignment. */
572 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
573 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
574 frame_phase = frame_off ? frame_alignment - frame_off : 0;
576 /* Round the frame offset to the specified alignment. The default is
577 to always honor requests to align the stack but a port may choose to
578 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
579 if (STACK_ALIGNMENT_NEEDED
580 || mode != BLKmode
581 || size != 0)
583 /* We must be careful here, since FRAME_OFFSET might be negative and
584 division with a negative dividend isn't as well defined as we might
585 like. So we instead assume that ALIGNMENT is a power of two and
586 use logical operations which are unambiguous. */
587 #ifdef FRAME_GROWS_DOWNWARD
588 function->x_frame_offset
589 = (FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment)
590 + frame_phase);
591 #else
592 function->x_frame_offset
593 = (CEIL_ROUND (function->x_frame_offset - frame_phase, alignment)
594 + frame_phase);
595 #endif
598 /* On a big-endian machine, if we are allocating more space than we will use,
599 use the least significant bytes of those that are allocated. */
600 if (BYTES_BIG_ENDIAN && mode != BLKmode)
601 bigend_correction = size - GET_MODE_SIZE (mode);
603 /* If we have already instantiated virtual registers, return the actual
604 address relative to the frame pointer. */
605 if (function == cfun && virtuals_instantiated)
606 addr = plus_constant (frame_pointer_rtx,
607 trunc_int_for_mode
608 (frame_offset + bigend_correction
609 + STARTING_FRAME_OFFSET, Pmode));
610 else
611 addr = plus_constant (virtual_stack_vars_rtx,
612 trunc_int_for_mode
613 (function->x_frame_offset + bigend_correction,
614 Pmode));
616 #ifndef FRAME_GROWS_DOWNWARD
617 function->x_frame_offset += size;
618 #endif
620 x = gen_rtx_MEM (mode, addr);
622 function->x_stack_slot_list
623 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
625 return x;
628 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
629 current function. */
632 assign_stack_local (mode, size, align)
633 enum machine_mode mode;
634 HOST_WIDE_INT size;
635 int align;
637 return assign_stack_local_1 (mode, size, align, cfun);
640 /* Allocate a temporary stack slot and record it for possible later
641 reuse.
643 MODE is the machine mode to be given to the returned rtx.
645 SIZE is the size in units of the space required. We do no rounding here
646 since assign_stack_local will do any required rounding.
648 KEEP is 1 if this slot is to be retained after a call to
649 free_temp_slots. Automatic variables for a block are allocated
650 with this flag. KEEP is 2 if we allocate a longer term temporary,
651 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
652 if we are to allocate something at an inner level to be treated as
653 a variable in the block (e.g., a SAVE_EXPR).
655 TYPE is the type that will be used for the stack slot. */
658 assign_stack_temp_for_type (mode, size, keep, type)
659 enum machine_mode mode;
660 HOST_WIDE_INT size;
661 int keep;
662 tree type;
664 unsigned int align;
665 struct temp_slot *p, *best_p = 0;
666 rtx slot;
668 /* If SIZE is -1 it means that somebody tried to allocate a temporary
669 of a variable size. */
670 if (size == -1)
671 abort ();
673 if (mode == BLKmode)
674 align = BIGGEST_ALIGNMENT;
675 else
676 align = GET_MODE_ALIGNMENT (mode);
678 if (! type)
679 type = (*lang_hooks.types.type_for_mode) (mode, 0);
681 if (type)
682 align = LOCAL_ALIGNMENT (type, align);
684 /* Try to find an available, already-allocated temporary of the proper
685 mode which meets the size and alignment requirements. Choose the
686 smallest one with the closest alignment. */
687 for (p = temp_slots; p; p = p->next)
688 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
689 && ! p->in_use
690 && objects_must_conflict_p (p->type, type)
691 && (best_p == 0 || best_p->size > p->size
692 || (best_p->size == p->size && best_p->align > p->align)))
694 if (p->align == align && p->size == size)
696 best_p = 0;
697 break;
699 best_p = p;
702 /* Make our best, if any, the one to use. */
703 if (best_p)
705 /* If there are enough aligned bytes left over, make them into a new
706 temp_slot so that the extra bytes don't get wasted. Do this only
707 for BLKmode slots, so that we can be sure of the alignment. */
708 if (GET_MODE (best_p->slot) == BLKmode)
710 int alignment = best_p->align / BITS_PER_UNIT;
711 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
713 if (best_p->size - rounded_size >= alignment)
715 p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));
716 p->in_use = p->addr_taken = 0;
717 p->size = best_p->size - rounded_size;
718 p->base_offset = best_p->base_offset + rounded_size;
719 p->full_size = best_p->full_size - rounded_size;
720 p->slot = gen_rtx_MEM (BLKmode,
721 plus_constant (XEXP (best_p->slot, 0),
722 rounded_size));
723 p->align = best_p->align;
724 p->address = 0;
725 p->rtl_expr = 0;
726 p->type = best_p->type;
727 p->next = temp_slots;
728 temp_slots = p;
730 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
731 stack_slot_list);
733 best_p->size = rounded_size;
734 best_p->full_size = rounded_size;
738 p = best_p;
741 /* If we still didn't find one, make a new temporary. */
742 if (p == 0)
744 HOST_WIDE_INT frame_offset_old = frame_offset;
746 p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));
748 /* We are passing an explicit alignment request to assign_stack_local.
749 One side effect of that is assign_stack_local will not round SIZE
750 to ensure the frame offset remains suitably aligned.
752 So for requests which depended on the rounding of SIZE, we go ahead
753 and round it now. We also make sure ALIGNMENT is at least
754 BIGGEST_ALIGNMENT. */
755 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
756 abort ();
757 p->slot = assign_stack_local (mode,
758 (mode == BLKmode
759 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
760 : size),
761 align);
763 p->align = align;
765 /* The following slot size computation is necessary because we don't
766 know the actual size of the temporary slot until assign_stack_local
767 has performed all the frame alignment and size rounding for the
768 requested temporary. Note that extra space added for alignment
769 can be either above or below this stack slot depending on which
770 way the frame grows. We include the extra space if and only if it
771 is above this slot. */
772 #ifdef FRAME_GROWS_DOWNWARD
773 p->size = frame_offset_old - frame_offset;
774 #else
775 p->size = size;
776 #endif
778 /* Now define the fields used by combine_temp_slots. */
779 #ifdef FRAME_GROWS_DOWNWARD
780 p->base_offset = frame_offset;
781 p->full_size = frame_offset_old - frame_offset;
782 #else
783 p->base_offset = frame_offset_old;
784 p->full_size = frame_offset - frame_offset_old;
785 #endif
786 p->address = 0;
787 p->next = temp_slots;
788 temp_slots = p;
791 p->in_use = 1;
792 p->addr_taken = 0;
793 p->rtl_expr = seq_rtl_expr;
794 p->type = type;
796 if (keep == 2)
798 p->level = target_temp_slot_level;
799 p->keep = 0;
801 else if (keep == 3)
803 p->level = var_temp_slot_level;
804 p->keep = 0;
806 else
808 p->level = temp_slot_level;
809 p->keep = keep;
813 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
814 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
815 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
817 /* If we know the alias set for the memory that will be used, use
818 it. If there's no TYPE, then we don't know anything about the
819 alias set for the memory. */
820 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
821 set_mem_align (slot, align);
823 /* If a type is specified, set the relevant flags. */
824 if (type != 0)
826 RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
827 && TYPE_READONLY (type));
828 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
829 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
832 return slot;
835 /* Allocate a temporary stack slot and record it for possible later
836 reuse. First three arguments are same as in preceding function. */
839 assign_stack_temp (mode, size, keep)
840 enum machine_mode mode;
841 HOST_WIDE_INT size;
842 int keep;
844 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
847 /* Assign a temporary.
848 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
849 and so that should be used in error messages. In either case, we
850 allocate of the given type.
851 KEEP is as for assign_stack_temp.
852 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
853 it is 0 if a register is OK.
854 DONT_PROMOTE is 1 if we should not promote values in register
855 to wider modes. */
858 assign_temp (type_or_decl, keep, memory_required, dont_promote)
859 tree type_or_decl;
860 int keep;
861 int memory_required;
862 int dont_promote ATTRIBUTE_UNUSED;
864 tree type, decl;
865 enum machine_mode mode;
866 #ifndef PROMOTE_FOR_CALL_ONLY
867 int unsignedp;
868 #endif
870 if (DECL_P (type_or_decl))
871 decl = type_or_decl, type = TREE_TYPE (decl);
872 else
873 decl = NULL, type = type_or_decl;
875 mode = TYPE_MODE (type);
876 #ifndef PROMOTE_FOR_CALL_ONLY
877 unsignedp = TREE_UNSIGNED (type);
878 #endif
880 if (mode == BLKmode || memory_required)
882 HOST_WIDE_INT size = int_size_in_bytes (type);
883 rtx tmp;
885 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
886 problems with allocating the stack space. */
887 if (size == 0)
888 size = 1;
890 /* Unfortunately, we don't yet know how to allocate variable-sized
891 temporaries. However, sometimes we have a fixed upper limit on
892 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
893 instead. This is the case for Chill variable-sized strings. */
894 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
895 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
896 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
897 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
899 /* The size of the temporary may be too large to fit into an integer. */
900 /* ??? Not sure this should happen except for user silliness, so limit
901 this to things that aren't compiler-generated temporaries. The
902 rest of the time we'll abort in assign_stack_temp_for_type. */
903 if (decl && size == -1
904 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
906 error_with_decl (decl, "size of variable `%s' is too large");
907 size = 1;
910 tmp = assign_stack_temp_for_type (mode, size, keep, type);
911 return tmp;
914 #ifndef PROMOTE_FOR_CALL_ONLY
915 if (! dont_promote)
916 mode = promote_mode (type, mode, &unsignedp, 0);
917 #endif
919 return gen_reg_rtx (mode);
922 /* Combine temporary stack slots which are adjacent on the stack.
924 This allows for better use of already allocated stack space. This is only
925 done for BLKmode slots because we can be sure that we won't have alignment
926 problems in this case. */
928 void
929 combine_temp_slots ()
931 struct temp_slot *p, *q;
932 struct temp_slot *prev_p, *prev_q;
933 int num_slots;
935 /* We can't combine slots, because the information about which slot
936 is in which alias set will be lost. */
937 if (flag_strict_aliasing)
938 return;
940 /* If there are a lot of temp slots, don't do anything unless
941 high levels of optimization. */
942 if (! flag_expensive_optimizations)
943 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
944 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
945 return;
947 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
949 int delete_p = 0;
951 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
952 for (q = p->next, prev_q = p; q; q = prev_q->next)
954 int delete_q = 0;
955 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
957 if (p->base_offset + p->full_size == q->base_offset)
959 /* Q comes after P; combine Q into P. */
960 p->size += q->size;
961 p->full_size += q->full_size;
962 delete_q = 1;
964 else if (q->base_offset + q->full_size == p->base_offset)
966 /* P comes after Q; combine P into Q. */
967 q->size += p->size;
968 q->full_size += p->full_size;
969 delete_p = 1;
970 break;
973 /* Either delete Q or advance past it. */
974 if (delete_q)
975 prev_q->next = q->next;
976 else
977 prev_q = q;
979 /* Either delete P or advance past it. */
980 if (delete_p)
982 if (prev_p)
983 prev_p->next = p->next;
984 else
985 temp_slots = p->next;
987 else
988 prev_p = p;
992 /* Find the temp slot corresponding to the object at address X. */
994 static struct temp_slot *
995 find_temp_slot_from_address (x)
996 rtx x;
998 struct temp_slot *p;
999 rtx next;
1001 for (p = temp_slots; p; p = p->next)
1003 if (! p->in_use)
1004 continue;
1006 else if (XEXP (p->slot, 0) == x
1007 || p->address == x
1008 || (GET_CODE (x) == PLUS
1009 && XEXP (x, 0) == virtual_stack_vars_rtx
1010 && GET_CODE (XEXP (x, 1)) == CONST_INT
1011 && INTVAL (XEXP (x, 1)) >= p->base_offset
1012 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
1013 return p;
1015 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
1016 for (next = p->address; next; next = XEXP (next, 1))
1017 if (XEXP (next, 0) == x)
1018 return p;
1021 /* If we have a sum involving a register, see if it points to a temp
1022 slot. */
1023 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
1024 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1025 return p;
1026 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1027 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1028 return p;
1030 return 0;
1033 /* Indicate that NEW is an alternate way of referring to the temp slot
1034 that previously was known by OLD. */
1036 void
1037 update_temp_slot_address (old, new)
1038 rtx old, new;
1040 struct temp_slot *p;
1042 if (rtx_equal_p (old, new))
1043 return;
1045 p = find_temp_slot_from_address (old);
1047 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1048 is a register, see if one operand of the PLUS is a temporary
1049 location. If so, NEW points into it. Otherwise, if both OLD and
1050 NEW are a PLUS and if there is a register in common between them.
1051 If so, try a recursive call on those values. */
1052 if (p == 0)
1054 if (GET_CODE (old) != PLUS)
1055 return;
1057 if (GET_CODE (new) == REG)
1059 update_temp_slot_address (XEXP (old, 0), new);
1060 update_temp_slot_address (XEXP (old, 1), new);
1061 return;
1063 else if (GET_CODE (new) != PLUS)
1064 return;
1066 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1067 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1068 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1069 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1070 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1071 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1072 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1073 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1075 return;
1078 /* Otherwise add an alias for the temp's address. */
1079 else if (p->address == 0)
1080 p->address = new;
1081 else
1083 if (GET_CODE (p->address) != EXPR_LIST)
1084 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1086 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1090 /* If X could be a reference to a temporary slot, mark the fact that its
1091 address was taken. */
1093 void
1094 mark_temp_addr_taken (x)
1095 rtx x;
1097 struct temp_slot *p;
1099 if (x == 0)
1100 return;
1102 /* If X is not in memory or is at a constant address, it cannot be in
1103 a temporary slot. */
1104 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1105 return;
1107 p = find_temp_slot_from_address (XEXP (x, 0));
1108 if (p != 0)
1109 p->addr_taken = 1;
1112 /* If X could be a reference to a temporary slot, mark that slot as
1113 belonging to the to one level higher than the current level. If X
1114 matched one of our slots, just mark that one. Otherwise, we can't
1115 easily predict which it is, so upgrade all of them. Kept slots
1116 need not be touched.
1118 This is called when an ({...}) construct occurs and a statement
1119 returns a value in memory. */
1121 void
1122 preserve_temp_slots (x)
1123 rtx x;
1125 struct temp_slot *p = 0;
1127 /* If there is no result, we still might have some objects whose address
1128 were taken, so we need to make sure they stay around. */
1129 if (x == 0)
1131 for (p = temp_slots; p; p = p->next)
1132 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1133 p->level--;
1135 return;
1138 /* If X is a register that is being used as a pointer, see if we have
1139 a temporary slot we know it points to. To be consistent with
1140 the code below, we really should preserve all non-kept slots
1141 if we can't find a match, but that seems to be much too costly. */
1142 if (GET_CODE (x) == REG && REG_POINTER (x))
1143 p = find_temp_slot_from_address (x);
1145 /* If X is not in memory or is at a constant address, it cannot be in
1146 a temporary slot, but it can contain something whose address was
1147 taken. */
1148 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1150 for (p = temp_slots; p; p = p->next)
1151 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1152 p->level--;
1154 return;
1157 /* First see if we can find a match. */
1158 if (p == 0)
1159 p = find_temp_slot_from_address (XEXP (x, 0));
1161 if (p != 0)
1163 /* Move everything at our level whose address was taken to our new
1164 level in case we used its address. */
1165 struct temp_slot *q;
1167 if (p->level == temp_slot_level)
1169 for (q = temp_slots; q; q = q->next)
1170 if (q != p && q->addr_taken && q->level == p->level)
1171 q->level--;
1173 p->level--;
1174 p->addr_taken = 0;
1176 return;
1179 /* Otherwise, preserve all non-kept slots at this level. */
1180 for (p = temp_slots; p; p = p->next)
1181 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1182 p->level--;
1185 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1186 with that RTL_EXPR, promote it into a temporary slot at the present
1187 level so it will not be freed when we free slots made in the
1188 RTL_EXPR. */
1190 void
1191 preserve_rtl_expr_result (x)
1192 rtx x;
1194 struct temp_slot *p;
1196 /* If X is not in memory or is at a constant address, it cannot be in
1197 a temporary slot. */
1198 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1199 return;
1201 /* If we can find a match, move it to our level unless it is already at
1202 an upper level. */
1203 p = find_temp_slot_from_address (XEXP (x, 0));
1204 if (p != 0)
1206 p->level = MIN (p->level, temp_slot_level);
1207 p->rtl_expr = 0;
1210 return;
1213 /* Free all temporaries used so far. This is normally called at the end
1214 of generating code for a statement. Don't free any temporaries
1215 currently in use for an RTL_EXPR that hasn't yet been emitted.
1216 We could eventually do better than this since it can be reused while
1217 generating the same RTL_EXPR, but this is complex and probably not
1218 worthwhile. */
1220 void
1221 free_temp_slots ()
1223 struct temp_slot *p;
1225 for (p = temp_slots; p; p = p->next)
1226 if (p->in_use && p->level == temp_slot_level && ! p->keep
1227 && p->rtl_expr == 0)
1228 p->in_use = 0;
1230 combine_temp_slots ();
1233 /* Free all temporary slots used in T, an RTL_EXPR node. */
1235 void
1236 free_temps_for_rtl_expr (t)
1237 tree t;
1239 struct temp_slot *p;
1241 for (p = temp_slots; p; p = p->next)
1242 if (p->rtl_expr == t)
1244 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1245 needs to be preserved. This can happen if a temporary in
1246 the RTL_EXPR was addressed; preserve_temp_slots will move
1247 the temporary into a higher level. */
1248 if (temp_slot_level <= p->level)
1249 p->in_use = 0;
1250 else
1251 p->rtl_expr = NULL_TREE;
1254 combine_temp_slots ();
1257 /* Mark all temporaries ever allocated in this function as not suitable
1258 for reuse until the current level is exited. */
1260 void
1261 mark_all_temps_used ()
1263 struct temp_slot *p;
1265 for (p = temp_slots; p; p = p->next)
1267 p->in_use = p->keep = 1;
1268 p->level = MIN (p->level, temp_slot_level);
1272 /* Push deeper into the nesting level for stack temporaries. */
1274 void
1275 push_temp_slots ()
1277 temp_slot_level++;
1280 /* Pop a temporary nesting level. All slots in use in the current level
1281 are freed. */
1283 void
1284 pop_temp_slots ()
1286 struct temp_slot *p;
1288 for (p = temp_slots; p; p = p->next)
1289 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1290 p->in_use = 0;
1292 combine_temp_slots ();
1294 temp_slot_level--;
1297 /* Initialize temporary slots. */
1299 void
1300 init_temp_slots ()
1302 /* We have not allocated any temporaries yet. */
1303 temp_slots = 0;
1304 temp_slot_level = 0;
1305 var_temp_slot_level = 0;
1306 target_temp_slot_level = 0;
1309 /* Retroactively move an auto variable from a register to a stack
1310 slot. This is done when an address-reference to the variable is
1311 seen. If RESCAN is true, all previously emitted instructions are
1312 examined and modified to handle the fact that DECL is now
1313 addressable. */
1315 void
1316 put_var_into_stack (decl, rescan)
1317 tree decl;
1318 int rescan;
1320 rtx reg;
1321 enum machine_mode promoted_mode, decl_mode;
1322 struct function *function = 0;
1323 tree context;
1324 int can_use_addressof;
1325 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1326 int usedp = (TREE_USED (decl)
1327 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1329 context = decl_function_context (decl);
1331 /* Get the current rtl used for this object and its original mode. */
1332 reg = (TREE_CODE (decl) == SAVE_EXPR
1333 ? SAVE_EXPR_RTL (decl)
1334 : DECL_RTL_IF_SET (decl));
1336 /* No need to do anything if decl has no rtx yet
1337 since in that case caller is setting TREE_ADDRESSABLE
1338 and a stack slot will be assigned when the rtl is made. */
1339 if (reg == 0)
1340 return;
1342 /* Get the declared mode for this object. */
1343 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1344 : DECL_MODE (decl));
1345 /* Get the mode it's actually stored in. */
1346 promoted_mode = GET_MODE (reg);
1348 /* If this variable comes from an outer function, find that
1349 function's saved context. Don't use find_function_data here,
1350 because it might not be in any active function.
1351 FIXME: Is that really supposed to happen?
1352 It does in ObjC at least. */
1353 if (context != current_function_decl && context != inline_function_decl)
1354 for (function = outer_function_chain; function; function = function->outer)
1355 if (function->decl == context)
1356 break;
1358 /* If this is a variable-size object with a pseudo to address it,
1359 put that pseudo into the stack, if the var is nonlocal. */
1360 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1361 && GET_CODE (reg) == MEM
1362 && GET_CODE (XEXP (reg, 0)) == REG
1363 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1365 reg = XEXP (reg, 0);
1366 decl_mode = promoted_mode = GET_MODE (reg);
1369 can_use_addressof
1370 = (function == 0
1371 && optimize > 0
1372 /* FIXME make it work for promoted modes too */
1373 && decl_mode == promoted_mode
1374 #ifdef NON_SAVING_SETJMP
1375 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1376 #endif
1379 /* If we can't use ADDRESSOF, make sure we see through one we already
1380 generated. */
1381 if (! can_use_addressof && GET_CODE (reg) == MEM
1382 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1383 reg = XEXP (XEXP (reg, 0), 0);
1385 /* Now we should have a value that resides in one or more pseudo regs. */
1387 if (GET_CODE (reg) == REG)
1389 /* If this variable lives in the current function and we don't need
1390 to put things in the stack for the sake of setjmp, try to keep it
1391 in a register until we know we actually need the address. */
1392 if (can_use_addressof)
1393 gen_mem_addressof (reg, decl, rescan);
1394 else
1395 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1396 decl_mode, volatilep, 0, usedp, 0);
1398 else if (GET_CODE (reg) == CONCAT)
1400 /* A CONCAT contains two pseudos; put them both in the stack.
1401 We do it so they end up consecutive.
1402 We fixup references to the parts only after we fixup references
1403 to the whole CONCAT, lest we do double fixups for the latter
1404 references. */
1405 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1406 tree part_type = (*lang_hooks.types.type_for_mode) (part_mode, 0);
1407 rtx lopart = XEXP (reg, 0);
1408 rtx hipart = XEXP (reg, 1);
1409 #ifdef FRAME_GROWS_DOWNWARD
1410 /* Since part 0 should have a lower address, do it second. */
1411 put_reg_into_stack (function, hipart, part_type, part_mode,
1412 part_mode, volatilep, 0, 0, 0);
1413 put_reg_into_stack (function, lopart, part_type, part_mode,
1414 part_mode, volatilep, 0, 0, 0);
1415 #else
1416 put_reg_into_stack (function, lopart, part_type, part_mode,
1417 part_mode, volatilep, 0, 0, 0);
1418 put_reg_into_stack (function, hipart, part_type, part_mode,
1419 part_mode, volatilep, 0, 0, 0);
1420 #endif
1422 /* Change the CONCAT into a combined MEM for both parts. */
1423 PUT_CODE (reg, MEM);
1424 MEM_ATTRS (reg) = 0;
1426 /* set_mem_attributes uses DECL_RTL to avoid re-generating of
1427 already computed alias sets. Here we want to re-generate. */
1428 if (DECL_P (decl))
1429 SET_DECL_RTL (decl, NULL);
1430 set_mem_attributes (reg, decl, 1);
1431 if (DECL_P (decl))
1432 SET_DECL_RTL (decl, reg);
1434 /* The two parts are in memory order already.
1435 Use the lower parts address as ours. */
1436 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1437 /* Prevent sharing of rtl that might lose. */
1438 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1439 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1440 if (usedp && rescan)
1442 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1443 promoted_mode, 0);
1444 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1445 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1448 else
1449 return;
1452 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1453 into the stack frame of FUNCTION (0 means the current function).
1454 DECL_MODE is the machine mode of the user-level data type.
1455 PROMOTED_MODE is the machine mode of the register.
1456 VOLATILE_P is nonzero if this is for a "volatile" decl.
1457 USED_P is nonzero if this reg might have already been used in an insn. */
1459 static void
1460 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1461 original_regno, used_p, ht)
1462 struct function *function;
1463 rtx reg;
1464 tree type;
1465 enum machine_mode promoted_mode, decl_mode;
1466 int volatile_p;
1467 unsigned int original_regno;
1468 int used_p;
1469 htab_t ht;
1471 struct function *func = function ? function : cfun;
1472 rtx new = 0;
1473 unsigned int regno = original_regno;
1475 if (regno == 0)
1476 regno = REGNO (reg);
1478 if (regno < func->x_max_parm_reg)
1479 new = func->x_parm_reg_stack_loc[regno];
1481 if (new == 0)
1482 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1484 PUT_CODE (reg, MEM);
1485 PUT_MODE (reg, decl_mode);
1486 XEXP (reg, 0) = XEXP (new, 0);
1487 MEM_ATTRS (reg) = 0;
1488 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1489 MEM_VOLATILE_P (reg) = volatile_p;
1491 /* If this is a memory ref that contains aggregate components,
1492 mark it as such for cse and loop optimize. If we are reusing a
1493 previously generated stack slot, then we need to copy the bit in
1494 case it was set for other reasons. For instance, it is set for
1495 __builtin_va_alist. */
1496 if (type)
1498 MEM_SET_IN_STRUCT_P (reg,
1499 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1500 set_mem_alias_set (reg, get_alias_set (type));
1503 if (used_p)
1504 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1507 /* Make sure that all refs to the variable, previously made
1508 when it was a register, are fixed up to be valid again.
