1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Einfo
; use Einfo
;
29 with Errout
; use Errout
;
30 with Expander
; use Expander
;
31 with Exp_Util
; use Exp_Util
;
32 with Freeze
; use Freeze
;
34 with Lib
.Xref
; use Lib
.Xref
;
35 with Namet
; use Namet
;
36 with Nlists
; use Nlists
;
37 with Nmake
; use Nmake
;
39 with Rtsfind
; use Rtsfind
;
41 with Sem_Aux
; use Sem_Aux
;
42 with Sem_Case
; use Sem_Case
;
43 with Sem_Ch3
; use Sem_Ch3
;
44 with Sem_Ch8
; use Sem_Ch8
;
45 with Sem_Disp
; use Sem_Disp
;
46 with Sem_Elab
; use Sem_Elab
;
47 with Sem_Eval
; use Sem_Eval
;
48 with Sem_Res
; use Sem_Res
;
49 with Sem_SCIL
; use Sem_SCIL
;
50 with Sem_Type
; use Sem_Type
;
51 with Sem_Util
; use Sem_Util
;
52 with Sem_Warn
; use Sem_Warn
;
53 with Snames
; use Snames
;
54 with Stand
; use Stand
;
55 with Sinfo
; use Sinfo
;
56 with Targparm
; use Targparm
;
57 with Tbuild
; use Tbuild
;
58 with Uintp
; use Uintp
;
60 package body Sem_Ch5
is
62 Unblocked_Exit_Count
: Nat
:= 0;
63 -- This variable is used when processing if statements, case statements,
64 -- and block statements. It counts the number of exit points that are not
65 -- blocked by unconditional transfer instructions: for IF and CASE, these
66 -- are the branches of the conditional; for a block, they are the statement
67 -- sequence of the block, and the statement sequences of any exception
68 -- handlers that are part of the block. When processing is complete, if
69 -- this count is zero, it means that control cannot fall through the IF,
70 -- CASE or block statement. This is used for the generation of warning
71 -- messages. This variable is recursively saved on entry to processing the
72 -- construct, and restored on exit.
74 -----------------------
75 -- Local Subprograms --
76 -----------------------
78 procedure Analyze_Iteration_Scheme
(N
: Node_Id
);
80 ------------------------
81 -- Analyze_Assignment --
82 ------------------------
84 procedure Analyze_Assignment
(N
: Node_Id
) is
85 Lhs
: constant Node_Id
:= Name
(N
);
86 Rhs
: constant Node_Id
:= Expression
(N
);
91 procedure Diagnose_Non_Variable_Lhs
(N
: Node_Id
);
92 -- N is the node for the left hand side of an assignment, and it is not
93 -- a variable. This routine issues an appropriate diagnostic.
96 -- This is called to kill current value settings of a simple variable
97 -- on the left hand side. We call it if we find any error in analyzing
98 -- the assignment, and at the end of processing before setting any new
99 -- current values in place.
101 procedure Set_Assignment_Type
103 Opnd_Type
: in out Entity_Id
);
104 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type
105 -- is the nominal subtype. This procedure is used to deal with cases
106 -- where the nominal subtype must be replaced by the actual subtype.
108 -------------------------------
109 -- Diagnose_Non_Variable_Lhs --
110 -------------------------------
112 procedure Diagnose_Non_Variable_Lhs
(N
: Node_Id
) is
114 -- Not worth posting another error if left hand side already
115 -- flagged as being illegal in some respect.
117 if Error_Posted
(N
) then
120 -- Some special bad cases of entity names
122 elsif Is_Entity_Name
(N
) then
124 Ent
: constant Entity_Id
:= Entity
(N
);
127 if Ekind
(Ent
) = E_In_Parameter
then
129 ("assignment to IN mode parameter not allowed", N
);
131 -- Renamings of protected private components are turned into
132 -- constants when compiling a protected function. In the case
133 -- of single protected types, the private component appears
136 elsif (Is_Prival
(Ent
)
138 (Ekind
(Current_Scope
) = E_Function
139 or else Ekind
(Enclosing_Dynamic_Scope
(
140 Current_Scope
)) = E_Function
))
142 (Ekind
(Ent
) = E_Component
143 and then Is_Protected_Type
(Scope
(Ent
)))
146 ("protected function cannot modify protected object", N
);
148 elsif Ekind
(Ent
) = E_Loop_Parameter
then
150 ("assignment to loop parameter not allowed", N
);
154 ("left hand side of assignment must be a variable", N
);
158 -- For indexed components or selected components, test prefix
160 elsif Nkind
(N
) = N_Indexed_Component
then
161 Diagnose_Non_Variable_Lhs
(Prefix
(N
));
163 -- Another special case for assignment to discriminant
165 elsif Nkind
(N
) = N_Selected_Component
then
166 if Present
(Entity
(Selector_Name
(N
)))
167 and then Ekind
(Entity
(Selector_Name
(N
))) = E_Discriminant
170 ("assignment to discriminant not allowed", N
);
172 Diagnose_Non_Variable_Lhs
(Prefix
(N
));
176 -- If we fall through, we have no special message to issue!
178 Error_Msg_N
("left hand side of assignment must be a variable", N
);
180 end Diagnose_Non_Variable_Lhs
;
186 procedure Kill_Lhs
is
188 if Is_Entity_Name
(Lhs
) then
190 Ent
: constant Entity_Id
:= Entity
(Lhs
);
192 if Present
(Ent
) then
193 Kill_Current_Values
(Ent
);
199 -------------------------
200 -- Set_Assignment_Type --
201 -------------------------
203 procedure Set_Assignment_Type
205 Opnd_Type
: in out Entity_Id
)
208 Require_Entity
(Opnd
);
210 -- If the assignment operand is an in-out or out parameter, then we
211 -- get the actual subtype (needed for the unconstrained case).
212 -- If the operand is the actual in an entry declaration, then within
213 -- the accept statement it is replaced with a local renaming, which
214 -- may also have an actual subtype.
216 if Is_Entity_Name
(Opnd
)
217 and then (Ekind
(Entity
(Opnd
)) = E_Out_Parameter
218 or else Ekind
(Entity
(Opnd
)) =
220 or else Ekind
(Entity
(Opnd
)) =
221 E_Generic_In_Out_Parameter
223 (Ekind
(Entity
(Opnd
)) = E_Variable
224 and then Nkind
(Parent
(Entity
(Opnd
))) =
225 N_Object_Renaming_Declaration
226 and then Nkind
(Parent
(Parent
(Entity
(Opnd
)))) =
229 Opnd_Type
:= Get_Actual_Subtype
(Opnd
);
231 -- If assignment operand is a component reference, then we get the
232 -- actual subtype of the component for the unconstrained case.
234 elsif Nkind_In
(Opnd
, N_Selected_Component
, N_Explicit_Dereference
)
235 and then not Is_Unchecked_Union
(Opnd_Type
)
237 Decl
:= Build_Actual_Subtype_Of_Component
(Opnd_Type
, Opnd
);
239 if Present
(Decl
) then
240 Insert_Action
(N
, Decl
);
241 Mark_Rewrite_Insertion
(Decl
);
243 Opnd_Type
:= Defining_Identifier
(Decl
);
244 Set_Etype
(Opnd
, Opnd_Type
);
245 Freeze_Itype
(Opnd_Type
, N
);
247 elsif Is_Constrained
(Etype
(Opnd
)) then
248 Opnd_Type
:= Etype
(Opnd
);
251 -- For slice, use the constrained subtype created for the slice
253 elsif Nkind
(Opnd
) = N_Slice
then
254 Opnd_Type
:= Etype
(Opnd
);
256 end Set_Assignment_Type
;
258 -- Start of processing for Analyze_Assignment
261 Mark_Coextensions
(N
, Rhs
);
266 -- Start type analysis for assignment
270 -- In the most general case, both Lhs and Rhs can be overloaded, and we
271 -- must compute the intersection of the possible types on each side.
273 if Is_Overloaded
(Lhs
) then
280 Get_First_Interp
(Lhs
, I
, It
);
282 while Present
(It
.Typ
) loop
283 if Has_Compatible_Type
(Rhs
, It
.Typ
) then
284 if T1
/= Any_Type
then
286 -- An explicit dereference is overloaded if the prefix
287 -- is. Try to remove the ambiguity on the prefix, the
288 -- error will be posted there if the ambiguity is real.
