Daily bump.
[official-gcc.git] / gcc / ada / sem_ch5.adb
blob1f6806b231a365ebfcb9d83f1e258e8583985c62
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Errout; use Errout;
30 with Expander; use Expander;
31 with Exp_Util; use Exp_Util;
32 with Freeze; use Freeze;
33 with Lib; use Lib;
34 with Lib.Xref; use Lib.Xref;
35 with Namet; use Namet;
36 with Nlists; use Nlists;
37 with Nmake; use Nmake;
38 with Opt; use Opt;
39 with Rtsfind; use Rtsfind;
40 with Sem; use Sem;
41 with Sem_Aux; use Sem_Aux;
42 with Sem_Case; use Sem_Case;
43 with Sem_Ch3; use Sem_Ch3;
44 with Sem_Ch8; use Sem_Ch8;
45 with Sem_Disp; use Sem_Disp;
46 with Sem_Elab; use Sem_Elab;
47 with Sem_Eval; use Sem_Eval;
48 with Sem_Res; use Sem_Res;
49 with Sem_SCIL; use Sem_SCIL;
50 with Sem_Type; use Sem_Type;
51 with Sem_Util; use Sem_Util;
52 with Sem_Warn; use Sem_Warn;
53 with Snames; use Snames;
54 with Stand; use Stand;
55 with Sinfo; use Sinfo;
56 with Targparm; use Targparm;
57 with Tbuild; use Tbuild;
58 with Uintp; use Uintp;
60 package body Sem_Ch5 is
62 Unblocked_Exit_Count : Nat := 0;
63 -- This variable is used when processing if statements, case statements,
64 -- and block statements. It counts the number of exit points that are not
65 -- blocked by unconditional transfer instructions: for IF and CASE, these
66 -- are the branches of the conditional; for a block, they are the statement
67 -- sequence of the block, and the statement sequences of any exception
68 -- handlers that are part of the block. When processing is complete, if
69 -- this count is zero, it means that control cannot fall through the IF,
70 -- CASE or block statement. This is used for the generation of warning
71 -- messages. This variable is recursively saved on entry to processing the
72 -- construct, and restored on exit.
74 -----------------------
75 -- Local Subprograms --
76 -----------------------
78 procedure Analyze_Iteration_Scheme (N : Node_Id);
80 ------------------------
81 -- Analyze_Assignment --
82 ------------------------
84 procedure Analyze_Assignment (N : Node_Id) is
85 Lhs : constant Node_Id := Name (N);
86 Rhs : constant Node_Id := Expression (N);
87 T1 : Entity_Id;
88 T2 : Entity_Id;
89 Decl : Node_Id;
91 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
92 -- N is the node for the left hand side of an assignment, and it is not
93 -- a variable. This routine issues an appropriate diagnostic.
95 procedure Kill_Lhs;
96 -- This is called to kill current value settings of a simple variable
97 -- on the left hand side. We call it if we find any error in analyzing
98 -- the assignment, and at the end of processing before setting any new
99 -- current values in place.
101 procedure Set_Assignment_Type
102 (Opnd : Node_Id;
103 Opnd_Type : in out Entity_Id);
104 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type
105 -- is the nominal subtype. This procedure is used to deal with cases
106 -- where the nominal subtype must be replaced by the actual subtype.
108 -------------------------------
109 -- Diagnose_Non_Variable_Lhs --
110 -------------------------------
112 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
113 begin
114 -- Not worth posting another error if left hand side already
115 -- flagged as being illegal in some respect.
117 if Error_Posted (N) then
118 return;
120 -- Some special bad cases of entity names
122 elsif Is_Entity_Name (N) then
123 declare
124 Ent : constant Entity_Id := Entity (N);
126 begin
127 if Ekind (Ent) = E_In_Parameter then
128 Error_Msg_N
129 ("assignment to IN mode parameter not allowed", N);
131 -- Renamings of protected private components are turned into
132 -- constants when compiling a protected function. In the case
133 -- of single protected types, the private component appears
134 -- directly.
136 elsif (Is_Prival (Ent)
137 and then
138 (Ekind (Current_Scope) = E_Function
139 or else Ekind (Enclosing_Dynamic_Scope (
140 Current_Scope)) = E_Function))
141 or else
142 (Ekind (Ent) = E_Component
143 and then Is_Protected_Type (Scope (Ent)))
144 then
145 Error_Msg_N
146 ("protected function cannot modify protected object", N);
148 elsif Ekind (Ent) = E_Loop_Parameter then
149 Error_Msg_N
150 ("assignment to loop parameter not allowed", N);
152 else
153 Error_Msg_N
154 ("left hand side of assignment must be a variable", N);
155 end if;
156 end;
158 -- For indexed components or selected components, test prefix
160 elsif Nkind (N) = N_Indexed_Component then
161 Diagnose_Non_Variable_Lhs (Prefix (N));
163 -- Another special case for assignment to discriminant
165 elsif Nkind (N) = N_Selected_Component then
166 if Present (Entity (Selector_Name (N)))
167 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
168 then
169 Error_Msg_N
170 ("assignment to discriminant not allowed", N);
171 else
172 Diagnose_Non_Variable_Lhs (Prefix (N));
173 end if;
175 else
176 -- If we fall through, we have no special message to issue!
178 Error_Msg_N ("left hand side of assignment must be a variable", N);
179 end if;
180 end Diagnose_Non_Variable_Lhs;
182 --------------
183 -- Kill_LHS --
184 --------------
186 procedure Kill_Lhs is
187 begin
188 if Is_Entity_Name (Lhs) then
189 declare
190 Ent : constant Entity_Id := Entity (Lhs);
191 begin
192 if Present (Ent) then
193 Kill_Current_Values (Ent);
194 end if;
195 end;
196 end if;
197 end Kill_Lhs;
199 -------------------------
200 -- Set_Assignment_Type --
201 -------------------------
203 procedure Set_Assignment_Type
204 (Opnd : Node_Id;
205 Opnd_Type : in out Entity_Id)
207 begin
208 Require_Entity (Opnd);
210 -- If the assignment operand is an in-out or out parameter, then we
211 -- get the actual subtype (needed for the unconstrained case).
212 -- If the operand is the actual in an entry declaration, then within
213 -- the accept statement it is replaced with a local renaming, which
214 -- may also have an actual subtype.
216 if Is_Entity_Name (Opnd)
217 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
218 or else Ekind (Entity (Opnd)) =
219 E_In_Out_Parameter
220 or else Ekind (Entity (Opnd)) =
221 E_Generic_In_Out_Parameter
222 or else
223 (Ekind (Entity (Opnd)) = E_Variable
224 and then Nkind (Parent (Entity (Opnd))) =
225 N_Object_Renaming_Declaration
226 and then Nkind (Parent (Parent (Entity (Opnd)))) =
227 N_Accept_Statement))
228 then
229 Opnd_Type := Get_Actual_Subtype (Opnd);
231 -- If assignment operand is a component reference, then we get the
232 -- actual subtype of the component for the unconstrained case.
234 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
235 and then not Is_Unchecked_Union (Opnd_Type)
236 then
237 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
239 if Present (Decl) then
240 Insert_Action (N, Decl);
241 Mark_Rewrite_Insertion (Decl);
242 Analyze (Decl);
243 Opnd_Type := Defining_Identifier (Decl);
244 Set_Etype (Opnd, Opnd_Type);
245 Freeze_Itype (Opnd_Type, N);
247 elsif Is_Constrained (Etype (Opnd)) then
248 Opnd_Type := Etype (Opnd);
249 end if;
251 -- For slice, use the constrained subtype created for the slice
253 elsif Nkind (Opnd) = N_Slice then
254 Opnd_Type := Etype (Opnd);
255 end if;
256 end Set_Assignment_Type;
258 -- Start of processing for Analyze_Assignment
260 begin
261 Mark_Coextensions (N, Rhs);
263 Analyze (Rhs);
264 Analyze (Lhs);
266 -- Start type analysis for assignment
268 T1 := Etype (Lhs);
270 -- In the most general case, both Lhs and Rhs can be overloaded, and we
271 -- must compute the intersection of the possible types on each side.
273 if Is_Overloaded (Lhs) then
274 declare
275 I : Interp_Index;
276 It : Interp;
278 begin
279 T1 := Any_Type;
280 Get_First_Interp (Lhs, I, It);
282 while Present (It.Typ) loop
283 if Has_Compatible_Type (Rhs, It.Typ) then
284 if T1 /= Any_Type then
286 -- An explicit dereference is overloaded if the prefix
287 -- is. Try to remove the ambiguity on the prefix, the
288 -- error will be posted there if the ambiguity is real.