1509 See function above for meaning of arguments. */
1511 static void
1512 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht)
1513 struct function *function;
1514 rtx reg;
1515 tree type;
1516 enum machine_mode promoted_mode;
1517 htab_t ht;
1519 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1521 if (function != 0)
1523 struct var_refs_queue *temp;
1525 temp
1526 = (struct var_refs_queue *) ggc_alloc (sizeof (struct var_refs_queue));
1527 temp->modified = reg;
1528 temp->promoted_mode = promoted_mode;
1529 temp->unsignedp = unsigned_p;
1530 temp->next = function->fixup_var_refs_queue;
1531 function->fixup_var_refs_queue = temp;
1533 else
1534 /* Variable is local; fix it up now. */
1535 fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
1538 static void
1539 fixup_var_refs (var, promoted_mode, unsignedp, may_share, ht)
1540 rtx var;
1541 enum machine_mode promoted_mode;
1542 int unsignedp;
1543 htab_t ht;
1544 rtx may_share;
1546 tree pending;
1547 rtx first_insn = get_insns ();
1548 struct sequence_stack *stack = seq_stack;
1549 tree rtl_exps = rtl_expr_chain;
1551 /* If there's a hash table, it must record all uses of VAR. */
1552 if (ht)
1554 if (stack != 0)
1555 abort ();
1556 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
1557 may_share);
1558 return;
1561 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1562 stack == 0, may_share);
1564 /* Scan all pending sequences too. */
1565 for (; stack; stack = stack->next)
1567 push_to_full_sequence (stack->first, stack->last);
1568 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1569 stack->next != 0, may_share);
1570 /* Update remembered end of sequence
1571 in case we added an insn at the end. */
1572 stack->last = get_last_insn ();
1573 end_sequence ();
1576 /* Scan all waiting RTL_EXPRs too. */
1577 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1579 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1580 if (seq != const0_rtx && seq != 0)
1582 push_to_sequence (seq);
1583 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1584 may_share);
1585 end_sequence ();
1590 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1591 some part of an insn. Return a struct fixup_replacement whose OLD
1592 value is equal to X. Allocate a new structure if no such entry exists. */
1594 static struct fixup_replacement *
1595 find_fixup_replacement (replacements, x)
1596 struct fixup_replacement **replacements;
1597 rtx x;
1599 struct fixup_replacement *p;
1601 /* See if we have already replaced this. */
1602 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1605 if (p == 0)
1607 p = (struct fixup_replacement *) xmalloc (sizeof (struct fixup_replacement));
1608 p->old = x;
1609 p->new = 0;
1610 p->next = *replacements;
1611 *replacements = p;
1614 return p;
1617 /* Scan the insn-chain starting with INSN for refs to VAR and fix them
1618 up. TOPLEVEL is nonzero if this chain is the main chain of insns
1619 for the current function. MAY_SHARE is either a MEM that is not
1620 to be unshared or a list of them. */
1622 static void
1623 fixup_var_refs_insns (insn, var, promoted_mode, unsignedp, toplevel, may_share)
1624 rtx insn;
1625 rtx var;
1626 enum machine_mode promoted_mode;
1627 int unsignedp;
1628 int toplevel;
1629 rtx may_share;
1631 while (insn)
1633 /* fixup_var_refs_insn might modify insn, so save its next
1634 pointer now. */
1635 rtx next = NEXT_INSN (insn);
1637 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1638 the three sequences they (potentially) contain, and process
1639 them recursively. The CALL_INSN itself is not interesting. */
1641 if (GET_CODE (insn) == CALL_INSN
1642 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1644 int i;
1646 /* Look at the Normal call, sibling call and tail recursion
1647 sequences attached to the CALL_PLACEHOLDER. */
1648 for (i = 0; i < 3; i++)
1650 rtx seq = XEXP (PATTERN (insn), i);
1651 if (seq)
1653 push_to_sequence (seq);
1654 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1655 may_share);
1656 XEXP (PATTERN (insn), i) = get_insns ();
1657 end_sequence ();
1662 else if (INSN_P (insn))
1663 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
1664 may_share);
1666 insn = next;
1670 /* Look up the insns which reference VAR in HT and fix them up. Other
1671 arguments are the same as fixup_var_refs_insns.
1673 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1674 because the hash table will point straight to the interesting insn
1675 (inside the CALL_PLACEHOLDER). */
1677 static void
1678 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp, may_share)
1679 htab_t ht;
1680 rtx var;
1681 enum machine_mode promoted_mode;
1682 int unsignedp;
1683 rtx may_share;
1685 struct insns_for_mem_entry tmp;
1686 struct insns_for_mem_entry *ime;
1687 rtx insn_list;
1689 tmp.key = var;
1690 ime = (struct insns_for_mem_entry *) htab_find (ht, &tmp);
1691 for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
1692 if (INSN_P (XEXP (insn_list, 0)))
1693 fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
1694 unsignedp, 1, may_share);
1698 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1699 the insn under examination, VAR is the variable to fix up
1700 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1701 TOPLEVEL is nonzero if this is the main insn chain for this
1702 function. */
1704 static void
1705 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel, no_share)
1706 rtx insn;
1707 rtx var;
1708 enum machine_mode promoted_mode;
1709 int unsignedp;
1710 int toplevel;
1711 rtx no_share;
1713 rtx call_dest = 0;
1714 rtx set, prev, prev_set;
1715 rtx note;
1717 /* Remember the notes in case we delete the insn. */
1718 note = REG_NOTES (insn);
1720 /* If this is a CLOBBER of VAR, delete it.
1722 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1723 and REG_RETVAL notes too. */
1724 if (GET_CODE (PATTERN (insn)) == CLOBBER
1725 && (XEXP (PATTERN (insn), 0) == var
1726 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1727 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1728 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1730 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1731 /* The REG_LIBCALL note will go away since we are going to
1732 turn INSN into a NOTE, so just delete the
1733 corresponding REG_RETVAL note. */
1734 remove_note (XEXP (note, 0),
1735 find_reg_note (XEXP (note, 0), REG_RETVAL,
1736 NULL_RTX));
1738 delete_insn (insn);
1741 /* The insn to load VAR from a home in the arglist
1742 is now a no-op. When we see it, just delete it.
1743 Similarly if this is storing VAR from a register from which
1744 it was loaded in the previous insn. This will occur
1745 when an ADDRESSOF was made for an arglist slot. */
1746 else if (toplevel
1747 && (set = single_set (insn)) != 0
1748 && SET_DEST (set) == var
1749 /* If this represents the result of an insn group,
1750 don't delete the insn. */
1751 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1752 && (rtx_equal_p (SET_SRC (set), var)
1753 || (GET_CODE (SET_SRC (set)) == REG
1754 && (prev = prev_nonnote_insn (insn)) != 0
1755 && (prev_set = single_set (prev)) != 0
1756 && SET_DEST (prev_set) == SET_SRC (set)
1757 && rtx_equal_p (SET_SRC (prev_set), var))))
1759 delete_insn (insn);
1761 else
1763 struct fixup_replacement *replacements = 0;
1764 rtx next_insn = NEXT_INSN (insn);
1766 if (SMALL_REGISTER_CLASSES)
1768 /* If the insn that copies the results of a CALL_INSN
1769 into a pseudo now references VAR, we have to use an
1770 intermediate pseudo since we want the life of the
1771 return value register to be only a single insn.
1773 If we don't use an intermediate pseudo, such things as
1774 address computations to make the address of VAR valid
1775 if it is not can be placed between the CALL_INSN and INSN.
1777 To make sure this doesn't happen, we record the destination
1778 of the CALL_INSN and see if the next insn uses both that
1779 and VAR. */
1781 if (call_dest != 0 && GET_CODE (insn) == INSN
1782 && reg_mentioned_p (var, PATTERN (insn))
1783 && reg_mentioned_p (call_dest, PATTERN (insn)))
1785 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1787 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1789 PATTERN (insn) = replace_rtx (PATTERN (insn),
1790 call_dest, temp);
1793 if (GET_CODE (insn) == CALL_INSN
1794 && GET_CODE (PATTERN (insn)) == SET)
1795 call_dest = SET_DEST (PATTERN (insn));
1796 else if (GET_CODE (insn) == CALL_INSN
1797 && GET_CODE (PATTERN (insn)) == PARALLEL
1798 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1799 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1800 else
1801 call_dest = 0;
1804 /* See if we have to do anything to INSN now that VAR is in
1805 memory. If it needs to be loaded into a pseudo, use a single
1806 pseudo for the entire insn in case there is a MATCH_DUP
1807 between two operands. We pass a pointer to the head of
1808 a list of struct fixup_replacements. If fixup_var_refs_1
1809 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1810 it will record them in this list.
1812 If it allocated a pseudo for any replacement, we copy into
1813 it here. */
1815 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1816 &replacements, no_share);
1818 /* If this is last_parm_insn, and any instructions were output
1819 after it to fix it up, then we must set last_parm_insn to
1820 the last such instruction emitted. */
1821 if (insn == last_parm_insn)
1822 last_parm_insn = PREV_INSN (next_insn);
1824 while (replacements)
1826 struct fixup_replacement *next;
1828 if (GET_CODE (replacements->new) == REG)
1830 rtx insert_before;
1831 rtx seq;
1833 /* OLD might be a (subreg (mem)). */
1834 if (GET_CODE (replacements->old) == SUBREG)
1835 replacements->old
1836 = fixup_memory_subreg (replacements->old, insn,
1837 promoted_mode, 0);
1838 else
1839 replacements->old
1840 = fixup_stack_1 (replacements->old, insn);
1842 insert_before = insn;
1844 /* If we are changing the mode, do a conversion.
1845 This might be wasteful, but combine.c will
1846 eliminate much of the waste. */
1848 if (GET_MODE (replacements->new)
1849 != GET_MODE (replacements->old))
1851 start_sequence ();
1852 convert_move (replacements->new,
1853 replacements->old, unsignedp);
1854 seq = get_insns ();
1855 end_sequence ();
1857 else
1858 seq = gen_move_insn (replacements->new,
1859 replacements->old);
1861 emit_insn_before (seq, insert_before);
1864 next = replacements->next;
1865 free (replacements);
1866 replacements = next;
1870 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1871 But don't touch other insns referred to by reg-notes;
1872 we will get them elsewhere. */
1873 while (note)
1875 if (GET_CODE (note) != INSN_LIST)
1876 XEXP (note, 0)
1877 = walk_fixup_memory_subreg (XEXP (note, 0), insn,
1878 promoted_mode, 1);
1879 note = XEXP (note, 1);
1883 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1884 See if the rtx expression at *LOC in INSN needs to be changed.
1886 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1887 contain a list of original rtx's and replacements. If we find that we need
1888 to modify this insn by replacing a memory reference with a pseudo or by
1889 making a new MEM to implement a SUBREG, we consult that list to see if
1890 we have already chosen a replacement. If none has already been allocated,
1891 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1892 or the SUBREG, as appropriate, to the pseudo. */
1894 static void
1895 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements, no_share)
1896 rtx var;
1897 enum machine_mode promoted_mode;
1898 rtx *loc;
1899 rtx insn;
1900 struct fixup_replacement **replacements;
1901 rtx no_share;
1903 int i;
1904 rtx x = *loc;
1905 RTX_CODE code = GET_CODE (x);
1906 const char *fmt;
1907 rtx tem, tem1;
1908 struct fixup_replacement *replacement;
1910 switch (code)
1912 case ADDRESSOF:
1913 if (XEXP (x, 0) == var)
1915 /* Prevent sharing of rtl that might lose. */
1916 rtx sub = copy_rtx (XEXP (var, 0));
1918 if (! validate_change (insn, loc, sub, 0))
1920 rtx y = gen_reg_rtx (GET_MODE (sub));
1921 rtx seq, new_insn;
1923 /* We should be able to replace with a register or all is lost.
1924 Note that we can't use validate_change to verify this, since
1925 we're not caring for replacing all dups simultaneously. */
1926 if (! validate_replace_rtx (*loc, y, insn))
1927 abort ();
1929 /* Careful! First try to recognize a direct move of the
1930 value, mimicking how things are done in gen_reload wrt
1931 PLUS. Consider what happens when insn is a conditional
1932 move instruction and addsi3 clobbers flags. */
1934 start_sequence ();
1935 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1936 seq = get_insns ();
1937 end_sequence ();
1939 if (recog_memoized (new_insn) < 0)
1941 /* That failed. Fall back on force_operand and hope. */
1943 start_sequence ();
1944 sub = force_operand (sub, y);
1945 if (sub != y)
1946 emit_insn (gen_move_insn (y, sub));
1947 seq = get_insns ();
1948 end_sequence ();
1951 #ifdef HAVE_cc0
1952 /* Don't separate setter from user. */
1953 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1954 insn = PREV_INSN (insn);
1955 #endif
1957 emit_insn_before (seq, insn);
1960 return;
1962 case MEM:
1963 if (var == x)
1965 /* If we already have a replacement, use it. Otherwise,
1966 try to fix up this address in case it is invalid. */
1968 replacement = find_fixup_replacement (replacements, var);
1969 if (replacement->new)
1971 *loc = replacement->new;
1972 return;
1975 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1977 /* Unless we are forcing memory to register or we changed the mode,
1978 we can leave things the way they are if the insn is valid. */
1980 INSN_CODE (insn) = -1;
1981 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1982 && recog_memoized (insn) >= 0)
1983 return;
1985 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1986 return;
1989 /* If X contains VAR, we need to unshare it here so that we update
1990 each occurrence separately. But all identical MEMs in one insn
1991 must be replaced with the same rtx because of the possibility of
1992 MATCH_DUPs. */
1994 if (reg_mentioned_p (var, x))
1996 replacement = find_fixup_replacement (replacements, x);
1997 if (replacement->new == 0)
1998 replacement->new = copy_most_rtx (x, no_share);
2000 *loc = x = replacement->new;
2001 code = GET_CODE (x);
2003 break;
2005 case REG:
2006 case CC0:
2007 case PC:
2008 case CONST_INT:
2009 case CONST:
2010 case SYMBOL_REF:
2011 case LABEL_REF:
2012 case CONST_DOUBLE:
2013 case CONST_VECTOR:
2014 return;
2016 case SIGN_EXTRACT:
2017 case ZERO_EXTRACT:
2018 /* Note that in some cases those types of expressions are altered
2019 by optimize_bit_field, and do not survive to get here. */
2020 if (XEXP (x, 0) == var
2021 || (GET_CODE (XEXP (x, 0)) == SUBREG
2022 && SUBREG_REG (XEXP (x, 0)) == var))
2024 /* Get TEM as a valid MEM in the mode presently in the insn.
2026 We don't worry about the possibility of MATCH_DUP here; it
2027 is highly unlikely and would be tricky to handle. */
2029 tem = XEXP (x, 0);
2030 if (GET_CODE (tem) == SUBREG)
2032 if (GET_MODE_BITSIZE (GET_MODE (tem))
2033 > GET_MODE_BITSIZE (GET_MODE (var)))
2035 replacement = find_fixup_replacement (replacements, var);
2036 if (replacement->new == 0)
2037 replacement->new = gen_reg_rtx (GET_MODE (var));
2038 SUBREG_REG (tem) = replacement->new;
2040 /* The following code works only if we have a MEM, so we
2041 need to handle the subreg here. We directly substitute
2042 it assuming that a subreg must be OK here. We already
2043 scheduled a replacement to copy the mem into the
2044 subreg. */
2045 XEXP (x, 0) = tem;
2046 return;
2048 else
2049 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2051 else
2052 tem = fixup_stack_1 (tem, insn);
2054 /* Unless we want to load from memory, get TEM into the proper mode
2055 for an extract from memory. This can only be done if the
2056 extract is at a constant position and length. */
2058 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2059 && GET_CODE (XEXP (x, 2)) == CONST_INT
2060 && ! mode_dependent_address_p (XEXP (tem, 0))
2061 && ! MEM_VOLATILE_P (tem))
2063 enum machine_mode wanted_mode = VOIDmode;
2064 enum machine_mode is_mode = GET_MODE (tem);
2065 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2067 if (GET_CODE (x) == ZERO_EXTRACT)
2069 enum machine_mode new_mode
2070 = mode_for_extraction (EP_extzv, 1);
2071 if (new_mode != MAX_MACHINE_MODE)
2072 wanted_mode = new_mode;
2074 else if (GET_CODE (x) == SIGN_EXTRACT)
2076 enum machine_mode new_mode
2077 = mode_for_extraction (EP_extv, 1);
2078 if (new_mode != MAX_MACHINE_MODE)
2079 wanted_mode = new_mode;
2082 /* If we have a narrower mode, we can do something. */
2083 if (wanted_mode != VOIDmode
2084 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2086 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2087 rtx old_pos = XEXP (x, 2);
2088 rtx newmem;
2090 /* If the bytes and bits are counted differently, we
2091 must adjust the offset. */
2092 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2093 offset = (GET_MODE_SIZE (is_mode)
2094 - GET_MODE_SIZE (wanted_mode) - offset);
2096 pos %= GET_MODE_BITSIZE (wanted_mode);
2098 newmem = adjust_address_nv (tem, wanted_mode, offset);
2100 /* Make the change and see if the insn remains valid. */
2101 INSN_CODE (insn) = -1;
2102 XEXP (x, 0) = newmem;
2103 XEXP (x, 2) = GEN_INT (pos);
2105 if (recog_memoized (insn) >= 0)
2106 return;
2108 /* Otherwise, restore old position. XEXP (x, 0) will be
2109 restored later. */
2110 XEXP (x, 2) = old_pos;
2114 /* If we get here, the bitfield extract insn can't accept a memory
2115 reference. Copy the input into a register. */
2117 tem1 = gen_reg_rtx (GET_MODE (tem));
2118 emit_insn_before (gen_move_insn (tem1, tem), insn);
2119 XEXP (x, 0) = tem1;
2120 return;
2122 break;
2124 case SUBREG:
2125 if (SUBREG_REG (x) == var)
2127 /* If this is a special SUBREG made because VAR was promoted
2128 from a wider mode, replace it with VAR and call ourself
2129 recursively, this time saying that the object previously
2130 had its current mode (by virtue of the SUBREG). */
2132 if (SUBREG_PROMOTED_VAR_P (x))
2134 *loc = var;
2135 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
2136 no_share);
2137 return;
2140 /* If this SUBREG makes VAR wider, it has become a paradoxical
2141 SUBREG with VAR in memory, but these aren't allowed at this
2142 stage of the compilation. So load VAR into a pseudo and take
2143 a SUBREG of that pseudo. */
2144 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2146 replacement = find_fixup_replacement (replacements, var);
2147 if (replacement->new == 0)
2148 replacement->new = gen_reg_rtx (promoted_mode);
2149 SUBREG_REG (x) = replacement->new;
2150 return;
2153 /* See if we have already found a replacement for this SUBREG.
2154 If so, use it. Otherwise, make a MEM and see if the insn
2155 is recognized. If not, or if we should force MEM into a register,
2156 make a pseudo for this SUBREG. */
2157 replacement = find_fixup_replacement (replacements, x);
2158 if (replacement->new)
2160 *loc = replacement->new;
2161 return;
2164 replacement->new = *loc = fixup_memory_subreg (x, insn,
2165 promoted_mode, 0);
2167 INSN_CODE (insn) = -1;
2168 if (! flag_force_mem && recog_memoized (insn) >= 0)
2169 return;
2171 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2172 return;
2174 break;
2176 case SET:
2177 /* First do special simplification of bit-field references. */
2178 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2179 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2180 optimize_bit_field (x, insn, 0);
2181 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2182 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2183 optimize_bit_field (x, insn, 0);
2185 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2186 into a register and then store it back out. */
2187 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2188 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2189 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2190 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2191 > GET_MODE_SIZE (GET_MODE (var))))
2193 replacement = find_fixup_replacement (replacements, var);
2194 if (replacement->new == 0)
2195 replacement->new = gen_reg_rtx (GET_MODE (var));
2197 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2198 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2201 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2202 insn into a pseudo and store the low part of the pseudo into VAR. */
2203 if (GET_CODE (SET_DEST (x)) == SUBREG
2204 && SUBREG_REG (SET_DEST (x)) == var
2205 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2206 > GET_MODE_SIZE (GET_MODE (var))))
2208 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2209 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2210 tem)),
2211 insn);
2212 break;
2216 rtx dest = SET_DEST (x);
2217 rtx src = SET_SRC (x);
2218 rtx outerdest = dest;
2220 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2221 || GET_CODE (dest) == SIGN_EXTRACT
2222 || GET_CODE (dest) == ZERO_EXTRACT)
2223 dest = XEXP (dest, 0);
2225 if (GET_CODE (src) == SUBREG)
2226 src = SUBREG_REG (src);
2228 /* If VAR does not appear at the top level of the SET
2229 just scan the lower levels of the tree. */
2231 if (src != var && dest != var)
2232 break;
2234 /* We will need to rerecognize this insn. */
2235 INSN_CODE (insn) = -1;
2237 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
2238 && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
2240 /* Since this case will return, ensure we fixup all the
2241 operands here. */
2242 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2243 insn, replacements, no_share);
2244 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2245 insn, replacements, no_share);
2246 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2247 insn, replacements, no_share);
2249 tem = XEXP (outerdest, 0);
2251 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2252 that may appear inside a ZERO_EXTRACT.
2253 This was legitimate when the MEM was a REG. */
2254 if (GET_CODE (tem) == SUBREG
2255 && SUBREG_REG (tem) == var)
2256 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2257 else
2258 tem = fixup_stack_1 (tem, insn);
2260 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2261 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2262 && ! mode_dependent_address_p (XEXP (tem, 0))
2263 && ! MEM_VOLATILE_P (tem))
2265 enum machine_mode wanted_mode;
2266 enum machine_mode is_mode = GET_MODE (tem);
2267 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2269 wanted_mode = mode_for_extraction (EP_insv, 0);
2271 /* If we have a narrower mode, we can do something. */
2272 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2274 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2275 rtx old_pos = XEXP (outerdest, 2);
2276 rtx newmem;
2278 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2279 offset = (GET_MODE_SIZE (is_mode)
2280 - GET_MODE_SIZE (wanted_mode) - offset);
2282 pos %= GET_MODE_BITSIZE (wanted_mode);
2284 newmem = adjust_address_nv (tem, wanted_mode, offset);
2286 /* Make the change and see if the insn remains valid. */
2287 INSN_CODE (insn) = -1;
2288 XEXP (outerdest, 0) = newmem;
2289 XEXP (outerdest, 2) = GEN_INT (pos);
2291 if (recog_memoized (insn) >= 0)
2292 return;
2294 /* Otherwise, restore old position. XEXP (x, 0) will be
2295 restored later. */
2296 XEXP (outerdest, 2) = old_pos;
2300 /* If we get here, the bit-field store doesn't allow memory
2301 or isn't located at a constant position. Load the value into
2302 a register, do the store, and put it back into memory. */
2304 tem1 = gen_reg_rtx (GET_MODE (tem));
2305 emit_insn_before (gen_move_insn (tem1, tem), insn);
2306 emit_insn_after (gen_move_insn (tem, tem1), insn);
2307 XEXP (outerdest, 0) = tem1;
2308 return;
2311 /* STRICT_LOW_PART is a no-op on memory references
2312 and it can cause combinations to be unrecognizable,
2313 so eliminate it. */
2315 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2316 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2318 /* A valid insn to copy VAR into or out of a register
2319 must be left alone, to avoid an infinite loop here.
2320 If the reference to VAR is by a subreg, fix that up,
2321 since SUBREG is not valid for a memref.
2322 Also fix up the address of the stack slot.
2324 Note that we must not try to recognize the insn until
2325 after we know that we have valid addresses and no
2326 (subreg (mem ...) ...) constructs, since these interfere
2327 with determining the validity of the insn. */
2329 if ((SET_SRC (x) == var
2330 || (GET_CODE (SET_SRC (x)) == SUBREG
2331 && SUBREG_REG (SET_SRC (x)) == var))
2332 && (GET_CODE (SET_DEST (x)) == REG
2333 || (GET_CODE (SET_DEST (x)) == SUBREG
2334 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2335 && GET_MODE (var) == promoted_mode
2336 && x == single_set (insn))
2338 rtx pat, last;
2340 if (GET_CODE (SET_SRC (x)) == SUBREG
2341 && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
2342 > GET_MODE_SIZE (GET_MODE (var))))
2344 /* This (subreg VAR) is now a paradoxical subreg. We need
2345 to replace VAR instead of the subreg. */
2346 replacement = find_fixup_replacement (replacements, var);
2347 if (replacement->new == NULL_RTX)
2348 replacement->new = gen_reg_rtx (GET_MODE (var));
2349 SUBREG_REG (SET_SRC (x)) = replacement->new;
2351 else
2353 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2354 if (replacement->new)
2355 SET_SRC (x) = replacement->new;
2356 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2357 SET_SRC (x) = replacement->new
2358 = fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
2360 else
2361 SET_SRC (x) = replacement->new
2362 = fixup_stack_1 (SET_SRC (x), insn);
2365 if (recog_memoized (insn) >= 0)
2366 return;
2368 /* INSN is not valid, but we know that we want to
2369 copy SET_SRC (x) to SET_DEST (x) in some way. So
2370 we generate the move and see whether it requires more
2371 than one insn. If it does, we emit those insns and
2372 delete INSN. Otherwise, we can just replace the pattern
2373 of INSN; we have already verified above that INSN has
2374 no other function that to do X. */
2376 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2377 if (NEXT_INSN (pat) != NULL_RTX)
2379 last = emit_insn_before (pat, insn);
2381 /* INSN might have REG_RETVAL or other important notes, so
2382 we need to store the pattern of the last insn in the
2383 sequence into INSN similarly to the normal case. LAST
2384 should not have REG_NOTES, but we allow them if INSN has
2385 no REG_NOTES. */
2386 if (REG_NOTES (last) && REG_NOTES (insn))
2387 abort ();
2388 if (REG_NOTES (last))
2389 REG_NOTES (insn) = REG_NOTES (last);
2390 PATTERN (insn) = PATTERN (last);
2392 delete_insn (last);
2394 else
2395 PATTERN (insn) = PATTERN (pat);
2397 return;
2400 if ((SET_DEST (x) == var
2401 || (GET_CODE (SET_DEST (x)) == SUBREG
2402 && SUBREG_REG (SET_DEST (x)) == var))
2403 && (GET_CODE (SET_SRC (x)) == REG
2404 || (GET_CODE (SET_SRC (x)) == SUBREG
2405 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2406 && GET_MODE (var) == promoted_mode
2407 && x == single_set (insn))
2409 rtx pat, last;
2411 if (GET_CODE (SET_DEST (x)) == SUBREG)
2412 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
2413 promoted_mode, 0);
2414 else
2415 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2417 if (recog_memoized (insn) >= 0)
2418 return;
2420 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2421 if (NEXT_INSN (pat) != NULL_RTX)
2423 last = emit_insn_before (pat, insn);
2425 /* INSN might have REG_RETVAL or other important notes, so
2426 we need to store the pattern of the last insn in the
2427 sequence into INSN similarly to the normal case. LAST
2428 should not have REG_NOTES, but we allow them if INSN has
2429 no REG_NOTES. */
2430 if (REG_NOTES (last) && REG_NOTES (insn))
2431 abort ();
2432 if (REG_NOTES (last))
2433 REG_NOTES (insn) = REG_NOTES (last);
2434 PATTERN (insn) = PATTERN (last);
2436 delete_insn (last);
2438 else
2439 PATTERN (insn) = PATTERN (pat);
2441 return;
2444 /* Otherwise, storing into VAR must be handled specially
2445 by storing into a temporary and copying that into VAR
2446 with a new insn after this one. Note that this case
2447 will be used when storing into a promoted scalar since
2448 the insn will now have different modes on the input
2449 and output and hence will be invalid (except for the case
2450 of setting it to a constant, which does not need any
2451 change if it is valid). We generate extra code in that case,
2452 but combine.c will eliminate it. */
2454 if (dest == var)
2456 rtx temp;
2457 rtx fixeddest = SET_DEST (x);
2458 enum machine_mode temp_mode;
2460 /* STRICT_LOW_PART can be discarded, around a MEM. */
2461 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2462 fixeddest = XEXP (fixeddest, 0);
2463 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2464 if (GET_CODE (fixeddest) == SUBREG)
2466 fixeddest = fixup_memory_subreg (fixeddest, insn,
2467 promoted_mode, 0);
2468 temp_mode = GET_MODE (fixeddest);
2470 else
2472 fixeddest = fixup_stack_1 (fixeddest, insn);
2473 temp_mode = promoted_mode;
2476 temp = gen_reg_rtx (temp_mode);
2478 emit_insn_after (gen_move_insn (fixeddest,
2479 gen_lowpart (GET_MODE (fixeddest),
2480 temp)),
2481 insn);
2483 SET_DEST (x) = temp;
2487 default:
2488 break;
2491 /* Nothing special about this RTX; fix its operands. */
2493 fmt = GET_RTX_FORMAT (code);
2494 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2496 if (fmt[i] == 'e')
2497 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
2498 no_share);
2499 else if (fmt[i] == 'E')
2501 int j;
2502 for (j = 0; j < XVECLEN (x, i); j++)
2503 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2504 insn, replacements, no_share);
2509 /* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
2510 The REG was placed on the stack, so X now has the form (SUBREG:m1
2511 (MEM:m2 ...)).
