Daily bump.
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob32323400b6d61d56aca845058753c95c98bda490
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Tss; use Exp_Tss;
38 with Exp_Util; use Exp_Util;
39 with Fname; use Fname;
40 with Freeze; use Freeze;
41 with Itypes; use Itypes;
42 with Lib.Xref; use Lib.Xref;
43 with Layout; use Layout;
44 with Namet; use Namet;
45 with Lib; use Lib;
46 with Nlists; use Nlists;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Output; use Output;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch3; use Sem_Ch3;
57 with Sem_Ch4; use Sem_Ch4;
58 with Sem_Ch5; use Sem_Ch5;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch10; use Sem_Ch10;
61 with Sem_Ch12; use Sem_Ch12;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Util; use Sem_Util;
70 with Sem_Type; use Sem_Type;
71 with Sem_Warn; use Sem_Warn;
72 with Sinput; use Sinput;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinfo.CN; use Sinfo.CN;
76 with Snames; use Snames;
77 with Stringt; use Stringt;
78 with Style;
79 with Stylesw; use Stylesw;
80 with Tbuild; use Tbuild;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
83 with Validsw; use Validsw;
85 package body Sem_Ch6 is
87 May_Hide_Profile : Boolean := False;
88 -- This flag is used to indicate that two formals in two subprograms being
89 -- checked for conformance differ only in that one is an access parameter
90 -- while the other is of a general access type with the same designated
91 -- type. In this case, if the rest of the signatures match, a call to
92 -- either subprogram may be ambiguous, which is worth a warning. The flag
93 -- is set in Compatible_Types, and the warning emitted in
94 -- New_Overloaded_Entity.
96 -----------------------
97 -- Local Subprograms --
98 -----------------------
100 procedure Analyze_Return_Statement (N : Node_Id);
101 -- Common processing for simple_ and extended_return_statements
103 procedure Analyze_Function_Return (N : Node_Id);
104 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
105 -- applies to a [generic] function.
107 procedure Analyze_Return_Type (N : Node_Id);
108 -- Subsidiary to Process_Formals: analyze subtype mark in function
109 -- specification, in a context where the formals are visible and hide
110 -- outer homographs.
112 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
113 -- Does all the real work of Analyze_Subprogram_Body
115 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
116 -- Analyze a generic subprogram body. N is the body to be analyzed, and
117 -- Gen_Id is the defining entity Id for the corresponding spec.
119 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
120 -- If a subprogram has pragma Inline and inlining is active, use generic
121 -- machinery to build an unexpanded body for the subprogram. This body is
122 -- subsequently used for inline expansions at call sites. If subprogram can
123 -- be inlined (depending on size and nature of local declarations) this
124 -- function returns true. Otherwise subprogram body is treated normally.
125 -- If proper warnings are enabled and the subprogram contains a construct
126 -- that cannot be inlined, the offending construct is flagged accordingly.
128 procedure Check_Conformance
129 (New_Id : Entity_Id;
130 Old_Id : Entity_Id;
131 Ctype : Conformance_Type;
132 Errmsg : Boolean;
133 Conforms : out Boolean;
134 Err_Loc : Node_Id := Empty;
135 Get_Inst : Boolean := False;
136 Skip_Controlling_Formals : Boolean := False);
137 -- Given two entities, this procedure checks that the profiles associated
138 -- with these entities meet the conformance criterion given by the third
139 -- parameter. If they conform, Conforms is set True and control returns
140 -- to the caller. If they do not conform, Conforms is set to False, and
141 -- in addition, if Errmsg is True on the call, proper messages are output
142 -- to complain about the conformance failure. If Err_Loc is non_Empty
143 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
144 -- error messages are placed on the appropriate part of the construct
145 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
146 -- against a formal access-to-subprogram type so Get_Instance_Of must
147 -- be called.
149 procedure Check_Subprogram_Order (N : Node_Id);
150 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
151 -- the alpha ordering rule for N if this ordering requirement applicable.
153 procedure Check_Returns
154 (HSS : Node_Id;
155 Mode : Character;
156 Err : out Boolean;
157 Proc : Entity_Id := Empty);
158 -- Called to check for missing return statements in a function body, or for
159 -- returns present in a procedure body which has No_Return set. HSS is the
160 -- handled statement sequence for the subprogram body. This procedure
161 -- checks all flow paths to make sure they either have return (Mode = 'F',
162 -- used for functions) or do not have a return (Mode = 'P', used for
163 -- No_Return procedures). The flag Err is set if there are any control
164 -- paths not explicitly terminated by a return in the function case, and is
165 -- True otherwise. Proc is the entity for the procedure case and is used
166 -- in posting the warning message.
168 procedure Enter_Overloaded_Entity (S : Entity_Id);
169 -- This procedure makes S, a new overloaded entity, into the first visible
170 -- entity with that name.
172 procedure Install_Entity (E : Entity_Id);
173 -- Make single entity visible. Used for generic formals as well
175 function Is_Non_Overriding_Operation
176 (Prev_E : Entity_Id;
177 New_E : Entity_Id) return Boolean;
178 -- Enforce the rule given in 12.3(18): a private operation in an instance
179 -- overrides an inherited operation only if the corresponding operation
180 -- was overriding in the generic. This can happen for primitive operations
181 -- of types derived (in the generic unit) from formal private or formal
182 -- derived types.
184 procedure Make_Inequality_Operator (S : Entity_Id);
185 -- Create the declaration for an inequality operator that is implicitly
186 -- created by a user-defined equality operator that yields a boolean.
188 procedure May_Need_Actuals (Fun : Entity_Id);
189 -- Flag functions that can be called without parameters, i.e. those that
190 -- have no parameters, or those for which defaults exist for all parameters
192 procedure Process_PPCs
193 (N : Node_Id;
194 Spec_Id : Entity_Id;
195 Body_Id : Entity_Id);
196 -- Called from Analyze[_Generic]_Subprogram_Body to deal with scanning post
197 -- conditions for the body and assembling and inserting the _postconditions
198 -- procedure. N is the node for the subprogram body and Body_Id/Spec_Id are
199 -- the entities for the body and separate spec (if there is no separate
200 -- spec, Spec_Id is Empty).
202 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
203 -- Formal_Id is an formal parameter entity. This procedure deals with
204 -- setting the proper validity status for this entity, which depends on
205 -- the kind of parameter and the validity checking mode.
207 ------------------------------
208 -- Analyze_Return_Statement --
209 ------------------------------
211 procedure Analyze_Return_Statement (N : Node_Id) is
213 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
214 N_Extended_Return_Statement));
216 Returns_Object : constant Boolean :=
217 Nkind (N) = N_Extended_Return_Statement
218 or else
219 (Nkind (N) = N_Simple_Return_Statement
220 and then Present (Expression (N)));
221 -- True if we're returning something; that is, "return <expression>;"
222 -- or "return Result : T [:= ...]". False for "return;". Used for error
223 -- checking: If Returns_Object is True, N should apply to a function
224 -- body; otherwise N should apply to a procedure body, entry body,
225 -- accept statement, or extended return statement.
227 function Find_What_It_Applies_To return Entity_Id;
228 -- Find the entity representing the innermost enclosing body, accept
229 -- statement, or extended return statement. If the result is a callable
230 -- construct or extended return statement, then this will be the value
231 -- of the Return_Applies_To attribute. Otherwise, the program is
232 -- illegal. See RM-6.5(4/2).
234 -----------------------------
235 -- Find_What_It_Applies_To --
236 -----------------------------
238 function Find_What_It_Applies_To return Entity_Id is
239 Result : Entity_Id := Empty;
241 begin
242 -- Loop outward through the Scope_Stack, skipping blocks and loops
244 for J in reverse 0 .. Scope_Stack.Last loop
245 Result := Scope_Stack.Table (J).Entity;
246 exit when Ekind (Result) /= E_Block and then
247 Ekind (Result) /= E_Loop;
248 end loop;
250 pragma Assert (Present (Result));
251 return Result;
252 end Find_What_It_Applies_To;
254 -- Local declarations
256 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
257 Kind : constant Entity_Kind := Ekind (Scope_Id);
258 Loc : constant Source_Ptr := Sloc (N);
259 Stm_Entity : constant Entity_Id :=
260 New_Internal_Entity
261 (E_Return_Statement, Current_Scope, Loc, 'R');
263 -- Start of processing for Analyze_Return_Statement
265 begin
266 Set_Return_Statement_Entity (N, Stm_Entity);
268 Set_Etype (Stm_Entity, Standard_Void_Type);
269 Set_Return_Applies_To (Stm_Entity, Scope_Id);
271 -- Place Return entity on scope stack, to simplify enforcement of 6.5
272 -- (4/2): an inner return statement will apply to this extended return.
274 if Nkind (N) = N_Extended_Return_Statement then
275 Push_Scope (Stm_Entity);
276 end if;
278 -- Check that pragma No_Return is obeyed. Don't complain about the
279 -- implicitly-generated return that is placed at the end.
281 if No_Return (Scope_Id) and then Comes_From_Source (N) then
282 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
283 end if;
285 -- Warn on any unassigned OUT parameters if in procedure
287 if Ekind (Scope_Id) = E_Procedure then
288 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
289 end if;
291 -- Check that functions return objects, and other things do not
293 if Kind = E_Function or else Kind = E_Generic_Function then
294 if not Returns_Object then
295 Error_Msg_N ("missing expression in return from function", N);
296 end if;
298 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
299 if Returns_Object then
300 Error_Msg_N ("procedure cannot return value (use function)", N);
301 end if;
303 elsif Kind = E_Entry or else Kind = E_Entry_Family then
304 if Returns_Object then
305 if Is_Protected_Type (Scope (Scope_Id)) then
306 Error_Msg_N ("entry body cannot return value", N);
307 else
308 Error_Msg_N ("accept statement cannot return value", N);
309 end if;
310 end if;
312 elsif Kind = E_Return_Statement then
314 -- We are nested within another return statement, which must be an
315 -- extended_return_statement.
317 if Returns_Object then
318 Error_Msg_N
319 ("extended_return_statement cannot return value; " &
320 "use `""RETURN;""`", N);
321 end if;
323 else
324 Error_Msg_N ("illegal context for return statement", N);
325 end if;
327 if Kind = E_Function or else Kind = E_Generic_Function then
328 Analyze_Function_Return (N);
329 end if;
331 if Nkind (N) = N_Extended_Return_Statement then
332 End_Scope;
333 end if;
335 Kill_Current_Values (Last_Assignment_Only => True);
336 Check_Unreachable_Code (N);
337 end Analyze_Return_Statement;
339 ---------------------------------------------
340 -- Analyze_Abstract_Subprogram_Declaration --
341 ---------------------------------------------
343 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
344 Designator : constant Entity_Id :=
345 Analyze_Subprogram_Specification (Specification (N));
346 Scop : constant Entity_Id := Current_Scope;
348 begin
349 Generate_Definition (Designator);
350 Set_Is_Abstract_Subprogram (Designator);
351 New_Overloaded_Entity (Designator);
352 Check_Delayed_Subprogram (Designator);
354 Set_Categorization_From_Scope (Designator, Scop);
356 if Ekind (Scope (Designator)) = E_Protected_Type then
357 Error_Msg_N
358 ("abstract subprogram not allowed in protected type", N);
360 -- Issue a warning if the abstract subprogram is neither a dispatching
361 -- operation nor an operation that overrides an inherited subprogram or
362 -- predefined operator, since this most likely indicates a mistake.
364 elsif Warn_On_Redundant_Constructs
365 and then not Is_Dispatching_Operation (Designator)
366 and then not Is_Overriding_Operation (Designator)
367 and then (not Is_Operator_Symbol_Name (Chars (Designator))
368 or else Scop /= Scope (Etype (First_Formal (Designator))))
369 then
370 Error_Msg_N
371 ("?abstract subprogram is not dispatching or overriding", N);
372 end if;
374 Generate_Reference_To_Formals (Designator);
375 Check_Eliminated (Designator);
376 end Analyze_Abstract_Subprogram_Declaration;
378 ----------------------------------------
379 -- Analyze_Extended_Return_Statement --
380 ----------------------------------------
382 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
383 begin
384 Analyze_Return_Statement (N);
385 end Analyze_Extended_Return_Statement;
387 ----------------------------
388 -- Analyze_Function_Call --
389 ----------------------------
391 procedure Analyze_Function_Call (N : Node_Id) is
392 P : constant Node_Id := Name (N);
393 L : constant List_Id := Parameter_Associations (N);
394 Actual : Node_Id;
396 begin
397 Analyze (P);
399 -- A call of the form A.B (X) may be an Ada05 call, which is rewritten
400 -- as B (A, X). If the rewriting is successful, the call has been
401 -- analyzed and we just return.
403 if Nkind (P) = N_Selected_Component
404 and then Name (N) /= P
405 and then Is_Rewrite_Substitution (N)
406 and then Present (Etype (N))
407 then
408 return;
409 end if;
411 -- If error analyzing name, then set Any_Type as result type and return
413 if Etype (P) = Any_Type then
414 Set_Etype (N, Any_Type);
415 return;
416 end if;
418 -- Otherwise analyze the parameters
420 if Present (L) then
421 Actual := First (L);
422 while Present (Actual) loop
423 Analyze (Actual);
424 Check_Parameterless_Call (Actual);
425 Next (Actual);
426 end loop;
427 end if;
429 Analyze_Call (N);
430 end Analyze_Function_Call;
432 -----------------------------
433 -- Analyze_Function_Return --
434 -----------------------------
436 procedure Analyze_Function_Return (N : Node_Id) is
437 Loc : constant Source_Ptr := Sloc (N);
438 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
439 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
441 R_Type : constant Entity_Id := Etype (Scope_Id);
442 -- Function result subtype
444 procedure Check_Limited_Return (Expr : Node_Id);
445 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
446 -- limited types. Used only for simple return statements.
447 -- Expr is the expression returned.
449 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
450 -- Check that the return_subtype_indication properly matches the result
451 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
453 --------------------------
454 -- Check_Limited_Return --
455 --------------------------
457 procedure Check_Limited_Return (Expr : Node_Id) is
458 begin
459 -- Ada 2005 (AI-318-02): Return-by-reference types have been
460 -- removed and replaced by anonymous access results. This is an
461 -- incompatibility with Ada 95. Not clear whether this should be
462 -- enforced yet or perhaps controllable with special switch. ???
464 if Is_Limited_Type (R_Type)
465 and then Comes_From_Source (N)
466 and then not In_Instance_Body
467 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
468 then
469 -- Error in Ada 2005
471 if Ada_Version >= Ada_05
472 and then not Debug_Flag_Dot_L
473 and then not GNAT_Mode
474 then
475 Error_Msg_N
476 ("(Ada 2005) cannot copy object of a limited type " &
477 "(RM-2005 6.5(5.5/2))", Expr);
478 if Is_Inherently_Limited_Type (R_Type) then
479 Error_Msg_N
480 ("\return by reference not permitted in Ada 2005", Expr);
481 end if;
483 -- Warn in Ada 95 mode, to give folks a heads up about this
484 -- incompatibility.
486 -- In GNAT mode, this is just a warning, to allow it to be
487 -- evilly turned off. Otherwise it is a real error.
489 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
490 if Is_Inherently_Limited_Type (R_Type) then
491 Error_Msg_N
492 ("return by reference not permitted in Ada 2005 " &
493 "(RM-2005 6.5(5.5/2))?", Expr);
494 else
495 Error_Msg_N
496 ("cannot copy object of a limited type in Ada 2005 " &
497 "(RM-2005 6.5(5.5/2))?", Expr);
498 end if;
500 -- Ada 95 mode, compatibility warnings disabled
502 else
503 return; -- skip continuation messages below
504 end if;
506 Error_Msg_N
507 ("\consider switching to return of access type", Expr);
508 Explain_Limited_Type (R_Type, Expr);
509 end if;
510 end Check_Limited_Return;
512 -------------------------------------
513 -- Check_Return_Subtype_Indication --
514 -------------------------------------
516 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
517 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
518 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
519 -- Subtype given in the extended return statement;
520 -- this must match R_Type.
522 Subtype_Ind : constant Node_Id :=
523 Object_Definition (Original_Node (Obj_Decl));
525 R_Type_Is_Anon_Access :
526 constant Boolean :=
527 Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type
528 or else
529 Ekind (R_Type) = E_Anonymous_Access_Protected_Subprogram_Type
530 or else
531 Ekind (R_Type) = E_Anonymous_Access_Type;
532 -- True if return type of the function is an anonymous access type
533 -- Can't we make Is_Anonymous_Access_Type in einfo ???
535 R_Stm_Type_Is_Anon_Access :
536 constant Boolean :=
537 Ekind (R_Stm_Type) = E_Anonymous_Access_Subprogram_Type
538 or else
539 Ekind (R_Stm_Type) = E_Anonymous_Access_Protected_Subprogram_Type
540 or else
541 Ekind (R_Stm_Type) = E_Anonymous_Access_Type;
542 -- True if type of the return object is an anonymous access type
544 begin
545 -- First, avoid cascade errors:
547 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
548 return;
549 end if;
551 -- "return access T" case; check that the return statement also has
552 -- "access T", and that the subtypes statically match:
553 -- if this is an access to subprogram the signatures must match.
555 if R_Type_Is_Anon_Access then
556 if R_Stm_Type_Is_Anon_Access then
558 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
559 then
560 if Base_Type (Designated_Type (R_Stm_Type)) /=
561 Base_Type (Designated_Type (R_Type))
562 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
563 then
564 Error_Msg_N
565 ("subtype must statically match function result subtype",
566 Subtype_Mark (Subtype_Ind));
567 end if;
569 else
570 -- For two anonymous access to subprogram types, the
571 -- types themselves must be type conformant.
573 if not Conforming_Types
574 (R_Stm_Type, R_Type, Fully_Conformant)
575 then
576 Error_Msg_N
577 ("subtype must statically match function result subtype",
578 Subtype_Ind);
579 end if;
580 end if;
582 else
583 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
584 end if;
586 -- Subtype indication case: check that the return object's type is
587 -- covered by the result type, and that the subtypes statically match
588 -- when the result subtype is constrained. Also handle record types
589 -- with unknown discriminants for which we have built the underlying
590 -- record view. Coverage is needed to allow specific-type return
591 -- objects when the result type is class-wide (see AI05-32).
593 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
594 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
595 and then
596 Covers
597 (Base_Type (R_Type),
598 Underlying_Record_View (Base_Type (R_Stm_Type))))
599 then
600 -- A null exclusion may be present on the return type, on the
601 -- function specification, on the object declaration or on the
602 -- subtype itself.
604 if Is_Access_Type (R_Type)
605 and then
606 (Can_Never_Be_Null (R_Type)
607 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
608 Can_Never_Be_Null (R_Stm_Type)
609 then
610 Error_Msg_N
611 ("subtype must statically match function result subtype",
612 Subtype_Ind);
613 end if;
615 if Is_Constrained (R_Type) then
616 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
617 Error_Msg_N
618 ("subtype must statically match function result subtype",
619 Subtype_Ind);
620 end if;
621 end if;
623 elsif Etype (Base_Type (R_Type)) = R_Stm_Type
624 and then Is_Null_Extension (Base_Type (R_Type))
625 then
626 null;
628 else
629 Error_Msg_N
630 ("wrong type for return_subtype_indication", Subtype_Ind);
631 end if;
632 end Check_Return_Subtype_Indication;
634 ---------------------
635 -- Local Variables --
636 ---------------------
638 Expr : Node_Id;
640 -- Start of processing for Analyze_Function_Return
642 begin
643 Set_Return_Present (Scope_Id);
645 if Nkind (N) = N_Simple_Return_Statement then
646 Expr := Expression (N);
647 Analyze_And_Resolve (Expr, R_Type);
648 Check_Limited_Return (Expr);
650 else
651 -- Analyze parts specific to extended_return_statement:
653 declare
654 Obj_Decl : constant Node_Id :=
655 Last (Return_Object_Declarations (N));
657 HSS : constant Node_Id := Handled_Statement_Sequence (N);
659 begin
660 Expr := Expression (Obj_Decl);
662 -- Note: The check for OK_For_Limited_Init will happen in
663 -- Analyze_Object_Declaration; we treat it as a normal
664 -- object declaration.
666 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
667 Analyze (Obj_Decl);
669 Check_Return_Subtype_Indication (Obj_Decl);
671 if Present (HSS) then
672 Analyze (HSS);
674 if Present (Exception_Handlers (HSS)) then
676 -- ???Has_Nested_Block_With_Handler needs to be set.
677 -- Probably by creating an actual N_Block_Statement.
678 -- Probably in Expand.
680 null;
681 end if;
682 end if;
684 -- Mark the return object as referenced, since the return is an
685 -- implicit reference of the object.
687 Set_Referenced (Defining_Identifier (Obj_Decl));
689 Check_References (Stm_Entity);
690 end;
691 end if;
693 -- Case of Expr present
695 if Present (Expr)
697 -- Defend against previous errors
699 and then Nkind (Expr) /= N_Empty
700 and then Present (Etype (Expr))
701 then
702 -- Apply constraint check. Note that this is done before the implicit
703 -- conversion of the expression done for anonymous access types to
704 -- ensure correct generation of the null-excluding check associated
705 -- with null-excluding expressions found in return statements.
707 Apply_Constraint_Check (Expr, R_Type);
709 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
710 -- type, apply an implicit conversion of the expression to that type
711 -- to force appropriate static and run-time accessibility checks.
713 if Ada_Version >= Ada_05
714 and then Ekind (R_Type) = E_Anonymous_Access_Type
715 then
716 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
717 Analyze_And_Resolve (Expr, R_Type);
718 end if;
720 -- If the result type is class-wide, then check that the return
721 -- expression's type is not declared at a deeper level than the
722 -- function (RM05-6.5(5.6/2)).
724 if Ada_Version >= Ada_05
725 and then Is_Class_Wide_Type (R_Type)
726 then
727 if Type_Access_Level (Etype (Expr)) >
728 Subprogram_Access_Level (Scope_Id)
729 then
730 Error_Msg_N
731 ("level of return expression type is deeper than " &
732 "class-wide function!", Expr);
733 end if;
734 end if;
736 -- Check incorrect use of dynamically tagged expression
738 if Is_Tagged_Type (R_Type) then
739 Check_Dynamically_Tagged_Expression
740 (Expr => Expr,
741 Typ => R_Type,
742 Related_Nod => N);
743 end if;
745 -- ??? A real run-time accessibility check is needed in cases
746 -- involving dereferences of access parameters. For now we just
747 -- check the static cases.
749 if (Ada_Version < Ada_05 or else Debug_Flag_Dot_L)
750 and then Is_Inherently_Limited_Type (Etype (Scope_Id))
751 and then Object_Access_Level (Expr) >
752 Subprogram_Access_Level (Scope_Id)
753 then
754 Rewrite (N,
755 Make_Raise_Program_Error (Loc,
756 Reason => PE_Accessibility_Check_Failed));
757 Analyze (N);
759 Error_Msg_N
760 ("cannot return a local value by reference?", N);
761 Error_Msg_NE
762 ("\& will be raised at run time?",
763 N, Standard_Program_Error);
764 end if;
766 if Known_Null (Expr)
767 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
768 and then Null_Exclusion_Present (Parent (Scope_Id))
769 then
770 Apply_Compile_Time_Constraint_Error
771 (N => Expr,
772 Msg => "(Ada 2005) null not allowed for "
773 & "null-excluding return?",
774 Reason => CE_Null_Not_Allowed);
775 end if;
776 end if;
777 end Analyze_Function_Return;
779 -------------------------------------
780 -- Analyze_Generic_Subprogram_Body --
781 -------------------------------------
783 procedure Analyze_Generic_Subprogram_Body
784 (N : Node_Id;
785 Gen_Id : Entity_Id)
787 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
788 Kind : constant Entity_Kind := Ekind (Gen_Id);
789 Body_Id : Entity_Id;
790 New_N : Node_Id;
791 Spec : Node_Id;
793 begin
794 -- Copy body and disable expansion while analyzing the generic For a
795 -- stub, do not copy the stub (which would load the proper body), this
796 -- will be done when the proper body is analyzed.
798 if Nkind (N) /= N_Subprogram_Body_Stub then
799 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
800 Rewrite (N, New_N);
801 Start_Generic;
802 end if;
804 Spec := Specification (N);
806 -- Within the body of the generic, the subprogram is callable, and
807 -- behaves like the corresponding non-generic unit.
809 Body_Id := Defining_Entity (Spec);
811 if Kind = E_Generic_Procedure
812 and then Nkind (Spec) /= N_Procedure_Specification
813 then
814 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
815 return;
817 elsif Kind = E_Generic_Function
818 and then Nkind (Spec) /= N_Function_Specification
819 then
820 Error_Msg_N ("invalid body for generic function ", Body_Id);
821 return;
822 end if;
824 Set_Corresponding_Body (Gen_Decl, Body_Id);
826 if Has_Completion (Gen_Id)
827 and then Nkind (Parent (N)) /= N_Subunit
828 then
829 Error_Msg_N ("duplicate generic body", N);
830 return;
831 else
832 Set_Has_Completion (Gen_Id);
833 end if;
835 if Nkind (N) = N_Subprogram_Body_Stub then
836 Set_Ekind (Defining_Entity (Specification (N)), Kind);
837 else
838 Set_Corresponding_Spec (N, Gen_Id);
839 end if;
841 if Nkind (Parent (N)) = N_Compilation_Unit then
842 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
843 end if;
845 -- Make generic parameters immediately visible in the body. They are
846 -- needed to process the formals declarations. Then make the formals
847 -- visible in a separate step.
849 Push_Scope (Gen_Id);
851 declare
852 E : Entity_Id;
853 First_Ent : Entity_Id;
855 begin
856 First_Ent := First_Entity (Gen_Id);
858 E := First_Ent;
859 while Present (E) and then not Is_Formal (E) loop
860 Install_Entity (E);
861 Next_Entity (E);
862 end loop;
864 Set_Use (Generic_Formal_Declarations (Gen_Decl));
866 -- Now generic formals are visible, and the specification can be
867 -- analyzed, for subsequent conformance check.
869 Body_Id := Analyze_Subprogram_Specification (Spec);
871 -- Make formal parameters visible
873 if Present (E) then
875 -- E is the first formal parameter, we loop through the formals
876 -- installing them so that they will be visible.
878 Set_First_Entity (Gen_Id, E);
879 while Present (E) loop
880 Install_Entity (E);
881 Next_Formal (E);
882 end loop;
883 end if;
885 -- Visible generic entity is callable within its own body
887 Set_Ekind (Gen_Id, Ekind (Body_Id));
888 Set_Ekind (Body_Id, E_Subprogram_Body);
889 Set_Convention (Body_Id, Convention (Gen_Id));
890 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
891 Set_Scope (Body_Id, Scope (Gen_Id));
892 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
894 if Nkind (N) = N_Subprogram_Body_Stub then
896 -- No body to analyze, so restore state of generic unit
898 Set_Ekind (Gen_Id, Kind);
899 Set_Ekind (Body_Id, Kind);
901 if Present (First_Ent) then
902 Set_First_Entity (Gen_Id, First_Ent);
903 end if;
905 End_Scope;
906 return;
907 end if;
909 -- If this is a compilation unit, it must be made visible explicitly,
910 -- because the compilation of the declaration, unlike other library
911 -- unit declarations, does not. If it is not a unit, the following
912 -- is redundant but harmless.
914 Set_Is_Immediately_Visible (Gen_Id);
915 Reference_Body_Formals (Gen_Id, Body_Id);
917 if Is_Child_Unit (Gen_Id) then
918 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
919 end if;
921 Set_Actual_Subtypes (N, Current_Scope);
922 Process_PPCs (N, Gen_Id, Body_Id);
924 -- If the generic unit carries pre- or post-conditions, copy them
925 -- to the original generic tree, so that they are properly added
926 -- to any instantiation.
928 declare
929 Orig : constant Node_Id := Original_Node (N);
930 Cond : Node_Id;
932 begin
933 Cond := First (Declarations (N));
934 while Present (Cond) loop
935 if Nkind (Cond) = N_Pragma
936 and then Pragma_Name (Cond) = Name_Check
937 then
938 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
940 elsif Nkind (Cond) = N_Pragma
941 and then Pragma_Name (Cond) = Name_Postcondition
942 then
943 Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
944 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
945 else
946 exit;
947 end if;
949 Next (Cond);
950 end loop;
951 end;
953 Analyze_Declarations (Declarations (N));
954 Check_Completion;
955 Analyze (Handled_Statement_Sequence (N));
957 Save_Global_References (Original_Node (N));
959 -- Prior to exiting the scope, include generic formals again (if any
960 -- are present) in the set of local entities.
962 if Present (First_Ent) then
963 Set_First_Entity (Gen_Id, First_Ent);
964 end if;
966 Check_References (Gen_Id);
967 end;
969 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
970 End_Scope;
971 Check_Subprogram_Order (N);
973 -- Outside of its body, unit is generic again
975 Set_Ekind (Gen_Id, Kind);
976 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
978 if Style_Check then
979 Style.Check_Identifier (Body_Id, Gen_Id);
980 end if;
981 End_Generic;
982 end Analyze_Generic_Subprogram_Body;
984 -----------------------------
985 -- Analyze_Operator_Symbol --
986 -----------------------------
988 -- An operator symbol such as "+" or "and" may appear in context where the
989 -- literal denotes an entity name, such as "+"(x, y) or in context when it
990 -- is just a string, as in (conjunction = "or"). In these cases the parser
991 -- generates this node, and the semantics does the disambiguation. Other
992 -- such case are actuals in an instantiation, the generic unit in an
993 -- instantiation, and pragma arguments.
995 procedure Analyze_Operator_Symbol (N : Node_Id) is
996 Par : constant Node_Id := Parent (N);
998 begin
999 if (Nkind (Par) = N_Function_Call
1000 and then N = Name (Par))
1001 or else Nkind (Par) = N_Function_Instantiation
1002 or else (Nkind (Par) = N_Indexed_Component
1003 and then N = Prefix (Par))
1004 or else (Nkind (Par) = N_Pragma_Argument_Association
1005 and then not Is_Pragma_String_Literal (Par))
1006 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1007 or else (Nkind (Par) = N_Attribute_Reference
1008 and then Attribute_Name (Par) /= Name_Value)
1009 then
1010 Find_Direct_Name (N);
1012 else
1013 Change_Operator_Symbol_To_String_Literal (N);
1014 Analyze (N);
1015 end if;
1016 end Analyze_Operator_Symbol;
1018 -----------------------------------
1019 -- Analyze_Parameter_Association --
1020 -----------------------------------
1022 procedure Analyze_Parameter_Association (N : Node_Id) is
1023 begin
1024 Analyze (Explicit_Actual_Parameter (N));
1025 end Analyze_Parameter_Association;
1027 ----------------------------
1028 -- Analyze_Procedure_Call --
1029 ----------------------------
1031 procedure Analyze_Procedure_Call (N : Node_Id) is
1032 Loc : constant Source_Ptr := Sloc (N);
1033 P : constant Node_Id := Name (N);
1034 Actuals : constant List_Id := Parameter_Associations (N);
1035 Actual : Node_Id;
1036 New_N : Node_Id;
1038 procedure Analyze_Call_And_Resolve;
1039 -- Do Analyze and Resolve calls for procedure call
1041 ------------------------------
1042 -- Analyze_Call_And_Resolve --
1043 ------------------------------
1045 procedure Analyze_Call_And_Resolve is
1046 begin
1047 if Nkind (N) = N_Procedure_Call_Statement then
1048 Analyze_Call (N);
1049 Resolve (N, Standard_Void_Type);
1050 else
1051 Analyze (N);
1052 end if;
1053 end Analyze_Call_And_Resolve;
1055 -- Start of processing for Analyze_Procedure_Call
1057 begin
1058 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1059 -- a procedure call or an entry call. The prefix may denote an access
1060 -- to subprogram type, in which case an implicit dereference applies.
1061 -- If the prefix is an indexed component (without implicit dereference)
1062 -- then the construct denotes a call to a member of an entire family.
1063 -- If the prefix is a simple name, it may still denote a call to a
1064 -- parameterless member of an entry family. Resolution of these various
1065 -- interpretations is delicate.
1067 Analyze (P);
1069 -- If this is a call of the form Obj.Op, the call may have been
1070 -- analyzed and possibly rewritten into a block, in which case
1071 -- we are done.
1073 if Analyzed (N) then
1074 return;
1075 end if;
1077 -- If error analyzing prefix, then set Any_Type as result and return
1079 if Etype (P) = Any_Type then
1080 Set_Etype (N, Any_Type);
1081 return;
1082 end if;
1084 -- Otherwise analyze the parameters
1086 if Present (Actuals) then
1087 Actual := First (Actuals);
1089 while Present (Actual) loop
1090 Analyze (Actual);
1091 Check_Parameterless_Call (Actual);
1092 Next (Actual);
1093 end loop;
1094 end if;
1096 -- Special processing for Elab_Spec and Elab_Body calls
1098 if Nkind (P) = N_Attribute_Reference
1099 and then (Attribute_Name (P) = Name_Elab_Spec
1100 or else Attribute_Name (P) = Name_Elab_Body)
1101 then
1102 if Present (Actuals) then
1103 Error_Msg_N
1104 ("no parameters allowed for this call", First (Actuals));
1105 return;
1106 end if;
1108 Set_Etype (N, Standard_Void_Type);
1109 Set_Analyzed (N);
1111 elsif Is_Entity_Name (P)
1112 and then Is_Record_Type (Etype (Entity (P)))
1113 and then Remote_AST_I_Dereference (P)
1114 then
1115 return;
1117 elsif Is_Entity_Name (P)
1118 and then Ekind (Entity (P)) /= E_Entry_Family
1119 then
1120 if Is_Access_Type (Etype (P))
1121 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1122 and then No (Actuals)
1123 and then Comes_From_Source (N)
1124 then
1125 Error_Msg_N ("missing explicit dereference in call", N);
1126 end if;
1128 Analyze_Call_And_Resolve;
1130 -- If the prefix is the simple name of an entry family, this is
1131 -- a parameterless call from within the task body itself.
1133 elsif Is_Entity_Name (P)
1134 and then Nkind (P) = N_Identifier
1135 and then Ekind (Entity (P)) = E_Entry_Family
1136 and then Present (Actuals)
1137 and then No (Next (First (Actuals)))
1138 then
1139 -- Can be call to parameterless entry family. What appears to be the
1140 -- sole argument is in fact the entry index. Rewrite prefix of node
1141 -- accordingly. Source representation is unchanged by this
1142 -- transformation.
