Daily bump.
[official-gcc.git] / gcc / ada / sem_ch3.adb
blobc514206c00d1616d53a79aa9678aaf224b4d11d4
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Elists; use Elists;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Eval_Fat; use Eval_Fat;
33 with Exp_Ch3; use Exp_Ch3;
34 with Exp_Ch9; use Exp_Ch9;
35 with Exp_Disp; use Exp_Disp;
36 with Exp_Dist; use Exp_Dist;
37 with Exp_Tss; use Exp_Tss;
38 with Exp_Util; use Exp_Util;
39 with Fname; use Fname;
40 with Freeze; use Freeze;
41 with Itypes; use Itypes;
42 with Layout; use Layout;
43 with Lib; use Lib;
44 with Lib.Xref; use Lib.Xref;
45 with Namet; use Namet;
46 with Nmake; use Nmake;
47 with Opt; use Opt;
48 with Restrict; use Restrict;
49 with Rident; use Rident;
50 with Rtsfind; use Rtsfind;
51 with Sem; use Sem;
52 with Sem_Aux; use Sem_Aux;
53 with Sem_Case; use Sem_Case;
54 with Sem_Cat; use Sem_Cat;
55 with Sem_Ch6; use Sem_Ch6;
56 with Sem_Ch7; use Sem_Ch7;
57 with Sem_Ch8; use Sem_Ch8;
58 with Sem_Ch13; use Sem_Ch13;
59 with Sem_Disp; use Sem_Disp;
60 with Sem_Dist; use Sem_Dist;
61 with Sem_Elim; use Sem_Elim;
62 with Sem_Eval; use Sem_Eval;
63 with Sem_Mech; use Sem_Mech;
64 with Sem_Res; use Sem_Res;
65 with Sem_Smem; use Sem_Smem;
66 with Sem_Type; use Sem_Type;
67 with Sem_Util; use Sem_Util;
68 with Sem_Warn; use Sem_Warn;
69 with Stand; use Stand;
70 with Sinfo; use Sinfo;
71 with Snames; use Snames;
72 with Targparm; use Targparm;
73 with Tbuild; use Tbuild;
74 with Ttypes; use Ttypes;
75 with Uintp; use Uintp;
76 with Urealp; use Urealp;
78 package body Sem_Ch3 is
80 -----------------------
81 -- Local Subprograms --
82 -----------------------
84 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
85 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
86 -- abstract interface types implemented by a record type or a derived
87 -- record type.
89 procedure Build_Derived_Type
90 (N : Node_Id;
91 Parent_Type : Entity_Id;
92 Derived_Type : Entity_Id;
93 Is_Completion : Boolean;
94 Derive_Subps : Boolean := True);
95 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
96 -- the N_Full_Type_Declaration node containing the derived type definition.
97 -- Parent_Type is the entity for the parent type in the derived type
98 -- definition and Derived_Type the actual derived type. Is_Completion must
99 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
100 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
101 -- completion of a private type declaration. If Is_Completion is set to
102 -- True, N is the completion of a private type declaration and Derived_Type
103 -- is different from the defining identifier inside N (i.e. Derived_Type /=
104 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
105 -- subprograms should be derived. The only case where this parameter is
106 -- False is when Build_Derived_Type is recursively called to process an
107 -- implicit derived full type for a type derived from a private type (in
108 -- that case the subprograms must only be derived for the private view of
109 -- the type).
111 -- ??? These flags need a bit of re-examination and re-documentation:
112 -- ??? are they both necessary (both seem related to the recursion)?
114 procedure Build_Derived_Access_Type
115 (N : Node_Id;
116 Parent_Type : Entity_Id;
117 Derived_Type : Entity_Id);
118 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
119 -- create an implicit base if the parent type is constrained or if the
120 -- subtype indication has a constraint.
122 procedure Build_Derived_Array_Type
123 (N : Node_Id;
124 Parent_Type : Entity_Id;
125 Derived_Type : Entity_Id);
126 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
127 -- create an implicit base if the parent type is constrained or if the
128 -- subtype indication has a constraint.
130 procedure Build_Derived_Concurrent_Type
131 (N : Node_Id;
132 Parent_Type : Entity_Id;
133 Derived_Type : Entity_Id);
134 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
135 -- protected type, inherit entries and protected subprograms, check
136 -- legality of discriminant constraints if any.
138 procedure Build_Derived_Enumeration_Type
139 (N : Node_Id;
140 Parent_Type : Entity_Id;
141 Derived_Type : Entity_Id);
142 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
143 -- type, we must create a new list of literals. Types derived from
144 -- Character and [Wide_]Wide_Character are special-cased.
146 procedure Build_Derived_Numeric_Type
147 (N : Node_Id;
148 Parent_Type : Entity_Id;
149 Derived_Type : Entity_Id);
150 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
151 -- an anonymous base type, and propagate constraint to subtype if needed.
153 procedure Build_Derived_Private_Type
154 (N : Node_Id;
155 Parent_Type : Entity_Id;
156 Derived_Type : Entity_Id;
157 Is_Completion : Boolean;
158 Derive_Subps : Boolean := True);
159 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
160 -- because the parent may or may not have a completion, and the derivation
161 -- may itself be a completion.
163 procedure Build_Derived_Record_Type
164 (N : Node_Id;
165 Parent_Type : Entity_Id;
166 Derived_Type : Entity_Id;
167 Derive_Subps : Boolean := True);
168 -- Subsidiary procedure for Build_Derived_Type and
169 -- Analyze_Private_Extension_Declaration used for tagged and untagged
170 -- record types. All parameters are as in Build_Derived_Type except that
171 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
172 -- N_Private_Extension_Declaration node. See the definition of this routine
173 -- for much more info. Derive_Subps indicates whether subprograms should
174 -- be derived from the parent type. The only case where Derive_Subps is
175 -- False is for an implicit derived full type for a type derived from a
176 -- private type (see Build_Derived_Type).
178 procedure Build_Discriminal (Discrim : Entity_Id);
179 -- Create the discriminal corresponding to discriminant Discrim, that is
180 -- the parameter corresponding to Discrim to be used in initialization
181 -- procedures for the type where Discrim is a discriminant. Discriminals
182 -- are not used during semantic analysis, and are not fully defined
183 -- entities until expansion. Thus they are not given a scope until
184 -- initialization procedures are built.
186 function Build_Discriminant_Constraints
187 (T : Entity_Id;
188 Def : Node_Id;
189 Derived_Def : Boolean := False) return Elist_Id;
190 -- Validate discriminant constraints and return the list of the constraints
191 -- in order of discriminant declarations, where T is the discriminated
192 -- unconstrained type. Def is the N_Subtype_Indication node where the
193 -- discriminants constraints for T are specified. Derived_Def is True
194 -- when building the discriminant constraints in a derived type definition
195 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
196 -- type and Def is the constraint "(xxx)" on T and this routine sets the
197 -- Corresponding_Discriminant field of the discriminants in the derived
198 -- type D to point to the corresponding discriminants in the parent type T.
200 procedure Build_Discriminated_Subtype
201 (T : Entity_Id;
202 Def_Id : Entity_Id;
203 Elist : Elist_Id;
204 Related_Nod : Node_Id;
205 For_Access : Boolean := False);
206 -- Subsidiary procedure to Constrain_Discriminated_Type and to
207 -- Process_Incomplete_Dependents. Given
209 -- T (a possibly discriminated base type)
210 -- Def_Id (a very partially built subtype for T),
212 -- the call completes Def_Id to be the appropriate E_*_Subtype.
214 -- The Elist is the list of discriminant constraints if any (it is set
215 -- to No_Elist if T is not a discriminated type, and to an empty list if
216 -- T has discriminants but there are no discriminant constraints). The
217 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
218 -- The For_Access says whether or not this subtype is really constraining
219 -- an access type. That is its sole purpose is the designated type of an
220 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
221 -- is built to avoid freezing T when the access subtype is frozen.
223 function Build_Scalar_Bound
224 (Bound : Node_Id;
225 Par_T : Entity_Id;
226 Der_T : Entity_Id) return Node_Id;
227 -- The bounds of a derived scalar type are conversions of the bounds of
228 -- the parent type. Optimize the representation if the bounds are literals.
229 -- Needs a more complete spec--what are the parameters exactly, and what
230 -- exactly is the returned value, and how is Bound affected???
232 procedure Build_Underlying_Full_View
233 (N : Node_Id;
234 Typ : Entity_Id;
235 Par : Entity_Id);
236 -- If the completion of a private type is itself derived from a private
237 -- type, or if the full view of a private subtype is itself private, the
238 -- back-end has no way to compute the actual size of this type. We build
239 -- an internal subtype declaration of the proper parent type to convey
240 -- this information. This extra mechanism is needed because a full
241 -- view cannot itself have a full view (it would get clobbered during
242 -- view exchanges).
244 procedure Check_Access_Discriminant_Requires_Limited
245 (D : Node_Id;
246 Loc : Node_Id);
247 -- Check the restriction that the type to which an access discriminant
248 -- belongs must be a concurrent type or a descendant of a type with
249 -- the reserved word 'limited' in its declaration.
251 procedure Check_Anonymous_Access_Components
252 (Typ_Decl : Node_Id;
253 Typ : Entity_Id;
254 Prev : Entity_Id;
255 Comp_List : Node_Id);
256 -- Ada 2005 AI-382: an access component in a record definition can refer to
257 -- the enclosing record, in which case it denotes the type itself, and not
258 -- the current instance of the type. We create an anonymous access type for
259 -- the component, and flag it as an access to a component, so accessibility
260 -- checks are properly performed on it. The declaration of the access type
261 -- is placed ahead of that of the record to prevent order-of-elaboration
262 -- circularity issues in Gigi. We create an incomplete type for the record
263 -- declaration, which is the designated type of the anonymous access.
265 procedure Check_Delta_Expression (E : Node_Id);
266 -- Check that the expression represented by E is suitable for use as a
267 -- delta expression, i.e. it is of real type and is static.
269 procedure Check_Digits_Expression (E : Node_Id);
270 -- Check that the expression represented by E is suitable for use as a
271 -- digits expression, i.e. it is of integer type, positive and static.
273 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
274 -- Validate the initialization of an object declaration. T is the required
275 -- type, and Exp is the initialization expression.
277 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
278 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
280 procedure Check_Or_Process_Discriminants
281 (N : Node_Id;
282 T : Entity_Id;
283 Prev : Entity_Id := Empty);
284 -- If T is the full declaration of an incomplete or private type, check the
285 -- conformance of the discriminants, otherwise process them. Prev is the
286 -- entity of the partial declaration, if any.
288 procedure Check_Real_Bound (Bound : Node_Id);
289 -- Check given bound for being of real type and static. If not, post an
290 -- appropriate message, and rewrite the bound with the real literal zero.
292 procedure Constant_Redeclaration
293 (Id : Entity_Id;
294 N : Node_Id;
295 T : out Entity_Id);
296 -- Various checks on legality of full declaration of deferred constant.
297 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
298 -- node. The caller has not yet set any attributes of this entity.
300 function Contain_Interface
301 (Iface : Entity_Id;
302 Ifaces : Elist_Id) return Boolean;
303 -- Ada 2005: Determine whether Iface is present in the list Ifaces
305 procedure Convert_Scalar_Bounds
306 (N : Node_Id;
307 Parent_Type : Entity_Id;
308 Derived_Type : Entity_Id;
309 Loc : Source_Ptr);
310 -- For derived scalar types, convert the bounds in the type definition to
311 -- the derived type, and complete their analysis. Given a constraint of the
312 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
313 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
314 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
315 -- subtype are conversions of those bounds to the derived_type, so that
316 -- their typing is consistent.
318 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
319 -- Copies attributes from array base type T2 to array base type T1. Copies
320 -- only attributes that apply to base types, but not subtypes.
322 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
323 -- Copies attributes from array subtype T2 to array subtype T1. Copies
324 -- attributes that apply to both subtypes and base types.
326 procedure Create_Constrained_Components
327 (Subt : Entity_Id;
328 Decl_Node : Node_Id;
329 Typ : Entity_Id;
330 Constraints : Elist_Id);
331 -- Build the list of entities for a constrained discriminated record
332 -- subtype. If a component depends on a discriminant, replace its subtype
333 -- using the discriminant values in the discriminant constraint. Subt
334 -- is the defining identifier for the subtype whose list of constrained
335 -- entities we will create. Decl_Node is the type declaration node where
336 -- we will attach all the itypes created. Typ is the base discriminated
337 -- type for the subtype Subt. Constraints is the list of discriminant
338 -- constraints for Typ.
340 function Constrain_Component_Type
341 (Comp : Entity_Id;
342 Constrained_Typ : Entity_Id;
343 Related_Node : Node_Id;
344 Typ : Entity_Id;
345 Constraints : Elist_Id) return Entity_Id;
346 -- Given a discriminated base type Typ, a list of discriminant constraint
347 -- Constraints for Typ and a component of Typ, with type Compon_Type,
348 -- create and return the type corresponding to Compon_type where all
349 -- discriminant references are replaced with the corresponding constraint.
350 -- If no discriminant references occur in Compon_Typ then return it as is.
351 -- Constrained_Typ is the final constrained subtype to which the
352 -- constrained Compon_Type belongs. Related_Node is the node where we will
353 -- attach all the itypes created.
355 -- Above description is confused, what is Compon_Type???
357 procedure Constrain_Access
358 (Def_Id : in out Entity_Id;
359 S : Node_Id;
360 Related_Nod : Node_Id);
361 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
362 -- an anonymous type created for a subtype indication. In that case it is
363 -- created in the procedure and attached to Related_Nod.
365 procedure Constrain_Array
366 (Def_Id : in out Entity_Id;
367 SI : Node_Id;
368 Related_Nod : Node_Id;
369 Related_Id : Entity_Id;
370 Suffix : Character);
371 -- Apply a list of index constraints to an unconstrained array type. The
372 -- first parameter is the entity for the resulting subtype. A value of
373 -- Empty for Def_Id indicates that an implicit type must be created, but
374 -- creation is delayed (and must be done by this procedure) because other
375 -- subsidiary implicit types must be created first (which is why Def_Id
376 -- is an in/out parameter). The second parameter is a subtype indication
377 -- node for the constrained array to be created (e.g. something of the
378 -- form string (1 .. 10)). Related_Nod gives the place where this type
379 -- has to be inserted in the tree. The Related_Id and Suffix parameters
380 -- are used to build the associated Implicit type name.
382 procedure Constrain_Concurrent
383 (Def_Id : in out Entity_Id;
384 SI : Node_Id;
385 Related_Nod : Node_Id;
386 Related_Id : Entity_Id;
387 Suffix : Character);
388 -- Apply list of discriminant constraints to an unconstrained concurrent
389 -- type.
391 -- SI is the N_Subtype_Indication node containing the constraint and
392 -- the unconstrained type to constrain.
394 -- Def_Id is the entity for the resulting constrained subtype. A value
395 -- of Empty for Def_Id indicates that an implicit type must be created,
396 -- but creation is delayed (and must be done by this procedure) because
397 -- other subsidiary implicit types must be created first (which is why
398 -- Def_Id is an in/out parameter).
400 -- Related_Nod gives the place where this type has to be inserted
401 -- in the tree
403 -- The last two arguments are used to create its external name if needed.
405 function Constrain_Corresponding_Record
406 (Prot_Subt : Entity_Id;
407 Corr_Rec : Entity_Id;
408 Related_Nod : Node_Id;
409 Related_Id : Entity_Id) return Entity_Id;
410 -- When constraining a protected type or task type with discriminants,
411 -- constrain the corresponding record with the same discriminant values.
413 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
414 -- Constrain a decimal fixed point type with a digits constraint and/or a
415 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
417 procedure Constrain_Discriminated_Type
418 (Def_Id : Entity_Id;
419 S : Node_Id;
420 Related_Nod : Node_Id;
421 For_Access : Boolean := False);
422 -- Process discriminant constraints of composite type. Verify that values
423 -- have been provided for all discriminants, that the original type is
424 -- unconstrained, and that the types of the supplied expressions match
425 -- the discriminant types. The first three parameters are like in routine
426 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
427 -- of For_Access.
429 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
430 -- Constrain an enumeration type with a range constraint. This is identical
431 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
433 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
434 -- Constrain a floating point type with either a digits constraint
435 -- and/or a range constraint, building a E_Floating_Point_Subtype.
437 procedure Constrain_Index
438 (Index : Node_Id;
439 S : Node_Id;
440 Related_Nod : Node_Id;
441 Related_Id : Entity_Id;
442 Suffix : Character;
443 Suffix_Index : Nat);
444 -- Process an index constraint in a constrained array declaration. The
445 -- constraint can be a subtype name, or a range with or without an explicit
446 -- subtype mark. The index is the corresponding index of the unconstrained
447 -- array. The Related_Id and Suffix parameters are used to build the
448 -- associated Implicit type name.
450 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
451 -- Build subtype of a signed or modular integer type
453 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
454 -- Constrain an ordinary fixed point type with a range constraint, and
455 -- build an E_Ordinary_Fixed_Point_Subtype entity.
457 procedure Copy_And_Swap (Priv, Full : Entity_Id);
458 -- Copy the Priv entity into the entity of its full declaration then swap
459 -- the two entities in such a manner that the former private type is now
460 -- seen as a full type.
462 procedure Decimal_Fixed_Point_Type_Declaration
463 (T : Entity_Id;
464 Def : Node_Id);
465 -- Create a new decimal fixed point type, and apply the constraint to
466 -- obtain a subtype of this new type.
468 procedure Complete_Private_Subtype
469 (Priv : Entity_Id;
470 Full : Entity_Id;
471 Full_Base : Entity_Id;
472 Related_Nod : Node_Id);
473 -- Complete the implicit full view of a private subtype by setting the
474 -- appropriate semantic fields. If the full view of the parent is a record
475 -- type, build constrained components of subtype.
477 procedure Derive_Progenitor_Subprograms
478 (Parent_Type : Entity_Id;
479 Tagged_Type : Entity_Id);
480 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
481 -- operations of progenitors of Tagged_Type, and replace the subsidiary
482 -- subtypes with Tagged_Type, to build the specs of the inherited interface
483 -- primitives. The derived primitives are aliased to those of the
484 -- interface. This routine takes care also of transferring to the full-view
485 -- subprograms associated with the partial-view of Tagged_Type that cover
486 -- interface primitives.
488 procedure Derived_Standard_Character
489 (N : Node_Id;
490 Parent_Type : Entity_Id;
491 Derived_Type : Entity_Id);
492 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
493 -- derivations from types Standard.Character and Standard.Wide_Character.
495 procedure Derived_Type_Declaration
496 (T : Entity_Id;
497 N : Node_Id;
498 Is_Completion : Boolean);
499 -- Process a derived type declaration. Build_Derived_Type is invoked
500 -- to process the actual derived type definition. Parameters N and
501 -- Is_Completion have the same meaning as in Build_Derived_Type.
502 -- T is the N_Defining_Identifier for the entity defined in the
503 -- N_Full_Type_Declaration node N, that is T is the derived type.
505 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
506 -- Insert each literal in symbol table, as an overloadable identifier. Each
507 -- enumeration type is mapped into a sequence of integers, and each literal
508 -- is defined as a constant with integer value. If any of the literals are
509 -- character literals, the type is a character type, which means that
510 -- strings are legal aggregates for arrays of components of the type.
512 function Expand_To_Stored_Constraint
513 (Typ : Entity_Id;
514 Constraint : Elist_Id) return Elist_Id;
515 -- Given a constraint (i.e. a list of expressions) on the discriminants of
516 -- Typ, expand it into a constraint on the stored discriminants and return
517 -- the new list of expressions constraining the stored discriminants.
519 function Find_Type_Of_Object
520 (Obj_Def : Node_Id;
521 Related_Nod : Node_Id) return Entity_Id;
522 -- Get type entity for object referenced by Obj_Def, attaching the
523 -- implicit types generated to Related_Nod
525 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
526 -- Create a new float and apply the constraint to obtain subtype of it
528 function Has_Range_Constraint (N : Node_Id) return Boolean;
529 -- Given an N_Subtype_Indication node N, return True if a range constraint
530 -- is present, either directly, or as part of a digits or delta constraint.
531 -- In addition, a digits constraint in the decimal case returns True, since
532 -- it establishes a default range if no explicit range is present.
534 function Inherit_Components
535 (N : Node_Id;
536 Parent_Base : Entity_Id;
537 Derived_Base : Entity_Id;
538 Is_Tagged : Boolean;
539 Inherit_Discr : Boolean;
540 Discs : Elist_Id) return Elist_Id;
541 -- Called from Build_Derived_Record_Type to inherit the components of
542 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
543 -- For more information on derived types and component inheritance please
544 -- consult the comment above the body of Build_Derived_Record_Type.
546 -- N is the original derived type declaration
548 -- Is_Tagged is set if we are dealing with tagged types
550 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
551 -- Parent_Base, otherwise no discriminants are inherited.
553 -- Discs gives the list of constraints that apply to Parent_Base in the
554 -- derived type declaration. If Discs is set to No_Elist, then we have
555 -- the following situation:
557 -- type Parent (D1..Dn : ..) is [tagged] record ...;
558 -- type Derived is new Parent [with ...];
560 -- which gets treated as
562 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
564 -- For untagged types the returned value is an association list. The list
565 -- starts from the association (Parent_Base => Derived_Base), and then it
566 -- contains a sequence of the associations of the form
568 -- (Old_Component => New_Component),
570 -- where Old_Component is the Entity_Id of a component in Parent_Base and
571 -- New_Component is the Entity_Id of the corresponding component in
572 -- Derived_Base. For untagged records, this association list is needed when
573 -- copying the record declaration for the derived base. In the tagged case
574 -- the value returned is irrelevant.
576 function Is_Progenitor
577 (Iface : Entity_Id;
578 Typ : Entity_Id) return Boolean;
579 -- Determine whether the interface Iface is implemented by Typ. It requires
580 -- traversing the list of abstract interfaces of the type, as well as that
581 -- of the ancestor types. The predicate is used to determine when a formal
582 -- in the signature of an inherited operation must carry the derived type.
584 function Is_Valid_Constraint_Kind
585 (T_Kind : Type_Kind;
586 Constraint_Kind : Node_Kind) return Boolean;
587 -- Returns True if it is legal to apply the given kind of constraint to the
588 -- given kind of type (index constraint to an array type, for example).
590 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
591 -- Create new modular type. Verify that modulus is in bounds and is
592 -- a power of two (implementation restriction).
594 procedure New_Concatenation_Op (Typ : Entity_Id);
595 -- Create an abbreviated declaration for an operator in order to
596 -- materialize concatenation on array types.
598 procedure Ordinary_Fixed_Point_Type_Declaration
599 (T : Entity_Id;
600 Def : Node_Id);
601 -- Create a new ordinary fixed point type, and apply the constraint to
602 -- obtain subtype of it.
