* config/arm/elf.h (ASM_OUTPUT_ALIGNED_COMMON): Remove definition.
[official-gcc.git] / gcc / dwarf2out.c
blob92b75af56886dc17b491e53c8526e173248eb21f
1 /* Output Dwarf2 format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
68 #ifdef DWARF2_DEBUGGING_INFO
69 static void dwarf2out_source_line PARAMS ((unsigned int, const char *));
70 #endif
72 /* DWARF2 Abbreviation Glossary:
73 CFA = Canonical Frame Address
74 a fixed address on the stack which identifies a call frame.
75 We define it to be the value of SP just before the call insn.
76 The CFA register and offset, which may change during the course
77 of the function, are used to calculate its value at runtime.
78 CFI = Call Frame Instruction
79 an instruction for the DWARF2 abstract machine
80 CIE = Common Information Entry
81 information describing information common to one or more FDEs
82 DIE = Debugging Information Entry
83 FDE = Frame Description Entry
84 information describing the stack call frame, in particular,
85 how to restore registers
87 DW_CFA_... = DWARF2 CFA call frame instruction
88 DW_TAG_... = DWARF2 DIE tag */
90 /* Decide whether we want to emit frame unwind information for the current
91 translation unit. */
93 int
94 dwarf2out_do_frame ()
96 return (write_symbols == DWARF2_DEBUG
97 || write_symbols == VMS_AND_DWARF2_DEBUG
98 #ifdef DWARF2_FRAME_INFO
99 || DWARF2_FRAME_INFO
100 #endif
101 #ifdef DWARF2_UNWIND_INFO
102 || flag_unwind_tables
103 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
104 #endif
108 /* The size of the target's pointer type. */
109 #ifndef PTR_SIZE
110 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
111 #endif
113 /* Default version of targetm.eh_frame_section. Note this must appear
114 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro
115 guards. */
117 void
118 default_eh_frame_section ()
120 #ifdef EH_FRAME_SECTION_NAME
121 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
122 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
123 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
124 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
125 int flags;
127 flags = (! flag_pic
128 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
129 && (fde_encoding & 0x70) != DW_EH_PE_aligned
130 && (per_encoding & 0x70) != DW_EH_PE_absptr
131 && (per_encoding & 0x70) != DW_EH_PE_aligned
132 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
133 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
134 ? 0 : SECTION_WRITE;
135 named_section_flags (EH_FRAME_SECTION_NAME, flags);
136 #else
137 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
138 #endif
139 #else
140 tree label = get_file_function_name ('F');
142 data_section ();
143 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
144 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
145 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
146 #endif
149 /* Array of RTXes referenced by the debugging information, which therefore
150 must be kept around forever. */
151 static GTY(()) varray_type used_rtx_varray;
153 /* A pointer to the base of a list of incomplete types which might be
154 completed at some later time. incomplete_types_list needs to be a VARRAY
155 because we want to tell the garbage collector about it. */
156 static GTY(()) varray_type incomplete_types;
158 /* A pointer to the base of a table of references to declaration
159 scopes. This table is a display which tracks the nesting
160 of declaration scopes at the current scope and containing
161 scopes. This table is used to find the proper place to
162 define type declaration DIE's. */
163 static GTY(()) varray_type decl_scope_table;
165 /* How to start an assembler comment. */
166 #ifndef ASM_COMMENT_START
167 #define ASM_COMMENT_START ";#"
168 #endif
170 typedef struct dw_cfi_struct *dw_cfi_ref;
171 typedef struct dw_fde_struct *dw_fde_ref;
172 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
174 /* Call frames are described using a sequence of Call Frame
175 Information instructions. The register number, offset
176 and address fields are provided as possible operands;
177 their use is selected by the opcode field. */
179 enum dw_cfi_oprnd_type {
180 dw_cfi_oprnd_unused,
181 dw_cfi_oprnd_reg_num,
182 dw_cfi_oprnd_offset,
183 dw_cfi_oprnd_addr,
184 dw_cfi_oprnd_loc
187 typedef union dw_cfi_oprnd_struct GTY(())
189 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
190 long int GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
191 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
192 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
194 dw_cfi_oprnd;
196 typedef struct dw_cfi_struct GTY(())
198 dw_cfi_ref dw_cfi_next;
199 enum dwarf_call_frame_info dw_cfi_opc;
200 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
201 dw_cfi_oprnd1;
202 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
203 dw_cfi_oprnd2;
205 dw_cfi_node;
207 /* This is how we define the location of the CFA. We use to handle it
208 as REG + OFFSET all the time, but now it can be more complex.
209 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
210 Instead of passing around REG and OFFSET, we pass a copy
211 of this structure. */
212 typedef struct cfa_loc GTY(())
214 unsigned long reg;
215 long offset;
216 long base_offset;
217 int indirect; /* 1 if CFA is accessed via a dereference. */
218 } dw_cfa_location;
220 /* All call frame descriptions (FDE's) in the GCC generated DWARF
221 refer to a single Common Information Entry (CIE), defined at
222 the beginning of the .debug_frame section. This use of a single
223 CIE obviates the need to keep track of multiple CIE's
224 in the DWARF generation routines below. */
226 typedef struct dw_fde_struct GTY(())
228 const char *dw_fde_begin;
229 const char *dw_fde_current_label;
230 const char *dw_fde_end;
231 dw_cfi_ref dw_fde_cfi;
232 unsigned funcdef_number;
233 unsigned all_throwers_are_sibcalls : 1;
234 unsigned nothrow : 1;
235 unsigned uses_eh_lsda : 1;
237 dw_fde_node;
239 /* Maximum size (in bytes) of an artificially generated label. */
240 #define MAX_ARTIFICIAL_LABEL_BYTES 30
242 /* The size of addresses as they appear in the Dwarf 2 data.
243 Some architectures use word addresses to refer to code locations,
244 but Dwarf 2 info always uses byte addresses. On such machines,
245 Dwarf 2 addresses need to be larger than the architecture's
246 pointers. */
247 #ifndef DWARF2_ADDR_SIZE
248 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
249 #endif
251 /* The size in bytes of a DWARF field indicating an offset or length
252 relative to a debug info section, specified to be 4 bytes in the
253 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
254 as PTR_SIZE. */
256 #ifndef DWARF_OFFSET_SIZE
257 #define DWARF_OFFSET_SIZE 4
258 #endif
260 /* According to the (draft) DWARF 3 specification, the initial length
261 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
262 bytes are 0xffffffff, followed by the length stored in the next 8
263 bytes.
265 However, the SGI/MIPS ABI uses an initial length which is equal to
266 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
268 #ifndef DWARF_INITIAL_LENGTH_SIZE
269 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
270 #endif
272 #define DWARF_VERSION 2
274 /* Round SIZE up to the nearest BOUNDARY. */
275 #define DWARF_ROUND(SIZE,BOUNDARY) \
276 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
278 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
279 #ifndef DWARF_CIE_DATA_ALIGNMENT
280 #ifdef STACK_GROWS_DOWNWARD
281 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
282 #else
283 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
284 #endif
285 #endif
287 /* A pointer to the base of a table that contains frame description
288 information for each routine. */
289 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
291 /* Number of elements currently allocated for fde_table. */
292 static GTY(()) unsigned fde_table_allocated;
294 /* Number of elements in fde_table currently in use. */
295 static GTY(()) unsigned fde_table_in_use;
297 /* Size (in elements) of increments by which we may expand the
298 fde_table. */
299 #define FDE_TABLE_INCREMENT 256
301 /* A list of call frame insns for the CIE. */
302 static GTY(()) dw_cfi_ref cie_cfi_head;
304 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
305 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
306 attribute that accelerates the lookup of the FDE associated
307 with the subprogram. This variable holds the table index of the FDE
308 associated with the current function (body) definition. */
309 static unsigned current_funcdef_fde;
310 #endif
312 struct indirect_string_node GTY(())
314 const char *str;
315 unsigned int refcount;
316 unsigned int form;
317 char *label;
320 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
322 static GTY(()) int dw2_string_counter;
323 static GTY(()) unsigned long dwarf2out_cfi_label_num;
325 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
327 /* Forward declarations for functions defined in this file. */
329 static char *stripattributes PARAMS ((const char *));
330 static const char *dwarf_cfi_name PARAMS ((unsigned));
331 static dw_cfi_ref new_cfi PARAMS ((void));
332 static void add_cfi PARAMS ((dw_cfi_ref *, dw_cfi_ref));
333 static void add_fde_cfi PARAMS ((const char *, dw_cfi_ref));
334 static void lookup_cfa_1 PARAMS ((dw_cfi_ref,
335 dw_cfa_location *));
336 static void lookup_cfa PARAMS ((dw_cfa_location *));
337 static void reg_save PARAMS ((const char *, unsigned,
338 unsigned, long));
339 static void initial_return_save PARAMS ((rtx));
340 static long stack_adjust_offset PARAMS ((rtx));
341 static void output_cfi PARAMS ((dw_cfi_ref, dw_fde_ref, int));
342 static void output_call_frame_info PARAMS ((int));
343 static void dwarf2out_stack_adjust PARAMS ((rtx));
344 static void queue_reg_save PARAMS ((const char *, rtx, long));
345 static void flush_queued_reg_saves PARAMS ((void));
346 static bool clobbers_queued_reg_save PARAMS ((rtx));
347 static void dwarf2out_frame_debug_expr PARAMS ((rtx, const char *));
349 /* Support for complex CFA locations. */
350 static void output_cfa_loc PARAMS ((dw_cfi_ref));
351 static void get_cfa_from_loc_descr PARAMS ((dw_cfa_location *,
352 struct dw_loc_descr_struct *));
353 static struct dw_loc_descr_struct *build_cfa_loc
354 PARAMS ((dw_cfa_location *));
355 static void def_cfa_1 PARAMS ((const char *,
356 dw_cfa_location *));
358 /* How to start an assembler comment. */
359 #ifndef ASM_COMMENT_START
360 #define ASM_COMMENT_START ";#"
361 #endif
363 /* Data and reference forms for relocatable data. */
364 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
365 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
367 #ifndef DEBUG_FRAME_SECTION
368 #define DEBUG_FRAME_SECTION ".debug_frame"
369 #endif
371 #ifndef FUNC_BEGIN_LABEL
372 #define FUNC_BEGIN_LABEL "LFB"
373 #endif
375 #ifndef FUNC_END_LABEL
376 #define FUNC_END_LABEL "LFE"
377 #endif
379 #define FRAME_BEGIN_LABEL "Lframe"
380 #define CIE_AFTER_SIZE_LABEL "LSCIE"
381 #define CIE_END_LABEL "LECIE"
382 #define FDE_LABEL "LSFDE"
383 #define FDE_AFTER_SIZE_LABEL "LASFDE"
384 #define FDE_END_LABEL "LEFDE"
385 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
386 #define LINE_NUMBER_END_LABEL "LELT"
387 #define LN_PROLOG_AS_LABEL "LASLTP"
388 #define LN_PROLOG_END_LABEL "LELTP"
389 #define DIE_LABEL_PREFIX "DW"
391 /* The DWARF 2 CFA column which tracks the return address. Normally this
392 is the column for PC, or the first column after all of the hard
393 registers. */
394 #ifndef DWARF_FRAME_RETURN_COLUMN
395 #ifdef PC_REGNUM
396 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
397 #else
398 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
399 #endif
400 #endif
402 /* The mapping from gcc register number to DWARF 2 CFA column number. By
403 default, we just provide columns for all registers. */
404 #ifndef DWARF_FRAME_REGNUM
405 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
406 #endif
408 /* The offset from the incoming value of %sp to the top of the stack frame
409 for the current function. */
410 #ifndef INCOMING_FRAME_SP_OFFSET
411 #define INCOMING_FRAME_SP_OFFSET 0
412 #endif
414 /* Hook used by __throw. */
417 expand_builtin_dwarf_fp_regnum ()
419 return GEN_INT (DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM));
422 /* Return a pointer to a copy of the section string name S with all
423 attributes stripped off, and an asterisk prepended (for assemble_name). */
425 static inline char *
426 stripattributes (s)
427 const char *s;
429 char *stripped = xmalloc (strlen (s) + 2);
430 char *p = stripped;
432 *p++ = '*';
434 while (*s && *s != ',')
435 *p++ = *s++;
437 *p = '\0';
438 return stripped;
441 /* Generate code to initialize the register size table. */
443 void
444 expand_builtin_init_dwarf_reg_sizes (address)
445 tree address;
447 int i;
448 enum machine_mode mode = TYPE_MODE (char_type_node);
449 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
450 rtx mem = gen_rtx_MEM (BLKmode, addr);
452 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
453 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
455 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
456 HOST_WIDE_INT size = GET_MODE_SIZE (reg_raw_mode[i]);
458 if (offset < 0)
459 continue;
461 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
465 /* Convert a DWARF call frame info. operation to its string name */
467 static const char *
468 dwarf_cfi_name (cfi_opc)
469 unsigned cfi_opc;
471 switch (cfi_opc)
473 case DW_CFA_advance_loc:
474 return "DW_CFA_advance_loc";
475 case DW_CFA_offset:
476 return "DW_CFA_offset";
477 case DW_CFA_restore:
478 return "DW_CFA_restore";
479 case DW_CFA_nop:
480 return "DW_CFA_nop";
481 case DW_CFA_set_loc:
482 return "DW_CFA_set_loc";
483 case DW_CFA_advance_loc1:
484 return "DW_CFA_advance_loc1";
485 case DW_CFA_advance_loc2:
486 return "DW_CFA_advance_loc2";
487 case DW_CFA_advance_loc4:
488 return "DW_CFA_advance_loc4";
489 case DW_CFA_offset_extended:
490 return "DW_CFA_offset_extended";
491 case DW_CFA_restore_extended:
492 return "DW_CFA_restore_extended";
493 case DW_CFA_undefined:
494 return "DW_CFA_undefined";
495 case DW_CFA_same_value:
496 return "DW_CFA_same_value";
497 case DW_CFA_register:
498 return "DW_CFA_register";
499 case DW_CFA_remember_state:
500 return "DW_CFA_remember_state";
501 case DW_CFA_restore_state:
502 return "DW_CFA_restore_state";
503 case DW_CFA_def_cfa:
504 return "DW_CFA_def_cfa";
505 case DW_CFA_def_cfa_register:
506 return "DW_CFA_def_cfa_register";
507 case DW_CFA_def_cfa_offset:
508 return "DW_CFA_def_cfa_offset";
510 /* DWARF 3 */
511 case DW_CFA_def_cfa_expression:
512 return "DW_CFA_def_cfa_expression";
513 case DW_CFA_expression:
514 return "DW_CFA_expression";
515 case DW_CFA_offset_extended_sf:
516 return "DW_CFA_offset_extended_sf";
517 case DW_CFA_def_cfa_sf:
518 return "DW_CFA_def_cfa_sf";
519 case DW_CFA_def_cfa_offset_sf:
520 return "DW_CFA_def_cfa_offset_sf";
522 /* SGI/MIPS specific */
523 case DW_CFA_MIPS_advance_loc8:
524 return "DW_CFA_MIPS_advance_loc8";
526 /* GNU extensions */
527 case DW_CFA_GNU_window_save:
528 return "DW_CFA_GNU_window_save";
529 case DW_CFA_GNU_args_size:
530 return "DW_CFA_GNU_args_size";
531 case DW_CFA_GNU_negative_offset_extended:
532 return "DW_CFA_GNU_negative_offset_extended";
534 default:
535 return "DW_CFA_<unknown>";
539 /* Return a pointer to a newly allocated Call Frame Instruction. */
541 static inline dw_cfi_ref
542 new_cfi ()
544 dw_cfi_ref cfi = (dw_cfi_ref) ggc_alloc (sizeof (dw_cfi_node));
546 cfi->dw_cfi_next = NULL;
547 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
548 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
550 return cfi;
553 /* Add a Call Frame Instruction to list of instructions. */
555 static inline void
556 add_cfi (list_head, cfi)
557 dw_cfi_ref *list_head;
558 dw_cfi_ref cfi;
560 dw_cfi_ref *p;
562 /* Find the end of the chain. */
563 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
566 *p = cfi;
569 /* Generate a new label for the CFI info to refer to. */
571 char *
572 dwarf2out_cfi_label ()
574 static char label[20];
576 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
577 ASM_OUTPUT_LABEL (asm_out_file, label);
578 return label;
581 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
582 or to the CIE if LABEL is NULL. */
584 static void
585 add_fde_cfi (label, cfi)
586 const char *label;
587 dw_cfi_ref cfi;
589 if (label)
591 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
593 if (*label == 0)
594 label = dwarf2out_cfi_label ();
596 if (fde->dw_fde_current_label == NULL
597 || strcmp (label, fde->dw_fde_current_label) != 0)
599 dw_cfi_ref xcfi;
601 fde->dw_fde_current_label = label = xstrdup (label);
603 /* Set the location counter to the new label. */
604 xcfi = new_cfi ();
605 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
606 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
607 add_cfi (&fde->dw_fde_cfi, xcfi);
610 add_cfi (&fde->dw_fde_cfi, cfi);
613 else
614 add_cfi (&cie_cfi_head, cfi);
617 /* Subroutine of lookup_cfa. */
619 static inline void
620 lookup_cfa_1 (cfi, loc)
621 dw_cfi_ref cfi;
622 dw_cfa_location *loc;
624 switch (cfi->dw_cfi_opc)
626 case DW_CFA_def_cfa_offset:
627 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
628 break;
629 case DW_CFA_def_cfa_register:
630 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
631 break;
632 case DW_CFA_def_cfa:
633 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
634 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
635 break;
636 case DW_CFA_def_cfa_expression:
637 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
638 break;
639 default:
640 break;
644 /* Find the previous value for the CFA. */
646 static void
647 lookup_cfa (loc)
648 dw_cfa_location *loc;
650 dw_cfi_ref cfi;
652 loc->reg = (unsigned long) -1;
653 loc->offset = 0;
654 loc->indirect = 0;
655 loc->base_offset = 0;
657 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
658 lookup_cfa_1 (cfi, loc);
660 if (fde_table_in_use)
662 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
663 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
664 lookup_cfa_1 (cfi, loc);
668 /* The current rule for calculating the DWARF2 canonical frame address. */
669 static dw_cfa_location cfa;
671 /* The register used for saving registers to the stack, and its offset
672 from the CFA. */
673 static dw_cfa_location cfa_store;
675 /* The running total of the size of arguments pushed onto the stack. */
676 static long args_size;
678 /* The last args_size we actually output. */
679 static long old_args_size;
681 /* Entry point to update the canonical frame address (CFA).
682 LABEL is passed to add_fde_cfi. The value of CFA is now to be
683 calculated from REG+OFFSET. */
685 void
686 dwarf2out_def_cfa (label, reg, offset)
687 const char *label;
688 unsigned reg;
689 long offset;
691 dw_cfa_location loc;
692 loc.indirect = 0;
693 loc.base_offset = 0;
694 loc.reg = reg;
695 loc.offset = offset;
696 def_cfa_1 (label, &loc);
699 /* This routine does the actual work. The CFA is now calculated from
700 the dw_cfa_location structure. */
702 static void
703 def_cfa_1 (label, loc_p)
704 const char *label;
705 dw_cfa_location *loc_p;
707 dw_cfi_ref cfi;
708 dw_cfa_location old_cfa, loc;
710 cfa = *loc_p;
711 loc = *loc_p;
713 if (cfa_store.reg == loc.reg && loc.indirect == 0)
714 cfa_store.offset = loc.offset;
716 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
717 lookup_cfa (&old_cfa);
719 /* If nothing changed, no need to issue any call frame instructions. */
720 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
721 && loc.indirect == old_cfa.indirect
722 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
723 return;
725 cfi = new_cfi ();
727 if (loc.reg == old_cfa.reg && !loc.indirect)
729 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
730 indicating the CFA register did not change but the offset
731 did. */
732 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
733 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
736 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
737 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
738 && !loc.indirect)
740 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
741 indicating the CFA register has changed to <register> but the
742 offset has not changed. */
743 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
744 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
746 #endif
748 else if (loc.indirect == 0)
750 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
751 indicating the CFA register has changed to <register> with
752 the specified offset. */
753 cfi->dw_cfi_opc = DW_CFA_def_cfa;
754 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
755 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
757 else
759 /* Construct a DW_CFA_def_cfa_expression instruction to
760 calculate the CFA using a full location expression since no
761 register-offset pair is available. */
762 struct dw_loc_descr_struct *loc_list;
764 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
765 loc_list = build_cfa_loc (&loc);
766 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
769 add_fde_cfi (label, cfi);
772 /* Add the CFI for saving a register. REG is the CFA column number.
773 LABEL is passed to add_fde_cfi.
774 If SREG is -1, the register is saved at OFFSET from the CFA;
775 otherwise it is saved in SREG. */
777 static void
778 reg_save (label, reg, sreg, offset)
779 const char *label;
780 unsigned reg;
781 unsigned sreg;
782 long offset;
784 dw_cfi_ref cfi = new_cfi ();
786 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
788 /* The following comparison is correct. -1 is used to indicate that
789 the value isn't a register number. */
790 if (sreg == (unsigned int) -1)
792 if (reg & ~0x3f)
793 /* The register number won't fit in 6 bits, so we have to use
794 the long form. */
795 cfi->dw_cfi_opc = DW_CFA_offset_extended;
796 else
797 cfi->dw_cfi_opc = DW_CFA_offset;
799 #ifdef ENABLE_CHECKING
801 /* If we get an offset that is not a multiple of
802 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
803 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
804 description. */
805 long check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
807 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
808 abort ();
810 #endif
811 offset /= DWARF_CIE_DATA_ALIGNMENT;
812 if (offset < 0)
813 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
815 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
817 else if (sreg == reg)
818 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
819 return;
820 else
822 cfi->dw_cfi_opc = DW_CFA_register;
823 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
826 add_fde_cfi (label, cfi);
829 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
830 This CFI tells the unwinder that it needs to restore the window registers
831 from the previous frame's window save area.
833 ??? Perhaps we should note in the CIE where windows are saved (instead of
834 assuming 0(cfa)) and what registers are in the window. */
836 void
837 dwarf2out_window_save (label)
838 const char *label;
840 dw_cfi_ref cfi = new_cfi ();
842 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
843 add_fde_cfi (label, cfi);
846 /* Add a CFI to update the running total of the size of arguments
847 pushed onto the stack. */
849 void
850 dwarf2out_args_size (label, size)
851 const char *label;
852 long size;
854 dw_cfi_ref cfi;
856 if (size == old_args_size)
857 return;
859 old_args_size = size;
861 cfi = new_cfi ();
862 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
863 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
864 add_fde_cfi (label, cfi);
867 /* Entry point for saving a register to the stack. REG is the GCC register
868 number. LABEL and OFFSET are passed to reg_save. */
870 void
871 dwarf2out_reg_save (label, reg, offset)
872 const char *label;
873 unsigned reg;
874 long offset;
876 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
879 /* Entry point for saving the return address in the stack.
880 LABEL and OFFSET are passed to reg_save. */
882 void
883 dwarf2out_return_save (label, offset)
884 const char *label;
885 long offset;
887 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
890 /* Entry point for saving the return address in a register.
891 LABEL and SREG are passed to reg_save. */
893 void
894 dwarf2out_return_reg (label, sreg)
895 const char *label;
896 unsigned sreg;
898 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
901 /* Record the initial position of the return address. RTL is
902 INCOMING_RETURN_ADDR_RTX. */
904 static void
905 initial_return_save (rtl)
906 rtx rtl;
908 unsigned int reg = (unsigned int) -1;
909 HOST_WIDE_INT offset = 0;
911 switch (GET_CODE (rtl))
913 case REG:
914 /* RA is in a register. */
915 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
916 break;
918 case MEM:
919 /* RA is on the stack. */
920 rtl = XEXP (rtl, 0);
921 switch (GET_CODE (rtl))
923 case REG:
924 if (REGNO (rtl) != STACK_POINTER_REGNUM)
925 abort ();
926 offset = 0;
927 break;
929 case PLUS:
930 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
931 abort ();
932 offset = INTVAL (XEXP (rtl, 1));
933 break;
935 case MINUS:
936 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
937 abort ();
938 offset = -INTVAL (XEXP (rtl, 1));
939 break;
941 default:
942 abort ();
945 break;
947 case PLUS:
948 /* The return address is at some offset from any value we can
949 actually load. For instance, on the SPARC it is in %i7+8. Just
950 ignore the offset for now; it doesn't matter for unwinding frames. */
951 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
952 abort ();
953 initial_return_save (XEXP (rtl, 0));
954 return;
956 default:
957 abort ();
960 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
963 /* Given a SET, calculate the amount of stack adjustment it
964 contains. */
966 static long
967 stack_adjust_offset (pattern)
968 rtx pattern;
970 rtx src = SET_SRC (pattern);
971 rtx dest = SET_DEST (pattern);
972 HOST_WIDE_INT offset = 0;
973 enum rtx_code code;
975 if (dest == stack_pointer_rtx)
977 /* (set (reg sp) (plus (reg sp) (const_int))) */
978 code = GET_CODE (src);
979 if (! (code == PLUS || code == MINUS)
980 || XEXP (src, 0) != stack_pointer_rtx
981 || GET_CODE (XEXP (src, 1)) != CONST_INT)
982 return 0;
984 offset = INTVAL (XEXP (src, 1));
985 if (code == PLUS)
986 offset = -offset;
988 else if (GET_CODE (dest) == MEM)
990 /* (set (mem (pre_dec (reg sp))) (foo)) */
991 src = XEXP (dest, 0);
992 code = GET_CODE (src);
994 switch (code)
996 case PRE_MODIFY:
997 case POST_MODIFY:
998 if (XEXP (src, 0) == stack_pointer_rtx)
1000 rtx val = XEXP (XEXP (src, 1), 1);
1001 /* We handle only adjustments by constant amount. */
1002 if (GET_CODE (XEXP (src, 1)) != PLUS ||
1003 GET_CODE (val) != CONST_INT)
1004 abort ();
1005 offset = -INTVAL (val);
1006 break;
1008 return 0;
1010 case PRE_DEC:
1011 case POST_DEC:
1012 if (XEXP (src, 0) == stack_pointer_rtx)
1014 offset = GET_MODE_SIZE (GET_MODE (dest));
1015 break;
1017 return 0;
1019 case PRE_INC:
1020 case POST_INC:
1021 if (XEXP (src, 0) == stack_pointer_rtx)
1023 offset = -GET_MODE_SIZE (GET_MODE (dest));
1024 break;
1026 return 0;
1028 default:
1029 return 0;
1032 else
1033 return 0;
1035 return offset;
1038 /* Check INSN to see if it looks like a push or a stack adjustment, and
1039 make a note of it if it does. EH uses this information to find out how
1040 much extra space it needs to pop off the stack. */
1042 static void
1043 dwarf2out_stack_adjust (insn)
1044 rtx insn;
1046 HOST_WIDE_INT offset;
1047 const char *label;
1048 int i;
1050 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1052 /* Extract the size of the args from the CALL rtx itself. */
1053 insn = PATTERN (insn);
1054 if (GET_CODE (insn) == PARALLEL)
1055 insn = XVECEXP (insn, 0, 0);
1056 if (GET_CODE (insn) == SET)
1057 insn = SET_SRC (insn);
1058 if (GET_CODE (insn) != CALL)
1059 abort ();
1061 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1062 return;
1065 /* If only calls can throw, and we have a frame pointer,
1066 save up adjustments until we see the CALL_INSN. */
1067 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1068 return;
1070 if (GET_CODE (insn) == BARRIER)
1072 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1073 the compiler will have already emitted a stack adjustment, but
1074 doesn't bother for calls to noreturn functions. */
1075 #ifdef STACK_GROWS_DOWNWARD
1076 offset = -args_size;
1077 #else
1078 offset = args_size;
1079 #endif
1081 else if (GET_CODE (PATTERN (insn)) == SET)
1082 offset = stack_adjust_offset (PATTERN (insn));
1083 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1084 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1086 /* There may be stack adjustments inside compound insns. Search
1087 for them. */
1088 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1089 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1090 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1092 else
1093 return;
1095 if (offset == 0)
1096 return;
1098 if (cfa.reg == STACK_POINTER_REGNUM)
1099 cfa.offset += offset;
1101 #ifndef STACK_GROWS_DOWNWARD
1102 offset = -offset;
1103 #endif
1105 args_size += offset;
1106 if (args_size < 0)
1107 args_size = 0;
1109 label = dwarf2out_cfi_label ();
1110 def_cfa_1 (label, &cfa);
1111 dwarf2out_args_size (label, args_size);
1114 #endif
1116 /* We delay emitting a register save until either (a) we reach the end
1117 of the prologue or (b) the register is clobbered. This clusters
1118 register saves so that there are fewer pc advances. */
1120 struct queued_reg_save GTY(())
1122 struct queued_reg_save *next;
1123 rtx reg;
1124 long cfa_offset;
1127 static GTY(()) struct queued_reg_save *queued_reg_saves;
1129 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1130 static const char *last_reg_save_label;
1132 static void
1133 queue_reg_save (label, reg, offset)
1134 const char *label;
1135 rtx reg;
1136 long offset;
1138 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1140 q->next = queued_reg_saves;
1141 q->reg = reg;
1142 q->cfa_offset = offset;
1143 queued_reg_saves = q;
1145 last_reg_save_label = label;
1148 static void
1149 flush_queued_reg_saves ()
1151 struct queued_reg_save *q, *next;
1153 for (q = queued_reg_saves; q; q = next)
1155 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1156 next = q->next;
1159 queued_reg_saves = NULL;
1160 last_reg_save_label = NULL;
1163 static bool
1164 clobbers_queued_reg_save (insn)
1165 rtx insn;
1167 struct queued_reg_save *q;
1169 for (q = queued_reg_saves; q; q = q->next)
1170 if (modified_in_p (q->reg, insn))
1171 return true;
1173 return false;
1177 /* A temporary register holding an integral value used in adjusting SP
1178 or setting up the store_reg. The "offset" field holds the integer
1179 value, not an offset. */
1180 static dw_cfa_location cfa_temp;
1182 /* Record call frame debugging information for an expression EXPR,
1183 which either sets SP or FP (adjusting how we calculate the frame
1184 address) or saves a register to the stack. LABEL indicates the
1185 address of EXPR.
1187 This function encodes a state machine mapping rtxes to actions on
1188 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1189 users need not read the source code.
1191 The High-Level Picture
1193 Changes in the register we use to calculate the CFA: Currently we
1194 assume that if you copy the CFA register into another register, we
1195 should take the other one as the new CFA register; this seems to
1196 work pretty well. If it's wrong for some target, it's simple
1197 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1199 Changes in the register we use for saving registers to the stack:
1200 This is usually SP, but not always. Again, we deduce that if you
1201 copy SP into another register (and SP is not the CFA register),
1202 then the new register is the one we will be using for register
1203 saves. This also seems to work.
1205 Register saves: There's not much guesswork about this one; if
1206 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1207 register save, and the register used to calculate the destination
1208 had better be the one we think we're using for this purpose.
1210 Except: If the register being saved is the CFA register, and the
1211 offset is nonzero, we are saving the CFA, so we assume we have to
1212 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1213 the intent is to save the value of SP from the previous frame.
1215 Invariants / Summaries of Rules
1217 cfa current rule for calculating the CFA. It usually
1218 consists of a register and an offset.
1219 cfa_store register used by prologue code to save things to the stack
1220 cfa_store.offset is the offset from the value of
1221 cfa_store.reg to the actual CFA
1222 cfa_temp register holding an integral value. cfa_temp.offset
1223 stores the value, which will be used to adjust the
1224 stack pointer. cfa_temp is also used like cfa_store,
1225 to track stores to the stack via fp or a temp reg.
1227 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1228 with cfa.reg as the first operand changes the cfa.reg and its
1229 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1230 cfa_temp.offset.
1232 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1233 expression yielding a constant. This sets cfa_temp.reg
1234 and cfa_temp.offset.
1236 Rule 5: Create a new register cfa_store used to save items to the
1237 stack.
1239 Rules 10-14: Save a register to the stack. Define offset as the
1240 difference of the original location and cfa_store's
1241 location (or cfa_temp's location if cfa_temp is used).
1243 The Rules
1245 "{a,b}" indicates a choice of a xor b.
1246 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1248 Rule 1:
1249 (set <reg1> <reg2>:cfa.reg)
1250 effects: cfa.reg = <reg1>
1251 cfa.offset unchanged
1252 cfa_temp.reg = <reg1>
1253 cfa_temp.offset = cfa.offset
1255 Rule 2:
1256 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1257 {<const_int>,<reg>:cfa_temp.reg}))
1258 effects: cfa.reg = sp if fp used
1259 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1260 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1261 if cfa_store.reg==sp
1263 Rule 3:
1264 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1265 effects: cfa.reg = fp
1266 cfa_offset += +/- <const_int>
1268 Rule 4:
1269 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1270 constraints: <reg1> != fp
1271 <reg1> != sp
1272 effects: cfa.reg = <reg1>
1273 cfa_temp.reg = <reg1>
1274 cfa_temp.offset = cfa.offset
1276 Rule 5:
1277 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1278 constraints: <reg1> != fp
1279 <reg1> != sp
1280 effects: cfa_store.reg = <reg1>
1281 cfa_store.offset = cfa.offset - cfa_temp.offset
1283 Rule 6:
1284 (set <reg> <const_int>)
1285 effects: cfa_temp.reg = <reg>
1286 cfa_temp.offset = <const_int>
1288 Rule 7:
1289 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1290 effects: cfa_temp.reg = <reg1>
1291 cfa_temp.offset |= <const_int>
1293 Rule 8:
1294 (set <reg> (high <exp>))
1295 effects: none
1297 Rule 9:
1298 (set <reg> (lo_sum <exp> <const_int>))
1299 effects: cfa_temp.reg = <reg>
1300 cfa_temp.offset = <const_int>
1302 Rule 10:
1303 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1304 effects: cfa_store.offset -= <const_int>
1305 cfa.offset = cfa_store.offset if cfa.reg == sp
1306 cfa.reg = sp
1307 cfa.base_offset = -cfa_store.offset
1309 Rule 11:
1310 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1311 effects: cfa_store.offset += -/+ mode_size(mem)
1312 cfa.offset = cfa_store.offset if cfa.reg == sp
1313 cfa.reg = sp
1314 cfa.base_offset = -cfa_store.offset
1316 Rule 12:
1317 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1319 <reg2>)
1320 effects: cfa.reg = <reg1>
1321 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1323 Rule 13:
1324 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1325 effects: cfa.reg = <reg1>
1326 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1328 Rule 14:
1329 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1330 effects: cfa.reg = <reg1>
1331 cfa.base_offset = -cfa_temp.offset
1332 cfa_temp.offset -= mode_size(mem) */
1334 static void
1335 dwarf2out_frame_debug_expr (expr, label)
1336 rtx expr;
1337 const char *label;
1339 rtx src, dest;
1340 HOST_WIDE_INT offset;
1342 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1343 the PARALLEL independently. The first element is always processed if
1344 it is a SET. This is for backward compatibility. Other elements
1345 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1346 flag is set in them. */
1347 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1349 int par_index;
1350 int limit = XVECLEN (expr, 0);
1352 for (par_index = 0; par_index < limit; par_index++)
1353 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1354 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1355 || par_index == 0))
1356 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1358 return;
1361 if (GET_CODE (expr) != SET)
1362 abort ();
1364 src = SET_SRC (expr);
1365 dest = SET_DEST (expr);
1367 switch (GET_CODE (dest))
1369 case REG:
1370 /* Rule 1 */
1371 /* Update the CFA rule wrt SP or FP. Make sure src is
1372 relative to the current CFA register. */
1373 switch (GET_CODE (src))
1375 /* Setting FP from SP. */
1376 case REG:
1377 if (cfa.reg == (unsigned) REGNO (src))
1378 /* OK. */
1380 else
1381 abort ();
1383 /* We used to require that dest be either SP or FP, but the
1384 ARM copies SP to a temporary register, and from there to
1385 FP. So we just rely on the backends to only set
1386 RTX_FRAME_RELATED_P on appropriate insns. */
1387 cfa.reg = REGNO (dest);
1388 cfa_temp.reg = cfa.reg;
1389 cfa_temp.offset = cfa.offset;
1390 break;
1392 case PLUS:
1393 case MINUS:
1394 case LO_SUM:
1395 if (dest == stack_pointer_rtx)
1397 /* Rule 2 */
1398 /* Adjusting SP. */
1399 switch (GET_CODE (XEXP (src, 1)))
1401 case CONST_INT:
1402 offset = INTVAL (XEXP (src, 1));
1403 break;
1404 case REG:
1405 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1406 abort ();
1407 offset = cfa_temp.offset;
1408 break;
1409 default:
1410 abort ();
1413 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1415 /* Restoring SP from FP in the epilogue. */
1416 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1417 abort ();
1418 cfa.reg = STACK_POINTER_REGNUM;
1420 else if (GET_CODE (src) == LO_SUM)
1421 /* Assume we've set the source reg of the LO_SUM from sp. */
1423 else if (XEXP (src, 0) != stack_pointer_rtx)
1424 abort ();
1426 if (GET_CODE (src) != MINUS)
1427 offset = -offset;
1428 if (cfa.reg == STACK_POINTER_REGNUM)
1429 cfa.offset += offset;
1430 if (cfa_store.reg == STACK_POINTER_REGNUM)
1431 cfa_store.offset += offset;
1433 else if (dest == hard_frame_pointer_rtx)
1435 /* Rule 3 */
1436 /* Either setting the FP from an offset of the SP,
1437 or adjusting the FP */
1438 if (! frame_pointer_needed)
1439 abort ();
1441 if (GET_CODE (XEXP (src, 0)) == REG
1442 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1443 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1445 offset = INTVAL (XEXP (src, 1));
1446 if (GET_CODE (src) != MINUS)
1447 offset = -offset;
1448 cfa.offset += offset;
1449 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1451 else
1452 abort ();
1454 else
1456 if (GET_CODE (src) == MINUS)
1457 abort ();
1459 /* Rule 4 */
1460 if (GET_CODE (XEXP (src, 0)) == REG
1461 && REGNO (XEXP (src, 0)) == cfa.reg
1462 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1464 /* Setting a temporary CFA register that will be copied
1465 into the FP later on. */
1466 offset = - INTVAL (XEXP (src, 1));
1467 cfa.offset += offset;
1468 cfa.reg = REGNO (dest);
1469 /* Or used to save regs to the stack. */
1470 cfa_temp.reg = cfa.reg;
1471 cfa_temp.offset = cfa.offset;
1474 /* Rule 5 */
1475 else if (GET_CODE (XEXP (src, 0)) == REG
1476 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1477 && XEXP (src, 1) == stack_pointer_rtx)
1479 /* Setting a scratch register that we will use instead
1480 of SP for saving registers to the stack. */
1481 if (cfa.reg != STACK_POINTER_REGNUM)
1482 abort ();
1483 cfa_store.reg = REGNO (dest);
1484 cfa_store.offset = cfa.offset - cfa_temp.offset;
1487 /* Rule 9 */
1488 else if (GET_CODE (src) == LO_SUM
1489 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1491 cfa_temp.reg = REGNO (dest);
1492 cfa_temp.offset = INTVAL (XEXP (src, 1));
1494 else
1495 abort ();
1497 break;
1499 /* Rule 6 */
1500 case CONST_INT:
1501 cfa_temp.reg = REGNO (dest);
1502 cfa_temp.offset = INTVAL (src);
1503 break;
1505 /* Rule 7 */
1506 case IOR:
1507 if (GET_CODE (XEXP (src, 0)) != REG
1508 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1509 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1510 abort ();
1512 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1513 cfa_temp.reg = REGNO (dest);
1514 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1515 break;
1517 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1518 which will fill in all of the bits. */
1519 /* Rule 8 */
1520 case HIGH:
1521 break;
1523 default:
1524 abort ();
1527 def_cfa_1 (label, &cfa);
1528 break;
1530 case MEM:
1531 if (GET_CODE (src) != REG)
1532 abort ();
1534 /* Saving a register to the stack. Make sure dest is relative to the
1535 CFA register. */
1536 switch (GET_CODE (XEXP (dest, 0)))
1538 /* Rule 10 */
1539 /* With a push. */
1540 case PRE_MODIFY:
1541 /* We can't handle variable size modifications. */
1542 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1543 abort ();
1544 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1546 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1547 || cfa_store.reg != STACK_POINTER_REGNUM)
1548 abort ();
1550 cfa_store.offset += offset;
1551 if (cfa.reg == STACK_POINTER_REGNUM)
1552 cfa.offset = cfa_store.offset;
1554 offset = -cfa_store.offset;
1555 break;
1557 /* Rule 11 */
1558 case PRE_INC:
1559 case PRE_DEC:
1560 offset = GET_MODE_SIZE (GET_MODE (dest));
1561 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1562 offset = -offset;
1564 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1565 || cfa_store.reg != STACK_POINTER_REGNUM)
1566 abort ();
1568 cfa_store.offset += offset;
1569 if (cfa.reg == STACK_POINTER_REGNUM)
1570 cfa.offset = cfa_store.offset;
1572 offset = -cfa_store.offset;
1573 break;
1575 /* Rule 12 */
1576 /* With an offset. */
1577 case PLUS:
1578 case MINUS:
1579 case LO_SUM:
1580 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1581 abort ();
1582 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1583 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1584 offset = -offset;
1586 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1587 offset -= cfa_store.offset;
1588 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1589 offset -= cfa_temp.offset;
1590 else
1591 abort ();
1592 break;
1594 /* Rule 13 */
1595 /* Without an offset. */
1596 case REG:
1597 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1598 offset = -cfa_store.offset;
1599 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1600 offset = -cfa_temp.offset;
1601 else
1602 abort ();
1603 break;
1605 /* Rule 14 */
1606 case POST_INC:
1607 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1608 abort ();
1609 offset = -cfa_temp.offset;
1610 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1611 break;
1613 default:
1614 abort ();
1617 if (REGNO (src) != STACK_POINTER_REGNUM
1618 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1619 && (unsigned) REGNO (src) == cfa.reg)
1621 /* We're storing the current CFA reg into the stack. */
1623 if (cfa.offset == 0)
1625 /* If the source register is exactly the CFA, assume
1626 we're saving SP like any other register; this happens
1627 on the ARM. */
1628 def_cfa_1 (label, &cfa);
1629 queue_reg_save (label, stack_pointer_rtx, offset);
1630 break;
1632 else
1634 /* Otherwise, we'll need to look in the stack to
1635 calculate the CFA. */
1636 rtx x = XEXP (dest, 0);
1638 if (GET_CODE (x) != REG)
1639 x = XEXP (x, 0);
1640 if (GET_CODE (x) != REG)
1641 abort ();
1643 cfa.reg = REGNO (x);
1644 cfa.base_offset = offset;
1645 cfa.indirect = 1;
1646 def_cfa_1 (label, &cfa);
1647 break;
1651 def_cfa_1 (label, &cfa);
1652 queue_reg_save (label, src, offset);
1653 break;
1655 default:
1656 abort ();
1660 /* Record call frame debugging information for INSN, which either
1661 sets SP or FP (adjusting how we calculate the frame address) or saves a
1662 register to the stack. If INSN is NULL_RTX, initialize our state. */
1664 void
1665 dwarf2out_frame_debug (insn)
1666 rtx insn;
1668 const char *label;
1669 rtx src;
1671 if (insn == NULL_RTX)
1673 /* Flush any queued register saves. */
1674 flush_queued_reg_saves ();
1676 /* Set up state for generating call frame debug info. */
1677 lookup_cfa (&cfa);
1678 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1679 abort ();
1681 cfa.reg = STACK_POINTER_REGNUM;
1682 cfa_store = cfa;
1683 cfa_temp.reg = -1;
1684 cfa_temp.offset = 0;
1685 return;
1688 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1689 flush_queued_reg_saves ();
1691 if (! RTX_FRAME_RELATED_P (insn))
1693 if (!ACCUMULATE_OUTGOING_ARGS)
1694 dwarf2out_stack_adjust (insn);
1696 return;
1699 label = dwarf2out_cfi_label ();
1700 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1701 if (src)
1702 insn = XEXP (src, 0);
1703 else
1704 insn = PATTERN (insn);
1706 dwarf2out_frame_debug_expr (insn, label);
1709 #endif
1711 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1712 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1713 PARAMS ((enum dwarf_call_frame_info cfi));
1715 static enum dw_cfi_oprnd_type
1716 dw_cfi_oprnd1_desc (cfi)
1717 enum dwarf_call_frame_info cfi;
1719 switch (cfi)
1721 case DW_CFA_nop:
1722 case DW_CFA_GNU_window_save:
1723 return dw_cfi_oprnd_unused;
1725 case DW_CFA_set_loc:
1726 case DW_CFA_advance_loc1:
1727 case DW_CFA_advance_loc2:
1728 case DW_CFA_advance_loc4:
1729 case DW_CFA_MIPS_advance_loc8:
1730 return dw_cfi_oprnd_addr;
1732 case DW_CFA_offset:
1733 case DW_CFA_offset_extended:
1734 case DW_CFA_def_cfa:
1735 case DW_CFA_offset_extended_sf:
1736 case DW_CFA_def_cfa_sf:
1737 case DW_CFA_restore_extended:
1738 case DW_CFA_undefined:
1739 case DW_CFA_same_value:
1740 case DW_CFA_def_cfa_register:
1741 case DW_CFA_register:
1742 return dw_cfi_oprnd_reg_num;
1744 case DW_CFA_def_cfa_offset:
1745 case DW_CFA_GNU_args_size:
1746 case DW_CFA_def_cfa_offset_sf:
1747 return dw_cfi_oprnd_offset;
1749 case DW_CFA_def_cfa_expression:
1750 case DW_CFA_expression:
1751 return dw_cfi_oprnd_loc;
1753 default:
1754 abort ();
1758 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1759 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1760 PARAMS ((enum dwarf_call_frame_info cfi));
1762 static enum dw_cfi_oprnd_type
1763 dw_cfi_oprnd2_desc (cfi)
1764 enum dwarf_call_frame_info cfi;
1766 switch (cfi)
1768 case DW_CFA_def_cfa:
1769 case DW_CFA_def_cfa_sf:
1770 case DW_CFA_offset:
1771 case DW_CFA_offset_extended_sf:
1772 case DW_CFA_offset_extended:
1773 return dw_cfi_oprnd_offset;
1775 case DW_CFA_register:
1776 return dw_cfi_oprnd_reg_num;
1778 default:
1779 return dw_cfi_oprnd_unused;
1783 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1785 /* Output a Call Frame Information opcode and its operand(s). */
1787 static void
1788 output_cfi (cfi, fde, for_eh)
1789 dw_cfi_ref cfi;
1790 dw_fde_ref fde;
1791 int for_eh;
1793 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1794 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1795 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1796 "DW_CFA_advance_loc 0x%lx",
1797 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1798 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1800 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1801 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1802 "DW_CFA_offset, column 0x%lx",
1803 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1804 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1806 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1807 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1808 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1809 "DW_CFA_restore, column 0x%lx",
1810 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1811 else
1813 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1814 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1816 switch (cfi->dw_cfi_opc)
1818 case DW_CFA_set_loc:
1819 if (for_eh)
1820 dw2_asm_output_encoded_addr_rtx (
1821 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1822 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1823 NULL);
1824 else
1825 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1826 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1827 break;
1829 case DW_CFA_advance_loc1:
1830 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1831 fde->dw_fde_current_label, NULL);
1832 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1833 break;
1835 case DW_CFA_advance_loc2:
1836 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1837 fde->dw_fde_current_label, NULL);
1838 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1839 break;
1841 case DW_CFA_advance_loc4:
1842 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1843 fde->dw_fde_current_label, NULL);
1844 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1845 break;
1847 case DW_CFA_MIPS_advance_loc8:
1848 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1849 fde->dw_fde_current_label, NULL);
1850 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1851 break;
1853 case DW_CFA_offset_extended:
1854 case DW_CFA_def_cfa:
1855 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1856 NULL);
1857 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1858 break;
1860 case DW_CFA_offset_extended_sf:
1861 case DW_CFA_def_cfa_sf:
1862 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1863 NULL);
1864 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1865 break;
1867 case DW_CFA_restore_extended:
1868 case DW_CFA_undefined:
1869 case DW_CFA_same_value:
1870 case DW_CFA_def_cfa_register:
1871 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1872 NULL);
1873 break;
1875 case DW_CFA_register:
1876 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1877 NULL);
1878 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1879 NULL);
1880 break;
1882 case DW_CFA_def_cfa_offset:
1883 case DW_CFA_GNU_args_size:
1884 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1885 break;
1887 case DW_CFA_def_cfa_offset_sf:
1888 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1889 break;
1891 case DW_CFA_GNU_window_save:
1892 break;
1894 case DW_CFA_def_cfa_expression:
1895 case DW_CFA_expression:
1896 output_cfa_loc (cfi);
1897 break;
1899 case DW_CFA_GNU_negative_offset_extended:
1900 /* Obsoleted by DW_CFA_offset_extended_sf. */
1901 abort ();
1903 default:
1904 break;
1909 /* Output the call frame information used to used to record information
1910 that relates to calculating the frame pointer, and records the
1911 location of saved registers. */
1913 static void
1914 output_call_frame_info (for_eh)
1915 int for_eh;
1917 unsigned int i;
1918 dw_fde_ref fde;
1919 dw_cfi_ref cfi;
1920 char l1[20], l2[20], section_start_label[20];
1921 bool any_lsda_needed = false;
1922 char augmentation[6];
1923 int augmentation_size;
1924 int fde_encoding = DW_EH_PE_absptr;
1925 int per_encoding = DW_EH_PE_absptr;
1926 int lsda_encoding = DW_EH_PE_absptr;
1928 /* Don't emit a CIE if there won't be any FDEs. */
1929 if (fde_table_in_use == 0)
1930 return;
1932 /* If we don't have any functions we'll want to unwind out of, don't
1933 emit any EH unwind information. Note that if exceptions aren't
1934 enabled, we won't have collected nothrow information, and if we
1935 asked for asynchronous tables, we always want this info. */
1936 if (for_eh)
1938 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
1940 for (i = 0; i < fde_table_in_use; i++)
1941 if (fde_table[i].uses_eh_lsda)
1942 any_eh_needed = any_lsda_needed = true;
1943 else if (! fde_table[i].nothrow)
1944 any_eh_needed = true;
1946 if (! any_eh_needed)
1947 return;
1950 /* We're going to be generating comments, so turn on app. */
1951 if (flag_debug_asm)
1952 app_enable ();
1954 if (for_eh)
1955 (*targetm.asm_out.eh_frame_section) ();
1956 else
1957 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1959 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1960 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1962 /* Output the CIE. */
1963 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1964 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1965 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1966 "Length of Common Information Entry");
1967 ASM_OUTPUT_LABEL (asm_out_file, l1);
1969 /* Now that the CIE pointer is PC-relative for EH,
1970 use 0 to identify the CIE. */
1971 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1972 (for_eh ? 0 : DW_CIE_ID),
1973 "CIE Identifier Tag");
1975 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1977 augmentation[0] = 0;
1978 augmentation_size = 0;
1979 if (for_eh)
1981 char *p;
1983 /* Augmentation:
1984 z Indicates that a uleb128 is present to size the
1985 augmentation section.