2513 Return an rtx (MEM:m1 newaddr) which is equivalent. If any insns
2514 must be emitted to compute NEWADDR, put them before INSN.
2516 UNCRITICAL nonzero means accept paradoxical subregs.
2517 This is used for subregs found inside REG_NOTES. */
2519 static rtx
2520 fixup_memory_subreg (x, insn, promoted_mode, uncritical)
2521 rtx x;
2522 rtx insn;
2523 enum machine_mode promoted_mode;
2524 int uncritical;
2526 int offset;
2527 rtx mem = SUBREG_REG (x);
2528 rtx addr = XEXP (mem, 0);
2529 enum machine_mode mode = GET_MODE (x);
2530 rtx result, seq;
2532 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2533 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
2534 abort ();
2536 offset = SUBREG_BYTE (x);
2537 if (BYTES_BIG_ENDIAN)
2538 /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
2539 the offset so that it points to the right location within the
2540 MEM. */
2541 offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));
2543 if (!flag_force_addr
2544 && memory_address_p (mode, plus_constant (addr, offset)))
2545 /* Shortcut if no insns need be emitted. */
2546 return adjust_address (mem, mode, offset);
2548 start_sequence ();
2549 result = adjust_address (mem, mode, offset);
2550 seq = get_insns ();
2551 end_sequence ();
2553 emit_insn_before (seq, insn);
2554 return result;
2557 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2558 Replace subexpressions of X in place.
2559 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2560 Otherwise return X, with its contents possibly altered.
2562 INSN, PROMOTED_MODE and UNCRITICAL are as for
2563 fixup_memory_subreg. */
2565 static rtx
2566 walk_fixup_memory_subreg (x, insn, promoted_mode, uncritical)
2567 rtx x;
2568 rtx insn;
2569 enum machine_mode promoted_mode;
2570 int uncritical;
2572 enum rtx_code code;
2573 const char *fmt;
2574 int i;
2576 if (x == 0)
2577 return 0;
2579 code = GET_CODE (x);
2581 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2582 return fixup_memory_subreg (x, insn, promoted_mode, uncritical);
2584 /* Nothing special about this RTX; fix its operands. */
2586 fmt = GET_RTX_FORMAT (code);
2587 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2589 if (fmt[i] == 'e')
2590 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn,
2591 promoted_mode, uncritical);
2592 else if (fmt[i] == 'E')
2594 int j;
2595 for (j = 0; j < XVECLEN (x, i); j++)
2596 XVECEXP (x, i, j)
2597 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn,
2598 promoted_mode, uncritical);
2601 return x;
2604 /* For each memory ref within X, if it refers to a stack slot
2605 with an out of range displacement, put the address in a temp register
2606 (emitting new insns before INSN to load these registers)
2607 and alter the memory ref to use that register.
2608 Replace each such MEM rtx with a copy, to avoid clobberage. */
2610 static rtx
2611 fixup_stack_1 (x, insn)
2612 rtx x;
2613 rtx insn;
2615 int i;
2616 RTX_CODE code = GET_CODE (x);
2617 const char *fmt;
2619 if (code == MEM)
2621 rtx ad = XEXP (x, 0);
2622 /* If we have address of a stack slot but it's not valid
2623 (displacement is too large), compute the sum in a register. */
2624 if (GET_CODE (ad) == PLUS
2625 && GET_CODE (XEXP (ad, 0)) == REG
2626 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2627 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2628 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2629 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2630 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2631 #endif
2632 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2633 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2634 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2635 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2637 rtx temp, seq;
2638 if (memory_address_p (GET_MODE (x), ad))
2639 return x;
2641 start_sequence ();
2642 temp = copy_to_reg (ad);
2643 seq = get_insns ();
2644 end_sequence ();
2645 emit_insn_before (seq, insn);
2646 return replace_equiv_address (x, temp);
2648 return x;
2651 fmt = GET_RTX_FORMAT (code);
2652 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2654 if (fmt[i] == 'e')
2655 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2656 else if (fmt[i] == 'E')
2658 int j;
2659 for (j = 0; j < XVECLEN (x, i); j++)
2660 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2663 return x;
2666 /* Optimization: a bit-field instruction whose field
2667 happens to be a byte or halfword in memory
2668 can be changed to a move instruction.
2670 We call here when INSN is an insn to examine or store into a bit-field.
2671 BODY is the SET-rtx to be altered.
2673 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2674 (Currently this is called only from function.c, and EQUIV_MEM
2675 is always 0.) */
2677 static void
2678 optimize_bit_field (body, insn, equiv_mem)
2679 rtx body;
2680 rtx insn;
2681 rtx *equiv_mem;
2683 rtx bitfield;
2684 int destflag;
2685 rtx seq = 0;
2686 enum machine_mode mode;
2688 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2689 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2690 bitfield = SET_DEST (body), destflag = 1;
2691 else
2692 bitfield = SET_SRC (body), destflag = 0;
2694 /* First check that the field being stored has constant size and position
2695 and is in fact a byte or halfword suitably aligned. */
2697 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2698 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2699 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2700 != BLKmode)
2701 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2703 rtx memref = 0;
2705 /* Now check that the containing word is memory, not a register,
2706 and that it is safe to change the machine mode. */
2708 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2709 memref = XEXP (bitfield, 0);
2710 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2711 && equiv_mem != 0)
2712 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2713 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2714 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2715 memref = SUBREG_REG (XEXP (bitfield, 0));
2716 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2717 && equiv_mem != 0
2718 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2719 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2721 if (memref
2722 && ! mode_dependent_address_p (XEXP (memref, 0))
2723 && ! MEM_VOLATILE_P (memref))
2725 /* Now adjust the address, first for any subreg'ing
2726 that we are now getting rid of,
2727 and then for which byte of the word is wanted. */
2729 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2730 rtx insns;
2732 /* Adjust OFFSET to count bits from low-address byte. */
2733 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2734 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2735 - offset - INTVAL (XEXP (bitfield, 1)));
2737 /* Adjust OFFSET to count bytes from low-address byte. */
2738 offset /= BITS_PER_UNIT;
2739 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2741 offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2742 / UNITS_PER_WORD) * UNITS_PER_WORD;
2743 if (BYTES_BIG_ENDIAN)
2744 offset -= (MIN (UNITS_PER_WORD,
2745 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2746 - MIN (UNITS_PER_WORD,
2747 GET_MODE_SIZE (GET_MODE (memref))));
2750 start_sequence ();
2751 memref = adjust_address (memref, mode, offset);
2752 insns = get_insns ();
2753 end_sequence ();
2754 emit_insn_before (insns, insn);
2756 /* Store this memory reference where
2757 we found the bit field reference. */
2759 if (destflag)
2761 validate_change (insn, &SET_DEST (body), memref, 1);
2762 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2764 rtx src = SET_SRC (body);
2765 while (GET_CODE (src) == SUBREG
2766 && SUBREG_BYTE (src) == 0)
2767 src = SUBREG_REG (src);
2768 if (GET_MODE (src) != GET_MODE (memref))
2769 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2770 validate_change (insn, &SET_SRC (body), src, 1);
2772 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2773 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2774 /* This shouldn't happen because anything that didn't have
2775 one of these modes should have got converted explicitly
2776 and then referenced through a subreg.
2777 This is so because the original bit-field was
2778 handled by agg_mode and so its tree structure had
2779 the same mode that memref now has. */
2780 abort ();
2782 else
2784 rtx dest = SET_DEST (body);
2786 while (GET_CODE (dest) == SUBREG
2787 && SUBREG_BYTE (dest) == 0
2788 && (GET_MODE_CLASS (GET_MODE (dest))
2789 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2790 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2791 <= UNITS_PER_WORD))
2792 dest = SUBREG_REG (dest);
2794 validate_change (insn, &SET_DEST (body), dest, 1);
2796 if (GET_MODE (dest) == GET_MODE (memref))
2797 validate_change (insn, &SET_SRC (body), memref, 1);
2798 else
2800 /* Convert the mem ref to the destination mode. */
2801 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2803 start_sequence ();
2804 convert_move (newreg, memref,
2805 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2806 seq = get_insns ();
2807 end_sequence ();
2809 validate_change (insn, &SET_SRC (body), newreg, 1);
2813 /* See if we can convert this extraction or insertion into
2814 a simple move insn. We might not be able to do so if this
2815 was, for example, part of a PARALLEL.
2817 If we succeed, write out any needed conversions. If we fail,
2818 it is hard to guess why we failed, so don't do anything
2819 special; just let the optimization be suppressed. */
2821 if (apply_change_group () && seq)
2822 emit_insn_before (seq, insn);
2827 /* These routines are responsible for converting virtual register references
2828 to the actual hard register references once RTL generation is complete.
2830 The following four variables are used for communication between the
2831 routines. They contain the offsets of the virtual registers from their
2832 respective hard registers. */
2834 static int in_arg_offset;
2835 static int var_offset;
2836 static int dynamic_offset;
2837 static int out_arg_offset;
2838 static int cfa_offset;
2840 /* In most machines, the stack pointer register is equivalent to the bottom
2841 of the stack. */
2843 #ifndef STACK_POINTER_OFFSET
2844 #define STACK_POINTER_OFFSET 0
2845 #endif
2847 /* If not defined, pick an appropriate default for the offset of dynamically
2848 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2849 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2851 #ifndef STACK_DYNAMIC_OFFSET
2853 /* The bottom of the stack points to the actual arguments. If
2854 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2855 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2856 stack space for register parameters is not pushed by the caller, but
2857 rather part of the fixed stack areas and hence not included in
2858 `current_function_outgoing_args_size'. Nevertheless, we must allow
2859 for it when allocating stack dynamic objects. */
2861 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2862 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2863 ((ACCUMULATE_OUTGOING_ARGS \
2864 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2865 + (STACK_POINTER_OFFSET)) \
2867 #else
2868 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2869 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2870 + (STACK_POINTER_OFFSET))
2871 #endif
2872 #endif
2874 /* On most machines, the CFA coincides with the first incoming parm. */
2876 #ifndef ARG_POINTER_CFA_OFFSET
2877 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2878 #endif
2880 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just
2881 had its address taken. DECL is the decl or SAVE_EXPR for the
2882 object stored in the register, for later use if we do need to force
2883 REG into the stack. REG is overwritten by the MEM like in
2884 put_reg_into_stack. RESCAN is true if previously emitted
2885 instructions must be rescanned and modified now that the REG has
2886 been transformed. */
2889 gen_mem_addressof (reg, decl, rescan)
2890 rtx reg;
2891 tree decl;
2892 int rescan;
2894 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2895 REGNO (reg), decl);
2897 /* Calculate this before we start messing with decl's RTL. */
2898 HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
2900 /* If the original REG was a user-variable, then so is the REG whose
2901 address is being taken. Likewise for unchanging. */
2902 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2903 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2905 PUT_CODE (reg, MEM);
2906 MEM_ATTRS (reg) = 0;
2907 XEXP (reg, 0) = r;
2909 if (decl)
2911 tree type = TREE_TYPE (decl);
2912 enum machine_mode decl_mode
2913 = (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
2914 rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
2915 : DECL_RTL_IF_SET (decl));
2917 PUT_MODE (reg, decl_mode);
2919 /* Clear DECL_RTL momentarily so functions below will work
2920 properly, then set it again. */
2921 if (DECL_P (decl) && decl_rtl == reg)
2922 SET_DECL_RTL (decl, 0);
2924 set_mem_attributes (reg, decl, 1);
2925 set_mem_alias_set (reg, set);
2927 if (DECL_P (decl) && decl_rtl == reg)
2928 SET_DECL_RTL (decl, reg);
2930 if (rescan
2931 && (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0)))
2932 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), reg, 0);
2934 else if (rescan)
2935 fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
2937 return reg;
2940 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2942 void
2943 flush_addressof (decl)
2944 tree decl;
2946 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2947 && DECL_RTL (decl) != 0
2948 && GET_CODE (DECL_RTL (decl)) == MEM
2949 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2950 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2951 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2954 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2956 static void
2957 put_addressof_into_stack (r, ht)
2958 rtx r;
2959 htab_t ht;
2961 tree decl, type;
2962 int volatile_p, used_p;
2964 rtx reg = XEXP (r, 0);
2966 if (GET_CODE (reg) != REG)
2967 abort ();
2969 decl = ADDRESSOF_DECL (r);
2970 if (decl)
2972 type = TREE_TYPE (decl);
2973 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2974 && TREE_THIS_VOLATILE (decl));
2975 used_p = (TREE_USED (decl)
2976 || (DECL_P (decl) && DECL_INITIAL (decl) != 0));
2978 else
2980 type = NULL_TREE;
2981 volatile_p = 0;
2982 used_p = 1;
2985 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2986 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2989 /* List of replacements made below in purge_addressof_1 when creating
2990 bitfield insertions. */
2991 static rtx purge_bitfield_addressof_replacements;
2993 /* List of replacements made below in purge_addressof_1 for patterns
2994 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2995 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2996 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2997 enough in complex cases, e.g. when some field values can be
2998 extracted by usage MEM with narrower mode. */
2999 static rtx purge_addressof_replacements;
3001 /* Helper function for purge_addressof. See if the rtx expression at *LOC
3002 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
3003 the stack. If the function returns FALSE then the replacement could not
3004 be made. If MAY_POSTPONE is true and we would not put the addressof
3005 to stack, postpone processing of the insn. */
3007 static bool
3008 purge_addressof_1 (loc, insn, force, store, may_postpone, ht)
3009 rtx *loc;
3010 rtx insn;
3011 int force, store, may_postpone;
3012 htab_t ht;
3014 rtx x;
3015 RTX_CODE code;
3016 int i, j;
3017 const char *fmt;
3018 bool result = true;
3020 /* Re-start here to avoid recursion in common cases. */
3021 restart:
3023 x = *loc;
3024 if (x == 0)
3025 return true;
3027 code = GET_CODE (x);
3029 /* If we don't return in any of the cases below, we will recurse inside
3030 the RTX, which will normally result in any ADDRESSOF being forced into
3031 memory. */
3032 if (code == SET)
3034 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1,
3035 may_postpone, ht);
3036 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0,
3037 may_postpone, ht);
3038 return result;
3040 else if (code == ADDRESSOF)
3042 rtx sub, insns;
3044 if (GET_CODE (XEXP (x, 0)) != MEM)
3045 put_addressof_into_stack (x, ht);
3047 /* We must create a copy of the rtx because it was created by
3048 overwriting a REG rtx which is always shared. */
3049 sub = copy_rtx (XEXP (XEXP (x, 0), 0));
3050 if (validate_change (insn, loc, sub, 0)
3051 || validate_replace_rtx (x, sub, insn))
3052 return true;
3054 start_sequence ();
3056 /* If SUB is a hard or virtual register, try it as a pseudo-register.
3057 Otherwise, perhaps SUB is an expression, so generate code to compute
3058 it. */
3059 if (GET_CODE (sub) == REG && REGNO (sub) <= LAST_VIRTUAL_REGISTER)
3060 sub = copy_to_reg (sub);
3061 else
3062 sub = force_operand (sub, NULL_RTX);
3064 if (! validate_change (insn, loc, sub, 0)
3065 && ! validate_replace_rtx (x, sub, insn))
3066 abort ();
3068 insns = get_insns ();
3069 end_sequence ();
3070 emit_insn_before (insns, insn);
3071 return true;
3074 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
3076 rtx sub = XEXP (XEXP (x, 0), 0);
3078 if (may_postpone)
3080 if (!postponed_insns || XEXP (postponed_insns, 0) != insn)
3081 postponed_insns = alloc_INSN_LIST (insn, postponed_insns);
3082 return true;
3085 if (GET_CODE (sub) == MEM)
3086 sub = adjust_address_nv (sub, GET_MODE (x), 0);
3087 else if (GET_CODE (sub) == REG
3088 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3090 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3092 int size_x, size_sub;
3094 if (!insn)
3096 /* When processing REG_NOTES look at the list of
3097 replacements done on the insn to find the register that X
3098 was replaced by. */
3099 rtx tem;
3101 for (tem = purge_bitfield_addressof_replacements;
3102 tem != NULL_RTX;
3103 tem = XEXP (XEXP (tem, 1), 1))
3104 if (rtx_equal_p (x, XEXP (tem, 0)))
3106 *loc = XEXP (XEXP (tem, 1), 0);
3107 return true;
3110 /* See comment for purge_addressof_replacements. */
3111 for (tem = purge_addressof_replacements;
3112 tem != NULL_RTX;
3113 tem = XEXP (XEXP (tem, 1), 1))
3114 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3116 rtx z = XEXP (XEXP (tem, 1), 0);
3118 if (GET_MODE (x) == GET_MODE (z)
3119 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3120 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3121 abort ();
3123 /* It can happen that the note may speak of things
3124 in a wider (or just different) mode than the
3125 code did. This is especially true of
3126 REG_RETVAL. */
3128 if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3129 z = SUBREG_REG (z);
3131 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3132 && (GET_MODE_SIZE (GET_MODE (x))
3133 > GET_MODE_SIZE (GET_MODE (z))))
3135 /* This can occur as a result in invalid
3136 pointer casts, e.g. float f; ...
3137 *(long long int *)&f.
3138 ??? We could emit a warning here, but
3139 without a line number that wouldn't be
3140 very helpful. */
3141 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3143 else
3144 z = gen_lowpart (GET_MODE (x), z);
3146 *loc = z;
3147 return true;
3150 /* When we are processing the REG_NOTES of the last instruction
3151 of a libcall, there will be typically no replacements
3152 for that insn; the replacements happened before, piecemeal
3153 fashion. OTOH we are not interested in the details of
3154 this for the REG_EQUAL note, we want to know the big picture,
3155 which can be succinctly described with a simple SUBREG.
3156 Note that removing the REG_EQUAL note is not an option
3157 on the last insn of a libcall, so we must do a replacement. */
3158 if (! purge_addressof_replacements
3159 && ! purge_bitfield_addressof_replacements)
3161 /* In compile/990107-1.c:7 compiled at -O1 -m1 for sh-elf,
3162 we got
3163 (mem:DI (addressof:SI (reg/v:DF 160) 159 0x401c8510)
3164 [0 S8 A32]), which can be expressed with a simple
3165 same-size subreg */
3166 if ((GET_MODE_SIZE (GET_MODE (x))
3167 == GET_MODE_SIZE (GET_MODE (sub)))
3168 /* Again, invalid pointer casts (as in
3169 compile/990203-1.c) can require paradoxical
3170 subregs. */
3171 || (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3172 && (GET_MODE_SIZE (GET_MODE (x))
3173 > GET_MODE_SIZE (GET_MODE (sub)))))
3175 *loc = gen_rtx_SUBREG (GET_MODE (x), sub, 0);
3176 return true;
3178 /* ??? Are there other cases we should handle? */
3180 /* Sometimes we may not be able to find the replacement. For
3181 example when the original insn was a MEM in a wider mode,
3182 and the note is part of a sign extension of a narrowed
3183 version of that MEM. Gcc testcase compile/990829-1.c can
3184 generate an example of this situation. Rather than complain
3185 we return false, which will prompt our caller to remove the
3186 offending note. */
3187 return false;
3190 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3191 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3193 /* Do not frob unchanging MEMs. If a later reference forces the
3194 pseudo to the stack, we can wind up with multiple writes to
3195 an unchanging memory, which is invalid. */
3196 if (RTX_UNCHANGING_P (x) && size_x != size_sub)
3199 /* Don't even consider working with paradoxical subregs,
3200 or the moral equivalent seen here. */
3201 else if (size_x <= size_sub
3202 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3204 /* Do a bitfield insertion to mirror what would happen
3205 in memory. */
3207 rtx val, seq;
3209 if (store)
3211 rtx p = PREV_INSN (insn);
3213 start_sequence ();
3214 val = gen_reg_rtx (GET_MODE (x));
3215 if (! validate_change (insn, loc, val, 0))
3217 /* Discard the current sequence and put the
3218 ADDRESSOF on stack. */
3219 end_sequence ();
3220 goto give_up;
3222 seq = get_insns ();
3223 end_sequence ();
3224 emit_insn_before (seq, insn);
3225 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3226 insn, ht);
3228 start_sequence ();
3229 store_bit_field (sub, size_x, 0, GET_MODE (x),
3230 val, GET_MODE_SIZE (GET_MODE (sub)));
3232 /* Make sure to unshare any shared rtl that store_bit_field
3233 might have created. */
3234 unshare_all_rtl_again (get_insns ());
3236 seq = get_insns ();
3237 end_sequence ();
3238 p = emit_insn_after (seq, insn);
3239 if (NEXT_INSN (insn))
3240 compute_insns_for_mem (NEXT_INSN (insn),
3241 p ? NEXT_INSN (p) : NULL_RTX,
3242 ht);
3244 else
3246 rtx p = PREV_INSN (insn);
3248 start_sequence ();
3249 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3250 GET_MODE (x), GET_MODE (x),
3251 GET_MODE_SIZE (GET_MODE (sub)));
3253 if (! validate_change (insn, loc, val, 0))
3255 /* Discard the current sequence and put the
3256 ADDRESSOF on stack. */
3257 end_sequence ();
3258 goto give_up;
3261 seq = get_insns ();
3262 end_sequence ();
3263 emit_insn_before (seq, insn);
3264 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3265 insn, ht);
3268 /* Remember the replacement so that the same one can be done
3269 on the REG_NOTES. */
3270 purge_bitfield_addressof_replacements
3271 = gen_rtx_EXPR_LIST (VOIDmode, x,
3272 gen_rtx_EXPR_LIST
3273 (VOIDmode, val,
3274 purge_bitfield_addressof_replacements));
3276 /* We replaced with a reg -- all done. */
3277 return true;
3281 else if (validate_change (insn, loc, sub, 0))
3283 /* Remember the replacement so that the same one can be done
3284 on the REG_NOTES. */
3285 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3287 rtx tem;
3289 for (tem = purge_addressof_replacements;
3290 tem != NULL_RTX;
3291 tem = XEXP (XEXP (tem, 1), 1))
3292 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3294 XEXP (XEXP (tem, 1), 0) = sub;
3295 return true;
3297 purge_addressof_replacements
3298 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3299 gen_rtx_EXPR_LIST (VOIDmode, sub,
3300 purge_addressof_replacements));
3301 return true;
3303 goto restart;
3307 give_up:
3308 /* Scan all subexpressions. */
3309 fmt = GET_RTX_FORMAT (code);
3310 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3312 if (*fmt == 'e')
3313 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0,
3314 may_postpone, ht);
3315 else if (*fmt == 'E')
3316 for (j = 0; j < XVECLEN (x, i); j++)
3317 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0,
3318 may_postpone, ht);
3321 return result;
3324 /* Return a hash value for K, a REG. */
3326 static hashval_t
3327 insns_for_mem_hash (k)
3328 const void * k;
3330 /* Use the address of the key for the hash value. */
3331 struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k;
3332 return htab_hash_pointer (m->key);
3335 /* Return nonzero if K1 and K2 (two REGs) are the same. */
3337 static int
3338 insns_for_mem_comp (k1, k2)
3339 const void * k1;
3340 const void * k2;
3342 struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1;
3343 struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2;
3344 return m1->key == m2->key;
3347 struct insns_for_mem_walk_info
3349 /* The hash table that we are using to record which INSNs use which
3350 MEMs. */
3351 htab_t ht;
3353 /* The INSN we are currently processing. */
3354 rtx insn;
3356 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3357 to find the insns that use the REGs in the ADDRESSOFs. */
3358 int pass;
3361 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3362 that might be used in an ADDRESSOF expression, record this INSN in
3363 the hash table given by DATA (which is really a pointer to an
3364 insns_for_mem_walk_info structure). */
3366 static int
3367 insns_for_mem_walk (r, data)
3368 rtx *r;
3369 void *data;
3371 struct insns_for_mem_walk_info *ifmwi
3372 = (struct insns_for_mem_walk_info *) data;
3373 struct insns_for_mem_entry tmp;
3374 tmp.insns = NULL_RTX;
3376 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3377 && GET_CODE (XEXP (*r, 0)) == REG)
3379 PTR *e;
3380 tmp.key = XEXP (*r, 0);
3381 e = htab_find_slot (ifmwi->ht, &tmp, INSERT);
3382 if (*e == NULL)
3384 *e = ggc_alloc (sizeof (tmp));
3385 memcpy (*e, &tmp, sizeof (tmp));
3388 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3390 struct insns_for_mem_entry *ifme;
3391 tmp.key = *r;
3392 ifme = (struct insns_for_mem_entry *) htab_find (ifmwi->ht, &tmp);
3394 /* If we have not already recorded this INSN, do so now. Since
3395 we process the INSNs in order, we know that if we have
3396 recorded it it must be at the front of the list. */
3397 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3398 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3399 ifme->insns);
3402 return 0;
3405 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3406 which REGs in HT. */
3408 static void
3409 compute_insns_for_mem (insns, last_insn, ht)
3410 rtx insns;
3411 rtx last_insn;
3412 htab_t ht;
3414 rtx insn;
3415 struct insns_for_mem_walk_info ifmwi;
3416 ifmwi.ht = ht;
3418 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3419 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3420 if (INSN_P (insn))
3422 ifmwi.insn = insn;
3423 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3427 /* Helper function for purge_addressof called through for_each_rtx.
