Daily bump.
[official-gcc.git] / gcc / ada / sem_ch4.adb
blob28856d0f24dda82ebf573a515e584e1213819071
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Util; use Exp_Util;
32 with Fname; use Fname;
33 with Itypes; use Itypes;
34 with Lib; use Lib;
35 with Lib.Xref; use Lib.Xref;
36 with Namet; use Namet;
37 with Namet.Sp; use Namet.Sp;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Output; use Output;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Sem; use Sem;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Cat; use Sem_Cat;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch6; use Sem_Ch6;
49 with Sem_Ch8; use Sem_Ch8;
50 with Sem_SCIL; use Sem_SCIL;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Dist; use Sem_Dist;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Util; use Sem_Util;
56 with Sem_Type; use Sem_Type;
57 with Stand; use Stand;
58 with Sinfo; use Sinfo;
59 with Snames; use Snames;
60 with Tbuild; use Tbuild;
62 package body Sem_Ch4 is
64 -----------------------
65 -- Local Subprograms --
66 -----------------------
68 procedure Analyze_Concatenation_Rest (N : Node_Id);
69 -- Does the "rest" of the work of Analyze_Concatenation, after the left
70 -- operand has been analyzed. See Analyze_Concatenation for details.
72 procedure Analyze_Expression (N : Node_Id);
73 -- For expressions that are not names, this is just a call to analyze.
74 -- If the expression is a name, it may be a call to a parameterless
75 -- function, and if so must be converted into an explicit call node
76 -- and analyzed as such. This deproceduring must be done during the first
77 -- pass of overload resolution, because otherwise a procedure call with
78 -- overloaded actuals may fail to resolve.
80 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
81 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
82 -- is an operator name or an expanded name whose selector is an operator
83 -- name, and one possible interpretation is as a predefined operator.
85 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
86 -- If the prefix of a selected_component is overloaded, the proper
87 -- interpretation that yields a record type with the proper selector
88 -- name must be selected.
90 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
91 -- Procedure to analyze a user defined binary operator, which is resolved
92 -- like a function, but instead of a list of actuals it is presented
93 -- with the left and right operands of an operator node.
95 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
96 -- Procedure to analyze a user defined unary operator, which is resolved
97 -- like a function, but instead of a list of actuals, it is presented with
98 -- the operand of the operator node.
100 procedure Ambiguous_Operands (N : Node_Id);
101 -- for equality, membership, and comparison operators with overloaded
102 -- arguments, list possible interpretations.
104 procedure Analyze_One_Call
105 (N : Node_Id;
106 Nam : Entity_Id;
107 Report : Boolean;
108 Success : out Boolean;
109 Skip_First : Boolean := False);
110 -- Check one interpretation of an overloaded subprogram name for
111 -- compatibility with the types of the actuals in a call. If there is a
112 -- single interpretation which does not match, post error if Report is
113 -- set to True.
115 -- Nam is the entity that provides the formals against which the actuals
116 -- are checked. Nam is either the name of a subprogram, or the internal
117 -- subprogram type constructed for an access_to_subprogram. If the actuals
118 -- are compatible with Nam, then Nam is added to the list of candidate
119 -- interpretations for N, and Success is set to True.
121 -- The flag Skip_First is used when analyzing a call that was rewritten
122 -- from object notation. In this case the first actual may have to receive
123 -- an explicit dereference, depending on the first formal of the operation
124 -- being called. The caller will have verified that the object is legal
125 -- for the call. If the remaining parameters match, the first parameter
126 -- will rewritten as a dereference if needed, prior to completing analysis.
128 procedure Check_Misspelled_Selector
129 (Prefix : Entity_Id;
130 Sel : Node_Id);
131 -- Give possible misspelling diagnostic if Sel is likely to be a mis-
132 -- spelling of one of the selectors of the Prefix. This is called by
133 -- Analyze_Selected_Component after producing an invalid selector error
134 -- message.
136 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
137 -- Verify that type T is declared in scope S. Used to find interpretations
138 -- for operators given by expanded names. This is abstracted as a separate
139 -- function to handle extensions to System, where S is System, but T is
140 -- declared in the extension.
142 procedure Find_Arithmetic_Types
143 (L, R : Node_Id;
144 Op_Id : Entity_Id;
145 N : Node_Id);
146 -- L and R are the operands of an arithmetic operator. Find
147 -- consistent pairs of interpretations for L and R that have a
148 -- numeric type consistent with the semantics of the operator.
150 procedure Find_Comparison_Types
151 (L, R : Node_Id;
152 Op_Id : Entity_Id;
153 N : Node_Id);
154 -- L and R are operands of a comparison operator. Find consistent
155 -- pairs of interpretations for L and R.
157 procedure Find_Concatenation_Types
158 (L, R : Node_Id;
159 Op_Id : Entity_Id;
160 N : Node_Id);
161 -- For the four varieties of concatenation
163 procedure Find_Equality_Types
164 (L, R : Node_Id;
165 Op_Id : Entity_Id;
166 N : Node_Id);
167 -- Ditto for equality operators
169 procedure Find_Boolean_Types
170 (L, R : Node_Id;
171 Op_Id : Entity_Id;
172 N : Node_Id);
173 -- Ditto for binary logical operations
175 procedure Find_Negation_Types
176 (R : Node_Id;
177 Op_Id : Entity_Id;
178 N : Node_Id);
179 -- Find consistent interpretation for operand of negation operator
181 procedure Find_Non_Universal_Interpretations
182 (N : Node_Id;
183 R : Node_Id;
184 Op_Id : Entity_Id;
185 T1 : Entity_Id);
186 -- For equality and comparison operators, the result is always boolean,
187 -- and the legality of the operation is determined from the visibility
188 -- of the operand types. If one of the operands has a universal interpre-
189 -- tation, the legality check uses some compatible non-universal
190 -- interpretation of the other operand. N can be an operator node, or
191 -- a function call whose name is an operator designator.
193 function Find_Primitive_Operation (N : Node_Id) return Boolean;
194 -- Find candidate interpretations for the name Obj.Proc when it appears
195 -- in a subprogram renaming declaration.
197 procedure Find_Unary_Types
198 (R : Node_Id;
199 Op_Id : Entity_Id;
200 N : Node_Id);
201 -- Unary arithmetic types: plus, minus, abs
203 procedure Check_Arithmetic_Pair
204 (T1, T2 : Entity_Id;
205 Op_Id : Entity_Id;
206 N : Node_Id);
207 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
208 -- types for left and right operand. Determine whether they constitute
209 -- a valid pair for the given operator, and record the corresponding
210 -- interpretation of the operator node. The node N may be an operator
211 -- node (the usual case) or a function call whose prefix is an operator
212 -- designator. In both cases Op_Id is the operator name itself.
214 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
215 -- Give detailed information on overloaded call where none of the
216 -- interpretations match. N is the call node, Nam the designator for
217 -- the overloaded entity being called.
219 function Junk_Operand (N : Node_Id) return Boolean;
220 -- Test for an operand that is an inappropriate entity (e.g. a package
221 -- name or a label). If so, issue an error message and return True. If
222 -- the operand is not an inappropriate entity kind, return False.
224 procedure Operator_Check (N : Node_Id);
225 -- Verify that an operator has received some valid interpretation. If none
226 -- was found, determine whether a use clause would make the operation
227 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
228 -- every type compatible with the operator, even if the operator for the
229 -- type is not directly visible. The routine uses this type to emit a more
230 -- informative message.
232 function Process_Implicit_Dereference_Prefix
233 (E : Entity_Id;
234 P : Node_Id) return Entity_Id;
235 -- Called when P is the prefix of an implicit dereference, denoting an
236 -- object E. The function returns the designated type of the prefix, taking
237 -- into account that the designated type of an anonymous access type may be
238 -- a limited view, when the non-limited view is visible.
239 -- If in semantics only mode (-gnatc or generic), the function also records
240 -- that the prefix is a reference to E, if any. Normally, such a reference
241 -- is generated only when the implicit dereference is expanded into an
242 -- explicit one, but for consistency we must generate the reference when
243 -- expansion is disabled as well.
245 procedure Remove_Abstract_Operations (N : Node_Id);
246 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
247 -- operation is not a candidate interpretation.
249 function Try_Indexed_Call
250 (N : Node_Id;
251 Nam : Entity_Id;
252 Typ : Entity_Id;
253 Skip_First : Boolean) return Boolean;
254 -- If a function has defaults for all its actuals, a call to it may in fact
255 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
256 -- interpretation as an indexing, prior to analysis as a call. If both are
257 -- possible, the node is overloaded with both interpretations (same symbol
258 -- but two different types). If the call is written in prefix form, the
259 -- prefix becomes the first parameter in the call, and only the remaining
260 -- actuals must be checked for the presence of defaults.
262 function Try_Indirect_Call
263 (N : Node_Id;
264 Nam : Entity_Id;
265 Typ : Entity_Id) return Boolean;
266 -- Similarly, a function F that needs no actuals can return an access to a
267 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
268 -- the call may be overloaded with both interpretations.
270 function Try_Object_Operation (N : Node_Id) return Boolean;
271 -- Ada 2005 (AI-252): Support the object.operation notation
273 procedure wpo (T : Entity_Id);
274 pragma Warnings (Off, wpo);
275 -- Used for debugging: obtain list of primitive operations even if
276 -- type is not frozen and dispatch table is not built yet.
278 ------------------------
279 -- Ambiguous_Operands --
280 ------------------------
282 procedure Ambiguous_Operands (N : Node_Id) is
283 procedure List_Operand_Interps (Opnd : Node_Id);
285 --------------------------
286 -- List_Operand_Interps --
287 --------------------------
289 procedure List_Operand_Interps (Opnd : Node_Id) is
290 Nam : Node_Id;
291 Err : Node_Id := N;
293 begin
294 if Is_Overloaded (Opnd) then
295 if Nkind (Opnd) in N_Op then
296 Nam := Opnd;
297 elsif Nkind (Opnd) = N_Function_Call then
298 Nam := Name (Opnd);
299 else
300 return;
301 end if;
303 else
304 return;
305 end if;
307 if Opnd = Left_Opnd (N) then
308 Error_Msg_N
309 ("\left operand has the following interpretations", N);
310 else
311 Error_Msg_N
312 ("\right operand has the following interpretations", N);
313 Err := Opnd;
314 end if;
316 List_Interps (Nam, Err);
317 end List_Operand_Interps;
319 -- Start of processing for Ambiguous_Operands
321 begin
322 if Nkind (N) in N_Membership_Test then
323 Error_Msg_N ("ambiguous operands for membership", N);
325 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
326 Error_Msg_N ("ambiguous operands for equality", N);
328 else
329 Error_Msg_N ("ambiguous operands for comparison", N);
330 end if;
332 if All_Errors_Mode then
333 List_Operand_Interps (Left_Opnd (N));
334 List_Operand_Interps (Right_Opnd (N));
335 else
336 Error_Msg_N ("\use -gnatf switch for details", N);
337 end if;
338 end Ambiguous_Operands;
340 -----------------------
341 -- Analyze_Aggregate --
342 -----------------------
344 -- Most of the analysis of Aggregates requires that the type be known,
345 -- and is therefore put off until resolution.
347 procedure Analyze_Aggregate (N : Node_Id) is
348 begin
349 if No (Etype (N)) then
350 Set_Etype (N, Any_Composite);
351 end if;
352 end Analyze_Aggregate;
354 -----------------------
355 -- Analyze_Allocator --
356 -----------------------
358 procedure Analyze_Allocator (N : Node_Id) is
359 Loc : constant Source_Ptr := Sloc (N);
360 Sav_Errs : constant Nat := Serious_Errors_Detected;
361 E : Node_Id := Expression (N);
362 Acc_Type : Entity_Id;
363 Type_Id : Entity_Id;
365 begin
366 -- In accordance with H.4(7), the No_Allocators restriction only applies
367 -- to user-written allocators.
369 if Comes_From_Source (N) then
370 Check_Restriction (No_Allocators, N);
371 end if;
373 if Nkind (E) = N_Qualified_Expression then
374 Acc_Type := Create_Itype (E_Allocator_Type, N);
375 Set_Etype (Acc_Type, Acc_Type);
376 Find_Type (Subtype_Mark (E));
378 -- Analyze the qualified expression, and apply the name resolution
379 -- rule given in 4.7 (3).
381 Analyze (E);
382 Type_Id := Etype (E);
383 Set_Directly_Designated_Type (Acc_Type, Type_Id);
385 Resolve (Expression (E), Type_Id);
387 if Is_Limited_Type (Type_Id)
388 and then Comes_From_Source (N)
389 and then not In_Instance_Body
390 then
391 if not OK_For_Limited_Init (Type_Id, Expression (E)) then
392 Error_Msg_N ("initialization not allowed for limited types", N);
393 Explain_Limited_Type (Type_Id, N);
394 end if;
395 end if;
397 -- A qualified expression requires an exact match of the type,
398 -- class-wide matching is not allowed.
400 -- if Is_Class_Wide_Type (Type_Id)
401 -- and then Base_Type
402 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
403 -- then
404 -- Wrong_Type (Expression (E), Type_Id);
405 -- end if;
407 Check_Non_Static_Context (Expression (E));
409 -- We don't analyze the qualified expression itself because it's
410 -- part of the allocator
412 Set_Etype (E, Type_Id);
414 -- Case where allocator has a subtype indication
416 else
417 declare
418 Def_Id : Entity_Id;
419 Base_Typ : Entity_Id;
421 begin
422 -- If the allocator includes a N_Subtype_Indication then a
423 -- constraint is present, otherwise the node is a subtype mark.
424 -- Introduce an explicit subtype declaration into the tree
425 -- defining some anonymous subtype and rewrite the allocator to
426 -- use this subtype rather than the subtype indication.
428 -- It is important to introduce the explicit subtype declaration
429 -- so that the bounds of the subtype indication are attached to
430 -- the tree in case the allocator is inside a generic unit.
432 if Nkind (E) = N_Subtype_Indication then
434 -- A constraint is only allowed for a composite type in Ada
435 -- 95. In Ada 83, a constraint is also allowed for an
436 -- access-to-composite type, but the constraint is ignored.
438 Find_Type (Subtype_Mark (E));
439 Base_Typ := Entity (Subtype_Mark (E));
441 if Is_Elementary_Type (Base_Typ) then
442 if not (Ada_Version = Ada_83
443 and then Is_Access_Type (Base_Typ))
444 then
445 Error_Msg_N ("constraint not allowed here", E);
447 if Nkind (Constraint (E)) =
448 N_Index_Or_Discriminant_Constraint
449 then
450 Error_Msg_N -- CODEFIX
451 ("\if qualified expression was meant, " &
452 "use apostrophe", Constraint (E));
453 end if;
454 end if;
456 -- Get rid of the bogus constraint:
458 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
459 Analyze_Allocator (N);
460 return;
462 -- Ada 2005, AI-363: if the designated type has a constrained
463 -- partial view, it cannot receive a discriminant constraint,
464 -- and the allocated object is unconstrained.
466 elsif Ada_Version >= Ada_05
467 and then Has_Constrained_Partial_View (Base_Typ)
468 then
469 Error_Msg_N
470 ("constraint no allowed when type " &
471 "has a constrained partial view", Constraint (E));
472 end if;
474 if Expander_Active then
475 Def_Id :=
476 Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
478 Insert_Action (E,
479 Make_Subtype_Declaration (Loc,
480 Defining_Identifier => Def_Id,
481 Subtype_Indication => Relocate_Node (E)));
483 if Sav_Errs /= Serious_Errors_Detected
484 and then Nkind (Constraint (E)) =
485 N_Index_Or_Discriminant_Constraint
486 then
487 Error_Msg_N -- CODEFIX
488 ("if qualified expression was meant, " &
489 "use apostrophe!", Constraint (E));
490 end if;
492 E := New_Occurrence_Of (Def_Id, Loc);
493 Rewrite (Expression (N), E);
494 end if;
495 end if;
497 Type_Id := Process_Subtype (E, N);
498 Acc_Type := Create_Itype (E_Allocator_Type, N);
499 Set_Etype (Acc_Type, Acc_Type);
500 Set_Directly_Designated_Type (Acc_Type, Type_Id);
501 Check_Fully_Declared (Type_Id, N);
503 -- Ada 2005 (AI-231): If the designated type is itself an access
504 -- type that excludes null, its default initialization will
505 -- be a null object, and we can insert an unconditional raise
506 -- before the allocator.
508 if Can_Never_Be_Null (Type_Id) then
509 declare
510 Not_Null_Check : constant Node_Id :=
511 Make_Raise_Constraint_Error (Sloc (E),
512 Reason => CE_Null_Not_Allowed);
513 begin
514 if Expander_Active then
515 Insert_Action (N, Not_Null_Check);
516 Analyze (Not_Null_Check);
517 else
518 Error_Msg_N ("null value not allowed here?", E);
519 end if;
520 end;
521 end if;
523 -- Check restriction against dynamically allocated protected
524 -- objects. Note that when limited aggregates are supported,
525 -- a similar test should be applied to an allocator with a
526 -- qualified expression ???
528 if Is_Protected_Type (Type_Id) then
529 Check_Restriction (No_Protected_Type_Allocators, N);
530 end if;
532 -- Check for missing initialization. Skip this check if we already
533 -- had errors on analyzing the allocator, since in that case these
534 -- are probably cascaded errors.
536 if Is_Indefinite_Subtype (Type_Id)
537 and then Serious_Errors_Detected = Sav_Errs
538 then
539 if Is_Class_Wide_Type (Type_Id) then
540 Error_Msg_N
541 ("initialization required in class-wide allocation", N);
542 else
543 if Ada_Version < Ada_05
544 and then Is_Limited_Type (Type_Id)
545 then
546 Error_Msg_N ("unconstrained allocation not allowed", N);
548 if Is_Array_Type (Type_Id) then
549 Error_Msg_N
550 ("\constraint with array bounds required", N);
552 elsif Has_Unknown_Discriminants (Type_Id) then
553 null;
555 else pragma Assert (Has_Discriminants (Type_Id));
556 Error_Msg_N
557 ("\constraint with discriminant values required", N);
558 end if;
560 -- Limited Ada 2005 and general non-limited case
562 else
563 Error_Msg_N
564 ("uninitialized unconstrained allocation not allowed",
567 if Is_Array_Type (Type_Id) then
568 Error_Msg_N
569 ("\qualified expression or constraint with " &
570 "array bounds required", N);
572 elsif Has_Unknown_Discriminants (Type_Id) then
573 Error_Msg_N ("\qualified expression required", N);
575 else pragma Assert (Has_Discriminants (Type_Id));
576 Error_Msg_N
577 ("\qualified expression or constraint with " &
578 "discriminant values required", N);
579 end if;
580 end if;
581 end if;
582 end if;
583 end;
584 end if;
586 if Is_Abstract_Type (Type_Id) then
587 Error_Msg_N ("cannot allocate abstract object", E);
588 end if;
590 if Has_Task (Designated_Type (Acc_Type)) then
591 Check_Restriction (No_Tasking, N);
592 Check_Restriction (Max_Tasks, N);
593 Check_Restriction (No_Task_Allocators, N);
594 end if;
596 -- If the No_Streams restriction is set, check that the type of the
597 -- object is not, and does not contain, any subtype derived from
598 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
599 -- Has_Stream just for efficiency reasons. There is no point in
600 -- spending time on a Has_Stream check if the restriction is not set.
602 if Restrictions.Set (No_Streams) then
603 if Has_Stream (Designated_Type (Acc_Type)) then
604 Check_Restriction (No_Streams, N);
605 end if;
606 end if;
608 Set_Etype (N, Acc_Type);
610 if not Is_Library_Level_Entity (Acc_Type) then
611 Check_Restriction (No_Local_Allocators, N);
612 end if;
614 if Serious_Errors_Detected > Sav_Errs then
615 Set_Error_Posted (N);
616 Set_Etype (N, Any_Type);
617 end if;
618 end Analyze_Allocator;
620 ---------------------------
621 -- Analyze_Arithmetic_Op --
622 ---------------------------
624 procedure Analyze_Arithmetic_Op (N : Node_Id) is
625 L : constant Node_Id := Left_Opnd (N);
626 R : constant Node_Id := Right_Opnd (N);
627 Op_Id : Entity_Id;
629 begin
630 Candidate_Type := Empty;
631 Analyze_Expression (L);
632 Analyze_Expression (R);
634 -- If the entity is already set, the node is the instantiation of a
635 -- generic node with a non-local reference, or was manufactured by a
636 -- call to Make_Op_xxx. In either case the entity is known to be valid,
637 -- and we do not need to collect interpretations, instead we just get
638 -- the single possible interpretation.
640 Op_Id := Entity (N);
642 if Present (Op_Id) then
643 if Ekind (Op_Id) = E_Operator then
645 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
646 and then Treat_Fixed_As_Integer (N)
647 then
648 null;
649 else
650 Set_Etype (N, Any_Type);
651 Find_Arithmetic_Types (L, R, Op_Id, N);
652 end if;
654 else
655 Set_Etype (N, Any_Type);
656 Add_One_Interp (N, Op_Id, Etype (Op_Id));
657 end if;
659 -- Entity is not already set, so we do need to collect interpretations
661 else
662 Op_Id := Get_Name_Entity_Id (Chars (N));
663 Set_Etype (N, Any_Type);
665 while Present (Op_Id) loop
666 if Ekind (Op_Id) = E_Operator
667 and then Present (Next_Entity (First_Entity (Op_Id)))
668 then
669 Find_Arithmetic_Types (L, R, Op_Id, N);
671 -- The following may seem superfluous, because an operator cannot
672 -- be generic, but this ignores the cleverness of the author of
673 -- ACVC bc1013a.
675 elsif Is_Overloadable (Op_Id) then
676 Analyze_User_Defined_Binary_Op (N, Op_Id);
677 end if;
679 Op_Id := Homonym (Op_Id);
680 end loop;
681 end if;
683 Operator_Check (N);
684 end Analyze_Arithmetic_Op;
686 ------------------
687 -- Analyze_Call --
688 ------------------
690 -- Function, procedure, and entry calls are checked here. The Name in
691 -- the call may be overloaded. The actuals have been analyzed and may
692 -- themselves be overloaded. On exit from this procedure, the node N
693 -- may have zero, one or more interpretations. In the first case an
694 -- error message is produced. In the last case, the node is flagged
695 -- as overloaded and the interpretations are collected in All_Interp.
697 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
698 -- the type-checking is similar to that of other calls.
700 procedure Analyze_Call (N : Node_Id) is
701 Actuals : constant List_Id := Parameter_Associations (N);
702 Nam : Node_Id;
703 X : Interp_Index;
704 It : Interp;
705 Nam_Ent : Entity_Id;
706 Success : Boolean := False;
708 Deref : Boolean := False;
709 -- Flag indicates whether an interpretation of the prefix is a
710 -- parameterless call that returns an access_to_subprogram.
712 function Name_Denotes_Function return Boolean;
713 -- If the type of the name is an access to subprogram, this may be the
714 -- type of a name, or the return type of the function being called. If
715 -- the name is not an entity then it can denote a protected function.
716 -- Until we distinguish Etype from Return_Type, we must use this routine
717 -- to resolve the meaning of the name in the call.
719 procedure No_Interpretation;
720 -- Output error message when no valid interpretation exists
722 ---------------------------
723 -- Name_Denotes_Function --
724 ---------------------------
726 function Name_Denotes_Function return Boolean is
727 begin
728 if Is_Entity_Name (Nam) then
729 return Ekind (Entity (Nam)) = E_Function;
731 elsif Nkind (Nam) = N_Selected_Component then
732 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
734 else
735 return False;
736 end if;
737 end Name_Denotes_Function;
739 -----------------------
740 -- No_Interpretation --
741 -----------------------
743 procedure No_Interpretation is
744 L : constant Boolean := Is_List_Member (N);
745 K : constant Node_Kind := Nkind (Parent (N));
747 begin
748 -- If the node is in a list whose parent is not an expression then it
749 -- must be an attempted procedure call.
751 if L and then K not in N_Subexpr then
752 if Ekind (Entity (Nam)) = E_Generic_Procedure then
753 Error_Msg_NE
754 ("must instantiate generic procedure& before call",
755 Nam, Entity (Nam));
756 else
757 Error_Msg_N
758 ("procedure or entry name expected", Nam);
759 end if;
761 -- Check for tasking cases where only an entry call will do
763 elsif not L
764 and then Nkind_In (K, N_Entry_Call_Alternative,
765 N_Triggering_Alternative)
766 then
767 Error_Msg_N ("entry name expected", Nam);
769 -- Otherwise give general error message
771 else
772 Error_Msg_N ("invalid prefix in call", Nam);
773 end if;
774 end No_Interpretation;
776 -- Start of processing for Analyze_Call
778 begin
779 -- Initialize the type of the result of the call to the error type,
780 -- which will be reset if the type is successfully resolved.
782 Set_Etype (N, Any_Type);
784 Nam := Name (N);
786 if not Is_Overloaded (Nam) then
788 -- Only one interpretation to check
790 if Ekind (Etype (Nam)) = E_Subprogram_Type then
791 Nam_Ent := Etype (Nam);
793 -- If the prefix is an access_to_subprogram, this may be an indirect
794 -- call. This is the case if the name in the call is not an entity
795 -- name, or if it is a function name in the context of a procedure
796 -- call. In this latter case, we have a call to a parameterless
797 -- function that returns a pointer_to_procedure which is the entity
798 -- being called. Finally, F (X) may be a call to a parameterless
799 -- function that returns a pointer to a function with parameters.
801 elsif Is_Access_Type (Etype (Nam))
802 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
803 and then
804 (not Name_Denotes_Function
805 or else Nkind (N) = N_Procedure_Call_Statement
806 or else
807 (Nkind (Parent (N)) /= N_Explicit_Dereference
808 and then Is_Entity_Name (Nam)
809 and then No (First_Formal (Entity (Nam)))
810 and then Present (Actuals)))
811 then
812 Nam_Ent := Designated_Type (Etype (Nam));
813 Insert_Explicit_Dereference (Nam);
815 -- Selected component case. Simple entry or protected operation,
816 -- where the entry name is given by the selector name.
818 elsif Nkind (Nam) = N_Selected_Component then
819 Nam_Ent := Entity (Selector_Name (Nam));
821 if Ekind (Nam_Ent) /= E_Entry
822 and then Ekind (Nam_Ent) /= E_Entry_Family
823 and then Ekind (Nam_Ent) /= E_Function
824 and then Ekind (Nam_Ent) /= E_Procedure
825 then
826 Error_Msg_N ("name in call is not a callable entity", Nam);
827 Set_Etype (N, Any_Type);
828 return;
829 end if;
831 -- If the name is an Indexed component, it can be a call to a member
832 -- of an entry family. The prefix must be a selected component whose
833 -- selector is the entry. Analyze_Procedure_Call normalizes several
834 -- kinds of call into this form.