604 procedure Prepare_Private_Subtype_Completion
605 (Id : Entity_Id;
606 Related_Nod : Node_Id);
607 -- Id is a subtype of some private type. Creates the full declaration
608 -- associated with Id whenever possible, i.e. when the full declaration
609 -- of the base type is already known. Records each subtype into
610 -- Private_Dependents of the base type.
612 procedure Process_Incomplete_Dependents
613 (N : Node_Id;
614 Full_T : Entity_Id;
615 Inc_T : Entity_Id);
616 -- Process all entities that depend on an incomplete type. There include
617 -- subtypes, subprogram types that mention the incomplete type in their
618 -- profiles, and subprogram with access parameters that designate the
619 -- incomplete type.
621 -- Inc_T is the defining identifier of an incomplete type declaration, its
622 -- Ekind is E_Incomplete_Type.
624 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
626 -- Full_T is N's defining identifier.
628 -- Subtypes of incomplete types with discriminants are completed when the
629 -- parent type is. This is simpler than private subtypes, because they can
630 -- only appear in the same scope, and there is no need to exchange views.
631 -- Similarly, access_to_subprogram types may have a parameter or a return
632 -- type that is an incomplete type, and that must be replaced with the
633 -- full type.
635 -- If the full type is tagged, subprogram with access parameters that
636 -- designated the incomplete may be primitive operations of the full type,
637 -- and have to be processed accordingly.
639 procedure Process_Real_Range_Specification (Def : Node_Id);
640 -- Given the type definition for a real type, this procedure processes and
641 -- checks the real range specification of this type definition if one is
642 -- present. If errors are found, error messages are posted, and the
643 -- Real_Range_Specification of Def is reset to Empty.
645 procedure Record_Type_Declaration
646 (T : Entity_Id;
647 N : Node_Id;
648 Prev : Entity_Id);
649 -- Process a record type declaration (for both untagged and tagged
650 -- records). Parameters T and N are exactly like in procedure
651 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
652 -- for this routine. If this is the completion of an incomplete type
653 -- declaration, Prev is the entity of the incomplete declaration, used for
654 -- cross-referencing. Otherwise Prev = T.
656 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
657 -- This routine is used to process the actual record type definition (both
658 -- for untagged and tagged records). Def is a record type definition node.
659 -- This procedure analyzes the components in this record type definition.
660 -- Prev_T is the entity for the enclosing record type. It is provided so
661 -- that its Has_Task flag can be set if any of the component have Has_Task
662 -- set. If the declaration is the completion of an incomplete type
663 -- declaration, Prev_T is the original incomplete type, whose full view is
664 -- the record type.
666 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
667 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
668 -- build a copy of the declaration tree of the parent, and we create
669 -- independently the list of components for the derived type. Semantic
670 -- information uses the component entities, but record representation
671 -- clauses are validated on the declaration tree. This procedure replaces
672 -- discriminants and components in the declaration with those that have
673 -- been created by Inherit_Components.
675 procedure Set_Fixed_Range
676 (E : Entity_Id;
677 Loc : Source_Ptr;
678 Lo : Ureal;
679 Hi : Ureal);
680 -- Build a range node with the given bounds and set it as the Scalar_Range
681 -- of the given fixed-point type entity. Loc is the source location used
682 -- for the constructed range. See body for further details.
684 procedure Set_Scalar_Range_For_Subtype
685 (Def_Id : Entity_Id;
686 R : Node_Id;
687 Subt : Entity_Id);
688 -- This routine is used to set the scalar range field for a subtype given
689 -- Def_Id, the entity for the subtype, and R, the range expression for the
690 -- scalar range. Subt provides the parent subtype to be used to analyze,
691 -- resolve, and check the given range.
693 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
694 -- Create a new signed integer entity, and apply the constraint to obtain
695 -- the required first named subtype of this type.
697 procedure Set_Stored_Constraint_From_Discriminant_Constraint
698 (E : Entity_Id);
699 -- E is some record type. This routine computes E's Stored_Constraint
700 -- from its Discriminant_Constraint.
702 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
703 -- Check that an entity in a list of progenitors is an interface,
704 -- emit error otherwise.
706 -----------------------
707 -- Access_Definition --
708 -----------------------
710 function Access_Definition
711 (Related_Nod : Node_Id;
712 N : Node_Id) return Entity_Id
714 Loc : constant Source_Ptr := Sloc (Related_Nod);
715 Anon_Type : Entity_Id;
716 Anon_Scope : Entity_Id;
717 Desig_Type : Entity_Id;
718 Decl : Entity_Id;
719 Enclosing_Prot_Type : Entity_Id := Empty;
721 begin
722 if Is_Entry (Current_Scope)
723 and then Is_Task_Type (Etype (Scope (Current_Scope)))
724 then
725 Error_Msg_N ("task entries cannot have access parameters", N);
726 return Empty;
727 end if;
729 -- Ada 2005: for an object declaration the corresponding anonymous
730 -- type is declared in the current scope.
732 -- If the access definition is the return type of another access to
733 -- function, scope is the current one, because it is the one of the
734 -- current type declaration.
736 if Nkind_In (Related_Nod, N_Object_Declaration,
737 N_Access_Function_Definition)
738 then
739 Anon_Scope := Current_Scope;
741 -- For the anonymous function result case, retrieve the scope of the
742 -- function specification's associated entity rather than using the
743 -- current scope. The current scope will be the function itself if the
744 -- formal part is currently being analyzed, but will be the parent scope
745 -- in the case of a parameterless function, and we always want to use
746 -- the function's parent scope. Finally, if the function is a child
747 -- unit, we must traverse the tree to retrieve the proper entity.
749 elsif Nkind (Related_Nod) = N_Function_Specification
750 and then Nkind (Parent (N)) /= N_Parameter_Specification
751 then
752 -- If the current scope is a protected type, the anonymous access
753 -- is associated with one of the protected operations, and must
754 -- be available in the scope that encloses the protected declaration.
755 -- Otherwise the type is in the scope enclosing the subprogram.
757 -- If the function has formals, The return type of a subprogram
758 -- declaration is analyzed in the scope of the subprogram (see
759 -- Process_Formals) and thus the protected type, if present, is
760 -- the scope of the current function scope.
762 if Ekind (Current_Scope) = E_Protected_Type then
763 Enclosing_Prot_Type := Current_Scope;
765 elsif Ekind (Current_Scope) = E_Function
766 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
767 then
768 Enclosing_Prot_Type := Scope (Current_Scope);
769 end if;
771 if Present (Enclosing_Prot_Type) then
772 Anon_Scope := Scope (Enclosing_Prot_Type);
774 else
775 Anon_Scope := Scope (Defining_Entity (Related_Nod));
776 end if;
778 else
779 -- For access formals, access components, and access discriminants,
780 -- the scope is that of the enclosing declaration,
782 Anon_Scope := Scope (Current_Scope);
783 end if;
785 Anon_Type :=
786 Create_Itype
787 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
789 if All_Present (N)
790 and then Ada_Version >= Ada_05
791 then
792 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
793 end if;
795 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
796 -- the corresponding semantic routine
798 if Present (Access_To_Subprogram_Definition (N)) then
799 Access_Subprogram_Declaration
800 (T_Name => Anon_Type,
801 T_Def => Access_To_Subprogram_Definition (N));
803 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
804 Set_Ekind
805 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
806 else
807 Set_Ekind
808 (Anon_Type, E_Anonymous_Access_Subprogram_Type);
809 end if;
811 Set_Can_Use_Internal_Rep
812 (Anon_Type, not Always_Compatible_Rep_On_Target);
814 -- If the anonymous access is associated with a protected operation
815 -- create a reference to it after the enclosing protected definition
816 -- because the itype will be used in the subsequent bodies.
818 if Ekind (Current_Scope) = E_Protected_Type then
819 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
820 end if;
822 return Anon_Type;
823 end if;
825 Find_Type (Subtype_Mark (N));
826 Desig_Type := Entity (Subtype_Mark (N));
828 Set_Directly_Designated_Type
829 (Anon_Type, Desig_Type);
830 Set_Etype (Anon_Type, Anon_Type);
832 -- Make sure the anonymous access type has size and alignment fields
833 -- set, as required by gigi. This is necessary in the case of the
834 -- Task_Body_Procedure.
836 if not Has_Private_Component (Desig_Type) then
837 Layout_Type (Anon_Type);
838 end if;
840 -- ???The following makes no sense, because Anon_Type is an access type
841 -- and therefore cannot have components, private or otherwise. Hence
842 -- the assertion. Not sure what was meant, here.
843 Set_Depends_On_Private (Anon_Type, Has_Private_Component (Anon_Type));
844 pragma Assert (not Depends_On_Private (Anon_Type));
846 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
847 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
848 -- the null value is allowed. In Ada 95 the null value is never allowed.
850 if Ada_Version >= Ada_05 then
851 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
852 else
853 Set_Can_Never_Be_Null (Anon_Type, True);
854 end if;
856 -- The anonymous access type is as public as the discriminated type or
857 -- subprogram that defines it. It is imported (for back-end purposes)
858 -- if the designated type is.
860 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
862 -- Ada 2005 (AI-231): Propagate the access-constant attribute
864 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
866 -- The context is either a subprogram declaration, object declaration,
867 -- or an access discriminant, in a private or a full type declaration.
868 -- In the case of a subprogram, if the designated type is incomplete,
869 -- the operation will be a primitive operation of the full type, to be
870 -- updated subsequently. If the type is imported through a limited_with
871 -- clause, the subprogram is not a primitive operation of the type
872 -- (which is declared elsewhere in some other scope).
874 if Ekind (Desig_Type) = E_Incomplete_Type
875 and then not From_With_Type (Desig_Type)
876 and then Is_Overloadable (Current_Scope)
877 then
878 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
879 Set_Has_Delayed_Freeze (Current_Scope);
880 end if;
882 -- Ada 2005: if the designated type is an interface that may contain
883 -- tasks, create a Master entity for the declaration. This must be done
884 -- before expansion of the full declaration, because the declaration may
885 -- include an expression that is an allocator, whose expansion needs the
886 -- proper Master for the created tasks.
888 if Nkind (Related_Nod) = N_Object_Declaration
889 and then Expander_Active
890 then
891 if Is_Interface (Desig_Type)
892 and then Is_Limited_Record (Desig_Type)
893 then
894 Build_Class_Wide_Master (Anon_Type);
896 -- Similarly, if the type is an anonymous access that designates
897 -- tasks, create a master entity for it in the current context.
899 elsif Has_Task (Desig_Type)
900 and then Comes_From_Source (Related_Nod)
901 then
902 if not Has_Master_Entity (Current_Scope) then
903 Decl :=
904 Make_Object_Declaration (Loc,
905 Defining_Identifier =>
906 Make_Defining_Identifier (Loc, Name_uMaster),
907 Constant_Present => True,
908 Object_Definition =>
909 New_Reference_To (RTE (RE_Master_Id), Loc),
910 Expression =>
911 Make_Explicit_Dereference (Loc,
912 New_Reference_To (RTE (RE_Current_Master), Loc)));
914 Insert_Before (Related_Nod, Decl);
915 Analyze (Decl);
917 Set_Master_Id (Anon_Type, Defining_Identifier (Decl));
918 Set_Has_Master_Entity (Current_Scope);
919 else
920 Build_Master_Renaming (Related_Nod, Anon_Type);
921 end if;
922 end if;
923 end if;
925 -- For a private component of a protected type, it is imperative that
926 -- the back-end elaborate the type immediately after the protected
927 -- declaration, because this type will be used in the declarations
928 -- created for the component within each protected body, so we must
929 -- create an itype reference for it now.
931 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
932 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
934 -- Similarly, if the access definition is the return result of a
935 -- function, create an itype reference for it because it will be used
936 -- within the function body. For a regular function that is not a
937 -- compilation unit, insert reference after the declaration. For a
938 -- protected operation, insert it after the enclosing protected type
939 -- declaration. In either case, do not create a reference for a type
940 -- obtained through a limited_with clause, because this would introduce
941 -- semantic dependencies.
943 -- Similarly, do not create a reference if the designated type is a
944 -- generic formal, because no use of it will reach the backend.
946 elsif Nkind (Related_Nod) = N_Function_Specification
947 and then not From_With_Type (Desig_Type)
948 and then not Is_Generic_Type (Desig_Type)
949 then
950 if Present (Enclosing_Prot_Type) then
951 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
953 elsif Is_List_Member (Parent (Related_Nod))
954 and then Nkind (Parent (N)) /= N_Parameter_Specification
955 then
956 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
957 end if;
959 -- Finally, create an itype reference for an object declaration of an
960 -- anonymous access type. This is strictly necessary only for deferred
961 -- constants, but in any case will avoid out-of-scope problems in the
962 -- back-end.
964 elsif Nkind (Related_Nod) = N_Object_Declaration then
965 Build_Itype_Reference (Anon_Type, Related_Nod);
966 end if;
968 return Anon_Type;
969 end Access_Definition;
971 -----------------------------------
972 -- Access_Subprogram_Declaration --
973 -----------------------------------
975 procedure Access_Subprogram_Declaration
976 (T_Name : Entity_Id;
977 T_Def : Node_Id)
980 procedure Check_For_Premature_Usage (Def : Node_Id);
981 -- Check that type T_Name is not used, directly or recursively, as a
982 -- parameter or a return type in Def. Def is either a subtype, an
983 -- access_definition, or an access_to_subprogram_definition.
985 -------------------------------
986 -- Check_For_Premature_Usage --
987 -------------------------------
989 procedure Check_For_Premature_Usage (Def : Node_Id) is
990 Param : Node_Id;
992 begin
993 -- Check for a subtype mark
995 if Nkind (Def) in N_Has_Etype then
996 if Etype (Def) = T_Name then
997 Error_Msg_N
998 ("type& cannot be used before end of its declaration", Def);
999 end if;
1001 -- If this is not a subtype, then this is an access_definition
1003 elsif Nkind (Def) = N_Access_Definition then
1004 if Present (Access_To_Subprogram_Definition (Def)) then
1005 Check_For_Premature_Usage
1006 (Access_To_Subprogram_Definition (Def));
1007 else
1008 Check_For_Premature_Usage (Subtype_Mark (Def));
1009 end if;
1011 -- The only cases left are N_Access_Function_Definition and
1012 -- N_Access_Procedure_Definition.
1014 else
1015 if Present (Parameter_Specifications (Def)) then
1016 Param := First (Parameter_Specifications (Def));
1017 while Present (Param) loop
1018 Check_For_Premature_Usage (Parameter_Type (Param));
1019 Param := Next (Param);
1020 end loop;
1021 end if;
1023 if Nkind (Def) = N_Access_Function_Definition then
1024 Check_For_Premature_Usage (Result_Definition (Def));
1025 end if;
1026 end if;
1027 end Check_For_Premature_Usage;
1029 -- Local variables
1031 Formals : constant List_Id := Parameter_Specifications (T_Def);
1032 Formal : Entity_Id;
1033 D_Ityp : Node_Id;
1034 Desig_Type : constant Entity_Id :=
1035 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1037 -- Start of processing for Access_Subprogram_Declaration
1039 begin
1040 -- Associate the Itype node with the inner full-type declaration or
1041 -- subprogram spec. This is required to handle nested anonymous
1042 -- declarations. For example:
1044 -- procedure P
1045 -- (X : access procedure
1046 -- (Y : access procedure
1047 -- (Z : access T)))
1049 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1050 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1051 N_Private_Type_Declaration,
1052 N_Private_Extension_Declaration,
1053 N_Procedure_Specification,
1054 N_Function_Specification)
1055 or else
1056 Nkind_In (D_Ityp, N_Object_Declaration,
1057 N_Object_Renaming_Declaration,
1058 N_Formal_Object_Declaration,
1059 N_Formal_Type_Declaration,
1060 N_Task_Type_Declaration,
1061 N_Protected_Type_Declaration))
1062 loop
1063 D_Ityp := Parent (D_Ityp);
1064 pragma Assert (D_Ityp /= Empty);
1065 end loop;
1067 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1069 if Nkind_In (D_Ityp, N_Procedure_Specification,
1070 N_Function_Specification)
1071 then
1072 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1074 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1075 N_Object_Declaration,
1076 N_Object_Renaming_Declaration,
1077 N_Formal_Type_Declaration)
1078 then
1079 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1080 end if;
1082 if Nkind (T_Def) = N_Access_Function_Definition then
1083 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1084 declare
1085 Acc : constant Node_Id := Result_Definition (T_Def);
1087 begin
1088 if Present (Access_To_Subprogram_Definition (Acc))
1089 and then
1090 Protected_Present (Access_To_Subprogram_Definition (Acc))
1091 then
1092 Set_Etype
1093 (Desig_Type,
1094 Replace_Anonymous_Access_To_Protected_Subprogram
1095 (T_Def));
1097 else
1098 Set_Etype
1099 (Desig_Type,
1100 Access_Definition (T_Def, Result_Definition (T_Def)));
1101 end if;
1102 end;
1104 else
1105 Analyze (Result_Definition (T_Def));
1107 declare
1108 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1110 begin
1111 -- If a null exclusion is imposed on the result type, then
1112 -- create a null-excluding itype (an access subtype) and use
1113 -- it as the function's Etype.
1115 if Is_Access_Type (Typ)
1116 and then Null_Exclusion_In_Return_Present (T_Def)
1117 then
1118 Set_Etype (Desig_Type,
1119 Create_Null_Excluding_Itype
1120 (T => Typ,
1121 Related_Nod => T_Def,
1122 Scope_Id => Current_Scope));
1124 else
1125 if From_With_Type (Typ) then
1126 Error_Msg_NE
1127 ("illegal use of incomplete type&",
1128 Result_Definition (T_Def), Typ);
1130 elsif Ekind (Current_Scope) = E_Package
1131 and then In_Private_Part (Current_Scope)
1132 then
1133 if Ekind (Typ) = E_Incomplete_Type then
1134 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1136 elsif Is_Class_Wide_Type (Typ)
1137 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1138 then
1139 Append_Elmt
1140 (Desig_Type, Private_Dependents (Etype (Typ)));
1141 end if;
1142 end if;
1144 Set_Etype (Desig_Type, Typ);
1145 end if;
1146 end;
1147 end if;
1149 if not (Is_Type (Etype (Desig_Type))) then
1150 Error_Msg_N
1151 ("expect type in function specification",
1152 Result_Definition (T_Def));
1153 end if;
1155 else
1156 Set_Etype (Desig_Type, Standard_Void_Type);
1157 end if;
1159 if Present (Formals) then
1160 Push_Scope (Desig_Type);
1162 -- A bit of a kludge here. These kludges will be removed when Itypes
1163 -- have proper parent pointers to their declarations???
1165 -- Kludge 1) Link defining_identifier of formals. Required by
1166 -- First_Formal to provide its functionality.
1168 declare
1169 F : Node_Id;
1171 begin
1172 F := First (Formals);
1173 while Present (F) loop
1174 if No (Parent (Defining_Identifier (F))) then
1175 Set_Parent (Defining_Identifier (F), F);
1176 end if;
1178 Next (F);
1179 end loop;
1180 end;
1182 Process_Formals (Formals, Parent (T_Def));
1184 -- Kludge 2) End_Scope requires that the parent pointer be set to
1185 -- something reasonable, but Itypes don't have parent pointers. So
1186 -- we set it and then unset it ???
1188 Set_Parent (Desig_Type, T_Name);
1189 End_Scope;
1190 Set_Parent (Desig_Type, Empty);
1191 end if;
1193 -- Check for premature usage of the type being defined
1195 Check_For_Premature_Usage (T_Def);
1197 -- The return type and/or any parameter type may be incomplete. Mark
1198 -- the subprogram_type as depending on the incomplete type, so that
1199 -- it can be updated when the full type declaration is seen. This
1200 -- only applies to incomplete types declared in some enclosing scope,
1201 -- not to limited views from other packages.
1203 if Present (Formals) then
1204 Formal := First_Formal (Desig_Type);
1205 while Present (Formal) loop
1206 if Ekind (Formal) /= E_In_Parameter
1207 and then Nkind (T_Def) = N_Access_Function_Definition
1208 then
1209 Error_Msg_N ("functions can only have IN parameters", Formal);
1210 end if;
1212 if Ekind (Etype (Formal)) = E_Incomplete_Type
1213 and then In_Open_Scopes (Scope (Etype (Formal)))
1214 then
1215 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1216 Set_Has_Delayed_Freeze (Desig_Type);
1217 end if;
1219 Next_Formal (Formal);
1220 end loop;
1221 end if;
1223 -- If the return type is incomplete, this is legal as long as the
1224 -- type is declared in the current scope and will be completed in
1225 -- it (rather than being part of limited view).
1227 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1228 and then not Has_Delayed_Freeze (Desig_Type)
1229 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1230 then
1231 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1232 Set_Has_Delayed_Freeze (Desig_Type);
1233 end if;
1235 Check_Delayed_Subprogram (Desig_Type);
1237 if Protected_Present (T_Def) then
1238 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1239 Set_Convention (Desig_Type, Convention_Protected);
1240 else
1241 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1242 end if;
1244 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1246 Set_Etype (T_Name, T_Name);
1247 Init_Size_Align (T_Name);
1248 Set_Directly_Designated_Type (T_Name, Desig_Type);
1250 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1252 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1254 Check_Restriction (No_Access_Subprograms, T_Def);
1255 end Access_Subprogram_Declaration;
1257 ----------------------------
1258 -- Access_Type_Declaration --
1259 ----------------------------
1261 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1262 S : constant Node_Id := Subtype_Indication (Def);
1263 P : constant Node_Id := Parent (Def);
1264 begin
1265 -- Check for permissible use of incomplete type
1267 if Nkind (S) /= N_Subtype_Indication then
1268 Analyze (S);
1270 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1271 Set_Directly_Designated_Type (T, Entity (S));
1272 else
1273 Set_Directly_Designated_Type (T,
1274 Process_Subtype (S, P, T, 'P'));
1275 end if;
1277 else
1278 Set_Directly_Designated_Type (T,
1279 Process_Subtype (S, P, T, 'P'));
1280 end if;
1282 if All_Present (Def) or Constant_Present (Def) then
1283 Set_Ekind (T, E_General_Access_Type);
1284 else
1285 Set_Ekind (T, E_Access_Type);
1286 end if;
1288 if Base_Type (Designated_Type (T)) = T then
1289 Error_Msg_N ("access type cannot designate itself", S);
1291 -- In Ada 2005, the type may have a limited view through some unit
1292 -- in its own context, allowing the following circularity that cannot
1293 -- be detected earlier
1295 elsif Is_Class_Wide_Type (Designated_Type (T))
1296 and then Etype (Designated_Type (T)) = T
1297 then
1298 Error_Msg_N
1299 ("access type cannot designate its own classwide type", S);
1301 -- Clean up indication of tagged status to prevent cascaded errors
1303 Set_Is_Tagged_Type (T, False);
1304 end if;
1306 Set_Etype (T, T);
1308 -- If the type has appeared already in a with_type clause, it is
1309 -- frozen and the pointer size is already set. Else, initialize.