1986 L Indicates the encoding (and thus presence) of
1987 an LSDA pointer in the FDE augmentation.
1988 R Indicates a non-default pointer encoding for
1989 FDE code pointers.
1990 P Indicates the presence of an encoding + language
1991 personality routine in the CIE augmentation. */
1993 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1994 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1995 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1997 p = augmentation + 1;
1998 if (eh_personality_libfunc)
2000 *p++ = 'P';
2001 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2003 if (any_lsda_needed)
2005 *p++ = 'L';
2006 augmentation_size += 1;
2008 if (fde_encoding != DW_EH_PE_absptr)
2010 *p++ = 'R';
2011 augmentation_size += 1;
2013 if (p > augmentation + 1)
2015 augmentation[0] = 'z';
2016 *p = '\0';
2019 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2020 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2022 int offset = ( 4 /* Length */
2023 + 4 /* CIE Id */
2024 + 1 /* CIE version */
2025 + strlen (augmentation) + 1 /* Augmentation */
2026 + size_of_uleb128 (1) /* Code alignment */
2027 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2028 + 1 /* RA column */
2029 + 1 /* Augmentation size */
2030 + 1 /* Personality encoding */ );
2031 int pad = -offset & (PTR_SIZE - 1);
2033 augmentation_size += pad;
2035 /* Augmentations should be small, so there's scarce need to
2036 iterate for a solution. Die if we exceed one uleb128 byte. */
2037 if (size_of_uleb128 (augmentation_size) != 1)
2038 abort ();
2042 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2043 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2044 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2045 "CIE Data Alignment Factor");
2046 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2048 if (augmentation[0])
2050 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2051 if (eh_personality_libfunc)
2053 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2054 eh_data_format_name (per_encoding));
2055 dw2_asm_output_encoded_addr_rtx (per_encoding,
2056 eh_personality_libfunc, NULL);
2059 if (any_lsda_needed)
2060 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2061 eh_data_format_name (lsda_encoding));
2063 if (fde_encoding != DW_EH_PE_absptr)
2064 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2065 eh_data_format_name (fde_encoding));
2068 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2069 output_cfi (cfi, NULL, for_eh);
2071 /* Pad the CIE out to an address sized boundary. */
2072 ASM_OUTPUT_ALIGN (asm_out_file,
2073 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2074 ASM_OUTPUT_LABEL (asm_out_file, l2);
2076 /* Loop through all of the FDE's. */
2077 for (i = 0; i < fde_table_in_use; i++)
2079 fde = &fde_table[i];
2081 /* Don't emit EH unwind info for leaf functions that don't need it. */
2082 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2083 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2084 && !fde->uses_eh_lsda)
2085 continue;
2087 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2088 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2089 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2090 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2091 "FDE Length");
2092 ASM_OUTPUT_LABEL (asm_out_file, l1);
2094 if (for_eh)
2095 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2096 else
2097 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2098 "FDE CIE offset");
2100 if (for_eh)
2102 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2103 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2104 "FDE initial location");
2105 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2106 fde->dw_fde_end, fde->dw_fde_begin,
2107 "FDE address range");
2109 else
2111 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2112 "FDE initial location");
2113 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2114 fde->dw_fde_end, fde->dw_fde_begin,
2115 "FDE address range");
2118 if (augmentation[0])
2120 if (any_lsda_needed)
2122 int size = size_of_encoded_value (lsda_encoding);
2124 if (lsda_encoding == DW_EH_PE_aligned)
2126 int offset = ( 4 /* Length */
2127 + 4 /* CIE offset */
2128 + 2 * size_of_encoded_value (fde_encoding)
2129 + 1 /* Augmentation size */ );
2130 int pad = -offset & (PTR_SIZE - 1);
2132 size += pad;
2133 if (size_of_uleb128 (size) != 1)
2134 abort ();
2137 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2139 if (fde->uses_eh_lsda)
2141 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2142 fde->funcdef_number);
2143 dw2_asm_output_encoded_addr_rtx (
2144 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2145 "Language Specific Data Area");
2147 else
2149 if (lsda_encoding == DW_EH_PE_aligned)
2150 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2151 dw2_asm_output_data
2152 (size_of_encoded_value (lsda_encoding), 0,
2153 "Language Specific Data Area (none)");
2156 else
2157 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2160 /* Loop through the Call Frame Instructions associated with
2161 this FDE. */
2162 fde->dw_fde_current_label = fde->dw_fde_begin;
2163 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2164 output_cfi (cfi, fde, for_eh);
2166 /* Pad the FDE out to an address sized boundary. */
2167 ASM_OUTPUT_ALIGN (asm_out_file,
2168 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2169 ASM_OUTPUT_LABEL (asm_out_file, l2);
2172 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2173 dw2_asm_output_data (4, 0, "End of Table");
2174 #ifdef MIPS_DEBUGGING_INFO
2175 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2176 get a value of 0. Putting .align 0 after the label fixes it. */
2177 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2178 #endif
2180 /* Turn off app to make assembly quicker. */
2181 if (flag_debug_asm)
2182 app_disable ();
2185 /* Output a marker (i.e. a label) for the beginning of a function, before
2186 the prologue. */
2188 void
2189 dwarf2out_begin_prologue (line, file)
2190 unsigned int line ATTRIBUTE_UNUSED;
2191 const char *file ATTRIBUTE_UNUSED;
2193 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2194 dw_fde_ref fde;
2196 current_function_func_begin_label = 0;
2198 #ifdef IA64_UNWIND_INFO
2199 /* ??? current_function_func_begin_label is also used by except.c
2200 for call-site information. We must emit this label if it might
2201 be used. */
2202 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2203 && ! dwarf2out_do_frame ())
2204 return;
2205 #else
2206 if (! dwarf2out_do_frame ())
2207 return;
2208 #endif
2210 function_section (current_function_decl);
2211 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2212 current_function_funcdef_no);
2213 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2214 current_function_funcdef_no);
2215 current_function_func_begin_label = get_identifier (label);
2217 #ifdef IA64_UNWIND_INFO
2218 /* We can elide the fde allocation if we're not emitting debug info. */
2219 if (! dwarf2out_do_frame ())
2220 return;
2221 #endif
2223 /* Expand the fde table if necessary. */
2224 if (fde_table_in_use == fde_table_allocated)
2226 fde_table_allocated += FDE_TABLE_INCREMENT;
2227 fde_table = ggc_realloc (fde_table,
2228 fde_table_allocated * sizeof (dw_fde_node));
2229 memset (fde_table + fde_table_in_use, 0,
2230 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2233 /* Record the FDE associated with this function. */
2234 current_funcdef_fde = fde_table_in_use;
2236 /* Add the new FDE at the end of the fde_table. */
2237 fde = &fde_table[fde_table_in_use++];
2238 fde->dw_fde_begin = xstrdup (label);
2239 fde->dw_fde_current_label = NULL;
2240 fde->dw_fde_end = NULL;
2241 fde->dw_fde_cfi = NULL;
2242 fde->funcdef_number = current_function_funcdef_no;
2243 fde->nothrow = current_function_nothrow;
2244 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2245 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2247 args_size = old_args_size = 0;
2249 /* We only want to output line number information for the genuine dwarf2
2250 prologue case, not the eh frame case. */
2251 #ifdef DWARF2_DEBUGGING_INFO
2252 if (file)
2253 dwarf2out_source_line (line, file);
2254 #endif
2257 /* Output a marker (i.e. a label) for the absolute end of the generated code
2258 for a function definition. This gets called *after* the epilogue code has
2259 been generated. */
2261 void
2262 dwarf2out_end_epilogue (line, file)
2263 unsigned int line ATTRIBUTE_UNUSED;
2264 const char *file ATTRIBUTE_UNUSED;
2266 dw_fde_ref fde;
2267 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2269 /* Output a label to mark the endpoint of the code generated for this
2270 function. */
2271 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2272 current_function_funcdef_no);
2273 ASM_OUTPUT_LABEL (asm_out_file, label);
2274 fde = &fde_table[fde_table_in_use - 1];
2275 fde->dw_fde_end = xstrdup (label);
2278 void
2279 dwarf2out_frame_init ()
2281 /* Allocate the initial hunk of the fde_table. */
2282 fde_table = (dw_fde_ref) ggc_alloc_cleared (FDE_TABLE_INCREMENT
2283 * sizeof (dw_fde_node));
2284 fde_table_allocated = FDE_TABLE_INCREMENT;
2285 fde_table_in_use = 0;
2287 /* Generate the CFA instructions common to all FDE's. Do it now for the
2288 sake of lookup_cfa. */
2290 #ifdef DWARF2_UNWIND_INFO
2291 /* On entry, the Canonical Frame Address is at SP. */
2292 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2293 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2294 #endif
2297 void
2298 dwarf2out_frame_finish ()
2300 /* Output call frame information. */
2301 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2302 output_call_frame_info (0);
2304 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2305 output_call_frame_info (1);
2307 #endif
2309 /* And now, the subset of the debugging information support code necessary
2310 for emitting location expressions. */
2312 /* We need some way to distinguish DW_OP_addr with a direct symbol
2313 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2314 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2317 typedef struct dw_val_struct *dw_val_ref;
2318 typedef struct die_struct *dw_die_ref;
2319 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2320 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2322 /* Each DIE may have a series of attribute/value pairs. Values
2323 can take on several forms. The forms that are used in this
2324 implementation are listed below. */
2326 enum dw_val_class
2328 dw_val_class_addr,
2329 dw_val_class_offset,
2330 dw_val_class_loc,
2331 dw_val_class_loc_list,
2332 dw_val_class_range_list,
2333 dw_val_class_const,
2334 dw_val_class_unsigned_const,
2335 dw_val_class_long_long,
2336 dw_val_class_float,
2337 dw_val_class_flag,
2338 dw_val_class_die_ref,
2339 dw_val_class_fde_ref,
2340 dw_val_class_lbl_id,
2341 dw_val_class_lbl_offset,
2342 dw_val_class_str
2345 /* Describe a double word constant value. */
2346 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2348 typedef struct dw_long_long_struct GTY(())
2350 unsigned long hi;
2351 unsigned long low;
2353 dw_long_long_const;
2355 /* Describe a floating point constant value. */
2357 typedef struct dw_fp_struct GTY(())
2359 long * GTY((length ("%h.length"))) array;
2360 unsigned length;
2362 dw_float_const;
2364 /* The dw_val_node describes an attribute's value, as it is
2365 represented internally. */
2367 typedef struct dw_val_struct GTY(())
2369 enum dw_val_class val_class;
2370 union dw_val_struct_union
2372 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2373 long unsigned GTY ((tag ("dw_val_class_offset"))) val_offset;
2374 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2375 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2376 long int GTY ((default (""))) val_int;
2377 long unsigned GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2378 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2379 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2380 struct dw_val_die_union
2382 dw_die_ref die;
2383 int external;
2384 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2385 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2386 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2387 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2388 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2390 GTY ((desc ("%1.val_class"))) v;
2392 dw_val_node;
2394 /* Locations in memory are described using a sequence of stack machine
2395 operations. */
2397 typedef struct dw_loc_descr_struct GTY(())
2399 dw_loc_descr_ref dw_loc_next;
2400 enum dwarf_location_atom dw_loc_opc;
2401 dw_val_node dw_loc_oprnd1;
2402 dw_val_node dw_loc_oprnd2;
2403 int dw_loc_addr;
2405 dw_loc_descr_node;
2407 /* Location lists are ranges + location descriptions for that range,
2408 so you can track variables that are in different places over
2409 their entire life. */
2410 typedef struct dw_loc_list_struct GTY(())
2412 dw_loc_list_ref dw_loc_next;
2413 const char *begin; /* Label for begin address of range */
2414 const char *end; /* Label for end address of range */
2415 char *ll_symbol; /* Label for beginning of location list.
2416 Only on head of list */
2417 const char *section; /* Section this loclist is relative to */
2418 dw_loc_descr_ref expr;
2419 } dw_loc_list_node;
2421 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2423 static const char *dwarf_stack_op_name PARAMS ((unsigned));
2424 static dw_loc_descr_ref new_loc_descr PARAMS ((enum dwarf_location_atom,
2425 unsigned long,
2426 unsigned long));
2427 static void add_loc_descr PARAMS ((dw_loc_descr_ref *,
2428 dw_loc_descr_ref));
2429 static unsigned long size_of_loc_descr PARAMS ((dw_loc_descr_ref));
2430 static unsigned long size_of_locs PARAMS ((dw_loc_descr_ref));
2431 static void output_loc_operands PARAMS ((dw_loc_descr_ref));
2432 static void output_loc_sequence PARAMS ((dw_loc_descr_ref));
2434 /* Convert a DWARF stack opcode into its string name. */
2436 static const char *
2437 dwarf_stack_op_name (op)
2438 unsigned op;
2440 switch (op)
2442 case DW_OP_addr:
2443 case INTERNAL_DW_OP_tls_addr:
2444 return "DW_OP_addr";
2445 case DW_OP_deref:
2446 return "DW_OP_deref";
2447 case DW_OP_const1u:
2448 return "DW_OP_const1u";
2449 case DW_OP_const1s:
2450 return "DW_OP_const1s";
2451 case DW_OP_const2u:
2452 return "DW_OP_const2u";
2453 case DW_OP_const2s:
2454 return "DW_OP_const2s";
2455 case DW_OP_const4u:
2456 return "DW_OP_const4u";
2457 case DW_OP_const4s:
2458 return "DW_OP_const4s";
2459 case DW_OP_const8u:
2460 return "DW_OP_const8u";
2461 case DW_OP_const8s:
2462 return "DW_OP_const8s";
2463 case DW_OP_constu:
2464 return "DW_OP_constu";
2465 case DW_OP_consts:
2466 return "DW_OP_consts";
2467 case DW_OP_dup:
2468 return "DW_OP_dup";
2469 case DW_OP_drop:
2470 return "DW_OP_drop";
2471 case DW_OP_over:
2472 return "DW_OP_over";
2473 case DW_OP_pick:
2474 return "DW_OP_pick";
2475 case DW_OP_swap:
2476 return "DW_OP_swap";
2477 case DW_OP_rot:
2478 return "DW_OP_rot";
2479 case DW_OP_xderef:
2480 return "DW_OP_xderef";
2481 case DW_OP_abs:
2482 return "DW_OP_abs";
2483 case DW_OP_and:
2484 return "DW_OP_and";
2485 case DW_OP_div:
2486 return "DW_OP_div";
2487 case DW_OP_minus:
2488 return "DW_OP_minus";
2489 case DW_OP_mod:
2490 return "DW_OP_mod";
2491 case DW_OP_mul:
2492 return "DW_OP_mul";
2493 case DW_OP_neg:
2494 return "DW_OP_neg";
2495 case DW_OP_not:
2496 return "DW_OP_not";
2497 case DW_OP_or:
2498 return "DW_OP_or";
2499 case DW_OP_plus:
2500 return "DW_OP_plus";
2501 case DW_OP_plus_uconst:
2502 return "DW_OP_plus_uconst";
2503 case DW_OP_shl:
2504 return "DW_OP_shl";
2505 case DW_OP_shr:
2506 return "DW_OP_shr";
2507 case DW_OP_shra:
2508 return "DW_OP_shra";
2509 case DW_OP_xor:
2510 return "DW_OP_xor";
2511 case DW_OP_bra:
2512 return "DW_OP_bra";
2513 case DW_OP_eq:
2514 return "DW_OP_eq";
2515 case DW_OP_ge:
2516 return "DW_OP_ge";
2517 case DW_OP_gt:
2518 return "DW_OP_gt";
2519 case DW_OP_le:
2520 return "DW_OP_le";
2521 case DW_OP_lt:
2522 return "DW_OP_lt";
2523 case DW_OP_ne:
2524 return "DW_OP_ne";
2525 case DW_OP_skip:
2526 return "DW_OP_skip";
2527 case DW_OP_lit0:
2528 return "DW_OP_lit0";
2529 case DW_OP_lit1:
2530 return "DW_OP_lit1";
2531 case DW_OP_lit2:
2532 return "DW_OP_lit2";
2533 case DW_OP_lit3:
2534 return "DW_OP_lit3";
2535 case DW_OP_lit4:
2536 return "DW_OP_lit4";
2537 case DW_OP_lit5:
2538 return "DW_OP_lit5";
2539 case DW_OP_lit6:
2540 return "DW_OP_lit6";
2541 case DW_OP_lit7:
2542 return "DW_OP_lit7";
2543 case DW_OP_lit8:
2544 return "DW_OP_lit8";
2545 case DW_OP_lit9:
2546 return "DW_OP_lit9";
2547 case DW_OP_lit10:
2548 return "DW_OP_lit10";
2549 case DW_OP_lit11:
2550 return "DW_OP_lit11";
2551 case DW_OP_lit12:
2552 return "DW_OP_lit12";
2553 case DW_OP_lit13:
2554 return "DW_OP_lit13";
2555 case DW_OP_lit14:
2556 return "DW_OP_lit14";
2557 case DW_OP_lit15:
2558 return "DW_OP_lit15";
2559 case DW_OP_lit16:
2560 return "DW_OP_lit16";
2561 case DW_OP_lit17:
2562 return "DW_OP_lit17";
2563 case DW_OP_lit18:
2564 return "DW_OP_lit18";
2565 case DW_OP_lit19:
2566 return "DW_OP_lit19";
2567 case DW_OP_lit20:
2568 return "DW_OP_lit20";
2569 case DW_OP_lit21:
2570 return "DW_OP_lit21";
2571 case DW_OP_lit22:
2572 return "DW_OP_lit22";
2573 case DW_OP_lit23:
2574 return "DW_OP_lit23";
2575 case DW_OP_lit24:
2576 return "DW_OP_lit24";
2577 case DW_OP_lit25:
2578 return "DW_OP_lit25";
2579 case DW_OP_lit26:
2580 return "DW_OP_lit26";
2581 case DW_OP_lit27:
2582 return "DW_OP_lit27";
2583 case DW_OP_lit28:
2584 return "DW_OP_lit28";
2585 case DW_OP_lit29:
2586 return "DW_OP_lit29";
2587 case DW_OP_lit30:
2588 return "DW_OP_lit30";
2589 case DW_OP_lit31:
2590 return "DW_OP_lit31";
2591 case DW_OP_reg0:
2592 return "DW_OP_reg0";
2593 case DW_OP_reg1:
2594 return "DW_OP_reg1";
2595 case DW_OP_reg2:
2596 return "DW_OP_reg2";
2597 case DW_OP_reg3:
2598 return "DW_OP_reg3";
2599 case DW_OP_reg4:
2600 return "DW_OP_reg4";
2601 case DW_OP_reg5:
2602 return "DW_OP_reg5";
2603 case DW_OP_reg6:
2604 return "DW_OP_reg6";
2605 case DW_OP_reg7:
2606 return "DW_OP_reg7";
2607 case DW_OP_reg8:
2608 return "DW_OP_reg8";
2609 case DW_OP_reg9:
2610 return "DW_OP_reg9";
2611 case DW_OP_reg10:
2612 return "DW_OP_reg10";
2613 case DW_OP_reg11:
2614 return "DW_OP_reg11";
2615 case DW_OP_reg12:
2616 return "DW_OP_reg12";
2617 case DW_OP_reg13:
2618 return "DW_OP_reg13";
2619 case DW_OP_reg14:
2620 return "DW_OP_reg14";
2621 case DW_OP_reg15:
2622 return "DW_OP_reg15";
2623 case DW_OP_reg16:
2624 return "DW_OP_reg16";
2625 case DW_OP_reg17:
2626 return "DW_OP_reg17";
2627 case DW_OP_reg18:
2628 return "DW_OP_reg18";
2629 case DW_OP_reg19:
2630 return "DW_OP_reg19";
2631 case DW_OP_reg20:
2632 return "DW_OP_reg20";
2633 case DW_OP_reg21:
2634 return "DW_OP_reg21";
2635 case DW_OP_reg22:
2636 return "DW_OP_reg22";
2637 case DW_OP_reg23:
2638 return "DW_OP_reg23";
2639 case DW_OP_reg24:
2640 return "DW_OP_reg24";
2641 case DW_OP_reg25:
2642 return "DW_OP_reg25";
2643 case DW_OP_reg26:
2644 return "DW_OP_reg26";
2645 case DW_OP_reg27:
2646 return "DW_OP_reg27";
2647 case DW_OP_reg28:
2648 return "DW_OP_reg28";
2649 case DW_OP_reg29:
2650 return "DW_OP_reg29";
2651 case DW_OP_reg30:
2652 return "DW_OP_reg30";
2653 case DW_OP_reg31:
2654 return "DW_OP_reg31";
2655 case DW_OP_breg0:
2656 return "DW_OP_breg0";
2657 case DW_OP_breg1:
2658 return "DW_OP_breg1";
2659 case DW_OP_breg2:
2660 return "DW_OP_breg2";
2661 case DW_OP_breg3:
2662 return "DW_OP_breg3";
2663 case DW_OP_breg4:
2664 return "DW_OP_breg4";
2665 case DW_OP_breg5:
2666 return "DW_OP_breg5";
2667 case DW_OP_breg6:
2668 return "DW_OP_breg6";
2669 case DW_OP_breg7:
2670 return "DW_OP_breg7";
2671 case DW_OP_breg8:
2672 return "DW_OP_breg8";
2673 case DW_OP_breg9:
2674 return "DW_OP_breg9";
2675 case DW_OP_breg10:
2676 return "DW_OP_breg10";
2677 case DW_OP_breg11:
2678 return "DW_OP_breg11";
2679 case DW_OP_breg12:
2680 return "DW_OP_breg12";
2681 case DW_OP_breg13:
2682 return "DW_OP_breg13";
2683 case DW_OP_breg14:
2684 return "DW_OP_breg14";
2685 case DW_OP_breg15:
2686 return "DW_OP_breg15";
2687 case DW_OP_breg16:
2688 return "DW_OP_breg16";
2689 case DW_OP_breg17:
2690 return "DW_OP_breg17";
2691 case DW_OP_breg18:
2692 return "DW_OP_breg18";
2693 case DW_OP_breg19:
2694 return "DW_OP_breg19";
2695 case DW_OP_breg20:
2696 return "DW_OP_breg20";
2697 case DW_OP_breg21:
2698 return "DW_OP_breg21";
2699 case DW_OP_breg22:
2700 return "DW_OP_breg22";
2701 case DW_OP_breg23:
2702 return "DW_OP_breg23";
2703 case DW_OP_breg24:
2704 return "DW_OP_breg24";
2705 case DW_OP_breg25:
2706 return "DW_OP_breg25";
2707 case DW_OP_breg26:
2708 return "DW_OP_breg26";
2709 case DW_OP_breg27:
2710 return "DW_OP_breg27";
2711 case DW_OP_breg28:
2712 return "DW_OP_breg28";
2713 case DW_OP_breg29:
2714 return "DW_OP_breg29";
2715 case DW_OP_breg30:
2716 return "DW_OP_breg30";
2717 case DW_OP_breg31:
2718 return "DW_OP_breg31";
2719 case DW_OP_regx:
2720 return "DW_OP_regx";
2721 case DW_OP_fbreg:
2722 return "DW_OP_fbreg";
2723 case DW_OP_bregx:
2724 return "DW_OP_bregx";
2725 case DW_OP_piece:
2726 return "DW_OP_piece";
2727 case DW_OP_deref_size:
2728 return "DW_OP_deref_size";
2729 case DW_OP_xderef_size:
2730 return "DW_OP_xderef_size";
2731 case DW_OP_nop:
2732 return "DW_OP_nop";
2733 case DW_OP_push_object_address:
2734 return "DW_OP_push_object_address";
2735 case DW_OP_call2:
2736 return "DW_OP_call2";
2737 case DW_OP_call4:
2738 return "DW_OP_call4";
2739 case DW_OP_call_ref:
2740 return "DW_OP_call_ref";
2741 case DW_OP_GNU_push_tls_address:
2742 return "DW_OP_GNU_push_tls_address";
2743 default:
2744 return "OP_<unknown>";
2748 /* Return a pointer to a newly allocated location description. Location
2749 descriptions are simple expression terms that can be strung
2750 together to form more complicated location (address) descriptions. */
2752 static inline dw_loc_descr_ref
2753 new_loc_descr (op, oprnd1, oprnd2)
2754 enum dwarf_location_atom op;
2755 unsigned long oprnd1;
2756 unsigned long oprnd2;
2758 dw_loc_descr_ref descr
2759 = (dw_loc_descr_ref) ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2761 descr->dw_loc_opc = op;
2762 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2763 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2764 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2765 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2767 return descr;
2771 /* Add a location description term to a location description expression. */
2773 static inline void
2774 add_loc_descr (list_head, descr)
2775 dw_loc_descr_ref *list_head;
2776 dw_loc_descr_ref descr;
2778 dw_loc_descr_ref *d;
2780 /* Find the end of the chain. */
2781 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2784 *d = descr;
2787 /* Return the size of a location descriptor. */
2789 static unsigned long
2790 size_of_loc_descr (loc)
2791 dw_loc_descr_ref loc;
2793 unsigned long size = 1;
2795 switch (loc->dw_loc_opc)
2797 case DW_OP_addr:
2798 case INTERNAL_DW_OP_tls_addr:
2799 size += DWARF2_ADDR_SIZE;
2800 break;
2801 case DW_OP_const1u:
2802 case DW_OP_const1s:
2803 size += 1;
2804 break;
2805 case DW_OP_const2u:
2806 case DW_OP_const2s:
2807 size += 2;
2808 break;
2809 case DW_OP_const4u:
2810 case DW_OP_const4s:
2811 size += 4;
2812 break;
2813 case DW_OP_const8u:
2814 case DW_OP_const8s:
2815 size += 8;
2816 break;
2817 case DW_OP_constu:
2818 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2819 break;
2820 case DW_OP_consts:
2821 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2822 break;
2823 case DW_OP_pick:
2824 size += 1;
2825 break;
2826 case DW_OP_plus_uconst:
2827 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2828 break;
2829 case DW_OP_skip:
2830 case DW_OP_bra:
2831 size += 2;
2832 break;
2833 case DW_OP_breg0:
2834 case DW_OP_breg1:
2835 case DW_OP_breg2:
2836 case DW_OP_breg3:
2837 case DW_OP_breg4:
2838 case DW_OP_breg5:
2839 case DW_OP_breg6:
2840 case DW_OP_breg7:
2841 case DW_OP_breg8:
2842 case DW_OP_breg9:
2843 case DW_OP_breg10:
2844 case DW_OP_breg11:
2845 case DW_OP_breg12:
2846 case DW_OP_breg13:
2847 case DW_OP_breg14:
2848 case DW_OP_breg15:
2849 case DW_OP_breg16:
2850 case DW_OP_breg17:
2851 case DW_OP_breg18:
2852 case DW_OP_breg19:
2853 case DW_OP_breg20:
2854 case DW_OP_breg21:
2855 case DW_OP_breg22:
2856 case DW_OP_breg23:
2857 case DW_OP_breg24:
2858 case DW_OP_breg25:
2859 case DW_OP_breg26:
2860 case DW_OP_breg27:
2861 case DW_OP_breg28:
2862 case DW_OP_breg29:
2863 case DW_OP_breg30:
2864 case DW_OP_breg31:
2865 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2866 break;
2867 case DW_OP_regx:
2868 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2869 break;
2870 case DW_OP_fbreg:
2871 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2872 break;
2873 case DW_OP_bregx:
2874 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2875 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2876 break;
2877 case DW_OP_piece:
2878 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2879 break;
2880 case DW_OP_deref_size:
2881 case DW_OP_xderef_size:
2882 size += 1;
2883 break;
2884 case DW_OP_call2:
2885 size += 2;
2886 break;
2887 case DW_OP_call4:
2888 size += 4;
2889 break;
2890 case DW_OP_call_ref:
2891 size += DWARF2_ADDR_SIZE;
2892 break;
2893 default:
2894 break;
2897 return size;
2900 /* Return the size of a series of location descriptors. */
2902 static unsigned long
2903 size_of_locs (loc)
2904 dw_loc_descr_ref loc;
2906 unsigned long size;
2908 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2910 loc->dw_loc_addr = size;
2911 size += size_of_loc_descr (loc);
2914 return size;
2917 /* Output location description stack opcode's operands (if any). */
2919 static void
2920 output_loc_operands (loc)
2921 dw_loc_descr_ref loc;
2923 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2924 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2926 switch (loc->dw_loc_opc)
2928 #ifdef DWARF2_DEBUGGING_INFO
2929 case DW_OP_addr:
2930 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2931 break;
2932 case DW_OP_const2u:
2933 case DW_OP_const2s:
2934 dw2_asm_output_data (2, val1->v.val_int, NULL);
2935 break;
2936 case DW_OP_const4u:
2937 case DW_OP_const4s:
2938 dw2_asm_output_data (4, val1->v.val_int, NULL);
2939 break;
2940 case DW_OP_const8u:
2941 case DW_OP_const8s:
2942 if (HOST_BITS_PER_LONG < 64)
2943 abort ();
2944 dw2_asm_output_data (8, val1->v.val_int, NULL);
2945 break;
2946 case DW_OP_skip:
2947 case DW_OP_bra:
2949 int offset;
2951 if (val1->val_class == dw_val_class_loc)
2952 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2953 else
2954 abort ();
2956 dw2_asm_output_data (2, offset, NULL);
2958 break;
2959 #else
2960 case DW_OP_addr:
2961 case DW_OP_const2u:
2962 case DW_OP_const2s:
2963 case DW_OP_const4u:
2964 case DW_OP_const4s:
2965 case DW_OP_const8u:
2966 case DW_OP_const8s:
2967 case DW_OP_skip:
2968 case DW_OP_bra:
2969 /* We currently don't make any attempt to make sure these are
2970 aligned properly like we do for the main unwind info, so
2971 don't support emitting things larger than a byte if we're
2972 only doing unwinding. */
2973 abort ();
2974 #endif
2975 case DW_OP_const1u:
2976 case DW_OP_const1s:
2977 dw2_asm_output_data (1, val1->v.val_int, NULL);
2978 break;
2979 case DW_OP_constu:
2980 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2981 break;
2982 case DW_OP_consts:
2983 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2984 break;
2985 case DW_OP_pick:
2986 dw2_asm_output_data (1, val1->v.val_int, NULL);
2987 break;
2988 case DW_OP_plus_uconst:
2989 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2990 break;
2991 case DW_OP_breg0:
2992 case DW_OP_breg1:
2993 case DW_OP_breg2:
2994 case DW_OP_breg3:
2995 case DW_OP_breg4:
2996 case DW_OP_breg5:
2997 case DW_OP_breg6:
2998 case DW_OP_breg7:
2999 case DW_OP_breg8:
3000 case DW_OP_breg9:
3001 case DW_OP_breg10:
3002 case DW_OP_breg11:
3003 case DW_OP_breg12:
3004 case DW_OP_breg13:
3005 case DW_OP_breg14:
3006 case DW_OP_breg15:
3007 case DW_OP_breg16:
3008 case DW_OP_breg17:
3009 case DW_OP_breg18:
3010 case DW_OP_breg19:
3011 case DW_OP_breg20:
3012 case DW_OP_breg21:
3013 case DW_OP_breg22:
3014 case DW_OP_breg23:
3015 case DW_OP_breg24:
3016 case DW_OP_breg25:
3017 case DW_OP_breg26:
3018 case DW_OP_breg27:
3019 case DW_OP_breg28:
3020 case DW_OP_breg29:
3021 case DW_OP_breg30:
3022 case DW_OP_breg31:
3023 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3024 break;
3025 case DW_OP_regx:
3026 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3027 break;
3028 case DW_OP_fbreg:
3029 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3030 break;
3031 case DW_OP_bregx:
3032 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3033 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3034 break;
3035 case DW_OP_piece:
3036 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3037 break;
3038 case DW_OP_deref_size:
3039 case DW_OP_xderef_size:
3040 dw2_asm_output_data (1, val1->v.val_int, NULL);
3041 break;
3043 case INTERNAL_DW_OP_tls_addr:
3044 #ifdef ASM_OUTPUT_DWARF_DTPREL
3045 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3046 val1->v.val_addr);
3047 fputc ('\n', asm_out_file);
3048 #else
3049 abort ();
3050 #endif
3051 break;
3053 default:
3054 /* Other codes have no operands. */
3055 break;
3059 /* Output a sequence of location operations. */
3061 static void
3062 output_loc_sequence (loc)
3063 dw_loc_descr_ref loc;
3065 for (; loc != NULL; loc = loc->dw_loc_next)
3067 /* Output the opcode. */
3068 dw2_asm_output_data (1, loc->dw_loc_opc,
3069 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3071 /* Output the operand(s) (if any). */
3072 output_loc_operands (loc);
3076 /* This routine will generate the correct assembly data for a location
3077 description based on a cfi entry with a complex address. */
3079 static void
3080 output_cfa_loc (cfi)
3081 dw_cfi_ref cfi;
3083 dw_loc_descr_ref loc;
3084 unsigned long size;
3086 /* Output the size of the block. */
3087 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3088 size = size_of_locs (loc);
3089 dw2_asm_output_data_uleb128 (size, NULL);
3091 /* Now output the operations themselves. */
3092 output_loc_sequence (loc);
3095 /* This function builds a dwarf location descriptor sequence from
3096 a dw_cfa_location. */
3098 static struct dw_loc_descr_struct *
3099 build_cfa_loc (cfa)
3100 dw_cfa_location *cfa;
3102 struct dw_loc_descr_struct *head, *tmp;
3104 if (cfa->indirect == 0)
3105 abort ();
3107 if (cfa->base_offset)
3109 if (cfa->reg <= 31)
3110 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3111 else
3112 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3114 else if (cfa->reg <= 31)
3115 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3116 else
3117 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3119 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3120 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3121 add_loc_descr (&head, tmp);
3122 if (cfa->offset != 0)
3124 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3125 add_loc_descr (&head, tmp);
3128 return head;
3131 /* This function fills in aa dw_cfa_location structure from a dwarf location
3132 descriptor sequence. */
3134 static void
3135 get_cfa_from_loc_descr (cfa, loc)
3136 dw_cfa_location *cfa;
3137 struct dw_loc_descr_struct *loc;
3139 struct dw_loc_descr_struct *ptr;
3140 cfa->offset = 0;
3141 cfa->base_offset = 0;
3142 cfa->indirect = 0;
3143 cfa->reg = -1;
3145 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3147 enum dwarf_location_atom op = ptr->dw_loc_opc;
3149 switch (op)
3151 case DW_OP_reg0:
3152 case DW_OP_reg1:
3153 case DW_OP_reg2:
3154 case DW_OP_reg3:
3155 case DW_OP_reg4:
3156 case DW_OP_reg5:
3157 case DW_OP_reg6:
3158 case DW_OP_reg7:
3159 case DW_OP_reg8:
3160 case DW_OP_reg9:
3161 case DW_OP_reg10:
3162 case DW_OP_reg11:
3163 case DW_OP_reg12:
3164 case DW_OP_reg13:
3165 case DW_OP_reg14:
3166 case DW_OP_reg15:
3167 case DW_OP_reg16:
3168 case DW_OP_reg17:
3169 case DW_OP_reg18:
3170 case DW_OP_reg19:
3171 case DW_OP_reg20:
3172 case DW_OP_reg21:
3173 case DW_OP_reg22:
3174 case DW_OP_reg23:
3175 case DW_OP_reg24:
3176 case DW_OP_reg25:
3177 case DW_OP_reg26:
3178 case DW_OP_reg27:
3179 case DW_OP_reg28:
3180 case DW_OP_reg29:
3181 case DW_OP_reg30:
3182 case DW_OP_reg31:
3183 cfa->reg = op - DW_OP_reg0;
3184 break;
3185 case DW_OP_regx:
3186 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3187 break;
3188 case DW_OP_breg0:
3189 case DW_OP_breg1:
3190 case DW_OP_breg2:
3191 case DW_OP_breg3:
3192 case DW_OP_breg4:
3193 case DW_OP_breg5:
3194 case DW_OP_breg6:
3195 case DW_OP_breg7:
3196 case DW_OP_breg8:
3197 case DW_OP_breg9:
3198 case DW_OP_breg10:
3199 case DW_OP_breg11:
3200 case DW_OP_breg12:
3201 case DW_OP_breg13:
3202 case DW_OP_breg14:
3203 case DW_OP_breg15:
3204 case DW_OP_breg16:
3205 case DW_OP_breg17:
3206 case DW_OP_breg18:
3207 case DW_OP_breg19:
3208 case DW_OP_breg20:
3209 case DW_OP_breg21:
3210 case DW_OP_breg22:
3211 case DW_OP_breg23:
3212 case DW_OP_breg24:
3213 case DW_OP_breg25:
3214 case DW_OP_breg26:
3215 case DW_OP_breg27:
3216 case DW_OP_breg28:
3217 case DW_OP_breg29:
3218 case DW_OP_breg30:
3219 case DW_OP_breg31:
3220 cfa->reg = op - DW_OP_breg0;
3221 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3222 break;
3223 case DW_OP_bregx:
3224 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3225 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3226 break;
3227 case DW_OP_deref:
3228 cfa->indirect = 1;
3229 break;
3230 case DW_OP_plus_uconst:
3231 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3232 break;
3233 default:
3234 internal_error ("DW_LOC_OP %s not implemented\n",
3235 dwarf_stack_op_name (ptr->dw_loc_opc));
3239 #endif /* .debug_frame support */
3241 /* And now, the support for symbolic debugging information. */
3242 #ifdef DWARF2_DEBUGGING_INFO
3244 /* .debug_str support. */
3245 static int output_indirect_string PARAMS ((void **, void *));
3247 static void dwarf2out_init PARAMS ((const char *));
3248 static void dwarf2out_finish PARAMS ((const char *));
3249 static void dwarf2out_define PARAMS ((unsigned int, const char *));
3250 static void dwarf2out_undef PARAMS ((unsigned int, const char *));
3251 static void dwarf2out_start_source_file PARAMS ((unsigned, const char *));
3252 static void dwarf2out_end_source_file PARAMS ((unsigned));
3253 static void dwarf2out_begin_block PARAMS ((unsigned, unsigned));
3254 static void dwarf2out_end_block PARAMS ((unsigned, unsigned));
3255 static bool dwarf2out_ignore_block PARAMS ((tree));
3256 static void dwarf2out_global_decl PARAMS ((tree));
3257 static void dwarf2out_abstract_function PARAMS ((tree));
3259 /* The debug hooks structure. */
3261 const struct gcc_debug_hooks dwarf2_debug_hooks =
3263 dwarf2out_init,
3264 dwarf2out_finish,
3265 dwarf2out_define,
3266 dwarf2out_undef,
3267 dwarf2out_start_source_file,
3268 dwarf2out_end_source_file,
3269 dwarf2out_begin_block,
3270 dwarf2out_end_block,
3271 dwarf2out_ignore_block,
3272 dwarf2out_source_line,
3273 dwarf2out_begin_prologue,
3274 debug_nothing_int_charstar, /* end_prologue */
3275 dwarf2out_end_epilogue,
3276 debug_nothing_tree, /* begin_function */
3277 debug_nothing_int, /* end_function */
3278 dwarf2out_decl, /* function_decl */
3279 dwarf2out_global_decl,
3280 debug_nothing_tree, /* deferred_inline_function */
3281 /* The DWARF 2 backend tries to reduce debugging bloat by not
3282 emitting the abstract description of inline functions until
3283 something tries to reference them. */
3284 dwarf2out_abstract_function, /* outlining_inline_function */
3285 debug_nothing_rtx, /* label */
3286 debug_nothing_int /* handle_pch */
3288 #endif
3290 /* NOTE: In the comments in this file, many references are made to
3291 "Debugging Information Entries". This term is abbreviated as `DIE'
3292 throughout the remainder of this file. */
3294 /* An internal representation of the DWARF output is built, and then
3295 walked to generate the DWARF debugging info. The walk of the internal
3296 representation is done after the entire program has been compiled.
3297 The types below are used to describe the internal representation. */
3299 /* Various DIE's use offsets relative to the beginning of the
3300 .debug_info section to refer to each other. */
3302 typedef long int dw_offset;
3304 /* Define typedefs here to avoid circular dependencies. */
3306 typedef struct dw_attr_struct *dw_attr_ref;
3307 typedef struct dw_line_info_struct *dw_line_info_ref;
3308 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3309 typedef struct pubname_struct *pubname_ref;
3310 typedef struct dw_ranges_struct *dw_ranges_ref;
3312 /* Each entry in the line_info_table maintains the file and
3313 line number associated with the label generated for that
3314 entry. The label gives the PC value associated with
3315 the line number entry. */
3317 typedef struct dw_line_info_struct GTY(())
3319 unsigned long dw_file_num;
3320 unsigned long dw_line_num;
3322 dw_line_info_entry;
3324 /* Line information for functions in separate sections; each one gets its
3325 own sequence. */
3326 typedef struct dw_separate_line_info_struct GTY(())
3328 unsigned long dw_file_num;
3329 unsigned long dw_line_num;
3330 unsigned long function;
3332 dw_separate_line_info_entry;
3334 /* Each DIE attribute has a field specifying the attribute kind,
3335 a link to the next attribute in the chain, and an attribute value.
3336 Attributes are typically linked below the DIE they modify. */
3338 typedef struct dw_attr_struct GTY(())
3340 enum dwarf_attribute dw_attr;
3341 dw_attr_ref dw_attr_next;
3342 dw_val_node dw_attr_val;
3344 dw_attr_node;
3346 /* The Debugging Information Entry (DIE) structure */
3348 typedef struct die_struct GTY(())
3350 enum dwarf_tag die_tag;
3351 char *die_symbol;
3352 dw_attr_ref die_attr;
3353 dw_die_ref die_parent;
3354 dw_die_ref die_child;
3355 dw_die_ref die_sib;
3356 dw_offset die_offset;
3357 unsigned long die_abbrev;
3358 int die_mark;
3360 die_node;
3362 /* The pubname structure */
3364 typedef struct pubname_struct GTY(())
3366 dw_die_ref die;
3367 char *name;
3369 pubname_entry;
3371 struct dw_ranges_struct GTY(())
3373 int block_num;
3376 /* The limbo die list structure. */
3377 typedef struct limbo_die_struct GTY(())
3379 dw_die_ref die;
3380 tree created_for;
3381 struct limbo_die_struct *next;
3383 limbo_die_node;
3385 /* How to start an assembler comment. */
3386 #ifndef ASM_COMMENT_START
3387 #define ASM_COMMENT_START ";#"
3388 #endif
3390 /* Define a macro which returns nonzero for a TYPE_DECL which was
3391 implicitly generated for a tagged type.
3393 Note that unlike the gcc front end (which generates a NULL named
3394 TYPE_DECL node for each complete tagged type, each array type, and
3395 each function type node created) the g++ front end generates a
3396 _named_ TYPE_DECL node for each tagged type node created.
3397 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3398 generate a DW_TAG_typedef DIE for them. */
3400 #define TYPE_DECL_IS_STUB(decl) \
3401 (DECL_NAME (decl) == NULL_TREE \
3402 || (DECL_ARTIFICIAL (decl) \
3403 && is_tagged_type (TREE_TYPE (decl)) \
3404 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3405 /* This is necessary for stub decls that \
3406 appear in nested inline functions. */ \
3407 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3408 && (decl_ultimate_origin (decl) \
3409 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3411 /* Information concerning the compilation unit's programming
3412 language, and compiler version. */
3414 /* Fixed size portion of the DWARF compilation unit header. */
3415 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3416 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3418 /* Fixed size portion of public names info. */
3419 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3421 /* Fixed size portion of the address range info. */
3422 #define DWARF_ARANGES_HEADER_SIZE \
3423 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3424 DWARF2_ADDR_SIZE * 2) \
3425 - DWARF_INITIAL_LENGTH_SIZE)
3427 /* Size of padding portion in the address range info. It must be
3428 aligned to twice the pointer size. */
3429 #define DWARF_ARANGES_PAD_SIZE \
3430 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3431 DWARF2_ADDR_SIZE * 2) \
3432 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3434 /* Use assembler line directives if available. */
3435 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3436 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3437 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3438 #else
3439 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3440 #endif
3441 #endif
3443 /* Minimum line offset in a special line info. opcode.