836 elsif Nkind (Nam) = N_Indexed_Component then
837 if Nkind (Prefix (Nam)) = N_Selected_Component then
838 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
839 else
840 Error_Msg_N ("name in call is not a callable entity", Nam);
841 Set_Etype (N, Any_Type);
842 return;
843 end if;
845 elsif not Is_Entity_Name (Nam) then
846 Error_Msg_N ("name in call is not a callable entity", Nam);
847 Set_Etype (N, Any_Type);
848 return;
850 else
851 Nam_Ent := Entity (Nam);
853 -- If no interpretations, give error message
855 if not Is_Overloadable (Nam_Ent) then
856 No_Interpretation;
857 return;
858 end if;
859 end if;
861 -- Operations generated for RACW stub types are called only through
862 -- dispatching, and can never be the static interpretation of a call.
864 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
865 No_Interpretation;
866 return;
867 end if;
869 Analyze_One_Call (N, Nam_Ent, True, Success);
871 -- If this is an indirect call, the return type of the access_to
872 -- subprogram may be an incomplete type. At the point of the call,
873 -- use the full type if available, and at the same time update
874 -- the return type of the access_to_subprogram.
876 if Success
877 and then Nkind (Nam) = N_Explicit_Dereference
878 and then Ekind (Etype (N)) = E_Incomplete_Type
879 and then Present (Full_View (Etype (N)))
880 then
881 Set_Etype (N, Full_View (Etype (N)));
882 Set_Etype (Nam_Ent, Etype (N));
883 end if;
885 else
886 -- An overloaded selected component must denote overloaded operations
887 -- of a concurrent type. The interpretations are attached to the
888 -- simple name of those operations.
890 if Nkind (Nam) = N_Selected_Component then
891 Nam := Selector_Name (Nam);
892 end if;
894 Get_First_Interp (Nam, X, It);
896 while Present (It.Nam) loop
897 Nam_Ent := It.Nam;
898 Deref := False;
900 -- Name may be call that returns an access to subprogram, or more
901 -- generally an overloaded expression one of whose interpretations
902 -- yields an access to subprogram. If the name is an entity, we
903 -- do not dereference, because the node is a call that returns
904 -- the access type: note difference between f(x), where the call
905 -- may return an access subprogram type, and f(x)(y), where the
906 -- type returned by the call to f is implicitly dereferenced to
907 -- analyze the outer call.
909 if Is_Access_Type (Nam_Ent) then
910 Nam_Ent := Designated_Type (Nam_Ent);
912 elsif Is_Access_Type (Etype (Nam_Ent))
913 and then
914 (not Is_Entity_Name (Nam)
915 or else Nkind (N) = N_Procedure_Call_Statement)
916 and then Ekind (Designated_Type (Etype (Nam_Ent)))
917 = E_Subprogram_Type
918 then
919 Nam_Ent := Designated_Type (Etype (Nam_Ent));
921 if Is_Entity_Name (Nam) then
922 Deref := True;
923 end if;
924 end if;
926 Analyze_One_Call (N, Nam_Ent, False, Success);
928 -- If the interpretation succeeds, mark the proper type of the
929 -- prefix (any valid candidate will do). If not, remove the
930 -- candidate interpretation. This only needs to be done for
931 -- overloaded protected operations, for other entities disambi-
932 -- guation is done directly in Resolve.
934 if Success then
935 if Deref
936 and then Nkind (Parent (N)) /= N_Explicit_Dereference
937 then
938 Set_Entity (Nam, It.Nam);
939 Insert_Explicit_Dereference (Nam);
940 Set_Etype (Nam, Nam_Ent);
942 else
943 Set_Etype (Nam, It.Typ);
944 end if;
946 elsif Nkind_In (Name (N), N_Selected_Component,
947 N_Function_Call)
948 then
949 Remove_Interp (X);
950 end if;
952 Get_Next_Interp (X, It);
953 end loop;
955 -- If the name is the result of a function call, it can only
956 -- be a call to a function returning an access to subprogram.
957 -- Insert explicit dereference.
959 if Nkind (Nam) = N_Function_Call then
960 Insert_Explicit_Dereference (Nam);
961 end if;
963 if Etype (N) = Any_Type then
965 -- None of the interpretations is compatible with the actuals
967 Diagnose_Call (N, Nam);
969 -- Special checks for uninstantiated put routines
971 if Nkind (N) = N_Procedure_Call_Statement
972 and then Is_Entity_Name (Nam)
973 and then Chars (Nam) = Name_Put
974 and then List_Length (Actuals) = 1
975 then
976 declare
977 Arg : constant Node_Id := First (Actuals);
978 Typ : Entity_Id;
980 begin
981 if Nkind (Arg) = N_Parameter_Association then
982 Typ := Etype (Explicit_Actual_Parameter (Arg));
983 else
984 Typ := Etype (Arg);
985 end if;
987 if Is_Signed_Integer_Type (Typ) then
988 Error_Msg_N
989 ("possible missing instantiation of " &
990 "'Text_'I'O.'Integer_'I'O!", Nam);
992 elsif Is_Modular_Integer_Type (Typ) then
993 Error_Msg_N
994 ("possible missing instantiation of " &
995 "'Text_'I'O.'Modular_'I'O!", Nam);
997 elsif Is_Floating_Point_Type (Typ) then
998 Error_Msg_N
999 ("possible missing instantiation of " &
1000 "'Text_'I'O.'Float_'I'O!", Nam);
1002 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1003 Error_Msg_N
1004 ("possible missing instantiation of " &
1005 "'Text_'I'O.'Fixed_'I'O!", Nam);
1007 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1008 Error_Msg_N
1009 ("possible missing instantiation of " &
1010 "'Text_'I'O.'Decimal_'I'O!", Nam);
1012 elsif Is_Enumeration_Type (Typ) then
1013 Error_Msg_N
1014 ("possible missing instantiation of " &
1015 "'Text_'I'O.'Enumeration_'I'O!", Nam);
1016 end if;
1017 end;
1018 end if;
1020 elsif not Is_Overloaded (N)
1021 and then Is_Entity_Name (Nam)
1022 then
1023 -- Resolution yields a single interpretation. Verify that the
1024 -- reference has capitalization consistent with the declaration.
1026 Set_Entity_With_Style_Check (Nam, Entity (Nam));
1027 Generate_Reference (Entity (Nam), Nam);
1029 Set_Etype (Nam, Etype (Entity (Nam)));
1030 else
1031 Remove_Abstract_Operations (N);
1032 end if;
1034 End_Interp_List;
1035 end if;
1036 end Analyze_Call;
1038 ---------------------------
1039 -- Analyze_Comparison_Op --
1040 ---------------------------
1042 procedure Analyze_Comparison_Op (N : Node_Id) is
1043 L : constant Node_Id := Left_Opnd (N);
1044 R : constant Node_Id := Right_Opnd (N);
1045 Op_Id : Entity_Id := Entity (N);
1047 begin
1048 Set_Etype (N, Any_Type);
1049 Candidate_Type := Empty;
1051 Analyze_Expression (L);
1052 Analyze_Expression (R);
1054 if Present (Op_Id) then
1055 if Ekind (Op_Id) = E_Operator then
1056 Find_Comparison_Types (L, R, Op_Id, N);
1057 else
1058 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1059 end if;
1061 if Is_Overloaded (L) then
1062 Set_Etype (L, Intersect_Types (L, R));
1063 end if;
1065 else
1066 Op_Id := Get_Name_Entity_Id (Chars (N));
1067 while Present (Op_Id) loop
1068 if Ekind (Op_Id) = E_Operator then
1069 Find_Comparison_Types (L, R, Op_Id, N);
1070 else
1071 Analyze_User_Defined_Binary_Op (N, Op_Id);
1072 end if;
1074 Op_Id := Homonym (Op_Id);
1075 end loop;
1076 end if;
1078 Operator_Check (N);
1079 end Analyze_Comparison_Op;
1081 ---------------------------
1082 -- Analyze_Concatenation --
1083 ---------------------------
1085 procedure Analyze_Concatenation (N : Node_Id) is
1087 -- We wish to avoid deep recursion, because concatenations are often
1088 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1089 -- operands nonrecursively until we find something that is not a
1090 -- concatenation (A in this case), or has already been analyzed. We
1091 -- analyze that, and then walk back up the tree following Parent
1092 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1093 -- work at each level. The Parent pointers allow us to avoid recursion,
1094 -- and thus avoid running out of memory.
1096 NN : Node_Id := N;
1097 L : Node_Id;
1099 begin
1100 Candidate_Type := Empty;
1102 -- The following code is equivalent to:
1104 -- Set_Etype (N, Any_Type);
1105 -- Analyze_Expression (Left_Opnd (N));
1106 -- Analyze_Concatenation_Rest (N);
1108 -- where the Analyze_Expression call recurses back here if the left
1109 -- operand is a concatenation.
1111 -- Walk down left operands
1113 loop
1114 Set_Etype (NN, Any_Type);
1115 L := Left_Opnd (NN);
1116 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1117 NN := L;
1118 end loop;
1120 -- Now (given the above example) NN is A&B and L is A
1122 -- First analyze L ...
1124 Analyze_Expression (L);
1126 -- ... then walk NN back up until we reach N (where we started), calling
1127 -- Analyze_Concatenation_Rest along the way.
1129 loop
1130 Analyze_Concatenation_Rest (NN);
1131 exit when NN = N;
1132 NN := Parent (NN);
1133 end loop;
1134 end Analyze_Concatenation;
1136 --------------------------------
1137 -- Analyze_Concatenation_Rest --
1138 --------------------------------
1140 -- If the only one-dimensional array type in scope is String,
1141 -- this is the resulting type of the operation. Otherwise there
1142 -- will be a concatenation operation defined for each user-defined
1143 -- one-dimensional array.
1145 procedure Analyze_Concatenation_Rest (N : Node_Id) is
1146 L : constant Node_Id := Left_Opnd (N);
1147 R : constant Node_Id := Right_Opnd (N);
1148 Op_Id : Entity_Id := Entity (N);
1149 LT : Entity_Id;
1150 RT : Entity_Id;
1152 begin
1153 Analyze_Expression (R);
1155 -- If the entity is present, the node appears in an instance, and
1156 -- denotes a predefined concatenation operation. The resulting type is
1157 -- obtained from the arguments when possible. If the arguments are
1158 -- aggregates, the array type and the concatenation type must be
1159 -- visible.
1161 if Present (Op_Id) then
1162 if Ekind (Op_Id) = E_Operator then
1164 LT := Base_Type (Etype (L));
1165 RT := Base_Type (Etype (R));
1167 if Is_Array_Type (LT)
1168 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1169 then
1170 Add_One_Interp (N, Op_Id, LT);
1172 elsif Is_Array_Type (RT)
1173 and then LT = Base_Type (Component_Type (RT))
1174 then
1175 Add_One_Interp (N, Op_Id, RT);
1177 -- If one operand is a string type or a user-defined array type,
1178 -- and the other is a literal, result is of the specific type.
1180 elsif
1181 (Root_Type (LT) = Standard_String
1182 or else Scope (LT) /= Standard_Standard)
1183 and then Etype (R) = Any_String
1184 then
1185 Add_One_Interp (N, Op_Id, LT);
1187 elsif
1188 (Root_Type (RT) = Standard_String
1189 or else Scope (RT) /= Standard_Standard)
1190 and then Etype (L) = Any_String
1191 then
1192 Add_One_Interp (N, Op_Id, RT);
1194 elsif not Is_Generic_Type (Etype (Op_Id)) then
1195 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1197 else
1198 -- Type and its operations must be visible
1200 Set_Entity (N, Empty);
1201 Analyze_Concatenation (N);
1202 end if;
1204 else
1205 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1206 end if;
1208 else
1209 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
1210 while Present (Op_Id) loop
1211 if Ekind (Op_Id) = E_Operator then
1213 -- Do not consider operators declared in dead code, they can
1214 -- not be part of the resolution.
1216 if Is_Eliminated (Op_Id) then
1217 null;
1218 else
1219 Find_Concatenation_Types (L, R, Op_Id, N);
1220 end if;
1222 else
1223 Analyze_User_Defined_Binary_Op (N, Op_Id);
1224 end if;
1226 Op_Id := Homonym (Op_Id);
1227 end loop;
1228 end if;
1230 Operator_Check (N);
1231 end Analyze_Concatenation_Rest;
1233 ------------------------------------
1234 -- Analyze_Conditional_Expression --
1235 ------------------------------------
1237 procedure Analyze_Conditional_Expression (N : Node_Id) is
1238 Condition : constant Node_Id := First (Expressions (N));
1239 Then_Expr : constant Node_Id := Next (Condition);
1240 Else_Expr : constant Node_Id := Next (Then_Expr);
1242 begin
1243 if Comes_From_Source (N) then
1244 Check_Compiler_Unit (N);
1245 end if;
1247 Analyze_Expression (Condition);
1248 Analyze_Expression (Then_Expr);
1250 if Present (Else_Expr) then
1251 Analyze_Expression (Else_Expr);
1252 end if;
1254 if not Is_Overloaded (Then_Expr) then
1255 Set_Etype (N, Etype (Then_Expr));
1256 else
1257 declare
1258 I : Interp_Index;
1259 It : Interp;
1261 begin
1262 Set_Etype (N, Any_Type);
1263 Get_First_Interp (Then_Expr, I, It);
1264 while Present (It.Nam) loop
1265 if Has_Compatible_Type (Else_Expr, It.Typ) then
1266 Add_One_Interp (N, It.Typ, It.Typ);
1267 end if;
1269 Get_Next_Interp (I, It);
1270 end loop;
1271 end;
1272 end if;
1273 end Analyze_Conditional_Expression;
1275 -------------------------
1276 -- Analyze_Equality_Op --
1277 -------------------------
1279 procedure Analyze_Equality_Op (N : Node_Id) is
1280 Loc : constant Source_Ptr := Sloc (N);
1281 L : constant Node_Id := Left_Opnd (N);
1282 R : constant Node_Id := Right_Opnd (N);
1283 Op_Id : Entity_Id;
1285 begin
1286 Set_Etype (N, Any_Type);
1287 Candidate_Type := Empty;
1289 Analyze_Expression (L);
1290 Analyze_Expression (R);
1292 -- If the entity is set, the node is a generic instance with a non-local
1293 -- reference to the predefined operator or to a user-defined function.
1294 -- It can also be an inequality that is expanded into the negation of a
1295 -- call to a user-defined equality operator.
1297 -- For the predefined case, the result is Boolean, regardless of the
1298 -- type of the operands. The operands may even be limited, if they are
1299 -- generic actuals. If they are overloaded, label the left argument with
1300 -- the common type that must be present, or with the type of the formal
1301 -- of the user-defined function.
1303 if Present (Entity (N)) then
1304 Op_Id := Entity (N);
1306 if Ekind (Op_Id) = E_Operator then
1307 Add_One_Interp (N, Op_Id, Standard_Boolean);
1308 else
1309 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1310 end if;
1312 if Is_Overloaded (L) then
1313 if Ekind (Op_Id) = E_Operator then
1314 Set_Etype (L, Intersect_Types (L, R));
1315 else
1316 Set_Etype (L, Etype (First_Formal (Op_Id)));
1317 end if;
1318 end if;
1320 else
1321 Op_Id := Get_Name_Entity_Id (Chars (N));
1322 while Present (Op_Id) loop
1323 if Ekind (Op_Id) = E_Operator then
1324 Find_Equality_Types (L, R, Op_Id, N);
1325 else
1326 Analyze_User_Defined_Binary_Op (N, Op_Id);
1327 end if;
1329 Op_Id := Homonym (Op_Id);
1330 end loop;
1331 end if;
1333 -- If there was no match, and the operator is inequality, this may
1334 -- be a case where inequality has not been made explicit, as for
1335 -- tagged types. Analyze the node as the negation of an equality
1336 -- operation. This cannot be done earlier, because before analysis
1337 -- we cannot rule out the presence of an explicit inequality.
1339 if Etype (N) = Any_Type
1340 and then Nkind (N) = N_Op_Ne
1341 then
1342 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
1343 while Present (Op_Id) loop
1344 if Ekind (Op_Id) = E_Operator then
1345 Find_Equality_Types (L, R, Op_Id, N);
1346 else
1347 Analyze_User_Defined_Binary_Op (N, Op_Id);
1348 end if;
1350 Op_Id := Homonym (Op_Id);
1351 end loop;
1353 if Etype (N) /= Any_Type then
1354 Op_Id := Entity (N);
1356 Rewrite (N,
1357 Make_Op_Not (Loc,
1358 Right_Opnd =>
1359 Make_Op_Eq (Loc,
1360 Left_Opnd => Left_Opnd (N),
1361 Right_Opnd => Right_Opnd (N))));
1363 Set_Entity (Right_Opnd (N), Op_Id);
1364 Analyze (N);
1365 end if;
1366 end if;
1368 Operator_Check (N);
1369 end Analyze_Equality_Op;
1371 ----------------------------------
1372 -- Analyze_Explicit_Dereference --
1373 ----------------------------------
1375 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1376 Loc : constant Source_Ptr := Sloc (N);
1377 P : constant Node_Id := Prefix (N);
1378 T : Entity_Id;
1379 I : Interp_Index;
1380 It : Interp;
1381 New_N : Node_Id;
1383 function Is_Function_Type return Boolean;
1384 -- Check whether node may be interpreted as an implicit function call
1386 ----------------------
1387 -- Is_Function_Type --
1388 ----------------------
1390 function Is_Function_Type return Boolean is
1391 I : Interp_Index;
1392 It : Interp;
1394 begin
1395 if not Is_Overloaded (N) then
1396 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1397 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1399 else
1400 Get_First_Interp (N, I, It);
1401 while Present (It.Nam) loop
1402 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1403 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1404 then
1405 return False;
1406 end if;
1408 Get_Next_Interp (I, It);
1409 end loop;
1411 return True;
1412 end if;
1413 end Is_Function_Type;
1415 -- Start of processing for Analyze_Explicit_Dereference
1417 begin
1418 Analyze (P);
1419 Set_Etype (N, Any_Type);
1421 -- Test for remote access to subprogram type, and if so return
1422 -- after rewriting the original tree.
1424 if Remote_AST_E_Dereference (P) then
1425 return;
1426 end if;
1428 -- Normal processing for other than remote access to subprogram type
1430 if not Is_Overloaded (P) then
1431 if Is_Access_Type (Etype (P)) then
1433 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1434 -- avoid other problems caused by the Private_Subtype and it is
1435 -- safe to go to the Base_Type because this is the same as
1436 -- converting the access value to its Base_Type.
1438 declare
1439 DT : Entity_Id := Designated_Type (Etype (P));
1441 begin
1442 if Ekind (DT) = E_Private_Subtype
1443 and then Is_For_Access_Subtype (DT)
1444 then
1445 DT := Base_Type (DT);
1446 end if;
1448 -- An explicit dereference is a legal occurrence of an
1449 -- incomplete type imported through a limited_with clause,
1450 -- if the full view is visible.
1452 if From_With_Type (DT)
1453 and then not From_With_Type (Scope (DT))
1454 and then
1455 (Is_Immediately_Visible (Scope (DT))
1456 or else
1457 (Is_Child_Unit (Scope (DT))
1458 and then Is_Visible_Child_Unit (Scope (DT))))
1459 then
1460 Set_Etype (N, Available_View (DT));
1462 else
1463 Set_Etype (N, DT);
1464 end if;
1465 end;
1467 elsif Etype (P) /= Any_Type then
1468 Error_Msg_N ("prefix of dereference must be an access type", N);
1469 return;
1470 end if;
1472 else
1473 Get_First_Interp (P, I, It);
1474 while Present (It.Nam) loop
1475 T := It.Typ;
1477 if Is_Access_Type (T) then
1478 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1479 end if;
1481 Get_Next_Interp (I, It);
1482 end loop;
1484 -- Error if no interpretation of the prefix has an access type
1486 if Etype (N) = Any_Type then
1487 Error_Msg_N
1488 ("access type required in prefix of explicit dereference", P);
1489 Set_Etype (N, Any_Type);
1490 return;
1491 end if;
1492 end if;
1494 if Is_Function_Type
1495 and then Nkind (Parent (N)) /= N_Indexed_Component
1497 and then (Nkind (Parent (N)) /= N_Function_Call
1498 or else N /= Name (Parent (N)))
1500 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1501 or else N /= Name (Parent (N)))
1503 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1504 and then (Nkind (Parent (N)) /= N_Attribute_Reference
1505 or else
1506 (Attribute_Name (Parent (N)) /= Name_Address
1507 and then
1508 Attribute_Name (Parent (N)) /= Name_Access))
1509 then
1510 -- Name is a function call with no actuals, in a context that
1511 -- requires deproceduring (including as an actual in an enclosing
1512 -- function or procedure call). There are some pathological cases
1513 -- where the prefix might include functions that return access to
1514 -- subprograms and others that return a regular type. Disambiguation
1515 -- of those has to take place in Resolve.
1517 New_N :=
1518 Make_Function_Call (Loc,
1519 Name => Make_Explicit_Dereference (Loc, P),
1520 Parameter_Associations => New_List);
1522 -- If the prefix is overloaded, remove operations that have formals,
1523 -- we know that this is a parameterless call.
1525 if Is_Overloaded (P) then
1526 Get_First_Interp (P, I, It);
1527 while Present (It.Nam) loop
1528 T := It.Typ;
1530 if No (First_Formal (Base_Type (Designated_Type (T)))) then
1531 Set_Etype (P, T);
1532 else
1533 Remove_Interp (I);
1534 end if;
1536 Get_Next_Interp (I, It);
1537 end loop;
1538 end if;
1540 Rewrite (N, New_N);
1541 Analyze (N);
1543 elsif not Is_Function_Type
1544 and then Is_Overloaded (N)
1545 then
1546 -- The prefix may include access to subprograms and other access
1547 -- types. If the context selects the interpretation that is a
1548 -- function call (not a procedure call) we cannot rewrite the node
1549 -- yet, but we include the result of the call interpretation.
1551 Get_First_Interp (N, I, It);
1552 while Present (It.Nam) loop
1553 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
1554 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1555 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
1556 then
1557 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
1558 end if;
1560 Get_Next_Interp (I, It);
1561 end loop;
1562 end if;
1564 -- A value of remote access-to-class-wide must not be dereferenced
1565 -- (RM E.2.2(16)).
1567 Validate_Remote_Access_To_Class_Wide_Type (N);
1568 end Analyze_Explicit_Dereference;
1570 ------------------------
1571 -- Analyze_Expression --
1572 ------------------------
1574 procedure Analyze_Expression (N : Node_Id) is
1575 begin
1576 Analyze (N);
1577 Check_Parameterless_Call (N);
1578 end Analyze_Expression;
1580 ------------------------------------
1581 -- Analyze_Indexed_Component_Form --
1582 ------------------------------------
1584 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
1585 P : constant Node_Id := Prefix (N);
1586 Exprs : constant List_Id := Expressions (N);
1587 Exp : Node_Id;
1588 P_T : Entity_Id;
1589 E : Node_Id;
1590 U_N : Entity_Id;
1592 procedure Process_Function_Call;
1593 -- Prefix in indexed component form is an overloadable entity,
1594 -- so the node is a function call. Reformat it as such.
1596 procedure Process_Indexed_Component;
1597 -- Prefix in indexed component form is actually an indexed component.
1598 -- This routine processes it, knowing that the prefix is already
1599 -- resolved.
1601 procedure Process_Indexed_Component_Or_Slice;
1602 -- An indexed component with a single index may designate a slice if
1603 -- the index is a subtype mark. This routine disambiguates these two
1604 -- cases by resolving the prefix to see if it is a subtype mark.
1606 procedure Process_Overloaded_Indexed_Component;
1607 -- If the prefix of an indexed component is overloaded, the proper
1608 -- interpretation is selected by the index types and the context.
1610 ---------------------------
1611 -- Process_Function_Call --
1612 ---------------------------
1614 procedure Process_Function_Call is
1615 Actual : Node_Id;
1617 begin
1618 Change_Node (N, N_Function_Call);
1619 Set_Name (N, P);
1620 Set_Parameter_Associations (N, Exprs);
1622 -- Analyze actuals prior to analyzing the call itself
1624 Actual := First (Parameter_Associations (N));
1625 while Present (Actual) loop
1626 Analyze (Actual);
1627 Check_Parameterless_Call (Actual);
1629 -- Move to next actual. Note that we use Next, not Next_Actual
1630 -- here. The reason for this is a bit subtle. If a function call
1631 -- includes named associations, the parser recognizes the node as
1632 -- a call, and it is analyzed as such. If all associations are
1633 -- positional, the parser builds an indexed_component node, and
1634 -- it is only after analysis of the prefix that the construct
1635 -- is recognized as a call, in which case Process_Function_Call
1636 -- rewrites the node and analyzes the actuals. If the list of
1637 -- actuals is malformed, the parser may leave the node as an
1638 -- indexed component (despite the presence of named associations).
1639 -- The iterator Next_Actual is equivalent to Next if the list is
1640 -- positional, but follows the normalized chain of actuals when
1641 -- named associations are present. In this case normalization has
1642 -- not taken place, and actuals remain unanalyzed, which leads to
1643 -- subsequent crashes or loops if there is an attempt to continue
1644 -- analysis of the program.
1646 Next (Actual);
1647 end loop;
1649 Analyze_Call (N);
1650 end Process_Function_Call;
1652 -------------------------------
1653 -- Process_Indexed_Component --
1654 -------------------------------
1656 procedure Process_Indexed_Component is
1657 Exp : Node_Id;
1658 Array_Type : Entity_Id;
1659 Index : Node_Id;
1660 Pent : Entity_Id := Empty;
1662 begin
1663 Exp := First (Exprs);
1665 if Is_Overloaded (P) then
1666 Process_Overloaded_Indexed_Component;
1668 else
1669 Array_Type := Etype (P);
1671 if Is_Entity_Name (P) then
1672 Pent := Entity (P);
1673 elsif Nkind (P) = N_Selected_Component
1674 and then Is_Entity_Name (Selector_Name (P))
1675 then
1676 Pent := Entity (Selector_Name (P));
1677 end if;
1679 -- Prefix must be appropriate for an array type, taking into
1680 -- account a possible implicit dereference.
