1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Debug
; use Debug
;
28 with Einfo
; use Einfo
;
29 with Elists
; use Elists
;
30 with Errout
; use Errout
;
31 with Exp_Util
; use Exp_Util
;
32 with Fname
; use Fname
;
33 with Itypes
; use Itypes
;
35 with Lib
.Xref
; use Lib
.Xref
;
36 with Namet
; use Namet
;
37 with Namet
.Sp
; use Namet
.Sp
;
38 with Nlists
; use Nlists
;
39 with Nmake
; use Nmake
;
41 with Output
; use Output
;
42 with Restrict
; use Restrict
;
43 with Rident
; use Rident
;
45 with Sem_Aux
; use Sem_Aux
;
46 with Sem_Cat
; use Sem_Cat
;
47 with Sem_Ch3
; use Sem_Ch3
;
48 with Sem_Ch6
; use Sem_Ch6
;
49 with Sem_Ch8
; use Sem_Ch8
;
50 with Sem_SCIL
; use Sem_SCIL
;
51 with Sem_Disp
; use Sem_Disp
;
52 with Sem_Dist
; use Sem_Dist
;
53 with Sem_Eval
; use Sem_Eval
;
54 with Sem_Res
; use Sem_Res
;
55 with Sem_Util
; use Sem_Util
;
56 with Sem_Type
; use Sem_Type
;
57 with Stand
; use Stand
;
58 with Sinfo
; use Sinfo
;
59 with Snames
; use Snames
;
60 with Tbuild
; use Tbuild
;
62 package body Sem_Ch4
is
64 -----------------------
65 -- Local Subprograms --
66 -----------------------
68 procedure Analyze_Concatenation_Rest
(N
: Node_Id
);
69 -- Does the "rest" of the work of Analyze_Concatenation, after the left
70 -- operand has been analyzed. See Analyze_Concatenation for details.
72 procedure Analyze_Expression
(N
: Node_Id
);
73 -- For expressions that are not names, this is just a call to analyze.
74 -- If the expression is a name, it may be a call to a parameterless
75 -- function, and if so must be converted into an explicit call node
76 -- and analyzed as such. This deproceduring must be done during the first
77 -- pass of overload resolution, because otherwise a procedure call with
78 -- overloaded actuals may fail to resolve.
80 procedure Analyze_Operator_Call
(N
: Node_Id
; Op_Id
: Entity_Id
);
81 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
82 -- is an operator name or an expanded name whose selector is an operator
83 -- name, and one possible interpretation is as a predefined operator.
85 procedure Analyze_Overloaded_Selected_Component
(N
: Node_Id
);
86 -- If the prefix of a selected_component is overloaded, the proper
87 -- interpretation that yields a record type with the proper selector
88 -- name must be selected.
90 procedure Analyze_User_Defined_Binary_Op
(N
: Node_Id
; Op_Id
: Entity_Id
);
91 -- Procedure to analyze a user defined binary operator, which is resolved
92 -- like a function, but instead of a list of actuals it is presented
93 -- with the left and right operands of an operator node.
95 procedure Analyze_User_Defined_Unary_Op
(N
: Node_Id
; Op_Id
: Entity_Id
);
96 -- Procedure to analyze a user defined unary operator, which is resolved
97 -- like a function, but instead of a list of actuals, it is presented with
98 -- the operand of the operator node.
100 procedure Ambiguous_Operands
(N
: Node_Id
);
101 -- for equality, membership, and comparison operators with overloaded
102 -- arguments, list possible interpretations.
104 procedure Analyze_One_Call
108 Success
: out Boolean;
109 Skip_First
: Boolean := False);
110 -- Check one interpretation of an overloaded subprogram name for
111 -- compatibility with the types of the actuals in a call. If there is a
112 -- single interpretation which does not match, post error if Report is
115 -- Nam is the entity that provides the formals against which the actuals
116 -- are checked. Nam is either the name of a subprogram, or the internal
117 -- subprogram type constructed for an access_to_subprogram. If the actuals
118 -- are compatible with Nam, then Nam is added to the list of candidate
119 -- interpretations for N, and Success is set to True.
121 -- The flag Skip_First is used when analyzing a call that was rewritten
122 -- from object notation. In this case the first actual may have to receive
123 -- an explicit dereference, depending on the first formal of the operation
124 -- being called. The caller will have verified that the object is legal
125 -- for the call. If the remaining parameters match, the first parameter
126 -- will rewritten as a dereference if needed, prior to completing analysis.
128 procedure Check_Misspelled_Selector
131 -- Give possible misspelling diagnostic if Sel is likely to be a mis-
132 -- spelling of one of the selectors of the Prefix. This is called by
133 -- Analyze_Selected_Component after producing an invalid selector error
136 function Defined_In_Scope
(T
: Entity_Id
; S
: Entity_Id
) return Boolean;
137 -- Verify that type T is declared in scope S. Used to find interpretations
138 -- for operators given by expanded names. This is abstracted as a separate
139 -- function to handle extensions to System, where S is System, but T is
140 -- declared in the extension.
142 procedure Find_Arithmetic_Types
146 -- L and R are the operands of an arithmetic operator. Find
147 -- consistent pairs of interpretations for L and R that have a
148 -- numeric type consistent with the semantics of the operator.
150 procedure Find_Comparison_Types
154 -- L and R are operands of a comparison operator. Find consistent
155 -- pairs of interpretations for L and R.
157 procedure Find_Concatenation_Types
161 -- For the four varieties of concatenation
163 procedure Find_Equality_Types
167 -- Ditto for equality operators
169 procedure Find_Boolean_Types
173 -- Ditto for binary logical operations
175 procedure Find_Negation_Types
179 -- Find consistent interpretation for operand of negation operator
181 procedure Find_Non_Universal_Interpretations
186 -- For equality and comparison operators, the result is always boolean,
187 -- and the legality of the operation is determined from the visibility
188 -- of the operand types. If one of the operands has a universal interpre-
189 -- tation, the legality check uses some compatible non-universal
190 -- interpretation of the other operand. N can be an operator node, or
191 -- a function call whose name is an operator designator.
193 function Find_Primitive_Operation
(N
: Node_Id
) return Boolean;
194 -- Find candidate interpretations for the name Obj.Proc when it appears
195 -- in a subprogram renaming declaration.
197 procedure Find_Unary_Types
201 -- Unary arithmetic types: plus, minus, abs
203 procedure Check_Arithmetic_Pair
207 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
208 -- types for left and right operand. Determine whether they constitute
209 -- a valid pair for the given operator, and record the corresponding
210 -- interpretation of the operator node. The node N may be an operator
211 -- node (the usual case) or a function call whose prefix is an operator
212 -- designator. In both cases Op_Id is the operator name itself.
214 procedure Diagnose_Call
(N
: Node_Id
; Nam
: Node_Id
);
215 -- Give detailed information on overloaded call where none of the
216 -- interpretations match. N is the call node, Nam the designator for
217 -- the overloaded entity being called.
219 function Junk_Operand
(N
: Node_Id
) return Boolean;
220 -- Test for an operand that is an inappropriate entity (e.g. a package
221 -- name or a label). If so, issue an error message and return True. If
222 -- the operand is not an inappropriate entity kind, return False.
224 procedure Operator_Check
(N
: Node_Id
);
225 -- Verify that an operator has received some valid interpretation. If none
226 -- was found, determine whether a use clause would make the operation
227 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
228 -- every type compatible with the operator, even if the operator for the
229 -- type is not directly visible. The routine uses this type to emit a more
230 -- informative message.
232 function Process_Implicit_Dereference_Prefix
234 P
: Node_Id
) return Entity_Id
;
235 -- Called when P is the prefix of an implicit dereference, denoting an
236 -- object E. The function returns the designated type of the prefix, taking
237 -- into account that the designated type of an anonymous access type may be
238 -- a limited view, when the non-limited view is visible.
239 -- If in semantics only mode (-gnatc or generic), the function also records
240 -- that the prefix is a reference to E, if any. Normally, such a reference
241 -- is generated only when the implicit dereference is expanded into an
242 -- explicit one, but for consistency we must generate the reference when
243 -- expansion is disabled as well.
245 procedure Remove_Abstract_Operations
(N
: Node_Id
);
246 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
247 -- operation is not a candidate interpretation.
249 function Try_Indexed_Call
253 Skip_First
: Boolean) return Boolean;
254 -- If a function has defaults for all its actuals, a call to it may in fact
255 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
256 -- interpretation as an indexing, prior to analysis as a call. If both are
257 -- possible, the node is overloaded with both interpretations (same symbol
258 -- but two different types). If the call is written in prefix form, the
259 -- prefix becomes the first parameter in the call, and only the remaining
260 -- actuals must be checked for the presence of defaults.
262 function Try_Indirect_Call
265 Typ
: Entity_Id
) return Boolean;
266 -- Similarly, a function F that needs no actuals can return an access to a
267 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
268 -- the call may be overloaded with both interpretations.
270 function Try_Object_Operation
(N
: Node_Id
) return Boolean;
271 -- Ada 2005 (AI-252): Support the object.operation notation
273 procedure wpo
(T
: Entity_Id
);
274 pragma Warnings
(Off
, wpo
);
275 -- Used for debugging: obtain list of primitive operations even if
276 -- type is not frozen and dispatch table is not built yet.
278 ------------------------
279 -- Ambiguous_Operands --
280 ------------------------
282 procedure Ambiguous_Operands
(N
: Node_Id
) is
283 procedure List_Operand_Interps
(Opnd
: Node_Id
);
285 --------------------------
286 -- List_Operand_Interps --
287 --------------------------
289 procedure List_Operand_Interps
(Opnd
: Node_Id
) is
294 if Is_Overloaded
(Opnd
) then
295 if Nkind
(Opnd
) in N_Op
then
297 elsif Nkind
(Opnd
) = N_Function_Call
then
307 if Opnd
= Left_Opnd
(N
) then
309 ("\left operand has the following interpretations", N
);
312 ("\right operand has the following interpretations", N
);
316 List_Interps
(Nam
, Err
);
317 end List_Operand_Interps
;
319 -- Start of processing for Ambiguous_Operands
322 if Nkind
(N
) in N_Membership_Test
then
323 Error_Msg_N
("ambiguous operands for membership", N
);
325 elsif Nkind_In
(N
, N_Op_Eq
, N_Op_Ne
) then
326 Error_Msg_N
("ambiguous operands for equality", N
);
329 Error_Msg_N
("ambiguous operands for comparison", N
);
332 if All_Errors_Mode
then
333 List_Operand_Interps
(Left_Opnd
(N
));
334 List_Operand_Interps
(Right_Opnd
(N
));
336 Error_Msg_N
("\use -gnatf switch for details", N
);
338 end Ambiguous_Operands
;
340 -----------------------
341 -- Analyze_Aggregate --
342 -----------------------
344 -- Most of the analysis of Aggregates requires that the type be known,
345 -- and is therefore put off until resolution.
347 procedure Analyze_Aggregate
(N
: Node_Id
) is
349 if No
(Etype
(N
)) then
350 Set_Etype
(N
, Any_Composite
);
352 end Analyze_Aggregate
;
354 -----------------------
355 -- Analyze_Allocator --
356 -----------------------
358 procedure Analyze_Allocator
(N
: Node_Id
) is
359 Loc
: constant Source_Ptr
:= Sloc
(N
);
360 Sav_Errs
: constant Nat
:= Serious_Errors_Detected
;
361 E
: Node_Id
:= Expression
(N
);
362 Acc_Type
: Entity_Id
;
366 -- In accordance with H.4(7), the No_Allocators restriction only applies
367 -- to user-written allocators.
369 if Comes_From_Source
(N
) then
370 Check_Restriction
(No_Allocators
, N
);
373 if Nkind
(E
) = N_Qualified_Expression
then
374 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
375 Set_Etype
(Acc_Type
, Acc_Type
);
376 Find_Type
(Subtype_Mark
(E
));
378 -- Analyze the qualified expression, and apply the name resolution
379 -- rule given in 4.7 (3).
382 Type_Id
:= Etype
(E
);
383 Set_Directly_Designated_Type
(Acc_Type
, Type_Id
);
385 Resolve
(Expression
(E
), Type_Id
);
387 if Is_Limited_Type
(Type_Id
)
388 and then Comes_From_Source
(N
)
389 and then not In_Instance_Body
391 if not OK_For_Limited_Init
(Type_Id
, Expression
(E
)) then
392 Error_Msg_N
("initialization not allowed for limited types", N
);
393 Explain_Limited_Type
(Type_Id
, N
);
397 -- A qualified expression requires an exact match of the type,
398 -- class-wide matching is not allowed.
400 -- if Is_Class_Wide_Type (Type_Id)
401 -- and then Base_Type
402 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
404 -- Wrong_Type (Expression (E), Type_Id);
407 Check_Non_Static_Context
(Expression
(E
));
409 -- We don't analyze the qualified expression itself because it's
410 -- part of the allocator
412 Set_Etype
(E
, Type_Id
);
414 -- Case where allocator has a subtype indication
419 Base_Typ
: Entity_Id
;
422 -- If the allocator includes a N_Subtype_Indication then a
423 -- constraint is present, otherwise the node is a subtype mark.
424 -- Introduce an explicit subtype declaration into the tree
425 -- defining some anonymous subtype and rewrite the allocator to
426 -- use this subtype rather than the subtype indication.
428 -- It is important to introduce the explicit subtype declaration
429 -- so that the bounds of the subtype indication are attached to
430 -- the tree in case the allocator is inside a generic unit.
432 if Nkind
(E
) = N_Subtype_Indication
then
434 -- A constraint is only allowed for a composite type in Ada
435 -- 95. In Ada 83, a constraint is also allowed for an
436 -- access-to-composite type, but the constraint is ignored.
438 Find_Type
(Subtype_Mark
(E
));
439 Base_Typ
:= Entity
(Subtype_Mark
(E
));
441 if Is_Elementary_Type
(Base_Typ
) then
442 if not (Ada_Version
= Ada_83
443 and then Is_Access_Type
(Base_Typ
))
445 Error_Msg_N
("constraint not allowed here", E
);
447 if Nkind
(Constraint
(E
)) =
448 N_Index_Or_Discriminant_Constraint
450 Error_Msg_N
-- CODEFIX
451 ("\if qualified expression was meant, " &
452 "use apostrophe", Constraint
(E
));
456 -- Get rid of the bogus constraint:
458 Rewrite
(E
, New_Copy_Tree
(Subtype_Mark
(E
)));
459 Analyze_Allocator
(N
);
462 -- Ada 2005, AI-363: if the designated type has a constrained
463 -- partial view, it cannot receive a discriminant constraint,
464 -- and the allocated object is unconstrained.
466 elsif Ada_Version
>= Ada_05
467 and then Has_Constrained_Partial_View
(Base_Typ
)
470 ("constraint no allowed when type " &
471 "has a constrained partial view", Constraint
(E
));
474 if Expander_Active
then
476 Make_Defining_Identifier
(Loc
, New_Internal_Name
('S'));
479 Make_Subtype_Declaration
(Loc
,
480 Defining_Identifier
=> Def_Id
,
481 Subtype_Indication
=> Relocate_Node
(E
)));
483 if Sav_Errs
/= Serious_Errors_Detected
484 and then Nkind
(Constraint
(E
)) =
485 N_Index_Or_Discriminant_Constraint
487 Error_Msg_N
-- CODEFIX
488 ("if qualified expression was meant, " &
489 "use apostrophe!", Constraint
(E
));
492 E
:= New_Occurrence_Of
(Def_Id
, Loc
);
493 Rewrite
(Expression
(N
), E
);
497 Type_Id
:= Process_Subtype
(E
, N
);
498 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
499 Set_Etype
(Acc_Type
, Acc_Type
);
500 Set_Directly_Designated_Type
(Acc_Type
, Type_Id
);
501 Check_Fully_Declared
(Type_Id
, N
);
503 -- Ada 2005 (AI-231): If the designated type is itself an access
504 -- type that excludes null, its default initialization will
505 -- be a null object, and we can insert an unconditional raise
506 -- before the allocator.
508 if Can_Never_Be_Null
(Type_Id
) then
510 Not_Null_Check
: constant Node_Id
:=
511 Make_Raise_Constraint_Error
(Sloc
(E
),
512 Reason
=> CE_Null_Not_Allowed
);
514 if Expander_Active
then
515 Insert_Action
(N
, Not_Null_Check
);
516 Analyze
(Not_Null_Check
);
518 Error_Msg_N
("null value not allowed here?", E
);
523 -- Check restriction against dynamically allocated protected
524 -- objects. Note that when limited aggregates are supported,
525 -- a similar test should be applied to an allocator with a
526 -- qualified expression ???
528 if Is_Protected_Type
(Type_Id
) then
529 Check_Restriction
(No_Protected_Type_Allocators
, N
);
532 -- Check for missing initialization. Skip this check if we already
533 -- had errors on analyzing the allocator, since in that case these
534 -- are probably cascaded errors.
536 if Is_Indefinite_Subtype
(Type_Id
)
537 and then Serious_Errors_Detected
= Sav_Errs
539 if Is_Class_Wide_Type
(Type_Id
) then
541 ("initialization required in class-wide allocation", N
);
543 if Ada_Version
< Ada_05
544 and then Is_Limited_Type
(Type_Id
)
546 Error_Msg_N
("unconstrained allocation not allowed", N
);
548 if Is_Array_Type
(Type_Id
) then
550 ("\constraint with array bounds required", N
);
552 elsif Has_Unknown_Discriminants
(Type_Id
) then
555 else pragma Assert
(Has_Discriminants
(Type_Id
));
557 ("\constraint with discriminant values required", N
);
560 -- Limited Ada 2005 and general non-limited case
564 ("uninitialized unconstrained allocation not allowed",
567 if Is_Array_Type
(Type_Id
) then
569 ("\qualified expression or constraint with " &
570 "array bounds required", N
);
572 elsif Has_Unknown_Discriminants
(Type_Id
) then
573 Error_Msg_N
("\qualified expression required", N
);
575 else pragma Assert
(Has_Discriminants
(Type_Id
));
577 ("\qualified expression or constraint with " &
578 "discriminant values required", N
);
586 if Is_Abstract_Type
(Type_Id
) then
587 Error_Msg_N
("cannot allocate abstract object", E
);
590 if Has_Task
(Designated_Type
(Acc_Type
)) then
591 Check_Restriction
(No_Tasking
, N
);
592 Check_Restriction
(Max_Tasks
, N
);
593 Check_Restriction
(No_Task_Allocators
, N
);
596 -- If the No_Streams restriction is set, check that the type of the
597 -- object is not, and does not contain, any subtype derived from
598 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
599 -- Has_Stream just for efficiency reasons. There is no point in
600 -- spending time on a Has_Stream check if the restriction is not set.
602 if Restrictions
.Set
(No_Streams
) then
603 if Has_Stream
(Designated_Type
(Acc_Type
)) then
604 Check_Restriction
(No_Streams
, N
);
608 Set_Etype
(N
, Acc_Type
);
610 if not Is_Library_Level_Entity
(Acc_Type
) then
611 Check_Restriction
(No_Local_Allocators
, N
);
614 if Serious_Errors_Detected
> Sav_Errs
then
615 Set_Error_Posted
(N
);
616 Set_Etype
(N
, Any_Type
);
618 end Analyze_Allocator
;
620 ---------------------------
621 -- Analyze_Arithmetic_Op --
622 ---------------------------
624 procedure Analyze_Arithmetic_Op
(N
: Node_Id
) is
625 L
: constant Node_Id
:= Left_Opnd
(N
);
626 R
: constant Node_Id
:= Right_Opnd
(N
);
630 Candidate_Type
:= Empty
;
631 Analyze_Expression
(L
);
632 Analyze_Expression
(R
);
634 -- If the entity is already set, the node is the instantiation of a
635 -- generic node with a non-local reference, or was manufactured by a
636 -- call to Make_Op_xxx. In either case the entity is known to be valid,
637 -- and we do not need to collect interpretations, instead we just get
638 -- the single possible interpretation.
642 if Present
(Op_Id
) then
643 if Ekind
(Op_Id
) = E_Operator
then
645 if Nkind_In
(N
, N_Op_Divide
, N_Op_Mod
, N_Op_Multiply
, N_Op_Rem
)
646 and then Treat_Fixed_As_Integer
(N
)
650 Set_Etype
(N
, Any_Type
);
651 Find_Arithmetic_Types
(L
, R
, Op_Id
, N
);
655 Set_Etype
(N
, Any_Type
);
656 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
659 -- Entity is not already set, so we do need to collect interpretations
662 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
663 Set_Etype
(N
, Any_Type
);
665 while Present
(Op_Id
) loop
666 if Ekind
(Op_Id
) = E_Operator
667 and then Present
(Next_Entity
(First_Entity
(Op_Id
)))
669 Find_Arithmetic_Types
(L
, R
, Op_Id
, N
);
671 -- The following may seem superfluous, because an operator cannot
672 -- be generic, but this ignores the cleverness of the author of
675 elsif Is_Overloadable
(Op_Id
) then
676 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
679 Op_Id
:= Homonym
(Op_Id
);
684 end Analyze_Arithmetic_Op
;
690 -- Function, procedure, and entry calls are checked here. The Name in
691 -- the call may be overloaded. The actuals have been analyzed and may
692 -- themselves be overloaded. On exit from this procedure, the node N
693 -- may have zero, one or more interpretations. In the first case an
694 -- error message is produced. In the last case, the node is flagged
695 -- as overloaded and the interpretations are collected in All_Interp.
697 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
698 -- the type-checking is similar to that of other calls.
700 procedure Analyze_Call
(N
: Node_Id
) is
701 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
706 Success
: Boolean := False;
708 Deref
: Boolean := False;
709 -- Flag indicates whether an interpretation of the prefix is a
710 -- parameterless call that returns an access_to_subprogram.
712 function Name_Denotes_Function
return Boolean;
713 -- If the type of the name is an access to subprogram, this may be the
714 -- type of a name, or the return type of the function being called. If
715 -- the name is not an entity then it can denote a protected function.
716 -- Until we distinguish Etype from Return_Type, we must use this routine
717 -- to resolve the meaning of the name in the call.
719 procedure No_Interpretation
;
720 -- Output error message when no valid interpretation exists
722 ---------------------------
723 -- Name_Denotes_Function --
724 ---------------------------
726 function Name_Denotes_Function
return Boolean is
728 if Is_Entity_Name
(Nam
) then
729 return Ekind
(Entity
(Nam
)) = E_Function
;
731 elsif Nkind
(Nam
) = N_Selected_Component
then
732 return Ekind
(Entity
(Selector_Name
(Nam
))) = E_Function
;
737 end Name_Denotes_Function
;
739 -----------------------
740 -- No_Interpretation --
741 -----------------------
743 procedure No_Interpretation
is
744 L
: constant Boolean := Is_List_Member
(N
);
745 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
748 -- If the node is in a list whose parent is not an expression then it
749 -- must be an attempted procedure call.
751 if L
and then K
not in N_Subexpr
then
752 if Ekind
(Entity
(Nam
)) = E_Generic_Procedure
then
754 ("must instantiate generic procedure& before call",
758 ("procedure or entry name expected", Nam
);
761 -- Check for tasking cases where only an entry call will do
764 and then Nkind_In
(K
, N_Entry_Call_Alternative
,
765 N_Triggering_Alternative
)
767 Error_Msg_N
("entry name expected", Nam
);
769 -- Otherwise give general error message
772 Error_Msg_N
("invalid prefix in call", Nam
);
774 end No_Interpretation
;
776 -- Start of processing for Analyze_Call
779 -- Initialize the type of the result of the call to the error type,
780 -- which will be reset if the type is successfully resolved.
782 Set_Etype
(N
, Any_Type
);
786 if not Is_Overloaded
(Nam
) then
788 -- Only one interpretation to check
790 if Ekind
(Etype
(Nam
)) = E_Subprogram_Type
then
791 Nam_Ent
:= Etype
(Nam
);
793 -- If the prefix is an access_to_subprogram, this may be an indirect
794 -- call. This is the case if the name in the call is not an entity
795 -- name, or if it is a function name in the context of a procedure
796 -- call. In this latter case, we have a call to a parameterless
797 -- function that returns a pointer_to_procedure which is the entity
798 -- being called. Finally, F (X) may be a call to a parameterless
799 -- function that returns a pointer to a function with parameters.
801 elsif Is_Access_Type
(Etype
(Nam
))
802 and then Ekind
(Designated_Type
(Etype
(Nam
))) = E_Subprogram_Type
804 (not Name_Denotes_Function
805 or else Nkind
(N
) = N_Procedure_Call_Statement
807 (Nkind
(Parent
(N
)) /= N_Explicit_Dereference
808 and then Is_Entity_Name
(Nam
)
809 and then No
(First_Formal
(Entity
(Nam
)))
810 and then Present
(Actuals
)))
812 Nam_Ent
:= Designated_Type
(Etype
(Nam
));
813 Insert_Explicit_Dereference
(Nam
);
815 -- Selected component case. Simple entry or protected operation,
816 -- where the entry name is given by the selector name.
818 elsif Nkind
(Nam
) = N_Selected_Component
then
819 Nam_Ent
:= Entity
(Selector_Name
(Nam
));
821 if Ekind
(Nam_Ent
) /= E_Entry
822 and then Ekind
(Nam_Ent
) /= E_Entry_Family
823 and then Ekind
(Nam_Ent
) /= E_Function
824 and then Ekind
(Nam_Ent
) /= E_Procedure
826 Error_Msg_N
("name in call is not a callable entity", Nam
);
827 Set_Etype
(N
, Any_Type
);
831 -- If the name is an Indexed component, it can be a call to a member
832 -- of an entry family. The prefix must be a selected component whose
833 -- selector is the entry. Analyze_Procedure_Call normalizes several
834 -- kinds of call into this form.
