* config/arm/elf.h (ASM_OUTPUT_ALIGNED_COMMON): Remove definition.
[official-gcc.git] / gcc / cp / init.c
blobd4beb0b751cd3d3480feb074518bdf6549943ea3
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 /* High-level class interface. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
38 static void construct_virtual_base (tree, tree);
39 static void expand_aggr_init_1 PARAMS ((tree, tree, tree, tree, int));
40 static void expand_default_init PARAMS ((tree, tree, tree, tree, int));
41 static tree build_vec_delete_1 PARAMS ((tree, tree, tree, special_function_kind, int));
42 static void perform_member_init (tree, tree);
43 static tree build_builtin_delete_call PARAMS ((tree));
44 static int member_init_ok_or_else PARAMS ((tree, tree, tree));
45 static void expand_virtual_init PARAMS ((tree, tree));
46 static tree sort_mem_initializers (tree, tree);
47 static tree initializing_context PARAMS ((tree));
48 static void expand_cleanup_for_base PARAMS ((tree, tree));
49 static tree get_temp_regvar PARAMS ((tree, tree));
50 static tree dfs_initialize_vtbl_ptrs PARAMS ((tree, void *));
51 static tree build_default_init PARAMS ((tree, tree));
52 static tree build_new_1 PARAMS ((tree));
53 static tree get_cookie_size PARAMS ((tree));
54 static tree build_dtor_call PARAMS ((tree, special_function_kind, int));
55 static tree build_field_list PARAMS ((tree, tree, int *));
56 static tree build_vtbl_address PARAMS ((tree));
58 /* We are about to generate some complex initialization code.
59 Conceptually, it is all a single expression. However, we may want
60 to include conditionals, loops, and other such statement-level
61 constructs. Therefore, we build the initialization code inside a
62 statement-expression. This function starts such an expression.
63 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
64 pass them back to finish_init_stmts when the expression is
65 complete. */
67 void
68 begin_init_stmts (stmt_expr_p, compound_stmt_p)
69 tree *stmt_expr_p;
70 tree *compound_stmt_p;
72 if (building_stmt_tree ())
73 *stmt_expr_p = begin_stmt_expr ();
74 else
75 *stmt_expr_p = begin_global_stmt_expr ();
77 if (building_stmt_tree ())
78 *compound_stmt_p = begin_compound_stmt (/*has_no_scope=*/1);
81 /* Finish out the statement-expression begun by the previous call to
82 begin_init_stmts. Returns the statement-expression itself. */
84 tree
85 finish_init_stmts (stmt_expr, compound_stmt)
86 tree stmt_expr;
87 tree compound_stmt;
90 if (building_stmt_tree ())
91 finish_compound_stmt (/*has_no_scope=*/1, compound_stmt);
93 if (building_stmt_tree ())
95 stmt_expr = finish_stmt_expr (stmt_expr);
96 STMT_EXPR_NO_SCOPE (stmt_expr) = true;
98 else
99 stmt_expr = finish_global_stmt_expr (stmt_expr);
101 /* To avoid spurious warnings about unused values, we set
102 TREE_USED. */
103 if (stmt_expr)
104 TREE_USED (stmt_expr) = 1;
106 return stmt_expr;
109 /* Constructors */
111 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
112 which we want to initialize the vtable pointer for, DATA is
113 TREE_LIST whose TREE_VALUE is the this ptr expression. */
115 static tree
116 dfs_initialize_vtbl_ptrs (binfo, data)
117 tree binfo;
118 void *data;
120 if ((!BINFO_PRIMARY_P (binfo) || TREE_VIA_VIRTUAL (binfo))
121 && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo)))
123 tree base_ptr = TREE_VALUE ((tree) data);
125 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
127 expand_virtual_init (binfo, base_ptr);
130 BINFO_MARKED (binfo) = 1;
132 return NULL_TREE;
135 /* Initialize all the vtable pointers in the object pointed to by
136 ADDR. */
138 void
139 initialize_vtbl_ptrs (addr)
140 tree addr;
142 tree list;
143 tree type;
145 type = TREE_TYPE (TREE_TYPE (addr));
146 list = build_tree_list (type, addr);
148 /* Walk through the hierarchy, initializing the vptr in each base
149 class. We do these in pre-order because we can't find the virtual
150 bases for a class until we've initialized the vtbl for that
151 class. */
152 dfs_walk_real (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs,
153 NULL, unmarkedp, list);
154 dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, type);
157 /* Return an expression for the zero-initialization of an object with
158 type T. This expression will either be a constant (in the case
159 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
160 aggregate). In either case, the value can be used as DECL_INITIAL
161 for a decl of the indicated TYPE; it is a valid static initializer.
162 If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
163 number of elements in the array. If STATIC_STORAGE_P is TRUE,
164 initializers are only generated for entities for which
165 zero-initialization does not simply mean filling the storage with
166 zero bytes. */
168 tree
169 build_zero_init (tree type, tree nelts, bool static_storage_p)
171 tree init = NULL_TREE;
173 /* [dcl.init]
175 To zero-initialization storage for an object of type T means:
177 -- if T is a scalar type, the storage is set to the value of zero
178 converted to T.
180 -- if T is a non-union class type, the storage for each nonstatic
181 data member and each base-class subobject is zero-initialized.
183 -- if T is a union type, the storage for its first data member is
184 zero-initialized.
186 -- if T is an array type, the storage for each element is
187 zero-initialized.
189 -- if T is a reference type, no initialization is performed. */
191 if (type == error_mark_node)
193 else if (static_storage_p && zero_init_p (type))
194 /* In order to save space, we do not explicitly build initializers
195 for items that do not need them. GCC's semantics are that
196 items with static storage duration that are not otherwise
197 initialized are initialized to zero. */
199 else if (SCALAR_TYPE_P (type))
200 init = convert (type, integer_zero_node);
201 else if (CLASS_TYPE_P (type))
203 tree field;
204 tree inits;
206 /* Build a constructor to contain the initializations. */
207 init = build_constructor (type, NULL_TREE);
208 /* Iterate over the fields, building initializations. */
209 inits = NULL_TREE;
210 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
212 if (TREE_CODE (field) != FIELD_DECL)
213 continue;
215 /* Note that for class types there will be FIELD_DECLs
216 corresponding to base classes as well. Thus, iterating
217 over TYPE_FIELDs will result in correct initialization of
218 all of the subobjects. */
219 if (static_storage_p && !zero_init_p (TREE_TYPE (field)))
220 inits = tree_cons (field,
221 build_zero_init (TREE_TYPE (field),
222 /*nelts=*/NULL_TREE,
223 static_storage_p),
224 inits);
226 /* For unions, only the first field is initialized. */
227 if (TREE_CODE (type) == UNION_TYPE)
228 break;
230 CONSTRUCTOR_ELTS (init) = nreverse (inits);
232 else if (TREE_CODE (type) == ARRAY_TYPE)
234 tree index;
235 tree max_index;
236 tree inits;
238 /* Build a constructor to contain the initializations. */
239 init = build_constructor (type, NULL_TREE);
240 /* Iterate over the array elements, building initializations. */
241 inits = NULL_TREE;
242 max_index = nelts ? nelts : array_type_nelts (type);
243 for (index = size_zero_node;
244 !tree_int_cst_lt (max_index, index);
245 index = size_binop (PLUS_EXPR, index, size_one_node))
246 inits = tree_cons (index,
247 build_zero_init (TREE_TYPE (type),
248 /*nelts=*/NULL_TREE,
249 static_storage_p),
250 inits);
251 CONSTRUCTOR_ELTS (init) = nreverse (inits);
253 else if (TREE_CODE (type) == REFERENCE_TYPE)
255 else
256 abort ();
258 /* In all cases, the initializer is a constant. */
259 if (init)
260 TREE_CONSTANT (init) = 1;
262 return init;
265 /* Build an expression for the default-initialization of an object of
266 the indicated TYPE. If NELTS is non-NULL, and TYPE is an
267 ARRAY_TYPE, NELTS is the number of elements in the array. If
268 initialization of TYPE requires calling constructors, this function
269 returns NULL_TREE; the caller is responsible for arranging for the
270 constructors to be called. */
272 static tree
273 build_default_init (type, nelts)
274 tree type;
275 tree nelts;
277 /* [dcl.init]:
279 To default-initialize an object of type T means:
281 --if T is a non-POD class type (clause _class_), the default construc-
282 tor for T is called (and the initialization is ill-formed if T has
283 no accessible default constructor);
285 --if T is an array type, each element is default-initialized;
287 --otherwise, the storage for the object is zero-initialized.
289 A program that calls for default-initialization of an entity of refer-
290 ence type is ill-formed. */
292 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
293 performing the initialization. This is confusing in that some
294 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
295 a class with a pointer-to-data member as a non-static data member
296 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
297 passing non-PODs to build_zero_init below, which is contrary to
298 the semantics quoted above from [dcl.init].
300 It happens, however, that the behavior of the constructor the
301 standard says we should have generated would be precisely the
302 same as that obtained by calling build_zero_init below, so things
303 work out OK. */
304 if (TYPE_NEEDS_CONSTRUCTING (type))
305 return NULL_TREE;
307 /* At this point, TYPE is either a POD class type, an array of POD
308 classes, or something even more inoccuous. */
309 return build_zero_init (type, nelts, /*static_storage_p=*/false);
312 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
313 arguments. If TREE_LIST is void_type_node, an empty initializer
314 list was given; if NULL_TREE no initializer was given. */
316 static void
317 perform_member_init (tree member, tree init)
319 tree decl;
320 tree type = TREE_TYPE (member);
321 bool explicit;
323 explicit = (init != NULL_TREE);
325 /* Effective C++ rule 12 requires that all data members be
326 initialized. */
327 if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
328 warning ("`%D' should be initialized in the member initialization "
329 "list",
330 member);
332 if (init == void_type_node)
333 init = NULL_TREE;
335 /* Get an lvalue for the data member. */
336 decl = build_class_member_access_expr (current_class_ref, member,
337 /*access_path=*/NULL_TREE,
338 /*preserve_reference=*/true);
339 if (decl == error_mark_node)
340 return;
342 /* Deal with this here, as we will get confused if we try to call the
343 assignment op for an anonymous union. This can happen in a
344 synthesized copy constructor. */
345 if (ANON_AGGR_TYPE_P (type))
347 if (init)
349 init = build (INIT_EXPR, type, decl, TREE_VALUE (init));
350 finish_expr_stmt (init);
353 else if (TYPE_NEEDS_CONSTRUCTING (type)
354 || (init && TYPE_HAS_CONSTRUCTOR (type)))
356 if (explicit
357 && TREE_CODE (type) == ARRAY_TYPE
358 && init != NULL_TREE
359 && TREE_CHAIN (init) == NULL_TREE
360 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
362 /* Initialization of one array from another. */
363 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
364 /* from_array=*/1));
366 else
367 finish_expr_stmt (build_aggr_init (decl, init, 0));
369 else
371 if (init == NULL_TREE)
373 if (explicit)
375 init = build_default_init (type, /*nelts=*/NULL_TREE);
376 if (TREE_CODE (type) == REFERENCE_TYPE)
377 warning
378 ("default-initialization of `%#D', which has reference type",
379 member);
381 /* member traversal: note it leaves init NULL */
382 else if (TREE_CODE (type) == REFERENCE_TYPE)
383 pedwarn ("uninitialized reference member `%D'", member);
385 else if (TREE_CODE (init) == TREE_LIST)
387 /* There was an explicit member initialization. Do some
388 work in that case. */
389 if (TREE_CHAIN (init))
391 warning ("initializer list treated as compound expression");
392 init = build_compound_expr (init);
394 else
395 init = TREE_VALUE (init);
398 if (init)
399 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
402 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
404 tree expr;
406 expr = build_class_member_access_expr (current_class_ref, member,
407 /*access_path=*/NULL_TREE,
408 /*preserve_reference=*/false);
409 expr = build_delete (type, expr, sfk_complete_destructor,
410 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
412 if (expr != error_mark_node)
413 finish_eh_cleanup (expr);
417 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
418 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
420 static tree
421 build_field_list (t, list, uses_unions_p)
422 tree t;
423 tree list;
424 int *uses_unions_p;
426 tree fields;
428 *uses_unions_p = 0;
430 /* Note whether or not T is a union. */
431 if (TREE_CODE (t) == UNION_TYPE)
432 *uses_unions_p = 1;
434 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
436 /* Skip CONST_DECLs for enumeration constants and so forth. */
437 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
438 continue;
440 /* Keep track of whether or not any fields are unions. */
441 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
442 *uses_unions_p = 1;
444 /* For an anonymous struct or union, we must recursively
445 consider the fields of the anonymous type. They can be
446 directly initialized from the constructor. */
447 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
449 /* Add this field itself. Synthesized copy constructors
450 initialize the entire aggregate. */
451 list = tree_cons (fields, NULL_TREE, list);
452 /* And now add the fields in the anonymous aggregate. */
453 list = build_field_list (TREE_TYPE (fields), list,
454 uses_unions_p);
456 /* Add this field. */
457 else if (DECL_NAME (fields))
458 list = tree_cons (fields, NULL_TREE, list);
461 return list;