1682 if Is_Access_Type (Array_Type) then
1683 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
1684 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
1685 end if;
1687 if Is_Array_Type (Array_Type) then
1688 null;
1690 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
1691 Analyze (Exp);
1692 Set_Etype (N, Any_Type);
1694 if not Has_Compatible_Type
1695 (Exp, Entry_Index_Type (Pent))
1696 then
1697 Error_Msg_N ("invalid index type in entry name", N);
1699 elsif Present (Next (Exp)) then
1700 Error_Msg_N ("too many subscripts in entry reference", N);
1702 else
1703 Set_Etype (N, Etype (P));
1704 end if;
1706 return;
1708 elsif Is_Record_Type (Array_Type)
1709 and then Remote_AST_I_Dereference (P)
1710 then
1711 return;
1713 elsif Array_Type = Any_Type then
1714 Set_Etype (N, Any_Type);
1715 return;
1717 -- Here we definitely have a bad indexing
1719 else
1720 if Nkind (Parent (N)) = N_Requeue_Statement
1721 and then Present (Pent) and then Ekind (Pent) = E_Entry
1722 then
1723 Error_Msg_N
1724 ("REQUEUE does not permit parameters", First (Exprs));
1726 elsif Is_Entity_Name (P)
1727 and then Etype (P) = Standard_Void_Type
1728 then
1729 Error_Msg_NE ("incorrect use of&", P, Entity (P));
1731 else
1732 Error_Msg_N ("array type required in indexed component", P);
1733 end if;
1735 Set_Etype (N, Any_Type);
1736 return;
1737 end if;
1739 Index := First_Index (Array_Type);
1740 while Present (Index) and then Present (Exp) loop
1741 if not Has_Compatible_Type (Exp, Etype (Index)) then
1742 Wrong_Type (Exp, Etype (Index));
1743 Set_Etype (N, Any_Type);
1744 return;
1745 end if;
1747 Next_Index (Index);
1748 Next (Exp);
1749 end loop;
1751 Set_Etype (N, Component_Type (Array_Type));
1753 if Present (Index) then
1754 Error_Msg_N
1755 ("too few subscripts in array reference", First (Exprs));
1757 elsif Present (Exp) then
1758 Error_Msg_N ("too many subscripts in array reference", Exp);
1759 end if;
1760 end if;
1761 end Process_Indexed_Component;
1763 ----------------------------------------
1764 -- Process_Indexed_Component_Or_Slice --
1765 ----------------------------------------
1767 procedure Process_Indexed_Component_Or_Slice is
1768 begin
1769 Exp := First (Exprs);
1770 while Present (Exp) loop
1771 Analyze_Expression (Exp);
1772 Next (Exp);
1773 end loop;
1775 Exp := First (Exprs);
1777 -- If one index is present, and it is a subtype name, then the
1778 -- node denotes a slice (note that the case of an explicit range
1779 -- for a slice was already built as an N_Slice node in the first
1780 -- place, so that case is not handled here).
1782 -- We use a replace rather than a rewrite here because this is one
1783 -- of the cases in which the tree built by the parser is plain wrong.
1785 if No (Next (Exp))
1786 and then Is_Entity_Name (Exp)
1787 and then Is_Type (Entity (Exp))
1788 then
1789 Replace (N,
1790 Make_Slice (Sloc (N),
1791 Prefix => P,
1792 Discrete_Range => New_Copy (Exp)));
1793 Analyze (N);
1795 -- Otherwise (more than one index present, or single index is not
1796 -- a subtype name), then we have the indexed component case.
1798 else
1799 Process_Indexed_Component;
1800 end if;
1801 end Process_Indexed_Component_Or_Slice;
1803 ------------------------------------------
1804 -- Process_Overloaded_Indexed_Component --
1805 ------------------------------------------
1807 procedure Process_Overloaded_Indexed_Component is
1808 Exp : Node_Id;
1809 I : Interp_Index;
1810 It : Interp;
1811 Typ : Entity_Id;
1812 Index : Node_Id;
1813 Found : Boolean;
1815 begin
1816 Set_Etype (N, Any_Type);
1818 Get_First_Interp (P, I, It);
1819 while Present (It.Nam) loop
1820 Typ := It.Typ;
1822 if Is_Access_Type (Typ) then
1823 Typ := Designated_Type (Typ);
1824 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
1825 end if;
1827 if Is_Array_Type (Typ) then
1829 -- Got a candidate: verify that index types are compatible
1831 Index := First_Index (Typ);
1832 Found := True;
1833 Exp := First (Exprs);
1834 while Present (Index) and then Present (Exp) loop
1835 if Has_Compatible_Type (Exp, Etype (Index)) then
1836 null;
1837 else
1838 Found := False;
1839 Remove_Interp (I);
1840 exit;
1841 end if;
1843 Next_Index (Index);
1844 Next (Exp);
1845 end loop;
1847 if Found and then No (Index) and then No (Exp) then
1848 Add_One_Interp (N,
1849 Etype (Component_Type (Typ)),
1850 Etype (Component_Type (Typ)));
1851 end if;
1852 end if;
1854 Get_Next_Interp (I, It);
1855 end loop;
1857 if Etype (N) = Any_Type then
1858 Error_Msg_N ("no legal interpretation for indexed component", N);
1859 Set_Is_Overloaded (N, False);
1860 end if;
1862 End_Interp_List;
1863 end Process_Overloaded_Indexed_Component;
1865 -- Start of processing for Analyze_Indexed_Component_Form
1867 begin
1868 -- Get name of array, function or type
1870 Analyze (P);
1872 if Nkind_In (N, N_Function_Call, N_Procedure_Call_Statement) then
1874 -- If P is an explicit dereference whose prefix is of a
1875 -- remote access-to-subprogram type, then N has already
1876 -- been rewritten as a subprogram call and analyzed.
1878 return;
1879 end if;
1881 pragma Assert (Nkind (N) = N_Indexed_Component);
1883 P_T := Base_Type (Etype (P));
1885 if Is_Entity_Name (P)
1886 or else Nkind (P) = N_Operator_Symbol
1887 then
1888 U_N := Entity (P);
1890 if Is_Type (U_N) then
1892 -- Reformat node as a type conversion
1894 E := Remove_Head (Exprs);
1896 if Present (First (Exprs)) then
1897 Error_Msg_N
1898 ("argument of type conversion must be single expression", N);
1899 end if;
1901 Change_Node (N, N_Type_Conversion);
1902 Set_Subtype_Mark (N, P);
1903 Set_Etype (N, U_N);
1904 Set_Expression (N, E);
1906 -- After changing the node, call for the specific Analysis
1907 -- routine directly, to avoid a double call to the expander.
1909 Analyze_Type_Conversion (N);
1910 return;
1911 end if;
1913 if Is_Overloadable (U_N) then
1914 Process_Function_Call;
1916 elsif Ekind (Etype (P)) = E_Subprogram_Type
1917 or else (Is_Access_Type (Etype (P))
1918 and then
1919 Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type)
1920 then
1921 -- Call to access_to-subprogram with possible implicit dereference
1923 Process_Function_Call;
1925 elsif Is_Generic_Subprogram (U_N) then
1927 -- A common beginner's (or C++ templates fan) error
1929 Error_Msg_N ("generic subprogram cannot be called", N);
1930 Set_Etype (N, Any_Type);
1931 return;
1933 else
1934 Process_Indexed_Component_Or_Slice;
1935 end if;
1937 -- If not an entity name, prefix is an expression that may denote
1938 -- an array or an access-to-subprogram.
1940 else
1941 if Ekind (P_T) = E_Subprogram_Type
1942 or else (Is_Access_Type (P_T)
1943 and then
1944 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
1945 then
1946 Process_Function_Call;
1948 elsif Nkind (P) = N_Selected_Component
1949 and then Is_Overloadable (Entity (Selector_Name (P)))
1950 then
1951 Process_Function_Call;
1953 else
1954 -- Indexed component, slice, or a call to a member of a family
1955 -- entry, which will be converted to an entry call later.
1957 Process_Indexed_Component_Or_Slice;
1958 end if;
1959 end if;
1960 end Analyze_Indexed_Component_Form;
1962 ------------------------
1963 -- Analyze_Logical_Op --
1964 ------------------------
1966 procedure Analyze_Logical_Op (N : Node_Id) is
1967 L : constant Node_Id := Left_Opnd (N);
1968 R : constant Node_Id := Right_Opnd (N);
1969 Op_Id : Entity_Id := Entity (N);
1971 begin
1972 Set_Etype (N, Any_Type);
1973 Candidate_Type := Empty;
1975 Analyze_Expression (L);
1976 Analyze_Expression (R);
1978 if Present (Op_Id) then
1980 if Ekind (Op_Id) = E_Operator then
1981 Find_Boolean_Types (L, R, Op_Id, N);
1982 else
1983 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1984 end if;
1986 else
1987 Op_Id := Get_Name_Entity_Id (Chars (N));
1988 while Present (Op_Id) loop
1989 if Ekind (Op_Id) = E_Operator then
1990 Find_Boolean_Types (L, R, Op_Id, N);
1991 else
1992 Analyze_User_Defined_Binary_Op (N, Op_Id);
1993 end if;
1995 Op_Id := Homonym (Op_Id);
1996 end loop;
1997 end if;
1999 Operator_Check (N);
2000 end Analyze_Logical_Op;
2002 ---------------------------
2003 -- Analyze_Membership_Op --
2004 ---------------------------
2006 procedure Analyze_Membership_Op (N : Node_Id) is
2007 L : constant Node_Id := Left_Opnd (N);
2008 R : constant Node_Id := Right_Opnd (N);
2010 Index : Interp_Index;
2011 It : Interp;
2012 Found : Boolean := False;
2013 I_F : Interp_Index;
2014 T_F : Entity_Id;
2016 procedure Try_One_Interp (T1 : Entity_Id);
2017 -- Routine to try one proposed interpretation. Note that the context
2018 -- of the operation plays no role in resolving the arguments, so that
2019 -- if there is more than one interpretation of the operands that is
2020 -- compatible with a membership test, the operation is ambiguous.
2022 --------------------
2023 -- Try_One_Interp --
2024 --------------------
2026 procedure Try_One_Interp (T1 : Entity_Id) is
2027 begin
2028 if Has_Compatible_Type (R, T1) then
2029 if Found
2030 and then Base_Type (T1) /= Base_Type (T_F)
2031 then
2032 It := Disambiguate (L, I_F, Index, Any_Type);
2034 if It = No_Interp then
2035 Ambiguous_Operands (N);
2036 Set_Etype (L, Any_Type);
2037 return;
2039 else
2040 T_F := It.Typ;
2041 end if;
2043 else
2044 Found := True;
2045 T_F := T1;
2046 I_F := Index;
2047 end if;
2049 Set_Etype (L, T_F);
2050 end if;
2051 end Try_One_Interp;
2053 procedure Analyze_Set_Membership;
2054 -- If a set of alternatives is present, analyze each and find the
2055 -- common type to which they must all resolve.
2057 ----------------------------
2058 -- Analyze_Set_Membership --
2059 ----------------------------
2061 procedure Analyze_Set_Membership is
2062 Alt : Node_Id;
2063 Index : Interp_Index;
2064 It : Interp;
2065 Candidate_Interps : Node_Id;
2066 Common_Type : Entity_Id := Empty;
2068 begin
2069 Analyze (L);
2070 Candidate_Interps := L;
2072 if not Is_Overloaded (L) then
2073 Common_Type := Etype (L);
2075 Alt := First (Alternatives (N));
2076 while Present (Alt) loop
2077 Analyze (Alt);
2079 if not Has_Compatible_Type (Alt, Common_Type) then
2080 Wrong_Type (Alt, Common_Type);
2081 end if;
2083 Next (Alt);
2084 end loop;
2086 else
2087 Alt := First (Alternatives (N));
2088 while Present (Alt) loop
2089 Analyze (Alt);
2090 if not Is_Overloaded (Alt) then
2091 Common_Type := Etype (Alt);
2093 else
2094 Get_First_Interp (Alt, Index, It);
2095 while Present (It.Typ) loop
2096 if not
2097 Has_Compatible_Type (Candidate_Interps, It.Typ)
2098 then
2099 Remove_Interp (Index);
2100 end if;
2102 Get_Next_Interp (Index, It);
2103 end loop;
2105 Get_First_Interp (Alt, Index, It);
2107 if No (It.Typ) then
2108 Error_Msg_N ("alternative has no legal type", Alt);
2109 return;
2110 end if;
2112 -- If alternative is not overloaded, we have a unique type
2113 -- for all of them.
2115 Set_Etype (Alt, It.Typ);
2116 Get_Next_Interp (Index, It);
2118 if No (It.Typ) then
2119 Set_Is_Overloaded (Alt, False);
2120 Common_Type := Etype (Alt);
2121 end if;
2123 Candidate_Interps := Alt;
2124 end if;
2126 Next (Alt);
2127 end loop;
2128 end if;
2130 Set_Etype (N, Standard_Boolean);
2132 if Present (Common_Type) then
2133 Set_Etype (L, Common_Type);
2134 Set_Is_Overloaded (L, False);
2136 else
2137 Error_Msg_N ("cannot resolve membership operation", N);
2138 end if;
2139 end Analyze_Set_Membership;
2141 -- Start of processing for Analyze_Membership_Op
2143 begin
2144 Analyze_Expression (L);
2146 if No (R)
2147 and then Extensions_Allowed
2148 then
2149 Analyze_Set_Membership;
2150 return;
2151 end if;
2153 if Nkind (R) = N_Range
2154 or else (Nkind (R) = N_Attribute_Reference
2155 and then Attribute_Name (R) = Name_Range)
2156 then
2157 Analyze (R);
2159 if not Is_Overloaded (L) then
2160 Try_One_Interp (Etype (L));
2162 else
2163 Get_First_Interp (L, Index, It);
2164 while Present (It.Typ) loop
2165 Try_One_Interp (It.Typ);
2166 Get_Next_Interp (Index, It);
2167 end loop;
2168 end if;
2170 -- If not a range, it can only be a subtype mark, or else there
2171 -- is a more basic error, to be diagnosed in Find_Type.
2173 else
2174 Find_Type (R);
2176 if Is_Entity_Name (R) then
2177 Check_Fully_Declared (Entity (R), R);
2178 end if;
2179 end if;
2181 -- Compatibility between expression and subtype mark or range is
2182 -- checked during resolution. The result of the operation is Boolean
2183 -- in any case.
2185 Set_Etype (N, Standard_Boolean);
2187 if Comes_From_Source (N)
2188 and then Present (Right_Opnd (N))
2189 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2190 then
2191 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2192 end if;
2193 end Analyze_Membership_Op;
2195 ----------------------
2196 -- Analyze_Negation --
2197 ----------------------
2199 procedure Analyze_Negation (N : Node_Id) is
2200 R : constant Node_Id := Right_Opnd (N);
2201 Op_Id : Entity_Id := Entity (N);
2203 begin
2204 Set_Etype (N, Any_Type);
2205 Candidate_Type := Empty;
2207 Analyze_Expression (R);
2209 if Present (Op_Id) then
2210 if Ekind (Op_Id) = E_Operator then
2211 Find_Negation_Types (R, Op_Id, N);
2212 else
2213 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2214 end if;
2216 else
2217 Op_Id := Get_Name_Entity_Id (Chars (N));
2218 while Present (Op_Id) loop
2219 if Ekind (Op_Id) = E_Operator then
2220 Find_Negation_Types (R, Op_Id, N);
2221 else
2222 Analyze_User_Defined_Unary_Op (N, Op_Id);
2223 end if;
2225 Op_Id := Homonym (Op_Id);
2226 end loop;
2227 end if;
2229 Operator_Check (N);
2230 end Analyze_Negation;
2232 ------------------
2233 -- Analyze_Null --
2234 ------------------
2236 procedure Analyze_Null (N : Node_Id) is
2237 begin
2238 Set_Etype (N, Any_Access);
2239 end Analyze_Null;
2241 ----------------------
2242 -- Analyze_One_Call --
2243 ----------------------
2245 procedure Analyze_One_Call
2246 (N : Node_Id;
2247 Nam : Entity_Id;
2248 Report : Boolean;
2249 Success : out Boolean;
2250 Skip_First : Boolean := False)
2252 Actuals : constant List_Id := Parameter_Associations (N);
2253 Prev_T : constant Entity_Id := Etype (N);
2255 Must_Skip : constant Boolean := Skip_First
2256 or else Nkind (Original_Node (N)) = N_Selected_Component
2257 or else
2258 (Nkind (Original_Node (N)) = N_Indexed_Component
2259 and then Nkind (Prefix (Original_Node (N)))
2260 = N_Selected_Component);
2261 -- The first formal must be omitted from the match when trying to find
2262 -- a primitive operation that is a possible interpretation, and also
2263 -- after the call has been rewritten, because the corresponding actual
2264 -- is already known to be compatible, and because this may be an
2265 -- indexing of a call with default parameters.
2267 Formal : Entity_Id;
2268 Actual : Node_Id;
2269 Is_Indexed : Boolean := False;
2270 Is_Indirect : Boolean := False;
2271 Subp_Type : constant Entity_Id := Etype (Nam);
2272 Norm_OK : Boolean;
2274 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
2275 -- There may be a user-defined operator that hides the current
2276 -- interpretation. We must check for this independently of the
2277 -- analysis of the call with the user-defined operation, because
2278 -- the parameter names may be wrong and yet the hiding takes place.
2279 -- This fixes a problem with ACATS test B34014O.
2281 -- When the type Address is a visible integer type, and the DEC
2282 -- system extension is visible, the predefined operator may be
2283 -- hidden as well, by one of the address operations in auxdec.
2284 -- Finally, The abstract operations on address do not hide the
2285 -- predefined operator (this is the purpose of making them abstract).
2287 procedure Indicate_Name_And_Type;
2288 -- If candidate interpretation matches, indicate name and type of
2289 -- result on call node.
2291 ----------------------------
2292 -- Indicate_Name_And_Type --
2293 ----------------------------
2295 procedure Indicate_Name_And_Type is
2296 begin
2297 Add_One_Interp (N, Nam, Etype (Nam));
2298 Success := True;
2300 -- If the prefix of the call is a name, indicate the entity
2301 -- being called. If it is not a name, it is an expression that
2302 -- denotes an access to subprogram or else an entry or family. In
2303 -- the latter case, the name is a selected component, and the entity
2304 -- being called is noted on the selector.
2306 if not Is_Type (Nam) then
2307 if Is_Entity_Name (Name (N))
2308 or else Nkind (Name (N)) = N_Operator_Symbol
2309 then
2310 Set_Entity (Name (N), Nam);
2312 elsif Nkind (Name (N)) = N_Selected_Component then
2313 Set_Entity (Selector_Name (Name (N)), Nam);
2314 end if;
2315 end if;
2317 if Debug_Flag_E and not Report then
2318 Write_Str (" Overloaded call ");
2319 Write_Int (Int (N));
2320 Write_Str (" compatible with ");
2321 Write_Int (Int (Nam));
2322 Write_Eol;
2323 end if;
2324 end Indicate_Name_And_Type;
2326 ------------------------
2327 -- Operator_Hidden_By --
2328 ------------------------
2330 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
2331 Act1 : constant Node_Id := First_Actual (N);
2332 Act2 : constant Node_Id := Next_Actual (Act1);
2333 Form1 : constant Entity_Id := First_Formal (Fun);
2334 Form2 : constant Entity_Id := Next_Formal (Form1);
2336 begin
2337 if Ekind (Fun) /= E_Function
2338 or else Is_Abstract_Subprogram (Fun)
2339 then
2340 return False;
2342 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
2343 return False;
2345 elsif Present (Form2) then
2347 No (Act2) or else not Has_Compatible_Type (Act2, Etype (Form2))
2348 then
2349 return False;
2350 end if;
2352 elsif Present (Act2) then
2353 return False;
2354 end if;
2356 -- Now we know that the arity of the operator matches the function,
2357 -- and the function call is a valid interpretation. The function
2358 -- hides the operator if it has the right signature, or if one of
2359 -- its operands is a non-abstract operation on Address when this is
2360 -- a visible integer type.
2362 return Hides_Op (Fun, Nam)
2363 or else Is_Descendent_Of_Address (Etype (Form1))
2364 or else
2365 (Present (Form2)
2366 and then Is_Descendent_Of_Address (Etype (Form2)));
2367 end Operator_Hidden_By;
2369 -- Start of processing for Analyze_One_Call
2371 begin
2372 Success := False;
2374 -- If the subprogram has no formals or if all the formals have defaults,
2375 -- and the return type is an array type, the node may denote an indexing
2376 -- of the result of a parameterless call. In Ada 2005, the subprogram
2377 -- may have one non-defaulted formal, and the call may have been written
2378 -- in prefix notation, so that the rebuilt parameter list has more than
2379 -- one actual.
2381 if not Is_Overloadable (Nam)
2382 and then Ekind (Nam) /= E_Subprogram_Type
2383 and then Ekind (Nam) /= E_Entry_Family
2384 then
2385 return;
2386 end if;
2388 -- An indexing requires at least one actual
2390 if not Is_Empty_List (Actuals)
2391 and then
2392 (Needs_No_Actuals (Nam)
2393 or else
2394 (Needs_One_Actual (Nam)
2395 and then Present (Next_Actual (First (Actuals)))))
2396 then
2397 if Is_Array_Type (Subp_Type) then
2398 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
2400 elsif Is_Access_Type (Subp_Type)
2401 and then Is_Array_Type (Designated_Type (Subp_Type))
2402 then
2403 Is_Indexed :=
2404 Try_Indexed_Call
2405 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
2407 -- The prefix can also be a parameterless function that returns an
2408 -- access to subprogram, in which case this is an indirect call.
2409 -- If this succeeds, an explicit dereference is added later on,
2410 -- in Analyze_Call or Resolve_Call.
2412 elsif Is_Access_Type (Subp_Type)
2413 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
2414 then
2415 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
2416 end if;
2418 end if;
2420 -- If the call has been transformed into a slice, it is of the form
2421 -- F (Subtype) where F is parameterless. The node has been rewritten in
2422 -- Try_Indexed_Call and there is nothing else to do.
2424 if Is_Indexed
2425 and then Nkind (N) = N_Slice
2426 then
2427 return;
2428 end if;
2430 Normalize_Actuals
2431 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
2433 if not Norm_OK then
2435 -- If an indirect call is a possible interpretation, indicate
2436 -- success to the caller.
2438 if Is_Indirect then
2439 Success := True;
2440 return;
2442 -- Mismatch in number or names of parameters
2444 elsif Debug_Flag_E then
2445 Write_Str (" normalization fails in call ");
2446 Write_Int (Int (N));
2447 Write_Str (" with subprogram ");
2448 Write_Int (Int (Nam));
2449 Write_Eol;
2450 end if;
2452 -- If the context expects a function call, discard any interpretation
2453 -- that is a procedure. If the node is not overloaded, leave as is for
2454 -- better error reporting when type mismatch is found.
2456 elsif Nkind (N) = N_Function_Call
2457 and then Is_Overloaded (Name (N))
2458 and then Ekind (Nam) = E_Procedure
2459 then
2460 return;
2462 -- Ditto for function calls in a procedure context
2464 elsif Nkind (N) = N_Procedure_Call_Statement
2465 and then Is_Overloaded (Name (N))
2466 and then Etype (Nam) /= Standard_Void_Type
2467 then
2468 return;
2470 elsif No (Actuals) then
2472 -- If Normalize succeeds, then there are default parameters for
2473 -- all formals.
2475 Indicate_Name_And_Type;
2477 elsif Ekind (Nam) = E_Operator then
2478 if Nkind (N) = N_Procedure_Call_Statement then
2479 return;
2480 end if;
2482 -- This can occur when the prefix of the call is an operator
2483 -- name or an expanded name whose selector is an operator name.
2485 Analyze_Operator_Call (N, Nam);
2487 if Etype (N) /= Prev_T then
2489 -- Check that operator is not hidden by a function interpretation
2491 if Is_Overloaded (Name (N)) then
2492 declare
2493 I : Interp_Index;
2494 It : Interp;
2496 begin
2497 Get_First_Interp (Name (N), I, It);
2498 while Present (It.Nam) loop
2499 if Operator_Hidden_By (It.Nam) then
2500 Set_Etype (N, Prev_T);
2501 return;
2502 end if;
2504 Get_Next_Interp (I, It);
2505 end loop;
2506 end;
2507 end if;
2509 -- If operator matches formals, record its name on the call.
2510 -- If the operator is overloaded, Resolve will select the
2511 -- correct one from the list of interpretations. The call
2512 -- node itself carries the first candidate.
2514 Set_Entity (Name (N), Nam);
2515 Success := True;
2517 elsif Report and then Etype (N) = Any_Type then
2518 Error_Msg_N ("incompatible arguments for operator", N);
2519 end if;
2521 else
2522 -- Normalize_Actuals has chained the named associations in the
2523 -- correct order of the formals.
2525 Actual := First_Actual (N);
2526 Formal := First_Formal (Nam);
2528 -- If we are analyzing a call rewritten from object notation,
2529 -- skip first actual, which may be rewritten later as an
2530 -- explicit dereference.
2532 if Must_Skip then
2533 Next_Actual (Actual);
2534 Next_Formal (Formal);
2535 end if;
2537 while Present (Actual) and then Present (Formal) loop
2538 if Nkind (Parent (Actual)) /= N_Parameter_Association
2539 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
2540 then
2541 -- The actual can be compatible with the formal, but we must
2542 -- also check that the context is not an address type that is
2543 -- visibly an integer type, as is the case in VMS_64. In this
2544 -- case the use of literals is illegal, except in the body of
2545 -- descendents of system, where arithmetic operations on
2546 -- address are of course used.
2548 if Has_Compatible_Type (Actual, Etype (Formal))
2549 and then
2550 (Etype (Actual) /= Universal_Integer
2551 or else not Is_Descendent_Of_Address (Etype (Formal))
2552 or else
2553 Is_Predefined_File_Name
2554 (Unit_File_Name (Get_Source_Unit (N))))
2555 then
2556 Next_Actual (Actual);
2557 Next_Formal (Formal);
2559 else
2560 if Debug_Flag_E then
2561 Write_Str (" type checking fails in call ");
2562 Write_Int (Int (N));
2563 Write_Str (" with formal ");
2564 Write_Int (Int (Formal));
2565 Write_Str (" in subprogram ");
2566 Write_Int (Int (Nam));
2567 Write_Eol;
2568 end if;
2570 if Report and not Is_Indexed and not Is_Indirect then
2572 -- Ada 2005 (AI-251): Complete the error notification
2573 -- to help new Ada 2005 users.
2575 if Is_Class_Wide_Type (Etype (Formal))
2576 and then Is_Interface (Etype (Etype (Formal)))
2577 and then not Interface_Present_In_Ancestor
2578 (Typ => Etype (Actual),
2579 Iface => Etype (Etype (Formal)))
2580 then
2581 Error_Msg_NE
2582 ("(Ada 2005) does not implement interface }",
2583 Actual, Etype (Etype (Formal)));
2584 end if;
2586 Wrong_Type (Actual, Etype (Formal));
2588 if Nkind (Actual) = N_Op_Eq
2589 and then Nkind (Left_Opnd (Actual)) = N_Identifier
2590 then
2591 Formal := First_Formal (Nam);
2592 while Present (Formal) loop
2593 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
2594 Error_Msg_N -- CODEFIX
2595 ("possible misspelling of `='>`!", Actual);
2596 exit;
2597 end if;
2599 Next_Formal (Formal);
2600 end loop;
2601 end if;
2603 if All_Errors_Mode then
2604 Error_Msg_Sloc := Sloc (Nam);
2606 if Is_Overloadable (Nam)
2607 and then Present (Alias (Nam))
2608 and then not Comes_From_Source (Nam)
2609 then
2610 Error_Msg_NE
2611 ("\\ =='> in call to inherited operation & #!",
2612 Actual, Nam);
2614 elsif Ekind (Nam) = E_Subprogram_Type then
2615 declare
2616 Access_To_Subprogram_Typ :
2617 constant Entity_Id :=
2618 Defining_Identifier
2619 (Associated_Node_For_Itype (Nam));
2620 begin
2621 Error_Msg_NE (
2622 "\\ =='> in call to dereference of &#!",
2623 Actual, Access_To_Subprogram_Typ);
2624 end;
2626 else
2627 Error_Msg_NE
2628 ("\\ =='> in call to &#!", Actual, Nam);
2630 end if;
2631 end if;
2632 end if;
2634 return;
2635 end if;
2637 else
2638 -- Normalize_Actuals has verified that a default value exists
2639 -- for this formal. Current actual names a subsequent formal.