3444 This value was chosen to give a reasonable range of values. */
3445 #define DWARF_LINE_BASE -10
3447 /* First special line opcode - leave room for the standard opcodes. */
3448 #define DWARF_LINE_OPCODE_BASE 10
3450 /* Range of line offsets in a special line info. opcode. */
3451 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3453 /* Flag that indicates the initial value of the is_stmt_start flag.
3454 In the present implementation, we do not mark any lines as
3455 the beginning of a source statement, because that information
3456 is not made available by the GCC front-end. */
3457 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3459 #ifdef DWARF2_DEBUGGING_INFO
3460 /* This location is used by calc_die_sizes() to keep track
3461 the offset of each DIE within the .debug_info section. */
3462 static unsigned long next_die_offset;
3463 #endif
3465 /* Record the root of the DIE's built for the current compilation unit. */
3466 static GTY(()) dw_die_ref comp_unit_die;
3468 #ifdef DWARF2_DEBUGGING_INFO
3469 /* We need special handling in dwarf2out_start_source_file if it is
3470 first one. */
3471 static int is_main_source;
3472 #endif
3474 /* A list of DIEs with a NULL parent waiting to be relocated. */
3475 static GTY(()) limbo_die_node *limbo_die_list;
3477 /* Filenames referenced by this compilation unit. */
3478 static GTY(()) varray_type file_table;
3479 static GTY(()) varray_type file_table_emitted;
3480 static GTY(()) size_t file_table_last_lookup_index;
3482 /* A pointer to the base of a table of references to DIE's that describe
3483 declarations. The table is indexed by DECL_UID() which is a unique
3484 number identifying each decl. */
3485 static GTY((length ("decl_die_table_allocated"))) dw_die_ref *decl_die_table;
3487 /* Number of elements currently allocated for the decl_die_table. */
3488 static GTY(()) unsigned decl_die_table_allocated;
3490 /* Number of elements in decl_die_table currently in use. */
3491 static GTY(()) unsigned decl_die_table_in_use;
3493 /* Size (in elements) of increments by which we may expand the
3494 decl_die_table. */
3495 #define DECL_DIE_TABLE_INCREMENT 256
3497 /* A pointer to the base of a list of references to DIE's that
3498 are uniquely identified by their tag, presence/absence of
3499 children DIE's, and list of attribute/value pairs. */
3500 static GTY((length ("abbrev_die_table_allocated")))
3501 dw_die_ref *abbrev_die_table;
3503 /* Number of elements currently allocated for abbrev_die_table. */
3504 static GTY(()) unsigned abbrev_die_table_allocated;
3506 /* Number of elements in type_die_table currently in use. */
3507 static GTY(()) unsigned abbrev_die_table_in_use;
3509 /* Size (in elements) of increments by which we may expand the
3510 abbrev_die_table. */
3511 #define ABBREV_DIE_TABLE_INCREMENT 256
3513 /* A pointer to the base of a table that contains line information
3514 for each source code line in .text in the compilation unit. */
3515 static GTY((length ("line_info_table_allocated")))
3516 dw_line_info_ref line_info_table;
3518 /* Number of elements currently allocated for line_info_table. */
3519 static GTY(()) unsigned line_info_table_allocated;
3521 /* Number of elements in line_info_table currently in use. */
3522 static GTY(()) unsigned line_info_table_in_use;
3524 /* A pointer to the base of a table that contains line information
3525 for each source code line outside of .text in the compilation unit. */
3526 static GTY ((length ("separate_line_info_table_allocated")))
3527 dw_separate_line_info_ref separate_line_info_table;
3529 /* Number of elements currently allocated for separate_line_info_table. */
3530 static GTY(()) unsigned separate_line_info_table_allocated;
3532 /* Number of elements in separate_line_info_table currently in use. */
3533 static GTY(()) unsigned separate_line_info_table_in_use;
3535 /* Size (in elements) of increments by which we may expand the
3536 line_info_table. */
3537 #define LINE_INFO_TABLE_INCREMENT 1024
3539 /* A pointer to the base of a table that contains a list of publicly
3540 accessible names. */
3541 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3543 /* Number of elements currently allocated for pubname_table. */
3544 static GTY(()) unsigned pubname_table_allocated;
3546 /* Number of elements in pubname_table currently in use. */
3547 static GTY(()) unsigned pubname_table_in_use;
3549 /* Size (in elements) of increments by which we may expand the
3550 pubname_table. */
3551 #define PUBNAME_TABLE_INCREMENT 64
3553 /* Array of dies for which we should generate .debug_arange info. */
3554 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3556 /* Number of elements currently allocated for arange_table. */
3557 static GTY(()) unsigned arange_table_allocated;
3559 /* Number of elements in arange_table currently in use. */
3560 static GTY(()) unsigned arange_table_in_use;
3562 /* Size (in elements) of increments by which we may expand the
3563 arange_table. */
3564 #define ARANGE_TABLE_INCREMENT 64
3566 /* Array of dies for which we should generate .debug_ranges info. */
3567 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3569 /* Number of elements currently allocated for ranges_table. */
3570 static GTY(()) unsigned ranges_table_allocated;
3572 /* Number of elements in ranges_table currently in use. */
3573 static GTY(()) unsigned ranges_table_in_use;
3575 /* Size (in elements) of increments by which we may expand the
3576 ranges_table. */
3577 #define RANGES_TABLE_INCREMENT 64
3579 /* Whether we have location lists that need outputting */
3580 static GTY(()) unsigned have_location_lists;
3582 #ifdef DWARF2_DEBUGGING_INFO
3583 /* Record whether the function being analyzed contains inlined functions. */
3584 static int current_function_has_inlines;
3585 #endif
3586 #if 0 && defined (MIPS_DEBUGGING_INFO)
3587 static int comp_unit_has_inlines;
3588 #endif
3590 /* Number of file tables emited in maybe_emit_file(). */
3591 static GTY(()) int emitcount = 0;
3593 /* Number of internal labels generated by gen_internal_sym(). */
3594 static GTY(()) int label_num;
3596 #ifdef DWARF2_DEBUGGING_INFO
3598 /* Forward declarations for functions defined in this file. */
3600 static int is_pseudo_reg PARAMS ((rtx));
3601 static tree type_main_variant PARAMS ((tree));
3602 static int is_tagged_type PARAMS ((tree));
3603 static const char *dwarf_tag_name PARAMS ((unsigned));
3604 static const char *dwarf_attr_name PARAMS ((unsigned));
3605 static const char *dwarf_form_name PARAMS ((unsigned));
3606 #if 0
3607 static const char *dwarf_type_encoding_name PARAMS ((unsigned));
3608 #endif
3609 static tree decl_ultimate_origin PARAMS ((tree));
3610 static tree block_ultimate_origin PARAMS ((tree));
3611 static tree decl_class_context PARAMS ((tree));
3612 static void add_dwarf_attr PARAMS ((dw_die_ref, dw_attr_ref));
3613 static inline enum dw_val_class AT_class PARAMS ((dw_attr_ref));
3614 static void add_AT_flag PARAMS ((dw_die_ref,
3615 enum dwarf_attribute,
3616 unsigned));
3617 static inline unsigned AT_flag PARAMS ((dw_attr_ref));
3618 static void add_AT_int PARAMS ((dw_die_ref,
3619 enum dwarf_attribute, long));
3620 static inline long int AT_int PARAMS ((dw_attr_ref));
3621 static void add_AT_unsigned PARAMS ((dw_die_ref,
3622 enum dwarf_attribute,
3623 unsigned long));
3624 static inline unsigned long AT_unsigned PARAMS ((dw_attr_ref));
3625 static void add_AT_long_long PARAMS ((dw_die_ref,
3626 enum dwarf_attribute,
3627 unsigned long,
3628 unsigned long));
3629 static void add_AT_float PARAMS ((dw_die_ref,
3630 enum dwarf_attribute,
3631 unsigned, long *));
3632 static hashval_t debug_str_do_hash PARAMS ((const void *));
3633 static int debug_str_eq PARAMS ((const void *, const void *));
3634 static void add_AT_string PARAMS ((dw_die_ref,
3635 enum dwarf_attribute,
3636 const char *));
3637 static inline const char *AT_string PARAMS ((dw_attr_ref));
3638 static int AT_string_form PARAMS ((dw_attr_ref));
3639 static void add_AT_die_ref PARAMS ((dw_die_ref,
3640 enum dwarf_attribute,
3641 dw_die_ref));
3642 static inline dw_die_ref AT_ref PARAMS ((dw_attr_ref));
3643 static inline int AT_ref_external PARAMS ((dw_attr_ref));
3644 static inline void set_AT_ref_external PARAMS ((dw_attr_ref, int));
3645 static void add_AT_fde_ref PARAMS ((dw_die_ref,
3646 enum dwarf_attribute,
3647 unsigned));
3648 static void add_AT_loc PARAMS ((dw_die_ref,
3649 enum dwarf_attribute,
3650 dw_loc_descr_ref));
3651 static inline dw_loc_descr_ref AT_loc PARAMS ((dw_attr_ref));
3652 static void add_AT_loc_list PARAMS ((dw_die_ref,
3653 enum dwarf_attribute,
3654 dw_loc_list_ref));
3655 static inline dw_loc_list_ref AT_loc_list PARAMS ((dw_attr_ref));
3656 static void add_AT_addr PARAMS ((dw_die_ref,
3657 enum dwarf_attribute,
3658 rtx));
3659 static inline rtx AT_addr PARAMS ((dw_attr_ref));
3660 static void add_AT_lbl_id PARAMS ((dw_die_ref,
3661 enum dwarf_attribute,
3662 const char *));
3663 static void add_AT_lbl_offset PARAMS ((dw_die_ref,
3664 enum dwarf_attribute,
3665 const char *));
3666 static void add_AT_offset PARAMS ((dw_die_ref,
3667 enum dwarf_attribute,
3668 unsigned long));
3669 static void add_AT_range_list PARAMS ((dw_die_ref,
3670 enum dwarf_attribute,
3671 unsigned long));
3672 static inline const char *AT_lbl PARAMS ((dw_attr_ref));
3673 static dw_attr_ref get_AT PARAMS ((dw_die_ref,
3674 enum dwarf_attribute));
3675 static const char *get_AT_low_pc PARAMS ((dw_die_ref));
3676 static const char *get_AT_hi_pc PARAMS ((dw_die_ref));
3677 static const char *get_AT_string PARAMS ((dw_die_ref,
3678 enum dwarf_attribute));
3679 static int get_AT_flag PARAMS ((dw_die_ref,
3680 enum dwarf_attribute));
3681 static unsigned get_AT_unsigned PARAMS ((dw_die_ref,
3682 enum dwarf_attribute));
3683 static inline dw_die_ref get_AT_ref PARAMS ((dw_die_ref,
3684 enum dwarf_attribute));
3685 static bool is_c_family PARAMS ((void));
3686 static bool is_cxx PARAMS ((void));
3687 static bool is_java PARAMS ((void));
3688 static bool is_fortran PARAMS ((void));
3689 static bool is_ada PARAMS ((void));
3690 static void remove_AT PARAMS ((dw_die_ref,
3691 enum dwarf_attribute));
3692 static inline void free_die PARAMS ((dw_die_ref));
3693 static void remove_children PARAMS ((dw_die_ref));
3694 static void add_child_die PARAMS ((dw_die_ref, dw_die_ref));
3695 static dw_die_ref new_die PARAMS ((enum dwarf_tag, dw_die_ref,
3696 tree));
3697 static dw_die_ref lookup_type_die PARAMS ((tree));
3698 static void equate_type_number_to_die PARAMS ((tree, dw_die_ref));
3699 static dw_die_ref lookup_decl_die PARAMS ((tree));
3700 static void equate_decl_number_to_die PARAMS ((tree, dw_die_ref));
3701 static void print_spaces PARAMS ((FILE *));
3702 static void print_die PARAMS ((dw_die_ref, FILE *));
3703 static void print_dwarf_line_table PARAMS ((FILE *));
3704 static void reverse_die_lists PARAMS ((dw_die_ref));
3705 static void reverse_all_dies PARAMS ((dw_die_ref));
3706 static dw_die_ref push_new_compile_unit PARAMS ((dw_die_ref, dw_die_ref));
3707 static dw_die_ref pop_compile_unit PARAMS ((dw_die_ref));
3708 static void loc_checksum PARAMS ((dw_loc_descr_ref,
3709 struct md5_ctx *));
3710 static void attr_checksum PARAMS ((dw_attr_ref,
3711 struct md5_ctx *,
3712 int *));
3713 static void die_checksum PARAMS ((dw_die_ref,
3714 struct md5_ctx *,
3715 int *));
3716 static int same_loc_p PARAMS ((dw_loc_descr_ref,
3717 dw_loc_descr_ref, int *));
3718 static int same_dw_val_p PARAMS ((dw_val_node *, dw_val_node *,
3719 int *));
3720 static int same_attr_p PARAMS ((dw_attr_ref, dw_attr_ref, int *));
3721 static int same_die_p PARAMS ((dw_die_ref, dw_die_ref, int *));
3722 static int same_die_p_wrap PARAMS ((dw_die_ref, dw_die_ref));
3723 static void compute_section_prefix PARAMS ((dw_die_ref));
3724 static int is_type_die PARAMS ((dw_die_ref));
3725 static int is_comdat_die PARAMS ((dw_die_ref));
3726 static int is_symbol_die PARAMS ((dw_die_ref));
3727 static void assign_symbol_names PARAMS ((dw_die_ref));
3728 static void break_out_includes PARAMS ((dw_die_ref));
3729 static hashval_t htab_cu_hash PARAMS ((const void *));
3730 static int htab_cu_eq PARAMS ((const void *, const void *));
3731 static void htab_cu_del PARAMS ((void *));
3732 static int check_duplicate_cu PARAMS ((dw_die_ref, htab_t, unsigned *));
3733 static void record_comdat_symbol_number PARAMS ((dw_die_ref, htab_t, unsigned));
3734 static void add_sibling_attributes PARAMS ((dw_die_ref));
3735 static void build_abbrev_table PARAMS ((dw_die_ref));
3736 static void output_location_lists PARAMS ((dw_die_ref));
3737 static int constant_size PARAMS ((long unsigned));
3738 static unsigned long size_of_die PARAMS ((dw_die_ref));
3739 static void calc_die_sizes PARAMS ((dw_die_ref));
3740 static void mark_dies PARAMS ((dw_die_ref));
3741 static void unmark_dies PARAMS ((dw_die_ref));
3742 static void unmark_all_dies PARAMS ((dw_die_ref));
3743 static unsigned long size_of_pubnames PARAMS ((void));
3744 static unsigned long size_of_aranges PARAMS ((void));
3745 static enum dwarf_form value_format PARAMS ((dw_attr_ref));
3746 static void output_value_format PARAMS ((dw_attr_ref));
3747 static void output_abbrev_section PARAMS ((void));
3748 static void output_die_symbol PARAMS ((dw_die_ref));
3749 static void output_die PARAMS ((dw_die_ref));
3750 static void output_compilation_unit_header PARAMS ((void));
3751 static void output_comp_unit PARAMS ((dw_die_ref, int));
3752 static const char *dwarf2_name PARAMS ((tree, int));
3753 static void add_pubname PARAMS ((tree, dw_die_ref));
3754 static void output_pubnames PARAMS ((void));
3755 static void add_arange PARAMS ((tree, dw_die_ref));
3756 static void output_aranges PARAMS ((void));
3757 static unsigned int add_ranges PARAMS ((tree));
3758 static void output_ranges PARAMS ((void));
3759 static void output_line_info PARAMS ((void));
3760 static void output_file_names PARAMS ((void));
3761 static dw_die_ref base_type_die PARAMS ((tree));
3762 static tree root_type PARAMS ((tree));
3763 static int is_base_type PARAMS ((tree));
3764 static bool is_ada_subrange_type PARAMS ((tree));
3765 static dw_die_ref subrange_type_die PARAMS ((tree));
3766 static dw_die_ref modified_type_die PARAMS ((tree, int, int, dw_die_ref));
3767 static int type_is_enum PARAMS ((tree));
3768 static unsigned int reg_number PARAMS ((rtx));
3769 static dw_loc_descr_ref reg_loc_descriptor PARAMS ((rtx));
3770 static dw_loc_descr_ref one_reg_loc_descriptor PARAMS ((unsigned int));
3771 static dw_loc_descr_ref multiple_reg_loc_descriptor PARAMS ((rtx, rtx));
3772 static dw_loc_descr_ref int_loc_descriptor PARAMS ((HOST_WIDE_INT));
3773 static dw_loc_descr_ref based_loc_descr PARAMS ((unsigned, long));
3774 static int is_based_loc PARAMS ((rtx));
3775 static dw_loc_descr_ref mem_loc_descriptor PARAMS ((rtx, enum machine_mode mode));
3776 static dw_loc_descr_ref concat_loc_descriptor PARAMS ((rtx, rtx));
3777 static dw_loc_descr_ref loc_descriptor PARAMS ((rtx));
3778 static dw_loc_descr_ref loc_descriptor_from_tree PARAMS ((tree, int));
3779 static HOST_WIDE_INT ceiling PARAMS ((HOST_WIDE_INT, unsigned int));
3780 static tree field_type PARAMS ((tree));
3781 static unsigned int simple_type_align_in_bits PARAMS ((tree));
3782 static unsigned int simple_decl_align_in_bits PARAMS ((tree));
3783 static unsigned HOST_WIDE_INT simple_type_size_in_bits PARAMS ((tree));
3784 static HOST_WIDE_INT field_byte_offset PARAMS ((tree));
3785 static void add_AT_location_description PARAMS ((dw_die_ref,
3786 enum dwarf_attribute,
3787 dw_loc_descr_ref));
3788 static void add_data_member_location_attribute PARAMS ((dw_die_ref, tree));
3789 static void add_const_value_attribute PARAMS ((dw_die_ref, rtx));
3790 static rtx rtl_for_decl_location PARAMS ((tree));
3791 static void add_location_or_const_value_attribute PARAMS ((dw_die_ref, tree));
3792 static void tree_add_const_value_attribute PARAMS ((dw_die_ref, tree));
3793 static void add_name_attribute PARAMS ((dw_die_ref, const char *));
3794 static void add_comp_dir_attribute PARAMS ((dw_die_ref));
3795 static void add_bound_info PARAMS ((dw_die_ref,
3796 enum dwarf_attribute, tree));
3797 static void add_subscript_info PARAMS ((dw_die_ref, tree));
3798 static void add_byte_size_attribute PARAMS ((dw_die_ref, tree));
3799 static void add_bit_offset_attribute PARAMS ((dw_die_ref, tree));
3800 static void add_bit_size_attribute PARAMS ((dw_die_ref, tree));
3801 static void add_prototyped_attribute PARAMS ((dw_die_ref, tree));
3802 static void add_abstract_origin_attribute PARAMS ((dw_die_ref, tree));
3803 static void add_pure_or_virtual_attribute PARAMS ((dw_die_ref, tree));
3804 static void add_src_coords_attributes PARAMS ((dw_die_ref, tree));
3805 static void add_name_and_src_coords_attributes PARAMS ((dw_die_ref, tree));
3806 static void push_decl_scope PARAMS ((tree));
3807 static void pop_decl_scope PARAMS ((void));
3808 static dw_die_ref scope_die_for PARAMS ((tree, dw_die_ref));
3809 static inline int local_scope_p PARAMS ((dw_die_ref));
3810 static inline int class_scope_p PARAMS ((dw_die_ref));
3811 static void add_type_attribute PARAMS ((dw_die_ref, tree, int, int,
3812 dw_die_ref));
3813 static const char *type_tag PARAMS ((tree));
3814 static tree member_declared_type PARAMS ((tree));
3815 #if 0
3816 static const char *decl_start_label PARAMS ((tree));
3817 #endif
3818 static void gen_array_type_die PARAMS ((tree, dw_die_ref));
3819 static void gen_set_type_die PARAMS ((tree, dw_die_ref));
3820 #if 0
3821 static void gen_entry_point_die PARAMS ((tree, dw_die_ref));
3822 #endif
3823 static void gen_inlined_enumeration_type_die PARAMS ((tree, dw_die_ref));
3824 static void gen_inlined_structure_type_die PARAMS ((tree, dw_die_ref));
3825 static void gen_inlined_union_type_die PARAMS ((tree, dw_die_ref));
3826 static void gen_enumeration_type_die PARAMS ((tree, dw_die_ref));
3827 static dw_die_ref gen_formal_parameter_die PARAMS ((tree, dw_die_ref));
3828 static void gen_unspecified_parameters_die PARAMS ((tree, dw_die_ref));
3829 static void gen_formal_types_die PARAMS ((tree, dw_die_ref));
3830 static void gen_subprogram_die PARAMS ((tree, dw_die_ref));
3831 static void gen_variable_die PARAMS ((tree, dw_die_ref));
3832 static void gen_label_die PARAMS ((tree, dw_die_ref));
3833 static void gen_lexical_block_die PARAMS ((tree, dw_die_ref, int));
3834 static void gen_inlined_subroutine_die PARAMS ((tree, dw_die_ref, int));
3835 static void gen_field_die PARAMS ((tree, dw_die_ref));
3836 static void gen_ptr_to_mbr_type_die PARAMS ((tree, dw_die_ref));
3837 static dw_die_ref gen_compile_unit_die PARAMS ((const char *));
3838 static void gen_string_type_die PARAMS ((tree, dw_die_ref));
3839 static void gen_inheritance_die PARAMS ((tree, tree, dw_die_ref));
3840 static void gen_member_die PARAMS ((tree, dw_die_ref));
3841 static void gen_struct_or_union_type_die PARAMS ((tree, dw_die_ref));
3842 static void gen_subroutine_type_die PARAMS ((tree, dw_die_ref));
3843 static void gen_typedef_die PARAMS ((tree, dw_die_ref));
3844 static void gen_type_die PARAMS ((tree, dw_die_ref));
3845 static void gen_tagged_type_instantiation_die PARAMS ((tree, dw_die_ref));
3846 static void gen_block_die PARAMS ((tree, dw_die_ref, int));
3847 static void decls_for_scope PARAMS ((tree, dw_die_ref, int));
3848 static int is_redundant_typedef PARAMS ((tree));
3849 static void gen_decl_die PARAMS ((tree, dw_die_ref));
3850 static unsigned lookup_filename PARAMS ((const char *));
3851 static void init_file_table PARAMS ((void));
3852 static void retry_incomplete_types PARAMS ((void));
3853 static void gen_type_die_for_member PARAMS ((tree, tree, dw_die_ref));
3854 static void splice_child_die PARAMS ((dw_die_ref, dw_die_ref));
3855 static int file_info_cmp PARAMS ((const void *, const void *));
3856 static dw_loc_list_ref new_loc_list PARAMS ((dw_loc_descr_ref,
3857 const char *, const char *,
3858 const char *, unsigned));
3859 static void add_loc_descr_to_loc_list PARAMS ((dw_loc_list_ref *,
3860 dw_loc_descr_ref,
3861 const char *, const char *, const char *));
3862 static void output_loc_list PARAMS ((dw_loc_list_ref));
3863 static char *gen_internal_sym PARAMS ((const char *));
3865 static void prune_unmark_dies PARAMS ((dw_die_ref));
3866 static void prune_unused_types_mark PARAMS ((dw_die_ref, int));
3867 static void prune_unused_types_walk PARAMS ((dw_die_ref));
3868 static void prune_unused_types_walk_attribs PARAMS ((dw_die_ref));
3869 static void prune_unused_types_prune PARAMS ((dw_die_ref));
3870 static void prune_unused_types PARAMS ((void));
3871 static int maybe_emit_file PARAMS ((int));
3873 /* Section names used to hold DWARF debugging information. */
3874 #ifndef DEBUG_INFO_SECTION
3875 #define DEBUG_INFO_SECTION ".debug_info"
3876 #endif
3877 #ifndef DEBUG_ABBREV_SECTION
3878 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3879 #endif
3880 #ifndef DEBUG_ARANGES_SECTION
3881 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3882 #endif
3883 #ifndef DEBUG_MACINFO_SECTION
3884 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3885 #endif
3886 #ifndef DEBUG_LINE_SECTION
3887 #define DEBUG_LINE_SECTION ".debug_line"
3888 #endif
3889 #ifndef DEBUG_LOC_SECTION
3890 #define DEBUG_LOC_SECTION ".debug_loc"
3891 #endif
3892 #ifndef DEBUG_PUBNAMES_SECTION
3893 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3894 #endif
3895 #ifndef DEBUG_STR_SECTION
3896 #define DEBUG_STR_SECTION ".debug_str"
3897 #endif
3898 #ifndef DEBUG_RANGES_SECTION
3899 #define DEBUG_RANGES_SECTION ".debug_ranges"
3900 #endif
3902 /* Standard ELF section names for compiled code and data. */
3903 #ifndef TEXT_SECTION_NAME
3904 #define TEXT_SECTION_NAME ".text"
3905 #endif
3907 /* Section flags for .debug_str section. */
3908 #ifdef HAVE_GAS_SHF_MERGE
3909 #define DEBUG_STR_SECTION_FLAGS \
3910 (SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1)
3911 #else
3912 #define DEBUG_STR_SECTION_FLAGS SECTION_DEBUG
3913 #endif
3915 /* Labels we insert at beginning sections we can reference instead of
3916 the section names themselves. */
3918 #ifndef TEXT_SECTION_LABEL
3919 #define TEXT_SECTION_LABEL "Ltext"
3920 #endif
3921 #ifndef DEBUG_LINE_SECTION_LABEL
3922 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3923 #endif
3924 #ifndef DEBUG_INFO_SECTION_LABEL
3925 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3926 #endif
3927 #ifndef DEBUG_ABBREV_SECTION_LABEL
3928 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3929 #endif
3930 #ifndef DEBUG_LOC_SECTION_LABEL
3931 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3932 #endif
3933 #ifndef DEBUG_RANGES_SECTION_LABEL
3934 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3935 #endif
3936 #ifndef DEBUG_MACINFO_SECTION_LABEL
3937 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3938 #endif
3940 /* Definitions of defaults for formats and names of various special
3941 (artificial) labels which may be generated within this file (when the -g
3942 options is used and DWARF_DEBUGGING_INFO is in effect.
3943 If necessary, these may be overridden from within the tm.h file, but
3944 typically, overriding these defaults is unnecessary. */
3946 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3947 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3948 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3949 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3950 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3951 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3952 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3953 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3955 #ifndef TEXT_END_LABEL
3956 #define TEXT_END_LABEL "Letext"
3957 #endif
3958 #ifndef BLOCK_BEGIN_LABEL
3959 #define BLOCK_BEGIN_LABEL "LBB"
3960 #endif
3961 #ifndef BLOCK_END_LABEL
3962 #define BLOCK_END_LABEL "LBE"
3963 #endif
3964 #ifndef LINE_CODE_LABEL
3965 #define LINE_CODE_LABEL "LM"
3966 #endif
3967 #ifndef SEPARATE_LINE_CODE_LABEL
3968 #define SEPARATE_LINE_CODE_LABEL "LSM"
3969 #endif
3971 /* We allow a language front-end to designate a function that is to be
3972 called to "demangle" any name before it it put into a DIE. */
3974 static const char *(*demangle_name_func) PARAMS ((const char *));
3976 void
3977 dwarf2out_set_demangle_name_func (func)
3978 const char *(*func) PARAMS ((const char *));
3980 demangle_name_func = func;
3983 /* Test if rtl node points to a pseudo register. */
3985 static inline int
3986 is_pseudo_reg (rtl)
3987 rtx rtl;
3989 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3990 || (GET_CODE (rtl) == SUBREG
3991 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3994 /* Return a reference to a type, with its const and volatile qualifiers
3995 removed. */
3997 static inline tree
3998 type_main_variant (type)
3999 tree type;
4001 type = TYPE_MAIN_VARIANT (type);
4003 /* ??? There really should be only one main variant among any group of
4004 variants of a given type (and all of the MAIN_VARIANT values for all
4005 members of the group should point to that one type) but sometimes the C
4006 front-end messes this up for array types, so we work around that bug
4007 here. */
4008 if (TREE_CODE (type) == ARRAY_TYPE)
4009 while (type != TYPE_MAIN_VARIANT (type))
4010 type = TYPE_MAIN_VARIANT (type);
4012 return type;
4015 /* Return nonzero if the given type node represents a tagged type. */
4017 static inline int
4018 is_tagged_type (type)
4019 tree type;
4021 enum tree_code code = TREE_CODE (type);
4023 return (code == RECORD_TYPE || code == UNION_TYPE
4024 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4027 /* Convert a DIE tag into its string name. */
4029 static const char *
4030 dwarf_tag_name (tag)
4031 unsigned tag;
4033 switch (tag)
4035 case DW_TAG_padding:
4036 return "DW_TAG_padding";
4037 case DW_TAG_array_type:
4038 return "DW_TAG_array_type";
4039 case DW_TAG_class_type:
4040 return "DW_TAG_class_type";
4041 case DW_TAG_entry_point:
4042 return "DW_TAG_entry_point";
4043 case DW_TAG_enumeration_type:
4044 return "DW_TAG_enumeration_type";
4045 case DW_TAG_formal_parameter:
4046 return "DW_TAG_formal_parameter";
4047 case DW_TAG_imported_declaration:
4048 return "DW_TAG_imported_declaration";
4049 case DW_TAG_label:
4050 return "DW_TAG_label";
4051 case DW_TAG_lexical_block:
4052 return "DW_TAG_lexical_block";
4053 case DW_TAG_member:
4054 return "DW_TAG_member";
4055 case DW_TAG_pointer_type:
4056 return "DW_TAG_pointer_type";
4057 case DW_TAG_reference_type:
4058 return "DW_TAG_reference_type";
4059 case DW_TAG_compile_unit:
4060 return "DW_TAG_compile_unit";
4061 case DW_TAG_string_type:
4062 return "DW_TAG_string_type";
4063 case DW_TAG_structure_type:
4064 return "DW_TAG_structure_type";
4065 case DW_TAG_subroutine_type:
4066 return "DW_TAG_subroutine_type";
4067 case DW_TAG_typedef:
4068 return "DW_TAG_typedef";
4069 case DW_TAG_union_type:
4070 return "DW_TAG_union_type";
4071 case DW_TAG_unspecified_parameters:
4072 return "DW_TAG_unspecified_parameters";
4073 case DW_TAG_variant:
4074 return "DW_TAG_variant";
4075 case DW_TAG_common_block:
4076 return "DW_TAG_common_block";
4077 case DW_TAG_common_inclusion:
4078 return "DW_TAG_common_inclusion";
4079 case DW_TAG_inheritance:
4080 return "DW_TAG_inheritance";
4081 case DW_TAG_inlined_subroutine:
4082 return "DW_TAG_inlined_subroutine";
4083 case DW_TAG_module:
4084 return "DW_TAG_module";
4085 case DW_TAG_ptr_to_member_type:
4086 return "DW_TAG_ptr_to_member_type";
4087 case DW_TAG_set_type:
4088 return "DW_TAG_set_type";
4089 case DW_TAG_subrange_type:
4090 return "DW_TAG_subrange_type";
4091 case DW_TAG_with_stmt:
4092 return "DW_TAG_with_stmt";
4093 case DW_TAG_access_declaration:
4094 return "DW_TAG_access_declaration";
4095 case DW_TAG_base_type:
4096 return "DW_TAG_base_type";
4097 case DW_TAG_catch_block:
4098 return "DW_TAG_catch_block";
4099 case DW_TAG_const_type:
4100 return "DW_TAG_const_type";
4101 case DW_TAG_constant:
4102 return "DW_TAG_constant";
4103 case DW_TAG_enumerator:
4104 return "DW_TAG_enumerator";
4105 case DW_TAG_file_type:
4106 return "DW_TAG_file_type";
4107 case DW_TAG_friend:
4108 return "DW_TAG_friend";
4109 case DW_TAG_namelist:
4110 return "DW_TAG_namelist";
4111 case DW_TAG_namelist_item:
4112 return "DW_TAG_namelist_item";
4113 case DW_TAG_packed_type:
4114 return "DW_TAG_packed_type";
4115 case DW_TAG_subprogram:
4116 return "DW_TAG_subprogram";
4117 case DW_TAG_template_type_param:
4118 return "DW_TAG_template_type_param";
4119 case DW_TAG_template_value_param:
4120 return "DW_TAG_template_value_param";
4121 case DW_TAG_thrown_type:
4122 return "DW_TAG_thrown_type";
4123 case DW_TAG_try_block:
4124 return "DW_TAG_try_block";
4125 case DW_TAG_variant_part:
4126 return "DW_TAG_variant_part";
4127 case DW_TAG_variable:
4128 return "DW_TAG_variable";
4129 case DW_TAG_volatile_type:
4130 return "DW_TAG_volatile_type";
4131 case DW_TAG_MIPS_loop:
4132 return "DW_TAG_MIPS_loop";
4133 case DW_TAG_format_label:
4134 return "DW_TAG_format_label";
4135 case DW_TAG_function_template:
4136 return "DW_TAG_function_template";
4137 case DW_TAG_class_template:
4138 return "DW_TAG_class_template";
4139 case DW_TAG_GNU_BINCL:
4140 return "DW_TAG_GNU_BINCL";
4141 case DW_TAG_GNU_EINCL:
4142 return "DW_TAG_GNU_EINCL";
4143 default:
4144 return "DW_TAG_<unknown>";
4148 /* Convert a DWARF attribute code into its string name. */
4150 static const char *
4151 dwarf_attr_name (attr)
4152 unsigned attr;
4154 switch (attr)
4156 case DW_AT_sibling:
4157 return "DW_AT_sibling";
4158 case DW_AT_location:
4159 return "DW_AT_location";
4160 case DW_AT_name:
4161 return "DW_AT_name";
4162 case DW_AT_ordering:
4163 return "DW_AT_ordering";
4164 case DW_AT_subscr_data:
4165 return "DW_AT_subscr_data";
4166 case DW_AT_byte_size:
4167 return "DW_AT_byte_size";
4168 case DW_AT_bit_offset:
4169 return "DW_AT_bit_offset";
4170 case DW_AT_bit_size:
4171 return "DW_AT_bit_size";
4172 case DW_AT_element_list:
4173 return "DW_AT_element_list";
4174 case DW_AT_stmt_list:
4175 return "DW_AT_stmt_list";
4176 case DW_AT_low_pc:
4177 return "DW_AT_low_pc";
4178 case DW_AT_high_pc:
4179 return "DW_AT_high_pc";
4180 case DW_AT_language:
4181 return "DW_AT_language";
4182 case DW_AT_member:
4183 return "DW_AT_member";
4184 case DW_AT_discr:
4185 return "DW_AT_discr";
4186 case DW_AT_discr_value:
4187 return "DW_AT_discr_value";
4188 case DW_AT_visibility:
4189 return "DW_AT_visibility";
4190 case DW_AT_import:
4191 return "DW_AT_import";
4192 case DW_AT_string_length:
4193 return "DW_AT_string_length";
4194 case DW_AT_common_reference:
4195 return "DW_AT_common_reference";
4196 case DW_AT_comp_dir:
4197 return "DW_AT_comp_dir";
4198 case DW_AT_const_value:
4199 return "DW_AT_const_value";
4200 case DW_AT_containing_type:
4201 return "DW_AT_containing_type";
4202 case DW_AT_default_value:
4203 return "DW_AT_default_value";
4204 case DW_AT_inline:
4205 return "DW_AT_inline";
4206 case DW_AT_is_optional:
4207 return "DW_AT_is_optional";
4208 case DW_AT_lower_bound:
4209 return "DW_AT_lower_bound";
4210 case DW_AT_producer:
4211 return "DW_AT_producer";
4212 case DW_AT_prototyped:
4213 return "DW_AT_prototyped";
4214 case DW_AT_return_addr:
4215 return "DW_AT_return_addr";
4216 case DW_AT_start_scope:
4217 return "DW_AT_start_scope";
4218 case DW_AT_stride_size:
4219 return "DW_AT_stride_size";
4220 case DW_AT_upper_bound:
4221 return "DW_AT_upper_bound";
4222 case DW_AT_abstract_origin:
4223 return "DW_AT_abstract_origin";
4224 case DW_AT_accessibility:
4225 return "DW_AT_accessibility";
4226 case DW_AT_address_class:
4227 return "DW_AT_address_class";
4228 case DW_AT_artificial:
4229 return "DW_AT_artificial";
4230 case DW_AT_base_types:
4231 return "DW_AT_base_types";
4232 case DW_AT_calling_convention:
4233 return "DW_AT_calling_convention";
4234 case DW_AT_count:
4235 return "DW_AT_count";
4236 case DW_AT_data_member_location:
4237 return "DW_AT_data_member_location";
4238 case DW_AT_decl_column:
4239 return "DW_AT_decl_column";
4240 case DW_AT_decl_file:
4241 return "DW_AT_decl_file";
4242 case DW_AT_decl_line:
4243 return "DW_AT_decl_line";
4244 case DW_AT_declaration:
4245 return "DW_AT_declaration";
4246 case DW_AT_discr_list:
4247 return "DW_AT_discr_list";
4248 case DW_AT_encoding:
4249 return "DW_AT_encoding";
4250 case DW_AT_external:
4251 return "DW_AT_external";
4252 case DW_AT_frame_base:
4253 return "DW_AT_frame_base";
4254 case DW_AT_friend:
4255 return "DW_AT_friend";
4256 case DW_AT_identifier_case:
4257 return "DW_AT_identifier_case";
4258 case DW_AT_macro_info:
4259 return "DW_AT_macro_info";
4260 case DW_AT_namelist_items:
4261 return "DW_AT_namelist_items";
4262 case DW_AT_priority:
4263 return "DW_AT_priority";
4264 case DW_AT_segment:
4265 return "DW_AT_segment";
4266 case DW_AT_specification:
4267 return "DW_AT_specification";
4268 case DW_AT_static_link:
4269 return "DW_AT_static_link";
4270 case DW_AT_type:
4271 return "DW_AT_type";
4272 case DW_AT_use_location:
4273 return "DW_AT_use_location";
4274 case DW_AT_variable_parameter:
4275 return "DW_AT_variable_parameter";
4276 case DW_AT_virtuality:
4277 return "DW_AT_virtuality";
4278 case DW_AT_vtable_elem_location:
4279 return "DW_AT_vtable_elem_location";
4281 case DW_AT_allocated:
4282 return "DW_AT_allocated";
4283 case DW_AT_associated:
4284 return "DW_AT_associated";
4285 case DW_AT_data_location:
4286 return "DW_AT_data_location";
4287 case DW_AT_stride:
4288 return "DW_AT_stride";
4289 case DW_AT_entry_pc:
4290 return "DW_AT_entry_pc";
4291 case DW_AT_use_UTF8:
4292 return "DW_AT_use_UTF8";
4293 case DW_AT_extension:
4294 return "DW_AT_extension";
4295 case DW_AT_ranges:
4296 return "DW_AT_ranges";
4297 case DW_AT_trampoline:
4298 return "DW_AT_trampoline";
4299 case DW_AT_call_column:
4300 return "DW_AT_call_column";
4301 case DW_AT_call_file:
4302 return "DW_AT_call_file";
4303 case DW_AT_call_line:
4304 return "DW_AT_call_line";
4306 case DW_AT_MIPS_fde:
4307 return "DW_AT_MIPS_fde";
4308 case DW_AT_MIPS_loop_begin:
4309 return "DW_AT_MIPS_loop_begin";
4310 case DW_AT_MIPS_tail_loop_begin:
4311 return "DW_AT_MIPS_tail_loop_begin";
4312 case DW_AT_MIPS_epilog_begin:
4313 return "DW_AT_MIPS_epilog_begin";
4314 case DW_AT_MIPS_loop_unroll_factor:
4315 return "DW_AT_MIPS_loop_unroll_factor";
4316 case DW_AT_MIPS_software_pipeline_depth:
4317 return "DW_AT_MIPS_software_pipeline_depth";
4318 case DW_AT_MIPS_linkage_name:
4319 return "DW_AT_MIPS_linkage_name";
4320 case DW_AT_MIPS_stride:
4321 return "DW_AT_MIPS_stride";
4322 case DW_AT_MIPS_abstract_name:
4323 return "DW_AT_MIPS_abstract_name";
4324 case DW_AT_MIPS_clone_origin:
4325 return "DW_AT_MIPS_clone_origin";
4326 case DW_AT_MIPS_has_inlines:
4327 return "DW_AT_MIPS_has_inlines";
4329 case DW_AT_sf_names:
4330 return "DW_AT_sf_names";
4331 case DW_AT_src_info:
4332 return "DW_AT_src_info";
4333 case DW_AT_mac_info:
4334 return "DW_AT_mac_info";
4335 case DW_AT_src_coords:
4336 return "DW_AT_src_coords";
4337 case DW_AT_body_begin:
4338 return "DW_AT_body_begin";
4339 case DW_AT_body_end:
4340 return "DW_AT_body_end";
4341 case DW_AT_GNU_vector:
4342 return "DW_AT_GNU_vector";
4344 case DW_AT_VMS_rtnbeg_pd_address:
4345 return "DW_AT_VMS_rtnbeg_pd_address";
4347 default:
4348 return "DW_AT_<unknown>";
4352 /* Convert a DWARF value form code into its string name. */
4354 static const char *
4355 dwarf_form_name (form)
4356 unsigned form;
4358 switch (form)
4360 case DW_FORM_addr:
4361 return "DW_FORM_addr";
4362 case DW_FORM_block2:
4363 return "DW_FORM_block2";
4364 case DW_FORM_block4:
4365 return "DW_FORM_block4";
4366 case DW_FORM_data2:
4367 return "DW_FORM_data2";
4368 case DW_FORM_data4:
4369 return "DW_FORM_data4";
4370 case DW_FORM_data8:
4371 return "DW_FORM_data8";
4372 case DW_FORM_string:
4373 return "DW_FORM_string";
4374 case DW_FORM_block:
4375 return "DW_FORM_block";
4376 case DW_FORM_block1:
4377 return "DW_FORM_block1";
4378 case DW_FORM_data1:
4379 return "DW_FORM_data1";
4380 case DW_FORM_flag:
4381 return "DW_FORM_flag";
4382 case DW_FORM_sdata:
4383 return "DW_FORM_sdata";
4384 case DW_FORM_strp:
4385 return "DW_FORM_strp";
4386 case DW_FORM_udata:
4387 return "DW_FORM_udata";
4388 case DW_FORM_ref_addr:
4389 return "DW_FORM_ref_addr";
4390 case DW_FORM_ref1:
4391 return "DW_FORM_ref1";
4392 case DW_FORM_ref2:
4393 return "DW_FORM_ref2";
4394 case DW_FORM_ref4:
4395 return "DW_FORM_ref4";
4396 case DW_FORM_ref8:
4397 return "DW_FORM_ref8";
4398 case DW_FORM_ref_udata:
4399 return "DW_FORM_ref_udata";
4400 case DW_FORM_indirect:
4401 return "DW_FORM_indirect";
4402 default:
4403 return "DW_FORM_<unknown>";
4407 /* Convert a DWARF type code into its string name. */
4409 #if 0
4410 static const char *
4411 dwarf_type_encoding_name (enc)
4412 unsigned enc;
4414 switch (enc)
4416 case DW_ATE_address:
4417 return "DW_ATE_address";
4418 case DW_ATE_boolean:
4419 return "DW_ATE_boolean";
4420 case DW_ATE_complex_float:
4421 return "DW_ATE_complex_float";
4422 case DW_ATE_float:
4423 return "DW_ATE_float";
4424 case DW_ATE_signed:
4425 return "DW_ATE_signed";
4426 case DW_ATE_signed_char:
4427 return "DW_ATE_signed_char";
4428 case DW_ATE_unsigned:
4429 return "DW_ATE_unsigned";
4430 case DW_ATE_unsigned_char:
4431 return "DW_ATE_unsigned_char";
4432 default:
4433 return "DW_ATE_<unknown>";
4436 #endif
4438 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4439 instance of an inlined instance of a decl which is local to an inline
4440 function, so we have to trace all of the way back through the origin chain
4441 to find out what sort of node actually served as the original seed for the
4442 given block. */
4444 static tree
4445 decl_ultimate_origin (decl)
4446 tree decl;
4448 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4449 nodes in the function to point to themselves; ignore that if
4450 we're trying to output the abstract instance of this function. */
4451 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4452 return NULL_TREE;
4454 #ifdef ENABLE_CHECKING
4455 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4456 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4457 most distant ancestor, this should never happen. */
4458 abort ();
4459 #endif
4461 return DECL_ABSTRACT_ORIGIN (decl);
4464 /* Determine the "ultimate origin" of a block. The block may be an inlined
4465 instance of an inlined instance of a block which is local to an inline
4466 function, so we have to trace all of the way back through the origin chain
4467 to find out what sort of node actually served as the original seed for the
4468 given block. */
4470 static tree
4471 block_ultimate_origin (block)
4472 tree block;
4474 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4476 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4477 nodes in the function to point to themselves; ignore that if
4478 we're trying to output the abstract instance of this function. */
4479 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4480 return NULL_TREE;
4482 if (immediate_origin == NULL_TREE)
4483 return NULL_TREE;
4484 else
4486 tree ret_val;
4487 tree lookahead = immediate_origin;
4491 ret_val = lookahead;
4492 lookahead = (TREE_CODE (ret_val) == BLOCK
4493 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4495 while (lookahead != NULL && lookahead != ret_val);
4497 return ret_val;
4501 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4502 of a virtual function may refer to a base class, so we check the 'this'
4503 parameter. */
4505 static tree
4506 decl_class_context (decl)
4507 tree decl;
4509 tree context = NULL_TREE;
4511 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4512 context = DECL_CONTEXT (decl);
4513 else
4514 context = TYPE_MAIN_VARIANT
4515 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4517 if (context && !TYPE_P (context))
4518 context = NULL_TREE;
4520 return context;
4523 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4524 addition order, and correct that in reverse_all_dies. */
4526 static inline void
4527 add_dwarf_attr (die, attr)
4528 dw_die_ref die;
4529 dw_attr_ref attr;
4531 if (die != NULL && attr != NULL)
4533 attr->dw_attr_next = die->die_attr;
4534 die->die_attr = attr;
4538 static inline enum dw_val_class
4539 AT_class (a)
4540 dw_attr_ref a;
4542 return a->dw_attr_val.val_class;
4545 /* Add a flag value attribute to a DIE. */
4547 static inline void
4548 add_AT_flag (die, attr_kind, flag)
4549 dw_die_ref die;
4550 enum dwarf_attribute attr_kind;
4551 unsigned flag;
4553 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4555 attr->dw_attr_next = NULL;
4556 attr->dw_attr = attr_kind;
4557 attr->dw_attr_val.val_class = dw_val_class_flag;
4558 attr->dw_attr_val.v.val_flag = flag;
4559 add_dwarf_attr (die, attr);
4562 static inline unsigned
4563 AT_flag (a)
4564 dw_attr_ref a;
4566 if (a && AT_class (a) == dw_val_class_flag)
4567 return a->dw_attr_val.v.val_flag;
4569 abort ();
4572 /* Add a signed integer attribute value to a DIE. */
4574 static inline void
4575 add_AT_int (die, attr_kind, int_val)
4576 dw_die_ref die;
4577 enum dwarf_attribute attr_kind;
4578 long int int_val;
4580 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4582 attr->dw_attr_next = NULL;
4583 attr->dw_attr = attr_kind;
4584 attr->dw_attr_val.val_class = dw_val_class_const;
4585 attr->dw_attr_val.v.val_int = int_val;
4586 add_dwarf_attr (die, attr);
4589 static inline long int
4590 AT_int (a)
4591 dw_attr_ref a;
4593 if (a && AT_class (a) == dw_val_class_const)
4594 return a->dw_attr_val.v.val_int;
4596 abort ();
4599 /* Add an unsigned integer attribute value to a DIE. */
4601 static inline void
4602 add_AT_unsigned (die, attr_kind, unsigned_val)
4603 dw_die_ref die;
4604 enum dwarf_attribute attr_kind;
4605 unsigned long unsigned_val;
4607 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4609 attr->dw_attr_next = NULL;
4610 attr->dw_attr = attr_kind;
4611 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4612 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4613 add_dwarf_attr (die, attr);
4616 static inline unsigned long
4617 AT_unsigned (a)
4618 dw_attr_ref a;
4620 if (a && AT_class (a) == dw_val_class_unsigned_const)
4621 return a->dw_attr_val.v.val_unsigned;
4623 abort ();
4626 /* Add an unsigned double integer attribute value to a DIE. */
4628 static inline void
4629 add_AT_long_long (die, attr_kind, val_hi, val_low)
4630 dw_die_ref die;
4631 enum dwarf_attribute attr_kind;
4632 unsigned long val_hi;
4633 unsigned long val_low;
4635 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4637 attr->dw_attr_next = NULL;
4638 attr->dw_attr = attr_kind;
4639 attr->dw_attr_val.val_class = dw_val_class_long_long;
4640 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4641 attr->dw_attr_val.v.val_long_long.low = val_low;
4642 add_dwarf_attr (die, attr);
4645 /* Add a floating point attribute value to a DIE and return it. */
4647 static inline void
4648 add_AT_float (die, attr_kind, length, array)
4649 dw_die_ref die;
4650 enum dwarf_attribute attr_kind;
4651 unsigned length;
4652 long *array;
4654 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4656 attr->dw_attr_next = NULL;
4657 attr->dw_attr = attr_kind;
4658 attr->dw_attr_val.val_class = dw_val_class_float;
4659 attr->dw_attr_val.v.val_float.length = length;
4660 attr->dw_attr_val.v.val_float.array = array;
4661 add_dwarf_attr (die, attr);
4664 /* Hash and equality functions for debug_str_hash. */
4666 static hashval_t
4667 debug_str_do_hash (x)
4668 const void * x;
4670 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4673 static int
4674 debug_str_eq (x1, x2)
4675 const void * x1;
4676 const void * x2;
4678 return strcmp ((((const struct indirect_string_node *)x1)->str),
4679 (const char *)x2) == 0;
4682 /* Add a string attribute value to a DIE. */
4684 static inline void
4685 add_AT_string (die, attr_kind, str)
4686 dw_die_ref die;
4687 enum dwarf_attribute attr_kind;
4688 const char *str;
4690 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4691 struct indirect_string_node *node;
4692 PTR *slot;
4694 if (! debug_str_hash)
4695 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4696 debug_str_eq, NULL);
4698 slot = htab_find_slot_with_hash (debug_str_hash, str,
4699 htab_hash_string (str), INSERT);
4700 if (*slot == NULL)
4701 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4702 node = (struct indirect_string_node *) *slot;
4703 node->str = ggc_alloc_string (str, -1);
4704 node->refcount++;
4706 attr->dw_attr_next = NULL;
4707 attr->dw_attr = attr_kind;
4708 attr->dw_attr_val.val_class = dw_val_class_str;
4709 attr->dw_attr_val.v.val_str = node;
4710 add_dwarf_attr (die, attr);
4713 static inline const char *
4714 AT_string (a)
4715 dw_attr_ref a;
4717 if (a && AT_class (a) == dw_val_class_str)
4718 return a->dw_attr_val.v.val_str->str;
4720 abort ();
4723 /* Find out whether a string should be output inline in DIE
4724 or out-of-line in .debug_str section. */
4726 static int
4727 AT_string_form (a)
4728 dw_attr_ref a;
4730 if (a && AT_class (a) == dw_val_class_str)
4732 struct indirect_string_node *node;
4733 unsigned int len;
4734 char label[32];
4736 node = a->dw_attr_val.v.val_str;
4737 if (node->form)
4738 return node->form;
4740 len = strlen (node->str) + 1;
4742 /* If the string is shorter or equal to the size of the reference, it is
4743 always better to put it inline. */
4744 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4745 return node->form = DW_FORM_string;
4747 /* If we cannot expect the linker to merge strings in .debug_str
4748 section, only put it into .debug_str if it is worth even in this
4749 single module. */
4750 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4751 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4752 return node->form = DW_FORM_string;
4754 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4755 ++dw2_string_counter;
4756 node->label = xstrdup (label);
4758 return node->form = DW_FORM_strp;
4761 abort ();
4764 /* Add a DIE reference attribute value to a DIE. */
4766 static inline void
4767 add_AT_die_ref (die, attr_kind, targ_die)
4768 dw_die_ref die;
4769 enum dwarf_attribute attr_kind;
4770 dw_die_ref targ_die;
4772 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4774 attr->dw_attr_next = NULL;
4775 attr->dw_attr = attr_kind;
4776 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4777 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4778 attr->dw_attr_val.v.val_die_ref.external = 0;
4779 add_dwarf_attr (die, attr);
4782 static inline dw_die_ref
4783 AT_ref (a)
4784 dw_attr_ref a;
4786 if (a && AT_class (a) == dw_val_class_die_ref)
4787 return a->dw_attr_val.v.val_die_ref.die;
4789 abort ();
4792 static inline int
4793 AT_ref_external (a)
4794 dw_attr_ref a;
4796 if (a && AT_class (a) == dw_val_class_die_ref)
4797 return a->dw_attr_val.v.val_die_ref.external;
4799 return 0;
4802 static inline void
4803 set_AT_ref_external (a, i)
4804 dw_attr_ref a;
4805 int i;
4807 if (a && AT_class (a) == dw_val_class_die_ref)
4808 a->dw_attr_val.v.val_die_ref.external = i;
4809 else
4810 abort ();
4813 /* Add an FDE reference attribute value to a DIE. */
4815 static inline void
4816 add_AT_fde_ref (die, attr_kind, targ_fde)
4817 dw_die_ref die;
4818 enum dwarf_attribute attr_kind;
4819 unsigned targ_fde;
4821 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4823 attr->dw_attr_next = NULL;
4824 attr->dw_attr = attr_kind;
4825 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4826 attr->dw_attr_val.v.val_fde_index = targ_fde;