290 if Nkind
(Lhs
) = N_Explicit_Dereference
then
293 PI1
: Interp_Index
:= 0;
299 Get_First_Interp
(Prefix
(Lhs
), PI
, PIt
);
301 while Present
(PIt
.Typ
) loop
302 if Is_Access_Type
(PIt
.Typ
)
303 and then Has_Compatible_Type
304 (Rhs
, Designated_Type
(PIt
.Typ
))
308 Disambiguate
(Prefix
(Lhs
),
311 if PIt
= No_Interp
then
313 ("ambiguous left-hand side"
314 & " in assignment", Lhs
);
317 Resolve
(Prefix
(Lhs
), PIt
.Typ
);
327 Get_Next_Interp
(PI
, PIt
);
333 ("ambiguous left-hand side in assignment", Lhs
);
341 Get_Next_Interp
(I
, It
);
345 if T1
= Any_Type
then
347 ("no valid types for left-hand side for assignment", Lhs
);
353 -- The resulting assignment type is T1, so now we will resolve the
354 -- left hand side of the assignment using this determined type.
358 -- Cases where Lhs is not a variable
360 if not Is_Variable
(Lhs
) then
362 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of
363 -- a protected object.
370 if Ada_Version
>= Ada_05
then
372 -- Handle chains of renamings
375 while Nkind
(Ent
) in N_Has_Entity
376 and then Present
(Entity
(Ent
))
377 and then Present
(Renamed_Object
(Entity
(Ent
)))
379 Ent
:= Renamed_Object
(Entity
(Ent
));
382 if (Nkind
(Ent
) = N_Attribute_Reference
383 and then Attribute_Name
(Ent
) = Name_Priority
)
385 -- Renamings of the attribute Priority applied to protected
386 -- objects have been previously expanded into calls to the
387 -- Get_Ceiling run-time subprogram.
390 (Nkind
(Ent
) = N_Function_Call
391 and then (Entity
(Name
(Ent
)) = RTE
(RE_Get_Ceiling
)
393 Entity
(Name
(Ent
)) = RTE
(RO_PE_Get_Ceiling
)))
395 -- The enclosing subprogram cannot be a protected function
398 while not (Is_Subprogram
(S
)
399 and then Convention
(S
) = Convention_Protected
)
400 and then S
/= Standard_Standard
405 if Ekind
(S
) = E_Function
406 and then Convention
(S
) = Convention_Protected
409 ("protected function cannot modify protected object",
413 -- Changes of the ceiling priority of the protected object
414 -- are only effective if the Ceiling_Locking policy is in
415 -- effect (AARM D.5.2 (5/2)).
417 if Locking_Policy
/= 'C' then
418 Error_Msg_N
("assignment to the attribute PRIORITY has " &
420 Error_Msg_N
("\since no Locking_Policy has been " &
429 Diagnose_Non_Variable_Lhs
(Lhs
);
432 -- Error of assigning to limited type. We do however allow this in
433 -- certain cases where the front end generates the assignments.
435 elsif Is_Limited_Type
(T1
)
436 and then not Assignment_OK
(Lhs
)
437 and then not Assignment_OK
(Original_Node
(Lhs
))
438 and then not Is_Value_Type
(T1
)
440 -- CPP constructors can only be called in declarations
442 if Is_CPP_Constructor_Call
(Rhs
) then
443 Error_Msg_N
("invalid use of 'C'P'P constructor", Rhs
);
446 ("left hand of assignment must not be limited type", Lhs
);
447 Explain_Limited_Type
(T1
, Lhs
);
451 -- Enforce RM 3.9.3 (8): left-hand side cannot be abstract
453 elsif Is_Interface
(T1
)
454 and then not Is_Class_Wide_Type
(T1
)
457 ("target of assignment operation may not be abstract", Lhs
);
461 -- Resolution may have updated the subtype, in case the left-hand
462 -- side is a private protected component. Use the correct subtype
463 -- to avoid scoping issues in the back-end.
467 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
468 -- type. For example:
472 -- type Acc is access P.T;
475 -- with Pkg; use Acc;
476 -- procedure Example is
479 -- A.all := B.all; -- ERROR
482 if Nkind
(Lhs
) = N_Explicit_Dereference
483 and then Ekind
(T1
) = E_Incomplete_Type
485 Error_Msg_N
("invalid use of incomplete type", Lhs
);
490 -- Now we can complete the resolution of the right hand side
492 Set_Assignment_Type
(Lhs
, T1
);
495 -- This is the point at which we check for an unset reference
497 Check_Unset_Reference
(Rhs
);
498 Check_Unprotected_Access
(Lhs
, Rhs
);
500 -- Remaining steps are skipped if Rhs was syntactically in error
509 if not Covers
(T1
, T2
) then
510 Wrong_Type
(Rhs
, Etype
(Lhs
));
515 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
516 -- types, use the non-limited view if available
518 if Nkind
(Rhs
) = N_Explicit_Dereference
519 and then Ekind
(T2
) = E_Incomplete_Type
520 and then Is_Tagged_Type
(T2
)
521 and then Present
(Non_Limited_View
(T2
))
523 T2
:= Non_Limited_View
(T2
);
526 Set_Assignment_Type
(Rhs
, T2
);
528 if Total_Errors_Detected
/= 0 then
538 if T1
= Any_Type
or else T2
= Any_Type
then
543 -- If the rhs is class-wide or dynamically tagged, then require the lhs
544 -- to be class-wide. The case where the rhs is a dynamically tagged call
545 -- to a dispatching operation with a controlling access result is
546 -- excluded from this check, since the target has an access type (and
547 -- no tag propagation occurs in that case).
549 if (Is_Class_Wide_Type
(T2
)
550 or else (Is_Dynamically_Tagged
(Rhs
)
551 and then not Is_Access_Type
(T1
)))
552 and then not Is_Class_Wide_Type
(T1
)
554 Error_Msg_N
("dynamically tagged expression not allowed!", Rhs
);
556 elsif Is_Class_Wide_Type
(T1
)
557 and then not Is_Class_Wide_Type
(T2
)
558 and then not Is_Tag_Indeterminate
(Rhs
)
559 and then not Is_Dynamically_Tagged
(Rhs
)
561 Error_Msg_N
("dynamically tagged expression required!", Rhs
);
564 -- Propagate the tag from a class-wide target to the rhs when the rhs
565 -- is a tag-indeterminate call.
567 if Is_Tag_Indeterminate
(Rhs
) then
568 if Is_Class_Wide_Type
(T1
) then
569 Propagate_Tag
(Lhs
, Rhs
);
571 elsif Nkind
(Rhs
) = N_Function_Call
572 and then Is_Entity_Name
(Name
(Rhs
))
573 and then Is_Abstract_Subprogram
(Entity
(Name
(Rhs
)))
576 ("call to abstract function must be dispatching", Name
(Rhs
));
578 elsif Nkind
(Rhs
) = N_Qualified_Expression
579 and then Nkind
(Expression
(Rhs
)) = N_Function_Call
580 and then Is_Entity_Name
(Name
(Expression
(Rhs
)))
582 Is_Abstract_Subprogram
(Entity
(Name
(Expression
(Rhs
))))
585 ("call to abstract function must be dispatching",
586 Name
(Expression
(Rhs
)));
590 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
591 -- apply an implicit conversion of the rhs to that type to force
592 -- appropriate static and run-time accessibility checks. This applies
593 -- as well to anonymous access-to-subprogram types that are component
594 -- subtypes or formal parameters.
596 if Ada_Version
>= Ada_05
597 and then Is_Access_Type
(T1
)
599 if Is_Local_Anonymous_Access
(T1
)
600 or else Ekind
(T2
) = E_Anonymous_Access_Subprogram_Type
602 Rewrite
(Rhs
, Convert_To
(T1
, Relocate_Node
(Rhs
)));
603 Analyze_And_Resolve
(Rhs
, T1
);
607 -- Ada 2005 (AI-231): Assignment to not null variable
609 if Ada_Version
>= Ada_05
610 and then Can_Never_Be_Null
(T1
)
611 and then not Assignment_OK
(Lhs
)
613 -- Case where we know the right hand side is null
615 if Known_Null
(Rhs
) then
616 Apply_Compile_Time_Constraint_Error
618 Msg
=> "(Ada 2005) null not allowed in null-excluding objects?",
619 Reason
=> CE_Null_Not_Allowed
);
621 -- We still mark this as a possible modification, that's necessary
622 -- to reset Is_True_Constant, and desirable for xref purposes.