2641 Next_Formal (Formal);
2642 end if;
2643 end loop;
2645 -- On exit, all actuals match
2647 Indicate_Name_And_Type;
2648 end if;
2649 end Analyze_One_Call;
2651 ---------------------------
2652 -- Analyze_Operator_Call --
2653 ---------------------------
2655 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
2656 Op_Name : constant Name_Id := Chars (Op_Id);
2657 Act1 : constant Node_Id := First_Actual (N);
2658 Act2 : constant Node_Id := Next_Actual (Act1);
2660 begin
2661 -- Binary operator case
2663 if Present (Act2) then
2665 -- If more than two operands, then not binary operator after all
2667 if Present (Next_Actual (Act2)) then
2668 return;
2670 elsif Op_Name = Name_Op_Add
2671 or else Op_Name = Name_Op_Subtract
2672 or else Op_Name = Name_Op_Multiply
2673 or else Op_Name = Name_Op_Divide
2674 or else Op_Name = Name_Op_Mod
2675 or else Op_Name = Name_Op_Rem
2676 or else Op_Name = Name_Op_Expon
2677 then
2678 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
2680 elsif Op_Name = Name_Op_And
2681 or else Op_Name = Name_Op_Or
2682 or else Op_Name = Name_Op_Xor
2683 then
2684 Find_Boolean_Types (Act1, Act2, Op_Id, N);
2686 elsif Op_Name = Name_Op_Lt
2687 or else Op_Name = Name_Op_Le
2688 or else Op_Name = Name_Op_Gt
2689 or else Op_Name = Name_Op_Ge
2690 then
2691 Find_Comparison_Types (Act1, Act2, Op_Id, N);
2693 elsif Op_Name = Name_Op_Eq
2694 or else Op_Name = Name_Op_Ne
2695 then
2696 Find_Equality_Types (Act1, Act2, Op_Id, N);
2698 elsif Op_Name = Name_Op_Concat then
2699 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
2701 -- Is this else null correct, or should it be an abort???
2703 else
2704 null;
2705 end if;
2707 -- Unary operator case
2709 else
2710 if Op_Name = Name_Op_Subtract or else
2711 Op_Name = Name_Op_Add or else
2712 Op_Name = Name_Op_Abs
2713 then
2714 Find_Unary_Types (Act1, Op_Id, N);
2716 elsif
2717 Op_Name = Name_Op_Not
2718 then
2719 Find_Negation_Types (Act1, Op_Id, N);
2721 -- Is this else null correct, or should it be an abort???
2723 else
2724 null;
2725 end if;
2726 end if;
2727 end Analyze_Operator_Call;
2729 -------------------------------------------
2730 -- Analyze_Overloaded_Selected_Component --
2731 -------------------------------------------
2733 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
2734 Nam : constant Node_Id := Prefix (N);
2735 Sel : constant Node_Id := Selector_Name (N);
2736 Comp : Entity_Id;
2737 I : Interp_Index;
2738 It : Interp;
2739 T : Entity_Id;
2741 begin
2742 Set_Etype (Sel, Any_Type);
2744 Get_First_Interp (Nam, I, It);
2745 while Present (It.Typ) loop
2746 if Is_Access_Type (It.Typ) then
2747 T := Designated_Type (It.Typ);
2748 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
2749 else
2750 T := It.Typ;
2751 end if;
2753 if Is_Record_Type (T) then
2755 -- If the prefix is a class-wide type, the visible components are
2756 -- those of the base type.
2758 if Is_Class_Wide_Type (T) then
2759 T := Etype (T);
2760 end if;
2762 Comp := First_Entity (T);
2763 while Present (Comp) loop
2764 if Chars (Comp) = Chars (Sel)
2765 and then Is_Visible_Component (Comp)
2766 then
2768 -- AI05-105: if the context is an object renaming with
2769 -- an anonymous access type, the expected type of the
2770 -- object must be anonymous. This is a name resolution rule.
2772 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
2773 or else No (Access_Definition (Parent (N)))
2774 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
2775 or else
2776 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
2777 then
2778 Set_Entity (Sel, Comp);
2779 Set_Etype (Sel, Etype (Comp));
2780 Add_One_Interp (N, Etype (Comp), Etype (Comp));
2782 -- This also specifies a candidate to resolve the name.
2783 -- Further overloading will be resolved from context.
2784 -- The selector name itself does not carry overloading
2785 -- information.
2787 Set_Etype (Nam, It.Typ);
2789 else
2790 -- Named access type in the context of a renaming
2791 -- declaration with an access definition. Remove
2792 -- inapplicable candidate.
2794 Remove_Interp (I);
2795 end if;
2796 end if;
2798 Next_Entity (Comp);
2799 end loop;
2801 elsif Is_Concurrent_Type (T) then
2802 Comp := First_Entity (T);
2803 while Present (Comp)
2804 and then Comp /= First_Private_Entity (T)
2805 loop
2806 if Chars (Comp) = Chars (Sel) then
2807 if Is_Overloadable (Comp) then
2808 Add_One_Interp (Sel, Comp, Etype (Comp));
2809 else
2810 Set_Entity_With_Style_Check (Sel, Comp);
2811 Generate_Reference (Comp, Sel);
2812 end if;
2814 Set_Etype (Sel, Etype (Comp));
2815 Set_Etype (N, Etype (Comp));
2816 Set_Etype (Nam, It.Typ);
2818 -- For access type case, introduce explicit dereference for
2819 -- more uniform treatment of entry calls. Do this only once
2820 -- if several interpretations yield an access type.
2822 if Is_Access_Type (Etype (Nam))
2823 and then Nkind (Nam) /= N_Explicit_Dereference
2824 then
2825 Insert_Explicit_Dereference (Nam);
2826 Error_Msg_NW
2827 (Warn_On_Dereference, "?implicit dereference", N);
2828 end if;
2829 end if;
2831 Next_Entity (Comp);
2832 end loop;
2834 Set_Is_Overloaded (N, Is_Overloaded (Sel));
2835 end if;
2837 Get_Next_Interp (I, It);
2838 end loop;
2840 if Etype (N) = Any_Type
2841 and then not Try_Object_Operation (N)
2842 then
2843 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
2844 Set_Entity (Sel, Any_Id);
2845 Set_Etype (Sel, Any_Type);
2846 end if;
2847 end Analyze_Overloaded_Selected_Component;
2849 ----------------------------------
2850 -- Analyze_Qualified_Expression --
2851 ----------------------------------
2853 procedure Analyze_Qualified_Expression (N : Node_Id) is
2854 Mark : constant Entity_Id := Subtype_Mark (N);
2855 Expr : constant Node_Id := Expression (N);
2856 I : Interp_Index;
2857 It : Interp;
2858 T : Entity_Id;
2860 begin
2861 Analyze_Expression (Expr);
2863 Set_Etype (N, Any_Type);
2864 Find_Type (Mark);
2865 T := Entity (Mark);
2866 Set_Etype (N, T);
2868 if T = Any_Type then
2869 return;
2870 end if;
2872 Check_Fully_Declared (T, N);
2874 -- If expected type is class-wide, check for exact match before
2875 -- expansion, because if the expression is a dispatching call it
2876 -- may be rewritten as explicit dereference with class-wide result.
2877 -- If expression is overloaded, retain only interpretations that
2878 -- will yield exact matches.
2880 if Is_Class_Wide_Type (T) then
2881 if not Is_Overloaded (Expr) then
2882 if Base_Type (Etype (Expr)) /= Base_Type (T) then
2883 if Nkind (Expr) = N_Aggregate then
2884 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
2885 else
2886 Wrong_Type (Expr, T);
2887 end if;
2888 end if;
2890 else
2891 Get_First_Interp (Expr, I, It);
2893 while Present (It.Nam) loop
2894 if Base_Type (It.Typ) /= Base_Type (T) then
2895 Remove_Interp (I);
2896 end if;
2898 Get_Next_Interp (I, It);
2899 end loop;
2900 end if;
2901 end if;
2903 Set_Etype (N, T);
2904 end Analyze_Qualified_Expression;
2906 -------------------
2907 -- Analyze_Range --
2908 -------------------
2910 procedure Analyze_Range (N : Node_Id) is
2911 L : constant Node_Id := Low_Bound (N);
2912 H : constant Node_Id := High_Bound (N);
2913 I1, I2 : Interp_Index;
2914 It1, It2 : Interp;
2916 procedure Check_Common_Type (T1, T2 : Entity_Id);
2917 -- Verify the compatibility of two types, and choose the
2918 -- non universal one if the other is universal.
2920 procedure Check_High_Bound (T : Entity_Id);
2921 -- Test one interpretation of the low bound against all those
2922 -- of the high bound.
2924 procedure Check_Universal_Expression (N : Node_Id);
2925 -- In Ada83, reject bounds of a universal range that are not
2926 -- literals or entity names.
2928 -----------------------
2929 -- Check_Common_Type --
2930 -----------------------
2932 procedure Check_Common_Type (T1, T2 : Entity_Id) is
2933 begin
2934 if Covers (T1 => T1, T2 => T2)
2935 or else
2936 Covers (T1 => T2, T2 => T1)
2937 then
2938 if T1 = Universal_Integer
2939 or else T1 = Universal_Real
2940 or else T1 = Any_Character
2941 then
2942 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
2944 elsif T1 = T2 then
2945 Add_One_Interp (N, T1, T1);
2947 else
2948 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
2949 end if;
2950 end if;
2951 end Check_Common_Type;
2953 ----------------------
2954 -- Check_High_Bound --
2955 ----------------------
2957 procedure Check_High_Bound (T : Entity_Id) is
2958 begin
2959 if not Is_Overloaded (H) then
2960 Check_Common_Type (T, Etype (H));
2961 else
2962 Get_First_Interp (H, I2, It2);
2963 while Present (It2.Typ) loop
2964 Check_Common_Type (T, It2.Typ);
2965 Get_Next_Interp (I2, It2);
2966 end loop;
2967 end if;
2968 end Check_High_Bound;
2970 -----------------------------
2971 -- Is_Universal_Expression --
2972 -----------------------------
2974 procedure Check_Universal_Expression (N : Node_Id) is
2975 begin
2976 if Etype (N) = Universal_Integer
2977 and then Nkind (N) /= N_Integer_Literal
2978 and then not Is_Entity_Name (N)
2979 and then Nkind (N) /= N_Attribute_Reference
2980 then
2981 Error_Msg_N ("illegal bound in discrete range", N);
2982 end if;
2983 end Check_Universal_Expression;
2985 -- Start of processing for Analyze_Range
2987 begin
2988 Set_Etype (N, Any_Type);
2989 Analyze_Expression (L);
2990 Analyze_Expression (H);
2992 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
2993 return;
2995 else
2996 if not Is_Overloaded (L) then
2997 Check_High_Bound (Etype (L));
2998 else
2999 Get_First_Interp (L, I1, It1);
3000 while Present (It1.Typ) loop
3001 Check_High_Bound (It1.Typ);
3002 Get_Next_Interp (I1, It1);
3003 end loop;
3004 end if;
3006 -- If result is Any_Type, then we did not find a compatible pair
3008 if Etype (N) = Any_Type then
3009 Error_Msg_N ("incompatible types in range ", N);
3010 end if;
3011 end if;
3013 if Ada_Version = Ada_83
3014 and then
3015 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
3016 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
3017 then
3018 Check_Universal_Expression (L);
3019 Check_Universal_Expression (H);
3020 end if;
3021 end Analyze_Range;
3023 -----------------------
3024 -- Analyze_Reference --
3025 -----------------------
3027 procedure Analyze_Reference (N : Node_Id) is
3028 P : constant Node_Id := Prefix (N);
3029 E : Entity_Id;
3030 T : Entity_Id;
3031 Acc_Type : Entity_Id;
3033 begin
3034 Analyze (P);
3036 -- An interesting error check, if we take the 'Reference of an object
3037 -- for which a pragma Atomic or Volatile has been given, and the type
3038 -- of the object is not Atomic or Volatile, then we are in trouble. The
3039 -- problem is that no trace of the atomic/volatile status will remain
3040 -- for the backend to respect when it deals with the resulting pointer,
3041 -- since the pointer type will not be marked atomic (it is a pointer to
3042 -- the base type of the object).
3044 -- It is not clear if that can ever occur, but in case it does, we will
3045 -- generate an error message. Not clear if this message can ever be
3046 -- generated, and pretty clear that it represents a bug if it is, still
3047 -- seems worth checking!
3049 T := Etype (P);
3051 if Is_Entity_Name (P)
3052 and then Is_Object_Reference (P)
3053 then
3054 E := Entity (P);
3055 T := Etype (P);
3057 if (Has_Atomic_Components (E)
3058 and then not Has_Atomic_Components (T))
3059 or else
3060 (Has_Volatile_Components (E)
3061 and then not Has_Volatile_Components (T))
3062 or else (Is_Atomic (E) and then not Is_Atomic (T))
3063 or else (Is_Volatile (E) and then not Is_Volatile (T))
3064 then
3065 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
3066 end if;
3067 end if;
3069 -- Carry on with normal processing
3071 Acc_Type := Create_Itype (E_Allocator_Type, N);
3072 Set_Etype (Acc_Type, Acc_Type);
3073 Set_Directly_Designated_Type (Acc_Type, Etype (P));
3074 Set_Etype (N, Acc_Type);
3075 end Analyze_Reference;
3077 --------------------------------
3078 -- Analyze_Selected_Component --
3079 --------------------------------
3081 -- Prefix is a record type or a task or protected type. In the
3082 -- later case, the selector must denote a visible entry.
3084 procedure Analyze_Selected_Component (N : Node_Id) is
3085 Name : constant Node_Id := Prefix (N);
3086 Sel : constant Node_Id := Selector_Name (N);
3087 Act_Decl : Node_Id;
3088 Comp : Entity_Id;
3089 Has_Candidate : Boolean := False;
3090 In_Scope : Boolean;
3091 Parent_N : Node_Id;
3092 Pent : Entity_Id := Empty;
3093 Prefix_Type : Entity_Id;
3095 Type_To_Use : Entity_Id;
3096 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3097 -- a class-wide type, we use its root type, whose components are
3098 -- present in the class-wide type.
3100 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
3101 -- It is known that the parent of N denotes a subprogram call. Comp
3102 -- is an overloadable component of the concurrent type of the prefix.
3103 -- Determine whether all formals of the parent of N and Comp are mode
3104 -- conformant. If the parent node is not analyzed yet it may be an
3105 -- indexed component rather than a function call.
3107 ------------------------------
3108 -- Has_Mode_Conformant_Spec --
3109 ------------------------------
3111 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
3112 Comp_Param : Entity_Id;
3113 Param : Node_Id;
3114 Param_Typ : Entity_Id;
3116 begin
3117 Comp_Param := First_Formal (Comp);
3119 if Nkind (Parent (N)) = N_Indexed_Component then
3120 Param := First (Expressions (Parent (N)));
3121 else
3122 Param := First (Parameter_Associations (Parent (N)));
3123 end if;
3125 while Present (Comp_Param)
3126 and then Present (Param)
3127 loop
3128 Param_Typ := Find_Parameter_Type (Param);
3130 if Present (Param_Typ)
3131 and then
3132 not Conforming_Types
3133 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
3134 then
3135 return False;
3136 end if;
3138 Next_Formal (Comp_Param);
3139 Next (Param);
3140 end loop;
3142 -- One of the specs has additional formals
3144 if Present (Comp_Param) or else Present (Param) then
3145 return False;
3146 end if;
3148 return True;
3149 end Has_Mode_Conformant_Spec;
3151 -- Start of processing for Analyze_Selected_Component
3153 begin
3154 Set_Etype (N, Any_Type);
3156 if Is_Overloaded (Name) then
3157 Analyze_Overloaded_Selected_Component (N);
3158 return;
3160 elsif Etype (Name) = Any_Type then
3161 Set_Entity (Sel, Any_Id);
3162 Set_Etype (Sel, Any_Type);
3163 return;
3165 else
3166 Prefix_Type := Etype (Name);
3167 end if;
3169 if Is_Access_Type (Prefix_Type) then
3171 -- A RACW object can never be used as prefix of a selected
3172 -- component since that means it is dereferenced without
3173 -- being a controlling operand of a dispatching operation
3174 -- (RM E.2.2(16/1)). Before reporting an error, we must check
3175 -- whether this is actually a dispatching call in prefix form.
3177 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
3178 and then Comes_From_Source (N)
3179 then
3180 if Try_Object_Operation (N) then
3181 return;
3182 else
3183 Error_Msg_N
3184 ("invalid dereference of a remote access-to-class-wide value",
3186 end if;
3188 -- Normal case of selected component applied to access type
3190 else
3191 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3193 if Is_Entity_Name (Name) then
3194 Pent := Entity (Name);
3195 elsif Nkind (Name) = N_Selected_Component
3196 and then Is_Entity_Name (Selector_Name (Name))
3197 then
3198 Pent := Entity (Selector_Name (Name));
3199 end if;
3201 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
3202 end if;
3204 -- If we have an explicit dereference of a remote access-to-class-wide
3205 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
3206 -- have to check for the case of a prefix that is a controlling operand
3207 -- of a prefixed dispatching call, as the dereference is legal in that
3208 -- case. Normally this condition is checked in Validate_Remote_Access_
3209 -- To_Class_Wide_Type, but we have to defer the checking for selected
3210 -- component prefixes because of the prefixed dispatching call case.
3211 -- Note that implicit dereferences are checked for this just above.
3213 elsif Nkind (Name) = N_Explicit_Dereference
3214 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
3215 and then Comes_From_Source (N)
3216 then
3217 if Try_Object_Operation (N) then
3218 return;
3219 else
3220 Error_Msg_N
3221 ("invalid dereference of a remote access-to-class-wide value",
3223 end if;
3224 end if;
3226 -- (Ada 2005): if the prefix is the limited view of a type, and
3227 -- the context already includes the full view, use the full view
3228 -- in what follows, either to retrieve a component of to find
3229 -- a primitive operation. If the prefix is an explicit dereference,
3230 -- set the type of the prefix to reflect this transformation.
3231 -- If the non-limited view is itself an incomplete type, get the
3232 -- full view if available.
3234 if Is_Incomplete_Type (Prefix_Type)
3235 and then From_With_Type (Prefix_Type)
3236 and then Present (Non_Limited_View (Prefix_Type))
3237 then
3238 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
3240 if Nkind (N) = N_Explicit_Dereference then
3241 Set_Etype (Prefix (N), Prefix_Type);
3242 end if;
3244 elsif Ekind (Prefix_Type) = E_Class_Wide_Type
3245 and then From_With_Type (Prefix_Type)
3246 and then Present (Non_Limited_View (Etype (Prefix_Type)))
3247 then
3248 Prefix_Type :=
3249 Class_Wide_Type (Non_Limited_View (Etype (Prefix_Type)));
3251 if Nkind (N) = N_Explicit_Dereference then
3252 Set_Etype (Prefix (N), Prefix_Type);
3253 end if;
3254 end if;
3256 if Ekind (Prefix_Type) = E_Private_Subtype then
3257 Prefix_Type := Base_Type (Prefix_Type);
3258 end if;
3260 Type_To_Use := Prefix_Type;
3262 -- For class-wide types, use the entity list of the root type. This
3263 -- indirection is specially important for private extensions because
3264 -- only the root type get switched (not the class-wide type).
3266 if Is_Class_Wide_Type (Prefix_Type) then
3267 Type_To_Use := Root_Type (Prefix_Type);
3268 end if;
3270 Comp := First_Entity (Type_To_Use);
3272 -- If the selector has an original discriminant, the node appears in
3273 -- an instance. Replace the discriminant with the corresponding one
3274 -- in the current discriminated type. For nested generics, this must
3275 -- be done transitively, so note the new original discriminant.
3277 if Nkind (Sel) = N_Identifier
3278 and then Present (Original_Discriminant (Sel))
3279 then
3280 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
3282 -- Mark entity before rewriting, for completeness and because
3283 -- subsequent semantic checks might examine the original node.
3285 Set_Entity (Sel, Comp);
3286 Rewrite (Selector_Name (N),
3287 New_Occurrence_Of (Comp, Sloc (N)));
3288 Set_Original_Discriminant (Selector_Name (N), Comp);
3289 Set_Etype (N, Etype (Comp));
3291 if Is_Access_Type (Etype (Name)) then
3292 Insert_Explicit_Dereference (Name);
3293 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3294 end if;
3296 elsif Is_Record_Type (Prefix_Type) then
3298 -- Find component with given name
3300 while Present (Comp) loop
3301 if Chars (Comp) = Chars (Sel)
3302 and then Is_Visible_Component (Comp)
3303 then
3304 Set_Entity_With_Style_Check (Sel, Comp);
3305 Set_Etype (Sel, Etype (Comp));
3307 if Ekind (Comp) = E_Discriminant then
3308 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
3309 Error_Msg_N
3310 ("cannot reference discriminant of Unchecked_Union",
3311 Sel);
3312 end if;
3314 if Is_Generic_Type (Prefix_Type)
3315 or else
3316 Is_Generic_Type (Root_Type (Prefix_Type))
3317 then
3318 Set_Original_Discriminant (Sel, Comp);
3319 end if;
3320 end if;
3322 -- Resolve the prefix early otherwise it is not possible to
3323 -- build the actual subtype of the component: it may need
3324 -- to duplicate this prefix and duplication is only allowed
3325 -- on fully resolved expressions.
3327 Resolve (Name);
3329 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
3330 -- subtypes in a package specification.
3331 -- Example:
3333 -- limited with Pkg;
3334 -- package Pkg is
3335 -- type Acc_Inc is access Pkg.T;
3336 -- X : Acc_Inc;
3337 -- N : Natural := X.all.Comp; -- ERROR, limited view
3338 -- end Pkg; -- Comp is not visible
3340 if Nkind (Name) = N_Explicit_Dereference
3341 and then From_With_Type (Etype (Prefix (Name)))
3342 and then not Is_Potentially_Use_Visible (Etype (Name))
3343 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
3344 N_Package_Specification
3345 then
3346 Error_Msg_NE
3347 ("premature usage of incomplete}", Prefix (Name),
3348 Etype (Prefix (Name)));
3349 end if;
3351 -- We never need an actual subtype for the case of a selection
3352 -- for a indexed component of a non-packed array, since in
3353 -- this case gigi generates all the checks and can find the
3354 -- necessary bounds information.
3356 -- We also do not need an actual subtype for the case of
3357 -- a first, last, length, or range attribute applied to a
3358 -- non-packed array, since gigi can again get the bounds in
3359 -- these cases (gigi cannot handle the packed case, since it
3360 -- has the bounds of the packed array type, not the original
3361 -- bounds of the type). However, if the prefix is itself a
3362 -- selected component, as in a.b.c (i), gigi may regard a.b.c
3363 -- as a dynamic-sized temporary, so we do generate an actual
3364 -- subtype for this case.
3366 Parent_N := Parent (N);
3368 if not Is_Packed (Etype (Comp))
3369 and then
3370 ((Nkind (Parent_N) = N_Indexed_Component
3371 and then Nkind (Name) /= N_Selected_Component)
3372 or else
3373 (Nkind (Parent_N) = N_Attribute_Reference
3374 and then (Attribute_Name (Parent_N) = Name_First
3375 or else
3376 Attribute_Name (Parent_N) = Name_Last
3377 or else
3378 Attribute_Name (Parent_N) = Name_Length
3379 or else
3380 Attribute_Name (Parent_N) = Name_Range)))
3381 then
3382 Set_Etype (N, Etype (Comp));
3384 -- If full analysis is not enabled, we do not generate an
3385 -- actual subtype, because in the absence of expansion
3386 -- reference to a formal of a protected type, for example,
3387 -- will not be properly transformed, and will lead to
3388 -- out-of-scope references in gigi.
3390 -- In all other cases, we currently build an actual subtype.
3391 -- It seems likely that many of these cases can be avoided,
3392 -- but right now, the front end makes direct references to the
3393 -- bounds (e.g. in generating a length check), and if we do
3394 -- not make an actual subtype, we end up getting a direct
3395 -- reference to a discriminant, which will not do.
3397 elsif Full_Analysis then
3398 Act_Decl :=
3399 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
3400 Insert_Action (N, Act_Decl);
3402 if No (Act_Decl) then
3403 Set_Etype (N, Etype (Comp));
3405 else
3406 -- Component type depends on discriminants. Enter the
3407 -- main attributes of the subtype.
3409 declare
3410 Subt : constant Entity_Id :=
3411 Defining_Identifier (Act_Decl);
3413 begin
3414 Set_Etype (Subt, Base_Type (Etype (Comp)));
3415 Set_Ekind (Subt, Ekind (Etype (Comp)));
3416 Set_Etype (N, Subt);
3417 end;
3418 end if;
3420 -- If Full_Analysis not enabled, just set the Etype
3422 else
3423 Set_Etype (N, Etype (Comp));
3424 end if;
3426 return;
3427 end if;
3429 -- If the prefix is a private extension, check only the visible
3430 -- components of the partial view. This must include the tag,
3431 -- which can appear in expanded code in a tag check.
3433 if Ekind (Type_To_Use) = E_Record_Type_With_Private
3434 and then Chars (Selector_Name (N)) /= Name_uTag
3435 then
3436 exit when Comp = Last_Entity (Type_To_Use);
3437 end if;
3439 Next_Entity (Comp);
3440 end loop;
3442 -- Ada 2005 (AI-252): The selected component can be interpreted as
3443 -- a prefixed view of a subprogram. Depending on the context, this is
3444 -- either a name that can appear in a renaming declaration, or part
3445 -- of an enclosing call given in prefix form.
3447 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
3448 -- selected component should resolve to a name.
3450 if Ada_Version >= Ada_05
3451 and then Is_Tagged_Type (Prefix_Type)
3452 and then not Is_Concurrent_Type (Prefix_Type)
3453 then
3454 if Nkind (Parent (N)) = N_Generic_Association
3455 or else Nkind (Parent (N)) = N_Requeue_Statement
3456 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
3457 then
3458 if Find_Primitive_Operation (N) then
3459 return;
3460 end if;
3462 elsif Try_Object_Operation (N) then
3463 return;
3464 end if;
3466 -- If the transformation fails, it will be necessary to redo the
3467 -- analysis with all errors enabled, to indicate candidate
3468 -- interpretations and reasons for each failure ???
3470 end if;
3472 elsif Is_Private_Type (Prefix_Type) then
3474 -- Allow access only to discriminants of the type. If the type has
3475 -- no full view, gigi uses the parent type for the components, so we
3476 -- do the same here.
3478 if No (Full_View (Prefix_Type)) then
3479 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
3480 Comp := First_Entity (Type_To_Use);
3481 end if;
3483 while Present (Comp) loop
3484 if Chars (Comp) = Chars (Sel) then
3485 if Ekind (Comp) = E_Discriminant then
3486 Set_Entity_With_Style_Check (Sel, Comp);
3487 Generate_Reference (Comp, Sel);
3489 Set_Etype (Sel, Etype (Comp));
3490 Set_Etype (N, Etype (Comp));
3492 if Is_Generic_Type (Prefix_Type)
3493 or else Is_Generic_Type (Root_Type (Prefix_Type))
3494 then
3495 Set_Original_Discriminant (Sel, Comp);
3496 end if;
3498 -- Before declaring an error, check whether this is tagged
3499 -- private type and a call to a primitive operation.
