* config/arm/elf.h (ASM_OUTPUT_ALIGNED_COMMON): Remove definition.
[official-gcc.git] / gcc / alias.c
blob4cd51e994f590119632a845d212e79a087c4cd38
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "expr.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "toplev.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
46 /* The alias sets assigned to MEMs assist the back-end in determining
47 which MEMs can alias which other MEMs. In general, two MEMs in
48 different alias sets cannot alias each other, with one important
49 exception. Consider something like:
51 struct S {int i; double d; };
53 a store to an `S' can alias something of either type `int' or type
54 `double'. (However, a store to an `int' cannot alias a `double'
55 and vice versa.) We indicate this via a tree structure that looks
56 like:
57 struct S
58 / \
59 / \
60 |/_ _\|
61 int double
63 (The arrows are directed and point downwards.)
64 In this situation we say the alias set for `struct S' is the
65 `superset' and that those for `int' and `double' are `subsets'.
67 To see whether two alias sets can point to the same memory, we must
68 see if either alias set is a subset of the other. We need not trace
69 past immediate descendants, however, since we propagate all
70 grandchildren up one level.
72 Alias set zero is implicitly a superset of all other alias sets.
73 However, this is no actual entry for alias set zero. It is an
74 error to attempt to explicitly construct a subset of zero. */
76 typedef struct alias_set_entry
78 /* The alias set number, as stored in MEM_ALIAS_SET. */
79 HOST_WIDE_INT alias_set;
81 /* The children of the alias set. These are not just the immediate
82 children, but, in fact, all descendants. So, if we have:
84 struct T { struct S s; float f; }
86 continuing our example above, the children here will be all of
87 `int', `double', `float', and `struct S'. */
88 splay_tree children;
90 /* Nonzero if would have a child of zero: this effectively makes this
91 alias set the same as alias set zero. */
92 int has_zero_child;
93 } *alias_set_entry;
95 static int rtx_equal_for_memref_p PARAMS ((rtx, rtx));
96 static rtx find_symbolic_term PARAMS ((rtx));
97 rtx get_addr PARAMS ((rtx));
98 static int memrefs_conflict_p PARAMS ((int, rtx, int, rtx,
99 HOST_WIDE_INT));
100 static void record_set PARAMS ((rtx, rtx, void *));
101 static int base_alias_check PARAMS ((rtx, rtx, enum machine_mode,
102 enum machine_mode));
103 static rtx find_base_value PARAMS ((rtx));
104 static int mems_in_disjoint_alias_sets_p PARAMS ((rtx, rtx));
105 static int insert_subset_children PARAMS ((splay_tree_node, void*));
106 static tree find_base_decl PARAMS ((tree));
107 static alias_set_entry get_alias_set_entry PARAMS ((HOST_WIDE_INT));
108 static rtx fixed_scalar_and_varying_struct_p PARAMS ((rtx, rtx, rtx, rtx,
109 int (*) (rtx, int)));
110 static int aliases_everything_p PARAMS ((rtx));
111 static bool nonoverlapping_component_refs_p PARAMS ((tree, tree));
112 static tree decl_for_component_ref PARAMS ((tree));
113 static rtx adjust_offset_for_component_ref PARAMS ((tree, rtx));
114 static int nonoverlapping_memrefs_p PARAMS ((rtx, rtx));
115 static int write_dependence_p PARAMS ((rtx, rtx, int));
117 static int nonlocal_mentioned_p_1 PARAMS ((rtx *, void *));
118 static int nonlocal_mentioned_p PARAMS ((rtx));
119 static int nonlocal_referenced_p_1 PARAMS ((rtx *, void *));
120 static int nonlocal_referenced_p PARAMS ((rtx));
121 static int nonlocal_set_p_1 PARAMS ((rtx *, void *));
122 static int nonlocal_set_p PARAMS ((rtx));
123 static void memory_modified_1 PARAMS ((rtx, rtx, void *));
125 /* Set up all info needed to perform alias analysis on memory references. */
127 /* Returns the size in bytes of the mode of X. */
128 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
130 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
131 different alias sets. We ignore alias sets in functions making use
132 of variable arguments because the va_arg macros on some systems are
133 not legal ANSI C. */
134 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
135 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
137 /* Cap the number of passes we make over the insns propagating alias
138 information through set chains. 10 is a completely arbitrary choice. */
139 #define MAX_ALIAS_LOOP_PASSES 10
141 /* reg_base_value[N] gives an address to which register N is related.
142 If all sets after the first add or subtract to the current value
143 or otherwise modify it so it does not point to a different top level
144 object, reg_base_value[N] is equal to the address part of the source
145 of the first set.
147 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
148 expressions represent certain special values: function arguments and
149 the stack, frame, and argument pointers.
151 The contents of an ADDRESS is not normally used, the mode of the
152 ADDRESS determines whether the ADDRESS is a function argument or some
153 other special value. Pointer equality, not rtx_equal_p, determines whether
154 two ADDRESS expressions refer to the same base address.
156 The only use of the contents of an ADDRESS is for determining if the
157 current function performs nonlocal memory memory references for the
158 purposes of marking the function as a constant function. */
160 static GTY((length ("reg_base_value_size"))) rtx *reg_base_value;
161 static rtx *new_reg_base_value;
162 static unsigned int reg_base_value_size; /* size of reg_base_value array */
164 /* Static hunks of RTL used by the aliasing code; these are initialized
165 once per function to avoid unnecessary RTL allocations. */
166 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
168 #define REG_BASE_VALUE(X) \
169 (REGNO (X) < reg_base_value_size \
170 ? reg_base_value[REGNO (X)] : 0)
172 /* Vector of known invariant relationships between registers. Set in
173 loop unrolling. Indexed by register number, if nonzero the value
174 is an expression describing this register in terms of another.
176 The length of this array is REG_BASE_VALUE_SIZE.
178 Because this array contains only pseudo registers it has no effect
179 after reload. */
180 static rtx *alias_invariant;
182 /* Vector indexed by N giving the initial (unchanging) value known for
183 pseudo-register N. This array is initialized in
184 init_alias_analysis, and does not change until end_alias_analysis
185 is called. */
186 rtx *reg_known_value;
188 /* Indicates number of valid entries in reg_known_value. */
189 static unsigned int reg_known_value_size;
191 /* Vector recording for each reg_known_value whether it is due to a
192 REG_EQUIV note. Future passes (viz., reload) may replace the
193 pseudo with the equivalent expression and so we account for the
194 dependences that would be introduced if that happens.
196 The REG_EQUIV notes created in assign_parms may mention the arg
197 pointer, and there are explicit insns in the RTL that modify the
198 arg pointer. Thus we must ensure that such insns don't get
199 scheduled across each other because that would invalidate the
200 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
201 wrong, but solving the problem in the scheduler will likely give
202 better code, so we do it here. */
203 char *reg_known_equiv_p;
205 /* True when scanning insns from the start of the rtl to the
206 NOTE_INSN_FUNCTION_BEG note. */
207 static bool copying_arguments;
209 /* The splay-tree used to store the various alias set entries. */
210 static splay_tree alias_sets;
212 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
213 such an entry, or NULL otherwise. */
215 static alias_set_entry
216 get_alias_set_entry (alias_set)
217 HOST_WIDE_INT alias_set;
219 splay_tree_node sn
220 = splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
222 return sn != 0 ? ((alias_set_entry) sn->value) : 0;
225 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
226 the two MEMs cannot alias each other. */
228 static int
229 mems_in_disjoint_alias_sets_p (mem1, mem2)
230 rtx mem1;
231 rtx mem2;
233 #ifdef ENABLE_CHECKING
234 /* Perform a basic sanity check. Namely, that there are no alias sets
235 if we're not using strict aliasing. This helps to catch bugs
236 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
237 where a MEM is allocated in some way other than by the use of
238 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
239 use alias sets to indicate that spilled registers cannot alias each
240 other, we might need to remove this check. */
241 if (! flag_strict_aliasing
242 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
243 abort ();
244 #endif
246 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
249 /* Insert the NODE into the splay tree given by DATA. Used by
250 record_alias_subset via splay_tree_foreach. */
252 static int
253 insert_subset_children (node, data)
254 splay_tree_node node;
255 void *data;
257 splay_tree_insert ((splay_tree) data, node->key, node->value);
259 return 0;
262 /* Return 1 if the two specified alias sets may conflict. */
265 alias_sets_conflict_p (set1, set2)
266 HOST_WIDE_INT set1, set2;
268 alias_set_entry ase;
270 /* If have no alias set information for one of the operands, we have
271 to assume it can alias anything. */
272 if (set1 == 0 || set2 == 0
273 /* If the two alias sets are the same, they may alias. */
274 || set1 == set2)
275 return 1;
277 /* See if the first alias set is a subset of the second. */
278 ase = get_alias_set_entry (set1);
279 if (ase != 0
280 && (ase->has_zero_child
281 || splay_tree_lookup (ase->children,
282 (splay_tree_key) set2)))
283 return 1;
285 /* Now do the same, but with the alias sets reversed. */
286 ase = get_alias_set_entry (set2);
287 if (ase != 0
288 && (ase->has_zero_child
289 || splay_tree_lookup (ase->children,
290 (splay_tree_key) set1)))
291 return 1;
293 /* The two alias sets are distinct and neither one is the
294 child of the other. Therefore, they cannot alias. */
295 return 0;
298 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
299 has any readonly fields. If any of the fields have types that
300 contain readonly fields, return true as well. */
303 readonly_fields_p (type)
304 tree type;
306 tree field;
308 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
309 && TREE_CODE (type) != QUAL_UNION_TYPE)
310 return 0;
312 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
313 if (TREE_CODE (field) == FIELD_DECL
314 && (TREE_READONLY (field)
315 || readonly_fields_p (TREE_TYPE (field))))
316 return 1;
318 return 0;
321 /* Return 1 if any MEM object of type T1 will always conflict (using the
322 dependency routines in this file) with any MEM object of type T2.