1144 New_N :=
1145 Make_Indexed_Component (Loc,
1146 Prefix =>
1147 Make_Selected_Component (Loc,
1148 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1149 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1150 Expressions => Actuals);
1151 Set_Name (N, New_N);
1152 Set_Etype (New_N, Standard_Void_Type);
1153 Set_Parameter_Associations (N, No_List);
1154 Analyze_Call_And_Resolve;
1156 elsif Nkind (P) = N_Explicit_Dereference then
1157 if Ekind (Etype (P)) = E_Subprogram_Type then
1158 Analyze_Call_And_Resolve;
1159 else
1160 Error_Msg_N ("expect access to procedure in call", P);
1161 end if;
1163 -- The name can be a selected component or an indexed component that
1164 -- yields an access to subprogram. Such a prefix is legal if the call
1165 -- has parameter associations.
1167 elsif Is_Access_Type (Etype (P))
1168 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1169 then
1170 if Present (Actuals) then
1171 Analyze_Call_And_Resolve;
1172 else
1173 Error_Msg_N ("missing explicit dereference in call ", N);
1174 end if;
1176 -- If not an access to subprogram, then the prefix must resolve to the
1177 -- name of an entry, entry family, or protected operation.
1179 -- For the case of a simple entry call, P is a selected component where
1180 -- the prefix is the task and the selector name is the entry. A call to
1181 -- a protected procedure will have the same syntax. If the protected
1182 -- object contains overloaded operations, the entity may appear as a
1183 -- function, the context will select the operation whose type is Void.
1185 elsif Nkind (P) = N_Selected_Component
1186 and then (Ekind (Entity (Selector_Name (P))) = E_Entry
1187 or else
1188 Ekind (Entity (Selector_Name (P))) = E_Procedure
1189 or else
1190 Ekind (Entity (Selector_Name (P))) = E_Function)
1191 then
1192 Analyze_Call_And_Resolve;
1194 elsif Nkind (P) = N_Selected_Component
1195 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1196 and then Present (Actuals)
1197 and then No (Next (First (Actuals)))
1198 then
1199 -- Can be call to parameterless entry family. What appears to be the
1200 -- sole argument is in fact the entry index. Rewrite prefix of node
1201 -- accordingly. Source representation is unchanged by this
1202 -- transformation.
1204 New_N :=
1205 Make_Indexed_Component (Loc,
1206 Prefix => New_Copy (P),
1207 Expressions => Actuals);
1208 Set_Name (N, New_N);
1209 Set_Etype (New_N, Standard_Void_Type);
1210 Set_Parameter_Associations (N, No_List);
1211 Analyze_Call_And_Resolve;
1213 -- For the case of a reference to an element of an entry family, P is
1214 -- an indexed component whose prefix is a selected component (task and
1215 -- entry family), and whose index is the entry family index.
1217 elsif Nkind (P) = N_Indexed_Component
1218 and then Nkind (Prefix (P)) = N_Selected_Component
1219 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1220 then
1221 Analyze_Call_And_Resolve;
1223 -- If the prefix is the name of an entry family, it is a call from
1224 -- within the task body itself.
1226 elsif Nkind (P) = N_Indexed_Component
1227 and then Nkind (Prefix (P)) = N_Identifier
1228 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1229 then
1230 New_N :=
1231 Make_Selected_Component (Loc,
1232 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1233 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1234 Rewrite (Prefix (P), New_N);
1235 Analyze (P);
1236 Analyze_Call_And_Resolve;
1238 -- Anything else is an error
1240 else
1241 Error_Msg_N ("invalid procedure or entry call", N);
1242 end if;
1243 end Analyze_Procedure_Call;
1245 -------------------------------------
1246 -- Analyze_Simple_Return_Statement --
1247 -------------------------------------
1249 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1250 begin
1251 if Present (Expression (N)) then
1252 Mark_Coextensions (N, Expression (N));
1253 end if;
1255 Analyze_Return_Statement (N);
1256 end Analyze_Simple_Return_Statement;
1258 -------------------------
1259 -- Analyze_Return_Type --
1260 -------------------------
1262 procedure Analyze_Return_Type (N : Node_Id) is
1263 Designator : constant Entity_Id := Defining_Entity (N);
1264 Typ : Entity_Id := Empty;
1266 begin
1267 -- Normal case where result definition does not indicate an error
1269 if Result_Definition (N) /= Error then
1270 if Nkind (Result_Definition (N)) = N_Access_Definition then
1272 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1274 declare
1275 AD : constant Node_Id :=
1276 Access_To_Subprogram_Definition (Result_Definition (N));
1277 begin
1278 if Present (AD) and then Protected_Present (AD) then
1279 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1280 else
1281 Typ := Access_Definition (N, Result_Definition (N));
1282 end if;
1283 end;
1285 Set_Parent (Typ, Result_Definition (N));
1286 Set_Is_Local_Anonymous_Access (Typ);
1287 Set_Etype (Designator, Typ);
1289 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1291 Null_Exclusion_Static_Checks (N);
1293 -- Subtype_Mark case
1295 else
1296 Find_Type (Result_Definition (N));
1297 Typ := Entity (Result_Definition (N));
1298 Set_Etype (Designator, Typ);
1300 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1302 Null_Exclusion_Static_Checks (N);
1304 -- If a null exclusion is imposed on the result type, then create
1305 -- a null-excluding itype (an access subtype) and use it as the
1306 -- function's Etype. Note that the null exclusion checks are done
1307 -- right before this, because they don't get applied to types that
1308 -- do not come from source.
1310 if Is_Access_Type (Typ)
1311 and then Null_Exclusion_Present (N)
1312 then
1313 Set_Etype (Designator,
1314 Create_Null_Excluding_Itype
1315 (T => Typ,
1316 Related_Nod => N,
1317 Scope_Id => Scope (Current_Scope)));
1319 -- The new subtype must be elaborated before use because
1320 -- it is visible outside of the function. However its base
1321 -- type may not be frozen yet, so the reference that will
1322 -- force elaboration must be attached to the freezing of
1323 -- the base type.
1325 -- If the return specification appears on a proper body,
1326 -- the subtype will have been created already on the spec.
1328 if Is_Frozen (Typ) then
1329 if Nkind (Parent (N)) = N_Subprogram_Body
1330 and then Nkind (Parent (Parent (N))) = N_Subunit
1331 then
1332 null;
1333 else
1334 Build_Itype_Reference (Etype (Designator), Parent (N));
1335 end if;
1337 else
1338 Ensure_Freeze_Node (Typ);
1340 declare
1341 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
1342 begin
1343 Set_Itype (IR, Etype (Designator));
1344 Append_Freeze_Actions (Typ, New_List (IR));
1345 end;
1346 end if;
1348 else
1349 Set_Etype (Designator, Typ);
1350 end if;
1352 if Ekind (Typ) = E_Incomplete_Type
1353 and then Is_Value_Type (Typ)
1354 then
1355 null;
1357 elsif Ekind (Typ) = E_Incomplete_Type
1358 or else (Is_Class_Wide_Type (Typ)
1359 and then
1360 Ekind (Root_Type (Typ)) = E_Incomplete_Type)
1361 then
1362 Error_Msg_NE
1363 ("invalid use of incomplete type&", Designator, Typ);
1364 end if;
1365 end if;
1367 -- Case where result definition does indicate an error
1369 else
1370 Set_Etype (Designator, Any_Type);
1371 end if;
1372 end Analyze_Return_Type;
1374 -----------------------------
1375 -- Analyze_Subprogram_Body --
1376 -----------------------------
1378 procedure Analyze_Subprogram_Body (N : Node_Id) is
1379 Loc : constant Source_Ptr := Sloc (N);
1380 Body_Spec : constant Node_Id := Specification (N);
1381 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
1383 begin
1384 if Debug_Flag_C then
1385 Write_Str ("==> subprogram body ");
1386 Write_Name (Chars (Body_Id));
1387 Write_Str (" from ");
1388 Write_Location (Loc);
1389 Write_Eol;
1390 Indent;
1391 end if;
1393 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
1395 -- The real work is split out into the helper, so it can do "return;"
1396 -- without skipping the debug output:
1398 Analyze_Subprogram_Body_Helper (N);
1400 if Debug_Flag_C then
1401 Outdent;
1402 Write_Str ("<== subprogram body ");
1403 Write_Name (Chars (Body_Id));
1404 Write_Str (" from ");
1405 Write_Location (Loc);
1406 Write_Eol;
1407 end if;
1408 end Analyze_Subprogram_Body;
1410 ------------------------------------
1411 -- Analyze_Subprogram_Body_Helper --
1412 ------------------------------------
1414 -- This procedure is called for regular subprogram bodies, generic bodies,
1415 -- and for subprogram stubs of both kinds. In the case of stubs, only the
1416 -- specification matters, and is used to create a proper declaration for
1417 -- the subprogram, or to perform conformance checks.
1419 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
1420 Loc : constant Source_Ptr := Sloc (N);
1421 Body_Deleted : constant Boolean := False;
1422 Body_Spec : constant Node_Id := Specification (N);
1423 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
1424 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
1425 Conformant : Boolean;
1426 HSS : Node_Id;
1427 Missing_Ret : Boolean;
1428 P_Ent : Entity_Id;
1429 Prot_Typ : Entity_Id := Empty;
1430 Spec_Id : Entity_Id;
1431 Spec_Decl : Node_Id := Empty;
1433 Last_Real_Spec_Entity : Entity_Id := Empty;
1434 -- When we analyze a separate spec, the entity chain ends up containing
1435 -- the formals, as well as any itypes generated during analysis of the
1436 -- default expressions for parameters, or the arguments of associated
1437 -- precondition/postcondition pragmas (which are analyzed in the context
1438 -- of the spec since they have visibility on formals).
1440 -- These entities belong with the spec and not the body. However we do
1441 -- the analysis of the body in the context of the spec (again to obtain
1442 -- visibility to the formals), and all the entities generated during
1443 -- this analysis end up also chained to the entity chain of the spec.
1444 -- But they really belong to the body, and there is circuitry to move
1445 -- them from the spec to the body.
1447 -- However, when we do this move, we don't want to move the real spec
1448 -- entities (first para above) to the body. The Last_Real_Spec_Entity
1449 -- variable points to the last real spec entity, so we only move those
1450 -- chained beyond that point. It is initialized to Empty to deal with
1451 -- the case where there is no separate spec.
1453 procedure Check_Anonymous_Return;
1454 -- Ada 2005: if a function returns an access type that denotes a task,
1455 -- or a type that contains tasks, we must create a master entity for
1456 -- the anonymous type, which typically will be used in an allocator
1457 -- in the body of the function.
1459 procedure Check_Inline_Pragma (Spec : in out Node_Id);
1460 -- Look ahead to recognize a pragma that may appear after the body.
1461 -- If there is a previous spec, check that it appears in the same
1462 -- declarative part. If the pragma is Inline_Always, perform inlining
1463 -- unconditionally, otherwise only if Front_End_Inlining is requested.
1464 -- If the body acts as a spec, and inlining is required, we create a
1465 -- subprogram declaration for it, in order to attach the body to inline.
1466 -- If pragma does not appear after the body, check whether there is
1467 -- an inline pragma before any local declarations.
1469 function Disambiguate_Spec return Entity_Id;
1470 -- When a primitive is declared between the private view and the full
1471 -- view of a concurrent type which implements an interface, a special
1472 -- mechanism is used to find the corresponding spec of the primitive
1473 -- body.
1475 function Is_Private_Concurrent_Primitive
1476 (Subp_Id : Entity_Id) return Boolean;
1477 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
1478 -- type that implements an interface and has a private view.
1480 procedure Set_Trivial_Subprogram (N : Node_Id);
1481 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
1482 -- subprogram whose body is being analyzed. N is the statement node
1483 -- causing the flag to be set, if the following statement is a return
1484 -- of an entity, we mark the entity as set in source to suppress any
1485 -- warning on the stylized use of function stubs with a dummy return.
1487 procedure Verify_Overriding_Indicator;
1488 -- If there was a previous spec, the entity has been entered in the
1489 -- current scope previously. If the body itself carries an overriding
1490 -- indicator, check that it is consistent with the known status of the
1491 -- entity.
1493 ----------------------------
1494 -- Check_Anonymous_Return --
1495 ----------------------------
1497 procedure Check_Anonymous_Return is
1498 Decl : Node_Id;
1499 Par : Node_Id;
1500 Scop : Entity_Id;
1502 begin
1503 if Present (Spec_Id) then
1504 Scop := Spec_Id;
1505 else
1506 Scop := Body_Id;
1507 end if;
1509 if Ekind (Scop) = E_Function
1510 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
1511 and then not Is_Thunk (Scop)
1512 and then (Has_Task (Designated_Type (Etype (Scop)))
1513 or else
1514 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
1515 and then
1516 Is_Limited_Record (Designated_Type (Etype (Scop)))))
1517 and then Expander_Active
1519 -- Avoid cases with no tasking support
1521 and then RTE_Available (RE_Current_Master)
1522 and then not Restriction_Active (No_Task_Hierarchy)
1523 then
1524 Decl :=
1525 Make_Object_Declaration (Loc,
1526 Defining_Identifier =>
1527 Make_Defining_Identifier (Loc, Name_uMaster),
1528 Constant_Present => True,
1529 Object_Definition =>
1530 New_Reference_To (RTE (RE_Master_Id), Loc),
1531 Expression =>
1532 Make_Explicit_Dereference (Loc,
1533 New_Reference_To (RTE (RE_Current_Master), Loc)));
1535 if Present (Declarations (N)) then
1536 Prepend (Decl, Declarations (N));
1537 else
1538 Set_Declarations (N, New_List (Decl));
1539 end if;
1541 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
1542 Set_Has_Master_Entity (Scop);
1544 -- Now mark the containing scope as a task master
1546 Par := N;
1547 while Nkind (Par) /= N_Compilation_Unit loop
1548 Par := Parent (Par);
1549 pragma Assert (Present (Par));
1551 -- If we fall off the top, we are at the outer level, and
1552 -- the environment task is our effective master, so nothing
1553 -- to mark.
1555 if Nkind_In
1556 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
1557 then
1558 Set_Is_Task_Master (Par, True);
1559 exit;
1560 end if;
1561 end loop;
1562 end if;
1563 end Check_Anonymous_Return;
1565 -------------------------
1566 -- Check_Inline_Pragma --
1567 -------------------------
1569 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
1570 Prag : Node_Id;
1571 Plist : List_Id;
1573 function Is_Inline_Pragma (N : Node_Id) return Boolean;
1574 -- True when N is a pragma Inline or Inline_Always that applies
1575 -- to this subprogram.
1577 -----------------------
1578 -- Is_Inline_Pragma --
1579 -----------------------
1581 function Is_Inline_Pragma (N : Node_Id) return Boolean is
1582 begin
1583 return
1584 Nkind (N) = N_Pragma
1585 and then
1586 (Pragma_Name (N) = Name_Inline_Always
1587 or else
1588 (Front_End_Inlining
1589 and then Pragma_Name (N) = Name_Inline))
1590 and then
1591 Chars
1592 (Expression (First (Pragma_Argument_Associations (N))))
1593 = Chars (Body_Id);
1594 end Is_Inline_Pragma;
1596 -- Start of processing for Check_Inline_Pragma
1598 begin
1599 if not Expander_Active then
1600 return;
1601 end if;
1603 if Is_List_Member (N)
1604 and then Present (Next (N))
1605 and then Is_Inline_Pragma (Next (N))
1606 then
1607 Prag := Next (N);
1609 elsif Nkind (N) /= N_Subprogram_Body_Stub
1610 and then Present (Declarations (N))
1611 and then Is_Inline_Pragma (First (Declarations (N)))
1612 then
1613 Prag := First (Declarations (N));
1615 else
1616 Prag := Empty;
1617 end if;
1619 if Present (Prag) then
1620 if Present (Spec_Id) then
1621 if List_Containing (N) =
1622 List_Containing (Unit_Declaration_Node (Spec_Id))
1623 then
1624 Analyze (Prag);
1625 end if;
1627 else
1628 -- Create a subprogram declaration, to make treatment uniform
1630 declare
1631 Subp : constant Entity_Id :=
1632 Make_Defining_Identifier (Loc, Chars (Body_Id));
1633 Decl : constant Node_Id :=
1634 Make_Subprogram_Declaration (Loc,
1635 Specification => New_Copy_Tree (Specification (N)));
1636 begin
1637 Set_Defining_Unit_Name (Specification (Decl), Subp);
1639 if Present (First_Formal (Body_Id)) then
1640 Plist := Copy_Parameter_List (Body_Id);
1641 Set_Parameter_Specifications
1642 (Specification (Decl), Plist);
1643 end if;
1645 Insert_Before (N, Decl);
1646 Analyze (Decl);
1647 Analyze (Prag);
1648 Set_Has_Pragma_Inline (Subp);
1650 if Pragma_Name (Prag) = Name_Inline_Always then
1651 Set_Is_Inlined (Subp);
1652 Set_Has_Pragma_Inline_Always (Subp);
1653 end if;
1655 Spec := Subp;
1656 end;
1657 end if;
1658 end if;
1659 end Check_Inline_Pragma;
1661 -----------------------
1662 -- Disambiguate_Spec --
1663 -----------------------
1665 function Disambiguate_Spec return Entity_Id is
1666 Priv_Spec : Entity_Id;
1667 Spec_N : Entity_Id;
1669 procedure Replace_Types (To_Corresponding : Boolean);
1670 -- Depending on the flag, replace the type of formal parameters of
1671 -- Body_Id if it is a concurrent type implementing interfaces with
1672 -- the corresponding record type or the other way around.
1674 procedure Replace_Types (To_Corresponding : Boolean) is
1675 Formal : Entity_Id;
1676 Formal_Typ : Entity_Id;
1678 begin
1679 Formal := First_Formal (Body_Id);
1680 while Present (Formal) loop
1681 Formal_Typ := Etype (Formal);
1683 -- From concurrent type to corresponding record
1685 if To_Corresponding then
1686 if Is_Concurrent_Type (Formal_Typ)
1687 and then Present (Corresponding_Record_Type (Formal_Typ))
1688 and then Present (Interfaces (
1689 Corresponding_Record_Type (Formal_Typ)))
1690 then
1691 Set_Etype (Formal,
1692 Corresponding_Record_Type (Formal_Typ));
1693 end if;
1695 -- From corresponding record to concurrent type
1697 else
1698 if Is_Concurrent_Record_Type (Formal_Typ)
1699 and then Present (Interfaces (Formal_Typ))
1700 then
1701 Set_Etype (Formal,
1702 Corresponding_Concurrent_Type (Formal_Typ));
1703 end if;
1704 end if;
1706 Next_Formal (Formal);
1707 end loop;
1708 end Replace_Types;
1710 -- Start of processing for Disambiguate_Spec
1712 begin
1713 -- Try to retrieve the specification of the body as is. All error
1714 -- messages are suppressed because the body may not have a spec in
1715 -- its current state.
1717 Spec_N := Find_Corresponding_Spec (N, False);
1719 -- It is possible that this is the body of a primitive declared
1720 -- between a private and a full view of a concurrent type. The
1721 -- controlling parameter of the spec carries the concurrent type,
1722 -- not the corresponding record type as transformed by Analyze_
1723 -- Subprogram_Specification. In such cases, we undo the change
1724 -- made by the analysis of the specification and try to find the
1725 -- spec again.
1727 -- Note that wrappers already have their corresponding specs and
1728 -- bodies set during their creation, so if the candidate spec is
1729 -- a wrapper, then we definitely need to swap all types to their
1730 -- original concurrent status.
1732 if No (Spec_N)
1733 or else Is_Primitive_Wrapper (Spec_N)
1734 then
1735 -- Restore all references of corresponding record types to the
1736 -- original concurrent types.
1738 Replace_Types (To_Corresponding => False);
1739 Priv_Spec := Find_Corresponding_Spec (N, False);
1741 -- The current body truly belongs to a primitive declared between
1742 -- a private and a full view. We leave the modified body as is,
1743 -- and return the true spec.
1745 if Present (Priv_Spec)
1746 and then Is_Private_Primitive (Priv_Spec)
1747 then
1748 return Priv_Spec;
1749 end if;
1751 -- In case that this is some sort of error, restore the original
1752 -- state of the body.
1754 Replace_Types (To_Corresponding => True);
1755 end if;
1757 return Spec_N;
1758 end Disambiguate_Spec;
1760 -------------------------------------
1761 -- Is_Private_Concurrent_Primitive --
1762 -------------------------------------
1764 function Is_Private_Concurrent_Primitive
1765 (Subp_Id : Entity_Id) return Boolean
1767 Formal_Typ : Entity_Id;
1769 begin
1770 if Present (First_Formal (Subp_Id)) then
1771 Formal_Typ := Etype (First_Formal (Subp_Id));
1773 if Is_Concurrent_Record_Type (Formal_Typ) then
1774 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
1775 end if;
1777 -- The type of the first formal is a concurrent tagged type with
1778 -- a private view.
1780 return
1781 Is_Concurrent_Type (Formal_Typ)
1782 and then Is_Tagged_Type (Formal_Typ)
1783 and then Has_Private_Declaration (Formal_Typ);
1784 end if;
1786 return False;
1787 end Is_Private_Concurrent_Primitive;
1789 ----------------------------
1790 -- Set_Trivial_Subprogram --
1791 ----------------------------
1793 procedure Set_Trivial_Subprogram (N : Node_Id) is
1794 Nxt : constant Node_Id := Next (N);
1796 begin
1797 Set_Is_Trivial_Subprogram (Body_Id);
1799 if Present (Spec_Id) then
1800 Set_Is_Trivial_Subprogram (Spec_Id);
1801 end if;
1803 if Present (Nxt)
1804 and then Nkind (Nxt) = N_Simple_Return_Statement
1805 and then No (Next (Nxt))
1806 and then Present (Expression (Nxt))
1807 and then Is_Entity_Name (Expression (Nxt))
1808 then
1809 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
1810 end if;
1811 end Set_Trivial_Subprogram;
1813 ---------------------------------
1814 -- Verify_Overriding_Indicator --
1815 ---------------------------------
1817 procedure Verify_Overriding_Indicator is
1818 begin
1819 if Must_Override (Body_Spec) then
1820 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
1821 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
1822 then
1823 null;
1825 elsif not Is_Overriding_Operation (Spec_Id) then
1826 Error_Msg_NE
1827 ("subprogram& is not overriding", Body_Spec, Spec_Id);
1828 end if;
1830 elsif Must_Not_Override (Body_Spec) then
1831 if Is_Overriding_Operation (Spec_Id) then
1832 Error_Msg_NE
1833 ("subprogram& overrides inherited operation",
1834 Body_Spec, Spec_Id);
1836 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
1837 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
1838 then
1839 Error_Msg_NE
1840 ("subprogram & overrides predefined operator ",
1841 Body_Spec, Spec_Id);
1843 -- If this is not a primitive operation or protected subprogram,
1844 -- then the overriding indicator is altogether illegal.
1846 elsif not Is_Primitive (Spec_Id)
1847 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
1848 then
1849 Error_Msg_N ("overriding indicator only allowed " &
1850 "if subprogram is primitive",
1851 Body_Spec);
1852 end if;
1854 elsif Style_Check -- ??? incorrect use of Style_Check!
1855 and then Is_Overriding_Operation (Spec_Id)
1856 then
1857 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
1858 Style.Missing_Overriding (N, Body_Id);
1859 end if;
1860 end Verify_Overriding_Indicator;
1862 -- Start of processing for Analyze_Subprogram_Body_Helper
1864 begin
1865 -- Generic subprograms are handled separately. They always have a
1866 -- generic specification. Determine whether current scope has a
1867 -- previous declaration.
1869 -- If the subprogram body is defined within an instance of the same
1870 -- name, the instance appears as a package renaming, and will be hidden
1871 -- within the subprogram.
1873 if Present (Prev_Id)
1874 and then not Is_Overloadable (Prev_Id)
1875 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
1876 or else Comes_From_Source (Prev_Id))
1877 then
1878 if Is_Generic_Subprogram (Prev_Id) then
1879 Spec_Id := Prev_Id;
1880 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
1881 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
1883 Analyze_Generic_Subprogram_Body (N, Spec_Id);
1884 return;
1886 else
1887 -- Previous entity conflicts with subprogram name. Attempting to
1888 -- enter name will post error.
1890 Enter_Name (Body_Id);
1891 return;
1892 end if;
1894 -- Non-generic case, find the subprogram declaration, if one was seen,
1895 -- or enter new overloaded entity in the current scope. If the
1896 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
1897 -- part of the context of one of its subunits. No need to redo the
1898 -- analysis.
1900 elsif Prev_Id = Body_Id
1901 and then Has_Completion (Body_Id)
1902 then
1903 return;
1905 else
1906 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
1908 if Nkind (N) = N_Subprogram_Body_Stub
1909 or else No (Corresponding_Spec (N))
1910 then
1911 if Is_Private_Concurrent_Primitive (Body_Id) then
1912 Spec_Id := Disambiguate_Spec;
1913 else
1914 Spec_Id := Find_Corresponding_Spec (N);
1915 end if;
1917 -- If this is a duplicate body, no point in analyzing it
1919 if Error_Posted (N) then
1920 return;
1921 end if;
1923 -- A subprogram body should cause freezing of its own declaration,
1924 -- but if there was no previous explicit declaration, then the
1925 -- subprogram will get frozen too late (there may be code within
1926 -- the body that depends on the subprogram having been frozen,
1927 -- such as uses of extra formals), so we force it to be frozen
1928 -- here. Same holds if the body and spec are compilation units.
1929 -- Finally, if the return type is an anonymous access to protected
1930 -- subprogram, it must be frozen before the body because its
1931 -- expansion has generated an equivalent type that is used when
1932 -- elaborating the body.
1934 if No (Spec_Id) then
1935 Freeze_Before (N, Body_Id);
1937 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1938 Freeze_Before (N, Spec_Id);
1940 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
1941 Freeze_Before (N, Etype (Body_Id));
1942 end if;
1944 else
1945 Spec_Id := Corresponding_Spec (N);
1946 end if;
1947 end if;
1949 -- Do not inline any subprogram that contains nested subprograms, since
1950 -- the backend inlining circuit seems to generate uninitialized
1951 -- references in this case. We know this happens in the case of front
1952 -- end ZCX support, but it also appears it can happen in other cases as
1953 -- well. The backend often rejects attempts to inline in the case of
1954 -- nested procedures anyway, so little if anything is lost by this.
1955 -- Note that this is test is for the benefit of the back-end. There is
1956 -- a separate test for front-end inlining that also rejects nested
1957 -- subprograms.
1959 -- Do not do this test if errors have been detected, because in some
1960 -- error cases, this code blows up, and we don't need it anyway if
1961 -- there have been errors, since we won't get to the linker anyway.
1963 if Comes_From_Source (Body_Id)
1964 and then Serious_Errors_Detected = 0
1965 then
1966 P_Ent := Body_Id;
1967 loop
1968 P_Ent := Scope (P_Ent);
1969 exit when No (P_Ent) or else P_Ent = Standard_Standard;
1971 if Is_Subprogram (P_Ent) then
1972 Set_Is_Inlined (P_Ent, False);
1974 if Comes_From_Source (P_Ent)
1975 and then Has_Pragma_Inline (P_Ent)
1976 then
1977 Cannot_Inline
1978 ("cannot inline& (nested subprogram)?",
1979 N, P_Ent);
1980 end if;
1981 end if;
1982 end loop;
1983 end if;
1985 Check_Inline_Pragma (Spec_Id);
1987 -- Deal with special case of a fully private operation in the body of
1988 -- the protected type. We must create a declaration for the subprogram,
1989 -- in order to attach the protected subprogram that will be used in
1990 -- internal calls. We exclude compiler generated bodies from the
1991 -- expander since the issue does not arise for those cases.
1993 if No (Spec_Id)
1994 and then Comes_From_Source (N)
1995 and then Is_Protected_Type (Current_Scope)
1996 then
1997 declare
1998 Decl : Node_Id;
1999 Plist : List_Id;
2000 Formal : Entity_Id;
2001 New_Spec : Node_Id;
2003 begin
2004 Formal := First_Formal (Body_Id);
2006 -- The protected operation always has at least one formal, namely
2007 -- the object itself, but it is only placed in the parameter list
2008 -- if expansion is enabled.
2010 if Present (Formal)
2011 or else Expander_Active
2012 then
2013 Plist := Copy_Parameter_List (Body_Id);
2014 else
2015 Plist := No_List;
2016 end if;
2018 if Nkind (Body_Spec) = N_Procedure_Specification then
2019 New_Spec :=
2020 Make_Procedure_Specification (Loc,
2021 Defining_Unit_Name =>
2022 Make_Defining_Identifier (Sloc (Body_Id),
2023 Chars => Chars (Body_Id)),
2024 Parameter_Specifications => Plist);
2025 else
2026 New_Spec :=
2027 Make_Function_Specification (Loc,
2028 Defining_Unit_Name =>
2029 Make_Defining_Identifier (Sloc (Body_Id),
2030 Chars => Chars (Body_Id)),
2031 Parameter_Specifications => Plist,
2032 Result_Definition =>
2033 New_Occurrence_Of (Etype (Body_Id), Loc));
2034 end if;
2036 Decl :=
2037 Make_Subprogram_Declaration (Loc,
2038 Specification => New_Spec);
2039 Insert_Before (N, Decl);
2040 Spec_Id := Defining_Unit_Name (New_Spec);
2042 -- Indicate that the entity comes from source, to ensure that
2043 -- cross-reference information is properly generated. The body
2044 -- itself is rewritten during expansion, and the body entity will
2045 -- not appear in calls to the operation.
2047 Set_Comes_From_Source (Spec_Id, True);
2048 Analyze (Decl);
2049 Set_Has_Completion (Spec_Id);
2050 Set_Convention (Spec_Id, Convention_Protected);
2051 end;
2052 end if;
2054 -- If a separate spec is present, then deal with freezing issues
2056 if Present (Spec_Id) then
2057 Spec_Decl := Unit_Declaration_Node (Spec_Id);
2058 Verify_Overriding_Indicator;
2060 -- In general, the spec will be frozen when we start analyzing the
2061 -- body. However, for internally generated operations, such as
2062 -- wrapper functions for inherited operations with controlling
2063 -- results, the spec may not have been frozen by the time we
2064 -- expand the freeze actions that include the bodies. In particular,
2065 -- extra formals for accessibility or for return-in-place may need
2066 -- to be generated. Freeze nodes, if any, are inserted before the
2067 -- current body.
2069 if not Is_Frozen (Spec_Id)
2070 and then Expander_Active
2071 then
2072 -- Force the generation of its freezing node to ensure proper
2073 -- management of access types in the backend.
2075 -- This is definitely needed for some cases, but it is not clear
2076 -- why, to be investigated further???
2078 Set_Has_Delayed_Freeze (Spec_Id);
2079 Insert_Actions (N, Freeze_Entity (Spec_Id, Loc));
2080 end if;
2081 end if;
2083 -- Mark presence of postcondition proc in current scope
2085 if Chars (Body_Id) = Name_uPostconditions then
2086 Set_Has_Postconditions (Current_Scope);
2087 end if;
2089 -- Place subprogram on scope stack, and make formals visible. If there
2090 -- is a spec, the visible entity remains that of the spec.
2092 if Present (Spec_Id) then
2093 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
2095 if Is_Child_Unit (Spec_Id) then
2096 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
2097 end if;
2099 if Style_Check then
2100 Style.Check_Identifier (Body_Id, Spec_Id);
2101 end if;
2103 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
2104 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
2106 if Is_Abstract_Subprogram (Spec_Id) then
2107 Error_Msg_N ("an abstract subprogram cannot have a body", N);
2108 return;
2110 else
2111 Set_Convention (Body_Id, Convention (Spec_Id));
2112 Set_Has_Completion (Spec_Id);
2114 if Is_Protected_Type (Scope (Spec_Id)) then
2115 Prot_Typ := Scope (Spec_Id);
2116 end if;
2118 -- If this is a body generated for a renaming, do not check for
2119 -- full conformance. The check is redundant, because the spec of
2120 -- the body is a copy of the spec in the renaming declaration,
2121 -- and the test can lead to spurious errors on nested defaults.
2123 if Present (Spec_Decl)
2124 and then not Comes_From_Source (N)
2125 and then
2126 (Nkind (Original_Node (Spec_Decl)) =
2127 N_Subprogram_Renaming_Declaration
2128 or else (Present (Corresponding_Body (Spec_Decl))
2129 and then
2130 Nkind (Unit_Declaration_Node
2131 (Corresponding_Body (Spec_Decl))) =
2132 N_Subprogram_Renaming_Declaration))
2133 then
2134 Conformant := True;
2136 else
2137 Check_Conformance
2138 (Body_Id, Spec_Id,
2139 Fully_Conformant, True, Conformant, Body_Id);
2140 end if;
2142 -- If the body is not fully conformant, we have to decide if we
2143 -- should analyze it or not. If it has a really messed up profile
2144 -- then we probably should not analyze it, since we will get too
2145 -- many bogus messages.
2147 -- Our decision is to go ahead in the non-fully conformant case
2148 -- only if it is at least mode conformant with the spec. Note
2149 -- that the call to Check_Fully_Conformant has issued the proper
2150 -- error messages to complain about the lack of conformance.
2152 if not Conformant
2153 and then not Mode_Conformant (Body_Id, Spec_Id)
2154 then
2155 return;
2156 end if;
2157 end if;
2159 if Spec_Id /= Body_Id then
2160 Reference_Body_Formals (Spec_Id, Body_Id);
2161 end if;
2163 if Nkind (N) /= N_Subprogram_Body_Stub then
2164 Set_Corresponding_Spec (N, Spec_Id);
2166 -- Ada 2005 (AI-345): If the operation is a primitive operation
2167 -- of a concurrent type, the type of the first parameter has been
2168 -- replaced with the corresponding record, which is the proper
2169 -- run-time structure to use. However, within the body there may
2170 -- be uses of the formals that depend on primitive operations
2171 -- of the type (in particular calls in prefixed form) for which
2172 -- we need the original concurrent type. The operation may have
2173 -- several controlling formals, so the replacement must be done
2174 -- for all of them.