624 Note_Possible_Modification
(Lhs
, Sure
=> True);
627 -- If we know the right hand side is non-null, then we convert to the
628 -- target type, since we don't need a run time check in that case.
630 elsif not Can_Never_Be_Null
(T2
) then
631 Rewrite
(Rhs
, Convert_To
(T1
, Relocate_Node
(Rhs
)));
632 Analyze_And_Resolve
(Rhs
, T1
);
636 if Is_Scalar_Type
(T1
) then
637 Apply_Scalar_Range_Check
(Rhs
, Etype
(Lhs
));
639 -- For array types, verify that lengths match. If the right hand side
640 -- if a function call that has been inlined, the assignment has been
641 -- rewritten as a block, and the constraint check will be applied to the
642 -- assignment within the block.
644 elsif Is_Array_Type
(T1
)
646 (Nkind
(Rhs
) /= N_Type_Conversion
647 or else Is_Constrained
(Etype
(Rhs
)))
649 (Nkind
(Rhs
) /= N_Function_Call
650 or else Nkind
(N
) /= N_Block_Statement
)
652 -- Assignment verifies that the length of the Lsh and Rhs are equal,
653 -- but of course the indices do not have to match. If the right-hand
654 -- side is a type conversion to an unconstrained type, a length check
655 -- is performed on the expression itself during expansion. In rare
656 -- cases, the redundant length check is computed on an index type
657 -- with a different representation, triggering incorrect code in
660 Apply_Length_Check
(Rhs
, Etype
(Lhs
));
663 -- Discriminant checks are applied in the course of expansion
668 -- Note: modifications of the Lhs may only be recorded after
669 -- checks have been applied.
671 Note_Possible_Modification
(Lhs
, Sure
=> True);
673 -- ??? a real accessibility check is needed when ???
675 -- Post warning for redundant assignment or variable to itself
677 if Warn_On_Redundant_Constructs
679 -- We only warn for source constructs
681 and then Comes_From_Source
(N
)
683 -- Where the object is the same on both sides
685 and then Same_Object
(Lhs
, Original_Node
(Rhs
))
687 -- But exclude the case where the right side was an operation
688 -- that got rewritten (e.g. JUNK + K, where K was known to be
689 -- zero). We don't want to warn in such a case, since it is
690 -- reasonable to write such expressions especially when K is
691 -- defined symbolically in some other package.
693 and then Nkind
(Original_Node
(Rhs
)) not in N_Op
695 if Nkind
(Lhs
) in N_Has_Entity
then
697 ("?useless assignment of & to itself!", N
, Entity
(Lhs
));
700 ("?useless assignment of object to itself!", N
);
704 -- Check for non-allowed composite assignment
706 if not Support_Composite_Assign_On_Target
707 and then (Is_Array_Type
(T1
) or else Is_Record_Type
(T1
))
708 and then (not Has_Size_Clause
(T1
) or else Esize
(T1
) > 64)
710 Error_Msg_CRT
("composite assignment", N
);
713 -- Check elaboration warning for left side if not in elab code
715 if not In_Subprogram_Or_Concurrent_Unit
then
716 Check_Elab_Assign
(Lhs
);
719 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
720 -- assignment is a source assignment in the extended main source unit.
721 -- We are not interested in any reference information outside this
722 -- context, or in compiler generated assignment statements.
724 if Comes_From_Source
(N
)
725 and then In_Extended_Main_Source_Unit
(Lhs
)
727 Set_Referenced_Modified
(Lhs
, Out_Param
=> False);
730 -- Final step. If left side is an entity, then we may be able to
731 -- reset the current tracked values to new safe values. We only have
732 -- something to do if the left side is an entity name, and expansion
733 -- has not modified the node into something other than an assignment,
734 -- and of course we only capture values if it is safe to do so.
736 if Is_Entity_Name
(Lhs
)
737 and then Nkind
(N
) = N_Assignment_Statement
740 Ent
: constant Entity_Id
:= Entity
(Lhs
);
743 if Safe_To_Capture_Value
(N
, Ent
) then
745 -- If simple variable on left side, warn if this assignment
746 -- blots out another one (rendering it useless) and note
747 -- location of assignment in case no one references value.
748 -- We only do this for source assignments, otherwise we can
749 -- generate bogus warnings when an assignment is rewritten as
750 -- another assignment, and gets tied up with itself.
752 -- Note: we don't use Record_Last_Assignment here, because we
753 -- have lots of other stuff to do under control of this test.
755 if Warn_On_Modified_Unread
756 and then Is_Assignable
(Ent
)
757 and then Comes_From_Source
(N
)
758 and then In_Extended_Main_Source_Unit
(Ent
)
760 Warn_On_Useless_Assignment
(Ent
, N
);
761 Set_Last_Assignment
(Ent
, Lhs
);
764 -- If we are assigning an access type and the left side is an
765 -- entity, then make sure that the Is_Known_[Non_]Null flags
766 -- properly reflect the state of the entity after assignment.
768 if Is_Access_Type
(T1
) then
769 if Known_Non_Null
(Rhs
) then
770 Set_Is_Known_Non_Null
(Ent
, True);
772 elsif Known_Null
(Rhs
)
773 and then not Can_Never_Be_Null
(Ent
)
775 Set_Is_Known_Null
(Ent
, True);
778 Set_Is_Known_Null
(Ent
, False);
780 if not Can_Never_Be_Null
(Ent
) then
781 Set_Is_Known_Non_Null
(Ent
, False);
785 -- For discrete types, we may be able to set the current value
786 -- if the value is known at compile time.
788 elsif Is_Discrete_Type
(T1
)
789 and then Compile_Time_Known_Value
(Rhs
)
791 Set_Current_Value
(Ent
, Rhs
);
793 Set_Current_Value
(Ent
, Empty
);
796 -- If not safe to capture values, kill them
803 end Analyze_Assignment
;
805 -----------------------------
806 -- Analyze_Block_Statement --
807 -----------------------------
809 procedure Analyze_Block_Statement
(N
: Node_Id
) is
810 Decls
: constant List_Id
:= Declarations
(N
);
811 Id
: constant Node_Id
:= Identifier
(N
);
812 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
815 -- If no handled statement sequence is present, things are really
816 -- messed up, and we just return immediately (this is a defence
817 -- against previous errors).
823 -- Normal processing with HSS present
826 EH
: constant List_Id
:= Exception_Handlers
(HSS
);
827 Ent
: Entity_Id
:= Empty
;
830 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
831 -- Recursively save value of this global, will be restored on exit
834 -- Initialize unblocked exit count for statements of begin block
835 -- plus one for each exception handler that is present.
837 Unblocked_Exit_Count
:= 1;
840 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ List_Length
(EH
);
843 -- If a label is present analyze it and mark it as referenced
849 -- An error defense. If we have an identifier, but no entity,
850 -- then something is wrong. If we have previous errors, then
851 -- just remove the identifier and continue, otherwise raise
855 if Total_Errors_Detected
/= 0 then
856 Set_Identifier
(N
, Empty
);
862 Set_Ekind
(Ent
, E_Block
);
863 Generate_Reference
(Ent
, N
, ' ');
864 Generate_Definition
(Ent
);
866 if Nkind
(Parent
(Ent
)) = N_Implicit_Label_Declaration
then
867 Set_Label_Construct
(Parent
(Ent
), N
);
872 -- If no entity set, create a label entity
875 Ent
:= New_Internal_Entity
(E_Block
, Current_Scope
, Sloc
(N
), 'B');
876 Set_Identifier
(N
, New_Occurrence_Of
(Ent
, Sloc
(N
)));
880 Set_Etype
(Ent
, Standard_Void_Type
);
881 Set_Block_Node
(Ent
, Identifier
(N
));
884 if Present
(Decls
) then
885 Analyze_Declarations
(Decls
);
887 Inspect_Deferred_Constant_Completion
(Decls
);
891 Process_End_Label
(HSS
, 'e', Ent
);
893 -- If exception handlers are present, then we indicate that
894 -- enclosing scopes contain a block with handlers. We only
895 -- need to mark non-generic scopes.