323 This is used when allocating temporary storage. If T1 and/or T2 are
324 NULL_TREE, it means we know nothing about the storage. */
327 objects_must_conflict_p (t1, t2)
328 tree t1, t2;
330 /* If neither has a type specified, we don't know if they'll conflict
331 because we may be using them to store objects of various types, for
332 example the argument and local variables areas of inlined functions. */
333 if (t1 == 0 && t2 == 0)
334 return 0;
336 /* If one or the other has readonly fields or is readonly,
337 then they may not conflict. */
338 if ((t1 != 0 && readonly_fields_p (t1))
339 || (t2 != 0 && readonly_fields_p (t2))
340 || (t1 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t1))
341 || (t2 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t2)))
342 return 0;
344 /* If they are the same type, they must conflict. */
345 if (t1 == t2
346 /* Likewise if both are volatile. */
347 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
348 return 1;
350 /* If one is aggregate and the other is scalar then they may not
351 conflict. */
352 if ((t1 != 0 && AGGREGATE_TYPE_P (t1))
353 != (t2 != 0 && AGGREGATE_TYPE_P (t2)))
354 return 0;
356 /* Otherwise they conflict only if the alias sets conflict. */
357 return alias_sets_conflict_p (t1 ? get_alias_set (t1) : 0,
358 t2 ? get_alias_set (t2) : 0);
361 /* T is an expression with pointer type. Find the DECL on which this
362 expression is based. (For example, in `a[i]' this would be `a'.)
363 If there is no such DECL, or a unique decl cannot be determined,
364 NULL_TREE is returned. */
366 static tree
367 find_base_decl (t)
368 tree t;
370 tree d0, d1, d2;
372 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
373 return 0;
375 /* If this is a declaration, return it. */
376 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
377 return t;
379 /* Handle general expressions. It would be nice to deal with
380 COMPONENT_REFs here. If we could tell that `a' and `b' were the
381 same, then `a->f' and `b->f' are also the same. */
382 switch (TREE_CODE_CLASS (TREE_CODE (t)))
384 case '1':
385 return find_base_decl (TREE_OPERAND (t, 0));
387 case '2':
388 /* Return 0 if found in neither or both are the same. */
389 d0 = find_base_decl (TREE_OPERAND (t, 0));
390 d1 = find_base_decl (TREE_OPERAND (t, 1));
391 if (d0 == d1)
392 return d0;
393 else if (d0 == 0)
394 return d1;
395 else if (d1 == 0)
396 return d0;
397 else
398 return 0;
400 case '3':
401 d0 = find_base_decl (TREE_OPERAND (t, 0));
402 d1 = find_base_decl (TREE_OPERAND (t, 1));
403 d2 = find_base_decl (TREE_OPERAND (t, 2));
405 /* Set any nonzero values from the last, then from the first. */
406 if (d1 == 0) d1 = d2;
407 if (d0 == 0) d0 = d1;
408 if (d1 == 0) d1 = d0;
409 if (d2 == 0) d2 = d1;
411 /* At this point all are nonzero or all are zero. If all three are the
412 same, return it. Otherwise, return zero. */
413 return (d0 == d1 && d1 == d2) ? d0 : 0;
415 default:
416 return 0;
420 /* Return 1 if all the nested component references handled by
421 get_inner_reference in T are such that we can address the object in T. */
424 can_address_p (t)
425 tree t;
427 /* If we're at the end, it is vacuously addressable. */
428 if (! handled_component_p (t))
429 return 1;
431 /* Bitfields are never addressable. */
432 else if (TREE_CODE (t) == BIT_FIELD_REF)
433 return 0;
435 /* Fields are addressable unless they are marked as nonaddressable or
436 the containing type has alias set 0. */
437 else if (TREE_CODE (t) == COMPONENT_REF
438 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
439 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
440 && can_address_p (TREE_OPERAND (t, 0)))
441 return 1;
443 /* Likewise for arrays. */
444 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
445 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
446 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
447 && can_address_p (TREE_OPERAND (t, 0)))
448 return 1;
450 return 0;
453 /* Return the alias set for T, which may be either a type or an
454 expression. Call language-specific routine for help, if needed. */
456 HOST_WIDE_INT
457 get_alias_set (t)
458 tree t;
460 HOST_WIDE_INT set;
462 /* If we're not doing any alias analysis, just assume everything
463 aliases everything else. Also return 0 if this or its type is
464 an error. */
465 if (! flag_strict_aliasing || t == error_mark_node
466 || (! TYPE_P (t)
467 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
468 return 0;
470 /* We can be passed either an expression or a type. This and the
471 language-specific routine may make mutually-recursive calls to each other
472 to figure out what to do. At each juncture, we see if this is a tree
473 that the language may need to handle specially. First handle things that
474 aren't types. */
475 if (! TYPE_P (t))
477 tree inner = t;
478 tree placeholder_ptr = 0;
480 /* Remove any nops, then give the language a chance to do
481 something with this tree before we look at it. */
482 STRIP_NOPS (t);
483 set = (*lang_hooks.get_alias_set) (t);
484 if (set != -1)
485 return set;
487 /* First see if the actual object referenced is an INDIRECT_REF from a
488 restrict-qualified pointer or a "void *". Replace
489 PLACEHOLDER_EXPRs. */
490 while (TREE_CODE (inner) == PLACEHOLDER_EXPR
491 || handled_component_p (inner))
493 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
494 inner = find_placeholder (inner, &placeholder_ptr);
495 else
496 inner = TREE_OPERAND (inner, 0);
498 STRIP_NOPS (inner);
501 /* Check for accesses through restrict-qualified pointers. */
502 if (TREE_CODE (inner) == INDIRECT_REF)
504 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
506 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
508 /* If we haven't computed the actual alias set, do it now. */
509 if (DECL_POINTER_ALIAS_SET (decl) == -2)
511 /* No two restricted pointers can point at the same thing.
512 However, a restricted pointer can point at the same thing
513 as an unrestricted pointer, if that unrestricted pointer
514 is based on the restricted pointer. So, we make the
515 alias set for the restricted pointer a subset of the
516 alias set for the type pointed to by the type of the
517 decl. */
518 HOST_WIDE_INT pointed_to_alias_set
519 = get_alias_set (TREE_TYPE (TREE_TYPE (decl)));
521 if (pointed_to_alias_set == 0)
522 /* It's not legal to make a subset of alias set zero. */
524 else
526 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
527 record_alias_subset (pointed_to_alias_set,
528 DECL_POINTER_ALIAS_SET (decl));
532 /* We use the alias set indicated in the declaration. */
533 return DECL_POINTER_ALIAS_SET (decl);
536 /* If we have an INDIRECT_REF via a void pointer, we don't
537 know anything about what that might alias. */
538 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE)
539 return 0;
542 /* Otherwise, pick up the outermost object that we could have a pointer
543 to, processing conversion and PLACEHOLDER_EXPR as above. */
544 placeholder_ptr = 0;
545 while (TREE_CODE (t) == PLACEHOLDER_EXPR
546 || (handled_component_p (t) && ! can_address_p (t)))
548 if (TREE_CODE (t) == PLACEHOLDER_EXPR)
549 t = find_placeholder (t, &placeholder_ptr);
550 else
551 t = TREE_OPERAND (t, 0);
553 STRIP_NOPS (t);
556 /* If we've already determined the alias set for a decl, just return
557 it. This is necessary for C++ anonymous unions, whose component
558 variables don't look like union members (boo!). */
559 if (TREE_CODE (t) == VAR_DECL
560 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
561 return MEM_ALIAS_SET (DECL_RTL (t));
563 /* Now all we care about is the type. */
564 t = TREE_TYPE (t);
567 /* Variant qualifiers don't affect the alias set, so get the main
568 variant. If this is a type with a known alias set, return it. */
569 t = TYPE_MAIN_VARIANT (t);
570 if (TYPE_ALIAS_SET_KNOWN_P (t))
571 return TYPE_ALIAS_SET (t);
573 /* See if the language has special handling for this type. */
574 set = (*lang_hooks.get_alias_set) (t);
575 if (set != -1)
576 return set;
578 /* There are no objects of FUNCTION_TYPE, so there's no point in
579 using up an alias set for them. (There are, of course, pointers
580 and references to functions, but that's different.) */
581 else if (TREE_CODE (t) == FUNCTION_TYPE)
582 set = 0;
584 /* Unless the language specifies otherwise, let vector types alias
585 their components. This avoids some nasty type punning issues in
586 normal usage. And indeed lets vectors be treated more like an
587 array slice. */
588 else if (TREE_CODE (t) == VECTOR_TYPE)
589 set = get_alias_set (TREE_TYPE (t));
591 else
592 /* Otherwise make a new alias set for this type. */
593 set = new_alias_set ();
595 TYPE_ALIAS_SET (t) = set;
597 /* If this is an aggregate type, we must record any component aliasing
598 information. */
599 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
600 record_component_aliases (t);
602 return set;
605 /* Return a brand-new alias set. */
607 HOST_WIDE_INT
608 new_alias_set ()
610 static HOST_WIDE_INT last_alias_set;
612 if (flag_strict_aliasing)
613 return ++last_alias_set;
614 else
615 return 0;
618 /* Indicate that things in SUBSET can alias things in SUPERSET, but
619 not vice versa. For example, in C, a store to an `int' can alias a
620 structure containing an `int', but not vice versa. Here, the
621 structure would be the SUPERSET and `int' the SUBSET. This
622 function should be called only once per SUPERSET/SUBSET pair.