836 elsif Nkind
(Nam
) = N_Indexed_Component
then
837 if Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
838 Nam_Ent
:= Entity
(Selector_Name
(Prefix
(Nam
)));
840 Error_Msg_N
("name in call is not a callable entity", Nam
);
841 Set_Etype
(N
, Any_Type
);
845 elsif not Is_Entity_Name
(Nam
) then
846 Error_Msg_N
("name in call is not a callable entity", Nam
);
847 Set_Etype
(N
, Any_Type
);
851 Nam_Ent
:= Entity
(Nam
);
853 -- If no interpretations, give error message
855 if not Is_Overloadable
(Nam_Ent
) then
861 -- Operations generated for RACW stub types are called only through
862 -- dispatching, and can never be the static interpretation of a call.
864 if Is_RACW_Stub_Type_Operation
(Nam_Ent
) then
869 Analyze_One_Call
(N
, Nam_Ent
, True, Success
);
871 -- If this is an indirect call, the return type of the access_to
872 -- subprogram may be an incomplete type. At the point of the call,
873 -- use the full type if available, and at the same time update
874 -- the return type of the access_to_subprogram.
877 and then Nkind
(Nam
) = N_Explicit_Dereference
878 and then Ekind
(Etype
(N
)) = E_Incomplete_Type
879 and then Present
(Full_View
(Etype
(N
)))
881 Set_Etype
(N
, Full_View
(Etype
(N
)));
882 Set_Etype
(Nam_Ent
, Etype
(N
));
886 -- An overloaded selected component must denote overloaded operations
887 -- of a concurrent type. The interpretations are attached to the
888 -- simple name of those operations.
890 if Nkind
(Nam
) = N_Selected_Component
then
891 Nam
:= Selector_Name
(Nam
);
894 Get_First_Interp
(Nam
, X
, It
);
896 while Present
(It
.Nam
) loop
900 -- Name may be call that returns an access to subprogram, or more
901 -- generally an overloaded expression one of whose interpretations
902 -- yields an access to subprogram. If the name is an entity, we
903 -- do not dereference, because the node is a call that returns
904 -- the access type: note difference between f(x), where the call
905 -- may return an access subprogram type, and f(x)(y), where the
906 -- type returned by the call to f is implicitly dereferenced to
907 -- analyze the outer call.
909 if Is_Access_Type
(Nam_Ent
) then
910 Nam_Ent
:= Designated_Type
(Nam_Ent
);
912 elsif Is_Access_Type
(Etype
(Nam_Ent
))
914 (not Is_Entity_Name
(Nam
)
915 or else Nkind
(N
) = N_Procedure_Call_Statement
)
916 and then Ekind
(Designated_Type
(Etype
(Nam_Ent
)))
919 Nam_Ent
:= Designated_Type
(Etype
(Nam_Ent
));
921 if Is_Entity_Name
(Nam
) then
926 Analyze_One_Call
(N
, Nam_Ent
, False, Success
);
928 -- If the interpretation succeeds, mark the proper type of the
929 -- prefix (any valid candidate will do). If not, remove the
930 -- candidate interpretation. This only needs to be done for
931 -- overloaded protected operations, for other entities disambi-
932 -- guation is done directly in Resolve.
936 and then Nkind
(Parent
(N
)) /= N_Explicit_Dereference
938 Set_Entity
(Nam
, It
.Nam
);
939 Insert_Explicit_Dereference
(Nam
);
940 Set_Etype
(Nam
, Nam_Ent
);
943 Set_Etype
(Nam
, It
.Typ
);
946 elsif Nkind_In
(Name
(N
), N_Selected_Component
,
952 Get_Next_Interp
(X
, It
);
955 -- If the name is the result of a function call, it can only
956 -- be a call to a function returning an access to subprogram.
957 -- Insert explicit dereference.
959 if Nkind
(Nam
) = N_Function_Call
then
960 Insert_Explicit_Dereference
(Nam
);
963 if Etype
(N
) = Any_Type
then
965 -- None of the interpretations is compatible with the actuals
967 Diagnose_Call
(N
, Nam
);
969 -- Special checks for uninstantiated put routines
971 if Nkind
(N
) = N_Procedure_Call_Statement
972 and then Is_Entity_Name
(Nam
)
973 and then Chars
(Nam
) = Name_Put
974 and then List_Length
(Actuals
) = 1
977 Arg
: constant Node_Id
:= First
(Actuals
);
981 if Nkind
(Arg
) = N_Parameter_Association
then
982 Typ
:= Etype
(Explicit_Actual_Parameter
(Arg
));
987 if Is_Signed_Integer_Type
(Typ
) then
989 ("possible missing instantiation of " &
990 "'Text_'I'O.'Integer_'I'O!", Nam
);
992 elsif Is_Modular_Integer_Type
(Typ
) then
994 ("possible missing instantiation of " &
995 "'Text_'I'O.'Modular_'I'O!", Nam
);
997 elsif Is_Floating_Point_Type
(Typ
) then
999 ("possible missing instantiation of " &
1000 "'Text_'I'O.'Float_'I'O!", Nam
);
1002 elsif Is_Ordinary_Fixed_Point_Type
(Typ
) then
1004 ("possible missing instantiation of " &
1005 "'Text_'I'O.'Fixed_'I'O!", Nam
);
1007 elsif Is_Decimal_Fixed_Point_Type
(Typ
) then
1009 ("possible missing instantiation of " &
1010 "'Text_'I'O.'Decimal_'I'O!", Nam
);
1012 elsif Is_Enumeration_Type
(Typ
) then
1014 ("possible missing instantiation of " &
1015 "'Text_'I'O.'Enumeration_'I'O!", Nam
);
1020 elsif not Is_Overloaded
(N
)
1021 and then Is_Entity_Name
(Nam
)
1023 -- Resolution yields a single interpretation. Verify that the
1024 -- reference has capitalization consistent with the declaration.
1026 Set_Entity_With_Style_Check
(Nam
, Entity
(Nam
));
1027 Generate_Reference
(Entity
(Nam
), Nam
);
1029 Set_Etype
(Nam
, Etype
(Entity
(Nam
)));
1031 Remove_Abstract_Operations
(N
);
1038 ---------------------------
1039 -- Analyze_Comparison_Op --
1040 ---------------------------
1042 procedure Analyze_Comparison_Op
(N
: Node_Id
) is
1043 L
: constant Node_Id
:= Left_Opnd
(N
);
1044 R
: constant Node_Id
:= Right_Opnd
(N
);
1045 Op_Id
: Entity_Id
:= Entity
(N
);
1048 Set_Etype
(N
, Any_Type
);
1049 Candidate_Type
:= Empty
;
1051 Analyze_Expression
(L
);
1052 Analyze_Expression
(R
);
1054 if Present
(Op_Id
) then
1055 if Ekind
(Op_Id
) = E_Operator
then
1056 Find_Comparison_Types
(L
, R
, Op_Id
, N
);
1058 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1061 if Is_Overloaded
(L
) then
1062 Set_Etype
(L
, Intersect_Types
(L
, R
));
1066 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
1067 while Present
(Op_Id
) loop
1068 if Ekind
(Op_Id
) = E_Operator
then
1069 Find_Comparison_Types
(L
, R
, Op_Id
, N
);
1071 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1074 Op_Id
:= Homonym
(Op_Id
);
1079 end Analyze_Comparison_Op
;
1081 ---------------------------
1082 -- Analyze_Concatenation --
1083 ---------------------------
1085 procedure Analyze_Concatenation
(N
: Node_Id
) is
1087 -- We wish to avoid deep recursion, because concatenations are often
1088 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1089 -- operands nonrecursively until we find something that is not a
1090 -- concatenation (A in this case), or has already been analyzed. We
1091 -- analyze that, and then walk back up the tree following Parent
1092 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1093 -- work at each level. The Parent pointers allow us to avoid recursion,
1094 -- and thus avoid running out of memory.
1100 Candidate_Type
:= Empty
;
1102 -- The following code is equivalent to:
1104 -- Set_Etype (N, Any_Type);
1105 -- Analyze_Expression (Left_Opnd (N));
1106 -- Analyze_Concatenation_Rest (N);
1108 -- where the Analyze_Expression call recurses back here if the left
1109 -- operand is a concatenation.
1111 -- Walk down left operands
1114 Set_Etype
(NN
, Any_Type
);
1115 L
:= Left_Opnd
(NN
);
1116 exit when Nkind
(L
) /= N_Op_Concat
or else Analyzed
(L
);
1120 -- Now (given the above example) NN is A&B and L is A
1122 -- First analyze L ...
1124 Analyze_Expression
(L
);
1126 -- ... then walk NN back up until we reach N (where we started), calling
1127 -- Analyze_Concatenation_Rest along the way.
1130 Analyze_Concatenation_Rest
(NN
);
1134 end Analyze_Concatenation
;
1136 --------------------------------
1137 -- Analyze_Concatenation_Rest --
1138 --------------------------------
1140 -- If the only one-dimensional array type in scope is String,
1141 -- this is the resulting type of the operation. Otherwise there
1142 -- will be a concatenation operation defined for each user-defined
1143 -- one-dimensional array.
1145 procedure Analyze_Concatenation_Rest
(N
: Node_Id
) is
1146 L
: constant Node_Id
:= Left_Opnd
(N
);
1147 R
: constant Node_Id
:= Right_Opnd
(N
);
1148 Op_Id
: Entity_Id
:= Entity
(N
);
1153 Analyze_Expression
(R
);
1155 -- If the entity is present, the node appears in an instance, and
1156 -- denotes a predefined concatenation operation. The resulting type is
1157 -- obtained from the arguments when possible. If the arguments are
1158 -- aggregates, the array type and the concatenation type must be
1161 if Present
(Op_Id
) then
1162 if Ekind
(Op_Id
) = E_Operator
then
1164 LT
:= Base_Type
(Etype
(L
));
1165 RT
:= Base_Type
(Etype
(R
));
1167 if Is_Array_Type
(LT
)
1168 and then (RT
= LT
or else RT
= Base_Type
(Component_Type
(LT
)))
1170 Add_One_Interp
(N
, Op_Id
, LT
);
1172 elsif Is_Array_Type
(RT
)
1173 and then LT
= Base_Type
(Component_Type
(RT
))
1175 Add_One_Interp
(N
, Op_Id
, RT
);
1177 -- If one operand is a string type or a user-defined array type,
1178 -- and the other is a literal, result is of the specific type.
1181 (Root_Type
(LT
) = Standard_String
1182 or else Scope
(LT
) /= Standard_Standard
)
1183 and then Etype
(R
) = Any_String
1185 Add_One_Interp
(N
, Op_Id
, LT
);
1188 (Root_Type
(RT
) = Standard_String
1189 or else Scope
(RT
) /= Standard_Standard
)
1190 and then Etype
(L
) = Any_String
1192 Add_One_Interp
(N
, Op_Id
, RT
);
1194 elsif not Is_Generic_Type
(Etype
(Op_Id
)) then
1195 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1198 -- Type and its operations must be visible
1200 Set_Entity
(N
, Empty
);
1201 Analyze_Concatenation
(N
);
1205 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1209 Op_Id
:= Get_Name_Entity_Id
(Name_Op_Concat
);
1210 while Present
(Op_Id
) loop
1211 if Ekind
(Op_Id
) = E_Operator
then
1213 -- Do not consider operators declared in dead code, they can
1214 -- not be part of the resolution.
1216 if Is_Eliminated
(Op_Id
) then
1219 Find_Concatenation_Types
(L
, R
, Op_Id
, N
);
1223 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1226 Op_Id
:= Homonym
(Op_Id
);
1231 end Analyze_Concatenation_Rest
;
1233 ------------------------------------
1234 -- Analyze_Conditional_Expression --
1235 ------------------------------------
1237 procedure Analyze_Conditional_Expression
(N
: Node_Id
) is
1238 Condition
: constant Node_Id
:= First
(Expressions
(N
));
1239 Then_Expr
: constant Node_Id
:= Next
(Condition
);
1240 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
1243 if Comes_From_Source
(N
) then
1244 Check_Compiler_Unit
(N
);
1247 Analyze_Expression
(Condition
);
1248 Analyze_Expression
(Then_Expr
);
1250 if Present
(Else_Expr
) then
1251 Analyze_Expression
(Else_Expr
);
1254 if not Is_Overloaded
(Then_Expr
) then
1255 Set_Etype
(N
, Etype
(Then_Expr
));
1262 Set_Etype
(N
, Any_Type
);
1263 Get_First_Interp
(Then_Expr
, I
, It
);
1264 while Present
(It
.Nam
) loop
1265 if Has_Compatible_Type
(Else_Expr
, It
.Typ
) then
1266 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
1269 Get_Next_Interp
(I
, It
);
1273 end Analyze_Conditional_Expression
;
1275 -------------------------
1276 -- Analyze_Equality_Op --
1277 -------------------------
1279 procedure Analyze_Equality_Op
(N
: Node_Id
) is
1280 Loc
: constant Source_Ptr
:= Sloc
(N
);
1281 L
: constant Node_Id
:= Left_Opnd
(N
);
1282 R
: constant Node_Id
:= Right_Opnd
(N
);
1286 Set_Etype
(N
, Any_Type
);
1287 Candidate_Type
:= Empty
;
1289 Analyze_Expression
(L
);
1290 Analyze_Expression
(R
);
1292 -- If the entity is set, the node is a generic instance with a non-local
1293 -- reference to the predefined operator or to a user-defined function.
1294 -- It can also be an inequality that is expanded into the negation of a
1295 -- call to a user-defined equality operator.
1297 -- For the predefined case, the result is Boolean, regardless of the
1298 -- type of the operands. The operands may even be limited, if they are
1299 -- generic actuals. If they are overloaded, label the left argument with
1300 -- the common type that must be present, or with the type of the formal
1301 -- of the user-defined function.
1303 if Present
(Entity
(N
)) then
1304 Op_Id
:= Entity
(N
);
1306 if Ekind
(Op_Id
) = E_Operator
then
1307 Add_One_Interp
(N
, Op_Id
, Standard_Boolean
);
1309 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1312 if Is_Overloaded
(L
) then
1313 if Ekind
(Op_Id
) = E_Operator
then
1314 Set_Etype
(L
, Intersect_Types
(L
, R
));
1316 Set_Etype
(L
, Etype
(First_Formal
(Op_Id
)));
1321 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
1322 while Present
(Op_Id
) loop
1323 if Ekind
(Op_Id
) = E_Operator
then
1324 Find_Equality_Types
(L
, R
, Op_Id
, N
);
1326 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1329 Op_Id
:= Homonym
(Op_Id
);
1333 -- If there was no match, and the operator is inequality, this may
1334 -- be a case where inequality has not been made explicit, as for
1335 -- tagged types. Analyze the node as the negation of an equality
1336 -- operation. This cannot be done earlier, because before analysis
1337 -- we cannot rule out the presence of an explicit inequality.
1339 if Etype
(N
) = Any_Type
1340 and then Nkind
(N
) = N_Op_Ne
1342 Op_Id
:= Get_Name_Entity_Id
(Name_Op_Eq
);
1343 while Present
(Op_Id
) loop
1344 if Ekind
(Op_Id
) = E_Operator
then
1345 Find_Equality_Types
(L
, R
, Op_Id
, N
);
1347 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1350 Op_Id
:= Homonym
(Op_Id
);
1353 if Etype
(N
) /= Any_Type
then
1354 Op_Id
:= Entity
(N
);
1360 Left_Opnd
=> Left_Opnd
(N
),
1361 Right_Opnd
=> Right_Opnd
(N
))));
1363 Set_Entity
(Right_Opnd
(N
), Op_Id
);
1369 end Analyze_Equality_Op
;
1371 ----------------------------------
1372 -- Analyze_Explicit_Dereference --
1373 ----------------------------------
1375 procedure Analyze_Explicit_Dereference
(N
: Node_Id
) is
1376 Loc
: constant Source_Ptr
:= Sloc
(N
);
1377 P
: constant Node_Id
:= Prefix
(N
);
1383 function Is_Function_Type
return Boolean;
1384 -- Check whether node may be interpreted as an implicit function call
1386 ----------------------
1387 -- Is_Function_Type --
1388 ----------------------
1390 function Is_Function_Type
return Boolean is
1395 if not Is_Overloaded
(N
) then
1396 return Ekind
(Base_Type
(Etype
(N
))) = E_Subprogram_Type
1397 and then Etype
(Base_Type
(Etype
(N
))) /= Standard_Void_Type
;
1400 Get_First_Interp
(N
, I
, It
);
1401 while Present
(It
.Nam
) loop
1402 if Ekind
(Base_Type
(It
.Typ
)) /= E_Subprogram_Type
1403 or else Etype
(Base_Type
(It
.Typ
)) = Standard_Void_Type
1408 Get_Next_Interp
(I
, It
);
1413 end Is_Function_Type
;
1415 -- Start of processing for Analyze_Explicit_Dereference
1419 Set_Etype
(N
, Any_Type
);
1421 -- Test for remote access to subprogram type, and if so return
1422 -- after rewriting the original tree.
1424 if Remote_AST_E_Dereference
(P
) then
1428 -- Normal processing for other than remote access to subprogram type
1430 if not Is_Overloaded
(P
) then
1431 if Is_Access_Type
(Etype
(P
)) then
1433 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1434 -- avoid other problems caused by the Private_Subtype and it is
1435 -- safe to go to the Base_Type because this is the same as
1436 -- converting the access value to its Base_Type.
1439 DT
: Entity_Id
:= Designated_Type
(Etype
(P
));
1442 if Ekind
(DT
) = E_Private_Subtype
1443 and then Is_For_Access_Subtype
(DT
)
1445 DT
:= Base_Type
(DT
);
1448 -- An explicit dereference is a legal occurrence of an
1449 -- incomplete type imported through a limited_with clause,
1450 -- if the full view is visible.
1452 if From_With_Type
(DT
)
1453 and then not From_With_Type
(Scope
(DT
))
1455 (Is_Immediately_Visible
(Scope
(DT
))
1457 (Is_Child_Unit
(Scope
(DT
))
1458 and then Is_Visible_Child_Unit
(Scope
(DT
))))
1460 Set_Etype
(N
, Available_View
(DT
));
1467 elsif Etype
(P
) /= Any_Type
then
1468 Error_Msg_N
("prefix of dereference must be an access type", N
);
1473 Get_First_Interp
(P
, I
, It
);
1474 while Present
(It
.Nam
) loop
1477 if Is_Access_Type
(T
) then
1478 Add_One_Interp
(N
, Designated_Type
(T
), Designated_Type
(T
));
1481 Get_Next_Interp
(I
, It
);
1484 -- Error if no interpretation of the prefix has an access type
1486 if Etype
(N
) = Any_Type
then
1488 ("access type required in prefix of explicit dereference", P
);
1489 Set_Etype
(N
, Any_Type
);
1495 and then Nkind
(Parent
(N
)) /= N_Indexed_Component
1497 and then (Nkind
(Parent
(N
)) /= N_Function_Call
1498 or else N
/= Name
(Parent
(N
)))
1500 and then (Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
1501 or else N
/= Name
(Parent
(N
)))
1503 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
1504 and then (Nkind
(Parent
(N
)) /= N_Attribute_Reference
1506 (Attribute_Name
(Parent
(N
)) /= Name_Address
1508 Attribute_Name
(Parent
(N
)) /= Name_Access
))
1510 -- Name is a function call with no actuals, in a context that
1511 -- requires deproceduring (including as an actual in an enclosing
1512 -- function or procedure call). There are some pathological cases
1513 -- where the prefix might include functions that return access to
1514 -- subprograms and others that return a regular type. Disambiguation
1515 -- of those has to take place in Resolve.
1518 Make_Function_Call
(Loc
,
1519 Name
=> Make_Explicit_Dereference
(Loc
, P
),
1520 Parameter_Associations
=> New_List
);
1522 -- If the prefix is overloaded, remove operations that have formals,
1523 -- we know that this is a parameterless call.
1525 if Is_Overloaded
(P
) then
1526 Get_First_Interp
(P
, I
, It
);
1527 while Present
(It
.Nam
) loop
1530 if No
(First_Formal
(Base_Type
(Designated_Type
(T
)))) then
1536 Get_Next_Interp
(I
, It
);
1543 elsif not Is_Function_Type
1544 and then Is_Overloaded
(N
)
1546 -- The prefix may include access to subprograms and other access
1547 -- types. If the context selects the interpretation that is a
1548 -- function call (not a procedure call) we cannot rewrite the node
1549 -- yet, but we include the result of the call interpretation.
1551 Get_First_Interp
(N
, I
, It
);
1552 while Present
(It
.Nam
) loop
1553 if Ekind
(Base_Type
(It
.Typ
)) = E_Subprogram_Type
1554 and then Etype
(Base_Type
(It
.Typ
)) /= Standard_Void_Type
1555 and then Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
1557 Add_One_Interp
(N
, Etype
(It
.Typ
), Etype
(It
.Typ
));
1560 Get_Next_Interp
(I
, It
);
1564 -- A value of remote access-to-class-wide must not be dereferenced
1567 Validate_Remote_Access_To_Class_Wide_Type
(N
);
1568 end Analyze_Explicit_Dereference
;
1570 ------------------------
1571 -- Analyze_Expression --
1572 ------------------------
1574 procedure Analyze_Expression
(N
: Node_Id
) is
1577 Check_Parameterless_Call
(N
);
1578 end Analyze_Expression
;
1580 ------------------------------------
1581 -- Analyze_Indexed_Component_Form --
1582 ------------------------------------
1584 procedure Analyze_Indexed_Component_Form
(N
: Node_Id
) is
1585 P
: constant Node_Id
:= Prefix
(N
);
1586 Exprs
: constant List_Id
:= Expressions
(N
);
1592 procedure Process_Function_Call
;
1593 -- Prefix in indexed component form is an overloadable entity,
1594 -- so the node is a function call. Reformat it as such.
1596 procedure Process_Indexed_Component
;
1597 -- Prefix in indexed component form is actually an indexed component.
1598 -- This routine processes it, knowing that the prefix is already
1601 procedure Process_Indexed_Component_Or_Slice
;
1602 -- An indexed component with a single index may designate a slice if
1603 -- the index is a subtype mark. This routine disambiguates these two
1604 -- cases by resolving the prefix to see if it is a subtype mark.
1606 procedure Process_Overloaded_Indexed_Component
;
1607 -- If the prefix of an indexed component is overloaded, the proper
1608 -- interpretation is selected by the index types and the context.
1610 ---------------------------
1611 -- Process_Function_Call --
1612 ---------------------------
1614 procedure Process_Function_Call
is
1618 Change_Node
(N
, N_Function_Call
);
1620 Set_Parameter_Associations
(N
, Exprs
);
1622 -- Analyze actuals prior to analyzing the call itself
1624 Actual
:= First
(Parameter_Associations
(N
));
1625 while Present
(Actual
) loop
1627 Check_Parameterless_Call
(Actual
);
1629 -- Move to next actual. Note that we use Next, not Next_Actual
1630 -- here. The reason for this is a bit subtle. If a function call
1631 -- includes named associations, the parser recognizes the node as
1632 -- a call, and it is analyzed as such. If all associations are
1633 -- positional, the parser builds an indexed_component node, and
1634 -- it is only after analysis of the prefix that the construct
1635 -- is recognized as a call, in which case Process_Function_Call
1636 -- rewrites the node and analyzes the actuals. If the list of
1637 -- actuals is malformed, the parser may leave the node as an
1638 -- indexed component (despite the presence of named associations).
1639 -- The iterator Next_Actual is equivalent to Next if the list is
1640 -- positional, but follows the normalized chain of actuals when
1641 -- named associations are present. In this case normalization has
1642 -- not taken place, and actuals remain unanalyzed, which leads to
1643 -- subsequent crashes or loops if there is an attempt to continue
1644 -- analysis of the program.
1650 end Process_Function_Call
;
1652 -------------------------------
1653 -- Process_Indexed_Component --
1654 -------------------------------
1656 procedure Process_Indexed_Component
is
1658 Array_Type
: Entity_Id
;
1660 Pent
: Entity_Id
:= Empty
;
1663 Exp
:= First
(Exprs
);
1665 if Is_Overloaded
(P
) then
1666 Process_Overloaded_Indexed_Component
;
1669 Array_Type
:= Etype
(P
);
1671 if Is_Entity_Name
(P
) then
1673 elsif Nkind
(P
) = N_Selected_Component
1674 and then Is_Entity_Name
(Selector_Name
(P
))
1676 Pent
:= Entity
(Selector_Name
(P
));
1679 -- Prefix must be appropriate for an array type, taking into
1680 -- account a possible implicit dereference.