464 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
465 a FIELD_DECL or BINFO in T that needs initialization. The
466 TREE_VALUE gives the initializer, or list of initializer arguments.
468 Return a TREE_LIST containing all of the initializations required
469 for T, in the order in which they should be performed. The output
470 list has the same format as the input. */
472 static tree
473 sort_mem_initializers (tree t, tree mem_inits)
475 tree init;
476 tree base;
477 tree sorted_inits;
478 tree next_subobject;
479 int i;
480 int uses_unions_p;
482 /* Build up a list of initializations. The TREE_PURPOSE of entry
483 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
484 TREE_VALUE will be the constructor arguments, or NULL if no
485 explicit initialization was provided. */
486 sorted_inits = NULL_TREE;
487 /* Process the virtual bases. */
488 for (base = CLASSTYPE_VBASECLASSES (t); base; base = TREE_CHAIN (base))
489 sorted_inits = tree_cons (TREE_VALUE (base), NULL_TREE, sorted_inits);
490 /* Process the direct bases. */
491 for (i = 0; i < CLASSTYPE_N_BASECLASSES (t); ++i)
493 base = BINFO_BASETYPE (TYPE_BINFO (t), i);
494 if (!TREE_VIA_VIRTUAL (base))
495 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
497 /* Process the non-static data members. */
498 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
499 /* Reverse the entire list of initializations, so that they are in
500 the order that they will actually be performed. */
501 sorted_inits = nreverse (sorted_inits);
503 /* If the user presented the initializers in an order different from
504 that in which they will actually occur, we issue a warning. Keep
505 track of the next subobject which can be explicitly initialized
506 without issuing a warning. */
507 next_subobject = sorted_inits;
509 /* Go through the explicit initializers, filling in TREE_PURPOSE in
510 the SORTED_INITS. */
511 for (init = mem_inits; init; init = TREE_CHAIN (init))
513 tree subobject;
514 tree subobject_init;
516 subobject = TREE_PURPOSE (init);
518 /* If the explicit initializers are in sorted order, then
519 SUBOBJECT will be NEXT_SUBOBJECT, or something following
520 it. */
521 for (subobject_init = next_subobject;
522 subobject_init;
523 subobject_init = TREE_CHAIN (subobject_init))
524 if (TREE_PURPOSE (subobject_init) == subobject)
525 break;
527 /* Issue a warning if the explicit initializer order does not
528 match that which will actually occur. */
529 if (warn_reorder && !subobject_init)
531 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
532 cp_warning_at ("`%D' will be initialized after",
533 TREE_PURPOSE (next_subobject));
534 else
535 warning ("base `%T' will be initialized after",
536 TREE_PURPOSE (next_subobject));
537 if (TREE_CODE (subobject) == FIELD_DECL)
538 cp_warning_at (" `%#D'", subobject);
539 else
540 warning (" base `%T'", subobject);
543 /* Look again, from the beginning of the list. */
544 if (!subobject_init)
546 subobject_init = sorted_inits;
547 while (TREE_PURPOSE (subobject_init) != subobject)
548 subobject_init = TREE_CHAIN (subobject_init);
551 /* It is invalid to initialize the same subobject more than
552 once. */
553 if (TREE_VALUE (subobject_init))
555 if (TREE_CODE (subobject) == FIELD_DECL)
556 error ("multiple initializations given for `%D'", subobject);
557 else
558 error ("multiple initializations given for base `%T'",
559 subobject);
562 /* Record the initialization. */
563 TREE_VALUE (subobject_init) = TREE_VALUE (init);
564 next_subobject = subobject_init;
567 /* [class.base.init]
569 If a ctor-initializer specifies more than one mem-initializer for
570 multiple members of the same union (including members of
571 anonymous unions), the ctor-initializer is ill-formed. */
572 if (uses_unions_p)
574 tree last_field = NULL_TREE;
575 for (init = sorted_inits; init; init = TREE_CHAIN (init))
577 tree field;
578 tree field_type;
579 int done;
581 /* Skip uninitialized members and base classes. */
582 if (!TREE_VALUE (init)
583 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
584 continue;
585 /* See if this field is a member of a union, or a member of a
586 structure contained in a union, etc. */
587 field = TREE_PURPOSE (init);
588 for (field_type = DECL_CONTEXT (field);
589 !same_type_p (field_type, t);
590 field_type = TYPE_CONTEXT (field_type))
591 if (TREE_CODE (field_type) == UNION_TYPE)
592 break;
593 /* If this field is not a member of a union, skip it. */
594 if (TREE_CODE (field_type) != UNION_TYPE)
595 continue;
597 /* It's only an error if we have two initializers for the same
598 union type. */
599 if (!last_field)
601 last_field = field;
602 continue;
605 /* See if LAST_FIELD and the field initialized by INIT are
606 members of the same union. If so, there's a problem,
607 unless they're actually members of the same structure
608 which is itself a member of a union. For example, given:
610 union { struct { int i; int j; }; };
612 initializing both `i' and `j' makes sense. */
613 field_type = DECL_CONTEXT (field);
614 done = 0;
617 tree last_field_type;
619 last_field_type = DECL_CONTEXT (last_field);
620 while (1)
622 if (same_type_p (last_field_type, field_type))
624 if (TREE_CODE (field_type) == UNION_TYPE)
625 error ("initializations for multiple members of `%T'",
626 last_field_type);
627 done = 1;
628 break;
631 if (same_type_p (last_field_type, t))
632 break;
634 last_field_type = TYPE_CONTEXT (last_field_type);
637 /* If we've reached the outermost class, then we're
638 done. */
639 if (same_type_p (field_type, t))
640 break;
642 field_type = TYPE_CONTEXT (field_type);
644 while (!done);
646 last_field = field;
650 return sorted_inits;
653 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
654 is a TREE_LIST giving the explicit mem-initializer-list for the
655 constructor. The TREE_PURPOSE of each entry is a subobject (a
656 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
657 is a TREE_LIST giving the arguments to the constructor or
658 void_type_node for an empty list of arguments. */
660 void
661 emit_mem_initializers (tree mem_inits)
663 /* Sort the mem-initializers into the order in which the
664 initializations should be performed. */
665 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
667 in_base_initializer = 1;
669 /* Initialize base classes. */
670 while (mem_inits
671 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
673 tree subobject = TREE_PURPOSE (mem_inits);
674 tree arguments = TREE_VALUE (mem_inits);
676 /* If these initializations are taking place in a copy
677 constructor, the base class should probably be explicitly
678 initialized. */
679 if (extra_warnings && !arguments
680 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
681 && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
682 warning ("base class `%#T' should be explicitly initialized in the "
683 "copy constructor",
684 BINFO_TYPE (subobject));
686 /* If an explicit -- but empty -- initializer list was present,
687 treat it just like default initialization at this point. */
688 if (arguments == void_type_node)
689 arguments = NULL_TREE;
691 /* Initialize the base. */
692 if (TREE_VIA_VIRTUAL (subobject))
693 construct_virtual_base (subobject, arguments);
694 else
696 tree base_addr;
698 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
699 subobject, 1);
700 expand_aggr_init_1 (subobject, NULL_TREE,
701 build_indirect_ref (base_addr, NULL),
702 arguments,
703 LOOKUP_NORMAL);
704 expand_cleanup_for_base (subobject, NULL_TREE);
707 mem_inits = TREE_CHAIN (mem_inits);
709 in_base_initializer = 0;
711 /* Initialize the vptrs. */
712 initialize_vtbl_ptrs (current_class_ptr);
714 /* Initialize the data members. */
715 while (mem_inits)
717 perform_member_init (TREE_PURPOSE (mem_inits),
718 TREE_VALUE (mem_inits));
719 mem_inits = TREE_CHAIN (mem_inits);
723 /* Returns the address of the vtable (i.e., the value that should be
724 assigned to the vptr) for BINFO. */
726 static tree
727 build_vtbl_address (binfo)
728 tree binfo;
730 tree binfo_for = binfo;
731 tree vtbl;
733 if (BINFO_VPTR_INDEX (binfo) && TREE_VIA_VIRTUAL (binfo)
734 && BINFO_PRIMARY_P (binfo))
735 /* If this is a virtual primary base, then the vtable we want to store
736 is that for the base this is being used as the primary base of. We
737 can't simply skip the initialization, because we may be expanding the
738 inits of a subobject constructor where the virtual base layout
739 can be different. */
740 while (BINFO_PRIMARY_BASE_OF (binfo_for))
741 binfo_for = BINFO_PRIMARY_BASE_OF (binfo_for);
743 /* Figure out what vtable BINFO's vtable is based on, and mark it as
744 used. */
745 vtbl = get_vtbl_decl_for_binfo (binfo_for);
746 assemble_external (vtbl);
747 TREE_USED (vtbl) = 1;
749 /* Now compute the address to use when initializing the vptr. */
750 vtbl = BINFO_VTABLE (binfo_for);
751 if (TREE_CODE (vtbl) == VAR_DECL)
753 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
754 TREE_CONSTANT (vtbl) = 1;
757 return vtbl;
760 /* This code sets up the virtual function tables appropriate for
761 the pointer DECL. It is a one-ply initialization.
763 BINFO is the exact type that DECL is supposed to be. In
764 multiple inheritance, this might mean "C's A" if C : A, B. */
766 static void
767 expand_virtual_init (binfo, decl)
768 tree binfo, decl;
770 tree vtbl, vtbl_ptr;
771 tree vtt_index;
773 /* Compute the initializer for vptr. */
774 vtbl = build_vtbl_address (binfo);
776 /* We may get this vptr from a VTT, if this is a subobject
777 constructor or subobject destructor. */
778 vtt_index = BINFO_VPTR_INDEX (binfo);
779 if (vtt_index)
781 tree vtbl2;
782 tree vtt_parm;
784 /* Compute the value to use, when there's a VTT. */
785 vtt_parm = current_vtt_parm;
786 vtbl2 = build (PLUS_EXPR,
787 TREE_TYPE (vtt_parm),
788 vtt_parm,
789 vtt_index);
790 vtbl2 = build1 (INDIRECT_REF, TREE_TYPE (vtbl), vtbl2);
792 /* The actual initializer is the VTT value only in the subobject
793 constructor. In maybe_clone_body we'll substitute NULL for
794 the vtt_parm in the case of the non-subobject constructor. */
795 vtbl = build (COND_EXPR,
796 TREE_TYPE (vtbl),
797 build (EQ_EXPR, boolean_type_node,
798 current_in_charge_parm, integer_zero_node),
799 vtbl2,
800 vtbl);
803 /* Compute the location of the vtpr. */
804 vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
805 TREE_TYPE (binfo));
806 my_friendly_assert (vtbl_ptr != error_mark_node, 20010730);
808 /* Assign the vtable to the vptr. */
809 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
810 finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
813 /* If an exception is thrown in a constructor, those base classes already
814 constructed must be destroyed. This function creates the cleanup
815 for BINFO, which has just been constructed. If FLAG is non-NULL,
816 it is a DECL which is nonzero when this base needs to be
817 destroyed. */
819 static void
820 expand_cleanup_for_base (binfo, flag)
821 tree binfo;
822 tree flag;
824 tree expr;
826 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
827 return;
829 /* Call the destructor. */
830 expr = build_special_member_call (current_class_ref,
831 base_dtor_identifier,
832 NULL_TREE,
833 binfo,
834 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
835 if (flag)
836 expr = fold (build (COND_EXPR, void_type_node,
837 c_common_truthvalue_conversion (flag),
838 expr, integer_zero_node));
840 finish_eh_cleanup (expr);
843 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
844 constructor. */
846 static void
847 construct_virtual_base (tree vbase, tree arguments)
849 tree inner_if_stmt;
850 tree compound_stmt;
851 tree exp;
852 tree flag;
854 /* If there are virtual base classes with destructors, we need to
855 emit cleanups to destroy them if an exception is thrown during
856 the construction process. These exception regions (i.e., the
857 period during which the cleanups must occur) begin from the time
858 the construction is complete to the end of the function. If we
859 create a conditional block in which to initialize the
860 base-classes, then the cleanup region for the virtual base begins
861 inside a block, and ends outside of that block. This situation
862 confuses the sjlj exception-handling code. Therefore, we do not
863 create a single conditional block, but one for each
864 initialization. (That way the cleanup regions always begin
865 in the outer block.) We trust the back-end to figure out
866 that the FLAG will not change across initializations, and
867 avoid doing multiple tests. */
868 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
869 inner_if_stmt = begin_if_stmt ();
870 finish_if_stmt_cond (flag, inner_if_stmt);
871 compound_stmt = begin_compound_stmt (/*has_no_scope=*/1);
873 /* Compute the location of the virtual base. If we're
874 constructing virtual bases, then we must be the most derived
875 class. Therefore, we don't have to look up the virtual base;
876 we already know where it is. */
877 exp = build (PLUS_EXPR,
878 TREE_TYPE (current_class_ptr),
879 current_class_ptr,
880 fold (build1 (NOP_EXPR, TREE_TYPE (current_class_ptr),
881 BINFO_OFFSET (vbase))));
882 exp = build1 (NOP_EXPR,
883 build_pointer_type (BINFO_TYPE (vbase)),
884 exp);
885 exp = build1 (INDIRECT_REF, BINFO_TYPE (vbase), exp);
887 expand_aggr_init_1 (vbase, current_class_ref, exp,
888 arguments, LOOKUP_COMPLAIN);
889 finish_compound_stmt (/*has_no_scope=*/1, compound_stmt);
890 finish_then_clause (inner_if_stmt);
891 finish_if_stmt ();
893 expand_cleanup_for_base (vbase, flag);
896 /* Find the context in which this FIELD can be initialized. */
898 static tree
899 initializing_context (field)
900 tree field;
902 tree t = DECL_CONTEXT (field);
904 /* Anonymous union members can be initialized in the first enclosing
905 non-anonymous union context. */
906 while (t && ANON_AGGR_TYPE_P (t))
907 t = TYPE_CONTEXT (t);
908 return t;
911 /* Function to give error message if member initialization specification
912 is erroneous. FIELD is the member we decided to initialize.