2176 if Comes_From_Source (Spec_Id)
2177 and then Present (First_Entity (Spec_Id))
2178 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
2179 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
2180 and then
2181 Present (Interfaces (Etype (First_Entity (Spec_Id))))
2182 and then
2183 Present
2184 (Corresponding_Concurrent_Type
2185 (Etype (First_Entity (Spec_Id))))
2186 then
2187 declare
2188 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
2189 Form : Entity_Id;
2191 begin
2192 Form := First_Formal (Spec_Id);
2193 while Present (Form) loop
2194 if Etype (Form) = Typ then
2195 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
2196 end if;
2198 Next_Formal (Form);
2199 end loop;
2200 end;
2201 end if;
2203 -- Make the formals visible, and place subprogram on scope stack.
2204 -- This is also the point at which we set Last_Real_Spec_Entity
2205 -- to mark the entities which will not be moved to the body.
2207 Install_Formals (Spec_Id);
2208 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
2209 Push_Scope (Spec_Id);
2211 -- Make sure that the subprogram is immediately visible. For
2212 -- child units that have no separate spec this is indispensable.
2213 -- Otherwise it is safe albeit redundant.
2215 Set_Is_Immediately_Visible (Spec_Id);
2216 end if;
2218 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
2219 Set_Ekind (Body_Id, E_Subprogram_Body);
2220 Set_Scope (Body_Id, Scope (Spec_Id));
2221 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
2223 -- Case of subprogram body with no previous spec
2225 else
2226 if Style_Check
2227 and then Comes_From_Source (Body_Id)
2228 and then not Suppress_Style_Checks (Body_Id)
2229 and then not In_Instance
2230 then
2231 Style.Body_With_No_Spec (N);
2232 end if;
2234 New_Overloaded_Entity (Body_Id);
2236 if Nkind (N) /= N_Subprogram_Body_Stub then
2237 Set_Acts_As_Spec (N);
2238 Generate_Definition (Body_Id);
2239 Generate_Reference
2240 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
2241 Generate_Reference_To_Formals (Body_Id);
2242 Install_Formals (Body_Id);
2243 Push_Scope (Body_Id);
2244 end if;
2245 end if;
2247 -- If the return type is an anonymous access type whose designated type
2248 -- is the limited view of a class-wide type and the non-limited view is
2249 -- available, update the return type accordingly.
2251 if Ada_Version >= Ada_05
2252 and then Comes_From_Source (N)
2253 then
2254 declare
2255 Etyp : Entity_Id;
2256 Rtyp : Entity_Id;
2258 begin
2259 Rtyp := Etype (Current_Scope);
2261 if Ekind (Rtyp) = E_Anonymous_Access_Type then
2262 Etyp := Directly_Designated_Type (Rtyp);
2264 if Is_Class_Wide_Type (Etyp)
2265 and then From_With_Type (Etyp)
2266 then
2267 Set_Directly_Designated_Type
2268 (Etype (Current_Scope), Available_View (Etyp));
2269 end if;
2270 end if;
2271 end;
2272 end if;
2274 -- If this is the proper body of a stub, we must verify that the stub
2275 -- conforms to the body, and to the previous spec if one was present.
2276 -- we know already that the body conforms to that spec. This test is
2277 -- only required for subprograms that come from source.
2279 if Nkind (Parent (N)) = N_Subunit
2280 and then Comes_From_Source (N)
2281 and then not Error_Posted (Body_Id)
2282 and then Nkind (Corresponding_Stub (Parent (N))) =
2283 N_Subprogram_Body_Stub
2284 then
2285 declare
2286 Old_Id : constant Entity_Id :=
2287 Defining_Entity
2288 (Specification (Corresponding_Stub (Parent (N))));
2290 Conformant : Boolean := False;
2292 begin
2293 if No (Spec_Id) then
2294 Check_Fully_Conformant (Body_Id, Old_Id);
2296 else
2297 Check_Conformance
2298 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
2300 if not Conformant then
2302 -- The stub was taken to be a new declaration. Indicate
2303 -- that it lacks a body.
2305 Set_Has_Completion (Old_Id, False);
2306 end if;
2307 end if;
2308 end;
2309 end if;
2311 Set_Has_Completion (Body_Id);
2312 Check_Eliminated (Body_Id);
2314 if Nkind (N) = N_Subprogram_Body_Stub then
2315 return;
2317 elsif Present (Spec_Id)
2318 and then Expander_Active
2319 and then
2320 (Has_Pragma_Inline_Always (Spec_Id)
2321 or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
2322 then
2323 Build_Body_To_Inline (N, Spec_Id);
2324 end if;
2326 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
2327 -- if its specification we have to install the private withed units.
2328 -- This holds for child units as well.
2330 if Is_Compilation_Unit (Body_Id)
2331 or else Nkind (Parent (N)) = N_Compilation_Unit
2332 then
2333 Install_Private_With_Clauses (Body_Id);
2334 end if;
2336 Check_Anonymous_Return;
2338 -- Set the Protected_Formal field of each extra formal of the protected
2339 -- subprogram to reference the corresponding extra formal of the
2340 -- subprogram that implements it. For regular formals this occurs when
2341 -- the protected subprogram's declaration is expanded, but the extra
2342 -- formals don't get created until the subprogram is frozen. We need to
2343 -- do this before analyzing the protected subprogram's body so that any
2344 -- references to the original subprogram's extra formals will be changed
2345 -- refer to the implementing subprogram's formals (see Expand_Formal).
2347 if Present (Spec_Id)
2348 and then Is_Protected_Type (Scope (Spec_Id))
2349 and then Present (Protected_Body_Subprogram (Spec_Id))
2350 then
2351 declare
2352 Impl_Subp : constant Entity_Id :=
2353 Protected_Body_Subprogram (Spec_Id);
2354 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
2355 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
2356 begin
2357 while Present (Prot_Ext_Formal) loop
2358 pragma Assert (Present (Impl_Ext_Formal));
2359 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
2360 Next_Formal_With_Extras (Prot_Ext_Formal);
2361 Next_Formal_With_Extras (Impl_Ext_Formal);
2362 end loop;
2363 end;
2364 end if;
2366 -- Now we can go on to analyze the body
2368 HSS := Handled_Statement_Sequence (N);
2369 Set_Actual_Subtypes (N, Current_Scope);
2371 -- Deal with preconditions and postconditions
2373 Process_PPCs (N, Spec_Id, Body_Id);
2375 -- Add a declaration for the Protection object, renaming declarations
2376 -- for discriminals and privals and finally a declaration for the entry
2377 -- family index (if applicable). This form of early expansion is done
2378 -- when the Expander is active because Install_Private_Data_Declarations
2379 -- references entities which were created during regular expansion.
2381 if Expander_Active
2382 and then Comes_From_Source (N)
2383 and then Present (Prot_Typ)
2384 and then Present (Spec_Id)
2385 and then not Is_Eliminated (Spec_Id)
2386 then
2387 Install_Private_Data_Declarations
2388 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
2389 end if;
2391 -- Analyze the declarations (this call will analyze the precondition
2392 -- Check pragmas we prepended to the list, as well as the declaration
2393 -- of the _Postconditions procedure).
2395 Analyze_Declarations (Declarations (N));
2397 -- Check completion, and analyze the statements
2399 Check_Completion;
2400 Inspect_Deferred_Constant_Completion (Declarations (N));
2401 Analyze (HSS);
2403 -- Deal with end of scope processing for the body
2405 Process_End_Label (HSS, 't', Current_Scope);
2406 End_Scope;
2407 Check_Subprogram_Order (N);
2408 Set_Analyzed (Body_Id);
2410 -- If we have a separate spec, then the analysis of the declarations
2411 -- caused the entities in the body to be chained to the spec id, but
2412 -- we want them chained to the body id. Only the formal parameters
2413 -- end up chained to the spec id in this case.
2415 if Present (Spec_Id) then
2417 -- We must conform to the categorization of our spec
2419 Validate_Categorization_Dependency (N, Spec_Id);
2421 -- And if this is a child unit, the parent units must conform
2423 if Is_Child_Unit (Spec_Id) then
2424 Validate_Categorization_Dependency
2425 (Unit_Declaration_Node (Spec_Id), Spec_Id);
2426 end if;
2428 -- Here is where we move entities from the spec to the body
2430 -- Case where there are entities that stay with the spec
2432 if Present (Last_Real_Spec_Entity) then
2434 -- No body entities (happens when the only real spec entities
2435 -- come from precondition and postcondition pragmas)
2437 if No (Last_Entity (Body_Id)) then
2438 Set_First_Entity
2439 (Body_Id, Next_Entity (Last_Real_Spec_Entity));
2441 -- Body entities present (formals), so chain stuff past them
2443 else
2444 Set_Next_Entity
2445 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
2446 end if;
2448 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
2449 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
2450 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
2452 -- Case where there are no spec entities, in this case there can
2453 -- be no body entities either, so just move everything.
2455 else
2456 pragma Assert (No (Last_Entity (Body_Id)));
2457 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
2458 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
2459 Set_First_Entity (Spec_Id, Empty);
2460 Set_Last_Entity (Spec_Id, Empty);
2461 end if;
2462 end if;
2464 -- If function, check return statements
2466 if Nkind (Body_Spec) = N_Function_Specification then
2467 declare
2468 Id : Entity_Id;
2470 begin
2471 if Present (Spec_Id) then
2472 Id := Spec_Id;
2473 else
2474 Id := Body_Id;
2475 end if;
2477 if Return_Present (Id) then
2478 Check_Returns (HSS, 'F', Missing_Ret);
2480 if Missing_Ret then
2481 Set_Has_Missing_Return (Id);
2482 end if;
2484 elsif not Is_Machine_Code_Subprogram (Id)
2485 and then not Body_Deleted
2486 then
2487 Error_Msg_N ("missing RETURN statement in function body", N);
2488 end if;
2489 end;
2491 -- If procedure with No_Return, check returns
2493 elsif Nkind (Body_Spec) = N_Procedure_Specification
2494 and then Present (Spec_Id)
2495 and then No_Return (Spec_Id)
2496 then
2497 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2498 end if;
2500 -- Now we are going to check for variables that are never modified in
2501 -- the body of the procedure. But first we deal with a special case
2502 -- where we want to modify this check. If the body of the subprogram
2503 -- starts with a raise statement or its equivalent, or if the body
2504 -- consists entirely of a null statement, then it is pretty obvious
2505 -- that it is OK to not reference the parameters. For example, this
2506 -- might be the following common idiom for a stubbed function:
2507 -- statement of the procedure raises an exception. In particular this
2508 -- deals with the common idiom of a stubbed function, which might
2509 -- appear as something like
2511 -- function F (A : Integer) return Some_Type;
2512 -- X : Some_Type;
2513 -- begin
2514 -- raise Program_Error;
2515 -- return X;
2516 -- end F;
2518 -- Here the purpose of X is simply to satisfy the annoying requirement
2519 -- in Ada that there be at least one return, and we certainly do not
2520 -- want to go posting warnings on X that it is not initialized! On
2521 -- the other hand, if X is entirely unreferenced that should still
2522 -- get a warning.
2524 -- What we do is to detect these cases, and if we find them, flag the
2525 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
2526 -- suppress unwanted warnings. For the case of the function stub above
2527 -- we have a special test to set X as apparently assigned to suppress
2528 -- the warning.
2530 declare
2531 Stm : Node_Id;
2533 begin
2534 -- Skip initial labels (for one thing this occurs when we are in
2535 -- front end ZCX mode, but in any case it is irrelevant), and also
2536 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
2538 Stm := First (Statements (HSS));
2539 while Nkind (Stm) = N_Label
2540 or else Nkind (Stm) in N_Push_xxx_Label
2541 loop
2542 Next (Stm);
2543 end loop;
2545 -- Do the test on the original statement before expansion
2547 declare
2548 Ostm : constant Node_Id := Original_Node (Stm);
2550 begin
2551 -- If explicit raise statement, turn on flag
2553 if Nkind (Ostm) = N_Raise_Statement then
2554 Set_Trivial_Subprogram (Stm);
2556 -- If null statement, and no following statements, turn on flag
2558 elsif Nkind (Stm) = N_Null_Statement
2559 and then Comes_From_Source (Stm)
2560 and then No (Next (Stm))
2561 then
2562 Set_Trivial_Subprogram (Stm);
2564 -- Check for explicit call cases which likely raise an exception
2566 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
2567 if Is_Entity_Name (Name (Ostm)) then
2568 declare
2569 Ent : constant Entity_Id := Entity (Name (Ostm));
2571 begin
2572 -- If the procedure is marked No_Return, then likely it
2573 -- raises an exception, but in any case it is not coming
2574 -- back here, so turn on the flag.
2576 if Ekind (Ent) = E_Procedure
2577 and then No_Return (Ent)
2578 then
2579 Set_Trivial_Subprogram (Stm);
2580 end if;
2581 end;
2582 end if;
2583 end if;
2584 end;
2585 end;
2587 -- Check for variables that are never modified
2589 declare
2590 E1, E2 : Entity_Id;
2592 begin
2593 -- If there is a separate spec, then transfer Never_Set_In_Source
2594 -- flags from out parameters to the corresponding entities in the
2595 -- body. The reason we do that is we want to post error flags on
2596 -- the body entities, not the spec entities.
2598 if Present (Spec_Id) then
2599 E1 := First_Entity (Spec_Id);
2600 while Present (E1) loop
2601 if Ekind (E1) = E_Out_Parameter then
2602 E2 := First_Entity (Body_Id);
2603 while Present (E2) loop
2604 exit when Chars (E1) = Chars (E2);
2605 Next_Entity (E2);
2606 end loop;
2608 if Present (E2) then
2609 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
2610 end if;
2611 end if;
2613 Next_Entity (E1);
2614 end loop;
2615 end if;
2617 -- Check references in body unless it was deleted. Note that the
2618 -- check of Body_Deleted here is not just for efficiency, it is
2619 -- necessary to avoid junk warnings on formal parameters.
2621 if not Body_Deleted then
2622 Check_References (Body_Id);
2623 end if;
2624 end;
2625 end Analyze_Subprogram_Body_Helper;
2627 ------------------------------------
2628 -- Analyze_Subprogram_Declaration --
2629 ------------------------------------
2631 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
2632 Loc : constant Source_Ptr := Sloc (N);
2633 Designator : Entity_Id;
2634 Form : Node_Id;
2635 Scop : constant Entity_Id := Current_Scope;
2636 Null_Body : Node_Id := Empty;
2638 -- Start of processing for Analyze_Subprogram_Declaration
2640 begin
2641 -- For a null procedure, capture the profile before analysis, for
2642 -- expansion at the freeze point and at each point of call.
2643 -- The body will only be used if the procedure has preconditions.
2644 -- In that case the body is analyzed at the freeze point.
2646 if Nkind (Specification (N)) = N_Procedure_Specification
2647 and then Null_Present (Specification (N))
2648 and then Expander_Active
2649 then
2650 Null_Body :=
2651 Make_Subprogram_Body (Loc,
2652 Specification =>
2653 New_Copy_Tree (Specification (N)),
2654 Declarations =>
2655 New_List,
2656 Handled_Statement_Sequence =>
2657 Make_Handled_Sequence_Of_Statements (Loc,
2658 Statements => New_List (Make_Null_Statement (Loc))));
2660 -- Create new entities for body and formals
2662 Set_Defining_Unit_Name (Specification (Null_Body),
2663 Make_Defining_Identifier (Loc, Chars (Defining_Entity (N))));
2664 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
2666 Form := First (Parameter_Specifications (Specification (Null_Body)));
2667 while Present (Form) loop
2668 Set_Defining_Identifier (Form,
2669 Make_Defining_Identifier (Loc,
2670 Chars (Defining_Identifier (Form))));
2671 Next (Form);
2672 end loop;
2674 if Is_Protected_Type (Current_Scope) then
2675 Error_Msg_N
2676 ("protected operation cannot be a null procedure", N);
2677 end if;
2678 end if;
2680 Designator := Analyze_Subprogram_Specification (Specification (N));
2681 Generate_Definition (Designator);
2683 if Debug_Flag_C then
2684 Write_Str ("==> subprogram spec ");
2685 Write_Name (Chars (Designator));
2686 Write_Str (" from ");
2687 Write_Location (Sloc (N));
2688 Write_Eol;
2689 Indent;
2690 end if;
2692 if Nkind (Specification (N)) = N_Procedure_Specification
2693 and then Null_Present (Specification (N))
2694 then
2695 Set_Has_Completion (Designator);
2697 if Present (Null_Body) then
2698 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
2699 Set_Body_To_Inline (N, Null_Body);
2700 Set_Is_Inlined (Designator);
2701 end if;
2702 end if;
2704 Validate_RCI_Subprogram_Declaration (N);
2705 New_Overloaded_Entity (Designator);
2706 Check_Delayed_Subprogram (Designator);
2708 -- If the type of the first formal of the current subprogram is a
2709 -- nongeneric tagged private type, mark the subprogram as being a
2710 -- private primitive. Ditto if this is a function with controlling
2711 -- result, and the return type is currently private.
2713 if Has_Controlling_Result (Designator)
2714 and then Is_Private_Type (Etype (Designator))
2715 and then not Is_Generic_Actual_Type (Etype (Designator))
2716 then
2717 Set_Is_Private_Primitive (Designator);
2719 elsif Present (First_Formal (Designator)) then
2720 declare
2721 Formal_Typ : constant Entity_Id :=
2722 Etype (First_Formal (Designator));
2723 begin
2724 Set_Is_Private_Primitive (Designator,
2725 Is_Tagged_Type (Formal_Typ)
2726 and then Is_Private_Type (Formal_Typ)
2727 and then not Is_Generic_Actual_Type (Formal_Typ));
2728 end;
2729 end if;
2731 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
2732 -- or null.
2734 if Ada_Version >= Ada_05
2735 and then Comes_From_Source (N)
2736 and then Is_Dispatching_Operation (Designator)
2737 then
2738 declare
2739 E : Entity_Id;
2740 Etyp : Entity_Id;
2742 begin
2743 if Has_Controlling_Result (Designator) then
2744 Etyp := Etype (Designator);
2746 else
2747 E := First_Entity (Designator);
2748 while Present (E)
2749 and then Is_Formal (E)
2750 and then not Is_Controlling_Formal (E)
2751 loop
2752 Next_Entity (E);
2753 end loop;
2755 Etyp := Etype (E);
2756 end if;
2758 if Is_Access_Type (Etyp) then
2759 Etyp := Directly_Designated_Type (Etyp);
2760 end if;
2762 if Is_Interface (Etyp)
2763 and then not Is_Abstract_Subprogram (Designator)
2764 and then not (Ekind (Designator) = E_Procedure
2765 and then Null_Present (Specification (N)))
2766 then
2767 Error_Msg_Name_1 := Chars (Defining_Entity (N));
2768 Error_Msg_N
2769 ("(Ada 2005) interface subprogram % must be abstract or null",
2771 end if;
2772 end;
2773 end if;
2775 -- What is the following code for, it used to be
2777 -- ??? Set_Suppress_Elaboration_Checks
2778 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
2780 -- The following seems equivalent, but a bit dubious
2782 if Elaboration_Checks_Suppressed (Designator) then
2783 Set_Kill_Elaboration_Checks (Designator);
2784 end if;
2786 if Scop /= Standard_Standard
2787 and then not Is_Child_Unit (Designator)
2788 then
2789 Set_Categorization_From_Scope (Designator, Scop);
2790 else
2791 -- For a compilation unit, check for library-unit pragmas
2793 Push_Scope (Designator);
2794 Set_Categorization_From_Pragmas (N);
2795 Validate_Categorization_Dependency (N, Designator);
2796 Pop_Scope;
2797 end if;
2799 -- For a compilation unit, set body required. This flag will only be
2800 -- reset if a valid Import or Interface pragma is processed later on.
2802 if Nkind (Parent (N)) = N_Compilation_Unit then
2803 Set_Body_Required (Parent (N), True);
2805 if Ada_Version >= Ada_05
2806 and then Nkind (Specification (N)) = N_Procedure_Specification
2807 and then Null_Present (Specification (N))
2808 then
2809 Error_Msg_N
2810 ("null procedure cannot be declared at library level", N);
2811 end if;
2812 end if;
2814 Generate_Reference_To_Formals (Designator);
2815 Check_Eliminated (Designator);
2817 if Debug_Flag_C then
2818 Outdent;
2819 Write_Str ("<== subprogram spec ");
2820 Write_Name (Chars (Designator));
2821 Write_Str (" from ");
2822 Write_Location (Sloc (N));
2823 Write_Eol;
2824 end if;
2825 end Analyze_Subprogram_Declaration;
2827 --------------------------------------
2828 -- Analyze_Subprogram_Specification --
2829 --------------------------------------
2831 -- Reminder: N here really is a subprogram specification (not a subprogram
2832 -- declaration). This procedure is called to analyze the specification in
2833 -- both subprogram bodies and subprogram declarations (specs).
2835 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
2836 Designator : constant Entity_Id := Defining_Entity (N);
2837 Formals : constant List_Id := Parameter_Specifications (N);
2839 -- Start of processing for Analyze_Subprogram_Specification
2841 begin
2842 Generate_Definition (Designator);
2844 if Nkind (N) = N_Function_Specification then
2845 Set_Ekind (Designator, E_Function);
2846 Set_Mechanism (Designator, Default_Mechanism);
2848 else
2849 Set_Ekind (Designator, E_Procedure);
2850 Set_Etype (Designator, Standard_Void_Type);
2851 end if;
2853 -- Introduce new scope for analysis of the formals and the return type
2855 Set_Scope (Designator, Current_Scope);
2857 if Present (Formals) then
2858 Push_Scope (Designator);
2859 Process_Formals (Formals, N);
2861 -- Ada 2005 (AI-345): If this is an overriding operation of an
2862 -- inherited interface operation, and the controlling type is
2863 -- a synchronized type, replace the type with its corresponding
2864 -- record, to match the proper signature of an overriding operation.
2865 -- Same processing for an access parameter whose designated type is
2866 -- derived from a synchronized interface.
2868 if Ada_Version >= Ada_05 then
2869 declare
2870 Formal : Entity_Id;
2871 Formal_Typ : Entity_Id;
2872 Rec_Typ : Entity_Id;
2873 Desig_Typ : Entity_Id;
2875 begin
2876 Formal := First_Formal (Designator);
2877 while Present (Formal) loop
2878 Formal_Typ := Etype (Formal);
2880 if Is_Concurrent_Type (Formal_Typ)
2881 and then Present (Corresponding_Record_Type (Formal_Typ))
2882 then
2883 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
2885 if Present (Interfaces (Rec_Typ)) then
2886 Set_Etype (Formal, Rec_Typ);
2887 end if;
2889 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
2890 Desig_Typ := Designated_Type (Formal_Typ);
2892 if Is_Concurrent_Type (Desig_Typ)
2893 and then Present (Corresponding_Record_Type (Desig_Typ))
2894 then
2895 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
2897 if Present (Interfaces (Rec_Typ)) then
2898 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
2899 end if;
2900 end if;
2901 end if;
2903 Next_Formal (Formal);
2904 end loop;
2905 end;
2906 end if;
2908 End_Scope;
2910 -- The subprogram scope is pushed and popped around the processing of
2911 -- the return type for consistency with call above to Process_Formals
2912 -- (which itself can call Analyze_Return_Type), and to ensure that any
2913 -- itype created for the return type will be associated with the proper
2914 -- scope.
2916 elsif Nkind (N) = N_Function_Specification then
2917 Push_Scope (Designator);
2919 Analyze_Return_Type (N);
2921 End_Scope;
2922 end if;
2924 if Nkind (N) = N_Function_Specification then
2925 if Nkind (Designator) = N_Defining_Operator_Symbol then
2926 Valid_Operator_Definition (Designator);
2927 end if;
2929 May_Need_Actuals (Designator);
2931 -- Ada 2005 (AI-251): If the return type is abstract, verify that
2932 -- the subprogram is abstract also. This does not apply to renaming
2933 -- declarations, where abstractness is inherited.
2934 -- In case of primitives associated with abstract interface types
2935 -- the check is applied later (see Analyze_Subprogram_Declaration).
2937 if Is_Abstract_Type (Etype (Designator))
2938 and then not Is_Interface (Etype (Designator))
2939 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
2940 and then Nkind (Parent (N)) /=
2941 N_Abstract_Subprogram_Declaration
2942 and then
2943 (Nkind (Parent (N))) /= N_Formal_Abstract_Subprogram_Declaration
2944 then
2945 Error_Msg_N
2946 ("function that returns abstract type must be abstract", N);
2947 end if;
2948 end if;
2950 return Designator;
2951 end Analyze_Subprogram_Specification;
2953 --------------------------
2954 -- Build_Body_To_Inline --
2955 --------------------------
2957 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
2958 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
2959 Original_Body : Node_Id;
2960 Body_To_Analyze : Node_Id;
2961 Max_Size : constant := 10;
2962 Stat_Count : Integer := 0;
2964 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
2965 -- Check for declarations that make inlining not worthwhile
2967 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
2968 -- Check for statements that make inlining not worthwhile: any tasking
2969 -- statement, nested at any level. Keep track of total number of
2970 -- elementary statements, as a measure of acceptable size.
2972 function Has_Pending_Instantiation return Boolean;
2973 -- If some enclosing body contains instantiations that appear before the
2974 -- corresponding generic body, the enclosing body has a freeze node so
2975 -- that it can be elaborated after the generic itself. This might
2976 -- conflict with subsequent inlinings, so that it is unsafe to try to
2977 -- inline in such a case.
2979 function Has_Single_Return return Boolean;
2980 -- In general we cannot inline functions that return unconstrained type.
2981 -- However, we can handle such functions if all return statements return
2982 -- a local variable that is the only declaration in the body of the
2983 -- function. In that case the call can be replaced by that local
2984 -- variable as is done for other inlined calls.
2986 procedure Remove_Pragmas;
2987 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
2988 -- parameter has no meaning when the body is inlined and the formals
2989 -- are rewritten. Remove it from body to inline. The analysis of the
2990 -- non-inlined body will handle the pragma properly.
2992 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
2993 -- If the body of the subprogram includes a call that returns an
2994 -- unconstrained type, the secondary stack is involved, and it
2995 -- is not worth inlining.
2997 ------------------------------
2998 -- Has_Excluded_Declaration --
2999 ------------------------------
3001 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
3002 D : Node_Id;
3004 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
3005 -- Nested subprograms make a given body ineligible for inlining, but
3006 -- we make an exception for instantiations of unchecked conversion.
3007 -- The body has not been analyzed yet, so check the name, and verify
3008 -- that the visible entity with that name is the predefined unit.
3010 -----------------------------
3011 -- Is_Unchecked_Conversion --
3012 -----------------------------
3014 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
3015 Id : constant Node_Id := Name (D);
3016 Conv : Entity_Id;
3018 begin
3019 if Nkind (Id) = N_Identifier
3020 and then Chars (Id) = Name_Unchecked_Conversion
3021 then
3022 Conv := Current_Entity (Id);
3024 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
3025 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
3026 then
3027 Conv := Current_Entity (Selector_Name (Id));
3028 else
3029 return False;
3030 end if;
3032 return Present (Conv)
3033 and then Is_Predefined_File_Name
3034 (Unit_File_Name (Get_Source_Unit (Conv)))
3035 and then Is_Intrinsic_Subprogram (Conv);
3036 end Is_Unchecked_Conversion;
3038 -- Start of processing for Has_Excluded_Declaration
3040 begin
3041 D := First (Decls);
3042 while Present (D) loop
3043 if (Nkind (D) = N_Function_Instantiation
3044 and then not Is_Unchecked_Conversion (D))
3045 or else Nkind_In (D, N_Protected_Type_Declaration,
3046 N_Package_Declaration,
3047 N_Package_Instantiation,
3048 N_Subprogram_Body,
3049 N_Procedure_Instantiation,
3050 N_Task_Type_Declaration)
3051 then
3052 Cannot_Inline
3053 ("cannot inline & (non-allowed declaration)?", D, Subp);
3054 return True;
3055 end if;
3057 Next (D);
3058 end loop;
3060 return False;
3061 end Has_Excluded_Declaration;
3063 ----------------------------
3064 -- Has_Excluded_Statement --
3065 ----------------------------
3067 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
3068 S : Node_Id;
3069 E : Node_Id;
3071 begin
3072 S := First (Stats);
3073 while Present (S) loop
3074 Stat_Count := Stat_Count + 1;
3076 if Nkind_In (S, N_Abort_Statement,
3077 N_Asynchronous_Select,
3078 N_Conditional_Entry_Call,
3079 N_Delay_Relative_Statement,
3080 N_Delay_Until_Statement,
3081 N_Selective_Accept,
3082 N_Timed_Entry_Call)
3083 then
3084 Cannot_Inline
3085 ("cannot inline & (non-allowed statement)?", S, Subp);
3086 return True;
3088 elsif Nkind (S) = N_Block_Statement then
3089 if Present (Declarations (S))
3090 and then Has_Excluded_Declaration (Declarations (S))
3091 then
3092 return True;
3094 elsif Present (Handled_Statement_Sequence (S))
3095 and then
3096 (Present
3097 (Exception_Handlers (Handled_Statement_Sequence (S)))
3098 or else
3099 Has_Excluded_Statement
3100 (Statements (Handled_Statement_Sequence (S))))
3101 then
3102 return True;
3103 end if;
3105 elsif Nkind (S) = N_Case_Statement then
3106 E := First (Alternatives (S));
3107 while Present (E) loop
3108 if Has_Excluded_Statement (Statements (E)) then
3109 return True;
3110 end if;
3112 Next (E);
3113 end loop;
3115 elsif Nkind (S) = N_If_Statement then
3116 if Has_Excluded_Statement (Then_Statements (S)) then
3117 return True;
3118 end if;
3120 if Present (Elsif_Parts (S)) then
3121 E := First (Elsif_Parts (S));
3122 while Present (E) loop
3123 if Has_Excluded_Statement (Then_Statements (E)) then
3124 return True;
3125 end if;
3126 Next (E);
3127 end loop;
3128 end if;
3130 if Present (Else_Statements (S))
3131 and then Has_Excluded_Statement (Else_Statements (S))
3132 then
3133 return True;
3134 end if;
3136 elsif Nkind (S) = N_Loop_Statement
3137 and then Has_Excluded_Statement (Statements (S))
3138 then
3139 return True;
3140 end if;
3142 Next (S);
3143 end loop;
3145 return False;
3146 end Has_Excluded_Statement;
3148 -------------------------------
3149 -- Has_Pending_Instantiation --
3150 -------------------------------
3152 function Has_Pending_Instantiation return Boolean is
3153 S : Entity_Id;
3155 begin
3156 S := Current_Scope;
3157 while Present (S) loop
3158 if Is_Compilation_Unit (S)
3159 or else Is_Child_Unit (S)
3160 then
3161 return False;
3162 elsif Ekind (S) = E_Package
3163 and then Has_Forward_Instantiation (S)
3164 then
3165 return True;
3166 end if;
3168 S := Scope (S);
3169 end loop;
3171 return False;
3172 end Has_Pending_Instantiation;
3174 ------------------------
3175 -- Has_Single_Return --
3176 ------------------------
3178 function Has_Single_Return return Boolean is
3179 Return_Statement : Node_Id := Empty;
3181 function Check_Return (N : Node_Id) return Traverse_Result;
3183 ------------------
3184 -- Check_Return --
3185 ------------------
3187 function Check_Return (N : Node_Id) return Traverse_Result is
3188 begin
3189 if Nkind (N) = N_Simple_Return_Statement then
3190 if Present (Expression (N))
3191 and then Is_Entity_Name (Expression (N))
3192 then
3193 if No (Return_Statement) then
3194 Return_Statement := N;
3195 return OK;
3197 elsif Chars (Expression (N)) =
3198 Chars (Expression (Return_Statement))
3199 then
3200 return OK;
3202 else
3203 return Abandon;
3204 end if;
3206 else
3207 -- Expression has wrong form
3209 return Abandon;
3210 end if;
3212 else
3213 return OK;
3214 end if;
3215 end Check_Return;
3217 function Check_All_Returns is new Traverse_Func (Check_Return);
3219 -- Start of processing for Has_Single_Return
3221 begin
3222 return Check_All_Returns (N) = OK
3223 and then Present (Declarations (N))
3224 and then Present (First (Declarations (N)))
3225 and then Chars (Expression (Return_Statement)) =
3226 Chars (Defining_Identifier (First (Declarations (N))));
3227 end Has_Single_Return;
3229 --------------------
3230 -- Remove_Pragmas --
3231 --------------------
3233 procedure Remove_Pragmas is
3234 Decl : Node_Id;
3235 Nxt : Node_Id;
3237 begin
3238 Decl := First (Declarations (Body_To_Analyze));
3239 while Present (Decl) loop
3240 Nxt := Next (Decl);
3242 if Nkind (Decl) = N_Pragma
3243 and then (Pragma_Name (Decl) = Name_Unreferenced
3244 or else
3245 Pragma_Name (Decl) = Name_Unmodified)
3246 then
3247 Remove (Decl);
3248 end if;
3250 Decl := Nxt;
3251 end loop;
3252 end Remove_Pragmas;
3254 --------------------------
3255 -- Uses_Secondary_Stack --
3256 --------------------------
3258 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
3259 function Check_Call (N : Node_Id) return Traverse_Result;
3260 -- Look for function calls that return an unconstrained type
3262 ----------------
3263 -- Check_Call --
3264 ----------------
3266 function Check_Call (N : Node_Id) return Traverse_Result is
3267 begin
3268 if Nkind (N) = N_Function_Call
3269 and then Is_Entity_Name (Name (N))
3270 and then Is_Composite_Type (Etype (Entity (Name (N))))
3271 and then not Is_Constrained (Etype (Entity (Name (N))))
3272 then
3273 Cannot_Inline
3274 ("cannot inline & (call returns unconstrained type)?",
3275 N, Subp);
3276 return Abandon;
3277 else
3278 return OK;
3279 end if;
3280 end Check_Call;
3282 function Check_Calls is new Traverse_Func (Check_Call);
3284 begin
3285 return Check_Calls (Bod) = Abandon;
3286 end Uses_Secondary_Stack;
3288 -- Start of processing for Build_Body_To_Inline
3290 begin
3291 -- Return immediately if done already
3293 if Nkind (Decl) = N_Subprogram_Declaration
3294 and then Present (Body_To_Inline (Decl))
3295 then
3296 return;
3298 -- Functions that return unconstrained composite types require
3299 -- secondary stack handling, and cannot currently be inlined, unless
3300 -- all return statements return a local variable that is the first
3301 -- local declaration in the body.