290 if Nkind (Lhs) = N_Explicit_Dereference then
291 declare
292 PI : Interp_Index;
293 PI1 : Interp_Index := 0;
294 PIt : Interp;
295 Found : Boolean;
297 begin
298 Found := False;
299 Get_First_Interp (Prefix (Lhs), PI, PIt);
301 while Present (PIt.Typ) loop
302 if Is_Access_Type (PIt.Typ)
303 and then Has_Compatible_Type
304 (Rhs, Designated_Type (PIt.Typ))
305 then
306 if Found then
307 PIt :=
308 Disambiguate (Prefix (Lhs),
309 PI1, PI, Any_Type);
311 if PIt = No_Interp then
312 Error_Msg_N
313 ("ambiguous left-hand side"
314 & " in assignment", Lhs);
315 exit;
316 else
317 Resolve (Prefix (Lhs), PIt.Typ);
318 end if;
320 exit;
321 else
322 Found := True;
323 PI1 := PI;
324 end if;
325 end if;
327 Get_Next_Interp (PI, PIt);
328 end loop;
329 end;
331 else
332 Error_Msg_N
333 ("ambiguous left-hand side in assignment", Lhs);
334 exit;
335 end if;
336 else
337 T1 := It.Typ;
338 end if;
339 end if;
341 Get_Next_Interp (I, It);
342 end loop;
343 end;
345 if T1 = Any_Type then
346 Error_Msg_N
347 ("no valid types for left-hand side for assignment", Lhs);
348 Kill_Lhs;
349 return;
350 end if;
351 end if;
353 -- The resulting assignment type is T1, so now we will resolve the
354 -- left hand side of the assignment using this determined type.
356 Resolve (Lhs, T1);
358 -- Cases where Lhs is not a variable
360 if not Is_Variable (Lhs) then
362 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of
363 -- a protected object.
365 declare
366 Ent : Entity_Id;
367 S : Entity_Id;
369 begin
370 if Ada_Version >= Ada_05 then
372 -- Handle chains of renamings
374 Ent := Lhs;
375 while Nkind (Ent) in N_Has_Entity
376 and then Present (Entity (Ent))
377 and then Present (Renamed_Object (Entity (Ent)))
378 loop
379 Ent := Renamed_Object (Entity (Ent));
380 end loop;
382 if (Nkind (Ent) = N_Attribute_Reference
383 and then Attribute_Name (Ent) = Name_Priority)
385 -- Renamings of the attribute Priority applied to protected
386 -- objects have been previously expanded into calls to the
387 -- Get_Ceiling run-time subprogram.
389 or else
390 (Nkind (Ent) = N_Function_Call
391 and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
392 or else
393 Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling)))
394 then
395 -- The enclosing subprogram cannot be a protected function
397 S := Current_Scope;
398 while not (Is_Subprogram (S)
399 and then Convention (S) = Convention_Protected)
400 and then S /= Standard_Standard
401 loop
402 S := Scope (S);
403 end loop;
405 if Ekind (S) = E_Function
406 and then Convention (S) = Convention_Protected
407 then
408 Error_Msg_N
409 ("protected function cannot modify protected object",
410 Lhs);
411 end if;
413 -- Changes of the ceiling priority of the protected object
414 -- are only effective if the Ceiling_Locking policy is in
415 -- effect (AARM D.5.2 (5/2)).
417 if Locking_Policy /= 'C' then
418 Error_Msg_N ("assignment to the attribute PRIORITY has " &
419 "no effect?", Lhs);
420 Error_Msg_N ("\since no Locking_Policy has been " &
421 "specified", Lhs);
422 end if;
424 return;
425 end if;
426 end if;
427 end;
429 Diagnose_Non_Variable_Lhs (Lhs);
430 return;
432 -- Error of assigning to limited type. We do however allow this in
433 -- certain cases where the front end generates the assignments.
435 elsif Is_Limited_Type (T1)
436 and then not Assignment_OK (Lhs)
437 and then not Assignment_OK (Original_Node (Lhs))
438 and then not Is_Value_Type (T1)
439 then
440 -- CPP constructors can only be called in declarations
442 if Is_CPP_Constructor_Call (Rhs) then
443 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
444 else
445 Error_Msg_N
446 ("left hand of assignment must not be limited type", Lhs);
447 Explain_Limited_Type (T1, Lhs);
448 end if;
449 return;
451 -- Enforce RM 3.9.3 (8): left-hand side cannot be abstract
453 elsif Is_Interface (T1)
454 and then not Is_Class_Wide_Type (T1)
455 then
456 Error_Msg_N
457 ("target of assignment operation may not be abstract", Lhs);
458 return;
459 end if;
461 -- Resolution may have updated the subtype, in case the left-hand
462 -- side is a private protected component. Use the correct subtype
463 -- to avoid scoping issues in the back-end.
465 T1 := Etype (Lhs);
467 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
468 -- type. For example:
470 -- limited with P;
471 -- package Pkg is
472 -- type Acc is access P.T;
473 -- end Pkg;
475 -- with Pkg; use Acc;
476 -- procedure Example is
477 -- A, B : Acc;
478 -- begin
479 -- A.all := B.all; -- ERROR
480 -- end Example;
482 if Nkind (Lhs) = N_Explicit_Dereference
483 and then Ekind (T1) = E_Incomplete_Type
484 then
485 Error_Msg_N ("invalid use of incomplete type", Lhs);
486 Kill_Lhs;
487 return;
488 end if;
490 -- Now we can complete the resolution of the right hand side
492 Set_Assignment_Type (Lhs, T1);
493 Resolve (Rhs, T1);
495 -- This is the point at which we check for an unset reference
497 Check_Unset_Reference (Rhs);
498 Check_Unprotected_Access (Lhs, Rhs);
500 -- Remaining steps are skipped if Rhs was syntactically in error
502 if Rhs = Error then
503 Kill_Lhs;
504 return;
505 end if;
507 T2 := Etype (Rhs);
509 if not Covers (T1, T2) then
510 Wrong_Type (Rhs, Etype (Lhs));
511 Kill_Lhs;
512 return;
513 end if;
515 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
516 -- types, use the non-limited view if available
518 if Nkind (Rhs) = N_Explicit_Dereference
519 and then Ekind (T2) = E_Incomplete_Type
520 and then Is_Tagged_Type (T2)
521 and then Present (Non_Limited_View (T2))
522 then
523 T2 := Non_Limited_View (T2);
524 end if;
526 Set_Assignment_Type (Rhs, T2);
528 if Total_Errors_Detected /= 0 then
529 if No (T1) then
530 T1 := Any_Type;
531 end if;
533 if No (T2) then
534 T2 := Any_Type;
535 end if;
536 end if;
538 if T1 = Any_Type or else T2 = Any_Type then
539 Kill_Lhs;
540 return;
541 end if;
543 -- If the rhs is class-wide or dynamically tagged, then require the lhs
544 -- to be class-wide. The case where the rhs is a dynamically tagged call
545 -- to a dispatching operation with a controlling access result is
546 -- excluded from this check, since the target has an access type (and
547 -- no tag propagation occurs in that case).
549 if (Is_Class_Wide_Type (T2)
550 or else (Is_Dynamically_Tagged (Rhs)
551 and then not Is_Access_Type (T1)))
552 and then not Is_Class_Wide_Type (T1)
553 then
554 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
556 elsif Is_Class_Wide_Type (T1)
557 and then not Is_Class_Wide_Type (T2)
558 and then not Is_Tag_Indeterminate (Rhs)
559 and then not Is_Dynamically_Tagged (Rhs)
560 then
561 Error_Msg_N ("dynamically tagged expression required!", Rhs);
562 end if;
564 -- Propagate the tag from a class-wide target to the rhs when the rhs
565 -- is a tag-indeterminate call.
567 if Is_Tag_Indeterminate (Rhs) then
568 if Is_Class_Wide_Type (T1) then
569 Propagate_Tag (Lhs, Rhs);
571 elsif Nkind (Rhs) = N_Function_Call
572 and then Is_Entity_Name (Name (Rhs))
573 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
574 then
575 Error_Msg_N
576 ("call to abstract function must be dispatching", Name (Rhs));
578 elsif Nkind (Rhs) = N_Qualified_Expression
579 and then Nkind (Expression (Rhs)) = N_Function_Call
580 and then Is_Entity_Name (Name (Expression (Rhs)))
581 and then
582 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
583 then
584 Error_Msg_N
585 ("call to abstract function must be dispatching",
586 Name (Expression (Rhs)));
587 end if;
588 end if;
590 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
591 -- apply an implicit conversion of the rhs to that type to force
592 -- appropriate static and run-time accessibility checks. This applies
593 -- as well to anonymous access-to-subprogram types that are component
594 -- subtypes or formal parameters.
596 if Ada_Version >= Ada_05
597 and then Is_Access_Type (T1)
598 then
599 if Is_Local_Anonymous_Access (T1)
600 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
601 then
602 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
603 Analyze_And_Resolve (Rhs, T1);
604 end if;
605 end if;
607 -- Ada 2005 (AI-231): Assignment to not null variable
609 if Ada_Version >= Ada_05
610 and then Can_Never_Be_Null (T1)
611 and then not Assignment_OK (Lhs)
612 then
613 -- Case where we know the right hand side is null
615 if Known_Null (Rhs) then
616 Apply_Compile_Time_Constraint_Error
617 (N => Rhs,
618 Msg => "(Ada 2005) null not allowed in null-excluding objects?",
619 Reason => CE_Null_Not_Allowed);
621 -- We still mark this as a possible modification, that's necessary
622 -- to reset Is_True_Constant, and desirable for xref purposes.