3501 elsif Ada_Version >= Ada_05
3502 and then Is_Tagged_Type (Prefix_Type)
3503 and then Try_Object_Operation (N)
3504 then
3505 return;
3507 else
3508 Error_Msg_NE
3509 ("invisible selector for }",
3510 N, First_Subtype (Prefix_Type));
3511 Set_Entity (Sel, Any_Id);
3512 Set_Etype (N, Any_Type);
3513 end if;
3515 return;
3516 end if;
3518 Next_Entity (Comp);
3519 end loop;
3521 elsif Is_Concurrent_Type (Prefix_Type) then
3523 -- Find visible operation with given name. For a protected type,
3524 -- the possible candidates are discriminants, entries or protected
3525 -- procedures. For a task type, the set can only include entries or
3526 -- discriminants if the task type is not an enclosing scope. If it
3527 -- is an enclosing scope (e.g. in an inner task) then all entities
3528 -- are visible, but the prefix must denote the enclosing scope, i.e.
3529 -- can only be a direct name or an expanded name.
3531 Set_Etype (Sel, Any_Type);
3532 In_Scope := In_Open_Scopes (Prefix_Type);
3534 while Present (Comp) loop
3535 if Chars (Comp) = Chars (Sel) then
3536 if Is_Overloadable (Comp) then
3537 Add_One_Interp (Sel, Comp, Etype (Comp));
3539 -- If the prefix is tagged, the correct interpretation may
3540 -- lie in the primitive or class-wide operations of the
3541 -- type. Perform a simple conformance check to determine
3542 -- whether Try_Object_Operation should be invoked even if
3543 -- a visible entity is found.
3545 if Is_Tagged_Type (Prefix_Type)
3546 and then
3547 Nkind_In (Parent (N), N_Procedure_Call_Statement,
3548 N_Function_Call,
3549 N_Indexed_Component)
3550 and then Has_Mode_Conformant_Spec (Comp)
3551 then
3552 Has_Candidate := True;
3553 end if;
3555 elsif Ekind (Comp) = E_Discriminant
3556 or else Ekind (Comp) = E_Entry_Family
3557 or else (In_Scope
3558 and then Is_Entity_Name (Name))
3559 then
3560 Set_Entity_With_Style_Check (Sel, Comp);
3561 Generate_Reference (Comp, Sel);
3563 else
3564 goto Next_Comp;
3565 end if;
3567 Set_Etype (Sel, Etype (Comp));
3568 Set_Etype (N, Etype (Comp));
3570 if Ekind (Comp) = E_Discriminant then
3571 Set_Original_Discriminant (Sel, Comp);
3572 end if;
3574 -- For access type case, introduce explicit dereference for
3575 -- more uniform treatment of entry calls.
3577 if Is_Access_Type (Etype (Name)) then
3578 Insert_Explicit_Dereference (Name);
3579 Error_Msg_NW
3580 (Warn_On_Dereference, "?implicit dereference", N);
3581 end if;
3582 end if;
3584 <<Next_Comp>>
3585 Next_Entity (Comp);
3586 exit when not In_Scope
3587 and then
3588 Comp = First_Private_Entity (Base_Type (Prefix_Type));
3589 end loop;
3591 -- If there is no visible entity with the given name or none of the
3592 -- visible entities are plausible interpretations, check whether
3593 -- there is some other primitive operation with that name.
3595 if Ada_Version >= Ada_05
3596 and then Is_Tagged_Type (Prefix_Type)
3597 then
3598 if (Etype (N) = Any_Type
3599 or else not Has_Candidate)
3600 and then Try_Object_Operation (N)
3601 then
3602 return;
3604 -- If the context is not syntactically a procedure call, it
3605 -- may be a call to a primitive function declared outside of
3606 -- the synchronized type.
3608 -- If the context is a procedure call, there might still be
3609 -- an overloading between an entry and a primitive procedure
3610 -- declared outside of the synchronized type, called in prefix
3611 -- notation. This is harder to disambiguate because in one case
3612 -- the controlling formal is implicit ???
3614 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
3615 and then Nkind (Parent (N)) /= N_Indexed_Component
3616 and then Try_Object_Operation (N)
3617 then
3618 return;
3619 end if;
3620 end if;
3622 Set_Is_Overloaded (N, Is_Overloaded (Sel));
3624 else
3625 -- Invalid prefix
3627 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
3628 end if;
3630 -- If N still has no type, the component is not defined in the prefix
3632 if Etype (N) = Any_Type then
3634 -- If the prefix is a single concurrent object, use its name in the
3635 -- error message, rather than that of its anonymous type.
3637 if Is_Concurrent_Type (Prefix_Type)
3638 and then Is_Internal_Name (Chars (Prefix_Type))
3639 and then not Is_Derived_Type (Prefix_Type)
3640 and then Is_Entity_Name (Name)
3641 then
3643 Error_Msg_Node_2 := Entity (Name);
3644 Error_Msg_NE ("no selector& for&", N, Sel);
3646 Check_Misspelled_Selector (Type_To_Use, Sel);
3648 elsif Is_Generic_Type (Prefix_Type)
3649 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
3650 and then Prefix_Type /= Etype (Prefix_Type)
3651 and then Is_Record_Type (Etype (Prefix_Type))
3652 then
3653 -- If this is a derived formal type, the parent may have
3654 -- different visibility at this point. Try for an inherited
3655 -- component before reporting an error.
3657 Set_Etype (Prefix (N), Etype (Prefix_Type));
3658 Analyze_Selected_Component (N);
3659 return;
3661 elsif Ekind (Prefix_Type) = E_Record_Subtype_With_Private
3662 and then Is_Generic_Actual_Type (Prefix_Type)
3663 and then Present (Full_View (Prefix_Type))
3664 then
3665 -- Similarly, if this the actual for a formal derived type, the
3666 -- component inherited from the generic parent may not be visible
3667 -- in the actual, but the selected component is legal.
3669 declare
3670 Comp : Entity_Id;
3672 begin
3673 Comp :=
3674 First_Component (Generic_Parent_Type (Parent (Prefix_Type)));
3675 while Present (Comp) loop
3676 if Chars (Comp) = Chars (Sel) then
3677 Set_Entity_With_Style_Check (Sel, Comp);
3678 Set_Etype (Sel, Etype (Comp));
3679 Set_Etype (N, Etype (Comp));
3680 return;
3681 end if;
3683 Next_Component (Comp);
3684 end loop;
3686 pragma Assert (Etype (N) /= Any_Type);
3687 end;
3689 else
3690 if Ekind (Prefix_Type) = E_Record_Subtype then
3692 -- Check whether this is a component of the base type
3693 -- which is absent from a statically constrained subtype.
3694 -- This will raise constraint error at run-time, but is
3695 -- not a compile-time error. When the selector is illegal
3696 -- for base type as well fall through and generate a
3697 -- compilation error anyway.
3699 Comp := First_Component (Base_Type (Prefix_Type));
3700 while Present (Comp) loop
3701 if Chars (Comp) = Chars (Sel)
3702 and then Is_Visible_Component (Comp)
3703 then
3704 Set_Entity_With_Style_Check (Sel, Comp);
3705 Generate_Reference (Comp, Sel);
3706 Set_Etype (Sel, Etype (Comp));
3707 Set_Etype (N, Etype (Comp));
3709 -- Emit appropriate message. Gigi will replace the
3710 -- node subsequently with the appropriate Raise.
3712 Apply_Compile_Time_Constraint_Error
3713 (N, "component not present in }?",
3714 CE_Discriminant_Check_Failed,
3715 Ent => Prefix_Type, Rep => False);
3716 Set_Raises_Constraint_Error (N);
3717 return;
3718 end if;
3720 Next_Component (Comp);
3721 end loop;
3723 end if;
3725 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
3726 Error_Msg_NE ("no selector& for}", N, Sel);
3728 Check_Misspelled_Selector (Type_To_Use, Sel);
3729 end if;
3731 Set_Entity (Sel, Any_Id);
3732 Set_Etype (Sel, Any_Type);
3733 end if;
3734 end Analyze_Selected_Component;
3736 ---------------------------
3737 -- Analyze_Short_Circuit --
3738 ---------------------------
3740 procedure Analyze_Short_Circuit (N : Node_Id) is
3741 L : constant Node_Id := Left_Opnd (N);
3742 R : constant Node_Id := Right_Opnd (N);
3743 Ind : Interp_Index;
3744 It : Interp;
3746 begin
3747 Analyze_Expression (L);
3748 Analyze_Expression (R);
3749 Set_Etype (N, Any_Type);
3751 if not Is_Overloaded (L) then
3752 if Root_Type (Etype (L)) = Standard_Boolean
3753 and then Has_Compatible_Type (R, Etype (L))
3754 then
3755 Add_One_Interp (N, Etype (L), Etype (L));
3756 end if;
3758 else
3759 Get_First_Interp (L, Ind, It);
3760 while Present (It.Typ) loop
3761 if Root_Type (It.Typ) = Standard_Boolean
3762 and then Has_Compatible_Type (R, It.Typ)
3763 then
3764 Add_One_Interp (N, It.Typ, It.Typ);
3765 end if;
3767 Get_Next_Interp (Ind, It);
3768 end loop;
3769 end if;
3771 -- Here we have failed to find an interpretation. Clearly we know that
3772 -- it is not the case that both operands can have an interpretation of
3773 -- Boolean, but this is by far the most likely intended interpretation.
3774 -- So we simply resolve both operands as Booleans, and at least one of
3775 -- these resolutions will generate an error message, and we do not need
3776 -- to give another error message on the short circuit operation itself.
3778 if Etype (N) = Any_Type then
3779 Resolve (L, Standard_Boolean);
3780 Resolve (R, Standard_Boolean);
3781 Set_Etype (N, Standard_Boolean);
3782 end if;
3783 end Analyze_Short_Circuit;
3785 -------------------
3786 -- Analyze_Slice --
3787 -------------------
3789 procedure Analyze_Slice (N : Node_Id) is
3790 P : constant Node_Id := Prefix (N);
3791 D : constant Node_Id := Discrete_Range (N);
3792 Array_Type : Entity_Id;
3794 procedure Analyze_Overloaded_Slice;
3795 -- If the prefix is overloaded, select those interpretations that
3796 -- yield a one-dimensional array type.
3798 ------------------------------
3799 -- Analyze_Overloaded_Slice --
3800 ------------------------------
3802 procedure Analyze_Overloaded_Slice is
3803 I : Interp_Index;
3804 It : Interp;
3805 Typ : Entity_Id;
3807 begin
3808 Set_Etype (N, Any_Type);
3810 Get_First_Interp (P, I, It);
3811 while Present (It.Nam) loop
3812 Typ := It.Typ;
3814 if Is_Access_Type (Typ) then
3815 Typ := Designated_Type (Typ);
3816 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3817 end if;
3819 if Is_Array_Type (Typ)
3820 and then Number_Dimensions (Typ) = 1
3821 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
3822 then
3823 Add_One_Interp (N, Typ, Typ);
3824 end if;
3826 Get_Next_Interp (I, It);
3827 end loop;
3829 if Etype (N) = Any_Type then
3830 Error_Msg_N ("expect array type in prefix of slice", N);
3831 end if;
3832 end Analyze_Overloaded_Slice;
3834 -- Start of processing for Analyze_Slice
3836 begin
3837 Analyze (P);
3838 Analyze (D);
3840 if Is_Overloaded (P) then
3841 Analyze_Overloaded_Slice;
3843 else
3844 Array_Type := Etype (P);
3845 Set_Etype (N, Any_Type);
3847 if Is_Access_Type (Array_Type) then
3848 Array_Type := Designated_Type (Array_Type);
3849 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3850 end if;
3852 if not Is_Array_Type (Array_Type) then
3853 Wrong_Type (P, Any_Array);
3855 elsif Number_Dimensions (Array_Type) > 1 then
3856 Error_Msg_N
3857 ("type is not one-dimensional array in slice prefix", N);
3859 elsif not
3860 Has_Compatible_Type (D, Etype (First_Index (Array_Type)))
3861 then
3862 Wrong_Type (D, Etype (First_Index (Array_Type)));
3864 else
3865 Set_Etype (N, Array_Type);
3866 end if;
3867 end if;
3868 end Analyze_Slice;
3870 -----------------------------
3871 -- Analyze_Type_Conversion --
3872 -----------------------------
3874 procedure Analyze_Type_Conversion (N : Node_Id) is
3875 Expr : constant Node_Id := Expression (N);
3876 T : Entity_Id;
3878 begin
3879 -- Check if the expression is a function call for which we need to
3880 -- adjust a SCIL dispatching node.
3882 if Generate_SCIL
3883 and then Nkind (Expr) = N_Function_Call
3884 then
3885 Adjust_SCIL_Node (N, Expr);
3886 end if;
3888 -- If Conversion_OK is set, then the Etype is already set, and the
3889 -- only processing required is to analyze the expression. This is
3890 -- used to construct certain "illegal" conversions which are not
3891 -- allowed by Ada semantics, but can be handled OK by Gigi, see
3892 -- Sinfo for further details.
3894 if Conversion_OK (N) then
3895 Analyze (Expr);
3896 return;
3897 end if;
3899 -- Otherwise full type analysis is required, as well as some semantic
3900 -- checks to make sure the argument of the conversion is appropriate.
3902 Find_Type (Subtype_Mark (N));
3903 T := Entity (Subtype_Mark (N));
3904 Set_Etype (N, T);
3905 Check_Fully_Declared (T, N);
3906 Analyze_Expression (Expr);
3907 Validate_Remote_Type_Type_Conversion (N);
3909 -- Only remaining step is validity checks on the argument. These
3910 -- are skipped if the conversion does not come from the source.
3912 if not Comes_From_Source (N) then
3913 return;
3915 -- If there was an error in a generic unit, no need to replicate the
3916 -- error message. Conversely, constant-folding in the generic may
3917 -- transform the argument of a conversion into a string literal, which
3918 -- is legal. Therefore the following tests are not performed in an
3919 -- instance.
3921 elsif In_Instance then
3922 return;
3924 elsif Nkind (Expr) = N_Null then
3925 Error_Msg_N ("argument of conversion cannot be null", N);
3926 Error_Msg_N ("\use qualified expression instead", N);
3927 Set_Etype (N, Any_Type);
3929 elsif Nkind (Expr) = N_Aggregate then
3930 Error_Msg_N ("argument of conversion cannot be aggregate", N);
3931 Error_Msg_N ("\use qualified expression instead", N);
3933 elsif Nkind (Expr) = N_Allocator then
3934 Error_Msg_N ("argument of conversion cannot be an allocator", N);
3935 Error_Msg_N ("\use qualified expression instead", N);
3937 elsif Nkind (Expr) = N_String_Literal then
3938 Error_Msg_N ("argument of conversion cannot be string literal", N);
3939 Error_Msg_N ("\use qualified expression instead", N);
3941 elsif Nkind (Expr) = N_Character_Literal then
3942 if Ada_Version = Ada_83 then
3943 Resolve (Expr, T);
3944 else
3945 Error_Msg_N ("argument of conversion cannot be character literal",
3947 Error_Msg_N ("\use qualified expression instead", N);
3948 end if;
3950 elsif Nkind (Expr) = N_Attribute_Reference
3951 and then
3952 (Attribute_Name (Expr) = Name_Access or else
3953 Attribute_Name (Expr) = Name_Unchecked_Access or else
3954 Attribute_Name (Expr) = Name_Unrestricted_Access)
3955 then
3956 Error_Msg_N ("argument of conversion cannot be access", N);
3957 Error_Msg_N ("\use qualified expression instead", N);
3958 end if;
3959 end Analyze_Type_Conversion;
3961 ----------------------
3962 -- Analyze_Unary_Op --
3963 ----------------------
3965 procedure Analyze_Unary_Op (N : Node_Id) is
3966 R : constant Node_Id := Right_Opnd (N);
3967 Op_Id : Entity_Id := Entity (N);
3969 begin
3970 Set_Etype (N, Any_Type);
3971 Candidate_Type := Empty;
3973 Analyze_Expression (R);
3975 if Present (Op_Id) then
3976 if Ekind (Op_Id) = E_Operator then
3977 Find_Unary_Types (R, Op_Id, N);
3978 else
3979 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3980 end if;
3982 else
3983 Op_Id := Get_Name_Entity_Id (Chars (N));
3984 while Present (Op_Id) loop
3985 if Ekind (Op_Id) = E_Operator then
3986 if No (Next_Entity (First_Entity (Op_Id))) then
3987 Find_Unary_Types (R, Op_Id, N);
3988 end if;
3990 elsif Is_Overloadable (Op_Id) then
3991 Analyze_User_Defined_Unary_Op (N, Op_Id);
3992 end if;
3994 Op_Id := Homonym (Op_Id);
3995 end loop;
3996 end if;
3998 Operator_Check (N);
3999 end Analyze_Unary_Op;
4001 ----------------------------------
4002 -- Analyze_Unchecked_Expression --
4003 ----------------------------------
4005 procedure Analyze_Unchecked_Expression (N : Node_Id) is
4006 begin
4007 Analyze (Expression (N), Suppress => All_Checks);
4008 Set_Etype (N, Etype (Expression (N)));
4009 Save_Interps (Expression (N), N);
4010 end Analyze_Unchecked_Expression;
4012 ---------------------------------------
4013 -- Analyze_Unchecked_Type_Conversion --
4014 ---------------------------------------
4016 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
4017 begin
4018 Find_Type (Subtype_Mark (N));
4019 Analyze_Expression (Expression (N));
4020 Set_Etype (N, Entity (Subtype_Mark (N)));
4021 end Analyze_Unchecked_Type_Conversion;
4023 ------------------------------------
4024 -- Analyze_User_Defined_Binary_Op --
4025 ------------------------------------
4027 procedure Analyze_User_Defined_Binary_Op
4028 (N : Node_Id;
4029 Op_Id : Entity_Id)
4031 begin
4032 -- Only do analysis if the operator Comes_From_Source, since otherwise
4033 -- the operator was generated by the expander, and all such operators
4034 -- always refer to the operators in package Standard.
4036 if Comes_From_Source (N) then
4037 declare
4038 F1 : constant Entity_Id := First_Formal (Op_Id);
4039 F2 : constant Entity_Id := Next_Formal (F1);
4041 begin
4042 -- Verify that Op_Id is a visible binary function. Note that since
4043 -- we know Op_Id is overloaded, potentially use visible means use
4044 -- visible for sure (RM 9.4(11)).
4046 if Ekind (Op_Id) = E_Function
4047 and then Present (F2)
4048 and then (Is_Immediately_Visible (Op_Id)
4049 or else Is_Potentially_Use_Visible (Op_Id))
4050 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
4051 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
4052 then
4053 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4055 -- If the left operand is overloaded, indicate that the
4056 -- current type is a viable candidate. This is redundant
4057 -- in most cases, but for equality and comparison operators
4058 -- where the context does not impose a type on the operands,
4059 -- setting the proper type is necessary to avoid subsequent
4060 -- ambiguities during resolution, when both user-defined and
4061 -- predefined operators may be candidates.
4063 if Is_Overloaded (Left_Opnd (N)) then
4064 Set_Etype (Left_Opnd (N), Etype (F1));
4065 end if;
4067 if Debug_Flag_E then
4068 Write_Str ("user defined operator ");
4069 Write_Name (Chars (Op_Id));
4070 Write_Str (" on node ");
4071 Write_Int (Int (N));
4072 Write_Eol;
4073 end if;
4074 end if;
4075 end;
4076 end if;
4077 end Analyze_User_Defined_Binary_Op;
4079 -----------------------------------
4080 -- Analyze_User_Defined_Unary_Op --
4081 -----------------------------------
4083 procedure Analyze_User_Defined_Unary_Op
4084 (N : Node_Id;
4085 Op_Id : Entity_Id)
4087 begin
4088 -- Only do analysis if the operator Comes_From_Source, since otherwise
4089 -- the operator was generated by the expander, and all such operators
4090 -- always refer to the operators in package Standard.
4092 if Comes_From_Source (N) then
4093 declare
4094 F : constant Entity_Id := First_Formal (Op_Id);
4096 begin
4097 -- Verify that Op_Id is a visible unary function. Note that since
4098 -- we know Op_Id is overloaded, potentially use visible means use
4099 -- visible for sure (RM 9.4(11)).
4101 if Ekind (Op_Id) = E_Function
4102 and then No (Next_Formal (F))
4103 and then (Is_Immediately_Visible (Op_Id)
4104 or else Is_Potentially_Use_Visible (Op_Id))
4105 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
4106 then
4107 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4108 end if;
4109 end;
4110 end if;
4111 end Analyze_User_Defined_Unary_Op;
4113 ---------------------------
4114 -- Check_Arithmetic_Pair --
4115 ---------------------------
4117 procedure Check_Arithmetic_Pair
4118 (T1, T2 : Entity_Id;
4119 Op_Id : Entity_Id;
4120 N : Node_Id)
4122 Op_Name : constant Name_Id := Chars (Op_Id);
4124 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
4125 -- Check whether the fixed-point type Typ has a user-defined operator
4126 -- (multiplication or division) that should hide the corresponding
4127 -- predefined operator. Used to implement Ada 2005 AI-264, to make
4128 -- such operators more visible and therefore useful.
4130 -- If the name of the operation is an expanded name with prefix
4131 -- Standard, the predefined universal fixed operator is available,
4132 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
4134 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
4135 -- Get specific type (i.e. non-universal type if there is one)
4137 ------------------
4138 -- Has_Fixed_Op --
4139 ------------------
4141 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
4142 Bas : constant Entity_Id := Base_Type (Typ);
4143 Ent : Entity_Id;
4144 F1 : Entity_Id;
4145 F2 : Entity_Id;
4147 begin
4148 -- If the universal_fixed operation is given explicitly the rule
4149 -- concerning primitive operations of the type do not apply.
4151 if Nkind (N) = N_Function_Call
4152 and then Nkind (Name (N)) = N_Expanded_Name
4153 and then Entity (Prefix (Name (N))) = Standard_Standard
4154 then
4155 return False;
4156 end if;
4158 -- The operation is treated as primitive if it is declared in the
4159 -- same scope as the type, and therefore on the same entity chain.
4161 Ent := Next_Entity (Typ);
4162 while Present (Ent) loop
4163 if Chars (Ent) = Chars (Op) then
4164 F1 := First_Formal (Ent);
4165 F2 := Next_Formal (F1);
4167 -- The operation counts as primitive if either operand or
4168 -- result are of the given base type, and both operands are
4169 -- fixed point types.
4171 if (Base_Type (Etype (F1)) = Bas
4172 and then Is_Fixed_Point_Type (Etype (F2)))
4174 or else
4175 (Base_Type (Etype (F2)) = Bas
4176 and then Is_Fixed_Point_Type (Etype (F1)))
4178 or else
4179 (Base_Type (Etype (Ent)) = Bas
4180 and then Is_Fixed_Point_Type (Etype (F1))
4181 and then Is_Fixed_Point_Type (Etype (F2)))
4182 then
4183 return True;
4184 end if;
4185 end if;
4187 Next_Entity (Ent);
4188 end loop;
4190 return False;
4191 end Has_Fixed_Op;
4193 -------------------
4194 -- Specific_Type --
4195 -------------------
4197 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
4198 begin
4199 if T1 = Universal_Integer or else T1 = Universal_Real then
4200 return Base_Type (T2);
4201 else
4202 return Base_Type (T1);
4203 end if;
4204 end Specific_Type;
4206 -- Start of processing for Check_Arithmetic_Pair
4208 begin
4209 if Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
4211 if Is_Numeric_Type (T1)
4212 and then Is_Numeric_Type (T2)
4213 and then (Covers (T1 => T1, T2 => T2)
4214 or else
4215 Covers (T1 => T2, T2 => T1))
4216 then
4217 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4218 end if;
4220 elsif Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide then
4222 if Is_Fixed_Point_Type (T1)
4223 and then (Is_Fixed_Point_Type (T2)
4224 or else T2 = Universal_Real)
4225 then
4226 -- If Treat_Fixed_As_Integer is set then the Etype is already set
4227 -- and no further processing is required (this is the case of an
4228 -- operator constructed by Exp_Fixd for a fixed point operation)
4229 -- Otherwise add one interpretation with universal fixed result
4230 -- If the operator is given in functional notation, it comes
4231 -- from source and Fixed_As_Integer cannot apply.
4233 if (Nkind (N) not in N_Op
4234 or else not Treat_Fixed_As_Integer (N))
4235 and then
4236 (not Has_Fixed_Op (T1, Op_Id)
4237 or else Nkind (Parent (N)) = N_Type_Conversion)
4238 then
4239 Add_One_Interp (N, Op_Id, Universal_Fixed);
4240 end if;
4242 elsif Is_Fixed_Point_Type (T2)
4243 and then (Nkind (N) not in N_Op
4244 or else not Treat_Fixed_As_Integer (N))
4245 and then T1 = Universal_Real
4246 and then
4247 (not Has_Fixed_Op (T1, Op_Id)
4248 or else Nkind (Parent (N)) = N_Type_Conversion)
4249 then
4250 Add_One_Interp (N, Op_Id, Universal_Fixed);
4252 elsif Is_Numeric_Type (T1)
4253 and then Is_Numeric_Type (T2)
4254 and then (Covers (T1 => T1, T2 => T2)
4255 or else
4256 Covers (T1 => T2, T2 => T1))
4257 then
4258 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4260 elsif Is_Fixed_Point_Type (T1)
4261 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4262 or else T2 = Universal_Integer)
4263 then
4264 Add_One_Interp (N, Op_Id, T1);
4266 elsif T2 = Universal_Real
4267 and then Base_Type (T1) = Base_Type (Standard_Integer)
4268 and then Op_Name = Name_Op_Multiply
4269 then
4270 Add_One_Interp (N, Op_Id, Any_Fixed);
4272 elsif T1 = Universal_Real
4273 and then Base_Type (T2) = Base_Type (Standard_Integer)
4274 then
4275 Add_One_Interp (N, Op_Id, Any_Fixed);
4277 elsif Is_Fixed_Point_Type (T2)
4278 and then (Base_Type (T1) = Base_Type (Standard_Integer)
4279 or else T1 = Universal_Integer)
4280 and then Op_Name = Name_Op_Multiply
4281 then
4282 Add_One_Interp (N, Op_Id, T2);
4284 elsif T1 = Universal_Real and then T2 = Universal_Integer then
4285 Add_One_Interp (N, Op_Id, T1);
4287 elsif T2 = Universal_Real
4288 and then T1 = Universal_Integer
4289 and then Op_Name = Name_Op_Multiply
4290 then
4291 Add_One_Interp (N, Op_Id, T2);
4292 end if;
4294 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
4296 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
4297 -- set does not require any special processing, since the Etype is
4298 -- already set (case of operation constructed by Exp_Fixed).
