1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Elists
; use Elists
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Eval_Fat
; use Eval_Fat
;
33 with Exp_Ch3
; use Exp_Ch3
;
34 with Exp_Ch9
; use Exp_Ch9
;
35 with Exp_Disp
; use Exp_Disp
;
36 with Exp_Dist
; use Exp_Dist
;
37 with Exp_Tss
; use Exp_Tss
;
38 with Exp_Util
; use Exp_Util
;
39 with Fname
; use Fname
;
40 with Freeze
; use Freeze
;
41 with Itypes
; use Itypes
;
42 with Layout
; use Layout
;
44 with Lib
.Xref
; use Lib
.Xref
;
45 with Namet
; use Namet
;
46 with Nmake
; use Nmake
;
48 with Restrict
; use Restrict
;
49 with Rident
; use Rident
;
50 with Rtsfind
; use Rtsfind
;
52 with Sem_Aux
; use Sem_Aux
;
53 with Sem_Case
; use Sem_Case
;
54 with Sem_Cat
; use Sem_Cat
;
55 with Sem_Ch6
; use Sem_Ch6
;
56 with Sem_Ch7
; use Sem_Ch7
;
57 with Sem_Ch8
; use Sem_Ch8
;
58 with Sem_Ch13
; use Sem_Ch13
;
59 with Sem_Disp
; use Sem_Disp
;
60 with Sem_Dist
; use Sem_Dist
;
61 with Sem_Elim
; use Sem_Elim
;
62 with Sem_Eval
; use Sem_Eval
;
63 with Sem_Mech
; use Sem_Mech
;
64 with Sem_Res
; use Sem_Res
;
65 with Sem_Smem
; use Sem_Smem
;
66 with Sem_Type
; use Sem_Type
;
67 with Sem_Util
; use Sem_Util
;
68 with Sem_Warn
; use Sem_Warn
;
69 with Stand
; use Stand
;
70 with Sinfo
; use Sinfo
;
71 with Snames
; use Snames
;
72 with Targparm
; use Targparm
;
73 with Tbuild
; use Tbuild
;
74 with Ttypes
; use Ttypes
;
75 with Uintp
; use Uintp
;
76 with Urealp
; use Urealp
;
78 package body Sem_Ch3
is
80 -----------------------
81 -- Local Subprograms --
82 -----------------------
84 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
);
85 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
86 -- abstract interface types implemented by a record type or a derived
89 procedure Build_Derived_Type
91 Parent_Type
: Entity_Id
;
92 Derived_Type
: Entity_Id
;
93 Is_Completion
: Boolean;
94 Derive_Subps
: Boolean := True);
95 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
96 -- the N_Full_Type_Declaration node containing the derived type definition.
97 -- Parent_Type is the entity for the parent type in the derived type
98 -- definition and Derived_Type the actual derived type. Is_Completion must
99 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
100 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
101 -- completion of a private type declaration. If Is_Completion is set to
102 -- True, N is the completion of a private type declaration and Derived_Type
103 -- is different from the defining identifier inside N (i.e. Derived_Type /=
104 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
105 -- subprograms should be derived. The only case where this parameter is
106 -- False is when Build_Derived_Type is recursively called to process an
107 -- implicit derived full type for a type derived from a private type (in
108 -- that case the subprograms must only be derived for the private view of
111 -- ??? These flags need a bit of re-examination and re-documentation:
112 -- ??? are they both necessary (both seem related to the recursion)?
114 procedure Build_Derived_Access_Type
116 Parent_Type
: Entity_Id
;
117 Derived_Type
: Entity_Id
);
118 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
119 -- create an implicit base if the parent type is constrained or if the
120 -- subtype indication has a constraint.
122 procedure Build_Derived_Array_Type
124 Parent_Type
: Entity_Id
;
125 Derived_Type
: Entity_Id
);
126 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
127 -- create an implicit base if the parent type is constrained or if the
128 -- subtype indication has a constraint.
130 procedure Build_Derived_Concurrent_Type
132 Parent_Type
: Entity_Id
;
133 Derived_Type
: Entity_Id
);
134 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
135 -- protected type, inherit entries and protected subprograms, check
136 -- legality of discriminant constraints if any.
138 procedure Build_Derived_Enumeration_Type
140 Parent_Type
: Entity_Id
;
141 Derived_Type
: Entity_Id
);
142 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
143 -- type, we must create a new list of literals. Types derived from
144 -- Character and [Wide_]Wide_Character are special-cased.
146 procedure Build_Derived_Numeric_Type
148 Parent_Type
: Entity_Id
;
149 Derived_Type
: Entity_Id
);
150 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
151 -- an anonymous base type, and propagate constraint to subtype if needed.
153 procedure Build_Derived_Private_Type
155 Parent_Type
: Entity_Id
;
156 Derived_Type
: Entity_Id
;
157 Is_Completion
: Boolean;
158 Derive_Subps
: Boolean := True);
159 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
160 -- because the parent may or may not have a completion, and the derivation
161 -- may itself be a completion.
163 procedure Build_Derived_Record_Type
165 Parent_Type
: Entity_Id
;
166 Derived_Type
: Entity_Id
;
167 Derive_Subps
: Boolean := True);
168 -- Subsidiary procedure for Build_Derived_Type and
169 -- Analyze_Private_Extension_Declaration used for tagged and untagged
170 -- record types. All parameters are as in Build_Derived_Type except that
171 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
172 -- N_Private_Extension_Declaration node. See the definition of this routine
173 -- for much more info. Derive_Subps indicates whether subprograms should
174 -- be derived from the parent type. The only case where Derive_Subps is
175 -- False is for an implicit derived full type for a type derived from a
176 -- private type (see Build_Derived_Type).
178 procedure Build_Discriminal
(Discrim
: Entity_Id
);
179 -- Create the discriminal corresponding to discriminant Discrim, that is
180 -- the parameter corresponding to Discrim to be used in initialization
181 -- procedures for the type where Discrim is a discriminant. Discriminals
182 -- are not used during semantic analysis, and are not fully defined
183 -- entities until expansion. Thus they are not given a scope until
184 -- initialization procedures are built.
186 function Build_Discriminant_Constraints
189 Derived_Def
: Boolean := False) return Elist_Id
;
190 -- Validate discriminant constraints and return the list of the constraints
191 -- in order of discriminant declarations, where T is the discriminated
192 -- unconstrained type. Def is the N_Subtype_Indication node where the
193 -- discriminants constraints for T are specified. Derived_Def is True
194 -- when building the discriminant constraints in a derived type definition
195 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
196 -- type and Def is the constraint "(xxx)" on T and this routine sets the
197 -- Corresponding_Discriminant field of the discriminants in the derived
198 -- type D to point to the corresponding discriminants in the parent type T.
200 procedure Build_Discriminated_Subtype
204 Related_Nod
: Node_Id
;
205 For_Access
: Boolean := False);
206 -- Subsidiary procedure to Constrain_Discriminated_Type and to
207 -- Process_Incomplete_Dependents. Given
209 -- T (a possibly discriminated base type)
210 -- Def_Id (a very partially built subtype for T),
212 -- the call completes Def_Id to be the appropriate E_*_Subtype.
214 -- The Elist is the list of discriminant constraints if any (it is set
215 -- to No_Elist if T is not a discriminated type, and to an empty list if
216 -- T has discriminants but there are no discriminant constraints). The
217 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
218 -- The For_Access says whether or not this subtype is really constraining
219 -- an access type. That is its sole purpose is the designated type of an
220 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
221 -- is built to avoid freezing T when the access subtype is frozen.
223 function Build_Scalar_Bound
226 Der_T
: Entity_Id
) return Node_Id
;
227 -- The bounds of a derived scalar type are conversions of the bounds of
228 -- the parent type. Optimize the representation if the bounds are literals.
229 -- Needs a more complete spec--what are the parameters exactly, and what
230 -- exactly is the returned value, and how is Bound affected???
232 procedure Build_Underlying_Full_View
236 -- If the completion of a private type is itself derived from a private
237 -- type, or if the full view of a private subtype is itself private, the
238 -- back-end has no way to compute the actual size of this type. We build
239 -- an internal subtype declaration of the proper parent type to convey
240 -- this information. This extra mechanism is needed because a full
241 -- view cannot itself have a full view (it would get clobbered during
244 procedure Check_Access_Discriminant_Requires_Limited
247 -- Check the restriction that the type to which an access discriminant
248 -- belongs must be a concurrent type or a descendant of a type with
249 -- the reserved word 'limited' in its declaration.
251 procedure Check_Anonymous_Access_Components
255 Comp_List
: Node_Id
);
256 -- Ada 2005 AI-382: an access component in a record definition can refer to
257 -- the enclosing record, in which case it denotes the type itself, and not
258 -- the current instance of the type. We create an anonymous access type for
259 -- the component, and flag it as an access to a component, so accessibility
260 -- checks are properly performed on it. The declaration of the access type
261 -- is placed ahead of that of the record to prevent order-of-elaboration
262 -- circularity issues in Gigi. We create an incomplete type for the record
263 -- declaration, which is the designated type of the anonymous access.
265 procedure Check_Delta_Expression
(E
: Node_Id
);
266 -- Check that the expression represented by E is suitable for use as a
267 -- delta expression, i.e. it is of real type and is static.
269 procedure Check_Digits_Expression
(E
: Node_Id
);
270 -- Check that the expression represented by E is suitable for use as a
271 -- digits expression, i.e. it is of integer type, positive and static.
273 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
274 -- Validate the initialization of an object declaration. T is the required
275 -- type, and Exp is the initialization expression.
277 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
);
278 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
280 procedure Check_Or_Process_Discriminants
283 Prev
: Entity_Id
:= Empty
);
284 -- If T is the full declaration of an incomplete or private type, check the
285 -- conformance of the discriminants, otherwise process them. Prev is the
286 -- entity of the partial declaration, if any.
288 procedure Check_Real_Bound
(Bound
: Node_Id
);
289 -- Check given bound for being of real type and static. If not, post an
290 -- appropriate message, and rewrite the bound with the real literal zero.
292 procedure Constant_Redeclaration
296 -- Various checks on legality of full declaration of deferred constant.
297 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
298 -- node. The caller has not yet set any attributes of this entity.
300 function Contain_Interface
302 Ifaces
: Elist_Id
) return Boolean;
303 -- Ada 2005: Determine whether Iface is present in the list Ifaces
305 procedure Convert_Scalar_Bounds
307 Parent_Type
: Entity_Id
;
308 Derived_Type
: Entity_Id
;
310 -- For derived scalar types, convert the bounds in the type definition to
311 -- the derived type, and complete their analysis. Given a constraint of the
312 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
313 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
314 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
315 -- subtype are conversions of those bounds to the derived_type, so that
316 -- their typing is consistent.
318 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
319 -- Copies attributes from array base type T2 to array base type T1. Copies
320 -- only attributes that apply to base types, but not subtypes.
322 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
323 -- Copies attributes from array subtype T2 to array subtype T1. Copies
324 -- attributes that apply to both subtypes and base types.
326 procedure Create_Constrained_Components
330 Constraints
: Elist_Id
);
331 -- Build the list of entities for a constrained discriminated record
332 -- subtype. If a component depends on a discriminant, replace its subtype
333 -- using the discriminant values in the discriminant constraint. Subt
334 -- is the defining identifier for the subtype whose list of constrained
335 -- entities we will create. Decl_Node is the type declaration node where
336 -- we will attach all the itypes created. Typ is the base discriminated
337 -- type for the subtype Subt. Constraints is the list of discriminant
338 -- constraints for Typ.
340 function Constrain_Component_Type
342 Constrained_Typ
: Entity_Id
;
343 Related_Node
: Node_Id
;
345 Constraints
: Elist_Id
) return Entity_Id
;
346 -- Given a discriminated base type Typ, a list of discriminant constraint
347 -- Constraints for Typ and a component of Typ, with type Compon_Type,
348 -- create and return the type corresponding to Compon_type where all
349 -- discriminant references are replaced with the corresponding constraint.
350 -- If no discriminant references occur in Compon_Typ then return it as is.
351 -- Constrained_Typ is the final constrained subtype to which the
352 -- constrained Compon_Type belongs. Related_Node is the node where we will
353 -- attach all the itypes created.
355 -- Above description is confused, what is Compon_Type???
357 procedure Constrain_Access
358 (Def_Id
: in out Entity_Id
;
360 Related_Nod
: Node_Id
);
361 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
362 -- an anonymous type created for a subtype indication. In that case it is
363 -- created in the procedure and attached to Related_Nod.
365 procedure Constrain_Array
366 (Def_Id
: in out Entity_Id
;
368 Related_Nod
: Node_Id
;
369 Related_Id
: Entity_Id
;
371 -- Apply a list of index constraints to an unconstrained array type. The
372 -- first parameter is the entity for the resulting subtype. A value of
373 -- Empty for Def_Id indicates that an implicit type must be created, but
374 -- creation is delayed (and must be done by this procedure) because other
375 -- subsidiary implicit types must be created first (which is why Def_Id
376 -- is an in/out parameter). The second parameter is a subtype indication
377 -- node for the constrained array to be created (e.g. something of the
378 -- form string (1 .. 10)). Related_Nod gives the place where this type
379 -- has to be inserted in the tree. The Related_Id and Suffix parameters
380 -- are used to build the associated Implicit type name.
382 procedure Constrain_Concurrent
383 (Def_Id
: in out Entity_Id
;
385 Related_Nod
: Node_Id
;
386 Related_Id
: Entity_Id
;
388 -- Apply list of discriminant constraints to an unconstrained concurrent
391 -- SI is the N_Subtype_Indication node containing the constraint and
392 -- the unconstrained type to constrain.
394 -- Def_Id is the entity for the resulting constrained subtype. A value
395 -- of Empty for Def_Id indicates that an implicit type must be created,
396 -- but creation is delayed (and must be done by this procedure) because
397 -- other subsidiary implicit types must be created first (which is why
398 -- Def_Id is an in/out parameter).
400 -- Related_Nod gives the place where this type has to be inserted
403 -- The last two arguments are used to create its external name if needed.
405 function Constrain_Corresponding_Record
406 (Prot_Subt
: Entity_Id
;
407 Corr_Rec
: Entity_Id
;
408 Related_Nod
: Node_Id
;
409 Related_Id
: Entity_Id
) return Entity_Id
;
410 -- When constraining a protected type or task type with discriminants,
411 -- constrain the corresponding record with the same discriminant values.
413 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
);
414 -- Constrain a decimal fixed point type with a digits constraint and/or a
415 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
417 procedure Constrain_Discriminated_Type
420 Related_Nod
: Node_Id
;
421 For_Access
: Boolean := False);
422 -- Process discriminant constraints of composite type. Verify that values
423 -- have been provided for all discriminants, that the original type is
424 -- unconstrained, and that the types of the supplied expressions match
425 -- the discriminant types. The first three parameters are like in routine
426 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
429 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
);
430 -- Constrain an enumeration type with a range constraint. This is identical
431 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
433 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
);
434 -- Constrain a floating point type with either a digits constraint
435 -- and/or a range constraint, building a E_Floating_Point_Subtype.
437 procedure Constrain_Index
440 Related_Nod
: Node_Id
;
441 Related_Id
: Entity_Id
;
444 -- Process an index constraint in a constrained array declaration. The
445 -- constraint can be a subtype name, or a range with or without an explicit
446 -- subtype mark. The index is the corresponding index of the unconstrained
447 -- array. The Related_Id and Suffix parameters are used to build the
448 -- associated Implicit type name.
450 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
);
451 -- Build subtype of a signed or modular integer type
453 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
);
454 -- Constrain an ordinary fixed point type with a range constraint, and
455 -- build an E_Ordinary_Fixed_Point_Subtype entity.
457 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
);
458 -- Copy the Priv entity into the entity of its full declaration then swap
459 -- the two entities in such a manner that the former private type is now
460 -- seen as a full type.
462 procedure Decimal_Fixed_Point_Type_Declaration
465 -- Create a new decimal fixed point type, and apply the constraint to
466 -- obtain a subtype of this new type.
468 procedure Complete_Private_Subtype
471 Full_Base
: Entity_Id
;
472 Related_Nod
: Node_Id
);
473 -- Complete the implicit full view of a private subtype by setting the
474 -- appropriate semantic fields. If the full view of the parent is a record
475 -- type, build constrained components of subtype.
477 procedure Derive_Progenitor_Subprograms
478 (Parent_Type
: Entity_Id
;
479 Tagged_Type
: Entity_Id
);
480 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
481 -- operations of progenitors of Tagged_Type, and replace the subsidiary
482 -- subtypes with Tagged_Type, to build the specs of the inherited interface
483 -- primitives. The derived primitives are aliased to those of the
484 -- interface. This routine takes care also of transferring to the full-view
485 -- subprograms associated with the partial-view of Tagged_Type that cover
486 -- interface primitives.
488 procedure Derived_Standard_Character
490 Parent_Type
: Entity_Id
;
491 Derived_Type
: Entity_Id
);
492 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
493 -- derivations from types Standard.Character and Standard.Wide_Character.
495 procedure Derived_Type_Declaration
498 Is_Completion
: Boolean);
499 -- Process a derived type declaration. Build_Derived_Type is invoked
500 -- to process the actual derived type definition. Parameters N and
501 -- Is_Completion have the same meaning as in Build_Derived_Type.
502 -- T is the N_Defining_Identifier for the entity defined in the
503 -- N_Full_Type_Declaration node N, that is T is the derived type.
505 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
506 -- Insert each literal in symbol table, as an overloadable identifier. Each
507 -- enumeration type is mapped into a sequence of integers, and each literal
508 -- is defined as a constant with integer value. If any of the literals are
509 -- character literals, the type is a character type, which means that
510 -- strings are legal aggregates for arrays of components of the type.
512 function Expand_To_Stored_Constraint
514 Constraint
: Elist_Id
) return Elist_Id
;
515 -- Given a constraint (i.e. a list of expressions) on the discriminants of
516 -- Typ, expand it into a constraint on the stored discriminants and return
517 -- the new list of expressions constraining the stored discriminants.
519 function Find_Type_Of_Object
521 Related_Nod
: Node_Id
) return Entity_Id
;
522 -- Get type entity for object referenced by Obj_Def, attaching the
523 -- implicit types generated to Related_Nod
525 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
526 -- Create a new float and apply the constraint to obtain subtype of it
528 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
529 -- Given an N_Subtype_Indication node N, return True if a range constraint
530 -- is present, either directly, or as part of a digits or delta constraint.
531 -- In addition, a digits constraint in the decimal case returns True, since
532 -- it establishes a default range if no explicit range is present.
534 function Inherit_Components
536 Parent_Base
: Entity_Id
;
537 Derived_Base
: Entity_Id
;
539 Inherit_Discr
: Boolean;
540 Discs
: Elist_Id
) return Elist_Id
;
541 -- Called from Build_Derived_Record_Type to inherit the components of
542 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
543 -- For more information on derived types and component inheritance please
544 -- consult the comment above the body of Build_Derived_Record_Type.
546 -- N is the original derived type declaration
548 -- Is_Tagged is set if we are dealing with tagged types
550 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
551 -- Parent_Base, otherwise no discriminants are inherited.
553 -- Discs gives the list of constraints that apply to Parent_Base in the
554 -- derived type declaration. If Discs is set to No_Elist, then we have
555 -- the following situation:
557 -- type Parent (D1..Dn : ..) is [tagged] record ...;
558 -- type Derived is new Parent [with ...];
560 -- which gets treated as
562 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
564 -- For untagged types the returned value is an association list. The list
565 -- starts from the association (Parent_Base => Derived_Base), and then it
566 -- contains a sequence of the associations of the form
568 -- (Old_Component => New_Component),
570 -- where Old_Component is the Entity_Id of a component in Parent_Base and
571 -- New_Component is the Entity_Id of the corresponding component in
572 -- Derived_Base. For untagged records, this association list is needed when
573 -- copying the record declaration for the derived base. In the tagged case
574 -- the value returned is irrelevant.
576 function Is_Progenitor
578 Typ
: Entity_Id
) return Boolean;
579 -- Determine whether the interface Iface is implemented by Typ. It requires
580 -- traversing the list of abstract interfaces of the type, as well as that
581 -- of the ancestor types. The predicate is used to determine when a formal
582 -- in the signature of an inherited operation must carry the derived type.
584 function Is_Valid_Constraint_Kind
586 Constraint_Kind
: Node_Kind
) return Boolean;
587 -- Returns True if it is legal to apply the given kind of constraint to the
588 -- given kind of type (index constraint to an array type, for example).
590 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
591 -- Create new modular type. Verify that modulus is in bounds and is
592 -- a power of two (implementation restriction).
594 procedure New_Concatenation_Op
(Typ
: Entity_Id
);
595 -- Create an abbreviated declaration for an operator in order to
596 -- materialize concatenation on array types.
598 procedure Ordinary_Fixed_Point_Type_Declaration
601 -- Create a new ordinary fixed point type, and apply the constraint to
602 -- obtain subtype of it.
604 procedure Prepare_Private_Subtype_Completion
606 Related_Nod
: Node_Id
);
607 -- Id is a subtype of some private type. Creates the full declaration
608 -- associated with Id whenever possible, i.e. when the full declaration
609 -- of the base type is already known. Records each subtype into
610 -- Private_Dependents of the base type.
612 procedure Process_Incomplete_Dependents
616 -- Process all entities that depend on an incomplete type. There include
617 -- subtypes, subprogram types that mention the incomplete type in their
618 -- profiles, and subprogram with access parameters that designate the
621 -- Inc_T is the defining identifier of an incomplete type declaration, its
622 -- Ekind is E_Incomplete_Type.
624 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
626 -- Full_T is N's defining identifier.
628 -- Subtypes of incomplete types with discriminants are completed when the
629 -- parent type is. This is simpler than private subtypes, because they can
630 -- only appear in the same scope, and there is no need to exchange views.
631 -- Similarly, access_to_subprogram types may have a parameter or a return
632 -- type that is an incomplete type, and that must be replaced with the
635 -- If the full type is tagged, subprogram with access parameters that
636 -- designated the incomplete may be primitive operations of the full type,
637 -- and have to be processed accordingly.
639 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
640 -- Given the type definition for a real type, this procedure processes and
641 -- checks the real range specification of this type definition if one is
642 -- present. If errors are found, error messages are posted, and the
643 -- Real_Range_Specification of Def is reset to Empty.
645 procedure Record_Type_Declaration
649 -- Process a record type declaration (for both untagged and tagged
650 -- records). Parameters T and N are exactly like in procedure
651 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
652 -- for this routine. If this is the completion of an incomplete type
653 -- declaration, Prev is the entity of the incomplete declaration, used for
654 -- cross-referencing. Otherwise Prev = T.
656 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
);
657 -- This routine is used to process the actual record type definition (both
658 -- for untagged and tagged records). Def is a record type definition node.
659 -- This procedure analyzes the components in this record type definition.
660 -- Prev_T is the entity for the enclosing record type. It is provided so
661 -- that its Has_Task flag can be set if any of the component have Has_Task
662 -- set. If the declaration is the completion of an incomplete type
663 -- declaration, Prev_T is the original incomplete type, whose full view is
666 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
);
667 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
668 -- build a copy of the declaration tree of the parent, and we create
669 -- independently the list of components for the derived type. Semantic
670 -- information uses the component entities, but record representation
671 -- clauses are validated on the declaration tree. This procedure replaces
672 -- discriminants and components in the declaration with those that have
673 -- been created by Inherit_Components.
675 procedure Set_Fixed_Range
680 -- Build a range node with the given bounds and set it as the Scalar_Range
681 -- of the given fixed-point type entity. Loc is the source location used
682 -- for the constructed range. See body for further details.
684 procedure Set_Scalar_Range_For_Subtype
688 -- This routine is used to set the scalar range field for a subtype given
689 -- Def_Id, the entity for the subtype, and R, the range expression for the
690 -- scalar range. Subt provides the parent subtype to be used to analyze,
691 -- resolve, and check the given range.
693 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
694 -- Create a new signed integer entity, and apply the constraint to obtain
695 -- the required first named subtype of this type.
697 procedure Set_Stored_Constraint_From_Discriminant_Constraint
699 -- E is some record type. This routine computes E's Stored_Constraint
700 -- from its Discriminant_Constraint.
702 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
);
703 -- Check that an entity in a list of progenitors is an interface,
704 -- emit error otherwise.
706 -----------------------
707 -- Access_Definition --
708 -----------------------
710 function Access_Definition
711 (Related_Nod
: Node_Id
;
712 N
: Node_Id
) return Entity_Id
714 Loc
: constant Source_Ptr
:= Sloc
(Related_Nod
);
715 Anon_Type
: Entity_Id
;
716 Anon_Scope
: Entity_Id
;
717 Desig_Type
: Entity_Id
;
719 Enclosing_Prot_Type
: Entity_Id
:= Empty
;
722 if Is_Entry
(Current_Scope
)
723 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
725 Error_Msg_N
("task entries cannot have access parameters", N
);
729 -- Ada 2005: for an object declaration the corresponding anonymous
730 -- type is declared in the current scope.
732 -- If the access definition is the return type of another access to
733 -- function, scope is the current one, because it is the one of the
734 -- current type declaration.
736 if Nkind_In
(Related_Nod
, N_Object_Declaration
,
737 N_Access_Function_Definition
)
739 Anon_Scope
:= Current_Scope
;
741 -- For the anonymous function result case, retrieve the scope of the
742 -- function specification's associated entity rather than using the
743 -- current scope. The current scope will be the function itself if the
744 -- formal part is currently being analyzed, but will be the parent scope
745 -- in the case of a parameterless function, and we always want to use
746 -- the function's parent scope. Finally, if the function is a child
747 -- unit, we must traverse the tree to retrieve the proper entity.
749 elsif Nkind
(Related_Nod
) = N_Function_Specification
750 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
752 -- If the current scope is a protected type, the anonymous access
753 -- is associated with one of the protected operations, and must
754 -- be available in the scope that encloses the protected declaration.
755 -- Otherwise the type is in the scope enclosing the subprogram.
757 -- If the function has formals, The return type of a subprogram
758 -- declaration is analyzed in the scope of the subprogram (see
759 -- Process_Formals) and thus the protected type, if present, is
760 -- the scope of the current function scope.
762 if Ekind
(Current_Scope
) = E_Protected_Type
then
763 Enclosing_Prot_Type
:= Current_Scope
;
765 elsif Ekind
(Current_Scope
) = E_Function
766 and then Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
768 Enclosing_Prot_Type
:= Scope
(Current_Scope
);
771 if Present
(Enclosing_Prot_Type
) then
772 Anon_Scope
:= Scope
(Enclosing_Prot_Type
);
775 Anon_Scope
:= Scope
(Defining_Entity
(Related_Nod
));
779 -- For access formals, access components, and access discriminants,
780 -- the scope is that of the enclosing declaration,
782 Anon_Scope
:= Scope
(Current_Scope
);
787 (E_Anonymous_Access_Type
, Related_Nod
, Scope_Id
=> Anon_Scope
);
790 and then Ada_Version
>= Ada_05
792 Error_Msg_N
("ALL is not permitted for anonymous access types", N
);
795 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
796 -- the corresponding semantic routine
798 if Present
(Access_To_Subprogram_Definition
(N
)) then
799 Access_Subprogram_Declaration
800 (T_Name
=> Anon_Type
,
801 T_Def
=> Access_To_Subprogram_Definition
(N
));
803 if Ekind
(Anon_Type
) = E_Access_Protected_Subprogram_Type
then
805 (Anon_Type
, E_Anonymous_Access_Protected_Subprogram_Type
);
808 (Anon_Type
, E_Anonymous_Access_Subprogram_Type
);
811 Set_Can_Use_Internal_Rep
812 (Anon_Type
, not Always_Compatible_Rep_On_Target
);
814 -- If the anonymous access is associated with a protected operation
815 -- create a reference to it after the enclosing protected definition
816 -- because the itype will be used in the subsequent bodies.
818 if Ekind
(Current_Scope
) = E_Protected_Type
then
819 Build_Itype_Reference
(Anon_Type
, Parent
(Current_Scope
));
825 Find_Type
(Subtype_Mark
(N
));
826 Desig_Type
:= Entity
(Subtype_Mark
(N
));
828 Set_Directly_Designated_Type
829 (Anon_Type
, Desig_Type
);
830 Set_Etype
(Anon_Type
, Anon_Type
);
832 -- Make sure the anonymous access type has size and alignment fields
833 -- set, as required by gigi. This is necessary in the case of the
834 -- Task_Body_Procedure.
836 if not Has_Private_Component
(Desig_Type
) then
837 Layout_Type
(Anon_Type
);
840 -- ???The following makes no sense, because Anon_Type is an access type
841 -- and therefore cannot have components, private or otherwise. Hence
842 -- the assertion. Not sure what was meant, here.
843 Set_Depends_On_Private
(Anon_Type
, Has_Private_Component
(Anon_Type
));
844 pragma Assert
(not Depends_On_Private
(Anon_Type
));
846 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
847 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
848 -- the null value is allowed. In Ada 95 the null value is never allowed.
850 if Ada_Version
>= Ada_05
then
851 Set_Can_Never_Be_Null
(Anon_Type
, Null_Exclusion_Present
(N
));
853 Set_Can_Never_Be_Null
(Anon_Type
, True);
856 -- The anonymous access type is as public as the discriminated type or
857 -- subprogram that defines it. It is imported (for back-end purposes)
858 -- if the designated type is.
860 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
862 -- Ada 2005 (AI-231): Propagate the access-constant attribute
864 Set_Is_Access_Constant
(Anon_Type
, Constant_Present
(N
));
866 -- The context is either a subprogram declaration, object declaration,
867 -- or an access discriminant, in a private or a full type declaration.
868 -- In the case of a subprogram, if the designated type is incomplete,
869 -- the operation will be a primitive operation of the full type, to be
870 -- updated subsequently. If the type is imported through a limited_with
871 -- clause, the subprogram is not a primitive operation of the type
872 -- (which is declared elsewhere in some other scope).
874 if Ekind
(Desig_Type
) = E_Incomplete_Type
875 and then not From_With_Type
(Desig_Type
)
876 and then Is_Overloadable
(Current_Scope
)
878 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
879 Set_Has_Delayed_Freeze
(Current_Scope
);
882 -- Ada 2005: if the designated type is an interface that may contain
883 -- tasks, create a Master entity for the declaration. This must be done
884 -- before expansion of the full declaration, because the declaration may
885 -- include an expression that is an allocator, whose expansion needs the
886 -- proper Master for the created tasks.
888 if Nkind
(Related_Nod
) = N_Object_Declaration
889 and then Expander_Active
891 if Is_Interface
(Desig_Type
)
892 and then Is_Limited_Record
(Desig_Type
)
894 Build_Class_Wide_Master
(Anon_Type
);
896 -- Similarly, if the type is an anonymous access that designates
897 -- tasks, create a master entity for it in the current context.
899 elsif Has_Task
(Desig_Type
)
900 and then Comes_From_Source
(Related_Nod
)
902 if not Has_Master_Entity
(Current_Scope
) then
904 Make_Object_Declaration
(Loc
,
905 Defining_Identifier
=>
906 Make_Defining_Identifier
(Loc
, Name_uMaster
),
907 Constant_Present
=> True,
909 New_Reference_To
(RTE
(RE_Master_Id
), Loc
),
911 Make_Explicit_Dereference
(Loc
,
912 New_Reference_To
(RTE
(RE_Current_Master
), Loc
)));
914 Insert_Before
(Related_Nod
, Decl
);
917 Set_Master_Id
(Anon_Type
, Defining_Identifier
(Decl
));
918 Set_Has_Master_Entity
(Current_Scope
);
920 Build_Master_Renaming
(Related_Nod
, Anon_Type
);
925 -- For a private component of a protected type, it is imperative that
926 -- the back-end elaborate the type immediately after the protected
927 -- declaration, because this type will be used in the declarations
928 -- created for the component within each protected body, so we must
929 -- create an itype reference for it now.
931 if Nkind
(Parent
(Related_Nod
)) = N_Protected_Definition
then
932 Build_Itype_Reference
(Anon_Type
, Parent
(Parent
(Related_Nod
)));
934 -- Similarly, if the access definition is the return result of a
935 -- function, create an itype reference for it because it will be used
936 -- within the function body. For a regular function that is not a
937 -- compilation unit, insert reference after the declaration. For a
938 -- protected operation, insert it after the enclosing protected type
939 -- declaration. In either case, do not create a reference for a type
940 -- obtained through a limited_with clause, because this would introduce
941 -- semantic dependencies.
943 -- Similarly, do not create a reference if the designated type is a
944 -- generic formal, because no use of it will reach the backend.
946 elsif Nkind
(Related_Nod
) = N_Function_Specification
947 and then not From_With_Type
(Desig_Type
)
948 and then not Is_Generic_Type
(Desig_Type
)
950 if Present
(Enclosing_Prot_Type
) then
951 Build_Itype_Reference
(Anon_Type
, Parent
(Enclosing_Prot_Type
));
953 elsif Is_List_Member
(Parent
(Related_Nod
))
954 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
956 Build_Itype_Reference
(Anon_Type
, Parent
(Related_Nod
));
959 -- Finally, create an itype reference for an object declaration of an
960 -- anonymous access type. This is strictly necessary only for deferred
961 -- constants, but in any case will avoid out-of-scope problems in the
964 elsif Nkind
(Related_Nod
) = N_Object_Declaration
then
965 Build_Itype_Reference
(Anon_Type
, Related_Nod
);
969 end Access_Definition
;
971 -----------------------------------
972 -- Access_Subprogram_Declaration --
973 -----------------------------------
975 procedure Access_Subprogram_Declaration
980 procedure Check_For_Premature_Usage
(Def
: Node_Id
);
981 -- Check that type T_Name is not used, directly or recursively, as a
982 -- parameter or a return type in Def. Def is either a subtype, an
983 -- access_definition, or an access_to_subprogram_definition.
985 -------------------------------
986 -- Check_For_Premature_Usage --
987 -------------------------------
989 procedure Check_For_Premature_Usage
(Def
: Node_Id
) is
993 -- Check for a subtype mark
995 if Nkind
(Def
) in N_Has_Etype
then
996 if Etype
(Def
) = T_Name
then
998 ("type& cannot be used before end of its declaration", Def
);
1001 -- If this is not a subtype, then this is an access_definition
1003 elsif Nkind
(Def
) = N_Access_Definition
then
1004 if Present
(Access_To_Subprogram_Definition
(Def
)) then
1005 Check_For_Premature_Usage
1006 (Access_To_Subprogram_Definition
(Def
));
1008 Check_For_Premature_Usage
(Subtype_Mark
(Def
));
1011 -- The only cases left are N_Access_Function_Definition and
1012 -- N_Access_Procedure_Definition.
1015 if Present
(Parameter_Specifications
(Def
)) then
1016 Param
:= First
(Parameter_Specifications
(Def
));
1017 while Present
(Param
) loop
1018 Check_For_Premature_Usage
(Parameter_Type
(Param
));
1019 Param
:= Next
(Param
);
1023 if Nkind
(Def
) = N_Access_Function_Definition
then
1024 Check_For_Premature_Usage
(Result_Definition
(Def
));
1027 end Check_For_Premature_Usage
;
1031 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
1034 Desig_Type
: constant Entity_Id
:=
1035 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
1037 -- Start of processing for Access_Subprogram_Declaration
1040 -- Associate the Itype node with the inner full-type declaration or
1041 -- subprogram spec. This is required to handle nested anonymous
1042 -- declarations. For example:
1045 -- (X : access procedure
1046 -- (Y : access procedure
1049 D_Ityp
:= Associated_Node_For_Itype
(Desig_Type
);
1050 while not (Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1051 N_Private_Type_Declaration
,
1052 N_Private_Extension_Declaration
,
1053 N_Procedure_Specification
,
1054 N_Function_Specification
)
1056 Nkind_In
(D_Ityp
, N_Object_Declaration
,
1057 N_Object_Renaming_Declaration
,
1058 N_Formal_Object_Declaration
,
1059 N_Formal_Type_Declaration
,
1060 N_Task_Type_Declaration
,
1061 N_Protected_Type_Declaration
))
1063 D_Ityp
:= Parent
(D_Ityp
);
1064 pragma Assert
(D_Ityp
/= Empty
);
1067 Set_Associated_Node_For_Itype
(Desig_Type
, D_Ityp
);
1069 if Nkind_In
(D_Ityp
, N_Procedure_Specification
,
1070 N_Function_Specification
)
1072 Set_Scope
(Desig_Type
, Scope
(Defining_Entity
(D_Ityp
)));
1074 elsif Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1075 N_Object_Declaration
,
1076 N_Object_Renaming_Declaration
,
1077 N_Formal_Type_Declaration
)
1079 Set_Scope
(Desig_Type
, Scope
(Defining_Identifier
(D_Ityp
)));
1082 if Nkind
(T_Def
) = N_Access_Function_Definition
then
1083 if Nkind
(Result_Definition
(T_Def
)) = N_Access_Definition
then
1085 Acc
: constant Node_Id
:= Result_Definition
(T_Def
);
1088 if Present
(Access_To_Subprogram_Definition
(Acc
))
1090 Protected_Present
(Access_To_Subprogram_Definition
(Acc
))
1094 Replace_Anonymous_Access_To_Protected_Subprogram
1100 Access_Definition
(T_Def
, Result_Definition
(T_Def
)));
1105 Analyze
(Result_Definition
(T_Def
));
1108 Typ
: constant Entity_Id
:= Entity
(Result_Definition
(T_Def
));
1111 -- If a null exclusion is imposed on the result type, then
1112 -- create a null-excluding itype (an access subtype) and use
1113 -- it as the function's Etype.
1115 if Is_Access_Type
(Typ
)
1116 and then Null_Exclusion_In_Return_Present
(T_Def
)
1118 Set_Etype
(Desig_Type
,
1119 Create_Null_Excluding_Itype
1121 Related_Nod
=> T_Def
,
1122 Scope_Id
=> Current_Scope
));
1125 if From_With_Type
(Typ
) then
1127 ("illegal use of incomplete type&",
1128 Result_Definition
(T_Def
), Typ
);
1130 elsif Ekind
(Current_Scope
) = E_Package
1131 and then In_Private_Part
(Current_Scope
)
1133 if Ekind
(Typ
) = E_Incomplete_Type
then
1134 Append_Elmt
(Desig_Type
, Private_Dependents
(Typ
));
1136 elsif Is_Class_Wide_Type
(Typ
)
1137 and then Ekind
(Etype
(Typ
)) = E_Incomplete_Type
1140 (Desig_Type
, Private_Dependents
(Etype
(Typ
)));
1144 Set_Etype
(Desig_Type
, Typ
);
1149 if not (Is_Type
(Etype
(Desig_Type
))) then
1151 ("expect type in function specification",
1152 Result_Definition
(T_Def
));
1156 Set_Etype
(Desig_Type
, Standard_Void_Type
);
1159 if Present
(Formals
) then
1160 Push_Scope
(Desig_Type
);
1162 -- A bit of a kludge here. These kludges will be removed when Itypes
1163 -- have proper parent pointers to their declarations???
1165 -- Kludge 1) Link defining_identifier of formals. Required by
1166 -- First_Formal to provide its functionality.
1172 F
:= First
(Formals
);
1173 while Present
(F
) loop
1174 if No
(Parent
(Defining_Identifier
(F
))) then
1175 Set_Parent
(Defining_Identifier
(F
), F
);
1182 Process_Formals
(Formals
, Parent
(T_Def
));
1184 -- Kludge 2) End_Scope requires that the parent pointer be set to
1185 -- something reasonable, but Itypes don't have parent pointers. So
1186 -- we set it and then unset it ???
1188 Set_Parent
(Desig_Type
, T_Name
);
1190 Set_Parent
(Desig_Type
, Empty
);
1193 -- Check for premature usage of the type being defined
1195 Check_For_Premature_Usage
(T_Def
);
1197 -- The return type and/or any parameter type may be incomplete. Mark
1198 -- the subprogram_type as depending on the incomplete type, so that
1199 -- it can be updated when the full type declaration is seen. This
1200 -- only applies to incomplete types declared in some enclosing scope,
1201 -- not to limited views from other packages.
1203 if Present
(Formals
) then
1204 Formal
:= First_Formal
(Desig_Type
);
1205 while Present
(Formal
) loop
1206 if Ekind
(Formal
) /= E_In_Parameter
1207 and then Nkind
(T_Def
) = N_Access_Function_Definition
1209 Error_Msg_N
("functions can only have IN parameters", Formal
);
1212 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
1213 and then In_Open_Scopes
(Scope
(Etype
(Formal
)))
1215 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
1216 Set_Has_Delayed_Freeze
(Desig_Type
);
1219 Next_Formal
(Formal
);
1223 -- If the return type is incomplete, this is legal as long as the
1224 -- type is declared in the current scope and will be completed in
1225 -- it (rather than being part of limited view).
1227 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
1228 and then not Has_Delayed_Freeze
(Desig_Type
)
1229 and then In_Open_Scopes
(Scope
(Etype
(Desig_Type
)))
1231 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
1232 Set_Has_Delayed_Freeze
(Desig_Type
);
1235 Check_Delayed_Subprogram
(Desig_Type
);
1237 if Protected_Present
(T_Def
) then
1238 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
1239 Set_Convention
(Desig_Type
, Convention_Protected
);
1241 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
1244 Set_Can_Use_Internal_Rep
(T_Name
, not Always_Compatible_Rep_On_Target
);
1246 Set_Etype
(T_Name
, T_Name
);
1247 Init_Size_Align
(T_Name
);
1248 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
1250 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1252 Set_Can_Never_Be_Null
(T_Name
, Null_Exclusion_Present
(T_Def
));
1254 Check_Restriction
(No_Access_Subprograms
, T_Def
);
1255 end Access_Subprogram_Declaration
;
1257 ----------------------------
1258 -- Access_Type_Declaration --
1259 ----------------------------
1261 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
1262 S
: constant Node_Id
:= Subtype_Indication
(Def
);
1263 P
: constant Node_Id
:= Parent
(Def
);
1265 -- Check for permissible use of incomplete type
1267 if Nkind
(S
) /= N_Subtype_Indication
then
1270 if Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
then
1271 Set_Directly_Designated_Type
(T
, Entity
(S
));
1273 Set_Directly_Designated_Type
(T
,
1274 Process_Subtype
(S
, P
, T
, 'P'));
1278 Set_Directly_Designated_Type
(T
,
1279 Process_Subtype
(S
, P
, T
, 'P'));
1282 if All_Present
(Def
) or Constant_Present
(Def
) then
1283 Set_Ekind
(T
, E_General_Access_Type
);
1285 Set_Ekind
(T
, E_Access_Type
);
1288 if Base_Type
(Designated_Type
(T
)) = T
then
1289 Error_Msg_N
("access type cannot designate itself", S
);
1291 -- In Ada 2005, the type may have a limited view through some unit
1292 -- in its own context, allowing the following circularity that cannot
1293 -- be detected earlier
1295 elsif Is_Class_Wide_Type
(Designated_Type
(T
))
1296 and then Etype
(Designated_Type
(T
)) = T
1299 ("access type cannot designate its own classwide type", S
);
1301 -- Clean up indication of tagged status to prevent cascaded errors
1303 Set_Is_Tagged_Type
(T
, False);
1308 -- If the type has appeared already in a with_type clause, it is
1309 -- frozen and the pointer size is already set. Else, initialize.
1311 if not From_With_Type
(T
) then
1312 Init_Size_Align
(T
);
1315 -- Note that Has_Task is always false, since the access type itself
1316 -- is not a task type. See Einfo for more description on this point.
1317 -- Exactly the same consideration applies to Has_Controlled_Component.
1319 Set_Has_Task
(T
, False);
1320 Set_Has_Controlled_Component
(T
, False);
1322 -- Initialize Associated_Final_Chain explicitly to Empty, to avoid
1323 -- problems where an incomplete view of this entity has been previously
1324 -- established by a limited with and an overlaid version of this field
1325 -- (Stored_Constraint) was initialized for the incomplete view.
1327 Set_Associated_Final_Chain
(T
, Empty
);
1329 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1332 Set_Can_Never_Be_Null
(T
, Null_Exclusion_Present
(Def
));
1333 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
1334 end Access_Type_Declaration
;
1336 ----------------------------------
1337 -- Add_Interface_Tag_Components --
1338 ----------------------------------
1340 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
) is
1341 Loc
: constant Source_Ptr
:= Sloc
(N
);
1345 procedure Add_Tag
(Iface
: Entity_Id
);
1346 -- Add tag for one of the progenitor interfaces
1352 procedure Add_Tag
(Iface
: Entity_Id
) is
1359 pragma Assert
(Is_Tagged_Type
(Iface
)
1360 and then Is_Interface
(Iface
));
1363 Make_Component_Definition
(Loc
,
1364 Aliased_Present
=> True,
1365 Subtype_Indication
=>
1366 New_Occurrence_Of
(RTE
(RE_Interface_Tag
), Loc
));
1368 Tag
:= Make_Defining_Identifier
(Loc
, New_Internal_Name
('V'));
1371 Make_Component_Declaration
(Loc
,
1372 Defining_Identifier
=> Tag
,
1373 Component_Definition
=> Def
);
1375 Analyze_Component_Declaration
(Decl
);
1377 Set_Analyzed
(Decl
);
1378 Set_Ekind
(Tag
, E_Component
);
1380 Set_Is_Aliased
(Tag
);
1381 Set_Related_Type
(Tag
, Iface
);
1382 Init_Component_Location
(Tag
);
1384 pragma Assert
(Is_Frozen
(Iface
));
1386 Set_DT_Entry_Count
(Tag
,
1387 DT_Entry_Count
(First_Entity
(Iface
)));
1389 if No
(Last_Tag
) then
1392 Insert_After
(Last_Tag
, Decl
);
1397 -- If the ancestor has discriminants we need to give special support
1398 -- to store the offset_to_top value of the secondary dispatch tables.
1399 -- For this purpose we add a supplementary component just after the
1400 -- field that contains the tag associated with each secondary DT.
1402 if Typ
/= Etype
(Typ
)
1403 and then Has_Discriminants
(Etype
(Typ
))
1406 Make_Component_Definition
(Loc
,
1407 Subtype_Indication
=>
1408 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
1411 Make_Defining_Identifier
(Loc
, New_Internal_Name
('V'));
1414 Make_Component_Declaration
(Loc
,
1415 Defining_Identifier
=> Offset
,
1416 Component_Definition
=> Def
);
1418 Analyze_Component_Declaration
(Decl
);
1420 Set_Analyzed
(Decl
);
1421 Set_Ekind
(Offset
, E_Component
);
1422 Set_Is_Aliased
(Offset
);
1423 Set_Related_Type
(Offset
, Iface
);
1424 Init_Component_Location
(Offset
);
1425 Insert_After
(Last_Tag
, Decl
);
1436 -- Start of processing for Add_Interface_Tag_Components
1439 if not RTE_Available
(RE_Interface_Tag
) then
1441 ("(Ada 2005) interface types not supported by this run-time!",
1446 if Ekind
(Typ
) /= E_Record_Type
1447 or else (Is_Concurrent_Record_Type
(Typ
)
1448 and then Is_Empty_List
(Abstract_Interface_List
(Typ
)))
1449 or else (not Is_Concurrent_Record_Type
(Typ
)
1450 and then No
(Interfaces
(Typ
))
1451 and then Is_Empty_Elmt_List
(Interfaces
(Typ
)))
1456 -- Find the current last tag
1458 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1459 Ext
:= Record_Extension_Part
(Type_Definition
(N
));
1461 pragma Assert
(Nkind
(Type_Definition
(N
)) = N_Record_Definition
);
1462 Ext
:= Type_Definition
(N
);
1467 if not (Present
(Component_List
(Ext
))) then
1468 Set_Null_Present
(Ext
, False);
1470 Set_Component_List
(Ext
,
1471 Make_Component_List
(Loc
,
1472 Component_Items
=> L
,
1473 Null_Present
=> False));
1475 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1476 L
:= Component_Items
1478 (Record_Extension_Part
1479 (Type_Definition
(N
))));
1481 L
:= Component_Items
1483 (Type_Definition
(N
)));
1486 -- Find the last tag component
1489 while Present
(Comp
) loop
1490 if Nkind
(Comp
) = N_Component_Declaration
1491 and then Is_Tag
(Defining_Identifier
(Comp
))
1500 -- At this point L references the list of components and Last_Tag
1501 -- references the current last tag (if any). Now we add the tag
1502 -- corresponding with all the interfaces that are not implemented
1505 if Present
(Interfaces
(Typ
)) then
1506 Elmt
:= First_Elmt
(Interfaces
(Typ
));
1507 while Present
(Elmt
) loop
1508 Add_Tag
(Node
(Elmt
));
1512 end Add_Interface_Tag_Components
;
1514 -------------------------------------
1515 -- Add_Internal_Interface_Entities --
1516 -------------------------------------
1518 procedure Add_Internal_Interface_Entities
(Tagged_Type
: Entity_Id
) is
1521 Iface_Elmt
: Elmt_Id
;
1522 Iface_Prim
: Entity_Id
;
1523 Ifaces_List
: Elist_Id
;
1524 New_Subp
: Entity_Id
:= Empty
;
1528 pragma Assert
(Ada_Version
>= Ada_05
1529 and then Is_Record_Type
(Tagged_Type
)
1530 and then Is_Tagged_Type
(Tagged_Type
)
1531 and then Has_Interfaces
(Tagged_Type
)
1532 and then not Is_Interface
(Tagged_Type
));
1534 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1536 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1537 while Present
(Iface_Elmt
) loop
1538 Iface
:= Node
(Iface_Elmt
);
1540 -- Exclude from this processing interfaces that are parents of
1541 -- Tagged_Type because their primitives are located in the primary
1542 -- dispatch table (and hence no auxiliary internal entities are
1543 -- required to handle secondary dispatch tables in such case).
1545 if not Is_Ancestor
(Iface
, Tagged_Type
) then
1546 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
1547 while Present
(Elmt
) loop
1548 Iface_Prim
:= Node
(Elmt
);
1550 if not Is_Predefined_Dispatching_Operation
(Iface_Prim
) then
1552 Find_Primitive_Covering_Interface
1553 (Tagged_Type
=> Tagged_Type
,
1554 Iface_Prim
=> Iface_Prim
);
1556 pragma Assert
(Present
(Prim
));
1559 (New_Subp
=> New_Subp
,
1560 Parent_Subp
=> Iface_Prim
,
1561 Derived_Type
=> Tagged_Type
,
1562 Parent_Type
=> Iface
);
1564 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1565 -- associated with interface types. These entities are
1566 -- only registered in the list of primitives of its
1567 -- corresponding tagged type because they are only used
1568 -- to fill the contents of the secondary dispatch tables.
1569 -- Therefore they are removed from the homonym chains.
1571 Set_Is_Hidden
(New_Subp
);
1572 Set_Is_Internal
(New_Subp
);
1573 Set_Alias
(New_Subp
, Prim
);
1574 Set_Is_Abstract_Subprogram
(New_Subp
,
1575 Is_Abstract_Subprogram
(Prim
));
1576 Set_Interface_Alias
(New_Subp
, Iface_Prim
);
1578 -- Internal entities associated with interface types are
1579 -- only registered in the list of primitives of the tagged
1580 -- type. They are only used to fill the contents of the
1581 -- secondary dispatch tables. Therefore they are not needed
1582 -- in the homonym chains.
1584 Remove_Homonym
(New_Subp
);
1586 -- Hidden entities associated with interfaces must have set
1587 -- the Has_Delay_Freeze attribute to ensure that, in case of
1588 -- locally defined tagged types (or compiling with static
1589 -- dispatch tables generation disabled) the corresponding
1590 -- entry of the secondary dispatch table is filled when
1591 -- such an entity is frozen.
1593 Set_Has_Delayed_Freeze
(New_Subp
);
1600 Next_Elmt
(Iface_Elmt
);
1602 end Add_Internal_Interface_Entities
;
1604 -----------------------------------
1605 -- Analyze_Component_Declaration --
1606 -----------------------------------
1608 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
1609 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1610 E
: constant Node_Id
:= Expression
(N
);
1614 function Contains_POC
(Constr
: Node_Id
) return Boolean;
1615 -- Determines whether a constraint uses the discriminant of a record
1616 -- type thus becoming a per-object constraint (POC).
1618 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean;
1619 -- Typ is the type of the current component, check whether this type is
1620 -- a limited type. Used to validate declaration against that of
1621 -- enclosing record.
1627 function Contains_POC
(Constr
: Node_Id
) return Boolean is
1629 -- Prevent cascaded errors
1631 if Error_Posted
(Constr
) then
1635 case Nkind
(Constr
) is
1636 when N_Attribute_Reference
=>
1638 Attribute_Name
(Constr
) = Name_Access
1639 and then Prefix
(Constr
) = Scope
(Entity
(Prefix
(Constr
)));
1641 when N_Discriminant_Association
=>
1642 return Denotes_Discriminant
(Expression
(Constr
));
1644 when N_Identifier
=>
1645 return Denotes_Discriminant
(Constr
);
1647 when N_Index_Or_Discriminant_Constraint
=>
1652 IDC
:= First
(Constraints
(Constr
));
1653 while Present
(IDC
) loop
1655 -- One per-object constraint is sufficient
1657 if Contains_POC
(IDC
) then
1668 return Denotes_Discriminant
(Low_Bound
(Constr
))
1670 Denotes_Discriminant
(High_Bound
(Constr
));
1672 when N_Range_Constraint
=>
1673 return Denotes_Discriminant
(Range_Expression
(Constr
));
1681 ----------------------
1682 -- Is_Known_Limited --
1683 ----------------------
1685 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean is
1686 P
: constant Entity_Id
:= Etype
(Typ
);
1687 R
: constant Entity_Id
:= Root_Type
(Typ
);
1690 if Is_Limited_Record
(Typ
) then
1693 -- If the root type is limited (and not a limited interface)
1694 -- so is the current type
1696 elsif Is_Limited_Record
(R
)
1698 (not Is_Interface
(R
)
1699 or else not Is_Limited_Interface
(R
))
1703 -- Else the type may have a limited interface progenitor, but a
1704 -- limited record parent.
1707 and then Is_Limited_Record
(P
)
1714 end Is_Known_Limited
;
1716 -- Start of processing for Analyze_Component_Declaration
1719 Generate_Definition
(Id
);
1722 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
1723 T
:= Find_Type_Of_Object
1724 (Subtype_Indication
(Component_Definition
(N
)), N
);
1726 -- Ada 2005 (AI-230): Access Definition case
1729 pragma Assert
(Present
1730 (Access_Definition
(Component_Definition
(N
))));
1732 T
:= Access_Definition
1734 N
=> Access_Definition
(Component_Definition
(N
)));
1735 Set_Is_Local_Anonymous_Access
(T
);
1737 -- Ada 2005 (AI-254)
1739 if Present
(Access_To_Subprogram_Definition
1740 (Access_Definition
(Component_Definition
(N
))))
1741 and then Protected_Present
(Access_To_Subprogram_Definition
1743 (Component_Definition
(N
))))
1745 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1749 -- If the subtype is a constrained subtype of the enclosing record,
1750 -- (which must have a partial view) the back-end does not properly
1751 -- handle the recursion. Rewrite the component declaration with an
1752 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1753 -- the tree directly because side effects have already been removed from
1754 -- discriminant constraints.
1756 if Ekind
(T
) = E_Access_Subtype
1757 and then Is_Entity_Name
(Subtype_Indication
(Component_Definition
(N
)))
1758 and then Comes_From_Source
(T
)
1759 and then Nkind
(Parent
(T
)) = N_Subtype_Declaration
1760 and then Etype
(Directly_Designated_Type
(T
)) = Current_Scope
1763 (Subtype_Indication
(Component_Definition
(N
)),
1764 New_Copy_Tree
(Subtype_Indication
(Parent
(T
))));
1765 T
:= Find_Type_Of_Object
1766 (Subtype_Indication
(Component_Definition
(N
)), N
);
1769 -- If the component declaration includes a default expression, then we
1770 -- check that the component is not of a limited type (RM 3.7(5)),
1771 -- and do the special preanalysis of the expression (see section on
1772 -- "Handling of Default and Per-Object Expressions" in the spec of
1776 Preanalyze_Spec_Expression
(E
, T
);
1777 Check_Initialization
(T
, E
);
1779 if Ada_Version
>= Ada_05
1780 and then Ekind
(T
) = E_Anonymous_Access_Type
1781 and then Etype
(E
) /= Any_Type
1783 -- Check RM 3.9.2(9): "if the expected type for an expression is
1784 -- an anonymous access-to-specific tagged type, then the object
1785 -- designated by the expression shall not be dynamically tagged
1786 -- unless it is a controlling operand in a call on a dispatching
1789 if Is_Tagged_Type
(Directly_Designated_Type
(T
))
1791 Ekind
(Directly_Designated_Type
(T
)) /= E_Class_Wide_Type
1793 Ekind
(Directly_Designated_Type
(Etype
(E
))) =
1797 ("access to specific tagged type required (RM 3.9.2(9))", E
);
1800 -- (Ada 2005: AI-230): Accessibility check for anonymous
1803 if Type_Access_Level
(Etype
(E
)) > Type_Access_Level
(T
) then
1805 ("expression has deeper access level than component " &
1806 "(RM 3.10.2 (12.2))", E
);
1809 -- The initialization expression is a reference to an access
1810 -- discriminant. The type of the discriminant is always deeper
1811 -- than any access type.
1813 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
1814 and then Is_Entity_Name
(E
)
1815 and then Ekind
(Entity
(E
)) = E_In_Parameter
1816 and then Present
(Discriminal_Link
(Entity
(E
)))
1819 ("discriminant has deeper accessibility level than target",
1825 -- The parent type may be a private view with unknown discriminants,
1826 -- and thus unconstrained. Regular components must be constrained.
1828 if Is_Indefinite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
1829 if Is_Class_Wide_Type
(T
) then
1831 ("class-wide subtype with unknown discriminants" &
1832 " in component declaration",
1833 Subtype_Indication
(Component_Definition
(N
)));
1836 ("unconstrained subtype in component declaration",
1837 Subtype_Indication
(Component_Definition
(N
)));
1840 -- Components cannot be abstract, except for the special case of
1841 -- the _Parent field (case of extending an abstract tagged type)
1843 elsif Is_Abstract_Type
(T
) and then Chars
(Id
) /= Name_uParent
then
1844 Error_Msg_N
("type of a component cannot be abstract", N
);
1848 Set_Is_Aliased
(Id
, Aliased_Present
(Component_Definition
(N
)));
1850 -- The component declaration may have a per-object constraint, set
1851 -- the appropriate flag in the defining identifier of the subtype.
1853 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
1855 Sindic
: constant Node_Id
:=
1856 Subtype_Indication
(Component_Definition
(N
));
1858 if Nkind
(Sindic
) = N_Subtype_Indication
1859 and then Present
(Constraint
(Sindic
))
1860 and then Contains_POC
(Constraint
(Sindic
))
1862 Set_Has_Per_Object_Constraint
(Id
);
1867 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1868 -- out some static checks.
1870 if Ada_Version
>= Ada_05
1871 and then Can_Never_Be_Null
(T
)
1873 Null_Exclusion_Static_Checks
(N
);
1876 -- If this component is private (or depends on a private type), flag the
1877 -- record type to indicate that some operations are not available.
1879 P
:= Private_Component
(T
);
1883 -- Check for circular definitions
1885 if P
= Any_Type
then
1886 Set_Etype
(Id
, Any_Type
);
1888 -- There is a gap in the visibility of operations only if the
1889 -- component type is not defined in the scope of the record type.
1891 elsif Scope
(P
) = Scope
(Current_Scope
) then
1894 elsif Is_Limited_Type
(P
) then
1895 Set_Is_Limited_Composite
(Current_Scope
);
1898 Set_Is_Private_Composite
(Current_Scope
);
1903 and then Is_Limited_Type
(T
)
1904 and then Chars
(Id
) /= Name_uParent
1905 and then Is_Tagged_Type
(Current_Scope
)
1907 if Is_Derived_Type
(Current_Scope
)
1908 and then not Is_Known_Limited
(Current_Scope
)
1911 ("extension of nonlimited type cannot have limited components",
1914 if Is_Interface
(Root_Type
(Current_Scope
)) then
1916 ("\limitedness is not inherited from limited interface", N
);
1918 ("\add LIMITED to type indication", N
);
1921 Explain_Limited_Type
(T
, N
);
1922 Set_Etype
(Id
, Any_Type
);
1923 Set_Is_Limited_Composite
(Current_Scope
, False);
1925 elsif not Is_Derived_Type
(Current_Scope
)
1926 and then not Is_Limited_Record
(Current_Scope
)
1927 and then not Is_Concurrent_Type
(Current_Scope
)
1930 ("nonlimited tagged type cannot have limited components", N
);
1931 Explain_Limited_Type
(T
, N
);
1932 Set_Etype
(Id
, Any_Type
);
1933 Set_Is_Limited_Composite
(Current_Scope
, False);
1937 Set_Original_Record_Component
(Id
, Id
);
1938 end Analyze_Component_Declaration
;
1940 --------------------------
1941 -- Analyze_Declarations --
1942 --------------------------
1944 procedure Analyze_Declarations
(L
: List_Id
) is
1946 Freeze_From
: Entity_Id
:= Empty
;
1947 Next_Node
: Node_Id
;
1950 -- Adjust D not to include implicit label declarations, since these
1951 -- have strange Sloc values that result in elaboration check problems.
1952 -- (They have the sloc of the label as found in the source, and that
1953 -- is ahead of the current declarative part).
1959 procedure Adjust_D
is
1961 while Present
(Prev
(D
))
1962 and then Nkind
(D
) = N_Implicit_Label_Declaration
1968 -- Start of processing for Analyze_Declarations
1972 while Present
(D
) loop
1974 -- Complete analysis of declaration
1977 Next_Node
:= Next
(D
);
1979 if No
(Freeze_From
) then
1980 Freeze_From
:= First_Entity
(Current_Scope
);
1983 -- At the end of a declarative part, freeze remaining entities
1984 -- declared in it. The end of the visible declarations of package
1985 -- specification is not the end of a declarative part if private
1986 -- declarations are present. The end of a package declaration is a
1987 -- freezing point only if it a library package. A task definition or
1988 -- protected type definition is not a freeze point either. Finally,
1989 -- we do not freeze entities in generic scopes, because there is no
1990 -- code generated for them and freeze nodes will be generated for
1993 -- The end of a package instantiation is not a freeze point, but
1994 -- for now we make it one, because the generic body is inserted
1995 -- (currently) immediately after. Generic instantiations will not
1996 -- be a freeze point once delayed freezing of bodies is implemented.
1997 -- (This is needed in any case for early instantiations ???).
1999 if No
(Next_Node
) then
2000 if Nkind_In
(Parent
(L
), N_Component_List
,
2002 N_Protected_Definition
)
2006 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
2007 if Nkind
(Parent
(L
)) = N_Package_Body
then
2008 Freeze_From
:= First_Entity
(Current_Scope
);
2012 Freeze_All
(Freeze_From
, D
);
2013 Freeze_From
:= Last_Entity
(Current_Scope
);
2015 elsif Scope
(Current_Scope
) /= Standard_Standard
2016 and then not Is_Child_Unit
(Current_Scope
)
2017 and then No
(Generic_Parent
(Parent
(L
)))
2021 elsif L
/= Visible_Declarations
(Parent
(L
))
2022 or else No
(Private_Declarations
(Parent
(L
)))
2023 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
2026 Freeze_All
(Freeze_From
, D
);
2027 Freeze_From
:= Last_Entity
(Current_Scope
);
2030 -- If next node is a body then freeze all types before the body.
2031 -- An exception occurs for some expander-generated bodies. If these
2032 -- are generated at places where in general language rules would not
2033 -- allow a freeze point, then we assume that the expander has
2034 -- explicitly checked that all required types are properly frozen,
2035 -- and we do not cause general freezing here. This special circuit
2036 -- is used when the encountered body is marked as having already
2039 -- In all other cases (bodies that come from source, and expander
2040 -- generated bodies that have not been analyzed yet), freeze all
2041 -- types now. Note that in the latter case, the expander must take
2042 -- care to attach the bodies at a proper place in the tree so as to
2043 -- not cause unwanted freezing at that point.
2045 elsif not Analyzed
(Next_Node
)
2046 and then (Nkind_In
(Next_Node
, N_Subprogram_Body
,
2052 Nkind
(Next_Node
) in N_Body_Stub
)
2055 Freeze_All
(Freeze_From
, D
);
2056 Freeze_From
:= Last_Entity
(Current_Scope
);
2061 end Analyze_Declarations
;
2063 ----------------------------------
2064 -- Analyze_Incomplete_Type_Decl --
2065 ----------------------------------
2067 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
2068 F
: constant Boolean := Is_Pure
(Current_Scope
);
2072 Generate_Definition
(Defining_Identifier
(N
));
2074 -- Process an incomplete declaration. The identifier must not have been
2075 -- declared already in the scope. However, an incomplete declaration may
2076 -- appear in the private part of a package, for a private type that has
2077 -- already been declared.
2079 -- In this case, the discriminants (if any) must match
2081 T
:= Find_Type_Name
(N
);
2083 Set_Ekind
(T
, E_Incomplete_Type
);
2084 Init_Size_Align
(T
);
2085 Set_Is_First_Subtype
(T
, True);
2088 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2089 -- incomplete types.
2091 if Tagged_Present
(N
) then
2092 Set_Is_Tagged_Type
(T
);
2093 Make_Class_Wide_Type
(T
);
2094 Set_Primitive_Operations
(T
, New_Elmt_List
);
2099 Set_Stored_Constraint
(T
, No_Elist
);
2101 if Present
(Discriminant_Specifications
(N
)) then
2102 Process_Discriminants
(N
);
2107 -- If the type has discriminants, non-trivial subtypes may be
2108 -- declared before the full view of the type. The full views of those
2109 -- subtypes will be built after the full view of the type.
2111 Set_Private_Dependents
(T
, New_Elmt_List
);
2113 end Analyze_Incomplete_Type_Decl
;
2115 -----------------------------------
2116 -- Analyze_Interface_Declaration --
2117 -----------------------------------
2119 procedure Analyze_Interface_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
2120 CW
: constant Entity_Id
:= Class_Wide_Type
(T
);
2123 Set_Is_Tagged_Type
(T
);
2125 Set_Is_Limited_Record
(T
, Limited_Present
(Def
)
2126 or else Task_Present
(Def
)
2127 or else Protected_Present
(Def
)
2128 or else Synchronized_Present
(Def
));
2130 -- Type is abstract if full declaration carries keyword, or if previous
2131 -- partial view did.