3428 Returns true iff the rtl is an ADDRESSOF. */
3430 static int
3431 is_addressof (rtl, data)
3432 rtx *rtl;
3433 void *data ATTRIBUTE_UNUSED;
3435 return GET_CODE (*rtl) == ADDRESSOF;
3438 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3439 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3440 stack. */
3442 void
3443 purge_addressof (insns)
3444 rtx insns;
3446 rtx insn, tmp;
3447 htab_t ht;
3449 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3450 requires a fixup pass over the instruction stream to correct
3451 INSNs that depended on the REG being a REG, and not a MEM. But,
3452 these fixup passes are slow. Furthermore, most MEMs are not
3453 mentioned in very many instructions. So, we speed up the process
3454 by pre-calculating which REGs occur in which INSNs; that allows
3455 us to perform the fixup passes much more quickly. */
3456 ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL);
3457 compute_insns_for_mem (insns, NULL_RTX, ht);
3459 postponed_insns = NULL;
3461 for (insn = insns; insn; insn = NEXT_INSN (insn))
3462 if (INSN_P (insn))
3464 if (! purge_addressof_1 (&PATTERN (insn), insn,
3465 asm_noperands (PATTERN (insn)) > 0, 0, 1, ht))
3466 /* If we could not replace the ADDRESSOFs in the insn,
3467 something is wrong. */
3468 abort ();
3470 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, 0, ht))
3472 /* If we could not replace the ADDRESSOFs in the insn's notes,
3473 we can just remove the offending notes instead. */
3474 rtx note;
3476 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3478 /* If we find a REG_RETVAL note then the insn is a libcall.
3479 Such insns must have REG_EQUAL notes as well, in order
3480 for later passes of the compiler to work. So it is not
3481 safe to delete the notes here, and instead we abort. */
3482 if (REG_NOTE_KIND (note) == REG_RETVAL)
3483 abort ();
3484 if (for_each_rtx (&note, is_addressof, NULL))
3485 remove_note (insn, note);
3490 /* Process the postponed insns. */
3491 while (postponed_insns)
3493 insn = XEXP (postponed_insns, 0);
3494 tmp = postponed_insns;
3495 postponed_insns = XEXP (postponed_insns, 1);
3496 free_INSN_LIST_node (tmp);
3498 if (! purge_addressof_1 (&PATTERN (insn), insn,
3499 asm_noperands (PATTERN (insn)) > 0, 0, 0, ht))
3500 abort ();
3503 /* Clean up. */
3504 purge_bitfield_addressof_replacements = 0;
3505 purge_addressof_replacements = 0;
3507 /* REGs are shared. purge_addressof will destructively replace a REG
3508 with a MEM, which creates shared MEMs.
3510 Unfortunately, the children of put_reg_into_stack assume that MEMs
3511 referring to the same stack slot are shared (fixup_var_refs and
3512 the associated hash table code).
3514 So, we have to do another unsharing pass after we have flushed any
3515 REGs that had their address taken into the stack.
3517 It may be worth tracking whether or not we converted any REGs into
3518 MEMs to avoid this overhead when it is not needed. */
3519 unshare_all_rtl_again (get_insns ());
3522 /* Convert a SET of a hard subreg to a set of the appropriate hard
3523 register. A subroutine of purge_hard_subreg_sets. */
3525 static void
3526 purge_single_hard_subreg_set (pattern)
3527 rtx pattern;
3529 rtx reg = SET_DEST (pattern);
3530 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3531 int offset = 0;
3533 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3534 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3536 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3537 GET_MODE (SUBREG_REG (reg)),
3538 SUBREG_BYTE (reg),
3539 GET_MODE (reg));
3540 reg = SUBREG_REG (reg);
3544 if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3546 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3547 SET_DEST (pattern) = reg;
3551 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3552 only such SETs that we expect to see are those left in because
3553 integrate can't handle sets of parts of a return value register.
3555 We don't use alter_subreg because we only want to eliminate subregs
3556 of hard registers. */
3558 void
3559 purge_hard_subreg_sets (insn)
3560 rtx insn;
3562 for (; insn; insn = NEXT_INSN (insn))
3564 if (INSN_P (insn))
3566 rtx pattern = PATTERN (insn);
3567 switch (GET_CODE (pattern))
3569 case SET:
3570 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3571 purge_single_hard_subreg_set (pattern);
3572 break;
3573 case PARALLEL:
3575 int j;
3576 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3578 rtx inner_pattern = XVECEXP (pattern, 0, j);
3579 if (GET_CODE (inner_pattern) == SET
3580 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3581 purge_single_hard_subreg_set (inner_pattern);
3584 break;
3585 default:
3586 break;
3592 /* Pass through the INSNS of function FNDECL and convert virtual register
3593 references to hard register references. */
3595 void
3596 instantiate_virtual_regs (fndecl, insns)
3597 tree fndecl;
3598 rtx insns;
3600 rtx insn;
3601 unsigned int i;
3603 /* Compute the offsets to use for this function. */
3604 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3605 var_offset = STARTING_FRAME_OFFSET;
3606 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3607 out_arg_offset = STACK_POINTER_OFFSET;
3608 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3610 /* Scan all variables and parameters of this function. For each that is
3611 in memory, instantiate all virtual registers if the result is a valid
3612 address. If not, we do it later. That will handle most uses of virtual
3613 regs on many machines. */
3614 instantiate_decls (fndecl, 1);
3616 /* Initialize recognition, indicating that volatile is OK. */
3617 init_recog ();
3619 /* Scan through all the insns, instantiating every virtual register still
3620 present. */
3621 for (insn = insns; insn; insn = NEXT_INSN (insn))
3622 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3623 || GET_CODE (insn) == CALL_INSN)
3625 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3626 if (INSN_DELETED_P (insn))
3627 continue;
3628 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3629 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3630 if (GET_CODE (insn) == CALL_INSN)
3631 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3632 NULL_RTX, 0);
3634 /* Past this point all ASM statements should match. Verify that
3635 to avoid failures later in the compilation process. */
3636 if (asm_noperands (PATTERN (insn)) >= 0
3637 && ! check_asm_operands (PATTERN (insn)))
3638 instantiate_virtual_regs_lossage (insn);
3641 /* Instantiate the stack slots for the parm registers, for later use in
3642 addressof elimination. */
3643 for (i = 0; i < max_parm_reg; ++i)
3644 if (parm_reg_stack_loc[i])
3645 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3647 /* Now instantiate the remaining register equivalences for debugging info.
3648 These will not be valid addresses. */
3649 instantiate_decls (fndecl, 0);
3651 /* Indicate that, from now on, assign_stack_local should use
3652 frame_pointer_rtx. */
3653 virtuals_instantiated = 1;
3656 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3657 all virtual registers in their DECL_RTL's.
3659 If VALID_ONLY, do this only if the resulting address is still valid.
3660 Otherwise, always do it. */
3662 static void
3663 instantiate_decls (fndecl, valid_only)
3664 tree fndecl;
3665 int valid_only;
3667 tree decl;
3669 /* Process all parameters of the function. */
3670 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3672 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3673 HOST_WIDE_INT size_rtl;
3675 instantiate_decl (DECL_RTL (decl), size, valid_only);
3677 /* If the parameter was promoted, then the incoming RTL mode may be
3678 larger than the declared type size. We must use the larger of
3679 the two sizes. */
3680 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
3681 size = MAX (size_rtl, size);
3682 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3685 /* Now process all variables defined in the function or its subblocks. */
3686 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3689 /* Subroutine of instantiate_decls: Process all decls in the given
3690 BLOCK node and all its subblocks. */
3692 static void
3693 instantiate_decls_1 (let, valid_only)
3694 tree let;
3695 int valid_only;
3697 tree t;
3699 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3700 if (DECL_RTL_SET_P (t))
3701 instantiate_decl (DECL_RTL (t),
3702 int_size_in_bytes (TREE_TYPE (t)),
3703 valid_only);
3705 /* Process all subblocks. */
3706 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3707 instantiate_decls_1 (t, valid_only);
3710 /* Subroutine of the preceding procedures: Given RTL representing a
3711 decl and the size of the object, do any instantiation required.
3713 If VALID_ONLY is nonzero, it means that the RTL should only be
3714 changed if the new address is valid. */
3716 static void
3717 instantiate_decl (x, size, valid_only)
3718 rtx x;
3719 HOST_WIDE_INT size;
3720 int valid_only;
3722 enum machine_mode mode;
3723 rtx addr;
3725 /* If this is not a MEM, no need to do anything. Similarly if the
3726 address is a constant or a register that is not a virtual register. */
3728 if (x == 0 || GET_CODE (x) != MEM)
3729 return;
3731 addr = XEXP (x, 0);
3732 if (CONSTANT_P (addr)
3733 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3734 || (GET_CODE (addr) == REG
3735 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3736 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3737 return;
3739 /* If we should only do this if the address is valid, copy the address.
3740 We need to do this so we can undo any changes that might make the
3741 address invalid. This copy is unfortunate, but probably can't be
3742 avoided. */
3744 if (valid_only)
3745 addr = copy_rtx (addr);
3747 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3749 if (valid_only && size >= 0)
3751 unsigned HOST_WIDE_INT decl_size = size;
3753 /* Now verify that the resulting address is valid for every integer or
3754 floating-point mode up to and including SIZE bytes long. We do this
3755 since the object might be accessed in any mode and frame addresses
3756 are shared. */
3758 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3759 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3760 mode = GET_MODE_WIDER_MODE (mode))
3761 if (! memory_address_p (mode, addr))
3762 return;
3764 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3765 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3766 mode = GET_MODE_WIDER_MODE (mode))
3767 if (! memory_address_p (mode, addr))
3768 return;
3771 /* Put back the address now that we have updated it and we either know
3772 it is valid or we don't care whether it is valid. */
3774 XEXP (x, 0) = addr;
3777 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3778 is a virtual register, return the equivalent hard register and set the
3779 offset indirectly through the pointer. Otherwise, return 0. */
3781 static rtx
3782 instantiate_new_reg (x, poffset)
3783 rtx x;
3784 HOST_WIDE_INT *poffset;
3786 rtx new;
3787 HOST_WIDE_INT offset;
3789 if (x == virtual_incoming_args_rtx)
3790 new = arg_pointer_rtx, offset = in_arg_offset;
3791 else if (x == virtual_stack_vars_rtx)
3792 new = frame_pointer_rtx, offset = var_offset;
3793 else if (x == virtual_stack_dynamic_rtx)
3794 new = stack_pointer_rtx, offset = dynamic_offset;
3795 else if (x == virtual_outgoing_args_rtx)
3796 new = stack_pointer_rtx, offset = out_arg_offset;
3797 else if (x == virtual_cfa_rtx)
3798 new = arg_pointer_rtx, offset = cfa_offset;
3799 else
3800 return 0;
3802 *poffset = offset;
3803 return new;
3807 /* Called when instantiate_virtual_regs has failed to update the instruction.
3808 Usually this means that non-matching instruction has been emit, however for
3809 asm statements it may be the problem in the constraints. */
3810 static void
3811 instantiate_virtual_regs_lossage (insn)
3812 rtx insn;
3814 if (asm_noperands (PATTERN (insn)) >= 0)
3816 error_for_asm (insn, "impossible constraint in `asm'");
3817 delete_insn (insn);
3819 else
3820 abort ();
3822 /* Given a pointer to a piece of rtx and an optional pointer to the
3823 containing object, instantiate any virtual registers present in it.
3825 If EXTRA_INSNS, we always do the replacement and generate
3826 any extra insns before OBJECT. If it zero, we do nothing if replacement
3827 is not valid.
3829 Return 1 if we either had nothing to do or if we were able to do the
3830 needed replacement. Return 0 otherwise; we only return zero if
3831 EXTRA_INSNS is zero.
3833 We first try some simple transformations to avoid the creation of extra
3834 pseudos. */
3836 static int
3837 instantiate_virtual_regs_1 (loc, object, extra_insns)
3838 rtx *loc;
3839 rtx object;
3840 int extra_insns;
3842 rtx x;
3843 RTX_CODE code;
3844 rtx new = 0;
3845 HOST_WIDE_INT offset = 0;
3846 rtx temp;
3847 rtx seq;
3848 int i, j;
3849 const char *fmt;
3851 /* Re-start here to avoid recursion in common cases. */
3852 restart:
3854 x = *loc;
3855 if (x == 0)
3856 return 1;
3858 /* We may have detected and deleted invalid asm statements. */
3859 if (object && INSN_P (object) && INSN_DELETED_P (object))
3860 return 1;
3862 code = GET_CODE (x);
3864 /* Check for some special cases. */
3865 switch (code)
3867 case CONST_INT:
3868 case CONST_DOUBLE:
3869 case CONST_VECTOR:
3870 case CONST:
3871 case SYMBOL_REF:
3872 case CODE_LABEL:
3873 case PC:
3874 case CC0:
3875 case ASM_INPUT:
3876 case ADDR_VEC:
3877 case ADDR_DIFF_VEC:
3878 case RETURN:
3879 return 1;
3881 case SET:
3882 /* We are allowed to set the virtual registers. This means that
3883 the actual register should receive the source minus the
3884 appropriate offset. This is used, for example, in the handling
3885 of non-local gotos. */
3886 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3888 rtx src = SET_SRC (x);
3890 /* We are setting the register, not using it, so the relevant
3891 offset is the negative of the offset to use were we using
3892 the register. */
3893 offset = - offset;
3894 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3896 /* The only valid sources here are PLUS or REG. Just do
3897 the simplest possible thing to handle them. */
3898 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3900 instantiate_virtual_regs_lossage (object);
3901 return 1;
3904 start_sequence ();
3905 if (GET_CODE (src) != REG)
3906 temp = force_operand (src, NULL_RTX);
3907 else
3908 temp = src;
3909 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3910 seq = get_insns ();
3911 end_sequence ();
3913 emit_insn_before (seq, object);
3914 SET_DEST (x) = new;
3916 if (! validate_change (object, &SET_SRC (x), temp, 0)
3917 || ! extra_insns)
3918 instantiate_virtual_regs_lossage (object);
3920 return 1;
3923 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3924 loc = &SET_SRC (x);
3925 goto restart;
3927 case PLUS:
3928 /* Handle special case of virtual register plus constant. */
3929 if (CONSTANT_P (XEXP (x, 1)))
3931 rtx old, new_offset;
3933 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3934 if (GET_CODE (XEXP (x, 0)) == PLUS)
3936 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3938 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3939 extra_insns);
3940 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3942 else
3944 loc = &XEXP (x, 0);
3945 goto restart;
3949 #ifdef POINTERS_EXTEND_UNSIGNED
3950 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3951 we can commute the PLUS and SUBREG because pointers into the
3952 frame are well-behaved. */
3953 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3954 && GET_CODE (XEXP (x, 1)) == CONST_INT
3955 && 0 != (new
3956 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3957 &offset))
3958 && validate_change (object, loc,
3959 plus_constant (gen_lowpart (ptr_mode,
3960 new),
3961 offset
3962 + INTVAL (XEXP (x, 1))),
3964 return 1;
3965 #endif
3966 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3968 /* We know the second operand is a constant. Unless the
3969 first operand is a REG (which has been already checked),
3970 it needs to be checked. */
3971 if (GET_CODE (XEXP (x, 0)) != REG)
3973 loc = &XEXP (x, 0);
3974 goto restart;
3976 return 1;
3979 new_offset = plus_constant (XEXP (x, 1), offset);
3981 /* If the new constant is zero, try to replace the sum with just
3982 the register. */
3983 if (new_offset == const0_rtx
3984 && validate_change (object, loc, new, 0))
3985 return 1;
3987 /* Next try to replace the register and new offset.
3988 There are two changes to validate here and we can't assume that
3989 in the case of old offset equals new just changing the register
3990 will yield a valid insn. In the interests of a little efficiency,
3991 however, we only call validate change once (we don't queue up the
3992 changes and then call apply_change_group). */
3994 old = XEXP (x, 0);
3995 if (offset == 0
3996 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3997 : (XEXP (x, 0) = new,
3998 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
4000 if (! extra_insns)
4002 XEXP (x, 0) = old;
4003 return 0;
4006 /* Otherwise copy the new constant into a register and replace
4007 constant with that register. */
4008 temp = gen_reg_rtx (Pmode);
4009 XEXP (x, 0) = new;
4010 if (validate_change (object, &XEXP (x, 1), temp, 0))
4011 emit_insn_before (gen_move_insn (temp, new_offset), object);
4012 else
4014 /* If that didn't work, replace this expression with a
4015 register containing the sum. */
4017 XEXP (x, 0) = old;
4018 new = gen_rtx_PLUS (Pmode, new, new_offset);
4020 start_sequence ();
4021 temp = force_operand (new, NULL_RTX);
4022 seq = get_insns ();
4023 end_sequence ();
4025 emit_insn_before (seq, object);
4026 if (! validate_change (object, loc, temp, 0)
4027 && ! validate_replace_rtx (x, temp, object))
4029 instantiate_virtual_regs_lossage (object);
4030 return 1;
4035 return 1;
4038 /* Fall through to generic two-operand expression case. */
4039 case EXPR_LIST:
4040 case CALL:
4041 case COMPARE:
4042 case MINUS:
4043 case MULT:
4044 case DIV: case UDIV:
4045 case MOD: case UMOD:
4046 case AND: case IOR: case XOR:
4047 case ROTATERT: case ROTATE:
4048 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
4049 case NE: case EQ:
4050 case GE: case GT: case GEU: case GTU:
4051 case LE: case LT: case LEU: case LTU:
4052 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
4053 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
4054 loc = &XEXP (x, 0);
4055 goto restart;
4057 case MEM:
4058 /* Most cases of MEM that convert to valid addresses have already been
4059 handled by our scan of decls. The only special handling we
4060 need here is to make a copy of the rtx to ensure it isn't being
4061 shared if we have to change it to a pseudo.
4063 If the rtx is a simple reference to an address via a virtual register,
4064 it can potentially be shared. In such cases, first try to make it
4065 a valid address, which can also be shared. Otherwise, copy it and
4066 proceed normally.
4068 First check for common cases that need no processing. These are
4069 usually due to instantiation already being done on a previous instance
4070 of a shared rtx. */
4072 temp = XEXP (x, 0);
4073 if (CONSTANT_ADDRESS_P (temp)
4074 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4075 || temp == arg_pointer_rtx
4076 #endif
4077 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4078 || temp == hard_frame_pointer_rtx
4079 #endif
4080 || temp == frame_pointer_rtx)
4081 return 1;
4083 if (GET_CODE (temp) == PLUS
4084 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
4085 && (XEXP (temp, 0) == frame_pointer_rtx
4086 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4087 || XEXP (temp, 0) == hard_frame_pointer_rtx
4088 #endif
4089 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4090 || XEXP (temp, 0) == arg_pointer_rtx
4091 #endif
4093 return 1;
4095 if (temp == virtual_stack_vars_rtx
4096 || temp == virtual_incoming_args_rtx
4097 || (GET_CODE (temp) == PLUS
4098 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
4099 && (XEXP (temp, 0) == virtual_stack_vars_rtx
4100 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
4102 /* This MEM may be shared. If the substitution can be done without
4103 the need to generate new pseudos, we want to do it in place
4104 so all copies of the shared rtx benefit. The call below will
4105 only make substitutions if the resulting address is still
4106 valid.
4108 Note that we cannot pass X as the object in the recursive call
4109 since the insn being processed may not allow all valid
4110 addresses. However, if we were not passed on object, we can
4111 only modify X without copying it if X will have a valid
4112 address.
4114 ??? Also note that this can still lose if OBJECT is an insn that
4115 has less restrictions on an address that some other insn.
4116 In that case, we will modify the shared address. This case
4117 doesn't seem very likely, though. One case where this could
4118 happen is in the case of a USE or CLOBBER reference, but we
4119 take care of that below. */
4121 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
4122 object ? object : x, 0))
4123 return 1;
4125 /* Otherwise make a copy and process that copy. We copy the entire
4126 RTL expression since it might be a PLUS which could also be
4127 shared. */
4128 *loc = x = copy_rtx (x);
4131 /* Fall through to generic unary operation case. */
4132 case PREFETCH:
4133 case SUBREG:
4134 case STRICT_LOW_PART:
4135 case NEG: case NOT:
4136 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4137 case SIGN_EXTEND: case ZERO_EXTEND:
4138 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4139 case FLOAT: case FIX:
4140 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4141 case ABS:
4142 case SQRT:
4143 case FFS:
4144 case CLZ: case CTZ:
4145 case POPCOUNT: case PARITY:
4146 /* These case either have just one operand or we know that we need not
4147 check the rest of the operands. */
4148 loc = &XEXP (x, 0);
4149 goto restart;
4151 case USE:
4152 case CLOBBER:
4153 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4154 go ahead and make the invalid one, but do it to a copy. For a REG,
4155 just make the recursive call, since there's no chance of a problem. */
4157 if ((GET_CODE (XEXP (x, 0)) == MEM
4158 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4160 || (GET_CODE (XEXP (x, 0)) == REG
4161 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4162 return 1;
4164 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4165 loc = &XEXP (x, 0);
4166 goto restart;
4168 case REG:
4169 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4170 in front of this insn and substitute the temporary. */
4171 if ((new = instantiate_new_reg (x, &offset)) != 0)
4173 temp = plus_constant (new, offset);
4174 if (!validate_change (object, loc, temp, 0))
4176 if (! extra_insns)
4177 return 0;
4179 start_sequence ();
4180 temp = force_operand (temp, NULL_RTX);
4181 seq = get_insns ();
4182 end_sequence ();
4184 emit_insn_before (seq, object);
4185 if (! validate_change (object, loc, temp, 0)
4186 && ! validate_replace_rtx (x, temp, object))
4187 instantiate_virtual_regs_lossage (object);
4191 return 1;
4193 case ADDRESSOF:
4194 if (GET_CODE (XEXP (x, 0)) == REG)
4195 return 1;
4197 else if (GET_CODE (XEXP (x, 0)) == MEM)
4199 /* If we have a (addressof (mem ..)), do any instantiation inside
4200 since we know we'll be making the inside valid when we finally
4201 remove the ADDRESSOF. */
4202 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4203 return 1;
4205 break;
4207 default:
4208 break;
4211 /* Scan all subexpressions. */
4212 fmt = GET_RTX_FORMAT (code);
4213 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4214 if (*fmt == 'e')
4216 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4217 return 0;
4219 else if (*fmt == 'E')
4220 for (j = 0; j < XVECLEN (x, i); j++)
4221 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4222 extra_insns))
4223 return 0;
4225 return 1;
4228 /* Optimization: assuming this function does not receive nonlocal gotos,
4229 delete the handlers for such, as well as the insns to establish
4230 and disestablish them. */
4232 static void
4233 delete_handlers ()
4235 rtx insn;
4236 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4238 /* Delete the handler by turning off the flag that would
4239 prevent jump_optimize from deleting it.
4240 Also permit deletion of the nonlocal labels themselves
4241 if nothing local refers to them. */
4242 if (GET_CODE (insn) == CODE_LABEL)
4244 tree t, last_t;
4246 LABEL_PRESERVE_P (insn) = 0;
4248 /* Remove it from the nonlocal_label list, to avoid confusing
4249 flow. */
4250 for (t = nonlocal_labels, last_t = 0; t;
4251 last_t = t, t = TREE_CHAIN (t))
4252 if (DECL_RTL (TREE_VALUE (t)) == insn)
4253 break;
4254 if (t)
4256 if (! last_t)
4257 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4258 else
4259 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4262 if (GET_CODE (insn) == INSN)
4264 int can_delete = 0;
4265 rtx t;
4266 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4267 if (reg_mentioned_p (t, PATTERN (insn)))
4269 can_delete = 1;
4270 break;
4272 if (can_delete
4273 || (nonlocal_goto_stack_level != 0
4274 && reg_mentioned_p (nonlocal_goto_stack_level,
4275 PATTERN (insn))))
4276 delete_related_insns (insn);
4281 /* Return the first insn following those generated by `assign_parms'. */
4284 get_first_nonparm_insn ()
4286 if (last_parm_insn)
4287 return NEXT_INSN (last_parm_insn);
4288 return get_insns ();
4291 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4292 This means a type for which function calls must pass an address to the
4293 function or get an address back from the function.
4294 EXP may be a type node or an expression (whose type is tested). */
4297 aggregate_value_p (exp)
4298 tree exp;
4300 int i, regno, nregs;
4301 rtx reg;
4303 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4305 if (TREE_CODE (type) == VOID_TYPE)
4306 return 0;
4307 if (RETURN_IN_MEMORY (type))
4308 return 1;
4309 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4310 and thus can't be returned in registers. */
4311 if (TREE_ADDRESSABLE (type))
4312 return 1;
4313 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4314 return 1;
4315 /* Make sure we have suitable call-clobbered regs to return
4316 the value in; if not, we must return it in memory. */
4317 reg = hard_function_value (type, 0, 0);
4319 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4320 it is OK. */
4321 if (GET_CODE (reg) != REG)
4322 return 0;
4324 regno = REGNO (reg);
4325 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4326 for (i = 0; i < nregs; i++)
4327 if (! call_used_regs[regno + i])
4328 return 1;
4329 return 0;
4332 /* Assign RTL expressions to the function's parameters.