1311 if not From_With_Type (T) then
1312 Init_Size_Align (T);
1313 end if;
1315 -- Note that Has_Task is always false, since the access type itself
1316 -- is not a task type. See Einfo for more description on this point.
1317 -- Exactly the same consideration applies to Has_Controlled_Component.
1319 Set_Has_Task (T, False);
1320 Set_Has_Controlled_Component (T, False);
1322 -- Initialize Associated_Final_Chain explicitly to Empty, to avoid
1323 -- problems where an incomplete view of this entity has been previously
1324 -- established by a limited with and an overlaid version of this field
1325 -- (Stored_Constraint) was initialized for the incomplete view.
1327 Set_Associated_Final_Chain (T, Empty);
1329 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1330 -- attributes
1332 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1333 Set_Is_Access_Constant (T, Constant_Present (Def));
1334 end Access_Type_Declaration;
1336 ----------------------------------
1337 -- Add_Interface_Tag_Components --
1338 ----------------------------------
1340 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1341 Loc : constant Source_Ptr := Sloc (N);
1342 L : List_Id;
1343 Last_Tag : Node_Id;
1345 procedure Add_Tag (Iface : Entity_Id);
1346 -- Add tag for one of the progenitor interfaces
1348 -------------
1349 -- Add_Tag --
1350 -------------
1352 procedure Add_Tag (Iface : Entity_Id) is
1353 Decl : Node_Id;
1354 Def : Node_Id;
1355 Tag : Entity_Id;
1356 Offset : Entity_Id;
1358 begin
1359 pragma Assert (Is_Tagged_Type (Iface)
1360 and then Is_Interface (Iface));
1362 Def :=
1363 Make_Component_Definition (Loc,
1364 Aliased_Present => True,
1365 Subtype_Indication =>
1366 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1368 Tag := Make_Defining_Identifier (Loc, New_Internal_Name ('V'));
1370 Decl :=
1371 Make_Component_Declaration (Loc,
1372 Defining_Identifier => Tag,
1373 Component_Definition => Def);
1375 Analyze_Component_Declaration (Decl);
1377 Set_Analyzed (Decl);
1378 Set_Ekind (Tag, E_Component);
1379 Set_Is_Tag (Tag);
1380 Set_Is_Aliased (Tag);
1381 Set_Related_Type (Tag, Iface);
1382 Init_Component_Location (Tag);
1384 pragma Assert (Is_Frozen (Iface));
1386 Set_DT_Entry_Count (Tag,
1387 DT_Entry_Count (First_Entity (Iface)));
1389 if No (Last_Tag) then
1390 Prepend (Decl, L);
1391 else
1392 Insert_After (Last_Tag, Decl);
1393 end if;
1395 Last_Tag := Decl;
1397 -- If the ancestor has discriminants we need to give special support
1398 -- to store the offset_to_top value of the secondary dispatch tables.
1399 -- For this purpose we add a supplementary component just after the
1400 -- field that contains the tag associated with each secondary DT.
1402 if Typ /= Etype (Typ)
1403 and then Has_Discriminants (Etype (Typ))
1404 then
1405 Def :=
1406 Make_Component_Definition (Loc,
1407 Subtype_Indication =>
1408 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1410 Offset :=
1411 Make_Defining_Identifier (Loc, New_Internal_Name ('V'));
1413 Decl :=
1414 Make_Component_Declaration (Loc,
1415 Defining_Identifier => Offset,
1416 Component_Definition => Def);
1418 Analyze_Component_Declaration (Decl);
1420 Set_Analyzed (Decl);
1421 Set_Ekind (Offset, E_Component);
1422 Set_Is_Aliased (Offset);
1423 Set_Related_Type (Offset, Iface);
1424 Init_Component_Location (Offset);
1425 Insert_After (Last_Tag, Decl);
1426 Last_Tag := Decl;
1427 end if;
1428 end Add_Tag;
1430 -- Local variables
1432 Elmt : Elmt_Id;
1433 Ext : Node_Id;
1434 Comp : Node_Id;
1436 -- Start of processing for Add_Interface_Tag_Components
1438 begin
1439 if not RTE_Available (RE_Interface_Tag) then
1440 Error_Msg
1441 ("(Ada 2005) interface types not supported by this run-time!",
1442 Sloc (N));
1443 return;
1444 end if;
1446 if Ekind (Typ) /= E_Record_Type
1447 or else (Is_Concurrent_Record_Type (Typ)
1448 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1449 or else (not Is_Concurrent_Record_Type (Typ)
1450 and then No (Interfaces (Typ))
1451 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1452 then
1453 return;
1454 end if;
1456 -- Find the current last tag
1458 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1459 Ext := Record_Extension_Part (Type_Definition (N));
1460 else
1461 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1462 Ext := Type_Definition (N);
1463 end if;
1465 Last_Tag := Empty;
1467 if not (Present (Component_List (Ext))) then
1468 Set_Null_Present (Ext, False);
1469 L := New_List;
1470 Set_Component_List (Ext,
1471 Make_Component_List (Loc,
1472 Component_Items => L,
1473 Null_Present => False));
1474 else
1475 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1476 L := Component_Items
1477 (Component_List
1478 (Record_Extension_Part
1479 (Type_Definition (N))));
1480 else
1481 L := Component_Items
1482 (Component_List
1483 (Type_Definition (N)));
1484 end if;
1486 -- Find the last tag component
1488 Comp := First (L);
1489 while Present (Comp) loop
1490 if Nkind (Comp) = N_Component_Declaration
1491 and then Is_Tag (Defining_Identifier (Comp))
1492 then
1493 Last_Tag := Comp;
1494 end if;
1496 Next (Comp);
1497 end loop;
1498 end if;
1500 -- At this point L references the list of components and Last_Tag
1501 -- references the current last tag (if any). Now we add the tag
1502 -- corresponding with all the interfaces that are not implemented
1503 -- by the parent.
1505 if Present (Interfaces (Typ)) then
1506 Elmt := First_Elmt (Interfaces (Typ));
1507 while Present (Elmt) loop
1508 Add_Tag (Node (Elmt));
1509 Next_Elmt (Elmt);
1510 end loop;
1511 end if;
1512 end Add_Interface_Tag_Components;
1514 -------------------------------------
1515 -- Add_Internal_Interface_Entities --
1516 -------------------------------------
1518 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1519 Elmt : Elmt_Id;
1520 Iface : Entity_Id;
1521 Iface_Elmt : Elmt_Id;
1522 Iface_Prim : Entity_Id;
1523 Ifaces_List : Elist_Id;
1524 New_Subp : Entity_Id := Empty;
1525 Prim : Entity_Id;
1527 begin
1528 pragma Assert (Ada_Version >= Ada_05
1529 and then Is_Record_Type (Tagged_Type)
1530 and then Is_Tagged_Type (Tagged_Type)
1531 and then Has_Interfaces (Tagged_Type)
1532 and then not Is_Interface (Tagged_Type));
1534 Collect_Interfaces (Tagged_Type, Ifaces_List);
1536 Iface_Elmt := First_Elmt (Ifaces_List);
1537 while Present (Iface_Elmt) loop
1538 Iface := Node (Iface_Elmt);
1540 -- Exclude from this processing interfaces that are parents of
1541 -- Tagged_Type because their primitives are located in the primary
1542 -- dispatch table (and hence no auxiliary internal entities are
1543 -- required to handle secondary dispatch tables in such case).
1545 if not Is_Ancestor (Iface, Tagged_Type) then
1546 Elmt := First_Elmt (Primitive_Operations (Iface));
1547 while Present (Elmt) loop
1548 Iface_Prim := Node (Elmt);
1550 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1551 Prim :=
1552 Find_Primitive_Covering_Interface
1553 (Tagged_Type => Tagged_Type,
1554 Iface_Prim => Iface_Prim);
1556 pragma Assert (Present (Prim));
1558 Derive_Subprogram
1559 (New_Subp => New_Subp,
1560 Parent_Subp => Iface_Prim,
1561 Derived_Type => Tagged_Type,
1562 Parent_Type => Iface);
1564 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1565 -- associated with interface types. These entities are
1566 -- only registered in the list of primitives of its
1567 -- corresponding tagged type because they are only used
1568 -- to fill the contents of the secondary dispatch tables.
1569 -- Therefore they are removed from the homonym chains.
1571 Set_Is_Hidden (New_Subp);
1572 Set_Is_Internal (New_Subp);
1573 Set_Alias (New_Subp, Prim);
1574 Set_Is_Abstract_Subprogram (New_Subp,
1575 Is_Abstract_Subprogram (Prim));
1576 Set_Interface_Alias (New_Subp, Iface_Prim);
1578 -- Internal entities associated with interface types are
1579 -- only registered in the list of primitives of the tagged
1580 -- type. They are only used to fill the contents of the
1581 -- secondary dispatch tables. Therefore they are not needed
1582 -- in the homonym chains.
1584 Remove_Homonym (New_Subp);
1586 -- Hidden entities associated with interfaces must have set
1587 -- the Has_Delay_Freeze attribute to ensure that, in case of
1588 -- locally defined tagged types (or compiling with static
1589 -- dispatch tables generation disabled) the corresponding
1590 -- entry of the secondary dispatch table is filled when
1591 -- such an entity is frozen.
1593 Set_Has_Delayed_Freeze (New_Subp);
1594 end if;
1596 Next_Elmt (Elmt);
1597 end loop;
1598 end if;
1600 Next_Elmt (Iface_Elmt);
1601 end loop;
1602 end Add_Internal_Interface_Entities;
1604 -----------------------------------
1605 -- Analyze_Component_Declaration --
1606 -----------------------------------
1608 procedure Analyze_Component_Declaration (N : Node_Id) is
1609 Id : constant Entity_Id := Defining_Identifier (N);
1610 E : constant Node_Id := Expression (N);
1611 T : Entity_Id;
1612 P : Entity_Id;
1614 function Contains_POC (Constr : Node_Id) return Boolean;
1615 -- Determines whether a constraint uses the discriminant of a record
1616 -- type thus becoming a per-object constraint (POC).
1618 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1619 -- Typ is the type of the current component, check whether this type is
1620 -- a limited type. Used to validate declaration against that of
1621 -- enclosing record.
1623 ------------------
1624 -- Contains_POC --
1625 ------------------
1627 function Contains_POC (Constr : Node_Id) return Boolean is
1628 begin
1629 -- Prevent cascaded errors
1631 if Error_Posted (Constr) then
1632 return False;
1633 end if;
1635 case Nkind (Constr) is
1636 when N_Attribute_Reference =>
1637 return
1638 Attribute_Name (Constr) = Name_Access
1639 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1641 when N_Discriminant_Association =>
1642 return Denotes_Discriminant (Expression (Constr));
1644 when N_Identifier =>
1645 return Denotes_Discriminant (Constr);
1647 when N_Index_Or_Discriminant_Constraint =>
1648 declare
1649 IDC : Node_Id;
1651 begin
1652 IDC := First (Constraints (Constr));
1653 while Present (IDC) loop
1655 -- One per-object constraint is sufficient
1657 if Contains_POC (IDC) then
1658 return True;
1659 end if;
1661 Next (IDC);
1662 end loop;
1664 return False;
1665 end;
1667 when N_Range =>
1668 return Denotes_Discriminant (Low_Bound (Constr))
1669 or else
1670 Denotes_Discriminant (High_Bound (Constr));
1672 when N_Range_Constraint =>
1673 return Denotes_Discriminant (Range_Expression (Constr));
1675 when others =>
1676 return False;
1678 end case;
1679 end Contains_POC;
1681 ----------------------
1682 -- Is_Known_Limited --
1683 ----------------------
1685 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1686 P : constant Entity_Id := Etype (Typ);
1687 R : constant Entity_Id := Root_Type (Typ);
1689 begin
1690 if Is_Limited_Record (Typ) then
1691 return True;
1693 -- If the root type is limited (and not a limited interface)
1694 -- so is the current type
1696 elsif Is_Limited_Record (R)
1697 and then
1698 (not Is_Interface (R)
1699 or else not Is_Limited_Interface (R))
1700 then
1701 return True;
1703 -- Else the type may have a limited interface progenitor, but a
1704 -- limited record parent.
1706 elsif R /= P
1707 and then Is_Limited_Record (P)
1708 then
1709 return True;
1711 else
1712 return False;
1713 end if;
1714 end Is_Known_Limited;
1716 -- Start of processing for Analyze_Component_Declaration
1718 begin
1719 Generate_Definition (Id);
1720 Enter_Name (Id);
1722 if Present (Subtype_Indication (Component_Definition (N))) then
1723 T := Find_Type_Of_Object
1724 (Subtype_Indication (Component_Definition (N)), N);
1726 -- Ada 2005 (AI-230): Access Definition case
1728 else
1729 pragma Assert (Present
1730 (Access_Definition (Component_Definition (N))));
1732 T := Access_Definition
1733 (Related_Nod => N,
1734 N => Access_Definition (Component_Definition (N)));
1735 Set_Is_Local_Anonymous_Access (T);
1737 -- Ada 2005 (AI-254)
1739 if Present (Access_To_Subprogram_Definition
1740 (Access_Definition (Component_Definition (N))))
1741 and then Protected_Present (Access_To_Subprogram_Definition
1742 (Access_Definition
1743 (Component_Definition (N))))
1744 then
1745 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1746 end if;
1747 end if;
1749 -- If the subtype is a constrained subtype of the enclosing record,
1750 -- (which must have a partial view) the back-end does not properly
1751 -- handle the recursion. Rewrite the component declaration with an
1752 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1753 -- the tree directly because side effects have already been removed from
1754 -- discriminant constraints.
1756 if Ekind (T) = E_Access_Subtype
1757 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1758 and then Comes_From_Source (T)
1759 and then Nkind (Parent (T)) = N_Subtype_Declaration
1760 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1761 then
1762 Rewrite
1763 (Subtype_Indication (Component_Definition (N)),
1764 New_Copy_Tree (Subtype_Indication (Parent (T))));
1765 T := Find_Type_Of_Object
1766 (Subtype_Indication (Component_Definition (N)), N);
1767 end if;
1769 -- If the component declaration includes a default expression, then we
1770 -- check that the component is not of a limited type (RM 3.7(5)),
1771 -- and do the special preanalysis of the expression (see section on
1772 -- "Handling of Default and Per-Object Expressions" in the spec of
1773 -- package Sem).
1775 if Present (E) then
1776 Preanalyze_Spec_Expression (E, T);
1777 Check_Initialization (T, E);
1779 if Ada_Version >= Ada_05
1780 and then Ekind (T) = E_Anonymous_Access_Type
1781 and then Etype (E) /= Any_Type
1782 then
1783 -- Check RM 3.9.2(9): "if the expected type for an expression is
1784 -- an anonymous access-to-specific tagged type, then the object
1785 -- designated by the expression shall not be dynamically tagged
1786 -- unless it is a controlling operand in a call on a dispatching
1787 -- operation"
1789 if Is_Tagged_Type (Directly_Designated_Type (T))
1790 and then
1791 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1792 and then
1793 Ekind (Directly_Designated_Type (Etype (E))) =
1794 E_Class_Wide_Type
1795 then
1796 Error_Msg_N
1797 ("access to specific tagged type required (RM 3.9.2(9))", E);
1798 end if;
1800 -- (Ada 2005: AI-230): Accessibility check for anonymous
1801 -- components
1803 if Type_Access_Level (Etype (E)) > Type_Access_Level (T) then
1804 Error_Msg_N
1805 ("expression has deeper access level than component " &
1806 "(RM 3.10.2 (12.2))", E);
1807 end if;
1809 -- The initialization expression is a reference to an access
1810 -- discriminant. The type of the discriminant is always deeper
1811 -- than any access type.
1813 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1814 and then Is_Entity_Name (E)
1815 and then Ekind (Entity (E)) = E_In_Parameter
1816 and then Present (Discriminal_Link (Entity (E)))
1817 then
1818 Error_Msg_N
1819 ("discriminant has deeper accessibility level than target",
1821 end if;
1822 end if;
1823 end if;
1825 -- The parent type may be a private view with unknown discriminants,
1826 -- and thus unconstrained. Regular components must be constrained.
1828 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1829 if Is_Class_Wide_Type (T) then
1830 Error_Msg_N
1831 ("class-wide subtype with unknown discriminants" &
1832 " in component declaration",
1833 Subtype_Indication (Component_Definition (N)));
1834 else
1835 Error_Msg_N
1836 ("unconstrained subtype in component declaration",
1837 Subtype_Indication (Component_Definition (N)));
1838 end if;
1840 -- Components cannot be abstract, except for the special case of
1841 -- the _Parent field (case of extending an abstract tagged type)
1843 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
1844 Error_Msg_N ("type of a component cannot be abstract", N);
1845 end if;
1847 Set_Etype (Id, T);
1848 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
1850 -- The component declaration may have a per-object constraint, set
1851 -- the appropriate flag in the defining identifier of the subtype.
1853 if Present (Subtype_Indication (Component_Definition (N))) then
1854 declare
1855 Sindic : constant Node_Id :=
1856 Subtype_Indication (Component_Definition (N));
1857 begin
1858 if Nkind (Sindic) = N_Subtype_Indication
1859 and then Present (Constraint (Sindic))
1860 and then Contains_POC (Constraint (Sindic))
1861 then
1862 Set_Has_Per_Object_Constraint (Id);
1863 end if;
1864 end;
1865 end if;
1867 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1868 -- out some static checks.
1870 if Ada_Version >= Ada_05
1871 and then Can_Never_Be_Null (T)
1872 then
1873 Null_Exclusion_Static_Checks (N);
1874 end if;
1876 -- If this component is private (or depends on a private type), flag the
1877 -- record type to indicate that some operations are not available.
1879 P := Private_Component (T);
1881 if Present (P) then
1883 -- Check for circular definitions
1885 if P = Any_Type then
1886 Set_Etype (Id, Any_Type);
1888 -- There is a gap in the visibility of operations only if the
1889 -- component type is not defined in the scope of the record type.
1891 elsif Scope (P) = Scope (Current_Scope) then
1892 null;
1894 elsif Is_Limited_Type (P) then
1895 Set_Is_Limited_Composite (Current_Scope);
1897 else
1898 Set_Is_Private_Composite (Current_Scope);
1899 end if;
1900 end if;
1902 if P /= Any_Type
1903 and then Is_Limited_Type (T)
1904 and then Chars (Id) /= Name_uParent
1905 and then Is_Tagged_Type (Current_Scope)
1906 then
1907 if Is_Derived_Type (Current_Scope)
1908 and then not Is_Known_Limited (Current_Scope)
1909 then
1910 Error_Msg_N
1911 ("extension of nonlimited type cannot have limited components",
1914 if Is_Interface (Root_Type (Current_Scope)) then
1915 Error_Msg_N
1916 ("\limitedness is not inherited from limited interface", N);
1917 Error_Msg_N
1918 ("\add LIMITED to type indication", N);
1919 end if;
1921 Explain_Limited_Type (T, N);
1922 Set_Etype (Id, Any_Type);
1923 Set_Is_Limited_Composite (Current_Scope, False);
1925 elsif not Is_Derived_Type (Current_Scope)
1926 and then not Is_Limited_Record (Current_Scope)
1927 and then not Is_Concurrent_Type (Current_Scope)
1928 then
1929 Error_Msg_N
1930 ("nonlimited tagged type cannot have limited components", N);
1931 Explain_Limited_Type (T, N);
1932 Set_Etype (Id, Any_Type);
1933 Set_Is_Limited_Composite (Current_Scope, False);
1934 end if;
1935 end if;
1937 Set_Original_Record_Component (Id, Id);
1938 end Analyze_Component_Declaration;
1940 --------------------------
1941 -- Analyze_Declarations --
1942 --------------------------
1944 procedure Analyze_Declarations (L : List_Id) is
1945 D : Node_Id;
1946 Freeze_From : Entity_Id := Empty;
1947 Next_Node : Node_Id;
1949 procedure Adjust_D;
1950 -- Adjust D not to include implicit label declarations, since these
1951 -- have strange Sloc values that result in elaboration check problems.
1952 -- (They have the sloc of the label as found in the source, and that
1953 -- is ahead of the current declarative part).
1955 --------------
1956 -- Adjust_D --
1957 --------------
1959 procedure Adjust_D is
1960 begin
1961 while Present (Prev (D))
1962 and then Nkind (D) = N_Implicit_Label_Declaration
1963 loop
1964 Prev (D);
1965 end loop;
1966 end Adjust_D;
1968 -- Start of processing for Analyze_Declarations
1970 begin
1971 D := First (L);
1972 while Present (D) loop
1974 -- Complete analysis of declaration
1976 Analyze (D);
1977 Next_Node := Next (D);
1979 if No (Freeze_From) then
1980 Freeze_From := First_Entity (Current_Scope);
1981 end if;
1983 -- At the end of a declarative part, freeze remaining entities
1984 -- declared in it. The end of the visible declarations of package
1985 -- specification is not the end of a declarative part if private
1986 -- declarations are present. The end of a package declaration is a
1987 -- freezing point only if it a library package. A task definition or
1988 -- protected type definition is not a freeze point either. Finally,
1989 -- we do not freeze entities in generic scopes, because there is no
1990 -- code generated for them and freeze nodes will be generated for
1991 -- the instance.
1993 -- The end of a package instantiation is not a freeze point, but
1994 -- for now we make it one, because the generic body is inserted
1995 -- (currently) immediately after. Generic instantiations will not
1996 -- be a freeze point once delayed freezing of bodies is implemented.
1997 -- (This is needed in any case for early instantiations ???).
1999 if No (Next_Node) then
2000 if Nkind_In (Parent (L), N_Component_List,
2001 N_Task_Definition,
2002 N_Protected_Definition)
2003 then
2004 null;
2006 elsif Nkind (Parent (L)) /= N_Package_Specification then
2007 if Nkind (Parent (L)) = N_Package_Body then
2008 Freeze_From := First_Entity (Current_Scope);
2009 end if;
2011 Adjust_D;
2012 Freeze_All (Freeze_From, D);
2013 Freeze_From := Last_Entity (Current_Scope);
2015 elsif Scope (Current_Scope) /= Standard_Standard
2016 and then not Is_Child_Unit (Current_Scope)
2017 and then No (Generic_Parent (Parent (L)))
2018 then
2019 null;
2021 elsif L /= Visible_Declarations (Parent (L))
2022 or else No (Private_Declarations (Parent (L)))
2023 or else Is_Empty_List (Private_Declarations (Parent (L)))
2024 then
2025 Adjust_D;
2026 Freeze_All (Freeze_From, D);
2027 Freeze_From := Last_Entity (Current_Scope);
2028 end if;
2030 -- If next node is a body then freeze all types before the body.