2133 Set_Is_Abstract_Type
(T
);
2134 Set_Is_Interface
(T
);
2136 -- Type is a limited interface if it includes the keyword limited, task,
2137 -- protected, or synchronized.
2139 Set_Is_Limited_Interface
2140 (T
, Limited_Present
(Def
)
2141 or else Protected_Present
(Def
)
2142 or else Synchronized_Present
(Def
)
2143 or else Task_Present
(Def
));
2145 Set_Is_Protected_Interface
(T
, Protected_Present
(Def
));
2146 Set_Is_Task_Interface
(T
, Task_Present
(Def
));
2148 -- Type is a synchronized interface if it includes the keyword task,
2149 -- protected, or synchronized.
2151 Set_Is_Synchronized_Interface
2152 (T
, Synchronized_Present
(Def
)
2153 or else Protected_Present
(Def
)
2154 or else Task_Present
(Def
));
2156 Set_Interfaces
(T
, New_Elmt_List
);
2157 Set_Primitive_Operations
(T
, New_Elmt_List
);
2159 -- Complete the decoration of the class-wide entity if it was already
2160 -- built (i.e. during the creation of the limited view)
2162 if Present
(CW
) then
2163 Set_Is_Interface
(CW
);
2164 Set_Is_Limited_Interface
(CW
, Is_Limited_Interface
(T
));
2165 Set_Is_Protected_Interface
(CW
, Is_Protected_Interface
(T
));
2166 Set_Is_Synchronized_Interface
(CW
, Is_Synchronized_Interface
(T
));
2167 Set_Is_Task_Interface
(CW
, Is_Task_Interface
(T
));
2170 -- Check runtime support for synchronized interfaces
2172 if VM_Target
= No_VM
2173 and then (Is_Task_Interface
(T
)
2174 or else Is_Protected_Interface
(T
)
2175 or else Is_Synchronized_Interface
(T
))
2176 and then not RTE_Available
(RE_Select_Specific_Data
)
2178 Error_Msg_CRT
("synchronized interfaces", T
);
2180 end Analyze_Interface_Declaration
;
2182 -----------------------------
2183 -- Analyze_Itype_Reference --
2184 -----------------------------
2186 -- Nothing to do. This node is placed in the tree only for the benefit of
2187 -- back end processing, and has no effect on the semantic processing.
2189 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
2191 pragma Assert
(Is_Itype
(Itype
(N
)));
2193 end Analyze_Itype_Reference
;
2195 --------------------------------
2196 -- Analyze_Number_Declaration --
2197 --------------------------------
2199 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
2200 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2201 E
: constant Node_Id
:= Expression
(N
);
2203 Index
: Interp_Index
;
2207 Generate_Definition
(Id
);
2210 -- This is an optimization of a common case of an integer literal
2212 if Nkind
(E
) = N_Integer_Literal
then
2213 Set_Is_Static_Expression
(E
, True);
2214 Set_Etype
(E
, Universal_Integer
);
2216 Set_Etype
(Id
, Universal_Integer
);
2217 Set_Ekind
(Id
, E_Named_Integer
);
2218 Set_Is_Frozen
(Id
, True);
2222 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
2224 -- Process expression, replacing error by integer zero, to avoid
2225 -- cascaded errors or aborts further along in the processing
2227 -- Replace Error by integer zero, which seems least likely to
2228 -- cause cascaded errors.
2231 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
2232 Set_Error_Posted
(E
);
2237 -- Verify that the expression is static and numeric. If
2238 -- the expression is overloaded, we apply the preference
2239 -- rule that favors root numeric types.
2241 if not Is_Overloaded
(E
) then
2247 Get_First_Interp
(E
, Index
, It
);
2248 while Present
(It
.Typ
) loop
2249 if (Is_Integer_Type
(It
.Typ
)
2250 or else Is_Real_Type
(It
.Typ
))
2251 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
2253 if T
= Any_Type
then
2256 elsif It
.Typ
= Universal_Real
2257 or else It
.Typ
= Universal_Integer
2259 -- Choose universal interpretation over any other
2266 Get_Next_Interp
(Index
, It
);
2270 if Is_Integer_Type
(T
) then
2272 Set_Etype
(Id
, Universal_Integer
);
2273 Set_Ekind
(Id
, E_Named_Integer
);
2275 elsif Is_Real_Type
(T
) then
2277 -- Because the real value is converted to universal_real, this is a
2278 -- legal context for a universal fixed expression.
2280 if T
= Universal_Fixed
then
2282 Loc
: constant Source_Ptr
:= Sloc
(N
);
2283 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
2285 New_Occurrence_Of
(Universal_Real
, Loc
),
2286 Expression
=> Relocate_Node
(E
));
2293 elsif T
= Any_Fixed
then
2294 Error_Msg_N
("illegal context for mixed mode operation", E
);
2296 -- Expression is of the form : universal_fixed * integer. Try to
2297 -- resolve as universal_real.
2299 T
:= Universal_Real
;
2304 Set_Etype
(Id
, Universal_Real
);
2305 Set_Ekind
(Id
, E_Named_Real
);
2308 Wrong_Type
(E
, Any_Numeric
);
2312 Set_Ekind
(Id
, E_Constant
);
2313 Set_Never_Set_In_Source
(Id
, True);
2314 Set_Is_True_Constant
(Id
, True);
2318 if Nkind_In
(E
, N_Integer_Literal
, N_Real_Literal
) then
2319 Set_Etype
(E
, Etype
(Id
));
2322 if not Is_OK_Static_Expression
(E
) then
2323 Flag_Non_Static_Expr
2324 ("non-static expression used in number declaration!", E
);
2325 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
2326 Set_Etype
(E
, Any_Type
);
2328 end Analyze_Number_Declaration
;
2330 --------------------------------
2331 -- Analyze_Object_Declaration --
2332 --------------------------------
2334 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
2335 Loc
: constant Source_Ptr
:= Sloc
(N
);
2336 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2340 E
: Node_Id
:= Expression
(N
);
2341 -- E is set to Expression (N) throughout this routine. When
2342 -- Expression (N) is modified, E is changed accordingly.
2344 Prev_Entity
: Entity_Id
:= Empty
;
2346 function Count_Tasks
(T
: Entity_Id
) return Uint
;
2347 -- This function is called when a non-generic library level object of a
2348 -- task type is declared. Its function is to count the static number of
2349 -- tasks declared within the type (it is only called if Has_Tasks is set
2350 -- for T). As a side effect, if an array of tasks with non-static bounds
2351 -- or a variant record type is encountered, Check_Restrictions is called
2352 -- indicating the count is unknown.
2358 function Count_Tasks
(T
: Entity_Id
) return Uint
is
2364 if Is_Task_Type
(T
) then
2367 elsif Is_Record_Type
(T
) then
2368 if Has_Discriminants
(T
) then
2369 Check_Restriction
(Max_Tasks
, N
);
2374 C
:= First_Component
(T
);
2375 while Present
(C
) loop
2376 V
:= V
+ Count_Tasks
(Etype
(C
));
2383 elsif Is_Array_Type
(T
) then
2384 X
:= First_Index
(T
);
2385 V
:= Count_Tasks
(Component_Type
(T
));
2386 while Present
(X
) loop
2389 if not Is_Static_Subtype
(C
) then
2390 Check_Restriction
(Max_Tasks
, N
);
2393 V
:= V
* (UI_Max
(Uint_0
,
2394 Expr_Value
(Type_High_Bound
(C
)) -
2395 Expr_Value
(Type_Low_Bound
(C
)) + Uint_1
));
2408 -- Start of processing for Analyze_Object_Declaration
2411 -- There are three kinds of implicit types generated by an
2412 -- object declaration:
2414 -- 1. Those for generated by the original Object Definition
2416 -- 2. Those generated by the Expression
2418 -- 3. Those used to constrained the Object Definition with the
2419 -- expression constraints when it is unconstrained
2421 -- They must be generated in this order to avoid order of elaboration
2422 -- issues. Thus the first step (after entering the name) is to analyze
2423 -- the object definition.
2425 if Constant_Present
(N
) then
2426 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
2428 if Present
(Prev_Entity
)
2430 -- If the homograph is an implicit subprogram, it is overridden
2431 -- by the current declaration.
2433 ((Is_Overloadable
(Prev_Entity
)
2434 and then Is_Inherited_Operation
(Prev_Entity
))
2436 -- The current object is a discriminal generated for an entry
2437 -- family index. Even though the index is a constant, in this
2438 -- particular context there is no true constant redeclaration.
2439 -- Enter_Name will handle the visibility.
2442 (Is_Discriminal
(Id
)
2443 and then Ekind
(Discriminal_Link
(Id
)) =
2444 E_Entry_Index_Parameter
)
2446 -- The current object is the renaming for a generic declared
2447 -- within the instance.
2450 (Ekind
(Prev_Entity
) = E_Package
2451 and then Nkind
(Parent
(Prev_Entity
)) =
2452 N_Package_Renaming_Declaration
2453 and then not Comes_From_Source
(Prev_Entity
)
2454 and then Is_Generic_Instance
(Renamed_Entity
(Prev_Entity
))))
2456 Prev_Entity
:= Empty
;
2460 if Present
(Prev_Entity
) then
2461 Constant_Redeclaration
(Id
, N
, T
);
2463 Generate_Reference
(Prev_Entity
, Id
, 'c');
2464 Set_Completion_Referenced
(Id
);
2466 if Error_Posted
(N
) then
2468 -- Type mismatch or illegal redeclaration, Do not analyze
2469 -- expression to avoid cascaded errors.
2471 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
2473 Set_Ekind
(Id
, E_Variable
);
2477 -- In the normal case, enter identifier at the start to catch premature
2478 -- usage in the initialization expression.
2481 Generate_Definition
(Id
);
2484 Mark_Coextensions
(N
, Object_Definition
(N
));
2486 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
2488 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
2490 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
2491 and then Protected_Present
2492 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
2494 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
2497 if Error_Posted
(Id
) then
2499 Set_Ekind
(Id
, E_Variable
);
2504 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2505 -- out some static checks
2507 if Ada_Version
>= Ada_05
2508 and then Can_Never_Be_Null
(T
)
2510 -- In case of aggregates we must also take care of the correct
2511 -- initialization of nested aggregates bug this is done at the
2512 -- point of the analysis of the aggregate (see sem_aggr.adb)
2514 if Present
(Expression
(N
))
2515 and then Nkind
(Expression
(N
)) = N_Aggregate
2521 Save_Typ
: constant Entity_Id
:= Etype
(Id
);
2523 Set_Etype
(Id
, T
); -- Temp. decoration for static checks
2524 Null_Exclusion_Static_Checks
(N
);
2525 Set_Etype
(Id
, Save_Typ
);
2530 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
2532 -- If deferred constant, make sure context is appropriate. We detect
2533 -- a deferred constant as a constant declaration with no expression.
2534 -- A deferred constant can appear in a package body if its completion
2535 -- is by means of an interface pragma.
2537 if Constant_Present
(N
)
2540 -- A deferred constant may appear in the declarative part of the
2541 -- following constructs:
2545 -- extended return statements
2548 -- subprogram bodies
2551 -- When declared inside a package spec, a deferred constant must be
2552 -- completed by a full constant declaration or pragma Import. In all
2553 -- other cases, the only proper completion is pragma Import. Extended
2554 -- return statements are flagged as invalid contexts because they do
2555 -- not have a declarative part and so cannot accommodate the pragma.
2557 if Ekind
(Current_Scope
) = E_Return_Statement
then
2559 ("invalid context for deferred constant declaration (RM 7.4)",
2562 ("\declaration requires an initialization expression",
2564 Set_Constant_Present
(N
, False);
2566 -- In Ada 83, deferred constant must be of private type
2568 elsif not Is_Private_Type
(T
) then
2569 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
2571 ("(Ada 83) deferred constant must be private type", N
);
2575 -- If not a deferred constant, then object declaration freezes its type
2578 Check_Fully_Declared
(T
, N
);
2579 Freeze_Before
(N
, T
);
2582 -- If the object was created by a constrained array definition, then
2583 -- set the link in both the anonymous base type and anonymous subtype
2584 -- that are built to represent the array type to point to the object.
2586 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
2587 N_Constrained_Array_Definition
2589 Set_Related_Array_Object
(T
, Id
);
2590 Set_Related_Array_Object
(Base_Type
(T
), Id
);
2593 -- Special checks for protected objects not at library level
2595 if Is_Protected_Type
(T
)
2596 and then not Is_Library_Level_Entity
(Id
)
2598 Check_Restriction
(No_Local_Protected_Objects
, Id
);
2600 -- Protected objects with interrupt handlers must be at library level
2602 -- Ada 2005: this test is not needed (and the corresponding clause
2603 -- in the RM is removed) because accessibility checks are sufficient
2604 -- to make handlers not at the library level illegal.
2606 if Has_Interrupt_Handler
(T
)
2607 and then Ada_Version
< Ada_05
2610 ("interrupt object can only be declared at library level", Id
);
2614 -- The actual subtype of the object is the nominal subtype, unless
2615 -- the nominal one is unconstrained and obtained from the expression.
2619 -- Process initialization expression if present and not in error
2621 if Present
(E
) and then E
/= Error
then
2623 -- Generate an error in case of CPP class-wide object initialization.
2624 -- Required because otherwise the expansion of the class-wide
2625 -- assignment would try to use 'size to initialize the object
2626 -- (primitive that is not available in CPP tagged types).
2628 if Is_Class_Wide_Type
(Act_T
)
2630 (Is_CPP_Class
(Root_Type
(Etype
(Act_T
)))
2632 (Present
(Full_View
(Root_Type
(Etype
(Act_T
))))
2634 Is_CPP_Class
(Full_View
(Root_Type
(Etype
(Act_T
))))))
2637 ("predefined assignment not available for 'C'P'P tagged types",
2641 Mark_Coextensions
(N
, E
);
2644 -- In case of errors detected in the analysis of the expression,
2645 -- decorate it with the expected type to avoid cascaded errors
2647 if No
(Etype
(E
)) then
2651 -- If an initialization expression is present, then we set the
2652 -- Is_True_Constant flag. It will be reset if this is a variable
2653 -- and it is indeed modified.
2655 Set_Is_True_Constant
(Id
, True);
2657 -- If we are analyzing a constant declaration, set its completion
2658 -- flag after analyzing and resolving the expression.
2660 if Constant_Present
(N
) then
2661 Set_Has_Completion
(Id
);
2664 -- Set type and resolve (type may be overridden later on)
2669 -- If E is null and has been replaced by an N_Raise_Constraint_Error
2670 -- node (which was marked already-analyzed), we need to set the type
2671 -- to something other than Any_Access in order to keep gigi happy.
2673 if Etype
(E
) = Any_Access
then
2677 -- If the object is an access to variable, the initialization
2678 -- expression cannot be an access to constant.
2680 if Is_Access_Type
(T
)
2681 and then not Is_Access_Constant
(T
)
2682 and then Is_Access_Type
(Etype
(E
))
2683 and then Is_Access_Constant
(Etype
(E
))
2686 ("access to variable cannot be initialized "
2687 & "with an access-to-constant expression", E
);
2690 if not Assignment_OK
(N
) then
2691 Check_Initialization
(T
, E
);
2694 Check_Unset_Reference
(E
);
2696 -- If this is a variable, then set current value. If this is a
2697 -- declared constant of a scalar type with a static expression,
2698 -- indicate that it is always valid.
2700 if not Constant_Present
(N
) then
2701 if Compile_Time_Known_Value
(E
) then
2702 Set_Current_Value
(Id
, E
);
2705 elsif Is_Scalar_Type
(T
)
2706 and then Is_OK_Static_Expression
(E
)
2708 Set_Is_Known_Valid
(Id
);
2711 -- Deal with setting of null flags
2713 if Is_Access_Type
(T
) then
2714 if Known_Non_Null
(E
) then
2715 Set_Is_Known_Non_Null
(Id
, True);
2716 elsif Known_Null
(E
)
2717 and then not Can_Never_Be_Null
(Id
)
2719 Set_Is_Known_Null
(Id
, True);
2723 -- Check incorrect use of dynamically tagged expressions.
2725 if Is_Tagged_Type
(T
) then
2726 Check_Dynamically_Tagged_Expression
2732 Apply_Scalar_Range_Check
(E
, T
);
2733 Apply_Static_Length_Check
(E
, T
);
2736 -- If the No_Streams restriction is set, check that the type of the
2737 -- object is not, and does not contain, any subtype derived from
2738 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
2739 -- Has_Stream just for efficiency reasons. There is no point in
2740 -- spending time on a Has_Stream check if the restriction is not set.
2742 if Restrictions
.Set
(No_Streams
) then
2743 if Has_Stream
(T
) then
2744 Check_Restriction
(No_Streams
, N
);
2748 -- Case of unconstrained type
2750 if Is_Indefinite_Subtype
(T
) then
2752 -- Nothing to do in deferred constant case
2754 if Constant_Present
(N
) and then No
(E
) then
2757 -- Case of no initialization present
2760 if No_Initialization
(N
) then
2763 elsif Is_Class_Wide_Type
(T
) then
2765 ("initialization required in class-wide declaration ", N
);
2769 ("unconstrained subtype not allowed (need initialization)",
2770 Object_Definition
(N
));
2772 if Is_Record_Type
(T
) and then Has_Discriminants
(T
) then
2774 ("\provide initial value or explicit discriminant values",
2775 Object_Definition
(N
));
2778 ("\or give default discriminant values for type&",
2779 Object_Definition
(N
), T
);
2781 elsif Is_Array_Type
(T
) then
2783 ("\provide initial value or explicit array bounds",
2784 Object_Definition
(N
));
2788 -- Case of initialization present but in error. Set initial
2789 -- expression as absent (but do not make above complaints)
2791 elsif E
= Error
then
2792 Set_Expression
(N
, Empty
);
2795 -- Case of initialization present
2798 -- Not allowed in Ada 83
2800 if not Constant_Present
(N
) then
2801 if Ada_Version
= Ada_83
2802 and then Comes_From_Source
(Object_Definition
(N
))
2805 ("(Ada 83) unconstrained variable not allowed",
2806 Object_Definition
(N
));
2810 -- Now we constrain the variable from the initializing expression
2812 -- If the expression is an aggregate, it has been expanded into
2813 -- individual assignments. Retrieve the actual type from the
2814 -- expanded construct.
2816 if Is_Array_Type
(T
)
2817 and then No_Initialization
(N
)
2818 and then Nkind
(Original_Node
(E
)) = N_Aggregate
2822 -- In case of class-wide interface object declarations we delay
2823 -- the generation of the equivalent record type declarations until
2824 -- its expansion because there are cases in they are not required.
2826 elsif Is_Interface
(T
) then
2830 Expand_Subtype_From_Expr
(N
, T
, Object_Definition
(N
), E
);
2831 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
2834 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
2836 if Aliased_Present
(N
) then
2837 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
2840 Freeze_Before
(N
, Act_T
);
2841 Freeze_Before
(N
, T
);
2844 elsif Is_Array_Type
(T
)
2845 and then No_Initialization
(N
)
2846 and then Nkind
(Original_Node
(E
)) = N_Aggregate
2848 if not Is_Entity_Name
(Object_Definition
(N
)) then
2850 Check_Compile_Time_Size
(Act_T
);
2852 if Aliased_Present
(N
) then
2853 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
2857 -- When the given object definition and the aggregate are specified
2858 -- independently, and their lengths might differ do a length check.
2859 -- This cannot happen if the aggregate is of the form (others =>...)
2861 if not Is_Constrained
(T
) then
2864 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
2866 -- Aggregate is statically illegal. Place back in declaration
2868 Set_Expression
(N
, E
);
2869 Set_No_Initialization
(N
, False);
2871 elsif T
= Etype
(E
) then
2874 elsif Nkind
(E
) = N_Aggregate
2875 and then Present
(Component_Associations
(E
))
2876 and then Present
(Choices
(First
(Component_Associations
(E
))))
2877 and then Nkind
(First
2878 (Choices
(First
(Component_Associations
(E
))))) = N_Others_Choice
2883 Apply_Length_Check
(E
, T
);
2886 -- If the type is limited unconstrained with defaulted discriminants
2887 -- and there is no expression, then the object is constrained by the
2888 -- defaults, so it is worthwhile building the corresponding subtype.
2890 elsif (Is_Limited_Record
(T
)
2891 or else Is_Concurrent_Type
(T
))
2892 and then not Is_Constrained
(T
)
2893 and then Has_Discriminants
(T
)
2896 Act_T
:= Build_Default_Subtype
(T
, N
);
2898 -- Ada 2005: a limited object may be initialized by means of an
2899 -- aggregate. If the type has default discriminants it has an
2900 -- unconstrained nominal type, Its actual subtype will be obtained
2901 -- from the aggregate, and not from the default discriminants.
2906 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
2908 elsif Present
(Underlying_Type
(T
))
2909 and then not Is_Constrained
(Underlying_Type
(T
))
2910 and then Has_Discriminants
(Underlying_Type
(T
))
2911 and then Nkind
(E
) = N_Function_Call
2912 and then Constant_Present
(N
)
2914 -- The back-end has problems with constants of a discriminated type
2915 -- with defaults, if the initial value is a function call. We
2916 -- generate an intermediate temporary for the result of the call.
2917 -- It is unclear why this should make it acceptable to gcc. ???
2919 Remove_Side_Effects
(E
);
2922 -- Check No_Wide_Characters restriction
2924 if T
= Standard_Wide_Character
2925 or else T
= Standard_Wide_Wide_Character
2926 or else Root_Type
(T
) = Standard_Wide_String
2927 or else Root_Type
(T
) = Standard_Wide_Wide_String
2929 Check_Restriction
(No_Wide_Characters
, Object_Definition
(N
));
2932 -- Indicate this is not set in source. Certainly true for constants,
2933 -- and true for variables so far (will be reset for a variable if and
2934 -- when we encounter a modification in the source).
2936 Set_Never_Set_In_Source
(Id
, True);
2938 -- Now establish the proper kind and type of the object
2940 if Constant_Present
(N
) then
2941 Set_Ekind
(Id
, E_Constant
);
2942 Set_Is_True_Constant
(Id
, True);
2945 Set_Ekind
(Id
, E_Variable
);
2947 -- A variable is set as shared passive if it appears in a shared
2948 -- passive package, and is at the outer level. This is not done
2949 -- for entities generated during expansion, because those are
2950 -- always manipulated locally.
2952 if Is_Shared_Passive
(Current_Scope
)
2953 and then Is_Library_Level_Entity
(Id
)
2954 and then Comes_From_Source
(Id
)
2956 Set_Is_Shared_Passive
(Id
);
2957 Check_Shared_Var
(Id
, T
, N
);
2960 -- Set Has_Initial_Value if initializing expression present. Note
2961 -- that if there is no initializing expression, we leave the state
2962 -- of this flag unchanged (usually it will be False, but notably in
2963 -- the case of exception choice variables, it will already be true).
2966 Set_Has_Initial_Value
(Id
, True);
2970 -- Initialize alignment and size and capture alignment setting
2972 Init_Alignment
(Id
);
2974 Set_Optimize_Alignment_Flags
(Id
);
2976 -- Deal with aliased case
2978 if Aliased_Present
(N
) then
2979 Set_Is_Aliased
(Id
);
2981 -- If the object is aliased and the type is unconstrained with
2982 -- defaulted discriminants and there is no expression, then the
2983 -- object is constrained by the defaults, so it is worthwhile
2984 -- building the corresponding subtype.
2986 -- Ada 2005 (AI-363): If the aliased object is discriminated and
2987 -- unconstrained, then only establish an actual subtype if the
2988 -- nominal subtype is indefinite. In definite cases the object is
2989 -- unconstrained in Ada 2005.
2992 and then Is_Record_Type
(T
)
2993 and then not Is_Constrained
(T
)
2994 and then Has_Discriminants
(T
)
2995 and then (Ada_Version
< Ada_05
or else Is_Indefinite_Subtype
(T
))
2997 Set_Actual_Subtype
(Id
, Build_Default_Subtype
(T
, N
));
3001 -- Now we can set the type of the object
3003 Set_Etype
(Id
, Act_T
);
3005 -- Deal with controlled types
3007 if Has_Controlled_Component
(Etype
(Id
))
3008 or else Is_Controlled
(Etype
(Id
))
3010 if not Is_Library_Level_Entity
(Id
) then
3011 Check_Restriction
(No_Nested_Finalization
, N
);
3013 Validate_Controlled_Object
(Id
);
3016 -- Generate a warning when an initialization causes an obvious ABE
3017 -- violation. If the init expression is a simple aggregate there
3018 -- shouldn't be any initialize/adjust call generated. This will be
3019 -- true as soon as aggregates are built in place when possible.
3021 -- ??? at the moment we do not generate warnings for temporaries
3022 -- created for those aggregates although Program_Error might be
3023 -- generated if compiled with -gnato.
3025 if Is_Controlled
(Etype
(Id
))
3026 and then Comes_From_Source
(Id
)
3029 BT
: constant Entity_Id
:= Base_Type
(Etype
(Id
));
3031 Implicit_Call
: Entity_Id
;
3032 pragma Warnings
(Off
, Implicit_Call
);
3033 -- ??? what is this for (never referenced!)
3035 function Is_Aggr
(N
: Node_Id
) return Boolean;
3036 -- Check that N is an aggregate
3042 function Is_Aggr
(N
: Node_Id
) return Boolean is
3044 case Nkind
(Original_Node
(N
)) is
3045 when N_Aggregate | N_Extension_Aggregate
=>
3048 when N_Qualified_Expression |
3050 N_Unchecked_Type_Conversion
=>
3051 return Is_Aggr
(Expression
(Original_Node
(N
)));
3059 -- If no underlying type, we already are in an error situation.
3060 -- Do not try to add a warning since we do not have access to
3063 if No
(Underlying_Type
(BT
)) then
3064 Implicit_Call
:= Empty
;
3066 -- A generic type does not have usable primitive operators.
3067 -- Initialization calls are built for instances.
3069 elsif Is_Generic_Type
(BT
) then
3070 Implicit_Call
:= Empty
;
3072 -- If the init expression is not an aggregate, an adjust call
3073 -- will be generated
3075 elsif Present
(E
) and then not Is_Aggr
(E
) then
3076 Implicit_Call
:= Find_Prim_Op
(BT
, Name_Adjust
);
3078 -- If no init expression and we are not in the deferred
3079 -- constant case, an Initialize call will be generated
3081 elsif No
(E
) and then not Constant_Present
(N
) then
3082 Implicit_Call
:= Find_Prim_Op
(BT
, Name_Initialize
);
3085 Implicit_Call
:= Empty
;
3091 if Has_Task
(Etype
(Id
)) then
3092 Check_Restriction
(No_Tasking
, N
);
3094 -- Deal with counting max tasks
3096 -- Nothing to do if inside a generic
3098 if Inside_A_Generic
then
3101 -- If library level entity, then count tasks
3103 elsif Is_Library_Level_Entity
(Id
) then
3104 Check_Restriction
(Max_Tasks
, N
, Count_Tasks
(Etype
(Id
)));
3106 -- If not library level entity, then indicate we don't know max
3107 -- tasks and also check task hierarchy restriction and blocking
3108 -- operation (since starting a task is definitely blocking!)
3111 Check_Restriction
(Max_Tasks
, N
);
3112 Check_Restriction
(No_Task_Hierarchy
, N
);
3113 Check_Potentially_Blocking_Operation
(N
);
3116 -- A rather specialized test. If we see two tasks being declared
3117 -- of the same type in the same object declaration, and the task
3118 -- has an entry with an address clause, we know that program error
3119 -- will be raised at run-time since we can't have two tasks with
3120 -- entries at the same address.
3122 if Is_Task_Type
(Etype
(Id
)) and then More_Ids
(N
) then
3127 E
:= First_Entity
(Etype
(Id
));
3128 while Present
(E
) loop
3129 if Ekind
(E
) = E_Entry
3130 and then Present
(Get_Attribute_Definition_Clause
3131 (E
, Attribute_Address
))
3134 ("?more than one task with same entry address", N
);
3136 ("\?Program_Error will be raised at run time", N
);
3138 Make_Raise_Program_Error
(Loc
,
3139 Reason
=> PE_Duplicated_Entry_Address
));
3149 -- Some simple constant-propagation: if the expression is a constant
3150 -- string initialized with a literal, share the literal. This avoids
3154 and then Is_Entity_Name
(E
)
3155 and then Ekind
(Entity
(E
)) = E_Constant
3156 and then Base_Type
(Etype
(E
)) = Standard_String
3159 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
3162 and then Nkind
(Val
) = N_String_Literal
3164 Rewrite
(E
, New_Copy
(Val
));
3169 -- Another optimization: if the nominal subtype is unconstrained and
3170 -- the expression is a function call that returns an unconstrained
3171 -- type, rewrite the declaration as a renaming of the result of the
3172 -- call. The exceptions below are cases where the copy is expected,
3173 -- either by the back end (Aliased case) or by the semantics, as for
3174 -- initializing controlled types or copying tags for classwide types.
3177 and then Nkind
(E
) = N_Explicit_Dereference
3178 and then Nkind
(Original_Node
(E
)) = N_Function_Call
3179 and then not Is_Library_Level_Entity
(Id
)
3180 and then not Is_Constrained
(Underlying_Type
(T
))
3181 and then not Is_Aliased
(Id
)
3182 and then not Is_Class_Wide_Type
(T
)
3183 and then not Is_Controlled
(T
)
3184 and then not Has_Controlled_Component
(Base_Type
(T
))
3185 and then Expander_Active
3188 Make_Object_Renaming_Declaration
(Loc
,
3189 Defining_Identifier
=> Id
,
3190 Access_Definition
=> Empty
,
3191 Subtype_Mark
=> New_Occurrence_Of
3192 (Base_Type
(Etype
(Id
)), Loc
),
3195 Set_Renamed_Object
(Id
, E
);
3197 -- Force generation of debugging information for the constant and for
3198 -- the renamed function call.
3200 Set_Debug_Info_Needed
(Id
);
3201 Set_Debug_Info_Needed
(Entity
(Prefix
(E
)));
3204 if Present
(Prev_Entity
)
3205 and then Is_Frozen
(Prev_Entity
)
3206 and then not Error_Posted
(Id
)
3208 Error_Msg_N
("full constant declaration appears too late", N
);
3211 Check_Eliminated
(Id
);
3213 -- Deal with setting In_Private_Part flag if in private part
3215 if Ekind
(Scope
(Id
)) = E_Package
3216 and then In_Private_Part
(Scope
(Id
))
3218 Set_In_Private_Part
(Id
);
3221 -- Check for violation of No_Local_Timing_Events
3223 if Is_RTE
(Etype
(Id
), RE_Timing_Event
)
3224 and then not Is_Library_Level_Entity
(Id
)
3226 Check_Restriction
(No_Local_Timing_Events
, N
);
3228 end Analyze_Object_Declaration
;
3230 ---------------------------
3231 -- Analyze_Others_Choice --
3232 ---------------------------
3234 -- Nothing to do for the others choice node itself, the semantic analysis
3235 -- of the others choice will occur as part of the processing of the parent
3237 procedure Analyze_Others_Choice
(N
: Node_Id
) is
3238 pragma Warnings
(Off
, N
);
3241 end Analyze_Others_Choice
;
3243 -------------------------------------------
3244 -- Analyze_Private_Extension_Declaration --
3245 -------------------------------------------
3247 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
3248 T
: constant Entity_Id
:= Defining_Identifier
(N
);
3249 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
3250 Parent_Type
: Entity_Id
;
3251 Parent_Base
: Entity_Id
;
3254 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
3256 if Is_Non_Empty_List
(Interface_List
(N
)) then
3262 Intf
:= First
(Interface_List
(N
));
3263 while Present
(Intf
) loop
3264 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
3266 Diagnose_Interface
(Intf
, T
);
3272 Generate_Definition
(T
);
3275 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
3276 Parent_Base
:= Base_Type
(Parent_Type
);
3278 if Parent_Type
= Any_Type
3279 or else Etype
(Parent_Type
) = Any_Type
3281 Set_Ekind
(T
, Ekind
(Parent_Type
));
3282 Set_Etype
(T
, Any_Type
);
3285 elsif not Is_Tagged_Type
(Parent_Type
) then
3287 ("parent of type extension must be a tagged type ", Indic
);
3290 elsif Ekind
(Parent_Type
) = E_Void
3291 or else Ekind
(Parent_Type
) = E_Incomplete_Type
3293 Error_Msg_N
("premature derivation of incomplete type", Indic
);
3296 elsif Is_Concurrent_Type
(Parent_Type
) then
3298 ("parent type of a private extension cannot be "
3299 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
3301 Set_Etype
(T
, Any_Type
);
3302 Set_Ekind
(T
, E_Limited_Private_Type
);
3303 Set_Private_Dependents
(T
, New_Elmt_List
);
3304 Set_Error_Posted
(T
);
3308 -- Perhaps the parent type should be changed to the class-wide type's
3309 -- specific type in this case to prevent cascading errors ???
3311 if Is_Class_Wide_Type
(Parent_Type
) then
3313 ("parent of type extension must not be a class-wide type", Indic
);
3317 if (not Is_Package_Or_Generic_Package
(Current_Scope
)
3318 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
3319 or else In_Private_Part
(Current_Scope
)
3322 Error_Msg_N
("invalid context for private extension", N
);
3325 -- Set common attributes
3327 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
3328 Set_Scope
(T
, Current_Scope
);
3329 Set_Ekind
(T
, E_Record_Type_With_Private
);
3330 Init_Size_Align
(T
);
3332 Set_Etype
(T
, Parent_Base
);
3333 Set_Has_Task
(T
, Has_Task
(Parent_Base
));
3335 Set_Convention
(T
, Convention
(Parent_Type
));
3336 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
3337 Set_Is_First_Subtype
(T
);
3338 Make_Class_Wide_Type
(T
);
3340 if Unknown_Discriminants_Present
(N
) then
3341 Set_Discriminant_Constraint
(T
, No_Elist
);
3344 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
3346 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
3347 -- synchronized formal derived type.
3349 if Ada_Version
>= Ada_05
3350 and then Synchronized_Present
(N
)
3352 Set_Is_Limited_Record
(T
);
3354 -- Formal derived type case
3356 if Is_Generic_Type
(T
) then
3358 -- The parent must be a tagged limited type or a synchronized
3361 if (not Is_Tagged_Type
(Parent_Type
)
3362 or else not Is_Limited_Type
(Parent_Type
))
3364 (not Is_Interface
(Parent_Type
)
3365 or else not Is_Synchronized_Interface
(Parent_Type
))
3367 Error_Msg_NE
("parent type of & must be tagged limited " &
3368 "or synchronized", N
, T
);
3371 -- The progenitors (if any) must be limited or synchronized
3374 if Present
(Interfaces
(T
)) then
3377 Iface_Elmt
: Elmt_Id
;
3380 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
3381 while Present
(Iface_Elmt
) loop
3382 Iface
:= Node
(Iface_Elmt
);
3384 if not Is_Limited_Interface
(Iface
)
3385 and then not Is_Synchronized_Interface
(Iface
)
3387 Error_Msg_NE
("progenitor & must be limited " &
3388 "or synchronized", N
, Iface
);
3391 Next_Elmt
(Iface_Elmt
);
3396 -- Regular derived extension, the parent must be a limited or
3397 -- synchronized interface.
3400 if not Is_Interface
(Parent_Type
)
3401 or else (not Is_Limited_Interface
(Parent_Type
)
3403 not Is_Synchronized_Interface
(Parent_Type
))
3406 ("parent type of & must be limited interface", N
, T
);
3410 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
3411 -- extension with a synchronized parent must be explicitly declared
3412 -- synchronized, because the full view will be a synchronized type.
3413 -- This must be checked before the check for limited types below,
3414 -- to ensure that types declared limited are not allowed to extend
3415 -- synchronized interfaces.
3417 elsif Is_Interface
(Parent_Type
)
3418 and then Is_Synchronized_Interface
(Parent_Type
)
3419 and then not Synchronized_Present
(N
)
3422 ("private extension of& must be explicitly synchronized",
3425 elsif Limited_Present
(N
) then
3426 Set_Is_Limited_Record
(T
);
3428 if not Is_Limited_Type
(Parent_Type
)
3430 (not Is_Interface
(Parent_Type
)
3431 or else not Is_Limited_Interface
(Parent_Type
))
3433 Error_Msg_NE
("parent type& of limited extension must be limited",
3437 end Analyze_Private_Extension_Declaration
;
3439 ---------------------------------
3440 -- Analyze_Subtype_Declaration --
3441 ---------------------------------
3443 procedure Analyze_Subtype_Declaration
3445 Skip
: Boolean := False)
3447 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3449 R_Checks
: Check_Result
;
3452 Generate_Definition
(Id
);
3453 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3454 Init_Size_Align
(Id
);
3456 -- The following guard condition on Enter_Name is to handle cases where
3457 -- the defining identifier has already been entered into the scope but
3458 -- the declaration as a whole needs to be analyzed.
3460 -- This case in particular happens for derived enumeration types. The
3461 -- derived enumeration type is processed as an inserted enumeration type
3462 -- declaration followed by a rewritten subtype declaration. The defining
3463 -- identifier, however, is entered into the name scope very early in the
3464 -- processing of the original type declaration and therefore needs to be
3465 -- avoided here, when the created subtype declaration is analyzed. (See
3466 -- Build_Derived_Types)
3468 -- This also happens when the full view of a private type is derived
3469 -- type with constraints. In this case the entity has been introduced
3470 -- in the private declaration.
3473 or else (Present
(Etype
(Id
))
3474 and then (Is_Private_Type
(Etype
(Id
))
3475 or else Is_Task_Type
(Etype
(Id
))
3476 or else Is_Rewrite_Substitution
(N
)))
3484 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
3486 -- Inherit common attributes
3488 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
3489 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
3490 Set_Treat_As_Volatile
(Id
, Treat_As_Volatile
(T
));
3491 Set_Is_Atomic
(Id
, Is_Atomic
(T
));
3492 Set_Is_Ada_2005_Only
(Id
, Is_Ada_2005_Only
(T
));
3493 Set_Convention
(Id
, Convention
(T
));
3495 -- In the case where there is no constraint given in the subtype
3496 -- indication, Process_Subtype just returns the Subtype_Mark, so its
3497 -- semantic attributes must be established here.
3499 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
3500 Set_Etype
(Id
, Base_Type
(T
));
3504 Set_Ekind
(Id
, E_Array_Subtype
);
3505 Copy_Array_Subtype_Attributes
(Id
, T
);
3507 when Decimal_Fixed_Point_Kind
=>
3508 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
3509 Set_Digits_Value
(Id
, Digits_Value
(T
));
3510 Set_Delta_Value
(Id
, Delta_Value
(T
));
3511 Set_Scale_Value
(Id
, Scale_Value
(T
));
3512 Set_Small_Value
(Id
, Small_Value
(T
));
3513 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
3514 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
3515 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3516 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
3517 Set_RM_Size
(Id
, RM_Size
(T
));
3519 when Enumeration_Kind
=>
3520 Set_Ekind
(Id
, E_Enumeration_Subtype
);
3521 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
3522 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
3523 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
3524 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3525 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
3526 Set_RM_Size
(Id
, RM_Size
(T
));
3528 when Ordinary_Fixed_Point_Kind
=>
3529 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
3530 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
3531 Set_Small_Value
(Id
, Small_Value
(T
));
3532 Set_Delta_Value
(Id
, Delta_Value
(T
));
3533 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3534 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
3535 Set_RM_Size
(Id
, RM_Size
(T
));
3538 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
3539 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
3540 Set_Digits_Value
(Id
, Digits_Value
(T
));
3541 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3543 when Signed_Integer_Kind
=>
3544 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
3545 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
3546 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3547 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
3548 Set_RM_Size
(Id
, RM_Size
(T
));
3550 when Modular_Integer_Kind
=>
3551 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
3552 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
3553 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3554 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
3555 Set_RM_Size
(Id
, RM_Size
(T
));
3557 when Class_Wide_Kind
=>
3558 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
3559 Set_First_Entity
(Id
, First_Entity
(T
));
3560 Set_Last_Entity
(Id
, Last_Entity
(T
));
3561 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
3562 Set_Cloned_Subtype
(Id
, T
);
3563 Set_Is_Tagged_Type
(Id
, True);
3564 Set_Has_Unknown_Discriminants
3567 if Ekind
(T
) = E_Class_Wide_Subtype
then
3568 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
3571 when E_Record_Type | E_Record_Subtype
=>
3572 Set_Ekind
(Id
, E_Record_Subtype
);
3574 if Ekind
(T
) = E_Record_Subtype
3575 and then Present
(Cloned_Subtype
(T
))
3577 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
3579 Set_Cloned_Subtype
(Id
, T
);
3582 Set_First_Entity
(Id
, First_Entity
(T
));
3583 Set_Last_Entity
(Id
, Last_Entity
(T
));
3584 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
3585 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3586 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
3587 Set_Has_Unknown_Discriminants
3588 (Id
, Has_Unknown_Discriminants
(T
));
3590 if Has_Discriminants
(T
) then
3591 Set_Discriminant_Constraint
3592 (Id
, Discriminant_Constraint
(T
));
3593 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
3595 elsif Has_Unknown_Discriminants
(Id
) then
3596 Set_Discriminant_Constraint
(Id
, No_Elist
);
3599 if Is_Tagged_Type
(T
) then
3600 Set_Is_Tagged_Type
(Id
);
3601 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
3602 Set_Primitive_Operations
3603 (Id
, Primitive_Operations
(T
));
3604 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
3606 if Is_Interface
(T
) then
3607 Set_Is_Interface
(Id
);
3608 Set_Is_Limited_Interface
(Id
, Is_Limited_Interface
(T
));
3612 when Private_Kind
=>
3613 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
3614 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
3615 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3616 Set_First_Entity
(Id
, First_Entity
(T
));
3617 Set_Last_Entity
(Id
, Last_Entity
(T
));
3618 Set_Private_Dependents
(Id
, New_Elmt_List
);
3619 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
3620 Set_Has_Unknown_Discriminants
3621 (Id
, Has_Unknown_Discriminants
(T
));
3622 Set_Known_To_Have_Preelab_Init
3623 (Id
, Known_To_Have_Preelab_Init
(T
));
3625 if Is_Tagged_Type
(T
) then
3626 Set_Is_Tagged_Type
(Id
);
3627 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
3628 Set_Primitive_Operations
(Id
, Primitive_Operations
(T
));
3629 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
3632 -- In general the attributes of the subtype of a private type
3633 -- are the attributes of the partial view of parent. However,
3634 -- the full view may be a discriminated type, and the subtype
3635 -- must share the discriminant constraint to generate correct
3636 -- calls to initialization procedures.
3638 if Has_Discriminants
(T
) then
3639 Set_Discriminant_Constraint
3640 (Id
, Discriminant_Constraint
(T
));
3641 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
3643 elsif Present
(Full_View
(T
))
3644 and then Has_Discriminants
(Full_View
(T
))
3646 Set_Discriminant_Constraint
3647 (Id
, Discriminant_Constraint
(Full_View
(T
)));
3648 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
3650 -- This would seem semantically correct, but apparently
3651 -- confuses the back-end. To be explained and checked with
3652 -- current version ???
3654 -- Set_Has_Discriminants (Id);
3657 Prepare_Private_Subtype_Completion
(Id
, N
);
3660 Set_Ekind
(Id
, E_Access_Subtype
);
3661 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3662 Set_Is_Access_Constant
3663 (Id
, Is_Access_Constant
(T
));
3664 Set_Directly_Designated_Type
3665 (Id
, Designated_Type
(T
));
3666 Set_Can_Never_Be_Null
(Id
, Can_Never_Be_Null
(T
));
3668 -- A Pure library_item must not contain the declaration of a
3669 -- named access type, except within a subprogram, generic
3670 -- subprogram, task unit, or protected unit, or if it has
3671 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
3673 if Comes_From_Source
(Id
)
3674 and then In_Pure_Unit
3675 and then not In_Subprogram_Task_Protected_Unit
3676 and then not No_Pool_Assigned
(Id
)
3679 ("named access types not allowed in pure unit", N
);
3682 when Concurrent_Kind
=>
3683 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
3684 Set_Corresponding_Record_Type
(Id
,
3685 Corresponding_Record_Type
(T
));
3686 Set_First_Entity
(Id
, First_Entity
(T
));
3687 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
3688 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
3689 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
3690 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
3691 Set_Last_Entity
(Id
, Last_Entity
(T
));
3693 if Has_Discriminants
(T
) then
3694 Set_Discriminant_Constraint
(Id
,
3695 Discriminant_Constraint
(T
));
3696 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
3699 when E_Incomplete_Type
=>
3700 if Ada_Version
>= Ada_05
then
3701 Set_Ekind
(Id
, E_Incomplete_Subtype
);
3703 -- Ada 2005 (AI-412): Decorate an incomplete subtype
3704 -- of an incomplete type visible through a limited
3707 if From_With_Type
(T
)
3708 and then Present
(Non_Limited_View
(T
))
3710 Set_From_With_Type
(Id
);
3711 Set_Non_Limited_View
(Id
, Non_Limited_View
(T
));
3713 -- Ada 2005 (AI-412): Add the regular incomplete subtype
3714 -- to the private dependents of the original incomplete
3715 -- type for future transformation.
3718 Append_Elmt
(Id
, Private_Dependents
(T
));
3721 -- If the subtype name denotes an incomplete type an error
3722 -- was already reported by Process_Subtype.
3725 Set_Etype
(Id
, Any_Type
);
3729 raise Program_Error
;
3733 if Etype
(Id
) = Any_Type
then
3737 -- Some common processing on all types
3739 Set_Size_Info
(Id
, T
);
3740 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
3744 Set_Is_Immediately_Visible
(Id
, True);
3745 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
3746 Set_Is_Descendent_Of_Address
(Id
, Is_Descendent_Of_Address
(T
));
3748 if Is_Interface
(T
) then
3749 Set_Is_Interface
(Id
);
3752 if Present
(Generic_Parent_Type
(N
))
3755 (Parent
(Generic_Parent_Type
(N
))) /= N_Formal_Type_Declaration
3757 (Formal_Type_Definition
(Parent
(Generic_Parent_Type
(N
))))
3758 /= N_Formal_Private_Type_Definition
)
3760 if Is_Tagged_Type
(Id
) then
3762 -- If this is a generic actual subtype for a synchronized type,
3763 -- the primitive operations are those of the corresponding record
3764 -- for which there is a separate subtype declaration.
3766 if Is_Concurrent_Type
(Id
) then
3768 elsif Is_Class_Wide_Type
(Id
) then
3769 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
3771 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
3774 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
3775 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
3779 if Is_Private_Type
(T
)
3780 and then Present
(Full_View
(T
))
3782 Conditional_Delay
(Id
, Full_View
(T
));
3784 -- The subtypes of components or subcomponents of protected types
3785 -- do not need freeze nodes, which would otherwise appear in the
3786 -- wrong scope (before the freeze node for the protected type). The
3787 -- proper subtypes are those of the subcomponents of the corresponding
3790 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
3791 and then Present
(Scope
(Scope
(Id
))) -- error defense!
3792 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
3794 Conditional_Delay
(Id
, T
);
3797 -- Check that constraint_error is raised for a scalar subtype
3798 -- indication when the lower or upper bound of a non-null range
3799 -- lies outside the range of the type mark.
3801 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
3802 if Is_Scalar_Type
(Etype
(Id
))
3803 and then Scalar_Range
(Id
) /=
3804 Scalar_Range
(Etype
(Subtype_Mark
3805 (Subtype_Indication
(N
))))
3809 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
3811 elsif Is_Array_Type
(Etype
(Id
))
3812 and then Present
(First_Index
(Id
))
3814 -- This really should be a subprogram that finds the indications
3817 if ((Nkind
(First_Index
(Id
)) = N_Identifier
3818 and then Ekind
(Entity
(First_Index
(Id
))) in Scalar_Kind
)
3819 or else Nkind
(First_Index
(Id
)) = N_Subtype_Indication
)
3821 Nkind
(Scalar_Range
(Etype
(First_Index
(Id
)))) = N_Range
3824 Target_Typ
: constant Entity_Id
:=
3827 (Subtype_Mark
(Subtype_Indication
(N
)))));
3831 (Scalar_Range
(Etype
(First_Index
(Id
))),
3833 Etype
(First_Index
(Id
)),
3834 Defining_Identifier
(N
));
3840 Sloc
(Defining_Identifier
(N
)));
3846 Set_Optimize_Alignment_Flags
(Id
);
3847 Check_Eliminated
(Id
);
3848 end Analyze_Subtype_Declaration
;
3850 --------------------------------
3851 -- Analyze_Subtype_Indication --
3852 --------------------------------
3854 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
3855 T
: constant Entity_Id
:= Subtype_Mark
(N
);
3856 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
3863 Set_Etype
(N
, Etype
(R
));
3864 Resolve
(R
, Entity
(T
));
3866 Set_Error_Posted
(R
);
3867 Set_Error_Posted
(T
);
3869 end Analyze_Subtype_Indication
;
3871 ------------------------------
3872 -- Analyze_Type_Declaration --
3873 ------------------------------
3875 procedure Analyze_Type_Declaration
(N
: Node_Id
) is
3876 Def
: constant Node_Id
:= Type_Definition
(N
);
3877 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3881 Is_Remote
: constant Boolean :=
3882 (Is_Remote_Types
(Current_Scope
)
3883 or else Is_Remote_Call_Interface
(Current_Scope
))
3884 and then not (In_Private_Part
(Current_Scope
)
3885 or else In_Package_Body
(Current_Scope
));
3887 procedure Check_Ops_From_Incomplete_Type
;
3888 -- If there is a tagged incomplete partial view of the type, transfer
3889 -- its operations to the full view, and indicate that the type of the
3890 -- controlling parameter (s) is this full view.
3892 ------------------------------------
3893 -- Check_Ops_From_Incomplete_Type --
3894 ------------------------------------
3896 procedure Check_Ops_From_Incomplete_Type
is
3903 and then Ekind
(Prev
) = E_Incomplete_Type
3904 and then Is_Tagged_Type
(Prev
)
3905 and then Is_Tagged_Type
(T
)
3907 Elmt
:= First_Elmt
(Primitive_Operations
(Prev
));
3908 while Present
(Elmt
) loop
3910 Prepend_Elmt
(Op
, Primitive_Operations
(T
));
3912 Formal
:= First_Formal
(Op
);
3913 while Present
(Formal
) loop
3914 if Etype
(Formal
) = Prev
then
3915 Set_Etype
(Formal
, T
);
3918 Next_Formal
(Formal
);
3921 if Etype
(Op
) = Prev
then
3928 end Check_Ops_From_Incomplete_Type
;
3930 -- Start of processing for Analyze_Type_Declaration
3933 Prev
:= Find_Type_Name
(N
);
3935 -- The full view, if present, now points to the current type
3937 -- Ada 2005 (AI-50217): If the type was previously decorated when
3938 -- imported through a LIMITED WITH clause, it appears as incomplete
3939 -- but has no full view.
3940 -- If the incomplete view is tagged, a class_wide type has been
3941 -- created already. Use it for the full view as well, to prevent
3942 -- multiple incompatible class-wide types that may be created for
3943 -- self-referential anonymous access components.
3945 if Ekind
(Prev
) = E_Incomplete_Type
3946 and then Present
(Full_View
(Prev
))
3948 T
:= Full_View
(Prev
);
3950 if Is_Tagged_Type
(Prev
)
3951 and then Present
(Class_Wide_Type
(Prev
))
3953 Set_Ekind
(T
, Ekind
(Prev
)); -- will be reset later
3954 Set_Class_Wide_Type
(T
, Class_Wide_Type
(Prev
));
3955 Set_Etype
(Class_Wide_Type
(T
), T
);
3962 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
3964 -- We set the flag Is_First_Subtype here. It is needed to set the
3965 -- corresponding flag for the Implicit class-wide-type created
3966 -- during tagged types processing.
3968 Set_Is_First_Subtype
(T
, True);
3970 -- Only composite types other than array types are allowed to have
3975 -- For derived types, the rule will be checked once we've figured
3976 -- out the parent type.
3978 when N_Derived_Type_Definition
=>
3981 -- For record types, discriminants are allowed
3983 when N_Record_Definition
=>
3987 if Present
(Discriminant_Specifications
(N
)) then
3989 ("elementary or array type cannot have discriminants",
3991 (First
(Discriminant_Specifications
(N
))));
3995 -- Elaborate the type definition according to kind, and generate
3996 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3997 -- already done (this happens during the reanalysis that follows a call
3998 -- to the high level optimizer).
4000 if not Analyzed
(T
) then
4005 when N_Access_To_Subprogram_Definition
=>
4006 Access_Subprogram_Declaration
(T
, Def
);
4008 -- If this is a remote access to subprogram, we must create the
4009 -- equivalent fat pointer type, and related subprograms.
4012 Process_Remote_AST_Declaration
(N
);
4015 -- Validate categorization rule against access type declaration
4016 -- usually a violation in Pure unit, Shared_Passive unit.
4018 Validate_Access_Type_Declaration
(T
, N
);
4020 when N_Access_To_Object_Definition
=>
4021 Access_Type_Declaration
(T
, Def
);
4023 -- Validate categorization rule against access type declaration
4024 -- usually a violation in Pure unit, Shared_Passive unit.
4026 Validate_Access_Type_Declaration
(T
, N
);
4028 -- If we are in a Remote_Call_Interface package and define a
4029 -- RACW, then calling stubs and specific stream attributes
4033 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
4035 Add_RACW_Features
(Def_Id
);
4038 -- Set no strict aliasing flag if config pragma seen
4040 if Opt
.No_Strict_Aliasing
then
4041 Set_No_Strict_Aliasing
(Base_Type
(Def_Id
));
4044 when N_Array_Type_Definition
=>
4045 Array_Type_Declaration
(T
, Def
);
4047 when N_Derived_Type_Definition
=>
4048 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
4050 when N_Enumeration_Type_Definition
=>
4051 Enumeration_Type_Declaration
(T
, Def
);
4053 when N_Floating_Point_Definition
=>
4054 Floating_Point_Type_Declaration
(T
, Def
);
4056 when N_Decimal_Fixed_Point_Definition
=>
4057 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
4059 when N_Ordinary_Fixed_Point_Definition
=>
4060 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
4062 when N_Signed_Integer_Type_Definition
=>
4063 Signed_Integer_Type_Declaration
(T
, Def
);
4065 when N_Modular_Type_Definition
=>
4066 Modular_Type_Declaration
(T
, Def
);
4068 when N_Record_Definition
=>
4069 Record_Type_Declaration
(T
, N
, Prev
);
4072 raise Program_Error
;
4077 if Etype
(T
) = Any_Type
then
4081 -- Some common processing for all types
4083 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
4084 Check_Ops_From_Incomplete_Type
;
4086 -- Both the declared entity, and its anonymous base type if one
4087 -- was created, need freeze nodes allocated.
4090 B
: constant Entity_Id
:= Base_Type
(T
);
4093 -- In the case where the base type differs from the first subtype, we
4094 -- pre-allocate a freeze node, and set the proper link to the first
4095 -- subtype. Freeze_Entity will use this preallocated freeze node when
4096 -- it freezes the entity.
4098 -- This does not apply if the base type is a generic type, whose
4099 -- declaration is independent of the current derived definition.
4101 if B
/= T
and then not Is_Generic_Type
(B
) then
4102 Ensure_Freeze_Node
(B
);
4103 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
4106 -- A type that is imported through a limited_with clause cannot
4107 -- generate any code, and thus need not be frozen. However, an access
4108 -- type with an imported designated type needs a finalization list,
4109 -- which may be referenced in some other package that has non-limited
4110 -- visibility on the designated type. Thus we must create the
4111 -- finalization list at the point the access type is frozen, to
4112 -- prevent unsatisfied references at link time.
4114 if not From_With_Type
(T
) or else Is_Access_Type
(T
) then
4115 Set_Has_Delayed_Freeze
(T
);
4119 -- Case where T is the full declaration of some private type which has
4120 -- been swapped in Defining_Identifier (N).
4122 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
4123 Process_Full_View
(N
, T
, Def_Id
);
4125 -- Record the reference. The form of this is a little strange, since
4126 -- the full declaration has been swapped in. So the first parameter
4127 -- here represents the entity to which a reference is made which is
4128 -- the "real" entity, i.e. the one swapped in, and the second
4129 -- parameter provides the reference location.
4131 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
4132 -- since we don't want a complaint about the full type being an
4133 -- unwanted reference to the private type
4136 B
: constant Boolean := Has_Pragma_Unreferenced
(T
);
4138 Set_Has_Pragma_Unreferenced
(T
, False);
4139 Generate_Reference
(T
, T
, 'c');
4140 Set_Has_Pragma_Unreferenced
(T
, B
);
4143 Set_Completion_Referenced
(Def_Id
);
4145 -- For completion of incomplete type, process incomplete dependents
4146 -- and always mark the full type as referenced (it is the incomplete
4147 -- type that we get for any real reference).
4149 elsif Ekind
(Prev
) = E_Incomplete_Type
then
4150 Process_Incomplete_Dependents
(N
, T
, Prev
);
4151 Generate_Reference
(Prev
, Def_Id
, 'c');
4152 Set_Completion_Referenced
(Def_Id
);
4154 -- If not private type or incomplete type completion, this is a real
4155 -- definition of a new entity, so record it.
4158 Generate_Definition
(Def_Id
);
4161 if Chars
(Scope
(Def_Id
)) = Name_System
4162 and then Chars
(Def_Id
) = Name_Address
4163 and then Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(N
)))
4165 Set_Is_Descendent_Of_Address
(Def_Id
);
4166 Set_Is_Descendent_Of_Address
(Base_Type
(Def_Id
));
4167 Set_Is_Descendent_Of_Address
(Prev
);
4170 Set_Optimize_Alignment_Flags
(Def_Id
);
4171 Check_Eliminated
(Def_Id
);
4172 end Analyze_Type_Declaration
;
4174 --------------------------
4175 -- Analyze_Variant_Part --
4176 --------------------------
4178 procedure Analyze_Variant_Part
(N
: Node_Id
) is
4180 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
4181 -- Error routine invoked by the generic instantiation below when the
4182 -- variant part has a non static choice.
4184 procedure Process_Declarations
(Variant
: Node_Id
);
4185 -- Analyzes all the declarations associated with a Variant. Needed by
4186 -- the generic instantiation below.
4188 package Variant_Choices_Processing
is new
4189 Generic_Choices_Processing
4190 (Get_Alternatives
=> Variants
,
4191 Get_Choices
=> Discrete_Choices
,
4192 Process_Empty_Choice
=> No_OP
,
4193 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
4194 Process_Associated_Node
=> Process_Declarations
);
4195 use Variant_Choices_Processing
;
4196 -- Instantiation of the generic choice processing package
4198 -----------------------------
4199 -- Non_Static_Choice_Error --
4200 -----------------------------
4202 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
4204 Flag_Non_Static_Expr
4205 ("choice given in variant part is not static!", Choice
);
4206 end Non_Static_Choice_Error
;
4208 --------------------------
4209 -- Process_Declarations --
4210 --------------------------
4212 procedure Process_Declarations
(Variant
: Node_Id
) is
4214 if not Null_Present
(Component_List
(Variant
)) then
4215 Analyze_Declarations
(Component_Items
(Component_List
(Variant
)));
4217 if Present
(Variant_Part
(Component_List
(Variant
))) then
4218 Analyze
(Variant_Part
(Component_List
(Variant
)));
4221 end Process_Declarations
;
4225 Discr_Name
: Node_Id
;
4226 Discr_Type
: Entity_Id
;
4228 Case_Table
: Choice_Table_Type
(1 .. Number_Of_Choices
(N
));
4230 Dont_Care
: Boolean;
4231 Others_Present
: Boolean := False;
4233 pragma Warnings
(Off
, Case_Table
);
4234 pragma Warnings
(Off
, Last_Choice
);
4235 pragma Warnings
(Off
, Dont_Care
);
4236 pragma Warnings
(Off
, Others_Present
);
4237 -- We don't care about the assigned values of any of these
4239 -- Start of processing for Analyze_Variant_Part
4242 Discr_Name
:= Name
(N
);
4243 Analyze
(Discr_Name
);
4245 -- If Discr_Name bad, get out (prevent cascaded errors)
4247 if Etype
(Discr_Name
) = Any_Type
then
4251 -- Check invalid discriminant in variant part
4253 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
4254 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
4257 Discr_Type
:= Etype
(Entity
(Discr_Name
));
4259 if not Is_Discrete_Type
(Discr_Type
) then
4261 ("discriminant in a variant part must be of a discrete type",
4266 -- Call the instantiated Analyze_Choices which does the rest of the work
4269 (N
, Discr_Type
, Case_Table
, Last_Choice
, Dont_Care
, Others_Present
);
4270 end Analyze_Variant_Part
;
4272 ----------------------------
4273 -- Array_Type_Declaration --
4274 ----------------------------
4276 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
4277 Component_Def
: constant Node_Id
:= Component_Definition
(Def
);
4278 Element_Type
: Entity_Id
;
4279 Implicit_Base
: Entity_Id
;
4281 Related_Id
: Entity_Id
:= Empty
;
4283 P
: constant Node_Id
:= Parent
(Def
);
4287 if Nkind
(Def
) = N_Constrained_Array_Definition
then
4288 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
4290 Index
:= First
(Subtype_Marks
(Def
));
4293 -- Find proper names for the implicit types which may be public. In case
4294 -- of anonymous arrays we use the name of the first object of that type
4298 Related_Id
:= Defining_Identifier
(P
);
4304 while Present
(Index
) loop
4307 -- Add a subtype declaration for each index of private array type
4308 -- declaration whose etype is also private. For example:
4311 -- type Index is private;
4313 -- type Table is array (Index) of ...
4316 -- This is currently required by the expander for the internally
4317 -- generated equality subprogram of records with variant parts in
4318 -- which the etype of some component is such private type.
4320 if Ekind
(Current_Scope
) = E_Package
4321 and then In_Private_Part
(Current_Scope
)
4322 and then Has_Private_Declaration
(Etype
(Index
))
4325 Loc
: constant Source_Ptr
:= Sloc
(Def
);
4331 Make_Defining_Identifier
(Loc
,
4332 Chars
=> New_Internal_Name
('T'));
4333 Set_Is_Internal
(New_E
);
4336 Make_Subtype_Declaration
(Loc
,
4337 Defining_Identifier
=> New_E
,
4338 Subtype_Indication
=>
4339 New_Occurrence_Of
(Etype
(Index
), Loc
));
4341 Insert_Before
(Parent
(Def
), Decl
);
4343 Set_Etype
(Index
, New_E
);
4345 -- If the index is a range the Entity attribute is not
4346 -- available. Example:
4349 -- type T is private;
4351 -- type T is new Natural;
4352 -- Table : array (T(1) .. T(10)) of Boolean;
4355 if Nkind
(Index
) /= N_Range
then
4356 Set_Entity
(Index
, New_E
);
4361 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
4363 Nb_Index
:= Nb_Index
+ 1;
4366 -- Process subtype indication if one is present
4368 if Present
(Subtype_Indication
(Component_Def
)) then
4371 (Subtype_Indication
(Component_Def
), P
, Related_Id
, 'C');
4373 -- Ada 2005 (AI-230): Access Definition case
4375 else pragma Assert
(Present
(Access_Definition
(Component_Def
)));
4377 -- Indicate that the anonymous access type is created by the
4378 -- array type declaration.
4380 Element_Type
:= Access_Definition
4382 N
=> Access_Definition
(Component_Def
));
4383 Set_Is_Local_Anonymous_Access
(Element_Type
);
4385 -- Propagate the parent. This field is needed if we have to generate
4386 -- the master_id associated with an anonymous access to task type
4387 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
4389 Set_Parent
(Element_Type
, Parent
(T
));
4391 -- Ada 2005 (AI-230): In case of components that are anonymous access
4392 -- types the level of accessibility depends on the enclosing type
4395 Set_Scope
(Element_Type
, Current_Scope
); -- Ada 2005 (AI-230)
4397 -- Ada 2005 (AI-254)
4400 CD
: constant Node_Id
:=
4401 Access_To_Subprogram_Definition
4402 (Access_Definition
(Component_Def
));
4404 if Present
(CD
) and then Protected_Present
(CD
) then
4406 Replace_Anonymous_Access_To_Protected_Subprogram
(Def
);
4411 -- Constrained array case
4414 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
4417 if Nkind
(Def
) = N_Constrained_Array_Definition
then
4419 -- Establish Implicit_Base as unconstrained base type
4421 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
4423 Set_Etype
(Implicit_Base
, Implicit_Base
);
4424 Set_Scope
(Implicit_Base
, Current_Scope
);
4425 Set_Has_Delayed_Freeze
(Implicit_Base
);
4427 -- The constrained array type is a subtype of the unconstrained one
4429 Set_Ekind
(T
, E_Array_Subtype
);
4430 Init_Size_Align
(T
);
4431 Set_Etype
(T
, Implicit_Base
);
4432 Set_Scope
(T
, Current_Scope
);
4433 Set_Is_Constrained
(T
, True);
4434 Set_First_Index
(T
, First
(Discrete_Subtype_Definitions
(Def
)));
4435 Set_Has_Delayed_Freeze
(T
);
4437 -- Complete setup of implicit base type
4439 Set_First_Index
(Implicit_Base
, First_Index
(T
));
4440 Set_Component_Type
(Implicit_Base
, Element_Type
);
4441 Set_Has_Task
(Implicit_Base
, Has_Task
(Element_Type
));
4442 Set_Component_Size
(Implicit_Base
, Uint_0
);
4443 Set_Packed_Array_Type
(Implicit_Base
, Empty
);
4444 Set_Has_Controlled_Component
4445 (Implicit_Base
, Has_Controlled_Component
4447 or else Is_Controlled
4449 Set_Finalize_Storage_Only
4450 (Implicit_Base
, Finalize_Storage_Only
4453 -- Unconstrained array case
4456 Set_Ekind
(T
, E_Array_Type
);
4457 Init_Size_Align
(T
);
4459 Set_Scope
(T
, Current_Scope
);
4460 Set_Component_Size
(T
, Uint_0
);
4461 Set_Is_Constrained
(T
, False);
4462 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
4463 Set_Has_Delayed_Freeze
(T
, True);
4464 Set_Has_Task
(T
, Has_Task
(Element_Type
));
4465 Set_Has_Controlled_Component
(T
, Has_Controlled_Component
4468 Is_Controlled
(Element_Type
));
4469 Set_Finalize_Storage_Only
(T
, Finalize_Storage_Only
4473 -- Common attributes for both cases
4475 Set_Component_Type
(Base_Type
(T
), Element_Type
);
4476 Set_Packed_Array_Type
(T
, Empty
);
4478 if Aliased_Present
(Component_Definition
(Def
)) then
4479 Set_Has_Aliased_Components
(Etype
(T
));
4482 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
4483 -- array type to ensure that objects of this type are initialized.