3303 elsif Ekind (Subp) = E_Function
3304 and then not Is_Scalar_Type (Etype (Subp))
3305 and then not Is_Access_Type (Etype (Subp))
3306 and then not Is_Constrained (Etype (Subp))
3307 then
3308 if not Has_Single_Return then
3309 Cannot_Inline
3310 ("cannot inline & (unconstrained return type)?", N, Subp);
3311 return;
3312 end if;
3314 -- Ditto for functions that return controlled types, where controlled
3315 -- actions interfere in complex ways with inlining.
3317 elsif Ekind (Subp) = E_Function
3318 and then Needs_Finalization (Etype (Subp))
3319 then
3320 Cannot_Inline
3321 ("cannot inline & (controlled return type)?", N, Subp);
3322 return;
3323 end if;
3325 if Present (Declarations (N))
3326 and then Has_Excluded_Declaration (Declarations (N))
3327 then
3328 return;
3329 end if;
3331 if Present (Handled_Statement_Sequence (N)) then
3332 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
3333 Cannot_Inline
3334 ("cannot inline& (exception handler)?",
3335 First (Exception_Handlers (Handled_Statement_Sequence (N))),
3336 Subp);
3337 return;
3338 elsif
3339 Has_Excluded_Statement
3340 (Statements (Handled_Statement_Sequence (N)))
3341 then
3342 return;
3343 end if;
3344 end if;
3346 -- We do not inline a subprogram that is too large, unless it is
3347 -- marked Inline_Always. This pragma does not suppress the other
3348 -- checks on inlining (forbidden declarations, handlers, etc).
3350 if Stat_Count > Max_Size
3351 and then not Has_Pragma_Inline_Always (Subp)
3352 then
3353 Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
3354 return;
3355 end if;
3357 if Has_Pending_Instantiation then
3358 Cannot_Inline
3359 ("cannot inline& (forward instance within enclosing body)?",
3360 N, Subp);
3361 return;
3362 end if;
3364 -- Within an instance, the body to inline must be treated as a nested
3365 -- generic, so that the proper global references are preserved.
3367 -- Note that we do not do this at the library level, because it is not
3368 -- needed, and furthermore this causes trouble if front end inlining
3369 -- is activated (-gnatN).
3371 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
3372 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
3373 Original_Body := Copy_Generic_Node (N, Empty, True);
3374 else
3375 Original_Body := Copy_Separate_Tree (N);
3376 end if;
3378 -- We need to capture references to the formals in order to substitute
3379 -- the actuals at the point of inlining, i.e. instantiation. To treat
3380 -- the formals as globals to the body to inline, we nest it within
3381 -- a dummy parameterless subprogram, declared within the real one.
3382 -- To avoid generating an internal name (which is never public, and
3383 -- which affects serial numbers of other generated names), we use
3384 -- an internal symbol that cannot conflict with user declarations.
3386 Set_Parameter_Specifications (Specification (Original_Body), No_List);
3387 Set_Defining_Unit_Name
3388 (Specification (Original_Body),
3389 Make_Defining_Identifier (Sloc (N), Name_uParent));
3390 Set_Corresponding_Spec (Original_Body, Empty);
3392 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
3394 -- Set return type of function, which is also global and does not need
3395 -- to be resolved.
3397 if Ekind (Subp) = E_Function then
3398 Set_Result_Definition (Specification (Body_To_Analyze),
3399 New_Occurrence_Of (Etype (Subp), Sloc (N)));
3400 end if;
3402 if No (Declarations (N)) then
3403 Set_Declarations (N, New_List (Body_To_Analyze));
3404 else
3405 Append (Body_To_Analyze, Declarations (N));
3406 end if;
3408 Expander_Mode_Save_And_Set (False);
3409 Remove_Pragmas;
3411 Analyze (Body_To_Analyze);
3412 Push_Scope (Defining_Entity (Body_To_Analyze));
3413 Save_Global_References (Original_Body);
3414 End_Scope;
3415 Remove (Body_To_Analyze);
3417 Expander_Mode_Restore;
3419 -- Restore environment if previously saved
3421 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
3422 Restore_Env;
3423 end if;
3425 -- If secondary stk used there is no point in inlining. We have
3426 -- already issued the warning in this case, so nothing to do.
3428 if Uses_Secondary_Stack (Body_To_Analyze) then
3429 return;
3430 end if;
3432 Set_Body_To_Inline (Decl, Original_Body);
3433 Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
3434 Set_Is_Inlined (Subp);
3435 end Build_Body_To_Inline;
3437 -------------------
3438 -- Cannot_Inline --
3439 -------------------
3441 procedure Cannot_Inline (Msg : String; N : Node_Id; Subp : Entity_Id) is
3442 begin
3443 -- Do not emit warning if this is a predefined unit which is not
3444 -- the main unit. With validity checks enabled, some predefined
3445 -- subprograms may contain nested subprograms and become ineligible
3446 -- for inlining.
3448 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
3449 and then not In_Extended_Main_Source_Unit (Subp)
3450 then
3451 null;
3453 elsif Has_Pragma_Inline_Always (Subp) then
3455 -- Remove last character (question mark) to make this into an error,
3456 -- because the Inline_Always pragma cannot be obeyed.
3458 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
3460 elsif Ineffective_Inline_Warnings then
3461 Error_Msg_NE (Msg, N, Subp);
3462 end if;
3463 end Cannot_Inline;
3465 -----------------------
3466 -- Check_Conformance --
3467 -----------------------
3469 procedure Check_Conformance
3470 (New_Id : Entity_Id;
3471 Old_Id : Entity_Id;
3472 Ctype : Conformance_Type;
3473 Errmsg : Boolean;
3474 Conforms : out Boolean;
3475 Err_Loc : Node_Id := Empty;
3476 Get_Inst : Boolean := False;
3477 Skip_Controlling_Formals : Boolean := False)
3479 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
3480 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
3481 -- If Errmsg is True, then processing continues to post an error message
3482 -- for conformance error on given node. Two messages are output. The
3483 -- first message points to the previous declaration with a general "no
3484 -- conformance" message. The second is the detailed reason, supplied as
3485 -- Msg. The parameter N provide information for a possible & insertion
3486 -- in the message, and also provides the location for posting the
3487 -- message in the absence of a specified Err_Loc location.
3489 -----------------------
3490 -- Conformance_Error --
3491 -----------------------
3493 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
3494 Enode : Node_Id;
3496 begin
3497 Conforms := False;
3499 if Errmsg then
3500 if No (Err_Loc) then
3501 Enode := N;
3502 else
3503 Enode := Err_Loc;
3504 end if;
3506 Error_Msg_Sloc := Sloc (Old_Id);
3508 case Ctype is
3509 when Type_Conformant =>
3510 Error_Msg_N -- CODEFIX
3511 ("not type conformant with declaration#!", Enode);
3513 when Mode_Conformant =>
3514 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
3515 Error_Msg_N -- CODEFIX???
3516 ("not mode conformant with operation inherited#!",
3517 Enode);
3518 else
3519 Error_Msg_N -- CODEFIX???
3520 ("not mode conformant with declaration#!", Enode);
3521 end if;
3523 when Subtype_Conformant =>
3524 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
3525 Error_Msg_N -- CODEFIX???
3526 ("not subtype conformant with operation inherited#!",
3527 Enode);
3528 else
3529 Error_Msg_N -- CODEFIX???
3530 ("not subtype conformant with declaration#!", Enode);
3531 end if;
3533 when Fully_Conformant =>
3534 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
3535 Error_Msg_N -- CODEFIX
3536 ("not fully conformant with operation inherited#!",
3537 Enode);
3538 else
3539 Error_Msg_N -- CODEFIX
3540 ("not fully conformant with declaration#!", Enode);
3541 end if;
3542 end case;
3544 Error_Msg_NE (Msg, Enode, N);
3545 end if;
3546 end Conformance_Error;
3548 -- Local Variables
3550 Old_Type : constant Entity_Id := Etype (Old_Id);
3551 New_Type : constant Entity_Id := Etype (New_Id);
3552 Old_Formal : Entity_Id;
3553 New_Formal : Entity_Id;
3554 Access_Types_Match : Boolean;
3555 Old_Formal_Base : Entity_Id;
3556 New_Formal_Base : Entity_Id;
3558 -- Start of processing for Check_Conformance
3560 begin
3561 Conforms := True;
3563 -- We need a special case for operators, since they don't appear
3564 -- explicitly.
3566 if Ctype = Type_Conformant then
3567 if Ekind (New_Id) = E_Operator
3568 and then Operator_Matches_Spec (New_Id, Old_Id)
3569 then
3570 return;
3571 end if;
3572 end if;
3574 -- If both are functions/operators, check return types conform
3576 if Old_Type /= Standard_Void_Type
3577 and then New_Type /= Standard_Void_Type
3578 then
3580 -- If we are checking interface conformance we omit controlling
3581 -- arguments and result, because we are only checking the conformance
3582 -- of the remaining parameters.
3584 if Has_Controlling_Result (Old_Id)
3585 and then Has_Controlling_Result (New_Id)
3586 and then Skip_Controlling_Formals
3587 then
3588 null;
3590 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
3591 Conformance_Error ("\return type does not match!", New_Id);
3592 return;
3593 end if;
3595 -- Ada 2005 (AI-231): In case of anonymous access types check the
3596 -- null-exclusion and access-to-constant attributes match.
3598 if Ada_Version >= Ada_05
3599 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
3600 and then
3601 (Can_Never_Be_Null (Old_Type)
3602 /= Can_Never_Be_Null (New_Type)
3603 or else Is_Access_Constant (Etype (Old_Type))
3604 /= Is_Access_Constant (Etype (New_Type)))
3605 then
3606 Conformance_Error ("\return type does not match!", New_Id);
3607 return;
3608 end if;
3610 -- If either is a function/operator and the other isn't, error
3612 elsif Old_Type /= Standard_Void_Type
3613 or else New_Type /= Standard_Void_Type
3614 then
3615 Conformance_Error ("\functions can only match functions!", New_Id);
3616 return;
3617 end if;
3619 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
3620 -- If this is a renaming as body, refine error message to indicate that
3621 -- the conflict is with the original declaration. If the entity is not
3622 -- frozen, the conventions don't have to match, the one of the renamed
3623 -- entity is inherited.
3625 if Ctype >= Subtype_Conformant then
3626 if Convention (Old_Id) /= Convention (New_Id) then
3628 if not Is_Frozen (New_Id) then
3629 null;
3631 elsif Present (Err_Loc)
3632 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
3633 and then Present (Corresponding_Spec (Err_Loc))
3634 then
3635 Error_Msg_Name_1 := Chars (New_Id);
3636 Error_Msg_Name_2 :=
3637 Name_Ada + Convention_Id'Pos (Convention (New_Id));
3639 Conformance_Error ("\prior declaration for% has convention %!");
3641 else
3642 Conformance_Error ("\calling conventions do not match!");
3643 end if;
3645 return;
3647 elsif Is_Formal_Subprogram (Old_Id)
3648 or else Is_Formal_Subprogram (New_Id)
3649 then
3650 Conformance_Error ("\formal subprograms not allowed!");
3651 return;
3652 end if;
3653 end if;
3655 -- Deal with parameters
3657 -- Note: we use the entity information, rather than going directly
3658 -- to the specification in the tree. This is not only simpler, but
3659 -- absolutely necessary for some cases of conformance tests between
3660 -- operators, where the declaration tree simply does not exist!
3662 Old_Formal := First_Formal (Old_Id);
3663 New_Formal := First_Formal (New_Id);
3664 while Present (Old_Formal) and then Present (New_Formal) loop
3665 if Is_Controlling_Formal (Old_Formal)
3666 and then Is_Controlling_Formal (New_Formal)
3667 and then Skip_Controlling_Formals
3668 then
3669 -- The controlling formals will have different types when
3670 -- comparing an interface operation with its match, but both
3671 -- or neither must be access parameters.
3673 if Is_Access_Type (Etype (Old_Formal))
3675 Is_Access_Type (Etype (New_Formal))
3676 then
3677 goto Skip_Controlling_Formal;
3678 else
3679 Conformance_Error
3680 ("\access parameter does not match!", New_Formal);
3681 end if;
3682 end if;
3684 if Ctype = Fully_Conformant then
3686 -- Names must match. Error message is more accurate if we do
3687 -- this before checking that the types of the formals match.
3689 if Chars (Old_Formal) /= Chars (New_Formal) then
3690 Conformance_Error ("\name & does not match!", New_Formal);
3692 -- Set error posted flag on new formal as well to stop
3693 -- junk cascaded messages in some cases.
3695 Set_Error_Posted (New_Formal);
3696 return;
3697 end if;
3698 end if;
3700 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
3701 -- case occurs whenever a subprogram is being renamed and one of its
3702 -- parameters imposes a null exclusion. For example:
3704 -- type T is null record;
3705 -- type Acc_T is access T;
3706 -- subtype Acc_T_Sub is Acc_T;
3708 -- procedure P (Obj : not null Acc_T_Sub); -- itype
3709 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
3710 -- renames P;
3712 Old_Formal_Base := Etype (Old_Formal);
3713 New_Formal_Base := Etype (New_Formal);
3715 if Get_Inst then
3716 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
3717 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
3718 end if;
3720 Access_Types_Match := Ada_Version >= Ada_05
3722 -- Ensure that this rule is only applied when New_Id is a
3723 -- renaming of Old_Id.
3725 and then Nkind (Parent (Parent (New_Id))) =
3726 N_Subprogram_Renaming_Declaration
3727 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
3728 and then Present (Entity (Name (Parent (Parent (New_Id)))))
3729 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
3731 -- Now handle the allowed access-type case
3733 and then Is_Access_Type (Old_Formal_Base)
3734 and then Is_Access_Type (New_Formal_Base)
3736 -- The type kinds must match. The only exception occurs with
3737 -- multiple generics of the form:
3739 -- generic generic
3740 -- type F is private; type A is private;
3741 -- type F_Ptr is access F; type A_Ptr is access A;
3742 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
3743 -- package F_Pack is ... package A_Pack is
3744 -- package F_Inst is
3745 -- new F_Pack (A, A_Ptr, A_P);
3747 -- When checking for conformance between the parameters of A_P
3748 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
3749 -- because the compiler has transformed A_Ptr into a subtype of
3750 -- F_Ptr. We catch this case in the code below.
3752 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
3753 or else
3754 (Is_Generic_Type (Old_Formal_Base)
3755 and then Is_Generic_Type (New_Formal_Base)
3756 and then Is_Internal (New_Formal_Base)
3757 and then Etype (Etype (New_Formal_Base)) =
3758 Old_Formal_Base))
3759 and then Directly_Designated_Type (Old_Formal_Base) =
3760 Directly_Designated_Type (New_Formal_Base)
3761 and then ((Is_Itype (Old_Formal_Base)
3762 and then Can_Never_Be_Null (Old_Formal_Base))
3763 or else
3764 (Is_Itype (New_Formal_Base)
3765 and then Can_Never_Be_Null (New_Formal_Base)));
3767 -- Types must always match. In the visible part of an instance,
3768 -- usual overloading rules for dispatching operations apply, and
3769 -- we check base types (not the actual subtypes).
3771 if In_Instance_Visible_Part
3772 and then Is_Dispatching_Operation (New_Id)
3773 then
3774 if not Conforming_Types
3775 (T1 => Base_Type (Etype (Old_Formal)),
3776 T2 => Base_Type (Etype (New_Formal)),
3777 Ctype => Ctype,
3778 Get_Inst => Get_Inst)
3779 and then not Access_Types_Match
3780 then
3781 Conformance_Error ("\type of & does not match!", New_Formal);
3782 return;
3783 end if;
3785 elsif not Conforming_Types
3786 (T1 => Old_Formal_Base,
3787 T2 => New_Formal_Base,
3788 Ctype => Ctype,
3789 Get_Inst => Get_Inst)
3790 and then not Access_Types_Match
3791 then
3792 -- Don't give error message if old type is Any_Type. This test
3793 -- avoids some cascaded errors, e.g. in case of a bad spec.
3795 if Errmsg and then Old_Formal_Base = Any_Type then
3796 Conforms := False;
3797 else
3798 Conformance_Error ("\type of & does not match!", New_Formal);
3799 end if;
3801 return;
3802 end if;
3804 -- For mode conformance, mode must match
3806 if Ctype >= Mode_Conformant then
3807 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
3808 Conformance_Error ("\mode of & does not match!", New_Formal);
3809 return;
3811 -- Part of mode conformance for access types is having the same
3812 -- constant modifier.
3814 elsif Access_Types_Match
3815 and then Is_Access_Constant (Old_Formal_Base) /=
3816 Is_Access_Constant (New_Formal_Base)
3817 then
3818 Conformance_Error
3819 ("\constant modifier does not match!", New_Formal);
3820 return;
3821 end if;
3822 end if;
3824 if Ctype >= Subtype_Conformant then
3826 -- Ada 2005 (AI-231): In case of anonymous access types check
3827 -- the null-exclusion and access-to-constant attributes must
3828 -- match.
3830 if Ada_Version >= Ada_05
3831 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
3832 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
3833 and then
3834 (Can_Never_Be_Null (Old_Formal) /=
3835 Can_Never_Be_Null (New_Formal)
3836 or else
3837 Is_Access_Constant (Etype (Old_Formal)) /=
3838 Is_Access_Constant (Etype (New_Formal)))
3839 then
3840 -- It is allowed to omit the null-exclusion in case of stream
3841 -- attribute subprograms. We recognize stream subprograms
3842 -- through their TSS-generated suffix.
3844 declare
3845 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
3846 begin
3847 if TSS_Name /= TSS_Stream_Read
3848 and then TSS_Name /= TSS_Stream_Write
3849 and then TSS_Name /= TSS_Stream_Input
3850 and then TSS_Name /= TSS_Stream_Output
3851 then
3852 Conformance_Error
3853 ("\type of & does not match!", New_Formal);
3854 return;
3855 end if;
3856 end;
3857 end if;
3858 end if;
3860 -- Full conformance checks
3862 if Ctype = Fully_Conformant then
3864 -- We have checked already that names match
3866 if Parameter_Mode (Old_Formal) = E_In_Parameter then
3868 -- Check default expressions for in parameters
3870 declare
3871 NewD : constant Boolean :=
3872 Present (Default_Value (New_Formal));
3873 OldD : constant Boolean :=
3874 Present (Default_Value (Old_Formal));
3875 begin
3876 if NewD or OldD then
3878 -- The old default value has been analyzed because the
3879 -- current full declaration will have frozen everything
3880 -- before. The new default value has not been analyzed,
3881 -- so analyze it now before we check for conformance.
3883 if NewD then
3884 Push_Scope (New_Id);
3885 Preanalyze_Spec_Expression
3886 (Default_Value (New_Formal), Etype (New_Formal));
3887 End_Scope;
3888 end if;
3890 if not (NewD and OldD)
3891 or else not Fully_Conformant_Expressions
3892 (Default_Value (Old_Formal),
3893 Default_Value (New_Formal))
3894 then
3895 Conformance_Error
3896 ("\default expression for & does not match!",
3897 New_Formal);
3898 return;
3899 end if;
3900 end if;
3901 end;
3902 end if;
3903 end if;
3905 -- A couple of special checks for Ada 83 mode. These checks are
3906 -- skipped if either entity is an operator in package Standard,
3907 -- or if either old or new instance is not from the source program.
3909 if Ada_Version = Ada_83
3910 and then Sloc (Old_Id) > Standard_Location
3911 and then Sloc (New_Id) > Standard_Location
3912 and then Comes_From_Source (Old_Id)
3913 and then Comes_From_Source (New_Id)
3914 then
3915 declare
3916 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
3917 New_Param : constant Node_Id := Declaration_Node (New_Formal);
3919 begin
3920 -- Explicit IN must be present or absent in both cases. This
3921 -- test is required only in the full conformance case.
3923 if In_Present (Old_Param) /= In_Present (New_Param)
3924 and then Ctype = Fully_Conformant
3925 then
3926 Conformance_Error
3927 ("\(Ada 83) IN must appear in both declarations",
3928 New_Formal);
3929 return;
3930 end if;
3932 -- Grouping (use of comma in param lists) must be the same
3933 -- This is where we catch a misconformance like:
3935 -- A, B : Integer
3936 -- A : Integer; B : Integer
3938 -- which are represented identically in the tree except
3939 -- for the setting of the flags More_Ids and Prev_Ids.
3941 if More_Ids (Old_Param) /= More_Ids (New_Param)
3942 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
3943 then
3944 Conformance_Error
3945 ("\grouping of & does not match!", New_Formal);
3946 return;
3947 end if;
3948 end;
3949 end if;
3951 -- This label is required when skipping controlling formals
3953 <<Skip_Controlling_Formal>>
3955 Next_Formal (Old_Formal);
3956 Next_Formal (New_Formal);
3957 end loop;
3959 if Present (Old_Formal) then
3960 Conformance_Error ("\too few parameters!");
3961 return;
3963 elsif Present (New_Formal) then
3964 Conformance_Error ("\too many parameters!", New_Formal);
3965 return;
3966 end if;
3967 end Check_Conformance;
3969 -----------------------
3970 -- Check_Conventions --
3971 -----------------------
3973 procedure Check_Conventions (Typ : Entity_Id) is
3974 Ifaces_List : Elist_Id;
3976 procedure Check_Convention (Op : Entity_Id);
3977 -- Verify that the convention of inherited dispatching operation Op is
3978 -- consistent among all subprograms it overrides. In order to minimize
3979 -- the search, Search_From is utilized to designate a specific point in
3980 -- the list rather than iterating over the whole list once more.
3982 ----------------------
3983 -- Check_Convention --
3984 ----------------------
3986 procedure Check_Convention (Op : Entity_Id) is
3987 Iface_Elmt : Elmt_Id;
3988 Iface_Prim_Elmt : Elmt_Id;
3989 Iface_Prim : Entity_Id;
3991 begin
3992 Iface_Elmt := First_Elmt (Ifaces_List);
3993 while Present (Iface_Elmt) loop
3994 Iface_Prim_Elmt :=
3995 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
3996 while Present (Iface_Prim_Elmt) loop
3997 Iface_Prim := Node (Iface_Prim_Elmt);
3999 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
4000 and then Convention (Iface_Prim) /= Convention (Op)
4001 then
4002 Error_Msg_N
4003 ("inconsistent conventions in primitive operations", Typ);
4005 Error_Msg_Name_1 := Chars (Op);
4006 Error_Msg_Name_2 := Get_Convention_Name (Convention (Op));
4007 Error_Msg_Sloc := Sloc (Op);
4009 if Comes_From_Source (Op) then
4010 if not Is_Overriding_Operation (Op) then
4011 Error_Msg_N ("\\primitive % defined #", Typ);
4012 else
4013 Error_Msg_N ("\\overriding operation % with " &
4014 "convention % defined #", Typ);
4015 end if;
4017 else pragma Assert (Present (Alias (Op)));
4018 Error_Msg_Sloc := Sloc (Alias (Op));
4019 Error_Msg_N ("\\inherited operation % with " &
4020 "convention % defined #", Typ);
4021 end if;
4023 Error_Msg_Name_1 := Chars (Op);
4024 Error_Msg_Name_2 :=
4025 Get_Convention_Name (Convention (Iface_Prim));
4026 Error_Msg_Sloc := Sloc (Iface_Prim);
4027 Error_Msg_N ("\\overridden operation % with " &
4028 "convention % defined #", Typ);
4030 -- Avoid cascading errors
4032 return;
4033 end if;
4035 Next_Elmt (Iface_Prim_Elmt);
4036 end loop;
4038 Next_Elmt (Iface_Elmt);
4039 end loop;
4040 end Check_Convention;
4042 -- Local variables
4044 Prim_Op : Entity_Id;
4045 Prim_Op_Elmt : Elmt_Id;
4047 -- Start of processing for Check_Conventions
4049 begin
4050 if not Has_Interfaces (Typ) then
4051 return;
4052 end if;
4054 Collect_Interfaces (Typ, Ifaces_List);
4056 -- The algorithm checks every overriding dispatching operation against
4057 -- all the corresponding overridden dispatching operations, detecting
4058 -- differences in conventions.
4060 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
4061 while Present (Prim_Op_Elmt) loop
4062 Prim_Op := Node (Prim_Op_Elmt);
4064 -- A small optimization: skip the predefined dispatching operations
4065 -- since they always have the same convention.
4067 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
4068 Check_Convention (Prim_Op);
4069 end if;
4071 Next_Elmt (Prim_Op_Elmt);
4072 end loop;
4073 end Check_Conventions;
4075 ------------------------------
4076 -- Check_Delayed_Subprogram --
4077 ------------------------------
4079 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
4080 F : Entity_Id;
4082 procedure Possible_Freeze (T : Entity_Id);
4083 -- T is the type of either a formal parameter or of the return type.
4084 -- If T is not yet frozen and needs a delayed freeze, then the
4085 -- subprogram itself must be delayed. If T is the limited view of an
4086 -- incomplete type the subprogram must be frozen as well, because
4087 -- T may depend on local types that have not been frozen yet.
4089 ---------------------
4090 -- Possible_Freeze --
4091 ---------------------
4093 procedure Possible_Freeze (T : Entity_Id) is
4094 begin
4095 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
4096 Set_Has_Delayed_Freeze (Designator);
4098 elsif Is_Access_Type (T)
4099 and then Has_Delayed_Freeze (Designated_Type (T))
4100 and then not Is_Frozen (Designated_Type (T))
4101 then
4102 Set_Has_Delayed_Freeze (Designator);
4104 elsif Ekind (T) = E_Incomplete_Type and then From_With_Type (T) then
4105 Set_Has_Delayed_Freeze (Designator);
4106 end if;
4108 end Possible_Freeze;
4110 -- Start of processing for Check_Delayed_Subprogram
4112 begin
4113 -- Never need to freeze abstract subprogram
4115 if Ekind (Designator) /= E_Subprogram_Type
4116 and then Is_Abstract_Subprogram (Designator)
4117 then
4118 null;
4119 else
4120 -- Need delayed freeze if return type itself needs a delayed
4121 -- freeze and is not yet frozen.
4123 Possible_Freeze (Etype (Designator));
4124 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
4126 -- Need delayed freeze if any of the formal types themselves need
4127 -- a delayed freeze and are not yet frozen.
4129 F := First_Formal (Designator);
4130 while Present (F) loop
4131 Possible_Freeze (Etype (F));
4132 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
4133 Next_Formal (F);
4134 end loop;
4135 end if;
4137 -- Mark functions that return by reference. Note that it cannot be
4138 -- done for delayed_freeze subprograms because the underlying
4139 -- returned type may not be known yet (for private types)
4141 if not Has_Delayed_Freeze (Designator)
4142 and then Expander_Active
4143 then
4144 declare
4145 Typ : constant Entity_Id := Etype (Designator);
4146 Utyp : constant Entity_Id := Underlying_Type (Typ);
4148 begin
4149 if Is_Inherently_Limited_Type (Typ) then
4150 Set_Returns_By_Ref (Designator);
4152 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
4153 Set_Returns_By_Ref (Designator);
4154 end if;
4155 end;
4156 end if;
4157 end Check_Delayed_Subprogram;
4159 ------------------------------------
4160 -- Check_Discriminant_Conformance --
4161 ------------------------------------
4163 procedure Check_Discriminant_Conformance
4164 (N : Node_Id;
4165 Prev : Entity_Id;
4166 Prev_Loc : Node_Id)
4168 Old_Discr : Entity_Id := First_Discriminant (Prev);
4169 New_Discr : Node_Id := First (Discriminant_Specifications (N));
4170 New_Discr_Id : Entity_Id;
4171 New_Discr_Type : Entity_Id;
4173 procedure Conformance_Error (Msg : String; N : Node_Id);
4174 -- Post error message for conformance error on given node. Two messages
4175 -- are output. The first points to the previous declaration with a
4176 -- general "no conformance" message. The second is the detailed reason,
4177 -- supplied as Msg. The parameter N provide information for a possible
4178 -- & insertion in the message.
4180 -----------------------
4181 -- Conformance_Error --
4182 -----------------------
4184 procedure Conformance_Error (Msg : String; N : Node_Id) is
4185 begin
4186 Error_Msg_Sloc := Sloc (Prev_Loc);
4187 Error_Msg_N -- CODEFIX
4188 ("not fully conformant with declaration#!", N);
4189 Error_Msg_NE (Msg, N, N);
4190 end Conformance_Error;
4192 -- Start of processing for Check_Discriminant_Conformance
4194 begin
4195 while Present (Old_Discr) and then Present (New_Discr) loop
4197 New_Discr_Id := Defining_Identifier (New_Discr);
4199 -- The subtype mark of the discriminant on the full type has not
4200 -- been analyzed so we do it here. For an access discriminant a new
4201 -- type is created.
4203 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
4204 New_Discr_Type :=
4205 Access_Definition (N, Discriminant_Type (New_Discr));
4207 else
4208 Analyze (Discriminant_Type (New_Discr));
4209 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
4211 -- Ada 2005: if the discriminant definition carries a null
4212 -- exclusion, create an itype to check properly for consistency
4213 -- with partial declaration.
4215 if Is_Access_Type (New_Discr_Type)
4216 and then Null_Exclusion_Present (New_Discr)
4217 then
4218 New_Discr_Type :=
4219 Create_Null_Excluding_Itype
4220 (T => New_Discr_Type,
4221 Related_Nod => New_Discr,
4222 Scope_Id => Current_Scope);
4223 end if;
4224 end if;
4226 if not Conforming_Types
4227 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
4228 then
4229 Conformance_Error ("type of & does not match!", New_Discr_Id);
4230 return;
4231 else
4232 -- Treat the new discriminant as an occurrence of the old one,
4233 -- for navigation purposes, and fill in some semantic
4234 -- information, for completeness.
4236 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
4237 Set_Etype (New_Discr_Id, Etype (Old_Discr));
4238 Set_Scope (New_Discr_Id, Scope (Old_Discr));
4239 end if;
4241 -- Names must match
4243 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
4244 Conformance_Error ("name & does not match!", New_Discr_Id);
4245 return;
4246 end if;
4248 -- Default expressions must match
4250 declare
4251 NewD : constant Boolean :=
4252 Present (Expression (New_Discr));
4253 OldD : constant Boolean :=
4254 Present (Expression (Parent (Old_Discr)));
4256 begin
4257 if NewD or OldD then
4259 -- The old default value has been analyzed and expanded,
4260 -- because the current full declaration will have frozen
4261 -- everything before. The new default values have not been
4262 -- expanded, so expand now to check conformance.
4264 if NewD then
4265 Preanalyze_Spec_Expression
4266 (Expression (New_Discr), New_Discr_Type);
4267 end if;
4269 if not (NewD and OldD)
4270 or else not Fully_Conformant_Expressions
4271 (Expression (Parent (Old_Discr)),
4272 Expression (New_Discr))
4274 then
4275 Conformance_Error
4276 ("default expression for & does not match!",
4277 New_Discr_Id);
4278 return;
4279 end if;
4280 end if;
4281 end;
4283 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
4285 if Ada_Version = Ada_83 then
4286 declare
4287 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
4289 begin
4290 -- Grouping (use of comma in param lists) must be the same
4291 -- This is where we catch a misconformance like:
4293 -- A,B : Integer
4294 -- A : Integer; B : Integer
4296 -- which are represented identically in the tree except
4297 -- for the setting of the flags More_Ids and Prev_Ids.
4299 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
4300 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
4301 then
4302 Conformance_Error
4303 ("grouping of & does not match!", New_Discr_Id);
4304 return;
4305 end if;
4306 end;
4307 end if;
4309 Next_Discriminant (Old_Discr);
4310 Next (New_Discr);
4311 end loop;
4313 if Present (Old_Discr) then
4314 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
4315 return;
4317 elsif Present (New_Discr) then
4318 Conformance_Error
4319 ("too many discriminants!", Defining_Identifier (New_Discr));
4320 return;
4321 end if;
4322 end Check_Discriminant_Conformance;
4324 ----------------------------
4325 -- Check_Fully_Conformant --
4326 ----------------------------
4328 procedure Check_Fully_Conformant
4329 (New_Id : Entity_Id;
4330 Old_Id : Entity_Id;
4331 Err_Loc : Node_Id := Empty)
4333 Result : Boolean;
4334 pragma Warnings (Off, Result);
4335 begin
4336 Check_Conformance
4337 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
4338 end Check_Fully_Conformant;
4340 ---------------------------
4341 -- Check_Mode_Conformant --
4342 ---------------------------
4344 procedure Check_Mode_Conformant
4345 (New_Id : Entity_Id;
4346 Old_Id : Entity_Id;
4347 Err_Loc : Node_Id := Empty;
4348 Get_Inst : Boolean := False)
4350 Result : Boolean;
4351 pragma Warnings (Off, Result);
4352 begin
4353 Check_Conformance
4354 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
4355 end Check_Mode_Conformant;
4357 --------------------------------
4358 -- Check_Overriding_Indicator --
4359 --------------------------------
4361 procedure Check_Overriding_Indicator
4362 (Subp : Entity_Id;
4363 Overridden_Subp : Entity_Id;
4364 Is_Primitive : Boolean)
4366 Decl : Node_Id;
4367 Spec : Node_Id;
4369 begin
4370 -- No overriding indicator for literals
4372 if Ekind (Subp) = E_Enumeration_Literal then
4373 return;
4375 elsif Ekind (Subp) = E_Entry then
4376 Decl := Parent (Subp);
4378 -- No point in analyzing a malformed operator
4380 elsif Nkind (Subp) = N_Defining_Operator_Symbol
4381 and then Error_Posted (Subp)
4382 then
4383 return;
4385 else
4386 Decl := Unit_Declaration_Node (Subp);
4387 end if;
4389 if Nkind_In (Decl, N_Subprogram_Body,
4390 N_Subprogram_Body_Stub,
4391 N_Subprogram_Declaration,
4392 N_Abstract_Subprogram_Declaration,
4393 N_Subprogram_Renaming_Declaration)
4394 then
4395 Spec := Specification (Decl);
4397 elsif Nkind (Decl) = N_Entry_Declaration then
4398 Spec := Decl;
4400 else
4401 return;
4402 end if;
4404 -- The overriding operation is type conformant with the overridden one,
4405 -- but the names of the formals are not required to match. If the names
4406 -- appear permuted in the overriding operation, this is a possible
4407 -- source of confusion that is worth diagnosing. Controlling formals
4408 -- often carry names that reflect the type, and it is not worthwhile
4409 -- requiring that their names match.
