2005-06-29 Andreas Krebbel <krebbel1@de.ibm.com>
[official-gcc.git] / gcc / config / s390 / s390.h
blob42119a467b1554aa57fd1b28f52f572c69a14e75
1 /* Definitions of target machine for GNU compiler, for IBM S/390
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
5 Ulrich Weigand (uweigand@de.ibm.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 02110-1301, USA. */
24 #ifndef _S390_H
25 #define _S390_H
27 /* Override the __fixdfdi etc. routines when building libgcc2.
28 ??? This should be done in a cleaner way ... */
29 #if defined (IN_LIBGCC2) && !defined (__s390x__)
30 #include <config/s390/fixdfdi.h>
31 #endif
33 /* Which processor to generate code or schedule for. The cpu attribute
34 defines a list that mirrors this list, so changes to s390.md must be
35 made at the same time. */
37 enum processor_type
39 PROCESSOR_9672_G5,
40 PROCESSOR_9672_G6,
41 PROCESSOR_2064_Z900,
42 PROCESSOR_2084_Z990,
43 PROCESSOR_max
46 /* Optional architectural facilities supported by the processor. */
48 enum processor_flags
50 PF_IEEE_FLOAT = 1,
51 PF_ZARCH = 2,
52 PF_LONG_DISPLACEMENT = 4
55 extern enum processor_type s390_tune;
56 extern enum processor_flags s390_tune_flags;
58 extern enum processor_type s390_arch;
59 extern enum processor_flags s390_arch_flags;
61 #define TARGET_CPU_IEEE_FLOAT \
62 (s390_arch_flags & PF_IEEE_FLOAT)
63 #define TARGET_CPU_ZARCH \
64 (s390_arch_flags & PF_ZARCH)
65 #define TARGET_CPU_LONG_DISPLACEMENT \
66 (s390_arch_flags & PF_LONG_DISPLACEMENT)
68 #define TARGET_LONG_DISPLACEMENT \
69 (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
72 /* Run-time target specification. */
74 /* This will be overridden by OS headers. */
75 #define TARGET_TPF 0
77 /* Target CPU builtins. */
78 #define TARGET_CPU_CPP_BUILTINS() \
79 do \
80 { \
81 builtin_assert ("cpu=s390"); \
82 builtin_assert ("machine=s390"); \
83 builtin_define ("__s390__"); \
84 if (TARGET_64BIT) \
85 builtin_define ("__s390x__"); \
86 } \
87 while (0)
89 /* ??? Once this actually works, it could be made a runtime option. */
90 #define TARGET_IBM_FLOAT 0
91 #define TARGET_IEEE_FLOAT 1
93 #ifdef DEFAULT_TARGET_64BIT
94 #define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_FLOAT)
95 #else
96 #define TARGET_DEFAULT MASK_HARD_FLOAT
97 #endif
99 /* Support for configure-time defaults. */
100 #define OPTION_DEFAULT_SPECS \
101 { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \
102 { "arch", "%{!march=*:-march=%(VALUE)}" }, \
103 { "tune", "%{!mtune=*:-mtune=%(VALUE)}" }
105 /* Defaulting rules. */
106 #ifdef DEFAULT_TARGET_64BIT
107 #define DRIVER_SELF_SPECS \
108 "%{!m31:%{!m64:-m64}}", \
109 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
110 "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
111 #else
112 #define DRIVER_SELF_SPECS \
113 "%{!m31:%{!m64:-m31}}", \
114 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
115 "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
116 #endif
118 /* Target version string. Overridden by the OS header. */
119 #ifdef DEFAULT_TARGET_64BIT
120 #define TARGET_VERSION fprintf (stderr, " (zSeries)");
121 #else
122 #define TARGET_VERSION fprintf (stderr, " (S/390)");
123 #endif
125 /* Hooks to override options. */
126 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) optimization_options(LEVEL, SIZE)
127 #define OVERRIDE_OPTIONS override_options ()
129 /* Frame pointer is not used for debugging. */
130 #define CAN_DEBUG_WITHOUT_FP
133 /* In libgcc2, determine target settings as compile-time constants. */
134 #ifdef IN_LIBGCC2
135 #undef TARGET_64BIT
136 #ifdef __s390x__
137 #define TARGET_64BIT 1
138 #else
139 #define TARGET_64BIT 0
140 #endif
141 #endif
144 /* Target machine storage layout. */
146 /* Everything is big-endian. */
147 #define BITS_BIG_ENDIAN 1
148 #define BYTES_BIG_ENDIAN 1
149 #define WORDS_BIG_ENDIAN 1
151 /* Width of a word, in units (bytes). */
152 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
153 #ifndef IN_LIBGCC2
154 #define MIN_UNITS_PER_WORD 4
155 #endif
156 #define MAX_BITS_PER_WORD 64
158 /* Function arguments and return values are promoted to word size. */