913 TYPE is the type for which the initialization is being performed.
914 FIELD must be a member of TYPE.
916 MEMBER_NAME is the name of the member. */
918 static int
919 member_init_ok_or_else (field, type, member_name)
920 tree field;
921 tree type;
922 tree member_name;
924 if (field == error_mark_node)
925 return 0;
926 if (!field)
928 error ("class `%T' does not have any field named `%D'", type,
929 member_name);
930 return 0;
932 if (TREE_CODE (field) == VAR_DECL)
934 error ("`%#D' is a static data member; it can only be "
935 "initialized at its definition",
936 field);
937 return 0;
939 if (TREE_CODE (field) != FIELD_DECL)
941 error ("`%#D' is not a non-static data member of `%T'",
942 field, type);
943 return 0;
945 if (initializing_context (field) != type)
947 error ("class `%T' does not have any field named `%D'", type,
948 member_name);
949 return 0;
952 return 1;
955 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
956 is a _TYPE node or TYPE_DECL which names a base for that type.
957 Check the validity of NAME, and return either the base _TYPE, base
958 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
959 NULL_TREE and issue a diagnostic.
961 An old style unnamed direct single base construction is permitted,
962 where NAME is NULL. */
964 tree
965 expand_member_init (tree name)
967 tree basetype;
968 tree field;
970 if (!current_class_ref)
971 return NULL_TREE;
973 if (!name)
975 /* This is an obsolete unnamed base class initializer. The
976 parser will already have warned about its use. */
977 switch (CLASSTYPE_N_BASECLASSES (current_class_type))
979 case 0:
980 error ("unnamed initializer for `%T', which has no base classes",
981 current_class_type);
982 return NULL_TREE;
983 case 1:
984 basetype = TYPE_BINFO_BASETYPE (current_class_type, 0);
985 break;
986 default:
987 error ("unnamed initializer for `%T', which uses multiple inheritance",
988 current_class_type);
989 return NULL_TREE;
992 else if (TYPE_P (name))
994 basetype = TYPE_MAIN_VARIANT (name);
995 name = TYPE_NAME (name);
997 else if (TREE_CODE (name) == TYPE_DECL)
998 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
999 else
1000 basetype = NULL_TREE;
1002 if (basetype)
1004 tree binfo;
1006 if (current_template_parms)
1007 return basetype;
1009 binfo = lookup_base (current_class_type, basetype,
1010 ba_ignore, NULL);
1011 if (!binfo || (!TREE_VIA_VIRTUAL (binfo)
1012 && (BINFO_INHERITANCE_CHAIN (binfo)
1013 != TYPE_BINFO (current_class_type))))
1015 if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
1016 error ("type `%D' is not a direct or virtual base of `%T'",
1017 name, current_class_type);
1018 else
1019 error ("type `%D' is not a direct base of `%T'",
1020 name, current_class_type);
1021 return NULL_TREE;
1023 return binfo;
1025 else
1027 if (TREE_CODE (name) == IDENTIFIER_NODE)
1028 field = lookup_field (current_class_type, name, 1, false);
1029 else
1030 field = name;
1032 if (member_init_ok_or_else (field, current_class_type, name))
1033 return field;
1036 return NULL_TREE;
1039 /* This is like `expand_member_init', only it stores one aggregate
1040 value into another.
1042 INIT comes in two flavors: it is either a value which
1043 is to be stored in EXP, or it is a parameter list
1044 to go to a constructor, which will operate on EXP.
1045 If INIT is not a parameter list for a constructor, then set
1046 LOOKUP_ONLYCONVERTING.
1047 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1048 the initializer, if FLAGS is 0, then it is the (init) form.
1049 If `init' is a CONSTRUCTOR, then we emit a warning message,
1050 explaining that such initializations are invalid.
1052 If INIT resolves to a CALL_EXPR which happens to return
1053 something of the type we are looking for, then we know
1054 that we can safely use that call to perform the
1055 initialization.
1057 The virtual function table pointer cannot be set up here, because
1058 we do not really know its type.
1060 This never calls operator=().
1062 When initializing, nothing is CONST.
1064 A default copy constructor may have to be used to perform the
1065 initialization.
1067 A constructor or a conversion operator may have to be used to
1068 perform the initialization, but not both, as it would be ambiguous. */
1070 tree
1071 build_aggr_init (exp, init, flags)
1072 tree exp, init;
1073 int flags;
1075 tree stmt_expr;
1076 tree compound_stmt;
1077 int destroy_temps;
1078 tree type = TREE_TYPE (exp);
1079 int was_const = TREE_READONLY (exp);
1080 int was_volatile = TREE_THIS_VOLATILE (exp);
1082 if (init == error_mark_node)
1083 return error_mark_node;
1085 TREE_READONLY (exp) = 0;
1086 TREE_THIS_VOLATILE (exp) = 0;
1088 if (init && TREE_CODE (init) != TREE_LIST)
1089 flags |= LOOKUP_ONLYCONVERTING;
1091 if (TREE_CODE (type) == ARRAY_TYPE)
1093 /* Must arrange to initialize each element of EXP
1094 from elements of INIT. */
1095 tree itype = init ? TREE_TYPE (init) : NULL_TREE;
1097 if (init && !itype)
1099 /* Handle bad initializers like:
1100 class COMPLEX {
1101 public:
1102 double re, im;
1103 COMPLEX(double r = 0.0, double i = 0.0) {re = r; im = i;};
1104 ~COMPLEX() {};
1107 int main(int argc, char **argv) {
1108 COMPLEX zees(1.0, 0.0)[10];
1111 error ("bad array initializer");
1112 return error_mark_node;
1114 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1115 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1116 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1117 TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1118 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1119 init && same_type_p (TREE_TYPE (init),
1120 TREE_TYPE (exp)));
1121 TREE_READONLY (exp) = was_const;
1122 TREE_THIS_VOLATILE (exp) = was_volatile;
1123 TREE_TYPE (exp) = type;
1124 if (init)
1125 TREE_TYPE (init) = itype;
1126 return stmt_expr;
1129 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1130 /* just know that we've seen something for this node */
1131 TREE_USED (exp) = 1;
1133 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1134 begin_init_stmts (&stmt_expr, &compound_stmt);
1135 destroy_temps = stmts_are_full_exprs_p ();
1136 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1137 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1138 init, LOOKUP_NORMAL|flags);
1139 stmt_expr = finish_init_stmts (stmt_expr, compound_stmt);
1140 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1141 TREE_TYPE (exp) = type;
1142 TREE_READONLY (exp) = was_const;
1143 TREE_THIS_VOLATILE (exp) = was_volatile;
1145 return stmt_expr;
1148 /* Like build_aggr_init, but not just for aggregates. */
1150 tree
1151 build_init (decl, init, flags)
1152 tree decl, init;
1153 int flags;
1155 tree expr;
1157 if (IS_AGGR_TYPE (TREE_TYPE (decl))
1158 || TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
1159 expr = build_aggr_init (decl, init, flags);
1160 else
1161 expr = build (INIT_EXPR, TREE_TYPE (decl), decl, init);
1163 return expr;
1166 static void
1167 expand_default_init (binfo, true_exp, exp, init, flags)
1168 tree binfo;
1169 tree true_exp, exp;
1170 tree init;
1171 int flags;
1173 tree type = TREE_TYPE (exp);
1174 tree ctor_name;
1176 /* It fails because there may not be a constructor which takes
1177 its own type as the first (or only parameter), but which does
1178 take other types via a conversion. So, if the thing initializing
1179 the expression is a unit element of type X, first try X(X&),
1180 followed by initialization by X. If neither of these work
1181 out, then look hard. */
1182 tree rval;
1183 tree parms;
1185 if (init && TREE_CODE (init) != TREE_LIST
1186 && (flags & LOOKUP_ONLYCONVERTING))
1188 /* Base subobjects should only get direct-initialization. */
1189 if (true_exp != exp)
1190 abort ();
1192 if (flags & DIRECT_BIND)
1193 /* Do nothing. We hit this in two cases: Reference initialization,
1194 where we aren't initializing a real variable, so we don't want
1195 to run a new constructor; and catching an exception, where we
1196 have already built up the constructor call so we could wrap it
1197 in an exception region. */;
1198 else if (TREE_CODE (init) == CONSTRUCTOR
1199 && TREE_HAS_CONSTRUCTOR (init))
1201 /* A brace-enclosed initializer for an aggregate. */
1202 my_friendly_assert (CP_AGGREGATE_TYPE_P (type), 20021016);
1203 init = digest_init (type, init, (tree *)NULL);
1205 else
1206 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1208 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1209 /* We need to protect the initialization of a catch parm with a
1210 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1211 around the TARGET_EXPR for the copy constructor. See
1212 initialize_handler_parm. */
1214 TREE_OPERAND (init, 0) = build (INIT_EXPR, TREE_TYPE (exp), exp,
1215 TREE_OPERAND (init, 0));
1216 TREE_TYPE (init) = void_type_node;
1218 else
1219 init = build (INIT_EXPR, TREE_TYPE (exp), exp, init);
1220 TREE_SIDE_EFFECTS (init) = 1;
1221 finish_expr_stmt (init);
1222 return;
1225 if (init == NULL_TREE
1226 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1228 parms = init;
1229 if (parms)
1230 init = TREE_VALUE (parms);
1232 else
1233 parms = build_tree_list (NULL_TREE, init);
1235 if (true_exp == exp)
1236 ctor_name = complete_ctor_identifier;
1237 else
1238 ctor_name = base_ctor_identifier;
1240 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
1241 if (TREE_SIDE_EFFECTS (rval))
1243 if (building_stmt_tree ())
1244 finish_expr_stmt (rval);
1245 else
1246 genrtl_expr_stmt (rval);
1250 /* This function is responsible for initializing EXP with INIT
1251 (if any).
1253 BINFO is the binfo of the type for who we are performing the
1254 initialization. For example, if W is a virtual base class of A and B,
1255 and C : A, B.
1256 If we are initializing B, then W must contain B's W vtable, whereas
1257 were we initializing C, W must contain C's W vtable.
1259 TRUE_EXP is nonzero if it is the true expression being initialized.
1260 In this case, it may be EXP, or may just contain EXP. The reason we
1261 need this is because if EXP is a base element of TRUE_EXP, we
1262 don't necessarily know by looking at EXP where its virtual
1263 baseclass fields should really be pointing. But we do know
1264 from TRUE_EXP. In constructors, we don't know anything about
1265 the value being initialized.
1267 FLAGS is just passes to `build_method_call'. See that function for
1268 its description. */
1270 static void
1271 expand_aggr_init_1 (binfo, true_exp, exp, init, flags)
1272 tree binfo;
1273 tree true_exp, exp;
1274 tree init;
1275 int flags;
1277 tree type = TREE_TYPE (exp);
1279 my_friendly_assert (init != error_mark_node && type != error_mark_node, 211);
1280 my_friendly_assert (building_stmt_tree (), 20021010);
1282 /* Use a function returning the desired type to initialize EXP for us.