4827 add_dwarf_attr (die, attr);
4830 /* Add a location description attribute value to a DIE. */
4832 static inline void
4833 add_AT_loc (die, attr_kind, loc)
4834 dw_die_ref die;
4835 enum dwarf_attribute attr_kind;
4836 dw_loc_descr_ref loc;
4838 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4840 attr->dw_attr_next = NULL;
4841 attr->dw_attr = attr_kind;
4842 attr->dw_attr_val.val_class = dw_val_class_loc;
4843 attr->dw_attr_val.v.val_loc = loc;
4844 add_dwarf_attr (die, attr);
4847 static inline dw_loc_descr_ref
4848 AT_loc (a)
4849 dw_attr_ref a;
4851 if (a && AT_class (a) == dw_val_class_loc)
4852 return a->dw_attr_val.v.val_loc;
4854 abort ();
4857 static inline void
4858 add_AT_loc_list (die, attr_kind, loc_list)
4859 dw_die_ref die;
4860 enum dwarf_attribute attr_kind;
4861 dw_loc_list_ref loc_list;
4863 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4865 attr->dw_attr_next = NULL;
4866 attr->dw_attr = attr_kind;
4867 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4868 attr->dw_attr_val.v.val_loc_list = loc_list;
4869 add_dwarf_attr (die, attr);
4870 have_location_lists = 1;
4873 static inline dw_loc_list_ref
4874 AT_loc_list (a)
4875 dw_attr_ref a;
4877 if (a && AT_class (a) == dw_val_class_loc_list)
4878 return a->dw_attr_val.v.val_loc_list;
4880 abort ();
4883 /* Add an address constant attribute value to a DIE. */
4885 static inline void
4886 add_AT_addr (die, attr_kind, addr)
4887 dw_die_ref die;
4888 enum dwarf_attribute attr_kind;
4889 rtx addr;
4891 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4893 attr->dw_attr_next = NULL;
4894 attr->dw_attr = attr_kind;
4895 attr->dw_attr_val.val_class = dw_val_class_addr;
4896 attr->dw_attr_val.v.val_addr = addr;
4897 add_dwarf_attr (die, attr);
4900 static inline rtx
4901 AT_addr (a)
4902 dw_attr_ref a;
4904 if (a && AT_class (a) == dw_val_class_addr)
4905 return a->dw_attr_val.v.val_addr;
4907 abort ();
4910 /* Add a label identifier attribute value to a DIE. */
4912 static inline void
4913 add_AT_lbl_id (die, attr_kind, lbl_id)
4914 dw_die_ref die;
4915 enum dwarf_attribute attr_kind;
4916 const char *lbl_id;
4918 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4920 attr->dw_attr_next = NULL;
4921 attr->dw_attr = attr_kind;
4922 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4923 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4924 add_dwarf_attr (die, attr);
4927 /* Add a section offset attribute value to a DIE. */
4929 static inline void
4930 add_AT_lbl_offset (die, attr_kind, label)
4931 dw_die_ref die;
4932 enum dwarf_attribute attr_kind;
4933 const char *label;
4935 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4937 attr->dw_attr_next = NULL;
4938 attr->dw_attr = attr_kind;
4939 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4940 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4941 add_dwarf_attr (die, attr);
4944 /* Add an offset attribute value to a DIE. */
4946 static inline void
4947 add_AT_offset (die, attr_kind, offset)
4948 dw_die_ref die;
4949 enum dwarf_attribute attr_kind;
4950 unsigned long offset;
4952 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4954 attr->dw_attr_next = NULL;
4955 attr->dw_attr = attr_kind;
4956 attr->dw_attr_val.val_class = dw_val_class_offset;
4957 attr->dw_attr_val.v.val_offset = offset;
4958 add_dwarf_attr (die, attr);
4961 /* Add an range_list attribute value to a DIE. */
4963 static void
4964 add_AT_range_list (die, attr_kind, offset)
4965 dw_die_ref die;
4966 enum dwarf_attribute attr_kind;
4967 unsigned long offset;
4969 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4971 attr->dw_attr_next = NULL;
4972 attr->dw_attr = attr_kind;
4973 attr->dw_attr_val.val_class = dw_val_class_range_list;
4974 attr->dw_attr_val.v.val_offset = offset;
4975 add_dwarf_attr (die, attr);
4978 static inline const char *
4979 AT_lbl (a)
4980 dw_attr_ref a;
4982 if (a && (AT_class (a) == dw_val_class_lbl_id
4983 || AT_class (a) == dw_val_class_lbl_offset))
4984 return a->dw_attr_val.v.val_lbl_id;
4986 abort ();
4989 /* Get the attribute of type attr_kind. */
4991 static inline dw_attr_ref
4992 get_AT (die, attr_kind)
4993 dw_die_ref die;
4994 enum dwarf_attribute attr_kind;
4996 dw_attr_ref a;
4997 dw_die_ref spec = NULL;
4999 if (die != NULL)
5001 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5002 if (a->dw_attr == attr_kind)
5003 return a;
5004 else if (a->dw_attr == DW_AT_specification
5005 || a->dw_attr == DW_AT_abstract_origin)
5006 spec = AT_ref (a);
5008 if (spec)
5009 return get_AT (spec, attr_kind);
5012 return NULL;
5015 /* Return the "low pc" attribute value, typically associated with a subprogram
5016 DIE. Return null if the "low pc" attribute is either not present, or if it
5017 cannot be represented as an assembler label identifier. */
5019 static inline const char *
5020 get_AT_low_pc (die)
5021 dw_die_ref die;
5023 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5025 return a ? AT_lbl (a) : NULL;
5028 /* Return the "high pc" attribute value, typically associated with a subprogram
5029 DIE. Return null if the "high pc" attribute is either not present, or if it
5030 cannot be represented as an assembler label identifier. */
5032 static inline const char *
5033 get_AT_hi_pc (die)
5034 dw_die_ref die;
5036 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5038 return a ? AT_lbl (a) : NULL;
5041 /* Return the value of the string attribute designated by ATTR_KIND, or
5042 NULL if it is not present. */
5044 static inline const char *
5045 get_AT_string (die, attr_kind)
5046 dw_die_ref die;
5047 enum dwarf_attribute attr_kind;
5049 dw_attr_ref a = get_AT (die, attr_kind);
5051 return a ? AT_string (a) : NULL;
5054 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5055 if it is not present. */
5057 static inline int
5058 get_AT_flag (die, attr_kind)
5059 dw_die_ref die;
5060 enum dwarf_attribute attr_kind;
5062 dw_attr_ref a = get_AT (die, attr_kind);
5064 return a ? AT_flag (a) : 0;
5067 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5068 if it is not present. */
5070 static inline unsigned
5071 get_AT_unsigned (die, attr_kind)
5072 dw_die_ref die;
5073 enum dwarf_attribute attr_kind;
5075 dw_attr_ref a = get_AT (die, attr_kind);
5077 return a ? AT_unsigned (a) : 0;
5080 static inline dw_die_ref
5081 get_AT_ref (die, attr_kind)
5082 dw_die_ref die;
5083 enum dwarf_attribute attr_kind;
5085 dw_attr_ref a = get_AT (die, attr_kind);
5087 return a ? AT_ref (a) : NULL;
5090 /* Return TRUE if the language is C or C++. */
5092 static inline bool
5093 is_c_family ()
5095 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5097 return (lang == DW_LANG_C || lang == DW_LANG_C89
5098 || lang == DW_LANG_C_plus_plus);
5101 /* Return TRUE if the language is C++. */
5103 static inline bool
5104 is_cxx ()
5106 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5107 == DW_LANG_C_plus_plus);
5110 /* Return TRUE if the language is Fortran. */
5112 static inline bool
5113 is_fortran ()
5115 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5117 return lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90;
5120 /* Return TRUE if the language is Java. */
5122 static inline bool
5123 is_java ()
5125 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5127 return lang == DW_LANG_Java;
5130 /* Return TRUE if the language is Ada. */
5132 static inline bool
5133 is_ada ()
5135 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5137 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5140 /* Free up the memory used by A. */
5142 static inline void free_AT PARAMS ((dw_attr_ref));
5143 static inline void
5144 free_AT (a)
5145 dw_attr_ref a;
5147 if (AT_class (a) == dw_val_class_str)
5148 if (a->dw_attr_val.v.val_str->refcount)
5149 a->dw_attr_val.v.val_str->refcount--;
5152 /* Remove the specified attribute if present. */
5154 static void
5155 remove_AT (die, attr_kind)
5156 dw_die_ref die;
5157 enum dwarf_attribute attr_kind;
5159 dw_attr_ref *p;
5160 dw_attr_ref removed = NULL;
5162 if (die != NULL)
5164 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5165 if ((*p)->dw_attr == attr_kind)
5167 removed = *p;
5168 *p = (*p)->dw_attr_next;
5169 break;
5172 if (removed != 0)
5173 free_AT (removed);
5177 /* Free up the memory used by DIE. */
5179 static inline void
5180 free_die (die)
5181 dw_die_ref die;
5183 remove_children (die);
5186 /* Discard the children of this DIE. */
5188 static void
5189 remove_children (die)
5190 dw_die_ref die;
5192 dw_die_ref child_die = die->die_child;
5194 die->die_child = NULL;
5196 while (child_die != NULL)
5198 dw_die_ref tmp_die = child_die;
5199 dw_attr_ref a;
5201 child_die = child_die->die_sib;
5203 for (a = tmp_die->die_attr; a != NULL;)
5205 dw_attr_ref tmp_a = a;
5207 a = a->dw_attr_next;
5208 free_AT (tmp_a);
5211 free_die (tmp_die);
5215 /* Add a child DIE below its parent. We build the lists up in reverse
5216 addition order, and correct that in reverse_all_dies. */
5218 static inline void
5219 add_child_die (die, child_die)
5220 dw_die_ref die;
5221 dw_die_ref child_die;
5223 if (die != NULL && child_die != NULL)
5225 if (die == child_die)
5226 abort ();
5228 child_die->die_parent = die;
5229 child_die->die_sib = die->die_child;
5230 die->die_child = child_die;
5234 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5235 is the specification, to the front of PARENT's list of children. */
5237 static void
5238 splice_child_die (parent, child)
5239 dw_die_ref parent, child;
5241 dw_die_ref *p;
5243 /* We want the declaration DIE from inside the class, not the
5244 specification DIE at toplevel. */
5245 if (child->die_parent != parent)
5247 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5249 if (tmp)
5250 child = tmp;
5253 if (child->die_parent != parent
5254 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5255 abort ();
5257 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5258 if (*p == child)
5260 *p = child->die_sib;
5261 break;
5264 child->die_parent = parent;
5265 child->die_sib = parent->die_child;
5266 parent->die_child = child;
5269 /* Return a pointer to a newly created DIE node. */
5271 static inline dw_die_ref
5272 new_die (tag_value, parent_die, t)
5273 enum dwarf_tag tag_value;
5274 dw_die_ref parent_die;
5275 tree t;
5277 dw_die_ref die = (dw_die_ref) ggc_alloc_cleared (sizeof (die_node));
5279 die->die_tag = tag_value;
5281 if (parent_die != NULL)
5282 add_child_die (parent_die, die);
5283 else
5285 limbo_die_node *limbo_node;
5287 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5288 limbo_node->die = die;
5289 limbo_node->created_for = t;
5290 limbo_node->next = limbo_die_list;
5291 limbo_die_list = limbo_node;
5294 return die;
5297 /* Return the DIE associated with the given type specifier. */
5299 static inline dw_die_ref
5300 lookup_type_die (type)
5301 tree type;
5303 return TYPE_SYMTAB_DIE (type);
5306 /* Equate a DIE to a given type specifier. */
5308 static inline void
5309 equate_type_number_to_die (type, type_die)
5310 tree type;
5311 dw_die_ref type_die;
5313 TYPE_SYMTAB_DIE (type) = type_die;
5316 /* Return the DIE associated with a given declaration. */
5318 static inline dw_die_ref
5319 lookup_decl_die (decl)
5320 tree decl;
5322 unsigned decl_id = DECL_UID (decl);
5324 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5327 /* Equate a DIE to a particular declaration. */
5329 static void
5330 equate_decl_number_to_die (decl, decl_die)
5331 tree decl;
5332 dw_die_ref decl_die;
5334 unsigned int decl_id = DECL_UID (decl);
5335 unsigned int num_allocated;
5337 if (decl_id >= decl_die_table_allocated)
5339 num_allocated
5340 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5341 / DECL_DIE_TABLE_INCREMENT)
5342 * DECL_DIE_TABLE_INCREMENT;
5344 decl_die_table = ggc_realloc (decl_die_table,
5345 sizeof (dw_die_ref) * num_allocated);
5347 memset ((char *) &decl_die_table[decl_die_table_allocated], 0,
5348 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5349 decl_die_table_allocated = num_allocated;
5352 if (decl_id >= decl_die_table_in_use)
5353 decl_die_table_in_use = (decl_id + 1);
5355 decl_die_table[decl_id] = decl_die;
5358 /* Keep track of the number of spaces used to indent the
5359 output of the debugging routines that print the structure of
5360 the DIE internal representation. */
5361 static int print_indent;
5363 /* Indent the line the number of spaces given by print_indent. */
5365 static inline void
5366 print_spaces (outfile)
5367 FILE *outfile;
5369 fprintf (outfile, "%*s", print_indent, "");
5372 /* Print the information associated with a given DIE, and its children.
5373 This routine is a debugging aid only. */
5375 static void
5376 print_die (die, outfile)
5377 dw_die_ref die;
5378 FILE *outfile;
5380 dw_attr_ref a;
5381 dw_die_ref c;
5383 print_spaces (outfile);
5384 fprintf (outfile, "DIE %4lu: %s\n",
5385 die->die_offset, dwarf_tag_name (die->die_tag));
5386 print_spaces (outfile);
5387 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5388 fprintf (outfile, " offset: %lu\n", die->die_offset);
5390 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5392 print_spaces (outfile);
5393 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5395 switch (AT_class (a))
5397 case dw_val_class_addr:
5398 fprintf (outfile, "address");
5399 break;
5400 case dw_val_class_offset:
5401 fprintf (outfile, "offset");
5402 break;
5403 case dw_val_class_loc:
5404 fprintf (outfile, "location descriptor");
5405 break;
5406 case dw_val_class_loc_list:
5407 fprintf (outfile, "location list -> label:%s",
5408 AT_loc_list (a)->ll_symbol);
5409 break;
5410 case dw_val_class_range_list:
5411 fprintf (outfile, "range list");
5412 break;
5413 case dw_val_class_const:
5414 fprintf (outfile, "%ld", AT_int (a));
5415 break;
5416 case dw_val_class_unsigned_const:
5417 fprintf (outfile, "%lu", AT_unsigned (a));
5418 break;
5419 case dw_val_class_long_long:
5420 fprintf (outfile, "constant (%lu,%lu)",
5421 a->dw_attr_val.v.val_long_long.hi,
5422 a->dw_attr_val.v.val_long_long.low);
5423 break;
5424 case dw_val_class_float:
5425 fprintf (outfile, "floating-point constant");
5426 break;
5427 case dw_val_class_flag:
5428 fprintf (outfile, "%u", AT_flag (a));
5429 break;
5430 case dw_val_class_die_ref:
5431 if (AT_ref (a) != NULL)
5433 if (AT_ref (a)->die_symbol)
5434 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5435 else
5436 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5438 else
5439 fprintf (outfile, "die -> <null>");
5440 break;
5441 case dw_val_class_lbl_id:
5442 case dw_val_class_lbl_offset:
5443 fprintf (outfile, "label: %s", AT_lbl (a));
5444 break;
5445 case dw_val_class_str:
5446 if (AT_string (a) != NULL)
5447 fprintf (outfile, "\"%s\"", AT_string (a));
5448 else
5449 fprintf (outfile, "<null>");
5450 break;
5451 default:
5452 break;
5455 fprintf (outfile, "\n");
5458 if (die->die_child != NULL)
5460 print_indent += 4;
5461 for (c = die->die_child; c != NULL; c = c->die_sib)
5462 print_die (c, outfile);
5464 print_indent -= 4;
5466 if (print_indent == 0)
5467 fprintf (outfile, "\n");
5470 /* Print the contents of the source code line number correspondence table.
5471 This routine is a debugging aid only. */
5473 static void
5474 print_dwarf_line_table (outfile)
5475 FILE *outfile;
5477 unsigned i;
5478 dw_line_info_ref line_info;
5480 fprintf (outfile, "\n\nDWARF source line information\n");
5481 for (i = 1; i < line_info_table_in_use; i++)
5483 line_info = &line_info_table[i];
5484 fprintf (outfile, "%5d: ", i);
5485 fprintf (outfile, "%-20s",
5486 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5487 fprintf (outfile, "%6ld", line_info->dw_line_num);
5488 fprintf (outfile, "\n");
5491 fprintf (outfile, "\n\n");
5494 /* Print the information collected for a given DIE. */
5496 void
5497 debug_dwarf_die (die)
5498 dw_die_ref die;
5500 print_die (die, stderr);
5503 /* Print all DWARF information collected for the compilation unit.
5504 This routine is a debugging aid only. */
5506 void
5507 debug_dwarf ()
5509 print_indent = 0;
5510 print_die (comp_unit_die, stderr);
5511 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5512 print_dwarf_line_table (stderr);
5515 /* We build up the lists of children and attributes by pushing new ones
5516 onto the beginning of the list. Reverse the lists for DIE so that
5517 they are in order of addition. */
5519 static void
5520 reverse_die_lists (die)
5521 dw_die_ref die;
5523 dw_die_ref c, cp, cn;
5524 dw_attr_ref a, ap, an;
5526 for (a = die->die_attr, ap = 0; a; a = an)
5528 an = a->dw_attr_next;
5529 a->dw_attr_next = ap;
5530 ap = a;
5533 die->die_attr = ap;
5535 for (c = die->die_child, cp = 0; c; c = cn)
5537 cn = c->die_sib;
5538 c->die_sib = cp;
5539 cp = c;
5542 die->die_child = cp;
5545 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5546 reverse all dies in add_sibling_attributes, which runs through all the dies,
5547 it would reverse all the dies. Now, however, since we don't call
5548 reverse_die_lists in add_sibling_attributes, we need a routine to
5549 recursively reverse all the dies. This is that routine. */
5551 static void
5552 reverse_all_dies (die)
5553 dw_die_ref die;
5555 dw_die_ref c;
5557 reverse_die_lists (die);
5559 for (c = die->die_child; c; c = c->die_sib)
5560 reverse_all_dies (c);
5563 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5564 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5565 DIE that marks the start of the DIEs for this include file. */
5567 static dw_die_ref
5568 push_new_compile_unit (old_unit, bincl_die)
5569 dw_die_ref old_unit, bincl_die;
5571 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5572 dw_die_ref new_unit = gen_compile_unit_die (filename);
5574 new_unit->die_sib = old_unit;
5575 return new_unit;
5578 /* Close an include-file CU and reopen the enclosing one. */
5580 static dw_die_ref
5581 pop_compile_unit (old_unit)
5582 dw_die_ref old_unit;
5584 dw_die_ref new_unit = old_unit->die_sib;
5586 old_unit->die_sib = NULL;
5587 return new_unit;
5590 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5591 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5593 /* Calculate the checksum of a location expression. */
5595 static inline void
5596 loc_checksum (loc, ctx)
5597 dw_loc_descr_ref loc;
5598 struct md5_ctx *ctx;
5600 CHECKSUM (loc->dw_loc_opc);
5601 CHECKSUM (loc->dw_loc_oprnd1);
5602 CHECKSUM (loc->dw_loc_oprnd2);
5605 /* Calculate the checksum of an attribute. */
5607 static void
5608 attr_checksum (at, ctx, mark)
5609 dw_attr_ref at;
5610 struct md5_ctx *ctx;
5611 int *mark;
5613 dw_loc_descr_ref loc;
5614 rtx r;
5616 CHECKSUM (at->dw_attr);
5618 /* We don't care about differences in file numbering. */
5619 if (at->dw_attr == DW_AT_decl_file
5620 /* Or that this was compiled with a different compiler snapshot; if
5621 the output is the same, that's what matters. */
5622 || at->dw_attr == DW_AT_producer)
5623 return;
5625 switch (AT_class (at))
5627 case dw_val_class_const:
5628 CHECKSUM (at->dw_attr_val.v.val_int);
5629 break;
5630 case dw_val_class_unsigned_const:
5631 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5632 break;
5633 case dw_val_class_long_long:
5634 CHECKSUM (at->dw_attr_val.v.val_long_long);
5635 break;
5636 case dw_val_class_float:
5637 CHECKSUM (at->dw_attr_val.v.val_float);
5638 break;
5639 case dw_val_class_flag:
5640 CHECKSUM (at->dw_attr_val.v.val_flag);
5641 break;
5642 case dw_val_class_str:
5643 CHECKSUM_STRING (AT_string (at));
5644 break;
5646 case dw_val_class_addr:
5647 r = AT_addr (at);
5648 switch (GET_CODE (r))
5650 case SYMBOL_REF:
5651 CHECKSUM_STRING (XSTR (r, 0));
5652 break;
5654 default:
5655 abort ();
5657 break;
5659 case dw_val_class_offset:
5660 CHECKSUM (at->dw_attr_val.v.val_offset);
5661 break;
5663 case dw_val_class_loc:
5664 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5665 loc_checksum (loc, ctx);
5666 break;
5668 case dw_val_class_die_ref:
5669 die_checksum (AT_ref (at), ctx, mark);
5670 break;
5672 case dw_val_class_fde_ref:
5673 case dw_val_class_lbl_id:
5674 case dw_val_class_lbl_offset:
5675 break;
5677 default:
5678 break;
5682 /* Calculate the checksum of a DIE. */
5684 static void
5685 die_checksum (die, ctx, mark)
5686 dw_die_ref die;
5687 struct md5_ctx *ctx;
5688 int *mark;
5690 dw_die_ref c;
5691 dw_attr_ref a;
5693 /* To avoid infinite recursion. */
5694 if (die->die_mark)
5696 CHECKSUM (die->die_mark);
5697 return;
5699 die->die_mark = ++(*mark);
5701 CHECKSUM (die->die_tag);
5703 for (a = die->die_attr; a; a = a->dw_attr_next)
5704 attr_checksum (a, ctx, mark);
5706 for (c = die->die_child; c; c = c->die_sib)
5707 die_checksum (c, ctx, mark);
5710 #undef CHECKSUM
5711 #undef CHECKSUM_STRING
5713 /* Do the location expressions look same? */
5714 static inline int
5715 same_loc_p (loc1, loc2, mark)
5716 dw_loc_descr_ref loc1;
5717 dw_loc_descr_ref loc2;
5718 int *mark;
5720 return loc1->dw_loc_opc == loc2->dw_loc_opc
5721 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5722 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5725 /* Do the values look the same? */
5726 static int
5727 same_dw_val_p (v1, v2, mark)
5728 dw_val_node *v1;
5729 dw_val_node *v2;
5730 int *mark;
5732 dw_loc_descr_ref loc1, loc2;
5733 rtx r1, r2;
5734 unsigned i;
5736 if (v1->val_class != v2->val_class)
5737 return 0;
5739 switch (v1->val_class)
5741 case dw_val_class_const:
5742 return v1->v.val_int == v2->v.val_int;
5743 case dw_val_class_unsigned_const:
5744 return v1->v.val_unsigned == v2->v.val_unsigned;
5745 case dw_val_class_long_long:
5746 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5747 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5748 case dw_val_class_float:
5749 if (v1->v.val_float.length != v2->v.val_float.length)
5750 return 0;
5751 for (i = 0; i < v1->v.val_float.length; i++)
5752 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5753 return 0;
5754 return 1;
5755 case dw_val_class_flag:
5756 return v1->v.val_flag == v2->v.val_flag;
5757 case dw_val_class_str:
5758 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5760 case dw_val_class_addr:
5761 r1 = v1->v.val_addr;
5762 r2 = v2->v.val_addr;
5763 if (GET_CODE (r1) != GET_CODE (r2))
5764 return 0;
5765 switch (GET_CODE (r1))
5767 case SYMBOL_REF:
5768 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5770 default:
5771 abort ();
5774 case dw_val_class_offset:
5775 return v1->v.val_offset == v2->v.val_offset;
5777 case dw_val_class_loc:
5778 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5779 loc1 && loc2;
5780 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5781 if (!same_loc_p (loc1, loc2, mark))
5782 return 0;
5783 return !loc1 && !loc2;
5785 case dw_val_class_die_ref:
5786 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5788 case dw_val_class_fde_ref:
5789 case dw_val_class_lbl_id:
5790 case dw_val_class_lbl_offset:
5791 return 1;
5793 default:
5794 return 1;
5798 /* Do the attributes look the same? */
5800 static int
5801 same_attr_p (at1, at2, mark)
5802 dw_attr_ref at1;
5803 dw_attr_ref at2;
5804 int *mark;
5806 if (at1->dw_attr != at2->dw_attr)
5807 return 0;
5809 /* We don't care about differences in file numbering. */
5810 if (at1->dw_attr == DW_AT_decl_file
5811 /* Or that this was compiled with a different compiler snapshot; if
5812 the output is the same, that's what matters. */
5813 || at1->dw_attr == DW_AT_producer)
5814 return 1;
5816 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5819 /* Do the dies look the same? */
5821 static int
5822 same_die_p (die1, die2, mark)
5823 dw_die_ref die1;
5824 dw_die_ref die2;
5825 int *mark;
5827 dw_die_ref c1, c2;
5828 dw_attr_ref a1, a2;
5830 /* To avoid infinite recursion. */
5831 if (die1->die_mark)
5832 return die1->die_mark == die2->die_mark;
5833 die1->die_mark = die2->die_mark = ++(*mark);
5835 if (die1->die_tag != die2->die_tag)
5836 return 0;
5838 for (a1 = die1->die_attr, a2 = die2->die_attr;
5839 a1 && a2;
5840 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5841 if (!same_attr_p (a1, a2, mark))
5842 return 0;
5843 if (a1 || a2)
5844 return 0;
5846 for (c1 = die1->die_child, c2 = die2->die_child;
5847 c1 && c2;
5848 c1 = c1->die_sib, c2 = c2->die_sib)
5849 if (!same_die_p (c1, c2, mark))
5850 return 0;
5851 if (c1 || c2)
5852 return 0;
5854 return 1;
5857 /* Do the dies look the same? Wrapper around same_die_p. */
5859 static int
5860 same_die_p_wrap (die1, die2)
5861 dw_die_ref die1;
5862 dw_die_ref die2;
5864 int mark = 0;
5865 int ret = same_die_p (die1, die2, &mark);
5867 unmark_all_dies (die1);
5868 unmark_all_dies (die2);
5870 return ret;
5873 /* The prefix to attach to symbols on DIEs in the current comdat debug
5874 info section. */
5875 static char *comdat_symbol_id;
5877 /* The index of the current symbol within the current comdat CU. */
5878 static unsigned int comdat_symbol_number;
5880 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5881 children, and set comdat_symbol_id accordingly. */
5883 static void
5884 compute_section_prefix (unit_die)
5885 dw_die_ref unit_die;
5887 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5888 const char *base = die_name ? lbasename (die_name) : "anonymous";
5889 char *name = (char *) alloca (strlen (base) + 64);
5890 char *p;
5891 int i, mark;
5892 unsigned char checksum[16];
5893 struct md5_ctx ctx;
5895 /* Compute the checksum of the DIE, then append part of it as hex digits to
5896 the name filename of the unit. */
5898 md5_init_ctx (&ctx);
5899 mark = 0;
5900 die_checksum (unit_die, &ctx, &mark);
5901 unmark_all_dies (unit_die);
5902 md5_finish_ctx (&ctx, checksum);
5904 sprintf (name, "%s.", base);
5905 clean_symbol_name (name);
5907 p = name + strlen (name);
5908 for (i = 0; i < 4; i++)
5910 sprintf (p, "%.2x", checksum[i]);
5911 p += 2;
5914 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5915 comdat_symbol_number = 0;
5918 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5920 static int
5921 is_type_die (die)
5922 dw_die_ref die;
5924 switch (die->die_tag)
5926 case DW_TAG_array_type:
5927 case DW_TAG_class_type:
5928 case DW_TAG_enumeration_type:
5929 case DW_TAG_pointer_type:
5930 case DW_TAG_reference_type:
5931 case DW_TAG_string_type:
5932 case DW_TAG_structure_type:
5933 case DW_TAG_subroutine_type:
5934 case DW_TAG_union_type:
5935 case DW_TAG_ptr_to_member_type:
5936 case DW_TAG_set_type:
5937 case DW_TAG_subrange_type:
5938 case DW_TAG_base_type:
5939 case DW_TAG_const_type:
5940 case DW_TAG_file_type:
5941 case DW_TAG_packed_type:
5942 case DW_TAG_volatile_type:
5943 case DW_TAG_typedef:
5944 return 1;
5945 default:
5946 return 0;
5950 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5951 Basically, we want to choose the bits that are likely to be shared between
5952 compilations (types) and leave out the bits that are specific to individual
5953 compilations (functions). */
5955 static int
5956 is_comdat_die (c)
5957 dw_die_ref c;
5959 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5960 we do for stabs. The advantage is a greater likelihood of sharing between
5961 objects that don't include headers in the same order (and therefore would
5962 put the base types in a different comdat). jason 8/28/00 */
5964 if (c->die_tag == DW_TAG_base_type)
5965 return 0;
5967 if (c->die_tag == DW_TAG_pointer_type
5968 || c->die_tag == DW_TAG_reference_type
5969 || c->die_tag == DW_TAG_const_type
5970 || c->die_tag == DW_TAG_volatile_type)
5972 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5974 return t ? is_comdat_die (t) : 0;
5977 return is_type_die (c);
5980 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5981 compilation unit. */
5983 static int
5984 is_symbol_die (c)
5985 dw_die_ref c;
5987 return (is_type_die (c)
5988 || (get_AT (c, DW_AT_declaration)
5989 && !get_AT (c, DW_AT_specification)));
5992 static char *
5993 gen_internal_sym (prefix)
5994 const char *prefix;
5996 char buf[256];
5998 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5999 return xstrdup (buf);
6002 /* Assign symbols to all worthy DIEs under DIE. */
6004 static void
6005 assign_symbol_names (die)
6006 dw_die_ref die;
6008 dw_die_ref c;
6010 if (is_symbol_die (die))
6012 if (comdat_symbol_id)
6014 char *p = alloca (strlen (comdat_symbol_id) + 64);
6016 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6017 comdat_symbol_id, comdat_symbol_number++);
6018 die->die_symbol = xstrdup (p);
6020 else
6021 die->die_symbol = gen_internal_sym ("LDIE");
6024 for (c = die->die_child; c != NULL; c = c->die_sib)
6025 assign_symbol_names (c);
6028 struct cu_hash_table_entry
6030 dw_die_ref cu;
6031 unsigned min_comdat_num, max_comdat_num;
6032 struct cu_hash_table_entry *next;
6035 /* Routines to manipulate hash table of CUs. */
6036 static hashval_t
6037 htab_cu_hash (of)
6038 const void *of;
6040 const struct cu_hash_table_entry *entry = of;
6042 return htab_hash_string (entry->cu->die_symbol);
6045 static int
6046 htab_cu_eq (of1, of2)
6047 const void *of1;
6048 const void *of2;
6050 const struct cu_hash_table_entry *entry1 = of1;
6051 const struct die_struct *entry2 = of2;
6053 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6056 static void
6057 htab_cu_del (what)
6058 void *what;
6060 struct cu_hash_table_entry *next, *entry = what;
6062 while (entry)
6064 next = entry->next;
6065 free (entry);
6066 entry = next;
6070 /* Check whether we have already seen this CU and set up SYM_NUM
6071 accordingly. */
6072 static int
6073 check_duplicate_cu (cu, htable, sym_num)
6074 dw_die_ref cu;
6075 htab_t htable;
6076 unsigned *sym_num;
6078 struct cu_hash_table_entry dummy;
6079 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6081 dummy.max_comdat_num = 0;
6083 slot = (struct cu_hash_table_entry **)
6084 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6085 INSERT);
6086 entry = *slot;
6088 for (; entry; last = entry, entry = entry->next)
6090 if (same_die_p_wrap (cu, entry->cu))
6091 break;
6094 if (entry)
6096 *sym_num = entry->min_comdat_num;
6097 return 1;
6100 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6101 entry->cu = cu;
6102 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6103 entry->next = *slot;
6104 *slot = entry;
6106 return 0;
6109 /* Record SYM_NUM to record of CU in HTABLE. */
6110 static void
6111 record_comdat_symbol_number (cu, htable, sym_num)
6112 dw_die_ref cu;
6113 htab_t htable;
6114 unsigned sym_num;
6116 struct cu_hash_table_entry **slot, *entry;
6118 slot = (struct cu_hash_table_entry **)
6119 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6120 NO_INSERT);
6121 entry = *slot;
6123 entry->max_comdat_num = sym_num;
6126 /* Traverse the DIE (which is always comp_unit_die), and set up
6127 additional compilation units for each of the include files we see
6128 bracketed by BINCL/EINCL. */
6130 static void
6131 break_out_includes (die)
6132 dw_die_ref die;
6134 dw_die_ref *ptr;
6135 dw_die_ref unit = NULL;
6136 limbo_die_node *node, **pnode;
6137 htab_t cu_hash_table;
6139 for (ptr = &(die->die_child); *ptr;)
6141 dw_die_ref c = *ptr;
6143 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6144 || (unit && is_comdat_die (c)))
6146 /* This DIE is for a secondary CU; remove it from the main one. */
6147 *ptr = c->die_sib;
6149 if (c->die_tag == DW_TAG_GNU_BINCL)
6151 unit = push_new_compile_unit (unit, c);
6152 free_die (c);
6154 else if (c->die_tag == DW_TAG_GNU_EINCL)
6156 unit = pop_compile_unit (unit);
6157 free_die (c);
6159 else
6160 add_child_die (unit, c);
6162 else
6164 /* Leave this DIE in the main CU. */
6165 ptr = &(c->die_sib);
6166 continue;
6170 #if 0
6171 /* We can only use this in debugging, since the frontend doesn't check
6172 to make sure that we leave every include file we enter. */
6173 if (unit != NULL)
6174 abort ();
6175 #endif
6177 assign_symbol_names (die);
6178 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6179 for (node = limbo_die_list, pnode = &limbo_die_list;
6180 node;
6181 node = node->next)
6183 int is_dupl;
6185 compute_section_prefix (node->die);
6186 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6187 &comdat_symbol_number);
6188 assign_symbol_names (node->die);
6189 if (is_dupl)
6190 *pnode = node->next;
6191 else
6193 pnode = &node->next;
6194 record_comdat_symbol_number (node->die, cu_hash_table,
6195 comdat_symbol_number);
6198 htab_delete (cu_hash_table);
6201 /* Traverse the DIE and add a sibling attribute if it may have the
6202 effect of speeding up access to siblings. To save some space,
6203 avoid generating sibling attributes for DIE's without children. */
6205 static void
6206 add_sibling_attributes (die)
6207 dw_die_ref die;
6209 dw_die_ref c;
6211 if (die->die_tag != DW_TAG_compile_unit
6212 && die->die_sib && die->die_child != NULL)
6213 /* Add the sibling link to the front of the attribute list. */
6214 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6216 for (c = die->die_child; c != NULL; c = c->die_sib)
6217 add_sibling_attributes (c);
6220 /* Output all location lists for the DIE and its children. */
6222 static void
6223 output_location_lists (die)
6224 dw_die_ref die;
6226 dw_die_ref c;
6227 dw_attr_ref d_attr;
6229 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6230 if (AT_class (d_attr) == dw_val_class_loc_list)
6231 output_loc_list (AT_loc_list (d_attr));
6233 for (c = die->die_child; c != NULL; c = c->die_sib)
6234 output_location_lists (c);
6238 /* The format of each DIE (and its attribute value pairs) is encoded in an
6239 abbreviation table. This routine builds the abbreviation table and assigns
6240 a unique abbreviation id for each abbreviation entry. The children of each
6241 die are visited recursively. */
6243 static void
6244 build_abbrev_table (die)
6245 dw_die_ref die;
6247 unsigned long abbrev_id;
6248 unsigned int n_alloc;
6249 dw_die_ref c;
6250 dw_attr_ref d_attr, a_attr;
6252 /* Scan the DIE references, and mark as external any that refer to
6253 DIEs from other CUs (i.e. those which are not marked). */
6254 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6255 if (AT_class (d_attr) == dw_val_class_die_ref
6256 && AT_ref (d_attr)->die_mark == 0)
6258 if (AT_ref (d_attr)->die_symbol == 0)
6259 abort ();
6261 set_AT_ref_external (d_attr, 1);
6264 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6266 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6268 if (abbrev->die_tag == die->die_tag)
6270 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6272 a_attr = abbrev->die_attr;
6273 d_attr = die->die_attr;
6275 while (a_attr != NULL && d_attr != NULL)
6277 if ((a_attr->dw_attr != d_attr->dw_attr)
6278 || (value_format (a_attr) != value_format (d_attr)))
6279 break;
6281 a_attr = a_attr->dw_attr_next;
6282 d_attr = d_attr->dw_attr_next;
6285 if (a_attr == NULL && d_attr == NULL)
6286 break;
6291 if (abbrev_id >= abbrev_die_table_in_use)
6293 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6295 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6296 abbrev_die_table = ggc_realloc (abbrev_die_table,
6297 sizeof (dw_die_ref) * n_alloc);
6299 memset ((char *) &abbrev_die_table[abbrev_die_table_allocated], 0,
6300 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6301 abbrev_die_table_allocated = n_alloc;
6304 ++abbrev_die_table_in_use;
6305 abbrev_die_table[abbrev_id] = die;
6308 die->die_abbrev = abbrev_id;
6309 for (c = die->die_child; c != NULL; c = c->die_sib)
6310 build_abbrev_table (c);
6313 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6315 static int
6316 constant_size (value)
6317 long unsigned value;
6319 int log;
6321 if (value == 0)
6322 log = 0;
6323 else
6324 log = floor_log2 (value);
6326 log = log / 8;
6327 log = 1 << (floor_log2 (log) + 1);
6329 return log;
6332 /* Return the size of a DIE as it is represented in the
6333 .debug_info section. */
6335 static unsigned long
6336 size_of_die (die)
6337 dw_die_ref die;
6339 unsigned long size = 0;
6340 dw_attr_ref a;
6342 size += size_of_uleb128 (die->die_abbrev);
6343 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6345 switch (AT_class (a))
6347 case dw_val_class_addr:
6348 size += DWARF2_ADDR_SIZE;
6349 break;
6350 case dw_val_class_offset:
6351 size += DWARF_OFFSET_SIZE;
6352 break;
6353 case dw_val_class_loc:
6355 unsigned long lsize = size_of_locs (AT_loc (a));
6357 /* Block length. */
6358 size += constant_size (lsize);
6359 size += lsize;
6361 break;
6362 case dw_val_class_loc_list:
6363 size += DWARF_OFFSET_SIZE;
6364 break;
6365 case dw_val_class_range_list:
6366 size += DWARF_OFFSET_SIZE;
6367 break;
6368 case dw_val_class_const:
6369 size += size_of_sleb128 (AT_int (a));
6370 break;
6371 case dw_val_class_unsigned_const:
6372 size += constant_size (AT_unsigned (a));
6373 break;
6374 case dw_val_class_long_long:
6375 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6376 break;
6377 case dw_val_class_float:
6378 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6379 break;
6380 case dw_val_class_flag:
6381 size += 1;
6382 break;
6383 case dw_val_class_die_ref:
6384 if (AT_ref_external (a))
6385 size += DWARF2_ADDR_SIZE;
6386 else
6387 size += DWARF_OFFSET_SIZE;
6388 break;
6389 case dw_val_class_fde_ref:
6390 size += DWARF_OFFSET_SIZE;
6391 break;
6392 case dw_val_class_lbl_id:
6393 size += DWARF2_ADDR_SIZE;
6394 break;
6395 case dw_val_class_lbl_offset:
6396 size += DWARF_OFFSET_SIZE;
6397 break;
6398 case dw_val_class_str:
6399 if (AT_string_form (a) == DW_FORM_strp)
6400 size += DWARF_OFFSET_SIZE;
6401 else
6402 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6403 break;
6404 default:
6405 abort ();
6409 return size;
6412 /* Size the debugging information associated with a given DIE. Visits the
6413 DIE's children recursively. Updates the global variable next_die_offset, on
6414 each time through. Uses the current value of next_die_offset to update the
6415 die_offset field in each DIE. */
6417 static void
6418 calc_die_sizes (die)
6419 dw_die_ref die;
6421 dw_die_ref c;
6423 die->die_offset = next_die_offset;
6424 next_die_offset += size_of_die (die);
6426 for (c = die->die_child; c != NULL; c = c->die_sib)
6427 calc_die_sizes (c);
6429 if (die->die_child != NULL)
6430 /* Count the null byte used to terminate sibling lists. */
6431 next_die_offset += 1;
6434 /* Set the marks for a die and its children. We do this so
6435 that we know whether or not a reference needs to use FORM_ref_addr; only
6436 DIEs in the same CU will be marked. We used to clear out the offset
6437 and use that as the flag, but ran into ordering problems. */
6439 static void
6440 mark_dies (die)
6441 dw_die_ref die;
6443 dw_die_ref c;
6445 if (die->die_mark)
6446 abort ();
6448 die->die_mark = 1;
6449 for (c = die->die_child; c; c = c->die_sib)
6450 mark_dies (c);
6453 /* Clear the marks for a die and its children. */
6455 static void
6456 unmark_dies (die)
6457 dw_die_ref die;
6459 dw_die_ref c;
6461 if (!die->die_mark)
6462 abort ();
6464 die->die_mark = 0;
6465 for (c = die->die_child; c; c = c->die_sib)
6466 unmark_dies (c);
6469 /* Clear the marks for a die, its children and referred dies. */
6471 static void
6472 unmark_all_dies (die)
6473 dw_die_ref die;
6475 dw_die_ref c;
6476 dw_attr_ref a;
6478 if (!die->die_mark)
6479 return;
6480 die->die_mark = 0;
6482 for (c = die->die_child; c; c = c->die_sib)
6483 unmark_all_dies (c);
6485 for (a = die->die_attr; a; a = a->dw_attr_next)
6486 if (AT_class (a) == dw_val_class_die_ref)
6487 unmark_all_dies (AT_ref (a));
6490 /* Return the size of the .debug_pubnames table generated for the
6491 compilation unit. */
6493 static unsigned long
6494 size_of_pubnames ()
6496 unsigned long size;
6497 unsigned i;
6499 size = DWARF_PUBNAMES_HEADER_SIZE;
6500 for (i = 0; i < pubname_table_in_use; i++)
6502 pubname_ref p = &pubname_table[i];
6503 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6506 size += DWARF_OFFSET_SIZE;
6507 return size;
6510 /* Return the size of the information in the .debug_aranges section. */
6512 static unsigned long
6513 size_of_aranges ()
6515 unsigned long size;
6517 size = DWARF_ARANGES_HEADER_SIZE;
6519 /* Count the address/length pair for this compilation unit. */
6520 size += 2 * DWARF2_ADDR_SIZE;
6521 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6523 /* Count the two zero words used to terminated the address range table. */
6524 size += 2 * DWARF2_ADDR_SIZE;
6525 return size;
6528 /* Select the encoding of an attribute value. */
6530 static enum dwarf_form
6531 value_format (a)
6532 dw_attr_ref a;
6534 switch (a->dw_attr_val.val_class)
6536 case dw_val_class_addr:
6537 return DW_FORM_addr;
6538 case dw_val_class_range_list:
6539 case dw_val_class_offset:
6540 if (DWARF_OFFSET_SIZE == 4)
6541 return DW_FORM_data4;
6542 if (DWARF_OFFSET_SIZE == 8)
6543 return DW_FORM_data8;
6544 abort ();
6545 case dw_val_class_loc_list:
6546 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6547 .debug_loc section */
6548 return DW_FORM_data4;
6549 case dw_val_class_loc:
6550 switch (constant_size (size_of_locs (AT_loc (a))))
6552 case 1:
6553 return DW_FORM_block1;
6554 case 2:
6555 return DW_FORM_block2;
6556 default:
6557 abort ();
6559 case dw_val_class_const:
6560 return DW_FORM_sdata;
6561 case dw_val_class_unsigned_const:
6562 switch (constant_size (AT_unsigned (a)))
6564 case 1:
6565 return DW_FORM_data1;
6566 case 2:
6567 return DW_FORM_data2;
6568 case 4:
6569 return DW_FORM_data4;
6570 case 8:
6571 return DW_FORM_data8;
6572 default:
6573 abort ();
6575 case dw_val_class_long_long:
6576 return DW_FORM_block1;
6577 case dw_val_class_float:
6578 return DW_FORM_block1;
6579 case dw_val_class_flag:
6580 return DW_FORM_flag;
6581 case dw_val_class_die_ref:
6582 if (AT_ref_external (a))
6583 return DW_FORM_ref_addr;
6584 else
6585 return DW_FORM_ref;
6586 case dw_val_class_fde_ref:
6587 return DW_FORM_data;
6588 case dw_val_class_lbl_id:
6589 return DW_FORM_addr;
6590 case dw_val_class_lbl_offset:
6591 return DW_FORM_data;
6592 case dw_val_class_str:
6593 return AT_string_form (a);
6595 default:
6596 abort ();
6600 /* Output the encoding of an attribute value. */
6602 static void
6603 output_value_format (a)
6604 dw_attr_ref a;
6606 enum dwarf_form form = value_format (a);
6608 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6611 /* Output the .debug_abbrev section which defines the DIE abbreviation
6612 table. */
6614 static void
6615 output_abbrev_section ()
6617 unsigned long abbrev_id;
6619 dw_attr_ref a_attr;
6621 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6623 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6625 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6626 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6627 dwarf_tag_name (abbrev->die_tag));
6629 if (abbrev->die_child != NULL)
6630 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6631 else
6632 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6634 for (a_attr = abbrev->die_attr; a_attr != NULL;
6635 a_attr = a_attr->dw_attr_next)
6637 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6638 dwarf_attr_name (a_attr->dw_attr));
6639 output_value_format (a_attr);
6642 dw2_asm_output_data (1, 0, NULL);
6643 dw2_asm_output_data (1, 0, NULL);
6646 /* Terminate the table. */
6647 dw2_asm_output_data (1, 0, NULL);
6650 /* Output a symbol we can use to refer to this DIE from another CU. */
6652 static inline void
6653 output_die_symbol (die)
6654 dw_die_ref die;
6656 char *sym = die->die_symbol;
6658 if (sym == 0)
6659 return;
6661 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6662 /* We make these global, not weak; if the target doesn't support
6663 .linkonce, it doesn't support combining the sections, so debugging
6664 will break. */
6665 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6667 ASM_OUTPUT_LABEL (asm_out_file, sym);
6670 /* Return a new location list, given the begin and end range, and the
6671 expression. gensym tells us whether to generate a new internal symbol for
6672 this location list node, which is done for the head of the list only. */
6674 static inline dw_loc_list_ref
6675 new_loc_list (expr, begin, end, section, gensym)
6676 dw_loc_descr_ref expr;
6677 const char *begin;
6678 const char *end;
6679 const char *section;
6680 unsigned gensym;
6682 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6684 retlist->begin = begin;
6685 retlist->end = end;
6686 retlist->expr = expr;
6687 retlist->section = section;
6688 if (gensym)
6689 retlist->ll_symbol = gen_internal_sym ("LLST");
6691 return retlist;
6694 /* Add a location description expression to a location list */
6696 static inline void
6697 add_loc_descr_to_loc_list (list_head, descr, begin, end, section)
6698 dw_loc_list_ref *list_head;
6699 dw_loc_descr_ref descr;
6700 const char *begin;
6701 const char *end;
6702 const char *section;
6704 dw_loc_list_ref *d;
6706 /* Find the end of the chain. */
6707 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6710 /* Add a new location list node to the list */
6711 *d = new_loc_list (descr, begin, end, section, 0);
6714 /* Output the location list given to us */
6716 static void
6717 output_loc_list (list_head)
6718 dw_loc_list_ref list_head;
6720 dw_loc_list_ref curr = list_head;
6722 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6724 /* ??? This shouldn't be needed now that we've forced the
6725 compilation unit base address to zero when there is code
6726 in more than one section. */
6727 if (strcmp (curr->section, ".text") == 0)
6729 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6730 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6731 "Location list base address specifier fake entry");
6732 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6733 "Location list base address specifier base");
6736 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6738 unsigned long size;
6740 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6741 "Location list begin address (%s)",
6742 list_head->ll_symbol);
6743 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6744 "Location list end address (%s)",
6745 list_head->ll_symbol);
6746 size = size_of_locs (curr->expr);
6748 /* Output the block length for this list of location operations. */
6749 if (size > 0xffff)
6750 abort ();
6751 dw2_asm_output_data (2, size, "%s", "Location expression size");
6753 output_loc_sequence (curr->expr);
6756 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6757 "Location list terminator begin (%s)",
6758 list_head->ll_symbol);
6759 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6760 "Location list terminator end (%s)",
6761 list_head->ll_symbol);
6764 /* Output the DIE and its attributes. Called recursively to generate
6765 the definitions of each child DIE. */
6767 static void
6768 output_die (die)
6769 dw_die_ref die;
6771 dw_attr_ref a;
6772 dw_die_ref c;
6773 unsigned long size;
6775 /* If someone in another CU might refer to us, set up a symbol for
6776 them to point to. */
6777 if (die->die_symbol)
6778 output_die_symbol (die);
6780 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6781 die->die_offset, dwarf_tag_name (die->die_tag));
6783 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6785 const char *name = dwarf_attr_name (a->dw_attr);
6787 switch (AT_class (a))
6789 case dw_val_class_addr:
6790 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6791 break;
6793 case dw_val_class_offset:
6794 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6795 "%s", name);
6796 break;
6798 case dw_val_class_range_list:
6800 char *p = strchr (ranges_section_label, '\0');
6802 sprintf (p, "+0x%lx", a->dw_attr_val.v.val_offset);
6803 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6804 "%s", name);
6805 *p = '\0';
6807 break;