159 #define PROMOTE_FUNCTION_MODE(MODE, UNSIGNEDP, TYPE) \
160 if (INTEGRAL_MODE_P (MODE) && \
161 GET_MODE_SIZE (MODE) < UNITS_PER_WORD) { \
162 (MODE) = Pmode; \
165 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
166 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
168 /* Boundary (in *bits*) on which stack pointer should be aligned. */
169 #define STACK_BOUNDARY 64
171 /* Allocation boundary (in *bits*) for the code of a function. */
172 #define FUNCTION_BOUNDARY 32
174 /* There is no point aligning anything to a rounder boundary than this. */
175 #define BIGGEST_ALIGNMENT 64
177 /* Alignment of field after `int : 0' in a structure. */
178 #define EMPTY_FIELD_BOUNDARY 32
180 /* Alignment on even addresses for LARL instruction. */
181 #define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
182 #define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
184 /* Alignment is not required by the hardware. */
185 #define STRICT_ALIGNMENT 0
187 /* Mode of stack savearea.
188 FUNCTION is VOIDmode because calling convention maintains SP.
189 BLOCK needs Pmode for SP.
190 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
191 #define STACK_SAVEAREA_MODE(LEVEL) \
192 (LEVEL == SAVE_FUNCTION ? VOIDmode \
193 : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
195 /* Define target floating point format. */
196 #define TARGET_FLOAT_FORMAT \
197 (TARGET_IEEE_FLOAT? IEEE_FLOAT_FORMAT : IBM_FLOAT_FORMAT)
200 /* Type layout. */
202 /* Sizes in bits of the source language data types. */
203 #define SHORT_TYPE_SIZE 16
204 #define INT_TYPE_SIZE 32
205 #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
206 #define LONG_LONG_TYPE_SIZE 64
207 #define FLOAT_TYPE_SIZE 32
208 #define DOUBLE_TYPE_SIZE 64
209 #define LONG_DOUBLE_TYPE_SIZE 64 /* ??? Should support extended format. */
211 /* We use "unsigned char" as default. */
212 #define DEFAULT_SIGNED_CHAR 0
215 /* Register usage. */
217 /* We have 16 general purpose registers (registers 0-15),
218 and 16 floating point registers (registers 16-31).
219 (On non-IEEE machines, we have only 4 fp registers.)
221 Amongst the general purpose registers, some are used
222 for specific purposes:
223 GPR 11: Hard frame pointer (if needed)
224 GPR 12: Global offset table pointer (if needed)
225 GPR 13: Literal pool base register
226 GPR 14: Return address register
227 GPR 15: Stack pointer
229 Registers 32-35 are 'fake' hard registers that do not
230 correspond to actual hardware:
231 Reg 32: Argument pointer
232 Reg 33: Condition code
233 Reg 34: Frame pointer
234 Reg 35: Return address pointer
236 Registers 36 and 37 are mapped to access registers
237 0 and 1, used to implement thread-local storage. */
239 #define FIRST_PSEUDO_REGISTER 38
241 /* Standard register usage. */
242 #define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
243 #define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
244 #define FP_REGNO_P(N) ((N) >= 16 && (N) < (TARGET_IEEE_FLOAT? 32 : 20))
245 #define CC_REGNO_P(N) ((N) == 33)
246 #define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34 || (N) == 35)
247 #define ACCESS_REGNO_P(N) ((N) == 36 || (N) == 37)
249 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
250 #define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
251 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
252 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
253 #define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
254 #define ACCESS_REG_P(X) (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
256 /* Set up fixed registers and calling convention:
258 GPRs 0-5 are always call-clobbered,
259 GPRs 6-15 are always call-saved.
260 GPR 12 is fixed if used as GOT pointer.
261 GPR 13 is always fixed (as literal pool pointer).
262 GPR 14 is always fixed on S/390 machines (as return address).
263 GPR 15 is always fixed (as stack pointer).
264 The 'fake' hard registers are call-clobbered and fixed.
265 The access registers are call-saved and fixed.
267 On 31-bit, FPRs 18-19 are call-clobbered;
268 on 64-bit, FPRs 24-31 are call-clobbered.