624 Note_Possible_Modification (Lhs, Sure => True);
625 return;
627 -- If we know the right hand side is non-null, then we convert to the
628 -- target type, since we don't need a run time check in that case.
630 elsif not Can_Never_Be_Null (T2) then
631 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
632 Analyze_And_Resolve (Rhs, T1);
633 end if;
634 end if;
636 if Is_Scalar_Type (T1) then
637 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
639 -- For array types, verify that lengths match. If the right hand side
640 -- if a function call that has been inlined, the assignment has been
641 -- rewritten as a block, and the constraint check will be applied to the
642 -- assignment within the block.
644 elsif Is_Array_Type (T1)
645 and then
646 (Nkind (Rhs) /= N_Type_Conversion
647 or else Is_Constrained (Etype (Rhs)))
648 and then
649 (Nkind (Rhs) /= N_Function_Call
650 or else Nkind (N) /= N_Block_Statement)
651 then
652 -- Assignment verifies that the length of the Lsh and Rhs are equal,
653 -- but of course the indices do not have to match. If the right-hand
654 -- side is a type conversion to an unconstrained type, a length check
655 -- is performed on the expression itself during expansion. In rare
656 -- cases, the redundant length check is computed on an index type
657 -- with a different representation, triggering incorrect code in
658 -- the back end.
660 Apply_Length_Check (Rhs, Etype (Lhs));
662 else
663 -- Discriminant checks are applied in the course of expansion
665 null;
666 end if;
668 -- Note: modifications of the Lhs may only be recorded after
669 -- checks have been applied.
671 Note_Possible_Modification (Lhs, Sure => True);
673 -- ??? a real accessibility check is needed when ???
675 -- Post warning for redundant assignment or variable to itself
677 if Warn_On_Redundant_Constructs
679 -- We only warn for source constructs
681 and then Comes_From_Source (N)
683 -- Where the object is the same on both sides
685 and then Same_Object (Lhs, Original_Node (Rhs))
687 -- But exclude the case where the right side was an operation
688 -- that got rewritten (e.g. JUNK + K, where K was known to be
689 -- zero). We don't want to warn in such a case, since it is
690 -- reasonable to write such expressions especially when K is
691 -- defined symbolically in some other package.
693 and then Nkind (Original_Node (Rhs)) not in N_Op
694 then
695 if Nkind (Lhs) in N_Has_Entity then
696 Error_Msg_NE
697 ("?useless assignment of & to itself!", N, Entity (Lhs));
698 else
699 Error_Msg_N
700 ("?useless assignment of object to itself!", N);
701 end if;
702 end if;
704 -- Check for non-allowed composite assignment
706 if not Support_Composite_Assign_On_Target
707 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
708 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
709 then
710 Error_Msg_CRT ("composite assignment", N);
711 end if;
713 -- Check elaboration warning for left side if not in elab code
715 if not In_Subprogram_Or_Concurrent_Unit then
716 Check_Elab_Assign (Lhs);
717 end if;
719 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
720 -- assignment is a source assignment in the extended main source unit.
721 -- We are not interested in any reference information outside this
722 -- context, or in compiler generated assignment statements.
724 if Comes_From_Source (N)
725 and then In_Extended_Main_Source_Unit (Lhs)
726 then
727 Set_Referenced_Modified (Lhs, Out_Param => False);
728 end if;
730 -- Final step. If left side is an entity, then we may be able to
731 -- reset the current tracked values to new safe values. We only have
732 -- something to do if the left side is an entity name, and expansion
733 -- has not modified the node into something other than an assignment,
734 -- and of course we only capture values if it is safe to do so.
736 if Is_Entity_Name (Lhs)
737 and then Nkind (N) = N_Assignment_Statement
738 then
739 declare
740 Ent : constant Entity_Id := Entity (Lhs);
742 begin
743 if Safe_To_Capture_Value (N, Ent) then
745 -- If simple variable on left side, warn if this assignment
746 -- blots out another one (rendering it useless) and note
747 -- location of assignment in case no one references value.
748 -- We only do this for source assignments, otherwise we can
749 -- generate bogus warnings when an assignment is rewritten as
750 -- another assignment, and gets tied up with itself.
752 -- Note: we don't use Record_Last_Assignment here, because we
753 -- have lots of other stuff to do under control of this test.
755 if Warn_On_Modified_Unread
756 and then Is_Assignable (Ent)
757 and then Comes_From_Source (N)
758 and then In_Extended_Main_Source_Unit (Ent)
759 then
760 Warn_On_Useless_Assignment (Ent, N);
761 Set_Last_Assignment (Ent, Lhs);
762 end if;
764 -- If we are assigning an access type and the left side is an
765 -- entity, then make sure that the Is_Known_[Non_]Null flags
766 -- properly reflect the state of the entity after assignment.
768 if Is_Access_Type (T1) then
769 if Known_Non_Null (Rhs) then
770 Set_Is_Known_Non_Null (Ent, True);
772 elsif Known_Null (Rhs)
773 and then not Can_Never_Be_Null (Ent)
774 then
775 Set_Is_Known_Null (Ent, True);
777 else
778 Set_Is_Known_Null (Ent, False);
780 if not Can_Never_Be_Null (Ent) then
781 Set_Is_Known_Non_Null (Ent, False);
782 end if;
783 end if;
785 -- For discrete types, we may be able to set the current value
786 -- if the value is known at compile time.
788 elsif Is_Discrete_Type (T1)
789 and then Compile_Time_Known_Value (Rhs)
790 then
791 Set_Current_Value (Ent, Rhs);
792 else
793 Set_Current_Value (Ent, Empty);
794 end if;
796 -- If not safe to capture values, kill them
798 else
799 Kill_Lhs;
800 end if;
801 end;
802 end if;
803 end Analyze_Assignment;
805 -----------------------------
806 -- Analyze_Block_Statement --
807 -----------------------------
809 procedure Analyze_Block_Statement (N : Node_Id) is
810 Decls : constant List_Id := Declarations (N);
811 Id : constant Node_Id := Identifier (N);
812 HSS : constant Node_Id := Handled_Statement_Sequence (N);
814 begin
815 -- If no handled statement sequence is present, things are really
816 -- messed up, and we just return immediately (this is a defence
817 -- against previous errors).
819 if No (HSS) then
820 return;
821 end if;
823 -- Normal processing with HSS present
825 declare
826 EH : constant List_Id := Exception_Handlers (HSS);
827 Ent : Entity_Id := Empty;
828 S : Entity_Id;
830 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
831 -- Recursively save value of this global, will be restored on exit
833 begin
834 -- Initialize unblocked exit count for statements of begin block
835 -- plus one for each exception handler that is present.
837 Unblocked_Exit_Count := 1;
839 if Present (EH) then
840 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
841 end if;
843 -- If a label is present analyze it and mark it as referenced
845 if Present (Id) then
846 Analyze (Id);
847 Ent := Entity (Id);
849 -- An error defense. If we have an identifier, but no entity,
850 -- then something is wrong. If we have previous errors, then
851 -- just remove the identifier and continue, otherwise raise
852 -- an exception.
854 if No (Ent) then
855 if Total_Errors_Detected /= 0 then
856 Set_Identifier (N, Empty);
857 else
858 raise Program_Error;
859 end if;
861 else
862 Set_Ekind (Ent, E_Block);
863 Generate_Reference (Ent, N, ' ');
864 Generate_Definition (Ent);
866 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
867 Set_Label_Construct (Parent (Ent), N);
868 end if;
869 end if;
870 end if;
872 -- If no entity set, create a label entity
874 if No (Ent) then
875 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
876 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
877 Set_Parent (Ent, N);
878 end if;
880 Set_Etype (Ent, Standard_Void_Type);
881 Set_Block_Node (Ent, Identifier (N));
882 Push_Scope (Ent);
884 if Present (Decls) then
885 Analyze_Declarations (Decls);
886 Check_Completion;
887 Inspect_Deferred_Constant_Completion (Decls);
888 end if;
890 Analyze (HSS);
891 Process_End_Label (HSS, 'e', Ent);
893 -- If exception handlers are present, then we indicate that
894 -- enclosing scopes contain a block with handlers. We only
895 -- need to mark non-generic scopes.