624 It is illegal for SUPERSET to be zero; everything is implicitly a
625 subset of alias set zero. */
627 void
628 record_alias_subset (superset, subset)
629 HOST_WIDE_INT superset;
630 HOST_WIDE_INT subset;
632 alias_set_entry superset_entry;
633 alias_set_entry subset_entry;
635 /* It is possible in complex type situations for both sets to be the same,
636 in which case we can ignore this operation. */
637 if (superset == subset)
638 return;
640 if (superset == 0)
641 abort ();
643 superset_entry = get_alias_set_entry (superset);
644 if (superset_entry == 0)
646 /* Create an entry for the SUPERSET, so that we have a place to
647 attach the SUBSET. */
648 superset_entry
649 = (alias_set_entry) xmalloc (sizeof (struct alias_set_entry));
650 superset_entry->alias_set = superset;
651 superset_entry->children
652 = splay_tree_new (splay_tree_compare_ints, 0, 0);
653 superset_entry->has_zero_child = 0;
654 splay_tree_insert (alias_sets, (splay_tree_key) superset,
655 (splay_tree_value) superset_entry);
658 if (subset == 0)
659 superset_entry->has_zero_child = 1;
660 else
662 subset_entry = get_alias_set_entry (subset);
663 /* If there is an entry for the subset, enter all of its children
664 (if they are not already present) as children of the SUPERSET. */
665 if (subset_entry)
667 if (subset_entry->has_zero_child)
668 superset_entry->has_zero_child = 1;
670 splay_tree_foreach (subset_entry->children, insert_subset_children,
671 superset_entry->children);
674 /* Enter the SUBSET itself as a child of the SUPERSET. */
675 splay_tree_insert (superset_entry->children,
676 (splay_tree_key) subset, 0);
680 /* Record that component types of TYPE, if any, are part of that type for
681 aliasing purposes. For record types, we only record component types
682 for fields that are marked addressable. For array types, we always
683 record the component types, so the front end should not call this
684 function if the individual component aren't addressable. */
686 void
687 record_component_aliases (type)
688 tree type;
690 HOST_WIDE_INT superset = get_alias_set (type);
691 tree field;
693 if (superset == 0)
694 return;
696 switch (TREE_CODE (type))
698 case ARRAY_TYPE:
699 if (! TYPE_NONALIASED_COMPONENT (type))
700 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
701 break;
703 case RECORD_TYPE:
704 case UNION_TYPE:
705 case QUAL_UNION_TYPE:
706 /* Recursively record aliases for the base classes, if there are any */
707 if (TYPE_BINFO (type) != NULL && TYPE_BINFO_BASETYPES (type) != NULL)
709 int i;
710 for (i = 0; i < TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)); i++)
712 tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), i);
713 record_alias_subset (superset,
714 get_alias_set (BINFO_TYPE (binfo)));
717 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
718 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
719 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
720 break;
722 case COMPLEX_TYPE:
723 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
724 break;
726 default:
727 break;
731 /* Allocate an alias set for use in storing and reading from the varargs
732 spill area. */
734 HOST_WIDE_INT
735 get_varargs_alias_set ()
737 static HOST_WIDE_INT set = -1;
739 if (set == -1)
740 set = new_alias_set ();
742 return set;
745 /* Likewise, but used for the fixed portions of the frame, e.g., register
746 save areas. */
748 HOST_WIDE_INT
749 get_frame_alias_set ()
751 static HOST_WIDE_INT set = -1;
753 if (set == -1)
754 set = new_alias_set ();
756 return set;
759 /* Inside SRC, the source of a SET, find a base address. */
761 static rtx
762 find_base_value (src)
763 rtx src;
765 unsigned int regno;
767 switch (GET_CODE (src))
769 case SYMBOL_REF:
770 case LABEL_REF:
771 return src;
773 case REG:
774 regno = REGNO (src);
775 /* At the start of a function, argument registers have known base
776 values which may be lost later. Returning an ADDRESS
777 expression here allows optimization based on argument values
778 even when the argument registers are used for other purposes. */
779 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
780 return new_reg_base_value[regno];
782 /* If a pseudo has a known base value, return it. Do not do this
783 for non-fixed hard regs since it can result in a circular
784 dependency chain for registers which have values at function entry.
786 The test above is not sufficient because the scheduler may move
787 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
788 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
789 && regno < reg_base_value_size)
791 /* If we're inside init_alias_analysis, use new_reg_base_value
792 to reduce the number of relaxation iterations. */
793 if (new_reg_base_value && new_reg_base_value[regno]
794 && REG_N_SETS (regno) == 1)
795 return new_reg_base_value[regno];
797 if (reg_base_value[regno])
798 return reg_base_value[regno];
801 return src;
803 case MEM:
804 /* Check for an argument passed in memory. Only record in the
805 copying-arguments block; it is too hard to track changes
806 otherwise. */
807 if (copying_arguments
808 && (XEXP (src, 0) == arg_pointer_rtx
809 || (GET_CODE (XEXP (src, 0)) == PLUS
810 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
811 return gen_rtx_ADDRESS (VOIDmode, src);
812 return 0;
814 case CONST:
815 src = XEXP (src, 0);
816 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
817 break;
819 /* ... fall through ... */
821 case PLUS:
822 case MINUS:
824 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
826 /* If either operand is a REG that is a known pointer, then it
827 is the base. */
828 if (REG_P (src_0) && REG_POINTER (src_0))
829 return find_base_value (src_0);
830 if (REG_P (src_1) && REG_POINTER (src_1))
831 return find_base_value (src_1);
833 /* If either operand is a REG, then see if we already have
834 a known value for it. */
835 if (REG_P (src_0))
837 temp = find_base_value (src_0);
838 if (temp != 0)
839 src_0 = temp;
842 if (REG_P (src_1))
844 temp = find_base_value (src_1);
845 if (temp!= 0)
846 src_1 = temp;
849 /* If either base is named object or a special address
850 (like an argument or stack reference), then use it for the
851 base term. */
852 if (src_0 != 0
853 && (GET_CODE (src_0) == SYMBOL_REF
854 || GET_CODE (src_0) == LABEL_REF
855 || (GET_CODE (src_0) == ADDRESS
856 && GET_MODE (src_0) != VOIDmode)))
857 return src_0;
859 if (src_1 != 0
860 && (GET_CODE (src_1) == SYMBOL_REF
861 || GET_CODE (src_1) == LABEL_REF
862 || (GET_CODE (src_1) == ADDRESS
863 && GET_MODE (src_1) != VOIDmode)))
864 return src_1;
866 /* Guess which operand is the base address:
867 If either operand is a symbol, then it is the base. If
868 either operand is a CONST_INT, then the other is the base. */
869 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
870 return find_base_value (src_0);
871 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
872 return find_base_value (src_1);
874 return 0;
877 case LO_SUM:
878 /* The standard form is (lo_sum reg sym) so look only at the
879 second operand. */
880 return find_base_value (XEXP (src, 1));
882 case AND:
883 /* If the second operand is constant set the base
884 address to the first operand. */
885 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
886 return find_base_value (XEXP (src, 0));
887 return 0;
889 case TRUNCATE:
890 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
891 break;
892 /* Fall through. */
893 case HIGH:
894 case PRE_INC:
895 case PRE_DEC:
896 case POST_INC:
897 case POST_DEC:
898 case PRE_MODIFY:
899 case POST_MODIFY:
900 return find_base_value (XEXP (src, 0));
902 case ZERO_EXTEND:
903 case SIGN_EXTEND: /* used for NT/Alpha pointers */
905 rtx temp = find_base_value (XEXP (src, 0));
907 #ifdef POINTERS_EXTEND_UNSIGNED
908 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
909 temp = convert_memory_address (Pmode, temp);
910 #endif
912 return temp;
915 default:
916 break;
919 return 0;
922 /* Called from init_alias_analysis indirectly through note_stores. */
924 /* While scanning insns to find base values, reg_seen[N] is nonzero if
925 register N has been set in this function. */
926 static char *reg_seen;
928 /* Addresses which are known not to alias anything else are identified
929 by a unique integer. */
930 static int unique_id;
932 static void
933 record_set (dest, set, data)
934 rtx dest, set;
935 void *data ATTRIBUTE_UNUSED;
937 unsigned regno;
938 rtx src;
939 int n;
941 if (GET_CODE (dest) != REG)
942 return;
944 regno = REGNO (dest);
946 if (regno >= reg_base_value_size)
947 abort ();
949 /* If this spans multiple hard registers, then we must indicate that every
950 register has an unusable value. */
951 if (regno < FIRST_PSEUDO_REGISTER)
952 n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
953 else
954 n = 1;
955 if (n != 1)
957 while (--n >= 0)
959 reg_seen[regno + n] = 1;
960 new_reg_base_value[regno + n] = 0;
962 return;
965 if (set)
967 /* A CLOBBER wipes out any old value but does not prevent a previously
968 unset register from acquiring a base address (i.e. reg_seen is not
969 set). */
970 if (GET_CODE (set) == CLOBBER)
972 new_reg_base_value[regno] = 0;
973 return;
975 src = SET_SRC (set);
977 else
979 if (reg_seen[regno])
981 new_reg_base_value[regno] = 0;
982 return;
984 reg_seen[regno] = 1;
985 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
986 GEN_INT (unique_id++));
987 return;
990 /* This is not the first set. If the new value is not related to the
991 old value, forget the base value. Note that the following code is
992 not detected:
993 extern int x, y; int *p = &x; p += (&y-&x);
994 ANSI C does not allow computing the difference of addresses
995 of distinct top level objects. */
996 if (new_reg_base_value[regno])
997 switch (GET_CODE (src))
999 case LO_SUM:
1000 case MINUS:
1001 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1002 new_reg_base_value[regno] = 0;
1003 break;
1004 case PLUS:
1005 /* If the value we add in the PLUS is also a valid base value,
1006 this might be the actual base value, and the original value
1007 an index. */
1009 rtx other = NULL_RTX;
1011 if (XEXP (src, 0) == dest)
1012 other = XEXP (src, 1);
1013 else if (XEXP (src, 1) == dest)
1014 other = XEXP (src, 0);
1016 if (! other || find_base_value (other))
1017 new_reg_base_value[regno] = 0;
1018 break;
1020 case AND:
1021 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1022 new_reg_base_value[regno] = 0;
1023 break;
1024 default:
1025 new_reg_base_value[regno] = 0;
1026 break;
1028 /* If this is the first set of a register, record the value. */
1029 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1030 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1031 new_reg_base_value[regno] = find_base_value (src);
1033 reg_seen[regno] = 1;
1036 /* Called from loop optimization when a new pseudo-register is
1037 created. It indicates that REGNO is being set to VAL. f INVARIANT
1038 is true then this value also describes an invariant relationship
1039 which can be used to deduce that two registers with unknown values
1040 are different. */
1042 void
1043 record_base_value (regno, val, invariant)
1044 unsigned int regno;
1045 rtx val;
1046 int invariant;
1048 if (regno >= reg_base_value_size)
1049 return;
1051 if (invariant && alias_invariant)
1052 alias_invariant[regno] = val;
1054 if (GET_CODE (val) == REG)
1056 if (REGNO (val) < reg_base_value_size)
1057 reg_base_value[regno] = reg_base_value[REGNO (val)];
1059 return;
1062 reg_base_value[regno] = find_base_value (val);
1065 /* Clear alias info for a register. This is used if an RTL transformation
1066 changes the value of a register. This is used in flow by AUTO_INC_DEC
1067 optimizations. We don't need to clear reg_base_value, since flow only
1068 changes the offset. */
1070 void
1071 clear_reg_alias_info (reg)
1072 rtx reg;
1074 unsigned int regno = REGNO (reg);
1076 if (regno < reg_known_value_size && regno >= FIRST_PSEUDO_REGISTER)
1077 reg_known_value[regno] = reg;
1080 /* Returns a canonical version of X, from the point of view alias
1081 analysis. (For example, if X is a MEM whose address is a register,
1082 and the register has a known value (say a SYMBOL_REF), then a MEM
1083 whose address is the SYMBOL_REF is returned.) */
1086 canon_rtx (x)
1087 rtx x;
1089 /* Recursively look for equivalences. */
1090 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
1091 && REGNO (x) < reg_known_value_size)
1092 return reg_known_value[REGNO (x)] == x
1093 ? x : canon_rtx (reg_known_value[REGNO (x)]);
1094 else if (GET_CODE (x) == PLUS)
1096 rtx x0 = canon_rtx (XEXP (x, 0));
1097 rtx x1 = canon_rtx (XEXP (x, 1));
1099 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1101 if (GET_CODE (x0) == CONST_INT)
1102 return plus_constant (x1, INTVAL (x0));
1103 else if (GET_CODE (x1) == CONST_INT)
1104 return plus_constant (x0, INTVAL (x1));
1105 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1109 /* This gives us much better alias analysis when called from
1110 the loop optimizer. Note we want to leave the original
1111 MEM alone, but need to return the canonicalized MEM with
1112 all the flags with their original values. */
1113 else if (GET_CODE (x) == MEM)
1114 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1116 return x;
1119 /* Return 1 if X and Y are identical-looking rtx's.