2031 -- An exception occurs for some expander-generated bodies. If these
2032 -- are generated at places where in general language rules would not
2033 -- allow a freeze point, then we assume that the expander has
2034 -- explicitly checked that all required types are properly frozen,
2035 -- and we do not cause general freezing here. This special circuit
2036 -- is used when the encountered body is marked as having already
2037 -- been analyzed.
2039 -- In all other cases (bodies that come from source, and expander
2040 -- generated bodies that have not been analyzed yet), freeze all
2041 -- types now. Note that in the latter case, the expander must take
2042 -- care to attach the bodies at a proper place in the tree so as to
2043 -- not cause unwanted freezing at that point.
2045 elsif not Analyzed (Next_Node)
2046 and then (Nkind_In (Next_Node, N_Subprogram_Body,
2047 N_Entry_Body,
2048 N_Package_Body,
2049 N_Protected_Body,
2050 N_Task_Body)
2051 or else
2052 Nkind (Next_Node) in N_Body_Stub)
2053 then
2054 Adjust_D;
2055 Freeze_All (Freeze_From, D);
2056 Freeze_From := Last_Entity (Current_Scope);
2057 end if;
2059 D := Next_Node;
2060 end loop;
2061 end Analyze_Declarations;
2063 ----------------------------------
2064 -- Analyze_Incomplete_Type_Decl --
2065 ----------------------------------
2067 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2068 F : constant Boolean := Is_Pure (Current_Scope);
2069 T : Entity_Id;
2071 begin
2072 Generate_Definition (Defining_Identifier (N));
2074 -- Process an incomplete declaration. The identifier must not have been
2075 -- declared already in the scope. However, an incomplete declaration may
2076 -- appear in the private part of a package, for a private type that has
2077 -- already been declared.
2079 -- In this case, the discriminants (if any) must match
2081 T := Find_Type_Name (N);
2083 Set_Ekind (T, E_Incomplete_Type);
2084 Init_Size_Align (T);
2085 Set_Is_First_Subtype (T, True);
2086 Set_Etype (T, T);
2088 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2089 -- incomplete types.
2091 if Tagged_Present (N) then
2092 Set_Is_Tagged_Type (T);
2093 Make_Class_Wide_Type (T);
2094 Set_Primitive_Operations (T, New_Elmt_List);
2095 end if;
2097 Push_Scope (T);
2099 Set_Stored_Constraint (T, No_Elist);
2101 if Present (Discriminant_Specifications (N)) then
2102 Process_Discriminants (N);
2103 end if;
2105 End_Scope;
2107 -- If the type has discriminants, non-trivial subtypes may be
2108 -- declared before the full view of the type. The full views of those
2109 -- subtypes will be built after the full view of the type.
2111 Set_Private_Dependents (T, New_Elmt_List);
2112 Set_Is_Pure (T, F);
2113 end Analyze_Incomplete_Type_Decl;
2115 -----------------------------------
2116 -- Analyze_Interface_Declaration --
2117 -----------------------------------
2119 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2120 CW : constant Entity_Id := Class_Wide_Type (T);
2122 begin
2123 Set_Is_Tagged_Type (T);
2125 Set_Is_Limited_Record (T, Limited_Present (Def)
2126 or else Task_Present (Def)
2127 or else Protected_Present (Def)
2128 or else Synchronized_Present (Def));
2130 -- Type is abstract if full declaration carries keyword, or if previous
2131 -- partial view did.
2133 Set_Is_Abstract_Type (T);
2134 Set_Is_Interface (T);
2136 -- Type is a limited interface if it includes the keyword limited, task,
2137 -- protected, or synchronized.
2139 Set_Is_Limited_Interface
2140 (T, Limited_Present (Def)
2141 or else Protected_Present (Def)
2142 or else Synchronized_Present (Def)
2143 or else Task_Present (Def));
2145 Set_Is_Protected_Interface (T, Protected_Present (Def));
2146 Set_Is_Task_Interface (T, Task_Present (Def));
2148 -- Type is a synchronized interface if it includes the keyword task,
2149 -- protected, or synchronized.
2151 Set_Is_Synchronized_Interface
2152 (T, Synchronized_Present (Def)
2153 or else Protected_Present (Def)
2154 or else Task_Present (Def));
2156 Set_Interfaces (T, New_Elmt_List);
2157 Set_Primitive_Operations (T, New_Elmt_List);
2159 -- Complete the decoration of the class-wide entity if it was already
2160 -- built (i.e. during the creation of the limited view)
2162 if Present (CW) then
2163 Set_Is_Interface (CW);
2164 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2165 Set_Is_Protected_Interface (CW, Is_Protected_Interface (T));
2166 Set_Is_Synchronized_Interface (CW, Is_Synchronized_Interface (T));
2167 Set_Is_Task_Interface (CW, Is_Task_Interface (T));
2168 end if;
2170 -- Check runtime support for synchronized interfaces
2172 if VM_Target = No_VM
2173 and then (Is_Task_Interface (T)
2174 or else Is_Protected_Interface (T)
2175 or else Is_Synchronized_Interface (T))
2176 and then not RTE_Available (RE_Select_Specific_Data)
2177 then
2178 Error_Msg_CRT ("synchronized interfaces", T);
2179 end if;
2180 end Analyze_Interface_Declaration;
2182 -----------------------------
2183 -- Analyze_Itype_Reference --
2184 -----------------------------
2186 -- Nothing to do. This node is placed in the tree only for the benefit of
2187 -- back end processing, and has no effect on the semantic processing.
2189 procedure Analyze_Itype_Reference (N : Node_Id) is
2190 begin
2191 pragma Assert (Is_Itype (Itype (N)));
2192 null;
2193 end Analyze_Itype_Reference;
2195 --------------------------------
2196 -- Analyze_Number_Declaration --
2197 --------------------------------
2199 procedure Analyze_Number_Declaration (N : Node_Id) is
2200 Id : constant Entity_Id := Defining_Identifier (N);
2201 E : constant Node_Id := Expression (N);
2202 T : Entity_Id;
2203 Index : Interp_Index;
2204 It : Interp;
2206 begin
2207 Generate_Definition (Id);
2208 Enter_Name (Id);
2210 -- This is an optimization of a common case of an integer literal
2212 if Nkind (E) = N_Integer_Literal then
2213 Set_Is_Static_Expression (E, True);
2214 Set_Etype (E, Universal_Integer);
2216 Set_Etype (Id, Universal_Integer);
2217 Set_Ekind (Id, E_Named_Integer);
2218 Set_Is_Frozen (Id, True);
2219 return;
2220 end if;
2222 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2224 -- Process expression, replacing error by integer zero, to avoid
2225 -- cascaded errors or aborts further along in the processing
2227 -- Replace Error by integer zero, which seems least likely to
2228 -- cause cascaded errors.
2230 if E = Error then
2231 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2232 Set_Error_Posted (E);
2233 end if;
2235 Analyze (E);
2237 -- Verify that the expression is static and numeric. If
2238 -- the expression is overloaded, we apply the preference
2239 -- rule that favors root numeric types.
2241 if not Is_Overloaded (E) then
2242 T := Etype (E);
2244 else
2245 T := Any_Type;
2247 Get_First_Interp (E, Index, It);
2248 while Present (It.Typ) loop
2249 if (Is_Integer_Type (It.Typ)
2250 or else Is_Real_Type (It.Typ))
2251 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
2252 then
2253 if T = Any_Type then
2254 T := It.Typ;
2256 elsif It.Typ = Universal_Real
2257 or else It.Typ = Universal_Integer
2258 then
2259 -- Choose universal interpretation over any other
2261 T := It.Typ;
2262 exit;
2263 end if;
2264 end if;
2266 Get_Next_Interp (Index, It);
2267 end loop;
2268 end if;
2270 if Is_Integer_Type (T) then
2271 Resolve (E, T);
2272 Set_Etype (Id, Universal_Integer);
2273 Set_Ekind (Id, E_Named_Integer);
2275 elsif Is_Real_Type (T) then
2277 -- Because the real value is converted to universal_real, this is a
2278 -- legal context for a universal fixed expression.
2280 if T = Universal_Fixed then
2281 declare
2282 Loc : constant Source_Ptr := Sloc (N);
2283 Conv : constant Node_Id := Make_Type_Conversion (Loc,
2284 Subtype_Mark =>
2285 New_Occurrence_Of (Universal_Real, Loc),
2286 Expression => Relocate_Node (E));
2288 begin
2289 Rewrite (E, Conv);
2290 Analyze (E);
2291 end;
2293 elsif T = Any_Fixed then
2294 Error_Msg_N ("illegal context for mixed mode operation", E);
2296 -- Expression is of the form : universal_fixed * integer. Try to
2297 -- resolve as universal_real.
2299 T := Universal_Real;
2300 Set_Etype (E, T);
2301 end if;
2303 Resolve (E, T);
2304 Set_Etype (Id, Universal_Real);
2305 Set_Ekind (Id, E_Named_Real);
2307 else
2308 Wrong_Type (E, Any_Numeric);
2309 Resolve (E, T);
2311 Set_Etype (Id, T);
2312 Set_Ekind (Id, E_Constant);
2313 Set_Never_Set_In_Source (Id, True);
2314 Set_Is_True_Constant (Id, True);
2315 return;
2316 end if;
2318 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
2319 Set_Etype (E, Etype (Id));
2320 end if;
2322 if not Is_OK_Static_Expression (E) then
2323 Flag_Non_Static_Expr
2324 ("non-static expression used in number declaration!", E);
2325 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
2326 Set_Etype (E, Any_Type);
2327 end if;
2328 end Analyze_Number_Declaration;
2330 --------------------------------
2331 -- Analyze_Object_Declaration --
2332 --------------------------------
2334 procedure Analyze_Object_Declaration (N : Node_Id) is
2335 Loc : constant Source_Ptr := Sloc (N);
2336 Id : constant Entity_Id := Defining_Identifier (N);
2337 T : Entity_Id;
2338 Act_T : Entity_Id;
2340 E : Node_Id := Expression (N);
2341 -- E is set to Expression (N) throughout this routine. When
2342 -- Expression (N) is modified, E is changed accordingly.
2344 Prev_Entity : Entity_Id := Empty;
2346 function Count_Tasks (T : Entity_Id) return Uint;
2347 -- This function is called when a non-generic library level object of a
2348 -- task type is declared. Its function is to count the static number of
2349 -- tasks declared within the type (it is only called if Has_Tasks is set
2350 -- for T). As a side effect, if an array of tasks with non-static bounds
2351 -- or a variant record type is encountered, Check_Restrictions is called
2352 -- indicating the count is unknown.
2354 -----------------
2355 -- Count_Tasks --
2356 -----------------
2358 function Count_Tasks (T : Entity_Id) return Uint is
2359 C : Entity_Id;
2360 X : Node_Id;
2361 V : Uint;
2363 begin
2364 if Is_Task_Type (T) then
2365 return Uint_1;
2367 elsif Is_Record_Type (T) then
2368 if Has_Discriminants (T) then
2369 Check_Restriction (Max_Tasks, N);
2370 return Uint_0;
2372 else
2373 V := Uint_0;
2374 C := First_Component (T);
2375 while Present (C) loop
2376 V := V + Count_Tasks (Etype (C));
2377 Next_Component (C);
2378 end loop;
2380 return V;
2381 end if;
2383 elsif Is_Array_Type (T) then
2384 X := First_Index (T);
2385 V := Count_Tasks (Component_Type (T));
2386 while Present (X) loop
2387 C := Etype (X);
2389 if not Is_Static_Subtype (C) then
2390 Check_Restriction (Max_Tasks, N);
2391 return Uint_0;
2392 else
2393 V := V * (UI_Max (Uint_0,
2394 Expr_Value (Type_High_Bound (C)) -
2395 Expr_Value (Type_Low_Bound (C)) + Uint_1));
2396 end if;
2398 Next_Index (X);
2399 end loop;
2401 return V;
2403 else
2404 return Uint_0;
2405 end if;
2406 end Count_Tasks;
2408 -- Start of processing for Analyze_Object_Declaration
2410 begin
2411 -- There are three kinds of implicit types generated by an
2412 -- object declaration:
2414 -- 1. Those for generated by the original Object Definition
2416 -- 2. Those generated by the Expression
2418 -- 3. Those used to constrained the Object Definition with the
2419 -- expression constraints when it is unconstrained
2421 -- They must be generated in this order to avoid order of elaboration
2422 -- issues. Thus the first step (after entering the name) is to analyze
2423 -- the object definition.
2425 if Constant_Present (N) then
2426 Prev_Entity := Current_Entity_In_Scope (Id);
2428 if Present (Prev_Entity)
2429 and then
2430 -- If the homograph is an implicit subprogram, it is overridden
2431 -- by the current declaration.
2433 ((Is_Overloadable (Prev_Entity)
2434 and then Is_Inherited_Operation (Prev_Entity))
2436 -- The current object is a discriminal generated for an entry
2437 -- family index. Even though the index is a constant, in this
2438 -- particular context there is no true constant redeclaration.
2439 -- Enter_Name will handle the visibility.
2441 or else
2442 (Is_Discriminal (Id)
2443 and then Ekind (Discriminal_Link (Id)) =
2444 E_Entry_Index_Parameter)
2446 -- The current object is the renaming for a generic declared
2447 -- within the instance.
2449 or else
2450 (Ekind (Prev_Entity) = E_Package
2451 and then Nkind (Parent (Prev_Entity)) =
2452 N_Package_Renaming_Declaration
2453 and then not Comes_From_Source (Prev_Entity)
2454 and then Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
2455 then
2456 Prev_Entity := Empty;
2457 end if;
2458 end if;
2460 if Present (Prev_Entity) then
2461 Constant_Redeclaration (Id, N, T);
2463 Generate_Reference (Prev_Entity, Id, 'c');
2464 Set_Completion_Referenced (Id);
2466 if Error_Posted (N) then
2468 -- Type mismatch or illegal redeclaration, Do not analyze
2469 -- expression to avoid cascaded errors.
2471 T := Find_Type_Of_Object (Object_Definition (N), N);
2472 Set_Etype (Id, T);
2473 Set_Ekind (Id, E_Variable);
2474 return;
2475 end if;
2477 -- In the normal case, enter identifier at the start to catch premature
2478 -- usage in the initialization expression.
2480 else
2481 Generate_Definition (Id);
2482 Enter_Name (Id);
2484 Mark_Coextensions (N, Object_Definition (N));
2486 T := Find_Type_Of_Object (Object_Definition (N), N);
2488 if Nkind (Object_Definition (N)) = N_Access_Definition
2489 and then Present
2490 (Access_To_Subprogram_Definition (Object_Definition (N)))
2491 and then Protected_Present
2492 (Access_To_Subprogram_Definition (Object_Definition (N)))
2493 then
2494 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2495 end if;
2497 if Error_Posted (Id) then
2498 Set_Etype (Id, T);
2499 Set_Ekind (Id, E_Variable);
2500 return;
2501 end if;
2502 end if;
2504 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2505 -- out some static checks
2507 if Ada_Version >= Ada_05
2508 and then Can_Never_Be_Null (T)
2509 then
2510 -- In case of aggregates we must also take care of the correct
2511 -- initialization of nested aggregates bug this is done at the
2512 -- point of the analysis of the aggregate (see sem_aggr.adb)
2514 if Present (Expression (N))
2515 and then Nkind (Expression (N)) = N_Aggregate
2516 then
2517 null;
2519 else
2520 declare
2521 Save_Typ : constant Entity_Id := Etype (Id);
2522 begin
2523 Set_Etype (Id, T); -- Temp. decoration for static checks
2524 Null_Exclusion_Static_Checks (N);
2525 Set_Etype (Id, Save_Typ);
2526 end;
2527 end if;
2528 end if;
2530 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2532 -- If deferred constant, make sure context is appropriate. We detect
2533 -- a deferred constant as a constant declaration with no expression.
2534 -- A deferred constant can appear in a package body if its completion
2535 -- is by means of an interface pragma.
2537 if Constant_Present (N)
2538 and then No (E)
2539 then
2540 -- A deferred constant may appear in the declarative part of the
2541 -- following constructs:
2543 -- blocks
2544 -- entry bodies
2545 -- extended return statements
2546 -- package specs
2547 -- package bodies
2548 -- subprogram bodies
2549 -- task bodies
2551 -- When declared inside a package spec, a deferred constant must be
2552 -- completed by a full constant declaration or pragma Import. In all
2553 -- other cases, the only proper completion is pragma Import. Extended
2554 -- return statements are flagged as invalid contexts because they do
2555 -- not have a declarative part and so cannot accommodate the pragma.
2557 if Ekind (Current_Scope) = E_Return_Statement then
2558 Error_Msg_N
2559 ("invalid context for deferred constant declaration (RM 7.4)",
2561 Error_Msg_N
2562 ("\declaration requires an initialization expression",
2564 Set_Constant_Present (N, False);
2566 -- In Ada 83, deferred constant must be of private type
2568 elsif not Is_Private_Type (T) then
2569 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2570 Error_Msg_N
2571 ("(Ada 83) deferred constant must be private type", N);
2572 end if;
2573 end if;
2575 -- If not a deferred constant, then object declaration freezes its type
2577 else
2578 Check_Fully_Declared (T, N);
2579 Freeze_Before (N, T);
2580 end if;
2582 -- If the object was created by a constrained array definition, then
2583 -- set the link in both the anonymous base type and anonymous subtype
2584 -- that are built to represent the array type to point to the object.
2586 if Nkind (Object_Definition (Declaration_Node (Id))) =
2587 N_Constrained_Array_Definition
2588 then
2589 Set_Related_Array_Object (T, Id);
2590 Set_Related_Array_Object (Base_Type (T), Id);
2591 end if;
2593 -- Special checks for protected objects not at library level
2595 if Is_Protected_Type (T)
2596 and then not Is_Library_Level_Entity (Id)
2597 then
2598 Check_Restriction (No_Local_Protected_Objects, Id);
2600 -- Protected objects with interrupt handlers must be at library level
2602 -- Ada 2005: this test is not needed (and the corresponding clause
2603 -- in the RM is removed) because accessibility checks are sufficient
2604 -- to make handlers not at the library level illegal.
2606 if Has_Interrupt_Handler (T)
2607 and then Ada_Version < Ada_05
2608 then
2609 Error_Msg_N
2610 ("interrupt object can only be declared at library level", Id);
2611 end if;
2612 end if;
2614 -- The actual subtype of the object is the nominal subtype, unless
2615 -- the nominal one is unconstrained and obtained from the expression.
2617 Act_T := T;
2619 -- Process initialization expression if present and not in error
2621 if Present (E) and then E /= Error then
2623 -- Generate an error in case of CPP class-wide object initialization.
2624 -- Required because otherwise the expansion of the class-wide
2625 -- assignment would try to use 'size to initialize the object
2626 -- (primitive that is not available in CPP tagged types).
2628 if Is_Class_Wide_Type (Act_T)
2629 and then
2630 (Is_CPP_Class (Root_Type (Etype (Act_T)))
2631 or else
2632 (Present (Full_View (Root_Type (Etype (Act_T))))
2633 and then
2634 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
2635 then
2636 Error_Msg_N
2637 ("predefined assignment not available for 'C'P'P tagged types",
2639 end if;
2641 Mark_Coextensions (N, E);
2642 Analyze (E);
2644 -- In case of errors detected in the analysis of the expression,
2645 -- decorate it with the expected type to avoid cascaded errors
2647 if No (Etype (E)) then
2648 Set_Etype (E, T);
2649 end if;
2651 -- If an initialization expression is present, then we set the
2652 -- Is_True_Constant flag. It will be reset if this is a variable
2653 -- and it is indeed modified.
2655 Set_Is_True_Constant (Id, True);
2657 -- If we are analyzing a constant declaration, set its completion
2658 -- flag after analyzing and resolving the expression.
2660 if Constant_Present (N) then
2661 Set_Has_Completion (Id);
2662 end if;
2664 -- Set type and resolve (type may be overridden later on)
2666 Set_Etype (Id, T);
2667 Resolve (E, T);
2669 -- If E is null and has been replaced by an N_Raise_Constraint_Error
2670 -- node (which was marked already-analyzed), we need to set the type
2671 -- to something other than Any_Access in order to keep gigi happy.
2673 if Etype (E) = Any_Access then
2674 Set_Etype (E, T);
2675 end if;
2677 -- If the object is an access to variable, the initialization
2678 -- expression cannot be an access to constant.
2680 if Is_Access_Type (T)
2681 and then not Is_Access_Constant (T)
2682 and then Is_Access_Type (Etype (E))
2683 and then Is_Access_Constant (Etype (E))
2684 then
2685 Error_Msg_N
2686 ("access to variable cannot be initialized "
2687 & "with an access-to-constant expression", E);
2688 end if;
2690 if not Assignment_OK (N) then
2691 Check_Initialization (T, E);
2692 end if;
2694 Check_Unset_Reference (E);
2696 -- If this is a variable, then set current value. If this is a
2697 -- declared constant of a scalar type with a static expression,
2698 -- indicate that it is always valid.
2700 if not Constant_Present (N) then
2701 if Compile_Time_Known_Value (E) then
2702 Set_Current_Value (Id, E);
2703 end if;
2705 elsif Is_Scalar_Type (T)
2706 and then Is_OK_Static_Expression (E)
2707 then
2708 Set_Is_Known_Valid (Id);
2709 end if;
2711 -- Deal with setting of null flags
2713 if Is_Access_Type (T) then
2714 if Known_Non_Null (E) then
2715 Set_Is_Known_Non_Null (Id, True);
2716 elsif Known_Null (E)
2717 and then not Can_Never_Be_Null (Id)
2718 then
2719 Set_Is_Known_Null (Id, True);
2720 end if;
2721 end if;
2723 -- Check incorrect use of dynamically tagged expressions.
2725 if Is_Tagged_Type (T) then
2726 Check_Dynamically_Tagged_Expression
2727 (Expr => E,
2728 Typ => T,
2729 Related_Nod => N);
2730 end if;
2732 Apply_Scalar_Range_Check (E, T);
2733 Apply_Static_Length_Check (E, T);
2734 end if;
2736 -- If the No_Streams restriction is set, check that the type of the
2737 -- object is not, and does not contain, any subtype derived from
2738 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
2739 -- Has_Stream just for efficiency reasons. There is no point in
2740 -- spending time on a Has_Stream check if the restriction is not set.