1283 If the function is a constructor, and its first argument is
1284 NULL_TREE, know that it was meant for us--just slide exp on
1285 in and expand the constructor. Constructors now come
1286 as TARGET_EXPRs. */
1288 if (init && TREE_CODE (exp) == VAR_DECL
1289 && TREE_CODE (init) == CONSTRUCTOR
1290 && TREE_HAS_CONSTRUCTOR (init))
1292 /* If store_init_value returns NULL_TREE, the INIT has been
1293 record in the DECL_INITIAL for EXP. That means there's
1294 nothing more we have to do. */
1295 if (store_init_value (exp, init))
1296 finish_expr_stmt (build (INIT_EXPR, type, exp, init));
1297 return;
1300 /* We know that expand_default_init can handle everything we want
1301 at this point. */
1302 expand_default_init (binfo, true_exp, exp, init, flags);
1305 /* Report an error if TYPE is not a user-defined, aggregate type. If
1306 OR_ELSE is nonzero, give an error message. */
1309 is_aggr_type (type, or_else)
1310 tree type;
1311 int or_else;
1313 if (type == error_mark_node)
1314 return 0;
1316 if (! IS_AGGR_TYPE (type)
1317 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1318 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1320 if (or_else)
1321 error ("`%T' is not an aggregate type", type);
1322 return 0;
1324 return 1;
1327 /* Like is_aggr_typedef, but returns typedef if successful. */
1329 tree
1330 get_aggr_from_typedef (name, or_else)
1331 tree name;
1332 int or_else;
1334 tree type;
1336 if (name == error_mark_node)
1337 return NULL_TREE;
1339 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1340 type = IDENTIFIER_TYPE_VALUE (name);
1341 else
1343 if (or_else)
1344 error ("`%T' fails to be an aggregate typedef", name);
1345 return NULL_TREE;
1348 if (! IS_AGGR_TYPE (type)
1349 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1350 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1352 if (or_else)
1353 error ("type `%T' is of non-aggregate type", type);
1354 return NULL_TREE;
1356 return type;
1359 tree
1360 get_type_value (name)
1361 tree name;
1363 if (name == error_mark_node)
1364 return NULL_TREE;
1366 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1367 return IDENTIFIER_TYPE_VALUE (name);
1368 else
1369 return NULL_TREE;
1373 /* This code could just as well go in `class.c', but is placed here for
1374 modularity. */
1376 /* For an expression of the form TYPE :: NAME (PARMLIST), build
1377 the appropriate function call. */
1379 tree
1380 build_member_call (type, name, parmlist)
1381 tree type, name, parmlist;
1383 tree t;
1384 tree method_name;
1385 tree fns;
1386 int dtor = 0;
1387 tree basetype_path, decl;
1389 if (TREE_CODE (name) == TEMPLATE_ID_EXPR
1390 && TREE_CODE (type) == NAMESPACE_DECL)
1392 /* 'name' already refers to the decls from the namespace, since we
1393 hit do_identifier for template_ids. */
1394 method_name = TREE_OPERAND (name, 0);
1395 /* FIXME: Since we don't do independent names right yet, the
1396 name might also be a LOOKUP_EXPR. Once we resolve this to a
1397 real decl earlier, this can go. This may happen during
1398 tsubst'ing. */
1399 if (TREE_CODE (method_name) == LOOKUP_EXPR)
1401 method_name = lookup_namespace_name
1402 (type, TREE_OPERAND (method_name, 0));
1403 TREE_OPERAND (name, 0) = method_name;
1405 my_friendly_assert (is_overloaded_fn (method_name), 980519);
1406 return finish_call_expr (name, parmlist, /*disallow_virtual=*/true);
1409 if (DECL_P (name))
1410 name = DECL_NAME (name);
1412 if (TREE_CODE (type) == NAMESPACE_DECL)
1413 return finish_call_expr (lookup_namespace_name (type, name),
1414 parmlist,
1415 /*disallow_virtual=*/true);
1417 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1419 method_name = TREE_OPERAND (name, 0);
1420 if (TREE_CODE (method_name) == COMPONENT_REF)
1421 method_name = TREE_OPERAND (method_name, 1);
1422 if (is_overloaded_fn (method_name))
1423 method_name = DECL_NAME (OVL_CURRENT (method_name));
1424 TREE_OPERAND (name, 0) = method_name;
1426 else
1427 method_name = name;
1429 if (TREE_CODE (method_name) == BIT_NOT_EXPR)
1431 method_name = TREE_OPERAND (method_name, 0);
1432 dtor = 1;
1435 /* This shouldn't be here, and build_member_call shouldn't appear in
1436 parse.y! (mrs) */
1437 if (type && TREE_CODE (type) == IDENTIFIER_NODE
1438 && get_aggr_from_typedef (type, 0) == 0)
1440 tree ns = lookup_name (type, 0);
1441 if (ns && TREE_CODE (ns) == NAMESPACE_DECL)
1442 return finish_call_expr (lookup_namespace_name (ns, name),
1443 parmlist,
1444 /*disallow_virtual=*/true);
1447 if (type == NULL_TREE || ! is_aggr_type (type, 1))
1448 return error_mark_node;
1450 /* An operator we did not like. */
1451 if (name == NULL_TREE)
1452 return error_mark_node;
1454 if (dtor)
1456 error ("cannot call destructor `%T::~%T' without object", type,
1457 method_name);
1458 return error_mark_node;
1461 decl = maybe_dummy_object (type, &basetype_path);
1463 fns = lookup_fnfields (basetype_path, method_name, 0);
1464 if (fns)
1466 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1467 BASELINK_FUNCTIONS (fns) = build_nt (TEMPLATE_ID_EXPR,
1468 BASELINK_FUNCTIONS (fns),
1469 TREE_OPERAND (name, 1));
1470 return build_new_method_call (decl, fns, parmlist,
1471 /*conversion_path=*/NULL_TREE,
1472 LOOKUP_NORMAL|LOOKUP_NONVIRTUAL);
1475 /* Convert 'this' to the specified type to disambiguate conversion
1476 to the function's context. */
1477 if (decl == current_class_ref
1478 /* ??? this is wrong, but if this conversion is invalid we need to
1479 defer it until we know whether we are calling a static or
1480 non-static member function. Be conservative for now. */
1481 && ACCESSIBLY_UNIQUELY_DERIVED_P (type, current_class_type))
1483 basetype_path = NULL_TREE;
1484 decl = build_scoped_ref (decl, type, &basetype_path);
1485 if (decl == error_mark_node)
1486 return error_mark_node;
1489 if (constructor_name_p (method_name, type))
1490 return build_functional_cast (type, parmlist);
1491 if (TREE_CODE (name) == IDENTIFIER_NODE
1492 && ((t = lookup_field (TYPE_BINFO (type), name, 1, false))))
1494 if (t == error_mark_node)
1495 return error_mark_node;
1496 if (TREE_CODE (t) == FIELD_DECL)
1498 if (is_dummy_object (decl))
1500 error ("invalid use of non-static field `%D'", t);
1501 return error_mark_node;
1503 decl = build (COMPONENT_REF, TREE_TYPE (t), decl, t);
1505 else if (TREE_CODE (t) == VAR_DECL)
1506 decl = t;
1507 else
1509 error ("invalid use of member `%D'", t);
1510 return error_mark_node;
1512 if (TYPE_LANG_SPECIFIC (TREE_TYPE (decl)))
1513 return build_new_op (CALL_EXPR, LOOKUP_NORMAL, decl,
1514 parmlist, NULL_TREE);
1515 return build_function_call (decl, parmlist);
1517 else
1519 error ("no method `%T::%D'", type, name);
1520 return error_mark_node;
1524 /* Build a reference to a member of an aggregate. This is not a
1525 C++ `&', but really something which can have its address taken,
1526 and then act as a pointer to member, for example TYPE :: FIELD
1527 can have its address taken by saying & TYPE :: FIELD.
1529 @@ Prints out lousy diagnostics for operator <typename>
1530 @@ fields.
1532 @@ This function should be rewritten and placed in search.c. */
1534 tree
1535 build_offset_ref (type, name)
1536 tree type, name;
1538 tree decl, t = error_mark_node;
1539 tree member;
1540 tree basebinfo = NULL_TREE;
1541 tree orig_name = name;
1543 /* class templates can come in as TEMPLATE_DECLs here. */
1544 if (TREE_CODE (name) == TEMPLATE_DECL)
1545 return name;
1547 if (processing_template_decl || uses_template_parms (type))
1548 return build_min_nt (SCOPE_REF, type, name);
1550 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1552 /* If the NAME is a TEMPLATE_ID_EXPR, we are looking at
1553 something like `a.template f<int>' or the like. For the most
1554 part, we treat this just like a.f. We do remember, however,
1555 the template-id that was used. */
1556 name = TREE_OPERAND (orig_name, 0);
1558 if (DECL_P (name))
1559 name = DECL_NAME (name);
1560 else
1562 if (TREE_CODE (name) == LOOKUP_EXPR)
1563 /* This can happen during tsubst'ing. */
1564 name = TREE_OPERAND (name, 0);
1565 else
1567 if (TREE_CODE (name) == COMPONENT_REF)
1568 name = TREE_OPERAND (name, 1);
1569 if (TREE_CODE (name) == OVERLOAD)
1570 name = DECL_NAME (OVL_CURRENT (name));
1574 my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 0);
1577 if (type == NULL_TREE)
1578 return error_mark_node;
1580 /* Handle namespace names fully here. */
1581 if (TREE_CODE (type) == NAMESPACE_DECL)
1583 t = lookup_namespace_name (type, name);
1584 if (t == error_mark_node)
1585 return t;
1586 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1587 /* Reconstruct the TEMPLATE_ID_EXPR. */
1588 t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t),
1589 t, TREE_OPERAND (orig_name, 1));
1590 if (! type_unknown_p (t))
1592 mark_used (t);
1593 t = convert_from_reference (t);
1595 return t;
1598 if (! is_aggr_type (type, 1))
1599 return error_mark_node;
1601 if (TREE_CODE (name) == BIT_NOT_EXPR)
1603 if (! check_dtor_name (type, name))
1604 error ("qualified type `%T' does not match destructor name `~%T'",
1605 type, TREE_OPERAND (name, 0));
1606 name = dtor_identifier;
1609 if (!COMPLETE_TYPE_P (complete_type (type))
1610 && !TYPE_BEING_DEFINED (type))
1612 error ("incomplete type `%T' does not have member `%D'", type,
1613 name);
1614 return error_mark_node;
1617 decl = maybe_dummy_object (type, &basebinfo);
1619 if (BASELINK_P (name) || DECL_P (name))
1620 member = name;
1621 else
1623 member = lookup_member (basebinfo, name, 1, 0);
1625 if (member == error_mark_node)
1626 return error_mark_node;
1629 /* A lot of this logic is now handled in lookup_member. */
1630 if (member && BASELINK_P (member))
1632 /* Go from the TREE_BASELINK to the member function info. */
1633 tree fnfields = member;
1634 t = BASELINK_FUNCTIONS (fnfields);
1636 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1638 /* The FNFIELDS are going to contain functions that aren't
1639 necessarily templates, and templates that don't
1640 necessarily match the explicit template parameters. We
1641 save all the functions, and the explicit parameters, and
1642 then figure out exactly what to instantiate with what
1643 arguments in instantiate_type. */
1645 if (TREE_CODE (t) != OVERLOAD)
1646 /* The code in instantiate_type which will process this
1647 expects to encounter OVERLOADs, not raw functions. */
1648 t = ovl_cons (t, NULL_TREE);
1650 t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t), t,
1651 TREE_OPERAND (orig_name, 1));
1652 t = build (OFFSET_REF, unknown_type_node, decl, t);
1654 PTRMEM_OK_P (t) = 1;
1656 return t;
1659 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1661 /* Get rid of a potential OVERLOAD around it */
1662 t = OVL_CURRENT (t);
1664 /* unique functions are handled easily. */
1665 if (!enforce_access (basebinfo, t))
1666 return error_mark_node;
1667 mark_used (t);
1668 if (DECL_STATIC_FUNCTION_P (t))
1669 return t;
1670 t = build (OFFSET_REF, TREE_TYPE (t), decl, t);
1671 PTRMEM_OK_P (t) = 1;
1672 return t;
1675 TREE_TYPE (fnfields) = unknown_type_node;
1677 t = build (OFFSET_REF, unknown_type_node, decl, fnfields);
1678 PTRMEM_OK_P (t) = 1;
1679 return t;
1682 t = member;
1684 if (t == NULL_TREE)
1686 error ("`%D' is not a member of type `%T'", name, type);
1687 return error_mark_node;
1690 if (TREE_CODE (t) == TYPE_DECL)
1692 TREE_USED (t) = 1;
1693 return t;
1695 /* static class members and class-specific enum
1696 values can be returned without further ado. */
1697 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == CONST_DECL)
1699 mark_used (t);
1700 return convert_from_reference (t);
1703 if (TREE_CODE (t) == FIELD_DECL && DECL_C_BIT_FIELD (t))
1705 error ("invalid pointer to bit-field `%D'", t);
1706 return error_mark_node;
1709 /* static class functions too. */
1710 if (TREE_CODE (t) == FUNCTION_DECL
1711 && TREE_CODE (TREE_TYPE (t)) == FUNCTION_TYPE)
1712 abort ();
1714 /* In member functions, the form `type::name' is no longer
1715 equivalent to `this->type::name', at least not until
1716 resolve_offset_ref. */
1717 t = build (OFFSET_REF, build_offset_type (type, TREE_TYPE (t)), decl, t);
1718 PTRMEM_OK_P (t) = 1;
1719 return t;
1722 /* If a OFFSET_REF made it through to here, then it did
1723 not have its address taken. */
1725 tree
1726 resolve_offset_ref (exp)
1727 tree exp;
1729 tree type = TREE_TYPE (exp);
1730 tree base = NULL_TREE;
1731 tree member;
1732 tree basetype, addr;
1734 if (TREE_CODE (exp) == OFFSET_REF)
1736 member = TREE_OPERAND (exp, 1);
1737 base = TREE_OPERAND (exp, 0);
1739 else
1741 my_friendly_assert (TREE_CODE (type) == OFFSET_TYPE, 214);
1742 if (TYPE_OFFSET_BASETYPE (type) != current_class_type)
1744 error ("object missing in use of pointer-to-member construct");
1745 return error_mark_node;
1747 member = exp;
1748 type = TREE_TYPE (type);
1749 base = current_class_ref;
1752 if (BASELINK_P (member) || TREE_CODE (member) == TEMPLATE_ID_EXPR)
1753 return build_unary_op (ADDR_EXPR, exp, 0);
1755 if (TREE_CODE (TREE_TYPE (member)) == METHOD_TYPE)
1757 if (!flag_ms_extensions)
1758 /* A single non-static member, make sure we don't allow a
1759 pointer-to-member. */
1760 exp = ovl_cons (member, NULL_TREE);
1762 return build_unary_op (ADDR_EXPR, exp, 0);
1765 if ((TREE_CODE (member) == VAR_DECL
1766 && ! TYPE_PTRMEMFUNC_P (TREE_TYPE (member))
1767 && ! TYPE_PTRMEM_P (TREE_TYPE (member)))
1768 || TREE_CODE (TREE_TYPE (member)) == FUNCTION_TYPE)
1770 /* These were static members. */
1771 if (!cxx_mark_addressable (member))
1772 return error_mark_node;
1773 return member;
1776 if (TREE_CODE (TREE_TYPE (member)) == POINTER_TYPE
1777 && TREE_CODE (TREE_TYPE (TREE_TYPE (member))) == METHOD_TYPE)
1778 return member;
1780 /* Syntax error can cause a member which should
1781 have been seen as static to be grok'd as non-static. */
1782 if (TREE_CODE (member) == FIELD_DECL && current_class_ref == NULL_TREE)
1784 cp_error_at ("member `%D' is non-static but referenced as a static member",
1785 member);
1786 error ("at this point in file");
1787 return error_mark_node;
1790 /* The first case is really just a reference to a member of `this'. */
1791 if (TREE_CODE (member) == FIELD_DECL
1792 && (base == current_class_ref || is_dummy_object (base)))
1794 tree binfo = NULL_TREE;
1796 /* Try to get to basetype from 'this'; if that doesn't work,
1797 nothing will. */
1798 base = current_class_ref;
1800 /* First convert to the intermediate base specified, if appropriate. */
1801 if (TREE_CODE (exp) == OFFSET_REF && TREE_CODE (type) == OFFSET_TYPE)
1802 base = build_scoped_ref (base, TYPE_OFFSET_BASETYPE (type), &binfo);
1804 return build_class_member_access_expr (base, member,
1805 /*access_path=*/NULL_TREE,
1806 /*preserve_reference=*/false);
1809 /* Ensure that we have an object. */
1810 if (is_dummy_object (base))
1811 addr = error_mark_node;
1812 else
1813 /* If this is a reference to a member function, then return the
1814 address of the member function (which may involve going
1815 through the object's vtable), otherwise, return an expression
1816 for the dereferenced pointer-to-member construct. */
1817 addr = build_unary_op (ADDR_EXPR, base, 0);
1819 if (TYPE_PTRMEM_P (TREE_TYPE (member)))
1821 if (addr == error_mark_node)
1823 error ("object missing in `%E'", exp);
1824 return error_mark_node;
1827 basetype = TYPE_OFFSET_BASETYPE (TREE_TYPE (TREE_TYPE (member)));
1828 basetype = lookup_base (TREE_TYPE (TREE_TYPE (addr)),
1829 basetype, ba_check, NULL);
1830 addr = build_base_path (PLUS_EXPR, addr, basetype, 1);
1832 member = cp_convert (ptrdiff_type_node, member);
1834 addr = build (PLUS_EXPR, build_pointer_type (type), addr, member);
1835 return build_indirect_ref (addr, 0);
1837 else if (TYPE_PTRMEMFUNC_P (TREE_TYPE (member)))
1839 return get_member_function_from_ptrfunc (&addr, member);
1841 abort ();
1842 /* NOTREACHED */
1843 return NULL_TREE;
1846 /* If DECL is a `const' declaration, and its value is a known
1847 constant, then return that value. */
1849 tree
1850 decl_constant_value (decl)
1851 tree decl;
1853 if (TREE_READONLY_DECL_P (decl)
1854 && ! TREE_THIS_VOLATILE (decl)
1855 && DECL_INITIAL (decl)
1856 && DECL_INITIAL (decl) != error_mark_node
1857 /* This is invalid if initial value is not constant.