1120 Expect that X and Y has been already canonicalized.
1122 We use the data in reg_known_value above to see if two registers with
1123 different numbers are, in fact, equivalent. */
1125 static int
1126 rtx_equal_for_memref_p (x, y)
1127 rtx x, y;
1129 int i;
1130 int j;
1131 enum rtx_code code;
1132 const char *fmt;
1134 if (x == 0 && y == 0)
1135 return 1;
1136 if (x == 0 || y == 0)
1137 return 0;
1139 if (x == y)
1140 return 1;
1142 code = GET_CODE (x);
1143 /* Rtx's of different codes cannot be equal. */
1144 if (code != GET_CODE (y))
1145 return 0;
1147 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1148 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1150 if (GET_MODE (x) != GET_MODE (y))
1151 return 0;
1153 /* Some RTL can be compared without a recursive examination. */
1154 switch (code)
1156 case VALUE:
1157 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
1159 case REG:
1160 return REGNO (x) == REGNO (y);
1162 case LABEL_REF:
1163 return XEXP (x, 0) == XEXP (y, 0);
1165 case SYMBOL_REF:
1166 return XSTR (x, 0) == XSTR (y, 0);
1168 case CONST_INT:
1169 case CONST_DOUBLE:
1170 /* There's no need to compare the contents of CONST_DOUBLEs or
1171 CONST_INTs because pointer equality is a good enough
1172 comparison for these nodes. */
1173 return 0;
1175 case ADDRESSOF:
1176 return (XINT (x, 1) == XINT (y, 1)
1177 && rtx_equal_for_memref_p (XEXP (x, 0),
1178 XEXP (y, 0)));
1180 default:
1181 break;
1184 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1185 if (code == PLUS)
1186 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1187 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1188 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1189 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1190 /* For commutative operations, the RTX match if the operand match in any
1191 order. Also handle the simple binary and unary cases without a loop. */
1192 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
1194 rtx xop0 = canon_rtx (XEXP (x, 0));
1195 rtx yop0 = canon_rtx (XEXP (y, 0));
1196 rtx yop1 = canon_rtx (XEXP (y, 1));
1198 return ((rtx_equal_for_memref_p (xop0, yop0)
1199 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1200 || (rtx_equal_for_memref_p (xop0, yop1)
1201 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1203 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
1205 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1206 canon_rtx (XEXP (y, 0)))
1207 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1208 canon_rtx (XEXP (y, 1))));
1210 else if (GET_RTX_CLASS (code) == '1')
1211 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1212 canon_rtx (XEXP (y, 0)));
1214 /* Compare the elements. If any pair of corresponding elements
1215 fail to match, return 0 for the whole things.
1217 Limit cases to types which actually appear in addresses. */
1219 fmt = GET_RTX_FORMAT (code);
1220 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1222 switch (fmt[i])
1224 case 'i':
1225 if (XINT (x, i) != XINT (y, i))
1226 return 0;
1227 break;
1229 case 'E':
1230 /* Two vectors must have the same length. */
1231 if (XVECLEN (x, i) != XVECLEN (y, i))
1232 return 0;
1234 /* And the corresponding elements must match. */
1235 for (j = 0; j < XVECLEN (x, i); j++)
1236 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1237 canon_rtx (XVECEXP (y, i, j))) == 0)
1238 return 0;
1239 break;
1241 case 'e':
1242 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1243 canon_rtx (XEXP (y, i))) == 0)
1244 return 0;
1245 break;
1247 /* This can happen for asm operands. */
1248 case 's':
1249 if (strcmp (XSTR (x, i), XSTR (y, i)))
1250 return 0;
1251 break;
1253 /* This can happen for an asm which clobbers memory. */
1254 case '0':
1255 break;
1257 /* It is believed that rtx's at this level will never
1258 contain anything but integers and other rtx's,
1259 except for within LABEL_REFs and SYMBOL_REFs. */
1260 default:
1261 abort ();
1264 return 1;
1267 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1268 X and return it, or return 0 if none found. */
1270 static rtx
1271 find_symbolic_term (x)
1272 rtx x;
1274 int i;
1275 enum rtx_code code;
1276 const char *fmt;
1278 code = GET_CODE (x);
1279 if (code == SYMBOL_REF || code == LABEL_REF)
1280 return x;
1281 if (GET_RTX_CLASS (code) == 'o')
1282 return 0;
1284 fmt = GET_RTX_FORMAT (code);
1285 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1287 rtx t;
1289 if (fmt[i] == 'e')
1291 t = find_symbolic_term (XEXP (x, i));
1292 if (t != 0)
1293 return t;
1295 else if (fmt[i] == 'E')
1296 break;
1298 return 0;
1302 find_base_term (x)
1303 rtx x;
1305 cselib_val *val;
1306 struct elt_loc_list *l;
1308 #if defined (FIND_BASE_TERM)
1309 /* Try machine-dependent ways to find the base term. */
1310 x = FIND_BASE_TERM (x);
1311 #endif
1313 switch (GET_CODE (x))
1315 case REG:
1316 return REG_BASE_VALUE (x);
1318 case TRUNCATE:
1319 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1320 return 0;
1321 /* Fall through. */
1322 case HIGH:
1323 case PRE_INC:
1324 case PRE_DEC:
1325 case POST_INC:
1326 case POST_DEC:
1327 case PRE_MODIFY:
1328 case POST_MODIFY:
1329 return find_base_term (XEXP (x, 0));
1331 case ZERO_EXTEND:
1332 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1334 rtx temp = find_base_term (XEXP (x, 0));
1336 #ifdef POINTERS_EXTEND_UNSIGNED
1337 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
1338 temp = convert_memory_address (Pmode, temp);
1339 #endif
1341 return temp;
1344 case VALUE:
1345 val = CSELIB_VAL_PTR (x);
1346 for (l = val->locs; l; l = l->next)
1347 if ((x = find_base_term (l->loc)) != 0)
1348 return x;
1349 return 0;
1351 case CONST:
1352 x = XEXP (x, 0);
1353 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1354 return 0;
1355 /* fall through */
1356 case LO_SUM:
1357 case PLUS:
1358 case MINUS:
1360 rtx tmp1 = XEXP (x, 0);
1361 rtx tmp2 = XEXP (x, 1);
1363 /* This is a little bit tricky since we have to determine which of
1364 the two operands represents the real base address. Otherwise this
1365 routine may return the index register instead of the base register.
1367 That may cause us to believe no aliasing was possible, when in
1368 fact aliasing is possible.
1370 We use a few simple tests to guess the base register. Additional
1371 tests can certainly be added. For example, if one of the operands
1372 is a shift or multiply, then it must be the index register and the
1373 other operand is the base register. */
1375 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1376 return find_base_term (tmp2);
1378 /* If either operand is known to be a pointer, then use it
1379 to determine the base term. */
1380 if (REG_P (tmp1) && REG_POINTER (tmp1))
1381 return find_base_term (tmp1);
1383 if (REG_P (tmp2) && REG_POINTER (tmp2))
1384 return find_base_term (tmp2);
1386 /* Neither operand was known to be a pointer. Go ahead and find the
1387 base term for both operands. */
1388 tmp1 = find_base_term (tmp1);
1389 tmp2 = find_base_term (tmp2);
1391 /* If either base term is named object or a special address
1392 (like an argument or stack reference), then use it for the
1393 base term. */
1394 if (tmp1 != 0
1395 && (GET_CODE (tmp1) == SYMBOL_REF
1396 || GET_CODE (tmp1) == LABEL_REF
1397 || (GET_CODE (tmp1) == ADDRESS
1398 && GET_MODE (tmp1) != VOIDmode)))
1399 return tmp1;
1401 if (tmp2 != 0
1402 && (GET_CODE (tmp2) == SYMBOL_REF
1403 || GET_CODE (tmp2) == LABEL_REF
1404 || (GET_CODE (tmp2) == ADDRESS
1405 && GET_MODE (tmp2) != VOIDmode)))
1406 return tmp2;
1408 /* We could not determine which of the two operands was the
1409 base register and which was the index. So we can determine
1410 nothing from the base alias check. */
1411 return 0;
1414 case AND:
1415 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1416 return find_base_term (XEXP (x, 0));
1417 return 0;
1419 case SYMBOL_REF:
1420 case LABEL_REF:
1421 return x;
1423 case ADDRESSOF:
1424 return REG_BASE_VALUE (frame_pointer_rtx);
1426 default:
1427 return 0;
1431 /* Return 0 if the addresses X and Y are known to point to different
1432 objects, 1 if they might be pointers to the same object. */
1434 static int
1435 base_alias_check (x, y, x_mode, y_mode)
1436 rtx x, y;
1437 enum machine_mode x_mode, y_mode;
1439 rtx x_base = find_base_term (x);
1440 rtx y_base = find_base_term (y);
1442 /* If the address itself has no known base see if a known equivalent
1443 value has one. If either address still has no known base, nothing
1444 is known about aliasing. */
1445 if (x_base == 0)
1447 rtx x_c;
1449 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1450 return 1;
1452 x_base = find_base_term (x_c);
1453 if (x_base == 0)
1454 return 1;
1457 if (y_base == 0)
1459 rtx y_c;
1460 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1461 return 1;
1463 y_base = find_base_term (y_c);
1464 if (y_base == 0)
1465 return 1;
1468 /* If the base addresses are equal nothing is known about aliasing. */
1469 if (rtx_equal_p (x_base, y_base))
1470 return 1;
1472 /* The base addresses of the read and write are different expressions.