2742 if Restrictions.Set (No_Streams) then
2743 if Has_Stream (T) then
2744 Check_Restriction (No_Streams, N);
2745 end if;
2746 end if;
2748 -- Case of unconstrained type
2750 if Is_Indefinite_Subtype (T) then
2752 -- Nothing to do in deferred constant case
2754 if Constant_Present (N) and then No (E) then
2755 null;
2757 -- Case of no initialization present
2759 elsif No (E) then
2760 if No_Initialization (N) then
2761 null;
2763 elsif Is_Class_Wide_Type (T) then
2764 Error_Msg_N
2765 ("initialization required in class-wide declaration ", N);
2767 else
2768 Error_Msg_N
2769 ("unconstrained subtype not allowed (need initialization)",
2770 Object_Definition (N));
2772 if Is_Record_Type (T) and then Has_Discriminants (T) then
2773 Error_Msg_N
2774 ("\provide initial value or explicit discriminant values",
2775 Object_Definition (N));
2777 Error_Msg_NE
2778 ("\or give default discriminant values for type&",
2779 Object_Definition (N), T);
2781 elsif Is_Array_Type (T) then
2782 Error_Msg_N
2783 ("\provide initial value or explicit array bounds",
2784 Object_Definition (N));
2785 end if;
2786 end if;
2788 -- Case of initialization present but in error. Set initial
2789 -- expression as absent (but do not make above complaints)
2791 elsif E = Error then
2792 Set_Expression (N, Empty);
2793 E := Empty;
2795 -- Case of initialization present
2797 else
2798 -- Not allowed in Ada 83
2800 if not Constant_Present (N) then
2801 if Ada_Version = Ada_83
2802 and then Comes_From_Source (Object_Definition (N))
2803 then
2804 Error_Msg_N
2805 ("(Ada 83) unconstrained variable not allowed",
2806 Object_Definition (N));
2807 end if;
2808 end if;
2810 -- Now we constrain the variable from the initializing expression
2812 -- If the expression is an aggregate, it has been expanded into
2813 -- individual assignments. Retrieve the actual type from the
2814 -- expanded construct.
2816 if Is_Array_Type (T)
2817 and then No_Initialization (N)
2818 and then Nkind (Original_Node (E)) = N_Aggregate
2819 then
2820 Act_T := Etype (E);
2822 -- In case of class-wide interface object declarations we delay
2823 -- the generation of the equivalent record type declarations until
2824 -- its expansion because there are cases in they are not required.
2826 elsif Is_Interface (T) then
2827 null;
2829 else
2830 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
2831 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
2832 end if;
2834 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
2836 if Aliased_Present (N) then
2837 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
2838 end if;
2840 Freeze_Before (N, Act_T);
2841 Freeze_Before (N, T);
2842 end if;
2844 elsif Is_Array_Type (T)
2845 and then No_Initialization (N)
2846 and then Nkind (Original_Node (E)) = N_Aggregate
2847 then
2848 if not Is_Entity_Name (Object_Definition (N)) then
2849 Act_T := Etype (E);
2850 Check_Compile_Time_Size (Act_T);
2852 if Aliased_Present (N) then
2853 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
2854 end if;
2855 end if;
2857 -- When the given object definition and the aggregate are specified
2858 -- independently, and their lengths might differ do a length check.
2859 -- This cannot happen if the aggregate is of the form (others =>...)
2861 if not Is_Constrained (T) then
2862 null;
2864 elsif Nkind (E) = N_Raise_Constraint_Error then
2866 -- Aggregate is statically illegal. Place back in declaration
2868 Set_Expression (N, E);
2869 Set_No_Initialization (N, False);
2871 elsif T = Etype (E) then
2872 null;
2874 elsif Nkind (E) = N_Aggregate
2875 and then Present (Component_Associations (E))
2876 and then Present (Choices (First (Component_Associations (E))))
2877 and then Nkind (First
2878 (Choices (First (Component_Associations (E))))) = N_Others_Choice
2879 then
2880 null;
2882 else
2883 Apply_Length_Check (E, T);
2884 end if;
2886 -- If the type is limited unconstrained with defaulted discriminants
2887 -- and there is no expression, then the object is constrained by the
2888 -- defaults, so it is worthwhile building the corresponding subtype.
2890 elsif (Is_Limited_Record (T)
2891 or else Is_Concurrent_Type (T))
2892 and then not Is_Constrained (T)
2893 and then Has_Discriminants (T)
2894 then
2895 if No (E) then
2896 Act_T := Build_Default_Subtype (T, N);
2897 else
2898 -- Ada 2005: a limited object may be initialized by means of an
2899 -- aggregate. If the type has default discriminants it has an
2900 -- unconstrained nominal type, Its actual subtype will be obtained
2901 -- from the aggregate, and not from the default discriminants.
2903 Act_T := Etype (E);
2904 end if;
2906 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
2908 elsif Present (Underlying_Type (T))
2909 and then not Is_Constrained (Underlying_Type (T))
2910 and then Has_Discriminants (Underlying_Type (T))
2911 and then Nkind (E) = N_Function_Call
2912 and then Constant_Present (N)
2913 then
2914 -- The back-end has problems with constants of a discriminated type
2915 -- with defaults, if the initial value is a function call. We
2916 -- generate an intermediate temporary for the result of the call.
2917 -- It is unclear why this should make it acceptable to gcc. ???
2919 Remove_Side_Effects (E);
2920 end if;
2922 -- Check No_Wide_Characters restriction
2924 if T = Standard_Wide_Character
2925 or else T = Standard_Wide_Wide_Character
2926 or else Root_Type (T) = Standard_Wide_String
2927 or else Root_Type (T) = Standard_Wide_Wide_String
2928 then
2929 Check_Restriction (No_Wide_Characters, Object_Definition (N));
2930 end if;
2932 -- Indicate this is not set in source. Certainly true for constants,
2933 -- and true for variables so far (will be reset for a variable if and
2934 -- when we encounter a modification in the source).
2936 Set_Never_Set_In_Source (Id, True);
2938 -- Now establish the proper kind and type of the object
2940 if Constant_Present (N) then
2941 Set_Ekind (Id, E_Constant);
2942 Set_Is_True_Constant (Id, True);
2944 else
2945 Set_Ekind (Id, E_Variable);
2947 -- A variable is set as shared passive if it appears in a shared
2948 -- passive package, and is at the outer level. This is not done
2949 -- for entities generated during expansion, because those are
2950 -- always manipulated locally.
2952 if Is_Shared_Passive (Current_Scope)
2953 and then Is_Library_Level_Entity (Id)
2954 and then Comes_From_Source (Id)
2955 then
2956 Set_Is_Shared_Passive (Id);
2957 Check_Shared_Var (Id, T, N);
2958 end if;
2960 -- Set Has_Initial_Value if initializing expression present. Note
2961 -- that if there is no initializing expression, we leave the state
2962 -- of this flag unchanged (usually it will be False, but notably in
2963 -- the case of exception choice variables, it will already be true).
2965 if Present (E) then
2966 Set_Has_Initial_Value (Id, True);
2967 end if;
2968 end if;
2970 -- Initialize alignment and size and capture alignment setting
2972 Init_Alignment (Id);
2973 Init_Esize (Id);
2974 Set_Optimize_Alignment_Flags (Id);
2976 -- Deal with aliased case
2978 if Aliased_Present (N) then
2979 Set_Is_Aliased (Id);
2981 -- If the object is aliased and the type is unconstrained with
2982 -- defaulted discriminants and there is no expression, then the
2983 -- object is constrained by the defaults, so it is worthwhile
2984 -- building the corresponding subtype.
2986 -- Ada 2005 (AI-363): If the aliased object is discriminated and
2987 -- unconstrained, then only establish an actual subtype if the
2988 -- nominal subtype is indefinite. In definite cases the object is
2989 -- unconstrained in Ada 2005.
2991 if No (E)
2992 and then Is_Record_Type (T)
2993 and then not Is_Constrained (T)
2994 and then Has_Discriminants (T)
2995 and then (Ada_Version < Ada_05 or else Is_Indefinite_Subtype (T))
2996 then
2997 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
2998 end if;
2999 end if;
3001 -- Now we can set the type of the object
3003 Set_Etype (Id, Act_T);
3005 -- Deal with controlled types
3007 if Has_Controlled_Component (Etype (Id))
3008 or else Is_Controlled (Etype (Id))
3009 then
3010 if not Is_Library_Level_Entity (Id) then
3011 Check_Restriction (No_Nested_Finalization, N);
3012 else
3013 Validate_Controlled_Object (Id);
3014 end if;
3016 -- Generate a warning when an initialization causes an obvious ABE
3017 -- violation. If the init expression is a simple aggregate there
3018 -- shouldn't be any initialize/adjust call generated. This will be
3019 -- true as soon as aggregates are built in place when possible.
3021 -- ??? at the moment we do not generate warnings for temporaries
3022 -- created for those aggregates although Program_Error might be
3023 -- generated if compiled with -gnato.
3025 if Is_Controlled (Etype (Id))
3026 and then Comes_From_Source (Id)
3027 then
3028 declare
3029 BT : constant Entity_Id := Base_Type (Etype (Id));
3031 Implicit_Call : Entity_Id;
3032 pragma Warnings (Off, Implicit_Call);
3033 -- ??? what is this for (never referenced!)
3035 function Is_Aggr (N : Node_Id) return Boolean;
3036 -- Check that N is an aggregate
3038 -------------
3039 -- Is_Aggr --
3040 -------------
3042 function Is_Aggr (N : Node_Id) return Boolean is
3043 begin
3044 case Nkind (Original_Node (N)) is
3045 when N_Aggregate | N_Extension_Aggregate =>
3046 return True;
3048 when N_Qualified_Expression |
3049 N_Type_Conversion |
3050 N_Unchecked_Type_Conversion =>
3051 return Is_Aggr (Expression (Original_Node (N)));
3053 when others =>
3054 return False;
3055 end case;
3056 end Is_Aggr;
3058 begin
3059 -- If no underlying type, we already are in an error situation.
3060 -- Do not try to add a warning since we do not have access to
3061 -- prim-op list.
3063 if No (Underlying_Type (BT)) then
3064 Implicit_Call := Empty;
3066 -- A generic type does not have usable primitive operators.
3067 -- Initialization calls are built for instances.
3069 elsif Is_Generic_Type (BT) then
3070 Implicit_Call := Empty;
3072 -- If the init expression is not an aggregate, an adjust call
3073 -- will be generated
3075 elsif Present (E) and then not Is_Aggr (E) then
3076 Implicit_Call := Find_Prim_Op (BT, Name_Adjust);
3078 -- If no init expression and we are not in the deferred
3079 -- constant case, an Initialize call will be generated
3081 elsif No (E) and then not Constant_Present (N) then
3082 Implicit_Call := Find_Prim_Op (BT, Name_Initialize);
3084 else
3085 Implicit_Call := Empty;
3086 end if;
3087 end;
3088 end if;
3089 end if;
3091 if Has_Task (Etype (Id)) then
3092 Check_Restriction (No_Tasking, N);
3094 -- Deal with counting max tasks
3096 -- Nothing to do if inside a generic
3098 if Inside_A_Generic then
3099 null;
3101 -- If library level entity, then count tasks
3103 elsif Is_Library_Level_Entity (Id) then
3104 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
3106 -- If not library level entity, then indicate we don't know max
3107 -- tasks and also check task hierarchy restriction and blocking
3108 -- operation (since starting a task is definitely blocking!)
3110 else
3111 Check_Restriction (Max_Tasks, N);
3112 Check_Restriction (No_Task_Hierarchy, N);
3113 Check_Potentially_Blocking_Operation (N);
3114 end if;
3116 -- A rather specialized test. If we see two tasks being declared
3117 -- of the same type in the same object declaration, and the task
3118 -- has an entry with an address clause, we know that program error
3119 -- will be raised at run-time since we can't have two tasks with
3120 -- entries at the same address.
3122 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
3123 declare
3124 E : Entity_Id;
3126 begin
3127 E := First_Entity (Etype (Id));
3128 while Present (E) loop
3129 if Ekind (E) = E_Entry
3130 and then Present (Get_Attribute_Definition_Clause
3131 (E, Attribute_Address))
3132 then
3133 Error_Msg_N
3134 ("?more than one task with same entry address", N);
3135 Error_Msg_N
3136 ("\?Program_Error will be raised at run time", N);
3137 Insert_Action (N,
3138 Make_Raise_Program_Error (Loc,
3139 Reason => PE_Duplicated_Entry_Address));
3140 exit;
3141 end if;
3143 Next_Entity (E);
3144 end loop;
3145 end;
3146 end if;
3147 end if;
3149 -- Some simple constant-propagation: if the expression is a constant
3150 -- string initialized with a literal, share the literal. This avoids
3151 -- a run-time copy.
3153 if Present (E)
3154 and then Is_Entity_Name (E)
3155 and then Ekind (Entity (E)) = E_Constant
3156 and then Base_Type (Etype (E)) = Standard_String
3157 then
3158 declare
3159 Val : constant Node_Id := Constant_Value (Entity (E));
3160 begin
3161 if Present (Val)
3162 and then Nkind (Val) = N_String_Literal
3163 then
3164 Rewrite (E, New_Copy (Val));
3165 end if;
3166 end;
3167 end if;
3169 -- Another optimization: if the nominal subtype is unconstrained and
3170 -- the expression is a function call that returns an unconstrained
3171 -- type, rewrite the declaration as a renaming of the result of the
3172 -- call. The exceptions below are cases where the copy is expected,
3173 -- either by the back end (Aliased case) or by the semantics, as for
3174 -- initializing controlled types or copying tags for classwide types.
3176 if Present (E)
3177 and then Nkind (E) = N_Explicit_Dereference
3178 and then Nkind (Original_Node (E)) = N_Function_Call
3179 and then not Is_Library_Level_Entity (Id)
3180 and then not Is_Constrained (Underlying_Type (T))
3181 and then not Is_Aliased (Id)
3182 and then not Is_Class_Wide_Type (T)
3183 and then not Is_Controlled (T)
3184 and then not Has_Controlled_Component (Base_Type (T))
3185 and then Expander_Active
3186 then
3187 Rewrite (N,
3188 Make_Object_Renaming_Declaration (Loc,
3189 Defining_Identifier => Id,
3190 Access_Definition => Empty,
3191 Subtype_Mark => New_Occurrence_Of
3192 (Base_Type (Etype (Id)), Loc),
3193 Name => E));
3195 Set_Renamed_Object (Id, E);
3197 -- Force generation of debugging information for the constant and for
3198 -- the renamed function call.
3200 Set_Debug_Info_Needed (Id);
3201 Set_Debug_Info_Needed (Entity (Prefix (E)));
3202 end if;
3204 if Present (Prev_Entity)
3205 and then Is_Frozen (Prev_Entity)
3206 and then not Error_Posted (Id)
3207 then
3208 Error_Msg_N ("full constant declaration appears too late", N);
3209 end if;
3211 Check_Eliminated (Id);
3213 -- Deal with setting In_Private_Part flag if in private part
3215 if Ekind (Scope (Id)) = E_Package
3216 and then In_Private_Part (Scope (Id))
3217 then
3218 Set_In_Private_Part (Id);
3219 end if;
3221 -- Check for violation of No_Local_Timing_Events
3223 if Is_RTE (Etype (Id), RE_Timing_Event)
3224 and then not Is_Library_Level_Entity (Id)
3225 then
3226 Check_Restriction (No_Local_Timing_Events, N);
3227 end if;
3228 end Analyze_Object_Declaration;
3230 ---------------------------
3231 -- Analyze_Others_Choice --
3232 ---------------------------
3234 -- Nothing to do for the others choice node itself, the semantic analysis
3235 -- of the others choice will occur as part of the processing of the parent
3237 procedure Analyze_Others_Choice (N : Node_Id) is
3238 pragma Warnings (Off, N);
3239 begin
3240 null;
3241 end Analyze_Others_Choice;
3243 -------------------------------------------
3244 -- Analyze_Private_Extension_Declaration --
3245 -------------------------------------------
3247 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
3248 T : constant Entity_Id := Defining_Identifier (N);
3249 Indic : constant Node_Id := Subtype_Indication (N);
3250 Parent_Type : Entity_Id;
3251 Parent_Base : Entity_Id;
3253 begin
3254 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
3256 if Is_Non_Empty_List (Interface_List (N)) then
3257 declare
3258 Intf : Node_Id;
3259 T : Entity_Id;
3261 begin
3262 Intf := First (Interface_List (N));
3263 while Present (Intf) loop
3264 T := Find_Type_Of_Subtype_Indic (Intf);
3266 Diagnose_Interface (Intf, T);
3267 Next (Intf);
3268 end loop;
3269 end;
3270 end if;
3272 Generate_Definition (T);
3273 Enter_Name (T);
3275 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
3276 Parent_Base := Base_Type (Parent_Type);
3278 if Parent_Type = Any_Type
3279 or else Etype (Parent_Type) = Any_Type
3280 then
3281 Set_Ekind (T, Ekind (Parent_Type));
3282 Set_Etype (T, Any_Type);
3283 return;
3285 elsif not Is_Tagged_Type (Parent_Type) then
3286 Error_Msg_N
3287 ("parent of type extension must be a tagged type ", Indic);
3288 return;
3290 elsif Ekind (Parent_Type) = E_Void
3291 or else Ekind (Parent_Type) = E_Incomplete_Type
3292 then
3293 Error_Msg_N ("premature derivation of incomplete type", Indic);
3294 return;
3296 elsif Is_Concurrent_Type (Parent_Type) then
3297 Error_Msg_N
3298 ("parent type of a private extension cannot be "
3299 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
3301 Set_Etype (T, Any_Type);
3302 Set_Ekind (T, E_Limited_Private_Type);
3303 Set_Private_Dependents (T, New_Elmt_List);
3304 Set_Error_Posted (T);
3305 return;
3306 end if;
3308 -- Perhaps the parent type should be changed to the class-wide type's
3309 -- specific type in this case to prevent cascading errors ???
3311 if Is_Class_Wide_Type (Parent_Type) then
3312 Error_Msg_N
3313 ("parent of type extension must not be a class-wide type", Indic);
3314 return;
3315 end if;
3317 if (not Is_Package_Or_Generic_Package (Current_Scope)
3318 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
3319 or else In_Private_Part (Current_Scope)
3321 then
3322 Error_Msg_N ("invalid context for private extension", N);
3323 end if;
3325 -- Set common attributes
3327 Set_Is_Pure (T, Is_Pure (Current_Scope));
3328 Set_Scope (T, Current_Scope);
3329 Set_Ekind (T, E_Record_Type_With_Private);
3330 Init_Size_Align (T);
3332 Set_Etype (T, Parent_Base);
3333 Set_Has_Task (T, Has_Task (Parent_Base));
3335 Set_Convention (T, Convention (Parent_Type));
3336 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
3337 Set_Is_First_Subtype (T);
3338 Make_Class_Wide_Type (T);
3340 if Unknown_Discriminants_Present (N) then
3341 Set_Discriminant_Constraint (T, No_Elist);
3342 end if;
3344 Build_Derived_Record_Type (N, Parent_Type, T);
3346 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
3347 -- synchronized formal derived type.
3349 if Ada_Version >= Ada_05
3350 and then Synchronized_Present (N)
3351 then
3352 Set_Is_Limited_Record (T);
3354 -- Formal derived type case
3356 if Is_Generic_Type (T) then
3358 -- The parent must be a tagged limited type or a synchronized
3359 -- interface.
3361 if (not Is_Tagged_Type (Parent_Type)
3362 or else not Is_Limited_Type (Parent_Type))
3363 and then
3364 (not Is_Interface (Parent_Type)
3365 or else not Is_Synchronized_Interface (Parent_Type))
3366 then
3367 Error_Msg_NE ("parent type of & must be tagged limited " &
3368 "or synchronized", N, T);
3369 end if;
3371 -- The progenitors (if any) must be limited or synchronized
3372 -- interfaces.
3374 if Present (Interfaces (T)) then
3375 declare
3376 Iface : Entity_Id;
3377 Iface_Elmt : Elmt_Id;
3379 begin
3380 Iface_Elmt := First_Elmt (Interfaces (T));
3381 while Present (Iface_Elmt) loop
3382 Iface := Node (Iface_Elmt);
3384 if not Is_Limited_Interface (Iface)
3385 and then not Is_Synchronized_Interface (Iface)
3386 then
3387 Error_Msg_NE ("progenitor & must be limited " &
3388 "or synchronized", N, Iface);
3389 end if;
3391 Next_Elmt (Iface_Elmt);
3392 end loop;
3393 end;
3394 end if;
3396 -- Regular derived extension, the parent must be a limited or
3397 -- synchronized interface.
3399 else
3400 if not Is_Interface (Parent_Type)
3401 or else (not Is_Limited_Interface (Parent_Type)
3402 and then
3403 not Is_Synchronized_Interface (Parent_Type))
3404 then
3405 Error_Msg_NE
3406 ("parent type of & must be limited interface", N, T);
3407 end if;
3408 end if;
3410 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
3411 -- extension with a synchronized parent must be explicitly declared
3412 -- synchronized, because the full view will be a synchronized type.
3413 -- This must be checked before the check for limited types below,
3414 -- to ensure that types declared limited are not allowed to extend
3415 -- synchronized interfaces.
3417 elsif Is_Interface (Parent_Type)
3418 and then Is_Synchronized_Interface (Parent_Type)
3419 and then not Synchronized_Present (N)
3420 then
3421 Error_Msg_NE
3422 ("private extension of& must be explicitly synchronized",
3423 N, Parent_Type);
3425 elsif Limited_Present (N) then
3426 Set_Is_Limited_Record (T);
3428 if not Is_Limited_Type (Parent_Type)
3429 and then
3430 (not Is_Interface (Parent_Type)
3431 or else not Is_Limited_Interface (Parent_Type))
3432 then
3433 Error_Msg_NE ("parent type& of limited extension must be limited",
3434 N, Parent_Type);
3435 end if;
3436 end if;
3437 end Analyze_Private_Extension_Declaration;
3439 ---------------------------------
3440 -- Analyze_Subtype_Declaration --
3441 ---------------------------------
3443 procedure Analyze_Subtype_Declaration
3444 (N : Node_Id;
3445 Skip : Boolean := False)
3447 Id : constant Entity_Id := Defining_Identifier (N);
3448 T : Entity_Id;
3449 R_Checks : Check_Result;
3451 begin
3452 Generate_Definition (Id);
3453 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3454 Init_Size_Align (Id);
3456 -- The following guard condition on Enter_Name is to handle cases where
3457 -- the defining identifier has already been entered into the scope but
3458 -- the declaration as a whole needs to be analyzed.
3460 -- This case in particular happens for derived enumeration types. The
3461 -- derived enumeration type is processed as an inserted enumeration type
3462 -- declaration followed by a rewritten subtype declaration. The defining
3463 -- identifier, however, is entered into the name scope very early in the
3464 -- processing of the original type declaration and therefore needs to be
3465 -- avoided here, when the created subtype declaration is analyzed. (See
3466 -- Build_Derived_Types)
3468 -- This also happens when the full view of a private type is derived
3469 -- type with constraints. In this case the entity has been introduced
3470 -- in the private declaration.