4411 if Present (Overridden_Subp)
4412 and then Nkind (Subp) /= N_Defining_Operator_Symbol
4413 then
4414 declare
4415 Form1 : Entity_Id;
4416 Form2 : Entity_Id;
4418 begin
4419 Form1 := First_Formal (Subp);
4420 Form2 := First_Formal (Overridden_Subp);
4422 -- If the overriding operation is a synchronized operation, skip
4423 -- the first parameter of the overridden operation, which is
4424 -- implicit in the new one. If the operation is declared in the
4425 -- body it is not primitive and all formals must match.
4427 if Is_Concurrent_Type (Scope (Subp))
4428 and then Is_Tagged_Type (Scope (Subp))
4429 and then not Has_Completion (Scope (Subp))
4430 then
4431 Form2 := Next_Formal (Form2);
4432 end if;
4434 if Present (Form1) then
4435 Form1 := Next_Formal (Form1);
4436 Form2 := Next_Formal (Form2);
4437 end if;
4439 while Present (Form1) loop
4440 if not Is_Controlling_Formal (Form1)
4441 and then Present (Next_Formal (Form2))
4442 and then Chars (Form1) = Chars (Next_Formal (Form2))
4443 then
4444 Error_Msg_Node_2 := Alias (Overridden_Subp);
4445 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
4446 Error_Msg_NE ("& does not match corresponding formal of&#",
4447 Form1, Form1);
4448 exit;
4449 end if;
4451 Next_Formal (Form1);
4452 Next_Formal (Form2);
4453 end loop;
4454 end;
4455 end if;
4457 if Present (Overridden_Subp) then
4458 if Must_Not_Override (Spec) then
4459 Error_Msg_Sloc := Sloc (Overridden_Subp);
4461 if Ekind (Subp) = E_Entry then
4462 Error_Msg_NE
4463 ("entry & overrides inherited operation #", Spec, Subp);
4464 else
4465 Error_Msg_NE
4466 ("subprogram & overrides inherited operation #", Spec, Subp);
4467 end if;
4469 elsif Is_Subprogram (Subp) then
4470 Set_Is_Overriding_Operation (Subp);
4471 end if;
4473 -- If primitive flag is set or this is a protected operation, then
4474 -- the operation is overriding at the point of its declaration, so
4475 -- warn if necessary. Otherwise it may have been declared before the
4476 -- operation it overrides and no check is required.
4478 if Style_Check
4479 and then not Must_Override (Spec)
4480 and then (Is_Primitive
4481 or else Ekind (Scope (Subp)) = E_Protected_Type)
4482 then
4483 Style.Missing_Overriding (Decl, Subp);
4484 end if;
4486 -- If Subp is an operator, it may override a predefined operation, if
4487 -- it is defined in the same scope as the type to which it applies.
4488 -- In that case overridden_subp is empty because of our implicit
4489 -- representation for predefined operators. We have to check whether the
4490 -- signature of Subp matches that of a predefined operator. Note that
4491 -- first argument provides the name of the operator, and the second
4492 -- argument the signature that may match that of a standard operation.
4493 -- If the indicator is overriding, then the operator must match a
4494 -- predefined signature, because we know already that there is no
4495 -- explicit overridden operation.
4497 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
4498 declare
4499 Typ : constant Entity_Id :=
4500 Base_Type (Etype (First_Formal (Subp)));
4502 Can_Override : constant Boolean :=
4503 Operator_Matches_Spec (Subp, Subp)
4504 and then Scope (Subp) = Scope (Typ)
4505 and then not Is_Class_Wide_Type (Typ);
4507 begin
4508 if Must_Not_Override (Spec) then
4510 -- If this is not a primitive or a protected subprogram, then
4511 -- "not overriding" is illegal.
4513 if not Is_Primitive
4514 and then Ekind (Scope (Subp)) /= E_Protected_Type
4515 then
4516 Error_Msg_N
4517 ("overriding indicator only allowed "
4518 & "if subprogram is primitive", Subp);
4520 elsif Can_Override then
4521 Error_Msg_NE
4522 ("subprogram & overrides predefined operator ",
4523 Spec, Subp);
4524 end if;
4526 elsif Must_Override (Spec) then
4527 if Is_Overriding_Operation (Subp) then
4528 Set_Is_Overriding_Operation (Subp);
4530 elsif not Can_Override then
4531 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
4532 end if;
4534 elsif not Error_Posted (Subp)
4535 and then Style_Check
4536 and then Can_Override
4537 and then
4538 not Is_Predefined_File_Name
4539 (Unit_File_Name (Get_Source_Unit (Subp)))
4540 then
4541 Set_Is_Overriding_Operation (Subp);
4543 -- If style checks are enabled, indicate that the indicator is
4544 -- missing. However, at the point of declaration, the type of
4545 -- which this is a primitive operation may be private, in which
4546 -- case the indicator would be premature.
4548 if Has_Private_Declaration (Etype (Subp))
4549 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
4550 then
4551 null;
4552 else
4553 Style.Missing_Overriding (Decl, Subp);
4554 end if;
4555 end if;
4556 end;
4558 elsif Must_Override (Spec) then
4559 if Ekind (Subp) = E_Entry then
4560 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
4561 else
4562 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
4563 end if;
4565 -- If the operation is marked "not overriding" and it's not primitive
4566 -- then an error is issued, unless this is an operation of a task or
4567 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
4568 -- has been specified have already been checked above.
4570 elsif Must_Not_Override (Spec)
4571 and then not Is_Primitive
4572 and then Ekind (Subp) /= E_Entry
4573 and then Ekind (Scope (Subp)) /= E_Protected_Type
4574 then
4575 Error_Msg_N
4576 ("overriding indicator only allowed if subprogram is primitive",
4577 Subp);
4578 return;
4579 end if;
4580 end Check_Overriding_Indicator;
4582 -------------------
4583 -- Check_Returns --
4584 -------------------
4586 -- Note: this procedure needs to know far too much about how the expander
4587 -- messes with exceptions. The use of the flag Exception_Junk and the
4588 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
4589 -- works, but is not very clean. It would be better if the expansion
4590 -- routines would leave Original_Node working nicely, and we could use
4591 -- Original_Node here to ignore all the peculiar expander messing ???
4593 procedure Check_Returns
4594 (HSS : Node_Id;
4595 Mode : Character;
4596 Err : out Boolean;
4597 Proc : Entity_Id := Empty)
4599 Handler : Node_Id;
4601 procedure Check_Statement_Sequence (L : List_Id);
4602 -- Internal recursive procedure to check a list of statements for proper
4603 -- termination by a return statement (or a transfer of control or a
4604 -- compound statement that is itself internally properly terminated).
4606 ------------------------------
4607 -- Check_Statement_Sequence --
4608 ------------------------------
4610 procedure Check_Statement_Sequence (L : List_Id) is
4611 Last_Stm : Node_Id;
4612 Stm : Node_Id;
4613 Kind : Node_Kind;
4615 Raise_Exception_Call : Boolean;
4616 -- Set True if statement sequence terminated by Raise_Exception call
4617 -- or a Reraise_Occurrence call.
4619 begin
4620 Raise_Exception_Call := False;
4622 -- Get last real statement
4624 Last_Stm := Last (L);
4626 -- Deal with digging out exception handler statement sequences that
4627 -- have been transformed by the local raise to goto optimization.
4628 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
4629 -- optimization has occurred, we are looking at something like:
4631 -- begin
4632 -- original stmts in block
4634 -- exception \
4635 -- when excep1 => |
4636 -- goto L1; | omitted if No_Exception_Propagation
4637 -- when excep2 => |
4638 -- goto L2; /
4639 -- end;
4641 -- goto L3; -- skip handler when exception not raised
4643 -- <<L1>> -- target label for local exception
4644 -- begin
4645 -- estmts1
4646 -- end;
4648 -- goto L3;
4650 -- <<L2>>
4651 -- begin
4652 -- estmts2
4653 -- end;
4655 -- <<L3>>
4657 -- and what we have to do is to dig out the estmts1 and estmts2
4658 -- sequences (which were the original sequences of statements in
4659 -- the exception handlers) and check them.
4661 if Nkind (Last_Stm) = N_Label
4662 and then Exception_Junk (Last_Stm)
4663 then
4664 Stm := Last_Stm;
4665 loop
4666 Prev (Stm);
4667 exit when No (Stm);
4668 exit when Nkind (Stm) /= N_Block_Statement;
4669 exit when not Exception_Junk (Stm);
4670 Prev (Stm);
4671 exit when No (Stm);
4672 exit when Nkind (Stm) /= N_Label;
4673 exit when not Exception_Junk (Stm);
4674 Check_Statement_Sequence
4675 (Statements (Handled_Statement_Sequence (Next (Stm))));
4677 Prev (Stm);
4678 Last_Stm := Stm;
4679 exit when No (Stm);
4680 exit when Nkind (Stm) /= N_Goto_Statement;
4681 exit when not Exception_Junk (Stm);
4682 end loop;
4683 end if;
4685 -- Don't count pragmas
4687 while Nkind (Last_Stm) = N_Pragma
4689 -- Don't count call to SS_Release (can happen after Raise_Exception)
4691 or else
4692 (Nkind (Last_Stm) = N_Procedure_Call_Statement
4693 and then
4694 Nkind (Name (Last_Stm)) = N_Identifier
4695 and then
4696 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
4698 -- Don't count exception junk
4700 or else
4701 (Nkind_In (Last_Stm, N_Goto_Statement,
4702 N_Label,
4703 N_Object_Declaration)
4704 and then Exception_Junk (Last_Stm))
4705 or else Nkind (Last_Stm) in N_Push_xxx_Label
4706 or else Nkind (Last_Stm) in N_Pop_xxx_Label
4707 loop
4708 Prev (Last_Stm);
4709 end loop;
4711 -- Here we have the "real" last statement
4713 Kind := Nkind (Last_Stm);
4715 -- Transfer of control, OK. Note that in the No_Return procedure
4716 -- case, we already diagnosed any explicit return statements, so
4717 -- we can treat them as OK in this context.
4719 if Is_Transfer (Last_Stm) then
4720 return;
4722 -- Check cases of explicit non-indirect procedure calls
4724 elsif Kind = N_Procedure_Call_Statement
4725 and then Is_Entity_Name (Name (Last_Stm))
4726 then
4727 -- Check call to Raise_Exception procedure which is treated
4728 -- specially, as is a call to Reraise_Occurrence.
4730 -- We suppress the warning in these cases since it is likely that
4731 -- the programmer really does not expect to deal with the case
4732 -- of Null_Occurrence, and thus would find a warning about a
4733 -- missing return curious, and raising Program_Error does not
4734 -- seem such a bad behavior if this does occur.
4736 -- Note that in the Ada 2005 case for Raise_Exception, the actual
4737 -- behavior will be to raise Constraint_Error (see AI-329).
4739 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
4740 or else
4741 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
4742 then
4743 Raise_Exception_Call := True;
4745 -- For Raise_Exception call, test first argument, if it is
4746 -- an attribute reference for a 'Identity call, then we know
4747 -- that the call cannot possibly return.
4749 declare
4750 Arg : constant Node_Id :=
4751 Original_Node (First_Actual (Last_Stm));
4752 begin
4753 if Nkind (Arg) = N_Attribute_Reference
4754 and then Attribute_Name (Arg) = Name_Identity
4755 then
4756 return;
4757 end if;
4758 end;
4759 end if;
4761 -- If statement, need to look inside if there is an else and check
4762 -- each constituent statement sequence for proper termination.
4764 elsif Kind = N_If_Statement
4765 and then Present (Else_Statements (Last_Stm))
4766 then
4767 Check_Statement_Sequence (Then_Statements (Last_Stm));
4768 Check_Statement_Sequence (Else_Statements (Last_Stm));
4770 if Present (Elsif_Parts (Last_Stm)) then
4771 declare
4772 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
4774 begin
4775 while Present (Elsif_Part) loop
4776 Check_Statement_Sequence (Then_Statements (Elsif_Part));
4777 Next (Elsif_Part);
4778 end loop;
4779 end;
4780 end if;
4782 return;
4784 -- Case statement, check each case for proper termination
4786 elsif Kind = N_Case_Statement then
4787 declare
4788 Case_Alt : Node_Id;
4789 begin
4790 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
4791 while Present (Case_Alt) loop
4792 Check_Statement_Sequence (Statements (Case_Alt));
4793 Next_Non_Pragma (Case_Alt);
4794 end loop;
4795 end;
4797 return;
4799 -- Block statement, check its handled sequence of statements
4801 elsif Kind = N_Block_Statement then
4802 declare
4803 Err1 : Boolean;
4805 begin
4806 Check_Returns
4807 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
4809 if Err1 then
4810 Err := True;
4811 end if;
4813 return;
4814 end;
4816 -- Loop statement. If there is an iteration scheme, we can definitely
4817 -- fall out of the loop. Similarly if there is an exit statement, we
4818 -- can fall out. In either case we need a following return.
4820 elsif Kind = N_Loop_Statement then
4821 if Present (Iteration_Scheme (Last_Stm))
4822 or else Has_Exit (Entity (Identifier (Last_Stm)))
4823 then
4824 null;
4826 -- A loop with no exit statement or iteration scheme is either
4827 -- an infinite loop, or it has some other exit (raise/return).
4828 -- In either case, no warning is required.
4830 else
4831 return;
4832 end if;
4834 -- Timed entry call, check entry call and delay alternatives
4836 -- Note: in expanded code, the timed entry call has been converted
4837 -- to a set of expanded statements on which the check will work
4838 -- correctly in any case.
4840 elsif Kind = N_Timed_Entry_Call then
4841 declare
4842 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
4843 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
4845 begin
4846 -- If statement sequence of entry call alternative is missing,
4847 -- then we can definitely fall through, and we post the error
4848 -- message on the entry call alternative itself.
4850 if No (Statements (ECA)) then
4851 Last_Stm := ECA;
4853 -- If statement sequence of delay alternative is missing, then
4854 -- we can definitely fall through, and we post the error
4855 -- message on the delay alternative itself.
4857 -- Note: if both ECA and DCA are missing the return, then we
4858 -- post only one message, should be enough to fix the bugs.
4859 -- If not we will get a message next time on the DCA when the
4860 -- ECA is fixed!
4862 elsif No (Statements (DCA)) then
4863 Last_Stm := DCA;
4865 -- Else check both statement sequences
4867 else
4868 Check_Statement_Sequence (Statements (ECA));
4869 Check_Statement_Sequence (Statements (DCA));
4870 return;
4871 end if;
4872 end;
4874 -- Conditional entry call, check entry call and else part
4876 -- Note: in expanded code, the conditional entry call has been
4877 -- converted to a set of expanded statements on which the check
4878 -- will work correctly in any case.
4880 elsif Kind = N_Conditional_Entry_Call then
4881 declare
4882 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
4884 begin
4885 -- If statement sequence of entry call alternative is missing,
4886 -- then we can definitely fall through, and we post the error
4887 -- message on the entry call alternative itself.
4889 if No (Statements (ECA)) then
4890 Last_Stm := ECA;
4892 -- Else check statement sequence and else part
4894 else
4895 Check_Statement_Sequence (Statements (ECA));
4896 Check_Statement_Sequence (Else_Statements (Last_Stm));
4897 return;
4898 end if;
4899 end;
4900 end if;
4902 -- If we fall through, issue appropriate message
4904 if Mode = 'F' then
4905 if not Raise_Exception_Call then
4906 Error_Msg_N
4907 ("?RETURN statement missing following this statement!",
4908 Last_Stm);
4909 Error_Msg_N
4910 ("\?Program_Error may be raised at run time!",
4911 Last_Stm);
4912 end if;
4914 -- Note: we set Err even though we have not issued a warning
4915 -- because we still have a case of a missing return. This is
4916 -- an extremely marginal case, probably will never be noticed
4917 -- but we might as well get it right.
4919 Err := True;
4921 -- Otherwise we have the case of a procedure marked No_Return
4923 else
4924 if not Raise_Exception_Call then
4925 Error_Msg_N
4926 ("?implied return after this statement " &
4927 "will raise Program_Error",
4928 Last_Stm);
4929 Error_Msg_NE
4930 ("\?procedure & is marked as No_Return!",
4931 Last_Stm, Proc);
4932 end if;
4934 declare
4935 RE : constant Node_Id :=
4936 Make_Raise_Program_Error (Sloc (Last_Stm),
4937 Reason => PE_Implicit_Return);
4938 begin
4939 Insert_After (Last_Stm, RE);
4940 Analyze (RE);
4941 end;
4942 end if;
4943 end Check_Statement_Sequence;
4945 -- Start of processing for Check_Returns
4947 begin
4948 Err := False;
4949 Check_Statement_Sequence (Statements (HSS));
4951 if Present (Exception_Handlers (HSS)) then
4952 Handler := First_Non_Pragma (Exception_Handlers (HSS));
4953 while Present (Handler) loop
4954 Check_Statement_Sequence (Statements (Handler));
4955 Next_Non_Pragma (Handler);
4956 end loop;
4957 end if;
4958 end Check_Returns;
4960 ----------------------------
4961 -- Check_Subprogram_Order --
4962 ----------------------------
4964 procedure Check_Subprogram_Order (N : Node_Id) is
4966 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
4967 -- This is used to check if S1 > S2 in the sense required by this
4968 -- test, for example nameab < namec, but name2 < name10.
4970 -----------------------------
4971 -- Subprogram_Name_Greater --
4972 -----------------------------
4974 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
4975 L1, L2 : Positive;
4976 N1, N2 : Natural;
4978 begin
4979 -- Remove trailing numeric parts
4981 L1 := S1'Last;
4982 while S1 (L1) in '0' .. '9' loop
4983 L1 := L1 - 1;
4984 end loop;
4986 L2 := S2'Last;
4987 while S2 (L2) in '0' .. '9' loop
4988 L2 := L2 - 1;
4989 end loop;
4991 -- If non-numeric parts non-equal, that's decisive
4993 if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
4994 return False;
4996 elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
4997 return True;
4999 -- If non-numeric parts equal, compare suffixed numeric parts. Note
5000 -- that a missing suffix is treated as numeric zero in this test.
5002 else
5003 N1 := 0;
5004 while L1 < S1'Last loop
5005 L1 := L1 + 1;
5006 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
5007 end loop;
5009 N2 := 0;
5010 while L2 < S2'Last loop
5011 L2 := L2 + 1;
5012 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
5013 end loop;
5015 return N1 > N2;
5016 end if;
5017 end Subprogram_Name_Greater;
5019 -- Start of processing for Check_Subprogram_Order
5021 begin
5022 -- Check body in alpha order if this is option
5024 if Style_Check
5025 and then Style_Check_Order_Subprograms
5026 and then Nkind (N) = N_Subprogram_Body
5027 and then Comes_From_Source (N)
5028 and then In_Extended_Main_Source_Unit (N)
5029 then
5030 declare
5031 LSN : String_Ptr
5032 renames Scope_Stack.Table
5033 (Scope_Stack.Last).Last_Subprogram_Name;
5035 Body_Id : constant Entity_Id :=
5036 Defining_Entity (Specification (N));
5038 begin
5039 Get_Decoded_Name_String (Chars (Body_Id));
5041 if LSN /= null then
5042 if Subprogram_Name_Greater
5043 (LSN.all, Name_Buffer (1 .. Name_Len))
5044 then
5045 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
5046 end if;
5048 Free (LSN);
5049 end if;
5051 LSN := new String'(Name_Buffer (1 .. Name_Len));
5052 end;
5053 end if;
5054 end Check_Subprogram_Order;
5056 ------------------------------
5057 -- Check_Subtype_Conformant --
5058 ------------------------------
5060 procedure Check_Subtype_Conformant
5061 (New_Id : Entity_Id;
5062 Old_Id : Entity_Id;
5063 Err_Loc : Node_Id := Empty;
5064 Skip_Controlling_Formals : Boolean := False)
5066 Result : Boolean;
5067 pragma Warnings (Off, Result);
5068 begin
5069 Check_Conformance
5070 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
5071 Skip_Controlling_Formals => Skip_Controlling_Formals);
5072 end Check_Subtype_Conformant;
5074 ---------------------------
5075 -- Check_Type_Conformant --
5076 ---------------------------
5078 procedure Check_Type_Conformant
5079 (New_Id : Entity_Id;
5080 Old_Id : Entity_Id;
5081 Err_Loc : Node_Id := Empty)
5083 Result : Boolean;
5084 pragma Warnings (Off, Result);
5085 begin
5086 Check_Conformance
5087 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
5088 end Check_Type_Conformant;
5090 ----------------------
5091 -- Conforming_Types --
5092 ----------------------
5094 function Conforming_Types
5095 (T1 : Entity_Id;
5096 T2 : Entity_Id;
5097 Ctype : Conformance_Type;
5098 Get_Inst : Boolean := False) return Boolean
5100 Type_1 : Entity_Id := T1;
5101 Type_2 : Entity_Id := T2;
5102 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
5104 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
5105 -- If neither T1 nor T2 are generic actual types, or if they are in
5106 -- different scopes (e.g. parent and child instances), then verify that
5107 -- the base types are equal. Otherwise T1 and T2 must be on the same
5108 -- subtype chain. The whole purpose of this procedure is to prevent
5109 -- spurious ambiguities in an instantiation that may arise if two
5110 -- distinct generic types are instantiated with the same actual.
5112 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
5113 -- An access parameter can designate an incomplete type. If the
5114 -- incomplete type is the limited view of a type from a limited_
5115 -- with_clause, check whether the non-limited view is available. If
5116 -- it is a (non-limited) incomplete type, get the full view.
5118 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
5119 -- Returns True if and only if either T1 denotes a limited view of T2
5120 -- or T2 denotes a limited view of T1. This can arise when the limited
5121 -- with view of a type is used in a subprogram declaration and the
5122 -- subprogram body is in the scope of a regular with clause for the
5123 -- same unit. In such a case, the two type entities can be considered
5124 -- identical for purposes of conformance checking.
5126 ----------------------
5127 -- Base_Types_Match --
5128 ----------------------
5130 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
5131 begin
5132 if T1 = T2 then
5133 return True;
5135 elsif Base_Type (T1) = Base_Type (T2) then
5137 -- The following is too permissive. A more precise test should
5138 -- check that the generic actual is an ancestor subtype of the
5139 -- other ???.
5141 return not Is_Generic_Actual_Type (T1)
5142 or else not Is_Generic_Actual_Type (T2)
5143 or else Scope (T1) /= Scope (T2);
5145 else
5146 return False;
5147 end if;
5148 end Base_Types_Match;
5150 --------------------------
5151 -- Find_Designated_Type --
5152 --------------------------
5154 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
5155 Desig : Entity_Id;
5157 begin
5158 Desig := Directly_Designated_Type (T);
5160 if Ekind (Desig) = E_Incomplete_Type then
5162 -- If regular incomplete type, get full view if available
5164 if Present (Full_View (Desig)) then
5165 Desig := Full_View (Desig);
5167 -- If limited view of a type, get non-limited view if available,
5168 -- and check again for a regular incomplete type.
5170 elsif Present (Non_Limited_View (Desig)) then
5171 Desig := Get_Full_View (Non_Limited_View (Desig));
5172 end if;
5173 end if;
5175 return Desig;
5176 end Find_Designated_Type;
5178 -------------------------------
5179 -- Matches_Limited_With_View --
5180 -------------------------------
5182 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
5183 begin
5184 -- In some cases a type imported through a limited_with clause, and
5185 -- its nonlimited view are both visible, for example in an anonymous
5186 -- access-to-class-wide type in a formal. Both entities designate the
5187 -- same type.
5189 if From_With_Type (T1)
5190 and then T2 = Available_View (T1)
5191 then
5192 return True;
5194 elsif From_With_Type (T2)
5195 and then T1 = Available_View (T2)
5196 then
5197 return True;
5199 else
5200 return False;
5201 end if;
5202 end Matches_Limited_With_View;
5204 -- Start of processing for Conforming_Types
5206 begin
5207 -- The context is an instance association for a formal
5208 -- access-to-subprogram type; the formal parameter types require
5209 -- mapping because they may denote other formal parameters of the
5210 -- generic unit.
5212 if Get_Inst then
5213 Type_1 := Get_Instance_Of (T1);
5214 Type_2 := Get_Instance_Of (T2);
5215 end if;
5217 -- If one of the types is a view of the other introduced by a limited
5218 -- with clause, treat these as conforming for all purposes.
5220 if Matches_Limited_With_View (T1, T2) then
5221 return True;
5223 elsif Base_Types_Match (Type_1, Type_2) then
5224 return Ctype <= Mode_Conformant
5225 or else Subtypes_Statically_Match (Type_1, Type_2);
5227 elsif Is_Incomplete_Or_Private_Type (Type_1)
5228 and then Present (Full_View (Type_1))
5229 and then Base_Types_Match (Full_View (Type_1), Type_2)
5230 then
5231 return Ctype <= Mode_Conformant
5232 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
5234 elsif Ekind (Type_2) = E_Incomplete_Type
5235 and then Present (Full_View (Type_2))
5236 and then Base_Types_Match (Type_1, Full_View (Type_2))
5237 then
5238 return Ctype <= Mode_Conformant
5239 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
5241 elsif Is_Private_Type (Type_2)
5242 and then In_Instance
5243 and then Present (Full_View (Type_2))
5244 and then Base_Types_Match (Type_1, Full_View (Type_2))
5245 then
5246 return Ctype <= Mode_Conformant
5247 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
5248 end if;
5250 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
5251 -- treated recursively because they carry a signature.
5253 Are_Anonymous_Access_To_Subprogram_Types :=
5254 Ekind (Type_1) = Ekind (Type_2)
5255 and then
5256 (Ekind (Type_1) = E_Anonymous_Access_Subprogram_Type
5257 or else
5258 Ekind (Type_1) = E_Anonymous_Access_Protected_Subprogram_Type);
5260 -- Test anonymous access type case. For this case, static subtype
5261 -- matching is required for mode conformance (RM 6.3.1(15)). We check
5262 -- the base types because we may have built internal subtype entities
5263 -- to handle null-excluding types (see Process_Formals).
5265 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
5266 and then
5267 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
5268 or else Are_Anonymous_Access_To_Subprogram_Types -- Ada 2005 (AI-254)
5269 then
5270 declare
5271 Desig_1 : Entity_Id;
5272 Desig_2 : Entity_Id;
5274 begin
5275 -- In Ada2005, access constant indicators must match for
5276 -- subtype conformance.
5278 if Ada_Version >= Ada_05
5279 and then Ctype >= Subtype_Conformant
5280 and then
5281 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
5282 then
5283 return False;
5284 end if;
5286 Desig_1 := Find_Designated_Type (Type_1);
5288 Desig_2 := Find_Designated_Type (Type_2);
5290 -- If the context is an instance association for a formal
5291 -- access-to-subprogram type; formal access parameter designated
5292 -- types require mapping because they may denote other formal
5293 -- parameters of the generic unit.
5295 if Get_Inst then
5296 Desig_1 := Get_Instance_Of (Desig_1);
5297 Desig_2 := Get_Instance_Of (Desig_2);
5298 end if;
5300 -- It is possible for a Class_Wide_Type to be introduced for an
5301 -- incomplete type, in which case there is a separate class_ wide
5302 -- type for the full view. The types conform if their Etypes
5303 -- conform, i.e. one may be the full view of the other. This can
5304 -- only happen in the context of an access parameter, other uses
5305 -- of an incomplete Class_Wide_Type are illegal.
5307 if Is_Class_Wide_Type (Desig_1)
5308 and then Is_Class_Wide_Type (Desig_2)
5309 then
5310 return
5311 Conforming_Types
5312 (Etype (Base_Type (Desig_1)),
5313 Etype (Base_Type (Desig_2)), Ctype);
5315 elsif Are_Anonymous_Access_To_Subprogram_Types then
5316 if Ada_Version < Ada_05 then
5317 return Ctype = Type_Conformant
5318 or else
5319 Subtypes_Statically_Match (Desig_1, Desig_2);
5321 -- We must check the conformance of the signatures themselves
5323 else
5324 declare
5325 Conformant : Boolean;
5326 begin
5327 Check_Conformance
5328 (Desig_1, Desig_2, Ctype, False, Conformant);
5329 return Conformant;
5330 end;
5331 end if;
5333 else
5334 return Base_Type (Desig_1) = Base_Type (Desig_2)
5335 and then (Ctype = Type_Conformant
5336 or else
5337 Subtypes_Statically_Match (Desig_1, Desig_2));
5338 end if;
5339 end;
5341 -- Otherwise definitely no match
5343 else
5344 if ((Ekind (Type_1) = E_Anonymous_Access_Type
5345 and then Is_Access_Type (Type_2))
5346 or else (Ekind (Type_2) = E_Anonymous_Access_Type
5347 and then Is_Access_Type (Type_1)))
5348 and then
5349 Conforming_Types
5350 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
5351 then
5352 May_Hide_Profile := True;
5353 end if;
5355 return False;
5356 end if;
5357 end Conforming_Types;
5359 --------------------------
5360 -- Create_Extra_Formals --
5361 --------------------------
5363 procedure Create_Extra_Formals (E : Entity_Id) is
5364 Formal : Entity_Id;
5365 First_Extra : Entity_Id := Empty;
5366 Last_Extra : Entity_Id;
5367 Formal_Type : Entity_Id;
5368 P_Formal : Entity_Id := Empty;
5370 function Add_Extra_Formal
5371 (Assoc_Entity : Entity_Id;
5372 Typ : Entity_Id;
5373 Scope : Entity_Id;
5374 Suffix : String) return Entity_Id;
5375 -- Add an extra formal to the current list of formals and extra formals.
5376 -- The extra formal is added to the end of the list of extra formals,
5377 -- and also returned as the result. These formals are always of mode IN.
5378 -- The new formal has the type Typ, is declared in Scope, and its name
5379 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
5381 ----------------------
5382 -- Add_Extra_Formal --
5383 ----------------------
5385 function Add_Extra_Formal
5386 (Assoc_Entity : Entity_Id;
5387 Typ : Entity_Id;
5388 Scope : Entity_Id;
5389 Suffix : String) return Entity_Id
5391 EF : constant Entity_Id :=
5392 Make_Defining_Identifier (Sloc (Assoc_Entity),
5393 Chars => New_External_Name (Chars (Assoc_Entity),
5394 Suffix => Suffix));
5396 begin
5397 -- A little optimization. Never generate an extra formal for the
5398 -- _init operand of an initialization procedure, since it could
5399 -- never be used.
5401 if Chars (Formal) = Name_uInit then
5402 return Empty;
5403 end if;
5405 Set_Ekind (EF, E_In_Parameter);
5406 Set_Actual_Subtype (EF, Typ);
5407 Set_Etype (EF, Typ);
5408 Set_Scope (EF, Scope);
5409 Set_Mechanism (EF, Default_Mechanism);
5410 Set_Formal_Validity (EF);
5412 if No (First_Extra) then
5413 First_Extra := EF;
5414 Set_Extra_Formals (Scope, First_Extra);
5415 end if;
5417 if Present (Last_Extra) then
5418 Set_Extra_Formal (Last_Extra, EF);
5419 end if;
5421 Last_Extra := EF;
5423 return EF;
5424 end Add_Extra_Formal;
5426 -- Start of processing for Create_Extra_Formals
5428 begin
5429 -- We never generate extra formals if expansion is not active
5430 -- because we don't need them unless we are generating code.
5432 if not Expander_Active then
5433 return;
5434 end if;
5436 -- If this is a derived subprogram then the subtypes of the parent
5437 -- subprogram's formal parameters will be used to determine the need
5438 -- for extra formals.
5440 if Is_Overloadable (E) and then Present (Alias (E)) then
5441 P_Formal := First_Formal (Alias (E));
5442 end if;
5444 Last_Extra := Empty;
5445 Formal := First_Formal (E);
5446 while Present (Formal) loop
5447 Last_Extra := Formal;
5448 Next_Formal (Formal);
5449 end loop;
5451 -- If Extra_formals were already created, don't do it again. This
5452 -- situation may arise for subprogram types created as part of
5453 -- dispatching calls (see Expand_Dispatching_Call)
5455 if Present (Last_Extra) and then
5456 Present (Extra_Formal (Last_Extra))
5457 then
5458 return;
5459 end if;
5461 -- If the subprogram is a predefined dispatching subprogram then don't
5462 -- generate any extra constrained or accessibility level formals. In
5463 -- general we suppress these for internal subprograms (by not calling
5464 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
5465 -- generated stream attributes do get passed through because extra
5466 -- build-in-place formals are needed in some cases (limited 'Input).
5468 if Is_Predefined_Dispatching_Operation (E) then
5469 goto Test_For_BIP_Extras;
5470 end if;
5472 Formal := First_Formal (E);
5473 while Present (Formal) loop
5475 -- Create extra formal for supporting the attribute 'Constrained.
5476 -- The case of a private type view without discriminants also
5477 -- requires the extra formal if the underlying type has defaulted
5478 -- discriminants.
5480 if Ekind (Formal) /= E_In_Parameter then
5481 if Present (P_Formal) then
5482 Formal_Type := Etype (P_Formal);
5483 else
5484 Formal_Type := Etype (Formal);
5485 end if;
5487 -- Do not produce extra formals for Unchecked_Union parameters.
5488 -- Jump directly to the end of the loop.
5490 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
5491 goto Skip_Extra_Formal_Generation;
5492 end if;
5494 if not Has_Discriminants (Formal_Type)
5495 and then Ekind (Formal_Type) in Private_Kind
5496 and then Present (Underlying_Type (Formal_Type))
5497 then
5498 Formal_Type := Underlying_Type (Formal_Type);
5499 end if;
5501 if Has_Discriminants (Formal_Type)
5502 and then not Is_Constrained (Formal_Type)
5503 and then not Is_Indefinite_Subtype (Formal_Type)
5504 then
5505 Set_Extra_Constrained
5506 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "F"));
5507 end if;
5508 end if;
5510 -- Create extra formal for supporting accessibility checking. This
5511 -- is done for both anonymous access formals and formals of named
5512 -- access types that are marked as controlling formals. The latter
5513 -- case can occur when Expand_Dispatching_Call creates a subprogram
5514 -- type and substitutes the types of access-to-class-wide actuals
5515 -- for the anonymous access-to-specific-type of controlling formals.