1473 If they are both symbols and they are not accessed via AND, there is
1474 no conflict. We can bring knowledge of object alignment into play
1475 here. For example, on alpha, "char a, b;" can alias one another,
1476 though "char a; long b;" cannot. */
1477 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1479 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1480 return 1;
1481 if (GET_CODE (x) == AND
1482 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1483 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1484 return 1;
1485 if (GET_CODE (y) == AND
1486 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1487 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1488 return 1;
1489 /* Differing symbols never alias. */
1490 return 0;
1493 /* If one address is a stack reference there can be no alias:
1494 stack references using different base registers do not alias,
1495 a stack reference can not alias a parameter, and a stack reference
1496 can not alias a global. */
1497 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1498 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1499 return 0;
1501 if (! flag_argument_noalias)
1502 return 1;
1504 if (flag_argument_noalias > 1)
1505 return 0;
1507 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1508 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1511 /* Convert the address X into something we can use. This is done by returning
1512 it unchanged unless it is a value; in the latter case we call cselib to get
1513 a more useful rtx. */
1516 get_addr (x)
1517 rtx x;
1519 cselib_val *v;
1520 struct elt_loc_list *l;
1522 if (GET_CODE (x) != VALUE)
1523 return x;
1524 v = CSELIB_VAL_PTR (x);
1525 for (l = v->locs; l; l = l->next)
1526 if (CONSTANT_P (l->loc))
1527 return l->loc;
1528 for (l = v->locs; l; l = l->next)
1529 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1530 return l->loc;
1531 if (v->locs)
1532 return v->locs->loc;
1533 return x;
1536 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1537 where SIZE is the size in bytes of the memory reference. If ADDR
1538 is not modified by the memory reference then ADDR is returned. */
1541 addr_side_effect_eval (addr, size, n_refs)
1542 rtx addr;
1543 int size;
1544 int n_refs;
1546 int offset = 0;
1548 switch (GET_CODE (addr))
1550 case PRE_INC:
1551 offset = (n_refs + 1) * size;
1552 break;
1553 case PRE_DEC:
1554 offset = -(n_refs + 1) * size;
1555 break;
1556 case POST_INC:
1557 offset = n_refs * size;
1558 break;
1559 case POST_DEC:
1560 offset = -n_refs * size;
1561 break;
1563 default:
1564 return addr;
1567 if (offset)
1568 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1569 GEN_INT (offset));
1570 else
1571 addr = XEXP (addr, 0);
1572 addr = canon_rtx (addr);
1574 return addr;
1577 /* Return nonzero if X and Y (memory addresses) could reference the
1578 same location in memory. C is an offset accumulator. When
1579 C is nonzero, we are testing aliases between X and Y + C.
1580 XSIZE is the size in bytes of the X reference,
1581 similarly YSIZE is the size in bytes for Y.
1582 Expect that canon_rtx has been already called for X and Y.
1584 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1585 referenced (the reference was BLKmode), so make the most pessimistic
1586 assumptions.
1588 If XSIZE or YSIZE is negative, we may access memory outside the object
1589 being referenced as a side effect. This can happen when using AND to
1590 align memory references, as is done on the Alpha.
1592 Nice to notice that varying addresses cannot conflict with fp if no
1593 local variables had their addresses taken, but that's too hard now. */
1595 static int
1596 memrefs_conflict_p (xsize, x, ysize, y, c)
1597 rtx x, y;
1598 int xsize, ysize;
1599 HOST_WIDE_INT c;
1601 if (GET_CODE (x) == VALUE)
1602 x = get_addr (x);
1603 if (GET_CODE (y) == VALUE)
1604 y = get_addr (y);
1605 if (GET_CODE (x) == HIGH)
1606 x = XEXP (x, 0);
1607 else if (GET_CODE (x) == LO_SUM)
1608 x = XEXP (x, 1);
1609 else
1610 x = addr_side_effect_eval (x, xsize, 0);
1611 if (GET_CODE (y) == HIGH)
1612 y = XEXP (y, 0);
1613 else if (GET_CODE (y) == LO_SUM)
1614 y = XEXP (y, 1);
1615 else
1616 y = addr_side_effect_eval (y, ysize, 0);
1618 if (rtx_equal_for_memref_p (x, y))
1620 if (xsize <= 0 || ysize <= 0)
1621 return 1;
1622 if (c >= 0 && xsize > c)
1623 return 1;
1624 if (c < 0 && ysize+c > 0)
1625 return 1;
1626 return 0;
1629 /* This code used to check for conflicts involving stack references and
1630 globals but the base address alias code now handles these cases. */
1632 if (GET_CODE (x) == PLUS)
1634 /* The fact that X is canonicalized means that this
1635 PLUS rtx is canonicalized. */
1636 rtx x0 = XEXP (x, 0);
1637 rtx x1 = XEXP (x, 1);
1639 if (GET_CODE (y) == PLUS)
1641 /* The fact that Y is canonicalized means that this
1642 PLUS rtx is canonicalized. */
1643 rtx y0 = XEXP (y, 0);
1644 rtx y1 = XEXP (y, 1);
1646 if (rtx_equal_for_memref_p (x1, y1))
1647 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1648 if (rtx_equal_for_memref_p (x0, y0))
1649 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1650 if (GET_CODE (x1) == CONST_INT)
1652 if (GET_CODE (y1) == CONST_INT)
1653 return memrefs_conflict_p (xsize, x0, ysize, y0,
1654 c - INTVAL (x1) + INTVAL (y1));
1655 else
1656 return memrefs_conflict_p (xsize, x0, ysize, y,
1657 c - INTVAL (x1));
1659 else if (GET_CODE (y1) == CONST_INT)
1660 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1662 return 1;
1664 else if (GET_CODE (x1) == CONST_INT)
1665 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1667 else if (GET_CODE (y) == PLUS)
1669 /* The fact that Y is canonicalized means that this
1670 PLUS rtx is canonicalized. */
1671 rtx y0 = XEXP (y, 0);
1672 rtx y1 = XEXP (y, 1);
1674 if (GET_CODE (y1) == CONST_INT)
1675 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1676 else
1677 return 1;
1680 if (GET_CODE (x) == GET_CODE (y))
1681 switch (GET_CODE (x))
1683 case MULT:
1685 /* Handle cases where we expect the second operands to be the
1686 same, and check only whether the first operand would conflict
1687 or not. */
1688 rtx x0, y0;
1689 rtx x1 = canon_rtx (XEXP (x, 1));
1690 rtx y1 = canon_rtx (XEXP (y, 1));
1691 if (! rtx_equal_for_memref_p (x1, y1))
1692 return 1;
1693 x0 = canon_rtx (XEXP (x, 0));
1694 y0 = canon_rtx (XEXP (y, 0));
1695 if (rtx_equal_for_memref_p (x0, y0))
1696 return (xsize == 0 || ysize == 0
1697 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1699 /* Can't properly adjust our sizes. */
1700 if (GET_CODE (x1) != CONST_INT)
1701 return 1;
1702 xsize /= INTVAL (x1);
1703 ysize /= INTVAL (x1);
1704 c /= INTVAL (x1);
1705 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1708 case REG:
1709 /* Are these registers known not to be equal? */
1710 if (alias_invariant)
1712 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1713 rtx i_x, i_y; /* invariant relationships of X and Y */
1715 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
1716 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
1718 if (i_x == 0 && i_y == 0)
1719 break;
1721 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1722 ysize, i_y ? i_y : y, c))
1723 return 0;
1725 break;
1727 default:
1728 break;
1731 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1732 as an access with indeterminate size. Assume that references
1733 besides AND are aligned, so if the size of the other reference is
1734 at least as large as the alignment, assume no other overlap. */
1735 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1737 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1738 xsize = -1;
1739 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1741 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1743 /* ??? If we are indexing far enough into the array/structure, we
1744 may yet be able to determine that we can not overlap. But we
1745 also need to that we are far enough from the end not to overlap
1746 a following reference, so we do nothing with that for now. */
1747 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1748 ysize = -1;
1749 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1752 if (GET_CODE (x) == ADDRESSOF)
1754 if (y == frame_pointer_rtx
1755 || GET_CODE (y) == ADDRESSOF)
1756 return xsize <= 0 || ysize <= 0;
1758 if (GET_CODE (y) == ADDRESSOF)
1760 if (x == frame_pointer_rtx)
1761 return xsize <= 0 || ysize <= 0;
1764 if (CONSTANT_P (x))
1766 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1768 c += (INTVAL (y) - INTVAL (x));
1769 return (xsize <= 0 || ysize <= 0
1770 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1773 if (GET_CODE (x) == CONST)
1775 if (GET_CODE (y) == CONST)
1776 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1777 ysize, canon_rtx (XEXP (y, 0)), c);
1778 else
1779 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1780 ysize, y, c);
1782 if (GET_CODE (y) == CONST)
1783 return memrefs_conflict_p (xsize, x, ysize,
1784 canon_rtx (XEXP (y, 0)), c);
1786 if (CONSTANT_P (y))
1787 return (xsize <= 0 || ysize <= 0
1788 || (rtx_equal_for_memref_p (x, y)
1789 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1791 return 1;
1793 return 1;
1796 /* Functions to compute memory dependencies.
1798 Since we process the insns in execution order, we can build tables
1799 to keep track of what registers are fixed (and not aliased), what registers
1800 are varying in known ways, and what registers are varying in unknown
1801 ways.
1803 If both memory references are volatile, then there must always be a
1804 dependence between the two references, since their order can not be
1805 changed. A volatile and non-volatile reference can be interchanged
1806 though.
1808 A MEM_IN_STRUCT reference at a non-AND varying address can never
1809 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1810 also must allow AND addresses, because they may generate accesses
1811 outside the object being referenced. This is used to generate
1812 aligned addresses from unaligned addresses, for instance, the alpha
1813 storeqi_unaligned pattern. */
1815 /* Read dependence: X is read after read in MEM takes place. There can
1816 only be a dependence here if both reads are volatile. */
1819 read_dependence (mem, x)
1820 rtx mem;
1821 rtx x;
1823 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1826 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1827 MEM2 is a reference to a structure at a varying address, or returns
1828 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1829 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1830 to decide whether or not an address may vary; it should return
1831 nonzero whenever variation is possible.