4485 if Ada_Version
>= Ada_05
4486 and then Can_Never_Be_Null
(Element_Type
)
4488 Set_Can_Never_Be_Null
(T
);
4490 if Null_Exclusion_Present
(Component_Definition
(Def
))
4492 -- No need to check itypes because in their case this check was
4493 -- done at their point of creation
4495 and then not Is_Itype
(Element_Type
)
4498 ("`NOT NULL` not allowed (null already excluded)",
4499 Subtype_Indication
(Component_Definition
(Def
)));
4503 Priv
:= Private_Component
(Element_Type
);
4505 if Present
(Priv
) then
4507 -- Check for circular definitions
4509 if Priv
= Any_Type
then
4510 Set_Component_Type
(Etype
(T
), Any_Type
);
4512 -- There is a gap in the visibility of operations on the composite
4513 -- type only if the component type is defined in a different scope.
4515 elsif Scope
(Priv
) = Current_Scope
then
4518 elsif Is_Limited_Type
(Priv
) then
4519 Set_Is_Limited_Composite
(Etype
(T
));
4520 Set_Is_Limited_Composite
(T
);
4522 Set_Is_Private_Composite
(Etype
(T
));
4523 Set_Is_Private_Composite
(T
);
4527 -- A syntax error in the declaration itself may lead to an empty index
4528 -- list, in which case do a minimal patch.
4530 if No
(First_Index
(T
)) then
4531 Error_Msg_N
("missing index definition in array type declaration", T
);
4534 Indices
: constant List_Id
:=
4535 New_List
(New_Occurrence_Of
(Any_Id
, Sloc
(T
)));
4537 Set_Discrete_Subtype_Definitions
(Def
, Indices
);
4538 Set_First_Index
(T
, First
(Indices
));
4543 -- Create a concatenation operator for the new type. Internal array
4544 -- types created for packed entities do not need such, they are
4545 -- compatible with the user-defined type.
4547 if Number_Dimensions
(T
) = 1
4548 and then not Is_Packed_Array_Type
(T
)
4550 New_Concatenation_Op
(T
);
4553 -- In the case of an unconstrained array the parser has already verified
4554 -- that all the indices are unconstrained but we still need to make sure
4555 -- that the element type is constrained.
4557 if Is_Indefinite_Subtype
(Element_Type
) then
4559 ("unconstrained element type in array declaration",
4560 Subtype_Indication
(Component_Def
));
4562 elsif Is_Abstract_Type
(Element_Type
) then
4564 ("the type of a component cannot be abstract",
4565 Subtype_Indication
(Component_Def
));
4567 end Array_Type_Declaration
;
4569 ------------------------------------------------------
4570 -- Replace_Anonymous_Access_To_Protected_Subprogram --
4571 ------------------------------------------------------
4573 function Replace_Anonymous_Access_To_Protected_Subprogram
4574 (N
: Node_Id
) return Entity_Id
4576 Loc
: constant Source_Ptr
:= Sloc
(N
);
4578 Curr_Scope
: constant Scope_Stack_Entry
:=
4579 Scope_Stack
.Table
(Scope_Stack
.Last
);
4581 Anon
: constant Entity_Id
:=
4582 Make_Defining_Identifier
(Loc
,
4583 Chars
=> New_Internal_Name
('S'));
4591 Set_Is_Internal
(Anon
);
4594 when N_Component_Declaration |
4595 N_Unconstrained_Array_Definition |
4596 N_Constrained_Array_Definition
=>
4597 Comp
:= Component_Definition
(N
);
4598 Acc
:= Access_Definition
(Comp
);
4600 when N_Discriminant_Specification
=>
4601 Comp
:= Discriminant_Type
(N
);
4604 when N_Parameter_Specification
=>
4605 Comp
:= Parameter_Type
(N
);
4608 when N_Access_Function_Definition
=>
4609 Comp
:= Result_Definition
(N
);
4612 when N_Object_Declaration
=>
4613 Comp
:= Object_Definition
(N
);
4616 when N_Function_Specification
=>
4617 Comp
:= Result_Definition
(N
);
4621 raise Program_Error
;
4624 Decl
:= Make_Full_Type_Declaration
(Loc
,
4625 Defining_Identifier
=> Anon
,
4627 Copy_Separate_Tree
(Access_To_Subprogram_Definition
(Acc
)));
4629 Mark_Rewrite_Insertion
(Decl
);
4631 -- Insert the new declaration in the nearest enclosing scope. If the
4632 -- node is a body and N is its return type, the declaration belongs in
4633 -- the enclosing scope.
4637 if Nkind
(P
) = N_Subprogram_Body
4638 and then Nkind
(N
) = N_Function_Specification
4643 while Present
(P
) and then not Has_Declarations
(P
) loop
4647 pragma Assert
(Present
(P
));
4649 if Nkind
(P
) = N_Package_Specification
then
4650 Prepend
(Decl
, Visible_Declarations
(P
));
4652 Prepend
(Decl
, Declarations
(P
));
4655 -- Replace the anonymous type with an occurrence of the new declaration.
4656 -- In all cases the rewritten node does not have the null-exclusion
4657 -- attribute because (if present) it was already inherited by the
4658 -- anonymous entity (Anon). Thus, in case of components we do not
4659 -- inherit this attribute.
4661 if Nkind
(N
) = N_Parameter_Specification
then
4662 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
4663 Set_Etype
(Defining_Identifier
(N
), Anon
);
4664 Set_Null_Exclusion_Present
(N
, False);
4666 elsif Nkind
(N
) = N_Object_Declaration
then
4667 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
4668 Set_Etype
(Defining_Identifier
(N
), Anon
);
4670 elsif Nkind
(N
) = N_Access_Function_Definition
then
4671 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
4673 elsif Nkind
(N
) = N_Function_Specification
then
4674 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
4675 Set_Etype
(Defining_Unit_Name
(N
), Anon
);
4679 Make_Component_Definition
(Loc
,
4680 Subtype_Indication
=> New_Occurrence_Of
(Anon
, Loc
)));
4683 Mark_Rewrite_Insertion
(Comp
);
4685 if Nkind_In
(N
, N_Object_Declaration
, N_Access_Function_Definition
) then
4689 -- Temporarily remove the current scope (record or subprogram) from
4690 -- the stack to add the new declarations to the enclosing scope.
4692 Scope_Stack
.Decrement_Last
;
4694 Set_Is_Itype
(Anon
);
4695 Scope_Stack
.Append
(Curr_Scope
);
4698 Set_Ekind
(Anon
, E_Anonymous_Access_Protected_Subprogram_Type
);
4699 Set_Can_Use_Internal_Rep
(Anon
, not Always_Compatible_Rep_On_Target
);
4701 end Replace_Anonymous_Access_To_Protected_Subprogram
;
4703 -------------------------------
4704 -- Build_Derived_Access_Type --
4705 -------------------------------
4707 procedure Build_Derived_Access_Type
4709 Parent_Type
: Entity_Id
;
4710 Derived_Type
: Entity_Id
)
4712 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
4714 Desig_Type
: Entity_Id
;
4716 Discr_Con_Elist
: Elist_Id
;
4717 Discr_Con_El
: Elmt_Id
;
4721 -- Set the designated type so it is available in case this is an access
4722 -- to a self-referential type, e.g. a standard list type with a next
4723 -- pointer. Will be reset after subtype is built.
4725 Set_Directly_Designated_Type
4726 (Derived_Type
, Designated_Type
(Parent_Type
));
4728 Subt
:= Process_Subtype
(S
, N
);
4730 if Nkind
(S
) /= N_Subtype_Indication
4731 and then Subt
/= Base_Type
(Subt
)
4733 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
4736 if Ekind
(Derived_Type
) = E_Access_Subtype
then
4738 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
4739 Ibase
: constant Entity_Id
:=
4740 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
4741 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
4742 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
4745 Copy_Node
(Pbase
, Ibase
);
4747 Set_Chars
(Ibase
, Svg_Chars
);
4748 Set_Next_Entity
(Ibase
, Svg_Next_E
);
4749 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
4750 Set_Scope
(Ibase
, Scope
(Derived_Type
));
4751 Set_Freeze_Node
(Ibase
, Empty
);
4752 Set_Is_Frozen
(Ibase
, False);
4753 Set_Comes_From_Source
(Ibase
, False);
4754 Set_Is_First_Subtype
(Ibase
, False);
4756 Set_Etype
(Ibase
, Pbase
);
4757 Set_Etype
(Derived_Type
, Ibase
);
4761 Set_Directly_Designated_Type
4762 (Derived_Type
, Designated_Type
(Subt
));
4764 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
4765 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
4766 Set_Size_Info
(Derived_Type
, Parent_Type
);
4767 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
4768 Set_Depends_On_Private
(Derived_Type
,
4769 Has_Private_Component
(Derived_Type
));
4770 Conditional_Delay
(Derived_Type
, Subt
);
4772 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
4773 -- that it is not redundant.
4775 if Null_Exclusion_Present
(Type_Definition
(N
)) then
4776 Set_Can_Never_Be_Null
(Derived_Type
);
4778 if Can_Never_Be_Null
(Parent_Type
)
4782 ("`NOT NULL` not allowed (& already excludes null)",
4786 elsif Can_Never_Be_Null
(Parent_Type
) then
4787 Set_Can_Never_Be_Null
(Derived_Type
);
4790 -- Note: we do not copy the Storage_Size_Variable, since we always go to
4791 -- the root type for this information.
4793 -- Apply range checks to discriminants for derived record case
4794 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
4796 Desig_Type
:= Designated_Type
(Derived_Type
);
4797 if Is_Composite_Type
(Desig_Type
)
4798 and then (not Is_Array_Type
(Desig_Type
))
4799 and then Has_Discriminants
(Desig_Type
)
4800 and then Base_Type
(Desig_Type
) /= Desig_Type
4802 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
4803 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
4805 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
4806 while Present
(Discr_Con_El
) loop
4807 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
4808 Next_Elmt
(Discr_Con_El
);
4809 Next_Discriminant
(Discr
);
4812 end Build_Derived_Access_Type
;
4814 ------------------------------
4815 -- Build_Derived_Array_Type --
4816 ------------------------------
4818 procedure Build_Derived_Array_Type
4820 Parent_Type
: Entity_Id
;
4821 Derived_Type
: Entity_Id
)
4823 Loc
: constant Source_Ptr
:= Sloc
(N
);
4824 Tdef
: constant Node_Id
:= Type_Definition
(N
);
4825 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
4826 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
4827 Implicit_Base
: Entity_Id
;
4828 New_Indic
: Node_Id
;
4830 procedure Make_Implicit_Base
;
4831 -- If the parent subtype is constrained, the derived type is a subtype
4832 -- of an implicit base type derived from the parent base.
4834 ------------------------
4835 -- Make_Implicit_Base --
4836 ------------------------
4838 procedure Make_Implicit_Base
is
4841 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
4843 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
4844 Set_Etype
(Implicit_Base
, Parent_Base
);
4846 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
4847 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
4849 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
4850 end Make_Implicit_Base
;
4852 -- Start of processing for Build_Derived_Array_Type
4855 if not Is_Constrained
(Parent_Type
) then
4856 if Nkind
(Indic
) /= N_Subtype_Indication
then
4857 Set_Ekind
(Derived_Type
, E_Array_Type
);
4859 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
4860 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
4862 Set_Has_Delayed_Freeze
(Derived_Type
, True);
4866 Set_Etype
(Derived_Type
, Implicit_Base
);
4869 Make_Subtype_Declaration
(Loc
,
4870 Defining_Identifier
=> Derived_Type
,
4871 Subtype_Indication
=>
4872 Make_Subtype_Indication
(Loc
,
4873 Subtype_Mark
=> New_Reference_To
(Implicit_Base
, Loc
),
4874 Constraint
=> Constraint
(Indic
)));
4876 Rewrite
(N
, New_Indic
);
4881 if Nkind
(Indic
) /= N_Subtype_Indication
then
4884 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
4885 Set_Etype
(Derived_Type
, Implicit_Base
);
4886 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
4889 Error_Msg_N
("illegal constraint on constrained type", Indic
);
4893 -- If parent type is not a derived type itself, and is declared in
4894 -- closed scope (e.g. a subprogram), then we must explicitly introduce
4895 -- the new type's concatenation operator since Derive_Subprograms
4896 -- will not inherit the parent's operator. If the parent type is
4897 -- unconstrained, the operator is of the unconstrained base type.
4899 if Number_Dimensions
(Parent_Type
) = 1
4900 and then not Is_Limited_Type
(Parent_Type
)
4901 and then not Is_Derived_Type
(Parent_Type
)
4902 and then not Is_Package_Or_Generic_Package
4903 (Scope
(Base_Type
(Parent_Type
)))
4905 if not Is_Constrained
(Parent_Type
)
4906 and then Is_Constrained
(Derived_Type
)
4908 New_Concatenation_Op
(Implicit_Base
);
4910 New_Concatenation_Op
(Derived_Type
);
4913 end Build_Derived_Array_Type
;
4915 -----------------------------------
4916 -- Build_Derived_Concurrent_Type --
4917 -----------------------------------
4919 procedure Build_Derived_Concurrent_Type
4921 Parent_Type
: Entity_Id
;
4922 Derived_Type
: Entity_Id
)
4924 Loc
: constant Source_Ptr
:= Sloc
(N
);
4926 Corr_Record
: constant Entity_Id
:=
4927 Make_Defining_Identifier
(Loc
, New_Internal_Name
('C'));
4929 Corr_Decl
: Node_Id
;
4930 Corr_Decl_Needed
: Boolean;
4931 -- If the derived type has fewer discriminants than its parent, the
4932 -- corresponding record is also a derived type, in order to account for
4933 -- the bound discriminants. We create a full type declaration for it in
4936 Constraint_Present
: constant Boolean :=
4937 Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
4938 N_Subtype_Indication
;
4940 D_Constraint
: Node_Id
;
4941 New_Constraint
: Elist_Id
;
4942 Old_Disc
: Entity_Id
;
4943 New_Disc
: Entity_Id
;
4947 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
4948 Corr_Decl_Needed
:= False;
4951 if Present
(Discriminant_Specifications
(N
))
4952 and then Constraint_Present
4954 Old_Disc
:= First_Discriminant
(Parent_Type
);
4955 New_Disc
:= First
(Discriminant_Specifications
(N
));
4956 while Present
(New_Disc
) and then Present
(Old_Disc
) loop
4957 Next_Discriminant
(Old_Disc
);
4962 if Present
(Old_Disc
) then
4964 -- The new type has fewer discriminants, so we need to create a new
4965 -- corresponding record, which is derived from the corresponding
4966 -- record of the parent, and has a stored constraint that captures
4967 -- the values of the discriminant constraints.
4969 -- The type declaration for the derived corresponding record has
4970 -- the same discriminant part and constraints as the current
4971 -- declaration. Copy the unanalyzed tree to build declaration.
4973 Corr_Decl_Needed
:= True;
4974 New_N
:= Copy_Separate_Tree
(N
);
4977 Make_Full_Type_Declaration
(Loc
,
4978 Defining_Identifier
=> Corr_Record
,
4979 Discriminant_Specifications
=>
4980 Discriminant_Specifications
(New_N
),
4982 Make_Derived_Type_Definition
(Loc
,
4983 Subtype_Indication
=>
4984 Make_Subtype_Indication
(Loc
,
4987 (Corresponding_Record_Type
(Parent_Type
), Loc
),
4990 (Subtype_Indication
(Type_Definition
(New_N
))))));
4993 -- Copy Storage_Size and Relative_Deadline variables if task case
4995 if Is_Task_Type
(Parent_Type
) then
4996 Set_Storage_Size_Variable
(Derived_Type
,
4997 Storage_Size_Variable
(Parent_Type
));
4998 Set_Relative_Deadline_Variable
(Derived_Type
,
4999 Relative_Deadline_Variable
(Parent_Type
));
5002 if Present
(Discriminant_Specifications
(N
)) then
5003 Push_Scope
(Derived_Type
);
5004 Check_Or_Process_Discriminants
(N
, Derived_Type
);
5006 if Constraint_Present
then
5008 Expand_To_Stored_Constraint
5010 Build_Discriminant_Constraints
5012 Subtype_Indication
(Type_Definition
(N
)), True));
5017 elsif Constraint_Present
then
5019 -- Build constrained subtype and derive from it
5022 Loc
: constant Source_Ptr
:= Sloc
(N
);
5023 Anon
: constant Entity_Id
:=
5024 Make_Defining_Identifier
(Loc
,
5025 New_External_Name
(Chars
(Derived_Type
), 'T'));
5030 Make_Subtype_Declaration
(Loc
,
5031 Defining_Identifier
=> Anon
,
5032 Subtype_Indication
=>
5033 Subtype_Indication
(Type_Definition
(N
)));
5034 Insert_Before
(N
, Decl
);
5037 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
5038 New_Occurrence_Of
(Anon
, Loc
));
5039 Set_Analyzed
(Derived_Type
, False);
5045 -- By default, operations and private data are inherited from parent.
5046 -- However, in the presence of bound discriminants, a new corresponding
5047 -- record will be created, see below.
5049 Set_Has_Discriminants
5050 (Derived_Type
, Has_Discriminants
(Parent_Type
));
5051 Set_Corresponding_Record_Type
5052 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
5054 -- Is_Constrained is set according the parent subtype, but is set to
5055 -- False if the derived type is declared with new discriminants.
5059 (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
5060 and then not Present
(Discriminant_Specifications
(N
)));
5062 if Constraint_Present
then
5063 if not Has_Discriminants
(Parent_Type
) then
5064 Error_Msg_N
("untagged parent must have discriminants", N
);
5066 elsif Present
(Discriminant_Specifications
(N
)) then
5068 -- Verify that new discriminants are used to constrain old ones
5073 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
5075 Old_Disc
:= First_Discriminant
(Parent_Type
);
5077 while Present
(D_Constraint
) loop
5078 if Nkind
(D_Constraint
) /= N_Discriminant_Association
then
5080 -- Positional constraint. If it is a reference to a new
5081 -- discriminant, it constrains the corresponding old one.
5083 if Nkind
(D_Constraint
) = N_Identifier
then
5084 New_Disc
:= First_Discriminant
(Derived_Type
);
5085 while Present
(New_Disc
) loop
5086 exit when Chars
(New_Disc
) = Chars
(D_Constraint
);
5087 Next_Discriminant
(New_Disc
);
5090 if Present
(New_Disc
) then
5091 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
5095 Next_Discriminant
(Old_Disc
);
5097 -- if this is a named constraint, search by name for the old
5098 -- discriminants constrained by the new one.
5100 elsif Nkind
(Expression
(D_Constraint
)) = N_Identifier
then
5102 -- Find new discriminant with that name
5104 New_Disc
:= First_Discriminant
(Derived_Type
);
5105 while Present
(New_Disc
) loop
5107 Chars
(New_Disc
) = Chars
(Expression
(D_Constraint
));
5108 Next_Discriminant
(New_Disc
);
5111 if Present
(New_Disc
) then
5113 -- Verify that new discriminant renames some discriminant
5114 -- of the parent type, and associate the new discriminant
5115 -- with one or more old ones that it renames.
5121 Selector
:= First
(Selector_Names
(D_Constraint
));
5122 while Present
(Selector
) loop
5123 Old_Disc
:= First_Discriminant
(Parent_Type
);
5124 while Present
(Old_Disc
) loop
5125 exit when Chars
(Old_Disc
) = Chars
(Selector
);
5126 Next_Discriminant
(Old_Disc
);
5129 if Present
(Old_Disc
) then
5130 Set_Corresponding_Discriminant
5131 (New_Disc
, Old_Disc
);
5140 Next
(D_Constraint
);
5143 New_Disc
:= First_Discriminant
(Derived_Type
);
5144 while Present
(New_Disc
) loop
5145 if No
(Corresponding_Discriminant
(New_Disc
)) then
5147 ("new discriminant& must constrain old one", N
, New_Disc
);
5150 Subtypes_Statically_Compatible
5152 Etype
(Corresponding_Discriminant
(New_Disc
)))
5155 ("& not statically compatible with parent discriminant",
5159 Next_Discriminant
(New_Disc
);
5163 elsif Present
(Discriminant_Specifications
(N
)) then
5165 ("missing discriminant constraint in untagged derivation", N
);
5168 -- The entity chain of the derived type includes the new discriminants
5169 -- but shares operations with the parent.
5171 if Present
(Discriminant_Specifications
(N
)) then
5172 Old_Disc
:= First_Discriminant
(Parent_Type
);
5173 while Present
(Old_Disc
) loop
5174 if No
(Next_Entity
(Old_Disc
))
5175 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
5178 (Last_Entity
(Derived_Type
), Next_Entity
(Old_Disc
));
5182 Next_Discriminant
(Old_Disc
);
5186 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
5187 if Has_Discriminants
(Parent_Type
) then
5188 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
5189 Set_Discriminant_Constraint
(
5190 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
5194 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
5196 Set_Has_Completion
(Derived_Type
);
5198 if Corr_Decl_Needed
then
5199 Set_Stored_Constraint
(Derived_Type
, New_Constraint
);
5200 Insert_After
(N
, Corr_Decl
);
5201 Analyze
(Corr_Decl
);
5202 Set_Corresponding_Record_Type
(Derived_Type
, Corr_Record
);
5204 end Build_Derived_Concurrent_Type
;
5206 ------------------------------------
5207 -- Build_Derived_Enumeration_Type --
5208 ------------------------------------
5210 procedure Build_Derived_Enumeration_Type
5212 Parent_Type
: Entity_Id
;
5213 Derived_Type
: Entity_Id
)
5215 Loc
: constant Source_Ptr
:= Sloc
(N
);
5216 Def
: constant Node_Id
:= Type_Definition
(N
);
5217 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
5218 Implicit_Base
: Entity_Id
;
5219 Literal
: Entity_Id
;
5220 New_Lit
: Entity_Id
;
5221 Literals_List
: List_Id
;
5222 Type_Decl
: Node_Id
;
5224 Rang_Expr
: Node_Id
;
5227 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
5228 -- not have explicit literals lists we need to process types derived
5229 -- from them specially. This is handled by Derived_Standard_Character.
5230 -- If the parent type is a generic type, there are no literals either,
5231 -- and we construct the same skeletal representation as for the generic
5234 if Is_Standard_Character_Type
(Parent_Type
) then
5235 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
5237 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
5243 if Nkind
(Indic
) /= N_Subtype_Indication
then
5245 Make_Attribute_Reference
(Loc
,
5246 Attribute_Name
=> Name_First
,
5247 Prefix
=> New_Reference_To
(Derived_Type
, Loc
));
5248 Set_Etype
(Lo
, Derived_Type
);
5251 Make_Attribute_Reference
(Loc
,
5252 Attribute_Name
=> Name_Last
,
5253 Prefix
=> New_Reference_To
(Derived_Type
, Loc
));
5254 Set_Etype
(Hi
, Derived_Type
);
5256 Set_Scalar_Range
(Derived_Type
,
5262 -- Analyze subtype indication and verify compatibility
5263 -- with parent type.
5265 if Base_Type
(Process_Subtype
(Indic
, N
)) /=
5266 Base_Type
(Parent_Type
)
5269 ("illegal constraint for formal discrete type", N
);
5275 -- If a constraint is present, analyze the bounds to catch
5276 -- premature usage of the derived literals.
5278 if Nkind
(Indic
) = N_Subtype_Indication
5279 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
5281 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
5282 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
5285 -- Introduce an implicit base type for the derived type even if there
5286 -- is no constraint attached to it, since this seems closer to the
5287 -- Ada semantics. Build a full type declaration tree for the derived
5288 -- type using the implicit base type as the defining identifier. The
5289 -- build a subtype declaration tree which applies the constraint (if
5290 -- any) have it replace the derived type declaration.
5292 Literal
:= First_Literal
(Parent_Type
);
5293 Literals_List
:= New_List
;
5294 while Present
(Literal
)
5295 and then Ekind
(Literal
) = E_Enumeration_Literal
5297 -- Literals of the derived type have the same representation as
5298 -- those of the parent type, but this representation can be
5299 -- overridden by an explicit representation clause. Indicate
5300 -- that there is no explicit representation given yet. These
5301 -- derived literals are implicit operations of the new type,
5302 -- and can be overridden by explicit ones.
5304 if Nkind
(Literal
) = N_Defining_Character_Literal
then
5306 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
5308 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
5311 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
5312 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
5313 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
5314 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
5315 Set_Alias
(New_Lit
, Literal
);
5316 Set_Is_Known_Valid
(New_Lit
, True);
5318 Append
(New_Lit
, Literals_List
);
5319 Next_Literal
(Literal
);
5323 Make_Defining_Identifier
(Sloc
(Derived_Type
),
5324 New_External_Name
(Chars
(Derived_Type
), 'B'));
5326 -- Indicate the proper nature of the derived type. This must be done
5327 -- before analysis of the literals, to recognize cases when a literal
5328 -- may be hidden by a previous explicit function definition (cf.
5331 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
5332 Set_Etype
(Derived_Type
, Implicit_Base
);
5335 Make_Full_Type_Declaration
(Loc
,
5336 Defining_Identifier
=> Implicit_Base
,
5337 Discriminant_Specifications
=> No_List
,
5339 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
5341 Mark_Rewrite_Insertion
(Type_Decl
);
5342 Insert_Before
(N
, Type_Decl
);
5343 Analyze
(Type_Decl
);
5345 -- After the implicit base is analyzed its Etype needs to be changed
5346 -- to reflect the fact that it is derived from the parent type which
5347 -- was ignored during analysis. We also set the size at this point.
5349 Set_Etype
(Implicit_Base
, Parent_Type
);
5351 Set_Size_Info
(Implicit_Base
, Parent_Type
);
5352 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
5353 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
5355 Set_Has_Non_Standard_Rep
5356 (Implicit_Base
, Has_Non_Standard_Rep
5358 Set_Has_Delayed_Freeze
(Implicit_Base
);
5360 -- Process the subtype indication including a validation check on the
5361 -- constraint, if any. If a constraint is given, its bounds must be
5362 -- implicitly converted to the new type.
5364 if Nkind
(Indic
) = N_Subtype_Indication
then
5366 R
: constant Node_Id
:=
5367 Range_Expression
(Constraint
(Indic
));
5370 if Nkind
(R
) = N_Range
then
5371 Hi
:= Build_Scalar_Bound
5372 (High_Bound
(R
), Parent_Type
, Implicit_Base
);
5373 Lo
:= Build_Scalar_Bound
5374 (Low_Bound
(R
), Parent_Type
, Implicit_Base
);
5377 -- Constraint is a Range attribute. Replace with explicit
5378 -- mention of the bounds of the prefix, which must be a
5381 Analyze
(Prefix
(R
));
5383 Convert_To
(Implicit_Base
,
5384 Make_Attribute_Reference
(Loc
,
5385 Attribute_Name
=> Name_Last
,
5387 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
5390 Convert_To
(Implicit_Base
,
5391 Make_Attribute_Reference
(Loc
,
5392 Attribute_Name
=> Name_First
,
5394 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
5401 (Type_High_Bound
(Parent_Type
),
5402 Parent_Type
, Implicit_Base
);
5405 (Type_Low_Bound
(Parent_Type
),
5406 Parent_Type
, Implicit_Base
);
5414 -- If we constructed a default range for the case where no range
5415 -- was given, then the expressions in the range must not freeze
5416 -- since they do not correspond to expressions in the source.
5418 if Nkind
(Indic
) /= N_Subtype_Indication
then
5419 Set_Must_Not_Freeze
(Lo
);
5420 Set_Must_Not_Freeze
(Hi
);
5421 Set_Must_Not_Freeze
(Rang_Expr
);
5425 Make_Subtype_Declaration
(Loc
,
5426 Defining_Identifier
=> Derived_Type
,
5427 Subtype_Indication
=>
5428 Make_Subtype_Indication
(Loc
,
5429 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
5431 Make_Range_Constraint
(Loc
,
5432 Range_Expression
=> Rang_Expr
))));
5436 -- If pragma Discard_Names applies on the first subtype of the parent
5437 -- type, then it must be applied on this subtype as well.
5439 if Einfo
.Discard_Names
(First_Subtype
(Parent_Type
)) then
5440 Set_Discard_Names
(Derived_Type
);
5443 -- Apply a range check. Since this range expression doesn't have an
5444 -- Etype, we have to specifically pass the Source_Typ parameter. Is
5447 if Nkind
(Indic
) = N_Subtype_Indication
then
5448 Apply_Range_Check
(Range_Expression
(Constraint
(Indic
)),
5450 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
5453 end Build_Derived_Enumeration_Type
;
5455 --------------------------------
5456 -- Build_Derived_Numeric_Type --
5457 --------------------------------
5459 procedure Build_Derived_Numeric_Type
5461 Parent_Type
: Entity_Id
;
5462 Derived_Type
: Entity_Id
)
5464 Loc
: constant Source_Ptr
:= Sloc
(N
);
5465 Tdef
: constant Node_Id
:= Type_Definition
(N
);
5466 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
5467 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5468 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
5469 N_Subtype_Indication
;
5470 Implicit_Base
: Entity_Id
;
5476 -- Process the subtype indication including a validation check on
5477 -- the constraint if any.
5479 Discard_Node
(Process_Subtype
(Indic
, N
));
5481 -- Introduce an implicit base type for the derived type even if there
5482 -- is no constraint attached to it, since this seems closer to the Ada
5486 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
5488 Set_Etype
(Implicit_Base
, Parent_Base
);
5489 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
5490 Set_Size_Info
(Implicit_Base
, Parent_Base
);
5491 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
5492 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
5493 Set_Is_Known_Valid
(Implicit_Base
, Is_Known_Valid
(Parent_Base
));
5495 -- Set RM Size for discrete type or decimal fixed-point type
5496 -- Ordinary fixed-point is excluded, why???
5498 if Is_Discrete_Type
(Parent_Base
)
5499 or else Is_Decimal_Fixed_Point_Type
(Parent_Base
)
5501 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
5504 Set_Has_Delayed_Freeze
(Implicit_Base
);
5506 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
5507 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
5509 Set_Scalar_Range
(Implicit_Base
,
5514 if Has_Infinities
(Parent_Base
) then
5515 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
5518 -- The Derived_Type, which is the entity of the declaration, is a
5519 -- subtype of the implicit base. Its Ekind is a subtype, even in the
5520 -- absence of an explicit constraint.
5522 Set_Etype
(Derived_Type
, Implicit_Base
);
5524 -- If we did not have a constraint, then the Ekind is set from the
5525 -- parent type (otherwise Process_Subtype has set the bounds)
5527 if No_Constraint
then
5528 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
5531 -- If we did not have a range constraint, then set the range from the
5532 -- parent type. Otherwise, the call to Process_Subtype has set the
5536 or else not Has_Range_Constraint
(Indic
)
5538 Set_Scalar_Range
(Derived_Type
,
5540 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
5541 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
5542 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
5544 if Has_Infinities
(Parent_Type
) then
5545 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
5548 Set_Is_Known_Valid
(Derived_Type
, Is_Known_Valid
(Parent_Type
));
5551 Set_Is_Descendent_Of_Address
(Derived_Type
,
5552 Is_Descendent_Of_Address
(Parent_Type
));
5553 Set_Is_Descendent_Of_Address
(Implicit_Base
,
5554 Is_Descendent_Of_Address
(Parent_Type
));
5556 -- Set remaining type-specific fields, depending on numeric type
5558 if Is_Modular_Integer_Type
(Parent_Type
) then
5559 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
5561 Set_Non_Binary_Modulus
5562 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
5565 (Implicit_Base
, Is_Known_Valid
(Parent_Base
));
5567 elsif Is_Floating_Point_Type
(Parent_Type
) then
5569 -- Digits of base type is always copied from the digits value of
5570 -- the parent base type, but the digits of the derived type will
5571 -- already have been set if there was a constraint present.
5573 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
5574 Set_Vax_Float
(Implicit_Base
, Vax_Float
(Parent_Base
));
5576 if No_Constraint
then
5577 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
5580 elsif Is_Fixed_Point_Type
(Parent_Type
) then
5582 -- Small of base type and derived type are always copied from the
5583 -- parent base type, since smalls never change. The delta of the
5584 -- base type is also copied from the parent base type. However the
5585 -- delta of the derived type will have been set already if a
5586 -- constraint was present.
5588 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
5589 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
5590 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
5592 if No_Constraint
then
5593 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
5596 -- The scale and machine radix in the decimal case are always
5597 -- copied from the parent base type.
5599 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
5600 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
5601 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
5603 Set_Machine_Radix_10
5604 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
5605 Set_Machine_Radix_10
5606 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
5608 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
5610 if No_Constraint
then
5611 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
5614 -- the analysis of the subtype_indication sets the
5615 -- digits value of the derived type.
5622 -- The type of the bounds is that of the parent type, and they
5623 -- must be converted to the derived type.
5625 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
5627 -- The implicit_base should be frozen when the derived type is frozen,
5628 -- but note that it is used in the conversions of the bounds. For fixed
5629 -- types we delay the determination of the bounds until the proper
5630 -- freezing point. For other numeric types this is rejected by GCC, for
5631 -- reasons that are currently unclear (???), so we choose to freeze the
5632 -- implicit base now. In the case of integers and floating point types
5633 -- this is harmless because subsequent representation clauses cannot
5634 -- affect anything, but it is still baffling that we cannot use the
5635 -- same mechanism for all derived numeric types.
5637 -- There is a further complication: actually *some* representation
5638 -- clauses can affect the implicit base type. Namely, attribute
5639 -- definition clauses for stream-oriented attributes need to set the
5640 -- corresponding TSS entries on the base type, and this normally cannot
5641 -- be done after the base type is frozen, so the circuitry in
5642 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility and
5643 -- not use Set_TSS in this case.
5645 if Is_Fixed_Point_Type
(Parent_Type
) then
5646 Conditional_Delay
(Implicit_Base
, Parent_Type
);
5648 Freeze_Before
(N
, Implicit_Base
);
5650 end Build_Derived_Numeric_Type
;
5652 --------------------------------
5653 -- Build_Derived_Private_Type --
5654 --------------------------------
5656 procedure Build_Derived_Private_Type
5658 Parent_Type
: Entity_Id
;
5659 Derived_Type
: Entity_Id
;
5660 Is_Completion
: Boolean;
5661 Derive_Subps
: Boolean := True)
5663 Loc
: constant Source_Ptr
:= Sloc
(N
);
5664 Der_Base
: Entity_Id
;
5666 Full_Decl
: Node_Id
:= Empty
;
5667 Full_Der
: Entity_Id
;
5669 Last_Discr
: Entity_Id
;
5670 Par_Scope
: constant Entity_Id
:= Scope
(Base_Type
(Parent_Type
));
5671 Swapped
: Boolean := False;
5673 procedure Copy_And_Build
;
5674 -- Copy derived type declaration, replace parent with its full view,
5675 -- and analyze new declaration.
5677 --------------------
5678 -- Copy_And_Build --
5679 --------------------
5681 procedure Copy_And_Build
is
5685 if Ekind
(Parent_Type
) in Record_Kind
5687 (Ekind
(Parent_Type
) in Enumeration_Kind
5688 and then not Is_Standard_Character_Type
(Parent_Type
)
5689 and then not Is_Generic_Type
(Root_Type
(Parent_Type
)))
5691 Full_N
:= New_Copy_Tree
(N
);
5692 Insert_After
(N
, Full_N
);
5693 Build_Derived_Type
(
5694 Full_N
, Parent_Type
, Full_Der
, True, Derive_Subps
=> False);
5697 Build_Derived_Type
(
5698 N
, Parent_Type
, Full_Der
, True, Derive_Subps
=> False);
5702 -- Start of processing for Build_Derived_Private_Type
5705 if Is_Tagged_Type
(Parent_Type
) then
5706 Full_P
:= Full_View
(Parent_Type
);
5708 -- A type extension of a type with unknown discriminants is an
5709 -- indefinite type that the back-end cannot handle directly.
5710 -- We treat it as a private type, and build a completion that is
5711 -- derived from the full view of the parent, and hopefully has
5712 -- known discriminants.
5714 -- If the full view of the parent type has an underlying record view,
5715 -- use it to generate the underlying record view of this derived type
5716 -- (required for chains of derivations with unknown discriminants).
5718 -- Minor optimization: we avoid the generation of useless underlying
5719 -- record view entities if the private type declaration has unknown
5720 -- discriminants but its corresponding full view has no
5723 if Has_Unknown_Discriminants
(Parent_Type
)
5724 and then Present
(Full_P
)
5725 and then (Has_Discriminants
(Full_P
)
5726 or else Present
(Underlying_Record_View
(Full_P
)))
5727 and then not In_Open_Scopes
(Par_Scope
)
5728 and then Expander_Active
5731 Full_Der
: constant Entity_Id
:=
5732 Make_Defining_Identifier
(Loc
,
5733 Chars
=> New_Internal_Name
('T'));
5734 New_Ext
: constant Node_Id
:=
5736 (Record_Extension_Part
(Type_Definition
(N
)));
5740 Build_Derived_Record_Type
5741 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
5743 -- Build anonymous completion, as a derivation from the full
5744 -- view of the parent. This is not a completion in the usual
5745 -- sense, because the current type is not private.
5748 Make_Full_Type_Declaration
(Loc
,
5749 Defining_Identifier
=> Full_Der
,
5751 Make_Derived_Type_Definition
(Loc
,
5752 Subtype_Indication
=>
5754 (Subtype_Indication
(Type_Definition
(N
))),
5755 Record_Extension_Part
=> New_Ext
));
5757 -- If the parent type has an underlying record view, use it
5758 -- here to build the new underlying record view.
5760 if Present
(Underlying_Record_View
(Full_P
)) then
5762 (Nkind
(Subtype_Indication
(Type_Definition
(Decl
)))
5764 Set_Entity
(Subtype_Indication
(Type_Definition
(Decl
)),
5765 Underlying_Record_View
(Full_P
));
5768 Install_Private_Declarations
(Par_Scope
);
5769 Install_Visible_Declarations
(Par_Scope
);
5770 Insert_Before
(N
, Decl
);
5772 -- Mark entity as an underlying record view before analysis,
5773 -- to avoid generating the list of its primitive operations
5774 -- (which is not really required for this entity) and thus
5775 -- prevent spurious errors associated with missing overriding
5776 -- of abstract primitives (overridden only for Derived_Type).
5778 Set_Ekind
(Full_Der
, E_Record_Type
);
5779 Set_Is_Underlying_Record_View
(Full_Der
);
5783 pragma Assert
(Has_Discriminants
(Full_Der
)
5784 and then not Has_Unknown_Discriminants
(Full_Der
));
5786 Uninstall_Declarations
(Par_Scope
);
5788 -- Freeze the underlying record view, to prevent generation of
5789 -- useless dispatching information, which is simply shared with
5790 -- the real derived type.
5792 Set_Is_Frozen
(Full_Der
);
5794 -- Set up links between real entity and underlying record view
5796 Set_Underlying_Record_View
(Derived_Type
, Base_Type
(Full_Der
));
5797 Set_Underlying_Record_View
(Base_Type
(Full_Der
), Derived_Type
);
5800 -- If discriminants are known, build derived record
5803 Build_Derived_Record_Type
5804 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
5809 elsif Has_Discriminants
(Parent_Type
) then
5810 if Present
(Full_View
(Parent_Type
)) then
5811 if not Is_Completion
then
5813 -- Copy declaration for subsequent analysis, to provide a
5814 -- completion for what is a private declaration. Indicate that
5815 -- the full type is internally generated.
5817 Full_Decl
:= New_Copy_Tree
(N
);
5818 Full_Der
:= New_Copy
(Derived_Type
);
5819 Set_Comes_From_Source
(Full_Decl
, False);
5820 Set_Comes_From_Source
(Full_Der
, False);
5822 Insert_After
(N
, Full_Decl
);
5825 -- If this is a completion, the full view being built is itself
5826 -- private. We build a subtype of the parent with the same
5827 -- constraints as this full view, to convey to the back end the
5828 -- constrained components and the size of this subtype. If the
5829 -- parent is constrained, its full view can serve as the
5830 -- underlying full view of the derived type.
5832 if No
(Discriminant_Specifications
(N
)) then
5833 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
5834 N_Subtype_Indication
5836 Build_Underlying_Full_View
(N
, Derived_Type
, Parent_Type
);
5838 elsif Is_Constrained
(Full_View
(Parent_Type
)) then
5839 Set_Underlying_Full_View
5840 (Derived_Type
, Full_View
(Parent_Type
));
5844 -- If there are new discriminants, the parent subtype is
5845 -- constrained by them, but it is not clear how to build
5846 -- the Underlying_Full_View in this case???
5853 -- Build partial view of derived type from partial view of parent
5855 Build_Derived_Record_Type
5856 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
5858 if Present
(Full_View
(Parent_Type
)) and then not Is_Completion
then
5859 if not In_Open_Scopes
(Par_Scope
)
5860 or else not In_Same_Source_Unit
(N
, Parent_Type
)
5862 -- Swap partial and full views temporarily
5864 Install_Private_Declarations
(Par_Scope
);
5865 Install_Visible_Declarations
(Par_Scope
);
5869 -- Build full view of derived type from full view of parent which
5870 -- is now installed. Subprograms have been derived on the partial
5871 -- view, the completion does not derive them anew.
5873 if not Is_Tagged_Type
(Parent_Type
) then
5875 -- If the parent is itself derived from another private type,
5876 -- installing the private declarations has not affected its
5877 -- privacy status, so use its own full view explicitly.
5879 if Is_Private_Type
(Parent_Type
) then
5880 Build_Derived_Record_Type
5881 (Full_Decl
, Full_View
(Parent_Type
), Full_Der
, False);
5883 Build_Derived_Record_Type
5884 (Full_Decl
, Parent_Type
, Full_Der
, False);
5888 -- If full view of parent is tagged, the completion inherits
5889 -- the proper primitive operations.
5891 Set_Defining_Identifier
(Full_Decl
, Full_Der
);
5892 Build_Derived_Record_Type
5893 (Full_Decl
, Parent_Type
, Full_Der
, Derive_Subps
);
5894 Set_Analyzed
(Full_Decl
);
5898 Uninstall_Declarations
(Par_Scope
);
5900 if In_Open_Scopes
(Par_Scope
) then
5901 Install_Visible_Declarations
(Par_Scope
);
5905 Der_Base
:= Base_Type
(Derived_Type
);
5906 Set_Full_View
(Derived_Type
, Full_Der
);
5907 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
5909 -- Copy the discriminant list from full view to the partial views
5910 -- (base type and its subtype). Gigi requires that the partial and
5911 -- full views have the same discriminants.
5913 -- Note that since the partial view is pointing to discriminants
5914 -- in the full view, their scope will be that of the full view.
5915 -- This might cause some front end problems and need adjustment???
5917 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
5918 Set_First_Entity
(Der_Base
, Discr
);
5921 Last_Discr
:= Discr
;
5922 Next_Discriminant
(Discr
);
5923 exit when No
(Discr
);
5926 Set_Last_Entity
(Der_Base
, Last_Discr
);
5928 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
5929 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
5930 Set_Stored_Constraint
(Full_Der
, Stored_Constraint
(Derived_Type
));
5933 -- If this is a completion, the derived type stays private and
5934 -- there is no need to create a further full view, except in the
5935 -- unusual case when the derivation is nested within a child unit,
5941 elsif Present
(Full_View
(Parent_Type
))
5942 and then Has_Discriminants
(Full_View
(Parent_Type
))
5944 if Has_Unknown_Discriminants
(Parent_Type
)
5945 and then Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
5946 N_Subtype_Indication
5949 ("cannot constrain type with unknown discriminants",
5950 Subtype_Indication
(Type_Definition
(N
)));
5954 -- If full view of parent is a record type, build full view as a
5955 -- derivation from the parent's full view. Partial view remains
5956 -- private. For code generation and linking, the full view must have
5957 -- the same public status as the partial one. This full view is only
5958 -- needed if the parent type is in an enclosing scope, so that the
5959 -- full view may actually become visible, e.g. in a child unit. This
5960 -- is both more efficient, and avoids order of freezing problems with
5961 -- the added entities.
5963 if not Is_Private_Type
(Full_View
(Parent_Type
))
5964 and then (In_Open_Scopes
(Scope
(Parent_Type
)))
5966 Full_Der
:= Make_Defining_Identifier
(Sloc
(Derived_Type
),
5967 Chars
(Derived_Type
));
5968 Set_Is_Itype
(Full_Der
);
5969 Set_Has_Private_Declaration
(Full_Der
);
5970 Set_Has_Private_Declaration
(Derived_Type
);
5971 Set_Associated_Node_For_Itype
(Full_Der
, N
);
5972 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
5973 Set_Full_View
(Derived_Type
, Full_Der
);
5974 Set_Is_Public
(Full_Der
, Is_Public
(Derived_Type
));
5975 Full_P
:= Full_View
(Parent_Type
);
5976 Exchange_Declarations
(Parent_Type
);
5978 Exchange_Declarations
(Full_P
);
5981 Build_Derived_Record_Type
5982 (N
, Full_View
(Parent_Type
), Derived_Type
,
5983 Derive_Subps
=> False);
5986 -- In any case, the primitive operations are inherited from the
5987 -- parent type, not from the internal full view.
5989 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
5991 if Derive_Subps
then
5992 Derive_Subprograms
(Parent_Type
, Derived_Type
);
5996 -- Untagged type, No discriminants on either view
5998 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
5999 N_Subtype_Indication
6002 ("illegal constraint on type without discriminants", N
);
6005 if Present
(Discriminant_Specifications
(N
))
6006 and then Present
(Full_View
(Parent_Type
))
6007 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
6009 Error_Msg_N
("cannot add discriminants to untagged type", N
);
6012 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
6013 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6014 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
6015 Set_Has_Controlled_Component
6016 (Derived_Type
, Has_Controlled_Component
6019 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6021 if not Is_Controlled
(Parent_Type
) then
6022 Set_Finalize_Storage_Only
6023 (Base_Type
(Derived_Type
), Finalize_Storage_Only
(Parent_Type
));
6026 -- Construct the implicit full view by deriving from full view of the
6027 -- parent type. In order to get proper visibility, we install the
6028 -- parent scope and its declarations.
6030 -- ??? If the parent is untagged private and its completion is
6031 -- tagged, this mechanism will not work because we cannot derive from
6032 -- the tagged full view unless we have an extension.
6034 if Present
(Full_View
(Parent_Type
))
6035 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
6036 and then not Is_Completion
6039 Make_Defining_Identifier
(Sloc
(Derived_Type
),
6040 Chars
=> Chars
(Derived_Type
));
6041 Set_Is_Itype
(Full_Der
);
6042 Set_Has_Private_Declaration
(Full_Der
);
6043 Set_Has_Private_Declaration
(Derived_Type
);
6044 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6045 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
6046 Set_Full_View
(Derived_Type
, Full_Der
);
6048 if not In_Open_Scopes
(Par_Scope
) then
6049 Install_Private_Declarations
(Par_Scope
);
6050 Install_Visible_Declarations
(Par_Scope
);
6052 Uninstall_Declarations
(Par_Scope
);
6054 -- If parent scope is open and in another unit, and parent has a
6055 -- completion, then the derivation is taking place in the visible
6056 -- part of a child unit. In that case retrieve the full view of
6057 -- the parent momentarily.
6059 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
6060 Full_P
:= Full_View
(Parent_Type
);
6061 Exchange_Declarations
(Parent_Type
);
6063 Exchange_Declarations
(Full_P
);
6065 -- Otherwise it is a local derivation
6071 Set_Scope
(Full_Der
, Current_Scope
);
6072 Set_Is_First_Subtype
(Full_Der
,
6073 Is_First_Subtype
(Derived_Type
));
6074 Set_Has_Size_Clause
(Full_Der
, False);
6075 Set_Has_Alignment_Clause
(Full_Der
, False);
6076 Set_Next_Entity
(Full_Der
, Empty
);
6077 Set_Has_Delayed_Freeze
(Full_Der
);
6078 Set_Is_Frozen
(Full_Der
, False);
6079 Set_Freeze_Node
(Full_Der
, Empty
);
6080 Set_Depends_On_Private
(Full_Der
,
6081 Has_Private_Component
(Full_Der
));
6082 Set_Public_Status
(Full_Der
);
6086 Set_Has_Unknown_Discriminants
(Derived_Type
,
6087 Has_Unknown_Discriminants
(Parent_Type
));
6089 if Is_Private_Type
(Derived_Type
) then
6090 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
6093 if Is_Private_Type
(Parent_Type
)
6094 and then Base_Type
(Parent_Type
) = Parent_Type
6095 and then In_Open_Scopes
(Scope
(Parent_Type
))
6097 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
6099 if Is_Child_Unit
(Scope
(Current_Scope
))
6100 and then Is_Completion
6101 and then In_Private_Part
(Current_Scope
)
6102 and then Scope
(Parent_Type
) /= Current_Scope
6104 -- This is the unusual case where a type completed by a private
6105 -- derivation occurs within a package nested in a child unit, and
6106 -- the parent is declared in an ancestor. In this case, the full
6107 -- view of the parent type will become visible in the body of
6108 -- the enclosing child, and only then will the current type be
6109 -- possibly non-private. We build a underlying full view that
6110 -- will be installed when the enclosing child body is compiled.
6113 Make_Defining_Identifier
(Sloc
(Derived_Type
),
6114 Chars
=> Chars
(Derived_Type
));
6115 Set_Is_Itype
(Full_Der
);
6116 Build_Itype_Reference
(Full_Der
, N
);
6118 -- The full view will be used to swap entities on entry/exit to
6119 -- the body, and must appear in the entity list for the package.
6121 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
6122 Set_Has_Private_Declaration
(Full_Der
);
6123 Set_Has_Private_Declaration
(Derived_Type
);
6124 Set_Associated_Node_For_Itype
(Full_Der
, N
);
6125 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
6126 Full_P
:= Full_View
(Parent_Type
);
6127 Exchange_Declarations
(Parent_Type
);
6129 Exchange_Declarations
(Full_P
);
6130 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
6133 end Build_Derived_Private_Type
;
6135 -------------------------------
6136 -- Build_Derived_Record_Type --
6137 -------------------------------
6141 -- Ideally we would like to use the same model of type derivation for
6142 -- tagged and untagged record types. Unfortunately this is not quite
6143 -- possible because the semantics of representation clauses is different
6144 -- for tagged and untagged records under inheritance. Consider the
6147 -- type R (...) is [tagged] record ... end record;
6148 -- type T (...) is new R (...) [with ...];
6150 -- The representation clauses for T can specify a completely different
6151 -- record layout from R's. Hence the same component can be placed in two
6152 -- very different positions in objects of type T and R. If R and T are
6153 -- tagged types, representation clauses for T can only specify the layout
6154 -- of non inherited components, thus components that are common in R and T
6155 -- have the same position in objects of type R and T.
6157 -- This has two implications. The first is that the entire tree for R's
6158 -- declaration needs to be copied for T in the untagged case, so that T
6159 -- can be viewed as a record type of its own with its own representation
6160 -- clauses. The second implication is the way we handle discriminants.
6161 -- Specifically, in the untagged case we need a way to communicate to Gigi
6162 -- what are the real discriminants in the record, while for the semantics
6163 -- we need to consider those introduced by the user to rename the
6164 -- discriminants in the parent type. This is handled by introducing the
6165 -- notion of stored discriminants. See below for more.
6167 -- Fortunately the way regular components are inherited can be handled in
6168 -- the same way in tagged and untagged types.
6170 -- To complicate things a bit more the private view of a private extension
6171 -- cannot be handled in the same way as the full view (for one thing the
6172 -- semantic rules are somewhat different). We will explain what differs
6175 -- 2. DISCRIMINANTS UNDER INHERITANCE
6177 -- The semantic rules governing the discriminants of derived types are
6180 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
6181 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
6183 -- If parent type has discriminants, then the discriminants that are
6184 -- declared in the derived type are [3.4 (11)]:
6186 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
6189 -- o Otherwise, each discriminant of the parent type (implicitly declared
6190 -- in the same order with the same specifications). In this case, the
6191 -- discriminants are said to be "inherited", or if unknown in the parent
6192 -- are also unknown in the derived type.
6194 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
6196 -- o The parent subtype shall be constrained;
6198 -- o If the parent type is not a tagged type, then each discriminant of
6199 -- the derived type shall be used in the constraint defining a parent
6200 -- subtype. [Implementation note: This ensures that the new discriminant
6201 -- can share storage with an existing discriminant.]
6203 -- For the derived type each discriminant of the parent type is either
6204 -- inherited, constrained to equal some new discriminant of the derived
6205 -- type, or constrained to the value of an expression.
6207 -- When inherited or constrained to equal some new discriminant, the
6208 -- parent discriminant and the discriminant of the derived type are said
6211 -- If a discriminant of the parent type is constrained to a specific value
6212 -- in the derived type definition, then the discriminant is said to be
6213 -- "specified" by that derived type definition.
6215 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
6217 -- We have spoken about stored discriminants in point 1 (introduction)
6218 -- above. There are two sort of stored discriminants: implicit and
6219 -- explicit. As long as the derived type inherits the same discriminants as
6220 -- the root record type, stored discriminants are the same as regular
6221 -- discriminants, and are said to be implicit. However, if any discriminant
6222 -- in the root type was renamed in the derived type, then the derived
6223 -- type will contain explicit stored discriminants. Explicit stored
6224 -- discriminants are discriminants in addition to the semantically visible
6225 -- discriminants defined for the derived type. Stored discriminants are
6226 -- used by Gigi to figure out what are the physical discriminants in
6227 -- objects of the derived type (see precise definition in einfo.ads).
6228 -- As an example, consider the following:
6230 -- type R (D1, D2, D3 : Int) is record ... end record;
6231 -- type T1 is new R;
6232 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
6233 -- type T3 is new T2;
6234 -- type T4 (Y : Int) is new T3 (Y, 99);
6236 -- The following table summarizes the discriminants and stored
6237 -- discriminants in R and T1 through T4.
6239 -- Type Discrim Stored Discrim Comment
6240 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
6241 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
6242 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
6243 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
6244 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
6246 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
6247 -- find the corresponding discriminant in the parent type, while
6248 -- Original_Record_Component (abbreviated ORC below), the actual physical
6249 -- component that is renamed. Finally the field Is_Completely_Hidden
6250 -- (abbreviated ICH below) is set for all explicit stored discriminants
6251 -- (see einfo.ads for more info). For the above example this gives:
6253 -- Discrim CD ORC ICH
6254 -- ^^^^^^^ ^^ ^^^ ^^^
6255 -- D1 in R empty itself no
6256 -- D2 in R empty itself no
6257 -- D3 in R empty itself no
6259 -- D1 in T1 D1 in R itself no
6260 -- D2 in T1 D2 in R itself no
6261 -- D3 in T1 D3 in R itself no
6263 -- X1 in T2 D3 in T1 D3 in T2 no
6264 -- X2 in T2 D1 in T1 D1 in T2 no
6265 -- D1 in T2 empty itself yes
6266 -- D2 in T2 empty itself yes
6267 -- D3 in T2 empty itself yes
6269 -- X1 in T3 X1 in T2 D3 in T3 no
6270 -- X2 in T3 X2 in T2 D1 in T3 no
6271 -- D1 in T3 empty itself yes
6272 -- D2 in T3 empty itself yes
6273 -- D3 in T3 empty itself yes
6275 -- Y in T4 X1 in T3 D3 in T3 no
6276 -- D1 in T3 empty itself yes
6277 -- D2 in T3 empty itself yes
6278 -- D3 in T3 empty itself yes
6280 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
6282 -- Type derivation for tagged types is fairly straightforward. If no
6283 -- discriminants are specified by the derived type, these are inherited
6284 -- from the parent. No explicit stored discriminants are ever necessary.
6285 -- The only manipulation that is done to the tree is that of adding a
6286 -- _parent field with parent type and constrained to the same constraint
6287 -- specified for the parent in the derived type definition. For instance:
6289 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
6290 -- type T1 is new R with null record;
6291 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
6293 -- are changed into:
6295 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
6296 -- _parent : R (D1, D2, D3);
6299 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
6300 -- _parent : T1 (X2, 88, X1);
6303 -- The discriminants actually present in R, T1 and T2 as well as their CD,
6304 -- ORC and ICH fields are:
6306 -- Discrim CD ORC ICH
6307 -- ^^^^^^^ ^^ ^^^ ^^^
6308 -- D1 in R empty itself no
6309 -- D2 in R empty itself no
6310 -- D3 in R empty itself no
6312 -- D1 in T1 D1 in R D1 in R no
6313 -- D2 in T1 D2 in R D2 in R no
6314 -- D3 in T1 D3 in R D3 in R no
6316 -- X1 in T2 D3 in T1 D3 in R no
6317 -- X2 in T2 D1 in T1 D1 in R no
6319 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
6321 -- Regardless of whether we dealing with a tagged or untagged type
6322 -- we will transform all derived type declarations of the form
6324 -- type T is new R (...) [with ...];
6326 -- subtype S is R (...);
6327 -- type T is new S [with ...];
6329 -- type BT is new R [with ...];
6330 -- subtype T is BT (...);
6332 -- That is, the base derived type is constrained only if it has no
6333 -- discriminants. The reason for doing this is that GNAT's semantic model
6334 -- assumes that a base type with discriminants is unconstrained.
6336 -- Note that, strictly speaking, the above transformation is not always
6337 -- correct. Consider for instance the following excerpt from ACVC b34011a:
6339 -- procedure B34011A is
6340 -- type REC (D : integer := 0) is record
6345 -- type T6 is new Rec;
6346 -- function F return T6;
6351 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
6354 -- The definition of Q6.U is illegal. However transforming Q6.U into
6356 -- type BaseU is new T6;
6357 -- subtype U is BaseU (Q6.F.I)
6359 -- turns U into a legal subtype, which is incorrect. To avoid this problem
6360 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
6361 -- the transformation described above.
6363 -- There is another instance where the above transformation is incorrect.
6367 -- type Base (D : Integer) is tagged null record;
6368 -- procedure P (X : Base);
6370 -- type Der is new Base (2) with null record;
6371 -- procedure P (X : Der);
6374 -- Then the above transformation turns this into
6376 -- type Der_Base is new Base with null record;
6377 -- -- procedure P (X : Base) is implicitly inherited here
6378 -- -- as procedure P (X : Der_Base).
6380 -- subtype Der is Der_Base (2);
6381 -- procedure P (X : Der);
6382 -- -- The overriding of P (X : Der_Base) is illegal since we
6383 -- -- have a parameter conformance problem.
6385 -- To get around this problem, after having semantically processed Der_Base
6386 -- and the rewritten subtype declaration for Der, we copy Der_Base field
6387 -- Discriminant_Constraint from Der so that when parameter conformance is
6388 -- checked when P is overridden, no semantic errors are flagged.
6390 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
6392 -- Regardless of whether we are dealing with a tagged or untagged type
6393 -- we will transform all derived type declarations of the form
6395 -- type R (D1, .., Dn : ...) is [tagged] record ...;
6396 -- type T is new R [with ...];
6398 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
6400 -- The reason for such transformation is that it allows us to implement a
6401 -- very clean form of component inheritance as explained below.
6403 -- Note that this transformation is not achieved by direct tree rewriting
6404 -- and manipulation, but rather by redoing the semantic actions that the
6405 -- above transformation will entail. This is done directly in routine
6406 -- Inherit_Components.
6408 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
6410 -- In both tagged and untagged derived types, regular non discriminant
6411 -- components are inherited in the derived type from the parent type. In
6412 -- the absence of discriminants component, inheritance is straightforward
6413 -- as components can simply be copied from the parent.
6415 -- If the parent has discriminants, inheriting components constrained with
6416 -- these discriminants requires caution. Consider the following example:
6418 -- type R (D1, D2 : Positive) is [tagged] record
6419 -- S : String (D1 .. D2);
6422 -- type T1 is new R [with null record];
6423 -- type T2 (X : positive) is new R (1, X) [with null record];
6425 -- As explained in 6. above, T1 is rewritten as
6426 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
6427 -- which makes the treatment for T1 and T2 identical.
6429 -- What we want when inheriting S, is that references to D1 and D2 in R are
6430 -- replaced with references to their correct constraints, i.e. D1 and D2 in
6431 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
6432 -- with either discriminant references in the derived type or expressions.
6433 -- This replacement is achieved as follows: before inheriting R's
6434 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
6435 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
6436 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
6437 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
6438 -- by String (1 .. X).
6440 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
6442 -- We explain here the rules governing private type extensions relevant to
6443 -- type derivation. These rules are explained on the following example:
6445 -- type D [(...)] is new A [(...)] with private; <-- partial view
6446 -- type D [(...)] is new P [(...)] with null record; <-- full view
6448 -- Type A is called the ancestor subtype of the private extension.
6449 -- Type P is the parent type of the full view of the private extension. It
6450 -- must be A or a type derived from A.
6452 -- The rules concerning the discriminants of private type extensions are
6455 -- o If a private extension inherits known discriminants from the ancestor
6456 -- subtype, then the full view shall also inherit its discriminants from
6457 -- the ancestor subtype and the parent subtype of the full view shall be
6458 -- constrained if and only if the ancestor subtype is constrained.
6460 -- o If a partial view has unknown discriminants, then the full view may
6461 -- define a definite or an indefinite subtype, with or without
6464 -- o If a partial view has neither known nor unknown discriminants, then
6465 -- the full view shall define a definite subtype.
6467 -- o If the ancestor subtype of a private extension has constrained
6468 -- discriminants, then the parent subtype of the full view shall impose a
6469 -- statically matching constraint on those discriminants.
6471 -- This means that only the following forms of private extensions are
6474 -- type D is new A with private; <-- partial view
6475 -- type D is new P with null record; <-- full view
6477 -- If A has no discriminants than P has no discriminants, otherwise P must
6478 -- inherit A's discriminants.
6480 -- type D is new A (...) with private; <-- partial view
6481 -- type D is new P (:::) with null record; <-- full view
6483 -- P must inherit A's discriminants and (...) and (:::) must statically
6486 -- subtype A is R (...);
6487 -- type D is new A with private; <-- partial view
6488 -- type D is new P with null record; <-- full view
6490 -- P must have inherited R's discriminants and must be derived from A or
6491 -- any of its subtypes.
6493 -- type D (..) is new A with private; <-- partial view
6494 -- type D (..) is new P [(:::)] with null record; <-- full view
6496 -- No specific constraints on P's discriminants or constraint (:::).
6497 -- Note that A can be unconstrained, but the parent subtype P must either
6498 -- be constrained or (:::) must be present.
6500 -- type D (..) is new A [(...)] with private; <-- partial view
6501 -- type D (..) is new P [(:::)] with null record; <-- full view
6503 -- P's constraints on A's discriminants must statically match those
6504 -- imposed by (...).
6506 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
6508 -- The full view of a private extension is handled exactly as described
6509 -- above. The model chose for the private view of a private extension is
6510 -- the same for what concerns discriminants (i.e. they receive the same
6511 -- treatment as in the tagged case). However, the private view of the
6512 -- private extension always inherits the components of the parent base,
6513 -- without replacing any discriminant reference. Strictly speaking this is
6514 -- incorrect. However, Gigi never uses this view to generate code so this
6515 -- is a purely semantic issue. In theory, a set of transformations similar
6516 -- to those given in 5. and 6. above could be applied to private views of
6517 -- private extensions to have the same model of component inheritance as
6518 -- for non private extensions. However, this is not done because it would
6519 -- further complicate private type processing. Semantically speaking, this
6520 -- leaves us in an uncomfortable situation. As an example consider:
6523 -- type R (D : integer) is tagged record
6524 -- S : String (1 .. D);
6526 -- procedure P (X : R);
6527 -- type T is new R (1) with private;
6529 -- type T is new R (1) with null record;
6532 -- This is transformed into:
6535 -- type R (D : integer) is tagged record
6536 -- S : String (1 .. D);
6538 -- procedure P (X : R);
6539 -- type T is new R (1) with private;
6541 -- type BaseT is new R with null record;
6542 -- subtype T is BaseT (1);
6545 -- (strictly speaking the above is incorrect Ada)
6547 -- From the semantic standpoint the private view of private extension T
6548 -- should be flagged as constrained since one can clearly have
6552 -- in a unit withing Pack. However, when deriving subprograms for the
6553 -- private view of private extension T, T must be seen as unconstrained
6554 -- since T has discriminants (this is a constraint of the current
6555 -- subprogram derivation model). Thus, when processing the private view of
6556 -- a private extension such as T, we first mark T as unconstrained, we
6557 -- process it, we perform program derivation and just before returning from
6558 -- Build_Derived_Record_Type we mark T as constrained.
6560 -- ??? Are there are other uncomfortable cases that we will have to
6563 -- 10. RECORD_TYPE_WITH_PRIVATE complications
6565 -- Types that are derived from a visible record type and have a private
6566 -- extension present other peculiarities. They behave mostly like private
6567 -- types, but if they have primitive operations defined, these will not
6568 -- have the proper signatures for further inheritance, because other
6569 -- primitive operations will use the implicit base that we define for
6570 -- private derivations below. This affect subprogram inheritance (see
6571 -- Derive_Subprograms for details). We also derive the implicit base from
6572 -- the base type of the full view, so that the implicit base is a record
6573 -- type and not another private type, This avoids infinite loops.
6575 procedure Build_Derived_Record_Type
6577 Parent_Type
: Entity_Id
;
6578 Derived_Type
: Entity_Id
;
6579 Derive_Subps
: Boolean := True)
6581 Loc
: constant Source_Ptr
:= Sloc
(N
);
6582 Parent_Base
: Entity_Id
;
6585 Discrim
: Entity_Id
;
6586 Last_Discrim
: Entity_Id
;
6589 Discs
: Elist_Id
:= New_Elmt_List
;
6590 -- An empty Discs list means that there were no constraints in the
6591 -- subtype indication or that there was an error processing it.