5516 -- Base_Type is applied because in cases where there is a null
5517 -- exclusion the formal may have an access subtype.
5519 -- This is suppressed if we specifically suppress accessibility
5520 -- checks at the package level for either the subprogram, or the
5521 -- package in which it resides. However, we do not suppress it
5522 -- simply if the scope has accessibility checks suppressed, since
5523 -- this could cause trouble when clients are compiled with a
5524 -- different suppression setting. The explicit checks at the
5525 -- package level are safe from this point of view.
5527 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
5528 or else (Is_Controlling_Formal (Formal)
5529 and then Is_Access_Type (Base_Type (Etype (Formal)))))
5530 and then not
5531 (Explicit_Suppress (E, Accessibility_Check)
5532 or else
5533 Explicit_Suppress (Scope (E), Accessibility_Check))
5534 and then
5535 (No (P_Formal)
5536 or else Present (Extra_Accessibility (P_Formal)))
5537 then
5538 Set_Extra_Accessibility
5539 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "F"));
5540 end if;
5542 -- This label is required when skipping extra formal generation for
5543 -- Unchecked_Union parameters.
5545 <<Skip_Extra_Formal_Generation>>
5547 if Present (P_Formal) then
5548 Next_Formal (P_Formal);
5549 end if;
5551 Next_Formal (Formal);
5552 end loop;
5554 <<Test_For_BIP_Extras>>
5556 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
5557 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
5559 if Ada_Version >= Ada_05 and then Is_Build_In_Place_Function (E) then
5560 declare
5561 Result_Subt : constant Entity_Id := Etype (E);
5563 Discard : Entity_Id;
5564 pragma Warnings (Off, Discard);
5566 begin
5567 -- In the case of functions with unconstrained result subtypes,
5568 -- add a 3-state formal indicating whether the return object is
5569 -- allocated by the caller (0), or should be allocated by the
5570 -- callee on the secondary stack (1) or in the global heap (2).
5571 -- For the moment we just use Natural for the type of this formal.
5572 -- Note that this formal isn't usually needed in the case where
5573 -- the result subtype is constrained, but it is needed when the
5574 -- function has a tagged result, because generally such functions
5575 -- can be called in a dispatching context and such calls must be
5576 -- handled like calls to a class-wide function.
5578 if not Is_Constrained (Underlying_Type (Result_Subt))
5579 or else Is_Tagged_Type (Underlying_Type (Result_Subt))
5580 then
5581 Discard :=
5582 Add_Extra_Formal
5583 (E, Standard_Natural,
5584 E, BIP_Formal_Suffix (BIP_Alloc_Form));
5585 end if;
5587 -- In the case of functions whose result type has controlled
5588 -- parts, we have an extra formal of type
5589 -- System.Finalization_Implementation.Finalizable_Ptr_Ptr. That
5590 -- is, we are passing a pointer to a finalization list (which is
5591 -- itself a pointer). This extra formal is then passed along to
5592 -- Move_Final_List in case of successful completion of a return
5593 -- statement. We cannot pass an 'in out' parameter, because we
5594 -- need to update the finalization list during an abort-deferred
5595 -- region, rather than using copy-back after the function
5596 -- returns. This is true even if we are able to get away with
5597 -- having 'in out' parameters, which are normally illegal for
5598 -- functions. This formal is also needed when the function has
5599 -- a tagged result.
5601 if Needs_BIP_Final_List (E) then
5602 Discard :=
5603 Add_Extra_Formal
5604 (E, RTE (RE_Finalizable_Ptr_Ptr),
5605 E, BIP_Formal_Suffix (BIP_Final_List));
5606 end if;
5608 -- If the result type contains tasks, we have two extra formals:
5609 -- the master of the tasks to be created, and the caller's
5610 -- activation chain.
5612 if Has_Task (Result_Subt) then
5613 Discard :=
5614 Add_Extra_Formal
5615 (E, RTE (RE_Master_Id),
5616 E, BIP_Formal_Suffix (BIP_Master));
5617 Discard :=
5618 Add_Extra_Formal
5619 (E, RTE (RE_Activation_Chain_Access),
5620 E, BIP_Formal_Suffix (BIP_Activation_Chain));
5621 end if;
5623 -- All build-in-place functions get an extra formal that will be
5624 -- passed the address of the return object within the caller.
5626 declare
5627 Formal_Type : constant Entity_Id :=
5628 Create_Itype
5629 (E_Anonymous_Access_Type, E,
5630 Scope_Id => Scope (E));
5631 begin
5632 Set_Directly_Designated_Type (Formal_Type, Result_Subt);
5633 Set_Etype (Formal_Type, Formal_Type);
5634 Set_Depends_On_Private
5635 (Formal_Type, Has_Private_Component (Formal_Type));
5636 Set_Is_Public (Formal_Type, Is_Public (Scope (Formal_Type)));
5637 Set_Is_Access_Constant (Formal_Type, False);
5639 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
5640 -- the designated type comes from the limited view (for
5641 -- back-end purposes).
5643 Set_From_With_Type (Formal_Type, From_With_Type (Result_Subt));
5645 Layout_Type (Formal_Type);
5647 Discard :=
5648 Add_Extra_Formal
5649 (E, Formal_Type, E, BIP_Formal_Suffix (BIP_Object_Access));
5650 end;
5651 end;
5652 end if;
5653 end Create_Extra_Formals;
5655 -----------------------------
5656 -- Enter_Overloaded_Entity --
5657 -----------------------------
5659 procedure Enter_Overloaded_Entity (S : Entity_Id) is
5660 E : Entity_Id := Current_Entity_In_Scope (S);
5661 C_E : Entity_Id := Current_Entity (S);
5663 begin
5664 if Present (E) then
5665 Set_Has_Homonym (E);
5666 Set_Has_Homonym (S);
5667 end if;
5669 Set_Is_Immediately_Visible (S);
5670 Set_Scope (S, Current_Scope);
5672 -- Chain new entity if front of homonym in current scope, so that
5673 -- homonyms are contiguous.
5675 if Present (E)
5676 and then E /= C_E
5677 then
5678 while Homonym (C_E) /= E loop
5679 C_E := Homonym (C_E);
5680 end loop;
5682 Set_Homonym (C_E, S);
5684 else
5685 E := C_E;
5686 Set_Current_Entity (S);
5687 end if;
5689 Set_Homonym (S, E);
5691 Append_Entity (S, Current_Scope);
5692 Set_Public_Status (S);
5694 if Debug_Flag_E then
5695 Write_Str ("New overloaded entity chain: ");
5696 Write_Name (Chars (S));
5698 E := S;
5699 while Present (E) loop
5700 Write_Str (" "); Write_Int (Int (E));
5701 E := Homonym (E);
5702 end loop;
5704 Write_Eol;
5705 end if;
5707 -- Generate warning for hiding
5709 if Warn_On_Hiding
5710 and then Comes_From_Source (S)
5711 and then In_Extended_Main_Source_Unit (S)
5712 then
5713 E := S;
5714 loop
5715 E := Homonym (E);
5716 exit when No (E);
5718 -- Warn unless genuine overloading
5720 if (not Is_Overloadable (E) or else Subtype_Conformant (E, S))
5721 and then (Is_Immediately_Visible (E)
5722 or else
5723 Is_Potentially_Use_Visible (S))
5724 then
5725 Error_Msg_Sloc := Sloc (E);
5726 Error_Msg_N ("declaration of & hides one#?", S);
5727 end if;
5728 end loop;
5729 end if;
5730 end Enter_Overloaded_Entity;
5732 -----------------------------
5733 -- Find_Corresponding_Spec --
5734 -----------------------------
5736 function Find_Corresponding_Spec
5737 (N : Node_Id;
5738 Post_Error : Boolean := True) return Entity_Id
5740 Spec : constant Node_Id := Specification (N);
5741 Designator : constant Entity_Id := Defining_Entity (Spec);
5743 E : Entity_Id;
5745 begin
5746 E := Current_Entity (Designator);
5747 while Present (E) loop
5749 -- We are looking for a matching spec. It must have the same scope,
5750 -- and the same name, and either be type conformant, or be the case
5751 -- of a library procedure spec and its body (which belong to one
5752 -- another regardless of whether they are type conformant or not).
5754 if Scope (E) = Current_Scope then
5755 if Current_Scope = Standard_Standard
5756 or else (Ekind (E) = Ekind (Designator)
5757 and then Type_Conformant (E, Designator))
5758 then
5759 -- Within an instantiation, we know that spec and body are
5760 -- subtype conformant, because they were subtype conformant
5761 -- in the generic. We choose the subtype-conformant entity
5762 -- here as well, to resolve spurious ambiguities in the
5763 -- instance that were not present in the generic (i.e. when
5764 -- two different types are given the same actual). If we are
5765 -- looking for a spec to match a body, full conformance is
5766 -- expected.
5768 if In_Instance then
5769 Set_Convention (Designator, Convention (E));
5771 if Nkind (N) = N_Subprogram_Body
5772 and then Present (Homonym (E))
5773 and then not Fully_Conformant (E, Designator)
5774 then
5775 goto Next_Entity;
5777 elsif not Subtype_Conformant (E, Designator) then
5778 goto Next_Entity;
5779 end if;
5780 end if;
5782 if not Has_Completion (E) then
5783 if Nkind (N) /= N_Subprogram_Body_Stub then
5784 Set_Corresponding_Spec (N, E);
5785 end if;
5787 Set_Has_Completion (E);
5788 return E;
5790 elsif Nkind (Parent (N)) = N_Subunit then
5792 -- If this is the proper body of a subunit, the completion
5793 -- flag is set when analyzing the stub.
5795 return E;
5797 -- If E is an internal function with a controlling result
5798 -- that was created for an operation inherited by a null
5799 -- extension, it may be overridden by a body without a previous
5800 -- spec (one more reason why these should be shunned). In that
5801 -- case remove the generated body, because the current one is
5802 -- the explicit overriding.
5804 elsif Ekind (E) = E_Function
5805 and then Ada_Version >= Ada_05
5806 and then not Comes_From_Source (E)
5807 and then Has_Controlling_Result (E)
5808 and then Is_Null_Extension (Etype (E))
5809 and then Comes_From_Source (Spec)
5810 then
5811 Set_Has_Completion (E, False);
5813 if Expander_Active then
5814 Remove
5815 (Unit_Declaration_Node
5816 (Corresponding_Body (Unit_Declaration_Node (E))));
5817 return E;
5819 -- If expansion is disabled, the wrapper function has not
5820 -- been generated, and this is the standard case of a late
5821 -- body overriding an inherited operation.
5823 else
5824 return Empty;
5825 end if;
5827 -- If the body already exists, then this is an error unless
5828 -- the previous declaration is the implicit declaration of a
5829 -- derived subprogram, or this is a spurious overloading in an
5830 -- instance.
5832 elsif No (Alias (E))
5833 and then not Is_Intrinsic_Subprogram (E)
5834 and then not In_Instance
5835 and then Post_Error
5836 then
5837 Error_Msg_Sloc := Sloc (E);
5839 if Is_Imported (E) then
5840 Error_Msg_NE
5841 ("body not allowed for imported subprogram & declared#",
5842 N, E);
5843 else
5844 Error_Msg_NE ("duplicate body for & declared#", N, E);
5845 end if;
5846 end if;
5848 -- Child units cannot be overloaded, so a conformance mismatch
5849 -- between body and a previous spec is an error.
5851 elsif Is_Child_Unit (E)
5852 and then
5853 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
5854 and then
5855 Nkind (Parent (Unit_Declaration_Node (Designator))) =
5856 N_Compilation_Unit
5857 and then Post_Error
5858 then
5859 Error_Msg_N
5860 ("body of child unit does not match previous declaration", N);
5861 end if;
5862 end if;
5864 <<Next_Entity>>
5865 E := Homonym (E);
5866 end loop;
5868 -- On exit, we know that no previous declaration of subprogram exists
5870 return Empty;
5871 end Find_Corresponding_Spec;
5873 ----------------------
5874 -- Fully_Conformant --
5875 ----------------------
5877 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
5878 Result : Boolean;
5879 begin
5880 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
5881 return Result;
5882 end Fully_Conformant;
5884 ----------------------------------
5885 -- Fully_Conformant_Expressions --
5886 ----------------------------------
5888 function Fully_Conformant_Expressions
5889 (Given_E1 : Node_Id;
5890 Given_E2 : Node_Id) return Boolean
5892 E1 : constant Node_Id := Original_Node (Given_E1);
5893 E2 : constant Node_Id := Original_Node (Given_E2);
5894 -- We always test conformance on original nodes, since it is possible
5895 -- for analysis and/or expansion to make things look as though they
5896 -- conform when they do not, e.g. by converting 1+2 into 3.
5898 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
5899 renames Fully_Conformant_Expressions;
5901 function FCL (L1, L2 : List_Id) return Boolean;
5902 -- Compare elements of two lists for conformance. Elements have to
5903 -- be conformant, and actuals inserted as default parameters do not
5904 -- match explicit actuals with the same value.
5906 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
5907 -- Compare an operator node with a function call
5909 ---------
5910 -- FCL --
5911 ---------
5913 function FCL (L1, L2 : List_Id) return Boolean is
5914 N1, N2 : Node_Id;
5916 begin
5917 if L1 = No_List then
5918 N1 := Empty;
5919 else
5920 N1 := First (L1);
5921 end if;
5923 if L2 = No_List then
5924 N2 := Empty;
5925 else
5926 N2 := First (L2);
5927 end if;
5929 -- Compare two lists, skipping rewrite insertions (we want to
5930 -- compare the original trees, not the expanded versions!)
5932 loop
5933 if Is_Rewrite_Insertion (N1) then
5934 Next (N1);
5935 elsif Is_Rewrite_Insertion (N2) then
5936 Next (N2);
5937 elsif No (N1) then
5938 return No (N2);
5939 elsif No (N2) then
5940 return False;
5941 elsif not FCE (N1, N2) then
5942 return False;
5943 else
5944 Next (N1);
5945 Next (N2);
5946 end if;
5947 end loop;
5948 end FCL;
5950 ---------
5951 -- FCO --
5952 ---------
5954 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
5955 Actuals : constant List_Id := Parameter_Associations (Call_Node);
5956 Act : Node_Id;
5958 begin
5959 if No (Actuals)
5960 or else Entity (Op_Node) /= Entity (Name (Call_Node))
5961 then
5962 return False;
5964 else
5965 Act := First (Actuals);
5967 if Nkind (Op_Node) in N_Binary_Op then
5968 if not FCE (Left_Opnd (Op_Node), Act) then
5969 return False;
5970 end if;
5972 Next (Act);
5973 end if;
5975 return Present (Act)
5976 and then FCE (Right_Opnd (Op_Node), Act)
5977 and then No (Next (Act));
5978 end if;
5979 end FCO;
5981 -- Start of processing for Fully_Conformant_Expressions
5983 begin
5984 -- Non-conformant if paren count does not match. Note: if some idiot
5985 -- complains that we don't do this right for more than 3 levels of
5986 -- parentheses, they will be treated with the respect they deserve!
5988 if Paren_Count (E1) /= Paren_Count (E2) then
5989 return False;
5991 -- If same entities are referenced, then they are conformant even if
5992 -- they have different forms (RM 8.3.1(19-20)).
5994 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
5995 if Present (Entity (E1)) then
5996 return Entity (E1) = Entity (E2)
5997 or else (Chars (Entity (E1)) = Chars (Entity (E2))
5998 and then Ekind (Entity (E1)) = E_Discriminant
5999 and then Ekind (Entity (E2)) = E_In_Parameter);
6001 elsif Nkind (E1) = N_Expanded_Name
6002 and then Nkind (E2) = N_Expanded_Name
6003 and then Nkind (Selector_Name (E1)) = N_Character_Literal
6004 and then Nkind (Selector_Name (E2)) = N_Character_Literal
6005 then
6006 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
6008 else
6009 -- Identifiers in component associations don't always have
6010 -- entities, but their names must conform.
6012 return Nkind (E1) = N_Identifier
6013 and then Nkind (E2) = N_Identifier
6014 and then Chars (E1) = Chars (E2);
6015 end if;
6017 elsif Nkind (E1) = N_Character_Literal
6018 and then Nkind (E2) = N_Expanded_Name
6019 then
6020 return Nkind (Selector_Name (E2)) = N_Character_Literal
6021 and then Chars (E1) = Chars (Selector_Name (E2));
6023 elsif Nkind (E2) = N_Character_Literal
6024 and then Nkind (E1) = N_Expanded_Name
6025 then
6026 return Nkind (Selector_Name (E1)) = N_Character_Literal
6027 and then Chars (E2) = Chars (Selector_Name (E1));
6029 elsif Nkind (E1) in N_Op
6030 and then Nkind (E2) = N_Function_Call
6031 then
6032 return FCO (E1, E2);
6034 elsif Nkind (E2) in N_Op
6035 and then Nkind (E1) = N_Function_Call
6036 then
6037 return FCO (E2, E1);
6039 -- Otherwise we must have the same syntactic entity
6041 elsif Nkind (E1) /= Nkind (E2) then
6042 return False;
6044 -- At this point, we specialize by node type
6046 else
6047 case Nkind (E1) is
6049 when N_Aggregate =>
6050 return
6051 FCL (Expressions (E1), Expressions (E2))
6052 and then FCL (Component_Associations (E1),
6053 Component_Associations (E2));
6055 when N_Allocator =>
6056 if Nkind (Expression (E1)) = N_Qualified_Expression
6057 or else
6058 Nkind (Expression (E2)) = N_Qualified_Expression
6059 then
6060 return FCE (Expression (E1), Expression (E2));
6062 -- Check that the subtype marks and any constraints
6063 -- are conformant
6065 else
6066 declare
6067 Indic1 : constant Node_Id := Expression (E1);
6068 Indic2 : constant Node_Id := Expression (E2);
6069 Elt1 : Node_Id;
6070 Elt2 : Node_Id;
6072 begin
6073 if Nkind (Indic1) /= N_Subtype_Indication then
6074 return
6075 Nkind (Indic2) /= N_Subtype_Indication
6076 and then Entity (Indic1) = Entity (Indic2);
6078 elsif Nkind (Indic2) /= N_Subtype_Indication then
6079 return
6080 Nkind (Indic1) /= N_Subtype_Indication
6081 and then Entity (Indic1) = Entity (Indic2);
6083 else
6084 if Entity (Subtype_Mark (Indic1)) /=
6085 Entity (Subtype_Mark (Indic2))
6086 then
6087 return False;
6088 end if;
6090 Elt1 := First (Constraints (Constraint (Indic1)));
6091 Elt2 := First (Constraints (Constraint (Indic2)));
6092 while Present (Elt1) and then Present (Elt2) loop
6093 if not FCE (Elt1, Elt2) then
6094 return False;
6095 end if;
6097 Next (Elt1);
6098 Next (Elt2);
6099 end loop;
6101 return True;
6102 end if;
6103 end;
6104 end if;
6106 when N_Attribute_Reference =>
6107 return
6108 Attribute_Name (E1) = Attribute_Name (E2)
6109 and then FCL (Expressions (E1), Expressions (E2));
6111 when N_Binary_Op =>
6112 return
6113 Entity (E1) = Entity (E2)
6114 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
6115 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
6117 when N_Short_Circuit | N_Membership_Test =>
6118 return
6119 FCE (Left_Opnd (E1), Left_Opnd (E2))
6120 and then
6121 FCE (Right_Opnd (E1), Right_Opnd (E2));
6123 when N_Character_Literal =>
6124 return
6125 Char_Literal_Value (E1) = Char_Literal_Value (E2);
6127 when N_Component_Association =>
6128 return
6129 FCL (Choices (E1), Choices (E2))
6130 and then FCE (Expression (E1), Expression (E2));
6132 when N_Conditional_Expression =>
6133 return
6134 FCL (Expressions (E1), Expressions (E2));
6136 when N_Explicit_Dereference =>
6137 return
6138 FCE (Prefix (E1), Prefix (E2));
6140 when N_Extension_Aggregate =>
6141 return
6142 FCL (Expressions (E1), Expressions (E2))
6143 and then Null_Record_Present (E1) =
6144 Null_Record_Present (E2)
6145 and then FCL (Component_Associations (E1),
6146 Component_Associations (E2));
6148 when N_Function_Call =>
6149 return
6150 FCE (Name (E1), Name (E2))
6151 and then FCL (Parameter_Associations (E1),
6152 Parameter_Associations (E2));
6154 when N_Indexed_Component =>
6155 return
6156 FCE (Prefix (E1), Prefix (E2))
6157 and then FCL (Expressions (E1), Expressions (E2));
6159 when N_Integer_Literal =>
6160 return (Intval (E1) = Intval (E2));
6162 when N_Null =>
6163 return True;
6165 when N_Operator_Symbol =>
6166 return
6167 Chars (E1) = Chars (E2);
6169 when N_Others_Choice =>
6170 return True;
6172 when N_Parameter_Association =>
6173 return
6174 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
6175 and then FCE (Explicit_Actual_Parameter (E1),
6176 Explicit_Actual_Parameter (E2));
6178 when N_Qualified_Expression =>
6179 return
6180 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
6181 and then FCE (Expression (E1), Expression (E2));
6183 when N_Range =>
6184 return
6185 FCE (Low_Bound (E1), Low_Bound (E2))
6186 and then FCE (High_Bound (E1), High_Bound (E2));
6188 when N_Real_Literal =>
6189 return (Realval (E1) = Realval (E2));
6191 when N_Selected_Component =>
6192 return
6193 FCE (Prefix (E1), Prefix (E2))
6194 and then FCE (Selector_Name (E1), Selector_Name (E2));
6196 when N_Slice =>
6197 return
6198 FCE (Prefix (E1), Prefix (E2))
6199 and then FCE (Discrete_Range (E1), Discrete_Range (E2));
6201 when N_String_Literal =>
6202 declare
6203 S1 : constant String_Id := Strval (E1);
6204 S2 : constant String_Id := Strval (E2);
6205 L1 : constant Nat := String_Length (S1);
6206 L2 : constant Nat := String_Length (S2);
6208 begin
6209 if L1 /= L2 then
6210 return False;
6212 else
6213 for J in 1 .. L1 loop
6214 if Get_String_Char (S1, J) /=
6215 Get_String_Char (S2, J)
6216 then
6217 return False;
6218 end if;
6219 end loop;
6221 return True;
6222 end if;
6223 end;
6225 when N_Type_Conversion =>
6226 return
6227 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
6228 and then FCE (Expression (E1), Expression (E2));
6230 when N_Unary_Op =>
6231 return
6232 Entity (E1) = Entity (E2)
6233 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
6235 when N_Unchecked_Type_Conversion =>
6236 return
6237 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
6238 and then FCE (Expression (E1), Expression (E2));
6240 -- All other node types cannot appear in this context. Strictly
6241 -- we should raise a fatal internal error. Instead we just ignore
6242 -- the nodes. This means that if anyone makes a mistake in the
6243 -- expander and mucks an expression tree irretrievably, the
6244 -- result will be a failure to detect a (probably very obscure)
6245 -- case of non-conformance, which is better than bombing on some
6246 -- case where two expressions do in fact conform.
6248 when others =>
6249 return True;
6251 end case;
6252 end if;
6253 end Fully_Conformant_Expressions;
6255 ----------------------------------------
6256 -- Fully_Conformant_Discrete_Subtypes --
6257 ----------------------------------------
6259 function Fully_Conformant_Discrete_Subtypes
6260 (Given_S1 : Node_Id;
6261 Given_S2 : Node_Id) return Boolean
6263 S1 : constant Node_Id := Original_Node (Given_S1);
6264 S2 : constant Node_Id := Original_Node (Given_S2);
6266 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
6267 -- Special-case for a bound given by a discriminant, which in the body
6268 -- is replaced with the discriminal of the enclosing type.
6270 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
6271 -- Check both bounds
6273 -----------------------
6274 -- Conforming_Bounds --
6275 -----------------------
6277 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
6278 begin
6279 if Is_Entity_Name (B1)
6280 and then Is_Entity_Name (B2)
6281 and then Ekind (Entity (B1)) = E_Discriminant
6282 then
6283 return Chars (B1) = Chars (B2);
6285 else
6286 return Fully_Conformant_Expressions (B1, B2);
6287 end if;
6288 end Conforming_Bounds;
6290 -----------------------
6291 -- Conforming_Ranges --
6292 -----------------------
6294 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
6295 begin
6296 return
6297 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
6298 and then
6299 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
6300 end Conforming_Ranges;
6302 -- Start of processing for Fully_Conformant_Discrete_Subtypes
6304 begin
6305 if Nkind (S1) /= Nkind (S2) then
6306 return False;
6308 elsif Is_Entity_Name (S1) then
6309 return Entity (S1) = Entity (S2);
6311 elsif Nkind (S1) = N_Range then
6312 return Conforming_Ranges (S1, S2);
6314 elsif Nkind (S1) = N_Subtype_Indication then
6315 return
6316 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
6317 and then
6318 Conforming_Ranges
6319 (Range_Expression (Constraint (S1)),
6320 Range_Expression (Constraint (S2)));
6321 else
6322 return True;
6323 end if;
6324 end Fully_Conformant_Discrete_Subtypes;
6326 --------------------
6327 -- Install_Entity --
6328 --------------------
6330 procedure Install_Entity (E : Entity_Id) is
6331 Prev : constant Entity_Id := Current_Entity (E);
6332 begin
6333 Set_Is_Immediately_Visible (E);
6334 Set_Current_Entity (E);
6335 Set_Homonym (E, Prev);
6336 end Install_Entity;
6338 ---------------------
6339 -- Install_Formals --
6340 ---------------------
6342 procedure Install_Formals (Id : Entity_Id) is
6343 F : Entity_Id;
6344 begin
6345 F := First_Formal (Id);
6346 while Present (F) loop
6347 Install_Entity (F);
6348 Next_Formal (F);
6349 end loop;
6350 end Install_Formals;
6352 -----------------------------
6353 -- Is_Interface_Conformant --
6354 -----------------------------
6356 function Is_Interface_Conformant
6357 (Tagged_Type : Entity_Id;
6358 Iface_Prim : Entity_Id;
6359 Prim : Entity_Id) return Boolean
6361 Iface : constant Entity_Id := Find_Dispatching_Type (Iface_Prim);
6362 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
6364 begin
6365 pragma Assert (Is_Subprogram (Iface_Prim)
6366 and then Is_Subprogram (Prim)
6367 and then Is_Dispatching_Operation (Iface_Prim)
6368 and then Is_Dispatching_Operation (Prim));
6370 pragma Assert (Is_Interface (Iface)
6371 or else (Present (Alias (Iface_Prim))
6372 and then
6373 Is_Interface
6374 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
6376 if Prim = Iface_Prim
6377 or else not Is_Subprogram (Prim)
6378 or else Ekind (Prim) /= Ekind (Iface_Prim)
6379 or else not Is_Dispatching_Operation (Prim)
6380 or else Scope (Prim) /= Scope (Tagged_Type)
6381 or else No (Typ)
6382 or else Base_Type (Typ) /= Tagged_Type
6383 or else not Primitive_Names_Match (Iface_Prim, Prim)
6384 then
6385 return False;
6387 -- Case of a procedure, or a function that does not have a controlling
6388 -- result (I or access I).
6390 elsif Ekind (Iface_Prim) = E_Procedure
6391 or else Etype (Prim) = Etype (Iface_Prim)
6392 or else not Has_Controlling_Result (Prim)
6393 then
6394 return Type_Conformant (Prim, Iface_Prim,
6395 Skip_Controlling_Formals => True);
6397 -- Case of a function returning an interface, or an access to one.
6398 -- Check that the return types correspond.
6400 elsif Implements_Interface (Typ, Iface) then
6401 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
6403 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
6404 then
6405 return False;
6406 else
6407 return
6408 Type_Conformant (Prim, Iface_Prim,
6409 Skip_Controlling_Formals => True);
6410 end if;
6412 else
6413 return False;
6414 end if;
6415 end Is_Interface_Conformant;
6417 ---------------------------------
6418 -- Is_Non_Overriding_Operation --
6419 ---------------------------------
6421 function Is_Non_Overriding_Operation
6422 (Prev_E : Entity_Id;
6423 New_E : Entity_Id) return Boolean
6425 Formal : Entity_Id;
6426 F_Typ : Entity_Id;
6427 G_Typ : Entity_Id := Empty;
6429 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
6430 -- If F_Type is a derived type associated with a generic actual subtype,
6431 -- then return its Generic_Parent_Type attribute, else return Empty.
6433 function Types_Correspond
6434 (P_Type : Entity_Id;
6435 N_Type : Entity_Id) return Boolean;
6436 -- Returns true if and only if the types (or designated types in the
6437 -- case of anonymous access types) are the same or N_Type is derived
6438 -- directly or indirectly from P_Type.
6440 -----------------------------
6441 -- Get_Generic_Parent_Type --
6442 -----------------------------
6444 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
6445 G_Typ : Entity_Id;
6446 Indic : Node_Id;
6448 begin
6449 if Is_Derived_Type (F_Typ)
6450 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
6451 then
6452 -- The tree must be traversed to determine the parent subtype in
6453 -- the generic unit, which unfortunately isn't always available
6454 -- via semantic attributes. ??? (Note: The use of Original_Node
6455 -- is needed for cases where a full derived type has been
6456 -- rewritten.)
6458 Indic := Subtype_Indication
6459 (Type_Definition (Original_Node (Parent (F_Typ))));
6461 if Nkind (Indic) = N_Subtype_Indication then
6462 G_Typ := Entity (Subtype_Mark (Indic));
6463 else
6464 G_Typ := Entity (Indic);
6465 end if;
6467 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
6468 and then Present (Generic_Parent_Type (Parent (G_Typ)))
6469 then
6470 return Generic_Parent_Type (Parent (G_Typ));
6471 end if;
6472 end if;
6474 return Empty;
6475 end Get_Generic_Parent_Type;
6477 ----------------------
6478 -- Types_Correspond --
6479 ----------------------
6481 function Types_Correspond
6482 (P_Type : Entity_Id;
6483 N_Type : Entity_Id) return Boolean
6485 Prev_Type : Entity_Id := Base_Type (P_Type);
6486 New_Type : Entity_Id := Base_Type (N_Type);
6488 begin
6489 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
6490 Prev_Type := Designated_Type (Prev_Type);
6491 end if;
6493 if Ekind (New_Type) = E_Anonymous_Access_Type then
6494 New_Type := Designated_Type (New_Type);
6495 end if;
6497 if Prev_Type = New_Type then
6498 return True;
6500 elsif not Is_Class_Wide_Type (New_Type) then
6501 while Etype (New_Type) /= New_Type loop
6502 New_Type := Etype (New_Type);
6503 if New_Type = Prev_Type then
6504 return True;
6505 end if;
6506 end loop;
6507 end if;
6508 return False;
6509 end Types_Correspond;
6511 -- Start of processing for Is_Non_Overriding_Operation
6513 begin
6514 -- In the case where both operations are implicit derived subprograms
6515 -- then neither overrides the other. This can only occur in certain
6516 -- obscure cases (e.g., derivation from homographs created in a generic
6517 -- instantiation).
6519 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
6520 return True;
6522 elsif Ekind (Current_Scope) = E_Package
6523 and then Is_Generic_Instance (Current_Scope)
6524 and then In_Private_Part (Current_Scope)
6525 and then Comes_From_Source (New_E)
6526 then
6527 -- We examine the formals and result subtype of the inherited
6528 -- operation, to determine whether their type is derived from (the
6529 -- instance of) a generic type.
6531 Formal := First_Formal (Prev_E);
6533 while Present (Formal) loop
6534 F_Typ := Base_Type (Etype (Formal));
6536 if Ekind (F_Typ) = E_Anonymous_Access_Type then
6537 F_Typ := Designated_Type (F_Typ);
6538 end if;
6540 G_Typ := Get_Generic_Parent_Type (F_Typ);
6542 Next_Formal (Formal);
6543 end loop;
6545 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
6546 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
6547 end if;
6549 if No (G_Typ) then
6550 return False;
6551 end if;
6553 -- If the generic type is a private type, then the original operation
6554 -- was not overriding in the generic, because there was no primitive
6555 -- operation to override.
6557 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
6558 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
6559 N_Formal_Private_Type_Definition
6560 then
6561 return True;
6563 -- The generic parent type is the ancestor of a formal derived
6564 -- type declaration. We need to check whether it has a primitive
6565 -- operation that should be overridden by New_E in the generic.
6567 else
6568 declare
6569 P_Formal : Entity_Id;
6570 N_Formal : Entity_Id;
6571 P_Typ : Entity_Id;
6572 N_Typ : Entity_Id;
6573 P_Prim : Entity_Id;
6574 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
6576 begin
6577 while Present (Prim_Elt) loop
6578 P_Prim := Node (Prim_Elt);
6580 if Chars (P_Prim) = Chars (New_E)
6581 and then Ekind (P_Prim) = Ekind (New_E)
6582 then
6583 P_Formal := First_Formal (P_Prim);
6584 N_Formal := First_Formal (New_E);
6585 while Present (P_Formal) and then Present (N_Formal) loop
6586 P_Typ := Etype (P_Formal);
6587 N_Typ := Etype (N_Formal);
6589 if not Types_Correspond (P_Typ, N_Typ) then
6590 exit;
6591 end if;
6593 Next_Entity (P_Formal);
6594 Next_Entity (N_Formal);
6595 end loop;
6597 -- Found a matching primitive operation belonging to the
6598 -- formal ancestor type, so the new subprogram is
6599 -- overriding.
6601 if No (P_Formal)
6602 and then No (N_Formal)
6603 and then (Ekind (New_E) /= E_Function
6604 or else
6605 Types_Correspond
6606 (Etype (P_Prim), Etype (New_E)))
6607 then
6608 return False;
6609 end if;
6610 end if;
6612 Next_Elmt (Prim_Elt);
6613 end loop;
6615 -- If no match found, then the new subprogram does not
6616 -- override in the generic (nor in the instance).
6618 return True;
6619 end;
6620 end if;
6621 else
6622 return False;
6623 end if;
6624 end Is_Non_Overriding_Operation;
6626 ------------------------------
6627 -- Make_Inequality_Operator --
6628 ------------------------------
6630 -- S is the defining identifier of an equality operator. We build a
6631 -- subprogram declaration with the right signature. This operation is
6632 -- intrinsic, because it is always expanded as the negation of the
6633 -- call to the equality function.