897 if Present (EH) then
898 S := Scope (Ent);
899 loop
900 Set_Has_Nested_Block_With_Handler (S);
901 exit when Is_Overloadable (S)
902 or else Ekind (S) = E_Package
903 or else Is_Generic_Unit (S);
904 S := Scope (S);
905 end loop;
906 end if;
908 Check_References (Ent);
909 Warn_On_Useless_Assignments (Ent);
910 End_Scope;
912 if Unblocked_Exit_Count = 0 then
913 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
914 Check_Unreachable_Code (N);
915 else
916 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
917 end if;
918 end;
919 end Analyze_Block_Statement;
921 ----------------------------
922 -- Analyze_Case_Statement --
923 ----------------------------
925 procedure Analyze_Case_Statement (N : Node_Id) is
926 Exp : Node_Id;
927 Exp_Type : Entity_Id;
928 Exp_Btype : Entity_Id;
929 Last_Choice : Nat;
930 Dont_Care : Boolean;
931 Others_Present : Boolean;
933 pragma Warnings (Off, Last_Choice);
934 pragma Warnings (Off, Dont_Care);
935 -- Don't care about assigned values
937 Statements_Analyzed : Boolean := False;
938 -- Set True if at least some statement sequences get analyzed.
939 -- If False on exit, means we had a serious error that prevented
940 -- full analysis of the case statement, and as a result it is not
941 -- a good idea to output warning messages about unreachable code.
943 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
944 -- Recursively save value of this global, will be restored on exit
946 procedure Non_Static_Choice_Error (Choice : Node_Id);
947 -- Error routine invoked by the generic instantiation below when
948 -- the case statement has a non static choice.
950 procedure Process_Statements (Alternative : Node_Id);
951 -- Analyzes all the statements associated to a case alternative.
952 -- Needed by the generic instantiation below.
954 package Case_Choices_Processing is new
955 Generic_Choices_Processing
956 (Get_Alternatives => Alternatives,
957 Get_Choices => Discrete_Choices,
958 Process_Empty_Choice => No_OP,
959 Process_Non_Static_Choice => Non_Static_Choice_Error,
960 Process_Associated_Node => Process_Statements);
961 use Case_Choices_Processing;
962 -- Instantiation of the generic choice processing package
964 -----------------------------
965 -- Non_Static_Choice_Error --
966 -----------------------------
968 procedure Non_Static_Choice_Error (Choice : Node_Id) is
969 begin
970 Flag_Non_Static_Expr
971 ("choice given in case statement is not static!", Choice);
972 end Non_Static_Choice_Error;
974 ------------------------
975 -- Process_Statements --
976 ------------------------
978 procedure Process_Statements (Alternative : Node_Id) is
979 Choices : constant List_Id := Discrete_Choices (Alternative);
980 Ent : Entity_Id;
982 begin
983 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
984 Statements_Analyzed := True;
986 -- An interesting optimization. If the case statement expression
987 -- is a simple entity, then we can set the current value within
988 -- an alternative if the alternative has one possible value.
990 -- case N is
991 -- when 1 => alpha
992 -- when 2 | 3 => beta
993 -- when others => gamma
995 -- Here we know that N is initially 1 within alpha, but for beta
996 -- and gamma, we do not know anything more about the initial value.
998 if Is_Entity_Name (Exp) then
999 Ent := Entity (Exp);
1001 if Ekind (Ent) = E_Variable
1002 or else
1003 Ekind (Ent) = E_In_Out_Parameter
1004 or else
1005 Ekind (Ent) = E_Out_Parameter
1006 then
1007 if List_Length (Choices) = 1
1008 and then Nkind (First (Choices)) in N_Subexpr
1009 and then Compile_Time_Known_Value (First (Choices))
1010 then
1011 Set_Current_Value (Entity (Exp), First (Choices));
1012 end if;
1014 Analyze_Statements (Statements (Alternative));
1016 -- After analyzing the case, set the current value to empty
1017 -- since we won't know what it is for the next alternative
1018 -- (unless reset by this same circuit), or after the case.
1020 Set_Current_Value (Entity (Exp), Empty);
1021 return;
1022 end if;
1023 end if;
1025 -- Case where expression is not an entity name of a variable
1027 Analyze_Statements (Statements (Alternative));
1028 end Process_Statements;
1030 -- Table to record choices. Put after subprograms since we make
1031 -- a call to Number_Of_Choices to get the right number of entries.
1033 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
1034 pragma Warnings (Off, Case_Table);
1036 -- Start of processing for Analyze_Case_Statement
1038 begin
1039 Unblocked_Exit_Count := 0;
1040 Exp := Expression (N);
1041 Analyze (Exp);
1043 -- The expression must be of any discrete type. In rare cases, the
1044 -- expander constructs a case statement whose expression has a private
1045 -- type whose full view is discrete. This can happen when generating
1046 -- a stream operation for a variant type after the type is frozen,
1047 -- when the partial of view of the type of the discriminant is private.
1048 -- In that case, use the full view to analyze case alternatives.
1050 if not Is_Overloaded (Exp)
1051 and then not Comes_From_Source (N)
1052 and then Is_Private_Type (Etype (Exp))
1053 and then Present (Full_View (Etype (Exp)))
1054 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1055 then
1056 Resolve (Exp, Etype (Exp));
1057 Exp_Type := Full_View (Etype (Exp));
1059 else
1060 Analyze_And_Resolve (Exp, Any_Discrete);
1061 Exp_Type := Etype (Exp);
1062 end if;
1064 Check_Unset_Reference (Exp);
1065 Exp_Btype := Base_Type (Exp_Type);
1067 -- The expression must be of a discrete type which must be determinable
1068 -- independently of the context in which the expression occurs, but
1069 -- using the fact that the expression must be of a discrete type.
1070 -- Moreover, the type this expression must not be a character literal
1071 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1073 -- If error already reported by Resolve, nothing more to do
1075 if Exp_Btype = Any_Discrete
1076 or else Exp_Btype = Any_Type
1077 then
1078 return;
1080 elsif Exp_Btype = Any_Character then
1081 Error_Msg_N
1082 ("character literal as case expression is ambiguous", Exp);
1083 return;
1085 elsif Ada_Version = Ada_83
1086 and then (Is_Generic_Type (Exp_Btype)
1087 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1088 then
1089 Error_Msg_N
1090 ("(Ada 83) case expression cannot be of a generic type", Exp);
1091 return;
1092 end if;
1094 -- If the case expression is a formal object of mode in out, then
1095 -- treat it as having a nonstatic subtype by forcing use of the base
1096 -- type (which has to get passed to Check_Case_Choices below). Also
1097 -- use base type when the case expression is parenthesized.
1099 if Paren_Count (Exp) > 0
1100 or else (Is_Entity_Name (Exp)
1101 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1102 then
1103 Exp_Type := Exp_Btype;
1104 end if;
1106 -- Call instantiated Analyze_Choices which does the rest of the work
1108 Analyze_Choices
1109 (N, Exp_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
1111 if Exp_Type = Universal_Integer and then not Others_Present then
1112 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1113 end if;
1115 -- If all our exits were blocked by unconditional transfers of control,
1116 -- then the entire CASE statement acts as an unconditional transfer of
1117 -- control, so treat it like one, and check unreachable code. Skip this
1118 -- test if we had serious errors preventing any statement analysis.
1120 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1121 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1122 Check_Unreachable_Code (N);
1123 else
1124 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1125 end if;
1127 if not Expander_Active
1128 and then Compile_Time_Known_Value (Expression (N))
1129 and then Serious_Errors_Detected = 0
1130 then
1131 declare
1132 Chosen : constant Node_Id := Find_Static_Alternative (N);
1133 Alt : Node_Id;
1135 begin
1136 Alt := First (Alternatives (N));
1137 while Present (Alt) loop
1138 if Alt /= Chosen then
1139 Remove_Warning_Messages (Statements (Alt));
1140 end if;
1142 Next (Alt);
1143 end loop;
1144 end;
1145 end if;
1146 end Analyze_Case_Statement;
1148 ----------------------------
1149 -- Analyze_Exit_Statement --
1150 ----------------------------
1152 -- If the exit includes a name, it must be the name of a currently open
1153 -- loop. Otherwise there must be an innermost open loop on the stack,
1154 -- to which the statement implicitly refers.
1156 procedure Analyze_Exit_Statement (N : Node_Id) is
1157 Target : constant Node_Id := Name (N);
1158 Cond : constant Node_Id := Condition (N);
1159 Scope_Id : Entity_Id;
1160 U_Name : Entity_Id;
1161 Kind : Entity_Kind;
1163 begin
1164 if No (Cond) then
1165 Check_Unreachable_Code (N);
1166 end if;
1168 if Present (Target) then
1169 Analyze (Target);
1170 U_Name := Entity (Target);
1172 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1173 Error_Msg_N ("invalid loop name in exit statement", N);
1174 return;
1175 else
1176 Set_Has_Exit (U_Name);
1177 end if;
1179 else
1180 U_Name := Empty;
1181 end if;
1183 for J in reverse 0 .. Scope_Stack.Last loop
1184 Scope_Id := Scope_Stack.Table (J).Entity;
1185 Kind := Ekind (Scope_Id);
1187 if Kind = E_Loop
1188 and then (No (Target) or else Scope_Id = U_Name) then
1189 Set_Has_Exit (Scope_Id);
1190 exit;
1192 elsif Kind = E_Block
1193 or else Kind = E_Loop
1194 or else Kind = E_Return_Statement
1195 then
1196 null;
1198 else
1199 Error_Msg_N
1200 ("cannot exit from program unit or accept statement", N);
1201 exit;
1202 end if;
1203 end loop;
1205 -- Verify that if present the condition is a Boolean expression
1207 if Present (Cond) then
1208 Analyze_And_Resolve (Cond, Any_Boolean);
1209 Check_Unset_Reference (Cond);
1210 end if;
1212 -- Since the exit may take us out of a loop, any previous assignment
1213 -- statement is not useless, so clear last assignment indications. It
1214 -- is OK to keep other current values, since if the exit statement
1215 -- does not exit, then the current values are still valid.