3472 if Skip
3473 or else (Present (Etype (Id))
3474 and then (Is_Private_Type (Etype (Id))
3475 or else Is_Task_Type (Etype (Id))
3476 or else Is_Rewrite_Substitution (N)))
3477 then
3478 null;
3480 else
3481 Enter_Name (Id);
3482 end if;
3484 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
3486 -- Inherit common attributes
3488 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
3489 Set_Is_Volatile (Id, Is_Volatile (T));
3490 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
3491 Set_Is_Atomic (Id, Is_Atomic (T));
3492 Set_Is_Ada_2005_Only (Id, Is_Ada_2005_Only (T));
3493 Set_Convention (Id, Convention (T));
3495 -- In the case where there is no constraint given in the subtype
3496 -- indication, Process_Subtype just returns the Subtype_Mark, so its
3497 -- semantic attributes must be established here.
3499 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
3500 Set_Etype (Id, Base_Type (T));
3502 case Ekind (T) is
3503 when Array_Kind =>
3504 Set_Ekind (Id, E_Array_Subtype);
3505 Copy_Array_Subtype_Attributes (Id, T);
3507 when Decimal_Fixed_Point_Kind =>
3508 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
3509 Set_Digits_Value (Id, Digits_Value (T));
3510 Set_Delta_Value (Id, Delta_Value (T));
3511 Set_Scale_Value (Id, Scale_Value (T));
3512 Set_Small_Value (Id, Small_Value (T));
3513 Set_Scalar_Range (Id, Scalar_Range (T));
3514 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
3515 Set_Is_Constrained (Id, Is_Constrained (T));
3516 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
3517 Set_RM_Size (Id, RM_Size (T));
3519 when Enumeration_Kind =>
3520 Set_Ekind (Id, E_Enumeration_Subtype);
3521 Set_First_Literal (Id, First_Literal (Base_Type (T)));
3522 Set_Scalar_Range (Id, Scalar_Range (T));
3523 Set_Is_Character_Type (Id, Is_Character_Type (T));
3524 Set_Is_Constrained (Id, Is_Constrained (T));
3525 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
3526 Set_RM_Size (Id, RM_Size (T));
3528 when Ordinary_Fixed_Point_Kind =>
3529 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
3530 Set_Scalar_Range (Id, Scalar_Range (T));
3531 Set_Small_Value (Id, Small_Value (T));
3532 Set_Delta_Value (Id, Delta_Value (T));
3533 Set_Is_Constrained (Id, Is_Constrained (T));
3534 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
3535 Set_RM_Size (Id, RM_Size (T));
3537 when Float_Kind =>
3538 Set_Ekind (Id, E_Floating_Point_Subtype);
3539 Set_Scalar_Range (Id, Scalar_Range (T));
3540 Set_Digits_Value (Id, Digits_Value (T));
3541 Set_Is_Constrained (Id, Is_Constrained (T));
3543 when Signed_Integer_Kind =>
3544 Set_Ekind (Id, E_Signed_Integer_Subtype);
3545 Set_Scalar_Range (Id, Scalar_Range (T));
3546 Set_Is_Constrained (Id, Is_Constrained (T));
3547 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
3548 Set_RM_Size (Id, RM_Size (T));
3550 when Modular_Integer_Kind =>
3551 Set_Ekind (Id, E_Modular_Integer_Subtype);
3552 Set_Scalar_Range (Id, Scalar_Range (T));
3553 Set_Is_Constrained (Id, Is_Constrained (T));
3554 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
3555 Set_RM_Size (Id, RM_Size (T));
3557 when Class_Wide_Kind =>
3558 Set_Ekind (Id, E_Class_Wide_Subtype);
3559 Set_First_Entity (Id, First_Entity (T));
3560 Set_Last_Entity (Id, Last_Entity (T));
3561 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
3562 Set_Cloned_Subtype (Id, T);
3563 Set_Is_Tagged_Type (Id, True);
3564 Set_Has_Unknown_Discriminants
3565 (Id, True);
3567 if Ekind (T) = E_Class_Wide_Subtype then
3568 Set_Equivalent_Type (Id, Equivalent_Type (T));
3569 end if;
3571 when E_Record_Type | E_Record_Subtype =>
3572 Set_Ekind (Id, E_Record_Subtype);
3574 if Ekind (T) = E_Record_Subtype
3575 and then Present (Cloned_Subtype (T))
3576 then
3577 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
3578 else
3579 Set_Cloned_Subtype (Id, T);
3580 end if;
3582 Set_First_Entity (Id, First_Entity (T));
3583 Set_Last_Entity (Id, Last_Entity (T));
3584 Set_Has_Discriminants (Id, Has_Discriminants (T));
3585 Set_Is_Constrained (Id, Is_Constrained (T));
3586 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
3587 Set_Has_Unknown_Discriminants
3588 (Id, Has_Unknown_Discriminants (T));
3590 if Has_Discriminants (T) then
3591 Set_Discriminant_Constraint
3592 (Id, Discriminant_Constraint (T));
3593 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
3595 elsif Has_Unknown_Discriminants (Id) then
3596 Set_Discriminant_Constraint (Id, No_Elist);
3597 end if;
3599 if Is_Tagged_Type (T) then
3600 Set_Is_Tagged_Type (Id);
3601 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
3602 Set_Primitive_Operations
3603 (Id, Primitive_Operations (T));
3604 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
3606 if Is_Interface (T) then
3607 Set_Is_Interface (Id);
3608 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
3609 end if;
3610 end if;
3612 when Private_Kind =>
3613 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
3614 Set_Has_Discriminants (Id, Has_Discriminants (T));
3615 Set_Is_Constrained (Id, Is_Constrained (T));
3616 Set_First_Entity (Id, First_Entity (T));
3617 Set_Last_Entity (Id, Last_Entity (T));
3618 Set_Private_Dependents (Id, New_Elmt_List);
3619 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
3620 Set_Has_Unknown_Discriminants
3621 (Id, Has_Unknown_Discriminants (T));
3622 Set_Known_To_Have_Preelab_Init
3623 (Id, Known_To_Have_Preelab_Init (T));
3625 if Is_Tagged_Type (T) then
3626 Set_Is_Tagged_Type (Id);
3627 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
3628 Set_Primitive_Operations (Id, Primitive_Operations (T));
3629 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
3630 end if;
3632 -- In general the attributes of the subtype of a private type
3633 -- are the attributes of the partial view of parent. However,
3634 -- the full view may be a discriminated type, and the subtype
3635 -- must share the discriminant constraint to generate correct
3636 -- calls to initialization procedures.
3638 if Has_Discriminants (T) then
3639 Set_Discriminant_Constraint
3640 (Id, Discriminant_Constraint (T));
3641 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
3643 elsif Present (Full_View (T))
3644 and then Has_Discriminants (Full_View (T))
3645 then
3646 Set_Discriminant_Constraint
3647 (Id, Discriminant_Constraint (Full_View (T)));
3648 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
3650 -- This would seem semantically correct, but apparently
3651 -- confuses the back-end. To be explained and checked with
3652 -- current version ???
3654 -- Set_Has_Discriminants (Id);
3655 end if;
3657 Prepare_Private_Subtype_Completion (Id, N);
3659 when Access_Kind =>
3660 Set_Ekind (Id, E_Access_Subtype);
3661 Set_Is_Constrained (Id, Is_Constrained (T));
3662 Set_Is_Access_Constant
3663 (Id, Is_Access_Constant (T));
3664 Set_Directly_Designated_Type
3665 (Id, Designated_Type (T));
3666 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
3668 -- A Pure library_item must not contain the declaration of a
3669 -- named access type, except within a subprogram, generic
3670 -- subprogram, task unit, or protected unit, or if it has
3671 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
3673 if Comes_From_Source (Id)
3674 and then In_Pure_Unit
3675 and then not In_Subprogram_Task_Protected_Unit
3676 and then not No_Pool_Assigned (Id)
3677 then
3678 Error_Msg_N
3679 ("named access types not allowed in pure unit", N);
3680 end if;
3682 when Concurrent_Kind =>
3683 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
3684 Set_Corresponding_Record_Type (Id,
3685 Corresponding_Record_Type (T));
3686 Set_First_Entity (Id, First_Entity (T));
3687 Set_First_Private_Entity (Id, First_Private_Entity (T));
3688 Set_Has_Discriminants (Id, Has_Discriminants (T));
3689 Set_Is_Constrained (Id, Is_Constrained (T));
3690 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
3691 Set_Last_Entity (Id, Last_Entity (T));
3693 if Has_Discriminants (T) then
3694 Set_Discriminant_Constraint (Id,
3695 Discriminant_Constraint (T));
3696 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
3697 end if;
3699 when E_Incomplete_Type =>
3700 if Ada_Version >= Ada_05 then
3701 Set_Ekind (Id, E_Incomplete_Subtype);
3703 -- Ada 2005 (AI-412): Decorate an incomplete subtype
3704 -- of an incomplete type visible through a limited
3705 -- with clause.
3707 if From_With_Type (T)
3708 and then Present (Non_Limited_View (T))
3709 then
3710 Set_From_With_Type (Id);
3711 Set_Non_Limited_View (Id, Non_Limited_View (T));
3713 -- Ada 2005 (AI-412): Add the regular incomplete subtype
3714 -- to the private dependents of the original incomplete
3715 -- type for future transformation.
3717 else
3718 Append_Elmt (Id, Private_Dependents (T));
3719 end if;
3721 -- If the subtype name denotes an incomplete type an error
3722 -- was already reported by Process_Subtype.
3724 else
3725 Set_Etype (Id, Any_Type);
3726 end if;
3728 when others =>
3729 raise Program_Error;
3730 end case;
3731 end if;
3733 if Etype (Id) = Any_Type then
3734 return;
3735 end if;
3737 -- Some common processing on all types
3739 Set_Size_Info (Id, T);
3740 Set_First_Rep_Item (Id, First_Rep_Item (T));
3742 T := Etype (Id);
3744 Set_Is_Immediately_Visible (Id, True);
3745 Set_Depends_On_Private (Id, Has_Private_Component (T));
3746 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
3748 if Is_Interface (T) then
3749 Set_Is_Interface (Id);
3750 end if;
3752 if Present (Generic_Parent_Type (N))
3753 and then
3754 (Nkind
3755 (Parent (Generic_Parent_Type (N))) /= N_Formal_Type_Declaration
3756 or else Nkind
3757 (Formal_Type_Definition (Parent (Generic_Parent_Type (N))))
3758 /= N_Formal_Private_Type_Definition)
3759 then
3760 if Is_Tagged_Type (Id) then
3762 -- If this is a generic actual subtype for a synchronized type,
3763 -- the primitive operations are those of the corresponding record
3764 -- for which there is a separate subtype declaration.
3766 if Is_Concurrent_Type (Id) then
3767 null;
3768 elsif Is_Class_Wide_Type (Id) then
3769 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
3770 else
3771 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
3772 end if;
3774 elsif Scope (Etype (Id)) /= Standard_Standard then
3775 Derive_Subprograms (Generic_Parent_Type (N), Id);
3776 end if;
3777 end if;
3779 if Is_Private_Type (T)
3780 and then Present (Full_View (T))
3781 then
3782 Conditional_Delay (Id, Full_View (T));
3784 -- The subtypes of components or subcomponents of protected types
3785 -- do not need freeze nodes, which would otherwise appear in the
3786 -- wrong scope (before the freeze node for the protected type). The
3787 -- proper subtypes are those of the subcomponents of the corresponding
3788 -- record.
3790 elsif Ekind (Scope (Id)) /= E_Protected_Type
3791 and then Present (Scope (Scope (Id))) -- error defense!
3792 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
3793 then
3794 Conditional_Delay (Id, T);
3795 end if;
3797 -- Check that constraint_error is raised for a scalar subtype
3798 -- indication when the lower or upper bound of a non-null range
3799 -- lies outside the range of the type mark.
3801 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
3802 if Is_Scalar_Type (Etype (Id))
3803 and then Scalar_Range (Id) /=
3804 Scalar_Range (Etype (Subtype_Mark
3805 (Subtype_Indication (N))))
3806 then
3807 Apply_Range_Check
3808 (Scalar_Range (Id),
3809 Etype (Subtype_Mark (Subtype_Indication (N))));
3811 elsif Is_Array_Type (Etype (Id))
3812 and then Present (First_Index (Id))
3813 then
3814 -- This really should be a subprogram that finds the indications
3815 -- to check???
3817 if ((Nkind (First_Index (Id)) = N_Identifier
3818 and then Ekind (Entity (First_Index (Id))) in Scalar_Kind)
3819 or else Nkind (First_Index (Id)) = N_Subtype_Indication)
3820 and then
3821 Nkind (Scalar_Range (Etype (First_Index (Id)))) = N_Range
3822 then
3823 declare
3824 Target_Typ : constant Entity_Id :=
3825 Etype
3826 (First_Index (Etype
3827 (Subtype_Mark (Subtype_Indication (N)))));
3828 begin
3829 R_Checks :=
3830 Get_Range_Checks
3831 (Scalar_Range (Etype (First_Index (Id))),
3832 Target_Typ,
3833 Etype (First_Index (Id)),
3834 Defining_Identifier (N));
3836 Insert_Range_Checks
3837 (R_Checks,
3839 Target_Typ,
3840 Sloc (Defining_Identifier (N)));
3841 end;
3842 end if;
3843 end if;
3844 end if;
3846 Set_Optimize_Alignment_Flags (Id);
3847 Check_Eliminated (Id);
3848 end Analyze_Subtype_Declaration;
3850 --------------------------------
3851 -- Analyze_Subtype_Indication --
3852 --------------------------------
3854 procedure Analyze_Subtype_Indication (N : Node_Id) is
3855 T : constant Entity_Id := Subtype_Mark (N);
3856 R : constant Node_Id := Range_Expression (Constraint (N));
3858 begin
3859 Analyze (T);
3861 if R /= Error then
3862 Analyze (R);
3863 Set_Etype (N, Etype (R));
3864 Resolve (R, Entity (T));
3865 else
3866 Set_Error_Posted (R);
3867 Set_Error_Posted (T);
3868 end if;
3869 end Analyze_Subtype_Indication;
3871 ------------------------------
3872 -- Analyze_Type_Declaration --
3873 ------------------------------
3875 procedure Analyze_Type_Declaration (N : Node_Id) is
3876 Def : constant Node_Id := Type_Definition (N);
3877 Def_Id : constant Entity_Id := Defining_Identifier (N);
3878 T : Entity_Id;
3879 Prev : Entity_Id;
3881 Is_Remote : constant Boolean :=
3882 (Is_Remote_Types (Current_Scope)
3883 or else Is_Remote_Call_Interface (Current_Scope))
3884 and then not (In_Private_Part (Current_Scope)
3885 or else In_Package_Body (Current_Scope));
3887 procedure Check_Ops_From_Incomplete_Type;
3888 -- If there is a tagged incomplete partial view of the type, transfer
3889 -- its operations to the full view, and indicate that the type of the
3890 -- controlling parameter (s) is this full view.
3892 ------------------------------------
3893 -- Check_Ops_From_Incomplete_Type --
3894 ------------------------------------
3896 procedure Check_Ops_From_Incomplete_Type is
3897 Elmt : Elmt_Id;
3898 Formal : Entity_Id;
3899 Op : Entity_Id;
3901 begin
3902 if Prev /= T
3903 and then Ekind (Prev) = E_Incomplete_Type
3904 and then Is_Tagged_Type (Prev)
3905 and then Is_Tagged_Type (T)
3906 then
3907 Elmt := First_Elmt (Primitive_Operations (Prev));
3908 while Present (Elmt) loop
3909 Op := Node (Elmt);
3910 Prepend_Elmt (Op, Primitive_Operations (T));
3912 Formal := First_Formal (Op);
3913 while Present (Formal) loop
3914 if Etype (Formal) = Prev then
3915 Set_Etype (Formal, T);
3916 end if;
3918 Next_Formal (Formal);
3919 end loop;
3921 if Etype (Op) = Prev then
3922 Set_Etype (Op, T);
3923 end if;
3925 Next_Elmt (Elmt);
3926 end loop;
3927 end if;
3928 end Check_Ops_From_Incomplete_Type;
3930 -- Start of processing for Analyze_Type_Declaration
3932 begin
3933 Prev := Find_Type_Name (N);
3935 -- The full view, if present, now points to the current type
3937 -- Ada 2005 (AI-50217): If the type was previously decorated when
3938 -- imported through a LIMITED WITH clause, it appears as incomplete
3939 -- but has no full view.
3940 -- If the incomplete view is tagged, a class_wide type has been
3941 -- created already. Use it for the full view as well, to prevent
3942 -- multiple incompatible class-wide types that may be created for
3943 -- self-referential anonymous access components.
3945 if Ekind (Prev) = E_Incomplete_Type
3946 and then Present (Full_View (Prev))
3947 then
3948 T := Full_View (Prev);
3950 if Is_Tagged_Type (Prev)
3951 and then Present (Class_Wide_Type (Prev))
3952 then
3953 Set_Ekind (T, Ekind (Prev)); -- will be reset later
3954 Set_Class_Wide_Type (T, Class_Wide_Type (Prev));
3955 Set_Etype (Class_Wide_Type (T), T);
3956 end if;
3958 else
3959 T := Prev;
3960 end if;
3962 Set_Is_Pure (T, Is_Pure (Current_Scope));
3964 -- We set the flag Is_First_Subtype here. It is needed to set the
3965 -- corresponding flag for the Implicit class-wide-type created
3966 -- during tagged types processing.
3968 Set_Is_First_Subtype (T, True);
3970 -- Only composite types other than array types are allowed to have
3971 -- discriminants.
3973 case Nkind (Def) is
3975 -- For derived types, the rule will be checked once we've figured
3976 -- out the parent type.
3978 when N_Derived_Type_Definition =>
3979 null;
3981 -- For record types, discriminants are allowed
3983 when N_Record_Definition =>
3984 null;
3986 when others =>
3987 if Present (Discriminant_Specifications (N)) then
3988 Error_Msg_N
3989 ("elementary or array type cannot have discriminants",
3990 Defining_Identifier
3991 (First (Discriminant_Specifications (N))));
3992 end if;
3993 end case;
3995 -- Elaborate the type definition according to kind, and generate
3996 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3997 -- already done (this happens during the reanalysis that follows a call
3998 -- to the high level optimizer).
4000 if not Analyzed (T) then
4001 Set_Analyzed (T);
4003 case Nkind (Def) is
4005 when N_Access_To_Subprogram_Definition =>
4006 Access_Subprogram_Declaration (T, Def);
4008 -- If this is a remote access to subprogram, we must create the
4009 -- equivalent fat pointer type, and related subprograms.
4011 if Is_Remote then
4012 Process_Remote_AST_Declaration (N);
4013 end if;
4015 -- Validate categorization rule against access type declaration
4016 -- usually a violation in Pure unit, Shared_Passive unit.
4018 Validate_Access_Type_Declaration (T, N);
4020 when N_Access_To_Object_Definition =>
4021 Access_Type_Declaration (T, Def);
4023 -- Validate categorization rule against access type declaration
4024 -- usually a violation in Pure unit, Shared_Passive unit.
4026 Validate_Access_Type_Declaration (T, N);
4028 -- If we are in a Remote_Call_Interface package and define a
4029 -- RACW, then calling stubs and specific stream attributes
4030 -- must be added.
4032 if Is_Remote
4033 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
4034 then
4035 Add_RACW_Features (Def_Id);
4036 end if;
4038 -- Set no strict aliasing flag if config pragma seen
4040 if Opt.No_Strict_Aliasing then
4041 Set_No_Strict_Aliasing (Base_Type (Def_Id));
4042 end if;
4044 when N_Array_Type_Definition =>
4045 Array_Type_Declaration (T, Def);
4047 when N_Derived_Type_Definition =>
4048 Derived_Type_Declaration (T, N, T /= Def_Id);
4050 when N_Enumeration_Type_Definition =>
4051 Enumeration_Type_Declaration (T, Def);
4053 when N_Floating_Point_Definition =>
4054 Floating_Point_Type_Declaration (T, Def);
4056 when N_Decimal_Fixed_Point_Definition =>
4057 Decimal_Fixed_Point_Type_Declaration (T, Def);
4059 when N_Ordinary_Fixed_Point_Definition =>
4060 Ordinary_Fixed_Point_Type_Declaration (T, Def);
4062 when N_Signed_Integer_Type_Definition =>
4063 Signed_Integer_Type_Declaration (T, Def);
4065 when N_Modular_Type_Definition =>
4066 Modular_Type_Declaration (T, Def);
4068 when N_Record_Definition =>
4069 Record_Type_Declaration (T, N, Prev);
4071 when others =>
4072 raise Program_Error;
4074 end case;
4075 end if;
4077 if Etype (T) = Any_Type then
4078 return;
4079 end if;
4081 -- Some common processing for all types
4083 Set_Depends_On_Private (T, Has_Private_Component (T));
4084 Check_Ops_From_Incomplete_Type;
4086 -- Both the declared entity, and its anonymous base type if one
4087 -- was created, need freeze nodes allocated.
4089 declare
4090 B : constant Entity_Id := Base_Type (T);
4092 begin
4093 -- In the case where the base type differs from the first subtype, we
4094 -- pre-allocate a freeze node, and set the proper link to the first
4095 -- subtype. Freeze_Entity will use this preallocated freeze node when
4096 -- it freezes the entity.
4098 -- This does not apply if the base type is a generic type, whose
4099 -- declaration is independent of the current derived definition.
4101 if B /= T and then not Is_Generic_Type (B) then
4102 Ensure_Freeze_Node (B);
4103 Set_First_Subtype_Link (Freeze_Node (B), T);
4104 end if;
4106 -- A type that is imported through a limited_with clause cannot
4107 -- generate any code, and thus need not be frozen. However, an access
4108 -- type with an imported designated type needs a finalization list,
4109 -- which may be referenced in some other package that has non-limited
4110 -- visibility on the designated type. Thus we must create the
4111 -- finalization list at the point the access type is frozen, to
4112 -- prevent unsatisfied references at link time.
4114 if not From_With_Type (T) or else Is_Access_Type (T) then
4115 Set_Has_Delayed_Freeze (T);
4116 end if;
4117 end;
4119 -- Case where T is the full declaration of some private type which has
4120 -- been swapped in Defining_Identifier (N).
4122 if T /= Def_Id and then Is_Private_Type (Def_Id) then
4123 Process_Full_View (N, T, Def_Id);
4125 -- Record the reference. The form of this is a little strange, since
4126 -- the full declaration has been swapped in. So the first parameter
4127 -- here represents the entity to which a reference is made which is
4128 -- the "real" entity, i.e. the one swapped in, and the second
4129 -- parameter provides the reference location.
4131 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
4132 -- since we don't want a complaint about the full type being an
4133 -- unwanted reference to the private type
4135 declare
4136 B : constant Boolean := Has_Pragma_Unreferenced (T);
4137 begin
4138 Set_Has_Pragma_Unreferenced (T, False);
4139 Generate_Reference (T, T, 'c');
4140 Set_Has_Pragma_Unreferenced (T, B);
4141 end;
4143 Set_Completion_Referenced (Def_Id);
4145 -- For completion of incomplete type, process incomplete dependents
4146 -- and always mark the full type as referenced (it is the incomplete
4147 -- type that we get for any real reference).