1832 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1834 static rtx
1835 fixed_scalar_and_varying_struct_p (mem1, mem2, mem1_addr, mem2_addr, varies_p)
1836 rtx mem1, mem2;
1837 rtx mem1_addr, mem2_addr;
1838 int (*varies_p) PARAMS ((rtx, int));
1840 if (! flag_strict_aliasing)
1841 return NULL_RTX;
1843 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1844 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1845 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1846 varying address. */
1847 return mem1;
1849 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1850 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1851 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1852 varying address. */
1853 return mem2;
1855 return NULL_RTX;
1858 /* Returns nonzero if something about the mode or address format MEM1
1859 indicates that it might well alias *anything*. */
1861 static int
1862 aliases_everything_p (mem)
1863 rtx mem;
1865 if (GET_CODE (XEXP (mem, 0)) == AND)
1866 /* If the address is an AND, its very hard to know at what it is
1867 actually pointing. */
1868 return 1;
1870 return 0;
1873 /* Return true if we can determine that the fields referenced cannot
1874 overlap for any pair of objects. */
1876 static bool
1877 nonoverlapping_component_refs_p (x, y)
1878 tree x, y;
1880 tree fieldx, fieldy, typex, typey, orig_y;
1884 /* The comparison has to be done at a common type, since we don't
1885 know how the inheritance hierarchy works. */
1886 orig_y = y;
1889 fieldx = TREE_OPERAND (x, 1);
1890 typex = DECL_FIELD_CONTEXT (fieldx);
1892 y = orig_y;
1895 fieldy = TREE_OPERAND (y, 1);
1896 typey = DECL_FIELD_CONTEXT (fieldy);
1898 if (typex == typey)
1899 goto found;
1901 y = TREE_OPERAND (y, 0);
1903 while (y && TREE_CODE (y) == COMPONENT_REF);
1905 x = TREE_OPERAND (x, 0);
1907 while (x && TREE_CODE (x) == COMPONENT_REF);
1909 /* Never found a common type. */
1910 return false;
1912 found:
1913 /* If we're left with accessing different fields of a structure,
1914 then no overlap. */
1915 if (TREE_CODE (typex) == RECORD_TYPE
1916 && fieldx != fieldy)
1917 return true;
1919 /* The comparison on the current field failed. If we're accessing
1920 a very nested structure, look at the next outer level. */
1921 x = TREE_OPERAND (x, 0);
1922 y = TREE_OPERAND (y, 0);
1924 while (x && y
1925 && TREE_CODE (x) == COMPONENT_REF
1926 && TREE_CODE (y) == COMPONENT_REF);
1928 return false;
1931 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1933 static tree
1934 decl_for_component_ref (x)
1935 tree x;
1939 x = TREE_OPERAND (x, 0);
1941 while (x && TREE_CODE (x) == COMPONENT_REF);
1943 return x && DECL_P (x) ? x : NULL_TREE;
1946 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1947 offset of the field reference. */
1949 static rtx
1950 adjust_offset_for_component_ref (x, offset)
1951 tree x;
1952 rtx offset;
1954 HOST_WIDE_INT ioffset;
1956 if (! offset)
1957 return NULL_RTX;
1959 ioffset = INTVAL (offset);
1962 tree field = TREE_OPERAND (x, 1);
1964 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
1965 return NULL_RTX;
1966 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1967 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1968 / BITS_PER_UNIT));
1970 x = TREE_OPERAND (x, 0);
1972 while (x && TREE_CODE (x) == COMPONENT_REF);
1974 return GEN_INT (ioffset);
1977 /* Return nonzero if we can determine the exprs corresponding to memrefs
1978 X and Y and they do not overlap. */
1980 static int
1981 nonoverlapping_memrefs_p (x, y)
1982 rtx x, y;
1984 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
1985 rtx rtlx, rtly;
1986 rtx basex, basey;
1987 rtx moffsetx, moffsety;
1988 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1990 /* Unless both have exprs, we can't tell anything. */
1991 if (exprx == 0 || expry == 0)
1992 return 0;
1994 /* If both are field references, we may be able to determine something. */
1995 if (TREE_CODE (exprx) == COMPONENT_REF
1996 && TREE_CODE (expry) == COMPONENT_REF
1997 && nonoverlapping_component_refs_p (exprx, expry))
1998 return 1;
2000 /* If the field reference test failed, look at the DECLs involved. */
2001 moffsetx = MEM_OFFSET (x);
2002 if (TREE_CODE (exprx) == COMPONENT_REF)
2004 tree t = decl_for_component_ref (exprx);
2005 if (! t)
2006 return 0;
2007 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2008 exprx = t;
2010 else if (TREE_CODE (exprx) == INDIRECT_REF)
2012 exprx = TREE_OPERAND (exprx, 0);
2013 if (flag_argument_noalias < 2
2014 || TREE_CODE (exprx) != PARM_DECL)
2015 return 0;
2018 moffsety = MEM_OFFSET (y);
2019 if (TREE_CODE (expry) == COMPONENT_REF)
2021 tree t = decl_for_component_ref (expry);
2022 if (! t)
2023 return 0;
2024 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2025 expry = t;
2027 else if (TREE_CODE (expry) == INDIRECT_REF)
2029 expry = TREE_OPERAND (expry, 0);
2030 if (flag_argument_noalias < 2
2031 || TREE_CODE (expry) != PARM_DECL)
2032 return 0;
2035 if (! DECL_P (exprx) || ! DECL_P (expry))
2036 return 0;
2038 rtlx = DECL_RTL (exprx);
2039 rtly = DECL_RTL (expry);
2041 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2042 can't overlap unless they are the same because we never reuse that part
2043 of the stack frame used for locals for spilled pseudos. */
2044 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
2045 && ! rtx_equal_p (rtlx, rtly))
2046 return 1;
2048 /* Get the base and offsets of both decls. If either is a register, we
2049 know both are and are the same, so use that as the base. The only
2050 we can avoid overlap is if we can deduce that they are nonoverlapping
2051 pieces of that decl, which is very rare. */
2052 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
2053 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2054 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2056 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
2057 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2058 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2060 /* If the bases are different, we know they do not overlap if both
2061 are constants or if one is a constant and the other a pointer into the
2062 stack frame. Otherwise a different base means we can't tell if they
2063 overlap or not. */
2064 if (! rtx_equal_p (basex, basey))
2065 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2066 || (CONSTANT_P (basex) && REG_P (basey)
2067 && REGNO_PTR_FRAME_P (REGNO (basey)))
2068 || (CONSTANT_P (basey) && REG_P (basex)
2069 && REGNO_PTR_FRAME_P (REGNO (basex))));
2071 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2072 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2073 : -1);
2074 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2075 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2076 -1);
2078 /* If we have an offset for either memref, it can update the values computed
2079 above. */
2080 if (moffsetx)
2081 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2082 if (moffsety)
2083 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2085 /* If a memref has both a size and an offset, we can use the smaller size.
2086 We can't do this if the offset isn't known because we must view this
2087 memref as being anywhere inside the DECL's MEM. */
2088 if (MEM_SIZE (x) && moffsetx)
2089 sizex = INTVAL (MEM_SIZE (x));
2090 if (MEM_SIZE (y) && moffsety)
2091 sizey = INTVAL (MEM_SIZE (y));
2093 /* Put the values of the memref with the lower offset in X's values. */
2094 if (offsetx > offsety)
2096 tem = offsetx, offsetx = offsety, offsety = tem;
2097 tem = sizex, sizex = sizey, sizey = tem;
2100 /* If we don't know the size of the lower-offset value, we can't tell
2101 if they conflict. Otherwise, we do the test. */
2102 return sizex >= 0 && offsety >= offsetx + sizex;
2105 /* True dependence: X is read after store in MEM takes place. */
2108 true_dependence (mem, mem_mode, x, varies)
2109 rtx mem;
2110 enum machine_mode mem_mode;
2111 rtx x;
2112 int (*varies) PARAMS ((rtx, int));
2114 rtx x_addr, mem_addr;
2115 rtx base;
2117 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2118 return 1;
2120 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2121 This is used in epilogue deallocation functions. */
2122 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2123 return 1;
2124 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2125 return 1;
2127 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2128 return 0;
2130 /* Unchanging memory can't conflict with non-unchanging memory.
2131 A non-unchanging read can conflict with a non-unchanging write.
2132 An unchanging read can conflict with an unchanging write since
2133 there may be a single store to this address to initialize it.
2134 Note that an unchanging store can conflict with a non-unchanging read
2135 since we have to make conservative assumptions when we have a
2136 record with readonly fields and we are copying the whole thing.
2137 Just fall through to the code below to resolve potential conflicts.
2138 This won't handle all cases optimally, but the possible performance
2139 loss should be negligible. */
2140 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2141 return 0;
2143 if (nonoverlapping_memrefs_p (mem, x))
2144 return 0;
2146 if (mem_mode == VOIDmode)
2147 mem_mode = GET_MODE (mem);
2149 x_addr = get_addr (XEXP (x, 0));
2150 mem_addr = get_addr (XEXP (mem, 0));
2152 base = find_base_term (x_addr);
2153 if (base && (GET_CODE (base) == LABEL_REF
2154 || (GET_CODE (base) == SYMBOL_REF
2155 && CONSTANT_POOL_ADDRESS_P (base))))
2156 return 0;
2158 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2159 return 0;
2161 x_addr = canon_rtx (x_addr);
2162 mem_addr = canon_rtx (mem_addr);
2164 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2165 SIZE_FOR_MODE (x), x_addr, 0))
2166 return 0;
2168 if (aliases_everything_p (x))
2169 return 1;
2171 /* We cannot use aliases_everything_p to test MEM, since we must look
2172 at MEM_MODE, rather than GET_MODE (MEM). */
2173 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2174 return 1;
2176 /* In true_dependence we also allow BLKmode to alias anything. Why
2177 don't we do this in anti_dependence and output_dependence? */
2178 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2179 return 1;
2181 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2182 varies);
2185 /* Canonical true dependence: X is read after store in MEM takes place.
2186 Variant of true_dependence which assumes MEM has already been
2187 canonicalized (hence we no longer do that here).
2188 The mem_addr argument has been added, since true_dependence computed
2189 this value prior to canonicalizing. */
2192 canon_true_dependence (mem, mem_mode, mem_addr, x, varies)
2193 rtx mem, mem_addr, x;
2194 enum machine_mode mem_mode;
2195 int (*varies) PARAMS ((rtx, int));
2197 rtx x_addr;
2199 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2200 return 1;
2202 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2203 This is used in epilogue deallocation functions. */
2204 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2205 return 1;
2206 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2207 return 1;
2209 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2210 return 0;
2212 /* If X is an unchanging read, then it can't possibly conflict with any
2213 non-unchanging store. It may conflict with an unchanging write though,
2214 because there may be a single store to this address to initialize it.