1858 If it has either a function call, a memory reference,
1859 or a variable, then re-evaluating it could give different results. */
1860 && TREE_CONSTANT (DECL_INITIAL (decl))
1861 /* Check for cases where this is sub-optimal, even though valid. */
1862 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1863 return DECL_INITIAL (decl);
1864 return decl;
1867 /* Common subroutines of build_new and build_vec_delete. */
1869 /* Call the global __builtin_delete to delete ADDR. */
1871 static tree
1872 build_builtin_delete_call (addr)
1873 tree addr;
1875 mark_used (global_delete_fndecl);
1876 return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
1879 /* Generate a C++ "new" expression. DECL is either a TREE_LIST
1880 (which needs to go through some sort of groktypename) or it
1881 is the name of the class we are newing. INIT is an initialization value.
1882 It is either an EXPRLIST, an EXPR_NO_COMMAS, or something in braces.
1883 If INIT is void_type_node, it means do *not* call a constructor
1884 for this instance.
1886 For types with constructors, the data returned is initialized
1887 by the appropriate constructor.
1889 Whether the type has a constructor or not, if it has a pointer
1890 to a virtual function table, then that pointer is set up
1891 here.
1893 Unless I am mistaken, a call to new () will return initialized
1894 data regardless of whether the constructor itself is private or
1895 not. NOPE; new fails if the constructor is private (jcm).
1897 Note that build_new does nothing to assure that any special
1898 alignment requirements of the type are met. Rather, it leaves
1899 it up to malloc to do the right thing. Otherwise, folding to
1900 the right alignment cal cause problems if the user tries to later
1901 free the memory returned by `new'.
1903 PLACEMENT is the `placement' list for user-defined operator new (). */
1905 tree
1906 build_new (placement, decl, init, use_global_new)
1907 tree placement;
1908 tree decl, init;
1909 int use_global_new;
1911 tree type, rval;
1912 tree nelts = NULL_TREE, t;
1913 int has_array = 0;
1915 if (decl == error_mark_node)
1916 return error_mark_node;
1918 if (TREE_CODE (decl) == TREE_LIST)
1920 tree absdcl = TREE_VALUE (decl);
1921 tree last_absdcl = NULL_TREE;
1923 if (current_function_decl
1924 && DECL_CONSTRUCTOR_P (current_function_decl))
1925 my_friendly_assert (immediate_size_expand == 0, 19990926);
1927 nelts = integer_one_node;
1929 if (absdcl && TREE_CODE (absdcl) == CALL_EXPR)
1930 abort ();
1931 while (absdcl && TREE_CODE (absdcl) == INDIRECT_REF)
1933 last_absdcl = absdcl;
1934 absdcl = TREE_OPERAND (absdcl, 0);
1937 if (absdcl && TREE_CODE (absdcl) == ARRAY_REF)
1939 /* probably meant to be a vec new */
1940 tree this_nelts;
1942 while (TREE_OPERAND (absdcl, 0)
1943 && TREE_CODE (TREE_OPERAND (absdcl, 0)) == ARRAY_REF)
1945 last_absdcl = absdcl;
1946 absdcl = TREE_OPERAND (absdcl, 0);
1949 has_array = 1;
1950 this_nelts = TREE_OPERAND (absdcl, 1);
1951 if (this_nelts != error_mark_node)
1953 if (this_nelts == NULL_TREE)
1954 error ("new of array type fails to specify size");
1955 else if (processing_template_decl)
1957 nelts = this_nelts;
1958 absdcl = TREE_OPERAND (absdcl, 0);
1960 else
1962 if (build_expr_type_conversion (WANT_INT | WANT_ENUM,
1963 this_nelts, false)
1964 == NULL_TREE)
1965 pedwarn ("size in array new must have integral type");
1967 this_nelts = save_expr (cp_convert (sizetype, this_nelts));
1968 absdcl = TREE_OPERAND (absdcl, 0);
1969 if (this_nelts == integer_zero_node)
1971 warning ("zero size array reserves no space");
1972 nelts = integer_zero_node;
1974 else
1975 nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
1978 else
1979 nelts = integer_zero_node;
1982 if (last_absdcl)
1983 TREE_OPERAND (last_absdcl, 0) = absdcl;
1984 else
1985 TREE_VALUE (decl) = absdcl;
1987 type = groktypename (decl);
1988 if (! type || type == error_mark_node)
1989 return error_mark_node;
1991 else if (TREE_CODE (decl) == IDENTIFIER_NODE)
1993 if (IDENTIFIER_HAS_TYPE_VALUE (decl))
1995 /* An aggregate type. */
1996 type = IDENTIFIER_TYPE_VALUE (decl);
1997 decl = TYPE_MAIN_DECL (type);
1999 else
2001 /* A builtin type. */
2002 decl = lookup_name (decl, 1);
2003 my_friendly_assert (TREE_CODE (decl) == TYPE_DECL, 215);
2004 type = TREE_TYPE (decl);
2007 else if (TREE_CODE (decl) == TYPE_DECL)
2009 type = TREE_TYPE (decl);
2011 else
2013 type = decl;
2014 decl = TYPE_MAIN_DECL (type);
2017 if (processing_template_decl)
2019 if (has_array)
2020 t = tree_cons (tree_cons (NULL_TREE, type, NULL_TREE),
2021 build_min_nt (ARRAY_REF, NULL_TREE, nelts),
2022 NULL_TREE);
2023 else
2024 t = type;
2026 rval = build_min (NEW_EXPR, build_pointer_type (type),
2027 placement, t, init);
2028 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
2029 return rval;
2032 /* ``A reference cannot be created by the new operator. A reference
2033 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2034 returned by new.'' ARM 5.3.3 */
2035 if (TREE_CODE (type) == REFERENCE_TYPE)
2037 error ("new cannot be applied to a reference type");
2038 type = TREE_TYPE (type);
2041 if (TREE_CODE (type) == FUNCTION_TYPE)
2043 error ("new cannot be applied to a function type");
2044 return error_mark_node;
2047 /* When the object being created is an array, the new-expression yields a
2048 pointer to the initial element (if any) of the array. For example,
2049 both new int and new int[10] return an int*. 5.3.4. */
2050 if (TREE_CODE (type) == ARRAY_TYPE && has_array == 0)
2052 nelts = array_type_nelts_top (type);
2053 has_array = 1;
2054 type = TREE_TYPE (type);
2057 if (has_array)
2058 t = build_nt (ARRAY_REF, type, nelts);
2059 else
2060 t = type;
2062 rval = build (NEW_EXPR, build_pointer_type (type), placement, t, init);
2063 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
2064 TREE_SIDE_EFFECTS (rval) = 1;
2065 rval = build_new_1 (rval);
2066 if (rval == error_mark_node)
2067 return error_mark_node;
2069 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2070 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2071 TREE_NO_UNUSED_WARNING (rval) = 1;
2073 return rval;
2076 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2078 tree
2079 build_java_class_ref (type)
2080 tree type;
2082 tree name = NULL_TREE, class_decl;
2083 static tree CL_suffix = NULL_TREE;
2084 if (CL_suffix == NULL_TREE)
2085 CL_suffix = get_identifier("class$");
2086 if (jclass_node == NULL_TREE)
2088 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2089 if (jclass_node == NULL_TREE)
2090 fatal_error ("call to Java constructor, while `jclass' undefined");
2092 jclass_node = TREE_TYPE (jclass_node);
2095 /* Mangle the class$ field */
2097 tree field;
2098 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2099 if (DECL_NAME (field) == CL_suffix)
2101 mangle_decl (field);
2102 name = DECL_ASSEMBLER_NAME (field);
2103 break;
2105 if (!field)
2106 internal_error ("can't find class$");
2109 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2110 if (class_decl == NULL_TREE)
2112 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
2113 TREE_STATIC (class_decl) = 1;
2114 DECL_EXTERNAL (class_decl) = 1;
2115 TREE_PUBLIC (class_decl) = 1;
2116 DECL_ARTIFICIAL (class_decl) = 1;
2117 DECL_IGNORED_P (class_decl) = 1;
2118 pushdecl_top_level (class_decl);
2119 make_decl_rtl (class_decl, NULL);
2121 return class_decl;
2124 /* Returns the size of the cookie to use when allocating an array
2125 whose elements have the indicated TYPE. Assumes that it is already
2126 known that a cookie is needed. */
2128 static tree
2129 get_cookie_size (type)
2130 tree type;
2132 tree cookie_size;
2134 /* We need to allocate an additional max (sizeof (size_t), alignof
2135 (true_type)) bytes. */
2136 tree sizetype_size;
2137 tree type_align;
2139 sizetype_size = size_in_bytes (sizetype);
2140 type_align = size_int (TYPE_ALIGN_UNIT (type));
2141 if (INT_CST_LT_UNSIGNED (type_align, sizetype_size))
2142 cookie_size = sizetype_size;
2143 else
2144 cookie_size = type_align;
2146 return cookie_size;
2149 /* Called from cplus_expand_expr when expanding a NEW_EXPR. The return
2150 value is immediately handed to expand_expr. */
2152 static tree
2153 build_new_1 (exp)
2154 tree exp;
2156 tree placement, init;
2157 tree true_type, size, rval, t;
2158 /* The type of the new-expression. (This type is always a pointer
2159 type.) */
2160 tree pointer_type;
2161 /* The type pointed to by POINTER_TYPE. */
2162 tree type;
2163 /* The type being allocated. For "new T[...]" this will be an
2164 ARRAY_TYPE. */
2165 tree full_type;
2166 /* A pointer type pointing to to the FULL_TYPE. */
2167 tree full_pointer_type;
2168 tree outer_nelts = NULL_TREE;
2169 tree nelts = NULL_TREE;
2170 tree alloc_call, alloc_expr;
2171 /* The address returned by the call to "operator new". This node is
2172 a VAR_DECL and is therefore reusable. */
2173 tree alloc_node;
2174 tree alloc_fn;
2175 int has_array = 0;
2176 enum tree_code code;
2177 int nothrow, check_new;
2178 /* Nonzero if the user wrote `::new' rather than just `new'. */
2179 int globally_qualified_p;
2180 int use_java_new = 0;
2181 /* If non-NULL, the number of extra bytes to allocate at the
2182 beginning of the storage allocated for an array-new expression in
2183 order to store the number of elements. */
2184 tree cookie_size = NULL_TREE;
2185 /* True if the function we are calling is a placement allocation
2186 function. */
2187 bool placement_allocation_fn_p;
2188 tree args = NULL_TREE;
2189 /* True if the storage must be initialized, either by a constructor
2190 or due to an explicit new-intiailizer. */
2191 bool is_initialized;
2192 /* The address of the thing allocated, not including any cookie. In
2193 particular, if an array cookie is in use, DATA_ADDR is the
2194 address of the first array element. This node is a VAR_DECL, and
2195 is therefore reusable. */
2196 tree data_addr;
2198 placement = TREE_OPERAND (exp, 0);
2199 type = TREE_OPERAND (exp, 1);
2200 init = TREE_OPERAND (exp, 2);
2201 globally_qualified_p = NEW_EXPR_USE_GLOBAL (exp);
2203 if (TREE_CODE (type) == ARRAY_REF)
2205 has_array = 1;
2206 nelts = outer_nelts = TREE_OPERAND (type, 1);
2207 type = TREE_OPERAND (type, 0);
2209 /* Use an incomplete array type to avoid VLA headaches. */
2210 full_type = build_cplus_array_type (type, NULL_TREE);
2212 else
2213 full_type = type;
2215 true_type = type;
2217 code = has_array ? VEC_NEW_EXPR : NEW_EXPR;
2219 /* If our base type is an array, then make sure we know how many elements
2220 it has. */
2221 while (TREE_CODE (true_type) == ARRAY_TYPE)
2223 tree this_nelts = array_type_nelts_top (true_type);
2224 nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
2225 true_type = TREE_TYPE (true_type);
2228 if (!complete_type_or_else (true_type, exp))
2229 return error_mark_node;
2231 if (TREE_CODE (true_type) == VOID_TYPE)
2233 error ("invalid type `void' for new");
2234 return error_mark_node;
2237 if (abstract_virtuals_error (NULL_TREE, true_type))