4333 This may involve copying them into registers and using
4334 those registers as the RTL for them. */
4336 void
4337 assign_parms (fndecl)
4338 tree fndecl;
4340 tree parm;
4341 rtx entry_parm = 0;
4342 rtx stack_parm = 0;
4343 CUMULATIVE_ARGS args_so_far;
4344 enum machine_mode promoted_mode, passed_mode;
4345 enum machine_mode nominal_mode, promoted_nominal_mode;
4346 int unsignedp;
4347 /* Total space needed so far for args on the stack,
4348 given as a constant and a tree-expression. */
4349 struct args_size stack_args_size;
4350 tree fntype = TREE_TYPE (fndecl);
4351 tree fnargs = DECL_ARGUMENTS (fndecl);
4352 /* This is used for the arg pointer when referring to stack args. */
4353 rtx internal_arg_pointer;
4354 /* This is a dummy PARM_DECL that we used for the function result if
4355 the function returns a structure. */
4356 tree function_result_decl = 0;
4357 #ifdef SETUP_INCOMING_VARARGS
4358 int varargs_setup = 0;
4359 #endif
4360 rtx conversion_insns = 0;
4361 struct args_size alignment_pad;
4363 /* Nonzero if function takes extra anonymous args.
4364 This means the last named arg must be on the stack
4365 right before the anonymous ones. */
4366 int stdarg
4367 = (TYPE_ARG_TYPES (fntype) != 0
4368 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4369 != void_type_node));
4371 current_function_stdarg = stdarg;
4373 /* If the reg that the virtual arg pointer will be translated into is
4374 not a fixed reg or is the stack pointer, make a copy of the virtual
4375 arg pointer, and address parms via the copy. The frame pointer is
4376 considered fixed even though it is not marked as such.
4378 The second time through, simply use ap to avoid generating rtx. */
4380 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4381 || ! (fixed_regs[ARG_POINTER_REGNUM]
4382 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4383 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4384 else
4385 internal_arg_pointer = virtual_incoming_args_rtx;
4386 current_function_internal_arg_pointer = internal_arg_pointer;
4388 stack_args_size.constant = 0;
4389 stack_args_size.var = 0;
4391 /* If struct value address is treated as the first argument, make it so. */
4392 if (aggregate_value_p (DECL_RESULT (fndecl))
4393 && ! current_function_returns_pcc_struct
4394 && struct_value_incoming_rtx == 0)
4396 tree type = build_pointer_type (TREE_TYPE (fntype));
4398 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4400 DECL_ARG_TYPE (function_result_decl) = type;
4401 TREE_CHAIN (function_result_decl) = fnargs;
4402 fnargs = function_result_decl;
4405 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4406 parm_reg_stack_loc = (rtx *) ggc_alloc_cleared (max_parm_reg * sizeof (rtx));
4408 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4409 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4410 #else
4411 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, fndecl);
4412 #endif
4414 /* We haven't yet found an argument that we must push and pretend the
4415 caller did. */
4416 current_function_pretend_args_size = 0;
4418 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4420 struct args_size stack_offset;
4421 struct args_size arg_size;
4422 int passed_pointer = 0;
4423 int did_conversion = 0;
4424 tree passed_type = DECL_ARG_TYPE (parm);
4425 tree nominal_type = TREE_TYPE (parm);
4426 int pretend_named;
4427 int last_named = 0, named_arg;
4429 /* Set LAST_NAMED if this is last named arg before last
4430 anonymous args. */
4431 if (stdarg)
4433 tree tem;
4435 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
4436 if (DECL_NAME (tem))
4437 break;
4439 if (tem == 0)
4440 last_named = 1;
4442 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4443 most machines, if this is a varargs/stdarg function, then we treat
4444 the last named arg as if it were anonymous too. */
4445 named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4447 if (TREE_TYPE (parm) == error_mark_node
4448 /* This can happen after weird syntax errors
4449 or if an enum type is defined among the parms. */
4450 || TREE_CODE (parm) != PARM_DECL
4451 || passed_type == NULL)
4453 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4454 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4455 TREE_USED (parm) = 1;
4456 continue;
4459 /* Find mode of arg as it is passed, and mode of arg
4460 as it should be during execution of this function. */
4461 passed_mode = TYPE_MODE (passed_type);
4462 nominal_mode = TYPE_MODE (nominal_type);
4464 /* If the parm's mode is VOID, its value doesn't matter,
4465 and avoid the usual things like emit_move_insn that could crash. */
4466 if (nominal_mode == VOIDmode)
4468 SET_DECL_RTL (parm, const0_rtx);
4469 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4470 continue;
4473 /* If the parm is to be passed as a transparent union, use the
4474 type of the first field for the tests below. We have already
4475 verified that the modes are the same. */
4476 if (DECL_TRANSPARENT_UNION (parm)
4477 || (TREE_CODE (passed_type) == UNION_TYPE
4478 && TYPE_TRANSPARENT_UNION (passed_type)))
4479 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4481 /* See if this arg was passed by invisible reference. It is if
4482 it is an object whose size depends on the contents of the
4483 object itself or if the machine requires these objects be passed
4484 that way. */
4486 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4487 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4488 || TREE_ADDRESSABLE (passed_type)
4489 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4490 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4491 passed_type, named_arg)
4492 #endif
4495 passed_type = nominal_type = build_pointer_type (passed_type);
4496 passed_pointer = 1;
4497 passed_mode = nominal_mode = Pmode;
4499 /* See if the frontend wants to pass this by invisible reference. */
4500 else if (passed_type != nominal_type
4501 && POINTER_TYPE_P (passed_type)
4502 && TREE_TYPE (passed_type) == nominal_type)
4504 nominal_type = passed_type;
4505 passed_pointer = 1;
4506 passed_mode = nominal_mode = Pmode;
4509 promoted_mode = passed_mode;
4511 #ifdef PROMOTE_FUNCTION_ARGS
4512 /* Compute the mode in which the arg is actually extended to. */
4513 unsignedp = TREE_UNSIGNED (passed_type);
4514 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4515 #endif
4517 /* Let machine desc say which reg (if any) the parm arrives in.
4518 0 means it arrives on the stack. */
4519 #ifdef FUNCTION_INCOMING_ARG
4520 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4521 passed_type, named_arg);
4522 #else
4523 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4524 passed_type, named_arg);
4525 #endif
4527 if (entry_parm == 0)
4528 promoted_mode = passed_mode;
4530 #ifdef SETUP_INCOMING_VARARGS
4531 /* If this is the last named parameter, do any required setup for
4532 varargs or stdargs. We need to know about the case of this being an
4533 addressable type, in which case we skip the registers it
4534 would have arrived in.
4536 For stdargs, LAST_NAMED will be set for two parameters, the one that
4537 is actually the last named, and the dummy parameter. We only
4538 want to do this action once.
4540 Also, indicate when RTL generation is to be suppressed. */
4541 if (last_named && !varargs_setup)
4543 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4544 current_function_pretend_args_size, 0);
4545 varargs_setup = 1;
4547 #endif
4549 /* Determine parm's home in the stack,
4550 in case it arrives in the stack or we should pretend it did.
4552 Compute the stack position and rtx where the argument arrives
4553 and its size.
4555 There is one complexity here: If this was a parameter that would
4556 have been passed in registers, but wasn't only because it is
4557 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4558 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4559 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4560 0 as it was the previous time. */
4562 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4563 locate_and_pad_parm (promoted_mode, passed_type,
4564 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4566 #else
4567 #ifdef FUNCTION_INCOMING_ARG
4568 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4569 passed_type,
4570 pretend_named) != 0,
4571 #else
4572 FUNCTION_ARG (args_so_far, promoted_mode,
4573 passed_type,
4574 pretend_named) != 0,
4575 #endif
4576 #endif
4577 fndecl, &stack_args_size, &stack_offset, &arg_size,
4578 &alignment_pad);
4581 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4583 if (offset_rtx == const0_rtx)
4584 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4585 else
4586 stack_parm = gen_rtx_MEM (promoted_mode,
4587 gen_rtx_PLUS (Pmode,
4588 internal_arg_pointer,
4589 offset_rtx));
4591 set_mem_attributes (stack_parm, parm, 1);
4593 /* Set also REG_ATTRS if parameter was passed in a register. */
4594 if (entry_parm)
4595 set_reg_attrs_for_parm (entry_parm, stack_parm);
4598 /* If this parameter was passed both in registers and in the stack,
4599 use the copy on the stack. */
4600 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4601 entry_parm = 0;
4603 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4604 /* If this parm was passed part in regs and part in memory,
4605 pretend it arrived entirely in memory
4606 by pushing the register-part onto the stack.
4608 In the special case of a DImode or DFmode that is split,
4609 we could put it together in a pseudoreg directly,
4610 but for now that's not worth bothering with. */
4612 if (entry_parm)
4614 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4615 passed_type, named_arg);
4617 if (nregs > 0)
4619 #if defined (REG_PARM_STACK_SPACE) && !defined (MAYBE_REG_PARM_STACK_SPACE)
4620 /* When REG_PARM_STACK_SPACE is nonzero, stack space for
4621 split parameters was allocated by our caller, so we
4622 won't be pushing it in the prolog. */
4623 if (REG_PARM_STACK_SPACE (fndecl) == 0)
4624 #endif
4625 current_function_pretend_args_size
4626 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4627 / (PARM_BOUNDARY / BITS_PER_UNIT)
4628 * (PARM_BOUNDARY / BITS_PER_UNIT));
4630 /* Handle calls that pass values in multiple non-contiguous
4631 locations. The Irix 6 ABI has examples of this. */
4632 if (GET_CODE (entry_parm) == PARALLEL)
4633 emit_group_store (validize_mem (stack_parm), entry_parm,
4634 int_size_in_bytes (TREE_TYPE (parm)));
4636 else
4637 move_block_from_reg (REGNO (entry_parm),
4638 validize_mem (stack_parm), nregs,
4639 int_size_in_bytes (TREE_TYPE (parm)));
4641 entry_parm = stack_parm;
4644 #endif
4646 /* If we didn't decide this parm came in a register,
4647 by default it came on the stack. */
4648 if (entry_parm == 0)
4649 entry_parm = stack_parm;
4651 /* Record permanently how this parm was passed. */
4652 DECL_INCOMING_RTL (parm) = entry_parm;
4654 /* If there is actually space on the stack for this parm,
4655 count it in stack_args_size; otherwise set stack_parm to 0
4656 to indicate there is no preallocated stack slot for the parm. */
4658 if (entry_parm == stack_parm
4659 || (GET_CODE (entry_parm) == PARALLEL
4660 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4661 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4662 /* On some machines, even if a parm value arrives in a register
4663 there is still an (uninitialized) stack slot allocated for it.
4665 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4666 whether this parameter already has a stack slot allocated,
4667 because an arg block exists only if current_function_args_size
4668 is larger than some threshold, and we haven't calculated that
4669 yet. So, for now, we just assume that stack slots never exist
4670 in this case. */
4671 || REG_PARM_STACK_SPACE (fndecl) > 0
4672 #endif
4675 stack_args_size.constant += arg_size.constant;
4676 if (arg_size.var)
4677 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4679 else
4680 /* No stack slot was pushed for this parm. */
4681 stack_parm = 0;
4683 /* Update info on where next arg arrives in registers. */
4685 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4686 passed_type, named_arg);
4688 /* If we can't trust the parm stack slot to be aligned enough
4689 for its ultimate type, don't use that slot after entry.
4690 We'll make another stack slot, if we need one. */
4692 unsigned int thisparm_boundary
4693 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4695 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4696 stack_parm = 0;
4699 /* If parm was passed in memory, and we need to convert it on entry,
4700 don't store it back in that same slot. */
4701 if (entry_parm != 0
4702 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4703 stack_parm = 0;
4705 /* When an argument is passed in multiple locations, we can't
4706 make use of this information, but we can save some copying if
4707 the whole argument is passed in a single register. */
4708 if (GET_CODE (entry_parm) == PARALLEL
4709 && nominal_mode != BLKmode && passed_mode != BLKmode)
4711 int i, len = XVECLEN (entry_parm, 0);
4713 for (i = 0; i < len; i++)
4714 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4715 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4716 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4717 == passed_mode)
4718 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4720 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4721 DECL_INCOMING_RTL (parm) = entry_parm;
4722 break;
4726 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4727 in the mode in which it arrives.
4728 STACK_PARM is an RTX for a stack slot where the parameter can live
4729 during the function (in case we want to put it there).
4730 STACK_PARM is 0 if no stack slot was pushed for it.
4732 Now output code if necessary to convert ENTRY_PARM to
4733 the type in which this function declares it,
4734 and store that result in an appropriate place,
4735 which may be a pseudo reg, may be STACK_PARM,
4736 or may be a local stack slot if STACK_PARM is 0.
4738 Set DECL_RTL to that place. */
4740 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4742 /* If a BLKmode arrives in registers, copy it to a stack slot.
4743 Handle calls that pass values in multiple non-contiguous
4744 locations. The Irix 6 ABI has examples of this. */
4745 if (GET_CODE (entry_parm) == REG
4746 || GET_CODE (entry_parm) == PARALLEL)
4748 int size_stored
4749 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4750 UNITS_PER_WORD);
4752 /* Note that we will be storing an integral number of words.
4753 So we have to be careful to ensure that we allocate an
4754 integral number of words. We do this below in the
4755 assign_stack_local if space was not allocated in the argument
4756 list. If it was, this will not work if PARM_BOUNDARY is not
4757 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4758 if it becomes a problem. */
4760 if (stack_parm == 0)
4762 stack_parm
4763 = assign_stack_local (GET_MODE (entry_parm),
4764 size_stored, 0);
4765 set_mem_attributes (stack_parm, parm, 1);
4768 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4769 abort ();
4771 /* Handle calls that pass values in multiple non-contiguous
4772 locations. The Irix 6 ABI has examples of this. */
4773 if (GET_CODE (entry_parm) == PARALLEL)
4774 emit_group_store (validize_mem (stack_parm), entry_parm,
4775 int_size_in_bytes (TREE_TYPE (parm)));
4776 else
4777 move_block_from_reg (REGNO (entry_parm),
4778 validize_mem (stack_parm),
4779 size_stored / UNITS_PER_WORD,
4780 int_size_in_bytes (TREE_TYPE (parm)));
4782 SET_DECL_RTL (parm, stack_parm);
4784 else if (! ((! optimize
4785 && ! DECL_REGISTER (parm))
4786 || TREE_SIDE_EFFECTS (parm)
4787 /* If -ffloat-store specified, don't put explicit
4788 float variables into registers. */
4789 || (flag_float_store
4790 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4791 /* Always assign pseudo to structure return or item passed
4792 by invisible reference. */
4793 || passed_pointer || parm == function_result_decl)
4795 /* Store the parm in a pseudoregister during the function, but we
4796 may need to do it in a wider mode. */
4798 rtx parmreg;
4799 unsigned int regno, regnoi = 0, regnor = 0;
4801 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4803 promoted_nominal_mode
4804 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4806 parmreg = gen_reg_rtx (promoted_nominal_mode);
4807 mark_user_reg (parmreg);
4809 /* If this was an item that we received a pointer to, set DECL_RTL
4810 appropriately. */
4811 if (passed_pointer)
4813 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4814 parmreg);
4815 set_mem_attributes (x, parm, 1);
4816 SET_DECL_RTL (parm, x);
4818 else
4820 SET_DECL_RTL (parm, parmreg);
4821 maybe_set_unchanging (DECL_RTL (parm), parm);
4824 /* Copy the value into the register. */
4825 if (nominal_mode != passed_mode
4826 || promoted_nominal_mode != promoted_mode)
4828 int save_tree_used;
4829 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4830 mode, by the caller. We now have to convert it to
4831 NOMINAL_MODE, if different. However, PARMREG may be in
4832 a different mode than NOMINAL_MODE if it is being stored
4833 promoted.
4835 If ENTRY_PARM is a hard register, it might be in a register
4836 not valid for operating in its mode (e.g., an odd-numbered
4837 register for a DFmode). In that case, moves are the only
4838 thing valid, so we can't do a convert from there. This
4839 occurs when the calling sequence allow such misaligned
4840 usages.
4842 In addition, the conversion may involve a call, which could
4843 clobber parameters which haven't been copied to pseudo
4844 registers yet. Therefore, we must first copy the parm to
4845 a pseudo reg here, and save the conversion until after all
4846 parameters have been moved. */
4848 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4850 emit_move_insn (tempreg, validize_mem (entry_parm));
4852 push_to_sequence (conversion_insns);
4853 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4855 if (GET_CODE (tempreg) == SUBREG
4856 && GET_MODE (tempreg) == nominal_mode
4857 && GET_CODE (SUBREG_REG (tempreg)) == REG
4858 && nominal_mode == passed_mode
4859 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4860 && GET_MODE_SIZE (GET_MODE (tempreg))
4861 < GET_MODE_SIZE (GET_MODE (entry_parm)))
4863 /* The argument is already sign/zero extended, so note it
4864 into the subreg. */
4865 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4866 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
4869 /* TREE_USED gets set erroneously during expand_assignment. */
4870 save_tree_used = TREE_USED (parm);
4871 expand_assignment (parm,
4872 make_tree (nominal_type, tempreg), 0, 0);
4873 TREE_USED (parm) = save_tree_used;
4874 conversion_insns = get_insns ();
4875 did_conversion = 1;
4876 end_sequence ();
4878 else
4879 emit_move_insn (parmreg, validize_mem (entry_parm));
4881 /* If we were passed a pointer but the actual value
4882 can safely live in a register, put it in one. */
4883 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4884 /* If by-reference argument was promoted, demote it. */
4885 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
4886 || ! ((! optimize
4887 && ! DECL_REGISTER (parm))
4888 || TREE_SIDE_EFFECTS (parm)
4889 /* If -ffloat-store specified, don't put explicit
4890 float variables into registers. */
4891 || (flag_float_store
4892 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
4894 /* We can't use nominal_mode, because it will have been set to
4895 Pmode above. We must use the actual mode of the parm. */
4896 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4897 mark_user_reg (parmreg);
4898 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4900 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4901 int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4902 push_to_sequence (conversion_insns);
4903 emit_move_insn (tempreg, DECL_RTL (parm));
4904 SET_DECL_RTL (parm,
4905 convert_to_mode (GET_MODE (parmreg),
4906 tempreg,
4907 unsigned_p));
4908 emit_move_insn (parmreg, DECL_RTL (parm));
4909 conversion_insns = get_insns();
4910 did_conversion = 1;
4911 end_sequence ();
4913 else
4914 emit_move_insn (parmreg, DECL_RTL (parm));
4915 SET_DECL_RTL (parm, parmreg);
4916 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4917 now the parm. */
4918 stack_parm = 0;
4920 #ifdef FUNCTION_ARG_CALLEE_COPIES
4921 /* If we are passed an arg by reference and it is our responsibility
4922 to make a copy, do it now.
4923 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4924 original argument, so we must recreate them in the call to
4925 FUNCTION_ARG_CALLEE_COPIES. */
4926 /* ??? Later add code to handle the case that if the argument isn't
4927 modified, don't do the copy. */
4929 else if (passed_pointer
4930 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4931 TYPE_MODE (DECL_ARG_TYPE (parm)),
4932 DECL_ARG_TYPE (parm),
4933 named_arg)
4934 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4936 rtx copy;
4937 tree type = DECL_ARG_TYPE (parm);
4939 /* This sequence may involve a library call perhaps clobbering
4940 registers that haven't been copied to pseudos yet. */
4942 push_to_sequence (conversion_insns);
4944 if (!COMPLETE_TYPE_P (type)
4945 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4946 /* This is a variable sized object. */
4947 copy = gen_rtx_MEM (BLKmode,
4948 allocate_dynamic_stack_space
4949 (expr_size (parm), NULL_RTX,
4950 TYPE_ALIGN (type)));
4951 else
4952 copy = assign_stack_temp (TYPE_MODE (type),
4953 int_size_in_bytes (type), 1);
4954 set_mem_attributes (copy, parm, 1);
4956 store_expr (parm, copy, 0);
4957 emit_move_insn (parmreg, XEXP (copy, 0));
4958 conversion_insns = get_insns ();
4959 did_conversion = 1;
4960 end_sequence ();
4962 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4964 /* In any case, record the parm's desired stack location
4965 in case we later discover it must live in the stack.
4967 If it is a COMPLEX value, store the stack location for both
4968 halves. */
4970 if (GET_CODE (parmreg) == CONCAT)
4971 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4972 else
4973 regno = REGNO (parmreg);
4975 if (regno >= max_parm_reg)
4977 rtx *new;
4978 int old_max_parm_reg = max_parm_reg;
4980 /* It's slow to expand this one register at a time,
4981 but it's also rare and we need max_parm_reg to be
4982 precisely correct. */
4983 max_parm_reg = regno + 1;
4984 new = (rtx *) ggc_realloc (parm_reg_stack_loc,
4985 max_parm_reg * sizeof (rtx));
4986 memset ((char *) (new + old_max_parm_reg), 0,
4987 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4988 parm_reg_stack_loc = new;
4991 if (GET_CODE (parmreg) == CONCAT)
4993 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4995 regnor = REGNO (gen_realpart (submode, parmreg));
4996 regnoi = REGNO (gen_imagpart (submode, parmreg));
4998 if (stack_parm != 0)
5000 parm_reg_stack_loc[regnor]
5001 = gen_realpart (submode, stack_parm);
5002 parm_reg_stack_loc[regnoi]
5003 = gen_imagpart (submode, stack_parm);
5005 else
5007 parm_reg_stack_loc[regnor] = 0;
5008 parm_reg_stack_loc[regnoi] = 0;
5011 else
5012 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
5014 /* Mark the register as eliminable if we did no conversion
5015 and it was copied from memory at a fixed offset,
5016 and the arg pointer was not copied to a pseudo-reg.
5017 If the arg pointer is a pseudo reg or the offset formed
5018 an invalid address, such memory-equivalences
5019 as we make here would screw up life analysis for it. */
5020 if (nominal_mode == passed_mode
5021 && ! did_conversion
5022 && stack_parm != 0
5023 && GET_CODE (stack_parm) == MEM
5024 && stack_offset.var == 0
5025 && reg_mentioned_p (virtual_incoming_args_rtx,
5026 XEXP (stack_parm, 0)))
5028 rtx linsn = get_last_insn ();
5029 rtx sinsn, set;
5031 /* Mark complex types separately. */
5032 if (GET_CODE (parmreg) == CONCAT)
5033 /* Scan backwards for the set of the real and
5034 imaginary parts. */
5035 for (sinsn = linsn; sinsn != 0;
5036 sinsn = prev_nonnote_insn (sinsn))
5038 set = single_set (sinsn);
5039 if (set != 0
5040 && SET_DEST (set) == regno_reg_rtx [regnoi])
5041 REG_NOTES (sinsn)
5042 = gen_rtx_EXPR_LIST (REG_EQUIV,
5043 parm_reg_stack_loc[regnoi],
5044 REG_NOTES (sinsn));
5045 else if (set != 0
5046 && SET_DEST (set) == regno_reg_rtx [regnor])
5047 REG_NOTES (sinsn)
5048 = gen_rtx_EXPR_LIST (REG_EQUIV,
5049 parm_reg_stack_loc[regnor],
5050 REG_NOTES (sinsn));
5052 else if ((set = single_set (linsn)) != 0
5053 && SET_DEST (set) == parmreg)
5054 REG_NOTES (linsn)
5055 = gen_rtx_EXPR_LIST (REG_EQUIV,
5056 stack_parm, REG_NOTES (linsn));
5059 /* For pointer data type, suggest pointer register. */
5060 if (POINTER_TYPE_P (TREE_TYPE (parm)))
5061 mark_reg_pointer (parmreg,
5062 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5064 /* If something wants our address, try to use ADDRESSOF. */
5065 if (TREE_ADDRESSABLE (parm))
5067 /* If we end up putting something into the stack,
5068 fixup_var_refs_insns will need to make a pass over
5069 all the instructions. It looks through the pending
5070 sequences -- but it can't see the ones in the
5071 CONVERSION_INSNS, if they're not on the sequence
5072 stack. So, we go back to that sequence, just so that
5073 the fixups will happen. */
5074 push_to_sequence (conversion_insns);
5075 put_var_into_stack (parm, /*rescan=*/true);
5076 conversion_insns = get_insns ();
5077 end_sequence ();
5080 else
5082 /* Value must be stored in the stack slot STACK_PARM
5083 during function execution. */
5085 if (promoted_mode != nominal_mode)
5087 /* Conversion is required. */
5088 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
5090 emit_move_insn (tempreg, validize_mem (entry_parm));
5092 push_to_sequence (conversion_insns);
5093 entry_parm = convert_to_mode (nominal_mode, tempreg,
5094 TREE_UNSIGNED (TREE_TYPE (parm)));
5095 if (stack_parm)
5096 /* ??? This may need a big-endian conversion on sparc64. */
5097 stack_parm = adjust_address (stack_parm, nominal_mode, 0);
5099 conversion_insns = get_insns ();
5100 did_conversion = 1;
5101 end_sequence ();
5104 if (entry_parm != stack_parm)
5106 if (stack_parm == 0)
5108 stack_parm
5109 = assign_stack_local (GET_MODE (entry_parm),
5110 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
5111 set_mem_attributes (stack_parm, parm, 1);
5114 if (promoted_mode != nominal_mode)
5116 push_to_sequence (conversion_insns);
5117 emit_move_insn (validize_mem (stack_parm),
5118 validize_mem (entry_parm));
5119 conversion_insns = get_insns ();
5120 end_sequence ();
5122 else
5123 emit_move_insn (validize_mem (stack_parm),
5124 validize_mem (entry_parm));
5127 SET_DECL_RTL (parm, stack_parm);
5131 /* Output all parameter conversion instructions (possibly including calls)
5132 now that all parameters have been copied out of hard registers. */
5133 emit_insn (conversion_insns);
5135 /* If we are receiving a struct value address as the first argument, set up
5136 the RTL for the function result. As this might require code to convert
5137 the transmitted address to Pmode, we do this here to ensure that possible
5138 preliminary conversions of the address have been emitted already. */
5139 if (function_result_decl)
5141 tree result = DECL_RESULT (fndecl);
5142 rtx addr = DECL_RTL (function_result_decl);
5143 rtx x;
5145 #ifdef POINTERS_EXTEND_UNSIGNED
5146 if (GET_MODE (addr) != Pmode)
5147 addr = convert_memory_address (Pmode, addr);
5148 #endif
5150 x = gen_rtx_MEM (DECL_MODE (result), addr);
5151 set_mem_attributes (x, result, 1);
5152 SET_DECL_RTL (result, x);
5155 last_parm_insn = get_last_insn ();
5157 current_function_args_size = stack_args_size.constant;
5159 /* Adjust function incoming argument size for alignment and
5160 minimum length. */
5162 #ifdef REG_PARM_STACK_SPACE
5163 #ifndef MAYBE_REG_PARM_STACK_SPACE
5164 current_function_args_size = MAX (current_function_args_size,
5165 REG_PARM_STACK_SPACE (fndecl));
5166 #endif
5167 #endif
5169 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
5171 current_function_args_size
5172 = ((current_function_args_size + STACK_BYTES - 1)
5173 / STACK_BYTES) * STACK_BYTES;
5175 #ifdef ARGS_GROW_DOWNWARD
5176 current_function_arg_offset_rtx
5177 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5178 : expand_expr (size_diffop (stack_args_size.var,
5179 size_int (-stack_args_size.constant)),
5180 NULL_RTX, VOIDmode, 0));
5181 #else
5182 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5183 #endif
5185 /* See how many bytes, if any, of its args a function should try to pop
5186 on return. */
5188 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5189 current_function_args_size);
5191 /* For stdarg.h function, save info about
5192 regs and stack space used by the named args. */
5194 current_function_args_info = args_so_far;
5196 /* Set the rtx used for the function return value. Put this in its
5197 own variable so any optimizers that need this information don't have
5198 to include tree.h. Do this here so it gets done when an inlined
5199 function gets output. */
5201 current_function_return_rtx
5202 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5203 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5205 /* If scalar return value was computed in a pseudo-reg, or was a named
5206 return value that got dumped to the stack, copy that to the hard
5207 return register. */
5208 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
5210 tree decl_result = DECL_RESULT (fndecl);
5211 rtx decl_rtl = DECL_RTL (decl_result);
5213 if (REG_P (decl_rtl)
5214 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5215 : DECL_REGISTER (decl_result))
5217 rtx real_decl_rtl;
5219 #ifdef FUNCTION_OUTGOING_VALUE
5220 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
5221 fndecl);
5222 #else
5223 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
5224 fndecl);
5225 #endif
5226 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
5227 /* The delay slot scheduler assumes that current_function_return_rtx
5228 holds the hard register containing the return value, not a
5229 temporary pseudo. */
5230 current_function_return_rtx = real_decl_rtl;
5235 /* Indicate whether REGNO is an incoming argument to the current function
5236 that was promoted to a wider mode. If so, return the RTX for the
5237 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5238 that REGNO is promoted from and whether the promotion was signed or
5239 unsigned. */
5241 #ifdef PROMOTE_FUNCTION_ARGS
5244 promoted_input_arg (regno, pmode, punsignedp)
5245 unsigned int regno;
5246 enum machine_mode *pmode;
5247 int *punsignedp;
5249 tree arg;
5251 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5252 arg = TREE_CHAIN (arg))
5253 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5254 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5255 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5257 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5258 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5260 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5261 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5262 && mode != DECL_MODE (arg))
5264 *pmode = DECL_MODE (arg);
5265 *punsignedp = unsignedp;
5266 return DECL_INCOMING_RTL (arg);
5270 return 0;
5273 #endif
5275 /* Compute the size and offset from the start of the stacked arguments for a
5276 parm passed in mode PASSED_MODE and with type TYPE.