269 The remaining FPRs are call-saved. */
271 #define FIXED_REGISTERS \
272 { 0, 0, 0, 0, \
273 0, 0, 0, 0, \
274 0, 0, 0, 0, \
275 0, 1, 1, 1, \
276 0, 0, 0, 0, \
277 0, 0, 0, 0, \
278 0, 0, 0, 0, \
279 0, 0, 0, 0, \
280 1, 1, 1, 1, \
281 1, 1 }
283 #define CALL_USED_REGISTERS \
284 { 1, 1, 1, 1, \
285 1, 1, 0, 0, \
286 0, 0, 0, 0, \
287 0, 1, 1, 1, \
288 1, 1, 1, 1, \
289 1, 1, 1, 1, \
290 1, 1, 1, 1, \
291 1, 1, 1, 1, \
292 1, 1, 1, 1, \
293 1, 1 }
295 #define CALL_REALLY_USED_REGISTERS \
296 { 1, 1, 1, 1, \
297 1, 1, 0, 0, \
298 0, 0, 0, 0, \
299 0, 0, 0, 0, \
300 1, 1, 1, 1, \
301 1, 1, 1, 1, \
302 1, 1, 1, 1, \
303 1, 1, 1, 1, \
304 1, 1, 1, 1, \
305 0, 0 }
307 #define CONDITIONAL_REGISTER_USAGE s390_conditional_register_usage ()
309 /* Preferred register allocation order. */
310 #define REG_ALLOC_ORDER \
311 { 1, 2, 3, 4, 5, 0, 13, 12, 11, 10, 9, 8, 7, 6, 14, \
312 16, 17, 18, 19, 20, 21, 22, 23, \
313 24, 25, 26, 27, 28, 29, 30, 31, \
314 15, 32, 33, 34, 35, 36, 37 }
317 /* Fitting values into registers. */
319 /* Integer modes <= word size fit into any GPR.
320 Integer modes > word size fit into successive GPRs, starting with
321 an even-numbered register.
322 SImode and DImode fit into FPRs as well.
324 Floating point modes <= word size fit into any FPR or GPR.
325 Floating point modes > word size (i.e. DFmode on 32-bit) fit
326 into any FPR, or an even-odd GPR pair.
328 Complex floating point modes fit either into two FPRs, or into
329 successive GPRs (again starting with an even number).
331 Condition code modes fit only into the CC register. */
333 #define HARD_REGNO_NREGS(REGNO, MODE) \
334 (FP_REGNO_P(REGNO)? \
335 (GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
336 GENERAL_REGNO_P(REGNO)? \
337 ((GET_MODE_SIZE(MODE)+UNITS_PER_WORD-1) / UNITS_PER_WORD) : \
338 ACCESS_REGNO_P(REGNO)? \
339 ((GET_MODE_SIZE(MODE)+4-1) / 4) : \
342 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
343 (FP_REGNO_P(REGNO)? \
344 ((MODE) == SImode || (MODE) == DImode || \
345 GET_MODE_CLASS(MODE) == MODE_FLOAT || \
346 GET_MODE_CLASS(MODE) == MODE_COMPLEX_FLOAT) : \
347 GENERAL_REGNO_P(REGNO)? \
348 (HARD_REGNO_NREGS(REGNO, MODE) == 1 || !((REGNO) & 1)) : \
349 CC_REGNO_P(REGNO)? \
350 GET_MODE_CLASS (MODE) == MODE_CC : \
351 FRAME_REGNO_P(REGNO)? \
352 (enum machine_mode) (MODE) == Pmode : \
353 ACCESS_REGNO_P(REGNO)? \
354 (((MODE) == SImode || ((enum machine_mode) (MODE) == Pmode)) \
355 && (HARD_REGNO_NREGS(REGNO, MODE) == 1 || !((REGNO) & 1))) : \
358 #define MODES_TIEABLE_P(MODE1, MODE2) \
359 (((MODE1) == SFmode || (MODE1) == DFmode) \
360 == ((MODE2) == SFmode || (MODE2) == DFmode))
362 /* Maximum number of registers to represent a value of mode MODE
363 in a register of class CLASS. */
364 #define CLASS_MAX_NREGS(CLASS, MODE) \
365 ((CLASS) == FP_REGS ? \
366 (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT ? 2 : 1) : \
367 (CLASS) == ACCESS_REGS ? \
368 (GET_MODE_SIZE (MODE) + 4 - 1) / 4 : \
369 (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
371 /* If a 4-byte value is loaded into a FPR, it is placed into the
372 *upper* half of the register, not the lower. Therefore, we
373 cannot use SUBREGs to switch between modes in FP registers.