2238 return error_mark_node;
2240 is_initialized = (TYPE_NEEDS_CONSTRUCTING (type) || init);
2241 if (CP_TYPE_CONST_P (true_type) && !is_initialized)
2243 error ("uninitialized const in `new' of `%#T'", true_type);
2244 return error_mark_node;
2247 size = size_in_bytes (true_type);
2248 if (has_array)
2249 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2251 /* Allocate the object. */
2252 if (! placement && TYPE_FOR_JAVA (true_type))
2254 tree class_addr, alloc_decl;
2255 tree class_decl = build_java_class_ref (true_type);
2256 tree class_size = size_in_bytes (true_type);
2257 static const char alloc_name[] = "_Jv_AllocObject";
2258 use_java_new = 1;
2259 alloc_decl = IDENTIFIER_GLOBAL_VALUE (get_identifier (alloc_name));
2260 if (alloc_decl == NULL_TREE)
2261 fatal_error ("call to Java constructor with `%s' undefined",
2262 alloc_name);
2264 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2265 alloc_call = (build_function_call
2266 (alloc_decl,
2267 tree_cons (NULL_TREE, class_addr,
2268 build_tree_list (NULL_TREE, class_size))));
2270 else
2272 tree fnname;
2274 fnname = ansi_opname (code);
2276 if (!globally_qualified_p
2277 && CLASS_TYPE_P (true_type)
2278 && (has_array
2279 ? TYPE_HAS_ARRAY_NEW_OPERATOR (true_type)
2280 : TYPE_HAS_NEW_OPERATOR (true_type)))
2282 /* Use a class-specific operator new. */
2283 /* If a cookie is required, add some extra space. */
2284 if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type))
2286 cookie_size = get_cookie_size (true_type);
2287 size = size_binop (PLUS_EXPR, size, cookie_size);
2289 /* Create the argument list. */
2290 args = tree_cons (NULL_TREE, size, placement);
2291 /* Call the function. */
2292 alloc_call = build_method_call (build_dummy_object (true_type),
2293 fnname, args,
2294 TYPE_BINFO (true_type),
2295 LOOKUP_NORMAL);
2297 else
2299 /* Use a global operator new. */
2300 /* See if a cookie might be required. */
2301 if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type))
2302 cookie_size = get_cookie_size (true_type);
2303 else
2304 cookie_size = NULL_TREE;
2306 alloc_call = build_operator_new_call (fnname, placement,
2307 &size, &cookie_size);
2311 if (alloc_call == error_mark_node)
2312 return error_mark_node;
2314 /* The ALLOC_CALL should be a CALL_EXPR -- or a COMPOUND_EXPR whose
2315 right-hand-side is ultimately a CALL_EXPR -- and the first
2316 operand should be the address of a known FUNCTION_DECL. */
2317 t = alloc_call;
2318 while (TREE_CODE (t) == COMPOUND_EXPR)
2319 t = TREE_OPERAND (t, 1);
2320 alloc_fn = get_callee_fndecl (t);
2321 my_friendly_assert (alloc_fn != NULL_TREE, 20020325);
2323 /* Now, check to see if this function is actually a placement
2324 allocation function. This can happen even when PLACEMENT is NULL
2325 because we might have something like:
2327 struct S { void* operator new (size_t, int i = 0); };
2329 A call to `new S' will get this allocation function, even though
2330 there is no explicit placement argument. If there is more than
2331 one argument, or there are variable arguments, then this is a
2332 placement allocation function. */
2333 placement_allocation_fn_p
2334 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2335 || varargs_function_p (alloc_fn));
2337 /* unless an allocation function is declared with an empty excep-
2338 tion-specification (_except.spec_), throw(), it indicates failure to
2339 allocate storage by throwing a bad_alloc exception (clause _except_,
2340 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2341 cation function is declared with an empty exception-specification,
2342 throw(), it returns null to indicate failure to allocate storage and a
2343 non-null pointer otherwise.
2345 So check for a null exception spec on the op new we just called. */
2347 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2348 check_new = (flag_check_new || nothrow) && ! use_java_new;
2350 /* In the simple case, we can stop now. */
2351 pointer_type = build_pointer_type (type);
2352 if (!cookie_size && !is_initialized)
2353 return build_nop (pointer_type, alloc_call);
2355 /* While we're working, use a pointer to the type we've actually
2356 allocated. Store the result of the call in a variable so that we
2357 can use it more than once. */
2358 full_pointer_type = build_pointer_type (full_type);
2359 alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
2360 alloc_node = TREE_OPERAND (alloc_expr, 0);
2361 rval = NULL_TREE;
2363 if (cookie_size)
2365 tree cookie;
2366 tree cookie_expr;
2368 /* Adjust so we're pointing to the start of the object. */
2369 data_addr = get_target_expr (build (PLUS_EXPR, full_pointer_type,
2370 alloc_node, cookie_size));
2372 /* Store the number of bytes allocated so that we can know how
2373 many elements to destroy later. We use the last sizeof
2374 (size_t) bytes to store the number of elements. */
2375 cookie = build (MINUS_EXPR, build_pointer_type (sizetype),
2376 data_addr, size_in_bytes (sizetype));
2377 cookie = build_indirect_ref (cookie, NULL);
2379 cookie_expr = build (MODIFY_EXPR, sizetype, cookie, nelts);
2380 TREE_SIDE_EFFECTS (cookie_expr) = 1;
2381 rval = build (COMPOUND_EXPR, void_type_node, data_addr, cookie_expr);
2382 data_addr = TREE_OPERAND (data_addr, 0);
2384 else
2385 data_addr = alloc_node;
2387 /* Now initialize the allocated object. */
2388 if (is_initialized)
2390 tree init_expr;
2392 init_expr = build_indirect_ref (data_addr, NULL);
2394 if (init == void_zero_node)
2395 init = build_default_init (full_type, nelts);
2396 else if (init && pedantic && has_array)
2397 pedwarn ("ISO C++ forbids initialization in array new");
2399 if (has_array)
2400 init_expr
2401 = build_vec_init (init_expr,
2402 cp_build_binary_op (MINUS_EXPR, outer_nelts,
2403 integer_one_node),
2404 init, /*from_array=*/0);
2405 else if (TYPE_NEEDS_CONSTRUCTING (type))
2406 init_expr = build_special_member_call (init_expr,
2407 complete_ctor_identifier,
2408 init, TYPE_BINFO (true_type),
2409 LOOKUP_NORMAL);
2410 else
2412 /* We are processing something like `new int (10)', which
2413 means allocate an int, and initialize it with 10. */
2415 if (TREE_CODE (init) == TREE_LIST)
2417 if (TREE_CHAIN (init) != NULL_TREE)
2418 pedwarn
2419 ("initializer list being treated as compound expression");
2420 init = build_compound_expr (init);
2422 else if (TREE_CODE (init) == CONSTRUCTOR
2423 && TREE_TYPE (init) == NULL_TREE)
2425 pedwarn ("ISO C++ forbids aggregate initializer to new");
2426 init = digest_init (type, init, 0);
2429 init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
2432 if (init_expr == error_mark_node)
2433 return error_mark_node;
2435 /* If any part of the object initialization terminates by throwing an
2436 exception and a suitable deallocation function can be found, the
2437 deallocation function is called to free the memory in which the
2438 object was being constructed, after which the exception continues
2439 to propagate in the context of the new-expression. If no
2440 unambiguous matching deallocation function can be found,
2441 propagating the exception does not cause the object's memory to be
2442 freed. */
2443 if (flag_exceptions && ! use_java_new)
2445 enum tree_code dcode = has_array ? VEC_DELETE_EXPR : DELETE_EXPR;
2446 tree cleanup;
2447 int flags = (LOOKUP_NORMAL
2448 | (globally_qualified_p * LOOKUP_GLOBAL));
2450 /* The Standard is unclear here, but the right thing to do
2451 is to use the same method for finding deallocation
2452 functions that we use for finding allocation functions. */
2453 flags |= LOOKUP_SPECULATIVELY;
2455 cleanup = build_op_delete_call (dcode, alloc_node, size, flags,
2456 (placement_allocation_fn_p
2457 ? alloc_call : NULL_TREE));
2459 /* Ack! First we allocate the memory. Then we set our sentry
2460 variable to true, and expand a cleanup that deletes the memory
2461 if sentry is true. Then we run the constructor, and finally
2462 clear the sentry.
2464 It would be nice to be able to handle this without the sentry
2465 variable, perhaps with a TRY_CATCH_EXPR, but this doesn't
2466 work. We allocate the space first, so if there are any
2467 temporaries with cleanups in the constructor args we need this
2468 EH region to extend until end of full-expression to preserve
2469 nesting.
2471 If the backend had some mechanism so that we could force the
2472 allocation to be expanded after all the other args to the
2473 constructor, that would fix the nesting problem and we could
2474 do away with this complexity. But that would complicate other
2475 things; in particular, it would make it difficult to bail out
2476 if the allocation function returns null. Er, no, it wouldn't;
2477 we just don't run the constructor. The standard says it's
2478 unspecified whether or not the args are evaluated.
2480 FIXME FIXME FIXME inline invisible refs as refs. That way we
2481 can preevaluate value parameters. */
2483 if (cleanup)
2485 tree end, sentry, begin;
2487 begin = get_target_expr (boolean_true_node);
2488 CLEANUP_EH_ONLY (begin) = 1;
2490 sentry = TARGET_EXPR_SLOT (begin);
2492 TARGET_EXPR_CLEANUP (begin)
2493 = build (COND_EXPR, void_type_node, sentry,
2494 cleanup, void_zero_node);
2496 end = build (MODIFY_EXPR, TREE_TYPE (sentry),
2497 sentry, boolean_false_node);
2499 init_expr
2500 = build (COMPOUND_EXPR, void_type_node, begin,
2501 build (COMPOUND_EXPR, void_type_node, init_expr,
2502 end));
2506 if (rval)
2507 rval = build (COMPOUND_EXPR, TREE_TYPE (init_expr), rval, init_expr);
2508 else
2509 rval = init_expr;
2512 rval = build (COMPOUND_EXPR, TREE_TYPE (alloc_node), rval, data_addr);
2514 if (check_new)
2516 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node, integer_zero_node);
2517 rval = build_conditional_expr (ifexp, rval, alloc_node);
2520 /* Perform the allocation before anything else, so that ALLOC_NODE
2521 has been initialized before we start using it. */
2522 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2524 /* Convert to the final type. */
2525 return build_nop (pointer_type, rval);
2528 static tree
2529 build_vec_delete_1 (base, maxindex, type, auto_delete_vec, use_global_delete)
2530 tree base, maxindex, type;
2531 special_function_kind auto_delete_vec;
2532 int use_global_delete;
2534 tree virtual_size;
2535 tree ptype = build_pointer_type (type = complete_type (type));
2536 tree size_exp = size_in_bytes (type);
2538 /* Temporary variables used by the loop. */
2539 tree tbase, tbase_init;
2541 /* This is the body of the loop that implements the deletion of a
2542 single element, and moves temp variables to next elements. */
2543 tree body;
2545 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2546 tree loop;
2548 /* This is the thing that governs what to do after the loop has run. */
2549 tree deallocate_expr = 0;
2551 /* This is the BIND_EXPR which holds the outermost iterator of the
2552 loop. It is convenient to set this variable up and test it before
2553 executing any other code in the loop.