6593 Assoc_List
: Elist_Id
;
6594 New_Discrs
: Elist_Id
;
6595 New_Base
: Entity_Id
;
6597 New_Indic
: Node_Id
;
6599 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
6600 Discriminant_Specs
: constant Boolean :=
6601 Present
(Discriminant_Specifications
(N
));
6602 Private_Extension
: constant Boolean :=
6603 Nkind
(N
) = N_Private_Extension_Declaration
;
6605 Constraint_Present
: Boolean;
6606 Inherit_Discrims
: Boolean := False;
6607 Save_Etype
: Entity_Id
;
6608 Save_Discr_Constr
: Elist_Id
;
6609 Save_Next_Entity
: Entity_Id
;
6612 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
6613 and then Present
(Full_View
(Parent_Type
))
6614 and then Has_Discriminants
(Parent_Type
)
6616 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
6618 Parent_Base
:= Base_Type
(Parent_Type
);
6621 -- Before we start the previously documented transformations, here is
6622 -- little fix for size and alignment of tagged types. Normally when we
6623 -- derive type D from type P, we copy the size and alignment of P as the
6624 -- default for D, and in the absence of explicit representation clauses
6625 -- for D, the size and alignment are indeed the same as the parent.
6627 -- But this is wrong for tagged types, since fields may be added, and
6628 -- the default size may need to be larger, and the default alignment may
6629 -- need to be larger.
6631 -- We therefore reset the size and alignment fields in the tagged case.
6632 -- Note that the size and alignment will in any case be at least as
6633 -- large as the parent type (since the derived type has a copy of the
6634 -- parent type in the _parent field)
6636 -- The type is also marked as being tagged here, which is needed when
6637 -- processing components with a self-referential anonymous access type
6638 -- in the call to Check_Anonymous_Access_Components below. Note that
6639 -- this flag is also set later on for completeness.
6642 Set_Is_Tagged_Type
(Derived_Type
);
6643 Init_Size_Align
(Derived_Type
);
6646 -- STEP 0a: figure out what kind of derived type declaration we have
6648 if Private_Extension
then
6650 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
6653 Type_Def
:= Type_Definition
(N
);
6655 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
6656 -- Parent_Base can be a private type or private extension. However,
6657 -- for tagged types with an extension the newly added fields are
6658 -- visible and hence the Derived_Type is always an E_Record_Type.
6659 -- (except that the parent may have its own private fields).
6660 -- For untagged types we preserve the Ekind of the Parent_Base.
6662 if Present
(Record_Extension_Part
(Type_Def
)) then
6663 Set_Ekind
(Derived_Type
, E_Record_Type
);
6665 -- Create internal access types for components with anonymous
6668 if Ada_Version
>= Ada_05
then
6669 Check_Anonymous_Access_Components
6670 (N
, Derived_Type
, Derived_Type
,
6671 Component_List
(Record_Extension_Part
(Type_Def
)));
6675 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
6679 -- Indic can either be an N_Identifier if the subtype indication
6680 -- contains no constraint or an N_Subtype_Indication if the subtype
6681 -- indication has a constraint.
6683 Indic
:= Subtype_Indication
(Type_Def
);
6684 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
6686 -- Check that the type has visible discriminants. The type may be
6687 -- a private type with unknown discriminants whose full view has
6688 -- discriminants which are invisible.
6690 if Constraint_Present
then
6691 if not Has_Discriminants
(Parent_Base
)
6693 (Has_Unknown_Discriminants
(Parent_Base
)
6694 and then Is_Private_Type
(Parent_Base
))
6697 ("invalid constraint: type has no discriminant",
6698 Constraint
(Indic
));
6700 Constraint_Present
:= False;
6701 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
6703 elsif Is_Constrained
(Parent_Type
) then
6705 ("invalid constraint: parent type is already constrained",
6706 Constraint
(Indic
));
6708 Constraint_Present
:= False;
6709 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
6713 -- STEP 0b: If needed, apply transformation given in point 5. above
6715 if not Private_Extension
6716 and then Has_Discriminants
(Parent_Type
)
6717 and then not Discriminant_Specs
6718 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
6720 -- First, we must analyze the constraint (see comment in point 5.)
6722 if Constraint_Present
then
6723 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
6725 if Has_Discriminants
(Derived_Type
)
6726 and then Has_Private_Declaration
(Derived_Type
)
6727 and then Present
(Discriminant_Constraint
(Derived_Type
))
6729 -- Verify that constraints of the full view statically match
6730 -- those given in the partial view.
6736 C1
:= First_Elmt
(New_Discrs
);
6737 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
6738 while Present
(C1
) and then Present
(C2
) loop
6739 if Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
6741 (Is_OK_Static_Expression
(Node
(C1
))
6743 Is_OK_Static_Expression
(Node
(C2
))
6745 Expr_Value
(Node
(C1
)) = Expr_Value
(Node
(C2
)))
6751 "constraint not conformant to previous declaration",
6762 -- Insert and analyze the declaration for the unconstrained base type
6764 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
6767 Make_Full_Type_Declaration
(Loc
,
6768 Defining_Identifier
=> New_Base
,
6770 Make_Derived_Type_Definition
(Loc
,
6771 Abstract_Present
=> Abstract_Present
(Type_Def
),
6772 Limited_Present
=> Limited_Present
(Type_Def
),
6773 Subtype_Indication
=>
6774 New_Occurrence_Of
(Parent_Base
, Loc
),
6775 Record_Extension_Part
=>
6776 Relocate_Node
(Record_Extension_Part
(Type_Def
)),
6777 Interface_List
=> Interface_List
(Type_Def
)));
6779 Set_Parent
(New_Decl
, Parent
(N
));
6780 Mark_Rewrite_Insertion
(New_Decl
);
6781 Insert_Before
(N
, New_Decl
);
6783 -- Note that this call passes False for the Derive_Subps parameter
6784 -- because subprogram derivation is deferred until after creating
6785 -- the subtype (see below).
6788 (New_Decl
, Parent_Base
, New_Base
,
6789 Is_Completion
=> True, Derive_Subps
=> False);
6791 -- ??? This needs re-examination to determine whether the
6792 -- above call can simply be replaced by a call to Analyze.
6794 Set_Analyzed
(New_Decl
);
6796 -- Insert and analyze the declaration for the constrained subtype
6798 if Constraint_Present
then
6800 Make_Subtype_Indication
(Loc
,
6801 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
6802 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
6806 Constr_List
: constant List_Id
:= New_List
;
6811 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
6812 while Present
(C
) loop
6815 -- It is safe here to call New_Copy_Tree since
6816 -- Force_Evaluation was called on each constraint in
6817 -- Build_Discriminant_Constraints.
6819 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
6825 Make_Subtype_Indication
(Loc
,
6826 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
6828 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
6833 Make_Subtype_Declaration
(Loc
,
6834 Defining_Identifier
=> Derived_Type
,
6835 Subtype_Indication
=> New_Indic
));
6839 -- Derivation of subprograms must be delayed until the full subtype
6840 -- has been established to ensure proper overriding of subprograms
6841 -- inherited by full types. If the derivations occurred as part of
6842 -- the call to Build_Derived_Type above, then the check for type
6843 -- conformance would fail because earlier primitive subprograms
6844 -- could still refer to the full type prior the change to the new
6845 -- subtype and hence would not match the new base type created here.
6847 Derive_Subprograms
(Parent_Type
, Derived_Type
);
6849 -- For tagged types the Discriminant_Constraint of the new base itype
6850 -- is inherited from the first subtype so that no subtype conformance
6851 -- problem arise when the first subtype overrides primitive
6852 -- operations inherited by the implicit base type.
6855 Set_Discriminant_Constraint
6856 (New_Base
, Discriminant_Constraint
(Derived_Type
));
6862 -- If we get here Derived_Type will have no discriminants or it will be
6863 -- a discriminated unconstrained base type.
6865 -- STEP 1a: perform preliminary actions/checks for derived tagged types
6869 -- The parent type is frozen for non-private extensions (RM 13.14(7))
6870 -- The declaration of a specific descendant of an interface type
6871 -- freezes the interface type (RM 13.14).
6873 if not Private_Extension
6874 or else Is_Interface
(Parent_Base
)
6876 Freeze_Before
(N
, Parent_Type
);
6879 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
6880 -- cannot be declared at a deeper level than its parent type is
6881 -- removed. The check on derivation within a generic body is also
6882 -- relaxed, but there's a restriction that a derived tagged type
6883 -- cannot be declared in a generic body if it's derived directly
6884 -- or indirectly from a formal type of that generic.
6886 if Ada_Version
>= Ada_05
then
6887 if Present
(Enclosing_Generic_Body
(Derived_Type
)) then
6889 Ancestor_Type
: Entity_Id
;
6892 -- Check to see if any ancestor of the derived type is a
6895 Ancestor_Type
:= Parent_Type
;
6896 while not Is_Generic_Type
(Ancestor_Type
)
6897 and then Etype
(Ancestor_Type
) /= Ancestor_Type
6899 Ancestor_Type
:= Etype
(Ancestor_Type
);
6902 -- If the derived type does have a formal type as an
6903 -- ancestor, then it's an error if the derived type is
6904 -- declared within the body of the generic unit that
6905 -- declares the formal type in its generic formal part. It's
6906 -- sufficient to check whether the ancestor type is declared
6907 -- inside the same generic body as the derived type (such as
6908 -- within a nested generic spec), in which case the
6909 -- derivation is legal. If the formal type is declared
6910 -- outside of that generic body, then it's guaranteed that
6911 -- the derived type is declared within the generic body of
6912 -- the generic unit declaring the formal type.
6914 if Is_Generic_Type
(Ancestor_Type
)
6915 and then Enclosing_Generic_Body
(Ancestor_Type
) /=
6916 Enclosing_Generic_Body
(Derived_Type
)
6919 ("parent type of& must not be descendant of formal type"
6920 & " of an enclosing generic body",
6921 Indic
, Derived_Type
);
6926 elsif Type_Access_Level
(Derived_Type
) /=
6927 Type_Access_Level
(Parent_Type
)
6928 and then not Is_Generic_Type
(Derived_Type
)
6930 if Is_Controlled
(Parent_Type
) then
6932 ("controlled type must be declared at the library level",
6936 ("type extension at deeper accessibility level than parent",
6942 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
6946 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
6949 ("parent type of& must not be outside generic body"
6951 Indic
, Derived_Type
);
6957 -- Ada 2005 (AI-251)
6959 if Ada_Version
= Ada_05
6962 -- "The declaration of a specific descendant of an interface type
6963 -- freezes the interface type" (RM 13.14).
6968 if Is_Non_Empty_List
(Interface_List
(Type_Def
)) then
6969 Iface
:= First
(Interface_List
(Type_Def
));
6970 while Present
(Iface
) loop
6971 Freeze_Before
(N
, Etype
(Iface
));
6978 -- STEP 1b : preliminary cleanup of the full view of private types
6980 -- If the type is already marked as having discriminants, then it's the
6981 -- completion of a private type or private extension and we need to
6982 -- retain the discriminants from the partial view if the current
6983 -- declaration has Discriminant_Specifications so that we can verify
6984 -- conformance. However, we must remove any existing components that
6985 -- were inherited from the parent (and attached in Copy_And_Swap)
6986 -- because the full type inherits all appropriate components anyway, and
6987 -- we do not want the partial view's components interfering.
6989 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
6990 Discrim
:= First_Discriminant
(Derived_Type
);
6992 Last_Discrim
:= Discrim
;
6993 Next_Discriminant
(Discrim
);
6994 exit when No
(Discrim
);
6997 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
6999 -- In all other cases wipe out the list of inherited components (even
7000 -- inherited discriminants), it will be properly rebuilt here.
7003 Set_First_Entity
(Derived_Type
, Empty
);
7004 Set_Last_Entity
(Derived_Type
, Empty
);
7007 -- STEP 1c: Initialize some flags for the Derived_Type
7009 -- The following flags must be initialized here so that
7010 -- Process_Discriminants can check that discriminants of tagged types do
7011 -- not have a default initial value and that access discriminants are
7012 -- only specified for limited records. For completeness, these flags are
7013 -- also initialized along with all the other flags below.
7015 -- AI-419: Limitedness is not inherited from an interface parent, so to
7016 -- be limited in that case the type must be explicitly declared as
7017 -- limited. However, task and protected interfaces are always limited.
7019 if Limited_Present
(Type_Def
) then
7020 Set_Is_Limited_Record
(Derived_Type
);
7022 elsif Is_Limited_Record
(Parent_Type
)
7023 or else (Present
(Full_View
(Parent_Type
))
7024 and then Is_Limited_Record
(Full_View
(Parent_Type
)))
7026 if not Is_Interface
(Parent_Type
)
7027 or else Is_Synchronized_Interface
(Parent_Type
)
7028 or else Is_Protected_Interface
(Parent_Type
)
7029 or else Is_Task_Interface
(Parent_Type
)
7031 Set_Is_Limited_Record
(Derived_Type
);
7035 -- STEP 2a: process discriminants of derived type if any
7037 Push_Scope
(Derived_Type
);
7039 if Discriminant_Specs
then
7040 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
7042 -- The following call initializes fields Has_Discriminants and
7043 -- Discriminant_Constraint, unless we are processing the completion
7044 -- of a private type declaration.
7046 Check_Or_Process_Discriminants
(N
, Derived_Type
);
7048 -- For non-tagged types the constraint on the Parent_Type must be
7049 -- present and is used to rename the discriminants.
7051 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
7052 Error_Msg_N
("untagged parent must have discriminants", Indic
);
7054 elsif not Is_Tagged
and then not Constraint_Present
then
7056 ("discriminant constraint needed for derived untagged records",
7059 -- Otherwise the parent subtype must be constrained unless we have a
7060 -- private extension.
7062 elsif not Constraint_Present
7063 and then not Private_Extension
7064 and then not Is_Constrained
(Parent_Type
)
7067 ("unconstrained type not allowed in this context", Indic
);
7069 elsif Constraint_Present
then
7070 -- The following call sets the field Corresponding_Discriminant
7071 -- for the discriminants in the Derived_Type.
7073 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
7075 -- For untagged types all new discriminants must rename
7076 -- discriminants in the parent. For private extensions new
7077 -- discriminants cannot rename old ones (implied by [7.3(13)]).
7079 Discrim
:= First_Discriminant
(Derived_Type
);
7080 while Present
(Discrim
) loop
7082 and then No
(Corresponding_Discriminant
(Discrim
))
7085 ("new discriminants must constrain old ones", Discrim
);
7087 elsif Private_Extension
7088 and then Present
(Corresponding_Discriminant
(Discrim
))
7091 ("only static constraints allowed for parent"
7092 & " discriminants in the partial view", Indic
);
7096 -- If a new discriminant is used in the constraint, then its
7097 -- subtype must be statically compatible with the parent
7098 -- discriminant's subtype (3.7(15)).
7100 if Present
(Corresponding_Discriminant
(Discrim
))
7102 not Subtypes_Statically_Compatible
7104 Etype
(Corresponding_Discriminant
(Discrim
)))
7107 ("subtype must be compatible with parent discriminant",
7111 Next_Discriminant
(Discrim
);
7114 -- Check whether the constraints of the full view statically
7115 -- match those imposed by the parent subtype [7.3(13)].
7117 if Present
(Stored_Constraint
(Derived_Type
)) then
7122 C1
:= First_Elmt
(Discs
);
7123 C2
:= First_Elmt
(Stored_Constraint
(Derived_Type
));
7124 while Present
(C1
) and then Present
(C2
) loop
7126 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
7129 ("not conformant with previous declaration",
7140 -- STEP 2b: No new discriminants, inherit discriminants if any
7143 if Private_Extension
then
7144 Set_Has_Unknown_Discriminants
7146 Has_Unknown_Discriminants
(Parent_Type
)
7147 or else Unknown_Discriminants_Present
(N
));
7149 -- The partial view of the parent may have unknown discriminants,
7150 -- but if the full view has discriminants and the parent type is
7151 -- in scope they must be inherited.
7153 elsif Has_Unknown_Discriminants
(Parent_Type
)
7155 (not Has_Discriminants
(Parent_Type
)
7156 or else not In_Open_Scopes
(Scope
(Parent_Type
)))
7158 Set_Has_Unknown_Discriminants
(Derived_Type
);
7161 if not Has_Unknown_Discriminants
(Derived_Type
)
7162 and then not Has_Unknown_Discriminants
(Parent_Base
)
7163 and then Has_Discriminants
(Parent_Type
)
7165 Inherit_Discrims
:= True;
7166 Set_Has_Discriminants
7167 (Derived_Type
, True);
7168 Set_Discriminant_Constraint
7169 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
7172 -- The following test is true for private types (remember
7173 -- transformation 5. is not applied to those) and in an error
7176 if Constraint_Present
then
7177 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
7180 -- For now mark a new derived type as constrained only if it has no
7181 -- discriminants. At the end of Build_Derived_Record_Type we properly
7182 -- set this flag in the case of private extensions. See comments in
7183 -- point 9. just before body of Build_Derived_Record_Type.
7187 not (Inherit_Discrims
7188 or else Has_Unknown_Discriminants
(Derived_Type
)));
7191 -- STEP 3: initialize fields of derived type
7193 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
7194 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7196 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
7197 -- but cannot be interfaces
7199 if not Private_Extension
7200 and then Ekind
(Derived_Type
) /= E_Private_Type
7201 and then Ekind
(Derived_Type
) /= E_Limited_Private_Type
7203 if Interface_Present
(Type_Def
) then
7204 Analyze_Interface_Declaration
(Derived_Type
, Type_Def
);
7207 Set_Interfaces
(Derived_Type
, No_Elist
);
7210 -- Fields inherited from the Parent_Type
7213 (Derived_Type
, Einfo
.Discard_Names
(Parent_Type
));
7214 Set_Has_Specified_Layout
7215 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
7216 Set_Is_Limited_Composite
7217 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
7218 Set_Is_Private_Composite
7219 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
7221 -- Fields inherited from the Parent_Base
7223 Set_Has_Controlled_Component
7224 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
7225 Set_Has_Non_Standard_Rep
7226 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
7227 Set_Has_Primitive_Operations
7228 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
7230 -- Fields inherited from the Parent_Base in the non-private case
7232 if Ekind
(Derived_Type
) = E_Record_Type
then
7233 Set_Has_Complex_Representation
7234 (Derived_Type
, Has_Complex_Representation
(Parent_Base
));
7237 -- Fields inherited from the Parent_Base for record types
7239 if Is_Record_Type
(Derived_Type
) then
7241 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7242 -- Parent_Base can be a private type or private extension.
7244 if Present
(Full_View
(Parent_Base
)) then
7245 Set_OK_To_Reorder_Components
7247 OK_To_Reorder_Components
(Full_View
(Parent_Base
)));
7248 Set_Reverse_Bit_Order
7249 (Derived_Type
, Reverse_Bit_Order
(Full_View
(Parent_Base
)));
7251 Set_OK_To_Reorder_Components
7252 (Derived_Type
, OK_To_Reorder_Components
(Parent_Base
));
7253 Set_Reverse_Bit_Order
7254 (Derived_Type
, Reverse_Bit_Order
(Parent_Base
));
7258 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7260 if not Is_Controlled
(Parent_Type
) then
7261 Set_Finalize_Storage_Only
7262 (Derived_Type
, Finalize_Storage_Only
(Parent_Type
));
7265 -- Set fields for private derived types
7267 if Is_Private_Type
(Derived_Type
) then
7268 Set_Depends_On_Private
(Derived_Type
, True);
7269 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
7271 -- Inherit fields from non private record types. If this is the
7272 -- completion of a derivation from a private type, the parent itself
7273 -- is private, and the attributes come from its full view, which must
7277 if Is_Private_Type
(Parent_Base
)
7278 and then not Is_Record_Type
(Parent_Base
)
7280 Set_Component_Alignment
7281 (Derived_Type
, Component_Alignment
(Full_View
(Parent_Base
)));
7283 (Derived_Type
, C_Pass_By_Copy
(Full_View
(Parent_Base
)));
7285 Set_Component_Alignment
7286 (Derived_Type
, Component_Alignment
(Parent_Base
));
7288 (Derived_Type
, C_Pass_By_Copy
(Parent_Base
));
7292 -- Set fields for tagged types
7295 Set_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
7297 -- All tagged types defined in Ada.Finalization are controlled
7299 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
7300 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
7301 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
7303 Set_Is_Controlled
(Derived_Type
);
7305 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Base
));
7308 -- Minor optimization: there is no need to generate the class-wide
7309 -- entity associated with an underlying record view.
7311 if not Is_Underlying_Record_View
(Derived_Type
) then
7312 Make_Class_Wide_Type
(Derived_Type
);
7315 Set_Is_Abstract_Type
(Derived_Type
, Abstract_Present
(Type_Def
));
7317 if Has_Discriminants
(Derived_Type
)
7318 and then Constraint_Present
7320 Set_Stored_Constraint
7321 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Base
, Discs
));
7324 if Ada_Version
>= Ada_05
then
7326 Ifaces_List
: Elist_Id
;
7329 -- Checks rules 3.9.4 (13/2 and 14/2)
7331 if Comes_From_Source
(Derived_Type
)
7332 and then not Is_Private_Type
(Derived_Type
)
7333 and then Is_Interface
(Parent_Type
)
7334 and then not Is_Interface
(Derived_Type
)
7336 if Is_Task_Interface
(Parent_Type
) then
7338 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
7341 elsif Is_Protected_Interface
(Parent_Type
) then
7343 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
7348 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
7350 Check_Interfaces
(N
, Type_Def
);
7352 -- Ada 2005 (AI-251): Collect the list of progenitors that are
7353 -- not already in the parents.
7357 Ifaces_List
=> Ifaces_List
,
7358 Exclude_Parents
=> True);
7360 Set_Interfaces
(Derived_Type
, Ifaces_List
);
7365 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Base
));
7366 Set_Has_Non_Standard_Rep
7367 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
7370 -- STEP 4: Inherit components from the parent base and constrain them.
7371 -- Apply the second transformation described in point 6. above.
7373 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
7374 or else not Has_Discriminants
(Parent_Type
)
7375 or else not Is_Constrained
(Parent_Type
)
7379 Constrs
:= Discriminant_Constraint
(Parent_Type
);
7384 (N
, Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
7386 -- STEP 5a: Copy the parent record declaration for untagged types
7388 if not Is_Tagged
then
7390 -- Discriminant_Constraint (Derived_Type) has been properly
7391 -- constructed. Save it and temporarily set it to Empty because we
7392 -- do not want the call to New_Copy_Tree below to mess this list.
7394 if Has_Discriminants
(Derived_Type
) then
7395 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
7396 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
7398 Save_Discr_Constr
:= No_Elist
;
7401 -- Save the Etype field of Derived_Type. It is correctly set now,
7402 -- but the call to New_Copy tree may remap it to point to itself,
7403 -- which is not what we want. Ditto for the Next_Entity field.
7405 Save_Etype
:= Etype
(Derived_Type
);
7406 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
7408 -- Assoc_List maps all stored discriminants in the Parent_Base to
7409 -- stored discriminants in the Derived_Type. It is fundamental that
7410 -- no types or itypes with discriminants other than the stored
7411 -- discriminants appear in the entities declared inside
7412 -- Derived_Type, since the back end cannot deal with it.
7416 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
7418 -- Restore the fields saved prior to the New_Copy_Tree call
7419 -- and compute the stored constraint.
7421 Set_Etype
(Derived_Type
, Save_Etype
);
7422 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
7424 if Has_Discriminants
(Derived_Type
) then
7425 Set_Discriminant_Constraint
7426 (Derived_Type
, Save_Discr_Constr
);
7427 Set_Stored_Constraint
7428 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Type
, Discs
));
7429 Replace_Components
(Derived_Type
, New_Decl
);
7432 -- Insert the new derived type declaration
7434 Rewrite
(N
, New_Decl
);
7436 -- STEP 5b: Complete the processing for record extensions in generics
7438 -- There is no completion for record extensions declared in the
7439 -- parameter part of a generic, so we need to complete processing for
7440 -- these generic record extensions here. The Record_Type_Definition call
7441 -- will change the Ekind of the components from E_Void to E_Component.
7443 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
7444 Record_Type_Definition
(Empty
, Derived_Type
);
7446 -- STEP 5c: Process the record extension for non private tagged types
7448 elsif not Private_Extension
then
7450 -- Add the _parent field in the derived type
7452 Expand_Record_Extension
(Derived_Type
, Type_Def
);
7454 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
7455 -- implemented interfaces if we are in expansion mode
7458 and then Has_Interfaces
(Derived_Type
)
7460 Add_Interface_Tag_Components
(N
, Derived_Type
);
7463 -- Analyze the record extension
7465 Record_Type_Definition
7466 (Record_Extension_Part
(Type_Def
), Derived_Type
);
7471 -- Nothing else to do if there is an error in the derivation.
7472 -- An unusual case: the full view may be derived from a type in an
7473 -- instance, when the partial view was used illegally as an actual
7474 -- in that instance, leading to a circular definition.
7476 if Etype
(Derived_Type
) = Any_Type
7477 or else Etype
(Parent_Type
) = Derived_Type
7482 -- Set delayed freeze and then derive subprograms, we need to do
7483 -- this in this order so that derived subprograms inherit the
7484 -- derived freeze if necessary.
7486 Set_Has_Delayed_Freeze
(Derived_Type
);
7488 if Derive_Subps
then
7489 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7492 -- If we have a private extension which defines a constrained derived
7493 -- type mark as constrained here after we have derived subprograms. See
7494 -- comment on point 9. just above the body of Build_Derived_Record_Type.
7496 if Private_Extension
and then Inherit_Discrims
then
7497 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
7498 Set_Is_Constrained
(Derived_Type
, True);
7499 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
7501 elsif Is_Constrained
(Parent_Type
) then
7503 (Derived_Type
, True);
7504 Set_Discriminant_Constraint
7505 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
7509 -- Update the class-wide type, which shares the now-completed entity
7510 -- list with its specific type. In case of underlying record views,
7511 -- we do not generate the corresponding class wide entity.
7514 and then not Is_Underlying_Record_View
(Derived_Type
)
7517 (Class_Wide_Type
(Derived_Type
), First_Entity
(Derived_Type
));
7519 (Class_Wide_Type
(Derived_Type
), Last_Entity
(Derived_Type
));
7522 -- Update the scope of anonymous access types of discriminants and other
7523 -- components, to prevent scope anomalies in gigi, when the derivation
7524 -- appears in a scope nested within that of the parent.
7530 D
:= First_Entity
(Derived_Type
);
7531 while Present
(D
) loop
7532 if Ekind
(D
) = E_Discriminant
7533 or else Ekind
(D
) = E_Component
7535 if Is_Itype
(Etype
(D
))
7536 and then Ekind
(Etype
(D
)) = E_Anonymous_Access_Type
7538 Set_Scope
(Etype
(D
), Current_Scope
);
7545 end Build_Derived_Record_Type
;
7547 ------------------------
7548 -- Build_Derived_Type --
7549 ------------------------
7551 procedure Build_Derived_Type
7553 Parent_Type
: Entity_Id
;
7554 Derived_Type
: Entity_Id
;
7555 Is_Completion
: Boolean;
7556 Derive_Subps
: Boolean := True)
7558 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
7561 -- Set common attributes
7563 Set_Scope
(Derived_Type
, Current_Scope
);
7565 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
7566 Set_Etype
(Derived_Type
, Parent_Base
);
7567 Set_Has_Task
(Derived_Type
, Has_Task
(Parent_Base
));
7569 Set_Size_Info
(Derived_Type
, Parent_Type
);
7570 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
7571 Set_Convention
(Derived_Type
, Convention
(Parent_Type
));
7572 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
7573 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged_Type
(Parent_Type
));
7575 -- The derived type inherits the representation clauses of the parent.
7576 -- However, for a private type that is completed by a derivation, there
7577 -- may be operation attributes that have been specified already (stream
7578 -- attributes and External_Tag) and those must be provided. Finally,
7579 -- if the partial view is a private extension, the representation items
7580 -- of the parent have been inherited already, and should not be chained
7581 -- twice to the derived type.
7583 if Is_Tagged_Type
(Parent_Type
)
7584 and then Present
(First_Rep_Item
(Derived_Type
))
7586 -- The existing items are either operational items or items inherited
7587 -- from a private extension declaration.
7591 -- Used to iterate over representation items of the derived type
7594 -- Last representation item of the (non-empty) representation
7595 -- item list of the derived type.
7597 Found
: Boolean := False;
7600 Rep
:= First_Rep_Item
(Derived_Type
);
7602 while Present
(Rep
) loop
7603 if Rep
= First_Rep_Item
(Parent_Type
) then
7608 Rep
:= Next_Rep_Item
(Rep
);
7610 if Present
(Rep
) then
7616 -- Here if we either encountered the parent type's first rep
7617 -- item on the derived type's rep item list (in which case
7618 -- Found is True, and we have nothing else to do), or if we
7619 -- reached the last rep item of the derived type, which is
7620 -- Last_Rep, in which case we further chain the parent type's
7621 -- rep items to those of the derived type.
7624 Set_Next_Rep_Item
(Last_Rep
, First_Rep_Item
(Parent_Type
));
7629 Set_First_Rep_Item
(Derived_Type
, First_Rep_Item
(Parent_Type
));
7632 case Ekind
(Parent_Type
) is
7633 when Numeric_Kind
=>
7634 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
7637 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
7641 | Class_Wide_Kind
=>
7642 Build_Derived_Record_Type
7643 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7646 when Enumeration_Kind
=>
7647 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
7650 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
7652 when Incomplete_Or_Private_Kind
=>
7653 Build_Derived_Private_Type
7654 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
7656 -- For discriminated types, the derivation includes deriving
7657 -- primitive operations. For others it is done below.
7659 if Is_Tagged_Type
(Parent_Type
)
7660 or else Has_Discriminants
(Parent_Type
)
7661 or else (Present
(Full_View
(Parent_Type
))
7662 and then Has_Discriminants
(Full_View
(Parent_Type
)))
7667 when Concurrent_Kind
=>
7668 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
7671 raise Program_Error
;
7674 if Etype
(Derived_Type
) = Any_Type
then
7678 -- Set delayed freeze and then derive subprograms, we need to do this
7679 -- in this order so that derived subprograms inherit the derived freeze
7682 Set_Has_Delayed_Freeze
(Derived_Type
);
7683 if Derive_Subps
then
7684 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7687 Set_Has_Primitive_Operations
7688 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
7689 end Build_Derived_Type
;
7691 -----------------------
7692 -- Build_Discriminal --
7693 -----------------------
7695 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
7696 D_Minal
: Entity_Id
;
7697 CR_Disc
: Entity_Id
;
7700 -- A discriminal has the same name as the discriminant
7703 Make_Defining_Identifier
(Sloc
(Discrim
),
7704 Chars
=> Chars
(Discrim
));
7706 Set_Ekind
(D_Minal
, E_In_Parameter
);
7707 Set_Mechanism
(D_Minal
, Default_Mechanism
);
7708 Set_Etype
(D_Minal
, Etype
(Discrim
));
7710 Set_Discriminal
(Discrim
, D_Minal
);
7711 Set_Discriminal_Link
(D_Minal
, Discrim
);
7713 -- For task types, build at once the discriminants of the corresponding
7714 -- record, which are needed if discriminants are used in entry defaults
7715 -- and in family bounds.
7717 if Is_Concurrent_Type
(Current_Scope
)
7718 or else Is_Limited_Type
(Current_Scope
)
7720 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
7722 Set_Ekind
(CR_Disc
, E_In_Parameter
);
7723 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
7724 Set_Etype
(CR_Disc
, Etype
(Discrim
));
7725 Set_Discriminal_Link
(CR_Disc
, Discrim
);
7726 Set_CR_Discriminant
(Discrim
, CR_Disc
);
7728 end Build_Discriminal
;
7730 ------------------------------------
7731 -- Build_Discriminant_Constraints --
7732 ------------------------------------
7734 function Build_Discriminant_Constraints
7737 Derived_Def
: Boolean := False) return Elist_Id
7739 C
: constant Node_Id
:= Constraint
(Def
);
7740 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
7742 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
7743 -- Saves the expression corresponding to a given discriminant in T
7745 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
7746 -- Return the Position number within array Discr_Expr of a discriminant
7747 -- D within the discriminant list of the discriminated type T.
7753 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
7757 Disc
:= First_Discriminant
(T
);
7758 for J
in Discr_Expr
'Range loop
7763 Next_Discriminant
(Disc
);
7766 -- Note: Since this function is called on discriminants that are
7767 -- known to belong to the discriminated type, falling through the
7768 -- loop with no match signals an internal compiler error.
7770 raise Program_Error
;
7773 -- Declarations local to Build_Discriminant_Constraints
7777 Elist
: constant Elist_Id
:= New_Elmt_List
;
7785 Discrim_Present
: Boolean := False;
7787 -- Start of processing for Build_Discriminant_Constraints
7790 -- The following loop will process positional associations only.
7791 -- For a positional association, the (single) discriminant is
7792 -- implicitly specified by position, in textual order (RM 3.7.2).
7794 Discr
:= First_Discriminant
(T
);
7795 Constr
:= First
(Constraints
(C
));
7796 for D
in Discr_Expr
'Range loop
7797 exit when Nkind
(Constr
) = N_Discriminant_Association
;
7800 Error_Msg_N
("too few discriminants given in constraint", C
);
7801 return New_Elmt_List
;
7803 elsif Nkind
(Constr
) = N_Range
7804 or else (Nkind
(Constr
) = N_Attribute_Reference
7806 Attribute_Name
(Constr
) = Name_Range
)
7809 ("a range is not a valid discriminant constraint", Constr
);
7810 Discr_Expr
(D
) := Error
;
7813 Analyze_And_Resolve
(Constr
, Base_Type
(Etype
(Discr
)));
7814 Discr_Expr
(D
) := Constr
;
7817 Next_Discriminant
(Discr
);
7821 if No
(Discr
) and then Present
(Constr
) then
7822 Error_Msg_N
("too many discriminants given in constraint", Constr
);
7823 return New_Elmt_List
;
7826 -- Named associations can be given in any order, but if both positional
7827 -- and named associations are used in the same discriminant constraint,
7828 -- then positional associations must occur first, at their normal
7829 -- position. Hence once a named association is used, the rest of the
7830 -- discriminant constraint must use only named associations.
7832 while Present
(Constr
) loop
7834 -- Positional association forbidden after a named association
7836 if Nkind
(Constr
) /= N_Discriminant_Association
then
7837 Error_Msg_N
("positional association follows named one", Constr
);
7838 return New_Elmt_List
;
7840 -- Otherwise it is a named association
7843 -- E records the type of the discriminants in the named
7844 -- association. All the discriminants specified in the same name
7845 -- association must have the same type.
7849 -- Search the list of discriminants in T to see if the simple name
7850 -- given in the constraint matches any of them.
7852 Id
:= First
(Selector_Names
(Constr
));
7853 while Present
(Id
) loop
7856 -- If Original_Discriminant is present, we are processing a
7857 -- generic instantiation and this is an instance node. We need
7858 -- to find the name of the corresponding discriminant in the
7859 -- actual record type T and not the name of the discriminant in
7860 -- the generic formal. Example:
7863 -- type G (D : int) is private;
7865 -- subtype W is G (D => 1);
7867 -- type Rec (X : int) is record ... end record;
7868 -- package Q is new P (G => Rec);
7870 -- At the point of the instantiation, formal type G is Rec
7871 -- and therefore when reanalyzing "subtype W is G (D => 1);"
7872 -- which really looks like "subtype W is Rec (D => 1);" at
7873 -- the point of instantiation, we want to find the discriminant
7874 -- that corresponds to D in Rec, i.e. X.
7876 if Present
(Original_Discriminant
(Id
)) then
7877 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
7881 Discr
:= First_Discriminant
(T
);
7882 while Present
(Discr
) loop
7883 if Chars
(Discr
) = Chars
(Id
) then
7888 Next_Discriminant
(Discr
);
7892 Error_Msg_N
("& does not match any discriminant", Id
);
7893 return New_Elmt_List
;
7895 -- The following is only useful for the benefit of generic
7896 -- instances but it does not interfere with other
7897 -- processing for the non-generic case so we do it in all
7898 -- cases (for generics this statement is executed when
7899 -- processing the generic definition, see comment at the
7900 -- beginning of this if statement).
7903 Set_Original_Discriminant
(Id
, Discr
);
7907 Position
:= Pos_Of_Discr
(T
, Discr
);
7909 if Present
(Discr_Expr
(Position
)) then
7910 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
7913 -- Each discriminant specified in the same named association
7914 -- must be associated with a separate copy of the
7915 -- corresponding expression.
7917 if Present
(Next
(Id
)) then
7918 Expr
:= New_Copy_Tree
(Expression
(Constr
));
7919 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
7921 Expr
:= Expression
(Constr
);
7924 Discr_Expr
(Position
) := Expr
;
7925 Analyze_And_Resolve
(Expr
, Base_Type
(Etype
(Discr
)));
7928 -- A discriminant association with more than one discriminant
7929 -- name is only allowed if the named discriminants are all of
7930 -- the same type (RM 3.7.1(8)).
7933 E
:= Base_Type
(Etype
(Discr
));
7935 elsif Base_Type
(Etype
(Discr
)) /= E
then
7937 ("all discriminants in an association " &
7938 "must have the same type", Id
);
7948 -- A discriminant constraint must provide exactly one value for each
7949 -- discriminant of the type (RM 3.7.1(8)).
7951 for J
in Discr_Expr
'Range loop
7952 if No
(Discr_Expr
(J
)) then
7953 Error_Msg_N
("too few discriminants given in constraint", C
);
7954 return New_Elmt_List
;
7958 -- Determine if there are discriminant expressions in the constraint
7960 for J
in Discr_Expr
'Range loop
7961 if Denotes_Discriminant
7962 (Discr_Expr
(J
), Check_Concurrent
=> True)
7964 Discrim_Present
:= True;
7968 -- Build an element list consisting of the expressions given in the
7969 -- discriminant constraint and apply the appropriate checks. The list
7970 -- is constructed after resolving any named discriminant associations
7971 -- and therefore the expressions appear in the textual order of the
7974 Discr
:= First_Discriminant
(T
);
7975 for J
in Discr_Expr
'Range loop
7976 if Discr_Expr
(J
) /= Error
then
7977 Append_Elmt
(Discr_Expr
(J
), Elist
);
7979 -- If any of the discriminant constraints is given by a
7980 -- discriminant and we are in a derived type declaration we
7981 -- have a discriminant renaming. Establish link between new
7982 -- and old discriminant.
7984 if Denotes_Discriminant
(Discr_Expr
(J
)) then
7986 Set_Corresponding_Discriminant
7987 (Entity
(Discr_Expr
(J
)), Discr
);
7990 -- Force the evaluation of non-discriminant expressions.
7991 -- If we have found a discriminant in the constraint 3.4(26)
7992 -- and 3.8(18) demand that no range checks are performed are
7993 -- after evaluation. If the constraint is for a component
7994 -- definition that has a per-object constraint, expressions are
7995 -- evaluated but not checked either. In all other cases perform
7999 if Discrim_Present
then
8002 elsif Nkind
(Parent
(Parent
(Def
))) = N_Component_Declaration
8004 Has_Per_Object_Constraint
8005 (Defining_Identifier
(Parent
(Parent
(Def
))))
8009 elsif Is_Access_Type
(Etype
(Discr
)) then
8010 Apply_Constraint_Check
(Discr_Expr
(J
), Etype
(Discr
));
8013 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
8016 Force_Evaluation
(Discr_Expr
(J
));
8019 -- Check that the designated type of an access discriminant's
8020 -- expression is not a class-wide type unless the discriminant's
8021 -- designated type is also class-wide.
8023 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
8024 and then not Is_Class_Wide_Type
8025 (Designated_Type
(Etype
(Discr
)))
8026 and then Etype
(Discr_Expr
(J
)) /= Any_Type
8027 and then Is_Class_Wide_Type
8028 (Designated_Type
(Etype
(Discr_Expr
(J
))))
8030 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
8032 elsif Is_Access_Type
(Etype
(Discr
))
8033 and then not Is_Access_Constant
(Etype
(Discr
))
8034 and then Is_Access_Type
(Etype
(Discr_Expr
(J
)))
8035 and then Is_Access_Constant
(Etype
(Discr_Expr
(J
)))
8038 ("constraint for discriminant& must be access to variable",
8043 Next_Discriminant
(Discr
);
8047 end Build_Discriminant_Constraints
;
8049 ---------------------------------
8050 -- Build_Discriminated_Subtype --
8051 ---------------------------------
8053 procedure Build_Discriminated_Subtype
8057 Related_Nod
: Node_Id
;
8058 For_Access
: Boolean := False)
8060 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
8061 Constrained
: constant Boolean :=
8063 and then not Is_Empty_Elmt_List
(Elist
)
8064 and then not Is_Class_Wide_Type
(T
))
8065 or else Is_Constrained
(T
);
8068 if Ekind
(T
) = E_Record_Type
then
8070 Set_Ekind
(Def_Id
, E_Private_Subtype
);
8071 Set_Is_For_Access_Subtype
(Def_Id
, True);
8073 Set_Ekind
(Def_Id
, E_Record_Subtype
);
8076 -- Inherit preelaboration flag from base, for types for which it
8077 -- may have been set: records, private types, protected types.
8079 Set_Known_To_Have_Preelab_Init
8080 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
8082 elsif Ekind
(T
) = E_Task_Type
then
8083 Set_Ekind
(Def_Id
, E_Task_Subtype
);
8085 elsif Ekind
(T
) = E_Protected_Type
then
8086 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
8087 Set_Known_To_Have_Preelab_Init
8088 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
8090 elsif Is_Private_Type
(T
) then
8091 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
8092 Set_Known_To_Have_Preelab_Init
8093 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
8095 elsif Is_Class_Wide_Type
(T
) then
8096 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
8099 -- Incomplete type. Attach subtype to list of dependents, to be
8100 -- completed with full view of parent type, unless is it the
8101 -- designated subtype of a record component within an init_proc.
8102 -- This last case arises for a component of an access type whose
8103 -- designated type is incomplete (e.g. a Taft Amendment type).
8104 -- The designated subtype is within an inner scope, and needs no
8105 -- elaboration, because only the access type is needed in the
8106 -- initialization procedure.
8108 Set_Ekind
(Def_Id
, Ekind
(T
));
8110 if For_Access
and then Within_Init_Proc
then
8113 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
8117 Set_Etype
(Def_Id
, T
);
8118 Init_Size_Align
(Def_Id
);
8119 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
8120 Set_Is_Constrained
(Def_Id
, Constrained
);
8122 Set_First_Entity
(Def_Id
, First_Entity
(T
));
8123 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
8125 -- If the subtype is the completion of a private declaration, there may
8126 -- have been representation clauses for the partial view, and they must
8127 -- be preserved. Build_Derived_Type chains the inherited clauses with
8128 -- the ones appearing on the extension. If this comes from a subtype
8129 -- declaration, all clauses are inherited.
8131 if No
(First_Rep_Item
(Def_Id
)) then
8132 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
8135 if Is_Tagged_Type
(T
) then
8136 Set_Is_Tagged_Type
(Def_Id
);
8137 Make_Class_Wide_Type
(Def_Id
);
8140 Set_Stored_Constraint
(Def_Id
, No_Elist
);
8143 Set_Discriminant_Constraint
(Def_Id
, Elist
);
8144 Set_Stored_Constraint_From_Discriminant_Constraint
(Def_Id
);
8147 if Is_Tagged_Type
(T
) then
8149 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
8150 -- concurrent record type (which has the list of primitive
8153 if Ada_Version
>= Ada_05
8154 and then Is_Concurrent_Type
(T
)
8156 Set_Corresponding_Record_Type
(Def_Id
,
8157 Corresponding_Record_Type
(T
));
8159 Set_Primitive_Operations
(Def_Id
, Primitive_Operations
(T
));
8162 Set_Is_Abstract_Type
(Def_Id
, Is_Abstract_Type
(T
));
8165 -- Subtypes introduced by component declarations do not need to be
8166 -- marked as delayed, and do not get freeze nodes, because the semantics
8167 -- verifies that the parents of the subtypes are frozen before the
8168 -- enclosing record is frozen.
8170 if not Is_Type
(Scope
(Def_Id
)) then
8171 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
8173 if Is_Private_Type
(T
)
8174 and then Present
(Full_View
(T
))
8176 Conditional_Delay
(Def_Id
, Full_View
(T
));
8178 Conditional_Delay
(Def_Id
, T
);
8182 if Is_Record_Type
(T
) then
8183 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
8186 and then not Is_Empty_Elmt_List
(Elist
)
8187 and then not For_Access
8189 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
8190 elsif not For_Access
then
8191 Set_Cloned_Subtype
(Def_Id
, T
);
8194 end Build_Discriminated_Subtype
;
8196 ---------------------------
8197 -- Build_Itype_Reference --
8198 ---------------------------
8200 procedure Build_Itype_Reference
8204 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(Nod
));
8206 Set_Itype
(IR
, Ityp
);
8207 Insert_After
(Nod
, IR
);
8208 end Build_Itype_Reference
;
8210 ------------------------
8211 -- Build_Scalar_Bound --
8212 ------------------------
8214 function Build_Scalar_Bound
8217 Der_T
: Entity_Id
) return Node_Id
8219 New_Bound
: Entity_Id
;
8222 -- Note: not clear why this is needed, how can the original bound
8223 -- be unanalyzed at this point? and if it is, what business do we
8224 -- have messing around with it? and why is the base type of the
8225 -- parent type the right type for the resolution. It probably is
8226 -- not! It is OK for the new bound we are creating, but not for
8227 -- the old one??? Still if it never happens, no problem!
8229 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
8231 if Nkind_In
(Bound
, N_Integer_Literal
, N_Real_Literal
) then
8232 New_Bound
:= New_Copy
(Bound
);
8233 Set_Etype
(New_Bound
, Der_T
);
8234 Set_Analyzed
(New_Bound
);
8236 elsif Is_Entity_Name
(Bound
) then
8237 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
8239 -- The following is almost certainly wrong. What business do we have
8240 -- relocating a node (Bound) that is presumably still attached to
8241 -- the tree elsewhere???
8244 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
8247 Set_Etype
(New_Bound
, Der_T
);
8249 end Build_Scalar_Bound
;
8251 --------------------------------
8252 -- Build_Underlying_Full_View --
8253 --------------------------------
8255 procedure Build_Underlying_Full_View
8260 Loc
: constant Source_Ptr
:= Sloc
(N
);
8261 Subt
: constant Entity_Id
:=
8262 Make_Defining_Identifier
8263 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
8270 procedure Set_Discriminant_Name
(Id
: Node_Id
);
8271 -- If the derived type has discriminants, they may rename discriminants
8272 -- of the parent. When building the full view of the parent, we need to
8273 -- recover the names of the original discriminants if the constraint is
8274 -- given by named associations.
8276 ---------------------------
8277 -- Set_Discriminant_Name --
8278 ---------------------------
8280 procedure Set_Discriminant_Name
(Id
: Node_Id
) is
8284 Set_Original_Discriminant
(Id
, Empty
);
8286 if Has_Discriminants
(Typ
) then
8287 Disc
:= First_Discriminant
(Typ
);
8288 while Present
(Disc
) loop
8289 if Chars
(Disc
) = Chars
(Id
)
8290 and then Present
(Corresponding_Discriminant
(Disc
))
8292 Set_Chars
(Id
, Chars
(Corresponding_Discriminant
(Disc
)));
8294 Next_Discriminant
(Disc
);
8297 end Set_Discriminant_Name
;
8299 -- Start of processing for Build_Underlying_Full_View
8302 if Nkind
(N
) = N_Full_Type_Declaration
then
8303 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
8305 elsif Nkind
(N
) = N_Subtype_Declaration
then
8306 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
8308 elsif Nkind
(N
) = N_Component_Declaration
then
8311 (Constraint
(Subtype_Indication
(Component_Definition
(N
))));
8314 raise Program_Error
;
8317 C
:= First
(Constraints
(Constr
));
8318 while Present
(C
) loop
8319 if Nkind
(C
) = N_Discriminant_Association
then
8320 Id
:= First
(Selector_Names
(C
));
8321 while Present
(Id
) loop
8322 Set_Discriminant_Name
(Id
);
8331 Make_Subtype_Declaration
(Loc
,
8332 Defining_Identifier
=> Subt
,
8333 Subtype_Indication
=>
8334 Make_Subtype_Indication
(Loc
,
8335 Subtype_Mark
=> New_Reference_To
(Par
, Loc
),
8336 Constraint
=> New_Copy_Tree
(Constr
)));
8338 -- If this is a component subtype for an outer itype, it is not
8339 -- a list member, so simply set the parent link for analysis: if
8340 -- the enclosing type does not need to be in a declarative list,
8341 -- neither do the components.
8343 if Is_List_Member
(N
)
8344 and then Nkind
(N
) /= N_Component_Declaration
8346 Insert_Before
(N
, Indic
);
8348 Set_Parent
(Indic
, Parent
(N
));
8352 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
8353 end Build_Underlying_Full_View
;
8355 -------------------------------
8356 -- Check_Abstract_Overriding --
8357 -------------------------------
8359 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
8360 Alias_Subp
: Entity_Id
;
8367 Op_List
:= Primitive_Operations
(T
);
8369 -- Loop to check primitive operations
8371 Elmt
:= First_Elmt
(Op_List
);
8372 while Present
(Elmt
) loop
8373 Subp
:= Node
(Elmt
);
8374 Alias_Subp
:= Alias
(Subp
);
8376 -- Inherited subprograms are identified by the fact that they do not
8377 -- come from source, and the associated source location is the
8378 -- location of the first subtype of the derived type.
8380 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
8381 -- subprograms that "require overriding".
8383 -- Special exception, do not complain about failure to override the
8384 -- stream routines _Input and _Output, as well as the primitive
8385 -- operations used in dispatching selects since we always provide
8386 -- automatic overridings for these subprograms.
8388 -- Also ignore this rule for convention CIL since .NET libraries
8389 -- do bizarre things with interfaces???
8391 -- The partial view of T may have been a private extension, for
8392 -- which inherited functions dispatching on result are abstract.
8393 -- If the full view is a null extension, there is no need for
8394 -- overriding in Ada2005, but wrappers need to be built for them
8395 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
8397 if Is_Null_Extension
(T
)
8398 and then Has_Controlling_Result
(Subp
)
8399 and then Ada_Version
>= Ada_05
8400 and then Present
(Alias_Subp
)
8401 and then not Comes_From_Source
(Subp
)
8402 and then not Is_Abstract_Subprogram
(Alias_Subp
)
8403 and then not Is_Access_Type
(Etype
(Subp
))
8407 -- Ada 2005 (AI-251): Internal entities of interfaces need no
8408 -- processing because this check is done with the aliased
8411 elsif Present
(Interface_Alias
(Subp
)) then
8414 elsif (Is_Abstract_Subprogram
(Subp
)
8415 or else Requires_Overriding
(Subp
)
8417 (Has_Controlling_Result
(Subp
)
8418 and then Present
(Alias_Subp
)
8419 and then not Comes_From_Source
(Subp
)
8420 and then Sloc
(Subp
) = Sloc
(First_Subtype
(T
))))
8421 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
8422 and then not Is_TSS
(Subp
, TSS_Stream_Output
)
8423 and then not Is_Abstract_Type
(T
)
8424 and then Convention
(T
) /= Convention_CIL
8425 and then not Is_Predefined_Interface_Primitive
(Subp
)
8427 -- Ada 2005 (AI-251): Do not consider hidden entities associated
8428 -- with abstract interface types because the check will be done
8429 -- with the aliased entity (otherwise we generate a duplicated
8432 and then not Present
(Interface_Alias
(Subp
))
8434 if Present
(Alias_Subp
) then
8436 -- Only perform the check for a derived subprogram when the
8437 -- type has an explicit record extension. This avoids incorrect
8438 -- flagging of abstract subprograms for the case of a type
8439 -- without an extension that is derived from a formal type
8440 -- with a tagged actual (can occur within a private part).
8442 -- Ada 2005 (AI-391): In the case of an inherited function with
8443 -- a controlling result of the type, the rule does not apply if
8444 -- the type is a null extension (unless the parent function
8445 -- itself is abstract, in which case the function must still be
8446 -- be overridden). The expander will generate an overriding
8447 -- wrapper function calling the parent subprogram (see
8448 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
8450 Type_Def
:= Type_Definition
(Parent
(T
));
8452 if Nkind
(Type_Def
) = N_Derived_Type_Definition
8453 and then Present
(Record_Extension_Part
(Type_Def
))
8455 (Ada_Version
< Ada_05
8456 or else not Is_Null_Extension
(T
)
8457 or else Ekind
(Subp
) = E_Procedure
8458 or else not Has_Controlling_Result
(Subp
)
8459 or else Is_Abstract_Subprogram
(Alias_Subp
)
8460 or else Requires_Overriding
(Subp
)
8461 or else Is_Access_Type
(Etype
(Subp
)))
8463 -- Avoid reporting error in case of abstract predefined
8464 -- primitive inherited from interface type because the
8465 -- body of internally generated predefined primitives
8466 -- of tagged types are generated later by Freeze_Type
8468 if Is_Interface
(Root_Type
(T
))
8469 and then Is_Abstract_Subprogram
(Subp
)
8470 and then Is_Predefined_Dispatching_Operation
(Subp
)
8471 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
8477 ("type must be declared abstract or & overridden",
8480 -- Traverse the whole chain of aliased subprograms to
8481 -- complete the error notification. This is especially
8482 -- useful for traceability of the chain of entities when
8483 -- the subprogram corresponds with an interface
8484 -- subprogram (which may be defined in another package).
8486 if Present
(Alias_Subp
) then
8492 while Present
(Alias
(E
)) loop
8493 Error_Msg_Sloc
:= Sloc
(E
);
8495 ("\& has been inherited #", T
, Subp
);
8499 Error_Msg_Sloc
:= Sloc
(E
);
8501 ("\& has been inherited from subprogram #",
8507 -- Ada 2005 (AI-345): Protected or task type implementing
8508 -- abstract interfaces.
8510 elsif Is_Concurrent_Record_Type
(T
)
8511 and then Present
(Interfaces
(T
))
8513 -- The controlling formal of Subp must be of mode "out",
8514 -- "in out" or an access-to-variable to be overridden.
8516 -- Error message below needs rewording (remember comma
8517 -- in -gnatj mode) ???
8519 if Ekind
(First_Formal
(Subp
)) = E_In_Parameter
8520 and then Ekind
(Subp
) /= E_Function
8522 if not Is_Predefined_Dispatching_Operation
(Subp
) then
8524 ("first formal of & must be of mode `OUT`, " &
8525 "`IN OUT` or access-to-variable", T
, Subp
);
8527 ("\to be overridden by protected procedure or " &
8528 "entry (RM 9.4(11.9/2))", T
);
8531 -- Some other kind of overriding failure
8535 ("interface subprogram & must be overridden",
8538 -- Examine primitive operations of synchronized type,
8539 -- to find homonyms that have the wrong profile.
8546 First_Entity
(Corresponding_Concurrent_Type
(T
));
8547 while Present
(Prim
) loop
8548 if Chars
(Prim
) = Chars
(Subp
) then
8550 ("profile is not type conformant with "
8551 & "prefixed view profile of "
8552 & "inherited operation&", Prim
, Subp
);
8562 Error_Msg_Node_2
:= T
;
8564 ("abstract subprogram& not allowed for type&", Subp
);
8566 -- Also post unconditional warning on the type (unconditional
8567 -- so that if there are more than one of these cases, we get
8568 -- them all, and not just the first one).
8570 Error_Msg_Node_2
:= Subp
;
8572 ("nonabstract type& has abstract subprogram&!", T
);
8576 -- Ada 2005 (AI05-0030): Inspect hidden subprograms which provide
8577 -- the mapping between interface and implementing type primitives.
8578 -- If the interface alias is marked as Implemented_By_Entry, the
8579 -- alias must be an entry wrapper.
8581 if Ada_Version
>= Ada_05
8582 and then Is_Hidden
(Subp
)
8583 and then Present
(Interface_Alias
(Subp
))
8584 and then Implemented_By_Entry
(Interface_Alias
(Subp
))
8585 and then Present
(Alias_Subp
)
8587 (not Is_Primitive_Wrapper
(Alias_Subp
)
8588 or else Ekind
(Wrapped_Entity
(Alias_Subp
)) /= E_Entry
)
8591 Error_Ent
: Entity_Id
:= T
;
8594 if Is_Concurrent_Record_Type
(Error_Ent
) then
8595 Error_Ent
:= Corresponding_Concurrent_Type
(Error_Ent
);
8598 Error_Msg_Node_2
:= Interface_Alias
(Subp
);
8600 ("type & must implement abstract subprogram & with an entry",
8601 Error_Ent
, Error_Ent
);
8607 end Check_Abstract_Overriding
;
8609 ------------------------------------------------
8610 -- Check_Access_Discriminant_Requires_Limited --
8611 ------------------------------------------------
8613 procedure Check_Access_Discriminant_Requires_Limited
8618 -- A discriminant_specification for an access discriminant shall appear
8619 -- only in the declaration for a task or protected type, or for a type
8620 -- with the reserved word 'limited' in its definition or in one of its
8621 -- ancestors. (RM 3.7(10))
8623 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
8624 and then not Is_Concurrent_Type
(Current_Scope
)
8625 and then not Is_Concurrent_Record_Type
(Current_Scope
)
8626 and then not Is_Limited_Record
(Current_Scope
)
8627 and then Ekind
(Current_Scope
) /= E_Limited_Private_Type
8630 ("access discriminants allowed only for limited types", Loc
);
8632 end Check_Access_Discriminant_Requires_Limited
;
8634 -----------------------------------
8635 -- Check_Aliased_Component_Types --
8636 -----------------------------------
8638 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
8642 -- ??? Also need to check components of record extensions, but not
8643 -- components of protected types (which are always limited).
8645 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
8646 -- types to be unconstrained. This is safe because it is illegal to
8647 -- create access subtypes to such types with explicit discriminant
8650 if not Is_Limited_Type
(T
) then
8651 if Ekind
(T
) = E_Record_Type
then
8652 C
:= First_Component
(T
);
8653 while Present
(C
) loop
8655 and then Has_Discriminants
(Etype
(C
))
8656 and then not Is_Constrained
(Etype
(C
))
8657 and then not In_Instance_Body
8658 and then Ada_Version
< Ada_05
8661 ("aliased component must be constrained (RM 3.6(11))",
8668 elsif Ekind
(T
) = E_Array_Type
then
8669 if Has_Aliased_Components
(T
)
8670 and then Has_Discriminants
(Component_Type
(T
))
8671 and then not Is_Constrained
(Component_Type
(T
))
8672 and then not In_Instance_Body
8673 and then Ada_Version
< Ada_05
8676 ("aliased component type must be constrained (RM 3.6(11))",
8681 end Check_Aliased_Component_Types
;
8683 ----------------------
8684 -- Check_Completion --
8685 ----------------------
8687 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
8690 procedure Post_Error
;
8691 -- Post error message for lack of completion for entity E
8697 procedure Post_Error
is
8699 procedure Missing_Body
;
8700 -- Output missing body message
8706 procedure Missing_Body
is
8708 -- Spec is in same unit, so we can post on spec
8710 if In_Same_Source_Unit
(Body_Id
, E
) then
8711 Error_Msg_N
("missing body for &", E
);
8713 -- Spec is in a separate unit, so we have to post on the body
8716 Error_Msg_NE
("missing body for & declared#!", Body_Id
, E
);
8720 -- Start of processing for Post_Error
8723 if not Comes_From_Source
(E
) then
8725 if Ekind
(E
) = E_Task_Type
8726 or else Ekind
(E
) = E_Protected_Type
8728 -- It may be an anonymous protected type created for a
8729 -- single variable. Post error on variable, if present.
8735 Var
:= First_Entity
(Current_Scope
);
8736 while Present
(Var
) loop
8737 exit when Etype
(Var
) = E
8738 and then Comes_From_Source
(Var
);
8743 if Present
(Var
) then
8750 -- If a generated entity has no completion, then either previous
8751 -- semantic errors have disabled the expansion phase, or else we had
8752 -- missing subunits, or else we are compiling without expansion,
8753 -- or else something is very wrong.
8755 if not Comes_From_Source
(E
) then
8757 (Serious_Errors_Detected
> 0
8758 or else Configurable_Run_Time_Violations
> 0
8759 or else Subunits_Missing
8760 or else not Expander_Active
);
8763 -- Here for source entity
8766 -- Here if no body to post the error message, so we post the error
8767 -- on the declaration that has no completion. This is not really
8768 -- the right place to post it, think about this later ???
8770 if No
(Body_Id
) then
8773 ("missing full declaration for }", Parent
(E
), E
);
8776 ("missing body for &", Parent
(E
), E
);
8779 -- Package body has no completion for a declaration that appears
8780 -- in the corresponding spec. Post error on the body, with a
8781 -- reference to the non-completed declaration.
8784 Error_Msg_Sloc
:= Sloc
(E
);
8788 ("missing full declaration for }!", Body_Id
, E
);
8790 elsif Is_Overloadable
(E
)
8791 and then Current_Entity_In_Scope
(E
) /= E
8793 -- It may be that the completion is mistyped and appears as
8794 -- a distinct overloading of the entity.
8797 Candidate
: constant Entity_Id
:=
8798 Current_Entity_In_Scope
(E
);
8799 Decl
: constant Node_Id
:=
8800 Unit_Declaration_Node
(Candidate
);
8803 if Is_Overloadable
(Candidate
)
8804 and then Ekind
(Candidate
) = Ekind
(E
)
8805 and then Nkind
(Decl
) = N_Subprogram_Body
8806 and then Acts_As_Spec
(Decl
)
8808 Check_Type_Conformant
(Candidate
, E
);
8822 -- Start of processing for Check_Completion
8825 E
:= First_Entity
(Current_Scope
);
8826 while Present
(E
) loop
8827 if Is_Intrinsic_Subprogram
(E
) then
8830 -- The following situation requires special handling: a child unit
8831 -- that appears in the context clause of the body of its parent:
8833 -- procedure Parent.Child (...);
8835 -- with Parent.Child;
8836 -- package body Parent is
8838 -- Here Parent.Child appears as a local entity, but should not be
8839 -- flagged as requiring completion, because it is a compilation
8842 -- Ignore missing completion for a subprogram that does not come from
8843 -- source (including the _Call primitive operation of RAS types,
8844 -- which has to have the flag Comes_From_Source for other purposes):
8845 -- we assume that the expander will provide the missing completion.
8846 -- In case of previous errors, other expansion actions that provide
8847 -- bodies for null procedures with not be invoked, so inhibit message
8849 -- Note that E_Operator is not in the list that follows, because
8850 -- this kind is reserved for predefined operators, that are
8851 -- intrinsic and do not need completion.
8853 elsif Ekind
(E
) = E_Function
8854 or else Ekind
(E
) = E_Procedure
8855 or else Ekind
(E
) = E_Generic_Function
8856 or else Ekind
(E
) = E_Generic_Procedure
8858 if Has_Completion
(E
) then
8861 elsif Is_Subprogram
(E
) and then Is_Abstract_Subprogram
(E
) then
8864 elsif Is_Subprogram
(E
)
8865 and then (not Comes_From_Source
(E
)
8866 or else Chars
(E
) = Name_uCall
)
8871 Nkind
(Parent
(Unit_Declaration_Node
(E
))) = N_Compilation_Unit
8875 elsif Nkind
(Parent
(E
)) = N_Procedure_Specification
8876 and then Null_Present
(Parent
(E
))
8877 and then Serious_Errors_Detected
> 0
8885 elsif Is_Entry
(E
) then
8886 if not Has_Completion
(E
) and then
8887 (Ekind
(Scope
(E
)) = E_Protected_Object
8888 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
8893 elsif Is_Package_Or_Generic_Package
(E
) then
8894 if Unit_Requires_Body
(E
) then
8895 if not Has_Completion
(E
)
8896 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
8902 elsif not Is_Child_Unit
(E
) then
8903 May_Need_Implicit_Body
(E
);
8906 elsif Ekind
(E
) = E_Incomplete_Type
8907 and then No
(Underlying_Type
(E
))
8911 elsif (Ekind
(E
) = E_Task_Type
or else
8912 Ekind
(E
) = E_Protected_Type
)
8913 and then not Has_Completion
(E
)
8917 -- A single task declared in the current scope is a constant, verify
8918 -- that the body of its anonymous type is in the same scope. If the
8919 -- task is defined elsewhere, this may be a renaming declaration for
8920 -- which no completion is needed.
8922 elsif Ekind
(E
) = E_Constant
8923 and then Ekind
(Etype
(E
)) = E_Task_Type
8924 and then not Has_Completion
(Etype
(E
))
8925 and then Scope
(Etype
(E
)) = Current_Scope
8929 elsif Ekind
(E
) = E_Protected_Object
8930 and then not Has_Completion
(Etype
(E
))
8934 elsif Ekind
(E
) = E_Record_Type
then
8935 if Is_Tagged_Type
(E
) then
8936 Check_Abstract_Overriding
(E
);
8937 Check_Conventions
(E
);
8940 Check_Aliased_Component_Types
(E
);
8942 elsif Ekind
(E
) = E_Array_Type
then
8943 Check_Aliased_Component_Types
(E
);
8949 end Check_Completion
;
8951 ----------------------------
8952 -- Check_Delta_Expression --
8953 ----------------------------
8955 procedure Check_Delta_Expression
(E
: Node_Id
) is
8957 if not (Is_Real_Type
(Etype
(E
))) then
8958 Wrong_Type
(E
, Any_Real
);
8960 elsif not Is_OK_Static_Expression
(E
) then
8961 Flag_Non_Static_Expr
8962 ("non-static expression used for delta value!", E
);
8964 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
8965 Error_Msg_N
("delta expression must be positive", E
);
8971 -- If any of above errors occurred, then replace the incorrect
8972 -- expression by the real 0.1, which should prevent further errors.