1682 if Is_Access_Type
(Array_Type
) then
1683 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
1684 Array_Type
:= Process_Implicit_Dereference_Prefix
(Pent
, P
);
1687 if Is_Array_Type
(Array_Type
) then
1690 elsif Present
(Pent
) and then Ekind
(Pent
) = E_Entry_Family
then
1692 Set_Etype
(N
, Any_Type
);
1694 if not Has_Compatible_Type
1695 (Exp
, Entry_Index_Type
(Pent
))
1697 Error_Msg_N
("invalid index type in entry name", N
);
1699 elsif Present
(Next
(Exp
)) then
1700 Error_Msg_N
("too many subscripts in entry reference", N
);
1703 Set_Etype
(N
, Etype
(P
));
1708 elsif Is_Record_Type
(Array_Type
)
1709 and then Remote_AST_I_Dereference
(P
)
1713 elsif Array_Type
= Any_Type
then
1714 Set_Etype
(N
, Any_Type
);
1717 -- Here we definitely have a bad indexing
1720 if Nkind
(Parent
(N
)) = N_Requeue_Statement
1721 and then Present
(Pent
) and then Ekind
(Pent
) = E_Entry
1724 ("REQUEUE does not permit parameters", First
(Exprs
));
1726 elsif Is_Entity_Name
(P
)
1727 and then Etype
(P
) = Standard_Void_Type
1729 Error_Msg_NE
("incorrect use of&", P
, Entity
(P
));
1732 Error_Msg_N
("array type required in indexed component", P
);
1735 Set_Etype
(N
, Any_Type
);
1739 Index
:= First_Index
(Array_Type
);
1740 while Present
(Index
) and then Present
(Exp
) loop
1741 if not Has_Compatible_Type
(Exp
, Etype
(Index
)) then
1742 Wrong_Type
(Exp
, Etype
(Index
));
1743 Set_Etype
(N
, Any_Type
);
1751 Set_Etype
(N
, Component_Type
(Array_Type
));
1753 if Present
(Index
) then
1755 ("too few subscripts in array reference", First
(Exprs
));
1757 elsif Present
(Exp
) then
1758 Error_Msg_N
("too many subscripts in array reference", Exp
);
1761 end Process_Indexed_Component
;
1763 ----------------------------------------
1764 -- Process_Indexed_Component_Or_Slice --
1765 ----------------------------------------
1767 procedure Process_Indexed_Component_Or_Slice
is
1769 Exp
:= First
(Exprs
);
1770 while Present
(Exp
) loop
1771 Analyze_Expression
(Exp
);
1775 Exp
:= First
(Exprs
);
1777 -- If one index is present, and it is a subtype name, then the
1778 -- node denotes a slice (note that the case of an explicit range
1779 -- for a slice was already built as an N_Slice node in the first
1780 -- place, so that case is not handled here).
1782 -- We use a replace rather than a rewrite here because this is one
1783 -- of the cases in which the tree built by the parser is plain wrong.
1786 and then Is_Entity_Name
(Exp
)
1787 and then Is_Type
(Entity
(Exp
))
1790 Make_Slice
(Sloc
(N
),
1792 Discrete_Range
=> New_Copy
(Exp
)));
1795 -- Otherwise (more than one index present, or single index is not
1796 -- a subtype name), then we have the indexed component case.
1799 Process_Indexed_Component
;
1801 end Process_Indexed_Component_Or_Slice
;
1803 ------------------------------------------
1804 -- Process_Overloaded_Indexed_Component --
1805 ------------------------------------------
1807 procedure Process_Overloaded_Indexed_Component
is
1816 Set_Etype
(N
, Any_Type
);
1818 Get_First_Interp
(P
, I
, It
);
1819 while Present
(It
.Nam
) loop
1822 if Is_Access_Type
(Typ
) then
1823 Typ
:= Designated_Type
(Typ
);
1824 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
1827 if Is_Array_Type
(Typ
) then
1829 -- Got a candidate: verify that index types are compatible
1831 Index
:= First_Index
(Typ
);
1833 Exp
:= First
(Exprs
);
1834 while Present
(Index
) and then Present
(Exp
) loop
1835 if Has_Compatible_Type
(Exp
, Etype
(Index
)) then
1847 if Found
and then No
(Index
) and then No
(Exp
) then
1849 Etype
(Component_Type
(Typ
)),
1850 Etype
(Component_Type
(Typ
)));
1854 Get_Next_Interp
(I
, It
);
1857 if Etype
(N
) = Any_Type
then
1858 Error_Msg_N
("no legal interpretation for indexed component", N
);
1859 Set_Is_Overloaded
(N
, False);
1863 end Process_Overloaded_Indexed_Component
;
1865 -- Start of processing for Analyze_Indexed_Component_Form
1868 -- Get name of array, function or type
1872 if Nkind_In
(N
, N_Function_Call
, N_Procedure_Call_Statement
) then
1874 -- If P is an explicit dereference whose prefix is of a
1875 -- remote access-to-subprogram type, then N has already
1876 -- been rewritten as a subprogram call and analyzed.
1881 pragma Assert
(Nkind
(N
) = N_Indexed_Component
);
1883 P_T
:= Base_Type
(Etype
(P
));
1885 if Is_Entity_Name
(P
)
1886 or else Nkind
(P
) = N_Operator_Symbol
1890 if Is_Type
(U_N
) then
1892 -- Reformat node as a type conversion
1894 E
:= Remove_Head
(Exprs
);
1896 if Present
(First
(Exprs
)) then
1898 ("argument of type conversion must be single expression", N
);
1901 Change_Node
(N
, N_Type_Conversion
);
1902 Set_Subtype_Mark
(N
, P
);
1904 Set_Expression
(N
, E
);
1906 -- After changing the node, call for the specific Analysis
1907 -- routine directly, to avoid a double call to the expander.
1909 Analyze_Type_Conversion
(N
);
1913 if Is_Overloadable
(U_N
) then
1914 Process_Function_Call
;
1916 elsif Ekind
(Etype
(P
)) = E_Subprogram_Type
1917 or else (Is_Access_Type
(Etype
(P
))
1919 Ekind
(Designated_Type
(Etype
(P
))) = E_Subprogram_Type
)
1921 -- Call to access_to-subprogram with possible implicit dereference
1923 Process_Function_Call
;
1925 elsif Is_Generic_Subprogram
(U_N
) then
1927 -- A common beginner's (or C++ templates fan) error
1929 Error_Msg_N
("generic subprogram cannot be called", N
);
1930 Set_Etype
(N
, Any_Type
);
1934 Process_Indexed_Component_Or_Slice
;
1937 -- If not an entity name, prefix is an expression that may denote
1938 -- an array or an access-to-subprogram.
1941 if Ekind
(P_T
) = E_Subprogram_Type
1942 or else (Is_Access_Type
(P_T
)
1944 Ekind
(Designated_Type
(P_T
)) = E_Subprogram_Type
)
1946 Process_Function_Call
;
1948 elsif Nkind
(P
) = N_Selected_Component
1949 and then Is_Overloadable
(Entity
(Selector_Name
(P
)))
1951 Process_Function_Call
;
1954 -- Indexed component, slice, or a call to a member of a family
1955 -- entry, which will be converted to an entry call later.
1957 Process_Indexed_Component_Or_Slice
;
1960 end Analyze_Indexed_Component_Form
;
1962 ------------------------
1963 -- Analyze_Logical_Op --
1964 ------------------------
1966 procedure Analyze_Logical_Op
(N
: Node_Id
) is
1967 L
: constant Node_Id
:= Left_Opnd
(N
);
1968 R
: constant Node_Id
:= Right_Opnd
(N
);
1969 Op_Id
: Entity_Id
:= Entity
(N
);
1972 Set_Etype
(N
, Any_Type
);
1973 Candidate_Type
:= Empty
;
1975 Analyze_Expression
(L
);
1976 Analyze_Expression
(R
);
1978 if Present
(Op_Id
) then
1980 if Ekind
(Op_Id
) = E_Operator
then
1981 Find_Boolean_Types
(L
, R
, Op_Id
, N
);
1983 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1987 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
1988 while Present
(Op_Id
) loop
1989 if Ekind
(Op_Id
) = E_Operator
then
1990 Find_Boolean_Types
(L
, R
, Op_Id
, N
);
1992 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1995 Op_Id
:= Homonym
(Op_Id
);
2000 end Analyze_Logical_Op
;
2002 ---------------------------
2003 -- Analyze_Membership_Op --
2004 ---------------------------
2006 procedure Analyze_Membership_Op
(N
: Node_Id
) is
2007 L
: constant Node_Id
:= Left_Opnd
(N
);
2008 R
: constant Node_Id
:= Right_Opnd
(N
);
2010 Index
: Interp_Index
;
2012 Found
: Boolean := False;
2016 procedure Try_One_Interp
(T1
: Entity_Id
);
2017 -- Routine to try one proposed interpretation. Note that the context
2018 -- of the operation plays no role in resolving the arguments, so that
2019 -- if there is more than one interpretation of the operands that is
2020 -- compatible with a membership test, the operation is ambiguous.
2022 --------------------
2023 -- Try_One_Interp --
2024 --------------------
2026 procedure Try_One_Interp
(T1
: Entity_Id
) is
2028 if Has_Compatible_Type
(R
, T1
) then
2030 and then Base_Type
(T1
) /= Base_Type
(T_F
)
2032 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
2034 if It
= No_Interp
then
2035 Ambiguous_Operands
(N
);
2036 Set_Etype
(L
, Any_Type
);
2053 procedure Analyze_Set_Membership
;
2054 -- If a set of alternatives is present, analyze each and find the
2055 -- common type to which they must all resolve.
2057 ----------------------------
2058 -- Analyze_Set_Membership --
2059 ----------------------------
2061 procedure Analyze_Set_Membership
is
2063 Index
: Interp_Index
;
2065 Candidate_Interps
: Node_Id
;
2066 Common_Type
: Entity_Id
:= Empty
;
2070 Candidate_Interps
:= L
;
2072 if not Is_Overloaded
(L
) then
2073 Common_Type
:= Etype
(L
);
2075 Alt
:= First
(Alternatives
(N
));
2076 while Present
(Alt
) loop
2079 if not Has_Compatible_Type
(Alt
, Common_Type
) then
2080 Wrong_Type
(Alt
, Common_Type
);
2087 Alt
:= First
(Alternatives
(N
));
2088 while Present
(Alt
) loop
2090 if not Is_Overloaded
(Alt
) then
2091 Common_Type
:= Etype
(Alt
);
2094 Get_First_Interp
(Alt
, Index
, It
);
2095 while Present
(It
.Typ
) loop
2097 Has_Compatible_Type
(Candidate_Interps
, It
.Typ
)
2099 Remove_Interp
(Index
);
2102 Get_Next_Interp
(Index
, It
);
2105 Get_First_Interp
(Alt
, Index
, It
);
2108 Error_Msg_N
("alternative has no legal type", Alt
);
2112 -- If alternative is not overloaded, we have a unique type
2115 Set_Etype
(Alt
, It
.Typ
);
2116 Get_Next_Interp
(Index
, It
);
2119 Set_Is_Overloaded
(Alt
, False);
2120 Common_Type
:= Etype
(Alt
);
2123 Candidate_Interps
:= Alt
;
2130 Set_Etype
(N
, Standard_Boolean
);
2132 if Present
(Common_Type
) then
2133 Set_Etype
(L
, Common_Type
);
2134 Set_Is_Overloaded
(L
, False);
2137 Error_Msg_N
("cannot resolve membership operation", N
);
2139 end Analyze_Set_Membership
;
2141 -- Start of processing for Analyze_Membership_Op
2144 Analyze_Expression
(L
);
2147 and then Extensions_Allowed
2149 Analyze_Set_Membership
;
2153 if Nkind
(R
) = N_Range
2154 or else (Nkind
(R
) = N_Attribute_Reference
2155 and then Attribute_Name
(R
) = Name_Range
)
2159 if not Is_Overloaded
(L
) then
2160 Try_One_Interp
(Etype
(L
));
2163 Get_First_Interp
(L
, Index
, It
);
2164 while Present
(It
.Typ
) loop
2165 Try_One_Interp
(It
.Typ
);
2166 Get_Next_Interp
(Index
, It
);
2170 -- If not a range, it can only be a subtype mark, or else there
2171 -- is a more basic error, to be diagnosed in Find_Type.
2176 if Is_Entity_Name
(R
) then
2177 Check_Fully_Declared
(Entity
(R
), R
);
2181 -- Compatibility between expression and subtype mark or range is
2182 -- checked during resolution. The result of the operation is Boolean
2185 Set_Etype
(N
, Standard_Boolean
);
2187 if Comes_From_Source
(N
)
2188 and then Present
(Right_Opnd
(N
))
2189 and then Is_CPP_Class
(Etype
(Etype
(Right_Opnd
(N
))))
2191 Error_Msg_N
("membership test not applicable to cpp-class types", N
);
2193 end Analyze_Membership_Op
;
2195 ----------------------
2196 -- Analyze_Negation --
2197 ----------------------
2199 procedure Analyze_Negation
(N
: Node_Id
) is
2200 R
: constant Node_Id
:= Right_Opnd
(N
);
2201 Op_Id
: Entity_Id
:= Entity
(N
);
2204 Set_Etype
(N
, Any_Type
);
2205 Candidate_Type
:= Empty
;
2207 Analyze_Expression
(R
);
2209 if Present
(Op_Id
) then
2210 if Ekind
(Op_Id
) = E_Operator
then
2211 Find_Negation_Types
(R
, Op_Id
, N
);
2213 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
2217 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
2218 while Present
(Op_Id
) loop
2219 if Ekind
(Op_Id
) = E_Operator
then
2220 Find_Negation_Types
(R
, Op_Id
, N
);
2222 Analyze_User_Defined_Unary_Op
(N
, Op_Id
);
2225 Op_Id
:= Homonym
(Op_Id
);
2230 end Analyze_Negation
;
2236 procedure Analyze_Null
(N
: Node_Id
) is
2238 Set_Etype
(N
, Any_Access
);
2241 ----------------------
2242 -- Analyze_One_Call --
2243 ----------------------
2245 procedure Analyze_One_Call
2249 Success
: out Boolean;
2250 Skip_First
: Boolean := False)
2252 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
2253 Prev_T
: constant Entity_Id
:= Etype
(N
);
2255 Must_Skip
: constant Boolean := Skip_First
2256 or else Nkind
(Original_Node
(N
)) = N_Selected_Component
2258 (Nkind
(Original_Node
(N
)) = N_Indexed_Component
2259 and then Nkind
(Prefix
(Original_Node
(N
)))
2260 = N_Selected_Component
);
2261 -- The first formal must be omitted from the match when trying to find
2262 -- a primitive operation that is a possible interpretation, and also
2263 -- after the call has been rewritten, because the corresponding actual
2264 -- is already known to be compatible, and because this may be an
2265 -- indexing of a call with default parameters.
2269 Is_Indexed
: Boolean := False;
2270 Is_Indirect
: Boolean := False;
2271 Subp_Type
: constant Entity_Id
:= Etype
(Nam
);
2274 function Operator_Hidden_By
(Fun
: Entity_Id
) return Boolean;
2275 -- There may be a user-defined operator that hides the current
2276 -- interpretation. We must check for this independently of the
2277 -- analysis of the call with the user-defined operation, because
2278 -- the parameter names may be wrong and yet the hiding takes place.
2279 -- This fixes a problem with ACATS test B34014O.
2281 -- When the type Address is a visible integer type, and the DEC
2282 -- system extension is visible, the predefined operator may be
2283 -- hidden as well, by one of the address operations in auxdec.
2284 -- Finally, The abstract operations on address do not hide the
2285 -- predefined operator (this is the purpose of making them abstract).
2287 procedure Indicate_Name_And_Type
;
2288 -- If candidate interpretation matches, indicate name and type of
2289 -- result on call node.
2291 ----------------------------
2292 -- Indicate_Name_And_Type --
2293 ----------------------------
2295 procedure Indicate_Name_And_Type
is
2297 Add_One_Interp
(N
, Nam
, Etype
(Nam
));
2300 -- If the prefix of the call is a name, indicate the entity
2301 -- being called. If it is not a name, it is an expression that
2302 -- denotes an access to subprogram or else an entry or family. In
2303 -- the latter case, the name is a selected component, and the entity
2304 -- being called is noted on the selector.
2306 if not Is_Type
(Nam
) then
2307 if Is_Entity_Name
(Name
(N
))
2308 or else Nkind
(Name
(N
)) = N_Operator_Symbol
2310 Set_Entity
(Name
(N
), Nam
);
2312 elsif Nkind
(Name
(N
)) = N_Selected_Component
then
2313 Set_Entity
(Selector_Name
(Name
(N
)), Nam
);
2317 if Debug_Flag_E
and not Report
then
2318 Write_Str
(" Overloaded call ");
2319 Write_Int
(Int
(N
));
2320 Write_Str
(" compatible with ");
2321 Write_Int
(Int
(Nam
));
2324 end Indicate_Name_And_Type
;
2326 ------------------------
2327 -- Operator_Hidden_By --
2328 ------------------------
2330 function Operator_Hidden_By
(Fun
: Entity_Id
) return Boolean is
2331 Act1
: constant Node_Id
:= First_Actual
(N
);
2332 Act2
: constant Node_Id
:= Next_Actual
(Act1
);
2333 Form1
: constant Entity_Id
:= First_Formal
(Fun
);
2334 Form2
: constant Entity_Id
:= Next_Formal
(Form1
);
2337 if Ekind
(Fun
) /= E_Function
2338 or else Is_Abstract_Subprogram
(Fun
)
2342 elsif not Has_Compatible_Type
(Act1
, Etype
(Form1
)) then
2345 elsif Present
(Form2
) then
2347 No
(Act2
) or else not Has_Compatible_Type
(Act2
, Etype
(Form2
))
2352 elsif Present
(Act2
) then
2356 -- Now we know that the arity of the operator matches the function,
2357 -- and the function call is a valid interpretation. The function
2358 -- hides the operator if it has the right signature, or if one of
2359 -- its operands is a non-abstract operation on Address when this is
2360 -- a visible integer type.
2362 return Hides_Op
(Fun
, Nam
)
2363 or else Is_Descendent_Of_Address
(Etype
(Form1
))
2366 and then Is_Descendent_Of_Address
(Etype
(Form2
)));
2367 end Operator_Hidden_By
;
2369 -- Start of processing for Analyze_One_Call
2374 -- If the subprogram has no formals or if all the formals have defaults,
2375 -- and the return type is an array type, the node may denote an indexing
2376 -- of the result of a parameterless call. In Ada 2005, the subprogram
2377 -- may have one non-defaulted formal, and the call may have been written
2378 -- in prefix notation, so that the rebuilt parameter list has more than
2381 if not Is_Overloadable
(Nam
)
2382 and then Ekind
(Nam
) /= E_Subprogram_Type
2383 and then Ekind
(Nam
) /= E_Entry_Family
2388 -- An indexing requires at least one actual
2390 if not Is_Empty_List
(Actuals
)
2392 (Needs_No_Actuals
(Nam
)
2394 (Needs_One_Actual
(Nam
)
2395 and then Present
(Next_Actual
(First
(Actuals
)))))
2397 if Is_Array_Type
(Subp_Type
) then
2398 Is_Indexed
:= Try_Indexed_Call
(N
, Nam
, Subp_Type
, Must_Skip
);
2400 elsif Is_Access_Type
(Subp_Type
)
2401 and then Is_Array_Type
(Designated_Type
(Subp_Type
))
2405 (N
, Nam
, Designated_Type
(Subp_Type
), Must_Skip
);
2407 -- The prefix can also be a parameterless function that returns an
2408 -- access to subprogram, in which case this is an indirect call.
2409 -- If this succeeds, an explicit dereference is added later on,
2410 -- in Analyze_Call or Resolve_Call.
2412 elsif Is_Access_Type
(Subp_Type
)
2413 and then Ekind
(Designated_Type
(Subp_Type
)) = E_Subprogram_Type
2415 Is_Indirect
:= Try_Indirect_Call
(N
, Nam
, Subp_Type
);
2420 -- If the call has been transformed into a slice, it is of the form
2421 -- F (Subtype) where F is parameterless. The node has been rewritten in
2422 -- Try_Indexed_Call and there is nothing else to do.
2425 and then Nkind
(N
) = N_Slice
2431 (N
, Nam
, (Report
and not Is_Indexed
and not Is_Indirect
), Norm_OK
);
2435 -- If an indirect call is a possible interpretation, indicate
2436 -- success to the caller.
2442 -- Mismatch in number or names of parameters
2444 elsif Debug_Flag_E
then
2445 Write_Str
(" normalization fails in call ");
2446 Write_Int
(Int
(N
));
2447 Write_Str
(" with subprogram ");
2448 Write_Int
(Int
(Nam
));
2452 -- If the context expects a function call, discard any interpretation
2453 -- that is a procedure. If the node is not overloaded, leave as is for
2454 -- better error reporting when type mismatch is found.
2456 elsif Nkind
(N
) = N_Function_Call
2457 and then Is_Overloaded
(Name
(N
))
2458 and then Ekind
(Nam
) = E_Procedure
2462 -- Ditto for function calls in a procedure context
2464 elsif Nkind
(N
) = N_Procedure_Call_Statement
2465 and then Is_Overloaded
(Name
(N
))
2466 and then Etype
(Nam
) /= Standard_Void_Type
2470 elsif No
(Actuals
) then
2472 -- If Normalize succeeds, then there are default parameters for
2475 Indicate_Name_And_Type
;
2477 elsif Ekind
(Nam
) = E_Operator
then
2478 if Nkind
(N
) = N_Procedure_Call_Statement
then
2482 -- This can occur when the prefix of the call is an operator
2483 -- name or an expanded name whose selector is an operator name.
2485 Analyze_Operator_Call
(N
, Nam
);
2487 if Etype
(N
) /= Prev_T
then
2489 -- Check that operator is not hidden by a function interpretation
2491 if Is_Overloaded
(Name
(N
)) then
2497 Get_First_Interp
(Name
(N
), I
, It
);
2498 while Present
(It
.Nam
) loop
2499 if Operator_Hidden_By
(It
.Nam
) then
2500 Set_Etype
(N
, Prev_T
);
2504 Get_Next_Interp
(I
, It
);
2509 -- If operator matches formals, record its name on the call.
2510 -- If the operator is overloaded, Resolve will select the
2511 -- correct one from the list of interpretations. The call
2512 -- node itself carries the first candidate.
2514 Set_Entity
(Name
(N
), Nam
);
2517 elsif Report
and then Etype
(N
) = Any_Type
then
2518 Error_Msg_N
("incompatible arguments for operator", N
);
2522 -- Normalize_Actuals has chained the named associations in the
2523 -- correct order of the formals.
2525 Actual
:= First_Actual
(N
);
2526 Formal
:= First_Formal
(Nam
);
2528 -- If we are analyzing a call rewritten from object notation,
2529 -- skip first actual, which may be rewritten later as an
2530 -- explicit dereference.
2533 Next_Actual
(Actual
);
2534 Next_Formal
(Formal
);
2537 while Present
(Actual
) and then Present
(Formal
) loop
2538 if Nkind
(Parent
(Actual
)) /= N_Parameter_Association
2539 or else Chars
(Selector_Name
(Parent
(Actual
))) = Chars
(Formal
)
2541 -- The actual can be compatible with the formal, but we must
2542 -- also check that the context is not an address type that is
2543 -- visibly an integer type, as is the case in VMS_64. In this
2544 -- case the use of literals is illegal, except in the body of
2545 -- descendents of system, where arithmetic operations on
2546 -- address are of course used.
2548 if Has_Compatible_Type
(Actual
, Etype
(Formal
))
2550 (Etype
(Actual
) /= Universal_Integer
2551 or else not Is_Descendent_Of_Address
(Etype
(Formal
))
2553 Is_Predefined_File_Name
2554 (Unit_File_Name
(Get_Source_Unit
(N
))))
2556 Next_Actual
(Actual
);
2557 Next_Formal
(Formal
);
2560 if Debug_Flag_E
then
2561 Write_Str
(" type checking fails in call ");
2562 Write_Int
(Int
(N
));
2563 Write_Str
(" with formal ");
2564 Write_Int
(Int
(Formal
));
2565 Write_Str
(" in subprogram ");
2566 Write_Int
(Int
(Nam
));
2570 if Report
and not Is_Indexed
and not Is_Indirect
then
2572 -- Ada 2005 (AI-251): Complete the error notification
2573 -- to help new Ada 2005 users.
2575 if Is_Class_Wide_Type
(Etype
(Formal
))
2576 and then Is_Interface
(Etype
(Etype
(Formal
)))
2577 and then not Interface_Present_In_Ancestor
2578 (Typ
=> Etype
(Actual
),
2579 Iface
=> Etype
(Etype
(Formal
)))
2582 ("(Ada 2005) does not implement interface }",
2583 Actual
, Etype
(Etype
(Formal
)));
2586 Wrong_Type
(Actual
, Etype
(Formal
));
2588 if Nkind
(Actual
) = N_Op_Eq
2589 and then Nkind
(Left_Opnd
(Actual
)) = N_Identifier
2591 Formal
:= First_Formal
(Nam
);
2592 while Present
(Formal
) loop
2593 if Chars
(Left_Opnd
(Actual
)) = Chars
(Formal
) then
2594 Error_Msg_N
-- CODEFIX
2595 ("possible misspelling of `='>`!", Actual
);
2599 Next_Formal
(Formal
);
2603 if All_Errors_Mode
then
2604 Error_Msg_Sloc
:= Sloc
(Nam
);
2606 if Is_Overloadable
(Nam
)
2607 and then Present
(Alias
(Nam
))
2608 and then not Comes_From_Source
(Nam
)
2611 ("\\ =='> in call to inherited operation & #!",
2614 elsif Ekind
(Nam
) = E_Subprogram_Type
then
2616 Access_To_Subprogram_Typ
:
2617 constant Entity_Id
:=
2619 (Associated_Node_For_Itype
(Nam
));
2622 "\\ =='> in call to dereference of &#!",
2623 Actual
, Access_To_Subprogram_Typ
);
2628 ("\\ =='> in call to &#!", Actual
, Nam
);
2638 -- Normalize_Actuals has verified that a default value exists
2639 -- for this formal. Current actual names a subsequent formal.