900 Set_Has_Nested_Block_With_Handler
(S
);
901 exit when Is_Overloadable
(S
)
902 or else Ekind
(S
) = E_Package
903 or else Is_Generic_Unit
(S
);
908 Check_References
(Ent
);
909 Warn_On_Useless_Assignments
(Ent
);
912 if Unblocked_Exit_Count
= 0 then
913 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
914 Check_Unreachable_Code
(N
);
916 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
919 end Analyze_Block_Statement
;
921 ----------------------------
922 -- Analyze_Case_Statement --
923 ----------------------------
925 procedure Analyze_Case_Statement
(N
: Node_Id
) is
927 Exp_Type
: Entity_Id
;
928 Exp_Btype
: Entity_Id
;
931 Others_Present
: Boolean;
933 pragma Warnings
(Off
, Last_Choice
);
934 pragma Warnings
(Off
, Dont_Care
);
935 -- Don't care about assigned values
937 Statements_Analyzed
: Boolean := False;
938 -- Set True if at least some statement sequences get analyzed.
939 -- If False on exit, means we had a serious error that prevented
940 -- full analysis of the case statement, and as a result it is not
941 -- a good idea to output warning messages about unreachable code.
943 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
944 -- Recursively save value of this global, will be restored on exit
946 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
947 -- Error routine invoked by the generic instantiation below when
948 -- the case statement has a non static choice.
950 procedure Process_Statements
(Alternative
: Node_Id
);
951 -- Analyzes all the statements associated to a case alternative.
952 -- Needed by the generic instantiation below.
954 package Case_Choices_Processing
is new
955 Generic_Choices_Processing
956 (Get_Alternatives
=> Alternatives
,
957 Get_Choices
=> Discrete_Choices
,
958 Process_Empty_Choice
=> No_OP
,
959 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
960 Process_Associated_Node
=> Process_Statements
);
961 use Case_Choices_Processing
;
962 -- Instantiation of the generic choice processing package
964 -----------------------------
965 -- Non_Static_Choice_Error --
966 -----------------------------
968 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
971 ("choice given in case statement is not static!", Choice
);
972 end Non_Static_Choice_Error
;
974 ------------------------
975 -- Process_Statements --
976 ------------------------
978 procedure Process_Statements
(Alternative
: Node_Id
) is
979 Choices
: constant List_Id
:= Discrete_Choices
(Alternative
);
983 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ 1;
984 Statements_Analyzed
:= True;
986 -- An interesting optimization. If the case statement expression
987 -- is a simple entity, then we can set the current value within
988 -- an alternative if the alternative has one possible value.
992 -- when 2 | 3 => beta
993 -- when others => gamma
995 -- Here we know that N is initially 1 within alpha, but for beta
996 -- and gamma, we do not know anything more about the initial value.
998 if Is_Entity_Name
(Exp
) then
1001 if Ekind
(Ent
) = E_Variable
1003 Ekind
(Ent
) = E_In_Out_Parameter
1005 Ekind
(Ent
) = E_Out_Parameter
1007 if List_Length
(Choices
) = 1
1008 and then Nkind
(First
(Choices
)) in N_Subexpr
1009 and then Compile_Time_Known_Value
(First
(Choices
))
1011 Set_Current_Value
(Entity
(Exp
), First
(Choices
));
1014 Analyze_Statements
(Statements
(Alternative
));
1016 -- After analyzing the case, set the current value to empty
1017 -- since we won't know what it is for the next alternative
1018 -- (unless reset by this same circuit), or after the case.
1020 Set_Current_Value
(Entity
(Exp
), Empty
);
1025 -- Case where expression is not an entity name of a variable
1027 Analyze_Statements
(Statements
(Alternative
));
1028 end Process_Statements
;
1030 -- Table to record choices. Put after subprograms since we make
1031 -- a call to Number_Of_Choices to get the right number of entries.
1033 Case_Table
: Choice_Table_Type
(1 .. Number_Of_Choices
(N
));
1034 pragma Warnings
(Off
, Case_Table
);
1036 -- Start of processing for Analyze_Case_Statement
1039 Unblocked_Exit_Count
:= 0;
1040 Exp
:= Expression
(N
);
1043 -- The expression must be of any discrete type. In rare cases, the
1044 -- expander constructs a case statement whose expression has a private
1045 -- type whose full view is discrete. This can happen when generating
1046 -- a stream operation for a variant type after the type is frozen,
1047 -- when the partial of view of the type of the discriminant is private.
1048 -- In that case, use the full view to analyze case alternatives.
1050 if not Is_Overloaded
(Exp
)
1051 and then not Comes_From_Source
(N
)
1052 and then Is_Private_Type
(Etype
(Exp
))
1053 and then Present
(Full_View
(Etype
(Exp
)))
1054 and then Is_Discrete_Type
(Full_View
(Etype
(Exp
)))
1056 Resolve
(Exp
, Etype
(Exp
));
1057 Exp_Type
:= Full_View
(Etype
(Exp
));
1060 Analyze_And_Resolve
(Exp
, Any_Discrete
);
1061 Exp_Type
:= Etype
(Exp
);
1064 Check_Unset_Reference
(Exp
);
1065 Exp_Btype
:= Base_Type
(Exp_Type
);
1067 -- The expression must be of a discrete type which must be determinable
1068 -- independently of the context in which the expression occurs, but
1069 -- using the fact that the expression must be of a discrete type.
1070 -- Moreover, the type this expression must not be a character literal
1071 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1073 -- If error already reported by Resolve, nothing more to do
1075 if Exp_Btype
= Any_Discrete
1076 or else Exp_Btype
= Any_Type
1080 elsif Exp_Btype
= Any_Character
then
1082 ("character literal as case expression is ambiguous", Exp
);
1085 elsif Ada_Version
= Ada_83
1086 and then (Is_Generic_Type
(Exp_Btype
)
1087 or else Is_Generic_Type
(Root_Type
(Exp_Btype
)))
1090 ("(Ada 83) case expression cannot be of a generic type", Exp
);
1094 -- If the case expression is a formal object of mode in out, then
1095 -- treat it as having a nonstatic subtype by forcing use of the base
1096 -- type (which has to get passed to Check_Case_Choices below). Also
1097 -- use base type when the case expression is parenthesized.
1099 if Paren_Count
(Exp
) > 0
1100 or else (Is_Entity_Name
(Exp
)
1101 and then Ekind
(Entity
(Exp
)) = E_Generic_In_Out_Parameter
)
1103 Exp_Type
:= Exp_Btype
;
1106 -- Call instantiated Analyze_Choices which does the rest of the work
1109 (N
, Exp_Type
, Case_Table
, Last_Choice
, Dont_Care
, Others_Present
);
1111 if Exp_Type
= Universal_Integer
and then not Others_Present
then
1112 Error_Msg_N
("case on universal integer requires OTHERS choice", Exp
);
1115 -- If all our exits were blocked by unconditional transfers of control,
1116 -- then the entire CASE statement acts as an unconditional transfer of
1117 -- control, so treat it like one, and check unreachable code. Skip this
1118 -- test if we had serious errors preventing any statement analysis.
1120 if Unblocked_Exit_Count
= 0 and then Statements_Analyzed
then
1121 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1122 Check_Unreachable_Code
(N
);
1124 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1127 if not Expander_Active
1128 and then Compile_Time_Known_Value
(Expression
(N
))
1129 and then Serious_Errors_Detected
= 0
1132 Chosen
: constant Node_Id
:= Find_Static_Alternative
(N
);
1136 Alt
:= First
(Alternatives
(N
));
1137 while Present
(Alt
) loop
1138 if Alt
/= Chosen
then
1139 Remove_Warning_Messages
(Statements
(Alt
));
1146 end Analyze_Case_Statement
;
1148 ----------------------------
1149 -- Analyze_Exit_Statement --
1150 ----------------------------
1152 -- If the exit includes a name, it must be the name of a currently open
1153 -- loop. Otherwise there must be an innermost open loop on the stack,
1154 -- to which the statement implicitly refers.
1156 procedure Analyze_Exit_Statement
(N
: Node_Id
) is
1157 Target
: constant Node_Id
:= Name
(N
);
1158 Cond
: constant Node_Id
:= Condition
(N
);
1159 Scope_Id
: Entity_Id
;
1165 Check_Unreachable_Code
(N
);
1168 if Present
(Target
) then
1170 U_Name
:= Entity
(Target
);
1172 if not In_Open_Scopes
(U_Name
) or else Ekind
(U_Name
) /= E_Loop
then
1173 Error_Msg_N
("invalid loop name in exit statement", N
);
1176 Set_Has_Exit
(U_Name
);
1183 for J
in reverse 0 .. Scope_Stack
.Last
loop
1184 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
1185 Kind
:= Ekind
(Scope_Id
);
1188 and then (No
(Target
) or else Scope_Id
= U_Name
) then
1189 Set_Has_Exit
(Scope_Id
);
1192 elsif Kind
= E_Block
1193 or else Kind
= E_Loop
1194 or else Kind
= E_Return_Statement
1200 ("cannot exit from program unit or accept statement", N
);
1205 -- Verify that if present the condition is a Boolean expression
1207 if Present
(Cond
) then
1208 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1209 Check_Unset_Reference
(Cond
);
1212 -- Since the exit may take us out of a loop, any previous assignment
1213 -- statement is not useless, so clear last assignment indications. It
1214 -- is OK to keep other current values, since if the exit statement
1215 -- does not exit, then the current values are still valid.