2215 Just fall through to the code below to resolve the case where we have
2216 both an unchanging read and an unchanging write. This won't handle all
2217 cases optimally, but the possible performance loss should be
2218 negligible. */
2219 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2220 return 0;
2222 if (nonoverlapping_memrefs_p (x, mem))
2223 return 0;
2225 x_addr = get_addr (XEXP (x, 0));
2227 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2228 return 0;
2230 x_addr = canon_rtx (x_addr);
2231 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2232 SIZE_FOR_MODE (x), x_addr, 0))
2233 return 0;
2235 if (aliases_everything_p (x))
2236 return 1;
2238 /* We cannot use aliases_everything_p to test MEM, since we must look
2239 at MEM_MODE, rather than GET_MODE (MEM). */
2240 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2241 return 1;
2243 /* In true_dependence we also allow BLKmode to alias anything. Why
2244 don't we do this in anti_dependence and output_dependence? */
2245 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2246 return 1;
2248 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2249 varies);
2252 /* Returns nonzero if a write to X might alias a previous read from
2253 (or, if WRITEP is nonzero, a write to) MEM. */
2255 static int
2256 write_dependence_p (mem, x, writep)
2257 rtx mem;
2258 rtx x;
2259 int writep;
2261 rtx x_addr, mem_addr;
2262 rtx fixed_scalar;
2263 rtx base;
2265 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2266 return 1;
2268 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2269 This is used in epilogue deallocation functions. */
2270 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2271 return 1;
2272 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2273 return 1;
2275 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2276 return 0;
2278 /* Unchanging memory can't conflict with non-unchanging memory. */
2279 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2280 return 0;
2282 /* If MEM is an unchanging read, then it can't possibly conflict with
2283 the store to X, because there is at most one store to MEM, and it must
2284 have occurred somewhere before MEM. */
2285 if (! writep && RTX_UNCHANGING_P (mem))
2286 return 0;
2288 if (nonoverlapping_memrefs_p (x, mem))
2289 return 0;
2291 x_addr = get_addr (XEXP (x, 0));
2292 mem_addr = get_addr (XEXP (mem, 0));
2294 if (! writep)
2296 base = find_base_term (mem_addr);
2297 if (base && (GET_CODE (base) == LABEL_REF
2298 || (GET_CODE (base) == SYMBOL_REF
2299 && CONSTANT_POOL_ADDRESS_P (base))))
2300 return 0;
2303 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2304 GET_MODE (mem)))
2305 return 0;
2307 x_addr = canon_rtx (x_addr);
2308 mem_addr = canon_rtx (mem_addr);
2310 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2311 SIZE_FOR_MODE (x), x_addr, 0))
2312 return 0;
2314 fixed_scalar
2315 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2316 rtx_addr_varies_p);
2318 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2319 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2322 /* Anti dependence: X is written after read in MEM takes place. */
2325 anti_dependence (mem, x)
2326 rtx mem;
2327 rtx x;
2329 return write_dependence_p (mem, x, /*writep=*/0);
2332 /* Output dependence: X is written after store in MEM takes place. */
2335 output_dependence (mem, x)
2336 rtx mem;
2337 rtx x;
2339 return write_dependence_p (mem, x, /*writep=*/1);
2342 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2343 something which is not local to the function and is not constant. */
2345 static int
2346 nonlocal_mentioned_p_1 (loc, data)
2347 rtx *loc;
2348 void *data ATTRIBUTE_UNUSED;
2350 rtx x = *loc;
2351 rtx base;
2352 int regno;
2354 if (! x)
2355 return 0;
2357 switch (GET_CODE (x))
2359 case SUBREG:
2360 if (GET_CODE (SUBREG_REG (x)) == REG)
2362 /* Global registers are not local. */
2363 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
2364 && global_regs[subreg_regno (x)])
2365 return 1;
2366 return 0;
2368 break;
2370 case REG:
2371 regno = REGNO (x);
2372 /* Global registers are not local. */
2373 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2374 return 1;
2375 return 0;
2377 case SCRATCH:
2378 case PC:
2379 case CC0:
2380 case CONST_INT:
2381 case CONST_DOUBLE:
2382 case CONST_VECTOR:
2383 case CONST:
2384 case LABEL_REF:
2385 return 0;
2387 case SYMBOL_REF:
2388 /* Constants in the function's constants pool are constant. */
2389 if (CONSTANT_POOL_ADDRESS_P (x))
2390 return 0;
2391 return 1;
2393 case CALL:
2394 /* Non-constant calls and recursion are not local. */
2395 return 1;
2397 case MEM:
2398 /* Be overly conservative and consider any volatile memory
2399 reference as not local. */
2400 if (MEM_VOLATILE_P (x))
2401 return 1;
2402 base = find_base_term (XEXP (x, 0));
2403 if (base)
2405 /* A Pmode ADDRESS could be a reference via the structure value
2406 address or static chain. Such memory references are nonlocal.
2408 Thus, we have to examine the contents of the ADDRESS to find
2409 out if this is a local reference or not. */
2410 if (GET_CODE (base) == ADDRESS
2411 && GET_MODE (base) == Pmode
2412 && (XEXP (base, 0) == stack_pointer_rtx
2413 || XEXP (base, 0) == arg_pointer_rtx
2414 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2415 || XEXP (base, 0) == hard_frame_pointer_rtx
2416 #endif
2417 || XEXP (base, 0) == frame_pointer_rtx))
2418 return 0;
2419 /* Constants in the function's constant pool are constant. */
2420 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2421 return 0;
2423 return 1;
2425 case UNSPEC_VOLATILE:
2426 case ASM_INPUT:
2427 return 1;
2429 case ASM_OPERANDS:
2430 if (MEM_VOLATILE_P (x))
2431 return 1;
2433 /* FALLTHROUGH */
2435 default:
2436 break;
2439 return 0;
2442 /* Returns nonzero if X might mention something which is not
2443 local to the function and is not constant. */
2445 static int
2446 nonlocal_mentioned_p (x)
2447 rtx x;
2450 if (INSN_P (x))
2452 if (GET_CODE (x) == CALL_INSN)
2454 if (! CONST_OR_PURE_CALL_P (x))
2455 return 1;
2456 x = CALL_INSN_FUNCTION_USAGE (x);
2457 if (x == 0)
2458 return 0;
2460 else
2461 x = PATTERN (x);
2464 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2467 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2468 something which is not local to the function and is not constant. */
2470 static int
2471 nonlocal_referenced_p_1 (loc, data)
2472 rtx *loc;
2473 void *data ATTRIBUTE_UNUSED;
2475 rtx x = *loc;
2477 if (! x)
2478 return 0;
2480 switch (GET_CODE (x))
2482 case MEM:
2483 case REG:
2484 case SYMBOL_REF:
2485 case SUBREG:
2486 return nonlocal_mentioned_p (x);
2488 case CALL:
2489 /* Non-constant calls and recursion are not local. */
2490 return 1;
2492 case SET:
2493 if (nonlocal_mentioned_p (SET_SRC (x)))
2494 return 1;
2496 if (GET_CODE (SET_DEST (x)) == MEM)
2497 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2499 /* If the destination is anything other than a CC0, PC,
2500 MEM, REG, or a SUBREG of a REG that occupies all of
2501 the REG, then X references nonlocal memory if it is
2502 mentioned in the destination. */
2503 if (GET_CODE (SET_DEST (x)) != CC0
2504 && GET_CODE (SET_DEST (x)) != PC
2505 && GET_CODE (SET_DEST (x)) != REG
2506 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2507 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
2508 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2509 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2510 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2511 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2512 return nonlocal_mentioned_p (SET_DEST (x));
2513 return 0;
2515 case CLOBBER:
2516 if (GET_CODE (XEXP (x, 0)) == MEM)
2517 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2518 return 0;
2520 case USE:
2521 return nonlocal_mentioned_p (XEXP (x, 0));
2523 case ASM_INPUT:
2524 case UNSPEC_VOLATILE:
2525 return 1;
2527 case ASM_OPERANDS:
2528 if (MEM_VOLATILE_P (x))
2529 return 1;
2531 /* FALLTHROUGH */
2533 default:
2534 break;
2537 return 0;
2540 /* Returns nonzero if X might reference something which is not
2541 local to the function and is not constant. */
2543 static int
2544 nonlocal_referenced_p (x)
2545 rtx x;
2548 if (INSN_P (x))
2550 if (GET_CODE (x) == CALL_INSN)
2552 if (! CONST_OR_PURE_CALL_P (x))
2553 return 1;
2554 x = CALL_INSN_FUNCTION_USAGE (x);
2555 if (x == 0)
2556 return 0;
2558 else
2559 x = PATTERN (x);
2562 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2565 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2566 something which is not local to the function and is not constant. */
2568 static int
2569 nonlocal_set_p_1 (loc, data)
2570 rtx *loc;
2571 void *data ATTRIBUTE_UNUSED;
2573 rtx x = *loc;
2575 if (! x)
2576 return 0;
2578 switch (GET_CODE (x))
2580 case CALL:
2581 /* Non-constant calls and recursion are not local. */
2582 return 1;
2584 case PRE_INC:
2585 case PRE_DEC:
2586 case POST_INC:
2587 case POST_DEC:
2588 case PRE_MODIFY:
2589 case POST_MODIFY:
2590 return nonlocal_mentioned_p (XEXP (x, 0));
2592 case SET:
2593 if (nonlocal_mentioned_p (SET_DEST (x)))
2594 return 1;
2595 return nonlocal_set_p (SET_SRC (x));
2597 case CLOBBER:
2598 return nonlocal_mentioned_p (XEXP (x, 0));
2600 case USE:
2601 return 0;
2603 case ASM_INPUT:
2604 case UNSPEC_VOLATILE:
2605 return 1;
2607 case ASM_OPERANDS:
2608 if (MEM_VOLATILE_P (x))
2609 return 1;
2611 /* FALLTHROUGH */
2613 default:
2614 break;
2617 return 0;
2620 /* Returns nonzero if X might set something which is not
2621 local to the function and is not constant. */
2623 static int
2624 nonlocal_set_p (x)
2625 rtx x;
2628 if (INSN_P (x))
2630 if (GET_CODE (x) == CALL_INSN)
2632 if (! CONST_OR_PURE_CALL_P (x))
2633 return 1;
2634 x = CALL_INSN_FUNCTION_USAGE (x);
2635 if (x == 0)
2636 return 0;
2638 else
2639 x = PATTERN (x);
2642 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2645 /* Mark the function if it is pure or constant. */
2647 void
2648 mark_constant_function ()
2650 rtx insn;
2651 int nonlocal_memory_referenced;
2653 if (TREE_READONLY (current_function_decl)
2654 || DECL_IS_PURE (current_function_decl)
2655 || TREE_THIS_VOLATILE (current_function_decl)
2656 || current_function_has_nonlocal_goto
2657 || !(*targetm.binds_local_p) (current_function_decl))
2658 return;
2660 /* A loop might not return which counts as a side effect. */