4149 elsif Ekind (Prev) = E_Incomplete_Type then
4150 Process_Incomplete_Dependents (N, T, Prev);
4151 Generate_Reference (Prev, Def_Id, 'c');
4152 Set_Completion_Referenced (Def_Id);
4154 -- If not private type or incomplete type completion, this is a real
4155 -- definition of a new entity, so record it.
4157 else
4158 Generate_Definition (Def_Id);
4159 end if;
4161 if Chars (Scope (Def_Id)) = Name_System
4162 and then Chars (Def_Id) = Name_Address
4163 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
4164 then
4165 Set_Is_Descendent_Of_Address (Def_Id);
4166 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
4167 Set_Is_Descendent_Of_Address (Prev);
4168 end if;
4170 Set_Optimize_Alignment_Flags (Def_Id);
4171 Check_Eliminated (Def_Id);
4172 end Analyze_Type_Declaration;
4174 --------------------------
4175 -- Analyze_Variant_Part --
4176 --------------------------
4178 procedure Analyze_Variant_Part (N : Node_Id) is
4180 procedure Non_Static_Choice_Error (Choice : Node_Id);
4181 -- Error routine invoked by the generic instantiation below when the
4182 -- variant part has a non static choice.
4184 procedure Process_Declarations (Variant : Node_Id);
4185 -- Analyzes all the declarations associated with a Variant. Needed by
4186 -- the generic instantiation below.
4188 package Variant_Choices_Processing is new
4189 Generic_Choices_Processing
4190 (Get_Alternatives => Variants,
4191 Get_Choices => Discrete_Choices,
4192 Process_Empty_Choice => No_OP,
4193 Process_Non_Static_Choice => Non_Static_Choice_Error,
4194 Process_Associated_Node => Process_Declarations);
4195 use Variant_Choices_Processing;
4196 -- Instantiation of the generic choice processing package
4198 -----------------------------
4199 -- Non_Static_Choice_Error --
4200 -----------------------------
4202 procedure Non_Static_Choice_Error (Choice : Node_Id) is
4203 begin
4204 Flag_Non_Static_Expr
4205 ("choice given in variant part is not static!", Choice);
4206 end Non_Static_Choice_Error;
4208 --------------------------
4209 -- Process_Declarations --
4210 --------------------------
4212 procedure Process_Declarations (Variant : Node_Id) is
4213 begin
4214 if not Null_Present (Component_List (Variant)) then
4215 Analyze_Declarations (Component_Items (Component_List (Variant)));
4217 if Present (Variant_Part (Component_List (Variant))) then
4218 Analyze (Variant_Part (Component_List (Variant)));
4219 end if;
4220 end if;
4221 end Process_Declarations;
4223 -- Local Variables
4225 Discr_Name : Node_Id;
4226 Discr_Type : Entity_Id;
4228 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
4229 Last_Choice : Nat;
4230 Dont_Care : Boolean;
4231 Others_Present : Boolean := False;
4233 pragma Warnings (Off, Case_Table);
4234 pragma Warnings (Off, Last_Choice);
4235 pragma Warnings (Off, Dont_Care);
4236 pragma Warnings (Off, Others_Present);
4237 -- We don't care about the assigned values of any of these
4239 -- Start of processing for Analyze_Variant_Part
4241 begin
4242 Discr_Name := Name (N);
4243 Analyze (Discr_Name);
4245 -- If Discr_Name bad, get out (prevent cascaded errors)
4247 if Etype (Discr_Name) = Any_Type then
4248 return;
4249 end if;
4251 -- Check invalid discriminant in variant part
4253 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
4254 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
4255 end if;
4257 Discr_Type := Etype (Entity (Discr_Name));
4259 if not Is_Discrete_Type (Discr_Type) then
4260 Error_Msg_N
4261 ("discriminant in a variant part must be of a discrete type",
4262 Name (N));
4263 return;
4264 end if;
4266 -- Call the instantiated Analyze_Choices which does the rest of the work
4268 Analyze_Choices
4269 (N, Discr_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
4270 end Analyze_Variant_Part;
4272 ----------------------------
4273 -- Array_Type_Declaration --
4274 ----------------------------
4276 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
4277 Component_Def : constant Node_Id := Component_Definition (Def);
4278 Element_Type : Entity_Id;
4279 Implicit_Base : Entity_Id;
4280 Index : Node_Id;
4281 Related_Id : Entity_Id := Empty;
4282 Nb_Index : Nat;
4283 P : constant Node_Id := Parent (Def);
4284 Priv : Entity_Id;
4286 begin
4287 if Nkind (Def) = N_Constrained_Array_Definition then
4288 Index := First (Discrete_Subtype_Definitions (Def));
4289 else
4290 Index := First (Subtype_Marks (Def));
4291 end if;
4293 -- Find proper names for the implicit types which may be public. In case
4294 -- of anonymous arrays we use the name of the first object of that type
4295 -- as prefix.
4297 if No (T) then
4298 Related_Id := Defining_Identifier (P);
4299 else
4300 Related_Id := T;
4301 end if;
4303 Nb_Index := 1;
4304 while Present (Index) loop
4305 Analyze (Index);
4307 -- Add a subtype declaration for each index of private array type
4308 -- declaration whose etype is also private. For example:
4310 -- package Pkg is
4311 -- type Index is private;
4312 -- private
4313 -- type Table is array (Index) of ...
4314 -- end;
4316 -- This is currently required by the expander for the internally
4317 -- generated equality subprogram of records with variant parts in
4318 -- which the etype of some component is such private type.
4320 if Ekind (Current_Scope) = E_Package
4321 and then In_Private_Part (Current_Scope)
4322 and then Has_Private_Declaration (Etype (Index))
4323 then
4324 declare
4325 Loc : constant Source_Ptr := Sloc (Def);
4326 New_E : Entity_Id;
4327 Decl : Entity_Id;
4329 begin
4330 New_E :=
4331 Make_Defining_Identifier (Loc,
4332 Chars => New_Internal_Name ('T'));
4333 Set_Is_Internal (New_E);
4335 Decl :=
4336 Make_Subtype_Declaration (Loc,
4337 Defining_Identifier => New_E,
4338 Subtype_Indication =>
4339 New_Occurrence_Of (Etype (Index), Loc));
4341 Insert_Before (Parent (Def), Decl);
4342 Analyze (Decl);
4343 Set_Etype (Index, New_E);
4345 -- If the index is a range the Entity attribute is not
4346 -- available. Example:
4348 -- package Pkg is
4349 -- type T is private;
4350 -- private
4351 -- type T is new Natural;
4352 -- Table : array (T(1) .. T(10)) of Boolean;
4353 -- end Pkg;
4355 if Nkind (Index) /= N_Range then
4356 Set_Entity (Index, New_E);
4357 end if;
4358 end;
4359 end if;
4361 Make_Index (Index, P, Related_Id, Nb_Index);
4362 Next_Index (Index);
4363 Nb_Index := Nb_Index + 1;
4364 end loop;
4366 -- Process subtype indication if one is present
4368 if Present (Subtype_Indication (Component_Def)) then
4369 Element_Type :=
4370 Process_Subtype
4371 (Subtype_Indication (Component_Def), P, Related_Id, 'C');
4373 -- Ada 2005 (AI-230): Access Definition case
4375 else pragma Assert (Present (Access_Definition (Component_Def)));
4377 -- Indicate that the anonymous access type is created by the
4378 -- array type declaration.
4380 Element_Type := Access_Definition
4381 (Related_Nod => P,
4382 N => Access_Definition (Component_Def));
4383 Set_Is_Local_Anonymous_Access (Element_Type);
4385 -- Propagate the parent. This field is needed if we have to generate
4386 -- the master_id associated with an anonymous access to task type
4387 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
4389 Set_Parent (Element_Type, Parent (T));
4391 -- Ada 2005 (AI-230): In case of components that are anonymous access
4392 -- types the level of accessibility depends on the enclosing type
4393 -- declaration
4395 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
4397 -- Ada 2005 (AI-254)
4399 declare
4400 CD : constant Node_Id :=
4401 Access_To_Subprogram_Definition
4402 (Access_Definition (Component_Def));
4403 begin
4404 if Present (CD) and then Protected_Present (CD) then
4405 Element_Type :=
4406 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
4407 end if;
4408 end;
4409 end if;
4411 -- Constrained array case
4413 if No (T) then
4414 T := Create_Itype (E_Void, P, Related_Id, 'T');
4415 end if;
4417 if Nkind (Def) = N_Constrained_Array_Definition then
4419 -- Establish Implicit_Base as unconstrained base type
4421 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
4423 Set_Etype (Implicit_Base, Implicit_Base);
4424 Set_Scope (Implicit_Base, Current_Scope);
4425 Set_Has_Delayed_Freeze (Implicit_Base);
4427 -- The constrained array type is a subtype of the unconstrained one
4429 Set_Ekind (T, E_Array_Subtype);
4430 Init_Size_Align (T);
4431 Set_Etype (T, Implicit_Base);
4432 Set_Scope (T, Current_Scope);
4433 Set_Is_Constrained (T, True);
4434 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
4435 Set_Has_Delayed_Freeze (T);
4437 -- Complete setup of implicit base type
4439 Set_First_Index (Implicit_Base, First_Index (T));
4440 Set_Component_Type (Implicit_Base, Element_Type);
4441 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
4442 Set_Component_Size (Implicit_Base, Uint_0);
4443 Set_Packed_Array_Type (Implicit_Base, Empty);
4444 Set_Has_Controlled_Component
4445 (Implicit_Base, Has_Controlled_Component
4446 (Element_Type)
4447 or else Is_Controlled
4448 (Element_Type));
4449 Set_Finalize_Storage_Only
4450 (Implicit_Base, Finalize_Storage_Only
4451 (Element_Type));
4453 -- Unconstrained array case
4455 else
4456 Set_Ekind (T, E_Array_Type);
4457 Init_Size_Align (T);
4458 Set_Etype (T, T);
4459 Set_Scope (T, Current_Scope);
4460 Set_Component_Size (T, Uint_0);
4461 Set_Is_Constrained (T, False);
4462 Set_First_Index (T, First (Subtype_Marks (Def)));
4463 Set_Has_Delayed_Freeze (T, True);
4464 Set_Has_Task (T, Has_Task (Element_Type));
4465 Set_Has_Controlled_Component (T, Has_Controlled_Component
4466 (Element_Type)
4467 or else
4468 Is_Controlled (Element_Type));
4469 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
4470 (Element_Type));
4471 end if;
4473 -- Common attributes for both cases
4475 Set_Component_Type (Base_Type (T), Element_Type);
4476 Set_Packed_Array_Type (T, Empty);
4478 if Aliased_Present (Component_Definition (Def)) then
4479 Set_Has_Aliased_Components (Etype (T));
4480 end if;
4482 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
4483 -- array type to ensure that objects of this type are initialized.
4485 if Ada_Version >= Ada_05
4486 and then Can_Never_Be_Null (Element_Type)
4487 then
4488 Set_Can_Never_Be_Null (T);
4490 if Null_Exclusion_Present (Component_Definition (Def))
4492 -- No need to check itypes because in their case this check was
4493 -- done at their point of creation
4495 and then not Is_Itype (Element_Type)
4496 then
4497 Error_Msg_N
4498 ("`NOT NULL` not allowed (null already excluded)",
4499 Subtype_Indication (Component_Definition (Def)));
4500 end if;
4501 end if;
4503 Priv := Private_Component (Element_Type);
4505 if Present (Priv) then
4507 -- Check for circular definitions
4509 if Priv = Any_Type then
4510 Set_Component_Type (Etype (T), Any_Type);
4512 -- There is a gap in the visibility of operations on the composite
4513 -- type only if the component type is defined in a different scope.
4515 elsif Scope (Priv) = Current_Scope then
4516 null;
4518 elsif Is_Limited_Type (Priv) then
4519 Set_Is_Limited_Composite (Etype (T));
4520 Set_Is_Limited_Composite (T);
4521 else
4522 Set_Is_Private_Composite (Etype (T));
4523 Set_Is_Private_Composite (T);
4524 end if;
4525 end if;
4527 -- A syntax error in the declaration itself may lead to an empty index
4528 -- list, in which case do a minimal patch.
4530 if No (First_Index (T)) then
4531 Error_Msg_N ("missing index definition in array type declaration", T);
4533 declare
4534 Indices : constant List_Id :=
4535 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
4536 begin
4537 Set_Discrete_Subtype_Definitions (Def, Indices);
4538 Set_First_Index (T, First (Indices));
4539 return;
4540 end;
4541 end if;
4543 -- Create a concatenation operator for the new type. Internal array
4544 -- types created for packed entities do not need such, they are
4545 -- compatible with the user-defined type.
4547 if Number_Dimensions (T) = 1
4548 and then not Is_Packed_Array_Type (T)
4549 then
4550 New_Concatenation_Op (T);
4551 end if;
4553 -- In the case of an unconstrained array the parser has already verified
4554 -- that all the indices are unconstrained but we still need to make sure
4555 -- that the element type is constrained.
4557 if Is_Indefinite_Subtype (Element_Type) then
4558 Error_Msg_N
4559 ("unconstrained element type in array declaration",
4560 Subtype_Indication (Component_Def));
4562 elsif Is_Abstract_Type (Element_Type) then
4563 Error_Msg_N
4564 ("the type of a component cannot be abstract",
4565 Subtype_Indication (Component_Def));
4566 end if;
4567 end Array_Type_Declaration;
4569 ------------------------------------------------------
4570 -- Replace_Anonymous_Access_To_Protected_Subprogram --
4571 ------------------------------------------------------
4573 function Replace_Anonymous_Access_To_Protected_Subprogram
4574 (N : Node_Id) return Entity_Id
4576 Loc : constant Source_Ptr := Sloc (N);
4578 Curr_Scope : constant Scope_Stack_Entry :=
4579 Scope_Stack.Table (Scope_Stack.Last);
4581 Anon : constant Entity_Id :=
4582 Make_Defining_Identifier (Loc,
4583 Chars => New_Internal_Name ('S'));
4585 Acc : Node_Id;
4586 Comp : Node_Id;
4587 Decl : Node_Id;
4588 P : Node_Id;
4590 begin
4591 Set_Is_Internal (Anon);
4593 case Nkind (N) is
4594 when N_Component_Declaration |
4595 N_Unconstrained_Array_Definition |
4596 N_Constrained_Array_Definition =>
4597 Comp := Component_Definition (N);
4598 Acc := Access_Definition (Comp);
4600 when N_Discriminant_Specification =>
4601 Comp := Discriminant_Type (N);
4602 Acc := Comp;
4604 when N_Parameter_Specification =>
4605 Comp := Parameter_Type (N);
4606 Acc := Comp;
4608 when N_Access_Function_Definition =>
4609 Comp := Result_Definition (N);
4610 Acc := Comp;
4612 when N_Object_Declaration =>
4613 Comp := Object_Definition (N);
4614 Acc := Comp;
4616 when N_Function_Specification =>
4617 Comp := Result_Definition (N);
4618 Acc := Comp;
4620 when others =>
4621 raise Program_Error;
4622 end case;
4624 Decl := Make_Full_Type_Declaration (Loc,
4625 Defining_Identifier => Anon,
4626 Type_Definition =>
4627 Copy_Separate_Tree (Access_To_Subprogram_Definition (Acc)));
4629 Mark_Rewrite_Insertion (Decl);
4631 -- Insert the new declaration in the nearest enclosing scope. If the
4632 -- node is a body and N is its return type, the declaration belongs in
4633 -- the enclosing scope.
4635 P := Parent (N);
4637 if Nkind (P) = N_Subprogram_Body
4638 and then Nkind (N) = N_Function_Specification
4639 then
4640 P := Parent (P);
4641 end if;
4643 while Present (P) and then not Has_Declarations (P) loop
4644 P := Parent (P);
4645 end loop;
4647 pragma Assert (Present (P));
4649 if Nkind (P) = N_Package_Specification then
4650 Prepend (Decl, Visible_Declarations (P));
4651 else
4652 Prepend (Decl, Declarations (P));
4653 end if;
4655 -- Replace the anonymous type with an occurrence of the new declaration.
4656 -- In all cases the rewritten node does not have the null-exclusion
4657 -- attribute because (if present) it was already inherited by the
4658 -- anonymous entity (Anon). Thus, in case of components we do not
4659 -- inherit this attribute.
4661 if Nkind (N) = N_Parameter_Specification then
4662 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
4663 Set_Etype (Defining_Identifier (N), Anon);
4664 Set_Null_Exclusion_Present (N, False);
4666 elsif Nkind (N) = N_Object_Declaration then
4667 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
4668 Set_Etype (Defining_Identifier (N), Anon);
4670 elsif Nkind (N) = N_Access_Function_Definition then
4671 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
4673 elsif Nkind (N) = N_Function_Specification then
4674 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
4675 Set_Etype (Defining_Unit_Name (N), Anon);
4677 else
4678 Rewrite (Comp,
4679 Make_Component_Definition (Loc,
4680 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
4681 end if;
4683 Mark_Rewrite_Insertion (Comp);
4685 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
4686 Analyze (Decl);
4688 else
4689 -- Temporarily remove the current scope (record or subprogram) from
4690 -- the stack to add the new declarations to the enclosing scope.
4692 Scope_Stack.Decrement_Last;
4693 Analyze (Decl);
4694 Set_Is_Itype (Anon);
4695 Scope_Stack.Append (Curr_Scope);
4696 end if;
4698 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
4699 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
4700 return Anon;
4701 end Replace_Anonymous_Access_To_Protected_Subprogram;
4703 -------------------------------
4704 -- Build_Derived_Access_Type --
4705 -------------------------------
4707 procedure Build_Derived_Access_Type
4708 (N : Node_Id;
4709 Parent_Type : Entity_Id;
4710 Derived_Type : Entity_Id)
4712 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
4714 Desig_Type : Entity_Id;
4715 Discr : Entity_Id;
4716 Discr_Con_Elist : Elist_Id;
4717 Discr_Con_El : Elmt_Id;
4718 Subt : Entity_Id;
4720 begin
4721 -- Set the designated type so it is available in case this is an access
4722 -- to a self-referential type, e.g. a standard list type with a next
4723 -- pointer. Will be reset after subtype is built.
4725 Set_Directly_Designated_Type
4726 (Derived_Type, Designated_Type (Parent_Type));
4728 Subt := Process_Subtype (S, N);
4730 if Nkind (S) /= N_Subtype_Indication
4731 and then Subt /= Base_Type (Subt)
4732 then
4733 Set_Ekind (Derived_Type, E_Access_Subtype);
4734 end if;
4736 if Ekind (Derived_Type) = E_Access_Subtype then
4737 declare
4738 Pbase : constant Entity_Id := Base_Type (Parent_Type);
4739 Ibase : constant Entity_Id :=
4740 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
4741 Svg_Chars : constant Name_Id := Chars (Ibase);
4742 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
4744 begin
4745 Copy_Node (Pbase, Ibase);
4747 Set_Chars (Ibase, Svg_Chars);
4748 Set_Next_Entity (Ibase, Svg_Next_E);
4749 Set_Sloc (Ibase, Sloc (Derived_Type));
4750 Set_Scope (Ibase, Scope (Derived_Type));
4751 Set_Freeze_Node (Ibase, Empty);
4752 Set_Is_Frozen (Ibase, False);
4753 Set_Comes_From_Source (Ibase, False);
4754 Set_Is_First_Subtype (Ibase, False);
4756 Set_Etype (Ibase, Pbase);
4757 Set_Etype (Derived_Type, Ibase);
4758 end;
4759 end if;
4761 Set_Directly_Designated_Type
4762 (Derived_Type, Designated_Type (Subt));
4764 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
4765 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
4766 Set_Size_Info (Derived_Type, Parent_Type);
4767 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
4768 Set_Depends_On_Private (Derived_Type,
4769 Has_Private_Component (Derived_Type));
4770 Conditional_Delay (Derived_Type, Subt);
4772 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
4773 -- that it is not redundant.
4775 if Null_Exclusion_Present (Type_Definition (N)) then
4776 Set_Can_Never_Be_Null (Derived_Type);
4778 if Can_Never_Be_Null (Parent_Type)
4779 and then False
4780 then
4781 Error_Msg_NE
4782 ("`NOT NULL` not allowed (& already excludes null)",
4783 N, Parent_Type);
4784 end if;
4786 elsif Can_Never_Be_Null (Parent_Type) then
4787 Set_Can_Never_Be_Null (Derived_Type);
4788 end if;
4790 -- Note: we do not copy the Storage_Size_Variable, since we always go to
4791 -- the root type for this information.
4793 -- Apply range checks to discriminants for derived record case
4794 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
4796 Desig_Type := Designated_Type (Derived_Type);
4797 if Is_Composite_Type (Desig_Type)
4798 and then (not Is_Array_Type (Desig_Type))
4799 and then Has_Discriminants (Desig_Type)
4800 and then Base_Type (Desig_Type) /= Desig_Type
4801 then
4802 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
4803 Discr_Con_El := First_Elmt (Discr_Con_Elist);
4805 Discr := First_Discriminant (Base_Type (Desig_Type));
4806 while Present (Discr_Con_El) loop
4807 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
4808 Next_Elmt (Discr_Con_El);
4809 Next_Discriminant (Discr);
4810 end loop;
4811 end if;
4812 end Build_Derived_Access_Type;
4814 ------------------------------
4815 -- Build_Derived_Array_Type --
4816 ------------------------------
4818 procedure Build_Derived_Array_Type
4819 (N : Node_Id;
4820 Parent_Type : Entity_Id;
4821 Derived_Type : Entity_Id)
4823 Loc : constant Source_Ptr := Sloc (N);
4824 Tdef : constant Node_Id := Type_Definition (N);
4825 Indic : constant Node_Id := Subtype_Indication (Tdef);
4826 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
4827 Implicit_Base : Entity_Id;
4828 New_Indic : Node_Id;
4830 procedure Make_Implicit_Base;
4831 -- If the parent subtype is constrained, the derived type is a subtype
4832 -- of an implicit base type derived from the parent base.