1217 Kill_Current_Values
(Last_Assignment_Only
=> True);
1218 end Analyze_Exit_Statement
;
1220 ----------------------------
1221 -- Analyze_Goto_Statement --
1222 ----------------------------
1224 procedure Analyze_Goto_Statement
(N
: Node_Id
) is
1225 Label
: constant Node_Id
:= Name
(N
);
1226 Scope_Id
: Entity_Id
;
1227 Label_Scope
: Entity_Id
;
1228 Label_Ent
: Entity_Id
;
1231 Check_Unreachable_Code
(N
);
1232 Kill_Current_Values
(Last_Assignment_Only
=> True);
1235 Label_Ent
:= Entity
(Label
);
1237 -- Ignore previous error
1239 if Label_Ent
= Any_Id
then
1242 -- We just have a label as the target of a goto
1244 elsif Ekind
(Label_Ent
) /= E_Label
then
1245 Error_Msg_N
("target of goto statement must be a label", Label
);
1248 -- Check that the target of the goto is reachable according to Ada
1249 -- scoping rules. Note: the special gotos we generate for optimizing
1250 -- local handling of exceptions would violate these rules, but we mark
1251 -- such gotos as analyzed when built, so this code is never entered.
1253 elsif not Reachable
(Label_Ent
) then
1254 Error_Msg_N
("target of goto statement is not reachable", Label
);
1258 -- Here if goto passes initial validity checks
1260 Label_Scope
:= Enclosing_Scope
(Label_Ent
);
1262 for J
in reverse 0 .. Scope_Stack
.Last
loop
1263 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
1265 if Label_Scope
= Scope_Id
1266 or else (Ekind
(Scope_Id
) /= E_Block
1267 and then Ekind
(Scope_Id
) /= E_Loop
1268 and then Ekind
(Scope_Id
) /= E_Return_Statement
)
1270 if Scope_Id
/= Label_Scope
then
1272 ("cannot exit from program unit or accept statement", N
);
1279 raise Program_Error
;
1280 end Analyze_Goto_Statement
;
1282 --------------------------
1283 -- Analyze_If_Statement --
1284 --------------------------
1286 -- A special complication arises in the analysis of if statements
1288 -- The expander has circuitry to completely delete code that it
1289 -- can tell will not be executed (as a result of compile time known
1290 -- conditions). In the analyzer, we ensure that code that will be
1291 -- deleted in this manner is analyzed but not expanded. This is
1292 -- obviously more efficient, but more significantly, difficulties
1293 -- arise if code is expanded and then eliminated (e.g. exception
1294 -- table entries disappear). Similarly, itypes generated in deleted
1295 -- code must be frozen from start, because the nodes on which they
1296 -- depend will not be available at the freeze point.
1298 procedure Analyze_If_Statement
(N
: Node_Id
) is
1301 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
1302 -- Recursively save value of this global, will be restored on exit
1304 Save_In_Deleted_Code
: Boolean;
1306 Del
: Boolean := False;
1307 -- This flag gets set True if a True condition has been found,
1308 -- which means that remaining ELSE/ELSIF parts are deleted.
1310 procedure Analyze_Cond_Then
(Cnode
: Node_Id
);
1311 -- This is applied to either the N_If_Statement node itself or
1312 -- to an N_Elsif_Part node. It deals with analyzing the condition
1313 -- and the THEN statements associated with it.
1315 -----------------------
1316 -- Analyze_Cond_Then --
1317 -----------------------
1319 procedure Analyze_Cond_Then
(Cnode
: Node_Id
) is
1320 Cond
: constant Node_Id
:= Condition
(Cnode
);
1321 Tstm
: constant List_Id
:= Then_Statements
(Cnode
);
1324 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ 1;
1325 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1326 Check_Unset_Reference
(Cond
);
1327 Set_Current_Value_Condition
(Cnode
);
1329 -- If already deleting, then just analyze then statements
1332 Analyze_Statements
(Tstm
);
1334 -- Compile time known value, not deleting yet
1336 elsif Compile_Time_Known_Value
(Cond
) then
1337 Save_In_Deleted_Code
:= In_Deleted_Code
;
1339 -- If condition is True, then analyze the THEN statements
1340 -- and set no expansion for ELSE and ELSIF parts.
1342 if Is_True
(Expr_Value
(Cond
)) then
1343 Analyze_Statements
(Tstm
);
1345 Expander_Mode_Save_And_Set
(False);
1346 In_Deleted_Code
:= True;
1348 -- If condition is False, analyze THEN with expansion off
1350 else -- Is_False (Expr_Value (Cond))
1351 Expander_Mode_Save_And_Set
(False);
1352 In_Deleted_Code
:= True;
1353 Analyze_Statements
(Tstm
);
1354 Expander_Mode_Restore
;
1355 In_Deleted_Code
:= Save_In_Deleted_Code
;
1358 -- Not known at compile time, not deleting, normal analysis
1361 Analyze_Statements
(Tstm
);
1363 end Analyze_Cond_Then
;
1365 -- Start of Analyze_If_Statement
1368 -- Initialize exit count for else statements. If there is no else
1369 -- part, this count will stay non-zero reflecting the fact that the
1370 -- uncovered else case is an unblocked exit.
1372 Unblocked_Exit_Count
:= 1;
1373 Analyze_Cond_Then
(N
);
1375 -- Now to analyze the elsif parts if any are present
1377 if Present
(Elsif_Parts
(N
)) then
1378 E
:= First
(Elsif_Parts
(N
));
1379 while Present
(E
) loop
1380 Analyze_Cond_Then
(E
);
1385 if Present
(Else_Statements
(N
)) then
1386 Analyze_Statements
(Else_Statements
(N
));
1389 -- If all our exits were blocked by unconditional transfers of control,
1390 -- then the entire IF statement acts as an unconditional transfer of
1391 -- control, so treat it like one, and check unreachable code.
1393 if Unblocked_Exit_Count
= 0 then
1394 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1395 Check_Unreachable_Code
(N
);
1397 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1401 Expander_Mode_Restore
;
1402 In_Deleted_Code
:= Save_In_Deleted_Code
;
1405 if not Expander_Active
1406 and then Compile_Time_Known_Value
(Condition
(N
))
1407 and then Serious_Errors_Detected
= 0
1409 if Is_True
(Expr_Value
(Condition
(N
))) then
1410 Remove_Warning_Messages
(Else_Statements
(N
));
1412 if Present
(Elsif_Parts
(N
)) then
1413 E
:= First
(Elsif_Parts
(N
));
1414 while Present
(E
) loop
1415 Remove_Warning_Messages
(Then_Statements
(E
));
1421 Remove_Warning_Messages
(Then_Statements
(N
));
1424 end Analyze_If_Statement
;
1426 ----------------------------------------
1427 -- Analyze_Implicit_Label_Declaration --
1428 ----------------------------------------
1430 -- An implicit label declaration is generated in the innermost
1431 -- enclosing declarative part. This is done for labels as well as
1432 -- block and loop names.
1434 -- Note: any changes in this routine may need to be reflected in
1435 -- Analyze_Label_Entity.
1437 procedure Analyze_Implicit_Label_Declaration
(N
: Node_Id
) is
1438 Id
: constant Node_Id
:= Defining_Identifier
(N
);
1441 Set_Ekind
(Id
, E_Label
);
1442 Set_Etype
(Id
, Standard_Void_Type
);
1443 Set_Enclosing_Scope
(Id
, Current_Scope
);
1444 end Analyze_Implicit_Label_Declaration
;
1446 ------------------------------
1447 -- Analyze_Iteration_Scheme --
1448 ------------------------------
1450 procedure Analyze_Iteration_Scheme
(N
: Node_Id
) is
1452 procedure Process_Bounds
(R
: Node_Id
);
1453 -- If the iteration is given by a range, create temporaries and
1454 -- assignment statements block to capture the bounds and perform
1455 -- required finalization actions in case a bound includes a function
1456 -- call that uses the temporary stack. We first pre-analyze a copy of
1457 -- the range in order to determine the expected type, and analyze and
1458 -- resolve the original bounds.