2661 if (mark_dfs_back_edges ())
2662 return;
2664 nonlocal_memory_referenced = 0;
2666 init_alias_analysis ();
2668 /* Determine if this is a constant or pure function. */
2670 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2672 if (! INSN_P (insn))
2673 continue;
2675 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2676 || volatile_refs_p (PATTERN (insn)))
2677 break;
2679 if (! nonlocal_memory_referenced)
2680 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2683 end_alias_analysis ();
2685 /* Mark the function. */
2687 if (insn)
2689 else if (nonlocal_memory_referenced)
2691 cgraph_rtl_info (current_function_decl)->pure_function = 1;
2692 DECL_IS_PURE (current_function_decl) = 1;
2694 else
2696 cgraph_rtl_info (current_function_decl)->const_function = 1;
2697 TREE_READONLY (current_function_decl) = 1;
2702 void
2703 init_alias_once ()
2705 int i;
2707 #ifndef OUTGOING_REGNO
2708 #define OUTGOING_REGNO(N) N
2709 #endif
2710 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2711 /* Check whether this register can hold an incoming pointer
2712 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2713 numbers, so translate if necessary due to register windows. */
2714 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2715 && HARD_REGNO_MODE_OK (i, Pmode))
2716 static_reg_base_value[i]
2717 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2719 static_reg_base_value[STACK_POINTER_REGNUM]
2720 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2721 static_reg_base_value[ARG_POINTER_REGNUM]
2722 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2723 static_reg_base_value[FRAME_POINTER_REGNUM]
2724 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2725 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2726 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2727 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2728 #endif
2730 alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
2733 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2734 to be memory reference. */
2735 static bool memory_modified;
2736 static void
2737 memory_modified_1 (x, pat, data)
2738 rtx x, pat ATTRIBUTE_UNUSED;
2739 void *data;
2741 if (GET_CODE (x) == MEM)
2743 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2744 memory_modified = true;
2749 /* Return true when INSN possibly modify memory contents of MEM
2750 (ie address can be modified). */
2751 bool
2752 memory_modified_in_insn_p (mem, insn)
2753 rtx mem, insn;
2755 if (!INSN_P (insn))
2756 return false;
2757 memory_modified = false;
2758 note_stores (PATTERN (insn), memory_modified_1, mem);
2759 return memory_modified;
2762 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2763 array. */
2765 void
2766 init_alias_analysis ()
2768 int maxreg = max_reg_num ();
2769 int changed, pass;
2770 int i;
2771 unsigned int ui;
2772 rtx insn;
2774 timevar_push (TV_ALIAS_ANALYSIS);
2776 reg_known_value_size = maxreg;
2778 reg_known_value
2779 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
2780 - FIRST_PSEUDO_REGISTER;
2781 reg_known_equiv_p
2782 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
2783 - FIRST_PSEUDO_REGISTER;
2785 /* Overallocate reg_base_value to allow some growth during loop
2786 optimization. Loop unrolling can create a large number of
2787 registers. */
2788 reg_base_value_size = maxreg * 2;
2789 reg_base_value = (rtx *) ggc_alloc_cleared (reg_base_value_size
2790 * sizeof (rtx));
2792 new_reg_base_value = (rtx *) xmalloc (reg_base_value_size * sizeof (rtx));
2793 reg_seen = (char *) xmalloc (reg_base_value_size);
2794 if (! reload_completed && flag_old_unroll_loops)
2796 /* ??? Why are we realloc'ing if we're just going to zero it? */
2797 alias_invariant = (rtx *)xrealloc (alias_invariant,
2798 reg_base_value_size * sizeof (rtx));
2799 memset ((char *)alias_invariant, 0, reg_base_value_size * sizeof (rtx));
2802 /* The basic idea is that each pass through this loop will use the
2803 "constant" information from the previous pass to propagate alias
2804 information through another level of assignments.
2806 This could get expensive if the assignment chains are long. Maybe
2807 we should throttle the number of iterations, possibly based on
2808 the optimization level or flag_expensive_optimizations.
2810 We could propagate more information in the first pass by making use
2811 of REG_N_SETS to determine immediately that the alias information
2812 for a pseudo is "constant".
2814 A program with an uninitialized variable can cause an infinite loop
2815 here. Instead of doing a full dataflow analysis to detect such problems
2816 we just cap the number of iterations for the loop.
2818 The state of the arrays for the set chain in question does not matter
2819 since the program has undefined behavior. */
2821 pass = 0;
2824 /* Assume nothing will change this iteration of the loop. */
2825 changed = 0;
2827 /* We want to assign the same IDs each iteration of this loop, so
2828 start counting from zero each iteration of the loop. */
2829 unique_id = 0;
2831 /* We're at the start of the function each iteration through the
2832 loop, so we're copying arguments. */
2833 copying_arguments = true;
2835 /* Wipe the potential alias information clean for this pass. */
2836 memset ((char *) new_reg_base_value, 0, reg_base_value_size * sizeof (rtx));
2838 /* Wipe the reg_seen array clean. */
2839 memset ((char *) reg_seen, 0, reg_base_value_size);
2841 /* Mark all hard registers which may contain an address.
2842 The stack, frame and argument pointers may contain an address.
2843 An argument register which can hold a Pmode value may contain
2844 an address even if it is not in BASE_REGS.
2846 The address expression is VOIDmode for an argument and
2847 Pmode for other registers. */
2849 memcpy (new_reg_base_value, static_reg_base_value,
2850 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2852 /* Walk the insns adding values to the new_reg_base_value array. */
2853 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2855 if (INSN_P (insn))
2857 rtx note, set;
2859 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2860 /* The prologue/epilogue insns are not threaded onto the
2861 insn chain until after reload has completed. Thus,
2862 there is no sense wasting time checking if INSN is in
2863 the prologue/epilogue until after reload has completed. */
2864 if (reload_completed
2865 && prologue_epilogue_contains (insn))
2866 continue;
2867 #endif
2869 /* If this insn has a noalias note, process it, Otherwise,
2870 scan for sets. A simple set will have no side effects
2871 which could change the base value of any other register. */
2873 if (GET_CODE (PATTERN (insn)) == SET
2874 && REG_NOTES (insn) != 0
2875 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2876 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2877 else
2878 note_stores (PATTERN (insn), record_set, NULL);
2880 set = single_set (insn);
2882 if (set != 0
2883 && GET_CODE (SET_DEST (set)) == REG
2884 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2886 unsigned int regno = REGNO (SET_DEST (set));
2887 rtx src = SET_SRC (set);
2889 if (REG_NOTES (insn) != 0
2890 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2891 && REG_N_SETS (regno) == 1)
2892 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2893 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2894 && ! rtx_varies_p (XEXP (note, 0), 1)
2895 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
2897 reg_known_value[regno] = XEXP (note, 0);
2898 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
2900 else if (REG_N_SETS (regno) == 1
2901 && GET_CODE (src) == PLUS
2902 && GET_CODE (XEXP (src, 0)) == REG
2903 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
2904 && (reg_known_value[REGNO (XEXP (src, 0))])
2905 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2907 rtx op0 = XEXP (src, 0);
2908 op0 = reg_known_value[REGNO (op0)];
2909 reg_known_value[regno]
2910 = plus_constant (op0, INTVAL (XEXP (src, 1)));
2911 reg_known_equiv_p[regno] = 0;
2913 else if (REG_N_SETS (regno) == 1
2914 && ! rtx_varies_p (src, 1))
2916 reg_known_value[regno] = src;
2917 reg_known_equiv_p[regno] = 0;
2921 else if (GET_CODE (insn) == NOTE
2922 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2923 copying_arguments = false;
2926 /* Now propagate values from new_reg_base_value to reg_base_value. */
2927 for (ui = 0; ui < reg_base_value_size; ui++)
2929 if (new_reg_base_value[ui]
2930 && new_reg_base_value[ui] != reg_base_value[ui]
2931 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
2933 reg_base_value[ui] = new_reg_base_value[ui];
2934 changed = 1;
2938 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2940 /* Fill in the remaining entries. */
2941 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
2942 if (reg_known_value[i] == 0)
2943 reg_known_value[i] = regno_reg_rtx[i];
2945 /* Simplify the reg_base_value array so that no register refers to
2946 another register, except to special registers indirectly through
2947 ADDRESS expressions.
2949 In theory this loop can take as long as O(registers^2), but unless
2950 there are very long dependency chains it will run in close to linear
2951 time.
2953 This loop may not be needed any longer now that the main loop does
2954 a better job at propagating alias information. */
2955 pass = 0;
2958 changed = 0;
2959 pass++;
2960 for (ui = 0; ui < reg_base_value_size; ui++)
2962 rtx base = reg_base_value[ui];
2963 if (base && GET_CODE (base) == REG)
2965 unsigned int base_regno = REGNO (base);
2966 if (base_regno == ui) /* register set from itself */
2967 reg_base_value[ui] = 0;
2968 else
2969 reg_base_value[ui] = reg_base_value[base_regno];
2970 changed = 1;
2974 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
2976 /* Clean up. */
2977 free (new_reg_base_value);
2978 new_reg_base_value = 0;
2979 free (reg_seen);
2980 reg_seen = 0;
2981 timevar_pop (TV_ALIAS_ANALYSIS);
2984 void
2985 end_alias_analysis ()
2987 free (reg_known_value + FIRST_PSEUDO_REGISTER);
2988 reg_known_value = 0;
2989 reg_known_value_size = 0;
2990 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
2991 reg_known_equiv_p = 0;
2992 reg_base_value = 0;
2993 reg_base_value_size = 0;
2994 if (alias_invariant)
2996 free (alias_invariant);
2997 alias_invariant = 0;
3001 #include "gt-alias.h"