5278 INITIAL_OFFSET_PTR points to the current offset into the stacked
5279 arguments.
5281 The starting offset and size for this parm are returned in *OFFSET_PTR
5282 and *ARG_SIZE_PTR, respectively.
5284 IN_REGS is nonzero if the argument will be passed in registers. It will
5285 never be set if REG_PARM_STACK_SPACE is not defined.
5287 FNDECL is the function in which the argument was defined.
5289 There are two types of rounding that are done. The first, controlled by
5290 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5291 list to be aligned to the specific boundary (in bits). This rounding
5292 affects the initial and starting offsets, but not the argument size.
5294 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5295 optionally rounds the size of the parm to PARM_BOUNDARY. The
5296 initial offset is not affected by this rounding, while the size always
5297 is and the starting offset may be. */
5299 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
5300 initial_offset_ptr is positive because locate_and_pad_parm's
5301 callers pass in the total size of args so far as
5302 initial_offset_ptr. arg_size_ptr is always positive. */
5304 void
5305 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
5306 initial_offset_ptr, offset_ptr, arg_size_ptr,
5307 alignment_pad)
5308 enum machine_mode passed_mode;
5309 tree type;
5310 int in_regs ATTRIBUTE_UNUSED;
5311 tree fndecl ATTRIBUTE_UNUSED;
5312 struct args_size *initial_offset_ptr;
5313 struct args_size *offset_ptr;
5314 struct args_size *arg_size_ptr;
5315 struct args_size *alignment_pad;
5318 tree sizetree
5319 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5320 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5321 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5322 #ifdef ARGS_GROW_DOWNWARD
5323 tree s2 = sizetree;
5324 #endif
5326 #ifdef REG_PARM_STACK_SPACE
5327 /* If we have found a stack parm before we reach the end of the
5328 area reserved for registers, skip that area. */
5329 if (! in_regs)
5331 int reg_parm_stack_space = 0;
5333 #ifdef MAYBE_REG_PARM_STACK_SPACE
5334 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5335 #else
5336 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5337 #endif
5338 if (reg_parm_stack_space > 0)
5340 if (initial_offset_ptr->var)
5342 initial_offset_ptr->var
5343 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5344 ssize_int (reg_parm_stack_space));
5345 initial_offset_ptr->constant = 0;
5347 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5348 initial_offset_ptr->constant = reg_parm_stack_space;
5351 #endif /* REG_PARM_STACK_SPACE */
5353 arg_size_ptr->var = 0;
5354 arg_size_ptr->constant = 0;
5355 alignment_pad->var = 0;
5356 alignment_pad->constant = 0;
5358 #ifdef ARGS_GROW_DOWNWARD
5359 if (initial_offset_ptr->var)
5361 offset_ptr->constant = 0;
5362 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5363 initial_offset_ptr->var);
5365 else
5367 offset_ptr->constant = -initial_offset_ptr->constant;
5368 offset_ptr->var = 0;
5371 if (where_pad != none
5372 && (!host_integerp (sizetree, 1)
5373 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5374 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
5375 SUB_PARM_SIZE (*offset_ptr, s2);
5377 if (!in_regs
5378 #ifdef REG_PARM_STACK_SPACE
5379 || REG_PARM_STACK_SPACE (fndecl) > 0
5380 #endif
5382 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5384 if (initial_offset_ptr->var)
5385 arg_size_ptr->var = size_binop (MINUS_EXPR,
5386 size_binop (MINUS_EXPR,
5387 ssize_int (0),
5388 initial_offset_ptr->var),
5389 offset_ptr->var);
5391 else
5392 arg_size_ptr->constant = (-initial_offset_ptr->constant
5393 - offset_ptr->constant);
5395 /* Pad_below needs the pre-rounded size to know how much to pad below.
5396 We only pad parameters which are not in registers as they have their
5397 padding done elsewhere. */
5398 if (where_pad == downward
5399 && !in_regs)
5400 pad_below (offset_ptr, passed_mode, sizetree);
5402 #else /* !ARGS_GROW_DOWNWARD */
5403 if (!in_regs
5404 #ifdef REG_PARM_STACK_SPACE
5405 || REG_PARM_STACK_SPACE (fndecl) > 0
5406 #endif
5408 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5409 *offset_ptr = *initial_offset_ptr;
5411 #ifdef PUSH_ROUNDING
5412 if (passed_mode != BLKmode)
5413 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5414 #endif
5416 /* Pad_below needs the pre-rounded size to know how much to pad below
5417 so this must be done before rounding up. */
5418 if (where_pad == downward
5419 /* However, BLKmode args passed in regs have their padding done elsewhere.
5420 The stack slot must be able to hold the entire register. */
5421 && !(in_regs && passed_mode == BLKmode))
5422 pad_below (offset_ptr, passed_mode, sizetree);
5424 if (where_pad != none
5425 && (!host_integerp (sizetree, 1)
5426 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5427 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5429 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5430 #endif /* ARGS_GROW_DOWNWARD */
5433 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5434 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5436 static void
5437 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5438 struct args_size *offset_ptr;
5439 int boundary;
5440 struct args_size *alignment_pad;
5442 tree save_var = NULL_TREE;
5443 HOST_WIDE_INT save_constant = 0;
5445 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5447 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5449 save_var = offset_ptr->var;
5450 save_constant = offset_ptr->constant;
5453 alignment_pad->var = NULL_TREE;
5454 alignment_pad->constant = 0;
5456 if (boundary > BITS_PER_UNIT)
5458 if (offset_ptr->var)
5460 offset_ptr->var =
5461 #ifdef ARGS_GROW_DOWNWARD
5462 round_down
5463 #else
5464 round_up
5465 #endif
5466 (ARGS_SIZE_TREE (*offset_ptr),
5467 boundary / BITS_PER_UNIT);
5468 offset_ptr->constant = 0; /*?*/
5469 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5470 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5471 save_var);
5473 else
5475 offset_ptr->constant =
5476 #ifdef ARGS_GROW_DOWNWARD
5477 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5478 #else
5479 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5480 #endif
5481 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5482 alignment_pad->constant = offset_ptr->constant - save_constant;
5487 static void
5488 pad_below (offset_ptr, passed_mode, sizetree)
5489 struct args_size *offset_ptr;
5490 enum machine_mode passed_mode;
5491 tree sizetree;
5493 if (passed_mode != BLKmode)
5495 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5496 offset_ptr->constant
5497 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5498 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5499 - GET_MODE_SIZE (passed_mode));
5501 else
5503 if (TREE_CODE (sizetree) != INTEGER_CST
5504 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5506 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5507 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5508 /* Add it in. */
5509 ADD_PARM_SIZE (*offset_ptr, s2);
5510 SUB_PARM_SIZE (*offset_ptr, sizetree);
5515 /* Walk the tree of blocks describing the binding levels within a function
5516 and warn about uninitialized variables.
5517 This is done after calling flow_analysis and before global_alloc
5518 clobbers the pseudo-regs to hard regs. */
5520 void
5521 uninitialized_vars_warning (block)
5522 tree block;
5524 tree decl, sub;
5525 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5527 if (warn_uninitialized
5528 && TREE_CODE (decl) == VAR_DECL
5529 /* These warnings are unreliable for and aggregates
5530 because assigning the fields one by one can fail to convince
5531 flow.c that the entire aggregate was initialized.
5532 Unions are troublesome because members may be shorter. */
5533 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5534 && DECL_RTL (decl) != 0
5535 && GET_CODE (DECL_RTL (decl)) == REG
5536 /* Global optimizations can make it difficult to determine if a
5537 particular variable has been initialized. However, a VAR_DECL
5538 with a nonzero DECL_INITIAL had an initializer, so do not
5539 claim it is potentially uninitialized.
5541 We do not care about the actual value in DECL_INITIAL, so we do
5542 not worry that it may be a dangling pointer. */
5543 && DECL_INITIAL (decl) == NULL_TREE
5544 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5545 warning_with_decl (decl,
5546 "`%s' might be used uninitialized in this function");
5547 if (extra_warnings
5548 && TREE_CODE (decl) == VAR_DECL
5549 && DECL_RTL (decl) != 0
5550 && GET_CODE (DECL_RTL (decl)) == REG
5551 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5552 warning_with_decl (decl,
5553 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5555 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5556 uninitialized_vars_warning (sub);
5559 /* Do the appropriate part of uninitialized_vars_warning
5560 but for arguments instead of local variables. */
5562 void
5563 setjmp_args_warning ()
5565 tree decl;
5566 for (decl = DECL_ARGUMENTS (current_function_decl);
5567 decl; decl = TREE_CHAIN (decl))
5568 if (DECL_RTL (decl) != 0
5569 && GET_CODE (DECL_RTL (decl)) == REG
5570 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5571 warning_with_decl (decl,
5572 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5575 /* If this function call setjmp, put all vars into the stack
5576 unless they were declared `register'. */
5578 void
5579 setjmp_protect (block)
5580 tree block;
5582 tree decl, sub;
5583 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5584 if ((TREE_CODE (decl) == VAR_DECL
5585 || TREE_CODE (decl) == PARM_DECL)
5586 && DECL_RTL (decl) != 0
5587 && (GET_CODE (DECL_RTL (decl)) == REG
5588 || (GET_CODE (DECL_RTL (decl)) == MEM
5589 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5590 /* If this variable came from an inline function, it must be
5591 that its life doesn't overlap the setjmp. If there was a
5592 setjmp in the function, it would already be in memory. We
5593 must exclude such variable because their DECL_RTL might be
5594 set to strange things such as virtual_stack_vars_rtx. */
5595 && ! DECL_FROM_INLINE (decl)
5596 && (
5597 #ifdef NON_SAVING_SETJMP
5598 /* If longjmp doesn't restore the registers,
5599 don't put anything in them. */
5600 NON_SAVING_SETJMP
5602 #endif
5603 ! DECL_REGISTER (decl)))
5604 put_var_into_stack (decl, /*rescan=*/true);
5605 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5606 setjmp_protect (sub);
5609 /* Like the previous function, but for args instead of local variables. */
5611 void
5612 setjmp_protect_args ()
5614 tree decl;
5615 for (decl = DECL_ARGUMENTS (current_function_decl);
5616 decl; decl = TREE_CHAIN (decl))
5617 if ((TREE_CODE (decl) == VAR_DECL
5618 || TREE_CODE (decl) == PARM_DECL)
5619 && DECL_RTL (decl) != 0
5620 && (GET_CODE (DECL_RTL (decl)) == REG
5621 || (GET_CODE (DECL_RTL (decl)) == MEM
5622 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5623 && (
5624 /* If longjmp doesn't restore the registers,
5625 don't put anything in them. */
5626 #ifdef NON_SAVING_SETJMP
5627 NON_SAVING_SETJMP
5629 #endif
5630 ! DECL_REGISTER (decl)))
5631 put_var_into_stack (decl, /*rescan=*/true);
5634 /* Return the context-pointer register corresponding to DECL,
5635 or 0 if it does not need one. */
5638 lookup_static_chain (decl)
5639 tree decl;
5641 tree context = decl_function_context (decl);
5642 tree link;
5644 if (context == 0
5645 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5646 return 0;
5648 /* We treat inline_function_decl as an alias for the current function
5649 because that is the inline function whose vars, types, etc.
5650 are being merged into the current function.
5651 See expand_inline_function. */
5652 if (context == current_function_decl || context == inline_function_decl)
5653 return virtual_stack_vars_rtx;
5655 for (link = context_display; link; link = TREE_CHAIN (link))
5656 if (TREE_PURPOSE (link) == context)
5657 return RTL_EXPR_RTL (TREE_VALUE (link));
5659 abort ();
5662 /* Convert a stack slot address ADDR for variable VAR
5663 (from a containing function)
5664 into an address valid in this function (using a static chain). */
5667 fix_lexical_addr (addr, var)
5668 rtx addr;
5669 tree var;
5671 rtx basereg;
5672 HOST_WIDE_INT displacement;
5673 tree context = decl_function_context (var);
5674 struct function *fp;
5675 rtx base = 0;
5677 /* If this is the present function, we need not do anything. */
5678 if (context == current_function_decl || context == inline_function_decl)
5679 return addr;
5681 fp = find_function_data (context);
5683 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5684 addr = XEXP (XEXP (addr, 0), 0);
5686 /* Decode given address as base reg plus displacement. */
5687 if (GET_CODE (addr) == REG)
5688 basereg = addr, displacement = 0;
5689 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5690 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5691 else
5692 abort ();
5694 /* We accept vars reached via the containing function's
5695 incoming arg pointer and via its stack variables pointer. */
5696 if (basereg == fp->internal_arg_pointer)
5698 /* If reached via arg pointer, get the arg pointer value
5699 out of that function's stack frame.
5701 There are two cases: If a separate ap is needed, allocate a
5702 slot in the outer function for it and dereference it that way.
5703 This is correct even if the real ap is actually a pseudo.
5704 Otherwise, just adjust the offset from the frame pointer to
5705 compensate. */
5707 #ifdef NEED_SEPARATE_AP
5708 rtx addr;
5710 addr = get_arg_pointer_save_area (fp);
5711 addr = fix_lexical_addr (XEXP (addr, 0), var);
5712 addr = memory_address (Pmode, addr);
5714 base = gen_rtx_MEM (Pmode, addr);
5715 set_mem_alias_set (base, get_frame_alias_set ());
5716 base = copy_to_reg (base);
5717 #else
5718 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5719 base = lookup_static_chain (var);
5720 #endif
5723 else if (basereg == virtual_stack_vars_rtx)
5725 /* This is the same code as lookup_static_chain, duplicated here to
5726 avoid an extra call to decl_function_context. */
5727 tree link;
5729 for (link = context_display; link; link = TREE_CHAIN (link))
5730 if (TREE_PURPOSE (link) == context)
5732 base = RTL_EXPR_RTL (TREE_VALUE (link));
5733 break;
5737 if (base == 0)
5738 abort ();
5740 /* Use same offset, relative to appropriate static chain or argument
5741 pointer. */
5742 return plus_constant (base, displacement);
5745 /* Return the address of the trampoline for entering nested fn FUNCTION.
5746 If necessary, allocate a trampoline (in the stack frame)
5747 and emit rtl to initialize its contents (at entry to this function). */
5750 trampoline_address (function)
5751 tree function;
5753 tree link;
5754 tree rtlexp;
5755 rtx tramp;
5756 struct function *fp;
5757 tree fn_context;
5759 /* Find an existing trampoline and return it. */
5760 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5761 if (TREE_PURPOSE (link) == function)
5762 return
5763 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5765 for (fp = outer_function_chain; fp; fp = fp->outer)
5766 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5767 if (TREE_PURPOSE (link) == function)
5769 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5770 function);
5771 return adjust_trampoline_addr (tramp);
5774 /* None exists; we must make one. */
5776 /* Find the `struct function' for the function containing FUNCTION. */
5777 fp = 0;
5778 fn_context = decl_function_context (function);
5779 if (fn_context != current_function_decl
5780 && fn_context != inline_function_decl)
5781 fp = find_function_data (fn_context);
5783 /* Allocate run-time space for this trampoline
5784 (usually in the defining function's stack frame). */
5785 #ifdef ALLOCATE_TRAMPOLINE
5786 tramp = ALLOCATE_TRAMPOLINE (fp);
5787 #else
5788 /* If rounding needed, allocate extra space
5789 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5790 #define TRAMPOLINE_REAL_SIZE \
5791 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5792 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5793 fp ? fp : cfun);
5794 #endif
5796 /* Record the trampoline for reuse and note it for later initialization
5797 by expand_function_end. */
5798 if (fp != 0)
5800 rtlexp = make_node (RTL_EXPR);
5801 RTL_EXPR_RTL (rtlexp) = tramp;
5802 fp->x_trampoline_list = tree_cons (function, rtlexp,
5803 fp->x_trampoline_list);
5805 else
5807 /* Make the RTL_EXPR node temporary, not momentary, so that the
5808 trampoline_list doesn't become garbage. */
5809 rtlexp = make_node (RTL_EXPR);
5811 RTL_EXPR_RTL (rtlexp) = tramp;
5812 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5815 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5816 return adjust_trampoline_addr (tramp);
5819 /* Given a trampoline address,
5820 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5822 static rtx
5823 round_trampoline_addr (tramp)
5824 rtx tramp;
5826 /* Round address up to desired boundary. */
5827 rtx temp = gen_reg_rtx (Pmode);
5828 rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
5829 rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
5831 temp = expand_simple_binop (Pmode, PLUS, tramp, addend,
5832 temp, 0, OPTAB_LIB_WIDEN);
5833 tramp = expand_simple_binop (Pmode, AND, temp, mask,
5834 temp, 0, OPTAB_LIB_WIDEN);
5836 return tramp;
5839 /* Given a trampoline address, round it then apply any
5840 platform-specific adjustments so that the result can be used for a
5841 function call . */
5843 static rtx
5844 adjust_trampoline_addr (tramp)
5845 rtx tramp;
5847 tramp = round_trampoline_addr (tramp);
5848 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5849 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5850 #endif
5851 return tramp;
5854 /* Put all this function's BLOCK nodes including those that are chained
5855 onto the first block into a vector, and return it.
5856 Also store in each NOTE for the beginning or end of a block
5857 the index of that block in the vector.
5858 The arguments are BLOCK, the chain of top-level blocks of the function,
5859 and INSNS, the insn chain of the function. */
5861 void
5862 identify_blocks ()
5864 int n_blocks;
5865 tree *block_vector, *last_block_vector;
5866 tree *block_stack;
5867 tree block = DECL_INITIAL (current_function_decl);
5869 if (block == 0)
5870 return;
5872 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5873 depth-first order. */
5874 block_vector = get_block_vector (block, &n_blocks);
5875 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5877 last_block_vector = identify_blocks_1 (get_insns (),
5878 block_vector + 1,
5879 block_vector + n_blocks,
5880 block_stack);
5882 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5883 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5884 if (0 && last_block_vector != block_vector + n_blocks)
5885 abort ();
5887 free (block_vector);
5888 free (block_stack);
5891 /* Subroutine of identify_blocks. Do the block substitution on the
5892 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5894 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5895 BLOCK_VECTOR is incremented for each block seen. */
5897 static tree *
5898 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5899 rtx insns;
5900 tree *block_vector;
5901 tree *end_block_vector;
5902 tree *orig_block_stack;
5904 rtx insn;
5905 tree *block_stack = orig_block_stack;
5907 for (insn = insns; insn; insn = NEXT_INSN (insn))
5909 if (GET_CODE (insn) == NOTE)
5911 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5913 tree b;
5915 /* If there are more block notes than BLOCKs, something
5916 is badly wrong. */
5917 if (block_vector == end_block_vector)
5918 abort ();
5920 b = *block_vector++;
5921 NOTE_BLOCK (insn) = b;
5922 *block_stack++ = b;
5924 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5926 /* If there are more NOTE_INSN_BLOCK_ENDs than
5927 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5928 if (block_stack == orig_block_stack)
5929 abort ();
5931 NOTE_BLOCK (insn) = *--block_stack;
5934 else if (GET_CODE (insn) == CALL_INSN
5935 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5937 rtx cp = PATTERN (insn);
5939 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5940 end_block_vector, block_stack);
5941 if (XEXP (cp, 1))
5942 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5943 end_block_vector, block_stack);
5944 if (XEXP (cp, 2))
5945 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5946 end_block_vector, block_stack);
5950 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5951 something is badly wrong. */
5952 if (block_stack != orig_block_stack)
5953 abort ();
5955 return block_vector;
5958 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
5959 and create duplicate blocks. */
5960 /* ??? Need an option to either create block fragments or to create
5961 abstract origin duplicates of a source block. It really depends
5962 on what optimization has been performed. */
5964 void
5965 reorder_blocks ()
5967 tree block = DECL_INITIAL (current_function_decl);
5968 varray_type block_stack;
5970 if (block == NULL_TREE)
5971 return;
5973 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5975 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
5976 reorder_blocks_0 (block);
5978 /* Prune the old trees away, so that they don't get in the way. */
5979 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5980 BLOCK_CHAIN (block) = NULL_TREE;
5982 /* Recreate the block tree from the note nesting. */
5983 reorder_blocks_1 (get_insns (), block, &block_stack);
5984 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5986 /* Remove deleted blocks from the block fragment chains. */
5987 reorder_fix_fragments (block);
5990 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
5992 static void
5993 reorder_blocks_0 (block)
5994 tree block;
5996 while (block)
5998 TREE_ASM_WRITTEN (block) = 0;
5999 reorder_blocks_0 (BLOCK_SUBBLOCKS (block));
6000 block = BLOCK_CHAIN (block);
6004 static void
6005 reorder_blocks_1 (insns, current_block, p_block_stack)
6006 rtx insns;
6007 tree current_block;
6008 varray_type *p_block_stack;
6010 rtx insn;
6012 for (insn = insns; insn; insn = NEXT_INSN (insn))
6014 if (GET_CODE (insn) == NOTE)
6016 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
6018 tree block = NOTE_BLOCK (insn);
6020 /* If we have seen this block before, that means it now
6021 spans multiple address regions. Create a new fragment. */
6022 if (TREE_ASM_WRITTEN (block))
6024 tree new_block = copy_node (block);
6025 tree origin;
6027 origin = (BLOCK_FRAGMENT_ORIGIN (block)
6028 ? BLOCK_FRAGMENT_ORIGIN (block)
6029 : block);
6030 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
6031 BLOCK_FRAGMENT_CHAIN (new_block)
6032 = BLOCK_FRAGMENT_CHAIN (origin);
6033 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
6035 NOTE_BLOCK (insn) = new_block;
6036 block = new_block;
6039 BLOCK_SUBBLOCKS (block) = 0;
6040 TREE_ASM_WRITTEN (block) = 1;
6041 /* When there's only one block for the entire function,
6042 current_block == block and we mustn't do this, it
6043 will cause infinite recursion. */
6044 if (block != current_block)
6046 BLOCK_SUPERCONTEXT (block) = current_block;
6047 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
6048 BLOCK_SUBBLOCKS (current_block) = block;
6049 current_block = block;
6051 VARRAY_PUSH_TREE (*p_block_stack, block);
6053 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
6055 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
6056 VARRAY_POP (*p_block_stack);
6057 BLOCK_SUBBLOCKS (current_block)
6058 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
6059 current_block = BLOCK_SUPERCONTEXT (current_block);
6062 else if (GET_CODE (insn) == CALL_INSN
6063 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
6065 rtx cp = PATTERN (insn);
6066 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
6067 if (XEXP (cp, 1))
6068 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
6069 if (XEXP (cp, 2))
6070 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
6075 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
6076 appears in the block tree, select one of the fragments to become
6077 the new origin block. */
6079 static void
6080 reorder_fix_fragments (block)
6081 tree block;
6083 while (block)
6085 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
6086 tree new_origin = NULL_TREE;
6088 if (dup_origin)
6090 if (! TREE_ASM_WRITTEN (dup_origin))
6092 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
6094 /* Find the first of the remaining fragments. There must
6095 be at least one -- the current block. */
6096 while (! TREE_ASM_WRITTEN (new_origin))
6097 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
6098 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
6101 else if (! dup_origin)
6102 new_origin = block;
6104 /* Re-root the rest of the fragments to the new origin. In the
6105 case that DUP_ORIGIN was null, that means BLOCK was the origin
6106 of a chain of fragments and we want to remove those fragments
6107 that didn't make it to the output. */
6108 if (new_origin)
6110 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
6111 tree chain = *pp;
6113 while (chain)
6115 if (TREE_ASM_WRITTEN (chain))
6117 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
6118 *pp = chain;
6119 pp = &BLOCK_FRAGMENT_CHAIN (chain);
6121 chain = BLOCK_FRAGMENT_CHAIN (chain);
6123 *pp = NULL_TREE;
6126 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
6127 block = BLOCK_CHAIN (block);
6131 /* Reverse the order of elements in the chain T of blocks,
6132 and return the new head of the chain (old last element). */
6134 static tree
6135 blocks_nreverse (t)
6136 tree t;
6138 tree prev = 0, decl, next;
6139 for (decl = t; decl; decl = next)
6141 next = BLOCK_CHAIN (decl);
6142 BLOCK_CHAIN (decl) = prev;
6143 prev = decl;
6145 return prev;
6148 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
6149 non-NULL, list them all into VECTOR, in a depth-first preorder
6150 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
6151 blocks. */
6153 static int
6154 all_blocks (block, vector)
6155 tree block;
6156 tree *vector;
6158 int n_blocks = 0;
6160 while (block)
6162 TREE_ASM_WRITTEN (block) = 0;
6164 /* Record this block. */
6165 if (vector)
6166 vector[n_blocks] = block;
6168 ++n_blocks;
6170 /* Record the subblocks, and their subblocks... */
6171 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
6172 vector ? vector + n_blocks : 0);
6173 block = BLOCK_CHAIN (block);
6176 return n_blocks;
6179 /* Return a vector containing all the blocks rooted at BLOCK. The
6180 number of elements in the vector is stored in N_BLOCKS_P. The
6181 vector is dynamically allocated; it is the caller's responsibility
6182 to call `free' on the pointer returned. */
6184 static tree *
6185 get_block_vector (block, n_blocks_p)
6186 tree block;
6187 int *n_blocks_p;
6189 tree *block_vector;
6191 *n_blocks_p = all_blocks (block, NULL);
6192 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
6193 all_blocks (block, block_vector);
6195 return block_vector;
6198 static GTY(()) int next_block_index = 2;
6200 /* Set BLOCK_NUMBER for all the blocks in FN. */
6202 void
6203 number_blocks (fn)
6204 tree fn;
6206 int i;
6207 int n_blocks;
6208 tree *block_vector;
6210 /* For SDB and XCOFF debugging output, we start numbering the blocks
6211 from 1 within each function, rather than keeping a running
6212 count. */
6213 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6214 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6215 next_block_index = 1;
6216 #endif
6218 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6220 /* The top-level BLOCK isn't numbered at all. */
6221 for (i = 1; i < n_blocks; ++i)
6222 /* We number the blocks from two. */
6223 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6225 free (block_vector);
6227 return;
6230 /* If VAR is present in a subblock of BLOCK, return the subblock. */
6232 tree
6233 debug_find_var_in_block_tree (var, block)
6234 tree var;
6235 tree block;
6237 tree t;
6239 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
6240 if (t == var)
6241 return block;
6243 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
6245 tree ret = debug_find_var_in_block_tree (var, t);
6246 if (ret)
6247 return ret;
6250 return NULL_TREE;
6253 /* Allocate a function structure and reset its contents to the defaults. */
6255 static void
6256 prepare_function_start ()
6258 cfun = (struct function *) ggc_alloc_cleared (sizeof (struct function));
6260 init_stmt_for_function ();
6261 init_eh_for_function ();
6263 cse_not_expected = ! optimize;
6265 /* Caller save not needed yet. */
6266 caller_save_needed = 0;
6268 /* No stack slots have been made yet. */
6269 stack_slot_list = 0;
6271 current_function_has_nonlocal_label = 0;
6272 current_function_has_nonlocal_goto = 0;
6274 /* There is no stack slot for handling nonlocal gotos. */
6275 nonlocal_goto_handler_slots = 0;
6276 nonlocal_goto_stack_level = 0;
6278 /* No labels have been declared for nonlocal use. */
6279 nonlocal_labels = 0;
6280 nonlocal_goto_handler_labels = 0;
6282 /* No function calls so far in this function. */
6283 function_call_count = 0;
6285 /* No parm regs have been allocated.