1217 Kill_Current_Values (Last_Assignment_Only => True);
1218 end Analyze_Exit_Statement;
1220 ----------------------------
1221 -- Analyze_Goto_Statement --
1222 ----------------------------
1224 procedure Analyze_Goto_Statement (N : Node_Id) is
1225 Label : constant Node_Id := Name (N);
1226 Scope_Id : Entity_Id;
1227 Label_Scope : Entity_Id;
1228 Label_Ent : Entity_Id;
1230 begin
1231 Check_Unreachable_Code (N);
1232 Kill_Current_Values (Last_Assignment_Only => True);
1234 Analyze (Label);
1235 Label_Ent := Entity (Label);
1237 -- Ignore previous error
1239 if Label_Ent = Any_Id then
1240 return;
1242 -- We just have a label as the target of a goto
1244 elsif Ekind (Label_Ent) /= E_Label then
1245 Error_Msg_N ("target of goto statement must be a label", Label);
1246 return;
1248 -- Check that the target of the goto is reachable according to Ada
1249 -- scoping rules. Note: the special gotos we generate for optimizing
1250 -- local handling of exceptions would violate these rules, but we mark
1251 -- such gotos as analyzed when built, so this code is never entered.
1253 elsif not Reachable (Label_Ent) then
1254 Error_Msg_N ("target of goto statement is not reachable", Label);
1255 return;
1256 end if;
1258 -- Here if goto passes initial validity checks
1260 Label_Scope := Enclosing_Scope (Label_Ent);
1262 for J in reverse 0 .. Scope_Stack.Last loop
1263 Scope_Id := Scope_Stack.Table (J).Entity;
1265 if Label_Scope = Scope_Id
1266 or else (Ekind (Scope_Id) /= E_Block
1267 and then Ekind (Scope_Id) /= E_Loop
1268 and then Ekind (Scope_Id) /= E_Return_Statement)
1269 then
1270 if Scope_Id /= Label_Scope then
1271 Error_Msg_N
1272 ("cannot exit from program unit or accept statement", N);
1273 end if;
1275 return;
1276 end if;
1277 end loop;
1279 raise Program_Error;
1280 end Analyze_Goto_Statement;
1282 --------------------------
1283 -- Analyze_If_Statement --
1284 --------------------------
1286 -- A special complication arises in the analysis of if statements
1288 -- The expander has circuitry to completely delete code that it
1289 -- can tell will not be executed (as a result of compile time known
1290 -- conditions). In the analyzer, we ensure that code that will be
1291 -- deleted in this manner is analyzed but not expanded. This is
1292 -- obviously more efficient, but more significantly, difficulties
1293 -- arise if code is expanded and then eliminated (e.g. exception
1294 -- table entries disappear). Similarly, itypes generated in deleted
1295 -- code must be frozen from start, because the nodes on which they
1296 -- depend will not be available at the freeze point.
1298 procedure Analyze_If_Statement (N : Node_Id) is
1299 E : Node_Id;
1301 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1302 -- Recursively save value of this global, will be restored on exit
1304 Save_In_Deleted_Code : Boolean;
1306 Del : Boolean := False;
1307 -- This flag gets set True if a True condition has been found,
1308 -- which means that remaining ELSE/ELSIF parts are deleted.
1310 procedure Analyze_Cond_Then (Cnode : Node_Id);
1311 -- This is applied to either the N_If_Statement node itself or
1312 -- to an N_Elsif_Part node. It deals with analyzing the condition
1313 -- and the THEN statements associated with it.
1315 -----------------------
1316 -- Analyze_Cond_Then --
1317 -----------------------
1319 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1320 Cond : constant Node_Id := Condition (Cnode);
1321 Tstm : constant List_Id := Then_Statements (Cnode);
1323 begin
1324 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1325 Analyze_And_Resolve (Cond, Any_Boolean);
1326 Check_Unset_Reference (Cond);
1327 Set_Current_Value_Condition (Cnode);
1329 -- If already deleting, then just analyze then statements
1331 if Del then
1332 Analyze_Statements (Tstm);
1334 -- Compile time known value, not deleting yet
1336 elsif Compile_Time_Known_Value (Cond) then
1337 Save_In_Deleted_Code := In_Deleted_Code;
1339 -- If condition is True, then analyze the THEN statements
1340 -- and set no expansion for ELSE and ELSIF parts.
1342 if Is_True (Expr_Value (Cond)) then
1343 Analyze_Statements (Tstm);
1344 Del := True;
1345 Expander_Mode_Save_And_Set (False);
1346 In_Deleted_Code := True;
1348 -- If condition is False, analyze THEN with expansion off
1350 else -- Is_False (Expr_Value (Cond))
1351 Expander_Mode_Save_And_Set (False);
1352 In_Deleted_Code := True;
1353 Analyze_Statements (Tstm);
1354 Expander_Mode_Restore;
1355 In_Deleted_Code := Save_In_Deleted_Code;
1356 end if;
1358 -- Not known at compile time, not deleting, normal analysis
1360 else
1361 Analyze_Statements (Tstm);
1362 end if;
1363 end Analyze_Cond_Then;
1365 -- Start of Analyze_If_Statement
1367 begin
1368 -- Initialize exit count for else statements. If there is no else
1369 -- part, this count will stay non-zero reflecting the fact that the
1370 -- uncovered else case is an unblocked exit.
1372 Unblocked_Exit_Count := 1;
1373 Analyze_Cond_Then (N);
1375 -- Now to analyze the elsif parts if any are present
1377 if Present (Elsif_Parts (N)) then
1378 E := First (Elsif_Parts (N));
1379 while Present (E) loop
1380 Analyze_Cond_Then (E);
1381 Next (E);
1382 end loop;
1383 end if;
1385 if Present (Else_Statements (N)) then
1386 Analyze_Statements (Else_Statements (N));
1387 end if;
1389 -- If all our exits were blocked by unconditional transfers of control,
1390 -- then the entire IF statement acts as an unconditional transfer of
1391 -- control, so treat it like one, and check unreachable code.
1393 if Unblocked_Exit_Count = 0 then
1394 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1395 Check_Unreachable_Code (N);
1396 else
1397 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1398 end if;
1400 if Del then
1401 Expander_Mode_Restore;
1402 In_Deleted_Code := Save_In_Deleted_Code;
1403 end if;
1405 if not Expander_Active
1406 and then Compile_Time_Known_Value (Condition (N))
1407 and then Serious_Errors_Detected = 0
1408 then
1409 if Is_True (Expr_Value (Condition (N))) then
1410 Remove_Warning_Messages (Else_Statements (N));
1412 if Present (Elsif_Parts (N)) then
1413 E := First (Elsif_Parts (N));
1414 while Present (E) loop
1415 Remove_Warning_Messages (Then_Statements (E));
1416 Next (E);
1417 end loop;
1418 end if;
1420 else
1421 Remove_Warning_Messages (Then_Statements (N));
1422 end if;
1423 end if;
1424 end Analyze_If_Statement;
1426 ----------------------------------------
1427 -- Analyze_Implicit_Label_Declaration --
1428 ----------------------------------------
1430 -- An implicit label declaration is generated in the innermost
1431 -- enclosing declarative part. This is done for labels as well as
1432 -- block and loop names.
1434 -- Note: any changes in this routine may need to be reflected in
1435 -- Analyze_Label_Entity.
1437 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1438 Id : constant Node_Id := Defining_Identifier (N);
1439 begin
1440 Enter_Name (Id);
1441 Set_Ekind (Id, E_Label);
1442 Set_Etype (Id, Standard_Void_Type);
1443 Set_Enclosing_Scope (Id, Current_Scope);
1444 end Analyze_Implicit_Label_Declaration;
1446 ------------------------------
1447 -- Analyze_Iteration_Scheme --
1448 ------------------------------
1450 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1452 procedure Process_Bounds (R : Node_Id);
1453 -- If the iteration is given by a range, create temporaries and
1454 -- assignment statements block to capture the bounds and perform
1455 -- required finalization actions in case a bound includes a function
1456 -- call that uses the temporary stack. We first pre-analyze a copy of
1457 -- the range in order to determine the expected type, and analyze and
1458 -- resolve the original bounds.
1460 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
1461 -- If the bounds are given by a 'Range reference on a function call
1462 -- that returns a controlled array, introduce an explicit declaration
1463 -- to capture the bounds, so that the function result can be finalized
1464 -- in timely fashion.