1460 procedure Check_Controlled_Array_Attribute
(DS
: Node_Id
);
1461 -- If the bounds are given by a 'Range reference on a function call
1462 -- that returns a controlled array, introduce an explicit declaration
1463 -- to capture the bounds, so that the function result can be finalized
1464 -- in timely fashion.
1466 --------------------
1467 -- Process_Bounds --
1468 --------------------
1470 procedure Process_Bounds
(R
: Node_Id
) is
1471 Loc
: constant Source_Ptr
:= Sloc
(N
);
1472 R_Copy
: constant Node_Id
:= New_Copy_Tree
(R
);
1473 Lo
: constant Node_Id
:= Low_Bound
(R
);
1474 Hi
: constant Node_Id
:= High_Bound
(R
);
1475 New_Lo_Bound
: Node_Id
:= Empty
;
1476 New_Hi_Bound
: Node_Id
:= Empty
;
1478 Save_Analysis
: Boolean;
1481 (Original_Bound
: Node_Id
;
1482 Analyzed_Bound
: Node_Id
) return Node_Id
;
1483 -- Capture value of bound and return captured value
1490 (Original_Bound
: Node_Id
;
1491 Analyzed_Bound
: Node_Id
) return Node_Id
1498 -- If the bound is a constant or an object, no need for a separate
1499 -- declaration. If the bound is the result of previous expansion
1500 -- it is already analyzed and should not be modified. Note that
1501 -- the Bound will be resolved later, if needed, as part of the
1502 -- call to Make_Index (literal bounds may need to be resolved to
1505 if Analyzed
(Original_Bound
) then
1506 return Original_Bound
;
1508 elsif Nkind_In
(Analyzed_Bound
, N_Integer_Literal
,
1509 N_Character_Literal
)
1510 or else Is_Entity_Name
(Analyzed_Bound
)
1512 Analyze_And_Resolve
(Original_Bound
, Typ
);
1513 return Original_Bound
;
1516 -- Here we need to capture the value
1518 Analyze_And_Resolve
(Original_Bound
, Typ
);
1521 Make_Defining_Identifier
(Loc
,
1522 Chars
=> New_Internal_Name
('S'));
1524 -- Normally, the best approach is simply to generate a constant
1525 -- declaration that captures the bound. However, there is a nasty
1526 -- case where this is wrong. If the bound is complex, and has a
1527 -- possible use of the secondary stack, we need to generate a
1528 -- separate assignment statement to ensure the creation of a block
1529 -- which will release the secondary stack.
1531 -- We prefer the constant declaration, since it leaves us with a
1532 -- proper trace of the value, useful in optimizations that get rid
1533 -- of junk range checks.
1535 -- Probably we want something like the Side_Effect_Free routine
1536 -- in Exp_Util, but for now, we just optimize the cases of 'Last
1537 -- and 'First applied to an entity, since these are the important
1538 -- cases for range check optimizations.
1540 if Nkind
(Original_Bound
) = N_Attribute_Reference
1541 and then (Attribute_Name
(Original_Bound
) = Name_First
1543 Attribute_Name
(Original_Bound
) = Name_Last
)
1544 and then Is_Entity_Name
(Prefix
(Original_Bound
))
1547 Make_Object_Declaration
(Loc
,
1548 Defining_Identifier
=> Id
,
1549 Constant_Present
=> True,
1550 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
1551 Expression
=> Relocate_Node
(Original_Bound
));
1553 Insert_Before
(Parent
(N
), Decl
);
1555 Rewrite
(Original_Bound
, New_Occurrence_Of
(Id
, Loc
));
1556 return Expression
(Decl
);
1559 -- Here we make a declaration with a separate assignment statement
1562 Make_Object_Declaration
(Loc
,
1563 Defining_Identifier
=> Id
,
1564 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
));
1566 Insert_Before
(Parent
(N
), Decl
);
1570 Make_Assignment_Statement
(Loc
,
1571 Name
=> New_Occurrence_Of
(Id
, Loc
),
1572 Expression
=> Relocate_Node
(Original_Bound
));
1574 -- If the relocated node is a function call then check if some
1575 -- SCIL node references it and needs readjustment.
1578 and then Nkind
(Original_Bound
) = N_Function_Call
1580 Adjust_SCIL_Node
(Original_Bound
, Expression
(Assign
));
1583 Insert_Before
(Parent
(N
), Assign
);
1586 Rewrite
(Original_Bound
, New_Occurrence_Of
(Id
, Loc
));
1588 if Nkind
(Assign
) = N_Assignment_Statement
then
1589 return Expression
(Assign
);
1591 return Original_Bound
;
1595 -- Start of processing for Process_Bounds
1598 -- Determine expected type of range by analyzing separate copy
1599 -- Do the analysis and resolution of the copy of the bounds with
1600 -- expansion disabled, to prevent the generation of finalization
1601 -- actions on each bound. This prevents memory leaks when the
1602 -- bounds contain calls to functions returning controlled arrays.
1604 Set_Parent
(R_Copy
, Parent
(R
));
1605 Save_Analysis
:= Full_Analysis
;
1606 Full_Analysis
:= False;
1607 Expander_Mode_Save_And_Set
(False);
1611 if Is_Overloaded
(R_Copy
) then
1613 -- Apply preference rules for range of predefined integer types,
1614 -- or diagnose true ambiguity.
1619 Found
: Entity_Id
:= Empty
;
1622 Get_First_Interp
(R_Copy
, I
, It
);
1623 while Present
(It
.Typ
) loop
1624 if Is_Discrete_Type
(It
.Typ
) then
1628 if Scope
(Found
) = Standard_Standard
then
1631 elsif Scope
(It
.Typ
) = Standard_Standard
then
1635 -- Both of them are user-defined
1638 ("ambiguous bounds in range of iteration",
1640 Error_Msg_N
("\possible interpretations:", R_Copy
);
1641 Error_Msg_NE
("\\} ", R_Copy
, Found
);
1642 Error_Msg_NE
("\\} ", R_Copy
, It
.Typ
);
1648 Get_Next_Interp
(I
, It
);
1654 Expander_Mode_Restore
;
1655 Full_Analysis
:= Save_Analysis
;
1657 Typ
:= Etype
(R_Copy
);
1659 -- If the type of the discrete range is Universal_Integer, then
1660 -- the bound's type must be resolved to Integer, and any object
1661 -- used to hold the bound must also have type Integer, unless the
1662 -- literal bounds are constant-folded expressions that carry a user-
1665 if Typ
= Universal_Integer
then
1666 if Nkind
(Lo
) = N_Integer_Literal
1667 and then Present
(Etype
(Lo
))
1668 and then Scope
(Etype
(Lo
)) /= Standard_Standard
1672 elsif Nkind
(Hi
) = N_Integer_Literal
1673 and then Present
(Etype
(Hi
))
1674 and then Scope
(Etype
(Hi
)) /= Standard_Standard
1679 Typ
:= Standard_Integer
;
1685 New_Lo_Bound
:= One_Bound
(Lo
, Low_Bound
(R_Copy
));
1686 New_Hi_Bound
:= One_Bound
(Hi
, High_Bound
(R_Copy
));
1688 -- Propagate staticness to loop range itself, in case the
1689 -- corresponding subtype is static.