6635 procedure Make_Inequality_Operator (S : Entity_Id) is
6636 Loc : constant Source_Ptr := Sloc (S);
6637 Decl : Node_Id;
6638 Formals : List_Id;
6639 Op_Name : Entity_Id;
6641 FF : constant Entity_Id := First_Formal (S);
6642 NF : constant Entity_Id := Next_Formal (FF);
6644 begin
6645 -- Check that equality was properly defined, ignore call if not
6647 if No (NF) then
6648 return;
6649 end if;
6651 declare
6652 A : constant Entity_Id :=
6653 Make_Defining_Identifier (Sloc (FF),
6654 Chars => Chars (FF));
6656 B : constant Entity_Id :=
6657 Make_Defining_Identifier (Sloc (NF),
6658 Chars => Chars (NF));
6660 begin
6661 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
6663 Formals := New_List (
6664 Make_Parameter_Specification (Loc,
6665 Defining_Identifier => A,
6666 Parameter_Type =>
6667 New_Reference_To (Etype (First_Formal (S)),
6668 Sloc (Etype (First_Formal (S))))),
6670 Make_Parameter_Specification (Loc,
6671 Defining_Identifier => B,
6672 Parameter_Type =>
6673 New_Reference_To (Etype (Next_Formal (First_Formal (S))),
6674 Sloc (Etype (Next_Formal (First_Formal (S)))))));
6676 Decl :=
6677 Make_Subprogram_Declaration (Loc,
6678 Specification =>
6679 Make_Function_Specification (Loc,
6680 Defining_Unit_Name => Op_Name,
6681 Parameter_Specifications => Formals,
6682 Result_Definition =>
6683 New_Reference_To (Standard_Boolean, Loc)));
6685 -- Insert inequality right after equality if it is explicit or after
6686 -- the derived type when implicit. These entities are created only
6687 -- for visibility purposes, and eventually replaced in the course of
6688 -- expansion, so they do not need to be attached to the tree and seen
6689 -- by the back-end. Keeping them internal also avoids spurious
6690 -- freezing problems. The declaration is inserted in the tree for
6691 -- analysis, and removed afterwards. If the equality operator comes
6692 -- from an explicit declaration, attach the inequality immediately
6693 -- after. Else the equality is inherited from a derived type
6694 -- declaration, so insert inequality after that declaration.
6696 if No (Alias (S)) then
6697 Insert_After (Unit_Declaration_Node (S), Decl);
6698 elsif Is_List_Member (Parent (S)) then
6699 Insert_After (Parent (S), Decl);
6700 else
6701 Insert_After (Parent (Etype (First_Formal (S))), Decl);
6702 end if;
6704 Mark_Rewrite_Insertion (Decl);
6705 Set_Is_Intrinsic_Subprogram (Op_Name);
6706 Analyze (Decl);
6707 Remove (Decl);
6708 Set_Has_Completion (Op_Name);
6709 Set_Corresponding_Equality (Op_Name, S);
6710 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
6711 end;
6712 end Make_Inequality_Operator;
6714 ----------------------
6715 -- May_Need_Actuals --
6716 ----------------------
6718 procedure May_Need_Actuals (Fun : Entity_Id) is
6719 F : Entity_Id;
6720 B : Boolean;
6722 begin
6723 F := First_Formal (Fun);
6724 B := True;
6725 while Present (F) loop
6726 if No (Default_Value (F)) then
6727 B := False;
6728 exit;
6729 end if;
6731 Next_Formal (F);
6732 end loop;
6734 Set_Needs_No_Actuals (Fun, B);
6735 end May_Need_Actuals;
6737 ---------------------
6738 -- Mode_Conformant --
6739 ---------------------
6741 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
6742 Result : Boolean;
6743 begin
6744 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
6745 return Result;
6746 end Mode_Conformant;
6748 ---------------------------
6749 -- New_Overloaded_Entity --
6750 ---------------------------
6752 procedure New_Overloaded_Entity
6753 (S : Entity_Id;
6754 Derived_Type : Entity_Id := Empty)
6756 Overridden_Subp : Entity_Id := Empty;
6757 -- Set if the current scope has an operation that is type-conformant
6758 -- with S, and becomes hidden by S.
6760 Is_Primitive_Subp : Boolean;
6761 -- Set to True if the new subprogram is primitive
6763 E : Entity_Id;
6764 -- Entity that S overrides
6766 Prev_Vis : Entity_Id := Empty;
6767 -- Predecessor of E in Homonym chain
6769 procedure Check_For_Primitive_Subprogram
6770 (Is_Primitive : out Boolean;
6771 Is_Overriding : Boolean := False);
6772 -- If the subprogram being analyzed is a primitive operation of the type
6773 -- of a formal or result, set the Has_Primitive_Operations flag on the
6774 -- type, and set Is_Primitive to True (otherwise set to False). Set the
6775 -- corresponding flag on the entity itself for later use.
6777 procedure Check_Synchronized_Overriding
6778 (Def_Id : Entity_Id;
6779 Overridden_Subp : out Entity_Id);
6780 -- First determine if Def_Id is an entry or a subprogram either defined
6781 -- in the scope of a task or protected type, or is a primitive of such
6782 -- a type. Check whether Def_Id overrides a subprogram of an interface
6783 -- implemented by the synchronized type, return the overridden entity
6784 -- or Empty.
6786 function Is_Private_Declaration (E : Entity_Id) return Boolean;
6787 -- Check that E is declared in the private part of the current package,
6788 -- or in the package body, where it may hide a previous declaration.
6789 -- We can't use In_Private_Part by itself because this flag is also
6790 -- set when freezing entities, so we must examine the place of the
6791 -- declaration in the tree, and recognize wrapper packages as well.
6793 function Is_Overriding_Alias
6794 (Old_E : Entity_Id;
6795 New_E : Entity_Id) return Boolean;
6796 -- Check whether new subprogram and old subprogram are both inherited
6797 -- from subprograms that have distinct dispatch table entries. This can
6798 -- occur with derivations from instances with accidental homonyms.
6799 -- The function is conservative given that the converse is only true
6800 -- within instances that contain accidental overloadings.
6802 ------------------------------------
6803 -- Check_For_Primitive_Subprogram --
6804 ------------------------------------
6806 procedure Check_For_Primitive_Subprogram
6807 (Is_Primitive : out Boolean;
6808 Is_Overriding : Boolean := False)
6810 Formal : Entity_Id;
6811 F_Typ : Entity_Id;
6812 B_Typ : Entity_Id;
6814 function Visible_Part_Type (T : Entity_Id) return Boolean;
6815 -- Returns true if T is declared in the visible part of the current
6816 -- package scope; otherwise returns false. Assumes that T is declared
6817 -- in a package.
6819 procedure Check_Private_Overriding (T : Entity_Id);
6820 -- Checks that if a primitive abstract subprogram of a visible
6821 -- abstract type is declared in a private part, then it must override
6822 -- an abstract subprogram declared in the visible part. Also checks
6823 -- that if a primitive function with a controlling result is declared
6824 -- in a private part, then it must override a function declared in
6825 -- the visible part.
6827 ------------------------------
6828 -- Check_Private_Overriding --
6829 ------------------------------
6831 procedure Check_Private_Overriding (T : Entity_Id) is
6832 begin
6833 if Is_Package_Or_Generic_Package (Current_Scope)
6834 and then In_Private_Part (Current_Scope)
6835 and then Visible_Part_Type (T)
6836 and then not In_Instance
6837 then
6838 if Is_Abstract_Type (T)
6839 and then Is_Abstract_Subprogram (S)
6840 and then (not Is_Overriding
6841 or else not Is_Abstract_Subprogram (E))
6842 then
6843 Error_Msg_N ("abstract subprograms must be visible "
6844 & "(RM 3.9.3(10))!", S);
6846 elsif Ekind (S) = E_Function
6847 and then Is_Tagged_Type (T)
6848 and then T = Base_Type (Etype (S))
6849 and then not Is_Overriding
6850 then
6851 Error_Msg_N
6852 ("private function with tagged result must"
6853 & " override visible-part function", S);
6854 Error_Msg_N
6855 ("\move subprogram to the visible part"
6856 & " (RM 3.9.3(10))", S);
6857 end if;
6858 end if;
6859 end Check_Private_Overriding;
6861 -----------------------
6862 -- Visible_Part_Type --
6863 -----------------------
6865 function Visible_Part_Type (T : Entity_Id) return Boolean is
6866 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
6867 N : Node_Id;
6869 begin
6870 -- If the entity is a private type, then it must be declared in a
6871 -- visible part.
6873 if Ekind (T) in Private_Kind then
6874 return True;
6875 end if;
6877 -- Otherwise, we traverse the visible part looking for its
6878 -- corresponding declaration. We cannot use the declaration
6879 -- node directly because in the private part the entity of a
6880 -- private type is the one in the full view, which does not
6881 -- indicate that it is the completion of something visible.
6883 N := First (Visible_Declarations (Specification (P)));
6884 while Present (N) loop
6885 if Nkind (N) = N_Full_Type_Declaration
6886 and then Present (Defining_Identifier (N))
6887 and then T = Defining_Identifier (N)
6888 then
6889 return True;
6891 elsif Nkind_In (N, N_Private_Type_Declaration,
6892 N_Private_Extension_Declaration)
6893 and then Present (Defining_Identifier (N))
6894 and then T = Full_View (Defining_Identifier (N))
6895 then
6896 return True;
6897 end if;
6899 Next (N);
6900 end loop;
6902 return False;
6903 end Visible_Part_Type;
6905 -- Start of processing for Check_For_Primitive_Subprogram
6907 begin
6908 Is_Primitive := False;
6910 if not Comes_From_Source (S) then
6911 null;
6913 -- If subprogram is at library level, it is not primitive operation
6915 elsif Current_Scope = Standard_Standard then
6916 null;
6918 elsif (Is_Package_Or_Generic_Package (Current_Scope)
6919 and then not In_Package_Body (Current_Scope))
6920 or else Is_Overriding
6921 then
6922 -- For function, check return type
6924 if Ekind (S) = E_Function then
6925 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
6926 F_Typ := Designated_Type (Etype (S));
6927 else
6928 F_Typ := Etype (S);
6929 end if;
6931 B_Typ := Base_Type (F_Typ);
6933 if Scope (B_Typ) = Current_Scope
6934 and then not Is_Class_Wide_Type (B_Typ)
6935 and then not Is_Generic_Type (B_Typ)
6936 then
6937 Is_Primitive := True;
6938 Set_Has_Primitive_Operations (B_Typ);
6939 Set_Is_Primitive (S);
6940 Check_Private_Overriding (B_Typ);
6941 end if;
6942 end if;
6944 -- For all subprograms, check formals
6946 Formal := First_Formal (S);
6947 while Present (Formal) loop
6948 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
6949 F_Typ := Designated_Type (Etype (Formal));
6950 else
6951 F_Typ := Etype (Formal);
6952 end if;
6954 B_Typ := Base_Type (F_Typ);
6956 if Ekind (B_Typ) = E_Access_Subtype then
6957 B_Typ := Base_Type (B_Typ);
6958 end if;
6960 if Scope (B_Typ) = Current_Scope
6961 and then not Is_Class_Wide_Type (B_Typ)
6962 and then not Is_Generic_Type (B_Typ)
6963 then
6964 Is_Primitive := True;
6965 Set_Is_Primitive (S);
6966 Set_Has_Primitive_Operations (B_Typ);
6967 Check_Private_Overriding (B_Typ);
6968 end if;
6970 Next_Formal (Formal);
6971 end loop;
6972 end if;
6973 end Check_For_Primitive_Subprogram;
6975 -----------------------------------
6976 -- Check_Synchronized_Overriding --
6977 -----------------------------------
6979 procedure Check_Synchronized_Overriding
6980 (Def_Id : Entity_Id;
6981 Overridden_Subp : out Entity_Id)
6983 Ifaces_List : Elist_Id;
6984 In_Scope : Boolean;
6985 Typ : Entity_Id;
6987 function Matches_Prefixed_View_Profile
6988 (Prim_Params : List_Id;
6989 Iface_Params : List_Id) return Boolean;
6990 -- Determine whether a subprogram's parameter profile Prim_Params
6991 -- matches that of a potentially overridden interface subprogram
6992 -- Iface_Params. Also determine if the type of first parameter of
6993 -- Iface_Params is an implemented interface.
6995 -----------------------------------
6996 -- Matches_Prefixed_View_Profile --
6997 -----------------------------------
6999 function Matches_Prefixed_View_Profile
7000 (Prim_Params : List_Id;
7001 Iface_Params : List_Id) return Boolean
7003 Iface_Id : Entity_Id;
7004 Iface_Param : Node_Id;
7005 Iface_Typ : Entity_Id;
7006 Prim_Id : Entity_Id;
7007 Prim_Param : Node_Id;
7008 Prim_Typ : Entity_Id;
7010 function Is_Implemented
7011 (Ifaces_List : Elist_Id;
7012 Iface : Entity_Id) return Boolean;
7013 -- Determine if Iface is implemented by the current task or
7014 -- protected type.
7016 --------------------
7017 -- Is_Implemented --
7018 --------------------
7020 function Is_Implemented
7021 (Ifaces_List : Elist_Id;
7022 Iface : Entity_Id) return Boolean
7024 Iface_Elmt : Elmt_Id;
7026 begin
7027 Iface_Elmt := First_Elmt (Ifaces_List);
7028 while Present (Iface_Elmt) loop
7029 if Node (Iface_Elmt) = Iface then
7030 return True;
7031 end if;
7033 Next_Elmt (Iface_Elmt);
7034 end loop;
7036 return False;
7037 end Is_Implemented;
7039 -- Start of processing for Matches_Prefixed_View_Profile
7041 begin
7042 Iface_Param := First (Iface_Params);
7043 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7045 if Is_Access_Type (Iface_Typ) then
7046 Iface_Typ := Designated_Type (Iface_Typ);
7047 end if;
7049 Prim_Param := First (Prim_Params);
7051 -- The first parameter of the potentially overridden subprogram
7052 -- must be an interface implemented by Prim.
7054 if not Is_Interface (Iface_Typ)
7055 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7056 then
7057 return False;
7058 end if;
7060 -- The checks on the object parameters are done, move onto the
7061 -- rest of the parameters.
7063 if not In_Scope then
7064 Prim_Param := Next (Prim_Param);
7065 end if;
7067 Iface_Param := Next (Iface_Param);
7068 while Present (Iface_Param) and then Present (Prim_Param) loop
7069 Iface_Id := Defining_Identifier (Iface_Param);
7070 Iface_Typ := Find_Parameter_Type (Iface_Param);
7072 Prim_Id := Defining_Identifier (Prim_Param);
7073 Prim_Typ := Find_Parameter_Type (Prim_Param);
7075 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7076 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7077 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7078 then
7079 Iface_Typ := Designated_Type (Iface_Typ);
7080 Prim_Typ := Designated_Type (Prim_Typ);
7081 end if;
7083 -- Case of multiple interface types inside a parameter profile
7085 -- (Obj_Param : in out Iface; ...; Param : Iface)
7087 -- If the interface type is implemented, then the matching type
7088 -- in the primitive should be the implementing record type.
7090 if Ekind (Iface_Typ) = E_Record_Type
7091 and then Is_Interface (Iface_Typ)
7092 and then Is_Implemented (Ifaces_List, Iface_Typ)
7093 then
7094 if Prim_Typ /= Typ then
7095 return False;
7096 end if;
7098 -- The two parameters must be both mode and subtype conformant
7100 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7101 or else not
7102 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7103 then
7104 return False;
7105 end if;
7107 Next (Iface_Param);
7108 Next (Prim_Param);
7109 end loop;
7111 -- One of the two lists contains more parameters than the other
7113 if Present (Iface_Param) or else Present (Prim_Param) then
7114 return False;
7115 end if;
7117 return True;
7118 end Matches_Prefixed_View_Profile;
7120 -- Start of processing for Check_Synchronized_Overriding
7122 begin
7123 Overridden_Subp := Empty;
7125 -- Def_Id must be an entry or a subprogram. We should skip predefined
7126 -- primitives internally generated by the frontend; however at this
7127 -- stage predefined primitives are still not fully decorated. As a
7128 -- minor optimization we skip here internally generated subprograms.
7130 if (Ekind (Def_Id) /= E_Entry
7131 and then Ekind (Def_Id) /= E_Function
7132 and then Ekind (Def_Id) /= E_Procedure)
7133 or else not Comes_From_Source (Def_Id)
7134 then
7135 return;
7136 end if;
7138 -- Search for the concurrent declaration since it contains the list
7139 -- of all implemented interfaces. In this case, the subprogram is
7140 -- declared within the scope of a protected or a task type.
7142 if Present (Scope (Def_Id))
7143 and then Is_Concurrent_Type (Scope (Def_Id))
7144 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7145 then
7146 Typ := Scope (Def_Id);
7147 In_Scope := True;
7149 -- The enclosing scope is not a synchronized type and the subprogram
7150 -- has no formals
7152 elsif No (First_Formal (Def_Id)) then
7153 return;
7155 -- The subprogram has formals and hence it may be a primitive of a
7156 -- concurrent type
7158 else
7159 Typ := Etype (First_Formal (Def_Id));
7161 if Is_Access_Type (Typ) then
7162 Typ := Directly_Designated_Type (Typ);
7163 end if;
7165 if Is_Concurrent_Type (Typ)
7166 and then not Is_Generic_Actual_Type (Typ)
7167 then
7168 In_Scope := False;
7170 -- This case occurs when the concurrent type is declared within
7171 -- a generic unit. As a result the corresponding record has been
7172 -- built and used as the type of the first formal, we just have
7173 -- to retrieve the corresponding concurrent type.
7175 elsif Is_Concurrent_Record_Type (Typ)
7176 and then Present (Corresponding_Concurrent_Type (Typ))
7177 then
7178 Typ := Corresponding_Concurrent_Type (Typ);
7179 In_Scope := False;
7181 else
7182 return;
7183 end if;
7184 end if;
7186 -- There is no overriding to check if is an inherited operation in a
7187 -- type derivation on for a generic actual.
7189 Collect_Interfaces (Typ, Ifaces_List);
7191 if Is_Empty_Elmt_List (Ifaces_List) then
7192 return;
7193 end if;
7195 -- Determine whether entry or subprogram Def_Id overrides a primitive
7196 -- operation that belongs to one of the interfaces in Ifaces_List.
7198 declare
7199 Candidate : Entity_Id := Empty;
7200 Hom : Entity_Id := Empty;
7201 Iface_Typ : Entity_Id;
7202 Subp : Entity_Id := Empty;
7204 begin
7205 -- Traverse the homonym chain, looking at a potentially
7206 -- overridden subprogram that belongs to an implemented
7207 -- interface.
7209 Hom := Current_Entity_In_Scope (Def_Id);
7210 while Present (Hom) loop
7211 Subp := Hom;
7213 if Subp = Def_Id
7214 or else not Is_Overloadable (Subp)
7215 or else not Is_Primitive (Subp)
7216 or else not Is_Dispatching_Operation (Subp)
7217 or else not Present (Find_Dispatching_Type (Subp))
7218 or else not Is_Interface (Find_Dispatching_Type (Subp))
7219 then
7220 null;
7222 -- Entries and procedures can override abstract or null
7223 -- interface procedures
7225 elsif (Ekind (Def_Id) = E_Procedure
7226 or else Ekind (Def_Id) = E_Entry)
7227 and then Ekind (Subp) = E_Procedure
7228 and then Matches_Prefixed_View_Profile
7229 (Parameter_Specifications (Parent (Def_Id)),
7230 Parameter_Specifications (Parent (Subp)))
7231 then
7232 Candidate := Subp;
7234 -- For an overridden subprogram Subp, check whether the mode
7235 -- of its first parameter is correct depending on the kind
7236 -- of synchronized type.
7238 declare
7239 Formal : constant Node_Id := First_Formal (Candidate);
7241 begin
7242 -- In order for an entry or a protected procedure to
7243 -- override, the first parameter of the overridden
7244 -- routine must be of mode "out", "in out" or
7245 -- access-to-variable.
7247 if (Ekind (Candidate) = E_Entry
7248 or else Ekind (Candidate) = E_Procedure)
7249 and then Is_Protected_Type (Typ)
7250 and then Ekind (Formal) /= E_In_Out_Parameter
7251 and then Ekind (Formal) /= E_Out_Parameter
7252 and then Nkind (Parameter_Type (Parent (Formal)))
7253 /= N_Access_Definition
7254 then
7255 null;
7257 -- All other cases are OK since a task entry or routine
7258 -- does not have a restriction on the mode of the first
7259 -- parameter of the overridden interface routine.
7261 else
7262 Overridden_Subp := Candidate;
7263 return;
7264 end if;
7265 end;
7267 -- Functions can override abstract interface functions
7269 elsif Ekind (Def_Id) = E_Function
7270 and then Ekind (Subp) = E_Function
7271 and then Matches_Prefixed_View_Profile
7272 (Parameter_Specifications (Parent (Def_Id)),
7273 Parameter_Specifications (Parent (Subp)))
7274 and then Etype (Result_Definition (Parent (Def_Id))) =
7275 Etype (Result_Definition (Parent (Subp)))
7276 then
7277 Overridden_Subp := Subp;
7278 return;
7279 end if;
7281 Hom := Homonym (Hom);
7282 end loop;
7284 -- After examining all candidates for overriding, we are
7285 -- left with the best match which is a mode incompatible
7286 -- interface routine. Do not emit an error if the Expander
7287 -- is active since this error will be detected later on
7288 -- after all concurrent types are expanded and all wrappers
7289 -- are built. This check is meant for spec-only
7290 -- compilations.
7292 if Present (Candidate)
7293 and then not Expander_Active
7294 then
7295 Iface_Typ :=
7296 Find_Parameter_Type (Parent (First_Formal (Candidate)));
7298 -- Def_Id is primitive of a protected type, declared
7299 -- inside the type, and the candidate is primitive of a
7300 -- limited or synchronized interface.
7302 if In_Scope
7303 and then Is_Protected_Type (Typ)
7304 and then
7305 (Is_Limited_Interface (Iface_Typ)
7306 or else Is_Protected_Interface (Iface_Typ)
7307 or else Is_Synchronized_Interface (Iface_Typ)
7308 or else Is_Task_Interface (Iface_Typ))
7309 then
7310 -- Must reword this message, comma before to in -gnatj
7311 -- mode ???
7313 Error_Msg_NE
7314 ("first formal of & must be of mode `OUT`, `IN OUT`"
7315 & " or access-to-variable", Typ, Candidate);
7316 Error_Msg_N
7317 ("\to be overridden by protected procedure or entry "
7318 & "(RM 9.4(11.9/2))", Typ);
7319 end if;
7320 end if;
7322 Overridden_Subp := Candidate;
7323 return;
7324 end;
7325 end Check_Synchronized_Overriding;
7327 ----------------------------
7328 -- Is_Private_Declaration --
7329 ----------------------------
7331 function Is_Private_Declaration (E : Entity_Id) return Boolean is
7332 Priv_Decls : List_Id;
7333 Decl : constant Node_Id := Unit_Declaration_Node (E);
7335 begin
7336 if Is_Package_Or_Generic_Package (Current_Scope)
7337 and then In_Private_Part (Current_Scope)
7338 then
7339 Priv_Decls :=
7340 Private_Declarations (
7341 Specification (Unit_Declaration_Node (Current_Scope)));
7343 return In_Package_Body (Current_Scope)
7344 or else
7345 (Is_List_Member (Decl)
7346 and then List_Containing (Decl) = Priv_Decls)
7347 or else (Nkind (Parent (Decl)) = N_Package_Specification
7348 and then not
7349 Is_Compilation_Unit
7350 (Defining_Entity (Parent (Decl)))
7351 and then List_Containing (Parent (Parent (Decl)))
7352 = Priv_Decls);
7353 else
7354 return False;
7355 end if;
7356 end Is_Private_Declaration;
7358 --------------------------
7359 -- Is_Overriding_Alias --
7360 --------------------------
7362 function Is_Overriding_Alias
7363 (Old_E : Entity_Id;
7364 New_E : Entity_Id) return Boolean
7366 AO : constant Entity_Id := Alias (Old_E);
7367 AN : constant Entity_Id := Alias (New_E);
7369 begin
7370 return Scope (AO) /= Scope (AN)
7371 or else No (DTC_Entity (AO))
7372 or else No (DTC_Entity (AN))
7373 or else DT_Position (AO) = DT_Position (AN);
7374 end Is_Overriding_Alias;
7376 -- Start of processing for New_Overloaded_Entity
7378 begin
7379 -- We need to look for an entity that S may override. This must be a
7380 -- homonym in the current scope, so we look for the first homonym of
7381 -- S in the current scope as the starting point for the search.
7383 E := Current_Entity_In_Scope (S);
7385 -- If there is no homonym then this is definitely not overriding
7387 if No (E) then
7388 Enter_Overloaded_Entity (S);
7389 Check_Dispatching_Operation (S, Empty);
7390 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
7392 -- If subprogram has an explicit declaration, check whether it
7393 -- has an overriding indicator.
7395 if Comes_From_Source (S) then
7396 Check_Synchronized_Overriding (S, Overridden_Subp);
7397 Check_Overriding_Indicator
7398 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
7399 end if;
7401 -- If there is a homonym that is not overloadable, then we have an
7402 -- error, except for the special cases checked explicitly below.
7404 elsif not Is_Overloadable (E) then
7406 -- Check for spurious conflict produced by a subprogram that has the
7407 -- same name as that of the enclosing generic package. The conflict
7408 -- occurs within an instance, between the subprogram and the renaming
7409 -- declaration for the package. After the subprogram, the package
7410 -- renaming declaration becomes hidden.
7412 if Ekind (E) = E_Package
7413 and then Present (Renamed_Object (E))
7414 and then Renamed_Object (E) = Current_Scope
7415 and then Nkind (Parent (Renamed_Object (E))) =
7416 N_Package_Specification
7417 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
7418 then
7419 Set_Is_Hidden (E);
7420 Set_Is_Immediately_Visible (E, False);
7421 Enter_Overloaded_Entity (S);
7422 Set_Homonym (S, Homonym (E));
7423 Check_Dispatching_Operation (S, Empty);
7424 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
7426 -- If the subprogram is implicit it is hidden by the previous
7427 -- declaration. However if it is dispatching, it must appear in the
7428 -- dispatch table anyway, because it can be dispatched to even if it
7429 -- cannot be called directly.
7431 elsif Present (Alias (S))
7432 and then not Comes_From_Source (S)
7433 then
7434 Set_Scope (S, Current_Scope);
7436 if Is_Dispatching_Operation (Alias (S)) then
7437 Check_Dispatching_Operation (S, Empty);
7438 end if;
7440 return;
7442 else
7443 Error_Msg_Sloc := Sloc (E);
7445 -- Generate message, with useful additional warning if in generic
7447 if Is_Generic_Unit (E) then
7448 Error_Msg_N ("previous generic unit cannot be overloaded", S);
7449 Error_Msg_N ("\& conflicts with declaration#", S);
7450 else
7451 Error_Msg_N ("& conflicts with declaration#", S);
7452 end if;
7454 return;
7455 end if;
7457 -- E exists and is overloadable
7459 else
7460 -- Ada 2005 (AI-251): Derivation of abstract interface primitives
7461 -- need no check against the homonym chain. They are directly added
7462 -- to the list of primitive operations of Derived_Type.
7464 if Ada_Version >= Ada_05
7465 and then Present (Derived_Type)
7466 and then Is_Dispatching_Operation (Alias (S))
7467 and then Present (Find_Dispatching_Type (Alias (S)))
7468 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
7469 then
7470 goto Add_New_Entity;
7471 end if;
7473 Check_Synchronized_Overriding (S, Overridden_Subp);
7475 -- Loop through E and its homonyms to determine if any of them is
7476 -- the candidate for overriding by S.
7478 while Present (E) loop
7480 -- Definitely not interesting if not in the current scope
7482 if Scope (E) /= Current_Scope then
7483 null;
7485 -- Check if we have type conformance
7487 elsif Type_Conformant (E, S) then
7489 -- If the old and new entities have the same profile and one
7490 -- is not the body of the other, then this is an error, unless
7491 -- one of them is implicitly declared.
7493 -- There are some cases when both can be implicit, for example
7494 -- when both a literal and a function that overrides it are
7495 -- inherited in a derivation, or when an inherited operation
7496 -- of a tagged full type overrides the inherited operation of
7497 -- a private extension. Ada 83 had a special rule for the
7498 -- literal case. In Ada95, the later implicit operation hides
7499 -- the former, and the literal is always the former. In the
7500 -- odd case where both are derived operations declared at the
7501 -- same point, both operations should be declared, and in that
7502 -- case we bypass the following test and proceed to the next
7503 -- part. This can only occur for certain obscure cases in
7504 -- instances, when an operation on a type derived from a formal
7505 -- private type does not override a homograph inherited from
7506 -- the actual. In subsequent derivations of such a type, the
7507 -- DT positions of these operations remain distinct, if they
7508 -- have been set.
7510 if Present (Alias (S))
7511 and then (No (Alias (E))
7512 or else Comes_From_Source (E)
7513 or else Is_Abstract_Subprogram (S)
7514 or else
7515 (Is_Dispatching_Operation (E)
7516 and then Is_Overriding_Alias (E, S)))
7517 and then Ekind (E) /= E_Enumeration_Literal
7518 then
7519 -- When an derived operation is overloaded it may be due to
7520 -- the fact that the full view of a private extension
7521 -- re-inherits. It has to be dealt with.
7523 if Is_Package_Or_Generic_Package (Current_Scope)
7524 and then In_Private_Part (Current_Scope)
7525 then
7526 Check_Operation_From_Private_View (S, E);
7527 end if;
7529 -- In any case the implicit operation remains hidden by
7530 -- the existing declaration, which is overriding.
7532 Set_Is_Overriding_Operation (E);
7534 if Comes_From_Source (E) then
7535 Check_Overriding_Indicator (E, S, Is_Primitive => False);
7537 -- Indicate that E overrides the operation from which
7538 -- S is inherited.
7540 if Present (Alias (S)) then
7541 Set_Overridden_Operation (E, Alias (S));
7542 else
7543 Set_Overridden_Operation (E, S);
7544 end if;
7545 end if;
7547 return;
7549 -- Within an instance, the renaming declarations for actual
7550 -- subprograms may become ambiguous, but they do not hide each
7551 -- other.
7553 elsif Ekind (E) /= E_Entry
7554 and then not Comes_From_Source (E)
7555 and then not Is_Generic_Instance (E)
7556 and then (Present (Alias (E))
7557 or else Is_Intrinsic_Subprogram (E))
7558 and then (not In_Instance
7559 or else No (Parent (E))
7560 or else Nkind (Unit_Declaration_Node (E)) /=
7561 N_Subprogram_Renaming_Declaration)
7562 then
7563 -- A subprogram child unit is not allowed to override an
7564 -- inherited subprogram (10.1.1(20)).
7566 if Is_Child_Unit (S) then
7567 Error_Msg_N
7568 ("child unit overrides inherited subprogram in parent",
7570 return;
7571 end if;
7573 if Is_Non_Overriding_Operation (E, S) then
7574 Enter_Overloaded_Entity (S);
7576 if No (Derived_Type)
7577 or else Is_Tagged_Type (Derived_Type)
7578 then
7579 Check_Dispatching_Operation (S, Empty);
7580 end if;
7582 return;
7583 end if;
7585 -- E is a derived operation or an internal operator which
7586 -- is being overridden. Remove E from further visibility.
7587 -- Furthermore, if E is a dispatching operation, it must be
7588 -- replaced in the list of primitive operations of its type
7589 -- (see Override_Dispatching_Operation).
7591 Overridden_Subp := E;
7593 declare
7594 Prev : Entity_Id;
7596 begin
7597 Prev := First_Entity (Current_Scope);
7598 while Present (Prev)
7599 and then Next_Entity (Prev) /= E
7600 loop
7601 Next_Entity (Prev);
7602 end loop;
7604 -- It is possible for E to be in the current scope and
7605 -- yet not in the entity chain. This can only occur in a
7606 -- generic context where E is an implicit concatenation
7607 -- in the formal part, because in a generic body the
7608 -- entity chain starts with the formals.
7610 pragma Assert
7611 (Present (Prev) or else Chars (E) = Name_Op_Concat);
7613 -- E must be removed both from the entity_list of the
7614 -- current scope, and from the visibility chain
7616 if Debug_Flag_E then
7617 Write_Str ("Override implicit operation ");
7618 Write_Int (Int (E));
7619 Write_Eol;
7620 end if;
7622 -- If E is a predefined concatenation, it stands for four
7623 -- different operations. As a result, a single explicit
7624 -- declaration does not hide it. In a possible ambiguous
7625 -- situation, Disambiguate chooses the user-defined op,
7626 -- so it is correct to retain the previous internal one.
7628 if Chars (E) /= Name_Op_Concat
7629 or else Ekind (E) /= E_Operator
7630 then
7631 -- For nondispatching derived operations that are
7632 -- overridden by a subprogram declared in the private
7633 -- part of a package, we retain the derived subprogram
7634 -- but mark it as not immediately visible. If the
7635 -- derived operation was declared in the visible part
7636 -- then this ensures that it will still be visible
7637 -- outside the package with the proper signature
7638 -- (calls from outside must also be directed to this
7639 -- version rather than the overriding one, unlike the
7640 -- dispatching case). Calls from inside the package
7641 -- will still resolve to the overriding subprogram
7642 -- since the derived one is marked as not visible
7643 -- within the package.
7645 -- If the private operation is dispatching, we achieve
7646 -- the overriding by keeping the implicit operation
7647 -- but setting its alias to be the overriding one. In
7648 -- this fashion the proper body is executed in all
7649 -- cases, but the original signature is used outside
7650 -- of the package.
7652 -- If the overriding is not in the private part, we
7653 -- remove the implicit operation altogether.
7655 if Is_Private_Declaration (S) then
7656 if not Is_Dispatching_Operation (E) then
7657 Set_Is_Immediately_Visible (E, False);
7658 else
7659 -- Work done in Override_Dispatching_Operation,
7660 -- so nothing else need to be done here.