1466 --------------------
1467 -- Process_Bounds --
1468 --------------------
1470 procedure Process_Bounds (R : Node_Id) is
1471 Loc : constant Source_Ptr := Sloc (N);
1472 R_Copy : constant Node_Id := New_Copy_Tree (R);
1473 Lo : constant Node_Id := Low_Bound (R);
1474 Hi : constant Node_Id := High_Bound (R);
1475 New_Lo_Bound : Node_Id := Empty;
1476 New_Hi_Bound : Node_Id := Empty;
1477 Typ : Entity_Id;
1478 Save_Analysis : Boolean;
1480 function One_Bound
1481 (Original_Bound : Node_Id;
1482 Analyzed_Bound : Node_Id) return Node_Id;
1483 -- Capture value of bound and return captured value
1485 ---------------
1486 -- One_Bound --
1487 ---------------
1489 function One_Bound
1490 (Original_Bound : Node_Id;
1491 Analyzed_Bound : Node_Id) return Node_Id
1493 Assign : Node_Id;
1494 Id : Entity_Id;
1495 Decl : Node_Id;
1497 begin
1498 -- If the bound is a constant or an object, no need for a separate
1499 -- declaration. If the bound is the result of previous expansion
1500 -- it is already analyzed and should not be modified. Note that
1501 -- the Bound will be resolved later, if needed, as part of the
1502 -- call to Make_Index (literal bounds may need to be resolved to
1503 -- type Integer).
1505 if Analyzed (Original_Bound) then
1506 return Original_Bound;
1508 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
1509 N_Character_Literal)
1510 or else Is_Entity_Name (Analyzed_Bound)
1511 then
1512 Analyze_And_Resolve (Original_Bound, Typ);
1513 return Original_Bound;
1514 end if;
1516 -- Here we need to capture the value
1518 Analyze_And_Resolve (Original_Bound, Typ);
1520 Id :=
1521 Make_Defining_Identifier (Loc,
1522 Chars => New_Internal_Name ('S'));
1524 -- Normally, the best approach is simply to generate a constant
1525 -- declaration that captures the bound. However, there is a nasty
1526 -- case where this is wrong. If the bound is complex, and has a
1527 -- possible use of the secondary stack, we need to generate a
1528 -- separate assignment statement to ensure the creation of a block
1529 -- which will release the secondary stack.
1531 -- We prefer the constant declaration, since it leaves us with a
1532 -- proper trace of the value, useful in optimizations that get rid
1533 -- of junk range checks.
1535 -- Probably we want something like the Side_Effect_Free routine
1536 -- in Exp_Util, but for now, we just optimize the cases of 'Last
1537 -- and 'First applied to an entity, since these are the important
1538 -- cases for range check optimizations.
1540 if Nkind (Original_Bound) = N_Attribute_Reference
1541 and then (Attribute_Name (Original_Bound) = Name_First
1542 or else
1543 Attribute_Name (Original_Bound) = Name_Last)
1544 and then Is_Entity_Name (Prefix (Original_Bound))
1545 then
1546 Decl :=
1547 Make_Object_Declaration (Loc,
1548 Defining_Identifier => Id,
1549 Constant_Present => True,
1550 Object_Definition => New_Occurrence_Of (Typ, Loc),
1551 Expression => Relocate_Node (Original_Bound));
1553 Insert_Before (Parent (N), Decl);
1554 Analyze (Decl);
1555 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
1556 return Expression (Decl);
1557 end if;
1559 -- Here we make a declaration with a separate assignment statement
1561 Decl :=
1562 Make_Object_Declaration (Loc,
1563 Defining_Identifier => Id,
1564 Object_Definition => New_Occurrence_Of (Typ, Loc));
1566 Insert_Before (Parent (N), Decl);
1567 Analyze (Decl);
1569 Assign :=
1570 Make_Assignment_Statement (Loc,
1571 Name => New_Occurrence_Of (Id, Loc),
1572 Expression => Relocate_Node (Original_Bound));
1574 -- If the relocated node is a function call then check if some
1575 -- SCIL node references it and needs readjustment.
1577 if Generate_SCIL
1578 and then Nkind (Original_Bound) = N_Function_Call
1579 then
1580 Adjust_SCIL_Node (Original_Bound, Expression (Assign));
1581 end if;
1583 Insert_Before (Parent (N), Assign);
1584 Analyze (Assign);
1586 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
1588 if Nkind (Assign) = N_Assignment_Statement then
1589 return Expression (Assign);
1590 else
1591 return Original_Bound;
1592 end if;
1593 end One_Bound;
1595 -- Start of processing for Process_Bounds
1597 begin
1598 -- Determine expected type of range by analyzing separate copy
1599 -- Do the analysis and resolution of the copy of the bounds with
1600 -- expansion disabled, to prevent the generation of finalization
1601 -- actions on each bound. This prevents memory leaks when the
1602 -- bounds contain calls to functions returning controlled arrays.
1604 Set_Parent (R_Copy, Parent (R));
1605 Save_Analysis := Full_Analysis;
1606 Full_Analysis := False;
1607 Expander_Mode_Save_And_Set (False);
1609 Analyze (R_Copy);
1611 if Is_Overloaded (R_Copy) then
1613 -- Apply preference rules for range of predefined integer types,
1614 -- or diagnose true ambiguity.
1616 declare
1617 I : Interp_Index;
1618 It : Interp;
1619 Found : Entity_Id := Empty;
1621 begin
1622 Get_First_Interp (R_Copy, I, It);
1623 while Present (It.Typ) loop
1624 if Is_Discrete_Type (It.Typ) then
1625 if No (Found) then
1626 Found := It.Typ;
1627 else
1628 if Scope (Found) = Standard_Standard then
1629 null;
1631 elsif Scope (It.Typ) = Standard_Standard then
1632 Found := It.Typ;
1634 else
1635 -- Both of them are user-defined
1637 Error_Msg_N
1638 ("ambiguous bounds in range of iteration",
1639 R_Copy);
1640 Error_Msg_N ("\possible interpretations:", R_Copy);
1641 Error_Msg_NE ("\\} ", R_Copy, Found);
1642 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
1643 exit;
1644 end if;
1645 end if;
1646 end if;
1648 Get_Next_Interp (I, It);
1649 end loop;
1650 end;
1651 end if;
1653 Resolve (R_Copy);
1654 Expander_Mode_Restore;
1655 Full_Analysis := Save_Analysis;
1657 Typ := Etype (R_Copy);
1659 -- If the type of the discrete range is Universal_Integer, then
1660 -- the bound's type must be resolved to Integer, and any object
1661 -- used to hold the bound must also have type Integer, unless the
1662 -- literal bounds are constant-folded expressions that carry a user-
1663 -- defined type.
1665 if Typ = Universal_Integer then
1666 if Nkind (Lo) = N_Integer_Literal
1667 and then Present (Etype (Lo))
1668 and then Scope (Etype (Lo)) /= Standard_Standard
1669 then
1670 Typ := Etype (Lo);
1672 elsif Nkind (Hi) = N_Integer_Literal
1673 and then Present (Etype (Hi))
1674 and then Scope (Etype (Hi)) /= Standard_Standard
1675 then
1676 Typ := Etype (Hi);
1678 else
1679 Typ := Standard_Integer;
1680 end if;
1681 end if;
1683 Set_Etype (R, Typ);
1685 New_Lo_Bound := One_Bound (Lo, Low_Bound (R_Copy));
1686 New_Hi_Bound := One_Bound (Hi, High_Bound (R_Copy));
1688 -- Propagate staticness to loop range itself, in case the
1689 -- corresponding subtype is static.