8975 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
8976 Analyze_And_Resolve
(E
, Standard_Float
);
8977 end Check_Delta_Expression
;
8979 -----------------------------
8980 -- Check_Digits_Expression --
8981 -----------------------------
8983 procedure Check_Digits_Expression
(E
: Node_Id
) is
8985 if not (Is_Integer_Type
(Etype
(E
))) then
8986 Wrong_Type
(E
, Any_Integer
);
8988 elsif not Is_OK_Static_Expression
(E
) then
8989 Flag_Non_Static_Expr
8990 ("non-static expression used for digits value!", E
);
8992 elsif Expr_Value
(E
) <= 0 then
8993 Error_Msg_N
("digits value must be greater than zero", E
);
8999 -- If any of above errors occurred, then replace the incorrect
9000 -- expression by the integer 1, which should prevent further errors.
9002 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
9003 Analyze_And_Resolve
(E
, Standard_Integer
);
9005 end Check_Digits_Expression
;
9007 --------------------------
9008 -- Check_Initialization --
9009 --------------------------
9011 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
9013 if Is_Limited_Type
(T
)
9014 and then not In_Instance
9015 and then not In_Inlined_Body
9017 if not OK_For_Limited_Init
(T
, Exp
) then
9019 -- In GNAT mode, this is just a warning, to allow it to be evilly
9020 -- turned off. Otherwise it is a real error.
9024 ("?cannot initialize entities of limited type!", Exp
);
9026 elsif Ada_Version
< Ada_05
then
9028 ("cannot initialize entities of limited type", Exp
);
9029 Explain_Limited_Type
(T
, Exp
);
9032 -- Specialize error message according to kind of illegal
9033 -- initial expression.
9035 if Nkind
(Exp
) = N_Type_Conversion
9036 and then Nkind
(Expression
(Exp
)) = N_Function_Call
9039 ("illegal context for call"
9040 & " to function with limited result", Exp
);
9044 ("initialization of limited object requires aggregate "
9045 & "or function call", Exp
);
9050 end Check_Initialization
;
9052 ----------------------
9053 -- Check_Interfaces --
9054 ----------------------
9056 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
) is
9057 Parent_Type
: constant Entity_Id
:= Etype
(Defining_Identifier
(N
));
9060 Iface_Def
: Node_Id
;
9061 Iface_Typ
: Entity_Id
;
9062 Parent_Node
: Node_Id
;
9064 Is_Task
: Boolean := False;
9065 -- Set True if parent type or any progenitor is a task interface
9067 Is_Protected
: Boolean := False;
9068 -- Set True if parent type or any progenitor is a protected interface
9070 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
);
9071 -- Check that a progenitor is compatible with declaration.
9072 -- Error is posted on Error_Node.
9078 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
) is
9079 Iface_Id
: constant Entity_Id
:=
9080 Defining_Identifier
(Parent
(Iface_Def
));
9084 if Nkind
(N
) = N_Private_Extension_Declaration
then
9087 Type_Def
:= Type_Definition
(N
);
9090 if Is_Task_Interface
(Iface_Id
) then
9093 elsif Is_Protected_Interface
(Iface_Id
) then
9094 Is_Protected
:= True;
9097 if Is_Synchronized_Interface
(Iface_Id
) then
9099 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
9100 -- extension derived from a synchronized interface must explicitly
9101 -- be declared synchronized, because the full view will be a
9102 -- synchronized type.
9104 if Nkind
(N
) = N_Private_Extension_Declaration
then
9105 if not Synchronized_Present
(N
) then
9107 ("private extension of& must be explicitly synchronized",
9111 -- However, by 3.9.4(16/2), a full type that is a record extension
9112 -- is never allowed to derive from a synchronized interface (note
9113 -- that interfaces must be excluded from this check, because those
9114 -- are represented by derived type definitions in some cases).
9116 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
9117 and then not Interface_Present
(Type_Definition
(N
))
9119 Error_Msg_N
("record extension cannot derive from synchronized"
9120 & " interface", Error_Node
);
9124 -- Check that the characteristics of the progenitor are compatible
9125 -- with the explicit qualifier in the declaration.
9126 -- The check only applies to qualifiers that come from source.
9127 -- Limited_Present also appears in the declaration of corresponding
9128 -- records, and the check does not apply to them.
9130 if Limited_Present
(Type_Def
)
9132 Is_Concurrent_Record_Type
(Defining_Identifier
(N
))
9134 if Is_Limited_Interface
(Parent_Type
)
9135 and then not Is_Limited_Interface
(Iface_Id
)
9138 ("progenitor& must be limited interface",
9139 Error_Node
, Iface_Id
);
9142 (Task_Present
(Iface_Def
)
9143 or else Protected_Present
(Iface_Def
)
9144 or else Synchronized_Present
(Iface_Def
))
9145 and then Nkind
(N
) /= N_Private_Extension_Declaration
9146 and then not Error_Posted
(N
)
9149 ("progenitor& must be limited interface",
9150 Error_Node
, Iface_Id
);
9153 -- Protected interfaces can only inherit from limited, synchronized
9154 -- or protected interfaces.
9156 elsif Nkind
(N
) = N_Full_Type_Declaration
9157 and then Protected_Present
(Type_Def
)
9159 if Limited_Present
(Iface_Def
)
9160 or else Synchronized_Present
(Iface_Def
)
9161 or else Protected_Present
(Iface_Def
)
9165 elsif Task_Present
(Iface_Def
) then
9166 Error_Msg_N
("(Ada 2005) protected interface cannot inherit"
9167 & " from task interface", Error_Node
);
9170 Error_Msg_N
("(Ada 2005) protected interface cannot inherit"
9171 & " from non-limited interface", Error_Node
);
9174 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
9175 -- limited and synchronized.
9177 elsif Synchronized_Present
(Type_Def
) then
9178 if Limited_Present
(Iface_Def
)
9179 or else Synchronized_Present
(Iface_Def
)
9183 elsif Protected_Present
(Iface_Def
)
9184 and then Nkind
(N
) /= N_Private_Extension_Declaration
9186 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
9187 & " from protected interface", Error_Node
);
9189 elsif Task_Present
(Iface_Def
)
9190 and then Nkind
(N
) /= N_Private_Extension_Declaration
9192 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
9193 & " from task interface", Error_Node
);
9195 elsif not Is_Limited_Interface
(Iface_Id
) then
9196 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit"
9197 & " from non-limited interface", Error_Node
);
9200 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
9201 -- synchronized or task interfaces.
9203 elsif Nkind
(N
) = N_Full_Type_Declaration
9204 and then Task_Present
(Type_Def
)
9206 if Limited_Present
(Iface_Def
)
9207 or else Synchronized_Present
(Iface_Def
)
9208 or else Task_Present
(Iface_Def
)
9212 elsif Protected_Present
(Iface_Def
) then
9213 Error_Msg_N
("(Ada 2005) task interface cannot inherit from"
9214 & " protected interface", Error_Node
);
9217 Error_Msg_N
("(Ada 2005) task interface cannot inherit from"
9218 & " non-limited interface", Error_Node
);
9223 -- Start of processing for Check_Interfaces
9226 if Is_Interface
(Parent_Type
) then
9227 if Is_Task_Interface
(Parent_Type
) then
9230 elsif Is_Protected_Interface
(Parent_Type
) then
9231 Is_Protected
:= True;
9235 if Nkind
(N
) = N_Private_Extension_Declaration
then
9237 -- Check that progenitors are compatible with declaration
9239 Iface
:= First
(Interface_List
(Def
));
9240 while Present
(Iface
) loop
9241 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
9243 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
9244 Iface_Def
:= Type_Definition
(Parent_Node
);
9246 if not Is_Interface
(Iface_Typ
) then
9247 Diagnose_Interface
(Iface
, Iface_Typ
);
9250 Check_Ifaces
(Iface_Def
, Iface
);
9256 if Is_Task
and Is_Protected
then
9258 ("type cannot derive from task and protected interface", N
);
9264 -- Full type declaration of derived type.
9265 -- Check compatibility with parent if it is interface type
9267 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
9268 and then Is_Interface
(Parent_Type
)
9270 Parent_Node
:= Parent
(Parent_Type
);
9272 -- More detailed checks for interface varieties
9275 (Iface_Def
=> Type_Definition
(Parent_Node
),
9276 Error_Node
=> Subtype_Indication
(Type_Definition
(N
)));
9279 Iface
:= First
(Interface_List
(Def
));
9280 while Present
(Iface
) loop
9281 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
9283 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
9284 Iface_Def
:= Type_Definition
(Parent_Node
);
9286 if not Is_Interface
(Iface_Typ
) then
9287 Diagnose_Interface
(Iface
, Iface_Typ
);
9290 -- "The declaration of a specific descendant of an interface
9291 -- type freezes the interface type" RM 13.14
9293 Freeze_Before
(N
, Iface_Typ
);
9294 Check_Ifaces
(Iface_Def
, Error_Node
=> Iface
);
9300 if Is_Task
and Is_Protected
then
9302 ("type cannot derive from task and protected interface", N
);
9304 end Check_Interfaces
;
9306 ------------------------------------
9307 -- Check_Or_Process_Discriminants --
9308 ------------------------------------
9310 -- If an incomplete or private type declaration was already given for the
9311 -- type, the discriminants may have already been processed if they were
9312 -- present on the incomplete declaration. In this case a full conformance
9313 -- check is performed otherwise just process them.
9315 procedure Check_Or_Process_Discriminants
9318 Prev
: Entity_Id
:= Empty
)
9321 if Has_Discriminants
(T
) then
9323 -- Make the discriminants visible to component declarations
9330 D
:= First_Discriminant
(T
);
9331 while Present
(D
) loop
9332 Prev
:= Current_Entity
(D
);
9333 Set_Current_Entity
(D
);
9334 Set_Is_Immediately_Visible
(D
);
9335 Set_Homonym
(D
, Prev
);
9337 -- Ada 2005 (AI-230): Access discriminant allowed in
9338 -- non-limited record types.
9340 if Ada_Version
< Ada_05
then
9342 -- This restriction gets applied to the full type here. It
9343 -- has already been applied earlier to the partial view.
9345 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
9348 Next_Discriminant
(D
);
9352 elsif Present
(Discriminant_Specifications
(N
)) then
9353 Process_Discriminants
(N
, Prev
);
9355 end Check_Or_Process_Discriminants
;
9357 ----------------------
9358 -- Check_Real_Bound --
9359 ----------------------
9361 procedure Check_Real_Bound
(Bound
: Node_Id
) is
9363 if not Is_Real_Type
(Etype
(Bound
)) then
9365 ("bound in real type definition must be of real type", Bound
);
9367 elsif not Is_OK_Static_Expression
(Bound
) then
9368 Flag_Non_Static_Expr
9369 ("non-static expression used for real type bound!", Bound
);
9376 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
9378 Resolve
(Bound
, Standard_Float
);
9379 end Check_Real_Bound
;
9381 ------------------------------
9382 -- Complete_Private_Subtype --
9383 ------------------------------
9385 procedure Complete_Private_Subtype
9388 Full_Base
: Entity_Id
;
9389 Related_Nod
: Node_Id
)
9391 Save_Next_Entity
: Entity_Id
;
9392 Save_Homonym
: Entity_Id
;
9395 -- Set semantic attributes for (implicit) private subtype completion.
9396 -- If the full type has no discriminants, then it is a copy of the full
9397 -- view of the base. Otherwise, it is a subtype of the base with a
9398 -- possible discriminant constraint. Save and restore the original
9399 -- Next_Entity field of full to ensure that the calls to Copy_Node
9400 -- do not corrupt the entity chain.
9402 -- Note that the type of the full view is the same entity as the type of
9403 -- the partial view. In this fashion, the subtype has access to the
9404 -- correct view of the parent.
9406 Save_Next_Entity
:= Next_Entity
(Full
);
9407 Save_Homonym
:= Homonym
(Priv
);
9409 case Ekind
(Full_Base
) is
9410 when E_Record_Type |
9416 Copy_Node
(Priv
, Full
);
9418 Set_Has_Discriminants
(Full
, Has_Discriminants
(Full_Base
));
9419 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
9420 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
9423 Copy_Node
(Full_Base
, Full
);
9424 Set_Chars
(Full
, Chars
(Priv
));
9425 Conditional_Delay
(Full
, Priv
);
9426 Set_Sloc
(Full
, Sloc
(Priv
));
9429 Set_Next_Entity
(Full
, Save_Next_Entity
);
9430 Set_Homonym
(Full
, Save_Homonym
);
9431 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
9433 -- Set common attributes for all subtypes
9435 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
9437 -- The Etype of the full view is inconsistent. Gigi needs to see the
9438 -- structural full view, which is what the current scheme gives:
9439 -- the Etype of the full view is the etype of the full base. However,
9440 -- if the full base is a derived type, the full view then looks like
9441 -- a subtype of the parent, not a subtype of the full base. If instead
9444 -- Set_Etype (Full, Full_Base);
9446 -- then we get inconsistencies in the front-end (confusion between
9447 -- views). Several outstanding bugs are related to this ???
9449 Set_Is_First_Subtype
(Full
, False);
9450 Set_Scope
(Full
, Scope
(Priv
));
9451 Set_Size_Info
(Full
, Full_Base
);
9452 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
9453 Set_Is_Itype
(Full
);
9455 -- A subtype of a private-type-without-discriminants, whose full-view
9456 -- has discriminants with default expressions, is not constrained!
9458 if not Has_Discriminants
(Priv
) then
9459 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
9461 if Has_Discriminants
(Full_Base
) then
9462 Set_Discriminant_Constraint
9463 (Full
, Discriminant_Constraint
(Full_Base
));
9465 -- The partial view may have been indefinite, the full view
9468 Set_Has_Unknown_Discriminants
9469 (Full
, Has_Unknown_Discriminants
(Full_Base
));
9473 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
9474 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
9476 -- Freeze the private subtype entity if its parent is delayed, and not
9477 -- already frozen. We skip this processing if the type is an anonymous
9478 -- subtype of a record component, or is the corresponding record of a
9479 -- protected type, since ???
9481 if not Is_Type
(Scope
(Full
)) then
9482 Set_Has_Delayed_Freeze
(Full
,
9483 Has_Delayed_Freeze
(Full_Base
)
9484 and then (not Is_Frozen
(Full_Base
)));
9487 Set_Freeze_Node
(Full
, Empty
);
9488 Set_Is_Frozen
(Full
, False);
9489 Set_Full_View
(Priv
, Full
);
9491 if Has_Discriminants
(Full
) then
9492 Set_Stored_Constraint_From_Discriminant_Constraint
(Full
);
9493 Set_Stored_Constraint
(Priv
, Stored_Constraint
(Full
));
9495 if Has_Unknown_Discriminants
(Full
) then
9496 Set_Discriminant_Constraint
(Full
, No_Elist
);
9500 if Ekind
(Full_Base
) = E_Record_Type
9501 and then Has_Discriminants
(Full_Base
)
9502 and then Has_Discriminants
(Priv
) -- might not, if errors
9503 and then not Has_Unknown_Discriminants
(Priv
)
9504 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
9506 Create_Constrained_Components
9507 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
9509 -- If the full base is itself derived from private, build a congruent
9510 -- subtype of its underlying type, for use by the back end. For a
9511 -- constrained record component, the declaration cannot be placed on
9512 -- the component list, but it must nevertheless be built an analyzed, to
9513 -- supply enough information for Gigi to compute the size of component.
9515 elsif Ekind
(Full_Base
) in Private_Kind
9516 and then Is_Derived_Type
(Full_Base
)
9517 and then Has_Discriminants
(Full_Base
)
9518 and then (Ekind
(Current_Scope
) /= E_Record_Subtype
)
9520 if not Is_Itype
(Priv
)
9522 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
9524 Build_Underlying_Full_View
9525 (Parent
(Priv
), Full
, Etype
(Full_Base
));
9527 elsif Nkind
(Related_Nod
) = N_Component_Declaration
then
9528 Build_Underlying_Full_View
(Related_Nod
, Full
, Etype
(Full_Base
));
9531 elsif Is_Record_Type
(Full_Base
) then
9533 -- Show Full is simply a renaming of Full_Base
9535 Set_Cloned_Subtype
(Full
, Full_Base
);
9538 -- It is unsafe to share to bounds of a scalar type, because the Itype
9539 -- is elaborated on demand, and if a bound is non-static then different
9540 -- orders of elaboration in different units will lead to different
9541 -- external symbols.
9543 if Is_Scalar_Type
(Full_Base
) then
9544 Set_Scalar_Range
(Full
,
9545 Make_Range
(Sloc
(Related_Nod
),
9547 Duplicate_Subexpr_No_Checks
(Type_Low_Bound
(Full_Base
)),
9549 Duplicate_Subexpr_No_Checks
(Type_High_Bound
(Full_Base
))));
9551 -- This completion inherits the bounds of the full parent, but if
9552 -- the parent is an unconstrained floating point type, so is the
9555 if Is_Floating_Point_Type
(Full_Base
) then
9556 Set_Includes_Infinities
9557 (Scalar_Range
(Full
), Has_Infinities
(Full_Base
));
9561 -- ??? It seems that a lot of fields are missing that should be copied
9562 -- from Full_Base to Full. Here are some that are introduced in a
9563 -- non-disruptive way but a cleanup is necessary.
9565 if Is_Tagged_Type
(Full_Base
) then
9566 Set_Is_Tagged_Type
(Full
);
9567 Set_Primitive_Operations
(Full
, Primitive_Operations
(Full_Base
));
9568 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Full_Base
));
9570 -- If this is a subtype of a protected or task type, constrain its
9571 -- corresponding record, unless this is a subtype without constraints,
9572 -- i.e. a simple renaming as with an actual subtype in an instance.
9574 elsif Is_Concurrent_Type
(Full_Base
) then
9575 if Has_Discriminants
(Full
)
9576 and then Present
(Corresponding_Record_Type
(Full_Base
))
9578 not Is_Empty_Elmt_List
(Discriminant_Constraint
(Full
))
9580 Set_Corresponding_Record_Type
(Full
,
9581 Constrain_Corresponding_Record
9582 (Full
, Corresponding_Record_Type
(Full_Base
),
9583 Related_Nod
, Full_Base
));
9586 Set_Corresponding_Record_Type
(Full
,
9587 Corresponding_Record_Type
(Full_Base
));
9590 end Complete_Private_Subtype
;
9592 ----------------------------
9593 -- Constant_Redeclaration --
9594 ----------------------------
9596 procedure Constant_Redeclaration
9601 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
9602 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
9605 procedure Check_Possible_Deferred_Completion
9606 (Prev_Id
: Entity_Id
;
9607 Prev_Obj_Def
: Node_Id
;
9608 Curr_Obj_Def
: Node_Id
);
9609 -- Determine whether the two object definitions describe the partial
9610 -- and the full view of a constrained deferred constant. Generate
9611 -- a subtype for the full view and verify that it statically matches
9612 -- the subtype of the partial view.
9614 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
);
9615 -- If deferred constant is an access type initialized with an allocator,
9616 -- check whether there is an illegal recursion in the definition,
9617 -- through a default value of some record subcomponent. This is normally
9618 -- detected when generating init procs, but requires this additional
9619 -- mechanism when expansion is disabled.
9621 ----------------------------------------
9622 -- Check_Possible_Deferred_Completion --
9623 ----------------------------------------
9625 procedure Check_Possible_Deferred_Completion
9626 (Prev_Id
: Entity_Id
;
9627 Prev_Obj_Def
: Node_Id
;
9628 Curr_Obj_Def
: Node_Id
)
9631 if Nkind
(Prev_Obj_Def
) = N_Subtype_Indication
9632 and then Present
(Constraint
(Prev_Obj_Def
))
9633 and then Nkind
(Curr_Obj_Def
) = N_Subtype_Indication
9634 and then Present
(Constraint
(Curr_Obj_Def
))
9637 Loc
: constant Source_Ptr
:= Sloc
(N
);
9638 Def_Id
: constant Entity_Id
:=
9639 Make_Defining_Identifier
(Loc
,
9640 New_Internal_Name
('S'));
9641 Decl
: constant Node_Id
:=
9642 Make_Subtype_Declaration
(Loc
,
9643 Defining_Identifier
=>
9645 Subtype_Indication
=>
9646 Relocate_Node
(Curr_Obj_Def
));
9649 Insert_Before_And_Analyze
(N
, Decl
);
9650 Set_Etype
(Id
, Def_Id
);
9652 if not Subtypes_Statically_Match
(Etype
(Prev_Id
), Def_Id
) then
9653 Error_Msg_Sloc
:= Sloc
(Prev_Id
);
9654 Error_Msg_N
("subtype does not statically match deferred " &
9659 end Check_Possible_Deferred_Completion
;
9661 ---------------------------------
9662 -- Check_Recursive_Declaration --
9663 ---------------------------------
9665 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
) is
9669 if Is_Record_Type
(Typ
) then
9670 Comp
:= First_Component
(Typ
);
9671 while Present
(Comp
) loop
9672 if Comes_From_Source
(Comp
) then
9673 if Present
(Expression
(Parent
(Comp
)))
9674 and then Is_Entity_Name
(Expression
(Parent
(Comp
)))
9675 and then Entity
(Expression
(Parent
(Comp
))) = Prev
9677 Error_Msg_Sloc
:= Sloc
(Parent
(Comp
));
9679 ("illegal circularity with declaration for&#",
9683 elsif Is_Record_Type
(Etype
(Comp
)) then
9684 Check_Recursive_Declaration
(Etype
(Comp
));
9688 Next_Component
(Comp
);
9691 end Check_Recursive_Declaration
;
9693 -- Start of processing for Constant_Redeclaration
9696 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
9697 if Nkind
(Object_Definition
9698 (Parent
(Prev
))) = N_Subtype_Indication
9700 -- Find type of new declaration. The constraints of the two
9701 -- views must match statically, but there is no point in
9702 -- creating an itype for the full view.
9704 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
9705 Find_Type
(Subtype_Mark
(Obj_Def
));
9706 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
9709 Find_Type
(Obj_Def
);
9710 New_T
:= Entity
(Obj_Def
);
9716 -- The full view may impose a constraint, even if the partial
9717 -- view does not, so construct the subtype.
9719 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
9724 -- Current declaration is illegal, diagnosed below in Enter_Name
9730 -- If previous full declaration exists, or if a homograph is present,
9731 -- let Enter_Name handle it, either with an error, or with the removal
9732 -- of an overridden implicit subprogram.
9734 if Ekind
(Prev
) /= E_Constant
9735 or else Present
(Expression
(Parent
(Prev
)))
9736 or else Present
(Full_View
(Prev
))
9740 -- Verify that types of both declarations match, or else that both types
9741 -- are anonymous access types whose designated subtypes statically match
9742 -- (as allowed in Ada 2005 by AI-385).
9744 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
)
9746 (Ekind
(Etype
(Prev
)) /= E_Anonymous_Access_Type
9747 or else Ekind
(Etype
(New_T
)) /= E_Anonymous_Access_Type
9748 or else Is_Access_Constant
(Etype
(New_T
)) /=
9749 Is_Access_Constant
(Etype
(Prev
))
9750 or else Can_Never_Be_Null
(Etype
(New_T
)) /=
9751 Can_Never_Be_Null
(Etype
(Prev
))
9752 or else Null_Exclusion_Present
(Parent
(Prev
)) /=
9753 Null_Exclusion_Present
(Parent
(Id
))
9754 or else not Subtypes_Statically_Match
9755 (Designated_Type
(Etype
(Prev
)),
9756 Designated_Type
(Etype
(New_T
))))
9758 Error_Msg_Sloc
:= Sloc
(Prev
);
9759 Error_Msg_N
("type does not match declaration#", N
);
9760 Set_Full_View
(Prev
, Id
);
9761 Set_Etype
(Id
, Any_Type
);
9764 Null_Exclusion_Present
(Parent
(Prev
))
9765 and then not Null_Exclusion_Present
(N
)
9767 Error_Msg_Sloc
:= Sloc
(Prev
);
9768 Error_Msg_N
("null-exclusion does not match declaration#", N
);
9769 Set_Full_View
(Prev
, Id
);
9770 Set_Etype
(Id
, Any_Type
);
9772 -- If so, process the full constant declaration
9775 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
9776 -- the deferred declaration is constrained, then the subtype defined
9777 -- by the subtype_indication in the full declaration shall match it
9780 Check_Possible_Deferred_Completion
9782 Prev_Obj_Def
=> Object_Definition
(Parent
(Prev
)),
9783 Curr_Obj_Def
=> Obj_Def
);
9785 Set_Full_View
(Prev
, Id
);
9786 Set_Is_Public
(Id
, Is_Public
(Prev
));
9787 Set_Is_Internal
(Id
);
9788 Append_Entity
(Id
, Current_Scope
);
9790 -- Check ALIASED present if present before (RM 7.4(7))
9792 if Is_Aliased
(Prev
)
9793 and then not Aliased_Present
(N
)
9795 Error_Msg_Sloc
:= Sloc
(Prev
);
9796 Error_Msg_N
("ALIASED required (see declaration#)", N
);
9799 -- Check that placement is in private part and that the incomplete
9800 -- declaration appeared in the visible part.
9802 if Ekind
(Current_Scope
) = E_Package
9803 and then not In_Private_Part
(Current_Scope
)
9805 Error_Msg_Sloc
:= Sloc
(Prev
);
9806 Error_Msg_N
("full constant for declaration#"
9807 & " must be in private part", N
);
9809 elsif Ekind
(Current_Scope
) = E_Package
9810 and then List_Containing
(Parent
(Prev
))
9811 /= Visible_Declarations
9812 (Specification
(Unit_Declaration_Node
(Current_Scope
)))
9815 ("deferred constant must be declared in visible part",
9819 if Is_Access_Type
(T
)
9820 and then Nkind
(Expression
(N
)) = N_Allocator
9822 Check_Recursive_Declaration
(Designated_Type
(T
));
9825 end Constant_Redeclaration
;
9827 ----------------------
9828 -- Constrain_Access --
9829 ----------------------
9831 procedure Constrain_Access
9832 (Def_Id
: in out Entity_Id
;
9834 Related_Nod
: Node_Id
)
9836 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
9837 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
9838 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
9839 Constraint_OK
: Boolean := True;
9841 function Has_Defaulted_Discriminants
(Typ
: Entity_Id
) return Boolean;
9842 -- Simple predicate to test for defaulted discriminants
9843 -- Shouldn't this be in sem_util???
9845 ---------------------------------
9846 -- Has_Defaulted_Discriminants --
9847 ---------------------------------
9849 function Has_Defaulted_Discriminants
(Typ
: Entity_Id
) return Boolean is
9851 return Has_Discriminants
(Typ
)
9852 and then Present
(First_Discriminant
(Typ
))
9854 (Discriminant_Default_Value
(First_Discriminant
(Typ
)));
9855 end Has_Defaulted_Discriminants
;
9857 -- Start of processing for Constrain_Access
9860 if Is_Array_Type
(Desig_Type
) then
9861 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
9863 elsif (Is_Record_Type
(Desig_Type
)
9864 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
9865 and then not Is_Constrained
(Desig_Type
)
9867 -- ??? The following code is a temporary kludge to ignore a
9868 -- discriminant constraint on access type if it is constraining
9869 -- the current record. Avoid creating the implicit subtype of the
9870 -- record we are currently compiling since right now, we cannot
9871 -- handle these. For now, just return the access type itself.
9873 if Desig_Type
= Current_Scope
9874 and then No
(Def_Id
)
9876 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
9877 Def_Id
:= Entity
(Subtype_Mark
(S
));
9879 -- This call added to ensure that the constraint is analyzed
9880 -- (needed for a B test). Note that we still return early from
9881 -- this procedure to avoid recursive processing. ???
9883 Constrain_Discriminated_Type
9884 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
9888 if (Ekind
(T
) = E_General_Access_Type
9889 or else Ada_Version
>= Ada_05
)
9890 and then Has_Private_Declaration
(Desig_Type
)
9891 and then In_Open_Scopes
(Scope
(Desig_Type
))
9892 and then Has_Discriminants
(Desig_Type
)
9894 -- Enforce rule that the constraint is illegal if there is
9895 -- an unconstrained view of the designated type. This means
9896 -- that the partial view (either a private type declaration or
9897 -- a derivation from a private type) has no discriminants.
9898 -- (Defect Report 8652/0008, Technical Corrigendum 1, checked
9899 -- by ACATS B371001).
9901 -- Rule updated for Ada 2005: the private type is said to have
9902 -- a constrained partial view, given that objects of the type
9903 -- can be declared. Furthermore, the rule applies to all access
9904 -- types, unlike the rule concerning default discriminants.
9907 Pack
: constant Node_Id
:=
9908 Unit_Declaration_Node
(Scope
(Desig_Type
));
9913 if Nkind
(Pack
) = N_Package_Declaration
then
9914 Decls
:= Visible_Declarations
(Specification
(Pack
));
9915 Decl
:= First
(Decls
);
9916 while Present
(Decl
) loop
9917 if (Nkind
(Decl
) = N_Private_Type_Declaration
9919 Chars
(Defining_Identifier
(Decl
)) =
9923 (Nkind
(Decl
) = N_Full_Type_Declaration
9925 Chars
(Defining_Identifier
(Decl
)) =
9927 and then Is_Derived_Type
(Desig_Type
)
9929 Has_Private_Declaration
(Etype
(Desig_Type
)))
9931 if No
(Discriminant_Specifications
(Decl
)) then
9933 ("cannot constrain general access type if " &
9934 "designated type has constrained partial view",
9947 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
9948 For_Access
=> True);
9950 elsif (Is_Task_Type
(Desig_Type
)
9951 or else Is_Protected_Type
(Desig_Type
))
9952 and then not Is_Constrained
(Desig_Type
)
9954 Constrain_Concurrent
9955 (Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
9958 Error_Msg_N
("invalid constraint on access type", S
);
9959 Desig_Subtype
:= Desig_Type
; -- Ignore invalid constraint.
9960 Constraint_OK
:= False;
9964 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
9966 Set_Ekind
(Def_Id
, E_Access_Subtype
);
9969 if Constraint_OK
then
9970 Set_Etype
(Def_Id
, Base_Type
(T
));
9972 if Is_Private_Type
(Desig_Type
) then
9973 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
9976 Set_Etype
(Def_Id
, Any_Type
);
9979 Set_Size_Info
(Def_Id
, T
);
9980 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
9981 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
9982 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
9983 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
9985 Conditional_Delay
(Def_Id
, T
);
9987 -- AI-363 : Subtypes of general access types whose designated types have
9988 -- default discriminants are disallowed. In instances, the rule has to
9989 -- be checked against the actual, of which T is the subtype. In a
9990 -- generic body, the rule is checked assuming that the actual type has
9991 -- defaulted discriminants.
9993 if Ada_Version
>= Ada_05
or else Warn_On_Ada_2005_Compatibility
then
9994 if Ekind
(Base_Type
(T
)) = E_General_Access_Type
9995 and then Has_Defaulted_Discriminants
(Desig_Type
)
9997 if Ada_Version
< Ada_05
then
9999 ("access subtype of general access type would not " &
10000 "be allowed in Ada 2005?", S
);
10003 ("access subype of general access type not allowed", S
);
10006 Error_Msg_N
("\discriminants have defaults", S
);
10008 elsif Is_Access_Type
(T
)
10009 and then Is_Generic_Type
(Desig_Type
)
10010 and then Has_Discriminants
(Desig_Type
)
10011 and then In_Package_Body
(Current_Scope
)
10013 if Ada_Version
< Ada_05
then
10015 ("access subtype would not be allowed in generic body " &
10016 "in Ada 2005?", S
);
10019 ("access subtype not allowed in generic body", S
);
10023 ("\designated type is a discriminated formal", S
);
10026 end Constrain_Access
;
10028 ---------------------
10029 -- Constrain_Array --
10030 ---------------------
10032 procedure Constrain_Array
10033 (Def_Id
: in out Entity_Id
;
10035 Related_Nod
: Node_Id
;
10036 Related_Id
: Entity_Id
;
10037 Suffix
: Character)
10039 C
: constant Node_Id
:= Constraint
(SI
);
10040 Number_Of_Constraints
: Nat
:= 0;
10043 Constraint_OK
: Boolean := True;
10046 T
:= Entity
(Subtype_Mark
(SI
));
10048 if Ekind
(T
) in Access_Kind
then
10049 T
:= Designated_Type
(T
);
10052 -- If an index constraint follows a subtype mark in a subtype indication
10053 -- then the type or subtype denoted by the subtype mark must not already
10054 -- impose an index constraint. The subtype mark must denote either an
10055 -- unconstrained array type or an access type whose designated type
10056 -- is such an array type... (RM 3.6.1)
10058 if Is_Constrained
(T
) then
10060 ("array type is already constrained", Subtype_Mark
(SI
));
10061 Constraint_OK
:= False;
10064 S
:= First
(Constraints
(C
));
10065 while Present
(S
) loop
10066 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
10070 -- In either case, the index constraint must provide a discrete
10071 -- range for each index of the array type and the type of each
10072 -- discrete range must be the same as that of the corresponding
10073 -- index. (RM 3.6.1)
10075 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
10076 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
10077 Constraint_OK
:= False;
10080 S
:= First
(Constraints
(C
));
10081 Index
:= First_Index
(T
);
10084 -- Apply constraints to each index type
10086 for J
in 1 .. Number_Of_Constraints
loop
10087 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
10095 if No
(Def_Id
) then
10097 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
10098 Set_Parent
(Def_Id
, Related_Nod
);
10101 Set_Ekind
(Def_Id
, E_Array_Subtype
);
10104 Set_Size_Info
(Def_Id
, (T
));
10105 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
10106 Set_Etype
(Def_Id
, Base_Type
(T
));
10108 if Constraint_OK
then
10109 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
10111 Set_First_Index
(Def_Id
, First_Index
(T
));
10114 Set_Is_Constrained
(Def_Id
, True);
10115 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
10116 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
10118 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
10119 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
10121 -- A subtype does not inherit the packed_array_type of is parent. We
10122 -- need to initialize the attribute because if Def_Id is previously
10123 -- analyzed through a limited_with clause, it will have the attributes
10124 -- of an incomplete type, one of which is an Elist that overlaps the
10125 -- Packed_Array_Type field.
10127 Set_Packed_Array_Type
(Def_Id
, Empty
);
10129 -- Build a freeze node if parent still needs one. Also make sure that
10130 -- the Depends_On_Private status is set because the subtype will need
10131 -- reprocessing at the time the base type does, and also we must set a
10132 -- conditional delay.
10134 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
10135 Conditional_Delay
(Def_Id
, T
);
10136 end Constrain_Array
;
10138 ------------------------------
10139 -- Constrain_Component_Type --
10140 ------------------------------
10142 function Constrain_Component_Type
10144 Constrained_Typ
: Entity_Id
;
10145 Related_Node
: Node_Id
;
10147 Constraints
: Elist_Id
) return Entity_Id
10149 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
10150 Compon_Type
: constant Entity_Id
:= Etype
(Comp
);
10152 function Build_Constrained_Array_Type
10153 (Old_Type
: Entity_Id
) return Entity_Id
;
10154 -- If Old_Type is an array type, one of whose indices is constrained
10155 -- by a discriminant, build an Itype whose constraint replaces the
10156 -- discriminant with its value in the constraint.
10158 function Build_Constrained_Discriminated_Type
10159 (Old_Type
: Entity_Id
) return Entity_Id
;
10160 -- Ditto for record components
10162 function Build_Constrained_Access_Type
10163 (Old_Type
: Entity_Id
) return Entity_Id
;
10164 -- Ditto for access types. Makes use of previous two functions, to
10165 -- constrain designated type.
10167 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
10168 -- T is an array or discriminated type, C is a list of constraints
10169 -- that apply to T. This routine builds the constrained subtype.
10171 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
10172 -- Returns True if Expr is a discriminant
10174 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
;
10175 -- Find the value of discriminant Discrim in Constraint
10177 -----------------------------------
10178 -- Build_Constrained_Access_Type --
10179 -----------------------------------
10181 function Build_Constrained_Access_Type
10182 (Old_Type
: Entity_Id
) return Entity_Id
10184 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
10186 Desig_Subtype
: Entity_Id
;
10190 -- if the original access type was not embedded in the enclosing
10191 -- type definition, there is no need to produce a new access
10192 -- subtype. In fact every access type with an explicit constraint
10193 -- generates an itype whose scope is the enclosing record.
10195 if not Is_Type
(Scope
(Old_Type
)) then
10198 elsif Is_Array_Type
(Desig_Type
) then
10199 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
10201 elsif Has_Discriminants
(Desig_Type
) then
10203 -- This may be an access type to an enclosing record type for
10204 -- which we are constructing the constrained components. Return
10205 -- the enclosing record subtype. This is not always correct,
10206 -- but avoids infinite recursion. ???
10208 Desig_Subtype
:= Any_Type
;
10210 for J
in reverse 0 .. Scope_Stack
.Last
loop
10211 Scop
:= Scope_Stack
.Table
(J
).Entity
;
10214 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
10216 Desig_Subtype
:= Scop
;
10219 exit when not Is_Type
(Scop
);
10222 if Desig_Subtype
= Any_Type
then
10224 Build_Constrained_Discriminated_Type
(Desig_Type
);
10231 if Desig_Subtype
/= Desig_Type
then
10233 -- The Related_Node better be here or else we won't be able
10234 -- to attach new itypes to a node in the tree.
10236 pragma Assert
(Present
(Related_Node
));
10238 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
10240 Set_Etype
(Itype
, Base_Type
(Old_Type
));
10241 Set_Size_Info
(Itype
, (Old_Type
));
10242 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
10243 Set_Depends_On_Private
(Itype
, Has_Private_Component
10245 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
10248 -- The new itype needs freezing when it depends on a not frozen
10249 -- type and the enclosing subtype needs freezing.
10251 if Has_Delayed_Freeze
(Constrained_Typ
)
10252 and then not Is_Frozen
(Constrained_Typ
)
10254 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
10262 end Build_Constrained_Access_Type
;
10264 ----------------------------------
10265 -- Build_Constrained_Array_Type --
10266 ----------------------------------
10268 function Build_Constrained_Array_Type
10269 (Old_Type
: Entity_Id
) return Entity_Id
10273 Old_Index
: Node_Id
;
10274 Range_Node
: Node_Id
;
10275 Constr_List
: List_Id
;
10277 Need_To_Create_Itype
: Boolean := False;
10280 Old_Index
:= First_Index
(Old_Type
);
10281 while Present
(Old_Index
) loop
10282 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
10284 if Is_Discriminant
(Lo_Expr
)
10285 or else Is_Discriminant
(Hi_Expr
)
10287 Need_To_Create_Itype
:= True;
10290 Next_Index
(Old_Index
);
10293 if Need_To_Create_Itype
then
10294 Constr_List
:= New_List
;
10296 Old_Index
:= First_Index
(Old_Type
);
10297 while Present
(Old_Index
) loop
10298 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
10300 if Is_Discriminant
(Lo_Expr
) then
10301 Lo_Expr
:= Get_Discr_Value
(Lo_Expr
);
10304 if Is_Discriminant
(Hi_Expr
) then
10305 Hi_Expr
:= Get_Discr_Value
(Hi_Expr
);
10310 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
10312 Append
(Range_Node
, To
=> Constr_List
);
10314 Next_Index
(Old_Index
);
10317 return Build_Subtype
(Old_Type
, Constr_List
);
10322 end Build_Constrained_Array_Type
;
10324 ------------------------------------------
10325 -- Build_Constrained_Discriminated_Type --
10326 ------------------------------------------
10328 function Build_Constrained_Discriminated_Type
10329 (Old_Type
: Entity_Id
) return Entity_Id
10332 Constr_List
: List_Id
;
10333 Old_Constraint
: Elmt_Id
;
10335 Need_To_Create_Itype
: Boolean := False;
10338 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
10339 while Present
(Old_Constraint
) loop
10340 Expr
:= Node
(Old_Constraint
);
10342 if Is_Discriminant
(Expr
) then
10343 Need_To_Create_Itype
:= True;
10346 Next_Elmt
(Old_Constraint
);
10349 if Need_To_Create_Itype
then
10350 Constr_List
:= New_List
;
10352 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
10353 while Present
(Old_Constraint
) loop
10354 Expr
:= Node
(Old_Constraint
);
10356 if Is_Discriminant
(Expr
) then
10357 Expr
:= Get_Discr_Value
(Expr
);
10360 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
10362 Next_Elmt
(Old_Constraint
);
10365 return Build_Subtype
(Old_Type
, Constr_List
);
10370 end Build_Constrained_Discriminated_Type
;
10372 -------------------
10373 -- Build_Subtype --
10374 -------------------
10376 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
10378 Subtyp_Decl
: Node_Id
;
10379 Def_Id
: Entity_Id
;
10380 Btyp
: Entity_Id
:= Base_Type
(T
);
10383 -- The Related_Node better be here or else we won't be able to
10384 -- attach new itypes to a node in the tree.
10386 pragma Assert
(Present
(Related_Node
));
10388 -- If the view of the component's type is incomplete or private
10389 -- with unknown discriminants, then the constraint must be applied
10390 -- to the full type.
10392 if Has_Unknown_Discriminants
(Btyp
)
10393 and then Present
(Underlying_Type
(Btyp
))
10395 Btyp
:= Underlying_Type
(Btyp
);
10399 Make_Subtype_Indication
(Loc
,
10400 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
10401 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
10403 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
10406 Make_Subtype_Declaration
(Loc
,
10407 Defining_Identifier
=> Def_Id
,
10408 Subtype_Indication
=> Indic
);
10410 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
10412 -- Itypes must be analyzed with checks off (see package Itypes)
10414 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
10419 ---------------------
10420 -- Get_Discr_Value --
10421 ---------------------
10423 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
is
10428 -- The discriminant may be declared for the type, in which case we
10429 -- find it by iterating over the list of discriminants. If the
10430 -- discriminant is inherited from a parent type, it appears as the
10431 -- corresponding discriminant of the current type. This will be the
10432 -- case when constraining an inherited component whose constraint is
10433 -- given by a discriminant of the parent.
10435 D
:= First_Discriminant
(Typ
);
10436 E
:= First_Elmt
(Constraints
);
10438 while Present
(D
) loop
10439 if D
= Entity
(Discrim
)
10440 or else D
= CR_Discriminant
(Entity
(Discrim
))
10441 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
10446 Next_Discriminant
(D
);
10450 -- The corresponding_Discriminant mechanism is incomplete, because
10451 -- the correspondence between new and old discriminants is not one
10452 -- to one: one new discriminant can constrain several old ones. In
10453 -- that case, scan sequentially the stored_constraint, the list of
10454 -- discriminants of the parents, and the constraints.
10455 -- Previous code checked for the present of the Stored_Constraint
10456 -- list for the derived type, but did not use it at all. Should it
10457 -- be present when the component is a discriminated task type?
10459 if Is_Derived_Type
(Typ
)
10460 and then Scope
(Entity
(Discrim
)) = Etype
(Typ
)
10462 D
:= First_Discriminant
(Etype
(Typ
));
10463 E
:= First_Elmt
(Constraints
);
10464 while Present
(D
) loop
10465 if D
= Entity
(Discrim
) then
10469 Next_Discriminant
(D
);
10474 -- Something is wrong if we did not find the value
10476 raise Program_Error
;
10477 end Get_Discr_Value
;
10479 ---------------------
10480 -- Is_Discriminant --
10481 ---------------------
10483 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
10484 Discrim_Scope
: Entity_Id
;
10487 if Denotes_Discriminant
(Expr
) then
10488 Discrim_Scope
:= Scope
(Entity
(Expr
));
10490 -- Either we have a reference to one of Typ's discriminants,
10492 pragma Assert
(Discrim_Scope
= Typ
10494 -- or to the discriminants of the parent type, in the case
10495 -- of a derivation of a tagged type with variants.
10497 or else Discrim_Scope
= Etype
(Typ
)
10498 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
10500 -- or same as above for the case where the discriminants
10501 -- were declared in Typ's private view.
10503 or else (Is_Private_Type
(Discrim_Scope
)
10504 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
10506 -- or else we are deriving from the full view and the
10507 -- discriminant is declared in the private entity.
10509 or else (Is_Private_Type
(Typ
)
10510 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
10512 -- Or we are constrained the corresponding record of a
10513 -- synchronized type that completes a private declaration.
10515 or else (Is_Concurrent_Record_Type
(Typ
)
10517 Corresponding_Concurrent_Type
(Typ
) = Discrim_Scope
)
10519 -- or we have a class-wide type, in which case make sure the
10520 -- discriminant found belongs to the root type.
10522 or else (Is_Class_Wide_Type
(Typ
)
10523 and then Etype
(Typ
) = Discrim_Scope
));
10528 -- In all other cases we have something wrong
10531 end Is_Discriminant
;
10533 -- Start of processing for Constrain_Component_Type
10536 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
10537 and then Comes_From_Source
(Parent
(Comp
))
10538 and then Comes_From_Source
10539 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
10542 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
10544 return Compon_Type
;
10546 elsif Is_Array_Type
(Compon_Type
) then
10547 return Build_Constrained_Array_Type
(Compon_Type
);
10549 elsif Has_Discriminants
(Compon_Type
) then
10550 return Build_Constrained_Discriminated_Type
(Compon_Type
);
10552 elsif Is_Access_Type
(Compon_Type
) then
10553 return Build_Constrained_Access_Type
(Compon_Type
);
10556 return Compon_Type
;
10558 end Constrain_Component_Type
;
10560 --------------------------
10561 -- Constrain_Concurrent --
10562 --------------------------
10564 -- For concurrent types, the associated record value type carries the same
10565 -- discriminants, so when we constrain a concurrent type, we must constrain
10566 -- the corresponding record type as well.
10568 procedure Constrain_Concurrent
10569 (Def_Id
: in out Entity_Id
;
10571 Related_Nod
: Node_Id
;
10572 Related_Id
: Entity_Id
;
10573 Suffix
: Character)
10575 T_Ent
: Entity_Id
:= Entity
(Subtype_Mark
(SI
));
10579 if Ekind
(T_Ent
) in Access_Kind
then
10580 T_Ent
:= Designated_Type
(T_Ent
);
10583 T_Val
:= Corresponding_Record_Type
(T_Ent
);
10585 if Present
(T_Val
) then
10587 if No
(Def_Id
) then
10588 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
10591 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
10593 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
10594 Set_Corresponding_Record_Type
(Def_Id
,
10595 Constrain_Corresponding_Record
10596 (Def_Id
, T_Val
, Related_Nod
, Related_Id
));
10599 -- If there is no associated record, expansion is disabled and this
10600 -- is a generic context. Create a subtype in any case, so that
10601 -- semantic analysis can proceed.
10603 if No
(Def_Id
) then
10604 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
10607 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
10609 end Constrain_Concurrent
;
10611 ------------------------------------
10612 -- Constrain_Corresponding_Record --
10613 ------------------------------------
10615 function Constrain_Corresponding_Record
10616 (Prot_Subt
: Entity_Id
;
10617 Corr_Rec
: Entity_Id
;
10618 Related_Nod
: Node_Id
;
10619 Related_Id
: Entity_Id
) return Entity_Id
10621 T_Sub
: constant Entity_Id
:=
10622 Create_Itype
(E_Record_Subtype
, Related_Nod
, Related_Id
, 'V');
10625 Set_Etype
(T_Sub
, Corr_Rec
);
10626 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
10627 Set_Is_Constrained
(T_Sub
, True);
10628 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
10629 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
10631 -- As elsewhere, we do not want to create a freeze node for this itype
10632 -- if it is created for a constrained component of an enclosing record
10633 -- because references to outer discriminants will appear out of scope.
10635 if Ekind
(Scope
(Prot_Subt
)) /= E_Record_Type
then
10636 Conditional_Delay
(T_Sub
, Corr_Rec
);
10638 Set_Is_Frozen
(T_Sub
);
10641 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
10642 Set_Discriminant_Constraint
10643 (T_Sub
, Discriminant_Constraint
(Prot_Subt
));
10644 Set_Stored_Constraint_From_Discriminant_Constraint
(T_Sub
);
10645 Create_Constrained_Components
10646 (T_Sub
, Related_Nod
, Corr_Rec
, Discriminant_Constraint
(T_Sub
));
10649 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
10652 end Constrain_Corresponding_Record
;
10654 -----------------------
10655 -- Constrain_Decimal --
10656 -----------------------
10658 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
) is
10659 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
10660 C
: constant Node_Id
:= Constraint
(S
);
10661 Loc
: constant Source_Ptr
:= Sloc
(C
);
10662 Range_Expr
: Node_Id
;
10663 Digits_Expr
: Node_Id
;
10668 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
10670 if Nkind
(C
) = N_Range_Constraint
then
10671 Range_Expr
:= Range_Expression
(C
);
10672 Digits_Val
:= Digits_Value
(T
);
10675 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
10676 Digits_Expr
:= Digits_Expression
(C
);
10677 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
10679 Check_Digits_Expression
(Digits_Expr
);
10680 Digits_Val
:= Expr_Value
(Digits_Expr
);
10682 if Digits_Val
> Digits_Value
(T
) then
10684 ("digits expression is incompatible with subtype", C
);
10685 Digits_Val
:= Digits_Value
(T
);
10688 if Present
(Range_Constraint
(C
)) then
10689 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
10691 Range_Expr
:= Empty
;
10695 Set_Etype
(Def_Id
, Base_Type
(T
));
10696 Set_Size_Info
(Def_Id
, (T
));
10697 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
10698 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
10699 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
10700 Set_Small_Value
(Def_Id
, Small_Value
(T
));
10701 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
10702 Set_Digits_Value
(Def_Id
, Digits_Val
);
10704 -- Manufacture range from given digits value if no range present
10706 if No
(Range_Expr
) then
10707 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
10711 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
10713 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
10716 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
);
10717 Set_Discrete_RM_Size
(Def_Id
);
10719 -- Unconditionally delay the freeze, since we cannot set size
10720 -- information in all cases correctly until the freeze point.
10722 Set_Has_Delayed_Freeze
(Def_Id
);
10723 end Constrain_Decimal
;
10725 ----------------------------------
10726 -- Constrain_Discriminated_Type --
10727 ----------------------------------
10729 procedure Constrain_Discriminated_Type
10730 (Def_Id
: Entity_Id
;
10732 Related_Nod
: Node_Id
;
10733 For_Access
: Boolean := False)
10735 E
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
10738 Elist
: Elist_Id
:= New_Elmt_List
;
10740 procedure Fixup_Bad_Constraint
;
10741 -- This is called after finding a bad constraint, and after having
10742 -- posted an appropriate error message. The mission is to leave the
10743 -- entity T in as reasonable state as possible!
10745 --------------------------
10746 -- Fixup_Bad_Constraint --
10747 --------------------------
10749 procedure Fixup_Bad_Constraint
is
10751 -- Set a reasonable Ekind for the entity. For an incomplete type,
10752 -- we can't do much, but for other types, we can set the proper
10753 -- corresponding subtype kind.
10755 if Ekind
(T
) = E_Incomplete_Type
then
10756 Set_Ekind
(Def_Id
, Ekind
(T
));
10758 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
10761 -- Set Etype to the known type, to reduce chances of cascaded errors
10763 Set_Etype
(Def_Id
, E
);
10764 Set_Error_Posted
(Def_Id
);
10765 end Fixup_Bad_Constraint
;
10767 -- Start of processing for Constrain_Discriminated_Type
10770 C
:= Constraint
(S
);
10772 -- A discriminant constraint is only allowed in a subtype indication,
10773 -- after a subtype mark. This subtype mark must denote either a type
10774 -- with discriminants, or an access type whose designated type is a
10775 -- type with discriminants. A discriminant constraint specifies the
10776 -- values of these discriminants (RM 3.7.2(5)).
10778 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
10780 if Ekind
(T
) in Access_Kind
then
10781 T
:= Designated_Type
(T
);
10784 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
10785 -- Avoid generating an error for access-to-incomplete subtypes.
10787 if Ada_Version
>= Ada_05
10788 and then Ekind
(T
) = E_Incomplete_Type
10789 and then Nkind
(Parent
(S
)) = N_Subtype_Declaration
10790 and then not Is_Itype
(Def_Id
)
10792 -- A little sanity check, emit an error message if the type
10793 -- has discriminants to begin with. Type T may be a regular
10794 -- incomplete type or imported via a limited with clause.
10796 if Has_Discriminants
(T
)
10798 (From_With_Type
(T
)
10799 and then Present
(Non_Limited_View
(T
))
10800 and then Nkind
(Parent
(Non_Limited_View
(T
))) =
10801 N_Full_Type_Declaration
10802 and then Present
(Discriminant_Specifications
10803 (Parent
(Non_Limited_View
(T
)))))
10806 ("(Ada 2005) incomplete subtype may not be constrained", C
);
10809 ("invalid constraint: type has no discriminant", C
);
10812 Fixup_Bad_Constraint
;
10815 -- Check that the type has visible discriminants. The type may be
10816 -- a private type with unknown discriminants whose full view has
10817 -- discriminants which are invisible.
10819 elsif not Has_Discriminants
(T
)
10821 (Has_Unknown_Discriminants
(T
)
10822 and then Is_Private_Type
(T
))
10824 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
10825 Fixup_Bad_Constraint
;
10828 elsif Is_Constrained
(E
)
10829 or else (Ekind
(E
) = E_Class_Wide_Subtype
10830 and then Present
(Discriminant_Constraint
(E
)))
10832 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
10833 Fixup_Bad_Constraint
;
10837 -- T may be an unconstrained subtype (e.g. a generic actual).
10838 -- Constraint applies to the base type.
10840 T
:= Base_Type
(T
);
10842 Elist
:= Build_Discriminant_Constraints
(T
, S
);
10844 -- If the list returned was empty we had an error in building the
10845 -- discriminant constraint. We have also already signalled an error
10846 -- in the incomplete type case
10848 if Is_Empty_Elmt_List
(Elist
) then
10849 Fixup_Bad_Constraint
;
10853 Build_Discriminated_Subtype
(T
, Def_Id
, Elist
, Related_Nod
, For_Access
);
10854 end Constrain_Discriminated_Type
;
10856 ---------------------------
10857 -- Constrain_Enumeration --
10858 ---------------------------
10860 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
) is
10861 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
10862 C
: constant Node_Id
:= Constraint
(S
);
10865 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
10867 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
10869 Set_Etype
(Def_Id
, Base_Type
(T
));
10870 Set_Size_Info
(Def_Id
, (T
));
10871 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
10872 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
10874 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
10876 Set_Discrete_RM_Size
(Def_Id
);
10877 end Constrain_Enumeration
;
10879 ----------------------
10880 -- Constrain_Float --
10881 ----------------------
10883 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
) is
10884 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
10890 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
10892 Set_Etype
(Def_Id
, Base_Type
(T
));
10893 Set_Size_Info
(Def_Id
, (T
));
10894 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
10896 -- Process the constraint
10898 C
:= Constraint
(S
);
10900 -- Digits constraint present
10902 if Nkind
(C
) = N_Digits_Constraint
then
10903 Check_Restriction
(No_Obsolescent_Features
, C
);
10905 if Warn_On_Obsolescent_Feature
then
10907 ("subtype digits constraint is an " &
10908 "obsolescent feature (RM J.3(8))?", C
);
10911 D
:= Digits_Expression
(C
);
10912 Analyze_And_Resolve
(D
, Any_Integer
);
10913 Check_Digits_Expression
(D
);
10914 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
10916 -- Check that digits value is in range. Obviously we can do this
10917 -- at compile time, but it is strictly a runtime check, and of
10918 -- course there is an ACVC test that checks this!
10920 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
10921 Error_Msg_Uint_1
:= Digits_Value
(T
);
10922 Error_Msg_N
("?digits value is too large, maximum is ^", D
);
10924 Make_Raise_Constraint_Error
(Sloc
(D
),
10925 Reason
=> CE_Range_Check_Failed
);
10926 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
10929 C
:= Range_Constraint
(C
);
10931 -- No digits constraint present
10934 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
10937 -- Range constraint present
10939 if Nkind
(C
) = N_Range_Constraint
then
10940 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
10942 -- No range constraint present
10945 pragma Assert
(No
(C
));
10946 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
10949 Set_Is_Constrained
(Def_Id
);
10950 end Constrain_Float
;
10952 ---------------------
10953 -- Constrain_Index --
10954 ---------------------
10956 procedure Constrain_Index
10959 Related_Nod
: Node_Id
;
10960 Related_Id
: Entity_Id
;
10961 Suffix
: Character;
10962 Suffix_Index
: Nat
)
10964 Def_Id
: Entity_Id
;
10965 R
: Node_Id
:= Empty
;
10966 T
: constant Entity_Id
:= Etype
(Index
);
10969 if Nkind
(S
) = N_Range
10971 (Nkind
(S
) = N_Attribute_Reference
10972 and then Attribute_Name
(S
) = Name_Range
)
10974 -- A Range attribute will transformed into N_Range by Resolve
10980 Process_Range_Expr_In_Decl
(R
, T
, Empty_List
);
10982 if not Error_Posted
(S
)
10984 (Nkind
(S
) /= N_Range
10985 or else not Covers
(T
, (Etype
(Low_Bound
(S
))))
10986 or else not Covers
(T
, (Etype
(High_Bound
(S
)))))
10988 if Base_Type
(T
) /= Any_Type
10989 and then Etype
(Low_Bound
(S
)) /= Any_Type
10990 and then Etype
(High_Bound
(S
)) /= Any_Type
10992 Error_Msg_N
("range expected", S
);
10996 elsif Nkind
(S
) = N_Subtype_Indication
then
10998 -- The parser has verified that this is a discrete indication
11000 Resolve_Discrete_Subtype_Indication
(S
, T
);
11001 R
:= Range_Expression
(Constraint
(S
));
11003 elsif Nkind
(S
) = N_Discriminant_Association
then
11005 -- Syntactically valid in subtype indication
11007 Error_Msg_N
("invalid index constraint", S
);
11008 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
11011 -- Subtype_Mark case, no anonymous subtypes to construct
11016 if Is_Entity_Name
(S
) then
11017 if not Is_Type
(Entity
(S
)) then
11018 Error_Msg_N
("expect subtype mark for index constraint", S
);
11020 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
11021 Wrong_Type
(S
, Base_Type
(T
));
11027 Error_Msg_N
("invalid index constraint", S
);
11028 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
11034 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
11036 Set_Etype
(Def_Id
, Base_Type
(T
));
11038 if Is_Modular_Integer_Type
(T
) then
11039 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
11041 elsif Is_Integer_Type
(T
) then
11042 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
11045 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
11046 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
11049 Set_Size_Info
(Def_Id
, (T
));
11050 Set_RM_Size
(Def_Id
, RM_Size
(T
));
11051 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11053 Set_Scalar_Range
(Def_Id
, R
);
11055 Set_Etype
(S
, Def_Id
);
11056 Set_Discrete_RM_Size
(Def_Id
);
11057 end Constrain_Index
;
11059 -----------------------
11060 -- Constrain_Integer --
11061 -----------------------
11063 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
) is
11064 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11065 C
: constant Node_Id
:= Constraint
(S
);
11068 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
11070 if Is_Modular_Integer_Type
(T
) then
11071 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
11073 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
11076 Set_Etype
(Def_Id
, Base_Type
(T
));
11077 Set_Size_Info
(Def_Id
, (T
));
11078 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11079 Set_Discrete_RM_Size
(Def_Id
);
11080 end Constrain_Integer
;
11082 ------------------------------
11083 -- Constrain_Ordinary_Fixed --
11084 ------------------------------
11086 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
) is
11087 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
11093 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
11094 Set_Etype
(Def_Id
, Base_Type
(T
));
11095 Set_Size_Info
(Def_Id
, (T
));
11096 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11097 Set_Small_Value
(Def_Id
, Small_Value
(T
));
11099 -- Process the constraint
11101 C
:= Constraint
(S
);
11103 -- Delta constraint present
11105 if Nkind
(C
) = N_Delta_Constraint
then
11106 Check_Restriction
(No_Obsolescent_Features
, C
);
11108 if Warn_On_Obsolescent_Feature
then
11110 ("subtype delta constraint is an " &
11111 "obsolescent feature (RM J.3(7))?");
11114 D
:= Delta_Expression
(C
);
11115 Analyze_And_Resolve
(D
, Any_Real
);
11116 Check_Delta_Expression
(D
);
11117 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
11119 -- Check that delta value is in range. Obviously we can do this
11120 -- at compile time, but it is strictly a runtime check, and of
11121 -- course there is an ACVC test that checks this!
11123 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
11124 Error_Msg_N
("?delta value is too small", D
);
11126 Make_Raise_Constraint_Error
(Sloc
(D
),
11127 Reason
=> CE_Range_Check_Failed
);
11128 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
11131 C
:= Range_Constraint
(C
);
11133 -- No delta constraint present
11136 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
11139 -- Range constraint present
11141 if Nkind
(C
) = N_Range_Constraint
then
11142 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
11144 -- No range constraint present
11147 pragma Assert
(No
(C
));
11148 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
11152 Set_Discrete_RM_Size
(Def_Id
);
11154 -- Unconditionally delay the freeze, since we cannot set size
11155 -- information in all cases correctly until the freeze point.
11157 Set_Has_Delayed_Freeze
(Def_Id
);
11158 end Constrain_Ordinary_Fixed
;
11160 -----------------------
11161 -- Contain_Interface --
11162 -----------------------
11164 function Contain_Interface
11165 (Iface
: Entity_Id
;
11166 Ifaces
: Elist_Id
) return Boolean
11168 Iface_Elmt
: Elmt_Id
;
11171 if Present
(Ifaces
) then
11172 Iface_Elmt
:= First_Elmt
(Ifaces
);
11173 while Present
(Iface_Elmt
) loop
11174 if Node
(Iface_Elmt
) = Iface
then
11178 Next_Elmt
(Iface_Elmt
);
11183 end Contain_Interface
;
11185 ---------------------------
11186 -- Convert_Scalar_Bounds --
11187 ---------------------------
11189 procedure Convert_Scalar_Bounds
11191 Parent_Type
: Entity_Id
;
11192 Derived_Type
: Entity_Id
;
11195 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
11202 Lo
:= Build_Scalar_Bound
11203 (Type_Low_Bound
(Derived_Type
),
11204 Parent_Type
, Implicit_Base
);
11206 Hi
:= Build_Scalar_Bound
11207 (Type_High_Bound
(Derived_Type
),
11208 Parent_Type
, Implicit_Base
);
11215 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
11217 Set_Parent
(Rng
, N
);
11218 Set_Scalar_Range
(Derived_Type
, Rng
);
11220 -- Analyze the bounds
11222 Analyze_And_Resolve
(Lo
, Implicit_Base
);
11223 Analyze_And_Resolve
(Hi
, Implicit_Base
);
11225 -- Analyze the range itself, except that we do not analyze it if
11226 -- the bounds are real literals, and we have a fixed-point type.
11227 -- The reason for this is that we delay setting the bounds in this
11228 -- case till we know the final Small and Size values (see circuit
11229 -- in Freeze.Freeze_Fixed_Point_Type for further details).
11231 if Is_Fixed_Point_Type
(Parent_Type
)
11232 and then Nkind
(Lo
) = N_Real_Literal
11233 and then Nkind
(Hi
) = N_Real_Literal
11237 -- Here we do the analysis of the range
11239 -- Note: we do this manually, since if we do a normal Analyze and
11240 -- Resolve call, there are problems with the conversions used for
11241 -- the derived type range.
11244 Set_Etype
(Rng
, Implicit_Base
);
11245 Set_Analyzed
(Rng
, True);
11247 end Convert_Scalar_Bounds
;
11249 -------------------
11250 -- Copy_And_Swap --
11251 -------------------
11253 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
) is
11255 -- Initialize new full declaration entity by copying the pertinent
11256 -- fields of the corresponding private declaration entity.
11258 -- We temporarily set Ekind to a value appropriate for a type to
11259 -- avoid assert failures in Einfo from checking for setting type
11260 -- attributes on something that is not a type. Ekind (Priv) is an
11261 -- appropriate choice, since it allowed the attributes to be set
11262 -- in the first place. This Ekind value will be modified later.
11264 Set_Ekind
(Full
, Ekind
(Priv
));
11266 -- Also set Etype temporarily to Any_Type, again, in the absence
11267 -- of errors, it will be properly reset, and if there are errors,
11268 -- then we want a value of Any_Type to remain.
11270 Set_Etype
(Full
, Any_Type
);
11272 -- Now start copying attributes
11274 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
11276 if Has_Discriminants
(Full
) then
11277 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
11278 Set_Stored_Constraint
(Full
, Stored_Constraint
(Priv
));
11281 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
11282 Set_Homonym
(Full
, Homonym
(Priv
));
11283 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
11284 Set_Is_Public
(Full
, Is_Public
(Priv
));
11285 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
11286 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
11287 Set_Has_Pragma_Unreferenced
(Full
, Has_Pragma_Unreferenced
(Priv
));
11288 Set_Has_Pragma_Unreferenced_Objects
11289 (Full
, Has_Pragma_Unreferenced_Objects
11292 Conditional_Delay
(Full
, Priv
);
11294 if Is_Tagged_Type
(Full
) then
11295 Set_Primitive_Operations
(Full
, Primitive_Operations
(Priv
));
11297 if Priv
= Base_Type
(Priv
) then
11298 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
11302 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
11303 Set_Treat_As_Volatile
(Full
, Treat_As_Volatile
(Priv
));
11304 Set_Scope
(Full
, Scope
(Priv
));
11305 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
11306 Set_First_Entity
(Full
, First_Entity
(Priv
));
11307 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
11309 -- If access types have been recorded for later handling, keep them in
11310 -- the full view so that they get handled when the full view freeze
11311 -- node is expanded.
11313 if Present
(Freeze_Node
(Priv
))
11314 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
11316 Ensure_Freeze_Node
(Full
);
11317 Set_Access_Types_To_Process
11318 (Freeze_Node
(Full
),
11319 Access_Types_To_Process
(Freeze_Node
(Priv
)));
11322 -- Swap the two entities. Now Privat is the full type entity and
11323 -- Full is the private one. They will be swapped back at the end
11324 -- of the private part. This swapping ensures that the entity that
11325 -- is visible in the private part is the full declaration.