374 Likewise for access registers, since they have only half the
375 word size on 64-bit. */
376 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
377 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
378 ? reg_classes_intersect_p (FP_REGS, CLASS) \
379 || reg_classes_intersect_p (ACCESS_REGS, CLASS) : 0)
381 /* Register classes. */
383 /* We use the following register classes:
384 GENERAL_REGS All general purpose registers
385 ADDR_REGS All general purpose registers except %r0
386 (These registers can be used in address generation)
387 FP_REGS All floating point registers
388 CC_REGS The condition code register
389 ACCESS_REGS The access registers
391 GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
392 ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
393 GENERAL_CC_REGS Union of GENERAL_REGS and CC_REGS
394 ADDR_CC_REGS Union of ADDR_REGS and CC_REGS
396 NO_REGS No registers
397 ALL_REGS All registers
399 Note that the 'fake' frame pointer and argument pointer registers
400 are included amongst the address registers here. */
402 enum reg_class
404 NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
405 ADDR_CC_REGS, GENERAL_CC_REGS,
406 FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
407 ALL_REGS, LIM_REG_CLASSES
409 #define N_REG_CLASSES (int) LIM_REG_CLASSES
411 #define REG_CLASS_NAMES \
412 { "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS", \
413 "ADDR_CC_REGS", "GENERAL_CC_REGS", \
414 "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", "ALL_REGS" }
416 /* Class -> register mapping. */
417 #define REG_CLASS_CONTENTS \
419 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
420 { 0x00000000, 0x00000002 }, /* CC_REGS */ \
421 { 0x0000fffe, 0x0000000d }, /* ADDR_REGS */ \
422 { 0x0000ffff, 0x0000000d }, /* GENERAL_REGS */ \
423 { 0x00000000, 0x00000030 }, /* ACCESS_REGS */ \
424 { 0x0000fffe, 0x0000000f }, /* ADDR_CC_REGS */ \
425 { 0x0000ffff, 0x0000000f }, /* GENERAL_CC_REGS */ \
426 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
427 { 0xfffffffe, 0x0000000d }, /* ADDR_FP_REGS */ \
428 { 0xffffffff, 0x0000000d }, /* GENERAL_FP_REGS */ \
429 { 0xffffffff, 0x0000003f }, /* ALL_REGS */ \
432 /* Register -> class mapping. */
433 extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
434 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
436 /* ADDR_REGS can be used as base or index register. */
437 #define INDEX_REG_CLASS ADDR_REGS
438 #define BASE_REG_CLASS ADDR_REGS
440 /* Check whether REGNO is a hard register of the suitable class
441 or a pseudo register currently allocated to one such. */
442 #define REGNO_OK_FOR_INDEX_P(REGNO) \
443 (((REGNO) < FIRST_PSEUDO_REGISTER \
444 && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
445 || (reg_renumber[REGNO] > 0 && reg_renumber[REGNO] < 16))
446 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
449 /* Given an rtx X being reloaded into a reg required to be in class CLASS,
450 return the class of reg to actually use. */
451 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
452 s390_preferred_reload_class ((X), (CLASS))
454 /* We need a secondary reload when loading a PLUS which is
455 not a valid operand for LOAD ADDRESS. */
456 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
457 s390_secondary_input_reload_class ((CLASS), (MODE), (IN))
459 /* We need a secondary reload when storing a double-word
460 to a non-offsettable memory address. */
461 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
462 s390_secondary_output_reload_class ((CLASS), (MODE), (OUT))
464 /* We need secondary memory to move data between GPRs and FPRs. */
465 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
466 ((CLASS1) != (CLASS2) && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS))
468 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
469 because the movsi and movsf patterns don't handle r/f moves. */
470 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
471 (GET_MODE_BITSIZE (MODE) < 32 \
472 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
473 : MODE)
476 /* Define various machine-dependent constraint letters. */
478 #define REG_CLASS_FROM_LETTER(C) \
479 ((C) == 'a' ? ADDR_REGS : \
480 (C) == 'd' ? GENERAL_REGS : \
481 (C) == 'f' ? FP_REGS : \
482 (C) == 'c' ? CC_REGS : \