1691 if New_Lo_Bound
/= Lo
1692 and then Is_Static_Expression
(New_Lo_Bound
)
1694 Rewrite
(Low_Bound
(R
), New_Copy
(New_Lo_Bound
));
1697 if New_Hi_Bound
/= Hi
1698 and then Is_Static_Expression
(New_Hi_Bound
)
1700 Rewrite
(High_Bound
(R
), New_Copy
(New_Hi_Bound
));
1704 --------------------------------------
1705 -- Check_Controlled_Array_Attribute --
1706 --------------------------------------
1708 procedure Check_Controlled_Array_Attribute
(DS
: Node_Id
) is
1710 if Nkind
(DS
) = N_Attribute_Reference
1711 and then Is_Entity_Name
(Prefix
(DS
))
1712 and then Ekind
(Entity
(Prefix
(DS
))) = E_Function
1713 and then Is_Array_Type
(Etype
(Entity
(Prefix
(DS
))))
1716 Component_Type
(Etype
(Entity
(Prefix
(DS
)))))
1717 and then Expander_Active
1720 Loc
: constant Source_Ptr
:= Sloc
(N
);
1721 Arr
: constant Entity_Id
:=
1722 Etype
(Entity
(Prefix
(DS
)));
1723 Indx
: constant Entity_Id
:=
1724 Base_Type
(Etype
(First_Index
(Arr
)));
1725 Subt
: constant Entity_Id
:=
1726 Make_Defining_Identifier
1727 (Loc
, New_Internal_Name
('S'));
1732 Make_Subtype_Declaration
(Loc
,
1733 Defining_Identifier
=> Subt
,
1734 Subtype_Indication
=>
1735 Make_Subtype_Indication
(Loc
,
1736 Subtype_Mark
=> New_Reference_To
(Indx
, Loc
),
1738 Make_Range_Constraint
(Loc
,
1739 Relocate_Node
(DS
))));
1740 Insert_Before
(Parent
(N
), Decl
);
1744 Make_Attribute_Reference
(Loc
,
1745 Prefix
=> New_Reference_To
(Subt
, Loc
),
1746 Attribute_Name
=> Attribute_Name
(DS
)));
1750 end Check_Controlled_Array_Attribute
;
1752 -- Start of processing for Analyze_Iteration_Scheme
1755 -- For an infinite loop, there is no iteration scheme
1762 Cond
: constant Node_Id
:= Condition
(N
);
1765 -- For WHILE loop, verify that the condition is a Boolean
1766 -- expression and resolve and check it.
1768 if Present
(Cond
) then
1769 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1770 Check_Unset_Reference
(Cond
);
1771 Set_Current_Value_Condition
(N
);
1774 -- Else we have a FOR loop
1778 LP
: constant Node_Id
:= Loop_Parameter_Specification
(N
);
1779 Id
: constant Entity_Id
:= Defining_Identifier
(LP
);
1780 DS
: constant Node_Id
:= Discrete_Subtype_Definition
(LP
);
1785 -- We always consider the loop variable to be referenced,
1786 -- since the loop may be used just for counting purposes.
1788 Generate_Reference
(Id
, N
, ' ');
1790 -- Check for case of loop variable hiding a local
1791 -- variable (used later on to give a nice warning
1792 -- if the hidden variable is never assigned).
1795 H
: constant Entity_Id
:= Homonym
(Id
);
1798 and then Enclosing_Dynamic_Scope
(H
) =
1799 Enclosing_Dynamic_Scope
(Id
)
1800 and then Ekind
(H
) = E_Variable
1801 and then Is_Discrete_Type
(Etype
(H
))
1803 Set_Hiding_Loop_Variable
(H
, Id
);
1807 -- Now analyze the subtype definition. If it is
1808 -- a range, create temporaries for bounds.
1810 if Nkind
(DS
) = N_Range
1811 and then Expander_Active
1813 Process_Bounds
(DS
);
1822 -- The subtype indication may denote the completion
1823 -- of an incomplete type declaration.
1825 if Is_Entity_Name
(DS
)
1826 and then Present
(Entity
(DS
))
1827 and then Is_Type
(Entity
(DS
))
1828 and then Ekind
(Entity
(DS
)) = E_Incomplete_Type
1830 Set_Entity
(DS
, Get_Full_View
(Entity
(DS
)));
1831 Set_Etype
(DS
, Entity
(DS
));
1834 if not Is_Discrete_Type
(Etype
(DS
)) then
1835 Wrong_Type
(DS
, Any_Discrete
);
1836 Set_Etype
(DS
, Any_Type
);
1839 Check_Controlled_Array_Attribute
(DS
);
1841 Make_Index
(DS
, LP
);
1843 Set_Ekind
(Id
, E_Loop_Parameter
);
1844 Set_Etype
(Id
, Etype
(DS
));
1846 -- Treat a range as an implicit reference to the type, to
1847 -- inhibit spurious warnings.
1849 Generate_Reference
(Base_Type
(Etype
(DS
)), N
, ' ');
1850 Set_Is_Known_Valid
(Id
, True);
1852 -- The loop is not a declarative part, so the only entity
1853 -- declared "within" must be frozen explicitly.
1856 Flist
: constant List_Id
:= Freeze_Entity
(Id
, Sloc
(N
));
1858 if Is_Non_Empty_List
(Flist
) then
1859 Insert_Actions
(N
, Flist
);
1863 -- Check for null or possibly null range and issue warning.
1864 -- We suppress such messages in generic templates and
1865 -- instances, because in practice they tend to be dubious
1868 if Nkind
(DS
) = N_Range
1869 and then Comes_From_Source
(N
)
1872 L
: constant Node_Id
:= Low_Bound
(DS
);
1873 H
: constant Node_Id
:= High_Bound
(DS
);
1876 -- If range of loop is null, issue warning
1878 if Compile_Time_Compare
1879 (L
, H
, Assume_Valid
=> True) = GT
1881 -- Suppress the warning if inside a generic
1882 -- template or instance, since in practice
1883 -- they tend to be dubious in these cases since
1884 -- they can result from intended parametrization.
1886 if not Inside_A_Generic
1887 and then not In_Instance
1889 -- Specialize msg if invalid values could make
1890 -- the loop non-null after all.
1892 if Compile_Time_Compare
1893 (L
, H
, Assume_Valid
=> False) = GT
1896 ("?loop range is null, "
1897 & "loop will not execute",
1900 -- Since we know the range of the loop is
1901 -- null, set the appropriate flag to remove
1902 -- the loop entirely during expansion.
1904 Set_Is_Null_Loop
(Parent
(N
));
1906 -- Here is where the loop could execute because
1907 -- of invalid values, so issue appropriate
1908 -- message and in this case we do not set the
1909 -- Is_Null_Loop flag since the loop may execute.
1913 ("?loop range may be null, "
1914 & "loop may not execute",
1917 ("?can only execute if invalid values "
1923 -- In either case, suppress warnings in the body of
1924 -- the loop, since it is likely that these warnings
1925 -- will be inappropriate if the loop never actually
1926 -- executes, which is unlikely.
1928 Set_Suppress_Loop_Warnings
(Parent
(N
));
1930 -- The other case for a warning is a reverse loop
1931 -- where the upper bound is the integer literal
1932 -- zero or one, and the lower bound can be positive.
1934 -- For example, we have
1936 -- for J in reverse N .. 1 loop
1938 -- In practice, this is very likely to be a case
1939 -- of reversing the bounds incorrectly in the range.
1941 elsif Reverse_Present
(LP
)
1942 and then Nkind
(Original_Node
(H
)) =
1944 and then (Intval
(Original_Node
(H
)) = Uint_0
1946 Intval
(Original_Node
(H
)) = Uint_1
)
1948 Error_Msg_N
("?loop range may be null", DS
);
1949 Error_Msg_N
("\?bounds may be wrong way round", DS
);
1957 end Analyze_Iteration_Scheme
;
1963 -- Note: the semantic work required for analyzing labels (setting them as
1964 -- reachable) was done in a prepass through the statements in the block,
1965 -- so that forward gotos would be properly handled. See Analyze_Statements
1966 -- for further details. The only processing required here is to deal with
1967 -- optimizations that depend on an assumption of sequential control flow,
1968 -- since of course the occurrence of a label breaks this assumption.
1970 procedure Analyze_Label
(N
: Node_Id
) is
1971 pragma Warnings
(Off
, N
);
1973 Kill_Current_Values
;
1976 --------------------------
1977 -- Analyze_Label_Entity --
1978 --------------------------
1980 procedure Analyze_Label_Entity
(E
: Entity_Id
) is
1982 Set_Ekind
(E
, E_Label
);
1983 Set_Etype
(E
, Standard_Void_Type
);
1984 Set_Enclosing_Scope
(E
, Current_Scope
);
1985 Set_Reachable
(E
, True);
1986 end Analyze_Label_Entity
;
1988 ----------------------------
1989 -- Analyze_Loop_Statement --
1990 ----------------------------
1992 procedure Analyze_Loop_Statement
(N
: Node_Id
) is
1993 Loop_Statement
: constant Node_Id
:= N
;
1995 Id
: constant Node_Id
:= Identifier
(Loop_Statement
);
1996 Iter
: constant Node_Id
:= Iteration_Scheme
(Loop_Statement
);
2000 if Present
(Id
) then
2002 -- Make name visible, e.g. for use in exit statements. Loop
2003 -- labels are always considered to be referenced.