11327 Exchange_Entities
(Priv
, Full
);
11328 Append_Entity
(Full
, Scope
(Full
));
11331 -------------------------------------
11332 -- Copy_Array_Base_Type_Attributes --
11333 -------------------------------------
11335 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
11337 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
11338 Set_Component_Type
(T1
, Component_Type
(T2
));
11339 Set_Component_Size
(T1
, Component_Size
(T2
));
11340 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
11341 Set_Finalize_Storage_Only
(T1
, Finalize_Storage_Only
(T2
));
11342 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
11343 Set_Has_Task
(T1
, Has_Task
(T2
));
11344 Set_Is_Packed
(T1
, Is_Packed
(T2
));
11345 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
11346 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
11347 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
11348 end Copy_Array_Base_Type_Attributes
;
11350 -----------------------------------
11351 -- Copy_Array_Subtype_Attributes --
11352 -----------------------------------
11354 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
11356 Set_Size_Info
(T1
, T2
);
11358 Set_First_Index
(T1
, First_Index
(T2
));
11359 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
11360 Set_Is_Atomic
(T1
, Is_Atomic
(T2
));
11361 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
11362 Set_Treat_As_Volatile
(T1
, Treat_As_Volatile
(T2
));
11363 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
11364 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
11365 Set_First_Rep_Item
(T1
, First_Rep_Item
(T2
));
11366 Set_Convention
(T1
, Convention
(T2
));
11367 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
11368 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
11369 Set_Packed_Array_Type
(T1
, Packed_Array_Type
(T2
));
11370 end Copy_Array_Subtype_Attributes
;
11372 -----------------------------------
11373 -- Create_Constrained_Components --
11374 -----------------------------------
11376 procedure Create_Constrained_Components
11378 Decl_Node
: Node_Id
;
11380 Constraints
: Elist_Id
)
11382 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
11383 Comp_List
: constant Elist_Id
:= New_Elmt_List
;
11384 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
11385 Assoc_List
: constant List_Id
:= New_List
;
11386 Discr_Val
: Elmt_Id
;
11390 Is_Static
: Boolean := True;
11392 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
11393 -- Collect parent type components that do not appear in a variant part
11395 procedure Create_All_Components
;
11396 -- Iterate over Comp_List to create the components of the subtype
11398 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
11399 -- Creates a new component from Old_Compon, copying all the fields from
11400 -- it, including its Etype, inserts the new component in the Subt entity
11401 -- chain and returns the new component.
11403 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
11404 -- If true, and discriminants are static, collect only components from
11405 -- variants selected by discriminant values.
11407 ------------------------------
11408 -- Collect_Fixed_Components --
11409 ------------------------------
11411 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
11413 -- Build association list for discriminants, and find components of the
11414 -- variant part selected by the values of the discriminants.
11416 Old_C
:= First_Discriminant
(Typ
);
11417 Discr_Val
:= First_Elmt
(Constraints
);
11418 while Present
(Old_C
) loop
11419 Append_To
(Assoc_List
,
11420 Make_Component_Association
(Loc
,
11421 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
11422 Expression
=> New_Copy
(Node
(Discr_Val
))));
11424 Next_Elmt
(Discr_Val
);
11425 Next_Discriminant
(Old_C
);
11428 -- The tag, and the possible parent and controller components
11429 -- are unconditionally in the subtype.
11431 if Is_Tagged_Type
(Typ
)
11432 or else Has_Controlled_Component
(Typ
)
11434 Old_C
:= First_Component
(Typ
);
11435 while Present
(Old_C
) loop
11436 if Chars
((Old_C
)) = Name_uTag
11437 or else Chars
((Old_C
)) = Name_uParent
11438 or else Chars
((Old_C
)) = Name_uController
11440 Append_Elmt
(Old_C
, Comp_List
);
11443 Next_Component
(Old_C
);
11446 end Collect_Fixed_Components
;
11448 ---------------------------
11449 -- Create_All_Components --
11450 ---------------------------
11452 procedure Create_All_Components
is
11456 Comp
:= First_Elmt
(Comp_List
);
11457 while Present
(Comp
) loop
11458 Old_C
:= Node
(Comp
);
11459 New_C
:= Create_Component
(Old_C
);
11463 Constrain_Component_Type
11464 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
11465 Set_Is_Public
(New_C
, Is_Public
(Subt
));
11469 end Create_All_Components
;
11471 ----------------------
11472 -- Create_Component --
11473 ----------------------
11475 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
11476 New_Compon
: constant Entity_Id
:= New_Copy
(Old_Compon
);
11479 if Ekind
(Old_Compon
) = E_Discriminant
11480 and then Is_Completely_Hidden
(Old_Compon
)
11482 -- This is a shadow discriminant created for a discriminant of
11483 -- the parent type, which needs to be present in the subtype.
11484 -- Give the shadow discriminant an internal name that cannot
11485 -- conflict with that of visible components.
11487 Set_Chars
(New_Compon
, New_Internal_Name
('C'));
11490 -- Set the parent so we have a proper link for freezing etc. This is
11491 -- not a real parent pointer, since of course our parent does not own
11492 -- up to us and reference us, we are an illegitimate child of the
11493 -- original parent!
11495 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
11497 -- If the old component's Esize was already determined and is a
11498 -- static value, then the new component simply inherits it. Otherwise
11499 -- the old component's size may require run-time determination, but
11500 -- the new component's size still might be statically determinable
11501 -- (if, for example it has a static constraint). In that case we want
11502 -- Layout_Type to recompute the component's size, so we reset its
11503 -- size and positional fields.
11505 if Frontend_Layout_On_Target
11506 and then not Known_Static_Esize
(Old_Compon
)
11508 Set_Esize
(New_Compon
, Uint_0
);
11509 Init_Normalized_First_Bit
(New_Compon
);
11510 Init_Normalized_Position
(New_Compon
);
11511 Init_Normalized_Position_Max
(New_Compon
);
11514 -- We do not want this node marked as Comes_From_Source, since
11515 -- otherwise it would get first class status and a separate cross-
11516 -- reference line would be generated. Illegitimate children do not
11517 -- rate such recognition.
11519 Set_Comes_From_Source
(New_Compon
, False);
11521 -- But it is a real entity, and a birth certificate must be properly
11522 -- registered by entering it into the entity list.
11524 Enter_Name
(New_Compon
);
11527 end Create_Component
;
11529 -----------------------
11530 -- Is_Variant_Record --
11531 -----------------------
11533 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
11535 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
11536 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
11537 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
11540 (Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
11541 end Is_Variant_Record
;
11543 -- Start of processing for Create_Constrained_Components
11546 pragma Assert
(Subt
/= Base_Type
(Subt
));
11547 pragma Assert
(Typ
= Base_Type
(Typ
));
11549 Set_First_Entity
(Subt
, Empty
);
11550 Set_Last_Entity
(Subt
, Empty
);
11552 -- Check whether constraint is fully static, in which case we can
11553 -- optimize the list of components.
11555 Discr_Val
:= First_Elmt
(Constraints
);
11556 while Present
(Discr_Val
) loop
11557 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
11558 Is_Static
:= False;
11562 Next_Elmt
(Discr_Val
);
11565 Set_Has_Static_Discriminants
(Subt
, Is_Static
);
11569 -- Inherit the discriminants of the parent type
11571 Add_Discriminants
: declare
11577 Old_C
:= First_Discriminant
(Typ
);
11579 while Present
(Old_C
) loop
11580 Num_Disc
:= Num_Disc
+ 1;
11581 New_C
:= Create_Component
(Old_C
);
11582 Set_Is_Public
(New_C
, Is_Public
(Subt
));
11583 Next_Discriminant
(Old_C
);
11586 -- For an untagged derived subtype, the number of discriminants may
11587 -- be smaller than the number of inherited discriminants, because
11588 -- several of them may be renamed by a single new discriminant or
11589 -- constrained. In this case, add the hidden discriminants back into
11590 -- the subtype, because they need to be present if the optimizer of
11591 -- the GCC 4.x back-end decides to break apart assignments between
11592 -- objects using the parent view into member-wise assignments.
11596 if Is_Derived_Type
(Typ
)
11597 and then not Is_Tagged_Type
(Typ
)
11599 Old_C
:= First_Stored_Discriminant
(Typ
);
11601 while Present
(Old_C
) loop
11602 Num_Gird
:= Num_Gird
+ 1;
11603 Next_Stored_Discriminant
(Old_C
);
11607 if Num_Gird
> Num_Disc
then
11609 -- Find out multiple uses of new discriminants, and add hidden
11610 -- components for the extra renamed discriminants. We recognize
11611 -- multiple uses through the Corresponding_Discriminant of a
11612 -- new discriminant: if it constrains several old discriminants,
11613 -- this field points to the last one in the parent type. The
11614 -- stored discriminants of the derived type have the same name
11615 -- as those of the parent.
11619 New_Discr
: Entity_Id
;
11620 Old_Discr
: Entity_Id
;
11623 Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
11624 Old_Discr
:= First_Stored_Discriminant
(Typ
);
11625 while Present
(Constr
) loop
11626 if Is_Entity_Name
(Node
(Constr
))
11627 and then Ekind
(Entity
(Node
(Constr
))) = E_Discriminant
11629 New_Discr
:= Entity
(Node
(Constr
));
11631 if Chars
(Corresponding_Discriminant
(New_Discr
)) /=
11634 -- The new discriminant has been used to rename a
11635 -- subsequent old discriminant. Introduce a shadow
11636 -- component for the current old discriminant.
11638 New_C
:= Create_Component
(Old_Discr
);
11639 Set_Original_Record_Component
(New_C
, Old_Discr
);
11643 -- The constraint has eliminated the old discriminant.
11644 -- Introduce a shadow component.
11646 New_C
:= Create_Component
(Old_Discr
);
11647 Set_Original_Record_Component
(New_C
, Old_Discr
);
11650 Next_Elmt
(Constr
);
11651 Next_Stored_Discriminant
(Old_Discr
);
11655 end Add_Discriminants
;
11658 and then Is_Variant_Record
(Typ
)
11660 Collect_Fixed_Components
(Typ
);
11662 Gather_Components
(
11664 Component_List
(Type_Definition
(Parent
(Typ
))),
11665 Governed_By
=> Assoc_List
,
11667 Report_Errors
=> Errors
);
11668 pragma Assert
(not Errors
);
11670 Create_All_Components
;
11672 -- If the subtype declaration is created for a tagged type derivation
11673 -- with constraints, we retrieve the record definition of the parent
11674 -- type to select the components of the proper variant.
11677 and then Is_Tagged_Type
(Typ
)
11678 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
11680 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
11681 and then Is_Variant_Record
(Parent_Type
)
11683 Collect_Fixed_Components
(Typ
);
11685 Gather_Components
(
11687 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
11688 Governed_By
=> Assoc_List
,
11690 Report_Errors
=> Errors
);
11691 pragma Assert
(not Errors
);
11693 -- If the tagged derivation has a type extension, collect all the
11694 -- new components therein.
11697 (Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
11699 Old_C
:= First_Component
(Typ
);
11700 while Present
(Old_C
) loop
11701 if Original_Record_Component
(Old_C
) = Old_C
11702 and then Chars
(Old_C
) /= Name_uTag
11703 and then Chars
(Old_C
) /= Name_uParent
11704 and then Chars
(Old_C
) /= Name_uController
11706 Append_Elmt
(Old_C
, Comp_List
);
11709 Next_Component
(Old_C
);
11713 Create_All_Components
;
11716 -- If discriminants are not static, or if this is a multi-level type
11717 -- extension, we have to include all components of the parent type.
11719 Old_C
:= First_Component
(Typ
);
11720 while Present
(Old_C
) loop
11721 New_C
:= Create_Component
(Old_C
);
11725 Constrain_Component_Type
11726 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
11727 Set_Is_Public
(New_C
, Is_Public
(Subt
));
11729 Next_Component
(Old_C
);
11734 end Create_Constrained_Components
;
11736 ------------------------------------------
11737 -- Decimal_Fixed_Point_Type_Declaration --
11738 ------------------------------------------
11740 procedure Decimal_Fixed_Point_Type_Declaration
11744 Loc
: constant Source_Ptr
:= Sloc
(Def
);
11745 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
11746 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
11747 Implicit_Base
: Entity_Id
;
11754 Check_Restriction
(No_Fixed_Point
, Def
);
11756 -- Create implicit base type
11759 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
11760 Set_Etype
(Implicit_Base
, Implicit_Base
);
11762 -- Analyze and process delta expression
11764 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
11766 Check_Delta_Expression
(Delta_Expr
);
11767 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
11769 -- Check delta is power of 10, and determine scale value from it
11775 Scale_Val
:= Uint_0
;
11778 if Val
< Ureal_1
then
11779 while Val
< Ureal_1
loop
11780 Val
:= Val
* Ureal_10
;
11781 Scale_Val
:= Scale_Val
+ 1;
11784 if Scale_Val
> 18 then
11785 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
11786 Scale_Val
:= UI_From_Int
(+18);
11790 while Val
> Ureal_1
loop
11791 Val
:= Val
/ Ureal_10
;
11792 Scale_Val
:= Scale_Val
- 1;
11795 if Scale_Val
< -18 then
11796 Error_Msg_N
("scale is less than minimum value of -18", Def
);
11797 Scale_Val
:= UI_From_Int
(-18);
11801 if Val
/= Ureal_1
then
11802 Error_Msg_N
("delta expression must be a power of 10", Def
);
11803 Delta_Val
:= Ureal_10
** (-Scale_Val
);
11807 -- Set delta, scale and small (small = delta for decimal type)
11809 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
11810 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
11811 Set_Small_Value
(Implicit_Base
, Delta_Val
);
11813 -- Analyze and process digits expression
11815 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
11816 Check_Digits_Expression
(Digs_Expr
);
11817 Digs_Val
:= Expr_Value
(Digs_Expr
);
11819 if Digs_Val
> 18 then
11820 Digs_Val
:= UI_From_Int
(+18);
11821 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
11824 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
11825 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
11827 -- Set range of base type from digits value for now. This will be
11828 -- expanded to represent the true underlying base range by Freeze.
11830 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
11832 -- Note: We leave size as zero for now, size will be set at freeze
11833 -- time. We have to do this for ordinary fixed-point, because the size
11834 -- depends on the specified small, and we might as well do the same for
11835 -- decimal fixed-point.
11837 pragma Assert
(Esize
(Implicit_Base
) = Uint_0
);
11839 -- If there are bounds given in the declaration use them as the
11840 -- bounds of the first named subtype.
11842 if Present
(Real_Range_Specification
(Def
)) then
11844 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
11845 Low
: constant Node_Id
:= Low_Bound
(RRS
);
11846 High
: constant Node_Id
:= High_Bound
(RRS
);
11851 Analyze_And_Resolve
(Low
, Any_Real
);
11852 Analyze_And_Resolve
(High
, Any_Real
);
11853 Check_Real_Bound
(Low
);
11854 Check_Real_Bound
(High
);
11855 Low_Val
:= Expr_Value_R
(Low
);
11856 High_Val
:= Expr_Value_R
(High
);
11858 if Low_Val
< (-Bound_Val
) then
11860 ("range low bound too small for digits value", Low
);
11861 Low_Val
:= -Bound_Val
;
11864 if High_Val
> Bound_Val
then
11866 ("range high bound too large for digits value", High
);
11867 High_Val
:= Bound_Val
;
11870 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
11873 -- If no explicit range, use range that corresponds to given
11874 -- digits value. This will end up as the final range for the
11878 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
11881 -- Complete entity for first subtype
11883 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
11884 Set_Etype
(T
, Implicit_Base
);
11885 Set_Size_Info
(T
, Implicit_Base
);
11886 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
11887 Set_Digits_Value
(T
, Digs_Val
);
11888 Set_Delta_Value
(T
, Delta_Val
);
11889 Set_Small_Value
(T
, Delta_Val
);
11890 Set_Scale_Value
(T
, Scale_Val
);
11891 Set_Is_Constrained
(T
);
11892 end Decimal_Fixed_Point_Type_Declaration
;
11894 -----------------------------------
11895 -- Derive_Progenitor_Subprograms --
11896 -----------------------------------
11898 procedure Derive_Progenitor_Subprograms
11899 (Parent_Type
: Entity_Id
;
11900 Tagged_Type
: Entity_Id
)
11905 Iface_Elmt
: Elmt_Id
;
11906 Iface_Subp
: Entity_Id
;
11907 New_Subp
: Entity_Id
:= Empty
;
11908 Prim_Elmt
: Elmt_Id
;
11913 pragma Assert
(Ada_Version
>= Ada_05
11914 and then Is_Record_Type
(Tagged_Type
)
11915 and then Is_Tagged_Type
(Tagged_Type
)
11916 and then Has_Interfaces
(Tagged_Type
));
11918 -- Step 1: Transfer to the full-view primitives associated with the
11919 -- partial-view that cover interface primitives. Conceptually this
11920 -- work should be done later by Process_Full_View; done here to
11921 -- simplify its implementation at later stages. It can be safely
11922 -- done here because interfaces must be visible in the partial and
11923 -- private view (RM 7.3(7.3/2)).
11925 -- Small optimization: This work is only required if the parent is
11926 -- abstract. If the tagged type is not abstract, it cannot have
11927 -- abstract primitives (the only entities in the list of primitives of
11928 -- non-abstract tagged types that can reference abstract primitives
11929 -- through its Alias attribute are the internal entities that have
11930 -- attribute Interface_Alias, and these entities are generated later
11931 -- by Freeze_Record_Type).
11933 if In_Private_Part
(Current_Scope
)
11934 and then Is_Abstract_Type
(Parent_Type
)
11936 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
11937 while Present
(Elmt
) loop
11938 Subp
:= Node
(Elmt
);
11940 -- At this stage it is not possible to have entities in the list
11941 -- of primitives that have attribute Interface_Alias
11943 pragma Assert
(No
(Interface_Alias
(Subp
)));
11945 Typ
:= Find_Dispatching_Type
(Ultimate_Alias
(Subp
));
11947 if Is_Interface
(Typ
) then
11948 E
:= Find_Primitive_Covering_Interface
11949 (Tagged_Type
=> Tagged_Type
,
11950 Iface_Prim
=> Subp
);
11953 and then Find_Dispatching_Type
(Ultimate_Alias
(E
)) /= Typ
11955 Replace_Elmt
(Elmt
, E
);
11956 Remove_Homonym
(Subp
);
11964 -- Step 2: Add primitives of progenitors that are not implemented by
11965 -- parents of Tagged_Type
11967 if Present
(Interfaces
(Base_Type
(Tagged_Type
))) then
11968 Iface_Elmt
:= First_Elmt
(Interfaces
(Base_Type
(Tagged_Type
)));
11969 while Present
(Iface_Elmt
) loop
11970 Iface
:= Node
(Iface_Elmt
);
11972 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
11973 while Present
(Prim_Elmt
) loop
11974 Iface_Subp
:= Node
(Prim_Elmt
);
11976 -- Exclude derivation of predefined primitives except those
11977 -- that come from source. Required to catch declarations of
11978 -- equality operators of interfaces. For example:
11980 -- type Iface is interface;
11981 -- function "=" (Left, Right : Iface) return Boolean;
11983 if not Is_Predefined_Dispatching_Operation
(Iface_Subp
)
11984 or else Comes_From_Source
(Iface_Subp
)
11986 E
:= Find_Primitive_Covering_Interface
11987 (Tagged_Type
=> Tagged_Type
,
11988 Iface_Prim
=> Iface_Subp
);
11990 -- If not found we derive a new primitive leaving its alias
11991 -- attribute referencing the interface primitive
11995 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
11997 -- Propagate to the full view interface entities associated
11998 -- with the partial view
12000 elsif In_Private_Part
(Current_Scope
)
12001 and then Present
(Alias
(E
))
12002 and then Alias
(E
) = Iface_Subp
12004 List_Containing
(Parent
(E
)) /=
12005 Private_Declarations
12007 (Unit_Declaration_Node
(Current_Scope
)))
12009 Append_Elmt
(E
, Primitive_Operations
(Tagged_Type
));
12013 Next_Elmt
(Prim_Elmt
);
12016 Next_Elmt
(Iface_Elmt
);
12019 end Derive_Progenitor_Subprograms
;
12021 -----------------------
12022 -- Derive_Subprogram --
12023 -----------------------
12025 procedure Derive_Subprogram
12026 (New_Subp
: in out Entity_Id
;
12027 Parent_Subp
: Entity_Id
;
12028 Derived_Type
: Entity_Id
;
12029 Parent_Type
: Entity_Id
;
12030 Actual_Subp
: Entity_Id
:= Empty
)
12032 Formal
: Entity_Id
;
12033 -- Formal parameter of parent primitive operation
12035 Formal_Of_Actual
: Entity_Id
;
12036 -- Formal parameter of actual operation, when the derivation is to
12037 -- create a renaming for a primitive operation of an actual in an
12040 New_Formal
: Entity_Id
;
12041 -- Formal of inherited operation
12043 Visible_Subp
: Entity_Id
:= Parent_Subp
;
12045 function Is_Private_Overriding
return Boolean;
12046 -- If Subp is a private overriding of a visible operation, the inherited
12047 -- operation derives from the overridden op (even though its body is the
12048 -- overriding one) and the inherited operation is visible now. See
12049 -- sem_disp to see the full details of the handling of the overridden
12050 -- subprogram, which is removed from the list of primitive operations of
12051 -- the type. The overridden subprogram is saved locally in Visible_Subp,
12052 -- and used to diagnose abstract operations that need overriding in the
12055 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
12056 -- When the type is an anonymous access type, create a new access type
12057 -- designating the derived type.
12059 procedure Set_Derived_Name
;
12060 -- This procedure sets the appropriate Chars name for New_Subp. This
12061 -- is normally just a copy of the parent name. An exception arises for
12062 -- type support subprograms, where the name is changed to reflect the
12063 -- name of the derived type, e.g. if type foo is derived from type bar,
12064 -- then a procedure barDA is derived with a name fooDA.
12066 ---------------------------
12067 -- Is_Private_Overriding --
12068 ---------------------------
12070 function Is_Private_Overriding
return Boolean is
12074 -- If the parent is not a dispatching operation there is no
12075 -- need to investigate overridings
12077 if not Is_Dispatching_Operation
(Parent_Subp
) then
12081 -- The visible operation that is overridden is a homonym of the
12082 -- parent subprogram. We scan the homonym chain to find the one
12083 -- whose alias is the subprogram we are deriving.
12085 Prev
:= Current_Entity
(Parent_Subp
);
12086 while Present
(Prev
) loop
12087 if Ekind
(Prev
) = Ekind
(Parent_Subp
)
12088 and then Alias
(Prev
) = Parent_Subp
12089 and then Scope
(Parent_Subp
) = Scope
(Prev
)
12090 and then not Is_Hidden
(Prev
)
12092 Visible_Subp
:= Prev
;
12096 Prev
:= Homonym
(Prev
);
12100 end Is_Private_Overriding
;
12106 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
12107 Acc_Type
: Entity_Id
;
12108 Par
: constant Node_Id
:= Parent
(Derived_Type
);
12111 -- When the type is an anonymous access type, create a new access
12112 -- type designating the derived type. This itype must be elaborated
12113 -- at the point of the derivation, not on subsequent calls that may
12114 -- be out of the proper scope for Gigi, so we insert a reference to
12115 -- it after the derivation.
12117 if Ekind
(Etype
(Id
)) = E_Anonymous_Access_Type
then
12119 Desig_Typ
: Entity_Id
:= Designated_Type
(Etype
(Id
));
12122 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
12123 and then Present
(Full_View
(Desig_Typ
))
12124 and then not Is_Private_Type
(Parent_Type
)
12126 Desig_Typ
:= Full_View
(Desig_Typ
);
12129 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
)
12131 -- Ada 2005 (AI-251): Handle also derivations of abstract
12132 -- interface primitives.
12134 or else (Is_Interface
(Desig_Typ
)
12135 and then not Is_Class_Wide_Type
(Desig_Typ
))
12137 Acc_Type
:= New_Copy
(Etype
(Id
));
12138 Set_Etype
(Acc_Type
, Acc_Type
);
12139 Set_Scope
(Acc_Type
, New_Subp
);
12141 -- Compute size of anonymous access type
12143 if Is_Array_Type
(Desig_Typ
)
12144 and then not Is_Constrained
(Desig_Typ
)
12146 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
12148 Init_Size
(Acc_Type
, System_Address_Size
);
12151 Init_Alignment
(Acc_Type
);
12152 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
12154 Set_Etype
(New_Id
, Acc_Type
);
12155 Set_Scope
(New_Id
, New_Subp
);
12157 -- Create a reference to it
12158 Build_Itype_Reference
(Acc_Type
, Parent
(Derived_Type
));
12161 Set_Etype
(New_Id
, Etype
(Id
));
12165 elsif Base_Type
(Etype
(Id
)) = Base_Type
(Parent_Type
)
12167 (Ekind
(Etype
(Id
)) = E_Record_Type_With_Private
12168 and then Present
(Full_View
(Etype
(Id
)))
12170 Base_Type
(Full_View
(Etype
(Id
))) = Base_Type
(Parent_Type
))
12172 -- Constraint checks on formals are generated during expansion,
12173 -- based on the signature of the original subprogram. The bounds
12174 -- of the derived type are not relevant, and thus we can use
12175 -- the base type for the formals. However, the return type may be
12176 -- used in a context that requires that the proper static bounds
12177 -- be used (a case statement, for example) and for those cases
12178 -- we must use the derived type (first subtype), not its base.
12180 -- If the derived_type_definition has no constraints, we know that
12181 -- the derived type has the same constraints as the first subtype
12182 -- of the parent, and we can also use it rather than its base,
12183 -- which can lead to more efficient code.
12185 if Etype
(Id
) = Parent_Type
then
12186 if Is_Scalar_Type
(Parent_Type
)
12188 Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
)
12190 Set_Etype
(New_Id
, Derived_Type
);
12192 elsif Nkind
(Par
) = N_Full_Type_Declaration
12194 Nkind
(Type_Definition
(Par
)) = N_Derived_Type_Definition
12197 (Subtype_Indication
(Type_Definition
(Par
)))
12199 Set_Etype
(New_Id
, Derived_Type
);
12202 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
12206 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
12209 -- Ada 2005 (AI-251): Handle derivations of abstract interface
12212 elsif Is_Interface
(Etype
(Id
))
12213 and then not Is_Class_Wide_Type
(Etype
(Id
))
12214 and then Is_Progenitor
(Etype
(Id
), Derived_Type
)
12216 Set_Etype
(New_Id
, Derived_Type
);
12219 Set_Etype
(New_Id
, Etype
(Id
));
12223 ----------------------
12224 -- Set_Derived_Name --
12225 ----------------------
12227 procedure Set_Derived_Name
is
12228 Nm
: constant TSS_Name_Type
:= Get_TSS_Name
(Parent_Subp
);
12230 if Nm
= TSS_Null
then
12231 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
12233 Set_Chars
(New_Subp
, Make_TSS_Name
(Base_Type
(Derived_Type
), Nm
));
12235 end Set_Derived_Name
;
12239 Parent_Overrides_Interface_Primitive
: Boolean := False;
12241 -- Start of processing for Derive_Subprogram
12245 New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
12246 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
12248 -- Check whether the parent overrides an interface primitive
12250 if Is_Overriding_Operation
(Parent_Subp
) then
12252 E
: Entity_Id
:= Parent_Subp
;
12254 while Present
(Overridden_Operation
(E
)) loop
12255 E
:= Ultimate_Alias
(Overridden_Operation
(E
));
12258 Parent_Overrides_Interface_Primitive
:=
12259 Is_Dispatching_Operation
(E
)
12260 and then Present
(Find_Dispatching_Type
(E
))
12261 and then Is_Interface
(Find_Dispatching_Type
(E
));
12265 -- Check whether the inherited subprogram is a private operation that
12266 -- should be inherited but not yet made visible. Such subprograms can
12267 -- become visible at a later point (e.g., the private part of a public
12268 -- child unit) via Declare_Inherited_Private_Subprograms. If the
12269 -- following predicate is true, then this is not such a private
12270 -- operation and the subprogram simply inherits the name of the parent
12271 -- subprogram. Note the special check for the names of controlled
12272 -- operations, which are currently exempted from being inherited with
12273 -- a hidden name because they must be findable for generation of
12274 -- implicit run-time calls.
12276 if not Is_Hidden
(Parent_Subp
)
12277 or else Is_Internal
(Parent_Subp
)
12278 or else Is_Private_Overriding
12279 or else Is_Internal_Name
(Chars
(Parent_Subp
))
12280 or else Chars
(Parent_Subp
) = Name_Initialize
12281 or else Chars
(Parent_Subp
) = Name_Adjust
12282 or else Chars
(Parent_Subp
) = Name_Finalize
12286 -- An inherited dispatching equality will be overridden by an internally
12287 -- generated one, or by an explicit one, so preserve its name and thus
12288 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
12289 -- private operation it may become invisible if the full view has
12290 -- progenitors, and the dispatch table will be malformed.
12291 -- We check that the type is limited to handle the anomalous declaration
12292 -- of Limited_Controlled, which is derived from a non-limited type, and
12293 -- which is handled specially elsewhere as well.
12295 elsif Chars
(Parent_Subp
) = Name_Op_Eq
12296 and then Is_Dispatching_Operation
(Parent_Subp
)
12297 and then Etype
(Parent_Subp
) = Standard_Boolean
12298 and then not Is_Limited_Type
(Etype
(First_Formal
(Parent_Subp
)))
12300 Etype
(First_Formal
(Parent_Subp
)) =
12301 Etype
(Next_Formal
(First_Formal
(Parent_Subp
)))
12305 -- If parent is hidden, this can be a regular derivation if the
12306 -- parent is immediately visible in a non-instantiating context,
12307 -- or if we are in the private part of an instance. This test
12308 -- should still be refined ???
12310 -- The test for In_Instance_Not_Visible avoids inheriting the derived
12311 -- operation as a non-visible operation in cases where the parent
12312 -- subprogram might not be visible now, but was visible within the
12313 -- original generic, so it would be wrong to make the inherited
12314 -- subprogram non-visible now. (Not clear if this test is fully
12315 -- correct; are there any cases where we should declare the inherited
12316 -- operation as not visible to avoid it being overridden, e.g., when
12317 -- the parent type is a generic actual with private primitives ???)
12319 -- (they should be treated the same as other private inherited
12320 -- subprograms, but it's not clear how to do this cleanly). ???
12322 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
12323 and then Is_Immediately_Visible
(Parent_Subp
)
12324 and then not In_Instance
)
12325 or else In_Instance_Not_Visible
12329 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
12330 -- overrides an interface primitive because interface primitives
12331 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
12333 elsif Parent_Overrides_Interface_Primitive
then
12336 -- Otherwise, the type is inheriting a private operation, so enter
12337 -- it with a special name so it can't be overridden.
12340 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
12343 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
12345 if Present
(Actual_Subp
) then
12346 Replace_Type
(Actual_Subp
, New_Subp
);
12348 Replace_Type
(Parent_Subp
, New_Subp
);
12351 Conditional_Delay
(New_Subp
, Parent_Subp
);
12353 -- If we are creating a renaming for a primitive operation of an
12354 -- actual of a generic derived type, we must examine the signature
12355 -- of the actual primitive, not that of the generic formal, which for
12356 -- example may be an interface. However the name and initial value
12357 -- of the inherited operation are those of the formal primitive.
12359 Formal
:= First_Formal
(Parent_Subp
);
12361 if Present
(Actual_Subp
) then
12362 Formal_Of_Actual
:= First_Formal
(Actual_Subp
);
12364 Formal_Of_Actual
:= Empty
;
12367 while Present
(Formal
) loop
12368 New_Formal
:= New_Copy
(Formal
);
12370 -- Normally we do not go copying parents, but in the case of
12371 -- formals, we need to link up to the declaration (which is the
12372 -- parameter specification), and it is fine to link up to the
12373 -- original formal's parameter specification in this case.
12375 Set_Parent
(New_Formal
, Parent
(Formal
));
12376 Append_Entity
(New_Formal
, New_Subp
);
12378 if Present
(Formal_Of_Actual
) then
12379 Replace_Type
(Formal_Of_Actual
, New_Formal
);
12380 Next_Formal
(Formal_Of_Actual
);
12382 Replace_Type
(Formal
, New_Formal
);
12385 Next_Formal
(Formal
);
12388 -- If this derivation corresponds to a tagged generic actual, then
12389 -- primitive operations rename those of the actual. Otherwise the
12390 -- primitive operations rename those of the parent type, If the parent
12391 -- renames an intrinsic operator, so does the new subprogram. We except
12392 -- concatenation, which is always properly typed, and does not get
12393 -- expanded as other intrinsic operations.
12395 if No
(Actual_Subp
) then
12396 if Is_Intrinsic_Subprogram
(Parent_Subp
) then
12397 Set_Is_Intrinsic_Subprogram
(New_Subp
);
12399 if Present
(Alias
(Parent_Subp
))
12400 and then Chars
(Parent_Subp
) /= Name_Op_Concat
12402 Set_Alias
(New_Subp
, Alias
(Parent_Subp
));
12404 Set_Alias
(New_Subp
, Parent_Subp
);
12408 Set_Alias
(New_Subp
, Parent_Subp
);
12412 Set_Alias
(New_Subp
, Actual_Subp
);
12415 -- Derived subprograms of a tagged type must inherit the convention
12416 -- of the parent subprogram (a requirement of AI-117). Derived
12417 -- subprograms of untagged types simply get convention Ada by default.
12419 if Is_Tagged_Type
(Derived_Type
) then
12420 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
12423 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
12424 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
12426 if Ekind
(Parent_Subp
) = E_Procedure
then
12427 Set_Is_Valued_Procedure
12428 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
12431 -- No_Return must be inherited properly. If this is overridden in the
12432 -- case of a dispatching operation, then a check is made in Sem_Disp
12433 -- that the overriding operation is also No_Return (no such check is
12434 -- required for the case of non-dispatching operation.
12436 Set_No_Return
(New_Subp
, No_Return
(Parent_Subp
));
12438 -- A derived function with a controlling result is abstract. If the
12439 -- Derived_Type is a nonabstract formal generic derived type, then
12440 -- inherited operations are not abstract: the required check is done at
12441 -- instantiation time. If the derivation is for a generic actual, the
12442 -- function is not abstract unless the actual is.
12444 if Is_Generic_Type
(Derived_Type
)
12445 and then not Is_Abstract_Type
(Derived_Type
)
12449 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
12450 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
12452 elsif Ada_Version
>= Ada_05
12453 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
12454 or else (Is_Tagged_Type
(Derived_Type
)
12455 and then Etype
(New_Subp
) = Derived_Type
12456 and then not Is_Null_Extension
(Derived_Type
))
12457 or else (Is_Tagged_Type
(Derived_Type
)
12458 and then Ekind
(Etype
(New_Subp
)) =
12459 E_Anonymous_Access_Type
12460 and then Designated_Type
(Etype
(New_Subp
)) =
12462 and then not Is_Null_Extension
(Derived_Type
)))
12463 and then No
(Actual_Subp
)
12465 if not Is_Tagged_Type
(Derived_Type
)
12466 or else Is_Abstract_Type
(Derived_Type
)
12467 or else Is_Abstract_Subprogram
(Alias
(New_Subp
))
12469 Set_Is_Abstract_Subprogram
(New_Subp
);
12471 Set_Requires_Overriding
(New_Subp
);
12474 elsif Ada_Version
< Ada_05
12475 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
12476 or else (Is_Tagged_Type
(Derived_Type
)
12477 and then Etype
(New_Subp
) = Derived_Type
12478 and then No
(Actual_Subp
)))
12480 Set_Is_Abstract_Subprogram
(New_Subp
);
12482 -- Finally, if the parent type is abstract we must verify that all
12483 -- inherited operations are either non-abstract or overridden, or that
12484 -- the derived type itself is abstract (this check is performed at the
12485 -- end of a package declaration, in Check_Abstract_Overriding). A
12486 -- private overriding in the parent type will not be visible in the
12487 -- derivation if we are not in an inner package or in a child unit of
12488 -- the parent type, in which case the abstractness of the inherited
12489 -- operation is carried to the new subprogram.
12491 elsif Is_Abstract_Type
(Parent_Type
)
12492 and then not In_Open_Scopes
(Scope
(Parent_Type
))
12493 and then Is_Private_Overriding
12494 and then Is_Abstract_Subprogram
(Visible_Subp
)
12496 if No
(Actual_Subp
) then
12497 Set_Alias
(New_Subp
, Visible_Subp
);
12498 Set_Is_Abstract_Subprogram
12501 -- If this is a derivation for an instance of a formal derived
12502 -- type, abstractness comes from the primitive operation of the
12503 -- actual, not from the operation inherited from the ancestor.
12505 Set_Is_Abstract_Subprogram
12506 (New_Subp
, Is_Abstract_Subprogram
(Actual_Subp
));
12510 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
12512 -- Check for case of a derived subprogram for the instantiation of a
12513 -- formal derived tagged type, if so mark the subprogram as dispatching
12514 -- and inherit the dispatching attributes of the parent subprogram. The
12515 -- derived subprogram is effectively renaming of the actual subprogram,
12516 -- so it needs to have the same attributes as the actual.
12518 if Present
(Actual_Subp
)
12519 and then Is_Dispatching_Operation
(Parent_Subp
)
12521 Set_Is_Dispatching_Operation
(New_Subp
);
12523 if Present
(DTC_Entity
(Parent_Subp
)) then
12524 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Parent_Subp
));
12525 Set_DT_Position
(New_Subp
, DT_Position
(Parent_Subp
));
12529 -- Indicate that a derived subprogram does not require a body and that
12530 -- it does not require processing of default expressions.
12532 Set_Has_Completion
(New_Subp
);
12533 Set_Default_Expressions_Processed
(New_Subp
);
12535 if Ekind
(New_Subp
) = E_Function
then
12536 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
12538 end Derive_Subprogram
;
12540 ------------------------
12541 -- Derive_Subprograms --
12542 ------------------------
12544 procedure Derive_Subprograms
12545 (Parent_Type
: Entity_Id
;
12546 Derived_Type
: Entity_Id
;
12547 Generic_Actual
: Entity_Id
:= Empty
)
12549 Op_List
: constant Elist_Id
:=
12550 Collect_Primitive_Operations
(Parent_Type
);
12552 function Check_Derived_Type
return Boolean;
12553 -- Check that all primitive inherited from Parent_Type are found in
12554 -- the list of primitives of Derived_Type exactly in the same order.
12556 function Check_Derived_Type
return Boolean is
12560 New_Subp
: Entity_Id
;
12565 -- Traverse list of entities in the current scope searching for
12566 -- an incomplete type whose full-view is derived type
12568 E
:= First_Entity
(Scope
(Derived_Type
));
12570 and then E
/= Derived_Type
12572 if Ekind
(E
) = E_Incomplete_Type
12573 and then Present
(Full_View
(E
))
12574 and then Full_View
(E
) = Derived_Type
12576 -- Disable this test if Derived_Type completes an incomplete
12577 -- type because in such case more primitives can be added
12578 -- later to the list of primitives of Derived_Type by routine
12579 -- Process_Incomplete_Dependents
12584 E
:= Next_Entity
(E
);
12587 List
:= Collect_Primitive_Operations
(Derived_Type
);
12588 Elmt
:= First_Elmt
(List
);
12590 Op_Elmt
:= First_Elmt
(Op_List
);
12591 while Present
(Op_Elmt
) loop
12592 Subp
:= Node
(Op_Elmt
);
12593 New_Subp
:= Node
(Elmt
);
12595 -- At this early stage Derived_Type has no entities with attribute
12596 -- Interface_Alias. In addition, such primitives are always
12597 -- located at the end of the list of primitives of Parent_Type.
12598 -- Therefore, if found we can safely stop processing pending
12601 exit when Present
(Interface_Alias
(Subp
));
12603 -- Handle hidden entities
12605 if not Is_Predefined_Dispatching_Operation
(Subp
)
12606 and then Is_Hidden
(Subp
)
12608 if Present
(New_Subp
)
12609 and then Primitive_Names_Match
(Subp
, New_Subp
)
12615 if not Present
(New_Subp
)
12616 or else Ekind
(Subp
) /= Ekind
(New_Subp
)
12617 or else not Primitive_Names_Match
(Subp
, New_Subp
)
12625 Next_Elmt
(Op_Elmt
);
12629 end Check_Derived_Type
;
12633 Alias_Subp
: Entity_Id
;
12634 Act_List
: Elist_Id
;
12635 Act_Elmt
: Elmt_Id
:= No_Elmt
;
12636 Act_Subp
: Entity_Id
:= Empty
;
12638 Need_Search
: Boolean := False;
12639 New_Subp
: Entity_Id
:= Empty
;
12640 Parent_Base
: Entity_Id
;
12643 -- Start of processing for Derive_Subprograms
12646 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
12647 and then Has_Discriminants
(Parent_Type
)
12648 and then Present
(Full_View
(Parent_Type
))
12650 Parent_Base
:= Full_View
(Parent_Type
);
12652 Parent_Base
:= Parent_Type
;
12655 if Present
(Generic_Actual
) then
12656 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
12657 Act_Elmt
:= First_Elmt
(Act_List
);
12660 -- Derive primitives inherited from the parent. Note that if the generic
12661 -- actual is present, this is not really a type derivation, it is a
12662 -- completion within an instance.
12664 -- Case 1: Derived_Type does not implement interfaces
12666 if not Is_Tagged_Type
(Derived_Type
)
12667 or else (not Has_Interfaces
(Derived_Type
)
12668 and then not (Present
(Generic_Actual
)
12670 Has_Interfaces
(Generic_Actual
)))
12672 Elmt
:= First_Elmt
(Op_List
);
12673 while Present
(Elmt
) loop
12674 Subp
:= Node
(Elmt
);
12676 -- Literals are derived earlier in the process of building the
12677 -- derived type, and are skipped here.
12679 if Ekind
(Subp
) = E_Enumeration_Literal
then
12682 -- The actual is a direct descendant and the common primitive
12683 -- operations appear in the same order.
12685 -- If the generic parent type is present, the derived type is an
12686 -- instance of a formal derived type, and within the instance its
12687 -- operations are those of the actual. We derive from the formal
12688 -- type but make the inherited operations aliases of the
12689 -- corresponding operations of the actual.
12693 (New_Subp
, Subp
, Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
12695 if Present
(Act_Elmt
) then
12696 Next_Elmt
(Act_Elmt
);
12703 -- Case 2: Derived_Type implements interfaces
12706 -- If the parent type has no predefined primitives we remove
12707 -- predefined primitives from the list of primitives of generic
12708 -- actual to simplify the complexity of this algorithm.
12710 if Present
(Generic_Actual
) then
12712 Has_Predefined_Primitives
: Boolean := False;
12715 -- Check if the parent type has predefined primitives
12717 Elmt
:= First_Elmt
(Op_List
);
12718 while Present
(Elmt
) loop
12719 Subp
:= Node
(Elmt
);
12721 if Is_Predefined_Dispatching_Operation
(Subp
)
12722 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
12724 Has_Predefined_Primitives
:= True;
12731 -- Remove predefined primitives of Generic_Actual. We must use
12732 -- an auxiliary list because in case of tagged types the value
12733 -- returned by Collect_Primitive_Operations is the value stored
12734 -- in its Primitive_Operations attribute (and we don't want to
12735 -- modify its current contents).
12737 if not Has_Predefined_Primitives
then
12739 Aux_List
: constant Elist_Id
:= New_Elmt_List
;
12742 Elmt
:= First_Elmt
(Act_List
);
12743 while Present
(Elmt
) loop
12744 Subp
:= Node
(Elmt
);
12746 if not Is_Predefined_Dispatching_Operation
(Subp
)
12747 or else Comes_From_Source
(Subp
)
12749 Append_Elmt
(Subp
, Aux_List
);
12755 Act_List
:= Aux_List
;
12759 Act_Elmt
:= First_Elmt
(Act_List
);
12760 Act_Subp
:= Node
(Act_Elmt
);
12764 -- Stage 1: If the generic actual is not present we derive the
12765 -- primitives inherited from the parent type. If the generic parent
12766 -- type is present, the derived type is an instance of a formal
12767 -- derived type, and within the instance its operations are those of
12768 -- the actual. We derive from the formal type but make the inherited
12769 -- operations aliases of the corresponding operations of the actual.
12771 Elmt
:= First_Elmt
(Op_List
);
12772 while Present
(Elmt
) loop
12773 Subp
:= Node
(Elmt
);
12774 Alias_Subp
:= Ultimate_Alias
(Subp
);
12776 -- At this early stage Derived_Type has no entities with attribute
12777 -- Interface_Alias. In addition, such primitives are always
12778 -- located at the end of the list of primitives of Parent_Type.
12779 -- Therefore, if found we can safely stop processing pending
12782 exit when Present
(Interface_Alias
(Subp
));
12784 -- If the generic actual is present find the corresponding
12785 -- operation in the generic actual. If the parent type is a
12786 -- direct ancestor of the derived type then, even if it is an
12787 -- interface, the operations are inherited from the primary
12788 -- dispatch table and are in the proper order. If we detect here
12789 -- that primitives are not in the same order we traverse the list
12790 -- of primitive operations of the actual to find the one that
12791 -- implements the interface primitive.
12795 (Present
(Generic_Actual
)
12796 and then Present
(Act_Subp
)
12797 and then not Primitive_Names_Match
(Subp
, Act_Subp
))
12799 pragma Assert
(not Is_Ancestor
(Parent_Base
, Generic_Actual
));
12800 pragma Assert
(Is_Interface
(Parent_Base
));
12802 -- Remember that we need searching for all the pending
12805 Need_Search
:= True;
12807 -- Handle entities associated with interface primitives
12809 if Present
(Alias
(Subp
))
12810 and then Is_Interface
(Find_Dispatching_Type
(Alias
(Subp
)))
12811 and then not Is_Predefined_Dispatching_Operation
(Subp
)
12814 Find_Primitive_Covering_Interface
12815 (Tagged_Type
=> Generic_Actual
,
12816 Iface_Prim
=> Subp
);
12818 -- Handle predefined primitives plus the rest of user-defined
12822 Act_Elmt
:= First_Elmt
(Act_List
);
12823 while Present
(Act_Elmt
) loop
12824 Act_Subp
:= Node
(Act_Elmt
);
12826 exit when Primitive_Names_Match
(Subp
, Act_Subp
)
12827 and then Type_Conformant
(Subp
, Act_Subp
,
12828 Skip_Controlling_Formals
=> True)
12829 and then No
(Interface_Alias
(Act_Subp
));
12831 Next_Elmt
(Act_Elmt
);
12836 -- Case 1: If the parent is a limited interface then it has the
12837 -- predefined primitives of synchronized interfaces. However, the
12838 -- actual type may be a non-limited type and hence it does not
12839 -- have such primitives.
12841 if Present
(Generic_Actual
)
12842 and then not Present
(Act_Subp
)
12843 and then Is_Limited_Interface
(Parent_Base
)
12844 and then Is_Predefined_Interface_Primitive
(Subp
)
12848 -- Case 2: Inherit entities associated with interfaces that
12849 -- were not covered by the parent type. We exclude here null
12850 -- interface primitives because they do not need special
12853 elsif Present
(Alias
(Subp
))
12854 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
12856 (Nkind
(Parent
(Alias_Subp
)) = N_Procedure_Specification
12857 and then Null_Present
(Parent
(Alias_Subp
)))
12860 (New_Subp
=> New_Subp
,
12861 Parent_Subp
=> Alias_Subp
,
12862 Derived_Type
=> Derived_Type
,
12863 Parent_Type
=> Find_Dispatching_Type
(Alias_Subp
),
12864 Actual_Subp
=> Act_Subp
);
12866 if No
(Generic_Actual
) then
12867 Set_Alias
(New_Subp
, Subp
);
12870 -- Case 3: Common derivation
12874 (New_Subp
=> New_Subp
,
12875 Parent_Subp
=> Subp
,
12876 Derived_Type
=> Derived_Type
,
12877 Parent_Type
=> Parent_Base
,
12878 Actual_Subp
=> Act_Subp
);
12881 -- No need to update Act_Elm if we must search for the
12882 -- corresponding operation in the generic actual
12885 and then Present
(Act_Elmt
)
12887 Next_Elmt
(Act_Elmt
);
12888 Act_Subp
:= Node
(Act_Elmt
);
12894 -- Inherit additional operations from progenitors. If the derived
12895 -- type is a generic actual, there are not new primitive operations
12896 -- for the type because it has those of the actual, and therefore
12897 -- nothing needs to be done. The renamings generated above are not
12898 -- primitive operations, and their purpose is simply to make the
12899 -- proper operations visible within an instantiation.
12901 if No
(Generic_Actual
) then
12902 Derive_Progenitor_Subprograms
(Parent_Base
, Derived_Type
);
12906 -- Final check: Direct descendants must have their primitives in the
12907 -- same order. We exclude from this test non-tagged types and instances
12908 -- of formal derived types. We skip this test if we have already
12909 -- reported serious errors in the sources.
12911 pragma Assert
(not Is_Tagged_Type
(Derived_Type
)
12912 or else Present
(Generic_Actual
)
12913 or else Serious_Errors_Detected
> 0
12914 or else Check_Derived_Type
);
12915 end Derive_Subprograms
;
12917 --------------------------------
12918 -- Derived_Standard_Character --
12919 --------------------------------
12921 procedure Derived_Standard_Character
12923 Parent_Type
: Entity_Id
;
12924 Derived_Type
: Entity_Id
)
12926 Loc
: constant Source_Ptr
:= Sloc
(N
);
12927 Def
: constant Node_Id
:= Type_Definition
(N
);
12928 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
12929 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
12930 Implicit_Base
: constant Entity_Id
:=
12932 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
12938 Discard_Node
(Process_Subtype
(Indic
, N
));
12940 Set_Etype
(Implicit_Base
, Parent_Base
);
12941 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
12942 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
12944 Set_Is_Character_Type
(Implicit_Base
, True);
12945 Set_Has_Delayed_Freeze
(Implicit_Base
);
12947 -- The bounds of the implicit base are the bounds of the parent base.
12948 -- Note that their type is the parent base.
12950 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
12951 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
12953 Set_Scalar_Range
(Implicit_Base
,
12956 High_Bound
=> Hi
));
12958 Conditional_Delay
(Derived_Type
, Parent_Type
);
12960 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
12961 Set_Etype
(Derived_Type
, Implicit_Base
);
12962 Set_Size_Info
(Derived_Type
, Parent_Type
);
12964 if Unknown_RM_Size
(Derived_Type
) then
12965 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
12968 Set_Is_Character_Type
(Derived_Type
, True);
12970 if Nkind
(Indic
) /= N_Subtype_Indication
then
12972 -- If no explicit constraint, the bounds are those
12973 -- of the parent type.
12975 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
12976 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
12977 Set_Scalar_Range
(Derived_Type
, Make_Range
(Loc
, Lo
, Hi
));
12980 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
12982 -- Because the implicit base is used in the conversion of the bounds, we
12983 -- have to freeze it now. This is similar to what is done for numeric
12984 -- types, and it equally suspicious, but otherwise a non-static bound
12985 -- will have a reference to an unfrozen type, which is rejected by Gigi
12986 -- (???). This requires specific care for definition of stream
12987 -- attributes. For details, see comments at the end of
12988 -- Build_Derived_Numeric_Type.
12990 Freeze_Before
(N
, Implicit_Base
);
12991 end Derived_Standard_Character
;
12993 ------------------------------
12994 -- Derived_Type_Declaration --
12995 ------------------------------
12997 procedure Derived_Type_Declaration
13000 Is_Completion
: Boolean)
13002 Parent_Type
: Entity_Id
;
13004 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean;
13005 -- Check whether the parent type is a generic formal, or derives
13006 -- directly or indirectly from one.
13008 ------------------------
13009 -- Comes_From_Generic --
13010 ------------------------
13012 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean is
13014 if Is_Generic_Type
(Typ
) then
13017 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
13020 elsif Is_Private_Type
(Typ
)
13021 and then Present
(Full_View
(Typ
))
13022 and then Is_Generic_Type
(Root_Type
(Full_View
(Typ
)))
13026 elsif Is_Generic_Actual_Type
(Typ
) then
13032 end Comes_From_Generic
;
13036 Def
: constant Node_Id
:= Type_Definition
(N
);
13037 Iface_Def
: Node_Id
;
13038 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
13039 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
13040 Parent_Node
: Node_Id
;
13041 Parent_Scope
: Entity_Id
;
13044 -- Start of processing for Derived_Type_Declaration
13047 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
13049 -- Ada 2005 (AI-251): In case of interface derivation check that the
13050 -- parent is also an interface.
13052 if Interface_Present
(Def
) then
13053 if not Is_Interface
(Parent_Type
) then
13054 Diagnose_Interface
(Indic
, Parent_Type
);
13057 Parent_Node
:= Parent
(Base_Type
(Parent_Type
));
13058 Iface_Def
:= Type_Definition
(Parent_Node
);
13060 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
13061 -- other limited interfaces.
13063 if Limited_Present
(Def
) then
13064 if Limited_Present
(Iface_Def
) then
13067 elsif Protected_Present
(Iface_Def
) then
13069 ("descendant of& must be declared"
13070 & " as a protected interface",
13073 elsif Synchronized_Present
(Iface_Def
) then
13075 ("descendant of& must be declared"
13076 & " as a synchronized interface",
13079 elsif Task_Present
(Iface_Def
) then
13081 ("descendant of& must be declared as a task interface",
13086 ("(Ada 2005) limited interface cannot "
13087 & "inherit from non-limited interface", Indic
);
13090 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
13091 -- from non-limited or limited interfaces.
13093 elsif not Protected_Present
(Def
)
13094 and then not Synchronized_Present
(Def
)
13095 and then not Task_Present
(Def
)
13097 if Limited_Present
(Iface_Def
) then
13100 elsif Protected_Present
(Iface_Def
) then
13102 ("descendant of& must be declared"
13103 & " as a protected interface",
13106 elsif Synchronized_Present
(Iface_Def
) then
13108 ("descendant of& must be declared"
13109 & " as a synchronized interface",
13112 elsif Task_Present
(Iface_Def
) then
13114 ("descendant of& must be declared as a task interface",
13123 if Is_Tagged_Type
(Parent_Type
)
13124 and then Is_Concurrent_Type
(Parent_Type
)
13125 and then not Is_Interface
(Parent_Type
)
13128 ("parent type of a record extension cannot be "
13129 & "a synchronized tagged type (RM 3.9.1 (3/1))", N
);
13130 Set_Etype
(T
, Any_Type
);
13134 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
13137 if Is_Tagged_Type
(Parent_Type
)
13138 and then Is_Non_Empty_List
(Interface_List
(Def
))
13145 Intf
:= First
(Interface_List
(Def
));
13146 while Present
(Intf
) loop
13147 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
13149 if not Is_Interface
(T
) then
13150 Diagnose_Interface
(Intf
, T
);
13152 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
13153 -- a limited type from having a nonlimited progenitor.
13155 elsif (Limited_Present
(Def
)
13156 or else (not Is_Interface
(Parent_Type
)
13157 and then Is_Limited_Type
(Parent_Type
)))
13158 and then not Is_Limited_Interface
(T
)
13161 ("progenitor interface& of limited type must be limited",
13170 if Parent_Type
= Any_Type
13171 or else Etype
(Parent_Type
) = Any_Type
13172 or else (Is_Class_Wide_Type
(Parent_Type
)
13173 and then Etype
(Parent_Type
) = T
)
13175 -- If Parent_Type is undefined or illegal, make new type into a
13176 -- subtype of Any_Type, and set a few attributes to prevent cascaded
13177 -- errors. If this is a self-definition, emit error now.
13180 or else T
= Etype
(Parent_Type
)
13182 Error_Msg_N
("type cannot be used in its own definition", Indic
);
13185 Set_Ekind
(T
, Ekind
(Parent_Type
));
13186 Set_Etype
(T
, Any_Type
);
13187 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
13189 if Is_Tagged_Type
(T
) then
13190 Set_Primitive_Operations
(T
, New_Elmt_List
);
13196 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
13197 -- an interface is special because the list of interfaces in the full
13198 -- view can be given in any order. For example:
13200 -- type A is interface;
13201 -- type B is interface and A;
13202 -- type D is new B with private;
13204 -- type D is new A and B with null record; -- 1 --
13206 -- In this case we perform the following transformation of -1-:
13208 -- type D is new B and A with null record;
13210 -- If the parent of the full-view covers the parent of the partial-view
13211 -- we have two possible cases:
13213 -- 1) They have the same parent
13214 -- 2) The parent of the full-view implements some further interfaces
13216 -- In both cases we do not need to perform the transformation. In the
13217 -- first case the source program is correct and the transformation is
13218 -- not needed; in the second case the source program does not fulfill
13219 -- the no-hidden interfaces rule (AI-396) and the error will be reported
13222 -- This transformation not only simplifies the rest of the analysis of
13223 -- this type declaration but also simplifies the correct generation of
13224 -- the object layout to the expander.
13226 if In_Private_Part
(Current_Scope
)
13227 and then Is_Interface
(Parent_Type
)
13231 Partial_View
: Entity_Id
;
13232 Partial_View_Parent
: Entity_Id
;
13233 New_Iface
: Node_Id
;
13236 -- Look for the associated private type declaration
13238 Partial_View
:= First_Entity
(Current_Scope
);
13240 exit when No
(Partial_View
)
13241 or else (Has_Private_Declaration
(Partial_View
)
13242 and then Full_View
(Partial_View
) = T
);
13244 Next_Entity
(Partial_View
);
13247 -- If the partial view was not found then the source code has
13248 -- errors and the transformation is not needed.
13250 if Present
(Partial_View
) then
13251 Partial_View_Parent
:= Etype
(Partial_View
);
13253 -- If the parent of the full-view covers the parent of the
13254 -- partial-view we have nothing else to do.
13256 if Interface_Present_In_Ancestor
13257 (Parent_Type
, Partial_View_Parent
)
13261 -- Traverse the list of interfaces of the full-view to look
13262 -- for the parent of the partial-view and perform the tree
13266 Iface
:= First
(Interface_List
(Def
));
13267 while Present
(Iface
) loop
13268 if Etype
(Iface
) = Etype
(Partial_View
) then
13269 Rewrite
(Subtype_Indication
(Def
),
13270 New_Copy
(Subtype_Indication
13271 (Parent
(Partial_View
))));
13273 New_Iface
:= Make_Identifier
(Sloc
(N
),
13274 Chars
(Parent_Type
));
13275 Append
(New_Iface
, Interface_List
(Def
));
13277 -- Analyze the transformed code
13279 Derived_Type_Declaration
(T
, N
, Is_Completion
);
13290 -- Only composite types other than array types are allowed to have
13293 if Present
(Discriminant_Specifications
(N
))
13294 and then (Is_Elementary_Type
(Parent_Type
)
13295 or else Is_Array_Type
(Parent_Type
))
13296 and then not Error_Posted
(N
)
13299 ("elementary or array type cannot have discriminants",
13300 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
13301 Set_Has_Discriminants
(T
, False);
13304 -- In Ada 83, a derived type defined in a package specification cannot
13305 -- be used for further derivation until the end of its visible part.
13306 -- Note that derivation in the private part of the package is allowed.
13308 if Ada_Version
= Ada_83
13309 and then Is_Derived_Type
(Parent_Type
)
13310 and then In_Visible_Part
(Scope
(Parent_Type
))
13312 if Ada_Version
= Ada_83
and then Comes_From_Source
(Indic
) then
13314 ("(Ada 83): premature use of type for derivation", Indic
);
13318 -- Check for early use of incomplete or private type
13320 if Ekind
(Parent_Type
) = E_Void
13321 or else Ekind
(Parent_Type
) = E_Incomplete_Type
13323 Error_Msg_N
("premature derivation of incomplete type", Indic
);
13326 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
13327 and then not Comes_From_Generic
(Parent_Type
))
13328 or else Has_Private_Component
(Parent_Type
)
13330 -- The ancestor type of a formal type can be incomplete, in which
13331 -- case only the operations of the partial view are available in
13332 -- the generic. Subsequent checks may be required when the full
13333 -- view is analyzed, to verify that derivation from a tagged type
13334 -- has an extension.
13336 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
13339 elsif No
(Underlying_Type
(Parent_Type
))
13340 or else Has_Private_Component
(Parent_Type
)
13343 ("premature derivation of derived or private type", Indic
);
13345 -- Flag the type itself as being in error, this prevents some
13346 -- nasty problems with subsequent uses of the malformed type.
13348 Set_Error_Posted
(T
);
13350 -- Check that within the immediate scope of an untagged partial
13351 -- view it's illegal to derive from the partial view if the
13352 -- full view is tagged. (7.3(7))
13354 -- We verify that the Parent_Type is a partial view by checking
13355 -- that it is not a Full_Type_Declaration (i.e. a private type or
13356 -- private extension declaration), to distinguish a partial view
13357 -- from a derivation from a private type which also appears as
13360 elsif Present
(Full_View
(Parent_Type
))
13361 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
13362 and then not Is_Tagged_Type
(Parent_Type
)
13363 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
13365 Parent_Scope
:= Scope
(T
);
13366 while Present
(Parent_Scope
)
13367 and then Parent_Scope
/= Standard_Standard
13369 if Parent_Scope
= Scope
(Parent_Type
) then
13371 ("premature derivation from type with tagged full view",
13375 Parent_Scope
:= Scope
(Parent_Scope
);
13380 -- Check that form of derivation is appropriate
13382 Taggd
:= Is_Tagged_Type
(Parent_Type
);
13384 -- Perhaps the parent type should be changed to the class-wide type's
13385 -- specific type in this case to prevent cascading errors ???
13387 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
13388 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
13392 if Present
(Extension
) and then not Taggd
then
13394 ("type derived from untagged type cannot have extension", Indic
);
13396 elsif No
(Extension
) and then Taggd
then
13398 -- If this declaration is within a private part (or body) of a
13399 -- generic instantiation then the derivation is allowed (the parent
13400 -- type can only appear tagged in this case if it's a generic actual
13401 -- type, since it would otherwise have been rejected in the analysis
13402 -- of the generic template).
13404 if not Is_Generic_Actual_Type
(Parent_Type
)
13405 or else In_Visible_Part
(Scope
(Parent_Type
))
13408 ("type derived from tagged type must have extension", Indic
);
13412 -- AI-443: Synchronized formal derived types require a private
13413 -- extension. There is no point in checking the ancestor type or
13414 -- the progenitors since the construct is wrong to begin with.
13416 if Ada_Version
>= Ada_05
13417 and then Is_Generic_Type
(T
)
13418 and then Present
(Original_Node
(N
))
13421 Decl
: constant Node_Id
:= Original_Node
(N
);
13424 if Nkind
(Decl
) = N_Formal_Type_Declaration
13425 and then Nkind
(Formal_Type_Definition
(Decl
)) =
13426 N_Formal_Derived_Type_Definition
13427 and then Synchronized_Present
(Formal_Type_Definition
(Decl
))
13428 and then No
(Extension
)
13430 -- Avoid emitting a duplicate error message
13432 and then not Error_Posted
(Indic
)
13435 ("synchronized derived type must have extension", N
);
13440 if Null_Exclusion_Present
(Def
)
13441 and then not Is_Access_Type
(Parent_Type
)
13443 Error_Msg_N
("null exclusion can only apply to an access type", N
);
13446 -- Avoid deriving parent primitives of underlying record views
13448 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
,
13449 Derive_Subps
=> not Is_Underlying_Record_View
(T
));
13451 -- AI-419: The parent type of an explicitly limited derived type must
13452 -- be a limited type or a limited interface.
13454 if Limited_Present
(Def
) then
13455 Set_Is_Limited_Record
(T
);
13457 if Is_Interface
(T
) then
13458 Set_Is_Limited_Interface
(T
);
13461 if not Is_Limited_Type
(Parent_Type
)
13463 (not Is_Interface
(Parent_Type
)
13464 or else not Is_Limited_Interface
(Parent_Type
))
13466 Error_Msg_NE
("parent type& of limited type must be limited",
13470 end Derived_Type_Declaration
;
13472 ------------------------
13473 -- Diagnose_Interface --
13474 ------------------------
13476 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
) is
13478 if not Is_Interface
(E
)
13479 and then E
/= Any_Type
13481 Error_Msg_NE
("(Ada 2005) & must be an interface", N
, E
);
13483 end Diagnose_Interface
;
13485 ----------------------------------
13486 -- Enumeration_Type_Declaration --
13487 ----------------------------------
13489 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
13496 -- Create identifier node representing lower bound
13498 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
13499 L
:= First
(Literals
(Def
));
13500 Set_Chars
(B_Node
, Chars
(L
));
13501 Set_Entity
(B_Node
, L
);
13502 Set_Etype
(B_Node
, T
);
13503 Set_Is_Static_Expression
(B_Node
, True);
13505 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
13506 Set_Low_Bound
(R_Node
, B_Node
);
13508 Set_Ekind
(T
, E_Enumeration_Type
);
13509 Set_First_Literal
(T
, L
);
13511 Set_Is_Constrained
(T
);
13515 -- Loop through literals of enumeration type setting pos and rep values
13516 -- except that if the Ekind is already set, then it means the literal
13517 -- was already constructed (case of a derived type declaration and we
13518 -- should not disturb the Pos and Rep values.
13520 while Present
(L
) loop
13521 if Ekind
(L
) /= E_Enumeration_Literal
then
13522 Set_Ekind
(L
, E_Enumeration_Literal
);
13523 Set_Enumeration_Pos
(L
, Ev
);
13524 Set_Enumeration_Rep
(L
, Ev
);
13525 Set_Is_Known_Valid
(L
, True);
13529 New_Overloaded_Entity
(L
);
13530 Generate_Definition
(L
);
13531 Set_Convention
(L
, Convention_Intrinsic
);
13533 if Nkind
(L
) = N_Defining_Character_Literal
then
13534 Set_Is_Character_Type
(T
, True);
13541 -- Now create a node representing upper bound
13543 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
13544 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
13545 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
13546 Set_Etype
(B_Node
, T
);
13547 Set_Is_Static_Expression
(B_Node
, True);
13549 Set_High_Bound
(R_Node
, B_Node
);
13551 -- Initialize various fields of the type. Some of this information
13552 -- may be overwritten later through rep.clauses.