6286 (This is important for output_inline_function.) */
6287 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6289 /* Initialize the RTL mechanism. */
6290 init_emit ();
6292 /* Initialize the queue of pending postincrement and postdecrements,
6293 and some other info in expr.c. */
6294 init_expr ();
6296 /* We haven't done register allocation yet. */
6297 reg_renumber = 0;
6299 init_varasm_status (cfun);
6301 /* Clear out data used for inlining. */
6302 cfun->inlinable = 0;
6303 cfun->original_decl_initial = 0;
6304 cfun->original_arg_vector = 0;
6306 cfun->stack_alignment_needed = STACK_BOUNDARY;
6307 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6309 /* Set if a call to setjmp is seen. */
6310 current_function_calls_setjmp = 0;
6312 /* Set if a call to longjmp is seen. */
6313 current_function_calls_longjmp = 0;
6315 current_function_calls_alloca = 0;
6316 current_function_calls_eh_return = 0;
6317 current_function_calls_constant_p = 0;
6318 current_function_contains_functions = 0;
6319 current_function_is_leaf = 0;
6320 current_function_nothrow = 0;
6321 current_function_sp_is_unchanging = 0;
6322 current_function_uses_only_leaf_regs = 0;
6323 current_function_has_computed_jump = 0;
6324 current_function_is_thunk = 0;
6326 current_function_returns_pcc_struct = 0;
6327 current_function_returns_struct = 0;
6328 current_function_epilogue_delay_list = 0;
6329 current_function_uses_const_pool = 0;
6330 current_function_uses_pic_offset_table = 0;
6331 current_function_cannot_inline = 0;
6333 /* We have not yet needed to make a label to jump to for tail-recursion. */
6334 tail_recursion_label = 0;
6336 /* We haven't had a need to make a save area for ap yet. */
6337 arg_pointer_save_area = 0;
6339 /* No stack slots allocated yet. */
6340 frame_offset = 0;
6342 /* No SAVE_EXPRs in this function yet. */
6343 save_expr_regs = 0;
6345 /* No RTL_EXPRs in this function yet. */
6346 rtl_expr_chain = 0;
6348 /* Set up to allocate temporaries. */
6349 init_temp_slots ();
6351 /* Indicate that we need to distinguish between the return value of the
6352 present function and the return value of a function being called. */
6353 rtx_equal_function_value_matters = 1;
6355 /* Indicate that we have not instantiated virtual registers yet. */
6356 virtuals_instantiated = 0;
6358 /* Indicate that we want CONCATs now. */
6359 generating_concat_p = 1;
6361 /* Indicate we have no need of a frame pointer yet. */
6362 frame_pointer_needed = 0;
6364 /* By default assume not stdarg. */
6365 current_function_stdarg = 0;
6367 /* We haven't made any trampolines for this function yet. */
6368 trampoline_list = 0;
6370 init_pending_stack_adjust ();
6371 inhibit_defer_pop = 0;
6373 current_function_outgoing_args_size = 0;
6375 current_function_funcdef_no = funcdef_no++;
6377 cfun->arc_profile = profile_arc_flag || flag_test_coverage;
6379 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
6381 cfun->max_jumptable_ents = 0;
6383 (*lang_hooks.function.init) (cfun);
6384 if (init_machine_status)
6385 cfun->machine = (*init_machine_status) ();
6388 /* Initialize the rtl expansion mechanism so that we can do simple things
6389 like generate sequences. This is used to provide a context during global
6390 initialization of some passes. */
6391 void
6392 init_dummy_function_start ()
6394 prepare_function_start ();
6397 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6398 and initialize static variables for generating RTL for the statements
6399 of the function. */
6401 void
6402 init_function_start (subr, filename, line)
6403 tree subr;
6404 const char *filename;
6405 int line;
6407 prepare_function_start ();
6409 current_function_name = (*lang_hooks.decl_printable_name) (subr, 2);
6410 cfun->decl = subr;
6412 /* Nonzero if this is a nested function that uses a static chain. */
6414 current_function_needs_context
6415 = (decl_function_context (current_function_decl) != 0
6416 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6418 /* Within function body, compute a type's size as soon it is laid out. */
6419 immediate_size_expand++;
6421 /* Prevent ever trying to delete the first instruction of a function.
6422 Also tell final how to output a linenum before the function prologue.
6423 Note linenums could be missing, e.g. when compiling a Java .class file. */
6424 if (line > 0)
6425 emit_line_note (filename, line);
6427 /* Make sure first insn is a note even if we don't want linenums.
6428 This makes sure the first insn will never be deleted.
6429 Also, final expects a note to appear there. */
6430 emit_note (NULL, NOTE_INSN_DELETED);
6432 /* Set flags used by final.c. */
6433 if (aggregate_value_p (DECL_RESULT (subr)))
6435 #ifdef PCC_STATIC_STRUCT_RETURN
6436 current_function_returns_pcc_struct = 1;
6437 #endif
6438 current_function_returns_struct = 1;
6441 /* Warn if this value is an aggregate type,
6442 regardless of which calling convention we are using for it. */
6443 if (warn_aggregate_return
6444 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6445 warning ("function returns an aggregate");
6447 current_function_returns_pointer
6448 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6451 /* Make sure all values used by the optimization passes have sane
6452 defaults. */
6453 void
6454 init_function_for_compilation ()
6456 reg_renumber = 0;
6458 /* No prologue/epilogue insns yet. */
6459 VARRAY_GROW (prologue, 0);
6460 VARRAY_GROW (epilogue, 0);
6461 VARRAY_GROW (sibcall_epilogue, 0);
6464 /* Expand a call to __main at the beginning of a possible main function. */
6466 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6467 #undef HAS_INIT_SECTION
6468 #define HAS_INIT_SECTION
6469 #endif
6471 void
6472 expand_main_function ()
6474 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
6475 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
6477 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
6478 rtx tmp, seq;
6480 start_sequence ();
6481 /* Forcibly align the stack. */
6482 #ifdef STACK_GROWS_DOWNWARD
6483 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
6484 stack_pointer_rtx, 1, OPTAB_WIDEN);
6485 #else
6486 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
6487 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
6488 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
6489 stack_pointer_rtx, 1, OPTAB_WIDEN);
6490 #endif
6491 if (tmp != stack_pointer_rtx)
6492 emit_move_insn (stack_pointer_rtx, tmp);
6494 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
6495 tmp = force_reg (Pmode, const0_rtx);
6496 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
6497 seq = get_insns ();
6498 end_sequence ();
6500 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
6501 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
6502 break;
6503 if (tmp)
6504 emit_insn_before (seq, tmp);
6505 else
6506 emit_insn (seq);
6508 #endif
6510 #ifndef HAS_INIT_SECTION
6511 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
6512 #endif
6515 /* The PENDING_SIZES represent the sizes of variable-sized types.
6516 Create RTL for the various sizes now (using temporary variables),
6517 so that we can refer to the sizes from the RTL we are generating
6518 for the current function. The PENDING_SIZES are a TREE_LIST. The
6519 TREE_VALUE of each node is a SAVE_EXPR. */
6521 void
6522 expand_pending_sizes (pending_sizes)
6523 tree pending_sizes;
6525 tree tem;
6527 /* Evaluate now the sizes of any types declared among the arguments. */
6528 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
6530 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
6531 /* Flush the queue in case this parameter declaration has
6532 side-effects. */
6533 emit_queue ();
6537 /* Start the RTL for a new function, and set variables used for
6538 emitting RTL.
6539 SUBR is the FUNCTION_DECL node.
6540 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6541 the function's parameters, which must be run at any return statement. */
6543 void
6544 expand_function_start (subr, parms_have_cleanups)
6545 tree subr;
6546 int parms_have_cleanups;
6548 tree tem;
6549 rtx last_ptr = NULL_RTX;
6551 /* Make sure volatile mem refs aren't considered
6552 valid operands of arithmetic insns. */
6553 init_recog_no_volatile ();
6555 current_function_instrument_entry_exit
6556 = (flag_instrument_function_entry_exit
6557 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6559 current_function_profile
6560 = (profile_flag
6561 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6563 current_function_limit_stack
6564 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6566 /* If function gets a static chain arg, store it in the stack frame.
6567 Do this first, so it gets the first stack slot offset. */
6568 if (current_function_needs_context)
6570 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6572 /* Delay copying static chain if it is not a register to avoid
6573 conflicts with regs used for parameters. */
6574 if (! SMALL_REGISTER_CLASSES
6575 || GET_CODE (static_chain_incoming_rtx) == REG)
6576 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6579 /* If the parameters of this function need cleaning up, get a label
6580 for the beginning of the code which executes those cleanups. This must
6581 be done before doing anything with return_label. */
6582 if (parms_have_cleanups)
6583 cleanup_label = gen_label_rtx ();
6584 else
6585 cleanup_label = 0;
6587 /* Make the label for return statements to jump to. Do not special
6588 case machines with special return instructions -- they will be
6589 handled later during jump, ifcvt, or epilogue creation. */
6590 return_label = gen_label_rtx ();
6592 /* Initialize rtx used to return the value. */
6593 /* Do this before assign_parms so that we copy the struct value address
6594 before any library calls that assign parms might generate. */
6596 /* Decide whether to return the value in memory or in a register. */
6597 if (aggregate_value_p (DECL_RESULT (subr)))
6599 /* Returning something that won't go in a register. */
6600 rtx value_address = 0;
6602 #ifdef PCC_STATIC_STRUCT_RETURN
6603 if (current_function_returns_pcc_struct)
6605 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6606 value_address = assemble_static_space (size);
6608 else
6609 #endif
6611 /* Expect to be passed the address of a place to store the value.
6612 If it is passed as an argument, assign_parms will take care of
6613 it. */
6614 if (struct_value_incoming_rtx)
6616 value_address = gen_reg_rtx (Pmode);
6617 emit_move_insn (value_address, struct_value_incoming_rtx);
6620 if (value_address)
6622 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6623 set_mem_attributes (x, DECL_RESULT (subr), 1);
6624 SET_DECL_RTL (DECL_RESULT (subr), x);
6627 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6628 /* If return mode is void, this decl rtl should not be used. */
6629 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6630 else
6632 /* Compute the return values into a pseudo reg, which we will copy
6633 into the true return register after the cleanups are done. */
6635 /* In order to figure out what mode to use for the pseudo, we
6636 figure out what the mode of the eventual return register will
6637 actually be, and use that. */
6638 rtx hard_reg
6639 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6640 subr, 1);
6642 /* Structures that are returned in registers are not aggregate_value_p,
6643 so we may see a PARALLEL or a REG. */
6644 if (REG_P (hard_reg))
6645 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
6646 else if (GET_CODE (hard_reg) == PARALLEL)
6647 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
6648 else
6649 abort ();
6651 /* Set DECL_REGISTER flag so that expand_function_end will copy the
6652 result to the real return register(s). */
6653 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6656 /* Initialize rtx for parameters and local variables.
6657 In some cases this requires emitting insns. */
6659 assign_parms (subr);
6661 /* Copy the static chain now if it wasn't a register. The delay is to
6662 avoid conflicts with the parameter passing registers. */
6664 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6665 if (GET_CODE (static_chain_incoming_rtx) != REG)
6666 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6668 /* The following was moved from init_function_start.
6669 The move is supposed to make sdb output more accurate. */
6670 /* Indicate the beginning of the function body,
6671 as opposed to parm setup. */
6672 emit_note (NULL, NOTE_INSN_FUNCTION_BEG);
6674 if (GET_CODE (get_last_insn ()) != NOTE)
6675 emit_note (NULL, NOTE_INSN_DELETED);
6676 parm_birth_insn = get_last_insn ();
6678 context_display = 0;
6679 if (current_function_needs_context)
6681 /* Fetch static chain values for containing functions. */
6682 tem = decl_function_context (current_function_decl);
6683 /* Copy the static chain pointer into a pseudo. If we have
6684 small register classes, copy the value from memory if
6685 static_chain_incoming_rtx is a REG. */
6686 if (tem)
6688 /* If the static chain originally came in a register, put it back
6689 there, then move it out in the next insn. The reason for
6690 this peculiar code is to satisfy function integration. */
6691 if (SMALL_REGISTER_CLASSES
6692 && GET_CODE (static_chain_incoming_rtx) == REG)
6693 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6694 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6697 while (tem)
6699 tree rtlexp = make_node (RTL_EXPR);
6701 RTL_EXPR_RTL (rtlexp) = last_ptr;
6702 context_display = tree_cons (tem, rtlexp, context_display);
6703 tem = decl_function_context (tem);
6704 if (tem == 0)
6705 break;
6706 /* Chain thru stack frames, assuming pointer to next lexical frame
6707 is found at the place we always store it. */
6708 #ifdef FRAME_GROWS_DOWNWARD
6709 last_ptr = plus_constant (last_ptr,
6710 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6711 #endif
6712 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6713 set_mem_alias_set (last_ptr, get_frame_alias_set ());
6714 last_ptr = copy_to_reg (last_ptr);
6716 /* If we are not optimizing, ensure that we know that this
6717 piece of context is live over the entire function. */
6718 if (! optimize)
6719 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6720 save_expr_regs);
6724 if (current_function_instrument_entry_exit)
6726 rtx fun = DECL_RTL (current_function_decl);
6727 if (GET_CODE (fun) == MEM)
6728 fun = XEXP (fun, 0);
6729 else
6730 abort ();
6731 emit_library_call (profile_function_entry_libfunc, LCT_NORMAL, VOIDmode,
6732 2, fun, Pmode,
6733 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6735 hard_frame_pointer_rtx),
6736 Pmode);
6739 if (current_function_profile)
6741 #ifdef PROFILE_HOOK
6742 PROFILE_HOOK (current_function_funcdef_no);
6743 #endif
6746 /* After the display initializations is where the tail-recursion label
6747 should go, if we end up needing one. Ensure we have a NOTE here
6748 since some things (like trampolines) get placed before this. */
6749 tail_recursion_reentry = emit_note (NULL, NOTE_INSN_DELETED);
6751 /* Evaluate now the sizes of any types declared among the arguments. */
6752 expand_pending_sizes (nreverse (get_pending_sizes ()));
6754 /* Make sure there is a line number after the function entry setup code. */
6755 force_next_line_note ();
6758 /* Undo the effects of init_dummy_function_start. */
6759 void
6760 expand_dummy_function_end ()
6762 /* End any sequences that failed to be closed due to syntax errors. */
6763 while (in_sequence_p ())
6764 end_sequence ();
6766 /* Outside function body, can't compute type's actual size
6767 until next function's body starts. */
6769 free_after_parsing (cfun);
6770 free_after_compilation (cfun);
6771 cfun = 0;
6774 /* Call DOIT for each hard register used as a return value from
6775 the current function. */
6777 void
6778 diddle_return_value (doit, arg)
6779 void (*doit) PARAMS ((rtx, void *));
6780 void *arg;
6782 rtx outgoing = current_function_return_rtx;
6784 if (! outgoing)
6785 return;
6787 if (GET_CODE (outgoing) == REG)
6788 (*doit) (outgoing, arg);
6789 else if (GET_CODE (outgoing) == PARALLEL)
6791 int i;
6793 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6795 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6797 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6798 (*doit) (x, arg);
6803 static void
6804 do_clobber_return_reg (reg, arg)
6805 rtx reg;
6806 void *arg ATTRIBUTE_UNUSED;
6808 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6811 void
6812 clobber_return_register ()
6814 diddle_return_value (do_clobber_return_reg, NULL);
6816 /* In case we do use pseudo to return value, clobber it too. */
6817 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6819 tree decl_result = DECL_RESULT (current_function_decl);
6820 rtx decl_rtl = DECL_RTL (decl_result);
6821 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
6823 do_clobber_return_reg (decl_rtl, NULL);
6828 static void
6829 do_use_return_reg (reg, arg)
6830 rtx reg;
6831 void *arg ATTRIBUTE_UNUSED;
6833 emit_insn (gen_rtx_USE (VOIDmode, reg));
6836 void
6837 use_return_register ()
6839 diddle_return_value (do_use_return_reg, NULL);
6842 static GTY(()) rtx initial_trampoline;
6844 /* Generate RTL for the end of the current function.
6845 FILENAME and LINE are the current position in the source file.
6847 It is up to language-specific callers to do cleanups for parameters--
6848 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6850 void
6851 expand_function_end (filename, line, end_bindings)
6852 const char *filename;
6853 int line;
6854 int end_bindings;
6856 tree link;
6857 rtx clobber_after;
6859 finish_expr_for_function ();
6861 /* If arg_pointer_save_area was referenced only from a nested
6862 function, we will not have initialized it yet. Do that now. */
6863 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
6864 get_arg_pointer_save_area (cfun);
6866 #ifdef NON_SAVING_SETJMP
6867 /* Don't put any variables in registers if we call setjmp
6868 on a machine that fails to restore the registers. */
6869 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6871 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6872 setjmp_protect (DECL_INITIAL (current_function_decl));
6874 setjmp_protect_args ();
6876 #endif
6878 /* Initialize any trampolines required by this function. */
6879 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6881 tree function = TREE_PURPOSE (link);
6882 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6883 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6884 #ifdef TRAMPOLINE_TEMPLATE
6885 rtx blktramp;
6886 #endif
6887 rtx seq;
6889 #ifdef TRAMPOLINE_TEMPLATE
6890 /* First make sure this compilation has a template for
6891 initializing trampolines. */
6892 if (initial_trampoline == 0)
6894 initial_trampoline
6895 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6896 set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT);
6898 #endif
6900 /* Generate insns to initialize the trampoline. */
6901 start_sequence ();
6902 tramp = round_trampoline_addr (XEXP (tramp, 0));
6903 #ifdef TRAMPOLINE_TEMPLATE
6904 blktramp = replace_equiv_address (initial_trampoline, tramp);
6905 emit_block_move (blktramp, initial_trampoline,
6906 GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
6907 #endif
6908 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6909 seq = get_insns ();
6910 end_sequence ();
6912 /* Put those insns at entry to the containing function (this one). */
6913 emit_insn_before (seq, tail_recursion_reentry);
6916 /* If we are doing stack checking and this function makes calls,
6917 do a stack probe at the start of the function to ensure we have enough
6918 space for another stack frame. */
6919 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6921 rtx insn, seq;
6923 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6924 if (GET_CODE (insn) == CALL_INSN)
6926 start_sequence ();
6927 probe_stack_range (STACK_CHECK_PROTECT,
6928 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6929 seq = get_insns ();
6930 end_sequence ();
6931 emit_insn_before (seq, tail_recursion_reentry);
6932 break;
6936 /* Warn about unused parms if extra warnings were specified. */
6937 /* Either ``-Wextra -Wunused'' or ``-Wunused-parameter'' enables this
6938 warning. WARN_UNUSED_PARAMETER is negative when set by
6939 -Wunused. Note that -Wall implies -Wunused, so ``-Wall -Wextra'' will
6940 also give these warnings. */
6941 if (warn_unused_parameter > 0
6942 || (warn_unused_parameter < 0 && extra_warnings))
6944 tree decl;
6946 for (decl = DECL_ARGUMENTS (current_function_decl);
6947 decl; decl = TREE_CHAIN (decl))
6948 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6949 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6950 warning_with_decl (decl, "unused parameter `%s'");
6953 /* Delete handlers for nonlocal gotos if nothing uses them. */
6954 if (nonlocal_goto_handler_slots != 0
6955 && ! current_function_has_nonlocal_label)
6956 delete_handlers ();
6958 /* End any sequences that failed to be closed due to syntax errors. */
6959 while (in_sequence_p ())
6960 end_sequence ();
6962 /* Outside function body, can't compute type's actual size
6963 until next function's body starts. */
6964 immediate_size_expand--;
6966 clear_pending_stack_adjust ();
6967 do_pending_stack_adjust ();
6969 /* Mark the end of the function body.
6970 If control reaches this insn, the function can drop through
6971 without returning a value. */
6972 emit_note (NULL, NOTE_INSN_FUNCTION_END);
6974 /* Must mark the last line number note in the function, so that the test
6975 coverage code can avoid counting the last line twice. This just tells
6976 the code to ignore the immediately following line note, since there
6977 already exists a copy of this note somewhere above. This line number
6978 note is still needed for debugging though, so we can't delete it. */
6979 if (flag_test_coverage)
6980 emit_note (NULL, NOTE_INSN_REPEATED_LINE_NUMBER);
6982 /* Output a linenumber for the end of the function.
6983 SDB depends on this. */
6984 emit_line_note_force (filename, line);
6986 /* Before the return label (if any), clobber the return
6987 registers so that they are not propagated live to the rest of
6988 the function. This can only happen with functions that drop
6989 through; if there had been a return statement, there would
6990 have either been a return rtx, or a jump to the return label.