2641 Next_Formal
(Formal
);
2645 -- On exit, all actuals match
2647 Indicate_Name_And_Type
;
2649 end Analyze_One_Call
;
2651 ---------------------------
2652 -- Analyze_Operator_Call --
2653 ---------------------------
2655 procedure Analyze_Operator_Call
(N
: Node_Id
; Op_Id
: Entity_Id
) is
2656 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
2657 Act1
: constant Node_Id
:= First_Actual
(N
);
2658 Act2
: constant Node_Id
:= Next_Actual
(Act1
);
2661 -- Binary operator case
2663 if Present
(Act2
) then
2665 -- If more than two operands, then not binary operator after all
2667 if Present
(Next_Actual
(Act2
)) then
2670 elsif Op_Name
= Name_Op_Add
2671 or else Op_Name
= Name_Op_Subtract
2672 or else Op_Name
= Name_Op_Multiply
2673 or else Op_Name
= Name_Op_Divide
2674 or else Op_Name
= Name_Op_Mod
2675 or else Op_Name
= Name_Op_Rem
2676 or else Op_Name
= Name_Op_Expon
2678 Find_Arithmetic_Types
(Act1
, Act2
, Op_Id
, N
);
2680 elsif Op_Name
= Name_Op_And
2681 or else Op_Name
= Name_Op_Or
2682 or else Op_Name
= Name_Op_Xor
2684 Find_Boolean_Types
(Act1
, Act2
, Op_Id
, N
);
2686 elsif Op_Name
= Name_Op_Lt
2687 or else Op_Name
= Name_Op_Le
2688 or else Op_Name
= Name_Op_Gt
2689 or else Op_Name
= Name_Op_Ge
2691 Find_Comparison_Types
(Act1
, Act2
, Op_Id
, N
);
2693 elsif Op_Name
= Name_Op_Eq
2694 or else Op_Name
= Name_Op_Ne
2696 Find_Equality_Types
(Act1
, Act2
, Op_Id
, N
);
2698 elsif Op_Name
= Name_Op_Concat
then
2699 Find_Concatenation_Types
(Act1
, Act2
, Op_Id
, N
);
2701 -- Is this else null correct, or should it be an abort???
2707 -- Unary operator case
2710 if Op_Name
= Name_Op_Subtract
or else
2711 Op_Name
= Name_Op_Add
or else
2712 Op_Name
= Name_Op_Abs
2714 Find_Unary_Types
(Act1
, Op_Id
, N
);
2717 Op_Name
= Name_Op_Not
2719 Find_Negation_Types
(Act1
, Op_Id
, N
);
2721 -- Is this else null correct, or should it be an abort???
2727 end Analyze_Operator_Call
;
2729 -------------------------------------------
2730 -- Analyze_Overloaded_Selected_Component --
2731 -------------------------------------------
2733 procedure Analyze_Overloaded_Selected_Component
(N
: Node_Id
) is
2734 Nam
: constant Node_Id
:= Prefix
(N
);
2735 Sel
: constant Node_Id
:= Selector_Name
(N
);
2742 Set_Etype
(Sel
, Any_Type
);
2744 Get_First_Interp
(Nam
, I
, It
);
2745 while Present
(It
.Typ
) loop
2746 if Is_Access_Type
(It
.Typ
) then
2747 T
:= Designated_Type
(It
.Typ
);
2748 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
2753 if Is_Record_Type
(T
) then
2755 -- If the prefix is a class-wide type, the visible components are
2756 -- those of the base type.
2758 if Is_Class_Wide_Type
(T
) then
2762 Comp
:= First_Entity
(T
);
2763 while Present
(Comp
) loop
2764 if Chars
(Comp
) = Chars
(Sel
)
2765 and then Is_Visible_Component
(Comp
)
2768 -- AI05-105: if the context is an object renaming with
2769 -- an anonymous access type, the expected type of the
2770 -- object must be anonymous. This is a name resolution rule.
2772 if Nkind
(Parent
(N
)) /= N_Object_Renaming_Declaration
2773 or else No
(Access_Definition
(Parent
(N
)))
2774 or else Ekind
(Etype
(Comp
)) = E_Anonymous_Access_Type
2776 Ekind
(Etype
(Comp
)) = E_Anonymous_Access_Subprogram_Type
2778 Set_Entity
(Sel
, Comp
);
2779 Set_Etype
(Sel
, Etype
(Comp
));
2780 Add_One_Interp
(N
, Etype
(Comp
), Etype
(Comp
));
2782 -- This also specifies a candidate to resolve the name.
2783 -- Further overloading will be resolved from context.
2784 -- The selector name itself does not carry overloading
2787 Set_Etype
(Nam
, It
.Typ
);
2790 -- Named access type in the context of a renaming
2791 -- declaration with an access definition. Remove
2792 -- inapplicable candidate.
2801 elsif Is_Concurrent_Type
(T
) then
2802 Comp
:= First_Entity
(T
);
2803 while Present
(Comp
)
2804 and then Comp
/= First_Private_Entity
(T
)
2806 if Chars
(Comp
) = Chars
(Sel
) then
2807 if Is_Overloadable
(Comp
) then
2808 Add_One_Interp
(Sel
, Comp
, Etype
(Comp
));
2810 Set_Entity_With_Style_Check
(Sel
, Comp
);
2811 Generate_Reference
(Comp
, Sel
);
2814 Set_Etype
(Sel
, Etype
(Comp
));
2815 Set_Etype
(N
, Etype
(Comp
));
2816 Set_Etype
(Nam
, It
.Typ
);
2818 -- For access type case, introduce explicit dereference for
2819 -- more uniform treatment of entry calls. Do this only once
2820 -- if several interpretations yield an access type.
2822 if Is_Access_Type
(Etype
(Nam
))
2823 and then Nkind
(Nam
) /= N_Explicit_Dereference
2825 Insert_Explicit_Dereference
(Nam
);
2827 (Warn_On_Dereference
, "?implicit dereference", N
);
2834 Set_Is_Overloaded
(N
, Is_Overloaded
(Sel
));
2837 Get_Next_Interp
(I
, It
);
2840 if Etype
(N
) = Any_Type
2841 and then not Try_Object_Operation
(N
)
2843 Error_Msg_NE
("undefined selector& for overloaded prefix", N
, Sel
);
2844 Set_Entity
(Sel
, Any_Id
);
2845 Set_Etype
(Sel
, Any_Type
);
2847 end Analyze_Overloaded_Selected_Component
;
2849 ----------------------------------
2850 -- Analyze_Qualified_Expression --
2851 ----------------------------------
2853 procedure Analyze_Qualified_Expression
(N
: Node_Id
) is
2854 Mark
: constant Entity_Id
:= Subtype_Mark
(N
);
2855 Expr
: constant Node_Id
:= Expression
(N
);
2861 Analyze_Expression
(Expr
);
2863 Set_Etype
(N
, Any_Type
);
2868 if T
= Any_Type
then
2872 Check_Fully_Declared
(T
, N
);
2874 -- If expected type is class-wide, check for exact match before
2875 -- expansion, because if the expression is a dispatching call it
2876 -- may be rewritten as explicit dereference with class-wide result.
2877 -- If expression is overloaded, retain only interpretations that
2878 -- will yield exact matches.
2880 if Is_Class_Wide_Type
(T
) then
2881 if not Is_Overloaded
(Expr
) then
2882 if Base_Type
(Etype
(Expr
)) /= Base_Type
(T
) then
2883 if Nkind
(Expr
) = N_Aggregate
then
2884 Error_Msg_N
("type of aggregate cannot be class-wide", Expr
);
2886 Wrong_Type
(Expr
, T
);
2891 Get_First_Interp
(Expr
, I
, It
);
2893 while Present
(It
.Nam
) loop
2894 if Base_Type
(It
.Typ
) /= Base_Type
(T
) then
2898 Get_Next_Interp
(I
, It
);
2904 end Analyze_Qualified_Expression
;
2910 procedure Analyze_Range
(N
: Node_Id
) is
2911 L
: constant Node_Id
:= Low_Bound
(N
);
2912 H
: constant Node_Id
:= High_Bound
(N
);
2913 I1
, I2
: Interp_Index
;
2916 procedure Check_Common_Type
(T1
, T2
: Entity_Id
);
2917 -- Verify the compatibility of two types, and choose the
2918 -- non universal one if the other is universal.
2920 procedure Check_High_Bound
(T
: Entity_Id
);
2921 -- Test one interpretation of the low bound against all those
2922 -- of the high bound.
2924 procedure Check_Universal_Expression
(N
: Node_Id
);
2925 -- In Ada83, reject bounds of a universal range that are not
2926 -- literals or entity names.
2928 -----------------------
2929 -- Check_Common_Type --
2930 -----------------------
2932 procedure Check_Common_Type
(T1
, T2
: Entity_Id
) is
2934 if Covers
(T1
=> T1
, T2
=> T2
)
2936 Covers
(T1
=> T2
, T2
=> T1
)
2938 if T1
= Universal_Integer
2939 or else T1
= Universal_Real
2940 or else T1
= Any_Character
2942 Add_One_Interp
(N
, Base_Type
(T2
), Base_Type
(T2
));
2945 Add_One_Interp
(N
, T1
, T1
);
2948 Add_One_Interp
(N
, Base_Type
(T1
), Base_Type
(T1
));
2951 end Check_Common_Type
;
2953 ----------------------
2954 -- Check_High_Bound --
2955 ----------------------
2957 procedure Check_High_Bound
(T
: Entity_Id
) is
2959 if not Is_Overloaded
(H
) then
2960 Check_Common_Type
(T
, Etype
(H
));
2962 Get_First_Interp
(H
, I2
, It2
);
2963 while Present
(It2
.Typ
) loop
2964 Check_Common_Type
(T
, It2
.Typ
);
2965 Get_Next_Interp
(I2
, It2
);
2968 end Check_High_Bound
;
2970 -----------------------------
2971 -- Is_Universal_Expression --
2972 -----------------------------
2974 procedure Check_Universal_Expression
(N
: Node_Id
) is
2976 if Etype
(N
) = Universal_Integer
2977 and then Nkind
(N
) /= N_Integer_Literal
2978 and then not Is_Entity_Name
(N
)
2979 and then Nkind
(N
) /= N_Attribute_Reference
2981 Error_Msg_N
("illegal bound in discrete range", N
);
2983 end Check_Universal_Expression
;
2985 -- Start of processing for Analyze_Range
2988 Set_Etype
(N
, Any_Type
);
2989 Analyze_Expression
(L
);
2990 Analyze_Expression
(H
);
2992 if Etype
(L
) = Any_Type
or else Etype
(H
) = Any_Type
then
2996 if not Is_Overloaded
(L
) then
2997 Check_High_Bound
(Etype
(L
));
2999 Get_First_Interp
(L
, I1
, It1
);
3000 while Present
(It1
.Typ
) loop
3001 Check_High_Bound
(It1
.Typ
);
3002 Get_Next_Interp
(I1
, It1
);
3006 -- If result is Any_Type, then we did not find a compatible pair
3008 if Etype
(N
) = Any_Type
then
3009 Error_Msg_N
("incompatible types in range ", N
);
3013 if Ada_Version
= Ada_83
3015 (Nkind
(Parent
(N
)) = N_Loop_Parameter_Specification
3016 or else Nkind
(Parent
(N
)) = N_Constrained_Array_Definition
)
3018 Check_Universal_Expression
(L
);
3019 Check_Universal_Expression
(H
);
3023 -----------------------
3024 -- Analyze_Reference --
3025 -----------------------
3027 procedure Analyze_Reference
(N
: Node_Id
) is
3028 P
: constant Node_Id
:= Prefix
(N
);
3031 Acc_Type
: Entity_Id
;
3036 -- An interesting error check, if we take the 'Reference of an object
3037 -- for which a pragma Atomic or Volatile has been given, and the type
3038 -- of the object is not Atomic or Volatile, then we are in trouble. The
3039 -- problem is that no trace of the atomic/volatile status will remain
3040 -- for the backend to respect when it deals with the resulting pointer,
3041 -- since the pointer type will not be marked atomic (it is a pointer to
3042 -- the base type of the object).
3044 -- It is not clear if that can ever occur, but in case it does, we will
3045 -- generate an error message. Not clear if this message can ever be
3046 -- generated, and pretty clear that it represents a bug if it is, still
3047 -- seems worth checking!
3051 if Is_Entity_Name
(P
)
3052 and then Is_Object_Reference
(P
)
3057 if (Has_Atomic_Components
(E
)
3058 and then not Has_Atomic_Components
(T
))
3060 (Has_Volatile_Components
(E
)
3061 and then not Has_Volatile_Components
(T
))
3062 or else (Is_Atomic
(E
) and then not Is_Atomic
(T
))
3063 or else (Is_Volatile
(E
) and then not Is_Volatile
(T
))
3065 Error_Msg_N
("cannot take reference to Atomic/Volatile object", N
);
3069 -- Carry on with normal processing
3071 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
3072 Set_Etype
(Acc_Type
, Acc_Type
);
3073 Set_Directly_Designated_Type
(Acc_Type
, Etype
(P
));
3074 Set_Etype
(N
, Acc_Type
);
3075 end Analyze_Reference
;
3077 --------------------------------
3078 -- Analyze_Selected_Component --
3079 --------------------------------
3081 -- Prefix is a record type or a task or protected type. In the
3082 -- later case, the selector must denote a visible entry.
3084 procedure Analyze_Selected_Component
(N
: Node_Id
) is
3085 Name
: constant Node_Id
:= Prefix
(N
);
3086 Sel
: constant Node_Id
:= Selector_Name
(N
);
3089 Has_Candidate
: Boolean := False;
3092 Pent
: Entity_Id
:= Empty
;
3093 Prefix_Type
: Entity_Id
;
3095 Type_To_Use
: Entity_Id
;
3096 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3097 -- a class-wide type, we use its root type, whose components are
3098 -- present in the class-wide type.
3100 function Has_Mode_Conformant_Spec
(Comp
: Entity_Id
) return Boolean;
3101 -- It is known that the parent of N denotes a subprogram call. Comp
3102 -- is an overloadable component of the concurrent type of the prefix.
3103 -- Determine whether all formals of the parent of N and Comp are mode
3104 -- conformant. If the parent node is not analyzed yet it may be an
3105 -- indexed component rather than a function call.
3107 ------------------------------
3108 -- Has_Mode_Conformant_Spec --
3109 ------------------------------
3111 function Has_Mode_Conformant_Spec
(Comp
: Entity_Id
) return Boolean is
3112 Comp_Param
: Entity_Id
;
3114 Param_Typ
: Entity_Id
;
3117 Comp_Param
:= First_Formal
(Comp
);
3119 if Nkind
(Parent
(N
)) = N_Indexed_Component
then
3120 Param
:= First
(Expressions
(Parent
(N
)));
3122 Param
:= First
(Parameter_Associations
(Parent
(N
)));
3125 while Present
(Comp_Param
)
3126 and then Present
(Param
)
3128 Param_Typ
:= Find_Parameter_Type
(Param
);
3130 if Present
(Param_Typ
)
3132 not Conforming_Types
3133 (Etype
(Comp_Param
), Param_Typ
, Mode_Conformant
)
3138 Next_Formal
(Comp_Param
);
3142 -- One of the specs has additional formals
3144 if Present
(Comp_Param
) or else Present
(Param
) then
3149 end Has_Mode_Conformant_Spec
;
3151 -- Start of processing for Analyze_Selected_Component
3154 Set_Etype
(N
, Any_Type
);
3156 if Is_Overloaded
(Name
) then
3157 Analyze_Overloaded_Selected_Component
(N
);
3160 elsif Etype
(Name
) = Any_Type
then
3161 Set_Entity
(Sel
, Any_Id
);
3162 Set_Etype
(Sel
, Any_Type
);
3166 Prefix_Type
:= Etype
(Name
);
3169 if Is_Access_Type
(Prefix_Type
) then
3171 -- A RACW object can never be used as prefix of a selected
3172 -- component since that means it is dereferenced without
3173 -- being a controlling operand of a dispatching operation
3174 -- (RM E.2.2(16/1)). Before reporting an error, we must check
3175 -- whether this is actually a dispatching call in prefix form.
3177 if Is_Remote_Access_To_Class_Wide_Type
(Prefix_Type
)
3178 and then Comes_From_Source
(N
)
3180 if Try_Object_Operation
(N
) then
3184 ("invalid dereference of a remote access-to-class-wide value",
3188 -- Normal case of selected component applied to access type
3191 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
3193 if Is_Entity_Name
(Name
) then
3194 Pent
:= Entity
(Name
);
3195 elsif Nkind
(Name
) = N_Selected_Component
3196 and then Is_Entity_Name
(Selector_Name
(Name
))
3198 Pent
:= Entity
(Selector_Name
(Name
));
3201 Prefix_Type
:= Process_Implicit_Dereference_Prefix
(Pent
, Name
);
3204 -- If we have an explicit dereference of a remote access-to-class-wide
3205 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
3206 -- have to check for the case of a prefix that is a controlling operand
3207 -- of a prefixed dispatching call, as the dereference is legal in that
3208 -- case. Normally this condition is checked in Validate_Remote_Access_
3209 -- To_Class_Wide_Type, but we have to defer the checking for selected
3210 -- component prefixes because of the prefixed dispatching call case.
3211 -- Note that implicit dereferences are checked for this just above.
3213 elsif Nkind
(Name
) = N_Explicit_Dereference
3214 and then Is_Remote_Access_To_Class_Wide_Type
(Etype
(Prefix
(Name
)))
3215 and then Comes_From_Source
(N
)
3217 if Try_Object_Operation
(N
) then
3221 ("invalid dereference of a remote access-to-class-wide value",
3226 -- (Ada 2005): if the prefix is the limited view of a type, and
3227 -- the context already includes the full view, use the full view
3228 -- in what follows, either to retrieve a component of to find
3229 -- a primitive operation. If the prefix is an explicit dereference,
3230 -- set the type of the prefix to reflect this transformation.
3231 -- If the non-limited view is itself an incomplete type, get the
3232 -- full view if available.
3234 if Is_Incomplete_Type
(Prefix_Type
)
3235 and then From_With_Type
(Prefix_Type
)
3236 and then Present
(Non_Limited_View
(Prefix_Type
))
3238 Prefix_Type
:= Get_Full_View
(Non_Limited_View
(Prefix_Type
));
3240 if Nkind
(N
) = N_Explicit_Dereference
then
3241 Set_Etype
(Prefix
(N
), Prefix_Type
);
3244 elsif Ekind
(Prefix_Type
) = E_Class_Wide_Type
3245 and then From_With_Type
(Prefix_Type
)
3246 and then Present
(Non_Limited_View
(Etype
(Prefix_Type
)))
3249 Class_Wide_Type
(Non_Limited_View
(Etype
(Prefix_Type
)));
3251 if Nkind
(N
) = N_Explicit_Dereference
then
3252 Set_Etype
(Prefix
(N
), Prefix_Type
);
3256 if Ekind
(Prefix_Type
) = E_Private_Subtype
then
3257 Prefix_Type
:= Base_Type
(Prefix_Type
);
3260 Type_To_Use
:= Prefix_Type
;
3262 -- For class-wide types, use the entity list of the root type. This
3263 -- indirection is specially important for private extensions because
3264 -- only the root type get switched (not the class-wide type).
3266 if Is_Class_Wide_Type
(Prefix_Type
) then
3267 Type_To_Use
:= Root_Type
(Prefix_Type
);
3270 Comp
:= First_Entity
(Type_To_Use
);
3272 -- If the selector has an original discriminant, the node appears in
3273 -- an instance. Replace the discriminant with the corresponding one
3274 -- in the current discriminated type. For nested generics, this must
3275 -- be done transitively, so note the new original discriminant.
3277 if Nkind
(Sel
) = N_Identifier
3278 and then Present
(Original_Discriminant
(Sel
))
3280 Comp
:= Find_Corresponding_Discriminant
(Sel
, Prefix_Type
);
3282 -- Mark entity before rewriting, for completeness and because
3283 -- subsequent semantic checks might examine the original node.
3285 Set_Entity
(Sel
, Comp
);
3286 Rewrite
(Selector_Name
(N
),
3287 New_Occurrence_Of
(Comp
, Sloc
(N
)));
3288 Set_Original_Discriminant
(Selector_Name
(N
), Comp
);
3289 Set_Etype
(N
, Etype
(Comp
));
3291 if Is_Access_Type
(Etype
(Name
)) then
3292 Insert_Explicit_Dereference
(Name
);
3293 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
3296 elsif Is_Record_Type
(Prefix_Type
) then
3298 -- Find component with given name
3300 while Present
(Comp
) loop
3301 if Chars
(Comp
) = Chars
(Sel
)
3302 and then Is_Visible_Component
(Comp
)
3304 Set_Entity_With_Style_Check
(Sel
, Comp
);
3305 Set_Etype
(Sel
, Etype
(Comp
));
3307 if Ekind
(Comp
) = E_Discriminant
then
3308 if Is_Unchecked_Union
(Base_Type
(Prefix_Type
)) then
3310 ("cannot reference discriminant of Unchecked_Union",
3314 if Is_Generic_Type
(Prefix_Type
)
3316 Is_Generic_Type
(Root_Type
(Prefix_Type
))
3318 Set_Original_Discriminant
(Sel
, Comp
);
3322 -- Resolve the prefix early otherwise it is not possible to
3323 -- build the actual subtype of the component: it may need
3324 -- to duplicate this prefix and duplication is only allowed
3325 -- on fully resolved expressions.
3329 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
3330 -- subtypes in a package specification.
3333 -- limited with Pkg;
3335 -- type Acc_Inc is access Pkg.T;
3337 -- N : Natural := X.all.Comp; -- ERROR, limited view
3338 -- end Pkg; -- Comp is not visible
3340 if Nkind
(Name
) = N_Explicit_Dereference
3341 and then From_With_Type
(Etype
(Prefix
(Name
)))
3342 and then not Is_Potentially_Use_Visible
(Etype
(Name
))
3343 and then Nkind
(Parent
(Cunit_Entity
(Current_Sem_Unit
))) =
3344 N_Package_Specification
3347 ("premature usage of incomplete}", Prefix
(Name
),
3348 Etype
(Prefix
(Name
)));
3351 -- We never need an actual subtype for the case of a selection
3352 -- for a indexed component of a non-packed array, since in
3353 -- this case gigi generates all the checks and can find the
3354 -- necessary bounds information.
3356 -- We also do not need an actual subtype for the case of
3357 -- a first, last, length, or range attribute applied to a
3358 -- non-packed array, since gigi can again get the bounds in
3359 -- these cases (gigi cannot handle the packed case, since it
3360 -- has the bounds of the packed array type, not the original
3361 -- bounds of the type). However, if the prefix is itself a
3362 -- selected component, as in a.b.c (i), gigi may regard a.b.c
3363 -- as a dynamic-sized temporary, so we do generate an actual
3364 -- subtype for this case.
3366 Parent_N
:= Parent
(N
);
3368 if not Is_Packed
(Etype
(Comp
))
3370 ((Nkind
(Parent_N
) = N_Indexed_Component
3371 and then Nkind
(Name
) /= N_Selected_Component
)
3373 (Nkind
(Parent_N
) = N_Attribute_Reference
3374 and then (Attribute_Name
(Parent_N
) = Name_First
3376 Attribute_Name
(Parent_N
) = Name_Last
3378 Attribute_Name
(Parent_N
) = Name_Length
3380 Attribute_Name
(Parent_N
) = Name_Range
)))
3382 Set_Etype
(N
, Etype
(Comp
));
3384 -- If full analysis is not enabled, we do not generate an
3385 -- actual subtype, because in the absence of expansion
3386 -- reference to a formal of a protected type, for example,
3387 -- will not be properly transformed, and will lead to
3388 -- out-of-scope references in gigi.
3390 -- In all other cases, we currently build an actual subtype.
3391 -- It seems likely that many of these cases can be avoided,
3392 -- but right now, the front end makes direct references to the
3393 -- bounds (e.g. in generating a length check), and if we do
3394 -- not make an actual subtype, we end up getting a direct
3395 -- reference to a discriminant, which will not do.
3397 elsif Full_Analysis
then
3399 Build_Actual_Subtype_Of_Component
(Etype
(Comp
), N
);
3400 Insert_Action
(N
, Act_Decl
);
3402 if No
(Act_Decl
) then
3403 Set_Etype
(N
, Etype
(Comp
));
3406 -- Component type depends on discriminants. Enter the
3407 -- main attributes of the subtype.
3410 Subt
: constant Entity_Id
:=
3411 Defining_Identifier
(Act_Decl
);
3414 Set_Etype
(Subt
, Base_Type
(Etype
(Comp
)));
3415 Set_Ekind
(Subt
, Ekind
(Etype
(Comp
)));
3416 Set_Etype
(N
, Subt
);
3420 -- If Full_Analysis not enabled, just set the Etype
3423 Set_Etype
(N
, Etype
(Comp
));
3429 -- If the prefix is a private extension, check only the visible
3430 -- components of the partial view. This must include the tag,
3431 -- which can appear in expanded code in a tag check.
3433 if Ekind
(Type_To_Use
) = E_Record_Type_With_Private
3434 and then Chars
(Selector_Name
(N
)) /= Name_uTag
3436 exit when Comp
= Last_Entity
(Type_To_Use
);
3442 -- Ada 2005 (AI-252): The selected component can be interpreted as
3443 -- a prefixed view of a subprogram. Depending on the context, this is
3444 -- either a name that can appear in a renaming declaration, or part
3445 -- of an enclosing call given in prefix form.
3447 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
3448 -- selected component should resolve to a name.
3450 if Ada_Version
>= Ada_05
3451 and then Is_Tagged_Type
(Prefix_Type
)
3452 and then not Is_Concurrent_Type
(Prefix_Type
)
3454 if Nkind
(Parent
(N
)) = N_Generic_Association
3455 or else Nkind
(Parent
(N
)) = N_Requeue_Statement
3456 or else Nkind
(Parent
(N
)) = N_Subprogram_Renaming_Declaration
3458 if Find_Primitive_Operation
(N
) then
3462 elsif Try_Object_Operation
(N
) then
3466 -- If the transformation fails, it will be necessary to redo the
3467 -- analysis with all errors enabled, to indicate candidate
3468 -- interpretations and reasons for each failure ???
3472 elsif Is_Private_Type
(Prefix_Type
) then
3474 -- Allow access only to discriminants of the type. If the type has
3475 -- no full view, gigi uses the parent type for the components, so we
3476 -- do the same here.