483 (C) == 't' ? ACCESS_REGS : NO_REGS)
485 #define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \
486 s390_const_ok_for_constraint_p ((VALUE), (C), (STR))
488 #define CONST_DOUBLE_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \
489 s390_const_double_ok_for_constraint_p ((VALUE), (C), (STR))
491 #define EXTRA_CONSTRAINT_STR(OP, C, STR) \
492 s390_extra_constraint_str ((OP), (C), (STR))
493 #define EXTRA_MEMORY_CONSTRAINT(C, STR) \
494 ((C) == 'Q' || (C) == 'R' || (C) == 'S' || (C) == 'T' || (C) == 'A')
495 #define EXTRA_ADDRESS_CONSTRAINT(C, STR) \
496 ((C) == 'U' || (C) == 'W' || (C) == 'Y')
498 #define CONSTRAINT_LEN(C, STR) \
499 ((C) == 'N' ? 5 : \
500 (C) == 'A' ? 2 : \
501 (C) == 'B' ? 2 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
503 /* Stack layout and calling conventions. */
505 /* Our stack grows from higher to lower addresses. However, local variables
506 are accessed by positive offsets, and function arguments are stored at
507 increasing addresses. */
508 #define STACK_GROWS_DOWNWARD
509 #define FRAME_GROWS_DOWNWARD 1
510 /* #undef ARGS_GROW_DOWNWARD */
512 /* The basic stack layout looks like this: the stack pointer points
513 to the register save area for called functions. Above that area
514 is the location to place outgoing arguments. Above those follow
515 dynamic allocations (alloca), and finally the local variables. */
517 /* Offset from stack-pointer to first location of outgoing args. */
518 #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
520 /* Offset within stack frame to start allocating local variables at. */
521 #define STARTING_FRAME_OFFSET 0
523 /* Offset from the stack pointer register to an item dynamically
524 allocated on the stack, e.g., by `alloca'. */
525 extern int current_function_outgoing_args_size;
526 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
527 (STACK_POINTER_OFFSET + current_function_outgoing_args_size)
529 /* Offset of first parameter from the argument pointer register value.
530 We have a fake argument pointer register that points directly to
531 the argument area. */
532 #define FIRST_PARM_OFFSET(FNDECL) 0
534 /* Defining this macro makes __builtin_frame_address(0) and
535 __builtin_return_address(0) work with -fomit-frame-pointer. */
536 #define INITIAL_FRAME_ADDRESS_RTX \
537 (TARGET_PACKED_STACK ? \
538 plus_constant (arg_pointer_rtx, -UNITS_PER_WORD) : \
539 plus_constant (arg_pointer_rtx, -STACK_POINTER_OFFSET))
541 /* The return address of the current frame is retrieved
542 from the initial value of register RETURN_REGNUM.
543 For frames farther back, we use the stack slot where
544 the corresponding RETURN_REGNUM register was saved. */
545 #define DYNAMIC_CHAIN_ADDRESS(FRAME) \
546 (TARGET_PACKED_STACK ? \
547 plus_constant ((FRAME), STACK_POINTER_OFFSET - UNITS_PER_WORD) : (FRAME))
549 #define RETURN_ADDR_RTX(COUNT, FRAME) \
550 s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
552 /* In 31-bit mode, we need to mask off the high bit of return addresses. */
553 #define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
556 /* Exception handling. */
558 /* Describe calling conventions for DWARF-2 exception handling. */
559 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
560 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
561 #define DWARF_FRAME_RETURN_COLUMN 14
563 /* Describe how we implement __builtin_eh_return. */
564 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
565 #define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
567 /* Select a format to encode pointers in exception handling data. */
568 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
569 (flag_pic \
570 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
571 : DW_EH_PE_absptr)
574 /* Frame registers. */
576 #define STACK_POINTER_REGNUM 15
577 #define FRAME_POINTER_REGNUM 34
578 #define HARD_FRAME_POINTER_REGNUM 11
579 #define ARG_POINTER_REGNUM 32
580 #define RETURN_ADDRESS_POINTER_REGNUM 35
582 /* The static chain must be call-clobbered, but not used for
583 function argument passing. As register 1 is clobbered by
584 the trampoline code, we only have one option. */
585 #define STATIC_CHAIN_REGNUM 0
587 /* Number of hardware registers that go into the DWARF-2 unwind info.