2008 -- Guard against serious error (typically, a scope mismatch when
2009 -- semantic analysis is requested) by creating loop entity to
2010 -- continue analysis.
2013 if Total_Errors_Detected
/= 0 then
2016 (E_Loop
, Current_Scope
, Sloc
(Loop_Statement
), 'L');
2018 raise Program_Error
;
2022 Generate_Reference
(Ent
, Loop_Statement
, ' ');
2023 Generate_Definition
(Ent
);
2025 -- If we found a label, mark its type. If not, ignore it, since it
2026 -- means we have a conflicting declaration, which would already
2027 -- have been diagnosed at declaration time. Set Label_Construct
2028 -- of the implicit label declaration, which is not created by the
2029 -- parser for generic units.
2031 if Ekind
(Ent
) = E_Label
then
2032 Set_Ekind
(Ent
, E_Loop
);
2034 if Nkind
(Parent
(Ent
)) = N_Implicit_Label_Declaration
then
2035 Set_Label_Construct
(Parent
(Ent
), Loop_Statement
);
2040 -- Case of no identifier present
2045 (E_Loop
, Current_Scope
, Sloc
(Loop_Statement
), 'L');
2046 Set_Etype
(Ent
, Standard_Void_Type
);
2047 Set_Parent
(Ent
, Loop_Statement
);
2050 -- Kill current values on entry to loop, since statements in body of
2051 -- loop may have been executed before the loop is entered. Similarly we
2052 -- kill values after the loop, since we do not know that the body of the
2053 -- loop was executed.
2055 Kill_Current_Values
;
2057 Analyze_Iteration_Scheme
(Iter
);
2058 Analyze_Statements
(Statements
(Loop_Statement
));
2059 Process_End_Label
(Loop_Statement
, 'e', Ent
);
2061 Kill_Current_Values
;
2063 -- Check for infinite loop. We skip this check for generated code, since
2064 -- it justs waste time and makes debugging the routine called harder.
2066 if Comes_From_Source
(N
) then
2067 Check_Infinite_Loop_Warning
(N
);
2070 -- Code after loop is unreachable if the loop has no WHILE or FOR
2071 -- and contains no EXIT statements within the body of the loop.
2073 if No
(Iter
) and then not Has_Exit
(Ent
) then
2074 Check_Unreachable_Code
(N
);
2076 end Analyze_Loop_Statement
;
2078 ----------------------------
2079 -- Analyze_Null_Statement --
2080 ----------------------------
2082 -- Note: the semantics of the null statement is implemented by a single
2083 -- null statement, too bad everything isn't as simple as this!
2085 procedure Analyze_Null_Statement
(N
: Node_Id
) is
2086 pragma Warnings
(Off
, N
);
2089 end Analyze_Null_Statement
;
2091 ------------------------
2092 -- Analyze_Statements --
2093 ------------------------
2095 procedure Analyze_Statements
(L
: List_Id
) is
2100 -- The labels declared in the statement list are reachable from
2101 -- statements in the list. We do this as a prepass so that any
2102 -- goto statement will be properly flagged if its target is not
2103 -- reachable. This is not required, but is nice behavior!
2106 while Present
(S
) loop
2107 if Nkind
(S
) = N_Label
then
2108 Analyze
(Identifier
(S
));
2109 Lab
:= Entity
(Identifier
(S
));
2111 -- If we found a label mark it as reachable
2113 if Ekind
(Lab
) = E_Label
then
2114 Generate_Definition
(Lab
);
2115 Set_Reachable
(Lab
);
2117 if Nkind
(Parent
(Lab
)) = N_Implicit_Label_Declaration
then
2118 Set_Label_Construct
(Parent
(Lab
), S
);
2121 -- If we failed to find a label, it means the implicit declaration
2122 -- of the label was hidden. A for-loop parameter can do this to
2123 -- a label with the same name inside the loop, since the implicit
2124 -- label declaration is in the innermost enclosing body or block
2128 Error_Msg_Sloc
:= Sloc
(Lab
);
2130 ("implicit label declaration for & is hidden#",
2138 -- Perform semantic analysis on all statements
2140 Conditional_Statements_Begin
;
2143 while Present
(S
) loop
2148 Conditional_Statements_End
;
2150 -- Make labels unreachable. Visibility is not sufficient, because
2151 -- labels in one if-branch for example are not reachable from the
2152 -- other branch, even though their declarations are in the enclosing
2153 -- declarative part.
2156 while Present
(S
) loop
2157 if Nkind
(S
) = N_Label
then
2158 Set_Reachable
(Entity
(Identifier
(S
)), False);
2163 end Analyze_Statements
;
2165 ----------------------------
2166 -- Check_Unreachable_Code --
2167 ----------------------------
2169 procedure Check_Unreachable_Code
(N
: Node_Id
) is
2170 Error_Loc
: Source_Ptr
;
2174 if Is_List_Member
(N
)
2175 and then Comes_From_Source
(N
)
2181 Nxt
:= Original_Node
(Next
(N
));
2183 -- If a label follows us, then we never have dead code, since
2184 -- someone could branch to the label, so we just ignore it.
2186 if Nkind
(Nxt
) = N_Label
then
2189 -- Otherwise see if we have a real statement following us
2192 and then Comes_From_Source
(Nxt
)
2193 and then Is_Statement
(Nxt
)
2195 -- Special very annoying exception. If we have a return that
2196 -- follows a raise, then we allow it without a warning, since
2197 -- the Ada RM annoyingly requires a useless return here!
2199 if Nkind
(Original_Node
(N
)) /= N_Raise_Statement
2200 or else Nkind
(Nxt
) /= N_Simple_Return_Statement
2202 -- The rather strange shenanigans with the warning message
2203 -- here reflects the fact that Kill_Dead_Code is very good
2204 -- at removing warnings in deleted code, and this is one
2205 -- warning we would prefer NOT to have removed.
2207 Error_Loc
:= Sloc
(Nxt
);
2209 -- If we have unreachable code, analyze and remove the
2210 -- unreachable code, since it is useless and we don't
2211 -- want to generate junk warnings.
2213 -- We skip this step if we are not in code generation mode.
2214 -- This is the one case where we remove dead code in the
2215 -- semantics as opposed to the expander, and we do not want
2216 -- to remove code if we are not in code generation mode,
2217 -- since this messes up the ASIS trees.
2219 -- Note that one might react by moving the whole circuit to
2220 -- exp_ch5, but then we lose the warning in -gnatc mode.
2222 if Operating_Mode
= Generate_Code
then
2226 -- Quit deleting when we have nothing more to delete
2227 -- or if we hit a label (since someone could transfer
2228 -- control to a label, so we should not delete it).
2230 exit when No
(Nxt
) or else Nkind
(Nxt
) = N_Label
;
2232 -- Statement/declaration is to be deleted
2236 Kill_Dead_Code
(Nxt
);
2240 -- Now issue the warning
2242 Error_Msg
("?unreachable code!", Error_Loc
);
2245 -- If the unconditional transfer of control instruction is
2246 -- the last statement of a sequence, then see if our parent
2247 -- is one of the constructs for which we count unblocked exits,
2248 -- and if so, adjust the count.
2253 -- Statements in THEN part or ELSE part of IF statement
2255 if Nkind
(P
) = N_If_Statement
then
2258 -- Statements in ELSIF part of an IF statement
2260 elsif Nkind
(P
) = N_Elsif_Part
then
2262 pragma Assert
(Nkind
(P
) = N_If_Statement
);
2264 -- Statements in CASE statement alternative
2266 elsif Nkind
(P
) = N_Case_Statement_Alternative
then
2268 pragma Assert
(Nkind
(P
) = N_Case_Statement
);
2270 -- Statements in body of block
2272 elsif Nkind
(P
) = N_Handled_Sequence_Of_Statements
2273 and then Nkind
(Parent
(P
)) = N_Block_Statement
2277 -- Statements in exception handler in a block
2279 elsif Nkind
(P
) = N_Exception_Handler
2280 and then Nkind
(Parent
(P
)) = N_Handled_Sequence_Of_Statements
2281 and then Nkind
(Parent
(Parent
(P
))) = N_Block_Statement
2285 -- None of these cases, so return
2291 -- This was one of the cases we are looking for (i.e. the
2292 -- parent construct was IF, CASE or block) so decrement count.
2294 Unblocked_Exit_Count
:= Unblocked_Exit_Count
- 1;
2298 end Check_Unreachable_Code
;