6809 case dw_val_class_loc:
6810 size = size_of_locs (AT_loc (a));
6812 /* Output the block length for this list of location operations. */
6813 dw2_asm_output_data (constant_size (size), size, "%s", name);
6815 output_loc_sequence (AT_loc (a));
6816 break;
6818 case dw_val_class_const:
6819 /* ??? It would be slightly more efficient to use a scheme like is
6820 used for unsigned constants below, but gdb 4.x does not sign
6821 extend. Gdb 5.x does sign extend. */
6822 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6823 break;
6825 case dw_val_class_unsigned_const:
6826 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6827 AT_unsigned (a), "%s", name);
6828 break;
6830 case dw_val_class_long_long:
6832 unsigned HOST_WIDE_INT first, second;
6834 dw2_asm_output_data (1,
6835 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6836 "%s", name);
6838 if (WORDS_BIG_ENDIAN)
6840 first = a->dw_attr_val.v.val_long_long.hi;
6841 second = a->dw_attr_val.v.val_long_long.low;
6843 else
6845 first = a->dw_attr_val.v.val_long_long.low;
6846 second = a->dw_attr_val.v.val_long_long.hi;
6849 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6850 first, "long long constant");
6851 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6852 second, NULL);
6854 break;
6856 case dw_val_class_float:
6858 unsigned int i;
6860 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6861 "%s", name);
6863 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6864 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6865 "fp constant word %u", i);
6866 break;
6869 case dw_val_class_flag:
6870 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6871 break;
6873 case dw_val_class_loc_list:
6875 char *sym = AT_loc_list (a)->ll_symbol;
6877 if (sym == 0)
6878 abort ();
6879 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6880 loc_section_label, "%s", name);
6882 break;
6884 case dw_val_class_die_ref:
6885 if (AT_ref_external (a))
6887 char *sym = AT_ref (a)->die_symbol;
6889 if (sym == 0)
6890 abort ();
6891 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6893 else if (AT_ref (a)->die_offset == 0)
6894 abort ();
6895 else
6896 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6897 "%s", name);
6898 break;
6900 case dw_val_class_fde_ref:
6902 char l1[20];
6904 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6905 a->dw_attr_val.v.val_fde_index * 2);
6906 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6908 break;
6910 case dw_val_class_lbl_id:
6911 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6912 break;
6914 case dw_val_class_lbl_offset:
6915 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6916 break;
6918 case dw_val_class_str:
6919 if (AT_string_form (a) == DW_FORM_strp)
6920 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6921 a->dw_attr_val.v.val_str->label,
6922 "%s: \"%s\"", name, AT_string (a));
6923 else
6924 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6925 break;
6927 default:
6928 abort ();
6932 for (c = die->die_child; c != NULL; c = c->die_sib)
6933 output_die (c);
6935 /* Add null byte to terminate sibling list. */
6936 if (die->die_child != NULL)
6937 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6938 die->die_offset);
6941 /* Output the compilation unit that appears at the beginning of the
6942 .debug_info section, and precedes the DIE descriptions. */
6944 static void
6945 output_compilation_unit_header ()
6947 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6948 dw2_asm_output_data (4, 0xffffffff,
6949 "Initial length escape value indicating 64-bit DWARF extension");
6950 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6951 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6952 "Length of Compilation Unit Info");
6953 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6954 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6955 "Offset Into Abbrev. Section");
6956 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6959 /* Output the compilation unit DIE and its children. */
6961 static void
6962 output_comp_unit (die, output_if_empty)
6963 dw_die_ref die;
6964 int output_if_empty;
6966 const char *secname;
6967 char *oldsym, *tmp;
6969 /* Unless we are outputting main CU, we may throw away empty ones. */
6970 if (!output_if_empty && die->die_child == NULL)
6971 return;
6973 /* Even if there are no children of this DIE, we must output the information
6974 about the compilation unit. Otherwise, on an empty translation unit, we
6975 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6976 will then complain when examining the file. First mark all the DIEs in
6977 this CU so we know which get local refs. */
6978 mark_dies (die);
6980 build_abbrev_table (die);
6982 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6983 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6984 calc_die_sizes (die);
6986 oldsym = die->die_symbol;
6987 if (oldsym)
6989 tmp = (char *) alloca (strlen (oldsym) + 24);
6991 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6992 secname = tmp;
6993 die->die_symbol = NULL;
6995 else
6996 secname = (const char *) DEBUG_INFO_SECTION;
6998 /* Output debugging information. */
6999 named_section_flags (secname, SECTION_DEBUG);
7000 output_compilation_unit_header ();
7001 output_die (die);
7003 /* Leave the marks on the main CU, so we can check them in
7004 output_pubnames. */
7005 if (oldsym)
7007 unmark_dies (die);
7008 die->die_symbol = oldsym;
7012 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7013 output of lang_hooks.decl_printable_name for C++ looks like
7014 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7016 static const char *
7017 dwarf2_name (decl, scope)
7018 tree decl;
7019 int scope;
7021 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
7024 /* Add a new entry to .debug_pubnames if appropriate. */
7026 static void
7027 add_pubname (decl, die)
7028 tree decl;
7029 dw_die_ref die;
7031 pubname_ref p;
7033 if (! TREE_PUBLIC (decl))
7034 return;
7036 if (pubname_table_in_use == pubname_table_allocated)
7038 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7039 pubname_table
7040 = (pubname_ref) ggc_realloc (pubname_table,
7041 (pubname_table_allocated
7042 * sizeof (pubname_entry)));
7043 memset (pubname_table + pubname_table_in_use, 0,
7044 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7047 p = &pubname_table[pubname_table_in_use++];
7048 p->die = die;
7049 p->name = xstrdup (dwarf2_name (decl, 1));
7052 /* Output the public names table used to speed up access to externally
7053 visible names. For now, only generate entries for externally
7054 visible procedures. */
7056 static void
7057 output_pubnames ()
7059 unsigned i;
7060 unsigned long pubnames_length = size_of_pubnames ();
7062 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7063 dw2_asm_output_data (4, 0xffffffff,
7064 "Initial length escape value indicating 64-bit DWARF extension");
7065 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7066 "Length of Public Names Info");
7067 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7068 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7069 "Offset of Compilation Unit Info");
7070 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7071 "Compilation Unit Length");
7073 for (i = 0; i < pubname_table_in_use; i++)
7075 pubname_ref pub = &pubname_table[i];
7077 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7078 if (pub->die->die_mark == 0)
7079 abort ();
7081 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7082 "DIE offset");
7084 dw2_asm_output_nstring (pub->name, -1, "external name");
7087 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7090 /* Add a new entry to .debug_aranges if appropriate. */
7092 static void
7093 add_arange (decl, die)
7094 tree decl;
7095 dw_die_ref die;
7097 if (! DECL_SECTION_NAME (decl))
7098 return;
7100 if (arange_table_in_use == arange_table_allocated)
7102 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7103 arange_table = ggc_realloc (arange_table,
7104 (arange_table_allocated
7105 * sizeof (dw_die_ref)));
7106 memset (arange_table + arange_table_in_use, 0,
7107 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7110 arange_table[arange_table_in_use++] = die;
7113 /* Output the information that goes into the .debug_aranges table.
7114 Namely, define the beginning and ending address range of the
7115 text section generated for this compilation unit. */
7117 static void
7118 output_aranges ()
7120 unsigned i;
7121 unsigned long aranges_length = size_of_aranges ();
7123 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7124 dw2_asm_output_data (4, 0xffffffff,
7125 "Initial length escape value indicating 64-bit DWARF extension");
7126 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7127 "Length of Address Ranges Info");
7128 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7129 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7130 "Offset of Compilation Unit Info");
7131 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7132 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7134 /* We need to align to twice the pointer size here. */
7135 if (DWARF_ARANGES_PAD_SIZE)
7137 /* Pad using a 2 byte words so that padding is correct for any
7138 pointer size. */
7139 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7140 2 * DWARF2_ADDR_SIZE);
7141 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7142 dw2_asm_output_data (2, 0, NULL);
7145 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7146 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7147 text_section_label, "Length");
7149 for (i = 0; i < arange_table_in_use; i++)
7151 dw_die_ref die = arange_table[i];
7153 /* We shouldn't see aranges for DIEs outside of the main CU. */
7154 if (die->die_mark == 0)
7155 abort ();
7157 if (die->die_tag == DW_TAG_subprogram)
7159 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7160 "Address");
7161 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7162 get_AT_low_pc (die), "Length");
7164 else
7166 /* A static variable; extract the symbol from DW_AT_location.
7167 Note that this code isn't currently hit, as we only emit
7168 aranges for functions (jason 9/23/99). */
7169 dw_attr_ref a = get_AT (die, DW_AT_location);
7170 dw_loc_descr_ref loc;
7172 if (! a || AT_class (a) != dw_val_class_loc)
7173 abort ();
7175 loc = AT_loc (a);
7176 if (loc->dw_loc_opc != DW_OP_addr)
7177 abort ();
7179 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7180 loc->dw_loc_oprnd1.v.val_addr, "Address");
7181 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7182 get_AT_unsigned (die, DW_AT_byte_size),
7183 "Length");
7187 /* Output the terminator words. */
7188 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7189 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7192 /* Add a new entry to .debug_ranges. Return the offset at which it
7193 was placed. */
7195 static unsigned int
7196 add_ranges (block)
7197 tree block;
7199 unsigned int in_use = ranges_table_in_use;
7201 if (in_use == ranges_table_allocated)
7203 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7204 ranges_table = (dw_ranges_ref)
7205 ggc_realloc (ranges_table, (ranges_table_allocated
7206 * sizeof (struct dw_ranges_struct)));
7207 memset (ranges_table + ranges_table_in_use, 0,
7208 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7211 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7212 ranges_table_in_use = in_use + 1;
7214 return in_use * 2 * DWARF2_ADDR_SIZE;
7217 static void
7218 output_ranges ()
7220 unsigned i;
7221 static const char *const start_fmt = "Offset 0x%x";
7222 const char *fmt = start_fmt;
7224 for (i = 0; i < ranges_table_in_use; i++)
7226 int block_num = ranges_table[i].block_num;
7228 if (block_num)
7230 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7231 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7233 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7234 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7236 /* If all code is in the text section, then the compilation
7237 unit base address defaults to DW_AT_low_pc, which is the
7238 base of the text section. */
7239 if (separate_line_info_table_in_use == 0)
7241 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7242 text_section_label,
7243 fmt, i * 2 * DWARF2_ADDR_SIZE);
7244 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7245 text_section_label, NULL);
7248 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7249 compilation unit base address to zero, which allows us to
7250 use absolute addresses, and not worry about whether the
7251 target supports cross-section arithmetic. */
7252 else
7254 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7255 fmt, i * 2 * DWARF2_ADDR_SIZE);
7256 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7259 fmt = NULL;
7261 else
7263 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7264 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7265 fmt = start_fmt;
7270 /* Data structure containing information about input files. */
7271 struct file_info
7273 char *path; /* Complete file name. */
7274 char *fname; /* File name part. */
7275 int length; /* Length of entire string. */
7276 int file_idx; /* Index in input file table. */
7277 int dir_idx; /* Index in directory table. */
7280 /* Data structure containing information about directories with source
7281 files. */
7282 struct dir_info
7284 char *path; /* Path including directory name. */
7285 int length; /* Path length. */
7286 int prefix; /* Index of directory entry which is a prefix. */
7287 int count; /* Number of files in this directory. */
7288 int dir_idx; /* Index of directory used as base. */
7289 int used; /* Used in the end? */
7292 /* Callback function for file_info comparison. We sort by looking at
7293 the directories in the path. */
7295 static int
7296 file_info_cmp (p1, p2)
7297 const void *p1;
7298 const void *p2;
7300 const struct file_info *s1 = p1;
7301 const struct file_info *s2 = p2;
7302 unsigned char *cp1;
7303 unsigned char *cp2;
7305 /* Take care of file names without directories. We need to make sure that
7306 we return consistent values to qsort since some will get confused if
7307 we return the same value when identical operands are passed in opposite
7308 orders. So if neither has a directory, return 0 and otherwise return
7309 1 or -1 depending on which one has the directory. */
7310 if ((s1->path == s1->fname || s2->path == s2->fname))
7311 return (s2->path == s2->fname) - (s1->path == s1->fname);
7313 cp1 = (unsigned char *) s1->path;
7314 cp2 = (unsigned char *) s2->path;
7316 while (1)
7318 ++cp1;
7319 ++cp2;
7320 /* Reached the end of the first path? If so, handle like above. */
7321 if ((cp1 == (unsigned char *) s1->fname)
7322 || (cp2 == (unsigned char *) s2->fname))
7323 return ((cp2 == (unsigned char *) s2->fname)
7324 - (cp1 == (unsigned char *) s1->fname));
7326 /* Character of current path component the same? */
7327 else if (*cp1 != *cp2)
7328 return *cp1 - *cp2;
7332 /* Output the directory table and the file name table. We try to minimize
7333 the total amount of memory needed. A heuristic is used to avoid large
7334 slowdowns with many input files. */
7336 static void
7337 output_file_names ()
7339 struct file_info *files;
7340 struct dir_info *dirs;
7341 int *saved;
7342 int *savehere;
7343 int *backmap;
7344 size_t ndirs;
7345 int idx_offset;
7346 size_t i;
7347 int idx;
7349 /* Handle the case where file_table is empty. */
7350 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7352 dw2_asm_output_data (1, 0, "End directory table");
7353 dw2_asm_output_data (1, 0, "End file name table");
7354 return;
7357 /* Allocate the various arrays we need. */
7358 files = (struct file_info *) alloca (VARRAY_ACTIVE_SIZE (file_table)
7359 * sizeof (struct file_info));
7360 dirs = (struct dir_info *) alloca (VARRAY_ACTIVE_SIZE (file_table)
7361 * sizeof (struct dir_info));
7363 /* Sort the file names. */
7364 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7366 char *f;
7368 /* Skip all leading "./". */
7369 f = VARRAY_CHAR_PTR (file_table, i);
7370 while (f[0] == '.' && f[1] == '/')
7371 f += 2;
7373 /* Create a new array entry. */
7374 files[i].path = f;
7375 files[i].length = strlen (f);
7376 files[i].file_idx = i;
7378 /* Search for the file name part. */
7379 f = strrchr (f, '/');
7380 files[i].fname = f == NULL ? files[i].path : f + 1;
7383 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7384 sizeof (files[0]), file_info_cmp);
7386 /* Find all the different directories used. */
7387 dirs[0].path = files[1].path;
7388 dirs[0].length = files[1].fname - files[1].path;
7389 dirs[0].prefix = -1;
7390 dirs[0].count = 1;
7391 dirs[0].dir_idx = 0;
7392 dirs[0].used = 0;
7393 files[1].dir_idx = 0;
7394 ndirs = 1;
7396 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7397 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7398 && memcmp (dirs[ndirs - 1].path, files[i].path,
7399 dirs[ndirs - 1].length) == 0)
7401 /* Same directory as last entry. */
7402 files[i].dir_idx = ndirs - 1;
7403 ++dirs[ndirs - 1].count;
7405 else
7407 size_t j;
7409 /* This is a new directory. */
7410 dirs[ndirs].path = files[i].path;
7411 dirs[ndirs].length = files[i].fname - files[i].path;
7412 dirs[ndirs].count = 1;
7413 dirs[ndirs].dir_idx = ndirs;
7414 dirs[ndirs].used = 0;
7415 files[i].dir_idx = ndirs;
7417 /* Search for a prefix. */
7418 dirs[ndirs].prefix = -1;
7419 for (j = 0; j < ndirs; j++)
7420 if (dirs[j].length < dirs[ndirs].length
7421 && dirs[j].length > 1
7422 && (dirs[ndirs].prefix == -1
7423 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7424 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7425 dirs[ndirs].prefix = j;
7427 ++ndirs;
7430 /* Now to the actual work. We have to find a subset of the directories which
7431 allow expressing the file name using references to the directory table
7432 with the least amount of characters. We do not do an exhaustive search
7433 where we would have to check out every combination of every single
7434 possible prefix. Instead we use a heuristic which provides nearly optimal
7435 results in most cases and never is much off. */
7436 saved = (int *) alloca (ndirs * sizeof (int));
7437 savehere = (int *) alloca (ndirs * sizeof (int));
7439 memset (saved, '\0', ndirs * sizeof (saved[0]));
7440 for (i = 0; i < ndirs; i++)
7442 size_t j;
7443 int total;
7445 /* We can always save some space for the current directory. But this
7446 does not mean it will be enough to justify adding the directory. */
7447 savehere[i] = dirs[i].length;
7448 total = (savehere[i] - saved[i]) * dirs[i].count;
7450 for (j = i + 1; j < ndirs; j++)
7452 savehere[j] = 0;
7453 if (saved[j] < dirs[i].length)
7455 /* Determine whether the dirs[i] path is a prefix of the
7456 dirs[j] path. */
7457 int k;
7459 k = dirs[j].prefix;
7460 while (k != -1 && k != (int) i)
7461 k = dirs[k].prefix;
7463 if (k == (int) i)
7465 /* Yes it is. We can possibly safe some memory but
7466 writing the filenames in dirs[j] relative to
7467 dirs[i]. */
7468 savehere[j] = dirs[i].length;
7469 total += (savehere[j] - saved[j]) * dirs[j].count;
7474 /* Check whether we can safe enough to justify adding the dirs[i]
7475 directory. */
7476 if (total > dirs[i].length + 1)
7478 /* It's worthwhile adding. */
7479 for (j = i; j < ndirs; j++)
7480 if (savehere[j] > 0)
7482 /* Remember how much we saved for this directory so far. */
7483 saved[j] = savehere[j];
7485 /* Remember the prefix directory. */
7486 dirs[j].dir_idx = i;
7491 /* We have to emit them in the order they appear in the file_table array
7492 since the index is used in the debug info generation. To do this
7493 efficiently we generate a back-mapping of the indices first. */
7494 backmap = (int *) alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7495 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7497 backmap[files[i].file_idx] = i;
7499 /* Mark this directory as used. */
7500 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7503 /* That was it. We are ready to emit the information. First emit the
7504 directory name table. We have to make sure the first actually emitted
7505 directory name has index one; zero is reserved for the current working
7506 directory. Make sure we do not confuse these indices with the one for the
7507 constructed table (even though most of the time they are identical). */
7508 idx = 1;
7509 idx_offset = dirs[0].length > 0 ? 1 : 0;
7510 for (i = 1 - idx_offset; i < ndirs; i++)
7511 if (dirs[i].used != 0)
7513 dirs[i].used = idx++;
7514 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7515 "Directory Entry: 0x%x", dirs[i].used);
7518 dw2_asm_output_data (1, 0, "End directory table");
7520 /* Correct the index for the current working directory entry if it
7521 exists. */
7522 if (idx_offset == 0)
7523 dirs[0].used = 0;
7525 /* Now write all the file names. */
7526 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7528 int file_idx = backmap[i];
7529 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7531 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7532 "File Entry: 0x%lx", (unsigned long) i);
7534 /* Include directory index. */
7535 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7537 /* Modification time. */
7538 dw2_asm_output_data_uleb128 (0, NULL);
7540 /* File length in bytes. */
7541 dw2_asm_output_data_uleb128 (0, NULL);
7544 dw2_asm_output_data (1, 0, "End file name table");
7548 /* Output the source line number correspondence information. This
7549 information goes into the .debug_line section. */
7551 static void
7552 output_line_info ()
7554 char l1[20], l2[20], p1[20], p2[20];
7555 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7556 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7557 unsigned opc;
7558 unsigned n_op_args;
7559 unsigned long lt_index;
7560 unsigned long current_line;
7561 long line_offset;
7562 long line_delta;
7563 unsigned long current_file;
7564 unsigned long function;
7566 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7567 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7568 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7569 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7571 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7572 dw2_asm_output_data (4, 0xffffffff,
7573 "Initial length escape value indicating 64-bit DWARF extension");
7574 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7575 "Length of Source Line Info");
7576 ASM_OUTPUT_LABEL (asm_out_file, l1);
7578 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7579 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7580 ASM_OUTPUT_LABEL (asm_out_file, p1);
7582 /* Define the architecture-dependent minimum instruction length (in
7583 bytes). In this implementation of DWARF, this field is used for
7584 information purposes only. Since GCC generates assembly language,
7585 we have no a priori knowledge of how many instruction bytes are
7586 generated for each source line, and therefore can use only the
7587 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7588 commands. Accordingly, we fix this as `1', which is "correct
7589 enough" for all architectures, and don't let the target override. */
7590 dw2_asm_output_data (1, 1,
7591 "Minimum Instruction Length");
7593 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7594 "Default is_stmt_start flag");
7595 dw2_asm_output_data (1, DWARF_LINE_BASE,
7596 "Line Base Value (Special Opcodes)");
7597 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7598 "Line Range Value (Special Opcodes)");
7599 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7600 "Special Opcode Base");
7602 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7604 switch (opc)
7606 case DW_LNS_advance_pc:
7607 case DW_LNS_advance_line:
7608 case DW_LNS_set_file:
7609 case DW_LNS_set_column:
7610 case DW_LNS_fixed_advance_pc:
7611 n_op_args = 1;
7612 break;
7613 default:
7614 n_op_args = 0;
7615 break;
7618 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7619 opc, n_op_args);
7622 /* Write out the information about the files we use. */
7623 output_file_names ();
7624 ASM_OUTPUT_LABEL (asm_out_file, p2);
7626 /* We used to set the address register to the first location in the text
7627 section here, but that didn't accomplish anything since we already
7628 have a line note for the opening brace of the first function. */
7630 /* Generate the line number to PC correspondence table, encoded as
7631 a series of state machine operations. */
7632 current_file = 1;
7633 current_line = 1;
7634 strcpy (prev_line_label, text_section_label);
7635 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7637 dw_line_info_ref line_info = &line_info_table[lt_index];
7639 #if 0
7640 /* Disable this optimization for now; GDB wants to see two line notes
7641 at the beginning of a function so it can find the end of the
7642 prologue. */
7644 /* Don't emit anything for redundant notes. Just updating the
7645 address doesn't accomplish anything, because we already assume
7646 that anything after the last address is this line. */
7647 if (line_info->dw_line_num == current_line
7648 && line_info->dw_file_num == current_file)
7649 continue;
7650 #endif
7652 /* Emit debug info for the address of the current line.
7654 Unfortunately, we have little choice here currently, and must always
7655 use the most general form. GCC does not know the address delta
7656 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7657 attributes which will give an upper bound on the address range. We
7658 could perhaps use length attributes to determine when it is safe to
7659 use DW_LNS_fixed_advance_pc. */
7661 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7662 if (0)
7664 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7665 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7666 "DW_LNS_fixed_advance_pc");
7667 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7669 else
7671 /* This can handle any delta. This takes
7672 4+DWARF2_ADDR_SIZE bytes. */
7673 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7674 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7675 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7676 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7679 strcpy (prev_line_label, line_label);
7681 /* Emit debug info for the source file of the current line, if
7682 different from the previous line. */
7683 if (line_info->dw_file_num != current_file)
7685 current_file = line_info->dw_file_num;
7686 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7687 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7688 VARRAY_CHAR_PTR (file_table,
7689 current_file));
7692 /* Emit debug info for the current line number, choosing the encoding
7693 that uses the least amount of space. */
7694 if (line_info->dw_line_num != current_line)
7696 line_offset = line_info->dw_line_num - current_line;
7697 line_delta = line_offset - DWARF_LINE_BASE;
7698 current_line = line_info->dw_line_num;
7699 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7700 /* This can handle deltas from -10 to 234, using the current
7701 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7702 takes 1 byte. */
7703 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7704 "line %lu", current_line);
7705 else
7707 /* This can handle any delta. This takes at least 4 bytes,
7708 depending on the value being encoded. */
7709 dw2_asm_output_data (1, DW_LNS_advance_line,
7710 "advance to line %lu", current_line);
7711 dw2_asm_output_data_sleb128 (line_offset, NULL);
7712 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7715 else
7716 /* We still need to start a new row, so output a copy insn. */
7717 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7720 /* Emit debug info for the address of the end of the function. */
7721 if (0)
7723 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7724 "DW_LNS_fixed_advance_pc");
7725 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7727 else
7729 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7730 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7731 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7732 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7735 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7736 dw2_asm_output_data_uleb128 (1, NULL);
7737 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7739 function = 0;
7740 current_file = 1;
7741 current_line = 1;
7742 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7744 dw_separate_line_info_ref line_info
7745 = &separate_line_info_table[lt_index];
7747 #if 0
7748 /* Don't emit anything for redundant notes. */
7749 if (line_info->dw_line_num == current_line
7750 && line_info->dw_file_num == current_file
7751 && line_info->function == function)
7752 goto cont;
7753 #endif
7755 /* Emit debug info for the address of the current line. If this is
7756 a new function, or the first line of a function, then we need
7757 to handle it differently. */
7758 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7759 lt_index);
7760 if (function != line_info->function)
7762 function = line_info->function;
7764 /* Set the address register to the first line in the function */
7765 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7766 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7767 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7768 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7770 else
7772 /* ??? See the DW_LNS_advance_pc comment above. */
7773 if (0)
7775 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7776 "DW_LNS_fixed_advance_pc");
7777 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7779 else
7781 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7782 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7783 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7784 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7788 strcpy (prev_line_label, line_label);
7790 /* Emit debug info for the source file of the current line, if
7791 different from the previous line. */
7792 if (line_info->dw_file_num != current_file)
7794 current_file = line_info->dw_file_num;
7795 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7796 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7797 VARRAY_CHAR_PTR (file_table,
7798 current_file));
7801 /* Emit debug info for the current line number, choosing the encoding
7802 that uses the least amount of space. */
7803 if (line_info->dw_line_num != current_line)
7805 line_offset = line_info->dw_line_num - current_line;
7806 line_delta = line_offset - DWARF_LINE_BASE;
7807 current_line = line_info->dw_line_num;
7808 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7809 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7810 "line %lu", current_line);
7811 else
7813 dw2_asm_output_data (1, DW_LNS_advance_line,
7814 "advance to line %lu", current_line);
7815 dw2_asm_output_data_sleb128 (line_offset, NULL);
7816 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7819 else
7820 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7822 #if 0
7823 cont:
7824 #endif
7826 lt_index++;
7828 /* If we're done with a function, end its sequence. */
7829 if (lt_index == separate_line_info_table_in_use
7830 || separate_line_info_table[lt_index].function != function)
7832 current_file = 1;
7833 current_line = 1;
7835 /* Emit debug info for the address of the end of the function. */
7836 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7837 if (0)
7839 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7840 "DW_LNS_fixed_advance_pc");
7841 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7843 else
7845 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7846 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7847 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7848 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7851 /* Output the marker for the end of this sequence. */
7852 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7853 dw2_asm_output_data_uleb128 (1, NULL);
7854 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7858 /* Output the marker for the end of the line number info. */
7859 ASM_OUTPUT_LABEL (asm_out_file, l2);
7862 /* Given a pointer to a tree node for some base type, return a pointer to
7863 a DIE that describes the given type.
7865 This routine must only be called for GCC type nodes that correspond to
7866 Dwarf base (fundamental) types. */
7868 static dw_die_ref
7869 base_type_die (type)
7870 tree type;
7872 dw_die_ref base_type_result;
7873 const char *type_name;
7874 enum dwarf_type encoding;
7875 tree name = TYPE_NAME (type);
7877 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7878 return 0;
7880 if (name)
7882 if (TREE_CODE (name) == TYPE_DECL)
7883 name = DECL_NAME (name);
7885 type_name = IDENTIFIER_POINTER (name);
7887 else
7888 type_name = "__unknown__";
7890 switch (TREE_CODE (type))
7892 case INTEGER_TYPE:
7893 /* Carefully distinguish the C character types, without messing
7894 up if the language is not C. Note that we check only for the names
7895 that contain spaces; other names might occur by coincidence in other
7896 languages. */
7897 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7898 && (type == char_type_node
7899 || ! strcmp (type_name, "signed char")
7900 || ! strcmp (type_name, "unsigned char"))))
7902 if (TREE_UNSIGNED (type))
7903 encoding = DW_ATE_unsigned;
7904 else
7905 encoding = DW_ATE_signed;
7906 break;
7908 /* else fall through. */
7910 case CHAR_TYPE:
7911 /* GNU Pascal/Ada CHAR type. Not used in C. */
7912 if (TREE_UNSIGNED (type))
7913 encoding = DW_ATE_unsigned_char;
7914 else
7915 encoding = DW_ATE_signed_char;
7916 break;
7918 case REAL_TYPE:
7919 encoding = DW_ATE_float;
7920 break;
7922 /* Dwarf2 doesn't know anything about complex ints, so use
7923 a user defined type for it. */
7924 case COMPLEX_TYPE:
7925 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7926 encoding = DW_ATE_complex_float;
7927 else
7928 encoding = DW_ATE_lo_user;
7929 break;
7931 case BOOLEAN_TYPE:
7932 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7933 encoding = DW_ATE_boolean;
7934 break;
7936 default:
7937 /* No other TREE_CODEs are Dwarf fundamental types. */
7938 abort ();
7941 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7942 if (demangle_name_func)
7943 type_name = (*demangle_name_func) (type_name);
7945 add_AT_string (base_type_result, DW_AT_name, type_name);
7946 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7947 int_size_in_bytes (type));
7948 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7950 return base_type_result;
7953 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7954 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7955 a given type is generally the same as the given type, except that if the
7956 given type is a pointer or reference type, then the root type of the given
7957 type is the root type of the "basis" type for the pointer or reference
7958 type. (This definition of the "root" type is recursive.) Also, the root
7959 type of a `const' qualified type or a `volatile' qualified type is the
7960 root type of the given type without the qualifiers. */
7962 static tree
7963 root_type (type)
7964 tree type;
7966 if (TREE_CODE (type) == ERROR_MARK)
7967 return error_mark_node;
7969 switch (TREE_CODE (type))
7971 case ERROR_MARK:
7972 return error_mark_node;
7974 case POINTER_TYPE:
7975 case REFERENCE_TYPE:
7976 return type_main_variant (root_type (TREE_TYPE (type)));
7978 default:
7979 return type_main_variant (type);
7983 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7984 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7986 static inline int
7987 is_base_type (type)
7988 tree type;
7990 switch (TREE_CODE (type))
7992 case ERROR_MARK:
7993 case VOID_TYPE:
7994 case INTEGER_TYPE:
7995 case REAL_TYPE:
7996 case COMPLEX_TYPE:
7997 case BOOLEAN_TYPE:
7998 case CHAR_TYPE:
7999 return 1;
8001 case SET_TYPE:
8002 case ARRAY_TYPE:
8003 case RECORD_TYPE:
8004 case UNION_TYPE:
8005 case QUAL_UNION_TYPE:
8006 case ENUMERAL_TYPE:
8007 case FUNCTION_TYPE:
8008 case METHOD_TYPE:
8009 case POINTER_TYPE:
8010 case REFERENCE_TYPE:
8011 case FILE_TYPE:
8012 case OFFSET_TYPE:
8013 case LANG_TYPE:
8014 case VECTOR_TYPE:
8015 return 0;
8017 default:
8018 abort ();
8021 return 0;
8024 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8025 node, return the size in bits for the type if it is a constant, or else
8026 return the alignment for the type if the type's size is not constant, or
8027 else return BITS_PER_WORD if the type actually turns out to be an
8028 ERROR_MARK node. */
8030 static inline unsigned HOST_WIDE_INT
8031 simple_type_size_in_bits (type)
8032 tree type;
8035 if (TREE_CODE (type) == ERROR_MARK)
8036 return BITS_PER_WORD;
8037 else if (TYPE_SIZE (type) == NULL_TREE)
8038 return 0;
8039 else if (host_integerp (TYPE_SIZE (type), 1))
8040 return tree_low_cst (TYPE_SIZE (type), 1);
8041 else
8042 return TYPE_ALIGN (type);
8045 /* Return true if the debug information for the given type should be
8046 emitted as a subrange type. */
8048 static inline bool
8049 is_ada_subrange_type (type)
8050 tree type;
8052 /* We do this for INTEGER_TYPEs that have names, parent types, and when
8053 we are compiling Ada code. */
8054 return (TREE_CODE (type) == INTEGER_TYPE
8055 && TYPE_NAME (type) != 0 && TREE_TYPE (type) != 0
8056 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
8057 && TREE_UNSIGNED (TREE_TYPE (type)) && is_ada ());
8060 /* Given a pointer to a tree node for a subrange type, return a pointer
8061 to a DIE that describes the given type. */
8063 static dw_die_ref
8064 subrange_type_die (type)
8065 tree type;
8067 dw_die_ref subtype_die;
8068 dw_die_ref subrange_die;
8069 tree name = TYPE_NAME (type);
8071 subtype_die = base_type_die (TREE_TYPE (type));
8073 if (TREE_CODE (name) == TYPE_DECL)
8074 name = DECL_NAME (name);
8076 subrange_die = new_die (DW_TAG_subrange_type, comp_unit_die, type);
8077 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8078 if (TYPE_MIN_VALUE (type) != NULL)
8079 add_bound_info (subrange_die, DW_AT_lower_bound,
8080 TYPE_MIN_VALUE (type));
8081 if (TYPE_MAX_VALUE (type) != NULL)
8082 add_bound_info (subrange_die, DW_AT_upper_bound,
8083 TYPE_MAX_VALUE (type));
8084 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8086 return subrange_die;
8089 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8090 entry that chains various modifiers in front of the given type. */
8092 static dw_die_ref
8093 modified_type_die (type, is_const_type, is_volatile_type, context_die)
8094 tree type;
8095 int is_const_type;
8096 int is_volatile_type;
8097 dw_die_ref context_die;
8099 enum tree_code code = TREE_CODE (type);
8100 dw_die_ref mod_type_die = NULL;
8101 dw_die_ref sub_die = NULL;
8102 tree item_type = NULL;
8104 if (code != ERROR_MARK)
8106 tree qualified_type;
8108 /* See if we already have the appropriately qualified variant of
8109 this type. */
8110 qualified_type
8111 = get_qualified_type (type,
8112 ((is_const_type ? TYPE_QUAL_CONST : 0)
8113 | (is_volatile_type
8114 ? TYPE_QUAL_VOLATILE : 0)));
8116 /* If we do, then we can just use its DIE, if it exists. */
8117 if (qualified_type)
8119 mod_type_die = lookup_type_die (qualified_type);
8120 if (mod_type_die)
8121 return mod_type_die;
8124 /* Handle C typedef types. */
8125 if (qualified_type && TYPE_NAME (qualified_type)
8126 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8127 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8129 tree type_name = TYPE_NAME (qualified_type);
8130 tree dtype = TREE_TYPE (type_name);
8132 if (qualified_type == dtype)
8134 /* For a named type, use the typedef. */
8135 gen_type_die (qualified_type, context_die);
8136 mod_type_die = lookup_type_die (qualified_type);
8138 else if (is_const_type < TYPE_READONLY (dtype)
8139 || is_volatile_type < TYPE_VOLATILE (dtype))
8140 /* cv-unqualified version of named type. Just use the unnamed
8141 type to which it refers. */
8142 mod_type_die
8143 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8144 is_const_type, is_volatile_type,
8145 context_die);
8147 /* Else cv-qualified version of named type; fall through. */
8150 if (mod_type_die)
8151 /* OK. */
8153 else if (is_const_type)
8155 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8156 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8158 else if (is_volatile_type)
8160 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8161 sub_die = modified_type_die (type, 0, 0, context_die);
8163 else if (code == POINTER_TYPE)
8165 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8166 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8167 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8168 #if 0
8169 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8170 #endif
8171 item_type = TREE_TYPE (type);
8173 else if (code == REFERENCE_TYPE)
8175 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8176 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8177 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8178 #if 0
8179 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8180 #endif
8181 item_type = TREE_TYPE (type);
8183 else if (is_ada_subrange_type (type))
8184 mod_type_die = subrange_type_die (type);
8185 else if (is_base_type (type))
8186 mod_type_die = base_type_die (type);
8187 else
8189 gen_type_die (type, context_die);
8191 /* We have to get the type_main_variant here (and pass that to the
8192 `lookup_type_die' routine) because the ..._TYPE node we have
8193 might simply be a *copy* of some original type node (where the
8194 copy was created to help us keep track of typedef names) and
8195 that copy might have a different TYPE_UID from the original
8196 ..._TYPE node. */
8197 if (TREE_CODE (type) != VECTOR_TYPE)
8198 mod_type_die = lookup_type_die (type_main_variant (type));
8199 else
8200 /* Vectors have the debugging information in the type,
8201 not the main variant. */
8202 mod_type_die = lookup_type_die (type);
8203 if (mod_type_die == NULL)
8204 abort ();
8207 /* We want to equate the qualified type to the die below. */
8208 type = qualified_type;
8211 if (type)
8212 equate_type_number_to_die (type, mod_type_die);
8213 if (item_type)
8214 /* We must do this after the equate_type_number_to_die call, in case
8215 this is a recursive type. This ensures that the modified_type_die
8216 recursion will terminate even if the type is recursive. Recursive
8217 types are possible in Ada. */
8218 sub_die = modified_type_die (item_type,
8219 TYPE_READONLY (item_type),
8220 TYPE_VOLATILE (item_type),
8221 context_die);
8223 if (sub_die != NULL)
8224 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8226 return mod_type_die;
8229 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8230 an enumerated type. */
8232 static inline int
8233 type_is_enum (type)
8234 tree type;
8236 return TREE_CODE (type) == ENUMERAL_TYPE;
8239 /* Return the register number described by a given RTL node. */
8241 static unsigned int
8242 reg_number (rtl)
8243 rtx rtl;
8245 unsigned regno = REGNO (rtl);
8247 if (regno >= FIRST_PSEUDO_REGISTER)
8248 abort ();
8250 return DBX_REGISTER_NUMBER (regno);
8253 /* Return a location descriptor that designates a machine register or
8254 zero if there is none. */
8256 static dw_loc_descr_ref
8257 reg_loc_descriptor (rtl)
8258 rtx rtl;
8260 unsigned reg;
8261 rtx regs;
8263 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8264 return 0;
8266 reg = reg_number (rtl);
8267 regs = (*targetm.dwarf_register_span) (rtl);
8269 if (HARD_REGNO_NREGS (reg, GET_MODE (rtl)) > 1
8270 || regs)
8271 return multiple_reg_loc_descriptor (rtl, regs);
8272 else
8273 return one_reg_loc_descriptor (reg);
8276 /* Return a location descriptor that designates a machine register for
8277 a given hard register number. */
8279 static dw_loc_descr_ref
8280 one_reg_loc_descriptor (regno)
8281 unsigned int regno;
8283 if (regno <= 31)
8284 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8285 else
8286 return new_loc_descr (DW_OP_regx, regno, 0);
8289 /* Given an RTL of a register, return a location descriptor that
8290 designates a value that spans more than one register. */
8292 static dw_loc_descr_ref
8293 multiple_reg_loc_descriptor (rtl, regs)
8294 rtx rtl, regs;
8296 int nregs, size, i;
8297 unsigned reg;
8298 dw_loc_descr_ref loc_result = NULL;
8300 reg = reg_number (rtl);
8301 nregs = HARD_REGNO_NREGS (reg, GET_MODE (rtl));
8303 /* Simple, contiguous registers. */
8304 if (regs == NULL_RTX)
8306 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8308 loc_result = NULL;
8309 while (nregs--)
8311 dw_loc_descr_ref t;
8313 t = one_reg_loc_descriptor (reg);
8314 add_loc_descr (&loc_result, t);
8315 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8316 ++reg;
8318 return loc_result;
8321 /* Now onto stupid register sets in non contiguous locations. */
8323 if (GET_CODE (regs) != PARALLEL)
8324 abort ();
8326 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8327 loc_result = NULL;
8329 for (i = 0; i < XVECLEN (regs, 0); ++i)
8331 dw_loc_descr_ref t;
8333 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8334 add_loc_descr (&loc_result, t);
8335 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8336 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8338 return loc_result;
8341 /* Return a location descriptor that designates a constant. */
8343 static dw_loc_descr_ref
8344 int_loc_descriptor (i)
8345 HOST_WIDE_INT i;
8347 enum dwarf_location_atom op;
8349 /* Pick the smallest representation of a constant, rather than just
8350 defaulting to the LEB encoding. */
8351 if (i >= 0)
8353 if (i <= 31)
8354 op = DW_OP_lit0 + i;
8355 else if (i <= 0xff)
8356 op = DW_OP_const1u;
8357 else if (i <= 0xffff)
8358 op = DW_OP_const2u;
8359 else if (HOST_BITS_PER_WIDE_INT == 32
8360 || i <= 0xffffffff)
8361 op = DW_OP_const4u;
8362 else
8363 op = DW_OP_constu;
8365 else
8367 if (i >= -0x80)
8368 op = DW_OP_const1s;
8369 else if (i >= -0x8000)
8370 op = DW_OP_const2s;
8371 else if (HOST_BITS_PER_WIDE_INT == 32
8372 || i >= -0x80000000)
8373 op = DW_OP_const4s;
8374 else
8375 op = DW_OP_consts;
8378 return new_loc_descr (op, i, 0);
8381 /* Return a location descriptor that designates a base+offset location. */
8383 static dw_loc_descr_ref
8384 based_loc_descr (reg, offset)
8385 unsigned reg;
8386 long int offset;
8388 dw_loc_descr_ref loc_result;
8389 /* For the "frame base", we use the frame pointer or stack pointer
8390 registers, since the RTL for local variables is relative to one of
8391 them. */
8392 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8393 ? HARD_FRAME_POINTER_REGNUM
8394 : STACK_POINTER_REGNUM);
8396 if (reg == fp_reg)
8397 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8398 else if (reg <= 31)
8399 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8400 else
8401 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8403 return loc_result;
8406 /* Return true if this RTL expression describes a base+offset calculation. */
8408 static inline int
8409 is_based_loc (rtl)
8410 rtx rtl;
8412 return (GET_CODE (rtl) == PLUS
8413 && ((GET_CODE (XEXP (rtl, 0)) == REG
8414 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8415 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8418 /* The following routine converts the RTL for a variable or parameter
8419 (resident in memory) into an equivalent Dwarf representation of a
8420 mechanism for getting the address of that same variable onto the top of a
8421 hypothetical "address evaluation" stack.