13554 Set_Scalar_Range
(T
, R_Node
);
13555 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
13556 Set_Enum_Esize
(T
);
13557 Set_Enum_Pos_To_Rep
(T
, Empty
);
13559 -- Set Discard_Names if configuration pragma set, or if there is
13560 -- a parameterless pragma in the current declarative region
13562 if Global_Discard_Names
13563 or else Discard_Names
(Scope
(T
))
13565 Set_Discard_Names
(T
);
13568 -- Process end label if there is one
13570 if Present
(Def
) then
13571 Process_End_Label
(Def
, 'e', T
);
13573 end Enumeration_Type_Declaration
;
13575 ---------------------------------
13576 -- Expand_To_Stored_Constraint --
13577 ---------------------------------
13579 function Expand_To_Stored_Constraint
13581 Constraint
: Elist_Id
) return Elist_Id
13583 Explicitly_Discriminated_Type
: Entity_Id
;
13584 Expansion
: Elist_Id
;
13585 Discriminant
: Entity_Id
;
13587 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
13588 -- Find the nearest type that actually specifies discriminants
13590 ---------------------------------
13591 -- Type_With_Explicit_Discrims --
13592 ---------------------------------
13594 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
13595 Typ
: constant E
:= Base_Type
(Id
);
13598 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
13599 if Present
(Full_View
(Typ
)) then
13600 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
13604 if Has_Discriminants
(Typ
) then
13609 if Etype
(Typ
) = Typ
then
13611 elsif Has_Discriminants
(Typ
) then
13614 return Type_With_Explicit_Discrims
(Etype
(Typ
));
13617 end Type_With_Explicit_Discrims
;
13619 -- Start of processing for Expand_To_Stored_Constraint
13623 or else Is_Empty_Elmt_List
(Constraint
)
13628 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
13630 if No
(Explicitly_Discriminated_Type
) then
13634 Expansion
:= New_Elmt_List
;
13637 First_Stored_Discriminant
(Explicitly_Discriminated_Type
);
13638 while Present
(Discriminant
) loop
13640 Get_Discriminant_Value
(
13641 Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
13643 Next_Stored_Discriminant
(Discriminant
);
13647 end Expand_To_Stored_Constraint
;
13649 ---------------------------
13650 -- Find_Hidden_Interface --
13651 ---------------------------
13653 function Find_Hidden_Interface
13655 Dest
: Elist_Id
) return Entity_Id
13658 Iface_Elmt
: Elmt_Id
;
13661 if Present
(Src
) and then Present
(Dest
) then
13662 Iface_Elmt
:= First_Elmt
(Src
);
13663 while Present
(Iface_Elmt
) loop
13664 Iface
:= Node
(Iface_Elmt
);
13666 if Is_Interface
(Iface
)
13667 and then not Contain_Interface
(Iface
, Dest
)
13672 Next_Elmt
(Iface_Elmt
);
13677 end Find_Hidden_Interface
;
13679 --------------------
13680 -- Find_Type_Name --
13681 --------------------
13683 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
13684 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
13686 New_Id
: Entity_Id
;
13687 Prev_Par
: Node_Id
;
13689 procedure Tag_Mismatch
;
13690 -- Diagnose a tagged partial view whose full view is untagged.
13691 -- We post the message on the full view, with a reference to
13692 -- the previous partial view. The partial view can be private
13693 -- or incomplete, and these are handled in a different manner,
13694 -- so we determine the position of the error message from the
13695 -- respective slocs of both.
13701 procedure Tag_Mismatch
is
13703 if Sloc
(Prev
) < Sloc
(Id
) then
13705 ("full declaration of } must be a tagged type ", Id
, Prev
);
13708 ("full declaration of } must be a tagged type ", Prev
, Id
);
13712 -- Start of processing for Find_Type_Name
13715 -- Find incomplete declaration, if one was given
13717 Prev
:= Current_Entity_In_Scope
(Id
);
13719 if Present
(Prev
) then
13721 -- Previous declaration exists. Error if not incomplete/private case
13722 -- except if previous declaration is implicit, etc. Enter_Name will
13723 -- emit error if appropriate.
13725 Prev_Par
:= Parent
(Prev
);
13727 if not Is_Incomplete_Or_Private_Type
(Prev
) then
13731 elsif not Nkind_In
(N
, N_Full_Type_Declaration
,
13732 N_Task_Type_Declaration
,
13733 N_Protected_Type_Declaration
)
13735 -- Completion must be a full type declarations (RM 7.3(4))
13737 Error_Msg_Sloc
:= Sloc
(Prev
);
13738 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
13740 -- Set scope of Id to avoid cascaded errors. Entity is never
13741 -- examined again, except when saving globals in generics.
13743 Set_Scope
(Id
, Current_Scope
);
13746 -- If this is a repeated incomplete declaration, no further
13747 -- checks are possible.
13749 if Nkind
(N
) = N_Incomplete_Type_Declaration
then
13753 -- Case of full declaration of incomplete type
13755 elsif Ekind
(Prev
) = E_Incomplete_Type
then
13757 -- Indicate that the incomplete declaration has a matching full
13758 -- declaration. The defining occurrence of the incomplete
13759 -- declaration remains the visible one, and the procedure
13760 -- Get_Full_View dereferences it whenever the type is used.
13762 if Present
(Full_View
(Prev
)) then
13763 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
13766 Set_Full_View
(Prev
, Id
);
13767 Append_Entity
(Id
, Current_Scope
);
13768 Set_Is_Public
(Id
, Is_Public
(Prev
));
13769 Set_Is_Internal
(Id
);
13772 -- Case of full declaration of private type
13775 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
13776 if Etype
(Prev
) /= Prev
then
13778 -- Prev is a private subtype or a derived type, and needs
13781 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
13784 elsif Ekind
(Prev
) = E_Private_Type
13785 and then Nkind_In
(N
, N_Task_Type_Declaration
,
13786 N_Protected_Type_Declaration
)
13789 ("completion of nonlimited type cannot be limited", N
);
13791 elsif Ekind
(Prev
) = E_Record_Type_With_Private
13792 and then Nkind_In
(N
, N_Task_Type_Declaration
,
13793 N_Protected_Type_Declaration
)
13795 if not Is_Limited_Record
(Prev
) then
13797 ("completion of nonlimited type cannot be limited", N
);
13799 elsif No
(Interface_List
(N
)) then
13801 ("completion of tagged private type must be tagged",
13805 elsif Nkind
(N
) = N_Full_Type_Declaration
13807 Nkind
(Type_Definition
(N
)) = N_Record_Definition
13808 and then Interface_Present
(Type_Definition
(N
))
13811 ("completion of private type cannot be an interface", N
);
13814 -- Ada 2005 (AI-251): Private extension declaration of a task
13815 -- type or a protected type. This case arises when covering
13816 -- interface types.
13818 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
13819 N_Protected_Type_Declaration
)
13823 elsif Nkind
(N
) /= N_Full_Type_Declaration
13824 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
13827 ("full view of private extension must be an extension", N
);
13829 elsif not (Abstract_Present
(Parent
(Prev
)))
13830 and then Abstract_Present
(Type_Definition
(N
))
13833 ("full view of non-abstract extension cannot be abstract", N
);
13836 if not In_Private_Part
(Current_Scope
) then
13838 ("declaration of full view must appear in private part", N
);
13841 Copy_And_Swap
(Prev
, Id
);
13842 Set_Has_Private_Declaration
(Prev
);
13843 Set_Has_Private_Declaration
(Id
);
13845 -- If no error, propagate freeze_node from private to full view.
13846 -- It may have been generated for an early operational item.
13848 if Present
(Freeze_Node
(Id
))
13849 and then Serious_Errors_Detected
= 0
13850 and then No
(Full_View
(Id
))
13852 Set_Freeze_Node
(Prev
, Freeze_Node
(Id
));
13853 Set_Freeze_Node
(Id
, Empty
);
13854 Set_First_Rep_Item
(Prev
, First_Rep_Item
(Id
));
13857 Set_Full_View
(Id
, Prev
);
13861 -- Verify that full declaration conforms to partial one
13863 if Is_Incomplete_Or_Private_Type
(Prev
)
13864 and then Present
(Discriminant_Specifications
(Prev_Par
))
13866 if Present
(Discriminant_Specifications
(N
)) then
13867 if Ekind
(Prev
) = E_Incomplete_Type
then
13868 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
13870 Check_Discriminant_Conformance
(N
, Prev
, Id
);
13875 ("missing discriminants in full type declaration", N
);
13877 -- To avoid cascaded errors on subsequent use, share the
13878 -- discriminants of the partial view.
13880 Set_Discriminant_Specifications
(N
,
13881 Discriminant_Specifications
(Prev_Par
));
13885 -- A prior untagged partial view can have an associated class-wide
13886 -- type due to use of the class attribute, and in this case the full
13887 -- type must also be tagged. This Ada 95 usage is deprecated in favor
13888 -- of incomplete tagged declarations, but we check for it.
13891 and then (Is_Tagged_Type
(Prev
)
13892 or else Present
(Class_Wide_Type
(Prev
)))
13894 -- The full declaration is either a tagged type (including
13895 -- a synchronized type that implements interfaces) or a
13896 -- type extension, otherwise this is an error.
13898 if Nkind_In
(N
, N_Task_Type_Declaration
,
13899 N_Protected_Type_Declaration
)
13901 if No
(Interface_List
(N
))
13902 and then not Error_Posted
(N
)
13907 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
13909 -- Indicate that the previous declaration (tagged incomplete
13910 -- or private declaration) requires the same on the full one.
13912 if not Tagged_Present
(Type_Definition
(N
)) then
13914 Set_Is_Tagged_Type
(Id
);
13915 Set_Primitive_Operations
(Id
, New_Elmt_List
);
13918 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
13919 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
13921 "full declaration of } must be a record extension",
13924 -- Set some attributes to produce a usable full view
13926 Set_Is_Tagged_Type
(Id
);
13927 Set_Primitive_Operations
(Id
, New_Elmt_List
);
13938 -- New type declaration
13943 end Find_Type_Name
;
13945 -------------------------
13946 -- Find_Type_Of_Object --
13947 -------------------------
13949 function Find_Type_Of_Object
13950 (Obj_Def
: Node_Id
;
13951 Related_Nod
: Node_Id
) return Entity_Id
13953 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
13954 P
: Node_Id
:= Parent
(Obj_Def
);
13959 -- If the parent is a component_definition node we climb to the
13960 -- component_declaration node
13962 if Nkind
(P
) = N_Component_Definition
then
13966 -- Case of an anonymous array subtype
13968 if Nkind_In
(Def_Kind
, N_Constrained_Array_Definition
,
13969 N_Unconstrained_Array_Definition
)
13972 Array_Type_Declaration
(T
, Obj_Def
);
13974 -- Create an explicit subtype whenever possible
13976 elsif Nkind
(P
) /= N_Component_Declaration
13977 and then Def_Kind
= N_Subtype_Indication
13979 -- Base name of subtype on object name, which will be unique in
13980 -- the current scope.
13982 -- If this is a duplicate declaration, return base type, to avoid
13983 -- generating duplicate anonymous types.
13985 if Error_Posted
(P
) then
13986 Analyze
(Subtype_Mark
(Obj_Def
));
13987 return Entity
(Subtype_Mark
(Obj_Def
));
13992 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
13994 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
13996 Insert_Action
(Obj_Def
,
13997 Make_Subtype_Declaration
(Sloc
(P
),
13998 Defining_Identifier
=> T
,
13999 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
14001 -- This subtype may need freezing, and this will not be done
14002 -- automatically if the object declaration is not in declarative
14003 -- part. Since this is an object declaration, the type cannot always
14004 -- be frozen here. Deferred constants do not freeze their type
14005 -- (which often enough will be private).
14007 if Nkind
(P
) = N_Object_Declaration
14008 and then Constant_Present
(P
)
14009 and then No
(Expression
(P
))
14013 Insert_Actions
(Obj_Def
, Freeze_Entity
(T
, Sloc
(P
)));
14016 -- Ada 2005 AI-406: the object definition in an object declaration
14017 -- can be an access definition.
14019 elsif Def_Kind
= N_Access_Definition
then
14020 T
:= Access_Definition
(Related_Nod
, Obj_Def
);
14021 Set_Is_Local_Anonymous_Access
(T
);
14023 -- Otherwise, the object definition is just a subtype_mark
14026 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
14030 end Find_Type_Of_Object
;
14032 --------------------------------
14033 -- Find_Type_Of_Subtype_Indic --
14034 --------------------------------
14036 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
14040 -- Case of subtype mark with a constraint
14042 if Nkind
(S
) = N_Subtype_Indication
then
14043 Find_Type
(Subtype_Mark
(S
));
14044 Typ
:= Entity
(Subtype_Mark
(S
));
14047 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
14050 ("incorrect constraint for this kind of type", Constraint
(S
));
14051 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
14054 -- Otherwise we have a subtype mark without a constraint
14056 elsif Error_Posted
(S
) then
14057 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
14065 -- Check No_Wide_Characters restriction
14067 if Typ
= Standard_Wide_Character
14068 or else Typ
= Standard_Wide_Wide_Character
14069 or else Typ
= Standard_Wide_String
14070 or else Typ
= Standard_Wide_Wide_String
14072 Check_Restriction
(No_Wide_Characters
, S
);
14076 end Find_Type_Of_Subtype_Indic
;
14078 -------------------------------------
14079 -- Floating_Point_Type_Declaration --
14080 -------------------------------------
14082 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
14083 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
14085 Base_Typ
: Entity_Id
;
14086 Implicit_Base
: Entity_Id
;
14089 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
14090 -- Find if given digits value allows derivation from specified type
14092 ---------------------
14093 -- Can_Derive_From --
14094 ---------------------
14096 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
14097 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
14100 if Digs_Val
> Digits_Value
(E
) then
14104 if Present
(Spec
) then
14105 if Expr_Value_R
(Type_Low_Bound
(E
)) >
14106 Expr_Value_R
(Low_Bound
(Spec
))
14111 if Expr_Value_R
(Type_High_Bound
(E
)) <
14112 Expr_Value_R
(High_Bound
(Spec
))
14119 end Can_Derive_From
;
14121 -- Start of processing for Floating_Point_Type_Declaration
14124 Check_Restriction
(No_Floating_Point
, Def
);
14126 -- Create an implicit base type
14129 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
14131 -- Analyze and verify digits value
14133 Analyze_And_Resolve
(Digs
, Any_Integer
);
14134 Check_Digits_Expression
(Digs
);
14135 Digs_Val
:= Expr_Value
(Digs
);
14137 -- Process possible range spec and find correct type to derive from
14139 Process_Real_Range_Specification
(Def
);
14141 if Can_Derive_From
(Standard_Short_Float
) then
14142 Base_Typ
:= Standard_Short_Float
;
14143 elsif Can_Derive_From
(Standard_Float
) then
14144 Base_Typ
:= Standard_Float
;
14145 elsif Can_Derive_From
(Standard_Long_Float
) then
14146 Base_Typ
:= Standard_Long_Float
;
14147 elsif Can_Derive_From
(Standard_Long_Long_Float
) then
14148 Base_Typ
:= Standard_Long_Long_Float
;
14150 -- If we can't derive from any existing type, use long_long_float
14151 -- and give appropriate message explaining the problem.
14154 Base_Typ
:= Standard_Long_Long_Float
;
14156 if Digs_Val
>= Digits_Value
(Standard_Long_Long_Float
) then
14157 Error_Msg_Uint_1
:= Digits_Value
(Standard_Long_Long_Float
);
14158 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
14162 ("range too large for any predefined type",
14163 Real_Range_Specification
(Def
));
14167 -- If there are bounds given in the declaration use them as the bounds
14168 -- of the type, otherwise use the bounds of the predefined base type
14169 -- that was chosen based on the Digits value.
14171 if Present
(Real_Range_Specification
(Def
)) then
14172 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
14173 Set_Is_Constrained
(T
);
14175 -- The bounds of this range must be converted to machine numbers
14176 -- in accordance with RM 4.9(38).
14178 Bound
:= Type_Low_Bound
(T
);
14180 if Nkind
(Bound
) = N_Real_Literal
then
14182 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
14183 Set_Is_Machine_Number
(Bound
);
14186 Bound
:= Type_High_Bound
(T
);
14188 if Nkind
(Bound
) = N_Real_Literal
then
14190 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
14191 Set_Is_Machine_Number
(Bound
);
14195 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
14198 -- Complete definition of implicit base and declared first subtype
14200 Set_Etype
(Implicit_Base
, Base_Typ
);
14202 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
14203 Set_Size_Info
(Implicit_Base
, (Base_Typ
));
14204 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
14205 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
14206 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
14207 Set_Vax_Float
(Implicit_Base
, Vax_Float
(Base_Typ
));
14209 Set_Ekind
(T
, E_Floating_Point_Subtype
);
14210 Set_Etype
(T
, Implicit_Base
);
14212 Set_Size_Info
(T
, (Implicit_Base
));
14213 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
14214 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
14215 Set_Digits_Value
(T
, Digs_Val
);
14216 end Floating_Point_Type_Declaration
;
14218 ----------------------------
14219 -- Get_Discriminant_Value --
14220 ----------------------------
14222 -- This is the situation:
14224 -- There is a non-derived type
14226 -- type T0 (Dx, Dy, Dz...)
14228 -- There are zero or more levels of derivation, with each derivation
14229 -- either purely inheriting the discriminants, or defining its own.
14231 -- type Ti is new Ti-1
14233 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
14235 -- subtype Ti is ...
14237 -- The subtype issue is avoided by the use of Original_Record_Component,
14238 -- and the fact that derived subtypes also derive the constraints.
14240 -- This chain leads back from
14242 -- Typ_For_Constraint
14244 -- Typ_For_Constraint has discriminants, and the value for each
14245 -- discriminant is given by its corresponding Elmt of Constraints.
14247 -- Discriminant is some discriminant in this hierarchy
14249 -- We need to return its value
14251 -- We do this by recursively searching each level, and looking for
14252 -- Discriminant. Once we get to the bottom, we start backing up
14253 -- returning the value for it which may in turn be a discriminant
14254 -- further up, so on the backup we continue the substitution.
14256 function Get_Discriminant_Value
14257 (Discriminant
: Entity_Id
;
14258 Typ_For_Constraint
: Entity_Id
;
14259 Constraint
: Elist_Id
) return Node_Id
14261 function Search_Derivation_Levels
14263 Discrim_Values
: Elist_Id
;
14264 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
;
14265 -- This is the routine that performs the recursive search of levels
14266 -- as described above.
14268 ------------------------------
14269 -- Search_Derivation_Levels --
14270 ------------------------------
14272 function Search_Derivation_Levels
14274 Discrim_Values
: Elist_Id
;
14275 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
14279 Result
: Node_Or_Entity_Id
;
14280 Result_Entity
: Node_Id
;
14283 -- If inappropriate type, return Error, this happens only in
14284 -- cascaded error situations, and we want to avoid a blow up.
14286 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
14290 -- Look deeper if possible. Use Stored_Constraints only for
14291 -- untagged types. For tagged types use the given constraint.
14292 -- This asymmetry needs explanation???
14294 if not Stored_Discrim_Values
14295 and then Present
(Stored_Constraint
(Ti
))
14296 and then not Is_Tagged_Type
(Ti
)
14299 Search_Derivation_Levels
(Ti
, Stored_Constraint
(Ti
), True);
14302 Td
: constant Entity_Id
:= Etype
(Ti
);
14306 Result
:= Discriminant
;
14309 if Present
(Stored_Constraint
(Ti
)) then
14311 Search_Derivation_Levels
14312 (Td
, Stored_Constraint
(Ti
), True);
14315 Search_Derivation_Levels
14316 (Td
, Discrim_Values
, Stored_Discrim_Values
);
14322 -- Extra underlying places to search, if not found above. For
14323 -- concurrent types, the relevant discriminant appears in the
14324 -- corresponding record. For a type derived from a private type
14325 -- without discriminant, the full view inherits the discriminants
14326 -- of the full view of the parent.
14328 if Result
= Discriminant
then
14329 if Is_Concurrent_Type
(Ti
)
14330 and then Present
(Corresponding_Record_Type
(Ti
))
14333 Search_Derivation_Levels
(
14334 Corresponding_Record_Type
(Ti
),
14336 Stored_Discrim_Values
);
14338 elsif Is_Private_Type
(Ti
)
14339 and then not Has_Discriminants
(Ti
)
14340 and then Present
(Full_View
(Ti
))
14341 and then Etype
(Full_View
(Ti
)) /= Ti
14344 Search_Derivation_Levels
(
14347 Stored_Discrim_Values
);
14351 -- If Result is not a (reference to a) discriminant, return it,
14352 -- otherwise set Result_Entity to the discriminant.
14354 if Nkind
(Result
) = N_Defining_Identifier
then
14355 pragma Assert
(Result
= Discriminant
);
14356 Result_Entity
:= Result
;
14359 if not Denotes_Discriminant
(Result
) then
14363 Result_Entity
:= Entity
(Result
);
14366 -- See if this level of derivation actually has discriminants
14367 -- because tagged derivations can add them, hence the lower
14368 -- levels need not have any.
14370 if not Has_Discriminants
(Ti
) then
14374 -- Scan Ti's discriminants for Result_Entity,
14375 -- and return its corresponding value, if any.
14377 Result_Entity
:= Original_Record_Component
(Result_Entity
);
14379 Assoc
:= First_Elmt
(Discrim_Values
);
14381 if Stored_Discrim_Values
then
14382 Disc
:= First_Stored_Discriminant
(Ti
);
14384 Disc
:= First_Discriminant
(Ti
);
14387 while Present
(Disc
) loop
14388 pragma Assert
(Present
(Assoc
));
14390 if Original_Record_Component
(Disc
) = Result_Entity
then
14391 return Node
(Assoc
);
14396 if Stored_Discrim_Values
then
14397 Next_Stored_Discriminant
(Disc
);
14399 Next_Discriminant
(Disc
);
14403 -- Could not find it
14406 end Search_Derivation_Levels
;
14410 Result
: Node_Or_Entity_Id
;
14412 -- Start of processing for Get_Discriminant_Value
14415 -- ??? This routine is a gigantic mess and will be deleted. For the
14416 -- time being just test for the trivial case before calling recurse.
14418 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
14424 D
:= First_Discriminant
(Typ_For_Constraint
);
14425 E
:= First_Elmt
(Constraint
);
14426 while Present
(D
) loop
14427 if Chars
(D
) = Chars
(Discriminant
) then
14431 Next_Discriminant
(D
);
14437 Result
:= Search_Derivation_Levels
14438 (Typ_For_Constraint
, Constraint
, False);
14440 -- ??? hack to disappear when this routine is gone
14442 if Nkind
(Result
) = N_Defining_Identifier
then
14448 D
:= First_Discriminant
(Typ_For_Constraint
);
14449 E
:= First_Elmt
(Constraint
);
14450 while Present
(D
) loop
14451 if Corresponding_Discriminant
(D
) = Discriminant
then
14455 Next_Discriminant
(D
);
14461 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
14463 end Get_Discriminant_Value
;
14465 --------------------------
14466 -- Has_Range_Constraint --
14467 --------------------------
14469 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
14470 C
: constant Node_Id
:= Constraint
(N
);
14473 if Nkind
(C
) = N_Range_Constraint
then
14476 elsif Nkind
(C
) = N_Digits_Constraint
then
14478 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
14480 Present
(Range_Constraint
(C
));
14482 elsif Nkind
(C
) = N_Delta_Constraint
then
14483 return Present
(Range_Constraint
(C
));
14488 end Has_Range_Constraint
;
14490 ------------------------
14491 -- Inherit_Components --
14492 ------------------------
14494 function Inherit_Components
14496 Parent_Base
: Entity_Id
;
14497 Derived_Base
: Entity_Id
;
14498 Is_Tagged
: Boolean;
14499 Inherit_Discr
: Boolean;
14500 Discs
: Elist_Id
) return Elist_Id
14502 Assoc_List
: constant Elist_Id
:= New_Elmt_List
;
14504 procedure Inherit_Component
14505 (Old_C
: Entity_Id
;
14506 Plain_Discrim
: Boolean := False;
14507 Stored_Discrim
: Boolean := False);
14508 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
14509 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
14510 -- True, Old_C is a stored discriminant. If they are both false then
14511 -- Old_C is a regular component.
14513 -----------------------
14514 -- Inherit_Component --
14515 -----------------------
14517 procedure Inherit_Component
14518 (Old_C
: Entity_Id
;
14519 Plain_Discrim
: Boolean := False;
14520 Stored_Discrim
: Boolean := False)
14522 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
14524 Discrim
: Entity_Id
;
14525 Corr_Discrim
: Entity_Id
;
14528 pragma Assert
(not Is_Tagged
or else not Stored_Discrim
);
14530 Set_Parent
(New_C
, Parent
(Old_C
));
14532 -- Regular discriminants and components must be inserted in the scope
14533 -- of the Derived_Base. Do it here.
14535 if not Stored_Discrim
then
14536 Enter_Name
(New_C
);
14539 -- For tagged types the Original_Record_Component must point to
14540 -- whatever this field was pointing to in the parent type. This has
14541 -- already been achieved by the call to New_Copy above.
14543 if not Is_Tagged
then
14544 Set_Original_Record_Component
(New_C
, New_C
);
14547 -- If we have inherited a component then see if its Etype contains
14548 -- references to Parent_Base discriminants. In this case, replace
14549 -- these references with the constraints given in Discs. We do not
14550 -- do this for the partial view of private types because this is
14551 -- not needed (only the components of the full view will be used
14552 -- for code generation) and cause problem. We also avoid this
14553 -- transformation in some error situations.
14555 if Ekind
(New_C
) = E_Component
then
14556 if (Is_Private_Type
(Derived_Base
)
14557 and then not Is_Generic_Type
(Derived_Base
))
14558 or else (Is_Empty_Elmt_List
(Discs
)
14559 and then not Expander_Active
)
14561 Set_Etype
(New_C
, Etype
(Old_C
));
14564 -- The current component introduces a circularity of the
14567 -- limited with Pack_2;
14568 -- package Pack_1 is
14569 -- type T_1 is tagged record
14570 -- Comp : access Pack_2.T_2;
14576 -- package Pack_2 is
14577 -- type T_2 is new Pack_1.T_1 with ...;
14582 Constrain_Component_Type
14583 (Old_C
, Derived_Base
, N
, Parent_Base
, Discs
));
14587 -- In derived tagged types it is illegal to reference a non
14588 -- discriminant component in the parent type. To catch this, mark
14589 -- these components with an Ekind of E_Void. This will be reset in
14590 -- Record_Type_Definition after processing the record extension of
14591 -- the derived type.
14593 -- If the declaration is a private extension, there is no further
14594 -- record extension to process, and the components retain their
14595 -- current kind, because they are visible at this point.
14597 if Is_Tagged
and then Ekind
(New_C
) = E_Component
14598 and then Nkind
(N
) /= N_Private_Extension_Declaration
14600 Set_Ekind
(New_C
, E_Void
);
14603 if Plain_Discrim
then
14604 Set_Corresponding_Discriminant
(New_C
, Old_C
);
14605 Build_Discriminal
(New_C
);
14607 -- If we are explicitly inheriting a stored discriminant it will be
14608 -- completely hidden.
14610 elsif Stored_Discrim
then
14611 Set_Corresponding_Discriminant
(New_C
, Empty
);
14612 Set_Discriminal
(New_C
, Empty
);
14613 Set_Is_Completely_Hidden
(New_C
);
14615 -- Set the Original_Record_Component of each discriminant in the
14616 -- derived base to point to the corresponding stored that we just
14619 Discrim
:= First_Discriminant
(Derived_Base
);
14620 while Present
(Discrim
) loop
14621 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
14623 -- Corr_Discrim could be missing in an error situation
14625 if Present
(Corr_Discrim
)
14626 and then Original_Record_Component
(Corr_Discrim
) = Old_C
14628 Set_Original_Record_Component
(Discrim
, New_C
);
14631 Next_Discriminant
(Discrim
);
14634 Append_Entity
(New_C
, Derived_Base
);
14637 if not Is_Tagged
then
14638 Append_Elmt
(Old_C
, Assoc_List
);
14639 Append_Elmt
(New_C
, Assoc_List
);
14641 end Inherit_Component
;
14643 -- Variables local to Inherit_Component
14645 Loc
: constant Source_Ptr
:= Sloc
(N
);
14647 Parent_Discrim
: Entity_Id
;
14648 Stored_Discrim
: Entity_Id
;
14650 Component
: Entity_Id
;
14652 -- Start of processing for Inherit_Components
14655 if not Is_Tagged
then
14656 Append_Elmt
(Parent_Base
, Assoc_List
);
14657 Append_Elmt
(Derived_Base
, Assoc_List
);
14660 -- Inherit parent discriminants if needed
14662 if Inherit_Discr
then
14663 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
14664 while Present
(Parent_Discrim
) loop
14665 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
14666 Next_Discriminant
(Parent_Discrim
);
14670 -- Create explicit stored discrims for untagged types when necessary
14672 if not Has_Unknown_Discriminants
(Derived_Base
)
14673 and then Has_Discriminants
(Parent_Base
)
14674 and then not Is_Tagged
14677 or else First_Discriminant
(Parent_Base
) /=
14678 First_Stored_Discriminant
(Parent_Base
))
14680 Stored_Discrim
:= First_Stored_Discriminant
(Parent_Base
);
14681 while Present
(Stored_Discrim
) loop
14682 Inherit_Component
(Stored_Discrim
, Stored_Discrim
=> True);
14683 Next_Stored_Discriminant
(Stored_Discrim
);
14687 -- See if we can apply the second transformation for derived types, as
14688 -- explained in point 6. in the comments above Build_Derived_Record_Type
14689 -- This is achieved by appending Derived_Base discriminants into Discs,
14690 -- which has the side effect of returning a non empty Discs list to the
14691 -- caller of Inherit_Components, which is what we want. This must be
14692 -- done for private derived types if there are explicit stored
14693 -- discriminants, to ensure that we can retrieve the values of the
14694 -- constraints provided in the ancestors.
14697 and then Is_Empty_Elmt_List
(Discs
)
14698 and then Present
(First_Discriminant
(Derived_Base
))
14700 (not Is_Private_Type
(Derived_Base
)
14701 or else Is_Completely_Hidden
14702 (First_Stored_Discriminant
(Derived_Base
))
14703 or else Is_Generic_Type
(Derived_Base
))
14705 D
:= First_Discriminant
(Derived_Base
);
14706 while Present
(D
) loop
14707 Append_Elmt
(New_Reference_To
(D
, Loc
), Discs
);
14708 Next_Discriminant
(D
);
14712 -- Finally, inherit non-discriminant components unless they are not
14713 -- visible because defined or inherited from the full view of the
14714 -- parent. Don't inherit the _parent field of the parent type.
14716 Component
:= First_Entity
(Parent_Base
);
14717 while Present
(Component
) loop
14719 -- Ada 2005 (AI-251): Do not inherit components associated with
14720 -- secondary tags of the parent.
14722 if Ekind
(Component
) = E_Component
14723 and then Present
(Related_Type
(Component
))
14727 elsif Ekind
(Component
) /= E_Component
14728 or else Chars
(Component
) = Name_uParent
14732 -- If the derived type is within the parent type's declarative
14733 -- region, then the components can still be inherited even though
14734 -- they aren't visible at this point. This can occur for cases
14735 -- such as within public child units where the components must
14736 -- become visible upon entering the child unit's private part.
14738 elsif not Is_Visible_Component
(Component
)
14739 and then not In_Open_Scopes
(Scope
(Parent_Base
))
14743 elsif Ekind
(Derived_Base
) = E_Private_Type
14744 or else Ekind
(Derived_Base
) = E_Limited_Private_Type
14749 Inherit_Component
(Component
);
14752 Next_Entity
(Component
);
14755 -- For tagged derived types, inherited discriminants cannot be used in
14756 -- component declarations of the record extension part. To achieve this
14757 -- we mark the inherited discriminants as not visible.
14759 if Is_Tagged
and then Inherit_Discr
then
14760 D
:= First_Discriminant
(Derived_Base
);
14761 while Present
(D
) loop
14762 Set_Is_Immediately_Visible
(D
, False);
14763 Next_Discriminant
(D
);
14768 end Inherit_Components
;
14770 -----------------------
14771 -- Is_Null_Extension --
14772 -----------------------
14774 function Is_Null_Extension
(T
: Entity_Id
) return Boolean is
14775 Type_Decl
: constant Node_Id
:= Parent
(Base_Type
(T
));
14776 Comp_List
: Node_Id
;
14780 if Nkind
(Type_Decl
) /= N_Full_Type_Declaration
14781 or else not Is_Tagged_Type
(T
)
14782 or else Nkind
(Type_Definition
(Type_Decl
)) /=
14783 N_Derived_Type_Definition
14784 or else No
(Record_Extension_Part
(Type_Definition
(Type_Decl
)))
14790 Component_List
(Record_Extension_Part
(Type_Definition
(Type_Decl
)));
14792 if Present
(Discriminant_Specifications
(Type_Decl
)) then
14795 elsif Present
(Comp_List
)
14796 and then Is_Non_Empty_List
(Component_Items
(Comp_List
))
14798 Comp
:= First
(Component_Items
(Comp_List
));
14800 -- Only user-defined components are relevant. The component list
14801 -- may also contain a parent component and internal components
14802 -- corresponding to secondary tags, but these do not determine
14803 -- whether this is a null extension.
14805 while Present
(Comp
) loop
14806 if Comes_From_Source
(Comp
) then
14817 end Is_Null_Extension
;
14819 --------------------
14820 -- Is_Progenitor --
14821 --------------------
14823 function Is_Progenitor
14824 (Iface
: Entity_Id
;
14825 Typ
: Entity_Id
) return Boolean
14828 return Implements_Interface
(Typ
, Iface
,
14829 Exclude_Parents
=> True);
14832 ------------------------------
14833 -- Is_Valid_Constraint_Kind --
14834 ------------------------------
14836 function Is_Valid_Constraint_Kind
14837 (T_Kind
: Type_Kind
;
14838 Constraint_Kind
: Node_Kind
) return Boolean
14842 when Enumeration_Kind |
14844 return Constraint_Kind
= N_Range_Constraint
;
14846 when Decimal_Fixed_Point_Kind
=>
14847 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
14848 N_Range_Constraint
);
14850 when Ordinary_Fixed_Point_Kind
=>
14851 return Nkind_In
(Constraint_Kind
, N_Delta_Constraint
,
14852 N_Range_Constraint
);
14855 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
14856 N_Range_Constraint
);
14863 E_Incomplete_Type |
14866 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
14869 return True; -- Error will be detected later
14871 end Is_Valid_Constraint_Kind
;
14873 --------------------------
14874 -- Is_Visible_Component --
14875 --------------------------
14877 function Is_Visible_Component
(C
: Entity_Id
) return Boolean is
14878 Original_Comp
: Entity_Id
:= Empty
;
14879 Original_Scope
: Entity_Id
;
14880 Type_Scope
: Entity_Id
;
14882 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean;
14883 -- Check whether parent type of inherited component is declared locally,
14884 -- possibly within a nested package or instance. The current scope is
14885 -- the derived record itself.
14887 -------------------
14888 -- Is_Local_Type --
14889 -------------------
14891 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean is
14895 Scop
:= Scope
(Typ
);
14896 while Present
(Scop
)
14897 and then Scop
/= Standard_Standard
14899 if Scop
= Scope
(Current_Scope
) then
14903 Scop
:= Scope
(Scop
);
14909 -- Start of processing for Is_Visible_Component
14912 if Ekind
(C
) = E_Component
14913 or else Ekind
(C
) = E_Discriminant
14915 Original_Comp
:= Original_Record_Component
(C
);
14918 if No
(Original_Comp
) then
14920 -- Premature usage, or previous error
14925 Original_Scope
:= Scope
(Original_Comp
);
14926 Type_Scope
:= Scope
(Base_Type
(Scope
(C
)));
14929 -- This test only concerns tagged types
14931 if not Is_Tagged_Type
(Original_Scope
) then
14934 -- If it is _Parent or _Tag, there is no visibility issue
14936 elsif not Comes_From_Source
(Original_Comp
) then
14939 -- If we are in the body of an instantiation, the component is visible
14940 -- even when the parent type (possibly defined in an enclosing unit or
14941 -- in a parent unit) might not.
14943 elsif In_Instance_Body
then
14946 -- Discriminants are always visible
14948 elsif Ekind
(Original_Comp
) = E_Discriminant
14949 and then not Has_Unknown_Discriminants
(Original_Scope
)
14953 -- If the component has been declared in an ancestor which is currently
14954 -- a private type, then it is not visible. The same applies if the
14955 -- component's containing type is not in an open scope and the original
14956 -- component's enclosing type is a visible full view of a private type
14957 -- (which can occur in cases where an attempt is being made to reference
14958 -- a component in a sibling package that is inherited from a visible
14959 -- component of a type in an ancestor package; the component in the
14960 -- sibling package should not be visible even though the component it
14961 -- inherited from is visible). This does not apply however in the case
14962 -- where the scope of the type is a private child unit, or when the
14963 -- parent comes from a local package in which the ancestor is currently
14964 -- visible. The latter suppression of visibility is needed for cases
14965 -- that are tested in B730006.
14967 elsif Is_Private_Type
(Original_Scope
)
14969 (not Is_Private_Descendant
(Type_Scope
)
14970 and then not In_Open_Scopes
(Type_Scope
)
14971 and then Has_Private_Declaration
(Original_Scope
))
14973 -- If the type derives from an entity in a formal package, there
14974 -- are no additional visible components.
14976 if Nkind
(Original_Node
(Unit_Declaration_Node
(Type_Scope
))) =
14977 N_Formal_Package_Declaration
14981 -- if we are not in the private part of the current package, there
14982 -- are no additional visible components.
14984 elsif Ekind
(Scope
(Current_Scope
)) = E_Package
14985 and then not In_Private_Part
(Scope
(Current_Scope
))
14990 Is_Child_Unit
(Cunit_Entity
(Current_Sem_Unit
))
14991 and then In_Open_Scopes
(Scope
(Original_Scope
))
14992 and then Is_Local_Type
(Type_Scope
);
14995 -- There is another weird way in which a component may be invisible
14996 -- when the private and the full view are not derived from the same
14997 -- ancestor. Here is an example :
14999 -- type A1 is tagged record F1 : integer; end record;
15000 -- type A2 is new A1 with record F2 : integer; end record;
15001 -- type T is new A1 with private;
15003 -- type T is new A2 with null record;
15005 -- In this case, the full view of T inherits F1 and F2 but the private
15006 -- view inherits only F1
15010 Ancestor
: Entity_Id
:= Scope
(C
);
15014 if Ancestor
= Original_Scope
then
15016 elsif Ancestor
= Etype
(Ancestor
) then
15020 Ancestor
:= Etype
(Ancestor
);
15024 end Is_Visible_Component
;
15026 --------------------------
15027 -- Make_Class_Wide_Type --
15028 --------------------------
15030 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
15031 CW_Type
: Entity_Id
;
15033 Next_E
: Entity_Id
;
15036 -- The class wide type can have been defined by the partial view, in
15037 -- which case everything is already done.
15039 if Present
(Class_Wide_Type
(T
)) then
15044 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
15046 -- Inherit root type characteristics
15048 CW_Name
:= Chars
(CW_Type
);
15049 Next_E
:= Next_Entity
(CW_Type
);
15050 Copy_Node
(T
, CW_Type
);
15051 Set_Comes_From_Source
(CW_Type
, False);
15052 Set_Chars
(CW_Type
, CW_Name
);
15053 Set_Parent
(CW_Type
, Parent
(T
));
15054 Set_Next_Entity
(CW_Type
, Next_E
);
15056 -- Ensure we have a new freeze node for the class-wide type. The partial
15057 -- view may have freeze action of its own, requiring a proper freeze
15058 -- node, and the same freeze node cannot be shared between the two
15061 Set_Has_Delayed_Freeze
(CW_Type
);
15062 Set_Freeze_Node
(CW_Type
, Empty
);
15064 -- Customize the class-wide type: It has no prim. op., it cannot be
15065 -- abstract and its Etype points back to the specific root type.
15067 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
15068 Set_Is_Tagged_Type
(CW_Type
, True);
15069 Set_Primitive_Operations
(CW_Type
, New_Elmt_List
);
15070 Set_Is_Abstract_Type
(CW_Type
, False);
15071 Set_Is_Constrained
(CW_Type
, False);
15072 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
15074 if Ekind
(T
) = E_Class_Wide_Subtype
then
15075 Set_Etype
(CW_Type
, Etype
(Base_Type
(T
)));
15077 Set_Etype
(CW_Type
, T
);
15080 -- If this is the class_wide type of a constrained subtype, it does
15081 -- not have discriminants.
15083 Set_Has_Discriminants
(CW_Type
,
15084 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
15086 Set_Has_Unknown_Discriminants
(CW_Type
, True);
15087 Set_Class_Wide_Type
(T
, CW_Type
);
15088 Set_Equivalent_Type
(CW_Type
, Empty
);
15090 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
15092 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
15093 end Make_Class_Wide_Type
;
15099 procedure Make_Index
15101 Related_Nod
: Node_Id
;
15102 Related_Id
: Entity_Id
:= Empty
;
15103 Suffix_Index
: Nat
:= 1)
15107 Def_Id
: Entity_Id
:= Empty
;
15108 Found
: Boolean := False;
15111 -- For a discrete range used in a constrained array definition and
15112 -- defined by a range, an implicit conversion to the predefined type
15113 -- INTEGER is assumed if each bound is either a numeric literal, a named
15114 -- number, or an attribute, and the type of both bounds (prior to the
15115 -- implicit conversion) is the type universal_integer. Otherwise, both
15116 -- bounds must be of the same discrete type, other than universal
15117 -- integer; this type must be determinable independently of the
15118 -- context, but using the fact that the type must be discrete and that
15119 -- both bounds must have the same type.
15121 -- Character literals also have a universal type in the absence of
15122 -- of additional context, and are resolved to Standard_Character.
15124 if Nkind
(I
) = N_Range
then
15126 -- The index is given by a range constraint. The bounds are known
15127 -- to be of a consistent type.
15129 if not Is_Overloaded
(I
) then
15132 -- For universal bounds, choose the specific predefined type
15134 if T
= Universal_Integer
then
15135 T
:= Standard_Integer
;
15137 elsif T
= Any_Character
then
15138 Ambiguous_Character
(Low_Bound
(I
));
15140 T
:= Standard_Character
;
15143 -- The node may be overloaded because some user-defined operators
15144 -- are available, but if a universal interpretation exists it is
15145 -- also the selected one.
15147 elsif Universal_Interpretation
(I
) = Universal_Integer
then
15148 T
:= Standard_Integer
;
15154 Ind
: Interp_Index
;
15158 Get_First_Interp
(I
, Ind
, It
);
15159 while Present
(It
.Typ
) loop
15160 if Is_Discrete_Type
(It
.Typ
) then
15163 and then not Covers
(It
.Typ
, T
)
15164 and then not Covers
(T
, It
.Typ
)
15166 Error_Msg_N
("ambiguous bounds in discrete range", I
);
15174 Get_Next_Interp
(Ind
, It
);
15177 if T
= Any_Type
then
15178 Error_Msg_N
("discrete type required for range", I
);
15179 Set_Etype
(I
, Any_Type
);
15182 elsif T
= Universal_Integer
then
15183 T
:= Standard_Integer
;
15188 if not Is_Discrete_Type
(T
) then
15189 Error_Msg_N
("discrete type required for range", I
);
15190 Set_Etype
(I
, Any_Type
);
15194 if Nkind
(Low_Bound
(I
)) = N_Attribute_Reference
15195 and then Attribute_Name
(Low_Bound
(I
)) = Name_First
15196 and then Is_Entity_Name
(Prefix
(Low_Bound
(I
)))
15197 and then Is_Type
(Entity
(Prefix
(Low_Bound
(I
))))
15198 and then Is_Discrete_Type
(Entity
(Prefix
(Low_Bound
(I
))))
15200 -- The type of the index will be the type of the prefix, as long
15201 -- as the upper bound is 'Last of the same type.
15203 Def_Id
:= Entity
(Prefix
(Low_Bound
(I
)));
15205 if Nkind
(High_Bound
(I
)) /= N_Attribute_Reference
15206 or else Attribute_Name
(High_Bound
(I
)) /= Name_Last
15207 or else not Is_Entity_Name
(Prefix
(High_Bound
(I
)))
15208 or else Entity
(Prefix
(High_Bound
(I
))) /= Def_Id
15215 Process_Range_Expr_In_Decl
(R
, T
);
15217 elsif Nkind
(I
) = N_Subtype_Indication
then
15219 -- The index is given by a subtype with a range constraint
15221 T
:= Base_Type
(Entity
(Subtype_Mark
(I
)));
15223 if not Is_Discrete_Type
(T
) then
15224 Error_Msg_N
("discrete type required for range", I
);
15225 Set_Etype
(I
, Any_Type
);
15229 R
:= Range_Expression
(Constraint
(I
));
15232 Process_Range_Expr_In_Decl
(R
, Entity
(Subtype_Mark
(I
)));
15234 elsif Nkind
(I
) = N_Attribute_Reference
then
15236 -- The parser guarantees that the attribute is a RANGE attribute
15238 -- If the node denotes the range of a type mark, that is also the
15239 -- resulting type, and we do no need to create an Itype for it.
15241 if Is_Entity_Name
(Prefix
(I
))
15242 and then Comes_From_Source
(I
)
15243 and then Is_Type
(Entity
(Prefix
(I
)))
15244 and then Is_Discrete_Type
(Entity
(Prefix
(I
)))
15246 Def_Id
:= Entity
(Prefix
(I
));
15249 Analyze_And_Resolve
(I
);
15253 -- If none of the above, must be a subtype. We convert this to a
15254 -- range attribute reference because in the case of declared first
15255 -- named subtypes, the types in the range reference can be different
15256 -- from the type of the entity. A range attribute normalizes the
15257 -- reference and obtains the correct types for the bounds.
15259 -- This transformation is in the nature of an expansion, is only
15260 -- done if expansion is active. In particular, it is not done on
15261 -- formal generic types, because we need to retain the name of the
15262 -- original index for instantiation purposes.
15265 if not Is_Entity_Name
(I
) or else not Is_Type
(Entity
(I
)) then
15266 Error_Msg_N
("invalid subtype mark in discrete range ", I
);
15267 Set_Etype
(I
, Any_Integer
);
15271 -- The type mark may be that of an incomplete type. It is only
15272 -- now that we can get the full view, previous analysis does
15273 -- not look specifically for a type mark.
15275 Set_Entity
(I
, Get_Full_View
(Entity
(I
)));
15276 Set_Etype
(I
, Entity
(I
));
15277 Def_Id
:= Entity
(I
);
15279 if not Is_Discrete_Type
(Def_Id
) then
15280 Error_Msg_N
("discrete type required for index", I
);
15281 Set_Etype
(I
, Any_Type
);
15286 if Expander_Active
then
15288 Make_Attribute_Reference
(Sloc
(I
),
15289 Attribute_Name
=> Name_Range
,
15290 Prefix
=> Relocate_Node
(I
)));
15292 -- The original was a subtype mark that does not freeze. This
15293 -- means that the rewritten version must not freeze either.
15295 Set_Must_Not_Freeze
(I
);
15296 Set_Must_Not_Freeze
(Prefix
(I
));
15298 -- Is order critical??? if so, document why, if not
15299 -- use Analyze_And_Resolve
15301 Analyze_And_Resolve
(I
);
15305 -- If expander is inactive, type is legal, nothing else to construct
15312 if not Is_Discrete_Type
(T
) then
15313 Error_Msg_N
("discrete type required for range", I
);
15314 Set_Etype
(I
, Any_Type
);
15317 elsif T
= Any_Type
then
15318 Set_Etype
(I
, Any_Type
);
15322 -- We will now create the appropriate Itype to describe the range, but
15323 -- first a check. If we originally had a subtype, then we just label
15324 -- the range with this subtype. Not only is there no need to construct
15325 -- a new subtype, but it is wrong to do so for two reasons:
15327 -- 1. A legality concern, if we have a subtype, it must not freeze,
15328 -- and the Itype would cause freezing incorrectly
15330 -- 2. An efficiency concern, if we created an Itype, it would not be
15331 -- recognized as the same type for the purposes of eliminating
15332 -- checks in some circumstances.
15334 -- We signal this case by setting the subtype entity in Def_Id
15336 if No
(Def_Id
) then
15338 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
15339 Set_Etype
(Def_Id
, Base_Type
(T
));
15341 if Is_Signed_Integer_Type
(T
) then
15342 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
15344 elsif Is_Modular_Integer_Type
(T
) then
15345 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
15348 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
15349 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
15350 Set_First_Literal
(Def_Id
, First_Literal
(T
));
15353 Set_Size_Info
(Def_Id
, (T
));
15354 Set_RM_Size
(Def_Id
, RM_Size
(T
));
15355 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
15357 Set_Scalar_Range
(Def_Id
, R
);
15358 Conditional_Delay
(Def_Id
, T
);
15360 -- In the subtype indication case, if the immediate parent of the
15361 -- new subtype is non-static, then the subtype we create is non-
15362 -- static, even if its bounds are static.
15364 if Nkind
(I
) = N_Subtype_Indication
15365 and then not Is_Static_Subtype
(Entity
(Subtype_Mark
(I
)))
15367 Set_Is_Non_Static_Subtype
(Def_Id
);
15371 -- Final step is to label the index with this constructed type
15373 Set_Etype
(I
, Def_Id
);
15376 ------------------------------
15377 -- Modular_Type_Declaration --
15378 ------------------------------
15380 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
15381 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
15384 procedure Set_Modular_Size
(Bits
: Int
);
15385 -- Sets RM_Size to Bits, and Esize to normal word size above this
15387 ----------------------
15388 -- Set_Modular_Size --
15389 ----------------------
15391 procedure Set_Modular_Size
(Bits
: Int
) is
15393 Set_RM_Size
(T
, UI_From_Int
(Bits
));
15398 elsif Bits
<= 16 then
15399 Init_Esize
(T
, 16);
15401 elsif Bits
<= 32 then
15402 Init_Esize
(T
, 32);
15405 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
15408 if not Non_Binary_Modulus
(T
)
15409 and then Esize
(T
) = RM_Size
(T
)
15411 Set_Is_Known_Valid
(T
);
15413 end Set_Modular_Size
;
15415 -- Start of processing for Modular_Type_Declaration
15418 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
15420 Set_Ekind
(T
, E_Modular_Integer_Type
);
15421 Init_Alignment
(T
);
15422 Set_Is_Constrained
(T
);
15424 if not Is_OK_Static_Expression
(Mod_Expr
) then
15425 Flag_Non_Static_Expr
15426 ("non-static expression used for modular type bound!", Mod_Expr
);
15427 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
15429 M_Val
:= Expr_Value
(Mod_Expr
);
15433 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
15434 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
15437 Set_Modulus
(T
, M_Val
);
15439 -- Create bounds for the modular type based on the modulus given in
15440 -- the type declaration and then analyze and resolve those bounds.
15442 Set_Scalar_Range
(T
,
15443 Make_Range
(Sloc
(Mod_Expr
),
15445 Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
15447 Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
15449 -- Properly analyze the literals for the range. We do this manually
15450 -- because we can't go calling Resolve, since we are resolving these
15451 -- bounds with the type, and this type is certainly not complete yet!
15453 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
15454 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
15455 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
15456 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
15458 -- Loop through powers of two to find number of bits required
15460 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
15464 if M_Val
= 2 ** Bits
then
15465 Set_Modular_Size
(Bits
);
15470 elsif M_Val
< 2 ** Bits
then
15471 Set_Non_Binary_Modulus
(T
);
15473 if Bits
> System_Max_Nonbinary_Modulus_Power
then
15474 Error_Msg_Uint_1
:=
15475 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
15477 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
15478 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
15482 -- In the non-binary case, set size as per RM 13.3(55)
15484 Set_Modular_Size
(Bits
);
15491 -- If we fall through, then the size exceed System.Max_Binary_Modulus
15492 -- so we just signal an error and set the maximum size.
15494 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
15495 Error_Msg_F
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
15497 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
15498 Init_Alignment
(T
);
15500 end Modular_Type_Declaration
;
15502 --------------------------
15503 -- New_Concatenation_Op --
15504 --------------------------
15506 procedure New_Concatenation_Op
(Typ
: Entity_Id
) is
15507 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
15510 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
15511 -- Create abbreviated declaration for the formal of a predefined
15512 -- Operator 'Op' of type 'Typ'
15514 --------------------
15515 -- Make_Op_Formal --
15516 --------------------
15518 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
15519 Formal
: Entity_Id
;
15521 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
15522 Set_Etype
(Formal
, Typ
);
15523 Set_Mechanism
(Formal
, Default_Mechanism
);
15525 end Make_Op_Formal
;
15527 -- Start of processing for New_Concatenation_Op
15530 Op
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Concat
);
15532 Set_Ekind
(Op
, E_Operator
);
15533 Set_Scope
(Op
, Current_Scope
);
15534 Set_Etype
(Op
, Typ
);
15535 Set_Homonym
(Op
, Get_Name_Entity_Id
(Name_Op_Concat
));
15536 Set_Is_Immediately_Visible
(Op
);
15537 Set_Is_Intrinsic_Subprogram
(Op
);
15538 Set_Has_Completion
(Op
);
15539 Append_Entity
(Op
, Current_Scope
);
15541 Set_Name_Entity_Id
(Name_Op_Concat
, Op
);
15543 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
15544 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
15545 end New_Concatenation_Op
;
15547 -------------------------
15548 -- OK_For_Limited_Init --
15549 -------------------------
15551 -- ???Check all calls of this, and compare the conditions under which it's
15554 function OK_For_Limited_Init
15556 Exp
: Node_Id
) return Boolean
15559 return Is_CPP_Constructor_Call
(Exp
)
15560 or else (Ada_Version
>= Ada_05
15561 and then not Debug_Flag_Dot_L
15562 and then OK_For_Limited_Init_In_05
(Typ
, Exp
));
15563 end OK_For_Limited_Init
;
15565 -------------------------------
15566 -- OK_For_Limited_Init_In_05 --
15567 -------------------------------
15569 function OK_For_Limited_Init_In_05
15571 Exp
: Node_Id
) return Boolean
15574 -- An object of a limited interface type can be initialized with any
15575 -- expression of a nonlimited descendant type.
15577 if Is_Class_Wide_Type
(Typ
)
15578 and then Is_Limited_Interface
(Typ
)
15579 and then not Is_Limited_Type
(Etype
(Exp
))
15584 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
15585 -- case of limited aggregates (including extension aggregates), and
15586 -- function calls. The function call may have been give in prefixed
15587 -- notation, in which case the original node is an indexed component.
15589 case Nkind
(Original_Node
(Exp
)) is
15590 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op
=>
15593 when N_Qualified_Expression
=>
15595 OK_For_Limited_Init_In_05
15596 (Typ
, Expression
(Original_Node
(Exp
)));
15598 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
15599 -- with a function call, the expander has rewritten the call into an
15600 -- N_Type_Conversion node to force displacement of the pointer to
15601 -- reference the component containing the secondary dispatch table.
15602 -- Otherwise a type conversion is not a legal context.
15603 -- A return statement for a build-in-place function returning a
15604 -- synchronized type also introduces an unchecked conversion.
15606 when N_Type_Conversion | N_Unchecked_Type_Conversion
=>
15607 return not Comes_From_Source
(Exp
)
15609 OK_For_Limited_Init_In_05
15610 (Typ
, Expression
(Original_Node
(Exp
)));
15612 when N_Indexed_Component | N_Selected_Component
=>
15613 return Nkind
(Exp
) = N_Function_Call
;
15615 -- A use of 'Input is a function call, hence allowed. Normally the
15616 -- attribute will be changed to a call, but the attribute by itself
15617 -- can occur with -gnatc.
15619 when N_Attribute_Reference
=>
15620 return Attribute_Name
(Original_Node
(Exp
)) = Name_Input
;
15625 end OK_For_Limited_Init_In_05
;
15627 -------------------------------------------
15628 -- Ordinary_Fixed_Point_Type_Declaration --
15629 -------------------------------------------
15631 procedure Ordinary_Fixed_Point_Type_Declaration
15635 Loc
: constant Source_Ptr
:= Sloc
(Def
);
15636 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
15637 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
15638 Implicit_Base
: Entity_Id
;
15645 Check_Restriction
(No_Fixed_Point
, Def
);
15647 -- Create implicit base type
15650 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
15651 Set_Etype
(Implicit_Base
, Implicit_Base
);
15653 -- Analyze and process delta expression
15655 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
15657 Check_Delta_Expression
(Delta_Expr
);
15658 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
15660 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
15662 -- Compute default small from given delta, which is the largest power
15663 -- of two that does not exceed the given delta value.
15673 if Delta_Val
< Ureal_1
then
15674 while Delta_Val
< Tmp
loop
15675 Tmp
:= Tmp
/ Ureal_2
;
15676 Scale
:= Scale
+ 1;
15681 Tmp
:= Tmp
* Ureal_2
;
15682 exit when Tmp
> Delta_Val
;
15683 Scale
:= Scale
- 1;
15687 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
15690 Set_Small_Value
(Implicit_Base
, Small_Val
);
15692 -- If no range was given, set a dummy range
15694 if RRS
<= Empty_Or_Error
then
15695 Low_Val
:= -Small_Val
;
15696 High_Val
:= Small_Val
;
15698 -- Otherwise analyze and process given range
15702 Low
: constant Node_Id
:= Low_Bound
(RRS
);
15703 High
: constant Node_Id
:= High_Bound
(RRS
);
15706 Analyze_And_Resolve
(Low
, Any_Real
);
15707 Analyze_And_Resolve
(High
, Any_Real
);
15708 Check_Real_Bound
(Low
);
15709 Check_Real_Bound
(High
);
15711 -- Obtain and set the range
15713 Low_Val
:= Expr_Value_R
(Low
);
15714 High_Val
:= Expr_Value_R
(High
);
15716 if Low_Val
> High_Val
then
15717 Error_Msg_NE
("?fixed point type& has null range", Def
, T
);
15722 -- The range for both the implicit base and the declared first subtype
15723 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
15724 -- set a temporary range in place. Note that the bounds of the base
15725 -- type will be widened to be symmetrical and to fill the available
15726 -- bits when the type is frozen.
15728 -- We could do this with all discrete types, and probably should, but
15729 -- we absolutely have to do it for fixed-point, since the end-points
15730 -- of the range and the size are determined by the small value, which
15731 -- could be reset before the freeze point.
15733 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
15734 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
15736 -- Complete definition of first subtype
15738 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
15739 Set_Etype
(T
, Implicit_Base
);
15740 Init_Size_Align
(T
);
15741 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
15742 Set_Small_Value
(T
, Small_Val
);
15743 Set_Delta_Value
(T
, Delta_Val
);
15744 Set_Is_Constrained
(T
);
15746 end Ordinary_Fixed_Point_Type_Declaration
;
15748 ----------------------------------------
15749 -- Prepare_Private_Subtype_Completion --
15750 ----------------------------------------
15752 procedure Prepare_Private_Subtype_Completion
15754 Related_Nod
: Node_Id
)
15756 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
15757 Full_B
: constant Entity_Id
:= Full_View
(Id_B
);
15761 if Present
(Full_B
) then
15763 -- The Base_Type is already completed, we can complete the subtype
15764 -- now. We have to create a new entity with the same name, Thus we
15765 -- can't use Create_Itype.
15767 -- This is messy, should be fixed ???
15769 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
15770 Set_Is_Itype
(Full
);
15771 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
15772 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
15775 -- The parent subtype may be private, but the base might not, in some
15776 -- nested instances. In that case, the subtype does not need to be
15777 -- exchanged. It would still be nice to make private subtypes and their
15778 -- bases consistent at all times ???
15780 if Is_Private_Type
(Id_B
) then
15781 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
15784 end Prepare_Private_Subtype_Completion
;
15786 ---------------------------
15787 -- Process_Discriminants --
15788 ---------------------------
15790 procedure Process_Discriminants
15792 Prev
: Entity_Id
:= Empty
)
15794 Elist
: constant Elist_Id
:= New_Elmt_List
;
15797 Discr_Number
: Uint
;
15798 Discr_Type
: Entity_Id
;
15799 Default_Present
: Boolean := False;
15800 Default_Not_Present
: Boolean := False;
15803 -- A composite type other than an array type can have discriminants.
15804 -- On entry, the current scope is the composite type.
15806 -- The discriminants are initially entered into the scope of the type
15807 -- via Enter_Name with the default Ekind of E_Void to prevent premature
15808 -- use, as explained at the end of this procedure.
15810 Discr
:= First
(Discriminant_Specifications
(N
));
15811 while Present
(Discr
) loop
15812 Enter_Name
(Defining_Identifier
(Discr
));
15814 -- For navigation purposes we add a reference to the discriminant
15815 -- in the entity for the type. If the current declaration is a
15816 -- completion, place references on the partial view. Otherwise the
15817 -- type is the current scope.
15819 if Present
(Prev
) then
15821 -- The references go on the partial view, if present. If the
15822 -- partial view has discriminants, the references have been
15823 -- generated already.
15825 if not Has_Discriminants
(Prev
) then
15826 Generate_Reference
(Prev
, Defining_Identifier
(Discr
), 'd');
15830 (Current_Scope
, Defining_Identifier
(Discr
), 'd');
15833 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
15834 Discr_Type
:= Access_Definition
(Discr
, Discriminant_Type
(Discr
));
15836 -- Ada 2005 (AI-254)
15838 if Present
(Access_To_Subprogram_Definition
15839 (Discriminant_Type
(Discr
)))
15840 and then Protected_Present
(Access_To_Subprogram_Definition
15841 (Discriminant_Type
(Discr
)))
15844 Replace_Anonymous_Access_To_Protected_Subprogram
(Discr
);
15848 Find_Type
(Discriminant_Type
(Discr
));
15849 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
15851 if Error_Posted
(Discriminant_Type
(Discr
)) then
15852 Discr_Type
:= Any_Type
;
15856 if Is_Access_Type
(Discr_Type
) then
15858 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
15861 if Ada_Version
< Ada_05
then
15862 Check_Access_Discriminant_Requires_Limited
15863 (Discr
, Discriminant_Type
(Discr
));
15866 if Ada_Version
= Ada_83
and then Comes_From_Source
(Discr
) then
15868 ("(Ada 83) access discriminant not allowed", Discr
);
15871 elsif not Is_Discrete_Type
(Discr_Type
) then
15872 Error_Msg_N
("discriminants must have a discrete or access type",
15873 Discriminant_Type
(Discr
));
15876 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
15878 -- If a discriminant specification includes the assignment compound
15879 -- delimiter followed by an expression, the expression is the default
15880 -- expression of the discriminant; the default expression must be of
15881 -- the type of the discriminant. (RM 3.7.1) Since this expression is
15882 -- a default expression, we do the special preanalysis, since this
15883 -- expression does not freeze (see "Handling of Default and Per-
15884 -- Object Expressions" in spec of package Sem).
15886 if Present
(Expression
(Discr
)) then
15887 Preanalyze_Spec_Expression
(Expression
(Discr
), Discr_Type
);
15889 if Nkind
(N
) = N_Formal_Type_Declaration
then
15891 ("discriminant defaults not allowed for formal type",
15892 Expression
(Discr
));
15894 -- Tagged types cannot have defaulted discriminants, but a
15895 -- non-tagged private type with defaulted discriminants
15896 -- can have a tagged completion.
15898 elsif Is_Tagged_Type
(Current_Scope
)
15899 and then Comes_From_Source
(N
)
15902 ("discriminants of tagged type cannot have defaults",
15903 Expression
(Discr
));
15906 Default_Present
:= True;
15907 Append_Elmt
(Expression
(Discr
), Elist
);
15909 -- Tag the defining identifiers for the discriminants with
15910 -- their corresponding default expressions from the tree.
15912 Set_Discriminant_Default_Value
15913 (Defining_Identifier
(Discr
), Expression
(Discr
));
15917 Default_Not_Present
:= True;
15920 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
15921 -- Discr_Type but with the null-exclusion attribute
15923 if Ada_Version
>= Ada_05
then
15925 -- Ada 2005 (AI-231): Static checks
15927 if Can_Never_Be_Null
(Discr_Type
) then
15928 Null_Exclusion_Static_Checks
(Discr
);
15930 elsif Is_Access_Type
(Discr_Type
)
15931 and then Null_Exclusion_Present
(Discr
)
15933 -- No need to check itypes because in their case this check
15934 -- was done at their point of creation
15936 and then not Is_Itype
(Discr_Type
)
15938 if Can_Never_Be_Null
(Discr_Type
) then
15940 ("`NOT NULL` not allowed (& already excludes null)",
15945 Set_Etype
(Defining_Identifier
(Discr
),
15946 Create_Null_Excluding_Itype
15948 Related_Nod
=> Discr
));
15950 -- Check for improper null exclusion if the type is otherwise
15951 -- legal for a discriminant.
15953 elsif Null_Exclusion_Present
(Discr
)
15954 and then Is_Discrete_Type
(Discr_Type
)
15957 ("null exclusion can only apply to an access type", Discr
);
15960 -- Ada 2005 (AI-402): access discriminants of nonlimited types
15961 -- can't have defaults. Synchronized types, or types that are
15962 -- explicitly limited are fine, but special tests apply to derived
15963 -- types in generics: in a generic body we have to assume the
15964 -- worst, and therefore defaults are not allowed if the parent is
15965 -- a generic formal private type (see ACATS B370001).
15967 if Is_Access_Type
(Discr_Type
) then
15968 if Ekind
(Discr_Type
) /= E_Anonymous_Access_Type
15969 or else not Default_Present
15970 or else Is_Limited_Record
(Current_Scope
)
15971 or else Is_Concurrent_Type
(Current_Scope
)
15972 or else Is_Concurrent_Record_Type
(Current_Scope
)
15973 or else Ekind
(Current_Scope
) = E_Limited_Private_Type
15975 if not Is_Derived_Type
(Current_Scope
)
15976 or else not Is_Generic_Type
(Etype
(Current_Scope
))
15977 or else not In_Package_Body
(Scope
(Etype
(Current_Scope
)))
15978 or else Limited_Present
15979 (Type_Definition
(Parent
(Current_Scope
)))
15984 Error_Msg_N
("access discriminants of nonlimited types",
15985 Expression
(Discr
));
15986 Error_Msg_N
("\cannot have defaults", Expression
(Discr
));
15989 elsif Present
(Expression
(Discr
)) then
15991 ("(Ada 2005) access discriminants of nonlimited types",
15992 Expression
(Discr
));
15993 Error_Msg_N
("\cannot have defaults", Expression
(Discr
));
16001 -- An element list consisting of the default expressions of the
16002 -- discriminants is constructed in the above loop and used to set
16003 -- the Discriminant_Constraint attribute for the type. If an object
16004 -- is declared of this (record or task) type without any explicit
16005 -- discriminant constraint given, this element list will form the
16006 -- actual parameters for the corresponding initialization procedure
16009 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
16010 Set_Stored_Constraint
(Current_Scope
, No_Elist
);
16012 -- Default expressions must be provided either for all or for none
16013 -- of the discriminants of a discriminant part. (RM 3.7.1)
16015 if Default_Present
and then Default_Not_Present
then
16017 ("incomplete specification of defaults for discriminants", N
);
16020 -- The use of the name of a discriminant is not allowed in default
16021 -- expressions of a discriminant part if the specification of the
16022 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
16024 -- To detect this, the discriminant names are entered initially with an
16025 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
16026 -- attempt to use a void entity (for example in an expression that is
16027 -- type-checked) produces the error message: premature usage. Now after
16028 -- completing the semantic analysis of the discriminant part, we can set
16029 -- the Ekind of all the discriminants appropriately.