3478 if No
(Full_View
(Prefix_Type
)) then
3479 Type_To_Use
:= Root_Type
(Base_Type
(Prefix_Type
));
3480 Comp
:= First_Entity
(Type_To_Use
);
3483 while Present
(Comp
) loop
3484 if Chars
(Comp
) = Chars
(Sel
) then
3485 if Ekind
(Comp
) = E_Discriminant
then
3486 Set_Entity_With_Style_Check
(Sel
, Comp
);
3487 Generate_Reference
(Comp
, Sel
);
3489 Set_Etype
(Sel
, Etype
(Comp
));
3490 Set_Etype
(N
, Etype
(Comp
));
3492 if Is_Generic_Type
(Prefix_Type
)
3493 or else Is_Generic_Type
(Root_Type
(Prefix_Type
))
3495 Set_Original_Discriminant
(Sel
, Comp
);
3498 -- Before declaring an error, check whether this is tagged
3499 -- private type and a call to a primitive operation.
3501 elsif Ada_Version
>= Ada_05
3502 and then Is_Tagged_Type
(Prefix_Type
)
3503 and then Try_Object_Operation
(N
)
3509 ("invisible selector for }",
3510 N
, First_Subtype
(Prefix_Type
));
3511 Set_Entity
(Sel
, Any_Id
);
3512 Set_Etype
(N
, Any_Type
);
3521 elsif Is_Concurrent_Type
(Prefix_Type
) then
3523 -- Find visible operation with given name. For a protected type,
3524 -- the possible candidates are discriminants, entries or protected
3525 -- procedures. For a task type, the set can only include entries or
3526 -- discriminants if the task type is not an enclosing scope. If it
3527 -- is an enclosing scope (e.g. in an inner task) then all entities
3528 -- are visible, but the prefix must denote the enclosing scope, i.e.
3529 -- can only be a direct name or an expanded name.
3531 Set_Etype
(Sel
, Any_Type
);
3532 In_Scope
:= In_Open_Scopes
(Prefix_Type
);
3534 while Present
(Comp
) loop
3535 if Chars
(Comp
) = Chars
(Sel
) then
3536 if Is_Overloadable
(Comp
) then
3537 Add_One_Interp
(Sel
, Comp
, Etype
(Comp
));
3539 -- If the prefix is tagged, the correct interpretation may
3540 -- lie in the primitive or class-wide operations of the
3541 -- type. Perform a simple conformance check to determine
3542 -- whether Try_Object_Operation should be invoked even if
3543 -- a visible entity is found.
3545 if Is_Tagged_Type
(Prefix_Type
)
3547 Nkind_In
(Parent
(N
), N_Procedure_Call_Statement
,
3549 N_Indexed_Component
)
3550 and then Has_Mode_Conformant_Spec
(Comp
)
3552 Has_Candidate
:= True;
3555 elsif Ekind
(Comp
) = E_Discriminant
3556 or else Ekind
(Comp
) = E_Entry_Family
3558 and then Is_Entity_Name
(Name
))
3560 Set_Entity_With_Style_Check
(Sel
, Comp
);
3561 Generate_Reference
(Comp
, Sel
);
3567 Set_Etype
(Sel
, Etype
(Comp
));
3568 Set_Etype
(N
, Etype
(Comp
));
3570 if Ekind
(Comp
) = E_Discriminant
then
3571 Set_Original_Discriminant
(Sel
, Comp
);
3574 -- For access type case, introduce explicit dereference for
3575 -- more uniform treatment of entry calls.
3577 if Is_Access_Type
(Etype
(Name
)) then
3578 Insert_Explicit_Dereference
(Name
);
3580 (Warn_On_Dereference
, "?implicit dereference", N
);
3586 exit when not In_Scope
3588 Comp
= First_Private_Entity
(Base_Type
(Prefix_Type
));
3591 -- If there is no visible entity with the given name or none of the
3592 -- visible entities are plausible interpretations, check whether
3593 -- there is some other primitive operation with that name.
3595 if Ada_Version
>= Ada_05
3596 and then Is_Tagged_Type
(Prefix_Type
)
3598 if (Etype
(N
) = Any_Type
3599 or else not Has_Candidate
)
3600 and then Try_Object_Operation
(N
)
3604 -- If the context is not syntactically a procedure call, it
3605 -- may be a call to a primitive function declared outside of
3606 -- the synchronized type.
3608 -- If the context is a procedure call, there might still be
3609 -- an overloading between an entry and a primitive procedure
3610 -- declared outside of the synchronized type, called in prefix
3611 -- notation. This is harder to disambiguate because in one case
3612 -- the controlling formal is implicit ???
3614 elsif Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
3615 and then Nkind
(Parent
(N
)) /= N_Indexed_Component
3616 and then Try_Object_Operation
(N
)
3622 Set_Is_Overloaded
(N
, Is_Overloaded
(Sel
));
3627 Error_Msg_NE
("invalid prefix in selected component&", N
, Sel
);
3630 -- If N still has no type, the component is not defined in the prefix
3632 if Etype
(N
) = Any_Type
then
3634 -- If the prefix is a single concurrent object, use its name in the
3635 -- error message, rather than that of its anonymous type.
3637 if Is_Concurrent_Type
(Prefix_Type
)
3638 and then Is_Internal_Name
(Chars
(Prefix_Type
))
3639 and then not Is_Derived_Type
(Prefix_Type
)
3640 and then Is_Entity_Name
(Name
)
3643 Error_Msg_Node_2
:= Entity
(Name
);
3644 Error_Msg_NE
("no selector& for&", N
, Sel
);
3646 Check_Misspelled_Selector
(Type_To_Use
, Sel
);
3648 elsif Is_Generic_Type
(Prefix_Type
)
3649 and then Ekind
(Prefix_Type
) = E_Record_Type_With_Private
3650 and then Prefix_Type
/= Etype
(Prefix_Type
)
3651 and then Is_Record_Type
(Etype
(Prefix_Type
))
3653 -- If this is a derived formal type, the parent may have
3654 -- different visibility at this point. Try for an inherited
3655 -- component before reporting an error.
3657 Set_Etype
(Prefix
(N
), Etype
(Prefix_Type
));
3658 Analyze_Selected_Component
(N
);
3661 elsif Ekind
(Prefix_Type
) = E_Record_Subtype_With_Private
3662 and then Is_Generic_Actual_Type
(Prefix_Type
)
3663 and then Present
(Full_View
(Prefix_Type
))
3665 -- Similarly, if this the actual for a formal derived type, the
3666 -- component inherited from the generic parent may not be visible
3667 -- in the actual, but the selected component is legal.
3674 First_Component
(Generic_Parent_Type
(Parent
(Prefix_Type
)));
3675 while Present
(Comp
) loop
3676 if Chars
(Comp
) = Chars
(Sel
) then
3677 Set_Entity_With_Style_Check
(Sel
, Comp
);
3678 Set_Etype
(Sel
, Etype
(Comp
));
3679 Set_Etype
(N
, Etype
(Comp
));
3683 Next_Component
(Comp
);
3686 pragma Assert
(Etype
(N
) /= Any_Type
);
3690 if Ekind
(Prefix_Type
) = E_Record_Subtype
then
3692 -- Check whether this is a component of the base type
3693 -- which is absent from a statically constrained subtype.
3694 -- This will raise constraint error at run-time, but is
3695 -- not a compile-time error. When the selector is illegal
3696 -- for base type as well fall through and generate a
3697 -- compilation error anyway.
3699 Comp
:= First_Component
(Base_Type
(Prefix_Type
));
3700 while Present
(Comp
) loop
3701 if Chars
(Comp
) = Chars
(Sel
)
3702 and then Is_Visible_Component
(Comp
)
3704 Set_Entity_With_Style_Check
(Sel
, Comp
);
3705 Generate_Reference
(Comp
, Sel
);
3706 Set_Etype
(Sel
, Etype
(Comp
));
3707 Set_Etype
(N
, Etype
(Comp
));
3709 -- Emit appropriate message. Gigi will replace the
3710 -- node subsequently with the appropriate Raise.
3712 Apply_Compile_Time_Constraint_Error
3713 (N
, "component not present in }?",
3714 CE_Discriminant_Check_Failed
,
3715 Ent
=> Prefix_Type
, Rep
=> False);
3716 Set_Raises_Constraint_Error
(N
);
3720 Next_Component
(Comp
);
3725 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
3726 Error_Msg_NE
("no selector& for}", N
, Sel
);
3728 Check_Misspelled_Selector
(Type_To_Use
, Sel
);
3731 Set_Entity
(Sel
, Any_Id
);
3732 Set_Etype
(Sel
, Any_Type
);
3734 end Analyze_Selected_Component
;
3736 ---------------------------
3737 -- Analyze_Short_Circuit --
3738 ---------------------------
3740 procedure Analyze_Short_Circuit
(N
: Node_Id
) is
3741 L
: constant Node_Id
:= Left_Opnd
(N
);
3742 R
: constant Node_Id
:= Right_Opnd
(N
);
3747 Analyze_Expression
(L
);
3748 Analyze_Expression
(R
);
3749 Set_Etype
(N
, Any_Type
);
3751 if not Is_Overloaded
(L
) then
3752 if Root_Type
(Etype
(L
)) = Standard_Boolean
3753 and then Has_Compatible_Type
(R
, Etype
(L
))
3755 Add_One_Interp
(N
, Etype
(L
), Etype
(L
));
3759 Get_First_Interp
(L
, Ind
, It
);
3760 while Present
(It
.Typ
) loop
3761 if Root_Type
(It
.Typ
) = Standard_Boolean
3762 and then Has_Compatible_Type
(R
, It
.Typ
)
3764 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
3767 Get_Next_Interp
(Ind
, It
);
3771 -- Here we have failed to find an interpretation. Clearly we know that
3772 -- it is not the case that both operands can have an interpretation of
3773 -- Boolean, but this is by far the most likely intended interpretation.
3774 -- So we simply resolve both operands as Booleans, and at least one of
3775 -- these resolutions will generate an error message, and we do not need
3776 -- to give another error message on the short circuit operation itself.
3778 if Etype
(N
) = Any_Type
then
3779 Resolve
(L
, Standard_Boolean
);
3780 Resolve
(R
, Standard_Boolean
);
3781 Set_Etype
(N
, Standard_Boolean
);
3783 end Analyze_Short_Circuit
;
3789 procedure Analyze_Slice
(N
: Node_Id
) is
3790 P
: constant Node_Id
:= Prefix
(N
);
3791 D
: constant Node_Id
:= Discrete_Range
(N
);
3792 Array_Type
: Entity_Id
;
3794 procedure Analyze_Overloaded_Slice
;
3795 -- If the prefix is overloaded, select those interpretations that
3796 -- yield a one-dimensional array type.
3798 ------------------------------
3799 -- Analyze_Overloaded_Slice --
3800 ------------------------------
3802 procedure Analyze_Overloaded_Slice
is
3808 Set_Etype
(N
, Any_Type
);
3810 Get_First_Interp
(P
, I
, It
);
3811 while Present
(It
.Nam
) loop
3814 if Is_Access_Type
(Typ
) then
3815 Typ
:= Designated_Type
(Typ
);
3816 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
3819 if Is_Array_Type
(Typ
)
3820 and then Number_Dimensions
(Typ
) = 1
3821 and then Has_Compatible_Type
(D
, Etype
(First_Index
(Typ
)))
3823 Add_One_Interp
(N
, Typ
, Typ
);
3826 Get_Next_Interp
(I
, It
);
3829 if Etype
(N
) = Any_Type
then
3830 Error_Msg_N
("expect array type in prefix of slice", N
);
3832 end Analyze_Overloaded_Slice
;
3834 -- Start of processing for Analyze_Slice
3840 if Is_Overloaded
(P
) then
3841 Analyze_Overloaded_Slice
;
3844 Array_Type
:= Etype
(P
);
3845 Set_Etype
(N
, Any_Type
);
3847 if Is_Access_Type
(Array_Type
) then
3848 Array_Type
:= Designated_Type
(Array_Type
);
3849 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
3852 if not Is_Array_Type
(Array_Type
) then
3853 Wrong_Type
(P
, Any_Array
);
3855 elsif Number_Dimensions
(Array_Type
) > 1 then
3857 ("type is not one-dimensional array in slice prefix", N
);
3860 Has_Compatible_Type
(D
, Etype
(First_Index
(Array_Type
)))
3862 Wrong_Type
(D
, Etype
(First_Index
(Array_Type
)));
3865 Set_Etype
(N
, Array_Type
);
3870 -----------------------------
3871 -- Analyze_Type_Conversion --
3872 -----------------------------
3874 procedure Analyze_Type_Conversion
(N
: Node_Id
) is
3875 Expr
: constant Node_Id
:= Expression
(N
);
3879 -- Check if the expression is a function call for which we need to
3880 -- adjust a SCIL dispatching node.
3883 and then Nkind
(Expr
) = N_Function_Call
3885 Adjust_SCIL_Node
(N
, Expr
);
3888 -- If Conversion_OK is set, then the Etype is already set, and the
3889 -- only processing required is to analyze the expression. This is
3890 -- used to construct certain "illegal" conversions which are not
3891 -- allowed by Ada semantics, but can be handled OK by Gigi, see
3892 -- Sinfo for further details.
3894 if Conversion_OK
(N
) then
3899 -- Otherwise full type analysis is required, as well as some semantic
3900 -- checks to make sure the argument of the conversion is appropriate.
3902 Find_Type
(Subtype_Mark
(N
));
3903 T
:= Entity
(Subtype_Mark
(N
));
3905 Check_Fully_Declared
(T
, N
);
3906 Analyze_Expression
(Expr
);
3907 Validate_Remote_Type_Type_Conversion
(N
);
3909 -- Only remaining step is validity checks on the argument. These
3910 -- are skipped if the conversion does not come from the source.
3912 if not Comes_From_Source
(N
) then
3915 -- If there was an error in a generic unit, no need to replicate the
3916 -- error message. Conversely, constant-folding in the generic may
3917 -- transform the argument of a conversion into a string literal, which
3918 -- is legal. Therefore the following tests are not performed in an
3921 elsif In_Instance
then
3924 elsif Nkind
(Expr
) = N_Null
then
3925 Error_Msg_N
("argument of conversion cannot be null", N
);
3926 Error_Msg_N
("\use qualified expression instead", N
);
3927 Set_Etype
(N
, Any_Type
);
3929 elsif Nkind
(Expr
) = N_Aggregate
then
3930 Error_Msg_N
("argument of conversion cannot be aggregate", N
);
3931 Error_Msg_N
("\use qualified expression instead", N
);
3933 elsif Nkind
(Expr
) = N_Allocator
then
3934 Error_Msg_N
("argument of conversion cannot be an allocator", N
);
3935 Error_Msg_N
("\use qualified expression instead", N
);
3937 elsif Nkind
(Expr
) = N_String_Literal
then
3938 Error_Msg_N
("argument of conversion cannot be string literal", N
);
3939 Error_Msg_N
("\use qualified expression instead", N
);
3941 elsif Nkind
(Expr
) = N_Character_Literal
then
3942 if Ada_Version
= Ada_83
then
3945 Error_Msg_N
("argument of conversion cannot be character literal",
3947 Error_Msg_N
("\use qualified expression instead", N
);
3950 elsif Nkind
(Expr
) = N_Attribute_Reference
3952 (Attribute_Name
(Expr
) = Name_Access
or else
3953 Attribute_Name
(Expr
) = Name_Unchecked_Access
or else
3954 Attribute_Name
(Expr
) = Name_Unrestricted_Access
)
3956 Error_Msg_N
("argument of conversion cannot be access", N
);
3957 Error_Msg_N
("\use qualified expression instead", N
);
3959 end Analyze_Type_Conversion
;
3961 ----------------------
3962 -- Analyze_Unary_Op --
3963 ----------------------
3965 procedure Analyze_Unary_Op
(N
: Node_Id
) is
3966 R
: constant Node_Id
:= Right_Opnd
(N
);
3967 Op_Id
: Entity_Id
:= Entity
(N
);
3970 Set_Etype
(N
, Any_Type
);
3971 Candidate_Type
:= Empty
;
3973 Analyze_Expression
(R
);
3975 if Present
(Op_Id
) then
3976 if Ekind
(Op_Id
) = E_Operator
then
3977 Find_Unary_Types
(R
, Op_Id
, N
);
3979 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
3983 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
3984 while Present
(Op_Id
) loop
3985 if Ekind
(Op_Id
) = E_Operator
then
3986 if No
(Next_Entity
(First_Entity
(Op_Id
))) then
3987 Find_Unary_Types
(R
, Op_Id
, N
);
3990 elsif Is_Overloadable
(Op_Id
) then
3991 Analyze_User_Defined_Unary_Op
(N
, Op_Id
);
3994 Op_Id
:= Homonym
(Op_Id
);
3999 end Analyze_Unary_Op
;
4001 ----------------------------------
4002 -- Analyze_Unchecked_Expression --
4003 ----------------------------------
4005 procedure Analyze_Unchecked_Expression
(N
: Node_Id
) is
4007 Analyze
(Expression
(N
), Suppress
=> All_Checks
);
4008 Set_Etype
(N
, Etype
(Expression
(N
)));
4009 Save_Interps
(Expression
(N
), N
);
4010 end Analyze_Unchecked_Expression
;
4012 ---------------------------------------
4013 -- Analyze_Unchecked_Type_Conversion --
4014 ---------------------------------------
4016 procedure Analyze_Unchecked_Type_Conversion
(N
: Node_Id
) is
4018 Find_Type
(Subtype_Mark
(N
));
4019 Analyze_Expression
(Expression
(N
));
4020 Set_Etype
(N
, Entity
(Subtype_Mark
(N
)));
4021 end Analyze_Unchecked_Type_Conversion
;
4023 ------------------------------------
4024 -- Analyze_User_Defined_Binary_Op --
4025 ------------------------------------
4027 procedure Analyze_User_Defined_Binary_Op
4032 -- Only do analysis if the operator Comes_From_Source, since otherwise
4033 -- the operator was generated by the expander, and all such operators
4034 -- always refer to the operators in package Standard.
4036 if Comes_From_Source
(N
) then
4038 F1
: constant Entity_Id
:= First_Formal
(Op_Id
);
4039 F2
: constant Entity_Id
:= Next_Formal
(F1
);
4042 -- Verify that Op_Id is a visible binary function. Note that since
4043 -- we know Op_Id is overloaded, potentially use visible means use
4044 -- visible for sure (RM 9.4(11)).
4046 if Ekind
(Op_Id
) = E_Function
4047 and then Present
(F2
)
4048 and then (Is_Immediately_Visible
(Op_Id
)
4049 or else Is_Potentially_Use_Visible
(Op_Id
))
4050 and then Has_Compatible_Type
(Left_Opnd
(N
), Etype
(F1
))
4051 and then Has_Compatible_Type
(Right_Opnd
(N
), Etype
(F2
))
4053 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
4055 -- If the left operand is overloaded, indicate that the
4056 -- current type is a viable candidate. This is redundant
4057 -- in most cases, but for equality and comparison operators
4058 -- where the context does not impose a type on the operands,
4059 -- setting the proper type is necessary to avoid subsequent
4060 -- ambiguities during resolution, when both user-defined and
4061 -- predefined operators may be candidates.
4063 if Is_Overloaded
(Left_Opnd
(N
)) then
4064 Set_Etype
(Left_Opnd
(N
), Etype
(F1
));
4067 if Debug_Flag_E
then
4068 Write_Str
("user defined operator ");
4069 Write_Name
(Chars
(Op_Id
));
4070 Write_Str
(" on node ");
4071 Write_Int
(Int
(N
));
4077 end Analyze_User_Defined_Binary_Op
;
4079 -----------------------------------
4080 -- Analyze_User_Defined_Unary_Op --
4081 -----------------------------------
4083 procedure Analyze_User_Defined_Unary_Op
4088 -- Only do analysis if the operator Comes_From_Source, since otherwise
4089 -- the operator was generated by the expander, and all such operators
4090 -- always refer to the operators in package Standard.
4092 if Comes_From_Source
(N
) then
4094 F
: constant Entity_Id
:= First_Formal
(Op_Id
);
4097 -- Verify that Op_Id is a visible unary function. Note that since
4098 -- we know Op_Id is overloaded, potentially use visible means use
4099 -- visible for sure (RM 9.4(11)).
4101 if Ekind
(Op_Id
) = E_Function
4102 and then No
(Next_Formal
(F
))
4103 and then (Is_Immediately_Visible
(Op_Id
)
4104 or else Is_Potentially_Use_Visible
(Op_Id
))
4105 and then Has_Compatible_Type
(Right_Opnd
(N
), Etype
(F
))
4107 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
4111 end Analyze_User_Defined_Unary_Op
;
4113 ---------------------------
4114 -- Check_Arithmetic_Pair --
4115 ---------------------------
4117 procedure Check_Arithmetic_Pair
4118 (T1
, T2
: Entity_Id
;
4122 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
4124 function Has_Fixed_Op
(Typ
: Entity_Id
; Op
: Entity_Id
) return Boolean;
4125 -- Check whether the fixed-point type Typ has a user-defined operator
4126 -- (multiplication or division) that should hide the corresponding
4127 -- predefined operator. Used to implement Ada 2005 AI-264, to make
4128 -- such operators more visible and therefore useful.
4130 -- If the name of the operation is an expanded name with prefix
4131 -- Standard, the predefined universal fixed operator is available,
4132 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
4134 function Specific_Type
(T1
, T2
: Entity_Id
) return Entity_Id
;
4135 -- Get specific type (i.e. non-universal type if there is one)
4141 function Has_Fixed_Op
(Typ
: Entity_Id
; Op
: Entity_Id
) return Boolean is
4142 Bas
: constant Entity_Id
:= Base_Type
(Typ
);
4148 -- If the universal_fixed operation is given explicitly the rule
4149 -- concerning primitive operations of the type do not apply.
4151 if Nkind
(N
) = N_Function_Call
4152 and then Nkind
(Name
(N
)) = N_Expanded_Name
4153 and then Entity
(Prefix
(Name
(N
))) = Standard_Standard
4158 -- The operation is treated as primitive if it is declared in the
4159 -- same scope as the type, and therefore on the same entity chain.
4161 Ent
:= Next_Entity
(Typ
);
4162 while Present
(Ent
) loop
4163 if Chars
(Ent
) = Chars
(Op
) then
4164 F1
:= First_Formal
(Ent
);
4165 F2
:= Next_Formal
(F1
);
4167 -- The operation counts as primitive if either operand or
4168 -- result are of the given base type, and both operands are
4169 -- fixed point types.
4171 if (Base_Type
(Etype
(F1
)) = Bas
4172 and then Is_Fixed_Point_Type
(Etype
(F2
)))
4175 (Base_Type
(Etype
(F2
)) = Bas
4176 and then Is_Fixed_Point_Type
(Etype
(F1
)))
4179 (Base_Type
(Etype
(Ent
)) = Bas
4180 and then Is_Fixed_Point_Type
(Etype
(F1
))
4181 and then Is_Fixed_Point_Type
(Etype
(F2
)))
4197 function Specific_Type
(T1
, T2
: Entity_Id
) return Entity_Id
is
4199 if T1
= Universal_Integer
or else T1
= Universal_Real
then
4200 return Base_Type
(T2
);
4202 return Base_Type
(T1
);
4206 -- Start of processing for Check_Arithmetic_Pair
4209 if Op_Name
= Name_Op_Add
or else Op_Name
= Name_Op_Subtract
then
4211 if Is_Numeric_Type
(T1
)
4212 and then Is_Numeric_Type
(T2
)
4213 and then (Covers
(T1
=> T1
, T2
=> T2
)
4215 Covers
(T1
=> T2
, T2
=> T1
))
4217 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
4220 elsif Op_Name
= Name_Op_Multiply
or else Op_Name
= Name_Op_Divide
then
4222 if Is_Fixed_Point_Type
(T1
)
4223 and then (Is_Fixed_Point_Type
(T2
)
4224 or else T2
= Universal_Real
)
4226 -- If Treat_Fixed_As_Integer is set then the Etype is already set
4227 -- and no further processing is required (this is the case of an
4228 -- operator constructed by Exp_Fixd for a fixed point operation)
4229 -- Otherwise add one interpretation with universal fixed result
4230 -- If the operator is given in functional notation, it comes
4231 -- from source and Fixed_As_Integer cannot apply.
4233 if (Nkind
(N
) not in N_Op
4234 or else not Treat_Fixed_As_Integer
(N
))
4236 (not Has_Fixed_Op
(T1
, Op_Id
)
4237 or else Nkind
(Parent
(N
)) = N_Type_Conversion
)
4239 Add_One_Interp
(N
, Op_Id
, Universal_Fixed
);
4242 elsif Is_Fixed_Point_Type
(T2
)
4243 and then (Nkind
(N
) not in N_Op
4244 or else not Treat_Fixed_As_Integer
(N
))
4245 and then T1
= Universal_Real
4247 (not Has_Fixed_Op
(T1
, Op_Id
)
4248 or else Nkind
(Parent
(N
)) = N_Type_Conversion
)
4250 Add_One_Interp
(N
, Op_Id
, Universal_Fixed
);
4252 elsif Is_Numeric_Type
(T1
)
4253 and then Is_Numeric_Type
(T2
)
4254 and then (Covers
(T1
=> T1
, T2
=> T2
)
4256 Covers
(T1
=> T2
, T2
=> T1
))
4258 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
4260 elsif Is_Fixed_Point_Type
(T1
)
4261 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
4262 or else T2
= Universal_Integer
)
4264 Add_One_Interp
(N
, Op_Id
, T1
);
4266 elsif T2
= Universal_Real
4267 and then Base_Type
(T1
) = Base_Type
(Standard_Integer
)
4268 and then Op_Name
= Name_Op_Multiply
4270 Add_One_Interp
(N
, Op_Id
, Any_Fixed
);
4272 elsif T1
= Universal_Real
4273 and then Base_Type
(T2
) = Base_Type
(Standard_Integer
)
4275 Add_One_Interp
(N
, Op_Id
, Any_Fixed
);
4277 elsif Is_Fixed_Point_Type
(T2
)
4278 and then (Base_Type
(T1
) = Base_Type
(Standard_Integer
)
4279 or else T1
= Universal_Integer
)
4280 and then Op_Name
= Name_Op_Multiply
4282 Add_One_Interp
(N
, Op_Id
, T2
);
4284 elsif T1
= Universal_Real
and then T2
= Universal_Integer
then
4285 Add_One_Interp
(N
, Op_Id
, T1
);
4287 elsif T2
= Universal_Real
4288 and then T1
= Universal_Integer
4289 and then Op_Name
= Name_Op_Multiply
4291 Add_One_Interp
(N
, Op_Id
, T2
);
4294 elsif Op_Name
= Name_Op_Mod
or else Op_Name
= Name_Op_Rem
then
4296 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
4297 -- set does not require any special processing, since the Etype is
4298 -- already set (case of operation constructed by Exp_Fixed).