1691 if New_Lo_Bound /= Lo
1692 and then Is_Static_Expression (New_Lo_Bound)
1693 then
1694 Rewrite (Low_Bound (R), New_Copy (New_Lo_Bound));
1695 end if;
1697 if New_Hi_Bound /= Hi
1698 and then Is_Static_Expression (New_Hi_Bound)
1699 then
1700 Rewrite (High_Bound (R), New_Copy (New_Hi_Bound));
1701 end if;
1702 end Process_Bounds;
1704 --------------------------------------
1705 -- Check_Controlled_Array_Attribute --
1706 --------------------------------------
1708 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
1709 begin
1710 if Nkind (DS) = N_Attribute_Reference
1711 and then Is_Entity_Name (Prefix (DS))
1712 and then Ekind (Entity (Prefix (DS))) = E_Function
1713 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
1714 and then
1715 Is_Controlled (
1716 Component_Type (Etype (Entity (Prefix (DS)))))
1717 and then Expander_Active
1718 then
1719 declare
1720 Loc : constant Source_Ptr := Sloc (N);
1721 Arr : constant Entity_Id :=
1722 Etype (Entity (Prefix (DS)));
1723 Indx : constant Entity_Id :=
1724 Base_Type (Etype (First_Index (Arr)));
1725 Subt : constant Entity_Id :=
1726 Make_Defining_Identifier
1727 (Loc, New_Internal_Name ('S'));
1728 Decl : Node_Id;
1730 begin
1731 Decl :=
1732 Make_Subtype_Declaration (Loc,
1733 Defining_Identifier => Subt,
1734 Subtype_Indication =>
1735 Make_Subtype_Indication (Loc,
1736 Subtype_Mark => New_Reference_To (Indx, Loc),
1737 Constraint =>
1738 Make_Range_Constraint (Loc,
1739 Relocate_Node (DS))));
1740 Insert_Before (Parent (N), Decl);
1741 Analyze (Decl);
1743 Rewrite (DS,
1744 Make_Attribute_Reference (Loc,
1745 Prefix => New_Reference_To (Subt, Loc),
1746 Attribute_Name => Attribute_Name (DS)));
1747 Analyze (DS);
1748 end;
1749 end if;
1750 end Check_Controlled_Array_Attribute;
1752 -- Start of processing for Analyze_Iteration_Scheme
1754 begin
1755 -- For an infinite loop, there is no iteration scheme
1757 if No (N) then
1758 return;
1760 else
1761 declare
1762 Cond : constant Node_Id := Condition (N);
1764 begin
1765 -- For WHILE loop, verify that the condition is a Boolean
1766 -- expression and resolve and check it.
1768 if Present (Cond) then
1769 Analyze_And_Resolve (Cond, Any_Boolean);
1770 Check_Unset_Reference (Cond);
1771 Set_Current_Value_Condition (N);
1772 return;
1774 -- Else we have a FOR loop
1776 else
1777 declare
1778 LP : constant Node_Id := Loop_Parameter_Specification (N);
1779 Id : constant Entity_Id := Defining_Identifier (LP);
1780 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
1782 begin
1783 Enter_Name (Id);
1785 -- We always consider the loop variable to be referenced,
1786 -- since the loop may be used just for counting purposes.
1788 Generate_Reference (Id, N, ' ');
1790 -- Check for case of loop variable hiding a local
1791 -- variable (used later on to give a nice warning
1792 -- if the hidden variable is never assigned).
1794 declare
1795 H : constant Entity_Id := Homonym (Id);
1796 begin
1797 if Present (H)
1798 and then Enclosing_Dynamic_Scope (H) =
1799 Enclosing_Dynamic_Scope (Id)
1800 and then Ekind (H) = E_Variable
1801 and then Is_Discrete_Type (Etype (H))
1802 then
1803 Set_Hiding_Loop_Variable (H, Id);
1804 end if;
1805 end;
1807 -- Now analyze the subtype definition. If it is
1808 -- a range, create temporaries for bounds.
1810 if Nkind (DS) = N_Range
1811 and then Expander_Active
1812 then
1813 Process_Bounds (DS);
1814 else
1815 Analyze (DS);
1816 end if;
1818 if DS = Error then
1819 return;
1820 end if;
1822 -- The subtype indication may denote the completion
1823 -- of an incomplete type declaration.
1825 if Is_Entity_Name (DS)
1826 and then Present (Entity (DS))
1827 and then Is_Type (Entity (DS))
1828 and then Ekind (Entity (DS)) = E_Incomplete_Type
1829 then
1830 Set_Entity (DS, Get_Full_View (Entity (DS)));
1831 Set_Etype (DS, Entity (DS));
1832 end if;
1834 if not Is_Discrete_Type (Etype (DS)) then
1835 Wrong_Type (DS, Any_Discrete);
1836 Set_Etype (DS, Any_Type);
1837 end if;
1839 Check_Controlled_Array_Attribute (DS);
1841 Make_Index (DS, LP);
1843 Set_Ekind (Id, E_Loop_Parameter);
1844 Set_Etype (Id, Etype (DS));
1846 -- Treat a range as an implicit reference to the type, to
1847 -- inhibit spurious warnings.
1849 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
1850 Set_Is_Known_Valid (Id, True);
1852 -- The loop is not a declarative part, so the only entity
1853 -- declared "within" must be frozen explicitly.
1855 declare
1856 Flist : constant List_Id := Freeze_Entity (Id, Sloc (N));
1857 begin
1858 if Is_Non_Empty_List (Flist) then
1859 Insert_Actions (N, Flist);
1860 end if;
1861 end;
1863 -- Check for null or possibly null range and issue warning.
1864 -- We suppress such messages in generic templates and
1865 -- instances, because in practice they tend to be dubious
1866 -- in these cases.
1868 if Nkind (DS) = N_Range
1869 and then Comes_From_Source (N)
1870 then
1871 declare
1872 L : constant Node_Id := Low_Bound (DS);
1873 H : constant Node_Id := High_Bound (DS);
1875 begin
1876 -- If range of loop is null, issue warning
1878 if Compile_Time_Compare
1879 (L, H, Assume_Valid => True) = GT
1880 then
1881 -- Suppress the warning if inside a generic
1882 -- template or instance, since in practice
1883 -- they tend to be dubious in these cases since
1884 -- they can result from intended parametrization.
1886 if not Inside_A_Generic
1887 and then not In_Instance
1888 then
1889 -- Specialize msg if invalid values could make
1890 -- the loop non-null after all.
1892 if Compile_Time_Compare
1893 (L, H, Assume_Valid => False) = GT
1894 then
1895 Error_Msg_N
1896 ("?loop range is null, "
1897 & "loop will not execute",
1898 DS);
1900 -- Since we know the range of the loop is
1901 -- null, set the appropriate flag to remove
1902 -- the loop entirely during expansion.
1904 Set_Is_Null_Loop (Parent (N));
1906 -- Here is where the loop could execute because
1907 -- of invalid values, so issue appropriate
1908 -- message and in this case we do not set the
1909 -- Is_Null_Loop flag since the loop may execute.
1911 else
1912 Error_Msg_N
1913 ("?loop range may be null, "
1914 & "loop may not execute",
1915 DS);
1916 Error_Msg_N
1917 ("?can only execute if invalid values "
1918 & "are present",
1919 DS);
1920 end if;
1921 end if;
1923 -- In either case, suppress warnings in the body of
1924 -- the loop, since it is likely that these warnings
1925 -- will be inappropriate if the loop never actually
1926 -- executes, which is unlikely.
1928 Set_Suppress_Loop_Warnings (Parent (N));
1930 -- The other case for a warning is a reverse loop
1931 -- where the upper bound is the integer literal
1932 -- zero or one, and the lower bound can be positive.
1934 -- For example, we have
1936 -- for J in reverse N .. 1 loop
1938 -- In practice, this is very likely to be a case
1939 -- of reversing the bounds incorrectly in the range.
1941 elsif Reverse_Present (LP)
1942 and then Nkind (Original_Node (H)) =
1943 N_Integer_Literal
1944 and then (Intval (Original_Node (H)) = Uint_0
1945 or else
1946 Intval (Original_Node (H)) = Uint_1)
1947 then
1948 Error_Msg_N ("?loop range may be null", DS);
1949 Error_Msg_N ("\?bounds may be wrong way round", DS);
1950 end if;
1951 end;
1952 end if;
1953 end;
1954 end if;
1955 end;
1956 end if;
1957 end Analyze_Iteration_Scheme;
1959 -------------------
1960 -- Analyze_Label --
1961 -------------------
1963 -- Note: the semantic work required for analyzing labels (setting them as
1964 -- reachable) was done in a prepass through the statements in the block,
1965 -- so that forward gotos would be properly handled. See Analyze_Statements
1966 -- for further details. The only processing required here is to deal with
1967 -- optimizations that depend on an assumption of sequential control flow,
1968 -- since of course the occurrence of a label breaks this assumption.
1970 procedure Analyze_Label (N : Node_Id) is
1971 pragma Warnings (Off, N);
1972 begin
1973 Kill_Current_Values;
1974 end Analyze_Label;
1976 --------------------------
1977 -- Analyze_Label_Entity --
1978 --------------------------
1980 procedure Analyze_Label_Entity (E : Entity_Id) is
1981 begin
1982 Set_Ekind (E, E_Label);
1983 Set_Etype (E, Standard_Void_Type);
1984 Set_Enclosing_Scope (E, Current_Scope);
1985 Set_Reachable (E, True);
1986 end Analyze_Label_Entity;
1988 ----------------------------
1989 -- Analyze_Loop_Statement --
1990 ----------------------------
1992 procedure Analyze_Loop_Statement (N : Node_Id) is
1993 Loop_Statement : constant Node_Id := N;
1995 Id : constant Node_Id := Identifier (Loop_Statement);
1996 Iter : constant Node_Id := Iteration_Scheme (Loop_Statement);
1997 Ent : Entity_Id;
1999 begin
2000 if Present (Id) then
2002 -- Make name visible, e.g. for use in exit statements. Loop
2003 -- labels are always considered to be referenced.
2005 Analyze (Id);
2006 Ent := Entity (Id);
2008 -- Guard against serious error (typically, a scope mismatch when
2009 -- semantic analysis is requested) by creating loop entity to
2010 -- continue analysis.