588 To avoid ABI incompatibility, this number must not change even as
589 'fake' hard registers are added or removed. */
590 #define DWARF_FRAME_REGISTERS 34
593 /* Frame pointer and argument pointer elimination. */
595 #define FRAME_POINTER_REQUIRED 0
597 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0
599 #define ELIMINABLE_REGS \
600 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
601 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
602 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
603 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
604 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
605 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
607 #define CAN_ELIMINATE(FROM, TO) \
608 s390_can_eliminate ((FROM), (TO))
610 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
611 (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
614 /* Stack arguments. */
616 /* We need current_function_outgoing_args to be valid. */
617 #define ACCUMULATE_OUTGOING_ARGS 1
619 /* Return doesn't modify the stack. */
620 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
623 /* Register arguments. */
625 typedef struct s390_arg_structure
627 int gprs; /* gpr so far */
628 int fprs; /* fpr so far */
630 CUMULATIVE_ARGS;
632 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
633 ((CUM).gprs=0, (CUM).fprs=0)
635 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
636 s390_function_arg_advance (&CUM, MODE, TYPE, NAMED)
638 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
639 s390_function_arg (&CUM, MODE, TYPE, NAMED)
641 /* Arguments can be placed in general registers 2 to 6,
642 or in floating point registers 0 and 2. */
643 #define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
644 (N) == 16 || (N) == 17)
647 /* Scalar return values. */
649 #define FUNCTION_VALUE(VALTYPE, FUNC) \
650 s390_function_value ((VALTYPE), VOIDmode)
652 #define LIBCALL_VALUE(MODE) \
653 s390_function_value (NULL, (MODE))
655 /* Only gpr 2 and fpr 0 are ever used as return registers. */
656 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
659 /* Function entry and exit. */
661 /* When returning from a function, the stack pointer does not matter. */
662 #define EXIT_IGNORE_STACK 1
665 /* Profiling. */
667 #define FUNCTION_PROFILER(FILE, LABELNO) \
668 s390_function_profiler ((FILE), ((LABELNO)))
670 #define PROFILE_BEFORE_PROLOGUE 1
673 /* Implementing the varargs macros. */
675 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
676 s390_va_start (valist, nextarg)
678 /* Trampolines for nested functions. */
680 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16)
682 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
683 s390_initialize_trampoline ((ADDR), (FNADDR), (CXT))
685 #define TRAMPOLINE_TEMPLATE(FILE) \
686 s390_trampoline_template (FILE)
689 /* Addressing modes, and classification of registers for them. */
691 /* Recognize any constant value that is a valid address. */
692 #define CONSTANT_ADDRESS_P(X) 0
694 /* Maximum number of registers that can appear in a valid memory address. */
695 #define MAX_REGS_PER_ADDRESS 2
697 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check
698 its validity for a certain class. We have two alternate definitions
699 for each of them. The usual definition accepts all pseudo regs; the
700 other rejects them all. The symbol REG_OK_STRICT causes the latter
701 definition to be used.
703 Most source files want to accept pseudo regs in the hope that they will
704 get allocated to the class that the insn wants them to be in.
705 Some source files that are used after register allocation
706 need to be strict. */
708 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
709 ((GET_MODE (X) == Pmode) && \
710 ((REGNO (X) >= FIRST_PSEUDO_REGISTER) \
711 || REGNO_REG_CLASS (REGNO (X)) == ADDR_REGS))
713 #define REG_OK_FOR_BASE_NONSTRICT_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
715 #define REG_OK_FOR_INDEX_STRICT_P(X) \
716 ((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_INDEX_P (REGNO (X))))
718 #define REG_OK_FOR_BASE_STRICT_P(X) \
719 ((GET_MODE (X) == Pmode) && (REGNO_OK_FOR_BASE_P (REGNO (X))))
721 #ifndef REG_OK_STRICT
722 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P(X)
723 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P(X)
724 #else
725 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P(X)
726 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P(X)
727 #endif
729 /* S/390 has no mode dependent addresses. */
730 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
732 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
733 valid memory address for an instruction.