2554 This is also the containing expression returned by this function. */
2555 tree controller = NULL_TREE;
2557 /* We should only have 1-D arrays here. */
2558 if (TREE_CODE (type) == ARRAY_TYPE)
2559 abort ();
2561 if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2563 loop = integer_zero_node;
2564 goto no_destructor;
2567 /* The below is short by the cookie size. */
2568 virtual_size = size_binop (MULT_EXPR, size_exp,
2569 convert (sizetype, maxindex));
2571 tbase = create_temporary_var (ptype);
2572 tbase_init = build_modify_expr (tbase, NOP_EXPR,
2573 fold (build (PLUS_EXPR, ptype,
2574 base,
2575 virtual_size)));
2576 DECL_REGISTER (tbase) = 1;
2577 controller = build (BIND_EXPR, void_type_node, tbase, NULL_TREE, NULL_TREE);
2578 TREE_SIDE_EFFECTS (controller) = 1;
2580 body = NULL_TREE;
2582 body = tree_cons (NULL_TREE,
2583 build_delete (ptype, tbase, sfk_complete_destructor,
2584 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1),
2585 body);
2587 body = tree_cons (NULL_TREE,
2588 build_modify_expr (tbase, NOP_EXPR, build (MINUS_EXPR, ptype, tbase, size_exp)),
2589 body);
2591 body = tree_cons (NULL_TREE,
2592 build (EXIT_EXPR, void_type_node,
2593 build (EQ_EXPR, boolean_type_node, base, tbase)),
2594 body);
2596 loop = build (LOOP_EXPR, void_type_node, build_compound_expr (body));
2598 loop = tree_cons (NULL_TREE, tbase_init,
2599 tree_cons (NULL_TREE, loop, NULL_TREE));
2600 loop = build_compound_expr (loop);
2602 no_destructor:
2603 /* If the delete flag is one, or anything else with the low bit set,
2604 delete the storage. */
2605 deallocate_expr = integer_zero_node;
2606 if (auto_delete_vec != sfk_base_destructor)
2608 tree base_tbd;
2610 /* The below is short by the cookie size. */
2611 virtual_size = size_binop (MULT_EXPR, size_exp,
2612 convert (sizetype, maxindex));
2614 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2615 /* no header */
2616 base_tbd = base;
2617 else
2619 tree cookie_size;
2621 cookie_size = get_cookie_size (type);
2622 base_tbd
2623 = cp_convert (ptype,
2624 cp_build_binary_op (MINUS_EXPR,
2625 cp_convert (string_type_node,
2626 base),
2627 cookie_size));
2628 /* True size with header. */
2629 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2632 if (auto_delete_vec == sfk_deleting_destructor)
2633 deallocate_expr = build_x_delete (base_tbd,
2634 2 | use_global_delete,
2635 virtual_size);
2638 if (loop && deallocate_expr != integer_zero_node)
2640 body = tree_cons (NULL_TREE, loop,
2641 tree_cons (NULL_TREE, deallocate_expr, NULL_TREE));
2642 body = build_compound_expr (body);
2644 else
2645 body = loop;
2647 /* Outermost wrapper: If pointer is null, punt. */
2648 body = fold (build (COND_EXPR, void_type_node,
2649 fold (build (NE_EXPR, boolean_type_node, base,
2650 integer_zero_node)),
2651 body, integer_zero_node));
2652 body = build1 (NOP_EXPR, void_type_node, body);
2654 if (controller)
2656 TREE_OPERAND (controller, 1) = body;
2657 body = controller;
2660 if (TREE_CODE (base) == SAVE_EXPR)
2661 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2662 body = build (COMPOUND_EXPR, void_type_node, base, body);
2664 return cp_convert (void_type_node, body);
2667 /* Create an unnamed variable of the indicated TYPE. */
2669 tree
2670 create_temporary_var (type)
2671 tree type;
2673 tree decl;
2675 decl = build_decl (VAR_DECL, NULL_TREE, type);
2676 TREE_USED (decl) = 1;
2677 DECL_ARTIFICIAL (decl) = 1;
2678 DECL_SOURCE_FILE (decl) = input_filename;
2679 DECL_SOURCE_LINE (decl) = lineno;
2680 DECL_IGNORED_P (decl) = 1;
2681 DECL_CONTEXT (decl) = current_function_decl;
2683 return decl;
2686 /* Create a new temporary variable of the indicated TYPE, initialized
2687 to INIT.
2689 It is not entered into current_binding_level, because that breaks
2690 things when it comes time to do final cleanups (which take place
2691 "outside" the binding contour of the function). */
2693 static tree
2694 get_temp_regvar (type, init)
2695 tree type, init;
2697 tree decl;
2699 decl = create_temporary_var (type);
2700 if (building_stmt_tree ())
2701 add_decl_stmt (decl);
2702 else
2703 SET_DECL_RTL (decl, assign_temp (type, 2, 0, 1));
2704 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2706 return decl;
2709 /* `build_vec_init' returns tree structure that performs
2710 initialization of a vector of aggregate types.
2712 BASE is a reference to the vector, of ARRAY_TYPE.
2713 MAXINDEX is the maximum index of the array (one less than the
2714 number of elements). It is only used if
2715 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2716 INIT is the (possibly NULL) initializer.
2718 FROM_ARRAY is 0 if we should init everything with INIT
2719 (i.e., every element initialized from INIT).
2720 FROM_ARRAY is 1 if we should index into INIT in parallel
2721 with initialization of DECL.
2722 FROM_ARRAY is 2 if we should index into INIT in parallel,
2723 but use assignment instead of initialization. */
2725 tree
2726 build_vec_init (base, maxindex, init, from_array)
2727 tree base, init, maxindex;
2728 int from_array;
2730 tree rval;
2731 tree base2 = NULL_TREE;
2732 tree size;
2733 tree itype = NULL_TREE;
2734 tree iterator;
2735 /* The type of the array. */
2736 tree atype = TREE_TYPE (base);
2737 /* The type of an element in the array. */
2738 tree type = TREE_TYPE (atype);
2739 /* The type of a pointer to an element in the array. */
2740 tree ptype;
2741 tree stmt_expr;
2742 tree compound_stmt;
2743 int destroy_temps;
2744 tree try_block = NULL_TREE;
2745 tree try_body = NULL_TREE;
2746 int num_initialized_elts = 0;
2748 if (TYPE_DOMAIN (atype))
2749 maxindex = array_type_nelts (atype);
2751 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2752 return error_mark_node;
2754 if (init
2755 && (from_array == 2
2756 ? (!CLASS_TYPE_P (type) || !TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2757 : !TYPE_NEEDS_CONSTRUCTING (type))
2758 && ((TREE_CODE (init) == CONSTRUCTOR
2759 /* Don't do this if the CONSTRUCTOR might contain something
2760 that might throw and require us to clean up. */
2761 && (CONSTRUCTOR_ELTS (init) == NULL_TREE
2762 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (target_type (type))))
2763 || from_array))
2765 /* Do non-default initialization of POD arrays resulting from
2766 brace-enclosed initializers. In this case, digest_init and
2767 store_constructor will handle the semantics for us. */
2769 stmt_expr = build (INIT_EXPR, atype, base, init);
2770 return stmt_expr;
2773 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2774 ptype = build_pointer_type (type);
2775 size = size_in_bytes (type);
2776 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2777 base = cp_convert (ptype, default_conversion (base));
2779 /* The code we are generating looks like:
2781 T* t1 = (T*) base;
2782 T* rval = t1;
2783 ptrdiff_t iterator = maxindex;
2784 try {
2785 for (; iterator != -1; --iterator) {
2786 ... initialize *t1 ...
2787 ++t1;
2789 } catch (...) {
2790 ... destroy elements that were constructed ...
2792 return rval;
2794 We can omit the try and catch blocks if we know that the
2795 initialization will never throw an exception, or if the array
2796 elements do not have destructors. We can omit the loop completely if
2797 the elements of the array do not have constructors.
2799 We actually wrap the entire body of the above in a STMT_EXPR, for
2800 tidiness.
2802 When copying from array to another, when the array elements have
2803 only trivial copy constructors, we should use __builtin_memcpy
2804 rather than generating a loop. That way, we could take advantage
2805 of whatever cleverness the back-end has for dealing with copies
2806 of blocks of memory. */
2808 begin_init_stmts (&stmt_expr, &compound_stmt);
2809 destroy_temps = stmts_are_full_exprs_p ();
2810 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2811 rval = get_temp_regvar (ptype, base);
2812 base = get_temp_regvar (ptype, rval);
2813 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2815 /* Protect the entire array initialization so that we can destroy
2816 the partially constructed array if an exception is thrown.
2817 But don't do this if we're assigning. */
2818 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2819 && from_array != 2)
2821 try_block = begin_try_block ();
2822 try_body = begin_compound_stmt (/*has_no_scope=*/1);
2825 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2827 /* Do non-default initialization of non-POD arrays resulting from
2828 brace-enclosed initializers. */
2830 tree elts;
2831 from_array = 0;
2833 for (elts = CONSTRUCTOR_ELTS (init); elts; elts = TREE_CHAIN (elts))
2835 tree elt = TREE_VALUE (elts);
2836 tree baseref = build1 (INDIRECT_REF, type, base);
2838 num_initialized_elts++;
2840 if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2841 finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2842 else
2843 finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2844 elt));
2846 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2847 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2850 /* Clear out INIT so that we don't get confused below. */
2851 init = NULL_TREE;
2853 else if (from_array)
2855 /* If initializing one array from another, initialize element by
2856 element. We rely upon the below calls the do argument
2857 checking. */
2858 if (init)
2860 base2 = default_conversion (init);
2861 itype = TREE_TYPE (base2);
2862 base2 = get_temp_regvar (itype, base2);
2863 itype = TREE_TYPE (itype);
2865 else if (TYPE_LANG_SPECIFIC (type)
2866 && TYPE_NEEDS_CONSTRUCTING (type)
2867 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2869 error ("initializer ends prematurely");
2870 return error_mark_node;
2874 /* Now, default-initialize any remaining elements. We don't need to
2875 do that if a) the type does not need constructing, or b) we've
2876 already initialized all the elements.
2878 We do need to keep going if we're copying an array. */
2880 if (from_array
2881 || (TYPE_NEEDS_CONSTRUCTING (type)
2882 && ! (host_integerp (maxindex, 0)
2883 && (num_initialized_elts
2884 == tree_low_cst (maxindex, 0) + 1))))
2886 /* If the ITERATOR is equal to -1, then we don't have to loop;
2887 we've already initialized all the elements. */
2888 tree for_stmt;
2889 tree for_body;
2890 tree elt_init;
2892 for_stmt = begin_for_stmt ();
2893 finish_for_init_stmt (for_stmt);
2894 finish_for_cond (build (NE_EXPR, boolean_type_node,
2895 iterator, integer_minus_one_node),
2896 for_stmt);
2897 finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
2898 for_stmt);
2900 /* Otherwise, loop through the elements. */
2901 for_body = begin_compound_stmt (/*has_no_scope=*/1);
2903 /* When we're not building a statement-tree, things are a little
2904 complicated. If, when we recursively call build_aggr_init,
2905 an expression containing a TARGET_EXPR is expanded, then it
2906 may get a cleanup. Then, the result of that expression is
2907 passed to finish_expr_stmt, which will call
2908 expand_start_target_temps/expand_end_target_temps. However,
2909 the latter call will not cause the cleanup to run because
2910 that block will still be on the block stack. So, we call
2911 expand_start_target_temps here manually; the corresponding
2912 call to expand_end_target_temps below will cause the cleanup
2913 to be performed. */
2914 if (!building_stmt_tree ())
2915 expand_start_target_temps ();
2917 if (from_array)
2919 tree to = build1 (INDIRECT_REF, type, base);
2920 tree from;
2922 if (base2)
2923 from = build1 (INDIRECT_REF, itype, base2);
2924 else
2925 from = NULL_TREE;
2927 if (from_array == 2)
2928 elt_init = build_modify_expr (to, NOP_EXPR, from);
2929 else if (TYPE_NEEDS_CONSTRUCTING (type))
2930 elt_init = build_aggr_init (to, from, 0);
2931 else if (from)
2932 elt_init = build_modify_expr (to, NOP_EXPR, from);
2933 else
2934 abort ();
2936 else if (TREE_CODE (type) == ARRAY_TYPE)
2938 if (init != 0)
2939 sorry
2940 ("cannot initialize multi-dimensional array with initializer");
2941 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2942 0, 0, 0);
2944 else
2945 elt_init = build_aggr_init (build1 (INDIRECT_REF, type, base),
2946 init, 0);
2948 /* The initialization of each array element is a
2949 full-expression, as per core issue 124. */
2950 if (!building_stmt_tree ())
2952 genrtl_expr_stmt (elt_init);
2953 expand_end_target_temps ();
2955 else
2957 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2958 finish_expr_stmt (elt_init);
2959 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2962 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2963 if (base2)
2964 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
2966 finish_compound_stmt (/*has_no_scope=*/1, for_body);
2967 finish_for_stmt (for_stmt);
2970 /* Make sure to cleanup any partially constructed elements. */
2971 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2972 && from_array != 2)
2974 tree e;
2975 tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
2977 /* Flatten multi-dimensional array since build_vec_delete only
2978 expects one-dimensional array. */
2979 if (TREE_CODE (type) == ARRAY_TYPE)
2981 m = cp_build_binary_op (MULT_EXPR, m,
2982 array_type_nelts_total (type));
2983 type = strip_array_types (type);
2986 finish_compound_stmt (/*has_no_scope=*/1, try_body);
2987 finish_cleanup_try_block (try_block);
2988 e = build_vec_delete_1 (rval, m,
2989 type,
2990 sfk_base_destructor,
2991 /*use_global_delete=*/0);
2992 finish_cleanup (e, try_block);
2995 /* The value of the array initialization is the address of the
2996 first element in the array. */
2997 finish_expr_stmt (rval);
2999 stmt_expr = finish_init_stmts (stmt_expr, compound_stmt);
3000 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3001 return stmt_expr;
3004 /* Free up storage of type TYPE, at address ADDR.