2012 if No (Ent) then
2013 if Total_Errors_Detected /= 0 then
2014 Ent :=
2015 New_Internal_Entity
2016 (E_Loop, Current_Scope, Sloc (Loop_Statement), 'L');
2017 else
2018 raise Program_Error;
2019 end if;
2021 else
2022 Generate_Reference (Ent, Loop_Statement, ' ');
2023 Generate_Definition (Ent);
2025 -- If we found a label, mark its type. If not, ignore it, since it
2026 -- means we have a conflicting declaration, which would already
2027 -- have been diagnosed at declaration time. Set Label_Construct
2028 -- of the implicit label declaration, which is not created by the
2029 -- parser for generic units.
2031 if Ekind (Ent) = E_Label then
2032 Set_Ekind (Ent, E_Loop);
2034 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
2035 Set_Label_Construct (Parent (Ent), Loop_Statement);
2036 end if;
2037 end if;
2038 end if;
2040 -- Case of no identifier present
2042 else
2043 Ent :=
2044 New_Internal_Entity
2045 (E_Loop, Current_Scope, Sloc (Loop_Statement), 'L');
2046 Set_Etype (Ent, Standard_Void_Type);
2047 Set_Parent (Ent, Loop_Statement);
2048 end if;
2050 -- Kill current values on entry to loop, since statements in body of
2051 -- loop may have been executed before the loop is entered. Similarly we
2052 -- kill values after the loop, since we do not know that the body of the
2053 -- loop was executed.
2055 Kill_Current_Values;
2056 Push_Scope (Ent);
2057 Analyze_Iteration_Scheme (Iter);
2058 Analyze_Statements (Statements (Loop_Statement));
2059 Process_End_Label (Loop_Statement, 'e', Ent);
2060 End_Scope;
2061 Kill_Current_Values;
2063 -- Check for infinite loop. We skip this check for generated code, since
2064 -- it justs waste time and makes debugging the routine called harder.
2066 if Comes_From_Source (N) then
2067 Check_Infinite_Loop_Warning (N);
2068 end if;
2070 -- Code after loop is unreachable if the loop has no WHILE or FOR
2071 -- and contains no EXIT statements within the body of the loop.
2073 if No (Iter) and then not Has_Exit (Ent) then
2074 Check_Unreachable_Code (N);
2075 end if;
2076 end Analyze_Loop_Statement;
2078 ----------------------------
2079 -- Analyze_Null_Statement --
2080 ----------------------------
2082 -- Note: the semantics of the null statement is implemented by a single
2083 -- null statement, too bad everything isn't as simple as this!
2085 procedure Analyze_Null_Statement (N : Node_Id) is
2086 pragma Warnings (Off, N);
2087 begin
2088 null;
2089 end Analyze_Null_Statement;
2091 ------------------------
2092 -- Analyze_Statements --
2093 ------------------------
2095 procedure Analyze_Statements (L : List_Id) is
2096 S : Node_Id;
2097 Lab : Entity_Id;
2099 begin
2100 -- The labels declared in the statement list are reachable from
2101 -- statements in the list. We do this as a prepass so that any
2102 -- goto statement will be properly flagged if its target is not
2103 -- reachable. This is not required, but is nice behavior!
2105 S := First (L);
2106 while Present (S) loop
2107 if Nkind (S) = N_Label then
2108 Analyze (Identifier (S));
2109 Lab := Entity (Identifier (S));
2111 -- If we found a label mark it as reachable
2113 if Ekind (Lab) = E_Label then
2114 Generate_Definition (Lab);
2115 Set_Reachable (Lab);
2117 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
2118 Set_Label_Construct (Parent (Lab), S);
2119 end if;
2121 -- If we failed to find a label, it means the implicit declaration
2122 -- of the label was hidden. A for-loop parameter can do this to
2123 -- a label with the same name inside the loop, since the implicit
2124 -- label declaration is in the innermost enclosing body or block
2125 -- statement.
2127 else
2128 Error_Msg_Sloc := Sloc (Lab);
2129 Error_Msg_N
2130 ("implicit label declaration for & is hidden#",
2131 Identifier (S));
2132 end if;
2133 end if;
2135 Next (S);
2136 end loop;
2138 -- Perform semantic analysis on all statements
2140 Conditional_Statements_Begin;
2142 S := First (L);
2143 while Present (S) loop
2144 Analyze (S);
2145 Next (S);
2146 end loop;
2148 Conditional_Statements_End;
2150 -- Make labels unreachable. Visibility is not sufficient, because
2151 -- labels in one if-branch for example are not reachable from the
2152 -- other branch, even though their declarations are in the enclosing
2153 -- declarative part.
2155 S := First (L);
2156 while Present (S) loop
2157 if Nkind (S) = N_Label then
2158 Set_Reachable (Entity (Identifier (S)), False);
2159 end if;
2161 Next (S);
2162 end loop;
2163 end Analyze_Statements;
2165 ----------------------------
2166 -- Check_Unreachable_Code --
2167 ----------------------------
2169 procedure Check_Unreachable_Code (N : Node_Id) is
2170 Error_Loc : Source_Ptr;
2171 P : Node_Id;
2173 begin
2174 if Is_List_Member (N)
2175 and then Comes_From_Source (N)
2176 then
2177 declare
2178 Nxt : Node_Id;
2180 begin
2181 Nxt := Original_Node (Next (N));
2183 -- If a label follows us, then we never have dead code, since
2184 -- someone could branch to the label, so we just ignore it.
2186 if Nkind (Nxt) = N_Label then
2187 return;
2189 -- Otherwise see if we have a real statement following us
2191 elsif Present (Nxt)
2192 and then Comes_From_Source (Nxt)
2193 and then Is_Statement (Nxt)
2194 then
2195 -- Special very annoying exception. If we have a return that
2196 -- follows a raise, then we allow it without a warning, since
2197 -- the Ada RM annoyingly requires a useless return here!
2199 if Nkind (Original_Node (N)) /= N_Raise_Statement
2200 or else Nkind (Nxt) /= N_Simple_Return_Statement
2201 then
2202 -- The rather strange shenanigans with the warning message
2203 -- here reflects the fact that Kill_Dead_Code is very good
2204 -- at removing warnings in deleted code, and this is one
2205 -- warning we would prefer NOT to have removed.
2207 Error_Loc := Sloc (Nxt);
2209 -- If we have unreachable code, analyze and remove the
2210 -- unreachable code, since it is useless and we don't
2211 -- want to generate junk warnings.
2213 -- We skip this step if we are not in code generation mode.
2214 -- This is the one case where we remove dead code in the
2215 -- semantics as opposed to the expander, and we do not want
2216 -- to remove code if we are not in code generation mode,
2217 -- since this messes up the ASIS trees.
2219 -- Note that one might react by moving the whole circuit to
2220 -- exp_ch5, but then we lose the warning in -gnatc mode.
2222 if Operating_Mode = Generate_Code then
2223 loop
2224 Nxt := Next (N);
2226 -- Quit deleting when we have nothing more to delete
2227 -- or if we hit a label (since someone could transfer
2228 -- control to a label, so we should not delete it).
2230 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
2232 -- Statement/declaration is to be deleted
2234 Analyze (Nxt);
2235 Remove (Nxt);
2236 Kill_Dead_Code (Nxt);
2237 end loop;
2238 end if;
2240 -- Now issue the warning
2242 Error_Msg ("?unreachable code!", Error_Loc);
2243 end if;
2245 -- If the unconditional transfer of control instruction is
2246 -- the last statement of a sequence, then see if our parent
2247 -- is one of the constructs for which we count unblocked exits,
2248 -- and if so, adjust the count.
2250 else
2251 P := Parent (N);
2253 -- Statements in THEN part or ELSE part of IF statement
2255 if Nkind (P) = N_If_Statement then
2256 null;
2258 -- Statements in ELSIF part of an IF statement
2260 elsif Nkind (P) = N_Elsif_Part then
2261 P := Parent (P);
2262 pragma Assert (Nkind (P) = N_If_Statement);
2264 -- Statements in CASE statement alternative
2266 elsif Nkind (P) = N_Case_Statement_Alternative then
2267 P := Parent (P);
2268 pragma Assert (Nkind (P) = N_Case_Statement);
2270 -- Statements in body of block
2272 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
2273 and then Nkind (Parent (P)) = N_Block_Statement
2274 then
2275 null;
2277 -- Statements in exception handler in a block
2279 elsif Nkind (P) = N_Exception_Handler
2280 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
2281 and then Nkind (Parent (Parent (P))) = N_Block_Statement
2282 then
2283 null;
2285 -- None of these cases, so return
2287 else
2288 return;
2289 end if;
2291 -- This was one of the cases we are looking for (i.e. the
2292 -- parent construct was IF, CASE or block) so decrement count.
2294 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
2295 end if;
2296 end;
2297 end if;
2298 end Check_Unreachable_Code;
2300 end Sem_Ch5;