4300 if Is_Integer_Type
(T1
)
4301 and then (Covers
(T1
=> T1
, T2
=> T2
)
4303 Covers
(T1
=> T2
, T2
=> T1
))
4305 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
4308 elsif Op_Name
= Name_Op_Expon
then
4309 if Is_Numeric_Type
(T1
)
4310 and then not Is_Fixed_Point_Type
(T1
)
4311 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
4312 or else T2
= Universal_Integer
)
4314 Add_One_Interp
(N
, Op_Id
, Base_Type
(T1
));
4317 else pragma Assert
(Nkind
(N
) in N_Op_Shift
);
4319 -- If not one of the predefined operators, the node may be one
4320 -- of the intrinsic functions. Its kind is always specific, and
4321 -- we can use it directly, rather than the name of the operation.
4323 if Is_Integer_Type
(T1
)
4324 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
4325 or else T2
= Universal_Integer
)
4327 Add_One_Interp
(N
, Op_Id
, Base_Type
(T1
));
4330 end Check_Arithmetic_Pair
;
4332 -------------------------------
4333 -- Check_Misspelled_Selector --
4334 -------------------------------
4336 procedure Check_Misspelled_Selector
4337 (Prefix
: Entity_Id
;
4340 Max_Suggestions
: constant := 2;
4341 Nr_Of_Suggestions
: Natural := 0;
4343 Suggestion_1
: Entity_Id
:= Empty
;
4344 Suggestion_2
: Entity_Id
:= Empty
;
4349 -- All the components of the prefix of selector Sel are matched
4350 -- against Sel and a count is maintained of possible misspellings.
4351 -- When at the end of the analysis there are one or two (not more!)
4352 -- possible misspellings, these misspellings will be suggested as
4353 -- possible correction.
4355 if not (Is_Private_Type
(Prefix
) or else Is_Record_Type
(Prefix
)) then
4357 -- Concurrent types should be handled as well ???
4362 Comp
:= First_Entity
(Prefix
);
4363 while Nr_Of_Suggestions
<= Max_Suggestions
and then Present
(Comp
) loop
4364 if Is_Visible_Component
(Comp
) then
4365 if Is_Bad_Spelling_Of
(Chars
(Comp
), Chars
(Sel
)) then
4366 Nr_Of_Suggestions
:= Nr_Of_Suggestions
+ 1;
4368 case Nr_Of_Suggestions
is
4369 when 1 => Suggestion_1
:= Comp
;
4370 when 2 => Suggestion_2
:= Comp
;
4371 when others => exit;
4376 Comp
:= Next_Entity
(Comp
);
4379 -- Report at most two suggestions
4381 if Nr_Of_Suggestions
= 1 then
4382 Error_Msg_NE
-- CODEFIX
4383 ("\possible misspelling of&", Sel
, Suggestion_1
);
4385 elsif Nr_Of_Suggestions
= 2 then
4386 Error_Msg_Node_2
:= Suggestion_2
;
4387 Error_Msg_NE
-- CODEFIX
4388 ("\possible misspelling of& or&", Sel
, Suggestion_1
);
4390 end Check_Misspelled_Selector
;
4392 ----------------------
4393 -- Defined_In_Scope --
4394 ----------------------
4396 function Defined_In_Scope
(T
: Entity_Id
; S
: Entity_Id
) return Boolean
4398 S1
: constant Entity_Id
:= Scope
(Base_Type
(T
));
4401 or else (S1
= System_Aux_Id
and then S
= Scope
(S1
));
4402 end Defined_In_Scope
;
4408 procedure Diagnose_Call
(N
: Node_Id
; Nam
: Node_Id
) is
4414 Void_Interp_Seen
: Boolean := False;
4417 pragma Warnings
(Off
, Boolean);
4420 if Ada_Version
>= Ada_05
then
4421 Actual
:= First_Actual
(N
);
4422 while Present
(Actual
) loop
4424 -- Ada 2005 (AI-50217): Post an error in case of premature
4425 -- usage of an entity from the limited view.
4427 if not Analyzed
(Etype
(Actual
))
4428 and then From_With_Type
(Etype
(Actual
))
4430 Error_Msg_Qual_Level
:= 1;
4432 ("missing with_clause for scope of imported type&",
4433 Actual
, Etype
(Actual
));
4434 Error_Msg_Qual_Level
:= 0;
4437 Next_Actual
(Actual
);
4441 -- Analyze each candidate call again, with full error reporting
4445 ("no candidate interpretations match the actuals:!", Nam
);
4446 Err_Mode
:= All_Errors_Mode
;
4447 All_Errors_Mode
:= True;
4449 -- If this is a call to an operation of a concurrent type,
4450 -- the failed interpretations have been removed from the
4451 -- name. Recover them to provide full diagnostics.
4453 if Nkind
(Parent
(Nam
)) = N_Selected_Component
then
4454 Set_Entity
(Nam
, Empty
);
4455 New_Nam
:= New_Copy_Tree
(Parent
(Nam
));
4456 Set_Is_Overloaded
(New_Nam
, False);
4457 Set_Is_Overloaded
(Selector_Name
(New_Nam
), False);
4458 Set_Parent
(New_Nam
, Parent
(Parent
(Nam
)));
4459 Analyze_Selected_Component
(New_Nam
);
4460 Get_First_Interp
(Selector_Name
(New_Nam
), X
, It
);
4462 Get_First_Interp
(Nam
, X
, It
);
4465 while Present
(It
.Nam
) loop
4466 if Etype
(It
.Nam
) = Standard_Void_Type
then
4467 Void_Interp_Seen
:= True;
4470 Analyze_One_Call
(N
, It
.Nam
, True, Success
);
4471 Get_Next_Interp
(X
, It
);
4474 if Nkind
(N
) = N_Function_Call
then
4475 Get_First_Interp
(Nam
, X
, It
);
4476 while Present
(It
.Nam
) loop
4477 if Ekind
(It
.Nam
) = E_Function
4478 or else Ekind
(It
.Nam
) = E_Operator
4482 Get_Next_Interp
(X
, It
);
4486 -- If all interpretations are procedures, this deserves a
4487 -- more precise message. Ditto if this appears as the prefix
4488 -- of a selected component, which may be a lexical error.
4491 ("\context requires function call, found procedure name", Nam
);
4493 if Nkind
(Parent
(N
)) = N_Selected_Component
4494 and then N
= Prefix
(Parent
(N
))
4496 Error_Msg_N
-- CODEFIX
4497 ("\period should probably be semicolon", Parent
(N
));
4500 elsif Nkind
(N
) = N_Procedure_Call_Statement
4501 and then not Void_Interp_Seen
4504 "\function name found in procedure call", Nam
);
4507 All_Errors_Mode
:= Err_Mode
;
4510 ---------------------------
4511 -- Find_Arithmetic_Types --
4512 ---------------------------
4514 procedure Find_Arithmetic_Types
4519 Index1
: Interp_Index
;
4520 Index2
: Interp_Index
;
4524 procedure Check_Right_Argument
(T
: Entity_Id
);
4525 -- Check right operand of operator
4527 --------------------------
4528 -- Check_Right_Argument --
4529 --------------------------
4531 procedure Check_Right_Argument
(T
: Entity_Id
) is
4533 if not Is_Overloaded
(R
) then
4534 Check_Arithmetic_Pair
(T
, Etype
(R
), Op_Id
, N
);
4536 Get_First_Interp
(R
, Index2
, It2
);
4537 while Present
(It2
.Typ
) loop
4538 Check_Arithmetic_Pair
(T
, It2
.Typ
, Op_Id
, N
);
4539 Get_Next_Interp
(Index2
, It2
);
4542 end Check_Right_Argument
;
4544 -- Start of processing for Find_Arithmetic_Types
4547 if not Is_Overloaded
(L
) then
4548 Check_Right_Argument
(Etype
(L
));
4551 Get_First_Interp
(L
, Index1
, It1
);
4552 while Present
(It1
.Typ
) loop
4553 Check_Right_Argument
(It1
.Typ
);
4554 Get_Next_Interp
(Index1
, It1
);
4558 end Find_Arithmetic_Types
;
4560 ------------------------
4561 -- Find_Boolean_Types --
4562 ------------------------
4564 procedure Find_Boolean_Types
4569 Index
: Interp_Index
;
4572 procedure Check_Numeric_Argument
(T
: Entity_Id
);
4573 -- Special case for logical operations one of whose operands is an
4574 -- integer literal. If both are literal the result is any modular type.
4576 ----------------------------
4577 -- Check_Numeric_Argument --
4578 ----------------------------
4580 procedure Check_Numeric_Argument
(T
: Entity_Id
) is
4582 if T
= Universal_Integer
then
4583 Add_One_Interp
(N
, Op_Id
, Any_Modular
);
4585 elsif Is_Modular_Integer_Type
(T
) then
4586 Add_One_Interp
(N
, Op_Id
, T
);
4588 end Check_Numeric_Argument
;
4590 -- Start of processing for Find_Boolean_Types
4593 if not Is_Overloaded
(L
) then
4594 if Etype
(L
) = Universal_Integer
4595 or else Etype
(L
) = Any_Modular
4597 if not Is_Overloaded
(R
) then
4598 Check_Numeric_Argument
(Etype
(R
));
4601 Get_First_Interp
(R
, Index
, It
);
4602 while Present
(It
.Typ
) loop
4603 Check_Numeric_Argument
(It
.Typ
);
4604 Get_Next_Interp
(Index
, It
);
4608 -- If operands are aggregates, we must assume that they may be
4609 -- boolean arrays, and leave disambiguation for the second pass.
4610 -- If only one is an aggregate, verify that the other one has an
4611 -- interpretation as a boolean array
4613 elsif Nkind
(L
) = N_Aggregate
then
4614 if Nkind
(R
) = N_Aggregate
then
4615 Add_One_Interp
(N
, Op_Id
, Etype
(L
));
4617 elsif not Is_Overloaded
(R
) then
4618 if Valid_Boolean_Arg
(Etype
(R
)) then
4619 Add_One_Interp
(N
, Op_Id
, Etype
(R
));
4623 Get_First_Interp
(R
, Index
, It
);
4624 while Present
(It
.Typ
) loop
4625 if Valid_Boolean_Arg
(It
.Typ
) then
4626 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
4629 Get_Next_Interp
(Index
, It
);
4633 elsif Valid_Boolean_Arg
(Etype
(L
))
4634 and then Has_Compatible_Type
(R
, Etype
(L
))
4636 Add_One_Interp
(N
, Op_Id
, Etype
(L
));
4640 Get_First_Interp
(L
, Index
, It
);
4641 while Present
(It
.Typ
) loop
4642 if Valid_Boolean_Arg
(It
.Typ
)
4643 and then Has_Compatible_Type
(R
, It
.Typ
)
4645 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
4648 Get_Next_Interp
(Index
, It
);
4651 end Find_Boolean_Types
;
4653 ---------------------------
4654 -- Find_Comparison_Types --
4655 ---------------------------
4657 procedure Find_Comparison_Types
4662 Index
: Interp_Index
;
4664 Found
: Boolean := False;
4667 Scop
: Entity_Id
:= Empty
;
4669 procedure Try_One_Interp
(T1
: Entity_Id
);
4670 -- Routine to try one proposed interpretation. Note that the context
4671 -- of the operator plays no role in resolving the arguments, so that
4672 -- if there is more than one interpretation of the operands that is
4673 -- compatible with comparison, the operation is ambiguous.
4675 --------------------
4676 -- Try_One_Interp --
4677 --------------------
4679 procedure Try_One_Interp
(T1
: Entity_Id
) is
4682 -- If the operator is an expanded name, then the type of the operand
4683 -- must be defined in the corresponding scope. If the type is
4684 -- universal, the context will impose the correct type.
4687 and then not Defined_In_Scope
(T1
, Scop
)
4688 and then T1
/= Universal_Integer
4689 and then T1
/= Universal_Real
4690 and then T1
/= Any_String
4691 and then T1
/= Any_Composite
4696 if Valid_Comparison_Arg
(T1
)
4697 and then Has_Compatible_Type
(R
, T1
)
4700 and then Base_Type
(T1
) /= Base_Type
(T_F
)
4702 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
4704 if It
= No_Interp
then
4705 Ambiguous_Operands
(N
);
4706 Set_Etype
(L
, Any_Type
);
4720 Find_Non_Universal_Interpretations
(N
, R
, Op_Id
, T1
);
4725 -- Start of processing for Find_Comparison_Types
4728 -- If left operand is aggregate, the right operand has to
4729 -- provide a usable type for it.
4731 if Nkind
(L
) = N_Aggregate
4732 and then Nkind
(R
) /= N_Aggregate
4734 Find_Comparison_Types
(L
=> R
, R
=> L
, Op_Id
=> Op_Id
, N
=> N
);
4738 if Nkind
(N
) = N_Function_Call
4739 and then Nkind
(Name
(N
)) = N_Expanded_Name
4741 Scop
:= Entity
(Prefix
(Name
(N
)));
4743 -- The prefix may be a package renaming, and the subsequent test
4744 -- requires the original package.
4746 if Ekind
(Scop
) = E_Package
4747 and then Present
(Renamed_Entity
(Scop
))
4749 Scop
:= Renamed_Entity
(Scop
);
4750 Set_Entity
(Prefix
(Name
(N
)), Scop
);
4754 if not Is_Overloaded
(L
) then
4755 Try_One_Interp
(Etype
(L
));
4758 Get_First_Interp
(L
, Index
, It
);
4759 while Present
(It
.Typ
) loop
4760 Try_One_Interp
(It
.Typ
);
4761 Get_Next_Interp
(Index
, It
);
4764 end Find_Comparison_Types
;
4766 ----------------------------------------
4767 -- Find_Non_Universal_Interpretations --
4768 ----------------------------------------
4770 procedure Find_Non_Universal_Interpretations
4776 Index
: Interp_Index
;
4780 if T1
= Universal_Integer
4781 or else T1
= Universal_Real
4783 if not Is_Overloaded
(R
) then
4785 (N
, Op_Id
, Standard_Boolean
, Base_Type
(Etype
(R
)));
4787 Get_First_Interp
(R
, Index
, It
);
4788 while Present
(It
.Typ
) loop
4789 if Covers
(It
.Typ
, T1
) then
4791 (N
, Op_Id
, Standard_Boolean
, Base_Type
(It
.Typ
));
4794 Get_Next_Interp
(Index
, It
);
4798 Add_One_Interp
(N
, Op_Id
, Standard_Boolean
, Base_Type
(T1
));
4800 end Find_Non_Universal_Interpretations
;
4802 ------------------------------
4803 -- Find_Concatenation_Types --
4804 ------------------------------
4806 procedure Find_Concatenation_Types
4811 Op_Type
: constant Entity_Id
:= Etype
(Op_Id
);
4814 if Is_Array_Type
(Op_Type
)
4815 and then not Is_Limited_Type
(Op_Type
)
4817 and then (Has_Compatible_Type
(L
, Op_Type
)
4819 Has_Compatible_Type
(L
, Component_Type
(Op_Type
)))
4821 and then (Has_Compatible_Type
(R
, Op_Type
)
4823 Has_Compatible_Type
(R
, Component_Type
(Op_Type
)))
4825 Add_One_Interp
(N
, Op_Id
, Op_Type
);
4827 end Find_Concatenation_Types
;
4829 -------------------------
4830 -- Find_Equality_Types --
4831 -------------------------
4833 procedure Find_Equality_Types
4838 Index
: Interp_Index
;
4840 Found
: Boolean := False;
4843 Scop
: Entity_Id
:= Empty
;
4845 procedure Try_One_Interp
(T1
: Entity_Id
);
4846 -- The context of the equality operator plays no role in resolving the
4847 -- arguments, so that if there is more than one interpretation of the
4848 -- operands that is compatible with equality, the construct is ambiguous
4849 -- and an error can be emitted now, after trying to disambiguate, i.e.
4850 -- applying preference rules.
4852 --------------------
4853 -- Try_One_Interp --
4854 --------------------
4856 procedure Try_One_Interp
(T1
: Entity_Id
) is
4857 Bas
: constant Entity_Id
:= Base_Type
(T1
);
4860 -- If the operator is an expanded name, then the type of the operand
4861 -- must be defined in the corresponding scope. If the type is
4862 -- universal, the context will impose the correct type. An anonymous
4863 -- type for a 'Access reference is also universal in this sense, as
4864 -- the actual type is obtained from context.
4865 -- In Ada 2005, the equality operator for anonymous access types
4866 -- is declared in Standard, and preference rules apply to it.
4868 if Present
(Scop
) then
4869 if Defined_In_Scope
(T1
, Scop
)
4870 or else T1
= Universal_Integer
4871 or else T1
= Universal_Real
4872 or else T1
= Any_Access
4873 or else T1
= Any_String
4874 or else T1
= Any_Composite
4875 or else (Ekind
(T1
) = E_Access_Subprogram_Type
4876 and then not Comes_From_Source
(T1
))
4880 elsif Ekind
(T1
) = E_Anonymous_Access_Type
4881 and then Scop
= Standard_Standard
4886 -- The scope does not contain an operator for the type
4891 -- If we have infix notation, the operator must be usable.
4892 -- Within an instance, if the type is already established we
4893 -- know it is correct.
4894 -- In Ada 2005, the equality on anonymous access types is declared
4895 -- in Standard, and is always visible.
4897 elsif In_Open_Scopes
(Scope
(Bas
))
4898 or else Is_Potentially_Use_Visible
(Bas
)
4899 or else In_Use
(Bas
)
4900 or else (In_Use
(Scope
(Bas
))
4901 and then not Is_Hidden
(Bas
))
4902 or else (In_Instance
4903 and then First_Subtype
(T1
) = First_Subtype
(Etype
(R
)))
4904 or else Ekind
(T1
) = E_Anonymous_Access_Type
4909 -- Save candidate type for subsquent error message, if any
4911 if not Is_Limited_Type
(T1
) then
4912 Candidate_Type
:= T1
;
4918 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
4919 -- Do not allow anonymous access types in equality operators.
4921 if Ada_Version
< Ada_05
4922 and then Ekind
(T1
) = E_Anonymous_Access_Type
4927 if T1
/= Standard_Void_Type
4928 and then not Is_Limited_Type
(T1
)
4929 and then not Is_Limited_Composite
(T1
)
4930 and then Has_Compatible_Type
(R
, T1
)
4933 and then Base_Type
(T1
) /= Base_Type
(T_F
)
4935 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
4937 if It
= No_Interp
then
4938 Ambiguous_Operands
(N
);
4939 Set_Etype
(L
, Any_Type
);
4952 if not Analyzed
(L
) then
4956 Find_Non_Universal_Interpretations
(N
, R
, Op_Id
, T1
);
4958 -- Case of operator was not visible, Etype still set to Any_Type
4960 if Etype
(N
) = Any_Type
then
4964 elsif Scop
= Standard_Standard
4965 and then Ekind
(T1
) = E_Anonymous_Access_Type
4971 -- Start of processing for Find_Equality_Types
4974 -- If left operand is aggregate, the right operand has to
4975 -- provide a usable type for it.
4977 if Nkind
(L
) = N_Aggregate
4978 and then Nkind
(R
) /= N_Aggregate
4980 Find_Equality_Types
(L
=> R
, R
=> L
, Op_Id
=> Op_Id
, N
=> N
);
4984 if Nkind
(N
) = N_Function_Call
4985 and then Nkind
(Name
(N
)) = N_Expanded_Name
4987 Scop
:= Entity
(Prefix
(Name
(N
)));
4989 -- The prefix may be a package renaming, and the subsequent test
4990 -- requires the original package.
4992 if Ekind
(Scop
) = E_Package
4993 and then Present
(Renamed_Entity
(Scop
))
4995 Scop
:= Renamed_Entity
(Scop
);
4996 Set_Entity
(Prefix
(Name
(N
)), Scop
);
5000 if not Is_Overloaded
(L
) then
5001 Try_One_Interp
(Etype
(L
));
5004 Get_First_Interp
(L
, Index
, It
);
5005 while Present
(It
.Typ
) loop
5006 Try_One_Interp
(It
.Typ
);
5007 Get_Next_Interp
(Index
, It
);
5010 end Find_Equality_Types
;
5012 -------------------------
5013 -- Find_Negation_Types --
5014 -------------------------
5016 procedure Find_Negation_Types
5021 Index
: Interp_Index
;
5025 if not Is_Overloaded
(R
) then
5026 if Etype
(R
) = Universal_Integer
then
5027 Add_One_Interp
(N
, Op_Id
, Any_Modular
);
5028 elsif Valid_Boolean_Arg
(Etype
(R
)) then
5029 Add_One_Interp
(N
, Op_Id
, Etype
(R
));
5033 Get_First_Interp
(R
, Index
, It
);
5034 while Present
(It
.Typ
) loop
5035 if Valid_Boolean_Arg
(It
.Typ
) then
5036 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
5039 Get_Next_Interp
(Index
, It
);
5042 end Find_Negation_Types
;
5044 ------------------------------
5045 -- Find_Primitive_Operation --
5046 ------------------------------
5048 function Find_Primitive_Operation
(N
: Node_Id
) return Boolean is
5049 Obj
: constant Node_Id
:= Prefix
(N
);
5050 Op
: constant Node_Id
:= Selector_Name
(N
);
5057 Set_Etype
(Op
, Any_Type
);
5059 if Is_Access_Type
(Etype
(Obj
)) then
5060 Typ
:= Designated_Type
(Etype
(Obj
));
5065 if Is_Class_Wide_Type
(Typ
) then
5066 Typ
:= Root_Type
(Typ
);
5069 Prims
:= Primitive_Operations
(Typ
);
5071 Prim
:= First_Elmt
(Prims
);
5072 while Present
(Prim
) loop
5073 if Chars
(Node
(Prim
)) = Chars
(Op
) then
5074 Add_One_Interp
(Op
, Node
(Prim
), Etype
(Node
(Prim
)));
5075 Set_Etype
(N
, Etype
(Node
(Prim
)));
5081 -- Now look for class-wide operations of the type or any of its
5082 -- ancestors by iterating over the homonyms of the selector.
5085 Cls_Type
: constant Entity_Id
:= Class_Wide_Type
(Typ
);
5089 Hom
:= Current_Entity
(Op
);
5090 while Present
(Hom
) loop
5091 if (Ekind
(Hom
) = E_Procedure
5093 Ekind
(Hom
) = E_Function
)
5094 and then Scope
(Hom
) = Scope
(Typ
)
5095 and then Present
(First_Formal
(Hom
))
5097 (Base_Type
(Etype
(First_Formal
(Hom
))) = Cls_Type
5099 (Is_Access_Type
(Etype
(First_Formal
(Hom
)))
5101 Ekind
(Etype
(First_Formal
(Hom
))) =
5102 E_Anonymous_Access_Type
5105 (Designated_Type
(Etype
(First_Formal
(Hom
)))) =
5108 Add_One_Interp
(Op
, Hom
, Etype
(Hom
));
5109 Set_Etype
(N
, Etype
(Hom
));
5112 Hom
:= Homonym
(Hom
);
5116 return Etype
(Op
) /= Any_Type
;
5117 end Find_Primitive_Operation
;
5119 ----------------------
5120 -- Find_Unary_Types --
5121 ----------------------
5123 procedure Find_Unary_Types
5128 Index
: Interp_Index
;
5132 if not Is_Overloaded
(R
) then
5133 if Is_Numeric_Type
(Etype
(R
)) then
5134 Add_One_Interp
(N
, Op_Id
, Base_Type
(Etype
(R
)));
5138 Get_First_Interp
(R
, Index
, It
);
5139 while Present
(It
.Typ
) loop
5140 if Is_Numeric_Type
(It
.Typ
) then
5141 Add_One_Interp
(N
, Op_Id
, Base_Type
(It
.Typ
));
5144 Get_Next_Interp
(Index
, It
);
5147 end Find_Unary_Types
;
5153 function Junk_Operand
(N
: Node_Id
) return Boolean is
5157 if Error_Posted
(N
) then
5161 -- Get entity to be tested
5163 if Is_Entity_Name
(N
)
5164 and then Present
(Entity
(N
))
5168 -- An odd case, a procedure name gets converted to a very peculiar
5169 -- function call, and here is where we detect this happening.