3006 TYPE is a POINTER_TYPE and can be ptr_type_node for no special type
3007 of pointer.
3009 VIRTUAL_SIZE is the amount of storage that was allocated, and is
3010 used as the second argument to operator delete. It can include
3011 things like padding and magic size cookies. It has virtual in it,
3012 because if you have a base pointer and you delete through a virtual
3013 destructor, it should be the size of the dynamic object, not the
3014 static object, see Free Store 12.5 ISO C++.
3016 This does not call any destructors. */
3018 tree
3019 build_x_delete (addr, which_delete, virtual_size)
3020 tree addr;
3021 int which_delete;
3022 tree virtual_size;
3024 int use_global_delete = which_delete & 1;
3025 int use_vec_delete = !!(which_delete & 2);
3026 enum tree_code code = use_vec_delete ? VEC_DELETE_EXPR : DELETE_EXPR;
3027 int flags = LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL);
3029 return build_op_delete_call (code, addr, virtual_size, flags, NULL_TREE);
3032 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3033 build_delete. */
3035 static tree
3036 build_dtor_call (exp, dtor_kind, flags)
3037 tree exp;
3038 special_function_kind dtor_kind;
3039 int flags;
3041 tree name;
3043 switch (dtor_kind)
3045 case sfk_complete_destructor:
3046 name = complete_dtor_identifier;
3047 break;
3049 case sfk_base_destructor:
3050 name = base_dtor_identifier;
3051 break;
3053 case sfk_deleting_destructor:
3054 name = deleting_dtor_identifier;
3055 break;
3057 default:
3058 abort ();
3060 return build_method_call (exp, name, NULL_TREE,
3061 TYPE_BINFO (TREE_TYPE (exp)), flags);
3064 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3065 ADDR is an expression which yields the store to be destroyed.
3066 AUTO_DELETE is the name of the destructor to call, i.e., either
3067 sfk_complete_destructor, sfk_base_destructor, or
3068 sfk_deleting_destructor.
3070 FLAGS is the logical disjunction of zero or more LOOKUP_
3071 flags. See cp-tree.h for more info. */
3073 tree
3074 build_delete (type, addr, auto_delete, flags, use_global_delete)
3075 tree type, addr;
3076 special_function_kind auto_delete;
3077 int flags;
3078 int use_global_delete;
3080 tree expr;
3082 if (addr == error_mark_node)
3083 return error_mark_node;
3085 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3086 set to `error_mark_node' before it gets properly cleaned up. */
3087 if (type == error_mark_node)
3088 return error_mark_node;
3090 type = TYPE_MAIN_VARIANT (type);
3092 if (TREE_CODE (type) == POINTER_TYPE)
3094 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3095 if (TREE_CODE (type) == ARRAY_TYPE)
3096 goto handle_array;
3098 if (VOID_TYPE_P (type)
3099 /* We don't want to warn about delete of void*, only other
3100 incomplete types. Deleting other incomplete types
3101 invokes undefined behavior, but it is not ill-formed, so
3102 compile to something that would even do The Right Thing
3103 (TM) should the type have a trivial dtor and no delete
3104 operator. */
3105 || !complete_type_or_diagnostic (type, addr, 1)
3106 || !IS_AGGR_TYPE (type))
3108 /* Call the builtin operator delete. */
3109 return build_builtin_delete_call (addr);
3111 if (TREE_SIDE_EFFECTS (addr))
3112 addr = save_expr (addr);
3114 /* throw away const and volatile on target type of addr */
3115 addr = convert_force (build_pointer_type (type), addr, 0);
3117 else if (TREE_CODE (type) == ARRAY_TYPE)
3119 handle_array:
3121 if (TYPE_DOMAIN (type) == NULL_TREE)
3123 error ("unknown array size in delete");
3124 return error_mark_node;
3126 return build_vec_delete (addr, array_type_nelts (type),
3127 auto_delete, use_global_delete);
3129 else
3131 /* Don't check PROTECT here; leave that decision to the
3132 destructor. If the destructor is accessible, call it,
3133 else report error. */
3134 addr = build_unary_op (ADDR_EXPR, addr, 0);
3135 if (TREE_SIDE_EFFECTS (addr))
3136 addr = save_expr (addr);
3138 addr = convert_force (build_pointer_type (type), addr, 0);
3141 my_friendly_assert (IS_AGGR_TYPE (type), 220);
3143 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3145 if (auto_delete != sfk_deleting_destructor)
3146 return void_zero_node;
3148 return build_op_delete_call
3149 (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3150 LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL),
3151 NULL_TREE);
3153 else
3155 tree do_delete = NULL_TREE;
3156 tree ifexp;
3158 my_friendly_assert (TYPE_HAS_DESTRUCTOR (type), 20011213);
3160 /* For `::delete x', we must not use the deleting destructor
3161 since then we would not be sure to get the global `operator
3162 delete'. */
3163 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3165 /* We will use ADDR multiple times so we must save it. */
3166 addr = save_expr (addr);
3167 /* Delete the object. */
3168 do_delete = build_builtin_delete_call (addr);
3169 /* Otherwise, treat this like a complete object destructor
3170 call. */
3171 auto_delete = sfk_complete_destructor;
3173 /* If the destructor is non-virtual, there is no deleting
3174 variant. Instead, we must explicitly call the appropriate
3175 `operator delete' here. */
3176 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3177 && auto_delete == sfk_deleting_destructor)
3179 /* We will use ADDR multiple times so we must save it. */
3180 addr = save_expr (addr);
3181 /* Build the call. */
3182 do_delete = build_op_delete_call (DELETE_EXPR,
3183 addr,
3184 cxx_sizeof_nowarn (type),
3185 LOOKUP_NORMAL,
3186 NULL_TREE);
3187 /* Call the complete object destructor. */
3188 auto_delete = sfk_complete_destructor;
3190 else if (auto_delete == sfk_deleting_destructor
3191 && TYPE_GETS_REG_DELETE (type))
3193 /* Make sure we have access to the member op delete, even though
3194 we'll actually be calling it from the destructor. */
3195 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3196 LOOKUP_NORMAL, NULL_TREE);
3199 expr = build_dtor_call (build_indirect_ref (addr, NULL),
3200 auto_delete, flags);
3201 if (do_delete)
3202 expr = build (COMPOUND_EXPR, void_type_node, expr, do_delete);
3204 if (flags & LOOKUP_DESTRUCTOR)
3205 /* Explicit destructor call; don't check for null pointer. */
3206 ifexp = integer_one_node;
3207 else
3208 /* Handle deleting a null pointer. */
3209 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
3211 if (ifexp != integer_one_node)
3212 expr = build (COND_EXPR, void_type_node,
3213 ifexp, expr, void_zero_node);
3215 return expr;
3219 /* At the beginning of a destructor, push cleanups that will call the
3220 destructors for our base classes and members.
3222 Called from begin_destructor_body. */
3224 void
3225 push_base_cleanups ()
3227 tree binfos;
3228 int i, n_baseclasses;
3229 tree member;
3230 tree expr;
3232 /* Run destructors for all virtual baseclasses. */
3233 if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
3235 tree vbases;
3236 tree cond = (condition_conversion
3237 (build (BIT_AND_EXPR, integer_type_node,
3238 current_in_charge_parm,
3239 integer_two_node)));
3241 vbases = CLASSTYPE_VBASECLASSES (current_class_type);
3242 /* The CLASSTYPE_VBASECLASSES list is in initialization
3243 order, which is also the right order for pushing cleanups. */
3244 for (; vbases;
3245 vbases = TREE_CHAIN (vbases))
3247 tree vbase = TREE_VALUE (vbases);
3248 tree base_type = BINFO_TYPE (vbase);
3250 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (base_type))
3252 expr = build_special_member_call (current_class_ref,
3253 base_dtor_identifier,
3254 NULL_TREE,
3255 vbase,
3256 (LOOKUP_NORMAL
3257 | LOOKUP_NONVIRTUAL));
3258 expr = build (COND_EXPR, void_type_node, cond,
3259 expr, void_zero_node);
3260 finish_decl_cleanup (NULL_TREE, expr);
3265 binfos = BINFO_BASETYPES (TYPE_BINFO (current_class_type));
3266 n_baseclasses = CLASSTYPE_N_BASECLASSES (current_class_type);
3268 /* Take care of the remaining baseclasses. */
3269 for (i = 0; i < n_baseclasses; i++)
3271 tree base_binfo = TREE_VEC_ELT (binfos, i);
3272 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3273 || TREE_VIA_VIRTUAL (base_binfo))
3274 continue;
3276 expr = build_special_member_call (current_class_ref,
3277 base_dtor_identifier,
3278 NULL_TREE, base_binfo,
3279 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
3280 finish_decl_cleanup (NULL_TREE, expr);
3283 for (member = TYPE_FIELDS (current_class_type); member;
3284 member = TREE_CHAIN (member))
3286 if (TREE_CODE (member) != FIELD_DECL || DECL_ARTIFICIAL (member))
3287 continue;
3288 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
3290 tree this_member = (build_class_member_access_expr
3291 (current_class_ref, member,
3292 /*access_path=*/NULL_TREE,
3293 /*preserve_reference=*/false));
3294 tree this_type = TREE_TYPE (member);
3295 expr = build_delete (this_type, this_member,
3296 sfk_complete_destructor,
3297 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3299 finish_decl_cleanup (NULL_TREE, expr);
3304 /* For type TYPE, delete the virtual baseclass objects of DECL. */
3306 tree
3307 build_vbase_delete (type, decl)
3308 tree type, decl;
3310 tree vbases = CLASSTYPE_VBASECLASSES (type);
3311 tree result = NULL_TREE;
3312 tree addr = build_unary_op (ADDR_EXPR, decl, 0);
3314 my_friendly_assert (addr != error_mark_node, 222);
3316 while (vbases)
3318 tree this_addr
3319 = convert_force (build_pointer_type (BINFO_TYPE (TREE_VALUE (vbases))),
3320 addr, 0);
3321 result = tree_cons (NULL_TREE,
3322 build_delete (TREE_TYPE (this_addr), this_addr,
3323 sfk_base_destructor,
3324 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0),
3325 result);
3326 vbases = TREE_CHAIN (vbases);
3328 return build_compound_expr (nreverse (result));
3331 /* Build a C++ vector delete expression.
3332 MAXINDEX is the number of elements to be deleted.
3333 ELT_SIZE is the nominal size of each element in the vector.
3334 BASE is the expression that should yield the store to be deleted.
3335 This function expands (or synthesizes) these calls itself.
3336 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3338 This also calls delete for virtual baseclasses of elements of the vector.
3340 Update: MAXINDEX is no longer needed. The size can be extracted from the
3341 start of the vector for pointers, and from the type for arrays. We still
3342 use MAXINDEX for arrays because it happens to already have one of the
3343 values we'd have to extract. (We could use MAXINDEX with pointers to
3344 confirm the size, and trap if the numbers differ; not clear that it'd
3345 be worth bothering.) */
3347 tree
3348 build_vec_delete (base, maxindex, auto_delete_vec, use_global_delete)
3349 tree base, maxindex;
3350 special_function_kind auto_delete_vec;
3351 int use_global_delete;
3353 tree type;
3355 if (TREE_CODE (base) == OFFSET_REF)
3356 base = resolve_offset_ref (base);
3358 type = TREE_TYPE (base);
3360 base = stabilize_reference (base);
3362 if (TREE_CODE (type) == POINTER_TYPE)
3364 /* Step back one from start of vector, and read dimension. */
3365 tree cookie_addr;
3367 if (TREE_SIDE_EFFECTS (base))
3368 base = save_expr (base);
3369 type = strip_array_types (TREE_TYPE (type));
3370 cookie_addr = build (MINUS_EXPR,
3371 build_pointer_type (sizetype),
3372 base,
3373 TYPE_SIZE_UNIT (sizetype));
3374 maxindex = build_indirect_ref (cookie_addr, NULL);
3376 else if (TREE_CODE (type) == ARRAY_TYPE)
3378 /* get the total number of things in the array, maxindex is a bad name */
3379 maxindex = array_type_nelts_total (type);
3380 type = strip_array_types (type);
3381 base = build_unary_op (ADDR_EXPR, base, 1);
3382 if (TREE_SIDE_EFFECTS (base))
3383 base = save_expr (base);
3385 else
3387 if (base != error_mark_node)
3388 error ("type to vector delete is neither pointer or array type");
3389 return error_mark_node;
3392 return build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3393 use_global_delete);