734 The MODE argument is the machine mode for the MEM expression
735 that wants to use this address. */
736 #ifdef REG_OK_STRICT
737 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
739 if (legitimate_address_p (MODE, X, 1)) \
740 goto ADDR; \
742 #else
743 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
745 if (legitimate_address_p (MODE, X, 0)) \
746 goto ADDR; \
748 #endif
750 /* Try machine-dependent ways of modifying an illegitimate address
751 to be legitimate. If we find one, return the new, valid address.
752 This macro is used in only one place: `memory_address' in explow.c. */
753 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
755 (X) = legitimize_address (X, OLDX, MODE); \
756 if (memory_address_p (MODE, X)) \
757 goto WIN; \
760 /* Try a machine-dependent way of reloading an illegitimate address
761 operand. If we find one, push the reload and jump to WIN. This
762 macro is used in only one place: `find_reloads_address' in reload.c. */
763 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
764 do { \
765 rtx new = legitimize_reload_address (AD, MODE, OPNUM, (int)(TYPE)); \
766 if (new) \
768 (AD) = new; \
769 goto WIN; \
771 } while (0)
773 /* Nonzero if the constant value X is a legitimate general operand.
774 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
775 #define LEGITIMATE_CONSTANT_P(X) \
776 legitimate_constant_p (X)
778 /* Helper macro for s390.c and s390.md to check for symbolic constants. */
779 #define SYMBOLIC_CONST(X) \
780 (GET_CODE (X) == SYMBOL_REF \
781 || GET_CODE (X) == LABEL_REF \
782 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
784 #define TLS_SYMBOLIC_CONST(X) \
785 ((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
786 || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
789 /* Condition codes. */
791 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
792 return the mode to be used for the comparison. */
793 #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
795 /* Canonicalize a comparison from one we don't have to one we do have. */
796 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
797 s390_canonicalize_comparison (&(CODE), &(OP0), &(OP1))
799 /* Define the information needed to generate branch and scc insns. This is
800 stored from the compare operation. Note that we can't use "rtx" here
801 since it hasn't been defined! */
802 extern struct rtx_def *s390_compare_op0, *s390_compare_op1, *s390_compare_emitted;
805 /* Relative costs of operations. */
807 /* On s390, copy between fprs and gprs is expensive. */
808 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
809 (( ( reg_classes_intersect_p ((CLASS1), GENERAL_REGS) \
810 && reg_classes_intersect_p ((CLASS2), FP_REGS)) \
811 || ( reg_classes_intersect_p ((CLASS1), FP_REGS) \
812 && reg_classes_intersect_p ((CLASS2), GENERAL_REGS))) ? 10 : 1)
814 /* A C expression for the cost of moving data of mode M between a
815 register and memory. A value of 2 is the default; this cost is
816 relative to those in `REGISTER_MOVE_COST'. */
817 #define MEMORY_MOVE_COST(M, C, I) 1
819 /* A C expression for the cost of a branch instruction. A value of 1
820 is the default; other values are interpreted relative to that. */
821 #define BRANCH_COST 1
823 /* Nonzero if access to memory by bytes is slow and undesirable. */
824 #define SLOW_BYTE_ACCESS 1
826 /* An integer expression for the size in bits of the largest integer machine
827 mode that should actually be used. We allow pairs of registers. */
828 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
830 /* The maximum number of bytes that a single instruction can move quickly
831 between memory and registers or between two memory locations. */
832 #define MOVE_MAX (TARGET_64BIT ? 16 : 8)
833 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
834 #define MAX_MOVE_MAX 16
836 /* Determine whether to use move_by_pieces or block move insn. */
837 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
838 ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
839 || (TARGET_64BIT && (SIZE) == 8) )
841 /* Determine whether to use clear_by_pieces or block clear insn. */
842 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
843 ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
844 || (TARGET_64BIT && (SIZE) == 8) )
846 /* This macro is used to determine whether store_by_pieces should be
847 called to "memset" storage with byte values other than zero, or
848 to "memcpy" storage when the source is a constant string. */
849 #define STORE_BY_PIECES_P(SIZE, ALIGN) MOVE_BY_PIECES_P (SIZE, ALIGN)
851 /* Don't perform CSE on function addresses. */