4300 if Is_Integer_Type (T1)
4301 and then (Covers (T1 => T1, T2 => T2)
4302 or else
4303 Covers (T1 => T2, T2 => T1))
4304 then
4305 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4306 end if;
4308 elsif Op_Name = Name_Op_Expon then
4309 if Is_Numeric_Type (T1)
4310 and then not Is_Fixed_Point_Type (T1)
4311 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4312 or else T2 = Universal_Integer)
4313 then
4314 Add_One_Interp (N, Op_Id, Base_Type (T1));
4315 end if;
4317 else pragma Assert (Nkind (N) in N_Op_Shift);
4319 -- If not one of the predefined operators, the node may be one
4320 -- of the intrinsic functions. Its kind is always specific, and
4321 -- we can use it directly, rather than the name of the operation.
4323 if Is_Integer_Type (T1)
4324 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4325 or else T2 = Universal_Integer)
4326 then
4327 Add_One_Interp (N, Op_Id, Base_Type (T1));
4328 end if;
4329 end if;
4330 end Check_Arithmetic_Pair;
4332 -------------------------------
4333 -- Check_Misspelled_Selector --
4334 -------------------------------
4336 procedure Check_Misspelled_Selector
4337 (Prefix : Entity_Id;
4338 Sel : Node_Id)
4340 Max_Suggestions : constant := 2;
4341 Nr_Of_Suggestions : Natural := 0;
4343 Suggestion_1 : Entity_Id := Empty;
4344 Suggestion_2 : Entity_Id := Empty;
4346 Comp : Entity_Id;
4348 begin
4349 -- All the components of the prefix of selector Sel are matched
4350 -- against Sel and a count is maintained of possible misspellings.
4351 -- When at the end of the analysis there are one or two (not more!)
4352 -- possible misspellings, these misspellings will be suggested as
4353 -- possible correction.
4355 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
4357 -- Concurrent types should be handled as well ???
4359 return;
4360 end if;
4362 Comp := First_Entity (Prefix);
4363 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
4364 if Is_Visible_Component (Comp) then
4365 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
4366 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
4368 case Nr_Of_Suggestions is
4369 when 1 => Suggestion_1 := Comp;
4370 when 2 => Suggestion_2 := Comp;
4371 when others => exit;
4372 end case;
4373 end if;
4374 end if;
4376 Comp := Next_Entity (Comp);
4377 end loop;
4379 -- Report at most two suggestions
4381 if Nr_Of_Suggestions = 1 then
4382 Error_Msg_NE -- CODEFIX
4383 ("\possible misspelling of&", Sel, Suggestion_1);
4385 elsif Nr_Of_Suggestions = 2 then
4386 Error_Msg_Node_2 := Suggestion_2;
4387 Error_Msg_NE -- CODEFIX
4388 ("\possible misspelling of& or&", Sel, Suggestion_1);
4389 end if;
4390 end Check_Misspelled_Selector;
4392 ----------------------
4393 -- Defined_In_Scope --
4394 ----------------------
4396 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
4398 S1 : constant Entity_Id := Scope (Base_Type (T));
4399 begin
4400 return S1 = S
4401 or else (S1 = System_Aux_Id and then S = Scope (S1));
4402 end Defined_In_Scope;
4404 -------------------
4405 -- Diagnose_Call --
4406 -------------------
4408 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
4409 Actual : Node_Id;
4410 X : Interp_Index;
4411 It : Interp;
4412 Err_Mode : Boolean;
4413 New_Nam : Node_Id;
4414 Void_Interp_Seen : Boolean := False;
4416 Success : Boolean;
4417 pragma Warnings (Off, Boolean);
4419 begin
4420 if Ada_Version >= Ada_05 then
4421 Actual := First_Actual (N);
4422 while Present (Actual) loop
4424 -- Ada 2005 (AI-50217): Post an error in case of premature
4425 -- usage of an entity from the limited view.
4427 if not Analyzed (Etype (Actual))
4428 and then From_With_Type (Etype (Actual))
4429 then
4430 Error_Msg_Qual_Level := 1;
4431 Error_Msg_NE
4432 ("missing with_clause for scope of imported type&",
4433 Actual, Etype (Actual));
4434 Error_Msg_Qual_Level := 0;
4435 end if;
4437 Next_Actual (Actual);
4438 end loop;
4439 end if;
4441 -- Analyze each candidate call again, with full error reporting
4442 -- for each.
4444 Error_Msg_N
4445 ("no candidate interpretations match the actuals:!", Nam);
4446 Err_Mode := All_Errors_Mode;
4447 All_Errors_Mode := True;
4449 -- If this is a call to an operation of a concurrent type,
4450 -- the failed interpretations have been removed from the
4451 -- name. Recover them to provide full diagnostics.
4453 if Nkind (Parent (Nam)) = N_Selected_Component then
4454 Set_Entity (Nam, Empty);
4455 New_Nam := New_Copy_Tree (Parent (Nam));
4456 Set_Is_Overloaded (New_Nam, False);
4457 Set_Is_Overloaded (Selector_Name (New_Nam), False);
4458 Set_Parent (New_Nam, Parent (Parent (Nam)));
4459 Analyze_Selected_Component (New_Nam);
4460 Get_First_Interp (Selector_Name (New_Nam), X, It);
4461 else
4462 Get_First_Interp (Nam, X, It);
4463 end if;
4465 while Present (It.Nam) loop
4466 if Etype (It.Nam) = Standard_Void_Type then
4467 Void_Interp_Seen := True;
4468 end if;
4470 Analyze_One_Call (N, It.Nam, True, Success);
4471 Get_Next_Interp (X, It);
4472 end loop;
4474 if Nkind (N) = N_Function_Call then
4475 Get_First_Interp (Nam, X, It);
4476 while Present (It.Nam) loop
4477 if Ekind (It.Nam) = E_Function
4478 or else Ekind (It.Nam) = E_Operator
4479 then
4480 return;
4481 else
4482 Get_Next_Interp (X, It);
4483 end if;
4484 end loop;
4486 -- If all interpretations are procedures, this deserves a
4487 -- more precise message. Ditto if this appears as the prefix
4488 -- of a selected component, which may be a lexical error.
4490 Error_Msg_N
4491 ("\context requires function call, found procedure name", Nam);
4493 if Nkind (Parent (N)) = N_Selected_Component
4494 and then N = Prefix (Parent (N))
4495 then
4496 Error_Msg_N -- CODEFIX
4497 ("\period should probably be semicolon", Parent (N));
4498 end if;
4500 elsif Nkind (N) = N_Procedure_Call_Statement
4501 and then not Void_Interp_Seen
4502 then
4503 Error_Msg_N (
4504 "\function name found in procedure call", Nam);
4505 end if;
4507 All_Errors_Mode := Err_Mode;
4508 end Diagnose_Call;
4510 ---------------------------
4511 -- Find_Arithmetic_Types --
4512 ---------------------------
4514 procedure Find_Arithmetic_Types
4515 (L, R : Node_Id;
4516 Op_Id : Entity_Id;
4517 N : Node_Id)
4519 Index1 : Interp_Index;
4520 Index2 : Interp_Index;
4521 It1 : Interp;
4522 It2 : Interp;
4524 procedure Check_Right_Argument (T : Entity_Id);
4525 -- Check right operand of operator
4527 --------------------------
4528 -- Check_Right_Argument --
4529 --------------------------
4531 procedure Check_Right_Argument (T : Entity_Id) is
4532 begin
4533 if not Is_Overloaded (R) then
4534 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
4535 else
4536 Get_First_Interp (R, Index2, It2);
4537 while Present (It2.Typ) loop
4538 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
4539 Get_Next_Interp (Index2, It2);
4540 end loop;
4541 end if;
4542 end Check_Right_Argument;
4544 -- Start of processing for Find_Arithmetic_Types
4546 begin
4547 if not Is_Overloaded (L) then
4548 Check_Right_Argument (Etype (L));
4550 else
4551 Get_First_Interp (L, Index1, It1);
4552 while Present (It1.Typ) loop
4553 Check_Right_Argument (It1.Typ);
4554 Get_Next_Interp (Index1, It1);
4555 end loop;
4556 end if;
4558 end Find_Arithmetic_Types;
4560 ------------------------
4561 -- Find_Boolean_Types --
4562 ------------------------
4564 procedure Find_Boolean_Types
4565 (L, R : Node_Id;
4566 Op_Id : Entity_Id;
4567 N : Node_Id)
4569 Index : Interp_Index;
4570 It : Interp;
4572 procedure Check_Numeric_Argument (T : Entity_Id);
4573 -- Special case for logical operations one of whose operands is an
4574 -- integer literal. If both are literal the result is any modular type.
4576 ----------------------------
4577 -- Check_Numeric_Argument --
4578 ----------------------------
4580 procedure Check_Numeric_Argument (T : Entity_Id) is
4581 begin
4582 if T = Universal_Integer then
4583 Add_One_Interp (N, Op_Id, Any_Modular);
4585 elsif Is_Modular_Integer_Type (T) then
4586 Add_One_Interp (N, Op_Id, T);
4587 end if;
4588 end Check_Numeric_Argument;
4590 -- Start of processing for Find_Boolean_Types
4592 begin
4593 if not Is_Overloaded (L) then
4594 if Etype (L) = Universal_Integer
4595 or else Etype (L) = Any_Modular
4596 then
4597 if not Is_Overloaded (R) then
4598 Check_Numeric_Argument (Etype (R));
4600 else
4601 Get_First_Interp (R, Index, It);
4602 while Present (It.Typ) loop
4603 Check_Numeric_Argument (It.Typ);
4604 Get_Next_Interp (Index, It);
4605 end loop;
4606 end if;
4608 -- If operands are aggregates, we must assume that they may be
4609 -- boolean arrays, and leave disambiguation for the second pass.
4610 -- If only one is an aggregate, verify that the other one has an
4611 -- interpretation as a boolean array
4613 elsif Nkind (L) = N_Aggregate then
4614 if Nkind (R) = N_Aggregate then
4615 Add_One_Interp (N, Op_Id, Etype (L));
4617 elsif not Is_Overloaded (R) then
4618 if Valid_Boolean_Arg (Etype (R)) then
4619 Add_One_Interp (N, Op_Id, Etype (R));
4620 end if;
4622 else
4623 Get_First_Interp (R, Index, It);
4624 while Present (It.Typ) loop
4625 if Valid_Boolean_Arg (It.Typ) then
4626 Add_One_Interp (N, Op_Id, It.Typ);
4627 end if;
4629 Get_Next_Interp (Index, It);
4630 end loop;
4631 end if;
4633 elsif Valid_Boolean_Arg (Etype (L))
4634 and then Has_Compatible_Type (R, Etype (L))
4635 then
4636 Add_One_Interp (N, Op_Id, Etype (L));
4637 end if;
4639 else
4640 Get_First_Interp (L, Index, It);
4641 while Present (It.Typ) loop
4642 if Valid_Boolean_Arg (It.Typ)
4643 and then Has_Compatible_Type (R, It.Typ)
4644 then
4645 Add_One_Interp (N, Op_Id, It.Typ);
4646 end if;
4648 Get_Next_Interp (Index, It);
4649 end loop;
4650 end if;
4651 end Find_Boolean_Types;
4653 ---------------------------
4654 -- Find_Comparison_Types --
4655 ---------------------------
4657 procedure Find_Comparison_Types
4658 (L, R : Node_Id;
4659 Op_Id : Entity_Id;
4660 N : Node_Id)
4662 Index : Interp_Index;
4663 It : Interp;
4664 Found : Boolean := False;
4665 I_F : Interp_Index;
4666 T_F : Entity_Id;
4667 Scop : Entity_Id := Empty;
4669 procedure Try_One_Interp (T1 : Entity_Id);
4670 -- Routine to try one proposed interpretation. Note that the context
4671 -- of the operator plays no role in resolving the arguments, so that
4672 -- if there is more than one interpretation of the operands that is
4673 -- compatible with comparison, the operation is ambiguous.
4675 --------------------
4676 -- Try_One_Interp --
4677 --------------------
4679 procedure Try_One_Interp (T1 : Entity_Id) is
4680 begin
4682 -- If the operator is an expanded name, then the type of the operand
4683 -- must be defined in the corresponding scope. If the type is
4684 -- universal, the context will impose the correct type.
4686 if Present (Scop)
4687 and then not Defined_In_Scope (T1, Scop)
4688 and then T1 /= Universal_Integer
4689 and then T1 /= Universal_Real
4690 and then T1 /= Any_String
4691 and then T1 /= Any_Composite
4692 then
4693 return;
4694 end if;
4696 if Valid_Comparison_Arg (T1)
4697 and then Has_Compatible_Type (R, T1)
4698 then
4699 if Found
4700 and then Base_Type (T1) /= Base_Type (T_F)
4701 then
4702 It := Disambiguate (L, I_F, Index, Any_Type);
4704 if It = No_Interp then
4705 Ambiguous_Operands (N);
4706 Set_Etype (L, Any_Type);
4707 return;
4709 else
4710 T_F := It.Typ;
4711 end if;
4713 else
4714 Found := True;
4715 T_F := T1;
4716 I_F := Index;
4717 end if;
4719 Set_Etype (L, T_F);
4720 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
4722 end if;
4723 end Try_One_Interp;
4725 -- Start of processing for Find_Comparison_Types
4727 begin
4728 -- If left operand is aggregate, the right operand has to
4729 -- provide a usable type for it.
4731 if Nkind (L) = N_Aggregate
4732 and then Nkind (R) /= N_Aggregate
4733 then
4734 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
4735 return;
4736 end if;
4738 if Nkind (N) = N_Function_Call
4739 and then Nkind (Name (N)) = N_Expanded_Name
4740 then
4741 Scop := Entity (Prefix (Name (N)));
4743 -- The prefix may be a package renaming, and the subsequent test
4744 -- requires the original package.
4746 if Ekind (Scop) = E_Package
4747 and then Present (Renamed_Entity (Scop))
4748 then
4749 Scop := Renamed_Entity (Scop);
4750 Set_Entity (Prefix (Name (N)), Scop);
4751 end if;
4752 end if;
4754 if not Is_Overloaded (L) then
4755 Try_One_Interp (Etype (L));
4757 else
4758 Get_First_Interp (L, Index, It);
4759 while Present (It.Typ) loop
4760 Try_One_Interp (It.Typ);
4761 Get_Next_Interp (Index, It);
4762 end loop;
4763 end if;
4764 end Find_Comparison_Types;
4766 ----------------------------------------
4767 -- Find_Non_Universal_Interpretations --
4768 ----------------------------------------
4770 procedure Find_Non_Universal_Interpretations
4771 (N : Node_Id;
4772 R : Node_Id;
4773 Op_Id : Entity_Id;
4774 T1 : Entity_Id)
4776 Index : Interp_Index;
4777 It : Interp;
4779 begin
4780 if T1 = Universal_Integer
4781 or else T1 = Universal_Real
4782 then
4783 if not Is_Overloaded (R) then
4784 Add_One_Interp
4785 (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
4786 else
4787 Get_First_Interp (R, Index, It);
4788 while Present (It.Typ) loop
4789 if Covers (It.Typ, T1) then
4790 Add_One_Interp
4791 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
4792 end if;
4794 Get_Next_Interp (Index, It);
4795 end loop;
4796 end if;
4797 else
4798 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
4799 end if;
4800 end Find_Non_Universal_Interpretations;
4802 ------------------------------
4803 -- Find_Concatenation_Types --
4804 ------------------------------
4806 procedure Find_Concatenation_Types
4807 (L, R : Node_Id;
4808 Op_Id : Entity_Id;
4809 N : Node_Id)
4811 Op_Type : constant Entity_Id := Etype (Op_Id);
4813 begin
4814 if Is_Array_Type (Op_Type)
4815 and then not Is_Limited_Type (Op_Type)
4817 and then (Has_Compatible_Type (L, Op_Type)
4818 or else
4819 Has_Compatible_Type (L, Component_Type (Op_Type)))
4821 and then (Has_Compatible_Type (R, Op_Type)
4822 or else
4823 Has_Compatible_Type (R, Component_Type (Op_Type)))
4824 then
4825 Add_One_Interp (N, Op_Id, Op_Type);
4826 end if;
4827 end Find_Concatenation_Types;
4829 -------------------------
4830 -- Find_Equality_Types --
4831 -------------------------
4833 procedure Find_Equality_Types
4834 (L, R : Node_Id;
4835 Op_Id : Entity_Id;
4836 N : Node_Id)
4838 Index : Interp_Index;
4839 It : Interp;
4840 Found : Boolean := False;
4841 I_F : Interp_Index;
4842 T_F : Entity_Id;
4843 Scop : Entity_Id := Empty;
4845 procedure Try_One_Interp (T1 : Entity_Id);
4846 -- The context of the equality operator plays no role in resolving the
4847 -- arguments, so that if there is more than one interpretation of the
4848 -- operands that is compatible with equality, the construct is ambiguous
4849 -- and an error can be emitted now, after trying to disambiguate, i.e.
4850 -- applying preference rules.
4852 --------------------
4853 -- Try_One_Interp --
4854 --------------------
4856 procedure Try_One_Interp (T1 : Entity_Id) is
4857 Bas : constant Entity_Id := Base_Type (T1);
4859 begin
4860 -- If the operator is an expanded name, then the type of the operand
4861 -- must be defined in the corresponding scope. If the type is
4862 -- universal, the context will impose the correct type. An anonymous
4863 -- type for a 'Access reference is also universal in this sense, as
4864 -- the actual type is obtained from context.
4865 -- In Ada 2005, the equality operator for anonymous access types
4866 -- is declared in Standard, and preference rules apply to it.
4868 if Present (Scop) then
4869 if Defined_In_Scope (T1, Scop)
4870 or else T1 = Universal_Integer
4871 or else T1 = Universal_Real
4872 or else T1 = Any_Access
4873 or else T1 = Any_String
4874 or else T1 = Any_Composite
4875 or else (Ekind (T1) = E_Access_Subprogram_Type
4876 and then not Comes_From_Source (T1))
4877 then
4878 null;
4880 elsif Ekind (T1) = E_Anonymous_Access_Type
4881 and then Scop = Standard_Standard
4882 then
4883 null;
4885 else
4886 -- The scope does not contain an operator for the type
4888 return;
4889 end if;
4891 -- If we have infix notation, the operator must be usable.
4892 -- Within an instance, if the type is already established we
4893 -- know it is correct.
4894 -- In Ada 2005, the equality on anonymous access types is declared
4895 -- in Standard, and is always visible.
4897 elsif In_Open_Scopes (Scope (Bas))
4898 or else Is_Potentially_Use_Visible (Bas)
4899 or else In_Use (Bas)
4900 or else (In_Use (Scope (Bas))
4901 and then not Is_Hidden (Bas))
4902 or else (In_Instance
4903 and then First_Subtype (T1) = First_Subtype (Etype (R)))
4904 or else Ekind (T1) = E_Anonymous_Access_Type
4905 then
4906 null;
4908 else
4909 -- Save candidate type for subsquent error message, if any
4911 if not Is_Limited_Type (T1) then
4912 Candidate_Type := T1;
4913 end if;
4915 return;
4916 end if;
4918 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
4919 -- Do not allow anonymous access types in equality operators.
4921 if Ada_Version < Ada_05
4922 and then Ekind (T1) = E_Anonymous_Access_Type
4923 then
4924 return;
4925 end if;
4927 if T1 /= Standard_Void_Type
4928 and then not Is_Limited_Type (T1)
4929 and then not Is_Limited_Composite (T1)
4930 and then Has_Compatible_Type (R, T1)
4931 then
4932 if Found
4933 and then Base_Type (T1) /= Base_Type (T_F)
4934 then
4935 It := Disambiguate (L, I_F, Index, Any_Type);
4937 if It = No_Interp then
4938 Ambiguous_Operands (N);
4939 Set_Etype (L, Any_Type);
4940 return;
4942 else
4943 T_F := It.Typ;
4944 end if;
4946 else
4947 Found := True;
4948 T_F := T1;
4949 I_F := Index;
4950 end if;
4952 if not Analyzed (L) then
4953 Set_Etype (L, T_F);
4954 end if;
4956 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
4958 -- Case of operator was not visible, Etype still set to Any_Type
4960 if Etype (N) = Any_Type then
4961 Found := False;
4962 end if;
4964 elsif Scop = Standard_Standard
4965 and then Ekind (T1) = E_Anonymous_Access_Type
4966 then
4967 Found := True;
4968 end if;
4969 end Try_One_Interp;
4971 -- Start of processing for Find_Equality_Types
4973 begin
4974 -- If left operand is aggregate, the right operand has to
4975 -- provide a usable type for it.
4977 if Nkind (L) = N_Aggregate
4978 and then Nkind (R) /= N_Aggregate
4979 then
4980 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
4981 return;
4982 end if;
4984 if Nkind (N) = N_Function_Call
4985 and then Nkind (Name (N)) = N_Expanded_Name
4986 then
4987 Scop := Entity (Prefix (Name (N)));
4989 -- The prefix may be a package renaming, and the subsequent test
4990 -- requires the original package.
4992 if Ekind (Scop) = E_Package
4993 and then Present (Renamed_Entity (Scop))
4994 then
4995 Scop := Renamed_Entity (Scop);
4996 Set_Entity (Prefix (Name (N)), Scop);
4997 end if;
4998 end if;
5000 if not Is_Overloaded (L) then
5001 Try_One_Interp (Etype (L));
5003 else
5004 Get_First_Interp (L, Index, It);
5005 while Present (It.Typ) loop
5006 Try_One_Interp (It.Typ);
5007 Get_Next_Interp (Index, It);
5008 end loop;
5009 end if;
5010 end Find_Equality_Types;
5012 -------------------------
5013 -- Find_Negation_Types --
5014 -------------------------
5016 procedure Find_Negation_Types
5017 (R : Node_Id;
5018 Op_Id : Entity_Id;
5019 N : Node_Id)
5021 Index : Interp_Index;
5022 It : Interp;
5024 begin
5025 if not Is_Overloaded (R) then
5026 if Etype (R) = Universal_Integer then
5027 Add_One_Interp (N, Op_Id, Any_Modular);
5028 elsif Valid_Boolean_Arg (Etype (R)) then
5029 Add_One_Interp (N, Op_Id, Etype (R));
5030 end if;
5032 else
5033 Get_First_Interp (R, Index, It);
5034 while Present (It.Typ) loop
5035 if Valid_Boolean_Arg (It.Typ) then
5036 Add_One_Interp (N, Op_Id, It.Typ);
5037 end if;
5039 Get_Next_Interp (Index, It);
5040 end loop;
5041 end if;
5042 end Find_Negation_Types;
5044 ------------------------------
5045 -- Find_Primitive_Operation --
5046 ------------------------------
5048 function Find_Primitive_Operation (N : Node_Id) return Boolean is
5049 Obj : constant Node_Id := Prefix (N);
5050 Op : constant Node_Id := Selector_Name (N);
5052 Prim : Elmt_Id;
5053 Prims : Elist_Id;
5054 Typ : Entity_Id;
5056 begin
5057 Set_Etype (Op, Any_Type);
5059 if Is_Access_Type (Etype (Obj)) then
5060 Typ := Designated_Type (Etype (Obj));
5061 else
5062 Typ := Etype (Obj);
5063 end if;
5065 if Is_Class_Wide_Type (Typ) then
5066 Typ := Root_Type (Typ);
5067 end if;
5069 Prims := Primitive_Operations (Typ);
5071 Prim := First_Elmt (Prims);
5072 while Present (Prim) loop
5073 if Chars (Node (Prim)) = Chars (Op) then
5074 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
5075 Set_Etype (N, Etype (Node (Prim)));
5076 end if;
5078 Next_Elmt (Prim);
5079 end loop;
5081 -- Now look for class-wide operations of the type or any of its
5082 -- ancestors by iterating over the homonyms of the selector.
5084 declare
5085 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
5086 Hom : Entity_Id;
5088 begin
5089 Hom := Current_Entity (Op);
5090 while Present (Hom) loop
5091 if (Ekind (Hom) = E_Procedure
5092 or else
5093 Ekind (Hom) = E_Function)
5094 and then Scope (Hom) = Scope (Typ)
5095 and then Present (First_Formal (Hom))
5096 and then
5097 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
5098 or else
5099 (Is_Access_Type (Etype (First_Formal (Hom)))
5100 and then
5101 Ekind (Etype (First_Formal (Hom))) =
5102 E_Anonymous_Access_Type
5103 and then
5104 Base_Type
5105 (Designated_Type (Etype (First_Formal (Hom)))) =
5106 Cls_Type))
5107 then
5108 Add_One_Interp (Op, Hom, Etype (Hom));
5109 Set_Etype (N, Etype (Hom));
5110 end if;
5112 Hom := Homonym (Hom);
5113 end loop;
5114 end;
5116 return Etype (Op) /= Any_Type;
5117 end Find_Primitive_Operation;
5119 ----------------------
5120 -- Find_Unary_Types --
5121 ----------------------
5123 procedure Find_Unary_Types
5124 (R : Node_Id;
5125 Op_Id : Entity_Id;
5126 N : Node_Id)
5128 Index : Interp_Index;
5129 It : Interp;
5131 begin
5132 if not Is_Overloaded (R) then
5133 if Is_Numeric_Type (Etype (R)) then
5134 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
5135 end if;
5137 else
5138 Get_First_Interp (R, Index, It);
5139 while Present (It.Typ) loop
5140 if Is_Numeric_Type (It.Typ) then
5141 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
5142 end if;
5144 Get_Next_Interp (Index, It);
5145 end loop;
5146 end if;
5147 end Find_Unary_Types;
5149 ------------------
5150 -- Junk_Operand --
5151 ------------------
5153 function Junk_Operand (N : Node_Id) return Boolean is
5154 Enode : Node_Id;
5156 begin
5157 if Error_Posted (N) then
5158 return False;
5159 end if;
5161 -- Get entity to be tested
5163 if Is_Entity_Name (N)
5164 and then Present (Entity (N))
5165 then
5166 Enode := N;
5168 -- An odd case, a procedure name gets converted to a very peculiar
5169 -- function call, and here is where we detect this happening.
5171 elsif Nkind (N) = N_Function_Call
5172 and then Is_Entity_Name (Name (N))
5173 and then Present (Entity (Name (N)))
5174 then
5175 Enode := Name (N);
5177 -- Another odd case, there are at least some cases of selected
5178 -- components where the selected component is not marked as having
5179 -- an entity, even though the selector does have an entity
5181 elsif Nkind (N) = N_Selected_Component
5182 and then Present (Entity (Selector_Name (N)))
5183 then
5184 Enode := Selector_Name (N);
5186 else
5187 return False;
5188 end if;
5190 -- Now test the entity we got to see if it is a bad case
5192 case Ekind (Entity (Enode)) is
5194 when E_Package =>
5195 Error_Msg_N
5196 ("package name cannot be used as operand", Enode);
5198 when Generic_Unit_Kind =>
5199 Error_Msg_N
5200 ("generic unit name cannot be used as operand", Enode);
5202 when Type_Kind =>
5203 Error_Msg_N
5204 ("subtype name cannot be used as operand", Enode);
5206 when Entry_Kind =>
5207 Error_Msg_N
5208 ("entry name cannot be used as operand", Enode);
5210 when E_Procedure =>
5211 Error_Msg_N
5212 ("procedure name cannot be used as operand", Enode);
5214 when E_Exception =>
5215 Error_Msg_N
5216 ("exception name cannot be used as operand", Enode);
5218 when E_Block | E_Label | E_Loop =>
5219 Error_Msg_N
5220 ("label name cannot be used as operand", Enode);
5222 when others =>
5223 return False;
5225 end case;
5227 return True;
5228 end Junk_Operand;
5230 --------------------
5231 -- Operator_Check --
5232 --------------------
5234 procedure Operator_Check (N : Node_Id) is
5235 begin
5236 Remove_Abstract_Operations (N);
5238 -- Test for case of no interpretation found for operator
5240 if Etype (N) = Any_Type then
5241 declare
5242 L : Node_Id;
5243 R : Node_Id;
5244 Op_Id : Entity_Id := Empty;
5246 begin
5247 R := Right_Opnd (N);
5249 if Nkind (N) in N_Binary_Op then
5250 L := Left_Opnd (N);
5251 else
5252 L := Empty;
5253 end if;
5255 -- If either operand has no type, then don't complain further,
5256 -- since this simply means that we have a propagated error.