5171 elsif Nkind
(N
) = N_Function_Call
5172 and then Is_Entity_Name
(Name
(N
))
5173 and then Present
(Entity
(Name
(N
)))
5177 -- Another odd case, there are at least some cases of selected
5178 -- components where the selected component is not marked as having
5179 -- an entity, even though the selector does have an entity
5181 elsif Nkind
(N
) = N_Selected_Component
5182 and then Present
(Entity
(Selector_Name
(N
)))
5184 Enode
:= Selector_Name
(N
);
5190 -- Now test the entity we got to see if it is a bad case
5192 case Ekind
(Entity
(Enode
)) is
5196 ("package name cannot be used as operand", Enode
);
5198 when Generic_Unit_Kind
=>
5200 ("generic unit name cannot be used as operand", Enode
);
5204 ("subtype name cannot be used as operand", Enode
);
5208 ("entry name cannot be used as operand", Enode
);
5212 ("procedure name cannot be used as operand", Enode
);
5216 ("exception name cannot be used as operand", Enode
);
5218 when E_Block | E_Label | E_Loop
=>
5220 ("label name cannot be used as operand", Enode
);
5230 --------------------
5231 -- Operator_Check --
5232 --------------------
5234 procedure Operator_Check
(N
: Node_Id
) is
5236 Remove_Abstract_Operations
(N
);
5238 -- Test for case of no interpretation found for operator
5240 if Etype
(N
) = Any_Type
then
5244 Op_Id
: Entity_Id
:= Empty
;
5247 R
:= Right_Opnd
(N
);
5249 if Nkind
(N
) in N_Binary_Op
then
5255 -- If either operand has no type, then don't complain further,
5256 -- since this simply means that we have a propagated error.
5259 or else Etype
(R
) = Any_Type
5260 or else (Nkind
(N
) in N_Binary_Op
and then Etype
(L
) = Any_Type
)
5264 -- We explicitly check for the case of concatenation of component
5265 -- with component to avoid reporting spurious matching array types
5266 -- that might happen to be lurking in distant packages (such as
5267 -- run-time packages). This also prevents inconsistencies in the
5268 -- messages for certain ACVC B tests, which can vary depending on
5269 -- types declared in run-time interfaces. Another improvement when
5270 -- aggregates are present is to look for a well-typed operand.
5272 elsif Present
(Candidate_Type
)
5273 and then (Nkind
(N
) /= N_Op_Concat
5274 or else Is_Array_Type
(Etype
(L
))
5275 or else Is_Array_Type
(Etype
(R
)))
5278 if Nkind
(N
) = N_Op_Concat
then
5279 if Etype
(L
) /= Any_Composite
5280 and then Is_Array_Type
(Etype
(L
))
5282 Candidate_Type
:= Etype
(L
);
5284 elsif Etype
(R
) /= Any_Composite
5285 and then Is_Array_Type
(Etype
(R
))
5287 Candidate_Type
:= Etype
(R
);
5292 ("operator for} is not directly visible!",
5293 N
, First_Subtype
(Candidate_Type
));
5294 Error_Msg_N
("use clause would make operation legal!", N
);
5297 -- If either operand is a junk operand (e.g. package name), then
5298 -- post appropriate error messages, but do not complain further.
5300 -- Note that the use of OR in this test instead of OR ELSE is
5301 -- quite deliberate, we may as well check both operands in the
5302 -- binary operator case.
5304 elsif Junk_Operand
(R
)
5305 or (Nkind
(N
) in N_Binary_Op
and then Junk_Operand
(L
))
5309 -- If we have a logical operator, one of whose operands is
5310 -- Boolean, then we know that the other operand cannot resolve to
5311 -- Boolean (since we got no interpretations), but in that case we
5312 -- pretty much know that the other operand should be Boolean, so
5313 -- resolve it that way (generating an error)
5315 elsif Nkind_In
(N
, N_Op_And
, N_Op_Or
, N_Op_Xor
) then
5316 if Etype
(L
) = Standard_Boolean
then
5317 Resolve
(R
, Standard_Boolean
);
5319 elsif Etype
(R
) = Standard_Boolean
then
5320 Resolve
(L
, Standard_Boolean
);
5324 -- For an arithmetic operator or comparison operator, if one
5325 -- of the operands is numeric, then we know the other operand
5326 -- is not the same numeric type. If it is a non-numeric type,
5327 -- then probably it is intended to match the other operand.
5329 elsif Nkind_In
(N
, N_Op_Add
,
5335 Nkind_In
(N
, N_Op_Lt
,
5341 if Is_Numeric_Type
(Etype
(L
))
5342 and then not Is_Numeric_Type
(Etype
(R
))
5344 Resolve
(R
, Etype
(L
));
5347 elsif Is_Numeric_Type
(Etype
(R
))
5348 and then not Is_Numeric_Type
(Etype
(L
))
5350 Resolve
(L
, Etype
(R
));
5354 -- Comparisons on A'Access are common enough to deserve a
5357 elsif Nkind_In
(N
, N_Op_Eq
, N_Op_Ne
)
5358 and then Ekind
(Etype
(L
)) = E_Access_Attribute_Type
5359 and then Ekind
(Etype
(R
)) = E_Access_Attribute_Type
5362 ("two access attributes cannot be compared directly", N
);
5364 ("\use qualified expression for one of the operands",
5368 -- Another one for C programmers
5370 elsif Nkind
(N
) = N_Op_Concat
5371 and then Valid_Boolean_Arg
(Etype
(L
))
5372 and then Valid_Boolean_Arg
(Etype
(R
))
5374 Error_Msg_N
("invalid operands for concatenation", N
);
5375 Error_Msg_N
-- CODEFIX
5376 ("\maybe AND was meant", N
);
5379 -- A special case for comparison of access parameter with null
5381 elsif Nkind
(N
) = N_Op_Eq
5382 and then Is_Entity_Name
(L
)
5383 and then Nkind
(Parent
(Entity
(L
))) = N_Parameter_Specification
5384 and then Nkind
(Parameter_Type
(Parent
(Entity
(L
)))) =
5386 and then Nkind
(R
) = N_Null
5388 Error_Msg_N
("access parameter is not allowed to be null", L
);
5389 Error_Msg_N
("\(call would raise Constraint_Error)", L
);
5392 -- Another special case for exponentiation, where the right
5393 -- operand must be Natural, independently of the base.
5395 elsif Nkind
(N
) = N_Op_Expon
5396 and then Is_Numeric_Type
(Etype
(L
))
5397 and then not Is_Overloaded
(R
)
5399 First_Subtype
(Base_Type
(Etype
(R
))) /= Standard_Integer
5400 and then Base_Type
(Etype
(R
)) /= Universal_Integer
5403 ("exponent must be of type Natural, found}", R
, Etype
(R
));
5407 -- If we fall through then just give general message. Note that in
5408 -- the following messages, if the operand is overloaded we choose
5409 -- an arbitrary type to complain about, but that is probably more
5410 -- useful than not giving a type at all.
5412 if Nkind
(N
) in N_Unary_Op
then
5413 Error_Msg_Node_2
:= Etype
(R
);
5414 Error_Msg_N
("operator& not defined for}", N
);
5418 if Nkind
(N
) in N_Binary_Op
then
5419 if not Is_Overloaded
(L
)
5420 and then not Is_Overloaded
(R
)
5421 and then Base_Type
(Etype
(L
)) = Base_Type
(Etype
(R
))
5423 Error_Msg_Node_2
:= First_Subtype
(Etype
(R
));
5424 Error_Msg_N
("there is no applicable operator& for}", N
);
5427 -- Another attempt to find a fix: one of the candidate
5428 -- interpretations may not be use-visible. This has
5429 -- already been checked for predefined operators, so
5430 -- we examine only user-defined functions.
5432 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
5434 while Present
(Op_Id
) loop
5435 if Ekind
(Op_Id
) /= E_Operator
5436 and then Is_Overloadable
(Op_Id
)
5438 if not Is_Immediately_Visible
(Op_Id
)
5439 and then not In_Use
(Scope
(Op_Id
))
5440 and then not Is_Abstract_Subprogram
(Op_Id
)
5441 and then not Is_Hidden
(Op_Id
)
5442 and then Ekind
(Scope
(Op_Id
)) = E_Package
5445 (L
, Etype
(First_Formal
(Op_Id
)))
5447 (Next_Formal
(First_Formal
(Op_Id
)))
5451 Etype
(Next_Formal
(First_Formal
(Op_Id
))))
5454 ("No legal interpretation for operator&", N
);
5456 ("\use clause on& would make operation legal",
5462 Op_Id
:= Homonym
(Op_Id
);
5466 Error_Msg_N
("invalid operand types for operator&", N
);
5468 if Nkind
(N
) /= N_Op_Concat
then
5469 Error_Msg_NE
("\left operand has}!", N
, Etype
(L
));
5470 Error_Msg_NE
("\right operand has}!", N
, Etype
(R
));
5480 -----------------------------------------
5481 -- Process_Implicit_Dereference_Prefix --
5482 -----------------------------------------
5484 function Process_Implicit_Dereference_Prefix
5486 P
: Entity_Id
) return Entity_Id
5489 Typ
: constant Entity_Id
:= Designated_Type
(Etype
(P
));
5493 and then (Operating_Mode
= Check_Semantics
or else not Expander_Active
)
5495 -- We create a dummy reference to E to ensure that the reference
5496 -- is not considered as part of an assignment (an implicit
5497 -- dereference can never assign to its prefix). The Comes_From_Source
5498 -- attribute needs to be propagated for accurate warnings.
5500 Ref
:= New_Reference_To
(E
, Sloc
(P
));
5501 Set_Comes_From_Source
(Ref
, Comes_From_Source
(P
));
5502 Generate_Reference
(E
, Ref
);
5505 -- An implicit dereference is a legal occurrence of an
5506 -- incomplete type imported through a limited_with clause,
5507 -- if the full view is visible.
5509 if From_With_Type
(Typ
)
5510 and then not From_With_Type
(Scope
(Typ
))
5512 (Is_Immediately_Visible
(Scope
(Typ
))
5514 (Is_Child_Unit
(Scope
(Typ
))
5515 and then Is_Visible_Child_Unit
(Scope
(Typ
))))
5517 return Available_View
(Typ
);
5522 end Process_Implicit_Dereference_Prefix
;
5524 --------------------------------
5525 -- Remove_Abstract_Operations --
5526 --------------------------------
5528 procedure Remove_Abstract_Operations
(N
: Node_Id
) is
5529 Abstract_Op
: Entity_Id
:= Empty
;
5530 Address_Kludge
: Boolean := False;
5534 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
5535 -- activate this if either extensions are enabled, or if the abstract
5536 -- operation in question comes from a predefined file. This latter test
5537 -- allows us to use abstract to make operations invisible to users. In
5538 -- particular, if type Address is non-private and abstract subprograms
5539 -- are used to hide its operators, they will be truly hidden.
5541 type Operand_Position
is (First_Op
, Second_Op
);
5542 Univ_Type
: constant Entity_Id
:= Universal_Interpretation
(N
);
5544 procedure Remove_Address_Interpretations
(Op
: Operand_Position
);
5545 -- Ambiguities may arise when the operands are literal and the address
5546 -- operations in s-auxdec are visible. In that case, remove the
5547 -- interpretation of a literal as Address, to retain the semantics of
5548 -- Address as a private type.
5550 ------------------------------------
5551 -- Remove_Address_Interpretations --
5552 ------------------------------------
5554 procedure Remove_Address_Interpretations
(Op
: Operand_Position
) is
5558 if Is_Overloaded
(N
) then
5559 Get_First_Interp
(N
, I
, It
);
5560 while Present
(It
.Nam
) loop
5561 Formal
:= First_Entity
(It
.Nam
);
5563 if Op
= Second_Op
then
5564 Formal
:= Next_Entity
(Formal
);
5567 if Is_Descendent_Of_Address
(Etype
(Formal
)) then
5568 Address_Kludge
:= True;
5572 Get_Next_Interp
(I
, It
);
5575 end Remove_Address_Interpretations
;
5577 -- Start of processing for Remove_Abstract_Operations
5580 if Is_Overloaded
(N
) then
5581 Get_First_Interp
(N
, I
, It
);
5583 while Present
(It
.Nam
) loop
5584 if Is_Overloadable
(It
.Nam
)
5585 and then Is_Abstract_Subprogram
(It
.Nam
)
5586 and then not Is_Dispatching_Operation
(It
.Nam
)
5588 Abstract_Op
:= It
.Nam
;
5590 if Is_Descendent_Of_Address
(It
.Typ
) then
5591 Address_Kludge
:= True;
5595 -- In Ada 2005, this operation does not participate in Overload
5596 -- resolution. If the operation is defined in a predefined
5597 -- unit, it is one of the operations declared abstract in some
5598 -- variants of System, and it must be removed as well.
5600 elsif Ada_Version
>= Ada_05
5601 or else Is_Predefined_File_Name
5602 (Unit_File_Name
(Get_Source_Unit
(It
.Nam
)))
5609 Get_Next_Interp
(I
, It
);
5612 if No
(Abstract_Op
) then
5614 -- If some interpretation yields an integer type, it is still
5615 -- possible that there are address interpretations. Remove them
5616 -- if one operand is a literal, to avoid spurious ambiguities
5617 -- on systems where Address is a visible integer type.
5619 if Is_Overloaded
(N
)
5620 and then Nkind
(N
) in N_Op
5621 and then Is_Integer_Type
(Etype
(N
))
5623 if Nkind
(N
) in N_Binary_Op
then
5624 if Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
then
5625 Remove_Address_Interpretations
(Second_Op
);
5627 elsif Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
then
5628 Remove_Address_Interpretations
(First_Op
);
5633 elsif Nkind
(N
) in N_Op
then
5635 -- Remove interpretations that treat literals as addresses. This
5636 -- is never appropriate, even when Address is defined as a visible
5637 -- Integer type. The reason is that we would really prefer Address
5638 -- to behave as a private type, even in this case, which is there
5639 -- only to accommodate oddities of VMS address sizes. If Address
5640 -- is a visible integer type, we get lots of overload ambiguities.
5642 if Nkind
(N
) in N_Binary_Op
then
5644 U1
: constant Boolean :=
5645 Present
(Universal_Interpretation
(Right_Opnd
(N
)));
5646 U2
: constant Boolean :=
5647 Present
(Universal_Interpretation
(Left_Opnd
(N
)));
5651 Remove_Address_Interpretations
(Second_Op
);
5655 Remove_Address_Interpretations
(First_Op
);
5658 if not (U1
and U2
) then
5660 -- Remove corresponding predefined operator, which is
5661 -- always added to the overload set.
5663 Get_First_Interp
(N
, I
, It
);
5664 while Present
(It
.Nam
) loop
5665 if Scope
(It
.Nam
) = Standard_Standard
5666 and then Base_Type
(It
.Typ
) =
5667 Base_Type
(Etype
(Abstract_Op
))
5672 Get_Next_Interp
(I
, It
);
5675 elsif Is_Overloaded
(N
)
5676 and then Present
(Univ_Type
)
5678 -- If both operands have a universal interpretation,
5679 -- it is still necessary to remove interpretations that
5680 -- yield Address. Any remaining ambiguities will be
5681 -- removed in Disambiguate.
5683 Get_First_Interp
(N
, I
, It
);
5684 while Present
(It
.Nam
) loop
5685 if Is_Descendent_Of_Address
(It
.Typ
) then
5688 elsif not Is_Type
(It
.Nam
) then
5689 Set_Entity
(N
, It
.Nam
);
5692 Get_Next_Interp
(I
, It
);
5698 elsif Nkind
(N
) = N_Function_Call
5700 (Nkind
(Name
(N
)) = N_Operator_Symbol
5702 (Nkind
(Name
(N
)) = N_Expanded_Name
5704 Nkind
(Selector_Name
(Name
(N
))) = N_Operator_Symbol
))
5708 Arg1
: constant Node_Id
:= First
(Parameter_Associations
(N
));
5709 U1
: constant Boolean :=
5710 Present
(Universal_Interpretation
(Arg1
));
5711 U2
: constant Boolean :=
5712 Present
(Next
(Arg1
)) and then
5713 Present
(Universal_Interpretation
(Next
(Arg1
)));
5717 Remove_Address_Interpretations
(First_Op
);
5721 Remove_Address_Interpretations
(Second_Op
);
5724 if not (U1
and U2
) then
5725 Get_First_Interp
(N
, I
, It
);
5726 while Present
(It
.Nam
) loop
5727 if Scope
(It
.Nam
) = Standard_Standard
5728 and then It
.Typ
= Base_Type
(Etype
(Abstract_Op
))
5733 Get_Next_Interp
(I
, It
);
5739 -- If the removal has left no valid interpretations, emit an error
5740 -- message now and label node as illegal.
5742 if Present
(Abstract_Op
) then
5743 Get_First_Interp
(N
, I
, It
);
5747 -- Removal of abstract operation left no viable candidate
5749 Set_Etype
(N
, Any_Type
);
5750 Error_Msg_Sloc
:= Sloc
(Abstract_Op
);
5752 ("cannot call abstract operation& declared#", N
, Abstract_Op
);
5754 -- In Ada 2005, an abstract operation may disable predefined
5755 -- operators. Since the context is not yet known, we mark the
5756 -- predefined operators as potentially hidden. Do not include
5757 -- predefined operators when addresses are involved since this
5758 -- case is handled separately.
5760 elsif Ada_Version
>= Ada_05
5761 and then not Address_Kludge
5763 while Present
(It
.Nam
) loop
5764 if Is_Numeric_Type
(It
.Typ
)
5765 and then Scope
(It
.Typ
) = Standard_Standard
5767 Set_Abstract_Op
(I
, Abstract_Op
);
5770 Get_Next_Interp
(I
, It
);
5775 end Remove_Abstract_Operations
;
5777 -----------------------
5778 -- Try_Indirect_Call --
5779 -----------------------
5781 function Try_Indirect_Call
5784 Typ
: Entity_Id
) return Boolean
5790 pragma Warnings
(Off
, Call_OK
);
5793 Normalize_Actuals
(N
, Designated_Type
(Typ
), False, Call_OK
);
5795 Actual
:= First_Actual
(N
);
5796 Formal
:= First_Formal
(Designated_Type
(Typ
));
5797 while Present
(Actual
) and then Present
(Formal
) loop
5798 if not Has_Compatible_Type
(Actual
, Etype
(Formal
)) then
5803 Next_Formal
(Formal
);
5806 if No
(Actual
) and then No
(Formal
) then
5807 Add_One_Interp
(N
, Nam
, Etype
(Designated_Type
(Typ
)));
5809 -- Nam is a candidate interpretation for the name in the call,
5810 -- if it is not an indirect call.
5812 if not Is_Type
(Nam
)
5813 and then Is_Entity_Name
(Name
(N
))
5815 Set_Entity
(Name
(N
), Nam
);
5822 end Try_Indirect_Call
;
5824 ----------------------
5825 -- Try_Indexed_Call --
5826 ----------------------
5828 function Try_Indexed_Call
5832 Skip_First
: Boolean) return Boolean
5834 Loc
: constant Source_Ptr
:= Sloc
(N
);
5835 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
5840 Actual
:= First
(Actuals
);
5842 -- If the call was originally written in prefix form, skip the first
5843 -- actual, which is obviously not defaulted.
5849 Index
:= First_Index
(Typ
);
5850 while Present
(Actual
) and then Present
(Index
) loop
5852 -- If the parameter list has a named association, the expression
5853 -- is definitely a call and not an indexed component.
5855 if Nkind
(Actual
) = N_Parameter_Association
then
5859 if Is_Entity_Name
(Actual
)
5860 and then Is_Type
(Entity
(Actual
))
5861 and then No
(Next
(Actual
))
5865 Prefix
=> Make_Function_Call
(Loc
,
5866 Name
=> Relocate_Node
(Name
(N
))),
5868 New_Occurrence_Of
(Entity
(Actual
), Sloc
(Actual
))));
5873 elsif not Has_Compatible_Type
(Actual
, Etype
(Index
)) then
5881 if No
(Actual
) and then No
(Index
) then
5882 Add_One_Interp
(N
, Nam
, Component_Type
(Typ
));
5884 -- Nam is a candidate interpretation for the name in the call,
5885 -- if it is not an indirect call.
5887 if not Is_Type
(Nam
)
5888 and then Is_Entity_Name
(Name
(N
))
5890 Set_Entity
(Name
(N
), Nam
);
5897 end Try_Indexed_Call
;
5899 --------------------------
5900 -- Try_Object_Operation --
5901 --------------------------
5903 function Try_Object_Operation
(N
: Node_Id
) return Boolean is
5904 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
5905 Is_Subprg_Call
: constant Boolean := Nkind_In
5906 (K
, N_Procedure_Call_Statement
,
5908 Loc
: constant Source_Ptr
:= Sloc
(N
);
5909 Obj
: constant Node_Id
:= Prefix
(N
);
5910 Subprog
: constant Node_Id
:=
5911 Make_Identifier
(Sloc
(Selector_Name
(N
)),
5912 Chars
=> Chars
(Selector_Name
(N
)));
5913 -- Identifier on which possible interpretations will be collected
5915 Report_Error
: Boolean := False;
5916 -- If no candidate interpretation matches the context, redo the
5917 -- analysis with error enabled to provide additional information.
5920 Candidate
: Entity_Id
:= Empty
;
5921 New_Call_Node
: Node_Id
:= Empty
;
5922 Node_To_Replace
: Node_Id
;
5923 Obj_Type
: Entity_Id
:= Etype
(Obj
);
5924 Success
: Boolean := False;
5926 function Valid_Candidate
5929 Subp
: Entity_Id
) return Entity_Id
;
5930 -- If the subprogram is a valid interpretation, record it, and add
5931 -- to the list of interpretations of Subprog.
5933 procedure Complete_Object_Operation
5934 (Call_Node
: Node_Id
;
5935 Node_To_Replace
: Node_Id
);
5936 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
5937 -- Call_Node, insert the object (or its dereference) as the first actual
5938 -- in the call, and complete the analysis of the call.
5940 procedure Report_Ambiguity
(Op
: Entity_Id
);
5941 -- If a prefixed procedure call is ambiguous, indicate whether the
5942 -- call includes an implicit dereference or an implicit 'Access.
5944 procedure Transform_Object_Operation
5945 (Call_Node
: out Node_Id
;
5946 Node_To_Replace
: out Node_Id
);
5947 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
5948 -- Call_Node is the resulting subprogram call, Node_To_Replace is
5949 -- either N or the parent of N, and Subprog is a reference to the
5950 -- subprogram we are trying to match.
5952 function Try_Class_Wide_Operation
5953 (Call_Node
: Node_Id
;
5954 Node_To_Replace
: Node_Id
) return Boolean;
5955 -- Traverse all ancestor types looking for a class-wide subprogram
5956 -- for which the current operation is a valid non-dispatching call.
5958 procedure Try_One_Prefix_Interpretation
(T
: Entity_Id
);
5959 -- If prefix is overloaded, its interpretation may include different
5960 -- tagged types, and we must examine the primitive operations and
5961 -- the class-wide operations of each in order to find candidate
5962 -- interpretations for the call as a whole.
5964 function Try_Primitive_Operation
5965 (Call_Node
: Node_Id
;
5966 Node_To_Replace
: Node_Id
) return Boolean;
5967 -- Traverse the list of primitive subprograms looking for a dispatching
5968 -- operation for which the current node is a valid call .
5970 ---------------------
5971 -- Valid_Candidate --
5972 ---------------------
5974 function Valid_Candidate
5977 Subp
: Entity_Id
) return Entity_Id
5979 Arr_Type
: Entity_Id
;
5980 Comp_Type
: Entity_Id
;
5983 -- If the subprogram is a valid interpretation, record it in global
5984 -- variable Subprog, to collect all possible overloadings.
5987 if Subp
/= Entity
(Subprog
) then
5988 Add_One_Interp
(Subprog
, Subp
, Etype
(Subp
));
5992 -- If the call may be an indexed call, retrieve component type of
5993 -- resulting expression, and add possible interpretation.
5998 if Nkind
(Call
) = N_Function_Call
5999 and then Nkind
(Parent
(N
)) = N_Indexed_Component
6000 and then Needs_One_Actual
(Subp
)
6002 if Is_Array_Type
(Etype
(Subp
)) then
6003 Arr_Type
:= Etype
(Subp
);
6005 elsif Is_Access_Type
(Etype
(Subp
))
6006 and then Is_Array_Type
(Designated_Type
(Etype
(Subp
)))
6008 Arr_Type
:= Designated_Type
(Etype
(Subp
));
6012 if Present
(Arr_Type
) then
6014 -- Verify that the actuals (excluding the object)
6015 -- match the types of the indices.
6022 Actual
:= Next
(First_Actual
(Call
));
6023 Index
:= First_Index
(Arr_Type
);
6024 while Present
(Actual
) and then Present
(Index
) loop
6025 if not Has_Compatible_Type
(Actual
, Etype
(Index
)) then
6030 Next_Actual
(Actual
);
6036 and then Present
(Arr_Type
)
6038 Comp_Type
:= Component_Type
(Arr_Type
);
6042 if Present
(Comp_Type
)
6043 and then Etype
(Subprog
) /= Comp_Type
6045 Add_One_Interp
(Subprog
, Subp
, Comp_Type
);
6049 if Etype
(Call
) /= Any_Type
then
6054 end Valid_Candidate
;
6056 -------------------------------
6057 -- Complete_Object_Operation --
6058 -------------------------------
6060 procedure Complete_Object_Operation
6061 (Call_Node
: Node_Id
;
6062 Node_To_Replace
: Node_Id
)
6064 Control
: constant Entity_Id
:= First_Formal
(Entity
(Subprog
));
6065 Formal_Type
: constant Entity_Id
:= Etype
(Control
);
6066 First_Actual
: Node_Id
;
6069 -- Place the name of the operation, with its interpretations,
6070 -- on the rewritten call.
6072 Set_Name
(Call_Node
, Subprog
);
6074 First_Actual
:= First
(Parameter_Associations
(Call_Node
));
6076 -- For cross-reference purposes, treat the new node as being in
6077 -- the source if the original one is.
6079 Set_Comes_From_Source
(Subprog
, Comes_From_Source
(N
));
6080 Set_Comes_From_Source
(Call_Node
, Comes_From_Source
(N
));
6082 if Nkind
(N
) = N_Selected_Component
6083 and then not Inside_A_Generic
6085 Set_Entity
(Selector_Name
(N
), Entity
(Subprog
));
6088 -- If need be, rewrite first actual as an explicit dereference
6089 -- If the call is overloaded, the rewriting can only be done
6090 -- once the primitive operation is identified.