8423 When creating memory location descriptors, we are effectively transforming
8424 the RTL for a memory-resident object into its Dwarf postfix expression
8425 equivalent. This routine recursively descends an RTL tree, turning
8426 it into Dwarf postfix code as it goes.
8428 MODE is the mode of the memory reference, needed to handle some
8429 autoincrement addressing modes.
8431 Return 0 if we can't represent the location. */
8433 static dw_loc_descr_ref
8434 mem_loc_descriptor (rtl, mode)
8435 rtx rtl;
8436 enum machine_mode mode;
8438 dw_loc_descr_ref mem_loc_result = NULL;
8440 /* Note that for a dynamically sized array, the location we will generate a
8441 description of here will be the lowest numbered location which is
8442 actually within the array. That's *not* necessarily the same as the
8443 zeroth element of the array. */
8445 rtl = (*targetm.delegitimize_address) (rtl);
8447 switch (GET_CODE (rtl))
8449 case POST_INC:
8450 case POST_DEC:
8451 case POST_MODIFY:
8452 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8453 just fall into the SUBREG code. */
8455 /* ... fall through ... */
8457 case SUBREG:
8458 /* The case of a subreg may arise when we have a local (register)
8459 variable or a formal (register) parameter which doesn't quite fill
8460 up an entire register. For now, just assume that it is
8461 legitimate to make the Dwarf info refer to the whole register which
8462 contains the given subreg. */
8463 rtl = SUBREG_REG (rtl);
8465 /* ... fall through ... */
8467 case REG:
8468 /* Whenever a register number forms a part of the description of the
8469 method for calculating the (dynamic) address of a memory resident
8470 object, DWARF rules require the register number be referred to as
8471 a "base register". This distinction is not based in any way upon
8472 what category of register the hardware believes the given register
8473 belongs to. This is strictly DWARF terminology we're dealing with
8474 here. Note that in cases where the location of a memory-resident
8475 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8476 OP_CONST (0)) the actual DWARF location descriptor that we generate
8477 may just be OP_BASEREG (basereg). This may look deceptively like
8478 the object in question was allocated to a register (rather than in
8479 memory) so DWARF consumers need to be aware of the subtle
8480 distinction between OP_REG and OP_BASEREG. */
8481 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8482 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
8483 break;
8485 case MEM:
8486 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8487 if (mem_loc_result != 0)
8488 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8489 break;
8491 case LO_SUM:
8492 rtl = XEXP (rtl, 1);
8494 /* ... fall through ... */
8496 case LABEL_REF:
8497 /* Some ports can transform a symbol ref into a label ref, because
8498 the symbol ref is too far away and has to be dumped into a constant
8499 pool. */
8500 case CONST:
8501 case SYMBOL_REF:
8502 /* Alternatively, the symbol in the constant pool might be referenced
8503 by a different symbol. */
8504 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8506 bool marked;
8507 rtx tmp = get_pool_constant_mark (rtl, &marked);
8509 if (GET_CODE (tmp) == SYMBOL_REF)
8511 rtl = tmp;
8512 if (CONSTANT_POOL_ADDRESS_P (tmp))
8513 get_pool_constant_mark (tmp, &marked);
8514 else
8515 marked = true;
8518 /* If all references to this pool constant were optimized away,
8519 it was not output and thus we can't represent it.
8520 FIXME: might try to use DW_OP_const_value here, though
8521 DW_OP_piece complicates it. */
8522 if (!marked)
8523 return 0;
8526 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8527 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8528 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8529 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8530 break;
8532 case PRE_MODIFY:
8533 /* Extract the PLUS expression nested inside and fall into
8534 PLUS code below. */
8535 rtl = XEXP (rtl, 1);
8536 goto plus;
8538 case PRE_INC:
8539 case PRE_DEC:
8540 /* Turn these into a PLUS expression and fall into the PLUS code
8541 below. */
8542 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8543 GEN_INT (GET_CODE (rtl) == PRE_INC
8544 ? GET_MODE_UNIT_SIZE (mode)
8545 : -GET_MODE_UNIT_SIZE (mode)));
8547 /* ... fall through ... */
8549 case PLUS:
8550 plus:
8551 if (is_based_loc (rtl))
8552 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8553 INTVAL (XEXP (rtl, 1)));
8554 else
8556 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8557 if (mem_loc_result == 0)
8558 break;
8560 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8561 && INTVAL (XEXP (rtl, 1)) >= 0)
8562 add_loc_descr (&mem_loc_result,
8563 new_loc_descr (DW_OP_plus_uconst,
8564 INTVAL (XEXP (rtl, 1)), 0));
8565 else
8567 add_loc_descr (&mem_loc_result,
8568 mem_loc_descriptor (XEXP (rtl, 1), mode));
8569 add_loc_descr (&mem_loc_result,
8570 new_loc_descr (DW_OP_plus, 0, 0));
8573 break;
8575 case MULT:
8577 /* If a pseudo-reg is optimized away, it is possible for it to
8578 be replaced with a MEM containing a multiply. */
8579 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8580 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8582 if (op0 == 0 || op1 == 0)
8583 break;
8585 mem_loc_result = op0;
8586 add_loc_descr (&mem_loc_result, op1);
8587 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8588 break;
8591 case CONST_INT:
8592 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8593 break;
8595 case ADDRESSOF:
8596 /* If this is a MEM, return its address. Otherwise, we can't
8597 represent this. */
8598 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8599 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8600 else
8601 return 0;
8603 default:
8604 abort ();
8607 return mem_loc_result;
8610 /* Return a descriptor that describes the concatenation of two locations.
8611 This is typically a complex variable. */
8613 static dw_loc_descr_ref
8614 concat_loc_descriptor (x0, x1)
8615 rtx x0, x1;
8617 dw_loc_descr_ref cc_loc_result = NULL;
8618 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8619 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8621 if (x0_ref == 0 || x1_ref == 0)
8622 return 0;
8624 cc_loc_result = x0_ref;
8625 add_loc_descr (&cc_loc_result,
8626 new_loc_descr (DW_OP_piece,
8627 GET_MODE_SIZE (GET_MODE (x0)), 0));
8629 add_loc_descr (&cc_loc_result, x1_ref);
8630 add_loc_descr (&cc_loc_result,
8631 new_loc_descr (DW_OP_piece,
8632 GET_MODE_SIZE (GET_MODE (x1)), 0));
8634 return cc_loc_result;
8637 /* Output a proper Dwarf location descriptor for a variable or parameter
8638 which is either allocated in a register or in a memory location. For a
8639 register, we just generate an OP_REG and the register number. For a
8640 memory location we provide a Dwarf postfix expression describing how to
8641 generate the (dynamic) address of the object onto the address stack.
8643 If we don't know how to describe it, return 0. */
8645 static dw_loc_descr_ref
8646 loc_descriptor (rtl)
8647 rtx rtl;
8649 dw_loc_descr_ref loc_result = NULL;
8651 switch (GET_CODE (rtl))
8653 case SUBREG:
8654 /* The case of a subreg may arise when we have a local (register)
8655 variable or a formal (register) parameter which doesn't quite fill
8656 up an entire register. For now, just assume that it is
8657 legitimate to make the Dwarf info refer to the whole register which
8658 contains the given subreg. */
8659 rtl = SUBREG_REG (rtl);
8661 /* ... fall through ... */
8663 case REG:
8664 loc_result = reg_loc_descriptor (rtl);
8665 break;
8667 case MEM:
8668 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8669 break;
8671 case CONCAT:
8672 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8673 break;
8675 default:
8676 abort ();
8679 return loc_result;
8682 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8683 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8684 looking for an address. Otherwise, we return a value. If we can't make a
8685 descriptor, return 0. */
8687 static dw_loc_descr_ref
8688 loc_descriptor_from_tree (loc, addressp)
8689 tree loc;
8690 int addressp;
8692 dw_loc_descr_ref ret, ret1;
8693 int indirect_p = 0;
8694 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8695 enum dwarf_location_atom op;
8697 /* ??? Most of the time we do not take proper care for sign/zero
8698 extending the values properly. Hopefully this won't be a real
8699 problem... */
8701 switch (TREE_CODE (loc))
8703 case ERROR_MARK:
8704 return 0;
8706 case WITH_RECORD_EXPR:
8707 case PLACEHOLDER_EXPR:
8708 /* This case involves extracting fields from an object to determine the
8709 position of other fields. We don't try to encode this here. The
8710 only user of this is Ada, which encodes the needed information using
8711 the names of types. */
8712 return 0;
8714 case CALL_EXPR:
8715 return 0;
8717 case ADDR_EXPR:
8718 /* We can support this only if we can look through conversions and
8719 find an INDIRECT_EXPR. */
8720 for (loc = TREE_OPERAND (loc, 0);
8721 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8722 || TREE_CODE (loc) == NON_LVALUE_EXPR
8723 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8724 || TREE_CODE (loc) == SAVE_EXPR;
8725 loc = TREE_OPERAND (loc, 0))
8728 return (TREE_CODE (loc) == INDIRECT_REF
8729 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8730 : 0);
8732 case VAR_DECL:
8733 if (DECL_THREAD_LOCAL (loc))
8735 rtx rtl;
8737 #ifndef ASM_OUTPUT_DWARF_DTPREL
8738 /* If this is not defined, we have no way to emit the data. */
8739 return 0;
8740 #endif
8742 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8743 look up addresses of objects in the current module. */
8744 if (DECL_EXTERNAL (loc))
8745 return 0;
8747 rtl = rtl_for_decl_location (loc);
8748 if (rtl == NULL_RTX)
8749 return 0;
8751 if (GET_CODE (rtl) != MEM)
8752 return 0;
8753 rtl = XEXP (rtl, 0);
8754 if (! CONSTANT_P (rtl))
8755 return 0;
8757 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8758 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8759 ret->dw_loc_oprnd1.v.val_addr = rtl;
8761 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8762 add_loc_descr (&ret, ret1);
8764 indirect_p = 1;
8765 break;
8767 /* FALLTHRU */
8769 case PARM_DECL:
8771 rtx rtl = rtl_for_decl_location (loc);
8773 if (rtl == NULL_RTX)
8774 return 0;
8775 else if (CONSTANT_P (rtl))
8777 ret = new_loc_descr (DW_OP_addr, 0, 0);
8778 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8779 ret->dw_loc_oprnd1.v.val_addr = rtl;
8780 indirect_p = 1;
8782 else
8784 enum machine_mode mode = GET_MODE (rtl);
8786 if (GET_CODE (rtl) == MEM)
8788 indirect_p = 1;
8789 rtl = XEXP (rtl, 0);
8792 ret = mem_loc_descriptor (rtl, mode);
8795 break;
8797 case INDIRECT_REF:
8798 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8799 indirect_p = 1;
8800 break;
8802 case COMPOUND_EXPR:
8803 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8805 case NOP_EXPR:
8806 case CONVERT_EXPR:
8807 case NON_LVALUE_EXPR:
8808 case VIEW_CONVERT_EXPR:
8809 case SAVE_EXPR:
8810 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8812 case COMPONENT_REF:
8813 case BIT_FIELD_REF:
8814 case ARRAY_REF:
8815 case ARRAY_RANGE_REF:
8817 tree obj, offset;
8818 HOST_WIDE_INT bitsize, bitpos, bytepos;
8819 enum machine_mode mode;
8820 int volatilep;
8822 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8823 &unsignedp, &volatilep);
8825 if (obj == loc)
8826 return 0;
8828 ret = loc_descriptor_from_tree (obj, 1);
8829 if (ret == 0
8830 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8831 return 0;
8833 if (offset != NULL_TREE)
8835 /* Variable offset. */
8836 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8837 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8840 if (!addressp)
8841 indirect_p = 1;
8843 bytepos = bitpos / BITS_PER_UNIT;
8844 if (bytepos > 0)
8845 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8846 else if (bytepos < 0)
8848 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8849 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8851 break;
8854 case INTEGER_CST:
8855 if (host_integerp (loc, 0))
8856 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8857 else
8858 return 0;
8859 break;
8861 case TRUTH_AND_EXPR:
8862 case TRUTH_ANDIF_EXPR:
8863 case BIT_AND_EXPR:
8864 op = DW_OP_and;
8865 goto do_binop;
8867 case TRUTH_XOR_EXPR:
8868 case BIT_XOR_EXPR:
8869 op = DW_OP_xor;
8870 goto do_binop;
8872 case TRUTH_OR_EXPR:
8873 case TRUTH_ORIF_EXPR:
8874 case BIT_IOR_EXPR:
8875 op = DW_OP_or;
8876 goto do_binop;
8878 case FLOOR_DIV_EXPR:
8879 case CEIL_DIV_EXPR:
8880 case ROUND_DIV_EXPR:
8881 case TRUNC_DIV_EXPR:
8882 op = DW_OP_div;
8883 goto do_binop;
8885 case MINUS_EXPR:
8886 op = DW_OP_minus;
8887 goto do_binop;
8889 case FLOOR_MOD_EXPR:
8890 case CEIL_MOD_EXPR:
8891 case ROUND_MOD_EXPR:
8892 case TRUNC_MOD_EXPR:
8893 op = DW_OP_mod;
8894 goto do_binop;
8896 case MULT_EXPR:
8897 op = DW_OP_mul;
8898 goto do_binop;
8900 case LSHIFT_EXPR:
8901 op = DW_OP_shl;
8902 goto do_binop;
8904 case RSHIFT_EXPR:
8905 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8906 goto do_binop;
8908 case PLUS_EXPR:
8909 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8910 && host_integerp (TREE_OPERAND (loc, 1), 0))
8912 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8913 if (ret == 0)
8914 return 0;
8916 add_loc_descr (&ret,
8917 new_loc_descr (DW_OP_plus_uconst,
8918 tree_low_cst (TREE_OPERAND (loc, 1),
8920 0));
8921 break;
8924 op = DW_OP_plus;
8925 goto do_binop;
8927 case LE_EXPR:
8928 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8929 return 0;
8931 op = DW_OP_le;
8932 goto do_binop;
8934 case GE_EXPR:
8935 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8936 return 0;
8938 op = DW_OP_ge;
8939 goto do_binop;
8941 case LT_EXPR:
8942 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8943 return 0;
8945 op = DW_OP_lt;
8946 goto do_binop;
8948 case GT_EXPR:
8949 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8950 return 0;
8952 op = DW_OP_gt;
8953 goto do_binop;
8955 case EQ_EXPR:
8956 op = DW_OP_eq;
8957 goto do_binop;
8959 case NE_EXPR:
8960 op = DW_OP_ne;
8961 goto do_binop;
8963 do_binop:
8964 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8965 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8966 if (ret == 0 || ret1 == 0)
8967 return 0;
8969 add_loc_descr (&ret, ret1);
8970 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8971 break;
8973 case TRUTH_NOT_EXPR:
8974 case BIT_NOT_EXPR:
8975 op = DW_OP_not;
8976 goto do_unop;
8978 case ABS_EXPR:
8979 op = DW_OP_abs;
8980 goto do_unop;
8982 case NEGATE_EXPR:
8983 op = DW_OP_neg;
8984 goto do_unop;
8986 do_unop:
8987 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8988 if (ret == 0)
8989 return 0;
8991 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8992 break;
8994 case MAX_EXPR:
8995 loc = build (COND_EXPR, TREE_TYPE (loc),
8996 build (LT_EXPR, integer_type_node,
8997 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8998 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9000 /* ... fall through ... */
9002 case COND_EXPR:
9004 dw_loc_descr_ref lhs
9005 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
9006 dw_loc_descr_ref rhs
9007 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
9008 dw_loc_descr_ref bra_node, jump_node, tmp;
9010 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
9011 if (ret == 0 || lhs == 0 || rhs == 0)
9012 return 0;
9014 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9015 add_loc_descr (&ret, bra_node);
9017 add_loc_descr (&ret, rhs);
9018 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9019 add_loc_descr (&ret, jump_node);
9021 add_loc_descr (&ret, lhs);
9022 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9023 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9025 /* ??? Need a node to point the skip at. Use a nop. */
9026 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9027 add_loc_descr (&ret, tmp);
9028 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9029 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9031 break;
9033 default:
9034 abort ();
9037 /* Show if we can't fill the request for an address. */
9038 if (addressp && indirect_p == 0)
9039 return 0;
9041 /* If we've got an address and don't want one, dereference. */
9042 if (!addressp && indirect_p > 0)
9044 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9046 if (size > DWARF2_ADDR_SIZE || size == -1)
9047 return 0;
9048 else if (size == DWARF2_ADDR_SIZE)
9049 op = DW_OP_deref;
9050 else
9051 op = DW_OP_deref_size;
9053 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9056 return ret;
9059 /* Given a value, round it up to the lowest multiple of `boundary'
9060 which is not less than the value itself. */
9062 static inline HOST_WIDE_INT
9063 ceiling (value, boundary)
9064 HOST_WIDE_INT value;
9065 unsigned int boundary;
9067 return (((value + boundary - 1) / boundary) * boundary);
9070 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9071 pointer to the declared type for the relevant field variable, or return
9072 `integer_type_node' if the given node turns out to be an
9073 ERROR_MARK node. */
9075 static inline tree
9076 field_type (decl)
9077 tree decl;
9079 tree type;
9081 if (TREE_CODE (decl) == ERROR_MARK)
9082 return integer_type_node;
9084 type = DECL_BIT_FIELD_TYPE (decl);
9085 if (type == NULL_TREE)
9086 type = TREE_TYPE (decl);
9088 return type;
9091 /* Given a pointer to a tree node, return the alignment in bits for
9092 it, or else return BITS_PER_WORD if the node actually turns out to
9093 be an ERROR_MARK node. */
9095 static inline unsigned
9096 simple_type_align_in_bits (type)
9097 tree type;
9099 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9102 static inline unsigned
9103 simple_decl_align_in_bits (decl)
9104 tree decl;
9106 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9109 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9110 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9111 or return 0 if we are unable to determine what that offset is, either
9112 because the argument turns out to be a pointer to an ERROR_MARK node, or
9113 because the offset is actually variable. (We can't handle the latter case
9114 just yet). */
9116 static HOST_WIDE_INT
9117 field_byte_offset (decl)
9118 tree decl;
9120 unsigned int type_align_in_bits;
9121 unsigned int decl_align_in_bits;
9122 unsigned HOST_WIDE_INT type_size_in_bits;
9123 HOST_WIDE_INT object_offset_in_bits;
9124 tree type;
9125 tree field_size_tree;
9126 HOST_WIDE_INT bitpos_int;
9127 HOST_WIDE_INT deepest_bitpos;
9128 unsigned HOST_WIDE_INT field_size_in_bits;
9130 if (TREE_CODE (decl) == ERROR_MARK)
9131 return 0;
9132 else if (TREE_CODE (decl) != FIELD_DECL)
9133 abort ();
9135 type = field_type (decl);
9136 field_size_tree = DECL_SIZE (decl);
9138 /* The size could be unspecified if there was an error, or for
9139 a flexible array member. */
9140 if (! field_size_tree)
9141 field_size_tree = bitsize_zero_node;
9143 /* We cannot yet cope with fields whose positions are variable, so
9144 for now, when we see such things, we simply return 0. Someday, we may
9145 be able to handle such cases, but it will be damn difficult. */
9146 if (! host_integerp (bit_position (decl), 0))
9147 return 0;
9149 bitpos_int = int_bit_position (decl);
9151 /* If we don't know the size of the field, pretend it's a full word. */
9152 if (host_integerp (field_size_tree, 1))
9153 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9154 else
9155 field_size_in_bits = BITS_PER_WORD;
9157 type_size_in_bits = simple_type_size_in_bits (type);
9158 type_align_in_bits = simple_type_align_in_bits (type);
9159 decl_align_in_bits = simple_decl_align_in_bits (decl);
9161 /* The GCC front-end doesn't make any attempt to keep track of the starting
9162 bit offset (relative to the start of the containing structure type) of the
9163 hypothetical "containing object" for a bit-field. Thus, when computing
9164 the byte offset value for the start of the "containing object" of a
9165 bit-field, we must deduce this information on our own. This can be rather
9166 tricky to do in some cases. For example, handling the following structure
9167 type definition when compiling for an i386/i486 target (which only aligns
9168 long long's to 32-bit boundaries) can be very tricky:
9170 struct S { int field1; long long field2:31; };
9172 Fortunately, there is a simple rule-of-thumb which can be used in such
9173 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9174 structure shown above. It decides to do this based upon one simple rule
9175 for bit-field allocation. GCC allocates each "containing object" for each
9176 bit-field at the first (i.e. lowest addressed) legitimate alignment
9177 boundary (based upon the required minimum alignment for the declared type
9178 of the field) which it can possibly use, subject to the condition that
9179 there is still enough available space remaining in the containing object
9180 (when allocated at the selected point) to fully accommodate all of the
9181 bits of the bit-field itself.
9183 This simple rule makes it obvious why GCC allocates 8 bytes for each
9184 object of the structure type shown above. When looking for a place to
9185 allocate the "containing object" for `field2', the compiler simply tries
9186 to allocate a 64-bit "containing object" at each successive 32-bit
9187 boundary (starting at zero) until it finds a place to allocate that 64-
9188 bit field such that at least 31 contiguous (and previously unallocated)
9189 bits remain within that selected 64 bit field. (As it turns out, for the
9190 example above, the compiler finds it is OK to allocate the "containing
9191 object" 64-bit field at bit-offset zero within the structure type.)
9193 Here we attempt to work backwards from the limited set of facts we're
9194 given, and we try to deduce from those facts, where GCC must have believed
9195 that the containing object started (within the structure type). The value
9196 we deduce is then used (by the callers of this routine) to generate
9197 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9198 and, in the case of DW_AT_location, regular fields as well). */
9200 /* Figure out the bit-distance from the start of the structure to the
9201 "deepest" bit of the bit-field. */
9202 deepest_bitpos = bitpos_int + field_size_in_bits;
9204 /* This is the tricky part. Use some fancy footwork to deduce where the
9205 lowest addressed bit of the containing object must be. */
9206 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9208 /* Round up to type_align by default. This works best for bitfields. */
9209 object_offset_in_bits += type_align_in_bits - 1;
9210 object_offset_in_bits /= type_align_in_bits;
9211 object_offset_in_bits *= type_align_in_bits;
9213 if (object_offset_in_bits > bitpos_int)
9215 /* Sigh, the decl must be packed. */
9216 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9218 /* Round up to decl_align instead. */
9219 object_offset_in_bits += decl_align_in_bits - 1;
9220 object_offset_in_bits /= decl_align_in_bits;
9221 object_offset_in_bits *= decl_align_in_bits;
9224 return object_offset_in_bits / BITS_PER_UNIT;
9227 /* The following routines define various Dwarf attributes and any data
9228 associated with them. */
9230 /* Add a location description attribute value to a DIE.
9232 This emits location attributes suitable for whole variables and
9233 whole parameters. Note that the location attributes for struct fields are
9234 generated by the routine `data_member_location_attribute' below. */
9236 static inline void
9237 add_AT_location_description (die, attr_kind, descr)
9238 dw_die_ref die;
9239 enum dwarf_attribute attr_kind;
9240 dw_loc_descr_ref descr;
9242 if (descr != 0)
9243 add_AT_loc (die, attr_kind, descr);
9246 /* Attach the specialized form of location attribute used for data members of
9247 struct and union types. In the special case of a FIELD_DECL node which
9248 represents a bit-field, the "offset" part of this special location
9249 descriptor must indicate the distance in bytes from the lowest-addressed
9250 byte of the containing struct or union type to the lowest-addressed byte of
9251 the "containing object" for the bit-field. (See the `field_byte_offset'
9252 function above).
9254 For any given bit-field, the "containing object" is a hypothetical object
9255 (of some integral or enum type) within which the given bit-field lives. The
9256 type of this hypothetical "containing object" is always the same as the
9257 declared type of the individual bit-field itself (for GCC anyway... the
9258 DWARF spec doesn't actually mandate this). Note that it is the size (in
9259 bytes) of the hypothetical "containing object" which will be given in the
9260 DW_AT_byte_size attribute for this bit-field. (See the
9261 `byte_size_attribute' function below.) It is also used when calculating the
9262 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9263 function below.) */
9265 static void
9266 add_data_member_location_attribute (die, decl)
9267 dw_die_ref die;
9268 tree decl;
9270 long offset;
9271 dw_loc_descr_ref loc_descr = 0;
9273 if (TREE_CODE (decl) == TREE_VEC)
9275 /* We're working on the TAG_inheritance for a base class. */
9276 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9278 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9279 aren't at a fixed offset from all (sub)objects of the same
9280 type. We need to extract the appropriate offset from our
9281 vtable. The following dwarf expression means
9283 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9285 This is specific to the V3 ABI, of course. */
9287 dw_loc_descr_ref tmp;
9289 /* Make a copy of the object address. */
9290 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9291 add_loc_descr (&loc_descr, tmp);
9293 /* Extract the vtable address. */
9294 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9295 add_loc_descr (&loc_descr, tmp);
9297 /* Calculate the address of the offset. */
9298 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9299 if (offset >= 0)
9300 abort ();
9302 tmp = int_loc_descriptor (-offset);
9303 add_loc_descr (&loc_descr, tmp);
9304 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9305 add_loc_descr (&loc_descr, tmp);
9307 /* Extract the offset. */
9308 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9309 add_loc_descr (&loc_descr, tmp);
9311 /* Add it to the object address. */
9312 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9313 add_loc_descr (&loc_descr, tmp);
9315 else
9316 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9318 else
9319 offset = field_byte_offset (decl);
9321 if (! loc_descr)
9323 enum dwarf_location_atom op;
9325 /* The DWARF2 standard says that we should assume that the structure
9326 address is already on the stack, so we can specify a structure field
9327 address by using DW_OP_plus_uconst. */
9329 #ifdef MIPS_DEBUGGING_INFO
9330 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9331 operator correctly. It works only if we leave the offset on the
9332 stack. */
9333 op = DW_OP_constu;
9334 #else
9335 op = DW_OP_plus_uconst;
9336 #endif
9338 loc_descr = new_loc_descr (op, offset, 0);
9341 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9344 /* Attach an DW_AT_const_value attribute for a variable or a parameter which
9345 does not have a "location" either in memory or in a register. These
9346 things can arise in GNU C when a constant is passed as an actual parameter
9347 to an inlined function. They can also arise in C++ where declared
9348 constants do not necessarily get memory "homes". */
9350 static void
9351 add_const_value_attribute (die, rtl)
9352 dw_die_ref die;
9353 rtx rtl;
9355 switch (GET_CODE (rtl))
9357 case CONST_INT:
9358 /* Note that a CONST_INT rtx could represent either an integer
9359 or a floating-point constant. A CONST_INT is used whenever
9360 the constant will fit into a single word. In all such
9361 cases, the original mode of the constant value is wiped
9362 out, and the CONST_INT rtx is assigned VOIDmode. */
9364 HOST_WIDE_INT val = INTVAL (rtl);
9366 /* ??? We really should be using HOST_WIDE_INT throughout. */
9367 if (val < 0 && (long) val == val)
9368 add_AT_int (die, DW_AT_const_value, (long) val);
9369 else if ((unsigned long) val == (unsigned HOST_WIDE_INT) val)
9370 add_AT_unsigned (die, DW_AT_const_value, (unsigned long) val);
9371 else
9373 #if HOST_BITS_PER_LONG * 2 == HOST_BITS_PER_WIDE_INT
9374 add_AT_long_long (die, DW_AT_const_value,
9375 val >> HOST_BITS_PER_LONG, val);
9376 #else
9377 abort ();
9378 #endif
9381 break;
9383 case CONST_DOUBLE:
9384 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9385 floating-point constant. A CONST_DOUBLE is used whenever the
9386 constant requires more than one word in order to be adequately
9387 represented. We output CONST_DOUBLEs as blocks. */
9389 enum machine_mode mode = GET_MODE (rtl);
9391 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9393 unsigned length = GET_MODE_SIZE (mode) / 4;
9394 long *array = (long *) ggc_alloc (sizeof (long) * length);
9395 REAL_VALUE_TYPE rv;
9397 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9398 switch (mode)
9400 case SFmode:
9401 REAL_VALUE_TO_TARGET_SINGLE (rv, array[0]);
9402 break;
9404 case DFmode:
9405 REAL_VALUE_TO_TARGET_DOUBLE (rv, array);
9406 break;
9408 case XFmode:
9409 case TFmode:
9410 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, array);
9411 break;
9413 default:
9414 abort ();
9417 add_AT_float (die, DW_AT_const_value, length, array);
9419 else
9421 /* ??? We really should be using HOST_WIDE_INT throughout. */
9422 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9423 abort ();
9425 add_AT_long_long (die, DW_AT_const_value,
9426 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9429 break;
9431 case CONST_STRING:
9432 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9433 break;
9435 case SYMBOL_REF:
9436 case LABEL_REF:
9437 case CONST:
9438 add_AT_addr (die, DW_AT_const_value, rtl);
9439 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9440 break;
9442 case PLUS:
9443 /* In cases where an inlined instance of an inline function is passed
9444 the address of an `auto' variable (which is local to the caller) we
9445 can get a situation where the DECL_RTL of the artificial local
9446 variable (for the inlining) which acts as a stand-in for the
9447 corresponding formal parameter (of the inline function) will look
9448 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9449 exactly a compile-time constant expression, but it isn't the address
9450 of the (artificial) local variable either. Rather, it represents the
9451 *value* which the artificial local variable always has during its
9452 lifetime. We currently have no way to represent such quasi-constant
9453 values in Dwarf, so for now we just punt and generate nothing. */
9454 break;
9456 default:
9457 /* No other kinds of rtx should be possible here. */
9458 abort ();
9463 static rtx
9464 rtl_for_decl_location (decl)
9465 tree decl;
9467 rtx rtl;
9469 /* Here we have to decide where we are going to say the parameter "lives"
9470 (as far as the debugger is concerned). We only have a couple of
9471 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9473 DECL_RTL normally indicates where the parameter lives during most of the
9474 activation of the function. If optimization is enabled however, this
9475 could be either NULL or else a pseudo-reg. Both of those cases indicate
9476 that the parameter doesn't really live anywhere (as far as the code
9477 generation parts of GCC are concerned) during most of the function's
9478 activation. That will happen (for example) if the parameter is never
9479 referenced within the function.
9481 We could just generate a location descriptor here for all non-NULL
9482 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9483 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9484 where DECL_RTL is NULL or is a pseudo-reg.
9486 Note however that we can only get away with using DECL_INCOMING_RTL as
9487 a backup substitute for DECL_RTL in certain limited cases. In cases
9488 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9489 we can be sure that the parameter was passed using the same type as it is
9490 declared to have within the function, and that its DECL_INCOMING_RTL
9491 points us to a place where a value of that type is passed.
9493 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9494 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9495 because in these cases DECL_INCOMING_RTL points us to a value of some
9496 type which is *different* from the type of the parameter itself. Thus,
9497 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9498 such cases, the debugger would end up (for example) trying to fetch a
9499 `float' from a place which actually contains the first part of a
9500 `double'. That would lead to really incorrect and confusing
9501 output at debug-time.
9503 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9504 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9505 are a couple of exceptions however. On little-endian machines we can
9506 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9507 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9508 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9509 when (on a little-endian machine) a non-prototyped function has a
9510 parameter declared to be of type `short' or `char'. In such cases,
9511 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9512 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9513 passed `int' value. If the debugger then uses that address to fetch
9514 a `short' or a `char' (on a little-endian machine) the result will be
9515 the correct data, so we allow for such exceptional cases below.
9517 Note that our goal here is to describe the place where the given formal
9518 parameter lives during most of the function's activation (i.e. between the
9519 end of the prologue and the start of the epilogue). We'll do that as best
9520 as we can. Note however that if the given formal parameter is modified
9521 sometime during the execution of the function, then a stack backtrace (at
9522 debug-time) will show the function as having been called with the *new*
9523 value rather than the value which was originally passed in. This happens
9524 rarely enough that it is not a major problem, but it *is* a problem, and
9525 I'd like to fix it.
9527 A future version of dwarf2out.c may generate two additional attributes for
9528 any given DW_TAG_formal_parameter DIE which will describe the "passed
9529 type" and the "passed location" for the given formal parameter in addition
9530 to the attributes we now generate to indicate the "declared type" and the
9531 "active location" for each parameter. This additional set of attributes
9532 could be used by debuggers for stack backtraces. Separately, note that
9533 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9534 This happens (for example) for inlined-instances of inline function formal
9535 parameters which are never referenced. This really shouldn't be
9536 happening. All PARM_DECL nodes should get valid non-NULL
9537 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9538 values for inlined instances of inline function parameters, so when we see
9539 such cases, we are just out-of-luck for the time being (until integrate.c
9540 gets fixed). */
9542 /* Use DECL_RTL as the "location" unless we find something better. */
9543 rtl = DECL_RTL_IF_SET (decl);
9545 /* When generating abstract instances, ignore everything except
9546 constants, symbols living in memory, and symbols living in
9547 fixed registers. */
9548 if (! reload_completed)
9550 if (rtl
9551 && (CONSTANT_P (rtl)
9552 || (GET_CODE (rtl) == MEM
9553 && CONSTANT_P (XEXP (rtl, 0)))
9554 || (GET_CODE (rtl) == REG
9555 && TREE_CODE (decl) == VAR_DECL
9556 && TREE_STATIC (decl))))
9558 rtl = (*targetm.delegitimize_address) (rtl);
9559 return rtl;
9561 rtl = NULL_RTX;
9563 else if (TREE_CODE (decl) == PARM_DECL)
9565 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9567 tree declared_type = type_main_variant (TREE_TYPE (decl));
9568 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9570 /* This decl represents a formal parameter which was optimized out.
9571 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9572 all cases where (rtl == NULL_RTX) just below. */
9573 if (declared_type == passed_type)
9574 rtl = DECL_INCOMING_RTL (decl);
9575 else if (! BYTES_BIG_ENDIAN
9576 && TREE_CODE (declared_type) == INTEGER_TYPE
9577 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9578 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9579 rtl = DECL_INCOMING_RTL (decl);
9582 /* If the parm was passed in registers, but lives on the stack, then
9583 make a big endian correction if the mode of the type of the
9584 parameter is not the same as the mode of the rtl. */
9585 /* ??? This is the same series of checks that are made in dbxout.c before
9586 we reach the big endian correction code there. It isn't clear if all
9587 of these checks are necessary here, but keeping them all is the safe
9588 thing to do. */
9589 else if (GET_CODE (rtl) == MEM
9590 && XEXP (rtl, 0) != const0_rtx
9591 && ! CONSTANT_P (XEXP (rtl, 0))
9592 /* Not passed in memory. */
9593 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9594 /* Not passed by invisible reference. */
9595 && (GET_CODE (XEXP (rtl, 0)) != REG
9596 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9597 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9598 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9599 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9600 #endif
9602 /* Big endian correction check. */
9603 && BYTES_BIG_ENDIAN
9604 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9605 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9606 < UNITS_PER_WORD))
9608 int offset = (UNITS_PER_WORD
9609 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9611 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9612 plus_constant (XEXP (rtl, 0), offset));
9616 if (rtl != NULL_RTX)
9618 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9619 #ifdef LEAF_REG_REMAP
9620 if (current_function_uses_only_leaf_regs)
9621 leaf_renumber_regs_insn (rtl);
9622 #endif
9625 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9626 and will have been substituted directly into all expressions that use it.
9627 C does not have such a concept, but C++ and other languages do. */
9628 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9630 /* If a variable is initialized with a string constant without embedded
9631 zeros, build CONST_STRING. */
9632 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9633 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9635 tree arrtype = TREE_TYPE (decl);
9636 tree enttype = TREE_TYPE (arrtype);
9637 tree domain = TYPE_DOMAIN (arrtype);
9638 tree init = DECL_INITIAL (decl);
9639 enum machine_mode mode = TYPE_MODE (enttype);
9641 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9642 && domain
9643 && integer_zerop (TYPE_MIN_VALUE (domain))
9644 && compare_tree_int (TYPE_MAX_VALUE (domain),
9645 TREE_STRING_LENGTH (init) - 1) == 0
9646 && ((size_t) TREE_STRING_LENGTH (init)
9647 == strlen (TREE_STRING_POINTER (init)) + 1))
9648 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9650 /* If the initializer is something that we know will expand into an
9651 immediate RTL constant, expand it now. Expanding anything else
9652 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9653 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9654 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9656 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9657 EXPAND_INITIALIZER);
9658 /* If expand_expr returns a MEM, it wasn't immediate. */
9659 if (rtl && GET_CODE (rtl) == MEM)
9660 abort ();
9664 if (rtl)
9665 rtl = (*targetm.delegitimize_address) (rtl);
9667 /* If we don't look past the constant pool, we risk emitting a
9668 reference to a constant pool entry that isn't referenced from
9669 code, and thus is not emitted. */
9670 if (rtl)
9671 rtl = avoid_constant_pool_reference (rtl);
9673 return rtl;
9676 /* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value
9677 data attribute for a variable or a parameter. We generate the
9678 DW_AT_const_value attribute only in those cases where the given variable
9679 or parameter does not have a true "location" either in memory or in a
9680 register. This can happen (for example) when a constant is passed as an
9681 actual argument in a call to an inline function. (It's possible that
9682 these things can crop up in other ways also.) Note that one type of
9683 constant value which can be passed into an inlined function is a constant
9684 pointer. This can happen for example if an actual argument in an inlined
9685 function call evaluates to a compile-time constant address. */
9687 static void
9688 add_location_or_const_value_attribute (die, decl)
9689 dw_die_ref die;
9690 tree decl;
9692 rtx rtl;
9693 dw_loc_descr_ref descr;
9695 if (TREE_CODE (decl) == ERROR_MARK)
9696 return;
9697 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9698 abort ();
9700 rtl = rtl_for_decl_location (decl);
9701 if (rtl == NULL_RTX)
9702 return;
9704 switch (GET_CODE (rtl))
9706 case ADDRESSOF:
9707 /* The address of a variable that was optimized away;
9708 don't emit anything. */
9709 break;
9711 case CONST_INT:
9712 case CONST_DOUBLE:
9713 case CONST_STRING:
9714 case SYMBOL_REF:
9715 case LABEL_REF:
9716 case CONST:
9717 case PLUS:
9718 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9719 add_const_value_attribute (die, rtl);
9720 break;
9722 case MEM:
9723 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9725 /* Need loc_descriptor_from_tree since that's where we know
9726 how to handle TLS variables. Want the object's address
9727 since the top-level DW_AT_location assumes such. See
9728 the confusion in loc_descriptor for reference. */
9729 descr = loc_descriptor_from_tree (decl, 1);
9731 else
9733 case REG:
9734 case SUBREG:
9735 case CONCAT:
9736 descr = loc_descriptor (rtl);
9738 add_AT_location_description (die, DW_AT_location, descr);
9739 break;
9741 default:
9742 abort ();
9746 /* If we don't have a copy of this variable in memory for some reason (such
9747 as a C++ member constant that doesn't have an out-of-line definition),
9748 we should tell the debugger about the constant value. */
9750 static void
9751 tree_add_const_value_attribute (var_die, decl)
9752 dw_die_ref var_die;
9753 tree decl;
9755 tree init = DECL_INITIAL (decl);
9756 tree type = TREE_TYPE (decl);
9758 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9759 && initializer_constant_valid_p (init, type) == null_pointer_node)
9760 /* OK */;
9761 else
9762 return;
9764 switch (TREE_CODE (type))
9766 case INTEGER_TYPE:
9767 if (host_integerp (init, 0))
9768 add_AT_unsigned (var_die, DW_AT_const_value,
9769 tree_low_cst (init, 0));
9770 else
9771 add_AT_long_long (var_die, DW_AT_const_value,
9772 TREE_INT_CST_HIGH (init),
9773 TREE_INT_CST_LOW (init));
9774 break;
9776 default:;
9780 /* Generate an DW_AT_name attribute given some string value to be included as
9781 the value of the attribute. */
9783 static void
9784 add_name_attribute (die, name_string)
9785 dw_die_ref die;
9786 const char *name_string;
9788 if (name_string != NULL && *name_string != 0)
9790 if (demangle_name_func)
9791 name_string = (*demangle_name_func) (name_string);
9793 add_AT_string (die, DW_AT_name, name_string);
9797 /* Generate an DW_AT_comp_dir attribute for DIE. */
9799 static void
9800 add_comp_dir_attribute (die)
9801 dw_die_ref die;
9803 const char *wd = getpwd ();
9804 if (wd != NULL)
9805 add_AT_string (die, DW_AT_comp_dir, wd);
9808 /* Given a tree node describing an array bound (either lower or upper) output
9809 a representation for that bound. */
9811 static void
9812 add_bound_info (subrange_die, bound_attr, bound)
9813 dw_die_ref subrange_die;
9814 enum dwarf_attribute bound_attr;
9815 tree bound;
9817 switch (TREE_CODE (bound))
9819 case ERROR_MARK:
9820 return;
9822 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9823 case INTEGER_CST:
9824 if (! host_integerp (bound, 0)
9825 || (bound_attr == DW_AT_lower_bound
9826 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9827 || (is_fortran () && integer_onep (bound)))))
9828 /* use the default */
9830 else
9831 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9832 break;
9834 case CONVERT_EXPR:
9835 case NOP_EXPR:
9836 case NON_LVALUE_EXPR:
9837 case VIEW_CONVERT_EXPR:
9838 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9839 break;
9841 case SAVE_EXPR:
9842 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9843 access the upper bound values may be bogus. If they refer to a
9844 register, they may only describe how to get at these values at the
9845 points in the generated code right after they have just been
9846 computed. Worse yet, in the typical case, the upper bound values
9847 will not even *be* computed in the optimized code (though the
9848 number of elements will), so these SAVE_EXPRs are entirely
9849 bogus. In order to compensate for this fact, we check here to see
9850 if optimization is enabled, and if so, we don't add an attribute
9851 for the (unknown and unknowable) upper bound. This should not
9852 cause too much trouble for existing (stupid?) debuggers because
9853 they have to deal with empty upper bounds location descriptions
9854 anyway in order to be able to deal with incomplete array types.
9855 Of course an intelligent debugger (GDB?) should be able to
9856 comprehend that a missing upper bound specification in an array
9857 type used for a storage class `auto' local array variable
9858 indicates that the upper bound is both unknown (at compile- time)
9859 and unknowable (at run-time) due to optimization.