5258 if R = Error
5259 or else Etype (R) = Any_Type
5260 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
5261 then
5262 return;
5264 -- We explicitly check for the case of concatenation of component
5265 -- with component to avoid reporting spurious matching array types
5266 -- that might happen to be lurking in distant packages (such as
5267 -- run-time packages). This also prevents inconsistencies in the
5268 -- messages for certain ACVC B tests, which can vary depending on
5269 -- types declared in run-time interfaces. Another improvement when
5270 -- aggregates are present is to look for a well-typed operand.
5272 elsif Present (Candidate_Type)
5273 and then (Nkind (N) /= N_Op_Concat
5274 or else Is_Array_Type (Etype (L))
5275 or else Is_Array_Type (Etype (R)))
5276 then
5278 if Nkind (N) = N_Op_Concat then
5279 if Etype (L) /= Any_Composite
5280 and then Is_Array_Type (Etype (L))
5281 then
5282 Candidate_Type := Etype (L);
5284 elsif Etype (R) /= Any_Composite
5285 and then Is_Array_Type (Etype (R))
5286 then
5287 Candidate_Type := Etype (R);
5288 end if;
5289 end if;
5291 Error_Msg_NE
5292 ("operator for} is not directly visible!",
5293 N, First_Subtype (Candidate_Type));
5294 Error_Msg_N ("use clause would make operation legal!", N);
5295 return;
5297 -- If either operand is a junk operand (e.g. package name), then
5298 -- post appropriate error messages, but do not complain further.
5300 -- Note that the use of OR in this test instead of OR ELSE is
5301 -- quite deliberate, we may as well check both operands in the
5302 -- binary operator case.
5304 elsif Junk_Operand (R)
5305 or (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
5306 then
5307 return;
5309 -- If we have a logical operator, one of whose operands is
5310 -- Boolean, then we know that the other operand cannot resolve to
5311 -- Boolean (since we got no interpretations), but in that case we
5312 -- pretty much know that the other operand should be Boolean, so
5313 -- resolve it that way (generating an error)
5315 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
5316 if Etype (L) = Standard_Boolean then
5317 Resolve (R, Standard_Boolean);
5318 return;
5319 elsif Etype (R) = Standard_Boolean then
5320 Resolve (L, Standard_Boolean);
5321 return;
5322 end if;
5324 -- For an arithmetic operator or comparison operator, if one
5325 -- of the operands is numeric, then we know the other operand
5326 -- is not the same numeric type. If it is a non-numeric type,
5327 -- then probably it is intended to match the other operand.
5329 elsif Nkind_In (N, N_Op_Add,
5330 N_Op_Divide,
5331 N_Op_Ge,
5332 N_Op_Gt,
5333 N_Op_Le)
5334 or else
5335 Nkind_In (N, N_Op_Lt,
5336 N_Op_Mod,
5337 N_Op_Multiply,
5338 N_Op_Rem,
5339 N_Op_Subtract)
5340 then
5341 if Is_Numeric_Type (Etype (L))
5342 and then not Is_Numeric_Type (Etype (R))
5343 then
5344 Resolve (R, Etype (L));
5345 return;
5347 elsif Is_Numeric_Type (Etype (R))
5348 and then not Is_Numeric_Type (Etype (L))
5349 then
5350 Resolve (L, Etype (R));
5351 return;
5352 end if;
5354 -- Comparisons on A'Access are common enough to deserve a
5355 -- special message.
5357 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
5358 and then Ekind (Etype (L)) = E_Access_Attribute_Type
5359 and then Ekind (Etype (R)) = E_Access_Attribute_Type
5360 then
5361 Error_Msg_N
5362 ("two access attributes cannot be compared directly", N);
5363 Error_Msg_N
5364 ("\use qualified expression for one of the operands",
5366 return;
5368 -- Another one for C programmers
5370 elsif Nkind (N) = N_Op_Concat
5371 and then Valid_Boolean_Arg (Etype (L))
5372 and then Valid_Boolean_Arg (Etype (R))
5373 then
5374 Error_Msg_N ("invalid operands for concatenation", N);
5375 Error_Msg_N -- CODEFIX
5376 ("\maybe AND was meant", N);
5377 return;
5379 -- A special case for comparison of access parameter with null
5381 elsif Nkind (N) = N_Op_Eq
5382 and then Is_Entity_Name (L)
5383 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
5384 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
5385 N_Access_Definition
5386 and then Nkind (R) = N_Null
5387 then
5388 Error_Msg_N ("access parameter is not allowed to be null", L);
5389 Error_Msg_N ("\(call would raise Constraint_Error)", L);
5390 return;
5392 -- Another special case for exponentiation, where the right
5393 -- operand must be Natural, independently of the base.
5395 elsif Nkind (N) = N_Op_Expon
5396 and then Is_Numeric_Type (Etype (L))
5397 and then not Is_Overloaded (R)
5398 and then
5399 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
5400 and then Base_Type (Etype (R)) /= Universal_Integer
5401 then
5402 Error_Msg_NE
5403 ("exponent must be of type Natural, found}", R, Etype (R));
5404 return;
5405 end if;
5407 -- If we fall through then just give general message. Note that in
5408 -- the following messages, if the operand is overloaded we choose
5409 -- an arbitrary type to complain about, but that is probably more
5410 -- useful than not giving a type at all.
5412 if Nkind (N) in N_Unary_Op then
5413 Error_Msg_Node_2 := Etype (R);
5414 Error_Msg_N ("operator& not defined for}", N);
5415 return;
5417 else
5418 if Nkind (N) in N_Binary_Op then
5419 if not Is_Overloaded (L)
5420 and then not Is_Overloaded (R)
5421 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
5422 then
5423 Error_Msg_Node_2 := First_Subtype (Etype (R));
5424 Error_Msg_N ("there is no applicable operator& for}", N);
5426 else
5427 -- Another attempt to find a fix: one of the candidate
5428 -- interpretations may not be use-visible. This has
5429 -- already been checked for predefined operators, so
5430 -- we examine only user-defined functions.
5432 Op_Id := Get_Name_Entity_Id (Chars (N));
5434 while Present (Op_Id) loop
5435 if Ekind (Op_Id) /= E_Operator
5436 and then Is_Overloadable (Op_Id)
5437 then
5438 if not Is_Immediately_Visible (Op_Id)
5439 and then not In_Use (Scope (Op_Id))
5440 and then not Is_Abstract_Subprogram (Op_Id)
5441 and then not Is_Hidden (Op_Id)
5442 and then Ekind (Scope (Op_Id)) = E_Package
5443 and then
5444 Has_Compatible_Type
5445 (L, Etype (First_Formal (Op_Id)))
5446 and then Present
5447 (Next_Formal (First_Formal (Op_Id)))
5448 and then
5449 Has_Compatible_Type
5451 Etype (Next_Formal (First_Formal (Op_Id))))
5452 then
5453 Error_Msg_N
5454 ("No legal interpretation for operator&", N);
5455 Error_Msg_NE
5456 ("\use clause on& would make operation legal",
5457 N, Scope (Op_Id));
5458 exit;
5459 end if;
5460 end if;
5462 Op_Id := Homonym (Op_Id);
5463 end loop;
5465 if No (Op_Id) then
5466 Error_Msg_N ("invalid operand types for operator&", N);
5468 if Nkind (N) /= N_Op_Concat then
5469 Error_Msg_NE ("\left operand has}!", N, Etype (L));
5470 Error_Msg_NE ("\right operand has}!", N, Etype (R));
5471 end if;
5472 end if;
5473 end if;
5474 end if;
5475 end if;
5476 end;
5477 end if;
5478 end Operator_Check;
5480 -----------------------------------------
5481 -- Process_Implicit_Dereference_Prefix --
5482 -----------------------------------------
5484 function Process_Implicit_Dereference_Prefix
5485 (E : Entity_Id;
5486 P : Entity_Id) return Entity_Id
5488 Ref : Node_Id;
5489 Typ : constant Entity_Id := Designated_Type (Etype (P));
5491 begin
5492 if Present (E)
5493 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
5494 then
5495 -- We create a dummy reference to E to ensure that the reference
5496 -- is not considered as part of an assignment (an implicit
5497 -- dereference can never assign to its prefix). The Comes_From_Source
5498 -- attribute needs to be propagated for accurate warnings.
5500 Ref := New_Reference_To (E, Sloc (P));
5501 Set_Comes_From_Source (Ref, Comes_From_Source (P));
5502 Generate_Reference (E, Ref);
5503 end if;
5505 -- An implicit dereference is a legal occurrence of an
5506 -- incomplete type imported through a limited_with clause,
5507 -- if the full view is visible.
5509 if From_With_Type (Typ)
5510 and then not From_With_Type (Scope (Typ))
5511 and then
5512 (Is_Immediately_Visible (Scope (Typ))
5513 or else
5514 (Is_Child_Unit (Scope (Typ))
5515 and then Is_Visible_Child_Unit (Scope (Typ))))
5516 then
5517 return Available_View (Typ);
5518 else
5519 return Typ;
5520 end if;
5522 end Process_Implicit_Dereference_Prefix;
5524 --------------------------------
5525 -- Remove_Abstract_Operations --
5526 --------------------------------
5528 procedure Remove_Abstract_Operations (N : Node_Id) is
5529 Abstract_Op : Entity_Id := Empty;
5530 Address_Kludge : Boolean := False;
5531 I : Interp_Index;
5532 It : Interp;
5534 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
5535 -- activate this if either extensions are enabled, or if the abstract
5536 -- operation in question comes from a predefined file. This latter test
5537 -- allows us to use abstract to make operations invisible to users. In
5538 -- particular, if type Address is non-private and abstract subprograms
5539 -- are used to hide its operators, they will be truly hidden.
5541 type Operand_Position is (First_Op, Second_Op);
5542 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
5544 procedure Remove_Address_Interpretations (Op : Operand_Position);
5545 -- Ambiguities may arise when the operands are literal and the address
5546 -- operations in s-auxdec are visible. In that case, remove the
5547 -- interpretation of a literal as Address, to retain the semantics of
5548 -- Address as a private type.
5550 ------------------------------------
5551 -- Remove_Address_Interpretations --
5552 ------------------------------------
5554 procedure Remove_Address_Interpretations (Op : Operand_Position) is
5555 Formal : Entity_Id;
5557 begin
5558 if Is_Overloaded (N) then
5559 Get_First_Interp (N, I, It);
5560 while Present (It.Nam) loop
5561 Formal := First_Entity (It.Nam);
5563 if Op = Second_Op then
5564 Formal := Next_Entity (Formal);
5565 end if;
5567 if Is_Descendent_Of_Address (Etype (Formal)) then
5568 Address_Kludge := True;
5569 Remove_Interp (I);
5570 end if;
5572 Get_Next_Interp (I, It);
5573 end loop;
5574 end if;
5575 end Remove_Address_Interpretations;
5577 -- Start of processing for Remove_Abstract_Operations
5579 begin
5580 if Is_Overloaded (N) then
5581 Get_First_Interp (N, I, It);
5583 while Present (It.Nam) loop
5584 if Is_Overloadable (It.Nam)
5585 and then Is_Abstract_Subprogram (It.Nam)
5586 and then not Is_Dispatching_Operation (It.Nam)
5587 then
5588 Abstract_Op := It.Nam;
5590 if Is_Descendent_Of_Address (It.Typ) then
5591 Address_Kludge := True;
5592 Remove_Interp (I);
5593 exit;
5595 -- In Ada 2005, this operation does not participate in Overload
5596 -- resolution. If the operation is defined in a predefined
5597 -- unit, it is one of the operations declared abstract in some
5598 -- variants of System, and it must be removed as well.
5600 elsif Ada_Version >= Ada_05
5601 or else Is_Predefined_File_Name
5602 (Unit_File_Name (Get_Source_Unit (It.Nam)))
5603 then
5604 Remove_Interp (I);
5605 exit;
5606 end if;
5607 end if;
5609 Get_Next_Interp (I, It);
5610 end loop;
5612 if No (Abstract_Op) then
5614 -- If some interpretation yields an integer type, it is still
5615 -- possible that there are address interpretations. Remove them
5616 -- if one operand is a literal, to avoid spurious ambiguities
5617 -- on systems where Address is a visible integer type.
5619 if Is_Overloaded (N)
5620 and then Nkind (N) in N_Op
5621 and then Is_Integer_Type (Etype (N))
5622 then
5623 if Nkind (N) in N_Binary_Op then
5624 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
5625 Remove_Address_Interpretations (Second_Op);
5627 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
5628 Remove_Address_Interpretations (First_Op);
5629 end if;
5630 end if;
5631 end if;
5633 elsif Nkind (N) in N_Op then
5635 -- Remove interpretations that treat literals as addresses. This
5636 -- is never appropriate, even when Address is defined as a visible
5637 -- Integer type. The reason is that we would really prefer Address
5638 -- to behave as a private type, even in this case, which is there
5639 -- only to accommodate oddities of VMS address sizes. If Address
5640 -- is a visible integer type, we get lots of overload ambiguities.
5642 if Nkind (N) in N_Binary_Op then
5643 declare
5644 U1 : constant Boolean :=
5645 Present (Universal_Interpretation (Right_Opnd (N)));
5646 U2 : constant Boolean :=
5647 Present (Universal_Interpretation (Left_Opnd (N)));
5649 begin
5650 if U1 then
5651 Remove_Address_Interpretations (Second_Op);
5652 end if;
5654 if U2 then
5655 Remove_Address_Interpretations (First_Op);
5656 end if;
5658 if not (U1 and U2) then
5660 -- Remove corresponding predefined operator, which is
5661 -- always added to the overload set.
5663 Get_First_Interp (N, I, It);
5664 while Present (It.Nam) loop
5665 if Scope (It.Nam) = Standard_Standard
5666 and then Base_Type (It.Typ) =
5667 Base_Type (Etype (Abstract_Op))
5668 then
5669 Remove_Interp (I);
5670 end if;
5672 Get_Next_Interp (I, It);
5673 end loop;
5675 elsif Is_Overloaded (N)
5676 and then Present (Univ_Type)
5677 then
5678 -- If both operands have a universal interpretation,
5679 -- it is still necessary to remove interpretations that
5680 -- yield Address. Any remaining ambiguities will be
5681 -- removed in Disambiguate.
5683 Get_First_Interp (N, I, It);
5684 while Present (It.Nam) loop
5685 if Is_Descendent_Of_Address (It.Typ) then
5686 Remove_Interp (I);
5688 elsif not Is_Type (It.Nam) then
5689 Set_Entity (N, It.Nam);
5690 end if;
5692 Get_Next_Interp (I, It);
5693 end loop;
5694 end if;
5695 end;
5696 end if;
5698 elsif Nkind (N) = N_Function_Call
5699 and then
5700 (Nkind (Name (N)) = N_Operator_Symbol
5701 or else
5702 (Nkind (Name (N)) = N_Expanded_Name
5703 and then
5704 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
5705 then
5707 declare
5708 Arg1 : constant Node_Id := First (Parameter_Associations (N));
5709 U1 : constant Boolean :=
5710 Present (Universal_Interpretation (Arg1));
5711 U2 : constant Boolean :=
5712 Present (Next (Arg1)) and then
5713 Present (Universal_Interpretation (Next (Arg1)));
5715 begin
5716 if U1 then
5717 Remove_Address_Interpretations (First_Op);
5718 end if;
5720 if U2 then
5721 Remove_Address_Interpretations (Second_Op);
5722 end if;
5724 if not (U1 and U2) then
5725 Get_First_Interp (N, I, It);
5726 while Present (It.Nam) loop
5727 if Scope (It.Nam) = Standard_Standard
5728 and then It.Typ = Base_Type (Etype (Abstract_Op))
5729 then
5730 Remove_Interp (I);
5731 end if;
5733 Get_Next_Interp (I, It);
5734 end loop;
5735 end if;
5736 end;
5737 end if;
5739 -- If the removal has left no valid interpretations, emit an error
5740 -- message now and label node as illegal.
5742 if Present (Abstract_Op) then
5743 Get_First_Interp (N, I, It);
5745 if No (It.Nam) then
5747 -- Removal of abstract operation left no viable candidate
5749 Set_Etype (N, Any_Type);
5750 Error_Msg_Sloc := Sloc (Abstract_Op);
5751 Error_Msg_NE
5752 ("cannot call abstract operation& declared#", N, Abstract_Op);
5754 -- In Ada 2005, an abstract operation may disable predefined
5755 -- operators. Since the context is not yet known, we mark the
5756 -- predefined operators as potentially hidden. Do not include
5757 -- predefined operators when addresses are involved since this
5758 -- case is handled separately.
5760 elsif Ada_Version >= Ada_05
5761 and then not Address_Kludge
5762 then
5763 while Present (It.Nam) loop
5764 if Is_Numeric_Type (It.Typ)
5765 and then Scope (It.Typ) = Standard_Standard
5766 then
5767 Set_Abstract_Op (I, Abstract_Op);
5768 end if;
5770 Get_Next_Interp (I, It);
5771 end loop;
5772 end if;
5773 end if;
5774 end if;
5775 end Remove_Abstract_Operations;
5777 -----------------------
5778 -- Try_Indirect_Call --
5779 -----------------------
5781 function Try_Indirect_Call
5782 (N : Node_Id;
5783 Nam : Entity_Id;
5784 Typ : Entity_Id) return Boolean
5786 Actual : Node_Id;
5787 Formal : Entity_Id;
5789 Call_OK : Boolean;
5790 pragma Warnings (Off, Call_OK);
5792 begin
5793 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
5795 Actual := First_Actual (N);
5796 Formal := First_Formal (Designated_Type (Typ));
5797 while Present (Actual) and then Present (Formal) loop
5798 if not Has_Compatible_Type (Actual, Etype (Formal)) then
5799 return False;
5800 end if;
5802 Next (Actual);
5803 Next_Formal (Formal);
5804 end loop;
5806 if No (Actual) and then No (Formal) then
5807 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
5809 -- Nam is a candidate interpretation for the name in the call,
5810 -- if it is not an indirect call.
5812 if not Is_Type (Nam)
5813 and then Is_Entity_Name (Name (N))
5814 then
5815 Set_Entity (Name (N), Nam);
5816 end if;
5818 return True;
5819 else
5820 return False;
5821 end if;
5822 end Try_Indirect_Call;
5824 ----------------------
5825 -- Try_Indexed_Call --
5826 ----------------------
5828 function Try_Indexed_Call
5829 (N : Node_Id;
5830 Nam : Entity_Id;
5831 Typ : Entity_Id;
5832 Skip_First : Boolean) return Boolean
5834 Loc : constant Source_Ptr := Sloc (N);
5835 Actuals : constant List_Id := Parameter_Associations (N);
5836 Actual : Node_Id;
5837 Index : Entity_Id;
5839 begin
5840 Actual := First (Actuals);
5842 -- If the call was originally written in prefix form, skip the first
5843 -- actual, which is obviously not defaulted.
5845 if Skip_First then
5846 Next (Actual);
5847 end if;
5849 Index := First_Index (Typ);
5850 while Present (Actual) and then Present (Index) loop
5852 -- If the parameter list has a named association, the expression
5853 -- is definitely a call and not an indexed component.
5855 if Nkind (Actual) = N_Parameter_Association then
5856 return False;
5857 end if;
5859 if Is_Entity_Name (Actual)
5860 and then Is_Type (Entity (Actual))
5861 and then No (Next (Actual))
5862 then
5863 Rewrite (N,
5864 Make_Slice (Loc,
5865 Prefix => Make_Function_Call (Loc,
5866 Name => Relocate_Node (Name (N))),
5867 Discrete_Range =>
5868 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
5870 Analyze (N);
5871 return True;
5873 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
5874 return False;
5875 end if;
5877 Next (Actual);
5878 Next_Index (Index);
5879 end loop;
5881 if No (Actual) and then No (Index) then
5882 Add_One_Interp (N, Nam, Component_Type (Typ));
5884 -- Nam is a candidate interpretation for the name in the call,
5885 -- if it is not an indirect call.
5887 if not Is_Type (Nam)
5888 and then Is_Entity_Name (Name (N))
5889 then
5890 Set_Entity (Name (N), Nam);
5891 end if;
5893 return True;
5894 else
5895 return False;
5896 end if;
5897 end Try_Indexed_Call;
5899 --------------------------
5900 -- Try_Object_Operation --
5901 --------------------------
5903 function Try_Object_Operation (N : Node_Id) return Boolean is
5904 K : constant Node_Kind := Nkind (Parent (N));
5905 Is_Subprg_Call : constant Boolean := Nkind_In
5906 (K, N_Procedure_Call_Statement,
5907 N_Function_Call);
5908 Loc : constant Source_Ptr := Sloc (N);
5909 Obj : constant Node_Id := Prefix (N);
5910 Subprog : constant Node_Id :=
5911 Make_Identifier (Sloc (Selector_Name (N)),
5912 Chars => Chars (Selector_Name (N)));
5913 -- Identifier on which possible interpretations will be collected
5915 Report_Error : Boolean := False;
5916 -- If no candidate interpretation matches the context, redo the
5917 -- analysis with error enabled to provide additional information.
5919 Actual : Node_Id;
5920 Candidate : Entity_Id := Empty;
5921 New_Call_Node : Node_Id := Empty;
5922 Node_To_Replace : Node_Id;
5923 Obj_Type : Entity_Id := Etype (Obj);
5924 Success : Boolean := False;
5926 function Valid_Candidate
5927 (Success : Boolean;
5928 Call : Node_Id;
5929 Subp : Entity_Id) return Entity_Id;
5930 -- If the subprogram is a valid interpretation, record it, and add
5931 -- to the list of interpretations of Subprog.
5933 procedure Complete_Object_Operation
5934 (Call_Node : Node_Id;
5935 Node_To_Replace : Node_Id);
5936 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
5937 -- Call_Node, insert the object (or its dereference) as the first actual
5938 -- in the call, and complete the analysis of the call.
5940 procedure Report_Ambiguity (Op : Entity_Id);
5941 -- If a prefixed procedure call is ambiguous, indicate whether the
5942 -- call includes an implicit dereference or an implicit 'Access.
5944 procedure Transform_Object_Operation
5945 (Call_Node : out Node_Id;
5946 Node_To_Replace : out Node_Id);
5947 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
5948 -- Call_Node is the resulting subprogram call, Node_To_Replace is
5949 -- either N or the parent of N, and Subprog is a reference to the
5950 -- subprogram we are trying to match.
5952 function Try_Class_Wide_Operation
5953 (Call_Node : Node_Id;
5954 Node_To_Replace : Node_Id) return Boolean;
5955 -- Traverse all ancestor types looking for a class-wide subprogram
5956 -- for which the current operation is a valid non-dispatching call.
5958 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
5959 -- If prefix is overloaded, its interpretation may include different
5960 -- tagged types, and we must examine the primitive operations and
5961 -- the class-wide operations of each in order to find candidate
5962 -- interpretations for the call as a whole.
5964 function Try_Primitive_Operation
5965 (Call_Node : Node_Id;
5966 Node_To_Replace : Node_Id) return Boolean;
5967 -- Traverse the list of primitive subprograms looking for a dispatching
5968 -- operation for which the current node is a valid call .
5970 ---------------------
5971 -- Valid_Candidate --
5972 ---------------------
5974 function Valid_Candidate
5975 (Success : Boolean;
5976 Call : Node_Id;
5977 Subp : Entity_Id) return Entity_Id
5979 Arr_Type : Entity_Id;
5980 Comp_Type : Entity_Id;
5982 begin
5983 -- If the subprogram is a valid interpretation, record it in global
5984 -- variable Subprog, to collect all possible overloadings.
5986 if Success then
5987 if Subp /= Entity (Subprog) then
5988 Add_One_Interp (Subprog, Subp, Etype (Subp));
5989 end if;
5990 end if;
5992 -- If the call may be an indexed call, retrieve component type of
5993 -- resulting expression, and add possible interpretation.
5995 Arr_Type := Empty;
5996 Comp_Type := Empty;
5998 if Nkind (Call) = N_Function_Call
5999 and then Nkind (Parent (N)) = N_Indexed_Component
6000 and then Needs_One_Actual (Subp)
6001 then
6002 if Is_Array_Type (Etype (Subp)) then
6003 Arr_Type := Etype (Subp);
6005 elsif Is_Access_Type (Etype (Subp))
6006 and then Is_Array_Type (Designated_Type (Etype (Subp)))
6007 then
6008 Arr_Type := Designated_Type (Etype (Subp));
6009 end if;
6010 end if;
6012 if Present (Arr_Type) then
6014 -- Verify that the actuals (excluding the object)
6015 -- match the types of the indices.
6017 declare
6018 Actual : Node_Id;
6019 Index : Node_Id;
6021 begin
6022 Actual := Next (First_Actual (Call));
6023 Index := First_Index (Arr_Type);
6024 while Present (Actual) and then Present (Index) loop
6025 if not Has_Compatible_Type (Actual, Etype (Index)) then
6026 Arr_Type := Empty;
6027 exit;
6028 end if;
6030 Next_Actual (Actual);
6031 Next_Index (Index);
6032 end loop;
6034 if No (Actual)
6035 and then No (Index)
6036 and then Present (Arr_Type)
6037 then
6038 Comp_Type := Component_Type (Arr_Type);
6039 end if;
6040 end;
6042 if Present (Comp_Type)
6043 and then Etype (Subprog) /= Comp_Type
6044 then
6045 Add_One_Interp (Subprog, Subp, Comp_Type);
6046 end if;
6047 end if;
6049 if Etype (Call) /= Any_Type then
6050 return Subp;
6051 else
6052 return Empty;
6053 end if;
6054 end Valid_Candidate;
6056 -------------------------------
6057 -- Complete_Object_Operation --
6058 -------------------------------
6060 procedure Complete_Object_Operation
6061 (Call_Node : Node_Id;
6062 Node_To_Replace : Node_Id)
6064 Control : constant Entity_Id := First_Formal (Entity (Subprog));
6065 Formal_Type : constant Entity_Id := Etype (Control);
6066 First_Actual : Node_Id;
6068 begin
6069 -- Place the name of the operation, with its interpretations,
6070 -- on the rewritten call.
6072 Set_Name (Call_Node, Subprog);
6074 First_Actual := First (Parameter_Associations (Call_Node));
6076 -- For cross-reference purposes, treat the new node as being in
6077 -- the source if the original one is.