6992 We delay actual code generation after the current_function_value_rtx
6993 is computed. */
6994 clobber_after = get_last_insn ();
6996 /* Output the label for the actual return from the function,
6997 if one is expected. This happens either because a function epilogue
6998 is used instead of a return instruction, or because a return was done
6999 with a goto in order to run local cleanups, or because of pcc-style
7000 structure returning. */
7001 if (return_label)
7002 emit_label (return_label);
7004 /* C++ uses this. */
7005 if (end_bindings)
7006 expand_end_bindings (0, 0, 0);
7008 if (current_function_instrument_entry_exit)
7010 rtx fun = DECL_RTL (current_function_decl);
7011 if (GET_CODE (fun) == MEM)
7012 fun = XEXP (fun, 0);
7013 else
7014 abort ();
7015 emit_library_call (profile_function_exit_libfunc, LCT_NORMAL, VOIDmode,
7016 2, fun, Pmode,
7017 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
7019 hard_frame_pointer_rtx),
7020 Pmode);
7023 /* Let except.c know where it should emit the call to unregister
7024 the function context for sjlj exceptions. */
7025 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
7026 sjlj_emit_function_exit_after (get_last_insn ());
7028 /* If we had calls to alloca, and this machine needs
7029 an accurate stack pointer to exit the function,
7030 insert some code to save and restore the stack pointer. */
7031 #ifdef EXIT_IGNORE_STACK
7032 if (! EXIT_IGNORE_STACK)
7033 #endif
7034 if (current_function_calls_alloca)
7036 rtx tem = 0;
7038 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
7039 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
7042 /* If scalar return value was computed in a pseudo-reg, or was a named
7043 return value that got dumped to the stack, copy that to the hard
7044 return register. */
7045 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
7047 tree decl_result = DECL_RESULT (current_function_decl);
7048 rtx decl_rtl = DECL_RTL (decl_result);
7050 if (REG_P (decl_rtl)
7051 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
7052 : DECL_REGISTER (decl_result))
7054 rtx real_decl_rtl = current_function_return_rtx;
7056 /* This should be set in assign_parms. */
7057 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
7058 abort ();
7060 /* If this is a BLKmode structure being returned in registers,
7061 then use the mode computed in expand_return. Note that if
7062 decl_rtl is memory, then its mode may have been changed,
7063 but that current_function_return_rtx has not. */
7064 if (GET_MODE (real_decl_rtl) == BLKmode)
7065 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
7067 /* If a named return value dumped decl_return to memory, then
7068 we may need to re-do the PROMOTE_MODE signed/unsigned
7069 extension. */
7070 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
7072 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
7074 #ifdef PROMOTE_FUNCTION_RETURN
7075 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
7076 &unsignedp, 1);
7077 #endif
7079 convert_move (real_decl_rtl, decl_rtl, unsignedp);
7081 else if (GET_CODE (real_decl_rtl) == PARALLEL)
7083 /* If expand_function_start has created a PARALLEL for decl_rtl,
7084 move the result to the real return registers. Otherwise, do
7085 a group load from decl_rtl for a named return. */
7086 if (GET_CODE (decl_rtl) == PARALLEL)
7087 emit_group_move (real_decl_rtl, decl_rtl);
7088 else
7089 emit_group_load (real_decl_rtl, decl_rtl,
7090 int_size_in_bytes (TREE_TYPE (decl_result)));
7092 else
7093 emit_move_insn (real_decl_rtl, decl_rtl);
7097 /* If returning a structure, arrange to return the address of the value
7098 in a place where debuggers expect to find it.
7100 If returning a structure PCC style,
7101 the caller also depends on this value.
7102 And current_function_returns_pcc_struct is not necessarily set. */
7103 if (current_function_returns_struct
7104 || current_function_returns_pcc_struct)
7106 rtx value_address
7107 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
7108 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
7109 #ifdef FUNCTION_OUTGOING_VALUE
7110 rtx outgoing
7111 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
7112 current_function_decl);
7113 #else
7114 rtx outgoing
7115 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
7116 #endif
7118 /* Mark this as a function return value so integrate will delete the
7119 assignment and USE below when inlining this function. */
7120 REG_FUNCTION_VALUE_P (outgoing) = 1;
7122 #ifdef POINTERS_EXTEND_UNSIGNED
7123 /* The address may be ptr_mode and OUTGOING may be Pmode. */
7124 if (GET_MODE (outgoing) != GET_MODE (value_address))
7125 value_address = convert_memory_address (GET_MODE (outgoing),
7126 value_address);
7127 #endif
7129 emit_move_insn (outgoing, value_address);
7131 /* Show return register used to hold result (in this case the address
7132 of the result. */
7133 current_function_return_rtx = outgoing;
7136 /* If this is an implementation of throw, do what's necessary to
7137 communicate between __builtin_eh_return and the epilogue. */
7138 expand_eh_return ();
7140 /* Emit the actual code to clobber return register. */
7142 rtx seq, after;
7144 start_sequence ();
7145 clobber_return_register ();
7146 seq = get_insns ();
7147 end_sequence ();
7149 after = emit_insn_after (seq, clobber_after);
7151 if (clobber_after != after)
7152 cfun->x_clobber_return_insn = after;
7155 /* ??? This should no longer be necessary since stupid is no longer with
7156 us, but there are some parts of the compiler (eg reload_combine, and
7157 sh mach_dep_reorg) that still try and compute their own lifetime info
7158 instead of using the general framework. */
7159 use_return_register ();
7161 /* Fix up any gotos that jumped out to the outermost
7162 binding level of the function.
7163 Must follow emitting RETURN_LABEL. */
7165 /* If you have any cleanups to do at this point,
7166 and they need to create temporary variables,
7167 then you will lose. */
7168 expand_fixups (get_insns ());
7172 get_arg_pointer_save_area (f)
7173 struct function *f;
7175 rtx ret = f->x_arg_pointer_save_area;
7177 if (! ret)
7179 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
7180 f->x_arg_pointer_save_area = ret;
7183 if (f == cfun && ! f->arg_pointer_save_area_init)
7185 rtx seq;
7187 /* Save the arg pointer at the beginning of the function. The
7188 generated stack slot may not be a valid memory address, so we
7189 have to check it and fix it if necessary. */
7190 start_sequence ();
7191 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
7192 seq = get_insns ();
7193 end_sequence ();
7195 push_topmost_sequence ();
7196 emit_insn_after (seq, get_insns ());
7197 pop_topmost_sequence ();
7200 return ret;
7203 /* Extend a vector that records the INSN_UIDs of INSNS
7204 (a list of one or more insns). */
7206 static void
7207 record_insns (insns, vecp)
7208 rtx insns;
7209 varray_type *vecp;
7211 int i, len;
7212 rtx tmp;
7214 tmp = insns;
7215 len = 0;
7216 while (tmp != NULL_RTX)
7218 len++;
7219 tmp = NEXT_INSN (tmp);
7222 i = VARRAY_SIZE (*vecp);
7223 VARRAY_GROW (*vecp, i + len);
7224 tmp = insns;
7225 while (tmp != NULL_RTX)
7227 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
7228 i++;
7229 tmp = NEXT_INSN (tmp);
7233 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
7234 be running after reorg, SEQUENCE rtl is possible. */
7236 static int
7237 contains (insn, vec)
7238 rtx insn;
7239 varray_type vec;
7241 int i, j;
7243 if (GET_CODE (insn) == INSN
7244 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7246 int count = 0;
7247 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7248 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7249 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7250 count++;
7251 return count;
7253 else
7255 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7256 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7257 return 1;
7259 return 0;
7263 prologue_epilogue_contains (insn)
7264 rtx insn;
7266 if (contains (insn, prologue))
7267 return 1;
7268 if (contains (insn, epilogue))
7269 return 1;
7270 return 0;
7274 sibcall_epilogue_contains (insn)
7275 rtx insn;
7277 if (sibcall_epilogue)
7278 return contains (insn, sibcall_epilogue);
7279 return 0;
7282 #ifdef HAVE_return
7283 /* Insert gen_return at the end of block BB. This also means updating
7284 block_for_insn appropriately. */
7286 static void
7287 emit_return_into_block (bb, line_note)
7288 basic_block bb;
7289 rtx line_note;
7291 emit_jump_insn_after (gen_return (), bb->end);
7292 if (line_note)
7293 emit_line_note_after (NOTE_SOURCE_FILE (line_note),
7294 NOTE_LINE_NUMBER (line_note), PREV_INSN (bb->end));
7296 #endif /* HAVE_return */
7298 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
7300 /* These functions convert the epilogue into a variant that does not modify the
7301 stack pointer. This is used in cases where a function returns an object
7302 whose size is not known until it is computed. The called function leaves the
7303 object on the stack, leaves the stack depressed, and returns a pointer to
7304 the object.
7306 What we need to do is track all modifications and references to the stack
7307 pointer, deleting the modifications and changing the references to point to
7308 the location the stack pointer would have pointed to had the modifications
7309 taken place.
7311 These functions need to be portable so we need to make as few assumptions
7312 about the epilogue as we can. However, the epilogue basically contains
7313 three things: instructions to reset the stack pointer, instructions to
7314 reload registers, possibly including the frame pointer, and an
7315 instruction to return to the caller.
7317 If we can't be sure of what a relevant epilogue insn is doing, we abort.
7318 We also make no attempt to validate the insns we make since if they are
7319 invalid, we probably can't do anything valid. The intent is that these
7320 routines get "smarter" as more and more machines start to use them and
7321 they try operating on different epilogues.
7323 We use the following structure to track what the part of the epilogue that
7324 we've already processed has done. We keep two copies of the SP equivalence,
7325 one for use during the insn we are processing and one for use in the next
7326 insn. The difference is because one part of a PARALLEL may adjust SP
7327 and the other may use it. */
7329 struct epi_info
7331 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
7332 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
7333 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
7334 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
7335 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
7336 should be set to once we no longer need
7337 its value. */
7340 static void handle_epilogue_set PARAMS ((rtx, struct epi_info *));
7341 static void emit_equiv_load PARAMS ((struct epi_info *));
7343 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
7344 no modifications to the stack pointer. Return the new list of insns. */
7346 static rtx
7347 keep_stack_depressed (insns)
7348 rtx insns;
7350 int j;
7351 struct epi_info info;
7352 rtx insn, next;
7354 /* If the epilogue is just a single instruction, it ust be OK as is. */
7356 if (NEXT_INSN (insns) == NULL_RTX)
7357 return insns;
7359 /* Otherwise, start a sequence, initialize the information we have, and
7360 process all the insns we were given. */
7361 start_sequence ();
7363 info.sp_equiv_reg = stack_pointer_rtx;
7364 info.sp_offset = 0;
7365 info.equiv_reg_src = 0;
7367 insn = insns;
7368 next = NULL_RTX;
7369 while (insn != NULL_RTX)
7371 next = NEXT_INSN (insn);
7373 if (!INSN_P (insn))
7375 add_insn (insn);
7376 insn = next;
7377 continue;
7380 /* If this insn references the register that SP is equivalent to and
7381 we have a pending load to that register, we must force out the load
7382 first and then indicate we no longer know what SP's equivalent is. */
7383 if (info.equiv_reg_src != 0
7384 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
7386 emit_equiv_load (&info);
7387 info.sp_equiv_reg = 0;
7390 info.new_sp_equiv_reg = info.sp_equiv_reg;
7391 info.new_sp_offset = info.sp_offset;
7393 /* If this is a (RETURN) and the return address is on the stack,
7394 update the address and change to an indirect jump. */
7395 if (GET_CODE (PATTERN (insn)) == RETURN
7396 || (GET_CODE (PATTERN (insn)) == PARALLEL
7397 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
7399 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
7400 rtx base = 0;
7401 HOST_WIDE_INT offset = 0;
7402 rtx jump_insn, jump_set;
7404 /* If the return address is in a register, we can emit the insn
7405 unchanged. Otherwise, it must be a MEM and we see what the
7406 base register and offset are. In any case, we have to emit any
7407 pending load to the equivalent reg of SP, if any. */
7408 if (GET_CODE (retaddr) == REG)
7410 emit_equiv_load (&info);
7411 add_insn (insn);
7412 insn = next;
7413 continue;
7415 else if (GET_CODE (retaddr) == MEM
7416 && GET_CODE (XEXP (retaddr, 0)) == REG)
7417 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
7418 else if (GET_CODE (retaddr) == MEM
7419 && GET_CODE (XEXP (retaddr, 0)) == PLUS
7420 && GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG
7421 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
7423 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
7424 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
7426 else
7427 abort ();
7429 /* If the base of the location containing the return pointer
7430 is SP, we must update it with the replacement address. Otherwise,
7431 just build the necessary MEM. */
7432 retaddr = plus_constant (base, offset);
7433 if (base == stack_pointer_rtx)
7434 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
7435 plus_constant (info.sp_equiv_reg,
7436 info.sp_offset));
7438 retaddr = gen_rtx_MEM (Pmode, retaddr);
7440 /* If there is a pending load to the equivalent register for SP
7441 and we reference that register, we must load our address into
7442 a scratch register and then do that load. */
7443 if (info.equiv_reg_src
7444 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
7446 unsigned int regno;
7447 rtx reg;
7449 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7450 if (HARD_REGNO_MODE_OK (regno, Pmode)
7451 && !fixed_regs[regno]
7452 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
7453 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
7454 regno)
7455 && !refers_to_regno_p (regno,
7456 regno + HARD_REGNO_NREGS (regno,
7457 Pmode),
7458 info.equiv_reg_src, NULL))
7459 break;
7461 if (regno == FIRST_PSEUDO_REGISTER)
7462 abort ();
7464 reg = gen_rtx_REG (Pmode, regno);
7465 emit_move_insn (reg, retaddr);
7466 retaddr = reg;
7469 emit_equiv_load (&info);
7470 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
7472 /* Show the SET in the above insn is a RETURN. */
7473 jump_set = single_set (jump_insn);
7474 if (jump_set == 0)
7475 abort ();
7476 else
7477 SET_IS_RETURN_P (jump_set) = 1;
7480 /* If SP is not mentioned in the pattern and its equivalent register, if
7481 any, is not modified, just emit it. Otherwise, if neither is set,
7482 replace the reference to SP and emit the insn. If none of those are
7483 true, handle each SET individually. */
7484 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
7485 && (info.sp_equiv_reg == stack_pointer_rtx
7486 || !reg_set_p (info.sp_equiv_reg, insn)))
7487 add_insn (insn);
7488 else if (! reg_set_p (stack_pointer_rtx, insn)
7489 && (info.sp_equiv_reg == stack_pointer_rtx
7490 || !reg_set_p (info.sp_equiv_reg, insn)))
7492 if (! validate_replace_rtx (stack_pointer_rtx,
7493 plus_constant (info.sp_equiv_reg,
7494 info.sp_offset),
7495 insn))
7496 abort ();
7498 add_insn (insn);
7500 else if (GET_CODE (PATTERN (insn)) == SET)
7501 handle_epilogue_set (PATTERN (insn), &info);
7502 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7504 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
7505 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
7506 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
7508 else
7509 add_insn (insn);
7511 info.sp_equiv_reg = info.new_sp_equiv_reg;
7512 info.sp_offset = info.new_sp_offset;
7514 insn = next;
7517 insns = get_insns ();
7518 end_sequence ();
7519 return insns;
7522 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
7523 structure that contains information about what we've seen so far. We
7524 process this SET by either updating that data or by emitting one or
7525 more insns. */
7527 static void
7528 handle_epilogue_set (set, p)
7529 rtx set;
7530 struct epi_info *p;
7532 /* First handle the case where we are setting SP. Record what it is being
7533 set from. If unknown, abort. */
7534 if (reg_set_p (stack_pointer_rtx, set))
7536 if (SET_DEST (set) != stack_pointer_rtx)
7537 abort ();
7539 if (GET_CODE (SET_SRC (set)) == PLUS
7540 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
7542 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
7543 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
7545 else
7546 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
7548 /* If we are adjusting SP, we adjust from the old data. */
7549 if (p->new_sp_equiv_reg == stack_pointer_rtx)
7551 p->new_sp_equiv_reg = p->sp_equiv_reg;
7552 p->new_sp_offset += p->sp_offset;
7555 if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG)
7556 abort ();
7558 return;
7561 /* Next handle the case where we are setting SP's equivalent register.
7562 If we already have a value to set it to, abort. We could update, but
7563 there seems little point in handling that case. Note that we have
7564 to allow for the case where we are setting the register set in
7565 the previous part of a PARALLEL inside a single insn. But use the
7566 old offset for any updates within this insn. */
7567 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
7569 if (!rtx_equal_p (p->new_sp_equiv_reg, SET_DEST (set))
7570 || p->equiv_reg_src != 0)
7571 abort ();
7572 else
7573 p->equiv_reg_src
7574 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7575 plus_constant (p->sp_equiv_reg,
7576 p->sp_offset));
7579 /* Otherwise, replace any references to SP in the insn to its new value
7580 and emit the insn. */
7581 else
7583 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7584 plus_constant (p->sp_equiv_reg,
7585 p->sp_offset));
7586 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
7587 plus_constant (p->sp_equiv_reg,
7588 p->sp_offset));
7589 emit_insn (set);
7593 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
7595 static void
7596 emit_equiv_load (p)
7597 struct epi_info *p;
7599 if (p->equiv_reg_src != 0)
7600 emit_move_insn (p->sp_equiv_reg, p->equiv_reg_src);
7602 p->equiv_reg_src = 0;
7604 #endif
7606 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7607 this into place with notes indicating where the prologue ends and where
7608 the epilogue begins. Update the basic block information when possible. */
7610 void
7611 thread_prologue_and_epilogue_insns (f)
7612 rtx f ATTRIBUTE_UNUSED;
7614 int inserted = 0;
7615 edge e;
7616 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
7617 rtx seq;
7618 #endif
7619 #ifdef HAVE_prologue
7620 rtx prologue_end = NULL_RTX;
7621 #endif
7622 #if defined (HAVE_epilogue) || defined(HAVE_return)
7623 rtx epilogue_end = NULL_RTX;
7624 #endif
7626 #ifdef HAVE_prologue
7627 if (HAVE_prologue)
7629 start_sequence ();
7630 seq = gen_prologue ();
7631 emit_insn (seq);
7633 /* Retain a map of the prologue insns. */
7634 record_insns (seq, &prologue);
7635 prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
7637 seq = get_insns ();
7638 end_sequence ();
7640 /* Can't deal with multiple successors of the entry block
7641 at the moment. Function should always have at least one
7642 entry point. */
7643 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
7644 abort ();
7646 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7647 inserted = 1;
7649 #endif
7651 /* If the exit block has no non-fake predecessors, we don't need
7652 an epilogue. */
7653 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7654 if ((e->flags & EDGE_FAKE) == 0)
7655 break;
7656 if (e == NULL)
7657 goto epilogue_done;
7659 #ifdef HAVE_return
7660 if (optimize && HAVE_return)
7662 /* If we're allowed to generate a simple return instruction,
7663 then by definition we don't need a full epilogue. Examine
7664 the block that falls through to EXIT. If it does not
7665 contain any code, examine its predecessors and try to
7666 emit (conditional) return instructions. */
7668 basic_block last;
7669 edge e_next;
7670 rtx label;
7672 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7673 if (e->flags & EDGE_FALLTHRU)
7674 break;
7675 if (e == NULL)
7676 goto epilogue_done;
7677 last = e->src;
7679 /* Verify that there are no active instructions in the last block. */
7680 label = last->end;
7681 while (label && GET_CODE (label) != CODE_LABEL)
7683 if (active_insn_p (label))
7684 break;
7685 label = PREV_INSN (label);
7688 if (last->head == label && GET_CODE (label) == CODE_LABEL)
7690 rtx epilogue_line_note = NULL_RTX;
7692 /* Locate the line number associated with the closing brace,
7693 if we can find one. */
7694 for (seq = get_last_insn ();
7695 seq && ! active_insn_p (seq);
7696 seq = PREV_INSN (seq))
7697 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7699 epilogue_line_note = seq;
7700 break;
7703 for (e = last->pred; e; e = e_next)
7705 basic_block bb = e->src;
7706 rtx jump;
7708 e_next = e->pred_next;
7709 if (bb == ENTRY_BLOCK_PTR)
7710 continue;
7712 jump = bb->end;
7713 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7714 continue;
7716 /* If we have an unconditional jump, we can replace that
7717 with a simple return instruction. */
7718 if (simplejump_p (jump))
7720 emit_return_into_block (bb, epilogue_line_note);
7721 delete_insn (jump);
7724 /* If we have a conditional jump, we can try to replace
7725 that with a conditional return instruction. */
7726 else if (condjump_p (jump))
7728 if (! redirect_jump (jump, 0, 0))
7729 continue;
7731 /* If this block has only one successor, it both jumps
7732 and falls through to the fallthru block, so we can't
7733 delete the edge. */
7734 if (bb->succ->succ_next == NULL)
7735 continue;
7737 else
7738 continue;
7740 /* Fix up the CFG for the successful change we just made. */
7741 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7744 /* Emit a return insn for the exit fallthru block. Whether
7745 this is still reachable will be determined later. */
7747 emit_barrier_after (last->end);
7748 emit_return_into_block (last, epilogue_line_note);
7749 epilogue_end = last->end;
7750 last->succ->flags &= ~EDGE_FALLTHRU;
7751 goto epilogue_done;
7754 #endif
7755 #ifdef HAVE_epilogue
7756 if (HAVE_epilogue)
7758 /* Find the edge that falls through to EXIT. Other edges may exist
7759 due to RETURN instructions, but those don't need epilogues.
7760 There really shouldn't be a mixture -- either all should have
7761 been converted or none, however... */
7763 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7764 if (e->flags & EDGE_FALLTHRU)
7765 break;
7766 if (e == NULL)
7767 goto epilogue_done;
7769 start_sequence ();
7770 epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
7772 seq = gen_epilogue ();
7774 #ifdef INCOMING_RETURN_ADDR_RTX
7775 /* If this function returns with the stack depressed and we can support
7776 it, massage the epilogue to actually do that. */
7777 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7778 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7779 seq = keep_stack_depressed (seq);
7780 #endif
7782 emit_jump_insn (seq);
7784 /* Retain a map of the epilogue insns. */
7785 record_insns (seq, &epilogue);
7787 seq = get_insns ();
7788 end_sequence ();
7790 insert_insn_on_edge (seq, e);
7791 inserted = 1;
7793 #endif
7794 epilogue_done:
7796 if (inserted)
7797 commit_edge_insertions ();
7799 #ifdef HAVE_sibcall_epilogue
7800 /* Emit sibling epilogues before any sibling call sites. */
7801 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7803 basic_block bb = e->src;
7804 rtx insn = bb->end;
7805 rtx i;
7806 rtx newinsn;
7808 if (GET_CODE (insn) != CALL_INSN
7809 || ! SIBLING_CALL_P (insn))
7810 continue;
7812 start_sequence ();
7813 emit_insn (gen_sibcall_epilogue ());
7814 seq = get_insns ();
7815 end_sequence ();
7817 /* Retain a map of the epilogue insns. Used in life analysis to
7818 avoid getting rid of sibcall epilogue insns. Do this before we
7819 actually emit the sequence. */
7820 record_insns (seq, &sibcall_epilogue);
7822 i = PREV_INSN (insn);
7823 newinsn = emit_insn_before (seq, insn);
7825 #endif
7827 #ifdef HAVE_prologue
7828 if (prologue_end)
7830 rtx insn, prev;
7832 /* GDB handles `break f' by setting a breakpoint on the first
7833 line note after the prologue. Which means (1) that if
7834 there are line number notes before where we inserted the
7835 prologue we should move them, and (2) we should generate a
7836 note before the end of the first basic block, if there isn't
7837 one already there.
7839 ??? This behavior is completely broken when dealing with
7840 multiple entry functions. We simply place the note always
7841 into first basic block and let alternate entry points
7842 to be missed.
7845 for (insn = prologue_end; insn; insn = prev)
7847 prev = PREV_INSN (insn);
7848 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7850 /* Note that we cannot reorder the first insn in the
7851 chain, since rest_of_compilation relies on that
7852 remaining constant. */
7853 if (prev == NULL)
7854 break;
7855 reorder_insns (insn, insn, prologue_end);
7859 /* Find the last line number note in the first block. */
7860 for (insn = ENTRY_BLOCK_PTR->next_bb->end;
7861 insn != prologue_end && insn;
7862 insn = PREV_INSN (insn))
7863 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7864 break;
7866 /* If we didn't find one, make a copy of the first line number
7867 we run across. */
7868 if (! insn)
7870 for (insn = next_active_insn (prologue_end);
7871 insn;
7872 insn = PREV_INSN (insn))
7873 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7875 emit_line_note_after (NOTE_SOURCE_FILE (insn),
7876 NOTE_LINE_NUMBER (insn),
7877 prologue_end);
7878 break;
7882 #endif
7883 #ifdef HAVE_epilogue
7884 if (epilogue_end)
7886 rtx insn, next;
7888 /* Similarly, move any line notes that appear after the epilogue.
7889 There is no need, however, to be quite so anal about the existence
7890 of such a note. */
7891 for (insn = epilogue_end; insn; insn = next)
7893 next = NEXT_INSN (insn);
7894 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7895 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7898 #endif
7901 /* Reposition the prologue-end and epilogue-begin notes after instruction
7902 scheduling and delayed branch scheduling. */
7904 void
7905 reposition_prologue_and_epilogue_notes (f)
7906 rtx f ATTRIBUTE_UNUSED;
7908 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7909 rtx insn, last, note;
7910 int len;
7912 if ((len = VARRAY_SIZE (prologue)) > 0)
7914 last = 0, note = 0;
7916 /* Scan from the beginning until we reach the last prologue insn.
7917 We apparently can't depend on basic_block_{head,end} after
7918 reorg has run. */
7919 for (insn = f; insn; insn = NEXT_INSN (insn))
7921 if (GET_CODE (insn) == NOTE)
7923 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7924 note = insn;
7926 else if (contains (insn, prologue))
7928 last = insn;
7929 if (--len == 0)
7930 break;
7934 if (last)
7936 /* Find the prologue-end note if we haven't already, and
7937 move it to just after the last prologue insn. */
7938 if (note == 0)
7940 for (note = last; (note = NEXT_INSN (note));)
7941 if (GET_CODE (note) == NOTE
7942 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7943 break;
7946 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
7947 if (GET_CODE (last) == CODE_LABEL)
7948 last = NEXT_INSN (last);
7949 reorder_insns (note, note, last);
7953 if ((len = VARRAY_SIZE (epilogue)) > 0)
7955 last = 0, note = 0;
7957 /* Scan from the end until we reach the first epilogue insn.
7958 We apparently can't depend on basic_block_{head,end} after
7959 reorg has run. */
7960 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7962 if (GET_CODE (insn) == NOTE)
7964 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7965 note = insn;
7967 else if (contains (insn, epilogue))
7969 last = insn;
7970 if (--len == 0)
7971 break;
7975 if (last)
7977 /* Find the epilogue-begin note if we haven't already, and
7978 move it to just before the first epilogue insn. */
7979 if (note == 0)
7981 for (note = insn; (note = PREV_INSN (note));)
7982 if (GET_CODE (note) == NOTE
7983 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7984 break;
7987 if (PREV_INSN (last) != note)
7988 reorder_insns (note, note, PREV_INSN (last));
7991 #endif /* HAVE_prologue or HAVE_epilogue */
7994 /* Called once, at initialization, to initialize function.c. */
7996 void
7997 init_function_once ()
7999 VARRAY_INT_INIT (prologue, 0, "prologue");
8000 VARRAY_INT_INIT (epilogue, 0, "epilogue");
8001 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
8004 #include "gt-function.h"