6092 if Is_Overloaded
(Subprog
) then
6094 -- The prefix itself may be overloaded, and its interpretations
6095 -- must be propagated to the new actual in the call.
6097 if Is_Overloaded
(Obj
) then
6098 Save_Interps
(Obj
, First_Actual
);
6101 Rewrite
(First_Actual
, Obj
);
6103 elsif not Is_Access_Type
(Formal_Type
)
6104 and then Is_Access_Type
(Etype
(Obj
))
6106 Rewrite
(First_Actual
,
6107 Make_Explicit_Dereference
(Sloc
(Obj
), Obj
));
6108 Analyze
(First_Actual
);
6110 -- If we need to introduce an explicit dereference, verify that
6111 -- the resulting actual is compatible with the mode of the formal.
6113 if Ekind
(First_Formal
(Entity
(Subprog
))) /= E_In_Parameter
6114 and then Is_Access_Constant
(Etype
(Obj
))
6117 ("expect variable in call to&", Prefix
(N
), Entity
(Subprog
));
6120 -- Conversely, if the formal is an access parameter and the object
6121 -- is not, replace the actual with a 'Access reference. Its analysis
6122 -- will check that the object is aliased.
6124 elsif Is_Access_Type
(Formal_Type
)
6125 and then not Is_Access_Type
(Etype
(Obj
))
6127 -- A special case: A.all'access is illegal if A is an access to a
6128 -- constant and the context requires an access to a variable.
6130 if not Is_Access_Constant
(Formal_Type
) then
6131 if (Nkind
(Obj
) = N_Explicit_Dereference
6132 and then Is_Access_Constant
(Etype
(Prefix
(Obj
))))
6133 or else not Is_Variable
(Obj
)
6136 ("actual for& must be a variable", Obj
, Control
);
6140 Rewrite
(First_Actual
,
6141 Make_Attribute_Reference
(Loc
,
6142 Attribute_Name
=> Name_Access
,
6143 Prefix
=> Relocate_Node
(Obj
)));
6145 if not Is_Aliased_View
(Obj
) then
6147 ("object in prefixed call to& must be aliased"
6148 & " (RM-2005 4.3.1 (13))",
6149 Prefix
(First_Actual
), Subprog
);
6152 Analyze
(First_Actual
);
6155 if Is_Overloaded
(Obj
) then
6156 Save_Interps
(Obj
, First_Actual
);
6159 Rewrite
(First_Actual
, Obj
);
6162 Rewrite
(Node_To_Replace
, Call_Node
);
6164 -- Propagate the interpretations collected in subprog to the new
6165 -- function call node, to be resolved from context.
6167 if Is_Overloaded
(Subprog
) then
6168 Save_Interps
(Subprog
, Node_To_Replace
);
6170 Analyze
(Node_To_Replace
);
6172 end Complete_Object_Operation
;
6174 ----------------------
6175 -- Report_Ambiguity --
6176 ----------------------
6178 procedure Report_Ambiguity
(Op
: Entity_Id
) is
6179 Access_Formal
: constant Boolean :=
6180 Is_Access_Type
(Etype
(First_Formal
(Op
)));
6181 Access_Actual
: constant Boolean :=
6182 Is_Access_Type
(Etype
(Prefix
(N
)));
6185 Error_Msg_Sloc
:= Sloc
(Op
);
6187 if Access_Formal
and then not Access_Actual
then
6188 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
6190 ("\possible interpretation"
6191 & " (inherited, with implicit 'Access) #", N
);
6194 ("\possible interpretation (with implicit 'Access) #", N
);
6197 elsif not Access_Formal
and then Access_Actual
then
6198 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
6200 ("\possible interpretation"
6201 & " ( inherited, with implicit dereference) #", N
);
6204 ("\possible interpretation (with implicit dereference) #", N
);
6208 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
6209 Error_Msg_N
("\possible interpretation (inherited)#", N
);
6211 Error_Msg_N
-- CODEFIX
6212 ("\possible interpretation#", N
);
6215 end Report_Ambiguity
;
6217 --------------------------------
6218 -- Transform_Object_Operation --
6219 --------------------------------
6221 procedure Transform_Object_Operation
6222 (Call_Node
: out Node_Id
;
6223 Node_To_Replace
: out Node_Id
)
6225 Dummy
: constant Node_Id
:= New_Copy
(Obj
);
6226 -- Placeholder used as a first parameter in the call, replaced
6227 -- eventually by the proper object.
6229 Parent_Node
: constant Node_Id
:= Parent
(N
);
6235 -- Common case covering 1) Call to a procedure and 2) Call to a
6236 -- function that has some additional actuals.
6238 if Nkind_In
(Parent_Node
, N_Function_Call
,
6239 N_Procedure_Call_Statement
)
6241 -- N is a selected component node containing the name of the
6242 -- subprogram. If N is not the name of the parent node we must
6243 -- not replace the parent node by the new construct. This case
6244 -- occurs when N is a parameterless call to a subprogram that
6245 -- is an actual parameter of a call to another subprogram. For
6247 -- Some_Subprogram (..., Obj.Operation, ...)
6249 and then Name
(Parent_Node
) = N
6251 Node_To_Replace
:= Parent_Node
;
6253 Actuals
:= Parameter_Associations
(Parent_Node
);
6255 if Present
(Actuals
) then
6256 Prepend
(Dummy
, Actuals
);
6258 Actuals
:= New_List
(Dummy
);
6261 if Nkind
(Parent_Node
) = N_Procedure_Call_Statement
then
6263 Make_Procedure_Call_Statement
(Loc
,
6264 Name
=> New_Copy
(Subprog
),
6265 Parameter_Associations
=> Actuals
);
6269 Make_Function_Call
(Loc
,
6270 Name
=> New_Copy
(Subprog
),
6271 Parameter_Associations
=> Actuals
);
6275 -- Before analysis, a function call appears as an indexed component
6276 -- if there are no named associations.
6278 elsif Nkind
(Parent_Node
) = N_Indexed_Component
6279 and then N
= Prefix
(Parent_Node
)
6281 Node_To_Replace
:= Parent_Node
;
6283 Actuals
:= Expressions
(Parent_Node
);
6285 Actual
:= First
(Actuals
);
6286 while Present
(Actual
) loop
6291 Prepend
(Dummy
, Actuals
);
6294 Make_Function_Call
(Loc
,
6295 Name
=> New_Copy
(Subprog
),
6296 Parameter_Associations
=> Actuals
);
6298 -- Parameterless call: Obj.F is rewritten as F (Obj)
6301 Node_To_Replace
:= N
;
6304 Make_Function_Call
(Loc
,
6305 Name
=> New_Copy
(Subprog
),
6306 Parameter_Associations
=> New_List
(Dummy
));
6308 end Transform_Object_Operation
;
6310 ------------------------------
6311 -- Try_Class_Wide_Operation --
6312 ------------------------------
6314 function Try_Class_Wide_Operation
6315 (Call_Node
: Node_Id
;
6316 Node_To_Replace
: Node_Id
) return Boolean
6318 Anc_Type
: Entity_Id
;
6319 Matching_Op
: Entity_Id
:= Empty
;
6322 procedure Traverse_Homonyms
6323 (Anc_Type
: Entity_Id
;
6324 Error
: out Boolean);
6325 -- Traverse the homonym chain of the subprogram searching for those
6326 -- homonyms whose first formal has the Anc_Type's class-wide type,
6327 -- or an anonymous access type designating the class-wide type. If
6328 -- an ambiguity is detected, then Error is set to True.
6330 procedure Traverse_Interfaces
6331 (Anc_Type
: Entity_Id
;
6332 Error
: out Boolean);
6333 -- Traverse the list of interfaces, if any, associated with Anc_Type
6334 -- and search for acceptable class-wide homonyms associated with each
6335 -- interface. If an ambiguity is detected, then Error is set to True.
6337 -----------------------
6338 -- Traverse_Homonyms --
6339 -----------------------
6341 procedure Traverse_Homonyms
6342 (Anc_Type
: Entity_Id
;
6343 Error
: out Boolean)
6345 Cls_Type
: Entity_Id
;
6353 Cls_Type
:= Class_Wide_Type
(Anc_Type
);
6355 Hom
:= Current_Entity
(Subprog
);
6357 -- Find operation whose first parameter is of the class-wide
6358 -- type, a subtype thereof, or an anonymous access to same.
6360 while Present
(Hom
) loop
6361 if (Ekind
(Hom
) = E_Procedure
6363 Ekind
(Hom
) = E_Function
)
6364 and then Scope
(Hom
) = Scope
(Anc_Type
)
6365 and then Present
(First_Formal
(Hom
))
6367 (Base_Type
(Etype
(First_Formal
(Hom
))) = Cls_Type
6369 (Is_Access_Type
(Etype
(First_Formal
(Hom
)))
6371 Ekind
(Etype
(First_Formal
(Hom
))) =
6372 E_Anonymous_Access_Type
6375 (Designated_Type
(Etype
(First_Formal
(Hom
)))) =
6378 Set_Etype
(Call_Node
, Any_Type
);
6379 Set_Is_Overloaded
(Call_Node
, False);
6382 if No
(Matching_Op
) then
6383 Hom_Ref
:= New_Reference_To
(Hom
, Sloc
(Subprog
));
6384 Set_Etype
(Call_Node
, Any_Type
);
6385 Set_Parent
(Call_Node
, Parent
(Node_To_Replace
));
6387 Set_Name
(Call_Node
, Hom_Ref
);
6392 Report
=> Report_Error
,
6394 Skip_First
=> True);
6397 Valid_Candidate
(Success
, Call_Node
, Hom
);
6403 Report
=> Report_Error
,
6405 Skip_First
=> True);
6407 if Present
(Valid_Candidate
(Success
, Call_Node
, Hom
))
6408 and then Nkind
(Call_Node
) /= N_Function_Call
6410 Error_Msg_NE
("ambiguous call to&", N
, Hom
);
6411 Report_Ambiguity
(Matching_Op
);
6412 Report_Ambiguity
(Hom
);
6419 Hom
:= Homonym
(Hom
);
6421 end Traverse_Homonyms
;
6423 -------------------------
6424 -- Traverse_Interfaces --
6425 -------------------------
6427 procedure Traverse_Interfaces
6428 (Anc_Type
: Entity_Id
;
6429 Error
: out Boolean)
6431 Intface_List
: constant List_Id
:=
6432 Abstract_Interface_List
(Anc_Type
);
6438 if Is_Non_Empty_List
(Intface_List
) then
6439 Intface
:= First
(Intface_List
);
6440 while Present
(Intface
) loop
6442 -- Look for acceptable class-wide homonyms associated with
6445 Traverse_Homonyms
(Etype
(Intface
), Error
);
6451 -- Continue the search by looking at each of the interface's
6452 -- associated interface ancestors.
6454 Traverse_Interfaces
(Etype
(Intface
), Error
);
6463 end Traverse_Interfaces
;
6465 -- Start of processing for Try_Class_Wide_Operation
6468 -- Loop through ancestor types (including interfaces), traversing
6469 -- the homonym chain of the subprogram, trying out those homonyms
6470 -- whose first formal has the class-wide type of the ancestor, or
6471 -- an anonymous access type designating the class-wide type.
6473 Anc_Type
:= Obj_Type
;
6475 -- Look for a match among homonyms associated with the ancestor
6477 Traverse_Homonyms
(Anc_Type
, Error
);
6483 -- Continue the search for matches among homonyms associated with
6484 -- any interfaces implemented by the ancestor.
6486 Traverse_Interfaces
(Anc_Type
, Error
);
6492 exit when Etype
(Anc_Type
) = Anc_Type
;
6493 Anc_Type
:= Etype
(Anc_Type
);
6496 if Present
(Matching_Op
) then
6497 Set_Etype
(Call_Node
, Etype
(Matching_Op
));
6500 return Present
(Matching_Op
);
6501 end Try_Class_Wide_Operation
;
6503 -----------------------------------
6504 -- Try_One_Prefix_Interpretation --
6505 -----------------------------------
6507 procedure Try_One_Prefix_Interpretation
(T
: Entity_Id
) is
6511 if Is_Access_Type
(Obj_Type
) then
6512 Obj_Type
:= Designated_Type
(Obj_Type
);
6515 if Ekind
(Obj_Type
) = E_Private_Subtype
then
6516 Obj_Type
:= Base_Type
(Obj_Type
);
6519 if Is_Class_Wide_Type
(Obj_Type
) then
6520 Obj_Type
:= Etype
(Class_Wide_Type
(Obj_Type
));
6523 -- The type may have be obtained through a limited_with clause,
6524 -- in which case the primitive operations are available on its
6525 -- non-limited view. If still incomplete, retrieve full view.
6527 if Ekind
(Obj_Type
) = E_Incomplete_Type
6528 and then From_With_Type
(Obj_Type
)
6530 Obj_Type
:= Get_Full_View
(Non_Limited_View
(Obj_Type
));
6533 -- If the object is not tagged, or the type is still an incomplete
6534 -- type, this is not a prefixed call.
6536 if not Is_Tagged_Type
(Obj_Type
)
6537 or else Is_Incomplete_Type
(Obj_Type
)
6542 if Try_Primitive_Operation
6543 (Call_Node
=> New_Call_Node
,
6544 Node_To_Replace
=> Node_To_Replace
)
6546 Try_Class_Wide_Operation
6547 (Call_Node
=> New_Call_Node
,
6548 Node_To_Replace
=> Node_To_Replace
)
6552 end Try_One_Prefix_Interpretation
;
6554 -----------------------------
6555 -- Try_Primitive_Operation --
6556 -----------------------------
6558 function Try_Primitive_Operation
6559 (Call_Node
: Node_Id
;
6560 Node_To_Replace
: Node_Id
) return Boolean
6563 Prim_Op
: Entity_Id
;
6564 Matching_Op
: Entity_Id
:= Empty
;
6565 Prim_Op_Ref
: Node_Id
:= Empty
;
6567 Corr_Type
: Entity_Id
:= Empty
;
6568 -- If the prefix is a synchronized type, the controlling type of
6569 -- the primitive operation is the corresponding record type, else
6570 -- this is the object type itself.
6572 Success
: Boolean := False;
6574 function Collect_Generic_Type_Ops
(T
: Entity_Id
) return Elist_Id
;
6575 -- For tagged types the candidate interpretations are found in
6576 -- the list of primitive operations of the type and its ancestors.
6577 -- For formal tagged types we have to find the operations declared
6578 -- in the same scope as the type (including in the generic formal
6579 -- part) because the type itself carries no primitive operations,
6580 -- except for formal derived types that inherit the operations of
6581 -- the parent and progenitors.
6582 -- If the context is a generic subprogram body, the generic formals
6583 -- are visible by name, but are not in the entity list of the
6584 -- subprogram because that list starts with the subprogram formals.
6585 -- We retrieve the candidate operations from the generic declaration.
6587 function Is_Private_Overriding
(Op
: Entity_Id
) return Boolean;
6588 -- An operation that overrides an inherited operation in the private
6589 -- part of its package may be hidden, but if the inherited operation
6590 -- is visible a direct call to it will dispatch to the private one,
6591 -- which is therefore a valid candidate.
6593 function Valid_First_Argument_Of
(Op
: Entity_Id
) return Boolean;
6594 -- Verify that the prefix, dereferenced if need be, is a valid
6595 -- controlling argument in a call to Op. The remaining actuals
6596 -- are checked in the subsequent call to Analyze_One_Call.
6598 ------------------------------
6599 -- Collect_Generic_Type_Ops --
6600 ------------------------------
6602 function Collect_Generic_Type_Ops
(T
: Entity_Id
) return Elist_Id
is
6603 Bas
: constant Entity_Id
:= Base_Type
(T
);
6604 Candidates
: constant Elist_Id
:= New_Elmt_List
;
6608 procedure Check_Candidate
;
6609 -- The operation is a candidate if its first parameter is a
6610 -- controlling operand of the desired type.
6612 -----------------------
6613 -- Check_Candidate; --
6614 -----------------------
6616 procedure Check_Candidate
is
6618 Formal
:= First_Formal
(Subp
);
6621 and then Is_Controlling_Formal
(Formal
)
6623 (Base_Type
(Etype
(Formal
)) = Bas
6625 (Is_Access_Type
(Etype
(Formal
))
6626 and then Designated_Type
(Etype
(Formal
)) = Bas
))
6628 Append_Elmt
(Subp
, Candidates
);
6630 end Check_Candidate
;
6632 -- Start of processing for Collect_Generic_Type_Ops
6635 if Is_Derived_Type
(T
) then
6636 return Primitive_Operations
(T
);
6638 elsif Ekind
(Scope
(T
)) = E_Procedure
6639 or else Ekind
(Scope
(T
)) = E_Function
6641 -- Scan the list of generic formals to find subprograms
6642 -- that may have a first controlling formal of the type.
6649 First
(Generic_Formal_Declarations
6650 (Unit_Declaration_Node
(Scope
(T
))));
6651 while Present
(Decl
) loop
6652 if Nkind
(Decl
) in N_Formal_Subprogram_Declaration
then
6653 Subp
:= Defining_Entity
(Decl
);
6664 -- Scan the list of entities declared in the same scope as
6665 -- the type. In general this will be an open scope, given that
6666 -- the call we are analyzing can only appear within a generic
6667 -- declaration or body (either the one that declares T, or a
6670 Subp
:= First_Entity
(Scope
(T
));
6671 while Present
(Subp
) loop
6672 if Is_Overloadable
(Subp
) then
6681 end Collect_Generic_Type_Ops
;
6683 ---------------------------
6684 -- Is_Private_Overriding --
6685 ---------------------------
6687 function Is_Private_Overriding
(Op
: Entity_Id
) return Boolean is
6688 Visible_Op
: constant Entity_Id
:= Homonym
(Op
);
6691 return Present
(Visible_Op
)
6692 and then not Comes_From_Source
(Visible_Op
)
6693 and then Alias
(Visible_Op
) = Op
6694 and then not Is_Hidden
(Visible_Op
);
6695 end Is_Private_Overriding
;
6697 -----------------------------
6698 -- Valid_First_Argument_Of --
6699 -----------------------------
6701 function Valid_First_Argument_Of
(Op
: Entity_Id
) return Boolean is
6702 Typ
: Entity_Id
:= Etype
(First_Formal
(Op
));
6705 if Is_Concurrent_Type
(Typ
)
6706 and then Present
(Corresponding_Record_Type
(Typ
))
6708 Typ
:= Corresponding_Record_Type
(Typ
);
6711 -- Simple case. Object may be a subtype of the tagged type or
6712 -- may be the corresponding record of a synchronized type.
6714 return Obj_Type
= Typ
6715 or else Base_Type
(Obj_Type
) = Typ
6716 or else Corr_Type
= Typ
6718 -- Prefix can be dereferenced
6721 (Is_Access_Type
(Corr_Type
)
6722 and then Designated_Type
(Corr_Type
) = Typ
)
6724 -- Formal is an access parameter, for which the object
6725 -- can provide an access.
6728 (Ekind
(Typ
) = E_Anonymous_Access_Type
6729 and then Designated_Type
(Typ
) = Base_Type
(Corr_Type
));
6730 end Valid_First_Argument_Of
;
6732 -- Start of processing for Try_Primitive_Operation
6735 -- Look for subprograms in the list of primitive operations. The name
6736 -- must be identical, and the kind of call indicates the expected
6737 -- kind of operation (function or procedure). If the type is a
6738 -- (tagged) synchronized type, the primitive ops are attached to the
6739 -- corresponding record (base) type.
6741 if Is_Concurrent_Type
(Obj_Type
) then
6742 if not Present
(Corresponding_Record_Type
(Obj_Type
)) then
6746 Corr_Type
:= Base_Type
(Corresponding_Record_Type
(Obj_Type
));
6747 Elmt
:= First_Elmt
(Primitive_Operations
(Corr_Type
));
6749 elsif not Is_Generic_Type
(Obj_Type
) then
6750 Corr_Type
:= Obj_Type
;
6751 Elmt
:= First_Elmt
(Primitive_Operations
(Obj_Type
));
6754 Corr_Type
:= Obj_Type
;
6755 Elmt
:= First_Elmt
(Collect_Generic_Type_Ops
(Obj_Type
));
6758 while Present
(Elmt
) loop
6759 Prim_Op
:= Node
(Elmt
);
6761 if Chars
(Prim_Op
) = Chars
(Subprog
)
6762 and then Present
(First_Formal
(Prim_Op
))
6763 and then Valid_First_Argument_Of
(Prim_Op
)
6765 (Nkind
(Call_Node
) = N_Function_Call
)
6766 = (Ekind
(Prim_Op
) = E_Function
)
6768 -- Ada 2005 (AI-251): If this primitive operation corresponds
6769 -- with an immediate ancestor interface there is no need to add
6770 -- it to the list of interpretations; the corresponding aliased
6771 -- primitive is also in this list of primitive operations and
6772 -- will be used instead.
6774 if (Present
(Interface_Alias
(Prim_Op
))
6775 and then Is_Ancestor
(Find_Dispatching_Type
6776 (Alias
(Prim_Op
)), Corr_Type
))
6778 -- Do not consider hidden primitives unless the type is in an
6779 -- open scope or we are within an instance, where visibility
6780 -- is known to be correct, or else if this is an overriding
6781 -- operation in the private part for an inherited operation.
6783 or else (Is_Hidden
(Prim_Op
)
6784 and then not Is_Immediately_Visible
(Obj_Type
)
6785 and then not In_Instance
6786 and then not Is_Private_Overriding
(Prim_Op
))
6791 Set_Etype
(Call_Node
, Any_Type
);
6792 Set_Is_Overloaded
(Call_Node
, False);
6794 if No
(Matching_Op
) then
6795 Prim_Op_Ref
:= New_Reference_To
(Prim_Op
, Sloc
(Subprog
));
6796 Candidate
:= Prim_Op
;
6798 Set_Parent
(Call_Node
, Parent
(Node_To_Replace
));
6800 Set_Name
(Call_Node
, Prim_Op_Ref
);
6806 Report
=> Report_Error
,
6808 Skip_First
=> True);
6810 Matching_Op
:= Valid_Candidate
(Success
, Call_Node
, Prim_Op
);
6812 -- More than one interpretation, collect for subsequent
6813 -- disambiguation. If this is a procedure call and there
6814 -- is another match, report ambiguity now.
6820 Report
=> Report_Error
,
6822 Skip_First
=> True);
6824 if Present
(Valid_Candidate
(Success
, Call_Node
, Prim_Op
))
6825 and then Nkind
(Call_Node
) /= N_Function_Call
6827 Error_Msg_NE
("ambiguous call to&", N
, Prim_Op
);
6828 Report_Ambiguity
(Matching_Op
);
6829 Report_Ambiguity
(Prim_Op
);
6839 if Present
(Matching_Op
) then
6840 Set_Etype
(Call_Node
, Etype
(Matching_Op
));
6843 return Present
(Matching_Op
);
6844 end Try_Primitive_Operation
;
6846 -- Start of processing for Try_Object_Operation
6849 Analyze_Expression
(Obj
);
6851 -- Analyze the actuals if node is known to be a subprogram call
6853 if Is_Subprg_Call
and then N
= Name
(Parent
(N
)) then
6854 Actual
:= First
(Parameter_Associations
(Parent
(N
)));
6855 while Present
(Actual
) loop
6856 Analyze_Expression
(Actual
);
6861 -- Build a subprogram call node, using a copy of Obj as its first
6862 -- actual. This is a placeholder, to be replaced by an explicit
6863 -- dereference when needed.
6865 Transform_Object_Operation
6866 (Call_Node
=> New_Call_Node
,
6867 Node_To_Replace
=> Node_To_Replace
);
6869 Set_Etype
(New_Call_Node
, Any_Type
);
6870 Set_Etype
(Subprog
, Any_Type
);
6871 Set_Parent
(New_Call_Node
, Parent
(Node_To_Replace
));
6873 if not Is_Overloaded
(Obj
) then
6874 Try_One_Prefix_Interpretation
(Obj_Type
);
6881 Get_First_Interp
(Obj
, I
, It
);
6882 while Present
(It
.Nam
) loop
6883 Try_One_Prefix_Interpretation
(It
.Typ
);
6884 Get_Next_Interp
(I
, It
);
6889 if Etype
(New_Call_Node
) /= Any_Type
then
6890 Complete_Object_Operation
6891 (Call_Node
=> New_Call_Node
,
6892 Node_To_Replace
=> Node_To_Replace
);
6895 elsif Present
(Candidate
) then
6897 -- The argument list is not type correct. Re-analyze with error
6898 -- reporting enabled, and use one of the possible candidates.
6899 -- In All_Errors_Mode, re-analyze all failed interpretations.
6901 if All_Errors_Mode
then
6902 Report_Error
:= True;
6903 if Try_Primitive_Operation
6904 (Call_Node
=> New_Call_Node
,
6905 Node_To_Replace
=> Node_To_Replace
)
6908 Try_Class_Wide_Operation
6909 (Call_Node
=> New_Call_Node
,
6910 Node_To_Replace
=> Node_To_Replace
)
6917 (N
=> New_Call_Node
,
6921 Skip_First
=> True);
6924 -- No need for further errors
6929 -- There was no candidate operation, so report it as an error
6930 -- in the caller: Analyze_Selected_Component.
6934 end Try_Object_Operation
;
6940 procedure wpo
(T
: Entity_Id
) is
6945 if not Is_Tagged_Type
(T
) then
6949 E
:= First_Elmt
(Primitive_Operations
(Base_Type
(T
)));
6950 while Present
(E
) loop
6952 Write_Int
(Int
(Op
));
6953 Write_Str
(" === ");
6954 Write_Name
(Chars
(Op
));
6956 Write_Name
(Chars
(Scope
(Op
)));