9861 We assume that a MEM rtx is safe because gcc wouldn't put the
9862 value there unless it was going to be used repeatedly in the
9863 function, i.e. for cleanups. */
9864 if (SAVE_EXPR_RTL (bound)
9865 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9867 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9868 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9869 rtx loc = SAVE_EXPR_RTL (bound);
9871 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9872 it references an outer function's frame. */
9873 if (GET_CODE (loc) == MEM)
9875 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9877 if (XEXP (loc, 0) != new_addr)
9878 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9881 add_AT_flag (decl_die, DW_AT_artificial, 1);
9882 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9883 add_AT_location_description (decl_die, DW_AT_location,
9884 loc_descriptor (loc));
9885 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9888 /* Else leave out the attribute. */
9889 break;
9891 case VAR_DECL:
9892 case PARM_DECL:
9894 dw_die_ref decl_die = lookup_decl_die (bound);
9896 /* ??? Can this happen, or should the variable have been bound
9897 first? Probably it can, since I imagine that we try to create
9898 the types of parameters in the order in which they exist in
9899 the list, and won't have created a forward reference to a
9900 later parameter. */
9901 if (decl_die != NULL)
9902 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9903 break;
9906 default:
9908 /* Otherwise try to create a stack operation procedure to
9909 evaluate the value of the array bound. */
9911 dw_die_ref ctx, decl_die;
9912 dw_loc_descr_ref loc;
9914 loc = loc_descriptor_from_tree (bound, 0);
9915 if (loc == NULL)
9916 break;
9918 if (current_function_decl == 0)
9919 ctx = comp_unit_die;
9920 else
9921 ctx = lookup_decl_die (current_function_decl);
9923 /* If we weren't able to find a context, it's most likely the case
9924 that we are processing the return type of the function. So
9925 make a SAVE_EXPR to point to it and have the limbo DIE code
9926 find the proper die. The save_expr function doesn't always
9927 make a SAVE_EXPR, so do it ourselves. */
9928 if (ctx == 0)
9929 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9930 current_function_decl, NULL_TREE);
9932 decl_die = new_die (DW_TAG_variable, ctx, bound);
9933 add_AT_flag (decl_die, DW_AT_artificial, 1);
9934 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9935 add_AT_loc (decl_die, DW_AT_location, loc);
9937 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9938 break;
9943 /* Note that the block of subscript information for an array type also
9944 includes information about the element type of type given array type. */
9946 static void
9947 add_subscript_info (type_die, type)
9948 dw_die_ref type_die;
9949 tree type;
9951 #ifndef MIPS_DEBUGGING_INFO
9952 unsigned dimension_number;
9953 #endif
9954 tree lower, upper;
9955 dw_die_ref subrange_die;
9957 /* The GNU compilers represent multidimensional array types as sequences of
9958 one dimensional array types whose element types are themselves array
9959 types. Here we squish that down, so that each multidimensional array
9960 type gets only one array_type DIE in the Dwarf debugging info. The draft
9961 Dwarf specification say that we are allowed to do this kind of
9962 compression in C (because there is no difference between an array or
9963 arrays and a multidimensional array in C) but for other source languages
9964 (e.g. Ada) we probably shouldn't do this. */
9966 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9967 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9968 We work around this by disabling this feature. See also
9969 gen_array_type_die. */
9970 #ifndef MIPS_DEBUGGING_INFO
9971 for (dimension_number = 0;
9972 TREE_CODE (type) == ARRAY_TYPE;
9973 type = TREE_TYPE (type), dimension_number++)
9974 #endif
9976 tree domain = TYPE_DOMAIN (type);
9978 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9979 and (in GNU C only) variable bounds. Handle all three forms
9980 here. */
9981 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9982 if (domain)
9984 /* We have an array type with specified bounds. */
9985 lower = TYPE_MIN_VALUE (domain);
9986 upper = TYPE_MAX_VALUE (domain);
9988 /* define the index type. */
9989 if (TREE_TYPE (domain))
9991 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9992 TREE_TYPE field. We can't emit debug info for this
9993 because it is an unnamed integral type. */
9994 if (TREE_CODE (domain) == INTEGER_TYPE
9995 && TYPE_NAME (domain) == NULL_TREE
9996 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9997 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9999 else
10000 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10001 type_die);
10004 /* ??? If upper is NULL, the array has unspecified length,
10005 but it does have a lower bound. This happens with Fortran
10006 dimension arr(N:*)
10007 Since the debugger is definitely going to need to know N
10008 to produce useful results, go ahead and output the lower
10009 bound solo, and hope the debugger can cope. */
10011 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10012 if (upper)
10013 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10016 /* Otherwise we have an array type with an unspecified length. The
10017 DWARF-2 spec does not say how to handle this; let's just leave out the
10018 bounds. */
10022 static void
10023 add_byte_size_attribute (die, tree_node)
10024 dw_die_ref die;
10025 tree tree_node;
10027 unsigned size;
10029 switch (TREE_CODE (tree_node))
10031 case ERROR_MARK:
10032 size = 0;
10033 break;
10034 case ENUMERAL_TYPE:
10035 case RECORD_TYPE:
10036 case UNION_TYPE:
10037 case QUAL_UNION_TYPE:
10038 size = int_size_in_bytes (tree_node);
10039 break;
10040 case FIELD_DECL:
10041 /* For a data member of a struct or union, the DW_AT_byte_size is
10042 generally given as the number of bytes normally allocated for an
10043 object of the *declared* type of the member itself. This is true
10044 even for bit-fields. */
10045 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10046 break;
10047 default:
10048 abort ();
10051 /* Note that `size' might be -1 when we get to this point. If it is, that
10052 indicates that the byte size of the entity in question is variable. We
10053 have no good way of expressing this fact in Dwarf at the present time,
10054 so just let the -1 pass on through. */
10055 add_AT_unsigned (die, DW_AT_byte_size, size);
10058 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10059 which specifies the distance in bits from the highest order bit of the
10060 "containing object" for the bit-field to the highest order bit of the
10061 bit-field itself.
10063 For any given bit-field, the "containing object" is a hypothetical object
10064 (of some integral or enum type) within which the given bit-field lives. The
10065 type of this hypothetical "containing object" is always the same as the
10066 declared type of the individual bit-field itself. The determination of the
10067 exact location of the "containing object" for a bit-field is rather
10068 complicated. It's handled by the `field_byte_offset' function (above).
10070 Note that it is the size (in bytes) of the hypothetical "containing object"
10071 which will be given in the DW_AT_byte_size attribute for this bit-field.
10072 (See `byte_size_attribute' above). */
10074 static inline void
10075 add_bit_offset_attribute (die, decl)
10076 dw_die_ref die;
10077 tree decl;
10079 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10080 tree type = DECL_BIT_FIELD_TYPE (decl);
10081 HOST_WIDE_INT bitpos_int;
10082 HOST_WIDE_INT highest_order_object_bit_offset;
10083 HOST_WIDE_INT highest_order_field_bit_offset;
10084 HOST_WIDE_INT unsigned bit_offset;
10086 /* Must be a field and a bit field. */
10087 if (!type
10088 || TREE_CODE (decl) != FIELD_DECL)
10089 abort ();
10091 /* We can't yet handle bit-fields whose offsets are variable, so if we
10092 encounter such things, just return without generating any attribute
10093 whatsoever. Likewise for variable or too large size. */
10094 if (! host_integerp (bit_position (decl), 0)
10095 || ! host_integerp (DECL_SIZE (decl), 1))
10096 return;
10098 bitpos_int = int_bit_position (decl);
10100 /* Note that the bit offset is always the distance (in bits) from the
10101 highest-order bit of the "containing object" to the highest-order bit of
10102 the bit-field itself. Since the "high-order end" of any object or field
10103 is different on big-endian and little-endian machines, the computation
10104 below must take account of these differences. */
10105 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10106 highest_order_field_bit_offset = bitpos_int;
10108 if (! BYTES_BIG_ENDIAN)
10110 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10111 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10114 bit_offset
10115 = (! BYTES_BIG_ENDIAN
10116 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10117 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10119 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10122 /* For a FIELD_DECL node which represents a bit field, output an attribute
10123 which specifies the length in bits of the given field. */
10125 static inline void
10126 add_bit_size_attribute (die, decl)
10127 dw_die_ref die;
10128 tree decl;
10130 /* Must be a field and a bit field. */
10131 if (TREE_CODE (decl) != FIELD_DECL
10132 || ! DECL_BIT_FIELD_TYPE (decl))
10133 abort ();
10135 if (host_integerp (DECL_SIZE (decl), 1))
10136 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10139 /* If the compiled language is ANSI C, then add a 'prototyped'
10140 attribute, if arg types are given for the parameters of a function. */
10142 static inline void
10143 add_prototyped_attribute (die, func_type)
10144 dw_die_ref die;
10145 tree func_type;
10147 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10148 && TYPE_ARG_TYPES (func_type) != NULL)
10149 add_AT_flag (die, DW_AT_prototyped, 1);
10152 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10153 by looking in either the type declaration or object declaration
10154 equate table. */
10156 static inline void
10157 add_abstract_origin_attribute (die, origin)
10158 dw_die_ref die;
10159 tree origin;
10161 dw_die_ref origin_die = NULL;
10163 if (TREE_CODE (origin) != FUNCTION_DECL)
10165 /* We may have gotten separated from the block for the inlined
10166 function, if we're in an exception handler or some such; make
10167 sure that the abstract function has been written out.
10169 Doing this for nested functions is wrong, however; functions are
10170 distinct units, and our context might not even be inline. */
10171 tree fn = origin;
10173 if (TYPE_P (fn))
10174 fn = TYPE_STUB_DECL (fn);
10176 fn = decl_function_context (fn);
10177 if (fn)
10178 dwarf2out_abstract_function (fn);
10181 if (DECL_P (origin))
10182 origin_die = lookup_decl_die (origin);
10183 else if (TYPE_P (origin))
10184 origin_die = lookup_type_die (origin);
10186 if (origin_die == NULL)
10187 abort ();
10189 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10192 /* We do not currently support the pure_virtual attribute. */
10194 static inline void
10195 add_pure_or_virtual_attribute (die, func_decl)
10196 dw_die_ref die;
10197 tree func_decl;
10199 if (DECL_VINDEX (func_decl))
10201 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10203 if (host_integerp (DECL_VINDEX (func_decl), 0))
10204 add_AT_loc (die, DW_AT_vtable_elem_location,
10205 new_loc_descr (DW_OP_constu,
10206 tree_low_cst (DECL_VINDEX (func_decl), 0),
10207 0));
10209 /* GNU extension: Record what type this method came from originally. */
10210 if (debug_info_level > DINFO_LEVEL_TERSE)
10211 add_AT_die_ref (die, DW_AT_containing_type,
10212 lookup_type_die (DECL_CONTEXT (func_decl)));
10216 /* Add source coordinate attributes for the given decl. */
10218 static void
10219 add_src_coords_attributes (die, decl)
10220 dw_die_ref die;
10221 tree decl;
10223 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10225 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10226 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10229 /* Add an DW_AT_name attribute and source coordinate attribute for the
10230 given decl, but only if it actually has a name. */
10232 static void
10233 add_name_and_src_coords_attributes (die, decl)
10234 dw_die_ref die;
10235 tree decl;
10237 tree decl_name;
10239 decl_name = DECL_NAME (decl);
10240 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10242 add_name_attribute (die, dwarf2_name (decl, 0));
10243 if (! DECL_ARTIFICIAL (decl))
10244 add_src_coords_attributes (die, decl);
10246 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10247 && TREE_PUBLIC (decl)
10248 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10249 && !DECL_ABSTRACT (decl))
10250 add_AT_string (die, DW_AT_MIPS_linkage_name,
10251 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10254 #ifdef VMS_DEBUGGING_INFO
10255 /* Get the function's name, as described by its RTL. This may be different
10256 from the DECL_NAME name used in the source file. */
10257 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10259 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10260 XEXP (DECL_RTL (decl), 0));
10261 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10263 #endif
10266 /* Push a new declaration scope. */
10268 static void
10269 push_decl_scope (scope)
10270 tree scope;
10272 VARRAY_PUSH_TREE (decl_scope_table, scope);
10275 /* Pop a declaration scope. */
10277 static inline void
10278 pop_decl_scope ()
10280 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10281 abort ();
10283 VARRAY_POP (decl_scope_table);
10286 /* Return the DIE for the scope that immediately contains this type.
10287 Non-named types get global scope. Named types nested in other
10288 types get their containing scope if it's open, or global scope
10289 otherwise. All other types (i.e. function-local named types) get
10290 the current active scope. */
10292 static dw_die_ref
10293 scope_die_for (t, context_die)
10294 tree t;
10295 dw_die_ref context_die;
10297 dw_die_ref scope_die = NULL;
10298 tree containing_scope;
10299 int i;
10301 /* Non-types always go in the current scope. */
10302 if (! TYPE_P (t))
10303 abort ();
10305 containing_scope = TYPE_CONTEXT (t);
10307 /* Ignore namespaces for the moment. */
10308 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10309 containing_scope = NULL_TREE;
10311 /* Ignore function type "scopes" from the C frontend. They mean that
10312 a tagged type is local to a parmlist of a function declarator, but
10313 that isn't useful to DWARF. */
10314 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10315 containing_scope = NULL_TREE;
10317 if (containing_scope == NULL_TREE)
10318 scope_die = comp_unit_die;
10319 else if (TYPE_P (containing_scope))
10321 /* For types, we can just look up the appropriate DIE. But
10322 first we check to see if we're in the middle of emitting it
10323 so we know where the new DIE should go. */
10324 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10325 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10326 break;
10328 if (i < 0)
10330 if (debug_info_level > DINFO_LEVEL_TERSE
10331 && !TREE_ASM_WRITTEN (containing_scope))
10332 abort ();
10334 /* If none of the current dies are suitable, we get file scope. */
10335 scope_die = comp_unit_die;
10337 else
10338 scope_die = lookup_type_die (containing_scope);
10340 else
10341 scope_die = context_die;
10343 return scope_die;
10346 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10348 static inline int
10349 local_scope_p (context_die)
10350 dw_die_ref context_die;
10352 for (; context_die; context_die = context_die->die_parent)
10353 if (context_die->die_tag == DW_TAG_inlined_subroutine
10354 || context_die->die_tag == DW_TAG_subprogram)
10355 return 1;
10357 return 0;
10360 /* Returns nonzero if CONTEXT_DIE is a class. */
10362 static inline int
10363 class_scope_p (context_die)
10364 dw_die_ref context_die;
10366 return (context_die
10367 && (context_die->die_tag == DW_TAG_structure_type
10368 || context_die->die_tag == DW_TAG_union_type));
10371 /* Many forms of DIEs require a "type description" attribute. This
10372 routine locates the proper "type descriptor" die for the type given
10373 by 'type', and adds an DW_AT_type attribute below the given die. */
10375 static void
10376 add_type_attribute (object_die, type, decl_const, decl_volatile, context_die)
10377 dw_die_ref object_die;
10378 tree type;
10379 int decl_const;
10380 int decl_volatile;
10381 dw_die_ref context_die;
10383 enum tree_code code = TREE_CODE (type);
10384 dw_die_ref type_die = NULL;
10386 /* ??? If this type is an unnamed subrange type of an integral or
10387 floating-point type, use the inner type. This is because we have no
10388 support for unnamed types in base_type_die. This can happen if this is
10389 an Ada subrange type. Correct solution is emit a subrange type die. */
10390 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10391 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10392 type = TREE_TYPE (type), code = TREE_CODE (type);
10394 if (code == ERROR_MARK
10395 /* Handle a special case. For functions whose return type is void, we
10396 generate *no* type attribute. (Note that no object may have type
10397 `void', so this only applies to function return types). */
10398 || code == VOID_TYPE)
10399 return;
10401 type_die = modified_type_die (type,
10402 decl_const || TYPE_READONLY (type),
10403 decl_volatile || TYPE_VOLATILE (type),
10404 context_die);
10406 if (type_die != NULL)
10407 add_AT_die_ref (object_die, DW_AT_type, type_die);
10410 /* Given a tree pointer to a struct, class, union, or enum type node, return
10411 a pointer to the (string) tag name for the given type, or zero if the type
10412 was declared without a tag. */
10414 static const char *
10415 type_tag (type)
10416 tree type;
10418 const char *name = 0;
10420 if (TYPE_NAME (type) != 0)
10422 tree t = 0;
10424 /* Find the IDENTIFIER_NODE for the type name. */
10425 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10426 t = TYPE_NAME (type);
10428 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10429 a TYPE_DECL node, regardless of whether or not a `typedef' was
10430 involved. */
10431 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10432 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10433 t = DECL_NAME (TYPE_NAME (type));
10435 /* Now get the name as a string, or invent one. */
10436 if (t != 0)
10437 name = IDENTIFIER_POINTER (t);
10440 return (name == 0 || *name == '\0') ? 0 : name;
10443 /* Return the type associated with a data member, make a special check
10444 for bit field types. */
10446 static inline tree
10447 member_declared_type (member)
10448 tree member;
10450 return (DECL_BIT_FIELD_TYPE (member)
10451 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10454 /* Get the decl's label, as described by its RTL. This may be different
10455 from the DECL_NAME name used in the source file. */
10457 #if 0
10458 static const char *
10459 decl_start_label (decl)
10460 tree decl;
10462 rtx x;
10463 const char *fnname;
10465 x = DECL_RTL (decl);
10466 if (GET_CODE (x) != MEM)
10467 abort ();
10469 x = XEXP (x, 0);
10470 if (GET_CODE (x) != SYMBOL_REF)
10471 abort ();
10473 fnname = XSTR (x, 0);
10474 return fnname;
10476 #endif
10478 /* These routines generate the internal representation of the DIE's for
10479 the compilation unit. Debugging information is collected by walking
10480 the declaration trees passed in from dwarf2out_decl(). */
10482 static void
10483 gen_array_type_die (type, context_die)
10484 tree type;
10485 dw_die_ref context_die;
10487 dw_die_ref scope_die = scope_die_for (type, context_die);
10488 dw_die_ref array_die;
10489 tree element_type;
10491 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10492 the inner array type comes before the outer array type. Thus we must
10493 call gen_type_die before we call new_die. See below also. */
10494 #ifdef MIPS_DEBUGGING_INFO
10495 gen_type_die (TREE_TYPE (type), context_die);
10496 #endif
10498 array_die = new_die (DW_TAG_array_type, scope_die, type);
10499 add_name_attribute (array_die, type_tag (type));
10500 equate_type_number_to_die (type, array_die);
10502 if (TREE_CODE (type) == VECTOR_TYPE)
10504 /* The frontend feeds us a representation for the vector as a struct
10505 containing an array. Pull out the array type. */
10506 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10507 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10510 #if 0
10511 /* We default the array ordering. SDB will probably do
10512 the right things even if DW_AT_ordering is not present. It's not even
10513 an issue until we start to get into multidimensional arrays anyway. If
10514 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10515 then we'll have to put the DW_AT_ordering attribute back in. (But if
10516 and when we find out that we need to put these in, we will only do so
10517 for multidimensional arrays. */
10518 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10519 #endif
10521 #ifdef MIPS_DEBUGGING_INFO
10522 /* The SGI compilers handle arrays of unknown bound by setting
10523 AT_declaration and not emitting any subrange DIEs. */
10524 if (! TYPE_DOMAIN (type))
10525 add_AT_unsigned (array_die, DW_AT_declaration, 1);
10526 else
10527 #endif
10528 add_subscript_info (array_die, type);
10530 /* Add representation of the type of the elements of this array type. */
10531 element_type = TREE_TYPE (type);
10533 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10534 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10535 We work around this by disabling this feature. See also
10536 add_subscript_info. */
10537 #ifndef MIPS_DEBUGGING_INFO
10538 while (TREE_CODE (element_type) == ARRAY_TYPE)
10539 element_type = TREE_TYPE (element_type);
10541 gen_type_die (element_type, context_die);
10542 #endif
10544 add_type_attribute (array_die, element_type, 0, 0, context_die);
10547 static void
10548 gen_set_type_die (type, context_die)
10549 tree type;
10550 dw_die_ref context_die;
10552 dw_die_ref type_die
10553 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10555 equate_type_number_to_die (type, type_die);
10556 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10559 #if 0
10560 static void
10561 gen_entry_point_die (decl, context_die)
10562 tree decl;
10563 dw_die_ref context_die;
10565 tree origin = decl_ultimate_origin (decl);
10566 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10568 if (origin != NULL)
10569 add_abstract_origin_attribute (decl_die, origin);
10570 else
10572 add_name_and_src_coords_attributes (decl_die, decl);
10573 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10574 0, 0, context_die);
10577 if (DECL_ABSTRACT (decl))
10578 equate_decl_number_to_die (decl, decl_die);
10579 else
10580 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10582 #endif
10584 /* Walk through the list of incomplete types again, trying once more to
10585 emit full debugging info for them. */
10587 static void
10588 retry_incomplete_types ()
10590 int i;
10592 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10593 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10596 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10598 static void
10599 gen_inlined_enumeration_type_die (type, context_die)
10600 tree type;
10601 dw_die_ref context_die;
10603 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10605 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10606 be incomplete and such types are not marked. */
10607 add_abstract_origin_attribute (type_die, type);
10610 /* Generate a DIE to represent an inlined instance of a structure type. */
10612 static void
10613 gen_inlined_structure_type_die (type, context_die)
10614 tree type;
10615 dw_die_ref context_die;
10617 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10619 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10620 be incomplete and such types are not marked. */
10621 add_abstract_origin_attribute (type_die, type);
10624 /* Generate a DIE to represent an inlined instance of a union type. */
10626 static void
10627 gen_inlined_union_type_die (type, context_die)
10628 tree type;
10629 dw_die_ref context_die;
10631 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10633 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10634 be incomplete and such types are not marked. */
10635 add_abstract_origin_attribute (type_die, type);
10638 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10639 include all of the information about the enumeration values also. Each
10640 enumerated type name/value is listed as a child of the enumerated type
10641 DIE. */
10643 static void
10644 gen_enumeration_type_die (type, context_die)
10645 tree type;
10646 dw_die_ref context_die;
10648 dw_die_ref type_die = lookup_type_die (type);
10650 if (type_die == NULL)
10652 type_die = new_die (DW_TAG_enumeration_type,
10653 scope_die_for (type, context_die), type);
10654 equate_type_number_to_die (type, type_die);
10655 add_name_attribute (type_die, type_tag (type));
10657 else if (! TYPE_SIZE (type))
10658 return;
10659 else
10660 remove_AT (type_die, DW_AT_declaration);
10662 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10663 given enum type is incomplete, do not generate the DW_AT_byte_size
10664 attribute or the DW_AT_element_list attribute. */
10665 if (TYPE_SIZE (type))
10667 tree link;
10669 TREE_ASM_WRITTEN (type) = 1;
10670 add_byte_size_attribute (type_die, type);
10671 if (TYPE_STUB_DECL (type) != NULL_TREE)
10672 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10674 /* If the first reference to this type was as the return type of an
10675 inline function, then it may not have a parent. Fix this now. */
10676 if (type_die->die_parent == NULL)
10677 add_child_die (scope_die_for (type, context_die), type_die);
10679 for (link = TYPE_FIELDS (type);
10680 link != NULL; link = TREE_CHAIN (link))
10682 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10684 add_name_attribute (enum_die,
10685 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10687 if (host_integerp (TREE_VALUE (link), 0))
10689 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10690 add_AT_int (enum_die, DW_AT_const_value,
10691 tree_low_cst (TREE_VALUE (link), 0));
10692 else
10693 add_AT_unsigned (enum_die, DW_AT_const_value,
10694 tree_low_cst (TREE_VALUE (link), 0));
10698 else
10699 add_AT_flag (type_die, DW_AT_declaration, 1);
10702 /* Generate a DIE to represent either a real live formal parameter decl or to
10703 represent just the type of some formal parameter position in some function
10704 type.
10706 Note that this routine is a bit unusual because its argument may be a
10707 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10708 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10709 node. If it's the former then this function is being called to output a
10710 DIE to represent a formal parameter object (or some inlining thereof). If
10711 it's the latter, then this function is only being called to output a
10712 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10713 argument type of some subprogram type. */
10715 static dw_die_ref
10716 gen_formal_parameter_die (node, context_die)
10717 tree node;
10718 dw_die_ref context_die;
10720 dw_die_ref parm_die
10721 = new_die (DW_TAG_formal_parameter, context_die, node);
10722 tree origin;
10724 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10726 case 'd':
10727 origin = decl_ultimate_origin (node);
10728 if (origin != NULL)
10729 add_abstract_origin_attribute (parm_die, origin);
10730 else
10732 add_name_and_src_coords_attributes (parm_die, node);
10733 add_type_attribute (parm_die, TREE_TYPE (node),
10734 TREE_READONLY (node),
10735 TREE_THIS_VOLATILE (node),
10736 context_die);
10737 if (DECL_ARTIFICIAL (node))
10738 add_AT_flag (parm_die, DW_AT_artificial, 1);
10741 equate_decl_number_to_die (node, parm_die);
10742 if (! DECL_ABSTRACT (node))
10743 add_location_or_const_value_attribute (parm_die, node);
10745 break;
10747 case 't':
10748 /* We were called with some kind of a ..._TYPE node. */
10749 add_type_attribute (parm_die, node, 0, 0, context_die);
10750 break;
10752 default:
10753 abort ();
10756 return parm_die;
10759 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10760 at the end of an (ANSI prototyped) formal parameters list. */
10762 static void
10763 gen_unspecified_parameters_die (decl_or_type, context_die)
10764 tree decl_or_type;
10765 dw_die_ref context_die;
10767 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10770 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10771 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10772 parameters as specified in some function type specification (except for
10773 those which appear as part of a function *definition*). */
10775 static void
10776 gen_formal_types_die (function_or_method_type, context_die)
10777 tree function_or_method_type;
10778 dw_die_ref context_die;
10780 tree link;
10781 tree formal_type = NULL;
10782 tree first_parm_type;
10783 tree arg;
10785 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10787 arg = DECL_ARGUMENTS (function_or_method_type);
10788 function_or_method_type = TREE_TYPE (function_or_method_type);
10790 else
10791 arg = NULL_TREE;
10793 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10795 /* Make our first pass over the list of formal parameter types and output a
10796 DW_TAG_formal_parameter DIE for each one. */
10797 for (link = first_parm_type; link; )
10799 dw_die_ref parm_die;
10801 formal_type = TREE_VALUE (link);
10802 if (formal_type == void_type_node)
10803 break;
10805 /* Output a (nameless) DIE to represent the formal parameter itself. */
10806 parm_die = gen_formal_parameter_die (formal_type, context_die);
10807 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10808 && link == first_parm_type)
10809 || (arg && DECL_ARTIFICIAL (arg)))
10810 add_AT_flag (parm_die, DW_AT_artificial, 1);
10812 link = TREE_CHAIN (link);
10813 if (arg)
10814 arg = TREE_CHAIN (arg);
10817 /* If this function type has an ellipsis, add a
10818 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10819 if (formal_type != void_type_node)
10820 gen_unspecified_parameters_die (function_or_method_type, context_die);
10822 /* Make our second (and final) pass over the list of formal parameter types
10823 and output DIEs to represent those types (as necessary). */
10824 for (link = TYPE_ARG_TYPES (function_or_method_type);
10825 link && TREE_VALUE (link);
10826 link = TREE_CHAIN (link))
10827 gen_type_die (TREE_VALUE (link), context_die);
10830 /* We want to generate the DIE for TYPE so that we can generate the
10831 die for MEMBER, which has been defined; we will need to refer back
10832 to the member declaration nested within TYPE. If we're trying to
10833 generate minimal debug info for TYPE, processing TYPE won't do the
10834 trick; we need to attach the member declaration by hand. */
10836 static void
10837 gen_type_die_for_member (type, member, context_die)
10838 tree type, member;
10839 dw_die_ref context_die;
10841 gen_type_die (type, context_die);
10843 /* If we're trying to avoid duplicate debug info, we may not have
10844 emitted the member decl for this function. Emit it now. */
10845 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10846 && ! lookup_decl_die (member))
10848 if (decl_ultimate_origin (member))
10849 abort ();
10851 push_decl_scope (type);
10852 if (TREE_CODE (member) == FUNCTION_DECL)
10853 gen_subprogram_die (member, lookup_type_die (type));
10854 else
10855 gen_variable_die (member, lookup_type_die (type));
10857 pop_decl_scope ();
10861 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10862 may later generate inlined and/or out-of-line instances of. */
10864 static void
10865 dwarf2out_abstract_function (decl)
10866 tree decl;
10868 dw_die_ref old_die;
10869 tree save_fn;
10870 tree context;
10871 int was_abstract = DECL_ABSTRACT (decl);
10873 /* Make sure we have the actual abstract inline, not a clone. */
10874 decl = DECL_ORIGIN (decl);
10876 old_die = lookup_decl_die (decl);
10877 if (old_die && get_AT_unsigned (old_die, DW_AT_inline))
10878 /* We've already generated the abstract instance. */
10879 return;
10881 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10882 we don't get confused by DECL_ABSTRACT. */
10883 if (debug_info_level > DINFO_LEVEL_TERSE)
10885 context = decl_class_context (decl);
10886 if (context)
10887 gen_type_die_for_member
10888 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10891 /* Pretend we've just finished compiling this function. */
10892 save_fn = current_function_decl;
10893 current_function_decl = decl;
10895 set_decl_abstract_flags (decl, 1);
10896 dwarf2out_decl (decl);
10897 if (! was_abstract)
10898 set_decl_abstract_flags (decl, 0);
10900 current_function_decl = save_fn;
10903 /* Generate a DIE to represent a declared function (either file-scope or
10904 block-local). */
10906 static void
10907 gen_subprogram_die (decl, context_die)
10908 tree decl;
10909 dw_die_ref context_die;
10911 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10912 tree origin = decl_ultimate_origin (decl);
10913 dw_die_ref subr_die;
10914 rtx fp_reg;
10915 tree fn_arg_types;
10916 tree outer_scope;
10917 dw_die_ref old_die = lookup_decl_die (decl);
10918 int declaration = (current_function_decl != decl
10919 || class_scope_p (context_die));
10921 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10922 started to generate the abstract instance of an inline, decided to output
10923 its containing class, and proceeded to emit the declaration of the inline
10924 from the member list for the class. If so, DECLARATION takes priority;
10925 we'll get back to the abstract instance when done with the class. */
10927 /* The class-scope declaration DIE must be the primary DIE. */
10928 if (origin && declaration && class_scope_p (context_die))
10930 origin = NULL;
10931 if (old_die)
10932 abort ();
10935 if (origin != NULL)
10937 if (declaration && ! local_scope_p (context_die))
10938 abort ();
10940 /* Fixup die_parent for the abstract instance of a nested
10941 inline function. */
10942 if (old_die && old_die->die_parent == NULL)
10943 add_child_die (context_die, old_die);
10945 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10946 add_abstract_origin_attribute (subr_die, origin);
10948 else if (old_die)
10950 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10952 if (!get_AT_flag (old_die, DW_AT_declaration)
10953 /* We can have a normal definition following an inline one in the
10954 case of redefinition of GNU C extern inlines.
10955 It seems reasonable to use AT_specification in this case. */
10956 && !get_AT_unsigned (old_die, DW_AT_inline))
10958 /* ??? This can happen if there is a bug in the program, for
10959 instance, if it has duplicate function definitions. Ideally,
10960 we should detect this case and ignore it. For now, if we have
10961 already reported an error, any error at all, then assume that
10962 we got here because of an input error, not a dwarf2 bug. */
10963 if (errorcount)
10964 return;
10965 abort ();
10968 /* If the definition comes from the same place as the declaration,
10969 maybe use the old DIE. We always want the DIE for this function
10970 that has the *_pc attributes to be under comp_unit_die so the
10971 debugger can find it. We also need to do this for abstract
10972 instances of inlines, since the spec requires the out-of-line copy
10973 to have the same parent. For local class methods, this doesn't
10974 apply; we just use the old DIE. */
10975 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10976 && (DECL_ARTIFICIAL (decl)
10977 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10978 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10979 == (unsigned) DECL_SOURCE_LINE (decl)))))
10981 subr_die = old_die;
10983 /* Clear out the declaration attribute and the parm types. */
10984 remove_AT (subr_die, DW_AT_declaration);
10985 remove_children (subr_die);
10987 else
10989 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10990 add_AT_die_ref (subr_die, DW_AT_specification, old_die);
10991 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10992 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10993 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10994 != (unsigned) DECL_SOURCE_LINE (decl))
10995 add_AT_unsigned
10996 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10999 else
11001 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11003 if (TREE_PUBLIC (decl))
11004 add_AT_flag (subr_die, DW_AT_external, 1);
11006 add_name_and_src_coords_attributes (subr_die, decl);
11007 if (debug_info_level > DINFO_LEVEL_TERSE)
11009 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11010 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11011 0, 0, context_die);
11014 add_pure_or_virtual_attribute (subr_die, decl);
11015 if (DECL_ARTIFICIAL (decl))
11016 add_AT_flag (subr_die, DW_AT_artificial, 1);
11018 if (TREE_PROTECTED (decl))
11019 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11020 else if (TREE_PRIVATE (decl))
11021 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11024 if (declaration)
11026 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
11028 add_AT_flag (subr_die, DW_AT_declaration, 1);
11030 /* The first time we see a member function, it is in the context of
11031 the class to which it belongs. We make sure of this by emitting
11032 the class first. The next time is the definition, which is
11033 handled above. The two may come from the same source text. */
11034 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
11035 equate_decl_number_to_die (decl, subr_die);
11038 else if (DECL_ABSTRACT (decl))
11040 if (DECL_INLINE (decl) && !flag_no_inline)
11042 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
11043 inline functions, but not for extern inline functions.
11044 We can't get this completely correct because information
11045 about whether the function was declared inline is not
11046 saved anywhere. */
11047 if (DECL_DEFER_OUTPUT (decl))
11048 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11049 else
11050 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11052 else
11053 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11055 equate_decl_number_to_die (decl, subr_die);
11057 else if (!DECL_EXTERNAL (decl))
11059 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
11060 equate_decl_number_to_die (decl, subr_die);
11062 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11063 current_function_funcdef_no);
11064 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11065 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11066 current_function_funcdef_no);
11067 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11069 add_pubname (decl, subr_die);
11070 add_arange (decl, subr_die);
11072 #ifdef MIPS_DEBUGGING_INFO
11073 /* Add a reference to the FDE for this routine. */
11074 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11075 #endif
11077 /* Define the "frame base" location for this routine. We use the
11078 frame pointer or stack pointer registers, since the RTL for local
11079 variables is relative to one of them. */
11080 fp_reg
11081 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11082 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11084 #if 0
11085 /* ??? This fails for nested inline functions, because context_display
11086 is not part of the state saved/restored for inline functions. */
11087 if (current_function_needs_context)
11088 add_AT_location_description (subr_die, DW_AT_static_link,
11089 loc_descriptor (lookup_static_chain (decl)));
11090 #endif
11093 /* Now output descriptions of the arguments for this function. This gets
11094 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11095 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11096 `...' at the end of the formal parameter list. In order to find out if
11097 there was a trailing ellipsis or not, we must instead look at the type
11098 associated with the FUNCTION_DECL. This will be a node of type
11099 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11100 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11101 an ellipsis at the end. */
11103 /* In the case where we are describing a mere function declaration, all we
11104 need to do here (and all we *can* do here) is to describe the *types* of
11105 its formal parameters. */
11106 if (debug_info_level <= DINFO_LEVEL_TERSE)
11108 else if (declaration)
11109 gen_formal_types_die (decl, subr_die);
11110 else
11112 /* Generate DIEs to represent all known formal parameters */
11113 tree arg_decls = DECL_ARGUMENTS (decl);
11114 tree parm;
11116 /* When generating DIEs, generate the unspecified_parameters DIE
11117 instead if we come across the arg "__builtin_va_alist" */
11118 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11119 if (TREE_CODE (parm) == PARM_DECL)
11121 if (DECL_NAME (parm)
11122 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11123 "__builtin_va_alist"))
11124 gen_unspecified_parameters_die (parm, subr_die);
11125 else
11126 gen_decl_die (parm, subr_die);
11129 /* Decide whether we need an unspecified_parameters DIE at the end.
11130 There are 2 more cases to do this for: 1) the ansi ... declaration -
11131 this is detectable when the end of the arg list is not a
11132 void_type_node 2) an unprototyped function declaration (not a
11133 definition). This just means that we have no info about the
11134 parameters at all. */
11135 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11136 if (fn_arg_types != NULL)
11138 /* this is the prototyped case, check for ... */
11139 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11140 gen_unspecified_parameters_die (decl, subr_die);
11142 else if (DECL_INITIAL (decl) == NULL_TREE)
11143 gen_unspecified_parameters_die (decl, subr_die);
11146 /* Output Dwarf info for all of the stuff within the body of the function
11147 (if it has one - it may be just a declaration). */
11148 outer_scope = DECL_INITIAL (decl);
11150 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11151 a function. This BLOCK actually represents the outermost binding contour
11152 for the function, i.e. the contour in which the function's formal
11153 parameters and labels get declared. Curiously, it appears that the front
11154 end doesn't actually put the PARM_DECL nodes for the current function onto
11155 the BLOCK_VARS list for this outer scope, but are strung off of the
11156 DECL_ARGUMENTS list for the function instead.
11158 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11159 the LABEL_DECL nodes for the function however, and we output DWARF info
11160 for those in decls_for_scope. Just within the `outer_scope' there will be
11161 a BLOCK node representing the function's outermost pair of curly braces,
11162 and any blocks used for the base and member initializers of a C++
11163 constructor function. */
11164 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11166 current_function_has_inlines = 0;
11167 decls_for_scope (outer_scope, subr_die, 0);
11169 #if 0 && defined (MIPS_DEBUGGING_INFO)
11170 if (current_function_has_inlines)
11172 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11173 if (! comp_unit_has_inlines)
11175 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11176 comp_unit_has_inlines = 1;
11179 #endif
11183 /* Generate a DIE to represent a declared data object. */
11185 static void
11186 gen_variable_die (decl, context_die)
11187 tree decl;
11188 dw_die_ref context_die;
11190 tree origin = decl_ultimate_origin (decl);
11191 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11193 dw_die_ref old_die = lookup_decl_die (decl);
11194 int declaration = (DECL_EXTERNAL (decl)
11195 || class_scope_p (context_die));
11197 if (origin != NULL)
11198 add_abstract_origin_attribute (var_die, origin);
11200 /* Loop unrolling can create multiple blocks that refer to the same
11201 static variable, so we must test for the DW_AT_declaration flag.
11203 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11204 copy decls and set the DECL_ABSTRACT flag on them instead of
11205 sharing them.
11207 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11208 else if (old_die && TREE_STATIC (decl)
11209 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11211 /* This is a definition of a C++ class level static. */
11212 add_AT_die_ref (var_die, DW_AT_specification, old_die);
11213 if (DECL_NAME (decl))
11215 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
11217 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11218 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11220 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11221 != (unsigned) DECL_SOURCE_LINE (decl))
11223 add_AT_unsigned (var_die, DW_AT_decl_line,
11224 DECL_SOURCE_LINE (decl));
11227 else
11229 add_name_and_src_coords_attributes (var_die, decl);
11230 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11231 TREE_THIS_VOLATILE (decl), context_die);
11233 if (TREE_PUBLIC (decl))
11234 add_AT_flag (var_die, DW_AT_external, 1);
11236 if (DECL_ARTIFICIAL (decl))
11237 add_AT_flag (var_die, DW_AT_artificial, 1);
11239 if (TREE_PROTECTED (decl))
11240 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11241 else if (TREE_PRIVATE (decl))
11242 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11245 if (declaration)
11246 add_AT_flag (var_die, DW_AT_declaration, 1);
11248 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
11249 equate_decl_number_to_die (decl, var_die);
11251 if (! declaration && ! DECL_ABSTRACT (decl))
11253 add_location_or_const_value_attribute (var_die, decl);
11254 add_pubname (decl, var_die);
11256 else
11257 tree_add_const_value_attribute (var_die, decl);
11260 /* Generate a DIE to represent a label identifier. */
11262 static void
11263 gen_label_die (decl, context_die)
11264 tree decl;
11265 dw_die_ref context_die;
11267 tree origin = decl_ultimate_origin (decl);
11268 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11269 rtx insn;
11270 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11272 if (origin != NULL)
11273 add_abstract_origin_attribute (lbl_die, origin);
11274 else
11275 add_name_and_src_coords_attributes (lbl_die, decl);
11277 if (DECL_ABSTRACT (decl))
11278 equate_decl_number_to_die (decl, lbl_die);
11279 else
11281 insn = DECL_RTL (decl);
11283 /* Deleted labels are programmer specified labels which have been
11284 eliminated because of various optimisations. We still emit them
11285 here so that it is possible to put breakpoints on them. */
11286 if (GET_CODE (insn) == CODE_LABEL
11287 || ((GET_CODE (insn) == NOTE
11288 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
11290 /* When optimization is enabled (via -O) some parts of the compiler
11291 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11292 represent source-level labels which were explicitly declared by
11293 the user. This really shouldn't be happening though, so catch
11294 it if it ever does happen. */
11295 if (INSN_DELETED_P (insn))
11296 abort ();
11298 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11299 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11304 /* Generate a DIE for a lexical block. */
11306 static void
11307 gen_lexical_block_die (stmt, context_die, depth)
11308 tree stmt;
11309 dw_die_ref context_die;
11310 int depth;
11312 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11313 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11315 if (! BLOCK_ABSTRACT (stmt))
11317 if (BLOCK_FRAGMENT_CHAIN (stmt))
11319 tree chain;
11321 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11323 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11326 add_ranges (chain);
11327 chain = BLOCK_FRAGMENT_CHAIN (chain);
11329 while (chain);
11330 add_ranges (NULL);
11332 else
11334 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11335 BLOCK_NUMBER (stmt));
11336 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11337 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11338 BLOCK_NUMBER (stmt));
11339 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11343 decls_for_scope (stmt, stmt_die, depth);
11346 /* Generate a DIE for an inlined subprogram. */
11348 static void
11349 gen_inlined_subroutine_die (stmt, context_die, depth)
11350 tree stmt;
11351 dw_die_ref context_die;
11352 int depth;
11354 if (! BLOCK_ABSTRACT (stmt))
11356 dw_die_ref subr_die
11357 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11358 tree decl = block_ultimate_origin (stmt);
11359 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11361 /* Emit info for the abstract instance first, if we haven't yet. */
11362 dwarf2out_abstract_function (decl);
11364 add_abstract_origin_attribute (subr_die, decl);
11365 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11366 BLOCK_NUMBER (stmt));
11367 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11368 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11369 BLOCK_NUMBER (stmt));
11370 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11371 decls_for_scope (stmt, subr_die, depth);
11372 current_function_has_inlines = 1;
11374 else
11375 /* We may get here if we're the outer block of function A that was
11376 inlined into function B that was inlined into function C. When
11377 generating debugging info for C, dwarf2out_abstract_function(B)
11378 would mark all inlined blocks as abstract, including this one.
11379 So, we wouldn't (and shouldn't) expect labels to be generated
11380 for this one. Instead, just emit debugging info for
11381 declarations within the block. This is particularly important
11382 in the case of initializers of arguments passed from B to us:
11383 if they're statement expressions containing declarations, we
11384 wouldn't generate dies for their abstract variables, and then,
11385 when generating dies for the real variables, we'd die (pun
11386 intended :-) */
11387 gen_lexical_block_die (stmt, context_die, depth);
11390 /* Generate a DIE for a field in a record, or structure. */
11392 static void
11393 gen_field_die (decl, context_die)
11394 tree decl;
11395 dw_die_ref context_die;
11397 dw_die_ref decl_die = new_die (DW_TAG_member, context_die, decl);
11399 add_name_and_src_coords_attributes (decl_die, decl);
11400 add_type_attribute (decl_die, member_declared_type (decl),
11401 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11402 context_die);
11404 if (DECL_BIT_FIELD_TYPE (decl))
11406 add_byte_size_attribute (decl_die, decl);
11407 add_bit_size_attribute (decl_die, decl);
11408 add_bit_offset_attribute (decl_die, decl);
11411 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11412 add_data_member_location_attribute (decl_die, decl);
11414 if (DECL_ARTIFICIAL (decl))
11415 add_AT_flag (decl_die, DW_AT_artificial, 1);
11417 if (TREE_PROTECTED (decl))
11418 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11419 else if (TREE_PRIVATE (decl))
11420 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11423 #if 0
11424 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11425 Use modified_type_die instead.
11426 We keep this code here just in case these types of DIEs may be needed to
11427 represent certain things in other languages (e.g. Pascal) someday. */
11429 static void
11430 gen_pointer_type_die (type, context_die)
11431 tree type;
11432 dw_die_ref context_die;
11434 dw_die_ref ptr_die
11435 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11437 equate_type_number_to_die (type, ptr_die);
11438 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11439 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11442 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11443 Use modified_type_die instead.
11444 We keep this code here just in case these types of DIEs may be needed to
11445 represent certain things in other languages (e.g. Pascal) someday. */
11447 static void
11448 gen_reference_type_die (type, context_die)
11449 tree type;
11450 dw_die_ref context_die;
11452 dw_die_ref ref_die
11453 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11455 equate_type_number_to_die (type, ref_die);
11456 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11457 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11459 #endif
11461 /* Generate a DIE for a pointer to a member type. */
11463 static void
11464 gen_ptr_to_mbr_type_die (type, context_die)
11465 tree type;
11466 dw_die_ref context_die;
11468 dw_die_ref ptr_die
11469 = new_die (DW_TAG_ptr_to_member_type,
11470 scope_die_for (type, context_die), type);
11472 equate_type_number_to_die (type, ptr_die);
11473 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11474 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11475 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11478 /* Generate the DIE for the compilation unit. */
11480 static dw_die_ref
11481 gen_compile_unit_die (filename)
11482 const char *filename;
11484 dw_die_ref die;
11485 char producer[250];
11486 const char *language_string = lang_hooks.name;
11487 int language;
11489 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11491 if (filename)
11493 add_name_attribute (die, filename);
11494 if (filename[0] != DIR_SEPARATOR)
11495 add_comp_dir_attribute (die);
11498 sprintf (producer, "%s %s", language_string, version_string);
11500 #ifdef MIPS_DEBUGGING_INFO
11501 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11502 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11503 not appear in the producer string, the debugger reaches the conclusion
11504 that the object file is stripped and has no debugging information.
11505 To get the MIPS/SGI debugger to believe that there is debugging
11506 information in the object file, we add a -g to the producer string. */
11507 if (debug_info_level > DINFO_LEVEL_TERSE)
11508 strcat (producer, " -g");
11509 #endif
11511 add_AT_string (die, DW_AT_producer, producer);
11513 if (strcmp (language_string, "GNU C++") == 0)
11514 language = DW_LANG_C_plus_plus;
11515 else if (strcmp (language_string, "GNU Ada") == 0)
11516 language = DW_LANG_Ada95;
11517 else if (strcmp (language_string, "GNU F77") == 0)
11518 language = DW_LANG_Fortran77;
11519 else if (strcmp (language_string, "GNU Pascal") == 0)
11520 language = DW_LANG_Pascal83;
11521 else if (strcmp (language_string, "GNU Java") == 0)
11522 language = DW_LANG_Java;
11523 else
11524 language = DW_LANG_C89;
11526 add_AT_unsigned (die, DW_AT_language, language);
11527 return die;
11530 /* Generate a DIE for a string type. */
11532 static void
11533 gen_string_type_die (type, context_die)
11534 tree type;
11535 dw_die_ref context_die;
11537 dw_die_ref type_die
11538 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11540 equate_type_number_to_die (type, type_die);
11542 /* ??? Fudge the string length attribute for now.