6079 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
6080 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
6082 if Nkind (N) = N_Selected_Component
6083 and then not Inside_A_Generic
6084 then
6085 Set_Entity (Selector_Name (N), Entity (Subprog));
6086 end if;
6088 -- If need be, rewrite first actual as an explicit dereference
6089 -- If the call is overloaded, the rewriting can only be done
6090 -- once the primitive operation is identified.
6092 if Is_Overloaded (Subprog) then
6094 -- The prefix itself may be overloaded, and its interpretations
6095 -- must be propagated to the new actual in the call.
6097 if Is_Overloaded (Obj) then
6098 Save_Interps (Obj, First_Actual);
6099 end if;
6101 Rewrite (First_Actual, Obj);
6103 elsif not Is_Access_Type (Formal_Type)
6104 and then Is_Access_Type (Etype (Obj))
6105 then
6106 Rewrite (First_Actual,
6107 Make_Explicit_Dereference (Sloc (Obj), Obj));
6108 Analyze (First_Actual);
6110 -- If we need to introduce an explicit dereference, verify that
6111 -- the resulting actual is compatible with the mode of the formal.
6113 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
6114 and then Is_Access_Constant (Etype (Obj))
6115 then
6116 Error_Msg_NE
6117 ("expect variable in call to&", Prefix (N), Entity (Subprog));
6118 end if;
6120 -- Conversely, if the formal is an access parameter and the object
6121 -- is not, replace the actual with a 'Access reference. Its analysis
6122 -- will check that the object is aliased.
6124 elsif Is_Access_Type (Formal_Type)
6125 and then not Is_Access_Type (Etype (Obj))
6126 then
6127 -- A special case: A.all'access is illegal if A is an access to a
6128 -- constant and the context requires an access to a variable.
6130 if not Is_Access_Constant (Formal_Type) then
6131 if (Nkind (Obj) = N_Explicit_Dereference
6132 and then Is_Access_Constant (Etype (Prefix (Obj))))
6133 or else not Is_Variable (Obj)
6134 then
6135 Error_Msg_NE
6136 ("actual for& must be a variable", Obj, Control);
6137 end if;
6138 end if;
6140 Rewrite (First_Actual,
6141 Make_Attribute_Reference (Loc,
6142 Attribute_Name => Name_Access,
6143 Prefix => Relocate_Node (Obj)));
6145 if not Is_Aliased_View (Obj) then
6146 Error_Msg_NE
6147 ("object in prefixed call to& must be aliased"
6148 & " (RM-2005 4.3.1 (13))",
6149 Prefix (First_Actual), Subprog);
6150 end if;
6152 Analyze (First_Actual);
6154 else
6155 if Is_Overloaded (Obj) then
6156 Save_Interps (Obj, First_Actual);
6157 end if;
6159 Rewrite (First_Actual, Obj);
6160 end if;
6162 Rewrite (Node_To_Replace, Call_Node);
6164 -- Propagate the interpretations collected in subprog to the new
6165 -- function call node, to be resolved from context.
6167 if Is_Overloaded (Subprog) then
6168 Save_Interps (Subprog, Node_To_Replace);
6169 else
6170 Analyze (Node_To_Replace);
6171 end if;
6172 end Complete_Object_Operation;
6174 ----------------------
6175 -- Report_Ambiguity --
6176 ----------------------
6178 procedure Report_Ambiguity (Op : Entity_Id) is
6179 Access_Formal : constant Boolean :=
6180 Is_Access_Type (Etype (First_Formal (Op)));
6181 Access_Actual : constant Boolean :=
6182 Is_Access_Type (Etype (Prefix (N)));
6184 begin
6185 Error_Msg_Sloc := Sloc (Op);
6187 if Access_Formal and then not Access_Actual then
6188 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
6189 Error_Msg_N
6190 ("\possible interpretation"
6191 & " (inherited, with implicit 'Access) #", N);
6192 else
6193 Error_Msg_N
6194 ("\possible interpretation (with implicit 'Access) #", N);
6195 end if;
6197 elsif not Access_Formal and then Access_Actual then
6198 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
6199 Error_Msg_N
6200 ("\possible interpretation"
6201 & " ( inherited, with implicit dereference) #", N);
6202 else
6203 Error_Msg_N
6204 ("\possible interpretation (with implicit dereference) #", N);
6205 end if;
6207 else
6208 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
6209 Error_Msg_N ("\possible interpretation (inherited)#", N);
6210 else
6211 Error_Msg_N -- CODEFIX
6212 ("\possible interpretation#", N);
6213 end if;
6214 end if;
6215 end Report_Ambiguity;
6217 --------------------------------
6218 -- Transform_Object_Operation --
6219 --------------------------------
6221 procedure Transform_Object_Operation
6222 (Call_Node : out Node_Id;
6223 Node_To_Replace : out Node_Id)
6225 Dummy : constant Node_Id := New_Copy (Obj);
6226 -- Placeholder used as a first parameter in the call, replaced
6227 -- eventually by the proper object.
6229 Parent_Node : constant Node_Id := Parent (N);
6231 Actual : Node_Id;
6232 Actuals : List_Id;
6234 begin
6235 -- Common case covering 1) Call to a procedure and 2) Call to a
6236 -- function that has some additional actuals.
6238 if Nkind_In (Parent_Node, N_Function_Call,
6239 N_Procedure_Call_Statement)
6241 -- N is a selected component node containing the name of the
6242 -- subprogram. If N is not the name of the parent node we must
6243 -- not replace the parent node by the new construct. This case
6244 -- occurs when N is a parameterless call to a subprogram that
6245 -- is an actual parameter of a call to another subprogram. For
6246 -- example:
6247 -- Some_Subprogram (..., Obj.Operation, ...)
6249 and then Name (Parent_Node) = N
6250 then
6251 Node_To_Replace := Parent_Node;
6253 Actuals := Parameter_Associations (Parent_Node);
6255 if Present (Actuals) then
6256 Prepend (Dummy, Actuals);
6257 else
6258 Actuals := New_List (Dummy);
6259 end if;
6261 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
6262 Call_Node :=
6263 Make_Procedure_Call_Statement (Loc,
6264 Name => New_Copy (Subprog),
6265 Parameter_Associations => Actuals);
6267 else
6268 Call_Node :=
6269 Make_Function_Call (Loc,
6270 Name => New_Copy (Subprog),
6271 Parameter_Associations => Actuals);
6273 end if;
6275 -- Before analysis, a function call appears as an indexed component
6276 -- if there are no named associations.
6278 elsif Nkind (Parent_Node) = N_Indexed_Component
6279 and then N = Prefix (Parent_Node)
6280 then
6281 Node_To_Replace := Parent_Node;
6283 Actuals := Expressions (Parent_Node);
6285 Actual := First (Actuals);
6286 while Present (Actual) loop
6287 Analyze (Actual);
6288 Next (Actual);
6289 end loop;
6291 Prepend (Dummy, Actuals);
6293 Call_Node :=
6294 Make_Function_Call (Loc,
6295 Name => New_Copy (Subprog),
6296 Parameter_Associations => Actuals);
6298 -- Parameterless call: Obj.F is rewritten as F (Obj)
6300 else
6301 Node_To_Replace := N;
6303 Call_Node :=
6304 Make_Function_Call (Loc,
6305 Name => New_Copy (Subprog),
6306 Parameter_Associations => New_List (Dummy));
6307 end if;
6308 end Transform_Object_Operation;
6310 ------------------------------
6311 -- Try_Class_Wide_Operation --
6312 ------------------------------
6314 function Try_Class_Wide_Operation
6315 (Call_Node : Node_Id;
6316 Node_To_Replace : Node_Id) return Boolean
6318 Anc_Type : Entity_Id;
6319 Matching_Op : Entity_Id := Empty;
6320 Error : Boolean;
6322 procedure Traverse_Homonyms
6323 (Anc_Type : Entity_Id;
6324 Error : out Boolean);
6325 -- Traverse the homonym chain of the subprogram searching for those
6326 -- homonyms whose first formal has the Anc_Type's class-wide type,
6327 -- or an anonymous access type designating the class-wide type. If
6328 -- an ambiguity is detected, then Error is set to True.
6330 procedure Traverse_Interfaces
6331 (Anc_Type : Entity_Id;
6332 Error : out Boolean);
6333 -- Traverse the list of interfaces, if any, associated with Anc_Type
6334 -- and search for acceptable class-wide homonyms associated with each
6335 -- interface. If an ambiguity is detected, then Error is set to True.
6337 -----------------------
6338 -- Traverse_Homonyms --
6339 -----------------------
6341 procedure Traverse_Homonyms
6342 (Anc_Type : Entity_Id;
6343 Error : out Boolean)
6345 Cls_Type : Entity_Id;
6346 Hom : Entity_Id;
6347 Hom_Ref : Node_Id;
6348 Success : Boolean;
6350 begin
6351 Error := False;
6353 Cls_Type := Class_Wide_Type (Anc_Type);
6355 Hom := Current_Entity (Subprog);
6357 -- Find operation whose first parameter is of the class-wide
6358 -- type, a subtype thereof, or an anonymous access to same.
6360 while Present (Hom) loop
6361 if (Ekind (Hom) = E_Procedure
6362 or else
6363 Ekind (Hom) = E_Function)
6364 and then Scope (Hom) = Scope (Anc_Type)
6365 and then Present (First_Formal (Hom))
6366 and then
6367 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
6368 or else
6369 (Is_Access_Type (Etype (First_Formal (Hom)))
6370 and then
6371 Ekind (Etype (First_Formal (Hom))) =
6372 E_Anonymous_Access_Type
6373 and then
6374 Base_Type
6375 (Designated_Type (Etype (First_Formal (Hom)))) =
6376 Cls_Type))
6377 then
6378 Set_Etype (Call_Node, Any_Type);
6379 Set_Is_Overloaded (Call_Node, False);
6380 Success := False;
6382 if No (Matching_Op) then
6383 Hom_Ref := New_Reference_To (Hom, Sloc (Subprog));
6384 Set_Etype (Call_Node, Any_Type);
6385 Set_Parent (Call_Node, Parent (Node_To_Replace));
6387 Set_Name (Call_Node, Hom_Ref);
6389 Analyze_One_Call
6390 (N => Call_Node,
6391 Nam => Hom,
6392 Report => Report_Error,
6393 Success => Success,
6394 Skip_First => True);
6396 Matching_Op :=
6397 Valid_Candidate (Success, Call_Node, Hom);
6399 else
6400 Analyze_One_Call
6401 (N => Call_Node,
6402 Nam => Hom,
6403 Report => Report_Error,
6404 Success => Success,
6405 Skip_First => True);
6407 if Present (Valid_Candidate (Success, Call_Node, Hom))
6408 and then Nkind (Call_Node) /= N_Function_Call
6409 then
6410 Error_Msg_NE ("ambiguous call to&", N, Hom);
6411 Report_Ambiguity (Matching_Op);
6412 Report_Ambiguity (Hom);
6413 Error := True;
6414 return;
6415 end if;
6416 end if;
6417 end if;
6419 Hom := Homonym (Hom);
6420 end loop;
6421 end Traverse_Homonyms;
6423 -------------------------
6424 -- Traverse_Interfaces --
6425 -------------------------
6427 procedure Traverse_Interfaces
6428 (Anc_Type : Entity_Id;
6429 Error : out Boolean)
6431 Intface_List : constant List_Id :=
6432 Abstract_Interface_List (Anc_Type);
6433 Intface : Node_Id;
6435 begin
6436 Error := False;
6438 if Is_Non_Empty_List (Intface_List) then
6439 Intface := First (Intface_List);
6440 while Present (Intface) loop
6442 -- Look for acceptable class-wide homonyms associated with
6443 -- the interface.
6445 Traverse_Homonyms (Etype (Intface), Error);
6447 if Error then
6448 return;
6449 end if;
6451 -- Continue the search by looking at each of the interface's
6452 -- associated interface ancestors.
6454 Traverse_Interfaces (Etype (Intface), Error);
6456 if Error then
6457 return;
6458 end if;
6460 Next (Intface);
6461 end loop;
6462 end if;
6463 end Traverse_Interfaces;
6465 -- Start of processing for Try_Class_Wide_Operation
6467 begin
6468 -- Loop through ancestor types (including interfaces), traversing
6469 -- the homonym chain of the subprogram, trying out those homonyms
6470 -- whose first formal has the class-wide type of the ancestor, or
6471 -- an anonymous access type designating the class-wide type.
6473 Anc_Type := Obj_Type;
6474 loop
6475 -- Look for a match among homonyms associated with the ancestor
6477 Traverse_Homonyms (Anc_Type, Error);
6479 if Error then
6480 return True;
6481 end if;
6483 -- Continue the search for matches among homonyms associated with
6484 -- any interfaces implemented by the ancestor.
6486 Traverse_Interfaces (Anc_Type, Error);
6488 if Error then
6489 return True;
6490 end if;
6492 exit when Etype (Anc_Type) = Anc_Type;
6493 Anc_Type := Etype (Anc_Type);
6494 end loop;
6496 if Present (Matching_Op) then
6497 Set_Etype (Call_Node, Etype (Matching_Op));
6498 end if;
6500 return Present (Matching_Op);
6501 end Try_Class_Wide_Operation;
6503 -----------------------------------
6504 -- Try_One_Prefix_Interpretation --
6505 -----------------------------------
6507 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
6508 begin
6509 Obj_Type := T;
6511 if Is_Access_Type (Obj_Type) then
6512 Obj_Type := Designated_Type (Obj_Type);
6513 end if;
6515 if Ekind (Obj_Type) = E_Private_Subtype then
6516 Obj_Type := Base_Type (Obj_Type);
6517 end if;
6519 if Is_Class_Wide_Type (Obj_Type) then
6520 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
6521 end if;
6523 -- The type may have be obtained through a limited_with clause,
6524 -- in which case the primitive operations are available on its
6525 -- non-limited view. If still incomplete, retrieve full view.
6527 if Ekind (Obj_Type) = E_Incomplete_Type
6528 and then From_With_Type (Obj_Type)
6529 then
6530 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
6531 end if;
6533 -- If the object is not tagged, or the type is still an incomplete
6534 -- type, this is not a prefixed call.
6536 if not Is_Tagged_Type (Obj_Type)
6537 or else Is_Incomplete_Type (Obj_Type)
6538 then
6539 return;
6540 end if;
6542 if Try_Primitive_Operation
6543 (Call_Node => New_Call_Node,
6544 Node_To_Replace => Node_To_Replace)
6545 or else
6546 Try_Class_Wide_Operation
6547 (Call_Node => New_Call_Node,
6548 Node_To_Replace => Node_To_Replace)
6549 then
6550 null;
6551 end if;
6552 end Try_One_Prefix_Interpretation;
6554 -----------------------------
6555 -- Try_Primitive_Operation --
6556 -----------------------------
6558 function Try_Primitive_Operation
6559 (Call_Node : Node_Id;
6560 Node_To_Replace : Node_Id) return Boolean
6562 Elmt : Elmt_Id;
6563 Prim_Op : Entity_Id;
6564 Matching_Op : Entity_Id := Empty;
6565 Prim_Op_Ref : Node_Id := Empty;
6567 Corr_Type : Entity_Id := Empty;
6568 -- If the prefix is a synchronized type, the controlling type of
6569 -- the primitive operation is the corresponding record type, else
6570 -- this is the object type itself.
6572 Success : Boolean := False;
6574 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
6575 -- For tagged types the candidate interpretations are found in
6576 -- the list of primitive operations of the type and its ancestors.
6577 -- For formal tagged types we have to find the operations declared
6578 -- in the same scope as the type (including in the generic formal
6579 -- part) because the type itself carries no primitive operations,
6580 -- except for formal derived types that inherit the operations of
6581 -- the parent and progenitors.
6582 -- If the context is a generic subprogram body, the generic formals
6583 -- are visible by name, but are not in the entity list of the
6584 -- subprogram because that list starts with the subprogram formals.
6585 -- We retrieve the candidate operations from the generic declaration.
6587 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
6588 -- An operation that overrides an inherited operation in the private
6589 -- part of its package may be hidden, but if the inherited operation
6590 -- is visible a direct call to it will dispatch to the private one,
6591 -- which is therefore a valid candidate.
6593 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
6594 -- Verify that the prefix, dereferenced if need be, is a valid
6595 -- controlling argument in a call to Op. The remaining actuals
6596 -- are checked in the subsequent call to Analyze_One_Call.
6598 ------------------------------
6599 -- Collect_Generic_Type_Ops --
6600 ------------------------------
6602 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
6603 Bas : constant Entity_Id := Base_Type (T);
6604 Candidates : constant Elist_Id := New_Elmt_List;
6605 Subp : Entity_Id;
6606 Formal : Entity_Id;
6608 procedure Check_Candidate;
6609 -- The operation is a candidate if its first parameter is a
6610 -- controlling operand of the desired type.
6612 -----------------------
6613 -- Check_Candidate; --
6614 -----------------------
6616 procedure Check_Candidate is
6617 begin
6618 Formal := First_Formal (Subp);
6620 if Present (Formal)
6621 and then Is_Controlling_Formal (Formal)
6622 and then
6623 (Base_Type (Etype (Formal)) = Bas
6624 or else
6625 (Is_Access_Type (Etype (Formal))
6626 and then Designated_Type (Etype (Formal)) = Bas))
6627 then
6628 Append_Elmt (Subp, Candidates);
6629 end if;
6630 end Check_Candidate;
6632 -- Start of processing for Collect_Generic_Type_Ops
6634 begin
6635 if Is_Derived_Type (T) then
6636 return Primitive_Operations (T);
6638 elsif Ekind (Scope (T)) = E_Procedure
6639 or else Ekind (Scope (T)) = E_Function
6640 then
6641 -- Scan the list of generic formals to find subprograms
6642 -- that may have a first controlling formal of the type.
6644 declare
6645 Decl : Node_Id;
6647 begin
6648 Decl :=
6649 First (Generic_Formal_Declarations
6650 (Unit_Declaration_Node (Scope (T))));
6651 while Present (Decl) loop
6652 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
6653 Subp := Defining_Entity (Decl);
6654 Check_Candidate;
6655 end if;
6657 Next (Decl);
6658 end loop;
6659 end;
6661 return Candidates;
6663 else
6664 -- Scan the list of entities declared in the same scope as
6665 -- the type. In general this will be an open scope, given that
6666 -- the call we are analyzing can only appear within a generic
6667 -- declaration or body (either the one that declares T, or a
6668 -- child unit).
6670 Subp := First_Entity (Scope (T));
6671 while Present (Subp) loop
6672 if Is_Overloadable (Subp) then
6673 Check_Candidate;
6674 end if;
6676 Next_Entity (Subp);
6677 end loop;
6679 return Candidates;
6680 end if;
6681 end Collect_Generic_Type_Ops;
6683 ---------------------------
6684 -- Is_Private_Overriding --
6685 ---------------------------
6687 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
6688 Visible_Op : constant Entity_Id := Homonym (Op);
6690 begin
6691 return Present (Visible_Op)
6692 and then not Comes_From_Source (Visible_Op)
6693 and then Alias (Visible_Op) = Op
6694 and then not Is_Hidden (Visible_Op);
6695 end Is_Private_Overriding;
6697 -----------------------------
6698 -- Valid_First_Argument_Of --
6699 -----------------------------
6701 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
6702 Typ : Entity_Id := Etype (First_Formal (Op));
6704 begin
6705 if Is_Concurrent_Type (Typ)
6706 and then Present (Corresponding_Record_Type (Typ))
6707 then
6708 Typ := Corresponding_Record_Type (Typ);
6709 end if;
6711 -- Simple case. Object may be a subtype of the tagged type or
6712 -- may be the corresponding record of a synchronized type.
6714 return Obj_Type = Typ
6715 or else Base_Type (Obj_Type) = Typ
6716 or else Corr_Type = Typ
6718 -- Prefix can be dereferenced
6720 or else
6721 (Is_Access_Type (Corr_Type)
6722 and then Designated_Type (Corr_Type) = Typ)
6724 -- Formal is an access parameter, for which the object
6725 -- can provide an access.
6727 or else
6728 (Ekind (Typ) = E_Anonymous_Access_Type
6729 and then Designated_Type (Typ) = Base_Type (Corr_Type));
6730 end Valid_First_Argument_Of;
6732 -- Start of processing for Try_Primitive_Operation
6734 begin
6735 -- Look for subprograms in the list of primitive operations. The name
6736 -- must be identical, and the kind of call indicates the expected
6737 -- kind of operation (function or procedure). If the type is a
6738 -- (tagged) synchronized type, the primitive ops are attached to the
6739 -- corresponding record (base) type.
6741 if Is_Concurrent_Type (Obj_Type) then
6742 if not Present (Corresponding_Record_Type (Obj_Type)) then
6743 return False;
6744 end if;
6746 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
6747 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
6749 elsif not Is_Generic_Type (Obj_Type) then
6750 Corr_Type := Obj_Type;
6751 Elmt := First_Elmt (Primitive_Operations (Obj_Type));
6753 else
6754 Corr_Type := Obj_Type;
6755 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
6756 end if;
6758 while Present (Elmt) loop
6759 Prim_Op := Node (Elmt);
6761 if Chars (Prim_Op) = Chars (Subprog)
6762 and then Present (First_Formal (Prim_Op))
6763 and then Valid_First_Argument_Of (Prim_Op)
6764 and then
6765 (Nkind (Call_Node) = N_Function_Call)
6766 = (Ekind (Prim_Op) = E_Function)
6767 then
6768 -- Ada 2005 (AI-251): If this primitive operation corresponds
6769 -- with an immediate ancestor interface there is no need to add
6770 -- it to the list of interpretations; the corresponding aliased
6771 -- primitive is also in this list of primitive operations and
6772 -- will be used instead.
6774 if (Present (Interface_Alias (Prim_Op))
6775 and then Is_Ancestor (Find_Dispatching_Type
6776 (Alias (Prim_Op)), Corr_Type))
6778 -- Do not consider hidden primitives unless the type is in an
6779 -- open scope or we are within an instance, where visibility
6780 -- is known to be correct, or else if this is an overriding
6781 -- operation in the private part for an inherited operation.
6783 or else (Is_Hidden (Prim_Op)
6784 and then not Is_Immediately_Visible (Obj_Type)
6785 and then not In_Instance
6786 and then not Is_Private_Overriding (Prim_Op))
6787 then
6788 goto Continue;
6789 end if;
6791 Set_Etype (Call_Node, Any_Type);
6792 Set_Is_Overloaded (Call_Node, False);
6794 if No (Matching_Op) then
6795 Prim_Op_Ref := New_Reference_To (Prim_Op, Sloc (Subprog));
6796 Candidate := Prim_Op;
6798 Set_Parent (Call_Node, Parent (Node_To_Replace));
6800 Set_Name (Call_Node, Prim_Op_Ref);
6801 Success := False;
6803 Analyze_One_Call
6804 (N => Call_Node,
6805 Nam => Prim_Op,
6806 Report => Report_Error,
6807 Success => Success,
6808 Skip_First => True);
6810 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
6812 -- More than one interpretation, collect for subsequent
6813 -- disambiguation. If this is a procedure call and there
6814 -- is another match, report ambiguity now.
6816 else
6817 Analyze_One_Call
6818 (N => Call_Node,
6819 Nam => Prim_Op,
6820 Report => Report_Error,
6821 Success => Success,
6822 Skip_First => True);
6824 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
6825 and then Nkind (Call_Node) /= N_Function_Call
6826 then
6827 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
6828 Report_Ambiguity (Matching_Op);
6829 Report_Ambiguity (Prim_Op);
6830 return True;
6831 end if;
6832 end if;
6833 end if;
6835 <<Continue>>
6836 Next_Elmt (Elmt);
6837 end loop;
6839 if Present (Matching_Op) then
6840 Set_Etype (Call_Node, Etype (Matching_Op));
6841 end if;
6843 return Present (Matching_Op);
6844 end Try_Primitive_Operation;
6846 -- Start of processing for Try_Object_Operation
6848 begin
6849 Analyze_Expression (Obj);
6851 -- Analyze the actuals if node is known to be a subprogram call
6853 if Is_Subprg_Call and then N = Name (Parent (N)) then
6854 Actual := First (Parameter_Associations (Parent (N)));
6855 while Present (Actual) loop
6856 Analyze_Expression (Actual);
6857 Next (Actual);
6858 end loop;
6859 end if;
6861 -- Build a subprogram call node, using a copy of Obj as its first
6862 -- actual. This is a placeholder, to be replaced by an explicit
6863 -- dereference when needed.
6865 Transform_Object_Operation
6866 (Call_Node => New_Call_Node,
6867 Node_To_Replace => Node_To_Replace);
6869 Set_Etype (New_Call_Node, Any_Type);
6870 Set_Etype (Subprog, Any_Type);
6871 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
6873 if not Is_Overloaded (Obj) then
6874 Try_One_Prefix_Interpretation (Obj_Type);
6876 else
6877 declare
6878 I : Interp_Index;
6879 It : Interp;
6880 begin
6881 Get_First_Interp (Obj, I, It);
6882 while Present (It.Nam) loop
6883 Try_One_Prefix_Interpretation (It.Typ);
6884 Get_Next_Interp (I, It);
6885 end loop;
6886 end;
6887 end if;
6889 if Etype (New_Call_Node) /= Any_Type then
6890 Complete_Object_Operation
6891 (Call_Node => New_Call_Node,
6892 Node_To_Replace => Node_To_Replace);
6893 return True;
6895 elsif Present (Candidate) then
6897 -- The argument list is not type correct. Re-analyze with error
6898 -- reporting enabled, and use one of the possible candidates.
6899 -- In All_Errors_Mode, re-analyze all failed interpretations.
6901 if All_Errors_Mode then
6902 Report_Error := True;
6903 if Try_Primitive_Operation
6904 (Call_Node => New_Call_Node,
6905 Node_To_Replace => Node_To_Replace)
6907 or else
6908 Try_Class_Wide_Operation
6909 (Call_Node => New_Call_Node,
6910 Node_To_Replace => Node_To_Replace)
6911 then
6912 null;
6913 end if;
6915 else
6916 Analyze_One_Call
6917 (N => New_Call_Node,
6918 Nam => Candidate,
6919 Report => True,
6920 Success => Success,
6921 Skip_First => True);
6922 end if;
6924 -- No need for further errors
6926 return True;
6928 else
6929 -- There was no candidate operation, so report it as an error
6930 -- in the caller: Analyze_Selected_Component.
6932 return False;
6933 end if;
6934 end Try_Object_Operation;
6936 ---------
6937 -- wpo --
6938 ---------
6940 procedure wpo (T : Entity_Id) is
6941 Op : Entity_Id;
6942 E : Elmt_Id;
6944 begin
6945 if not Is_Tagged_Type (T) then
6946 return;
6947 end if;
6949 E := First_Elmt (Primitive_Operations (Base_Type (T)));
6950 while Present (E) loop
6951 Op := Node (E);
6952 Write_Int (Int (Op));
6953 Write_Str (" === ");
6954 Write_Name (Chars (Op));
6955 Write_Str (" in ");
6956 Write_Name (Chars (Scope (Op)));
6957 Next_Elmt (E);
6958 Write_Eol;
6959 end loop;
6960 end wpo;
6962 end Sem_Ch4;