7662 null;
7663 end if;
7665 else
7666 -- Find predecessor of E in Homonym chain
7668 if E = Current_Entity (E) then
7669 Prev_Vis := Empty;
7670 else
7671 Prev_Vis := Current_Entity (E);
7672 while Homonym (Prev_Vis) /= E loop
7673 Prev_Vis := Homonym (Prev_Vis);
7674 end loop;
7675 end if;
7677 if Prev_Vis /= Empty then
7679 -- Skip E in the visibility chain
7681 Set_Homonym (Prev_Vis, Homonym (E));
7683 else
7684 Set_Name_Entity_Id (Chars (E), Homonym (E));
7685 end if;
7687 Set_Next_Entity (Prev, Next_Entity (E));
7689 if No (Next_Entity (Prev)) then
7690 Set_Last_Entity (Current_Scope, Prev);
7691 end if;
7693 end if;
7694 end if;
7696 Enter_Overloaded_Entity (S);
7697 Set_Is_Overriding_Operation (S);
7698 Check_Overriding_Indicator (S, E, Is_Primitive => True);
7700 -- If S is a user-defined subprogram or a null procedure
7701 -- expanded to override an inherited null procedure, then
7702 -- indicate that E overrides the operation from which S
7703 -- is inherited. It seems odd that Overridden_Operation
7704 -- isn't set in all cases where Is_Overriding_Operation
7705 -- is true, but doing so causes infinite loops in the
7706 -- compiler for implicit overriding subprograms. ???
7708 if Comes_From_Source (S)
7709 or else
7710 (Present (Parent (S))
7711 and then
7712 Nkind (Parent (S)) = N_Procedure_Specification
7713 and then
7714 Null_Present (Parent (S)))
7715 then
7716 if Present (Alias (E)) then
7717 Set_Overridden_Operation (S, Alias (E));
7718 else
7719 Set_Overridden_Operation (S, E);
7720 end if;
7721 end if;
7723 if Is_Dispatching_Operation (E) then
7725 -- An overriding dispatching subprogram inherits the
7726 -- convention of the overridden subprogram (by
7727 -- AI-117).
7729 Set_Convention (S, Convention (E));
7730 Check_Dispatching_Operation (S, E);
7732 else
7733 Check_Dispatching_Operation (S, Empty);
7734 end if;
7736 Check_For_Primitive_Subprogram
7737 (Is_Primitive_Subp, Is_Overriding => True);
7738 goto Check_Inequality;
7739 end;
7741 -- Apparent redeclarations in instances can occur when two
7742 -- formal types get the same actual type. The subprograms in
7743 -- in the instance are legal, even if not callable from the
7744 -- outside. Calls from within are disambiguated elsewhere.
7745 -- For dispatching operations in the visible part, the usual
7746 -- rules apply, and operations with the same profile are not
7747 -- legal (B830001).
7749 elsif (In_Instance_Visible_Part
7750 and then not Is_Dispatching_Operation (E))
7751 or else In_Instance_Not_Visible
7752 then
7753 null;
7755 -- Here we have a real error (identical profile)
7757 else
7758 Error_Msg_Sloc := Sloc (E);
7760 -- Avoid cascaded errors if the entity appears in
7761 -- subsequent calls.
7763 Set_Scope (S, Current_Scope);
7765 -- Generate error, with extra useful warning for the case
7766 -- of a generic instance with no completion.
7768 if Is_Generic_Instance (S)
7769 and then not Has_Completion (E)
7770 then
7771 Error_Msg_N
7772 ("instantiation cannot provide body for&", S);
7773 Error_Msg_N ("\& conflicts with declaration#", S);
7774 else
7775 Error_Msg_N ("& conflicts with declaration#", S);
7776 end if;
7778 return;
7779 end if;
7781 else
7782 -- If one subprogram has an access parameter and the other
7783 -- a parameter of an access type, calls to either might be
7784 -- ambiguous. Verify that parameters match except for the
7785 -- access parameter.
7787 if May_Hide_Profile then
7788 declare
7789 F1 : Entity_Id;
7790 F2 : Entity_Id;
7792 begin
7793 F1 := First_Formal (S);
7794 F2 := First_Formal (E);
7795 while Present (F1) and then Present (F2) loop
7796 if Is_Access_Type (Etype (F1)) then
7797 if not Is_Access_Type (Etype (F2))
7798 or else not Conforming_Types
7799 (Designated_Type (Etype (F1)),
7800 Designated_Type (Etype (F2)),
7801 Type_Conformant)
7802 then
7803 May_Hide_Profile := False;
7804 end if;
7806 elsif
7807 not Conforming_Types
7808 (Etype (F1), Etype (F2), Type_Conformant)
7809 then
7810 May_Hide_Profile := False;
7811 end if;
7813 Next_Formal (F1);
7814 Next_Formal (F2);
7815 end loop;
7817 if May_Hide_Profile
7818 and then No (F1)
7819 and then No (F2)
7820 then
7821 Error_Msg_NE ("calls to& may be ambiguous?", S, S);
7822 end if;
7823 end;
7824 end if;
7825 end if;
7827 E := Homonym (E);
7828 end loop;
7830 <<Add_New_Entity>>
7832 -- On exit, we know that S is a new entity
7834 Enter_Overloaded_Entity (S);
7835 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
7836 Check_Overriding_Indicator
7837 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
7839 -- If S is a derived operation for an untagged type then by
7840 -- definition it's not a dispatching operation (even if the parent
7841 -- operation was dispatching), so we don't call
7842 -- Check_Dispatching_Operation in that case.
7844 if No (Derived_Type)
7845 or else Is_Tagged_Type (Derived_Type)
7846 then
7847 Check_Dispatching_Operation (S, Empty);
7848 end if;
7849 end if;
7851 -- If this is a user-defined equality operator that is not a derived
7852 -- subprogram, create the corresponding inequality. If the operation is
7853 -- dispatching, the expansion is done elsewhere, and we do not create
7854 -- an explicit inequality operation.
7856 <<Check_Inequality>>
7857 if Chars (S) = Name_Op_Eq
7858 and then Etype (S) = Standard_Boolean
7859 and then Present (Parent (S))
7860 and then not Is_Dispatching_Operation (S)
7861 then
7862 Make_Inequality_Operator (S);
7863 end if;
7864 end New_Overloaded_Entity;
7866 ---------------------
7867 -- Process_Formals --
7868 ---------------------
7870 procedure Process_Formals
7871 (T : List_Id;
7872 Related_Nod : Node_Id)
7874 Param_Spec : Node_Id;
7875 Formal : Entity_Id;
7876 Formal_Type : Entity_Id;
7877 Default : Node_Id;
7878 Ptype : Entity_Id;
7880 Num_Out_Params : Nat := 0;
7881 First_Out_Param : Entity_Id := Empty;
7882 -- Used for setting Is_Only_Out_Parameter
7884 function Designates_From_With_Type (Typ : Entity_Id) return Boolean;
7885 -- Determine whether an access type designates a type coming from a
7886 -- limited view.
7888 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
7889 -- Check whether the default has a class-wide type. After analysis the
7890 -- default has the type of the formal, so we must also check explicitly
7891 -- for an access attribute.
7893 -------------------------------
7894 -- Designates_From_With_Type --
7895 -------------------------------
7897 function Designates_From_With_Type (Typ : Entity_Id) return Boolean is
7898 Desig : Entity_Id := Typ;
7900 begin
7901 if Is_Access_Type (Desig) then
7902 Desig := Directly_Designated_Type (Desig);
7903 end if;
7905 if Is_Class_Wide_Type (Desig) then
7906 Desig := Root_Type (Desig);
7907 end if;
7909 return
7910 Ekind (Desig) = E_Incomplete_Type
7911 and then From_With_Type (Desig);
7912 end Designates_From_With_Type;
7914 ---------------------------
7915 -- Is_Class_Wide_Default --
7916 ---------------------------
7918 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
7919 begin
7920 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
7921 or else (Nkind (D) = N_Attribute_Reference
7922 and then Attribute_Name (D) = Name_Access
7923 and then Is_Class_Wide_Type (Etype (Prefix (D))));
7924 end Is_Class_Wide_Default;
7926 -- Start of processing for Process_Formals
7928 begin
7929 -- In order to prevent premature use of the formals in the same formal
7930 -- part, the Ekind is left undefined until all default expressions are
7931 -- analyzed. The Ekind is established in a separate loop at the end.
7933 Param_Spec := First (T);
7934 while Present (Param_Spec) loop
7935 Formal := Defining_Identifier (Param_Spec);
7936 Set_Never_Set_In_Source (Formal, True);
7937 Enter_Name (Formal);
7939 -- Case of ordinary parameters
7941 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
7942 Find_Type (Parameter_Type (Param_Spec));
7943 Ptype := Parameter_Type (Param_Spec);
7945 if Ptype = Error then
7946 goto Continue;
7947 end if;
7949 Formal_Type := Entity (Ptype);
7951 if Is_Incomplete_Type (Formal_Type)
7952 or else
7953 (Is_Class_Wide_Type (Formal_Type)
7954 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
7955 then
7956 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
7957 -- primitive operations, as long as their completion is
7958 -- in the same declarative part. If in the private part
7959 -- this means that the type cannot be a Taft-amendment type.
7960 -- Check is done on package exit. For access to subprograms,
7961 -- the use is legal for Taft-amendment types.
7963 if Is_Tagged_Type (Formal_Type) then
7964 if Ekind (Scope (Current_Scope)) = E_Package
7965 and then In_Private_Part (Scope (Current_Scope))
7966 and then not From_With_Type (Formal_Type)
7967 and then not Is_Class_Wide_Type (Formal_Type)
7968 then
7969 if not Nkind_In
7970 (Parent (T), N_Access_Function_Definition,
7971 N_Access_Procedure_Definition)
7972 then
7973 Append_Elmt
7974 (Current_Scope,
7975 Private_Dependents (Base_Type (Formal_Type)));
7976 end if;
7977 end if;
7979 -- Special handling of Value_Type for CIL case
7981 elsif Is_Value_Type (Formal_Type) then
7982 null;
7984 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
7985 N_Access_Procedure_Definition)
7986 then
7987 Error_Msg_NE
7988 ("invalid use of incomplete type&",
7989 Param_Spec, Formal_Type);
7991 -- Further checks on the legality of incomplete types
7992 -- in formal parts must be delayed until the freeze point
7993 -- of the enclosing subprogram or access to subprogram.
7994 end if;
7996 elsif Ekind (Formal_Type) = E_Void then
7997 Error_Msg_NE ("premature use of&",
7998 Parameter_Type (Param_Spec), Formal_Type);
7999 end if;
8001 -- Ada 2005 (AI-231): Create and decorate an internal subtype
8002 -- declaration corresponding to the null-excluding type of the
8003 -- formal in the enclosing scope. Finally, replace the parameter
8004 -- type of the formal with the internal subtype.
8006 if Ada_Version >= Ada_05
8007 and then Null_Exclusion_Present (Param_Spec)
8008 then
8009 if not Is_Access_Type (Formal_Type) then
8010 Error_Msg_N
8011 ("`NOT NULL` allowed only for an access type", Param_Spec);
8013 else
8014 if Can_Never_Be_Null (Formal_Type)
8015 and then Comes_From_Source (Related_Nod)
8016 then
8017 Error_Msg_NE
8018 ("`NOT NULL` not allowed (& already excludes null)",
8019 Param_Spec,
8020 Formal_Type);
8021 end if;
8023 Formal_Type :=
8024 Create_Null_Excluding_Itype
8025 (T => Formal_Type,
8026 Related_Nod => Related_Nod,
8027 Scope_Id => Scope (Current_Scope));
8029 -- If the designated type of the itype is an itype we
8030 -- decorate it with the Has_Delayed_Freeze attribute to
8031 -- avoid problems with the backend.
8033 -- Example:
8034 -- type T is access procedure;
8035 -- procedure Op (O : not null T);
8037 if Is_Itype (Directly_Designated_Type (Formal_Type)) then
8038 Set_Has_Delayed_Freeze (Formal_Type);
8039 end if;
8040 end if;
8041 end if;
8043 -- An access formal type
8045 else
8046 Formal_Type :=
8047 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
8049 -- No need to continue if we already notified errors
8051 if not Present (Formal_Type) then
8052 return;
8053 end if;
8055 -- Ada 2005 (AI-254)
8057 declare
8058 AD : constant Node_Id :=
8059 Access_To_Subprogram_Definition
8060 (Parameter_Type (Param_Spec));
8061 begin
8062 if Present (AD) and then Protected_Present (AD) then
8063 Formal_Type :=
8064 Replace_Anonymous_Access_To_Protected_Subprogram
8065 (Param_Spec);
8066 end if;
8067 end;
8068 end if;
8070 Set_Etype (Formal, Formal_Type);
8071 Default := Expression (Param_Spec);
8073 if Present (Default) then
8074 if Out_Present (Param_Spec) then
8075 Error_Msg_N
8076 ("default initialization only allowed for IN parameters",
8077 Param_Spec);
8078 end if;
8080 -- Do the special preanalysis of the expression (see section on
8081 -- "Handling of Default Expressions" in the spec of package Sem).
8083 Preanalyze_Spec_Expression (Default, Formal_Type);
8085 -- An access to constant cannot be the default for
8086 -- an access parameter that is an access to variable.
8088 if Ekind (Formal_Type) = E_Anonymous_Access_Type
8089 and then not Is_Access_Constant (Formal_Type)
8090 and then Is_Access_Type (Etype (Default))
8091 and then Is_Access_Constant (Etype (Default))
8092 then
8093 Error_Msg_N
8094 ("formal that is access to variable cannot be initialized " &
8095 "with an access-to-constant expression", Default);
8096 end if;
8098 -- Check that the designated type of an access parameter's default
8099 -- is not a class-wide type unless the parameter's designated type
8100 -- is also class-wide.
8102 if Ekind (Formal_Type) = E_Anonymous_Access_Type
8103 and then not Designates_From_With_Type (Formal_Type)
8104 and then Is_Class_Wide_Default (Default)
8105 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
8106 then
8107 Error_Msg_N
8108 ("access to class-wide expression not allowed here", Default);
8109 end if;
8111 -- Check incorrect use of dynamically tagged expressions
8113 if Is_Tagged_Type (Formal_Type) then
8114 Check_Dynamically_Tagged_Expression
8115 (Expr => Default,
8116 Typ => Formal_Type,
8117 Related_Nod => Default);
8118 end if;
8119 end if;
8121 -- Ada 2005 (AI-231): Static checks
8123 if Ada_Version >= Ada_05
8124 and then Is_Access_Type (Etype (Formal))
8125 and then Can_Never_Be_Null (Etype (Formal))
8126 then
8127 Null_Exclusion_Static_Checks (Param_Spec);
8128 end if;
8130 <<Continue>>
8131 Next (Param_Spec);
8132 end loop;
8134 -- If this is the formal part of a function specification, analyze the
8135 -- subtype mark in the context where the formals are visible but not
8136 -- yet usable, and may hide outer homographs.
8138 if Nkind (Related_Nod) = N_Function_Specification then
8139 Analyze_Return_Type (Related_Nod);
8140 end if;
8142 -- Now set the kind (mode) of each formal
8144 Param_Spec := First (T);
8146 while Present (Param_Spec) loop
8147 Formal := Defining_Identifier (Param_Spec);
8148 Set_Formal_Mode (Formal);
8150 if Ekind (Formal) = E_In_Parameter then
8151 Set_Default_Value (Formal, Expression (Param_Spec));
8153 if Present (Expression (Param_Spec)) then
8154 Default := Expression (Param_Spec);
8156 if Is_Scalar_Type (Etype (Default)) then
8157 if Nkind
8158 (Parameter_Type (Param_Spec)) /= N_Access_Definition
8159 then
8160 Formal_Type := Entity (Parameter_Type (Param_Spec));
8162 else
8163 Formal_Type := Access_Definition
8164 (Related_Nod, Parameter_Type (Param_Spec));
8165 end if;
8167 Apply_Scalar_Range_Check (Default, Formal_Type);
8168 end if;
8169 end if;
8171 elsif Ekind (Formal) = E_Out_Parameter then
8172 Num_Out_Params := Num_Out_Params + 1;
8174 if Num_Out_Params = 1 then
8175 First_Out_Param := Formal;
8176 end if;
8178 elsif Ekind (Formal) = E_In_Out_Parameter then
8179 Num_Out_Params := Num_Out_Params + 1;
8180 end if;
8182 Next (Param_Spec);
8183 end loop;
8185 if Present (First_Out_Param) and then Num_Out_Params = 1 then
8186 Set_Is_Only_Out_Parameter (First_Out_Param);
8187 end if;
8188 end Process_Formals;
8190 ------------------
8191 -- Process_PPCs --
8192 ------------------
8194 procedure Process_PPCs
8195 (N : Node_Id;
8196 Spec_Id : Entity_Id;
8197 Body_Id : Entity_Id)
8199 Loc : constant Source_Ptr := Sloc (N);
8200 Prag : Node_Id;
8201 Plist : List_Id := No_List;
8202 Subp : Entity_Id;
8203 Parms : List_Id;
8205 function Grab_PPC (Nam : Name_Id) return Node_Id;
8206 -- Prag contains an analyzed precondition or postcondition pragma.
8207 -- This function copies the pragma, changes it to the corresponding
8208 -- Check pragma and returns the Check pragma as the result. The
8209 -- argument Nam is either Name_Precondition or Name_Postcondition.
8211 --------------
8212 -- Grab_PPC --
8213 --------------
8215 function Grab_PPC (Nam : Name_Id) return Node_Id is
8216 CP : constant Node_Id := New_Copy_Tree (Prag);
8218 begin
8219 -- Set Analyzed to false, since we want to reanalyze the check
8220 -- procedure. Note that it is only at the outer level that we
8221 -- do this fiddling, for the spec cases, the already preanalyzed
8222 -- parameters are not affected.
8224 -- For a postcondition pragma within a generic, preserve the pragma
8225 -- for later expansion.
8227 Set_Analyzed (CP, False);
8229 if Nam = Name_Postcondition
8230 and then not Expander_Active
8231 then
8232 return CP;
8233 end if;
8235 -- Change pragma into corresponding pragma Check
8237 Prepend_To (Pragma_Argument_Associations (CP),
8238 Make_Pragma_Argument_Association (Sloc (Prag),
8239 Expression =>
8240 Make_Identifier (Loc,
8241 Chars => Nam)));
8242 Set_Pragma_Identifier (CP,
8243 Make_Identifier (Sloc (Prag),
8244 Chars => Name_Check));
8246 return CP;
8247 end Grab_PPC;
8249 -- Start of processing for Process_PPCs
8251 begin
8252 -- Nothing to do if we are not generating code
8254 if Operating_Mode /= Generate_Code then
8255 return;
8256 end if;
8258 -- Grab preconditions from spec
8260 if Present (Spec_Id) then
8262 -- Loop through PPC pragmas from spec. Note that preconditions from
8263 -- the body will be analyzed and converted when we scan the body
8264 -- declarations below.
8266 Prag := Spec_PPC_List (Spec_Id);
8267 while Present (Prag) loop
8268 if Pragma_Name (Prag) = Name_Precondition
8269 and then PPC_Enabled (Prag)
8270 then
8271 -- Add pragma Check at the start of the declarations of N.
8272 -- Note that this processing reverses the order of the list,
8273 -- which is what we want since new entries were chained to
8274 -- the head of the list.
8276 Prepend (Grab_PPC (Name_Precondition), Declarations (N));
8277 end if;
8279 Prag := Next_Pragma (Prag);
8280 end loop;
8281 end if;
8283 -- Build postconditions procedure if needed and prepend the following
8284 -- declaration to the start of the declarations for the subprogram.
8286 -- procedure _postconditions [(_Result : resulttype)] is
8287 -- begin
8288 -- pragma Check (Postcondition, condition [,message]);
8289 -- pragma Check (Postcondition, condition [,message]);
8290 -- ...
8291 -- end;
8293 -- First we deal with the postconditions in the body
8295 if Is_Non_Empty_List (Declarations (N)) then
8297 -- Loop through declarations
8299 Prag := First (Declarations (N));
8300 while Present (Prag) loop
8301 if Nkind (Prag) = N_Pragma then
8303 -- If pragma, capture if enabled postcondition, else ignore
8305 if Pragma_Name (Prag) = Name_Postcondition
8306 and then Check_Enabled (Name_Postcondition)
8307 then
8308 if Plist = No_List then
8309 Plist := Empty_List;
8310 end if;
8312 Analyze (Prag);
8314 -- If expansion is disabled, as in a generic unit,
8315 -- save pragma for later expansion.
8317 if not Expander_Active then
8318 Prepend (Grab_PPC (Name_Postcondition), Declarations (N));
8319 else
8320 Append (Grab_PPC (Name_Postcondition), Plist);
8321 end if;
8322 end if;
8324 Next (Prag);
8326 -- Not a pragma, if comes from source, then end scan
8328 elsif Comes_From_Source (Prag) then
8329 exit;
8331 -- Skip stuff not coming from source
8333 else
8334 Next (Prag);
8335 end if;
8336 end loop;
8337 end if;
8339 -- Now deal with any postconditions from the spec
8341 if Present (Spec_Id) then
8343 -- Loop through PPC pragmas from spec
8345 Prag := Spec_PPC_List (Spec_Id);
8346 while Present (Prag) loop
8347 if Pragma_Name (Prag) = Name_Postcondition
8348 and then PPC_Enabled (Prag)
8349 then
8350 if Plist = No_List then
8351 Plist := Empty_List;
8352 end if;
8354 if not Expander_Active then
8355 Prepend (Grab_PPC (Name_Postcondition), Declarations (N));
8356 else
8357 Append (Grab_PPC (Name_Postcondition), Plist);
8358 end if;
8359 end if;
8361 Prag := Next_Pragma (Prag);
8362 end loop;
8363 end if;
8365 -- If we had any postconditions and expansion is enabled, build
8366 -- the _Postconditions procedure.
8368 if Present (Plist)
8369 and then Expander_Active
8370 then
8371 Subp := Defining_Entity (N);
8373 if Etype (Subp) /= Standard_Void_Type then
8374 Parms := New_List (
8375 Make_Parameter_Specification (Loc,
8376 Defining_Identifier =>
8377 Make_Defining_Identifier (Loc,
8378 Chars => Name_uResult),
8379 Parameter_Type => New_Occurrence_Of (Etype (Subp), Loc)));
8380 else
8381 Parms := No_List;
8382 end if;
8384 declare
8385 Post_Proc : constant Entity_Id :=
8386 Make_Defining_Identifier (Loc,
8387 Chars => Name_uPostconditions);
8388 -- The entity for the _Postconditions procedure
8389 begin
8390 Prepend_To (Declarations (N),
8391 Make_Subprogram_Body (Loc,
8392 Specification =>
8393 Make_Procedure_Specification (Loc,
8394 Defining_Unit_Name => Post_Proc,
8395 Parameter_Specifications => Parms),
8397 Declarations => Empty_List,
8399 Handled_Statement_Sequence =>
8400 Make_Handled_Sequence_Of_Statements (Loc,
8401 Statements => Plist)));
8403 -- If this is a procedure, set the Postcondition_Proc attribute
8405 if Etype (Subp) = Standard_Void_Type then
8406 Set_Postcondition_Proc (Spec_Id, Post_Proc);
8407 end if;
8408 end;
8410 if Present (Spec_Id) then
8411 Set_Has_Postconditions (Spec_Id);
8412 else
8413 Set_Has_Postconditions (Body_Id);
8414 end if;
8415 end if;
8416 end Process_PPCs;
8418 ----------------------------
8419 -- Reference_Body_Formals --
8420 ----------------------------
8422 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
8423 Fs : Entity_Id;
8424 Fb : Entity_Id;
8426 begin
8427 if Error_Posted (Spec) then
8428 return;
8429 end if;
8431 -- Iterate over both lists. They may be of different lengths if the two
8432 -- specs are not conformant.
8434 Fs := First_Formal (Spec);
8435 Fb := First_Formal (Bod);
8436 while Present (Fs) and then Present (Fb) loop
8437 Generate_Reference (Fs, Fb, 'b');
8439 if Style_Check then
8440 Style.Check_Identifier (Fb, Fs);
8441 end if;
8443 Set_Spec_Entity (Fb, Fs);
8444 Set_Referenced (Fs, False);
8445 Next_Formal (Fs);
8446 Next_Formal (Fb);
8447 end loop;
8448 end Reference_Body_Formals;
8450 -------------------------
8451 -- Set_Actual_Subtypes --
8452 -------------------------
8454 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
8455 Loc : constant Source_Ptr := Sloc (N);
8456 Decl : Node_Id;
8457 Formal : Entity_Id;
8458 T : Entity_Id;
8459 First_Stmt : Node_Id := Empty;
8460 AS_Needed : Boolean;
8462 begin
8463 -- If this is an empty initialization procedure, no need to create
8464 -- actual subtypes (small optimization).
8466 if Ekind (Subp) = E_Procedure
8467 and then Is_Null_Init_Proc (Subp)
8468 then
8469 return;
8470 end if;
8472 Formal := First_Formal (Subp);
8473 while Present (Formal) loop
8474 T := Etype (Formal);
8476 -- We never need an actual subtype for a constrained formal
8478 if Is_Constrained (T) then
8479 AS_Needed := False;
8481 -- If we have unknown discriminants, then we do not need an actual
8482 -- subtype, or more accurately we cannot figure it out! Note that
8483 -- all class-wide types have unknown discriminants.
8485 elsif Has_Unknown_Discriminants (T) then
8486 AS_Needed := False;
8488 -- At this stage we have an unconstrained type that may need an
8489 -- actual subtype. For sure the actual subtype is needed if we have
8490 -- an unconstrained array type.
8492 elsif Is_Array_Type (T) then
8493 AS_Needed := True;
8495 -- The only other case needing an actual subtype is an unconstrained
8496 -- record type which is an IN parameter (we cannot generate actual
8497 -- subtypes for the OUT or IN OUT case, since an assignment can
8498 -- change the discriminant values. However we exclude the case of
8499 -- initialization procedures, since discriminants are handled very
8500 -- specially in this context, see the section entitled "Handling of
8501 -- Discriminants" in Einfo.
8503 -- We also exclude the case of Discrim_SO_Functions (functions used
8504 -- in front end layout mode for size/offset values), since in such
8505 -- functions only discriminants are referenced, and not only are such
8506 -- subtypes not needed, but they cannot always be generated, because
8507 -- of order of elaboration issues.
8509 elsif Is_Record_Type (T)
8510 and then Ekind (Formal) = E_In_Parameter
8511 and then Chars (Formal) /= Name_uInit
8512 and then not Is_Unchecked_Union (T)
8513 and then not Is_Discrim_SO_Function (Subp)
8514 then
8515 AS_Needed := True;
8517 -- All other cases do not need an actual subtype
8519 else
8520 AS_Needed := False;
8521 end if;
8523 -- Generate actual subtypes for unconstrained arrays and
8524 -- unconstrained discriminated records.
8526 if AS_Needed then
8527 if Nkind (N) = N_Accept_Statement then
8529 -- If expansion is active, The formal is replaced by a local
8530 -- variable that renames the corresponding entry of the
8531 -- parameter block, and it is this local variable that may
8532 -- require an actual subtype.
8534 if Expander_Active then
8535 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
8536 else
8537 Decl := Build_Actual_Subtype (T, Formal);
8538 end if;
8540 if Present (Handled_Statement_Sequence (N)) then
8541 First_Stmt :=
8542 First (Statements (Handled_Statement_Sequence (N)));
8543 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
8544 Mark_Rewrite_Insertion (Decl);
8545 else
8546 -- If the accept statement has no body, there will be no
8547 -- reference to the actuals, so no need to compute actual
8548 -- subtypes.
8550 return;
8551 end if;
8553 else
8554 Decl := Build_Actual_Subtype (T, Formal);
8555 Prepend (Decl, Declarations (N));
8556 Mark_Rewrite_Insertion (Decl);
8557 end if;
8559 -- The declaration uses the bounds of an existing object, and
8560 -- therefore needs no constraint checks.
8562 Analyze (Decl, Suppress => All_Checks);
8564 -- We need to freeze manually the generated type when it is
8565 -- inserted anywhere else than in a declarative part.
8567 if Present (First_Stmt) then
8568 Insert_List_Before_And_Analyze (First_Stmt,
8569 Freeze_Entity (Defining_Identifier (Decl), Loc));
8570 end if;
8572 if Nkind (N) = N_Accept_Statement
8573 and then Expander_Active
8574 then
8575 Set_Actual_Subtype (Renamed_Object (Formal),
8576 Defining_Identifier (Decl));
8577 else
8578 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
8579 end if;
8580 end if;
8582 Next_Formal (Formal);
8583 end loop;
8584 end Set_Actual_Subtypes;
8586 ---------------------
8587 -- Set_Formal_Mode --
8588 ---------------------
8590 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
8591 Spec : constant Node_Id := Parent (Formal_Id);
8593 begin
8594 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
8595 -- since we ensure that corresponding actuals are always valid at the
8596 -- point of the call.
8598 if Out_Present (Spec) then
8599 if Ekind (Scope (Formal_Id)) = E_Function
8600 or else Ekind (Scope (Formal_Id)) = E_Generic_Function
8601 then
8602 Error_Msg_N ("functions can only have IN parameters", Spec);
8603 Set_Ekind (Formal_Id, E_In_Parameter);
8605 elsif In_Present (Spec) then
8606 Set_Ekind (Formal_Id, E_In_Out_Parameter);
8608 else
8609 Set_Ekind (Formal_Id, E_Out_Parameter);
8610 Set_Never_Set_In_Source (Formal_Id, True);
8611 Set_Is_True_Constant (Formal_Id, False);
8612 Set_Current_Value (Formal_Id, Empty);
8613 end if;
8615 else
8616 Set_Ekind (Formal_Id, E_In_Parameter);
8617 end if;
8619 -- Set Is_Known_Non_Null for access parameters since the language
8620 -- guarantees that access parameters are always non-null. We also set
8621 -- Can_Never_Be_Null, since there is no way to change the value.
8623 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
8625 -- Ada 2005 (AI-231): In Ada95, access parameters are always non-
8626 -- null; In Ada 2005, only if then null_exclusion is explicit.
8628 if Ada_Version < Ada_05
8629 or else Can_Never_Be_Null (Etype (Formal_Id))
8630 then
8631 Set_Is_Known_Non_Null (Formal_Id);
8632 Set_Can_Never_Be_Null (Formal_Id);
8633 end if;
8635 -- Ada 2005 (AI-231): Null-exclusion access subtype
8637 elsif Is_Access_Type (Etype (Formal_Id))
8638 and then Can_Never_Be_Null (Etype (Formal_Id))
8639 then
8640 Set_Is_Known_Non_Null (Formal_Id);
8641 end if;
8643 Set_Mechanism (Formal_Id, Default_Mechanism);
8644 Set_Formal_Validity (Formal_Id);
8645 end Set_Formal_Mode;
8647 -------------------------
8648 -- Set_Formal_Validity --
8649 -------------------------
8651 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
8652 begin
8653 -- If no validity checking, then we cannot assume anything about the
8654 -- validity of parameters, since we do not know there is any checking
8655 -- of the validity on the call side.
8657 if not Validity_Checks_On then
8658 return;
8660 -- If validity checking for parameters is enabled, this means we are
8661 -- not supposed to make any assumptions about argument values.
8663 elsif Validity_Check_Parameters then
8664 return;
8666 -- If we are checking in parameters, we will assume that the caller is
8667 -- also checking parameters, so we can assume the parameter is valid.
8669 elsif Ekind (Formal_Id) = E_In_Parameter
8670 and then Validity_Check_In_Params
8671 then
8672 Set_Is_Known_Valid (Formal_Id, True);
8674 -- Similar treatment for IN OUT parameters
8676 elsif Ekind (Formal_Id) = E_In_Out_Parameter
8677 and then Validity_Check_In_Out_Params
8678 then
8679 Set_Is_Known_Valid (Formal_Id, True);
8680 end if;
8681 end Set_Formal_Validity;
8683 ------------------------
8684 -- Subtype_Conformant --
8685 ------------------------
8687 function Subtype_Conformant
8688 (New_Id : Entity_Id;
8689 Old_Id : Entity_Id;
8690 Skip_Controlling_Formals : Boolean := False) return Boolean
8692 Result : Boolean;
8693 begin
8694 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
8695 Skip_Controlling_Formals => Skip_Controlling_Formals);
8696 return Result;
8697 end Subtype_Conformant;
8699 ---------------------
8700 -- Type_Conformant --
8701 ---------------------
8703 function Type_Conformant
8704 (New_Id : Entity_Id;
8705 Old_Id : Entity_Id;
8706 Skip_Controlling_Formals : Boolean := False) return Boolean
8708 Result : Boolean;
8709 begin
8710 May_Hide_Profile := False;
8712 Check_Conformance
8713 (New_Id, Old_Id, Type_Conformant, False, Result,
8714 Skip_Controlling_Formals => Skip_Controlling_Formals);
8715 return Result;
8716 end Type_Conformant;
8718 -------------------------------
8719 -- Valid_Operator_Definition --
8720 -------------------------------
8722 procedure Valid_Operator_Definition (Designator : Entity_Id) is
8723 N : Integer := 0;
8724 F : Entity_Id;
8725 Id : constant Name_Id := Chars (Designator);
8726 N_OK : Boolean;
8728 begin
8729 F := First_Formal (Designator);
8730 while Present (F) loop
8731 N := N + 1;
8733 if Present (Default_Value (F)) then
8734 Error_Msg_N
8735 ("default values not allowed for operator parameters",
8736 Parent (F));
8737 end if;
8739 Next_Formal (F);
8740 end loop;
8742 -- Verify that user-defined operators have proper number of arguments
8743 -- First case of operators which can only be unary
8745 if Id = Name_Op_Not
8746 or else Id = Name_Op_Abs
8747 then
8748 N_OK := (N = 1);
8750 -- Case of operators which can be unary or binary
8752 elsif Id = Name_Op_Add
8753 or Id = Name_Op_Subtract
8754 then
8755 N_OK := (N in 1 .. 2);
8757 -- All other operators can only be binary
8759 else
8760 N_OK := (N = 2);
8761 end if;
8763 if not N_OK then
8764 Error_Msg_N
8765 ("incorrect number of arguments for operator", Designator);
8766 end if;
8768 if Id = Name_Op_Ne
8769 and then Base_Type (Etype (Designator)) = Standard_Boolean
8770 and then not Is_Intrinsic_Subprogram (Designator)
8771 then
8772 Error_Msg_N
8773 ("explicit definition of inequality not allowed", Designator);
8774 end if;
8775 end Valid_Operator_Definition;
8777 end Sem_Ch6;