852 #define NO_FUNCTION_CSE
855 /* Sections. */
857 /* Output before read-only data. */
858 #define TEXT_SECTION_ASM_OP ".text"
860 /* Output before writable (initialized) data. */
861 #define DATA_SECTION_ASM_OP ".data"
863 /* Output before writable (uninitialized) data. */
864 #define BSS_SECTION_ASM_OP ".bss"
866 /* S/390 constant pool breaks the devices in crtstuff.c to control section
867 in where code resides. We have to write it as asm code. */
868 #ifndef __s390x__
869 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
870 asm (SECTION_OP "\n\
871 bras\t%r2,1f\n\
872 0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
873 1: l\t%r3,0(%r2)\n\
874 bas\t%r14,0(%r3,%r2)\n\
875 .previous");
876 #endif
879 /* Position independent code. */
881 extern int flag_pic;
883 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
885 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
888 /* Assembler file format. */
890 /* Character to start a comment. */
891 #define ASM_COMMENT_START "#"
893 /* Declare an uninitialized external linkage data object. */
894 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
895 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
897 /* Globalizing directive for a label. */
898 #define GLOBAL_ASM_OP ".globl "
900 /* Advance the location counter to a multiple of 2**LOG bytes. */
901 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
902 if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
904 /* Advance the location counter by SIZE bytes. */
905 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
906 fprintf ((FILE), "\t.set\t.,.+"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
908 /* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
909 #define LOCAL_LABEL_PREFIX "."
911 /* How to refer to registers in assembler output. This sequence is
912 indexed by compiler's hard-register-number (see above). */
913 #define REGISTER_NAMES \
914 { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
915 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
916 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
917 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
918 "%ap", "%cc", "%fp", "%rp", "%a0", "%a1" \
921 /* Print operand X (an rtx) in assembler syntax to file FILE. */
922 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
923 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
925 /* Output machine-dependent UNSPECs in address constants. */
926 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
927 do { \
928 if (!s390_output_addr_const_extra (FILE, (X))) \
929 goto FAIL; \
930 } while (0);
932 /* Output an element of a case-vector that is absolute. */
933 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
934 do { \
935 char buf[32]; \
936 fputs (integer_asm_op (UNITS_PER_WORD, TRUE), (FILE)); \
937 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
938 assemble_name ((FILE), buf); \
939 fputc ('\n', (FILE)); \
940 } while (0)
942 /* Output an element of a case-vector that is relative. */
943 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
944 do { \
945 char buf[32]; \
946 fputs (integer_asm_op (UNITS_PER_WORD, TRUE), (FILE)); \
947 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
948 assemble_name ((FILE), buf); \
949 fputc ('-', (FILE)); \
950 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
951 assemble_name ((FILE), buf); \
952 fputc ('\n', (FILE)); \
953 } while (0)
956 /* Miscellaneous parameters. */
958 /* Specify the machine mode that this machine uses for the index in the
959 tablejump instruction. */
960 #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
962 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
963 is done just by pretending it is already truncated. */
964 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
966 /* Specify the machine mode that pointers have.
967 After generation of rtl, the compiler makes no further distinction
968 between pointers and any other objects of this machine mode. */
969 #define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
971 /* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */
972 #define POINTERS_EXTEND_UNSIGNED -1
974 /* A function address in a call instruction is a byte address (for
975 indexing purposes) so give the MEM rtx a byte's mode. */
976 #define FUNCTION_MODE QImode
978 /* Machine-specific symbol_ref flags. */
979 #define SYMBOL_FLAG_ALIGN1 (SYMBOL_FLAG_MACH_DEP << 0)
981 /* Check whether integer displacement is in range. */
982 #define DISP_IN_RANGE(d) \
983 (TARGET_LONG_DISPLACEMENT? ((d) >= -524288 && (d) <= 524287) \
984 : ((d) >= 0 && (d) <= 4095))
986 #endif