16031 Discr
:= First
(Discriminant_Specifications
(N
));
16032 Discr_Number
:= Uint_1
;
16033 while Present
(Discr
) loop
16034 Id
:= Defining_Identifier
(Discr
);
16035 Set_Ekind
(Id
, E_Discriminant
);
16036 Init_Component_Location
(Id
);
16038 Set_Discriminant_Number
(Id
, Discr_Number
);
16040 -- Make sure this is always set, even in illegal programs
16042 Set_Corresponding_Discriminant
(Id
, Empty
);
16044 -- Initialize the Original_Record_Component to the entity itself.
16045 -- Inherit_Components will propagate the right value to
16046 -- discriminants in derived record types.
16048 Set_Original_Record_Component
(Id
, Id
);
16050 -- Create the discriminal for the discriminant
16052 Build_Discriminal
(Id
);
16055 Discr_Number
:= Discr_Number
+ 1;
16058 Set_Has_Discriminants
(Current_Scope
);
16059 end Process_Discriminants
;
16061 -----------------------
16062 -- Process_Full_View --
16063 -----------------------
16065 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
16066 Priv_Parent
: Entity_Id
;
16067 Full_Parent
: Entity_Id
;
16068 Full_Indic
: Node_Id
;
16070 procedure Collect_Implemented_Interfaces
16072 Ifaces
: Elist_Id
);
16073 -- Ada 2005: Gather all the interfaces that Typ directly or
16074 -- inherently implements. Duplicate entries are not added to
16075 -- the list Ifaces.
16077 ------------------------------------
16078 -- Collect_Implemented_Interfaces --
16079 ------------------------------------
16081 procedure Collect_Implemented_Interfaces
16086 Iface_Elmt
: Elmt_Id
;
16089 -- Abstract interfaces are only associated with tagged record types
16091 if not Is_Tagged_Type
(Typ
)
16092 or else not Is_Record_Type
(Typ
)
16097 -- Recursively climb to the ancestors
16099 if Etype
(Typ
) /= Typ
16101 -- Protect the frontend against wrong cyclic declarations like:
16103 -- type B is new A with private;
16104 -- type C is new A with private;
16106 -- type B is new C with null record;
16107 -- type C is new B with null record;
16109 and then Etype
(Typ
) /= Priv_T
16110 and then Etype
(Typ
) /= Full_T
16112 -- Keep separate the management of private type declarations
16114 if Ekind
(Typ
) = E_Record_Type_With_Private
then
16116 -- Handle the following erronous case:
16117 -- type Private_Type is tagged private;
16119 -- type Private_Type is new Type_Implementing_Iface;
16121 if Present
(Full_View
(Typ
))
16122 and then Etype
(Typ
) /= Full_View
(Typ
)
16124 if Is_Interface
(Etype
(Typ
)) then
16125 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
16128 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
16131 -- Non-private types
16134 if Is_Interface
(Etype
(Typ
)) then
16135 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
16138 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
16142 -- Handle entities in the list of abstract interfaces
16144 if Present
(Interfaces
(Typ
)) then
16145 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
16146 while Present
(Iface_Elmt
) loop
16147 Iface
:= Node
(Iface_Elmt
);
16149 pragma Assert
(Is_Interface
(Iface
));
16151 if not Contain_Interface
(Iface
, Ifaces
) then
16152 Append_Elmt
(Iface
, Ifaces
);
16153 Collect_Implemented_Interfaces
(Iface
, Ifaces
);
16156 Next_Elmt
(Iface_Elmt
);
16159 end Collect_Implemented_Interfaces
;
16161 -- Start of processing for Process_Full_View
16164 -- First some sanity checks that must be done after semantic
16165 -- decoration of the full view and thus cannot be placed with other
16166 -- similar checks in Find_Type_Name
16168 if not Is_Limited_Type
(Priv_T
)
16169 and then (Is_Limited_Type
(Full_T
)
16170 or else Is_Limited_Composite
(Full_T
))
16173 ("completion of nonlimited type cannot be limited", Full_T
);
16174 Explain_Limited_Type
(Full_T
, Full_T
);
16176 elsif Is_Abstract_Type
(Full_T
)
16177 and then not Is_Abstract_Type
(Priv_T
)
16180 ("completion of nonabstract type cannot be abstract", Full_T
);
16182 elsif Is_Tagged_Type
(Priv_T
)
16183 and then Is_Limited_Type
(Priv_T
)
16184 and then not Is_Limited_Type
(Full_T
)
16186 -- If pragma CPP_Class was applied to the private declaration
16187 -- propagate the limitedness to the full-view
16189 if Is_CPP_Class
(Priv_T
) then
16190 Set_Is_Limited_Record
(Full_T
);
16192 -- GNAT allow its own definition of Limited_Controlled to disobey
16193 -- this rule in order in ease the implementation. The next test is
16194 -- safe because Root_Controlled is defined in a private system child
16196 elsif Etype
(Full_T
) = Full_View
(RTE
(RE_Root_Controlled
)) then
16197 Set_Is_Limited_Composite
(Full_T
);
16200 ("completion of limited tagged type must be limited", Full_T
);
16203 elsif Is_Generic_Type
(Priv_T
) then
16204 Error_Msg_N
("generic type cannot have a completion", Full_T
);
16207 -- Check that ancestor interfaces of private and full views are
16208 -- consistent. We omit this check for synchronized types because
16209 -- they are performed on the corresponding record type when frozen.
16211 if Ada_Version
>= Ada_05
16212 and then Is_Tagged_Type
(Priv_T
)
16213 and then Is_Tagged_Type
(Full_T
)
16214 and then not Is_Concurrent_Type
(Full_T
)
16218 Priv_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
16219 Full_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
16222 Collect_Implemented_Interfaces
(Priv_T
, Priv_T_Ifaces
);
16223 Collect_Implemented_Interfaces
(Full_T
, Full_T_Ifaces
);
16225 -- Ada 2005 (AI-251): The partial view shall be a descendant of
16226 -- an interface type if and only if the full type is descendant
16227 -- of the interface type (AARM 7.3 (7.3/2).
16229 Iface
:= Find_Hidden_Interface
(Priv_T_Ifaces
, Full_T_Ifaces
);
16231 if Present
(Iface
) then
16232 Error_Msg_NE
("interface & not implemented by full type " &
16233 "(RM-2005 7.3 (7.3/2))", Priv_T
, Iface
);
16236 Iface
:= Find_Hidden_Interface
(Full_T_Ifaces
, Priv_T_Ifaces
);
16238 if Present
(Iface
) then
16239 Error_Msg_NE
("interface & not implemented by partial view " &
16240 "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
16245 if Is_Tagged_Type
(Priv_T
)
16246 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
16247 and then Is_Derived_Type
(Full_T
)
16249 Priv_Parent
:= Etype
(Priv_T
);
16251 -- The full view of a private extension may have been transformed
16252 -- into an unconstrained derived type declaration and a subtype
16253 -- declaration (see build_derived_record_type for details).
16255 if Nkind
(N
) = N_Subtype_Declaration
then
16256 Full_Indic
:= Subtype_Indication
(N
);
16257 Full_Parent
:= Etype
(Base_Type
(Full_T
));
16259 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
16260 Full_Parent
:= Etype
(Full_T
);
16263 -- Check that the parent type of the full type is a descendant of
16264 -- the ancestor subtype given in the private extension. If either
16265 -- entity has an Etype equal to Any_Type then we had some previous
16266 -- error situation [7.3(8)].
16268 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
16271 -- Ada 2005 (AI-251): Interfaces in the full-typ can be given in
16272 -- any order. Therefore we don't have to check that its parent must
16273 -- be a descendant of the parent of the private type declaration.
16275 elsif Is_Interface
(Priv_Parent
)
16276 and then Is_Interface
(Full_Parent
)
16280 -- Ada 2005 (AI-251): If the parent of the private type declaration
16281 -- is an interface there is no need to check that it is an ancestor
16282 -- of the associated full type declaration. The required tests for
16283 -- this case are performed by Build_Derived_Record_Type.
16285 elsif not Is_Interface
(Base_Type
(Priv_Parent
))
16286 and then not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
)
16289 ("parent of full type must descend from parent"
16290 & " of private extension", Full_Indic
);
16292 -- Check the rules of 7.3(10): if the private extension inherits
16293 -- known discriminants, then the full type must also inherit those
16294 -- discriminants from the same (ancestor) type, and the parent
16295 -- subtype of the full type must be constrained if and only if
16296 -- the ancestor subtype of the private extension is constrained.
16298 elsif No
(Discriminant_Specifications
(Parent
(Priv_T
)))
16299 and then not Has_Unknown_Discriminants
(Priv_T
)
16300 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
16303 Priv_Indic
: constant Node_Id
:=
16304 Subtype_Indication
(Parent
(Priv_T
));
16306 Priv_Constr
: constant Boolean :=
16307 Is_Constrained
(Priv_Parent
)
16309 Nkind
(Priv_Indic
) = N_Subtype_Indication
16310 or else Is_Constrained
(Entity
(Priv_Indic
));
16312 Full_Constr
: constant Boolean :=
16313 Is_Constrained
(Full_Parent
)
16315 Nkind
(Full_Indic
) = N_Subtype_Indication
16316 or else Is_Constrained
(Entity
(Full_Indic
));
16318 Priv_Discr
: Entity_Id
;
16319 Full_Discr
: Entity_Id
;
16322 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
16323 Full_Discr
:= First_Discriminant
(Full_Parent
);
16324 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
16325 if Original_Record_Component
(Priv_Discr
) =
16326 Original_Record_Component
(Full_Discr
)
16328 Corresponding_Discriminant
(Priv_Discr
) =
16329 Corresponding_Discriminant
(Full_Discr
)
16336 Next_Discriminant
(Priv_Discr
);
16337 Next_Discriminant
(Full_Discr
);
16340 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
16342 ("full view must inherit discriminants of the parent type"
16343 & " used in the private extension", Full_Indic
);
16345 elsif Priv_Constr
and then not Full_Constr
then
16347 ("parent subtype of full type must be constrained",
16350 elsif Full_Constr
and then not Priv_Constr
then
16352 ("parent subtype of full type must be unconstrained",
16357 -- Check the rules of 7.3(12): if a partial view has neither known
16358 -- or unknown discriminants, then the full type declaration shall
16359 -- define a definite subtype.
16361 elsif not Has_Unknown_Discriminants
(Priv_T
)
16362 and then not Has_Discriminants
(Priv_T
)
16363 and then not Is_Constrained
(Full_T
)
16366 ("full view must define a constrained type if partial view"
16367 & " has no discriminants", Full_T
);
16370 -- ??????? Do we implement the following properly ?????
16371 -- If the ancestor subtype of a private extension has constrained
16372 -- discriminants, then the parent subtype of the full view shall
16373 -- impose a statically matching constraint on those discriminants
16377 -- For untagged types, verify that a type without discriminants
16378 -- is not completed with an unconstrained type.
16380 if not Is_Indefinite_Subtype
(Priv_T
)
16381 and then Is_Indefinite_Subtype
(Full_T
)
16383 Error_Msg_N
("full view of type must be definite subtype", Full_T
);
16387 -- AI-419: verify that the use of "limited" is consistent
16390 Orig_Decl
: constant Node_Id
:= Original_Node
(N
);
16393 if Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
16394 and then not Limited_Present
(Parent
(Priv_T
))
16395 and then not Synchronized_Present
(Parent
(Priv_T
))
16396 and then Nkind
(Orig_Decl
) = N_Full_Type_Declaration
16398 (Type_Definition
(Orig_Decl
)) = N_Derived_Type_Definition
16399 and then Limited_Present
(Type_Definition
(Orig_Decl
))
16402 ("full view of non-limited extension cannot be limited", N
);
16406 -- Ada 2005 (AI-443): A synchronized private extension must be
16407 -- completed by a task or protected type.
16409 if Ada_Version
>= Ada_05
16410 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
16411 and then Synchronized_Present
(Parent
(Priv_T
))
16412 and then not Is_Concurrent_Type
(Full_T
)
16414 Error_Msg_N
("full view of synchronized extension must " &
16415 "be synchronized type", N
);
16418 -- Ada 2005 AI-363: if the full view has discriminants with
16419 -- defaults, it is illegal to declare constrained access subtypes
16420 -- whose designated type is the current type. This allows objects
16421 -- of the type that are declared in the heap to be unconstrained.
16423 if not Has_Unknown_Discriminants
(Priv_T
)
16424 and then not Has_Discriminants
(Priv_T
)
16425 and then Has_Discriminants
(Full_T
)
16427 Present
(Discriminant_Default_Value
(First_Discriminant
(Full_T
)))
16429 Set_Has_Constrained_Partial_View
(Full_T
);
16430 Set_Has_Constrained_Partial_View
(Priv_T
);
16433 -- Create a full declaration for all its subtypes recorded in
16434 -- Private_Dependents and swap them similarly to the base type. These
16435 -- are subtypes that have been define before the full declaration of
16436 -- the private type. We also swap the entry in Private_Dependents list
16437 -- so we can properly restore the private view on exit from the scope.
16440 Priv_Elmt
: Elmt_Id
;
16445 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
16446 while Present
(Priv_Elmt
) loop
16447 Priv
:= Node
(Priv_Elmt
);
16449 if Ekind
(Priv
) = E_Private_Subtype
16450 or else Ekind
(Priv
) = E_Limited_Private_Subtype
16451 or else Ekind
(Priv
) = E_Record_Subtype_With_Private
16453 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
16454 Set_Is_Itype
(Full
);
16455 Set_Parent
(Full
, Parent
(Priv
));
16456 Set_Associated_Node_For_Itype
(Full
, N
);
16458 -- Now we need to complete the private subtype, but since the
16459 -- base type has already been swapped, we must also swap the
16460 -- subtypes (and thus, reverse the arguments in the call to
16461 -- Complete_Private_Subtype).
16463 Copy_And_Swap
(Priv
, Full
);
16464 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
16465 Replace_Elmt
(Priv_Elmt
, Full
);
16468 Next_Elmt
(Priv_Elmt
);
16472 -- If the private view was tagged, copy the new primitive operations
16473 -- from the private view to the full view.
16475 if Is_Tagged_Type
(Full_T
) then
16477 Disp_Typ
: Entity_Id
;
16478 Full_List
: Elist_Id
;
16480 Prim_Elmt
: Elmt_Id
;
16481 Priv_List
: Elist_Id
;
16485 L
: Elist_Id
) return Boolean;
16486 -- Determine whether list L contains element E
16494 L
: Elist_Id
) return Boolean
16496 List_Elmt
: Elmt_Id
;
16499 List_Elmt
:= First_Elmt
(L
);
16500 while Present
(List_Elmt
) loop
16501 if Node
(List_Elmt
) = E
then
16505 Next_Elmt
(List_Elmt
);
16511 -- Start of processing
16514 if Is_Tagged_Type
(Priv_T
) then
16515 Priv_List
:= Primitive_Operations
(Priv_T
);
16516 Prim_Elmt
:= First_Elmt
(Priv_List
);
16518 -- In the case of a concurrent type completing a private tagged
16519 -- type, primitives may have been declared in between the two
16520 -- views. These subprograms need to be wrapped the same way
16521 -- entries and protected procedures are handled because they
16522 -- cannot be directly shared by the two views.
16524 if Is_Concurrent_Type
(Full_T
) then
16526 Conc_Typ
: constant Entity_Id
:=
16527 Corresponding_Record_Type
(Full_T
);
16528 Curr_Nod
: Node_Id
:= Parent
(Conc_Typ
);
16529 Wrap_Spec
: Node_Id
;
16532 while Present
(Prim_Elmt
) loop
16533 Prim
:= Node
(Prim_Elmt
);
16535 if Comes_From_Source
(Prim
)
16536 and then not Is_Abstract_Subprogram
(Prim
)
16539 Make_Subprogram_Declaration
(Sloc
(Prim
),
16543 Obj_Typ
=> Conc_Typ
,
16545 Parameter_Specifications
(
16548 Insert_After
(Curr_Nod
, Wrap_Spec
);
16549 Curr_Nod
:= Wrap_Spec
;
16551 Analyze
(Wrap_Spec
);
16554 Next_Elmt
(Prim_Elmt
);
16560 -- For non-concurrent types, transfer explicit primitives, but
16561 -- omit those inherited from the parent of the private view
16562 -- since they will be re-inherited later on.
16565 Full_List
:= Primitive_Operations
(Full_T
);
16567 while Present
(Prim_Elmt
) loop
16568 Prim
:= Node
(Prim_Elmt
);
16570 if Comes_From_Source
(Prim
)
16571 and then not Contains
(Prim
, Full_List
)
16573 Append_Elmt
(Prim
, Full_List
);
16576 Next_Elmt
(Prim_Elmt
);
16580 -- Untagged private view
16583 Full_List
:= Primitive_Operations
(Full_T
);
16585 -- In this case the partial view is untagged, so here we locate
16586 -- all of the earlier primitives that need to be treated as
16587 -- dispatching (those that appear between the two views). Note
16588 -- that these additional operations must all be new operations
16589 -- (any earlier operations that override inherited operations
16590 -- of the full view will already have been inserted in the
16591 -- primitives list, marked by Check_Operation_From_Private_View
16592 -- as dispatching. Note that implicit "/=" operators are
16593 -- excluded from being added to the primitives list since they
16594 -- shouldn't be treated as dispatching (tagged "/=" is handled
16597 Prim
:= Next_Entity
(Full_T
);
16598 while Present
(Prim
) and then Prim
/= Priv_T
loop
16599 if Ekind
(Prim
) = E_Procedure
16601 Ekind
(Prim
) = E_Function
16603 Disp_Typ
:= Find_Dispatching_Type
(Prim
);
16605 if Disp_Typ
= Full_T
16606 and then (Chars
(Prim
) /= Name_Op_Ne
16607 or else Comes_From_Source
(Prim
))
16609 Check_Controlling_Formals
(Full_T
, Prim
);
16611 if not Is_Dispatching_Operation
(Prim
) then
16612 Append_Elmt
(Prim
, Full_List
);
16613 Set_Is_Dispatching_Operation
(Prim
, True);
16614 Set_DT_Position
(Prim
, No_Uint
);
16617 elsif Is_Dispatching_Operation
(Prim
)
16618 and then Disp_Typ
/= Full_T
16621 -- Verify that it is not otherwise controlled by a
16622 -- formal or a return value of type T.
16624 Check_Controlling_Formals
(Disp_Typ
, Prim
);
16628 Next_Entity
(Prim
);
16632 -- For the tagged case, the two views can share the same
16633 -- Primitive Operation list and the same class wide type.
16634 -- Update attributes of the class-wide type which depend on
16635 -- the full declaration.
16637 if Is_Tagged_Type
(Priv_T
) then
16638 Set_Primitive_Operations
(Priv_T
, Full_List
);
16639 Set_Class_Wide_Type
16640 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
16642 Set_Has_Task
(Class_Wide_Type
(Priv_T
), Has_Task
(Full_T
));
16647 -- Ada 2005 AI 161: Check preelaboratable initialization consistency
16649 if Known_To_Have_Preelab_Init
(Priv_T
) then
16651 -- Case where there is a pragma Preelaborable_Initialization. We
16652 -- always allow this in predefined units, which is a bit of a kludge,
16653 -- but it means we don't have to struggle to meet the requirements in
16654 -- the RM for having Preelaborable Initialization. Otherwise we
16655 -- require that the type meets the RM rules. But we can't check that
16656 -- yet, because of the rule about overriding Ininitialize, so we
16657 -- simply set a flag that will be checked at freeze time.
16659 if not In_Predefined_Unit
(Full_T
) then
16660 Set_Must_Have_Preelab_Init
(Full_T
);
16664 -- If pragma CPP_Class was applied to the private type declaration,
16665 -- propagate it now to the full type declaration.
16667 if Is_CPP_Class
(Priv_T
) then
16668 Set_Is_CPP_Class
(Full_T
);
16669 Set_Convention
(Full_T
, Convention_CPP
);
16672 -- If the private view has user specified stream attributes, then so has
16675 if Has_Specified_Stream_Read
(Priv_T
) then
16676 Set_Has_Specified_Stream_Read
(Full_T
);
16678 if Has_Specified_Stream_Write
(Priv_T
) then
16679 Set_Has_Specified_Stream_Write
(Full_T
);
16681 if Has_Specified_Stream_Input
(Priv_T
) then
16682 Set_Has_Specified_Stream_Input
(Full_T
);
16684 if Has_Specified_Stream_Output
(Priv_T
) then
16685 Set_Has_Specified_Stream_Output
(Full_T
);
16687 end Process_Full_View
;
16689 -----------------------------------
16690 -- Process_Incomplete_Dependents --
16691 -----------------------------------
16693 procedure Process_Incomplete_Dependents
16695 Full_T
: Entity_Id
;
16698 Inc_Elmt
: Elmt_Id
;
16699 Priv_Dep
: Entity_Id
;
16700 New_Subt
: Entity_Id
;
16702 Disc_Constraint
: Elist_Id
;
16705 if No
(Private_Dependents
(Inc_T
)) then
16709 -- Itypes that may be generated by the completion of an incomplete
16710 -- subtype are not used by the back-end and not attached to the tree.
16711 -- They are created only for constraint-checking purposes.
16713 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
16714 while Present
(Inc_Elmt
) loop
16715 Priv_Dep
:= Node
(Inc_Elmt
);
16717 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
16719 -- An Access_To_Subprogram type may have a return type or a
16720 -- parameter type that is incomplete. Replace with the full view.
16722 if Etype
(Priv_Dep
) = Inc_T
then
16723 Set_Etype
(Priv_Dep
, Full_T
);
16727 Formal
: Entity_Id
;
16730 Formal
:= First_Formal
(Priv_Dep
);
16731 while Present
(Formal
) loop
16732 if Etype
(Formal
) = Inc_T
then
16733 Set_Etype
(Formal
, Full_T
);
16736 Next_Formal
(Formal
);
16740 elsif Is_Overloadable
(Priv_Dep
) then
16742 -- A protected operation is never dispatching: only its
16743 -- wrapper operation (which has convention Ada) is.
16745 if Is_Tagged_Type
(Full_T
)
16746 and then Convention
(Priv_Dep
) /= Convention_Protected
16749 -- Subprogram has an access parameter whose designated type
16750 -- was incomplete. Reexamine declaration now, because it may
16751 -- be a primitive operation of the full type.
16753 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
16754 Set_Is_Dispatching_Operation
(Priv_Dep
);
16755 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
16758 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
16760 -- Can happen during processing of a body before the completion
16761 -- of a TA type. Ignore, because spec is also on dependent list.
16765 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
16766 -- corresponding subtype of the full view.
16768 elsif Ekind
(Priv_Dep
) = E_Incomplete_Subtype
then
16769 Set_Subtype_Indication
16770 (Parent
(Priv_Dep
), New_Reference_To
(Full_T
, Sloc
(Priv_Dep
)));
16771 Set_Etype
(Priv_Dep
, Full_T
);
16772 Set_Ekind
(Priv_Dep
, Subtype_Kind
(Ekind
(Full_T
)));
16773 Set_Analyzed
(Parent
(Priv_Dep
), False);
16775 -- Reanalyze the declaration, suppressing the call to
16776 -- Enter_Name to avoid duplicate names.
16778 Analyze_Subtype_Declaration
16779 (N
=> Parent
(Priv_Dep
),
16782 -- Dependent is a subtype
16785 -- We build a new subtype indication using the full view of the
16786 -- incomplete parent. The discriminant constraints have been
16787 -- elaborated already at the point of the subtype declaration.
16789 New_Subt
:= Create_Itype
(E_Void
, N
);
16791 if Has_Discriminants
(Full_T
) then
16792 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
16794 Disc_Constraint
:= No_Elist
;
16797 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
16798 Set_Full_View
(Priv_Dep
, New_Subt
);
16801 Next_Elmt
(Inc_Elmt
);
16803 end Process_Incomplete_Dependents
;
16805 --------------------------------
16806 -- Process_Range_Expr_In_Decl --
16807 --------------------------------
16809 procedure Process_Range_Expr_In_Decl
16812 Check_List
: List_Id
:= Empty_List
;
16813 R_Check_Off
: Boolean := False)
16816 R_Checks
: Check_Result
;
16817 Type_Decl
: Node_Id
;
16818 Def_Id
: Entity_Id
;
16821 Analyze_And_Resolve
(R
, Base_Type
(T
));
16823 if Nkind
(R
) = N_Range
then
16824 Lo
:= Low_Bound
(R
);
16825 Hi
:= High_Bound
(R
);
16827 -- We need to ensure validity of the bounds here, because if we
16828 -- go ahead and do the expansion, then the expanded code will get
16829 -- analyzed with range checks suppressed and we miss the check.
16831 Validity_Check_Range
(R
);
16833 -- If there were errors in the declaration, try and patch up some
16834 -- common mistakes in the bounds. The cases handled are literals
16835 -- which are Integer where the expected type is Real and vice versa.
16836 -- These corrections allow the compilation process to proceed further
16837 -- along since some basic assumptions of the format of the bounds
16840 if Etype
(R
) = Any_Type
then
16842 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
16844 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
16846 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
16848 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
16850 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
16852 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
16854 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
16856 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
16863 -- If the bounds of the range have been mistakenly given as string
16864 -- literals (perhaps in place of character literals), then an error
16865 -- has already been reported, but we rewrite the string literal as a
16866 -- bound of the range's type to avoid blowups in later processing
16867 -- that looks at static values.
16869 if Nkind
(Lo
) = N_String_Literal
then
16871 Make_Attribute_Reference
(Sloc
(Lo
),
16872 Attribute_Name
=> Name_First
,
16873 Prefix
=> New_Reference_To
(T
, Sloc
(Lo
))));
16874 Analyze_And_Resolve
(Lo
);
16877 if Nkind
(Hi
) = N_String_Literal
then
16879 Make_Attribute_Reference
(Sloc
(Hi
),
16880 Attribute_Name
=> Name_First
,
16881 Prefix
=> New_Reference_To
(T
, Sloc
(Hi
))));
16882 Analyze_And_Resolve
(Hi
);
16885 -- If bounds aren't scalar at this point then exit, avoiding
16886 -- problems with further processing of the range in this procedure.
16888 if not Is_Scalar_Type
(Etype
(Lo
)) then
16892 -- Resolve (actually Sem_Eval) has checked that the bounds are in
16893 -- then range of the base type. Here we check whether the bounds
16894 -- are in the range of the subtype itself. Note that if the bounds
16895 -- represent the null range the Constraint_Error exception should
16898 -- ??? The following code should be cleaned up as follows
16900 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
16901 -- is done in the call to Range_Check (R, T); below
16903 -- 2. The use of R_Check_Off should be investigated and possibly
16904 -- removed, this would clean up things a bit.
16906 if Is_Null_Range
(Lo
, Hi
) then
16910 -- Capture values of bounds and generate temporaries for them
16911 -- if needed, before applying checks, since checks may cause
16912 -- duplication of the expression without forcing evaluation.
16914 if Expander_Active
then
16915 Force_Evaluation
(Lo
);
16916 Force_Evaluation
(Hi
);
16919 -- We use a flag here instead of suppressing checks on the
16920 -- type because the type we check against isn't necessarily
16921 -- the place where we put the check.
16923 if not R_Check_Off
then
16924 R_Checks
:= Get_Range_Checks
(R
, T
);
16926 -- Look up tree to find an appropriate insertion point.
16927 -- This seems really junk code, and very brittle, couldn't
16928 -- we just use an insert actions call of some kind ???
16930 Type_Decl
:= Parent
(R
);
16931 while Present
(Type_Decl
) and then not
16932 (Nkind_In
(Type_Decl
, N_Full_Type_Declaration
,
16933 N_Subtype_Declaration
,
16935 N_Task_Type_Declaration
)
16937 Nkind_In
(Type_Decl
, N_Single_Task_Declaration
,
16938 N_Protected_Type_Declaration
,
16939 N_Single_Protected_Declaration
))
16941 Type_Decl
:= Parent
(Type_Decl
);
16944 -- Why would Type_Decl not be present??? Without this test,
16945 -- short regression tests fail.
16947 if Present
(Type_Decl
) then
16949 -- Case of loop statement (more comments ???)
16951 if Nkind
(Type_Decl
) = N_Loop_Statement
then
16956 Indic
:= Parent
(R
);
16957 while Present
(Indic
)
16958 and then Nkind
(Indic
) /= N_Subtype_Indication
16960 Indic
:= Parent
(Indic
);
16963 if Present
(Indic
) then
16964 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
16966 Insert_Range_Checks
16972 Do_Before
=> True);
16976 -- All other cases (more comments ???)
16979 Def_Id
:= Defining_Identifier
(Type_Decl
);
16981 if (Ekind
(Def_Id
) = E_Record_Type
16982 and then Depends_On_Discriminant
(R
))
16984 (Ekind
(Def_Id
) = E_Protected_Type
16985 and then Has_Discriminants
(Def_Id
))
16987 Append_Range_Checks
16988 (R_Checks
, Check_List
, Def_Id
, Sloc
(Type_Decl
), R
);
16991 Insert_Range_Checks
16992 (R_Checks
, Type_Decl
, Def_Id
, Sloc
(Type_Decl
), R
);
17000 elsif Expander_Active
then
17001 Get_Index_Bounds
(R
, Lo
, Hi
);
17002 Force_Evaluation
(Lo
);
17003 Force_Evaluation
(Hi
);
17005 end Process_Range_Expr_In_Decl
;
17007 --------------------------------------
17008 -- Process_Real_Range_Specification --
17009 --------------------------------------
17011 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
17012 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
17015 Err
: Boolean := False;
17017 procedure Analyze_Bound
(N
: Node_Id
);
17018 -- Analyze and check one bound
17020 -------------------
17021 -- Analyze_Bound --
17022 -------------------
17024 procedure Analyze_Bound
(N
: Node_Id
) is
17026 Analyze_And_Resolve
(N
, Any_Real
);
17028 if not Is_OK_Static_Expression
(N
) then
17029 Flag_Non_Static_Expr
17030 ("bound in real type definition is not static!", N
);
17035 -- Start of processing for Process_Real_Range_Specification
17038 if Present
(Spec
) then
17039 Lo
:= Low_Bound
(Spec
);
17040 Hi
:= High_Bound
(Spec
);
17041 Analyze_Bound
(Lo
);
17042 Analyze_Bound
(Hi
);
17044 -- If error, clear away junk range specification
17047 Set_Real_Range_Specification
(Def
, Empty
);
17050 end Process_Real_Range_Specification
;
17052 ---------------------
17053 -- Process_Subtype --
17054 ---------------------
17056 function Process_Subtype
17058 Related_Nod
: Node_Id
;
17059 Related_Id
: Entity_Id
:= Empty
;
17060 Suffix
: Character := ' ') return Entity_Id
17063 Def_Id
: Entity_Id
;
17064 Error_Node
: Node_Id
;
17065 Full_View_Id
: Entity_Id
;
17066 Subtype_Mark_Id
: Entity_Id
;
17068 May_Have_Null_Exclusion
: Boolean;
17070 procedure Check_Incomplete
(T
: Entity_Id
);
17071 -- Called to verify that an incomplete type is not used prematurely
17073 ----------------------
17074 -- Check_Incomplete --
17075 ----------------------
17077 procedure Check_Incomplete
(T
: Entity_Id
) is
17079 -- Ada 2005 (AI-412): Incomplete subtypes are legal
17081 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
17083 not (Ada_Version
>= Ada_05
17085 (Nkind
(Parent
(T
)) = N_Subtype_Declaration
17087 (Nkind
(Parent
(T
)) = N_Subtype_Indication
17088 and then Nkind
(Parent
(Parent
(T
))) =
17089 N_Subtype_Declaration
)))
17091 Error_Msg_N
("invalid use of type before its full declaration", T
);
17093 end Check_Incomplete
;
17095 -- Start of processing for Process_Subtype
17098 -- Case of no constraints present
17100 if Nkind
(S
) /= N_Subtype_Indication
then
17102 Check_Incomplete
(S
);
17105 -- Ada 2005 (AI-231): Static check
17107 if Ada_Version
>= Ada_05
17108 and then Present
(P
)
17109 and then Null_Exclusion_Present
(P
)
17110 and then Nkind
(P
) /= N_Access_To_Object_Definition
17111 and then not Is_Access_Type
(Entity
(S
))
17113 Error_Msg_N
("`NOT NULL` only allowed for an access type", S
);
17116 -- The following is ugly, can't we have a range or even a flag???
17118 May_Have_Null_Exclusion
:=
17119 Nkind_In
(P
, N_Access_Definition
,
17120 N_Access_Function_Definition
,
17121 N_Access_Procedure_Definition
,
17122 N_Access_To_Object_Definition
,
17124 N_Component_Definition
)
17126 Nkind_In
(P
, N_Derived_Type_Definition
,
17127 N_Discriminant_Specification
,
17128 N_Formal_Object_Declaration
,
17129 N_Object_Declaration
,
17130 N_Object_Renaming_Declaration
,
17131 N_Parameter_Specification
,
17132 N_Subtype_Declaration
);
17134 -- Create an Itype that is a duplicate of Entity (S) but with the
17135 -- null-exclusion attribute
17137 if May_Have_Null_Exclusion
17138 and then Is_Access_Type
(Entity
(S
))
17139 and then Null_Exclusion_Present
(P
)
17141 -- No need to check the case of an access to object definition.
17142 -- It is correct to define double not-null pointers.
17145 -- type Not_Null_Int_Ptr is not null access Integer;
17146 -- type Acc is not null access Not_Null_Int_Ptr;
17148 and then Nkind
(P
) /= N_Access_To_Object_Definition
17150 if Can_Never_Be_Null
(Entity
(S
)) then
17151 case Nkind
(Related_Nod
) is
17152 when N_Full_Type_Declaration
=>
17153 if Nkind
(Type_Definition
(Related_Nod
))
17154 in N_Array_Type_Definition
17158 (Component_Definition
17159 (Type_Definition
(Related_Nod
)));
17162 Subtype_Indication
(Type_Definition
(Related_Nod
));
17165 when N_Subtype_Declaration
=>
17166 Error_Node
:= Subtype_Indication
(Related_Nod
);
17168 when N_Object_Declaration
=>
17169 Error_Node
:= Object_Definition
(Related_Nod
);
17171 when N_Component_Declaration
=>
17173 Subtype_Indication
(Component_Definition
(Related_Nod
));
17175 when N_Allocator
=>
17176 Error_Node
:= Expression
(Related_Nod
);
17179 pragma Assert
(False);
17180 Error_Node
:= Related_Nod
;
17184 ("`NOT NULL` not allowed (& already excludes null)",
17190 Create_Null_Excluding_Itype
17192 Related_Nod
=> P
));
17193 Set_Entity
(S
, Etype
(S
));
17198 -- Case of constraint present, so that we have an N_Subtype_Indication
17199 -- node (this node is created only if constraints are present).
17202 Find_Type
(Subtype_Mark
(S
));
17204 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
17206 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
17207 and then Is_Itype
(Defining_Identifier
(Parent
(S
))))
17209 Check_Incomplete
(Subtype_Mark
(S
));
17213 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
17215 -- Explicit subtype declaration case
17217 if Nkind
(P
) = N_Subtype_Declaration
then
17218 Def_Id
:= Defining_Identifier
(P
);
17220 -- Explicit derived type definition case
17222 elsif Nkind
(P
) = N_Derived_Type_Definition
then
17223 Def_Id
:= Defining_Identifier
(Parent
(P
));
17225 -- Implicit case, the Def_Id must be created as an implicit type.
17226 -- The one exception arises in the case of concurrent types, array
17227 -- and access types, where other subsidiary implicit types may be
17228 -- created and must appear before the main implicit type. In these
17229 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
17230 -- has not yet been called to create Def_Id.
17233 if Is_Array_Type
(Subtype_Mark_Id
)
17234 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
17235 or else Is_Access_Type
(Subtype_Mark_Id
)
17239 -- For the other cases, we create a new unattached Itype,
17240 -- and set the indication to ensure it gets attached later.
17244 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
17248 -- If the kind of constraint is invalid for this kind of type,
17249 -- then give an error, and then pretend no constraint was given.
17251 if not Is_Valid_Constraint_Kind
17252 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
17255 ("incorrect constraint for this kind of type", Constraint
(S
));
17257 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
17259 -- Set Ekind of orphan itype, to prevent cascaded errors
17261 if Present
(Def_Id
) then
17262 Set_Ekind
(Def_Id
, Ekind
(Any_Type
));
17265 -- Make recursive call, having got rid of the bogus constraint
17267 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
17270 -- Remaining processing depends on type
17272 case Ekind
(Subtype_Mark_Id
) is
17273 when Access_Kind
=>
17274 Constrain_Access
(Def_Id
, S
, Related_Nod
);
17277 and then Is_Itype
(Designated_Type
(Def_Id
))
17278 and then Nkind
(Related_Nod
) = N_Subtype_Declaration
17279 and then not Is_Incomplete_Type
(Designated_Type
(Def_Id
))
17281 Build_Itype_Reference
17282 (Designated_Type
(Def_Id
), Related_Nod
);
17286 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
17288 when Decimal_Fixed_Point_Kind
=>
17289 Constrain_Decimal
(Def_Id
, S
);
17291 when Enumeration_Kind
=>
17292 Constrain_Enumeration
(Def_Id
, S
);
17294 when Ordinary_Fixed_Point_Kind
=>
17295 Constrain_Ordinary_Fixed
(Def_Id
, S
);
17298 Constrain_Float
(Def_Id
, S
);
17300 when Integer_Kind
=>
17301 Constrain_Integer
(Def_Id
, S
);
17303 when E_Record_Type |
17306 E_Incomplete_Type
=>
17307 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
17309 if Ekind
(Def_Id
) = E_Incomplete_Type
then
17310 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
17313 when Private_Kind
=>
17314 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
17315 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
17317 -- In case of an invalid constraint prevent further processing
17318 -- since the type constructed is missing expected fields.
17320 if Etype
(Def_Id
) = Any_Type
then
17324 -- If the full view is that of a task with discriminants,
17325 -- we must constrain both the concurrent type and its
17326 -- corresponding record type. Otherwise we will just propagate
17327 -- the constraint to the full view, if available.
17329 if Present
(Full_View
(Subtype_Mark_Id
))
17330 and then Has_Discriminants
(Subtype_Mark_Id
)
17331 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
17334 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
17336 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
17337 Constrain_Concurrent
(Full_View_Id
, S
,
17338 Related_Nod
, Related_Id
, Suffix
);
17339 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
17340 Set_Full_View
(Def_Id
, Full_View_Id
);
17342 -- Introduce an explicit reference to the private subtype,
17343 -- to prevent scope anomalies in gigi if first use appears
17344 -- in a nested context, e.g. a later function body.
17345 -- Should this be generated in other contexts than a full
17346 -- type declaration?
17348 if Is_Itype
(Def_Id
)
17350 Nkind
(Parent
(P
)) = N_Full_Type_Declaration
17352 Build_Itype_Reference
(Def_Id
, Parent
(P
));
17356 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
17359 when Concurrent_Kind
=>
17360 Constrain_Concurrent
(Def_Id
, S
,
17361 Related_Nod
, Related_Id
, Suffix
);
17364 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
17367 -- Size and Convention are always inherited from the base type
17369 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
17370 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
17374 end Process_Subtype
;
17376 ---------------------------------------
17377 -- Check_Anonymous_Access_Components --
17378 ---------------------------------------
17380 procedure Check_Anonymous_Access_Components
17381 (Typ_Decl
: Node_Id
;
17384 Comp_List
: Node_Id
)
17386 Loc
: constant Source_Ptr
:= Sloc
(Typ_Decl
);
17387 Anon_Access
: Entity_Id
;
17390 Comp_Def
: Node_Id
;
17392 Type_Def
: Node_Id
;
17394 procedure Build_Incomplete_Type_Declaration
;
17395 -- If the record type contains components that include an access to the
17396 -- current record, then create an incomplete type declaration for the
17397 -- record, to be used as the designated type of the anonymous access.
17398 -- This is done only once, and only if there is no previous partial
17399 -- view of the type.
17401 function Designates_T
(Subt
: Node_Id
) return Boolean;
17402 -- Check whether a node designates the enclosing record type, or 'Class
17405 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean;
17406 -- Check whether an access definition includes a reference to
17407 -- the enclosing record type. The reference can be a subtype mark
17408 -- in the access definition itself, a 'Class attribute reference, or
17409 -- recursively a reference appearing in a parameter specification
17410 -- or result definition of an access_to_subprogram definition.
17412 --------------------------------------
17413 -- Build_Incomplete_Type_Declaration --
17414 --------------------------------------
17416 procedure Build_Incomplete_Type_Declaration
is
17421 -- Is_Tagged indicates whether the type is tagged. It is tagged if
17422 -- it's "is new ... with record" or else "is tagged record ...".
17424 Is_Tagged
: constant Boolean :=
17425 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Derived_Type_Definition
17428 (Record_Extension_Part
(Type_Definition
(Typ_Decl
))))
17430 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Record_Definition
17431 and then Tagged_Present
(Type_Definition
(Typ_Decl
)));
17434 -- If there is a previous partial view, no need to create a new one
17435 -- If the partial view, given by Prev, is incomplete, If Prev is
17436 -- a private declaration, full declaration is flagged accordingly.
17438 if Prev
/= Typ
then
17440 Make_Class_Wide_Type
(Prev
);
17441 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Prev
));
17442 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
17447 elsif Has_Private_Declaration
(Typ
) then
17449 -- If we refer to T'Class inside T, and T is the completion of a
17450 -- private type, then we need to make sure the class-wide type
17454 Make_Class_Wide_Type
(Typ
);
17459 -- If there was a previous anonymous access type, the incomplete
17460 -- type declaration will have been created already.
17462 elsif Present
(Current_Entity
(Typ
))
17463 and then Ekind
(Current_Entity
(Typ
)) = E_Incomplete_Type
17464 and then Full_View
(Current_Entity
(Typ
)) = Typ
17469 Inc_T
:= Make_Defining_Identifier
(Loc
, Chars
(Typ
));
17470 Decl
:= Make_Incomplete_Type_Declaration
(Loc
, Inc_T
);
17472 -- Type has already been inserted into the current scope.
17473 -- Remove it, and add incomplete declaration for type, so
17474 -- that subsequent anonymous access types can use it.
17475 -- The entity is unchained from the homonym list and from
17476 -- immediate visibility. After analysis, the entity in the
17477 -- incomplete declaration becomes immediately visible in the
17478 -- record declaration that follows.
17480 H
:= Current_Entity
(Typ
);
17483 Set_Name_Entity_Id
(Chars
(Typ
), Homonym
(Typ
));
17486 and then Homonym
(H
) /= Typ
17488 H
:= Homonym
(Typ
);
17491 Set_Homonym
(H
, Homonym
(Typ
));
17494 Insert_Before
(Typ_Decl
, Decl
);
17496 Set_Full_View
(Inc_T
, Typ
);
17499 -- Create a common class-wide type for both views, and set
17500 -- the Etype of the class-wide type to the full view.
17502 Make_Class_Wide_Type
(Inc_T
);
17503 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Inc_T
));
17504 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
17507 end Build_Incomplete_Type_Declaration
;
17513 function Designates_T
(Subt
: Node_Id
) return Boolean is
17514 Type_Id
: constant Name_Id
:= Chars
(Typ
);
17516 function Names_T
(Nam
: Node_Id
) return Boolean;
17517 -- The record type has not been introduced in the current scope
17518 -- yet, so we must examine the name of the type itself, either
17519 -- an identifier T, or an expanded name of the form P.T, where
17520 -- P denotes the current scope.
17526 function Names_T
(Nam
: Node_Id
) return Boolean is
17528 if Nkind
(Nam
) = N_Identifier
then
17529 return Chars
(Nam
) = Type_Id
;
17531 elsif Nkind
(Nam
) = N_Selected_Component
then
17532 if Chars
(Selector_Name
(Nam
)) = Type_Id
then
17533 if Nkind
(Prefix
(Nam
)) = N_Identifier
then
17534 return Chars
(Prefix
(Nam
)) = Chars
(Current_Scope
);
17536 elsif Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
17537 return Chars
(Selector_Name
(Prefix
(Nam
))) =
17538 Chars
(Current_Scope
);
17552 -- Start of processing for Designates_T
17555 if Nkind
(Subt
) = N_Identifier
then
17556 return Chars
(Subt
) = Type_Id
;
17558 -- Reference can be through an expanded name which has not been
17559 -- analyzed yet, and which designates enclosing scopes.
17561 elsif Nkind
(Subt
) = N_Selected_Component
then
17562 if Names_T
(Subt
) then
17565 -- Otherwise it must denote an entity that is already visible.
17566 -- The access definition may name a subtype of the enclosing
17567 -- type, if there is a previous incomplete declaration for it.
17570 Find_Selected_Component
(Subt
);
17572 Is_Entity_Name
(Subt
)
17573 and then Scope
(Entity
(Subt
)) = Current_Scope
17575 (Chars
(Base_Type
(Entity
(Subt
))) = Type_Id
17577 (Is_Class_Wide_Type
(Entity
(Subt
))
17579 Chars
(Etype
(Base_Type
(Entity
(Subt
)))) =
17583 -- A reference to the current type may appear as the prefix of
17584 -- a 'Class attribute.
17586 elsif Nkind
(Subt
) = N_Attribute_Reference
17587 and then Attribute_Name
(Subt
) = Name_Class
17589 return Names_T
(Prefix
(Subt
));
17600 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean is
17601 Param_Spec
: Node_Id
;
17603 Acc_Subprg
: constant Node_Id
:=
17604 Access_To_Subprogram_Definition
(Acc_Def
);
17607 if No
(Acc_Subprg
) then
17608 return Designates_T
(Subtype_Mark
(Acc_Def
));
17611 -- Component is an access_to_subprogram: examine its formals,
17612 -- and result definition in the case of an access_to_function.
17614 Param_Spec
:= First
(Parameter_Specifications
(Acc_Subprg
));
17615 while Present
(Param_Spec
) loop
17616 if Nkind
(Parameter_Type
(Param_Spec
)) = N_Access_Definition
17617 and then Mentions_T
(Parameter_Type
(Param_Spec
))
17621 elsif Designates_T
(Parameter_Type
(Param_Spec
)) then
17628 if Nkind
(Acc_Subprg
) = N_Access_Function_Definition
then
17629 if Nkind
(Result_Definition
(Acc_Subprg
)) =
17630 N_Access_Definition
17632 return Mentions_T
(Result_Definition
(Acc_Subprg
));
17634 return Designates_T
(Result_Definition
(Acc_Subprg
));
17641 -- Start of processing for Check_Anonymous_Access_Components
17644 if No
(Comp_List
) then
17648 Comp
:= First
(Component_Items
(Comp_List
));
17649 while Present
(Comp
) loop
17650 if Nkind
(Comp
) = N_Component_Declaration
17652 (Access_Definition
(Component_Definition
(Comp
)))
17654 Mentions_T
(Access_Definition
(Component_Definition
(Comp
)))
17656 Comp_Def
:= Component_Definition
(Comp
);
17658 Access_To_Subprogram_Definition
17659 (Access_Definition
(Comp_Def
));
17661 Build_Incomplete_Type_Declaration
;
17663 Make_Defining_Identifier
(Loc
,
17664 Chars
=> New_Internal_Name
('S'));
17666 -- Create a declaration for the anonymous access type: either
17667 -- an access_to_object or an access_to_subprogram.
17669 if Present
(Acc_Def
) then
17670 if Nkind
(Acc_Def
) = N_Access_Function_Definition
then
17672 Make_Access_Function_Definition
(Loc
,
17673 Parameter_Specifications
=>
17674 Parameter_Specifications
(Acc_Def
),
17675 Result_Definition
=> Result_Definition
(Acc_Def
));
17678 Make_Access_Procedure_Definition
(Loc
,
17679 Parameter_Specifications
=>
17680 Parameter_Specifications
(Acc_Def
));
17685 Make_Access_To_Object_Definition
(Loc
,
17686 Subtype_Indication
=>
17689 (Access_Definition
(Comp_Def
))));
17691 Set_Constant_Present
17692 (Type_Def
, Constant_Present
(Access_Definition
(Comp_Def
)));
17694 (Type_Def
, All_Present
(Access_Definition
(Comp_Def
)));
17697 Set_Null_Exclusion_Present
17699 Null_Exclusion_Present
(Access_Definition
(Comp_Def
)));
17702 Make_Full_Type_Declaration
(Loc
,
17703 Defining_Identifier
=> Anon_Access
,
17704 Type_Definition
=> Type_Def
);
17706 Insert_Before
(Typ_Decl
, Decl
);
17709 -- If an access to object, Preserve entity of designated type,
17710 -- for ASIS use, before rewriting the component definition.
17712 if No
(Acc_Def
) then
17717 Desig
:= Entity
(Subtype_Indication
(Type_Def
));
17719 -- If the access definition is to the current record,
17720 -- the visible entity at this point is an incomplete
17721 -- type. Retrieve the full view to simplify ASIS queries
17723 if Ekind
(Desig
) = E_Incomplete_Type
then
17724 Desig
:= Full_View
(Desig
);
17728 (Subtype_Mark
(Access_Definition
(Comp_Def
)), Desig
);
17733 Make_Component_Definition
(Loc
,
17734 Subtype_Indication
=>
17735 New_Occurrence_Of
(Anon_Access
, Loc
)));
17737 if Ekind
(Designated_Type
(Anon_Access
)) = E_Subprogram_Type
then
17738 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Subprogram_Type
);
17740 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Type
);
17743 Set_Is_Local_Anonymous_Access
(Anon_Access
);
17749 if Present
(Variant_Part
(Comp_List
)) then
17753 V
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
17754 while Present
(V
) loop
17755 Check_Anonymous_Access_Components
17756 (Typ_Decl
, Typ
, Prev
, Component_List
(V
));
17757 Next_Non_Pragma
(V
);
17761 end Check_Anonymous_Access_Components
;
17763 --------------------------------
17764 -- Preanalyze_Spec_Expression --
17765 --------------------------------
17767 procedure Preanalyze_Spec_Expression
(N
: Node_Id
; T
: Entity_Id
) is
17768 Save_In_Spec_Expression
: constant Boolean := In_Spec_Expression
;
17770 In_Spec_Expression
:= True;
17771 Preanalyze_And_Resolve
(N
, T
);
17772 In_Spec_Expression
:= Save_In_Spec_Expression
;
17773 end Preanalyze_Spec_Expression
;
17775 -----------------------------
17776 -- Record_Type_Declaration --
17777 -----------------------------
17779 procedure Record_Type_Declaration
17784 Def
: constant Node_Id
:= Type_Definition
(N
);
17785 Is_Tagged
: Boolean;
17786 Tag_Comp
: Entity_Id
;
17789 -- These flags must be initialized before calling Process_Discriminants
17790 -- because this routine makes use of them.
17792 Set_Ekind
(T
, E_Record_Type
);
17794 Init_Size_Align
(T
);
17795 Set_Interfaces
(T
, No_Elist
);
17796 Set_Stored_Constraint
(T
, No_Elist
);
17800 if Ada_Version
< Ada_05
17801 or else not Interface_Present
(Def
)
17803 -- The flag Is_Tagged_Type might have already been set by
17804 -- Find_Type_Name if it detected an error for declaration T. This
17805 -- arises in the case of private tagged types where the full view
17806 -- omits the word tagged.
17809 Tagged_Present
(Def
)
17810 or else (Serious_Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
17812 Set_Is_Tagged_Type
(T
, Is_Tagged
);
17813 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
17815 -- Type is abstract if full declaration carries keyword, or if
17816 -- previous partial view did.
17818 Set_Is_Abstract_Type
(T
, Is_Abstract_Type
(T
)
17819 or else Abstract_Present
(Def
));
17823 Analyze_Interface_Declaration
(T
, Def
);
17825 if Present
(Discriminant_Specifications
(N
)) then
17827 ("interface types cannot have discriminants",
17828 Defining_Identifier
17829 (First
(Discriminant_Specifications
(N
))));
17833 -- First pass: if there are self-referential access components,
17834 -- create the required anonymous access type declarations, and if
17835 -- need be an incomplete type declaration for T itself.
17837 Check_Anonymous_Access_Components
(N
, T
, Prev
, Component_List
(Def
));
17839 if Ada_Version
>= Ada_05
17840 and then Present
(Interface_List
(Def
))
17842 Check_Interfaces
(N
, Def
);
17845 Ifaces_List
: Elist_Id
;
17848 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
17849 -- already in the parents.
17853 Ifaces_List
=> Ifaces_List
,
17854 Exclude_Parents
=> True);
17856 Set_Interfaces
(T
, Ifaces_List
);
17860 -- Records constitute a scope for the component declarations within.
17861 -- The scope is created prior to the processing of these declarations.
17862 -- Discriminants are processed first, so that they are visible when
17863 -- processing the other components. The Ekind of the record type itself
17864 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
17866 -- Enter record scope
17870 -- If an incomplete or private type declaration was already given for
17871 -- the type, then this scope already exists, and the discriminants have
17872 -- been declared within. We must verify that the full declaration
17873 -- matches the incomplete one.
17875 Check_Or_Process_Discriminants
(N
, T
, Prev
);
17877 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
17878 Set_Has_Delayed_Freeze
(T
, True);
17880 -- For tagged types add a manually analyzed component corresponding
17881 -- to the component _tag, the corresponding piece of tree will be
17882 -- expanded as part of the freezing actions if it is not a CPP_Class.
17886 -- Do not add the tag unless we are in expansion mode
17888 if Expander_Active
then
17889 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
17890 Enter_Name
(Tag_Comp
);
17892 Set_Ekind
(Tag_Comp
, E_Component
);
17893 Set_Is_Tag
(Tag_Comp
);
17894 Set_Is_Aliased
(Tag_Comp
);
17895 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
17896 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
17897 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
17898 Init_Component_Location
(Tag_Comp
);
17900 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
17901 -- implemented interfaces.
17903 if Has_Interfaces
(T
) then
17904 Add_Interface_Tag_Components
(N
, T
);
17908 Make_Class_Wide_Type
(T
);
17909 Set_Primitive_Operations
(T
, New_Elmt_List
);
17912 -- We must suppress range checks when processing the components
17913 -- of a record in the presence of discriminants, since we don't
17914 -- want spurious checks to be generated during their analysis, but
17915 -- must reset the Suppress_Range_Checks flags after having processed
17916 -- the record definition.
17918 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
17919 -- couldn't we just use the normal range check suppression method here.
17920 -- That would seem cleaner ???
17922 if Has_Discriminants
(T
) and then not Range_Checks_Suppressed
(T
) then
17923 Set_Kill_Range_Checks
(T
, True);
17924 Record_Type_Definition
(Def
, Prev
);
17925 Set_Kill_Range_Checks
(T
, False);
17927 Record_Type_Definition
(Def
, Prev
);
17930 -- Exit from record scope
17934 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
17935 -- the implemented interfaces and associate them an aliased entity.
17938 and then not Is_Empty_List
(Interface_List
(Def
))
17940 Derive_Progenitor_Subprograms
(T
, T
);
17942 end Record_Type_Declaration
;
17944 ----------------------------
17945 -- Record_Type_Definition --
17946 ----------------------------
17948 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
) is
17949 Component
: Entity_Id
;
17950 Ctrl_Components
: Boolean := False;
17951 Final_Storage_Only
: Boolean;
17955 if Ekind
(Prev_T
) = E_Incomplete_Type
then
17956 T
:= Full_View
(Prev_T
);
17961 Final_Storage_Only
:= not Is_Controlled
(T
);
17963 -- Ada 2005: check whether an explicit Limited is present in a derived
17964 -- type declaration.
17966 if Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
17967 and then Limited_Present
(Parent
(Def
))
17969 Set_Is_Limited_Record
(T
);
17972 -- If the component list of a record type is defined by the reserved
17973 -- word null and there is no discriminant part, then the record type has
17974 -- no components and all records of the type are null records (RM 3.7)
17975 -- This procedure is also called to process the extension part of a
17976 -- record extension, in which case the current scope may have inherited
17980 or else No
(Component_List
(Def
))
17981 or else Null_Present
(Component_List
(Def
))
17986 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
17988 if Present
(Variant_Part
(Component_List
(Def
))) then
17989 Analyze
(Variant_Part
(Component_List
(Def
)));
17993 -- After completing the semantic analysis of the record definition,
17994 -- record components, both new and inherited, are accessible. Set their
17995 -- kind accordingly. Exclude malformed itypes from illegal declarations,
17996 -- whose Ekind may be void.
17998 Component
:= First_Entity
(Current_Scope
);
17999 while Present
(Component
) loop
18000 if Ekind
(Component
) = E_Void
18001 and then not Is_Itype
(Component
)
18003 Set_Ekind
(Component
, E_Component
);
18004 Init_Component_Location
(Component
);
18007 if Has_Task
(Etype
(Component
)) then
18011 if Ekind
(Component
) /= E_Component
then
18014 elsif Has_Controlled_Component
(Etype
(Component
))
18015 or else (Chars
(Component
) /= Name_uParent
18016 and then Is_Controlled
(Etype
(Component
)))
18018 Set_Has_Controlled_Component
(T
, True);
18019 Final_Storage_Only
:=
18021 and then Finalize_Storage_Only
(Etype
(Component
));
18022 Ctrl_Components
:= True;
18025 Next_Entity
(Component
);
18028 -- A Type is Finalize_Storage_Only only if all its controlled components
18031 if Ctrl_Components
then
18032 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
18035 -- Place reference to end record on the proper entity, which may
18036 -- be a partial view.
18038 if Present
(Def
) then
18039 Process_End_Label
(Def
, 'e', Prev_T
);
18041 end Record_Type_Definition
;
18043 ------------------------
18044 -- Replace_Components --
18045 ------------------------
18047 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
) is
18048 function Process
(N
: Node_Id
) return Traverse_Result
;
18054 function Process
(N
: Node_Id
) return Traverse_Result
is
18058 if Nkind
(N
) = N_Discriminant_Specification
then
18059 Comp
:= First_Discriminant
(Typ
);
18060 while Present
(Comp
) loop
18061 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
18062 Set_Defining_Identifier
(N
, Comp
);
18066 Next_Discriminant
(Comp
);
18069 elsif Nkind
(N
) = N_Component_Declaration
then
18070 Comp
:= First_Component
(Typ
);
18071 while Present
(Comp
) loop
18072 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
18073 Set_Defining_Identifier
(N
, Comp
);
18077 Next_Component
(Comp
);
18084 procedure Replace
is new Traverse_Proc
(Process
);
18086 -- Start of processing for Replace_Components
18090 end Replace_Components
;
18092 -------------------------------
18093 -- Set_Completion_Referenced --
18094 -------------------------------
18096 procedure Set_Completion_Referenced
(E
: Entity_Id
) is
18098 -- If in main unit, mark entity that is a completion as referenced,
18099 -- warnings go on the partial view when needed.
18101 if In_Extended_Main_Source_Unit
(E
) then
18102 Set_Referenced
(E
);
18104 end Set_Completion_Referenced
;
18106 ---------------------
18107 -- Set_Fixed_Range --
18108 ---------------------
18110 -- The range for fixed-point types is complicated by the fact that we
18111 -- do not know the exact end points at the time of the declaration. This
18112 -- is true for three reasons:
18114 -- A size clause may affect the fudging of the end-points
18115 -- A small clause may affect the values of the end-points
18116 -- We try to include the end-points if it does not affect the size
18118 -- This means that the actual end-points must be established at the point
18119 -- when the type is frozen. Meanwhile, we first narrow the range as
18120 -- permitted (so that it will fit if necessary in a small specified size),
18121 -- and then build a range subtree with these narrowed bounds.
18123 -- Set_Fixed_Range constructs the range from real literal values, and sets
18124 -- the range as the Scalar_Range of the given fixed-point type entity.
18126 -- The parent of this range is set to point to the entity so that it is
18127 -- properly hooked into the tree (unlike normal Scalar_Range entries for
18128 -- other scalar types, which are just pointers to the range in the
18129 -- original tree, this would otherwise be an orphan).
18131 -- The tree is left unanalyzed. When the type is frozen, the processing
18132 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
18133 -- analyzed, and uses this as an indication that it should complete
18134 -- work on the range (it will know the final small and size values).
18136 procedure Set_Fixed_Range
18142 S
: constant Node_Id
:=
18144 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
18145 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
18147 Set_Scalar_Range
(E
, S
);
18149 end Set_Fixed_Range
;
18151 ----------------------------------
18152 -- Set_Scalar_Range_For_Subtype --
18153 ----------------------------------
18155 procedure Set_Scalar_Range_For_Subtype
18156 (Def_Id
: Entity_Id
;
18160 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
18163 Set_Scalar_Range
(Def_Id
, R
);
18165 -- We need to link the range into the tree before resolving it so
18166 -- that types that are referenced, including importantly the subtype
18167 -- itself, are properly frozen (Freeze_Expression requires that the
18168 -- expression be properly linked into the tree). Of course if it is
18169 -- already linked in, then we do not disturb the current link.
18171 if No
(Parent
(R
)) then
18172 Set_Parent
(R
, Def_Id
);
18175 -- Reset the kind of the subtype during analysis of the range, to
18176 -- catch possible premature use in the bounds themselves.
18178 Set_Ekind
(Def_Id
, E_Void
);
18179 Process_Range_Expr_In_Decl
(R
, Subt
);
18180 Set_Ekind
(Def_Id
, Kind
);
18181 end Set_Scalar_Range_For_Subtype
;
18183 --------------------------------------------------------
18184 -- Set_Stored_Constraint_From_Discriminant_Constraint --
18185 --------------------------------------------------------
18187 procedure Set_Stored_Constraint_From_Discriminant_Constraint
18191 -- Make sure set if encountered during Expand_To_Stored_Constraint
18193 Set_Stored_Constraint
(E
, No_Elist
);
18195 -- Give it the right value
18197 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
18198 Set_Stored_Constraint
(E
,
18199 Expand_To_Stored_Constraint
(E
, Discriminant_Constraint
(E
)));
18201 end Set_Stored_Constraint_From_Discriminant_Constraint
;
18203 -------------------------------------
18204 -- Signed_Integer_Type_Declaration --
18205 -------------------------------------
18207 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
18208 Implicit_Base
: Entity_Id
;
18209 Base_Typ
: Entity_Id
;
18212 Errs
: Boolean := False;
18216 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
18217 -- Determine whether given bounds allow derivation from specified type
18219 procedure Check_Bound
(Expr
: Node_Id
);
18220 -- Check bound to make sure it is integral and static. If not, post
18221 -- appropriate error message and set Errs flag
18223 ---------------------
18224 -- Can_Derive_From --
18225 ---------------------
18227 -- Note we check both bounds against both end values, to deal with
18228 -- strange types like ones with a range of 0 .. -12341234.
18230 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
18231 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
18232 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
18234 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
18236 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
18237 end Can_Derive_From
;
18243 procedure Check_Bound
(Expr
: Node_Id
) is
18245 -- If a range constraint is used as an integer type definition, each
18246 -- bound of the range must be defined by a static expression of some
18247 -- integer type, but the two bounds need not have the same integer
18248 -- type (Negative bounds are allowed.) (RM 3.5.4)
18250 if not Is_Integer_Type
(Etype
(Expr
)) then
18252 ("integer type definition bounds must be of integer type", Expr
);
18255 elsif not Is_OK_Static_Expression
(Expr
) then
18256 Flag_Non_Static_Expr
18257 ("non-static expression used for integer type bound!", Expr
);
18260 -- The bounds are folded into literals, and we set their type to be
18261 -- universal, to avoid typing difficulties: we cannot set the type
18262 -- of the literal to the new type, because this would be a forward
18263 -- reference for the back end, and if the original type is user-
18264 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
18267 if Is_Entity_Name
(Expr
) then
18268 Fold_Uint
(Expr
, Expr_Value
(Expr
), True);
18271 Set_Etype
(Expr
, Universal_Integer
);
18275 -- Start of processing for Signed_Integer_Type_Declaration
18278 -- Create an anonymous base type
18281 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
18283 -- Analyze and check the bounds, they can be of any integer type
18285 Lo
:= Low_Bound
(Def
);
18286 Hi
:= High_Bound
(Def
);
18288 -- Arbitrarily use Integer as the type if either bound had an error
18290 if Hi
= Error
or else Lo
= Error
then
18291 Base_Typ
:= Any_Integer
;
18292 Set_Error_Posted
(T
, True);
18294 -- Here both bounds are OK expressions
18297 Analyze_And_Resolve
(Lo
, Any_Integer
);
18298 Analyze_And_Resolve
(Hi
, Any_Integer
);
18304 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
18305 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
18308 -- Find type to derive from
18310 Lo_Val
:= Expr_Value
(Lo
);
18311 Hi_Val
:= Expr_Value
(Hi
);
18313 if Can_Derive_From
(Standard_Short_Short_Integer
) then
18314 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
18316 elsif Can_Derive_From
(Standard_Short_Integer
) then
18317 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
18319 elsif Can_Derive_From
(Standard_Integer
) then
18320 Base_Typ
:= Base_Type
(Standard_Integer
);
18322 elsif Can_Derive_From
(Standard_Long_Integer
) then
18323 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
18325 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
18326 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
18329 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
18330 Error_Msg_N
("integer type definition bounds out of range", Def
);
18331 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
18332 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
18336 -- Complete both implicit base and declared first subtype entities
18338 Set_Etype
(Implicit_Base
, Base_Typ
);
18339 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
18340 Set_Size_Info
(Implicit_Base
, (Base_Typ
));
18341 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
18342 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
18344 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
18345 Set_Etype
(T
, Implicit_Base
);
18347 Set_Size_Info
(T
, (Implicit_Base
));
18348 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
18349 Set_Scalar_Range
(T
, Def
);
18350 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
18351 Set_Is_Constrained
(T
);
18352 end Signed_Integer_Type_Declaration
;