11543 TODO: add string length info. */
11544 #if 0
11545 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11546 bound_representation (upper_bound, 0, 'u');
11547 #endif
11550 /* Generate the DIE for a base class. */
11552 static void
11553 gen_inheritance_die (binfo, access, context_die)
11554 tree binfo, access;
11555 dw_die_ref context_die;
11557 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11559 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11560 add_data_member_location_attribute (die, binfo);
11562 if (TREE_VIA_VIRTUAL (binfo))
11563 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11565 if (access == access_public_node)
11566 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11567 else if (access == access_protected_node)
11568 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11571 /* Generate a DIE for a class member. */
11573 static void
11574 gen_member_die (type, context_die)
11575 tree type;
11576 dw_die_ref context_die;
11578 tree member;
11579 tree binfo = TYPE_BINFO (type);
11580 dw_die_ref child;
11582 /* If this is not an incomplete type, output descriptions of each of its
11583 members. Note that as we output the DIEs necessary to represent the
11584 members of this record or union type, we will also be trying to output
11585 DIEs to represent the *types* of those members. However the `type'
11586 function (above) will specifically avoid generating type DIEs for member
11587 types *within* the list of member DIEs for this (containing) type except
11588 for those types (of members) which are explicitly marked as also being
11589 members of this (containing) type themselves. The g++ front- end can
11590 force any given type to be treated as a member of some other (containing)
11591 type by setting the TYPE_CONTEXT of the given (member) type to point to
11592 the TREE node representing the appropriate (containing) type. */
11594 /* First output info about the base classes. */
11595 if (binfo && BINFO_BASETYPES (binfo))
11597 tree bases = BINFO_BASETYPES (binfo);
11598 tree accesses = BINFO_BASEACCESSES (binfo);
11599 int n_bases = TREE_VEC_LENGTH (bases);
11600 int i;
11602 for (i = 0; i < n_bases; i++)
11603 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11604 (accesses ? TREE_VEC_ELT (accesses, i)
11605 : access_public_node), context_die);
11608 /* Now output info about the data members and type members. */
11609 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11611 /* If we thought we were generating minimal debug info for TYPE
11612 and then changed our minds, some of the member declarations
11613 may have already been defined. Don't define them again, but
11614 do put them in the right order. */
11616 child = lookup_decl_die (member);
11617 if (child)
11618 splice_child_die (context_die, child);
11619 else
11620 gen_decl_die (member, context_die);
11623 /* Now output info about the function members (if any). */
11624 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11626 /* Don't include clones in the member list. */
11627 if (DECL_ABSTRACT_ORIGIN (member))
11628 continue;
11630 child = lookup_decl_die (member);
11631 if (child)
11632 splice_child_die (context_die, child);
11633 else
11634 gen_decl_die (member, context_die);
11638 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11639 is set, we pretend that the type was never defined, so we only get the
11640 member DIEs needed by later specification DIEs. */
11642 static void
11643 gen_struct_or_union_type_die (type, context_die)
11644 tree type;
11645 dw_die_ref context_die;
11647 dw_die_ref type_die = lookup_type_die (type);
11648 dw_die_ref scope_die = 0;
11649 int nested = 0;
11650 int complete = (TYPE_SIZE (type)
11651 && (! TYPE_STUB_DECL (type)
11652 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11654 if (type_die && ! complete)
11655 return;
11657 if (TYPE_CONTEXT (type) != NULL_TREE
11658 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
11659 nested = 1;
11661 scope_die = scope_die_for (type, context_die);
11663 if (! type_die || (nested && scope_die == comp_unit_die))
11664 /* First occurrence of type or toplevel definition of nested class. */
11666 dw_die_ref old_die = type_die;
11668 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11669 ? DW_TAG_structure_type : DW_TAG_union_type,
11670 scope_die, type);
11671 equate_type_number_to_die (type, type_die);
11672 if (old_die)
11673 add_AT_die_ref (type_die, DW_AT_specification, old_die);
11674 else
11675 add_name_attribute (type_die, type_tag (type));
11677 else
11678 remove_AT (type_die, DW_AT_declaration);
11680 /* If this type has been completed, then give it a byte_size attribute and
11681 then give a list of members. */
11682 if (complete)
11684 /* Prevent infinite recursion in cases where the type of some member of
11685 this type is expressed in terms of this type itself. */
11686 TREE_ASM_WRITTEN (type) = 1;
11687 add_byte_size_attribute (type_die, type);
11688 if (TYPE_STUB_DECL (type) != NULL_TREE)
11689 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11691 /* If the first reference to this type was as the return type of an
11692 inline function, then it may not have a parent. Fix this now. */
11693 if (type_die->die_parent == NULL)
11694 add_child_die (scope_die, type_die);
11696 push_decl_scope (type);
11697 gen_member_die (type, type_die);
11698 pop_decl_scope ();
11700 /* GNU extension: Record what type our vtable lives in. */
11701 if (TYPE_VFIELD (type))
11703 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11705 gen_type_die (vtype, context_die);
11706 add_AT_die_ref (type_die, DW_AT_containing_type,
11707 lookup_type_die (vtype));
11710 else
11712 add_AT_flag (type_die, DW_AT_declaration, 1);
11714 /* We don't need to do this for function-local types. */
11715 if (TYPE_STUB_DECL (type)
11716 && ! decl_function_context (TYPE_STUB_DECL (type)))
11717 VARRAY_PUSH_TREE (incomplete_types, type);
11721 /* Generate a DIE for a subroutine _type_. */
11723 static void
11724 gen_subroutine_type_die (type, context_die)
11725 tree type;
11726 dw_die_ref context_die;
11728 tree return_type = TREE_TYPE (type);
11729 dw_die_ref subr_die
11730 = new_die (DW_TAG_subroutine_type,
11731 scope_die_for (type, context_die), type);
11733 equate_type_number_to_die (type, subr_die);
11734 add_prototyped_attribute (subr_die, type);
11735 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11736 gen_formal_types_die (type, subr_die);
11739 /* Generate a DIE for a type definition */
11741 static void
11742 gen_typedef_die (decl, context_die)
11743 tree decl;
11744 dw_die_ref context_die;
11746 dw_die_ref type_die;
11747 tree origin;
11749 if (TREE_ASM_WRITTEN (decl))
11750 return;
11752 TREE_ASM_WRITTEN (decl) = 1;
11753 type_die = new_die (DW_TAG_typedef, context_die, decl);
11754 origin = decl_ultimate_origin (decl);
11755 if (origin != NULL)
11756 add_abstract_origin_attribute (type_die, origin);
11757 else
11759 tree type;
11761 add_name_and_src_coords_attributes (type_die, decl);
11762 if (DECL_ORIGINAL_TYPE (decl))
11764 type = DECL_ORIGINAL_TYPE (decl);
11766 if (type == TREE_TYPE (decl))
11767 abort ();
11768 else
11769 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11771 else
11772 type = TREE_TYPE (decl);
11774 add_type_attribute (type_die, type, TREE_READONLY (decl),
11775 TREE_THIS_VOLATILE (decl), context_die);
11778 if (DECL_ABSTRACT (decl))
11779 equate_decl_number_to_die (decl, type_die);
11782 /* Generate a type description DIE. */
11784 static void
11785 gen_type_die (type, context_die)
11786 tree type;
11787 dw_die_ref context_die;
11789 int need_pop;
11791 if (type == NULL_TREE || type == error_mark_node)
11792 return;
11794 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11795 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11797 if (TREE_ASM_WRITTEN (type))
11798 return;
11800 /* Prevent broken recursion; we can't hand off to the same type. */
11801 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11802 abort ();
11804 TREE_ASM_WRITTEN (type) = 1;
11805 gen_decl_die (TYPE_NAME (type), context_die);
11806 return;
11809 /* We are going to output a DIE to represent the unqualified version
11810 of this type (i.e. without any const or volatile qualifiers) so
11811 get the main variant (i.e. the unqualified version) of this type
11812 now. (Vectors are special because the debugging info is in the
11813 cloned type itself). */
11814 if (TREE_CODE (type) != VECTOR_TYPE)
11815 type = type_main_variant (type);
11817 if (TREE_ASM_WRITTEN (type))
11818 return;
11820 switch (TREE_CODE (type))
11822 case ERROR_MARK:
11823 break;
11825 case POINTER_TYPE:
11826 case REFERENCE_TYPE:
11827 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11828 ensures that the gen_type_die recursion will terminate even if the
11829 type is recursive. Recursive types are possible in Ada. */
11830 /* ??? We could perhaps do this for all types before the switch
11831 statement. */
11832 TREE_ASM_WRITTEN (type) = 1;
11834 /* For these types, all that is required is that we output a DIE (or a
11835 set of DIEs) to represent the "basis" type. */
11836 gen_type_die (TREE_TYPE (type), context_die);
11837 break;
11839 case OFFSET_TYPE:
11840 /* This code is used for C++ pointer-to-data-member types.
11841 Output a description of the relevant class type. */
11842 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11844 /* Output a description of the type of the object pointed to. */
11845 gen_type_die (TREE_TYPE (type), context_die);
11847 /* Now output a DIE to represent this pointer-to-data-member type
11848 itself. */
11849 gen_ptr_to_mbr_type_die (type, context_die);
11850 break;
11852 case SET_TYPE:
11853 gen_type_die (TYPE_DOMAIN (type), context_die);
11854 gen_set_type_die (type, context_die);
11855 break;
11857 case FILE_TYPE:
11858 gen_type_die (TREE_TYPE (type), context_die);
11859 abort (); /* No way to represent these in Dwarf yet! */
11860 break;
11862 case FUNCTION_TYPE:
11863 /* Force out return type (in case it wasn't forced out already). */
11864 gen_type_die (TREE_TYPE (type), context_die);
11865 gen_subroutine_type_die (type, context_die);
11866 break;
11868 case METHOD_TYPE:
11869 /* Force out return type (in case it wasn't forced out already). */
11870 gen_type_die (TREE_TYPE (type), context_die);
11871 gen_subroutine_type_die (type, context_die);
11872 break;
11874 case ARRAY_TYPE:
11875 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11877 gen_type_die (TREE_TYPE (type), context_die);
11878 gen_string_type_die (type, context_die);
11880 else
11881 gen_array_type_die (type, context_die);
11882 break;
11884 case VECTOR_TYPE:
11885 gen_array_type_die (type, context_die);
11886 break;
11888 case ENUMERAL_TYPE:
11889 case RECORD_TYPE:
11890 case UNION_TYPE:
11891 case QUAL_UNION_TYPE:
11892 /* If this is a nested type whose containing class hasn't been written
11893 out yet, writing it out will cover this one, too. This does not apply
11894 to instantiations of member class templates; they need to be added to
11895 the containing class as they are generated. FIXME: This hurts the
11896 idea of combining type decls from multiple TUs, since we can't predict
11897 what set of template instantiations we'll get. */
11898 if (TYPE_CONTEXT (type)
11899 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11900 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11902 gen_type_die (TYPE_CONTEXT (type), context_die);
11904 if (TREE_ASM_WRITTEN (type))
11905 return;
11907 /* If that failed, attach ourselves to the stub. */
11908 push_decl_scope (TYPE_CONTEXT (type));
11909 context_die = lookup_type_die (TYPE_CONTEXT (type));
11910 need_pop = 1;
11912 else
11913 need_pop = 0;
11915 if (TREE_CODE (type) == ENUMERAL_TYPE)
11916 gen_enumeration_type_die (type, context_die);
11917 else
11918 gen_struct_or_union_type_die (type, context_die);
11920 if (need_pop)
11921 pop_decl_scope ();
11923 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11924 it up if it is ever completed. gen_*_type_die will set it for us
11925 when appropriate. */
11926 return;
11928 case VOID_TYPE:
11929 case INTEGER_TYPE:
11930 case REAL_TYPE:
11931 case COMPLEX_TYPE:
11932 case BOOLEAN_TYPE:
11933 case CHAR_TYPE:
11934 /* No DIEs needed for fundamental types. */
11935 break;
11937 case LANG_TYPE:
11938 /* No Dwarf representation currently defined. */
11939 break;
11941 default:
11942 abort ();
11945 TREE_ASM_WRITTEN (type) = 1;
11948 /* Generate a DIE for a tagged type instantiation. */
11950 static void
11951 gen_tagged_type_instantiation_die (type, context_die)
11952 tree type;
11953 dw_die_ref context_die;
11955 if (type == NULL_TREE || type == error_mark_node)
11956 return;
11958 /* We are going to output a DIE to represent the unqualified version of
11959 this type (i.e. without any const or volatile qualifiers) so make sure
11960 that we have the main variant (i.e. the unqualified version) of this
11961 type now. */
11962 if (type != type_main_variant (type))
11963 abort ();
11965 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11966 an instance of an unresolved type. */
11968 switch (TREE_CODE (type))
11970 case ERROR_MARK:
11971 break;
11973 case ENUMERAL_TYPE:
11974 gen_inlined_enumeration_type_die (type, context_die);
11975 break;
11977 case RECORD_TYPE:
11978 gen_inlined_structure_type_die (type, context_die);
11979 break;
11981 case UNION_TYPE:
11982 case QUAL_UNION_TYPE:
11983 gen_inlined_union_type_die (type, context_die);
11984 break;
11986 default:
11987 abort ();
11991 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11992 things which are local to the given block. */
11994 static void
11995 gen_block_die (stmt, context_die, depth)
11996 tree stmt;
11997 dw_die_ref context_die;
11998 int depth;
12000 int must_output_die = 0;
12001 tree origin;
12002 tree decl;
12003 enum tree_code origin_code;
12005 /* Ignore blocks never really used to make RTL. */
12006 if (stmt == NULL_TREE || !TREE_USED (stmt)
12007 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
12008 return;
12010 /* If the block is one fragment of a non-contiguous block, do not
12011 process the variables, since they will have been done by the
12012 origin block. Do process subblocks. */
12013 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12015 tree sub;
12017 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12018 gen_block_die (sub, context_die, depth + 1);
12020 return;
12023 /* Determine the "ultimate origin" of this block. This block may be an
12024 inlined instance of an inlined instance of inline function, so we have
12025 to trace all of the way back through the origin chain to find out what
12026 sort of node actually served as the original seed for the creation of
12027 the current block. */
12028 origin = block_ultimate_origin (stmt);
12029 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12031 /* Determine if we need to output any Dwarf DIEs at all to represent this
12032 block. */
12033 if (origin_code == FUNCTION_DECL)
12034 /* The outer scopes for inlinings *must* always be represented. We
12035 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12036 must_output_die = 1;
12037 else
12039 /* In the case where the current block represents an inlining of the
12040 "body block" of an inline function, we must *NOT* output any DIE for
12041 this block because we have already output a DIE to represent the whole
12042 inlined function scope and the "body block" of any function doesn't
12043 really represent a different scope according to ANSI C rules. So we
12044 check here to make sure that this block does not represent a "body
12045 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12046 if (! is_body_block (origin ? origin : stmt))
12048 /* Determine if this block directly contains any "significant"
12049 local declarations which we will need to output DIEs for. */
12050 if (debug_info_level > DINFO_LEVEL_TERSE)
12051 /* We are not in terse mode so *any* local declaration counts
12052 as being a "significant" one. */
12053 must_output_die = (BLOCK_VARS (stmt) != NULL);
12054 else
12055 /* We are in terse mode, so only local (nested) function
12056 definitions count as "significant" local declarations. */
12057 for (decl = BLOCK_VARS (stmt);
12058 decl != NULL; decl = TREE_CHAIN (decl))
12059 if (TREE_CODE (decl) == FUNCTION_DECL
12060 && DECL_INITIAL (decl))
12062 must_output_die = 1;
12063 break;
12068 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12069 DIE for any block which contains no significant local declarations at
12070 all. Rather, in such cases we just call `decls_for_scope' so that any
12071 needed Dwarf info for any sub-blocks will get properly generated. Note
12072 that in terse mode, our definition of what constitutes a "significant"
12073 local declaration gets restricted to include only inlined function
12074 instances and local (nested) function definitions. */
12075 if (must_output_die)
12077 if (origin_code == FUNCTION_DECL)
12078 gen_inlined_subroutine_die (stmt, context_die, depth);
12079 else
12080 gen_lexical_block_die (stmt, context_die, depth);
12082 else
12083 decls_for_scope (stmt, context_die, depth);
12086 /* Generate all of the decls declared within a given scope and (recursively)
12087 all of its sub-blocks. */
12089 static void
12090 decls_for_scope (stmt, context_die, depth)
12091 tree stmt;
12092 dw_die_ref context_die;
12093 int depth;
12095 tree decl;
12096 tree subblocks;
12098 /* Ignore blocks never really used to make RTL. */
12099 if (stmt == NULL_TREE || ! TREE_USED (stmt))
12100 return;
12102 /* Output the DIEs to represent all of the data objects and typedefs
12103 declared directly within this block but not within any nested
12104 sub-blocks. Also, nested function and tag DIEs have been
12105 generated with a parent of NULL; fix that up now. */
12106 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12108 dw_die_ref die;
12110 if (TREE_CODE (decl) == FUNCTION_DECL)
12111 die = lookup_decl_die (decl);
12112 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12113 die = lookup_type_die (TREE_TYPE (decl));
12114 else
12115 die = NULL;
12117 if (die != NULL && die->die_parent == NULL)
12118 add_child_die (context_die, die);
12119 else
12120 gen_decl_die (decl, context_die);
12123 /* If we're at -g1, we're not interested in subblocks. */
12124 if (debug_info_level <= DINFO_LEVEL_TERSE)
12125 return;
12127 /* Output the DIEs to represent all sub-blocks (and the items declared
12128 therein) of this block. */
12129 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12130 subblocks != NULL;
12131 subblocks = BLOCK_CHAIN (subblocks))
12132 gen_block_die (subblocks, context_die, depth + 1);
12135 /* Is this a typedef we can avoid emitting? */
12137 static inline int
12138 is_redundant_typedef (decl)
12139 tree decl;
12141 if (TYPE_DECL_IS_STUB (decl))
12142 return 1;
12144 if (DECL_ARTIFICIAL (decl)
12145 && DECL_CONTEXT (decl)
12146 && is_tagged_type (DECL_CONTEXT (decl))
12147 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12148 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12149 /* Also ignore the artificial member typedef for the class name. */
12150 return 1;
12152 return 0;
12155 /* Generate Dwarf debug information for a decl described by DECL. */
12157 static void
12158 gen_decl_die (decl, context_die)
12159 tree decl;
12160 dw_die_ref context_die;
12162 tree origin;
12164 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12165 return;
12167 switch (TREE_CODE (decl))
12169 case ERROR_MARK:
12170 break;
12172 case CONST_DECL:
12173 /* The individual enumerators of an enum type get output when we output
12174 the Dwarf representation of the relevant enum type itself. */
12175 break;
12177 case FUNCTION_DECL:
12178 /* Don't output any DIEs to represent mere function declarations,
12179 unless they are class members or explicit block externs. */
12180 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12181 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12182 break;
12184 /* If we're emitting a clone, emit info for the abstract instance. */
12185 if (DECL_ORIGIN (decl) != decl)
12186 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12188 /* If we're emitting an out-of-line copy of an inline function,
12189 emit info for the abstract instance and set up to refer to it. */
12190 else if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
12191 && ! class_scope_p (context_die)
12192 /* dwarf2out_abstract_function won't emit a die if this is just
12193 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12194 that case, because that works only if we have a die. */
12195 && DECL_INITIAL (decl) != NULL_TREE)
12197 dwarf2out_abstract_function (decl);
12198 set_decl_origin_self (decl);
12201 /* Otherwise we're emitting the primary DIE for this decl. */
12202 else if (debug_info_level > DINFO_LEVEL_TERSE)
12204 /* Before we describe the FUNCTION_DECL itself, make sure that we
12205 have described its return type. */
12206 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12208 /* And its virtual context. */
12209 if (DECL_VINDEX (decl) != NULL_TREE)
12210 gen_type_die (DECL_CONTEXT (decl), context_die);
12212 /* And its containing type. */
12213 origin = decl_class_context (decl);
12214 if (origin != NULL_TREE)
12215 gen_type_die_for_member (origin, decl, context_die);
12218 /* Now output a DIE to represent the function itself. */
12219 gen_subprogram_die (decl, context_die);
12220 break;
12222 case TYPE_DECL:
12223 /* If we are in terse mode, don't generate any DIEs to represent any
12224 actual typedefs. */
12225 if (debug_info_level <= DINFO_LEVEL_TERSE)
12226 break;
12228 /* In the special case of a TYPE_DECL node representing the declaration
12229 of some type tag, if the given TYPE_DECL is marked as having been
12230 instantiated from some other (original) TYPE_DECL node (e.g. one which
12231 was generated within the original definition of an inline function) we
12232 have to generate a special (abbreviated) DW_TAG_structure_type,
12233 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12234 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12236 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12237 break;
12240 if (is_redundant_typedef (decl))
12241 gen_type_die (TREE_TYPE (decl), context_die);
12242 else
12243 /* Output a DIE to represent the typedef itself. */
12244 gen_typedef_die (decl, context_die);
12245 break;
12247 case LABEL_DECL:
12248 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12249 gen_label_die (decl, context_die);
12250 break;
12252 case VAR_DECL:
12253 /* If we are in terse mode, don't generate any DIEs to represent any
12254 variable declarations or definitions. */
12255 if (debug_info_level <= DINFO_LEVEL_TERSE)
12256 break;
12258 /* Output any DIEs that are needed to specify the type of this data
12259 object. */
12260 gen_type_die (TREE_TYPE (decl), context_die);
12262 /* And its containing type. */
12263 origin = decl_class_context (decl);
12264 if (origin != NULL_TREE)
12265 gen_type_die_for_member (origin, decl, context_die);
12267 /* Now output the DIE to represent the data object itself. This gets
12268 complicated because of the possibility that the VAR_DECL really
12269 represents an inlined instance of a formal parameter for an inline
12270 function. */
12271 origin = decl_ultimate_origin (decl);
12272 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12273 gen_formal_parameter_die (decl, context_die);
12274 else
12275 gen_variable_die (decl, context_die);
12276 break;
12278 case FIELD_DECL:
12279 /* Ignore the nameless fields that are used to skip bits but handle C++
12280 anonymous unions. */
12281 if (DECL_NAME (decl) != NULL_TREE
12282 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
12284 gen_type_die (member_declared_type (decl), context_die);
12285 gen_field_die (decl, context_die);
12287 break;
12289 case PARM_DECL:
12290 gen_type_die (TREE_TYPE (decl), context_die);
12291 gen_formal_parameter_die (decl, context_die);
12292 break;
12294 case NAMESPACE_DECL:
12295 /* Ignore for now. */
12296 break;
12298 default:
12299 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
12300 /* Probably some frontend-internal decl. Assume we don't care. */
12301 break;
12302 abort ();
12306 /* Add Ada "use" clause information for SGI Workshop debugger. */
12308 void
12309 dwarf2out_add_library_unit_info (filename, context_list)
12310 const char *filename;
12311 const char *context_list;
12313 unsigned int file_index;
12315 if (filename != NULL)
12317 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12318 tree context_list_decl
12319 = build_decl (LABEL_DECL, get_identifier (context_list),
12320 void_type_node);
12322 TREE_PUBLIC (context_list_decl) = TRUE;
12323 add_name_attribute (unit_die, context_list);
12324 file_index = lookup_filename (filename);
12325 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12326 add_pubname (context_list_decl, unit_die);
12330 /* Output debug information for global decl DECL. Called from toplev.c after
12331 compilation proper has finished. */
12333 static void
12334 dwarf2out_global_decl (decl)
12335 tree decl;
12337 /* Output DWARF2 information for file-scope tentative data object
12338 declarations, file-scope (extern) function declarations (which had no
12339 corresponding body) and file-scope tagged type declarations and
12340 definitions which have not yet been forced out. */
12341 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12342 dwarf2out_decl (decl);
12345 /* Write the debugging output for DECL. */
12347 void
12348 dwarf2out_decl (decl)
12349 tree decl;
12351 dw_die_ref context_die = comp_unit_die;
12353 switch (TREE_CODE (decl))
12355 case ERROR_MARK:
12356 return;
12358 case FUNCTION_DECL:
12359 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
12360 builtin function. Explicit programmer-supplied declarations of
12361 these same functions should NOT be ignored however. */
12362 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
12363 return;
12365 /* What we would really like to do here is to filter out all mere
12366 file-scope declarations of file-scope functions which are never
12367 referenced later within this translation unit (and keep all of ones
12368 that *are* referenced later on) but we aren't clairvoyant, so we have
12369 no idea which functions will be referenced in the future (i.e. later
12370 on within the current translation unit). So here we just ignore all
12371 file-scope function declarations which are not also definitions. If
12372 and when the debugger needs to know something about these functions,
12373 it will have to hunt around and find the DWARF information associated
12374 with the definition of the function.
12376 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12377 nodes represent definitions and which ones represent mere
12378 declarations. We have to check DECL_INITIAL instead. That's because
12379 the C front-end supports some weird semantics for "extern inline"
12380 function definitions. These can get inlined within the current
12381 translation unit (an thus, we need to generate Dwarf info for their
12382 abstract instances so that the Dwarf info for the concrete inlined
12383 instances can have something to refer to) but the compiler never
12384 generates any out-of-lines instances of such things (despite the fact
12385 that they *are* definitions).
12387 The important point is that the C front-end marks these "extern
12388 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12389 them anyway. Note that the C++ front-end also plays some similar games
12390 for inline function definitions appearing within include files which
12391 also contain `#pragma interface' pragmas. */
12392 if (DECL_INITIAL (decl) == NULL_TREE)
12393 return;
12395 /* If we're a nested function, initially use a parent of NULL; if we're
12396 a plain function, this will be fixed up in decls_for_scope. If
12397 we're a method, it will be ignored, since we already have a DIE. */
12398 if (decl_function_context (decl)
12399 /* But if we're in terse mode, we don't care about scope. */
12400 && debug_info_level > DINFO_LEVEL_TERSE)
12401 context_die = NULL;
12402 break;
12404 case VAR_DECL:
12405 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12406 declaration and if the declaration was never even referenced from
12407 within this entire compilation unit. We suppress these DIEs in
12408 order to save space in the .debug section (by eliminating entries
12409 which are probably useless). Note that we must not suppress
12410 block-local extern declarations (whether used or not) because that
12411 would screw-up the debugger's name lookup mechanism and cause it to
12412 miss things which really ought to be in scope at a given point. */
12413 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12414 return;
12416 /* If we are in terse mode, don't generate any DIEs to represent any
12417 variable declarations or definitions. */
12418 if (debug_info_level <= DINFO_LEVEL_TERSE)
12419 return;
12420 break;
12422 case TYPE_DECL:
12423 /* Don't emit stubs for types unless they are needed by other DIEs. */
12424 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12425 return;
12427 /* Don't bother trying to generate any DIEs to represent any of the
12428 normal built-in types for the language we are compiling. */
12429 if (DECL_SOURCE_LINE (decl) == 0)
12431 /* OK, we need to generate one for `bool' so GDB knows what type
12432 comparisons have. */
12433 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12434 == DW_LANG_C_plus_plus)
12435 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12436 && ! DECL_IGNORED_P (decl))
12437 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12439 return;
12442 /* If we are in terse mode, don't generate any DIEs for types. */
12443 if (debug_info_level <= DINFO_LEVEL_TERSE)
12444 return;
12446 /* If we're a function-scope tag, initially use a parent of NULL;
12447 this will be fixed up in decls_for_scope. */
12448 if (decl_function_context (decl))
12449 context_die = NULL;
12451 break;
12453 default:
12454 return;
12457 gen_decl_die (decl, context_die);
12460 /* Output a marker (i.e. a label) for the beginning of the generated code for
12461 a lexical block. */
12463 static void
12464 dwarf2out_begin_block (line, blocknum)
12465 unsigned int line ATTRIBUTE_UNUSED;
12466 unsigned int blocknum;
12468 function_section (current_function_decl);
12469 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12472 /* Output a marker (i.e. a label) for the end of the generated code for a
12473 lexical block. */
12475 static void
12476 dwarf2out_end_block (line, blocknum)
12477 unsigned int line ATTRIBUTE_UNUSED;
12478 unsigned int blocknum;
12480 function_section (current_function_decl);
12481 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12484 /* Returns nonzero if it is appropriate not to emit any debugging
12485 information for BLOCK, because it doesn't contain any instructions.
12487 Don't allow this for blocks with nested functions or local classes
12488 as we would end up with orphans, and in the presence of scheduling
12489 we may end up calling them anyway. */
12491 static bool
12492 dwarf2out_ignore_block (block)
12493 tree block;
12495 tree decl;
12497 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12498 if (TREE_CODE (decl) == FUNCTION_DECL
12499 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12500 return 0;
12502 return 1;
12505 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12506 dwarf2out.c) and return its "index". The index of each (known) filename is
12507 just a unique number which is associated with only that one filename. We
12508 need such numbers for the sake of generating labels (in the .debug_sfnames
12509 section) and references to those files numbers (in the .debug_srcinfo
12510 and.debug_macinfo sections). If the filename given as an argument is not
12511 found in our current list, add it to the list and assign it the next
12512 available unique index number. In order to speed up searches, we remember
12513 the index of the filename was looked up last. This handles the majority of
12514 all searches. */
12516 static unsigned
12517 lookup_filename (file_name)
12518 const char *file_name;
12520 size_t i, n;
12521 char *save_file_name;
12523 /* Check to see if the file name that was searched on the previous
12524 call matches this file name. If so, return the index. */
12525 if (file_table_last_lookup_index != 0)
12527 const char *last
12528 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12529 if (strcmp (file_name, last) == 0)
12530 return file_table_last_lookup_index;
12533 /* Didn't match the previous lookup, search the table */
12534 n = VARRAY_ACTIVE_SIZE (file_table);
12535 for (i = 1; i < n; i++)
12536 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12538 file_table_last_lookup_index = i;
12539 return i;
12542 /* Add the new entry to the end of the filename table. */
12543 file_table_last_lookup_index = n;
12544 save_file_name = (char *) ggc_strdup (file_name);
12545 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12546 VARRAY_PUSH_UINT (file_table_emitted, 0);
12548 return i;
12551 static int
12552 maybe_emit_file (fileno)
12553 int fileno;
12555 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12557 if (!VARRAY_UINT (file_table_emitted, fileno))
12559 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12560 fprintf (asm_out_file, "\t.file %u ",
12561 VARRAY_UINT (file_table_emitted, fileno));
12562 output_quoted_string (asm_out_file,
12563 VARRAY_CHAR_PTR (file_table, fileno));
12564 fputc ('\n', asm_out_file);
12566 return VARRAY_UINT (file_table_emitted, fileno);
12568 else
12569 return fileno;
12572 static void
12573 init_file_table ()
12575 /* Allocate the initial hunk of the file_table. */
12576 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12577 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12579 /* Skip the first entry - file numbers begin at 1. */
12580 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12581 VARRAY_PUSH_UINT (file_table_emitted, 0);
12582 file_table_last_lookup_index = 0;
12585 /* Output a label to mark the beginning of a source code line entry
12586 and record information relating to this source line, in
12587 'line_info_table' for later output of the .debug_line section. */
12589 static void
12590 dwarf2out_source_line (line, filename)
12591 unsigned int line;
12592 const char *filename;
12594 if (debug_info_level >= DINFO_LEVEL_NORMAL
12595 && line != 0)
12597 function_section (current_function_decl);
12599 /* If requested, emit something human-readable. */
12600 if (flag_debug_asm)
12601 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12602 filename, line);
12604 if (DWARF2_ASM_LINE_DEBUG_INFO)
12606 unsigned file_num = lookup_filename (filename);
12608 file_num = maybe_emit_file (file_num);
12610 /* Emit the .loc directive understood by GNU as. */
12611 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12613 /* Indicate that line number info exists. */
12614 line_info_table_in_use++;
12616 /* Indicate that multiple line number tables exist. */
12617 if (DECL_SECTION_NAME (current_function_decl))
12618 separate_line_info_table_in_use++;
12620 else if (DECL_SECTION_NAME (current_function_decl))
12622 dw_separate_line_info_ref line_info;
12623 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12624 separate_line_info_table_in_use);
12626 /* expand the line info table if necessary */
12627 if (separate_line_info_table_in_use
12628 == separate_line_info_table_allocated)
12630 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12631 separate_line_info_table
12632 = (dw_separate_line_info_ref)
12633 ggc_realloc (separate_line_info_table,
12634 separate_line_info_table_allocated
12635 * sizeof (dw_separate_line_info_entry));
12636 memset ((separate_line_info_table
12637 + separate_line_info_table_in_use),
12639 (LINE_INFO_TABLE_INCREMENT
12640 * sizeof (dw_separate_line_info_entry)));
12643 /* Add the new entry at the end of the line_info_table. */
12644 line_info
12645 = &separate_line_info_table[separate_line_info_table_in_use++];
12646 line_info->dw_file_num = lookup_filename (filename);
12647 line_info->dw_line_num = line;
12648 line_info->function = current_function_funcdef_no;
12650 else
12652 dw_line_info_ref line_info;
12654 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12655 line_info_table_in_use);
12657 /* Expand the line info table if necessary. */
12658 if (line_info_table_in_use == line_info_table_allocated)
12660 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12661 line_info_table
12662 = ggc_realloc (line_info_table,
12663 (line_info_table_allocated
12664 * sizeof (dw_line_info_entry)));
12665 memset (line_info_table + line_info_table_in_use, 0,
12666 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12669 /* Add the new entry at the end of the line_info_table. */
12670 line_info = &line_info_table[line_info_table_in_use++];
12671 line_info->dw_file_num = lookup_filename (filename);
12672 line_info->dw_line_num = line;
12677 /* Record the beginning of a new source file. */
12679 static void
12680 dwarf2out_start_source_file (lineno, filename)
12681 unsigned int lineno;
12682 const char *filename;
12684 if (flag_eliminate_dwarf2_dups && !is_main_source)
12686 /* Record the beginning of the file for break_out_includes. */
12687 dw_die_ref bincl_die;
12689 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12690 add_AT_string (bincl_die, DW_AT_name, filename);
12693 is_main_source = 0;
12695 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12697 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12698 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12699 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12700 lineno);
12701 maybe_emit_file (lookup_filename (filename));
12702 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12703 "Filename we just started");
12707 /* Record the end of a source file. */
12709 static void
12710 dwarf2out_end_source_file (lineno)
12711 unsigned int lineno ATTRIBUTE_UNUSED;
12713 if (flag_eliminate_dwarf2_dups)
12714 /* Record the end of the file for break_out_includes. */
12715 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12717 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12719 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12720 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12724 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12725 the tail part of the directive line, i.e. the part which is past the
12726 initial whitespace, #, whitespace, directive-name, whitespace part. */
12728 static void
12729 dwarf2out_define (lineno, buffer)
12730 unsigned lineno ATTRIBUTE_UNUSED;
12731 const char *buffer ATTRIBUTE_UNUSED;
12733 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12735 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12736 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12737 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12738 dw2_asm_output_nstring (buffer, -1, "The macro");
12742 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12743 the tail part of the directive line, i.e. the part which is past the
12744 initial whitespace, #, whitespace, directive-name, whitespace part. */
12746 static void
12747 dwarf2out_undef (lineno, buffer)
12748 unsigned lineno ATTRIBUTE_UNUSED;
12749 const char *buffer ATTRIBUTE_UNUSED;
12751 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12753 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12754 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12755 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12756 dw2_asm_output_nstring (buffer, -1, "The macro");
12760 /* Set up for Dwarf output at the start of compilation. */
12762 static void
12763 dwarf2out_init (input_filename)
12764 const char *input_filename ATTRIBUTE_UNUSED;
12766 init_file_table ();
12768 /* Allocate the initial hunk of the decl_die_table. */
12769 decl_die_table = ggc_alloc_cleared (DECL_DIE_TABLE_INCREMENT
12770 * sizeof (dw_die_ref));
12771 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12772 decl_die_table_in_use = 0;
12774 /* Allocate the initial hunk of the decl_scope_table. */
12775 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12777 /* Allocate the initial hunk of the abbrev_die_table. */
12778 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12779 * sizeof (dw_die_ref));
12780 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12781 /* Zero-th entry is allocated, but unused */
12782 abbrev_die_table_in_use = 1;
12784 /* Allocate the initial hunk of the line_info_table. */
12785 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12786 * sizeof (dw_line_info_entry));
12787 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12789 /* Zero-th entry is allocated, but unused */
12790 line_info_table_in_use = 1;
12792 /* Generate the initial DIE for the .debug section. Note that the (string)
12793 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12794 will (typically) be a relative pathname and that this pathname should be
12795 taken as being relative to the directory from which the compiler was
12796 invoked when the given (base) source file was compiled. We will fill
12797 in this value in dwarf2out_finish. */
12798 comp_unit_die = gen_compile_unit_die (NULL);
12799 is_main_source = 1;
12801 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12803 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12805 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12806 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12807 DEBUG_ABBREV_SECTION_LABEL, 0);
12808 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12809 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12810 else
12811 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12813 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12814 DEBUG_INFO_SECTION_LABEL, 0);
12815 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12816 DEBUG_LINE_SECTION_LABEL, 0);
12817 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12818 DEBUG_RANGES_SECTION_LABEL, 0);
12819 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12820 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12821 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12822 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12823 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12824 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12826 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12828 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12829 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12830 DEBUG_MACINFO_SECTION_LABEL, 0);
12831 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12834 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12836 text_section ();
12837 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12841 /* A helper function for dwarf2out_finish called through
12842 ht_forall. Emit one queued .debug_str string. */
12844 static int
12845 output_indirect_string (h, v)
12846 void **h;
12847 void *v ATTRIBUTE_UNUSED;
12849 struct indirect_string_node *node = (struct indirect_string_node *) *h;
12851 if (node->form == DW_FORM_strp)
12853 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12854 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12855 assemble_string (node->str, strlen (node->str) + 1);
12858 return 1;
12863 /* Clear the marks for a die and its children.
12864 Be cool if the mark isn't set. */
12866 static void
12867 prune_unmark_dies (die)
12868 dw_die_ref die;
12870 dw_die_ref c;
12871 die->die_mark = 0;
12872 for (c = die->die_child; c; c = c->die_sib)
12873 prune_unmark_dies (c);
12877 /* Given DIE that we're marking as used, find any other dies
12878 it references as attributes and mark them as used. */
12880 static void
12881 prune_unused_types_walk_attribs (die)
12882 dw_die_ref die;
12884 dw_attr_ref a;
12886 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
12888 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
12890 /* A reference to another DIE.
12891 Make sure that it will get emitted. */
12892 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
12894 else if (a->dw_attr == DW_AT_decl_file)
12896 /* A reference to a file. Make sure the file name is emitted. */
12897 a->dw_attr_val.v.val_unsigned =
12898 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
12904 /* Mark DIE as being used. If DOKIDS is true, then walk down
12905 to DIE's children. */
12907 static void
12908 prune_unused_types_mark (die, dokids)
12909 dw_die_ref die;
12910 int dokids;
12912 dw_die_ref c;
12914 if (die->die_mark == 0)
12916 /* We haven't done this node yet. Mark it as used. */
12917 die->die_mark = 1;
12919 /* We also have to mark its parents as used.
12920 (But we don't want to mark our parents' kids due to this.) */
12921 if (die->die_parent)
12922 prune_unused_types_mark (die->die_parent, 0);
12924 /* Mark any referenced nodes. */
12925 prune_unused_types_walk_attribs (die);
12928 if (dokids && die->die_mark != 2)
12930 /* We need to walk the children, but haven't done so yet.
12931 Remember that we've walked the kids. */
12932 die->die_mark = 2;
12934 /* Walk them. */
12935 for (c = die->die_child; c; c = c->die_sib)
12937 /* If this is an array type, we need to make sure our
12938 kids get marked, even if they're types. */
12939 if (die->die_tag == DW_TAG_array_type)
12940 prune_unused_types_mark (c, 1);
12941 else
12942 prune_unused_types_walk (c);
12948 /* Walk the tree DIE and mark types that we actually use. */
12950 static void
12951 prune_unused_types_walk (die)
12952 dw_die_ref die;
12954 dw_die_ref c;
12956 /* Don't do anything if this node is already marked. */
12957 if (die->die_mark)
12958 return;
12960 switch (die->die_tag) {
12961 case DW_TAG_const_type:
12962 case DW_TAG_packed_type:
12963 case DW_TAG_pointer_type:
12964 case DW_TAG_reference_type:
12965 case DW_TAG_volatile_type:
12966 case DW_TAG_typedef:
12967 case DW_TAG_array_type:
12968 case DW_TAG_structure_type:
12969 case DW_TAG_union_type:
12970 case DW_TAG_class_type:
12971 case DW_TAG_friend:
12972 case DW_TAG_variant_part:
12973 case DW_TAG_enumeration_type:
12974 case DW_TAG_subroutine_type:
12975 case DW_TAG_string_type:
12976 case DW_TAG_set_type:
12977 case DW_TAG_subrange_type:
12978 case DW_TAG_ptr_to_member_type:
12979 case DW_TAG_file_type:
12980 /* It's a type node --- don't mark it. */
12981 return;
12983 default:
12984 /* Mark everything else. */
12985 break;
12988 die->die_mark = 1;
12990 /* Now, mark any dies referenced from here. */
12991 prune_unused_types_walk_attribs (die);
12993 /* Mark children. */
12994 for (c = die->die_child; c; c = c->die_sib)
12995 prune_unused_types_walk (c);
12999 /* Remove from the tree DIE any dies that aren't marked. */
13001 static void
13002 prune_unused_types_prune (die)
13003 dw_die_ref die;
13005 dw_die_ref c, p, n;
13006 if (!die->die_mark)
13007 abort();
13009 p = NULL;
13010 for (c = die->die_child; c; c = n)
13012 n = c->die_sib;
13013 if (c->die_mark)
13015 prune_unused_types_prune (c);
13016 p = c;
13018 else
13020 if (p)
13021 p->die_sib = n;
13022 else
13023 die->die_child = n;
13024 free_die (c);
13030 /* Remove dies representing declarations that we never use. */
13032 static void
13033 prune_unused_types ()
13035 unsigned int i;
13036 limbo_die_node *node;
13038 /* Clear all the marks. */
13039 prune_unmark_dies (comp_unit_die);
13040 for (node = limbo_die_list; node; node = node->next)
13041 prune_unmark_dies (node->die);
13043 /* Set the mark on nodes that are actually used. */
13044 prune_unused_types_walk (comp_unit_die);
13045 for (node = limbo_die_list; node; node = node->next)
13046 prune_unused_types_walk (node->die);
13048 /* Also set the mark on nodes referenced from the
13049 pubname_table or arange_table. */
13050 for (i = 0; i < pubname_table_in_use; i++)
13051 prune_unused_types_mark (pubname_table[i].die, 1);
13052 for (i = 0; i < arange_table_in_use; i++)
13053 prune_unused_types_mark (arange_table[i], 1);
13055 /* Get rid of nodes that aren't marked. */
13056 prune_unused_types_prune (comp_unit_die);
13057 for (node = limbo_die_list; node; node = node->next)
13058 prune_unused_types_prune (node->die);
13060 /* Leave the marks clear. */
13061 prune_unmark_dies (comp_unit_die);
13062 for (node = limbo_die_list; node; node = node->next)
13063 prune_unmark_dies (node->die);
13066 /* Output stuff that dwarf requires at the end of every file,
13067 and generate the DWARF-2 debugging info. */
13069 static void
13070 dwarf2out_finish (input_filename)
13071 const char *input_filename;
13073 limbo_die_node *node, *next_node;
13074 dw_die_ref die = 0;
13076 /* Add the name for the main input file now. We delayed this from
13077 dwarf2out_init to avoid complications with PCH. */
13078 add_name_attribute (comp_unit_die, input_filename);
13079 if (input_filename[0] != DIR_SEPARATOR)
13080 add_comp_dir_attribute (comp_unit_die);
13081 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13083 size_t i;
13084 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13085 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR)
13087 add_comp_dir_attribute (comp_unit_die);
13088 break;
13092 /* Traverse the limbo die list, and add parent/child links. The only
13093 dies without parents that should be here are concrete instances of
13094 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13095 For concrete instances, we can get the parent die from the abstract
13096 instance. */
13097 for (node = limbo_die_list; node; node = next_node)
13099 next_node = node->next;
13100 die = node->die;
13102 if (die->die_parent == NULL)
13104 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13105 tree context;
13107 if (origin)
13108 add_child_die (origin->die_parent, die);
13109 else if (die == comp_unit_die)
13111 /* If this was an expression for a bound involved in a function
13112 return type, it may be a SAVE_EXPR for which we weren't able
13113 to find a DIE previously. So try now. */
13114 else if (node->created_for
13115 && TREE_CODE (node->created_for) == SAVE_EXPR
13116 && 0 != (origin = (lookup_decl_die
13117 (SAVE_EXPR_CONTEXT
13118 (node->created_for)))))
13119 add_child_die (origin, die);
13120 else if (errorcount > 0 || sorrycount > 0)
13121 /* It's OK to be confused by errors in the input. */
13122 add_child_die (comp_unit_die, die);
13123 else if (node->created_for
13124 && ((DECL_P (node->created_for)
13125 && (context = DECL_CONTEXT (node->created_for)))
13126 || (TYPE_P (node->created_for)
13127 && (context = TYPE_CONTEXT (node->created_for))))
13128 && TREE_CODE (context) == FUNCTION_DECL)
13130 /* In certain situations, the lexical block containing a
13131 nested function can be optimized away, which results
13132 in the nested function die being orphaned. Likewise
13133 with the return type of that nested function. Force
13134 this to be a child of the containing function. */
13135 origin = lookup_decl_die (context);
13136 if (! origin)
13137 abort ();
13138 add_child_die (origin, die);
13140 else
13141 abort ();
13145 limbo_die_list = NULL;
13147 /* Walk through the list of incomplete types again, trying once more to
13148 emit full debugging info for them. */
13149 retry_incomplete_types ();
13151 /* We need to reverse all the dies before break_out_includes, or
13152 we'll see the end of an include file before the beginning. */
13153 reverse_all_dies (comp_unit_die);
13155 if (flag_eliminate_unused_debug_types)
13156 prune_unused_types ();
13158 /* Generate separate CUs for each of the include files we've seen.
13159 They will go into limbo_die_list. */
13160 if (flag_eliminate_dwarf2_dups)
13161 break_out_includes (comp_unit_die);
13163 /* Traverse the DIE's and add add sibling attributes to those DIE's
13164 that have children. */
13165 add_sibling_attributes (comp_unit_die);
13166 for (node = limbo_die_list; node; node = node->next)
13167 add_sibling_attributes (node->die);
13169 /* Output a terminator label for the .text section. */
13170 text_section ();
13171 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
13173 /* Output the source line correspondence table. We must do this
13174 even if there is no line information. Otherwise, on an empty
13175 translation unit, we will generate a present, but empty,
13176 .debug_info section. IRIX 6.5 `nm' will then complain when
13177 examining the file. */
13178 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13180 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13181 output_line_info ();
13184 /* Output location list section if necessary. */
13185 if (have_location_lists)
13187 /* Output the location lists info. */
13188 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13189 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13190 DEBUG_LOC_SECTION_LABEL, 0);
13191 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13192 output_location_lists (die);
13193 have_location_lists = 0;
13196 /* We can only use the low/high_pc attributes if all of the code was
13197 in .text. */
13198 if (separate_line_info_table_in_use == 0)
13200 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13201 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13204 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13205 "base address". Use zero so that these addresses become absolute. */
13206 else if (have_location_lists || ranges_table_in_use)
13207 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13209 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13210 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13211 debug_line_section_label);
13213 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13214 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13216 /* Output all of the compilation units. We put the main one last so that
13217 the offsets are available to output_pubnames. */
13218 for (node = limbo_die_list; node; node = node->next)
13219 output_comp_unit (node->die, 0);
13221 output_comp_unit (comp_unit_die, 0);
13223 /* Output the abbreviation table. */
13224 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13225 output_abbrev_section ();
13227 /* Output public names table if necessary. */
13228 if (pubname_table_in_use)
13230 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13231 output_pubnames ();
13234 /* Output the address range information. We only put functions in the arange
13235 table, so don't write it out if we don't have any. */
13236 if (fde_table_in_use)
13238 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13239 output_aranges ();
13242 /* Output ranges section if necessary. */
13243 if (ranges_table_in_use)
13245 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13246 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13247 output_ranges ();
13250 /* Have to end the primary source file. */
13251 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13253 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13254 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13255 dw2_asm_output_data (1, 0, "End compilation unit");
13258 /* If we emitted any DW_FORM_strp form attribute, output the string
13259 table too. */
13260 if (debug_str_hash)
13261 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13263 #else
13265 /* This should never be used, but its address is needed for comparisons. */
13266 const struct gcc_debug_hooks dwarf2_debug_hooks;
13268 #endif /* DWARF2_DEBUGGING_INFO */
13270 #include "gt-dwarf2out.h"