4834 ------------------------
4835 -- Make_Implicit_Base --
4836 ------------------------
4838 procedure Make_Implicit_Base is
4839 begin
4840 Implicit_Base :=
4841 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
4843 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
4844 Set_Etype (Implicit_Base, Parent_Base);
4846 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
4847 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
4849 Set_Has_Delayed_Freeze (Implicit_Base, True);
4850 end Make_Implicit_Base;
4852 -- Start of processing for Build_Derived_Array_Type
4854 begin
4855 if not Is_Constrained (Parent_Type) then
4856 if Nkind (Indic) /= N_Subtype_Indication then
4857 Set_Ekind (Derived_Type, E_Array_Type);
4859 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
4860 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
4862 Set_Has_Delayed_Freeze (Derived_Type, True);
4864 else
4865 Make_Implicit_Base;
4866 Set_Etype (Derived_Type, Implicit_Base);
4868 New_Indic :=
4869 Make_Subtype_Declaration (Loc,
4870 Defining_Identifier => Derived_Type,
4871 Subtype_Indication =>
4872 Make_Subtype_Indication (Loc,
4873 Subtype_Mark => New_Reference_To (Implicit_Base, Loc),
4874 Constraint => Constraint (Indic)));
4876 Rewrite (N, New_Indic);
4877 Analyze (N);
4878 end if;
4880 else
4881 if Nkind (Indic) /= N_Subtype_Indication then
4882 Make_Implicit_Base;
4884 Set_Ekind (Derived_Type, Ekind (Parent_Type));
4885 Set_Etype (Derived_Type, Implicit_Base);
4886 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
4888 else
4889 Error_Msg_N ("illegal constraint on constrained type", Indic);
4890 end if;
4891 end if;
4893 -- If parent type is not a derived type itself, and is declared in
4894 -- closed scope (e.g. a subprogram), then we must explicitly introduce
4895 -- the new type's concatenation operator since Derive_Subprograms
4896 -- will not inherit the parent's operator. If the parent type is
4897 -- unconstrained, the operator is of the unconstrained base type.
4899 if Number_Dimensions (Parent_Type) = 1
4900 and then not Is_Limited_Type (Parent_Type)
4901 and then not Is_Derived_Type (Parent_Type)
4902 and then not Is_Package_Or_Generic_Package
4903 (Scope (Base_Type (Parent_Type)))
4904 then
4905 if not Is_Constrained (Parent_Type)
4906 and then Is_Constrained (Derived_Type)
4907 then
4908 New_Concatenation_Op (Implicit_Base);
4909 else
4910 New_Concatenation_Op (Derived_Type);
4911 end if;
4912 end if;
4913 end Build_Derived_Array_Type;
4915 -----------------------------------
4916 -- Build_Derived_Concurrent_Type --
4917 -----------------------------------
4919 procedure Build_Derived_Concurrent_Type
4920 (N : Node_Id;
4921 Parent_Type : Entity_Id;
4922 Derived_Type : Entity_Id)
4924 Loc : constant Source_Ptr := Sloc (N);
4926 Corr_Record : constant Entity_Id :=
4927 Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
4929 Corr_Decl : Node_Id;
4930 Corr_Decl_Needed : Boolean;
4931 -- If the derived type has fewer discriminants than its parent, the
4932 -- corresponding record is also a derived type, in order to account for
4933 -- the bound discriminants. We create a full type declaration for it in
4934 -- this case.
4936 Constraint_Present : constant Boolean :=
4937 Nkind (Subtype_Indication (Type_Definition (N))) =
4938 N_Subtype_Indication;
4940 D_Constraint : Node_Id;
4941 New_Constraint : Elist_Id;
4942 Old_Disc : Entity_Id;
4943 New_Disc : Entity_Id;
4944 New_N : Node_Id;
4946 begin
4947 Set_Stored_Constraint (Derived_Type, No_Elist);
4948 Corr_Decl_Needed := False;
4949 Old_Disc := Empty;
4951 if Present (Discriminant_Specifications (N))
4952 and then Constraint_Present
4953 then
4954 Old_Disc := First_Discriminant (Parent_Type);
4955 New_Disc := First (Discriminant_Specifications (N));
4956 while Present (New_Disc) and then Present (Old_Disc) loop
4957 Next_Discriminant (Old_Disc);
4958 Next (New_Disc);
4959 end loop;
4960 end if;
4962 if Present (Old_Disc) then
4964 -- The new type has fewer discriminants, so we need to create a new
4965 -- corresponding record, which is derived from the corresponding
4966 -- record of the parent, and has a stored constraint that captures
4967 -- the values of the discriminant constraints.
4969 -- The type declaration for the derived corresponding record has
4970 -- the same discriminant part and constraints as the current
4971 -- declaration. Copy the unanalyzed tree to build declaration.
4973 Corr_Decl_Needed := True;
4974 New_N := Copy_Separate_Tree (N);
4976 Corr_Decl :=
4977 Make_Full_Type_Declaration (Loc,
4978 Defining_Identifier => Corr_Record,
4979 Discriminant_Specifications =>
4980 Discriminant_Specifications (New_N),
4981 Type_Definition =>
4982 Make_Derived_Type_Definition (Loc,
4983 Subtype_Indication =>
4984 Make_Subtype_Indication (Loc,
4985 Subtype_Mark =>
4986 New_Occurrence_Of
4987 (Corresponding_Record_Type (Parent_Type), Loc),
4988 Constraint =>
4989 Constraint
4990 (Subtype_Indication (Type_Definition (New_N))))));
4991 end if;
4993 -- Copy Storage_Size and Relative_Deadline variables if task case
4995 if Is_Task_Type (Parent_Type) then
4996 Set_Storage_Size_Variable (Derived_Type,
4997 Storage_Size_Variable (Parent_Type));
4998 Set_Relative_Deadline_Variable (Derived_Type,
4999 Relative_Deadline_Variable (Parent_Type));
5000 end if;
5002 if Present (Discriminant_Specifications (N)) then
5003 Push_Scope (Derived_Type);
5004 Check_Or_Process_Discriminants (N, Derived_Type);
5006 if Constraint_Present then
5007 New_Constraint :=
5008 Expand_To_Stored_Constraint
5009 (Parent_Type,
5010 Build_Discriminant_Constraints
5011 (Parent_Type,
5012 Subtype_Indication (Type_Definition (N)), True));
5013 end if;
5015 End_Scope;
5017 elsif Constraint_Present then
5019 -- Build constrained subtype and derive from it
5021 declare
5022 Loc : constant Source_Ptr := Sloc (N);
5023 Anon : constant Entity_Id :=
5024 Make_Defining_Identifier (Loc,
5025 New_External_Name (Chars (Derived_Type), 'T'));
5026 Decl : Node_Id;
5028 begin
5029 Decl :=
5030 Make_Subtype_Declaration (Loc,
5031 Defining_Identifier => Anon,
5032 Subtype_Indication =>
5033 Subtype_Indication (Type_Definition (N)));
5034 Insert_Before (N, Decl);
5035 Analyze (Decl);
5037 Rewrite (Subtype_Indication (Type_Definition (N)),
5038 New_Occurrence_Of (Anon, Loc));
5039 Set_Analyzed (Derived_Type, False);
5040 Analyze (N);
5041 return;
5042 end;
5043 end if;
5045 -- By default, operations and private data are inherited from parent.
5046 -- However, in the presence of bound discriminants, a new corresponding
5047 -- record will be created, see below.
5049 Set_Has_Discriminants
5050 (Derived_Type, Has_Discriminants (Parent_Type));
5051 Set_Corresponding_Record_Type
5052 (Derived_Type, Corresponding_Record_Type (Parent_Type));
5054 -- Is_Constrained is set according the parent subtype, but is set to
5055 -- False if the derived type is declared with new discriminants.
5057 Set_Is_Constrained
5058 (Derived_Type,
5059 (Is_Constrained (Parent_Type) or else Constraint_Present)
5060 and then not Present (Discriminant_Specifications (N)));
5062 if Constraint_Present then
5063 if not Has_Discriminants (Parent_Type) then
5064 Error_Msg_N ("untagged parent must have discriminants", N);
5066 elsif Present (Discriminant_Specifications (N)) then
5068 -- Verify that new discriminants are used to constrain old ones
5070 D_Constraint :=
5071 First
5072 (Constraints
5073 (Constraint (Subtype_Indication (Type_Definition (N)))));
5075 Old_Disc := First_Discriminant (Parent_Type);
5077 while Present (D_Constraint) loop
5078 if Nkind (D_Constraint) /= N_Discriminant_Association then
5080 -- Positional constraint. If it is a reference to a new
5081 -- discriminant, it constrains the corresponding old one.
5083 if Nkind (D_Constraint) = N_Identifier then
5084 New_Disc := First_Discriminant (Derived_Type);
5085 while Present (New_Disc) loop
5086 exit when Chars (New_Disc) = Chars (D_Constraint);
5087 Next_Discriminant (New_Disc);
5088 end loop;
5090 if Present (New_Disc) then
5091 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
5092 end if;
5093 end if;
5095 Next_Discriminant (Old_Disc);
5097 -- if this is a named constraint, search by name for the old
5098 -- discriminants constrained by the new one.
5100 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
5102 -- Find new discriminant with that name
5104 New_Disc := First_Discriminant (Derived_Type);
5105 while Present (New_Disc) loop
5106 exit when
5107 Chars (New_Disc) = Chars (Expression (D_Constraint));
5108 Next_Discriminant (New_Disc);
5109 end loop;
5111 if Present (New_Disc) then
5113 -- Verify that new discriminant renames some discriminant
5114 -- of the parent type, and associate the new discriminant
5115 -- with one or more old ones that it renames.
5117 declare
5118 Selector : Node_Id;
5120 begin
5121 Selector := First (Selector_Names (D_Constraint));
5122 while Present (Selector) loop
5123 Old_Disc := First_Discriminant (Parent_Type);
5124 while Present (Old_Disc) loop
5125 exit when Chars (Old_Disc) = Chars (Selector);
5126 Next_Discriminant (Old_Disc);
5127 end loop;
5129 if Present (Old_Disc) then
5130 Set_Corresponding_Discriminant
5131 (New_Disc, Old_Disc);
5132 end if;
5134 Next (Selector);
5135 end loop;
5136 end;
5137 end if;
5138 end if;
5140 Next (D_Constraint);
5141 end loop;
5143 New_Disc := First_Discriminant (Derived_Type);
5144 while Present (New_Disc) loop
5145 if No (Corresponding_Discriminant (New_Disc)) then
5146 Error_Msg_NE
5147 ("new discriminant& must constrain old one", N, New_Disc);
5149 elsif not
5150 Subtypes_Statically_Compatible
5151 (Etype (New_Disc),
5152 Etype (Corresponding_Discriminant (New_Disc)))
5153 then
5154 Error_Msg_NE
5155 ("& not statically compatible with parent discriminant",
5156 N, New_Disc);
5157 end if;
5159 Next_Discriminant (New_Disc);
5160 end loop;
5161 end if;
5163 elsif Present (Discriminant_Specifications (N)) then
5164 Error_Msg_N
5165 ("missing discriminant constraint in untagged derivation", N);
5166 end if;
5168 -- The entity chain of the derived type includes the new discriminants
5169 -- but shares operations with the parent.
5171 if Present (Discriminant_Specifications (N)) then
5172 Old_Disc := First_Discriminant (Parent_Type);
5173 while Present (Old_Disc) loop
5174 if No (Next_Entity (Old_Disc))
5175 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
5176 then
5177 Set_Next_Entity
5178 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
5179 exit;
5180 end if;
5182 Next_Discriminant (Old_Disc);
5183 end loop;
5185 else
5186 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
5187 if Has_Discriminants (Parent_Type) then
5188 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
5189 Set_Discriminant_Constraint (
5190 Derived_Type, Discriminant_Constraint (Parent_Type));
5191 end if;
5192 end if;
5194 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
5196 Set_Has_Completion (Derived_Type);
5198 if Corr_Decl_Needed then
5199 Set_Stored_Constraint (Derived_Type, New_Constraint);
5200 Insert_After (N, Corr_Decl);
5201 Analyze (Corr_Decl);
5202 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
5203 end if;
5204 end Build_Derived_Concurrent_Type;
5206 ------------------------------------
5207 -- Build_Derived_Enumeration_Type --
5208 ------------------------------------
5210 procedure Build_Derived_Enumeration_Type
5211 (N : Node_Id;
5212 Parent_Type : Entity_Id;
5213 Derived_Type : Entity_Id)
5215 Loc : constant Source_Ptr := Sloc (N);
5216 Def : constant Node_Id := Type_Definition (N);
5217 Indic : constant Node_Id := Subtype_Indication (Def);
5218 Implicit_Base : Entity_Id;
5219 Literal : Entity_Id;
5220 New_Lit : Entity_Id;
5221 Literals_List : List_Id;
5222 Type_Decl : Node_Id;
5223 Hi, Lo : Node_Id;
5224 Rang_Expr : Node_Id;
5226 begin
5227 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
5228 -- not have explicit literals lists we need to process types derived
5229 -- from them specially. This is handled by Derived_Standard_Character.
5230 -- If the parent type is a generic type, there are no literals either,
5231 -- and we construct the same skeletal representation as for the generic
5232 -- parent type.
5234 if Is_Standard_Character_Type (Parent_Type) then
5235 Derived_Standard_Character (N, Parent_Type, Derived_Type);
5237 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
5238 declare
5239 Lo : Node_Id;
5240 Hi : Node_Id;
5242 begin
5243 if Nkind (Indic) /= N_Subtype_Indication then
5244 Lo :=
5245 Make_Attribute_Reference (Loc,
5246 Attribute_Name => Name_First,
5247 Prefix => New_Reference_To (Derived_Type, Loc));
5248 Set_Etype (Lo, Derived_Type);
5250 Hi :=
5251 Make_Attribute_Reference (Loc,
5252 Attribute_Name => Name_Last,
5253 Prefix => New_Reference_To (Derived_Type, Loc));
5254 Set_Etype (Hi, Derived_Type);
5256 Set_Scalar_Range (Derived_Type,
5257 Make_Range (Loc,
5258 Low_Bound => Lo,
5259 High_Bound => Hi));
5260 else
5262 -- Analyze subtype indication and verify compatibility
5263 -- with parent type.
5265 if Base_Type (Process_Subtype (Indic, N)) /=
5266 Base_Type (Parent_Type)
5267 then
5268 Error_Msg_N
5269 ("illegal constraint for formal discrete type", N);
5270 end if;
5271 end if;
5272 end;
5274 else
5275 -- If a constraint is present, analyze the bounds to catch
5276 -- premature usage of the derived literals.
5278 if Nkind (Indic) = N_Subtype_Indication
5279 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
5280 then
5281 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
5282 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
5283 end if;
5285 -- Introduce an implicit base type for the derived type even if there
5286 -- is no constraint attached to it, since this seems closer to the
5287 -- Ada semantics. Build a full type declaration tree for the derived
5288 -- type using the implicit base type as the defining identifier. The
5289 -- build a subtype declaration tree which applies the constraint (if
5290 -- any) have it replace the derived type declaration.
5292 Literal := First_Literal (Parent_Type);
5293 Literals_List := New_List;
5294 while Present (Literal)
5295 and then Ekind (Literal) = E_Enumeration_Literal
5296 loop
5297 -- Literals of the derived type have the same representation as
5298 -- those of the parent type, but this representation can be
5299 -- overridden by an explicit representation clause. Indicate
5300 -- that there is no explicit representation given yet. These
5301 -- derived literals are implicit operations of the new type,
5302 -- and can be overridden by explicit ones.
5304 if Nkind (Literal) = N_Defining_Character_Literal then
5305 New_Lit :=
5306 Make_Defining_Character_Literal (Loc, Chars (Literal));
5307 else
5308 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
5309 end if;
5311 Set_Ekind (New_Lit, E_Enumeration_Literal);
5312 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
5313 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
5314 Set_Enumeration_Rep_Expr (New_Lit, Empty);
5315 Set_Alias (New_Lit, Literal);
5316 Set_Is_Known_Valid (New_Lit, True);
5318 Append (New_Lit, Literals_List);
5319 Next_Literal (Literal);
5320 end loop;
5322 Implicit_Base :=
5323 Make_Defining_Identifier (Sloc (Derived_Type),
5324 New_External_Name (Chars (Derived_Type), 'B'));
5326 -- Indicate the proper nature of the derived type. This must be done
5327 -- before analysis of the literals, to recognize cases when a literal
5328 -- may be hidden by a previous explicit function definition (cf.
5329 -- c83031a).
5331 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
5332 Set_Etype (Derived_Type, Implicit_Base);
5334 Type_Decl :=
5335 Make_Full_Type_Declaration (Loc,
5336 Defining_Identifier => Implicit_Base,
5337 Discriminant_Specifications => No_List,
5338 Type_Definition =>
5339 Make_Enumeration_Type_Definition (Loc, Literals_List));
5341 Mark_Rewrite_Insertion (Type_Decl);
5342 Insert_Before (N, Type_Decl);
5343 Analyze (Type_Decl);
5345 -- After the implicit base is analyzed its Etype needs to be changed
5346 -- to reflect the fact that it is derived from the parent type which
5347 -- was ignored during analysis. We also set the size at this point.
5349 Set_Etype (Implicit_Base, Parent_Type);
5351 Set_Size_Info (Implicit_Base, Parent_Type);
5352 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
5353 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
5355 Set_Has_Non_Standard_Rep
5356 (Implicit_Base, Has_Non_Standard_Rep
5357 (Parent_Type));
5358 Set_Has_Delayed_Freeze (Implicit_Base);
5360 -- Process the subtype indication including a validation check on the
5361 -- constraint, if any. If a constraint is given, its bounds must be
5362 -- implicitly converted to the new type.
5364 if Nkind (Indic) = N_Subtype_Indication then
5365 declare
5366 R : constant Node_Id :=
5367 Range_Expression (Constraint (Indic));
5369 begin
5370 if Nkind (R) = N_Range then
5371 Hi := Build_Scalar_Bound
5372 (High_Bound (R), Parent_Type, Implicit_Base);
5373 Lo := Build_Scalar_Bound
5374 (Low_Bound (R), Parent_Type, Implicit_Base);
5376 else
5377 -- Constraint is a Range attribute. Replace with explicit
5378 -- mention of the bounds of the prefix, which must be a
5379 -- subtype.
5381 Analyze (Prefix (R));
5382 Hi :=
5383 Convert_To (Implicit_Base,
5384 Make_Attribute_Reference (Loc,
5385 Attribute_Name => Name_Last,
5386 Prefix =>
5387 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
5389 Lo :=
5390 Convert_To (Implicit_Base,
5391 Make_Attribute_Reference (Loc,
5392 Attribute_Name => Name_First,
5393 Prefix =>
5394 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
5395 end if;
5396 end;
5398 else
5399 Hi :=
5400 Build_Scalar_Bound
5401 (Type_High_Bound (Parent_Type),
5402 Parent_Type, Implicit_Base);
5403 Lo :=
5404 Build_Scalar_Bound
5405 (Type_Low_Bound (Parent_Type),
5406 Parent_Type, Implicit_Base);
5407 end if;
5409 Rang_Expr :=
5410 Make_Range (Loc,
5411 Low_Bound => Lo,
5412 High_Bound => Hi);
5414 -- If we constructed a default range for the case where no range
5415 -- was given, then the expressions in the range must not freeze
5416 -- since they do not correspond to expressions in the source.
5418 if Nkind (Indic) /= N_Subtype_Indication then
5419 Set_Must_Not_Freeze (Lo);
5420 Set_Must_Not_Freeze (Hi);
5421 Set_Must_Not_Freeze (Rang_Expr);
5422 end if;
5424 Rewrite (N,
5425 Make_Subtype_Declaration (Loc,
5426 Defining_Identifier => Derived_Type,
5427 Subtype_Indication =>
5428 Make_Subtype_Indication (Loc,
5429 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5430 Constraint =>
5431 Make_Range_Constraint (Loc,
5432 Range_Expression => Rang_Expr))));
5434 Analyze (N);
5436 -- If pragma Discard_Names applies on the first subtype of the parent
5437 -- type, then it must be applied on this subtype as well.
5439 if Einfo.Discard_Names (First_Subtype (Parent_Type)) then
5440 Set_Discard_Names (Derived_Type);
5441 end if;
5443 -- Apply a range check. Since this range expression doesn't have an
5444 -- Etype, we have to specifically pass the Source_Typ parameter. Is
5445 -- this right???
5447 if Nkind (Indic) = N_Subtype_Indication then
5448 Apply_Range_Check (Range_Expression (Constraint (Indic)),
5449 Parent_Type,
5450 Source_Typ => Entity (Subtype_Mark (Indic)));
5451 end if;
5452 end if;
5453 end Build_Derived_Enumeration_Type;
5455 --------------------------------
5456 -- Build_Derived_Numeric_Type --
5457 --------------------------------
5459 procedure Build_Derived_Numeric_Type
5460 (N : Node_Id;
5461 Parent_Type : Entity_Id;
5462 Derived_Type : Entity_Id)
5464 Loc : constant Source_Ptr := Sloc (N);
5465 Tdef : constant Node_Id := Type_Definition (N);
5466 Indic : constant Node_Id := Subtype_Indication (Tdef);
5467 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5468 No_Constraint : constant Boolean := Nkind (Indic) /=
5469 N_Subtype_Indication;
5470 Implicit_Base : Entity_Id;
5472 Lo : Node_Id;
5473 Hi : Node_Id;
5475 begin
5476 -- Process the subtype indication including a validation check on
5477 -- the constraint if any.
5479 Discard_Node (Process_Subtype (Indic, N));
5481 -- Introduce an implicit base type for the derived type even if there
5482 -- is no constraint attached to it, since this seems closer to the Ada
5483 -- semantics.
5485 Implicit_Base :=
5486 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5488 Set_Etype (Implicit_Base, Parent_Base);
5489 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5490 Set_Size_Info (Implicit_Base, Parent_Base);
5491 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
5492 Set_Parent (Implicit_Base, Parent (Derived_Type));
5493 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
5495 -- Set RM Size for discrete type or decimal fixed-point type
5496 -- Ordinary fixed-point is excluded, why???
5498 if Is_Discrete_Type (Parent_Base)
5499 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
5500 then
5501 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
5502 end if;
5504 Set_Has_Delayed_Freeze (Implicit_Base);
5506 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
5507 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
5509 Set_Scalar_Range (Implicit_Base,
5510 Make_Range (Loc,
5511 Low_Bound => Lo,
5512 High_Bound => Hi));
5514 if Has_Infinities (Parent_Base) then
5515 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
5516 end if;
5518 -- The Derived_Type, which is the entity of the declaration, is a
5519 -- subtype of the implicit base. Its Ekind is a subtype, even in the
5520 -- absence of an explicit constraint.
5522 Set_Etype (Derived_Type, Implicit_Base);
5524 -- If we did not have a constraint, then the Ekind is set from the
5525 -- parent type (otherwise Process_Subtype has set the bounds)
5527 if No_Constraint then
5528 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
5529 end if;
5531 -- If we did not have a range constraint, then set the range from the
5532 -- parent type. Otherwise, the call to Process_Subtype has set the
5533 -- bounds.
5535 if No_Constraint
5536 or else not Has_Range_Constraint (Indic)
5537 then
5538 Set_Scalar_Range (Derived_Type,
5539 Make_Range (Loc,
5540 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
5541 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
5542 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
5544 if Has_Infinities (Parent_Type) then
5545 Set_Includes_Infinities (Scalar_Range (Derived_Type));
5546 end if;
5548 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
5549 end if;
5551 Set_Is_Descendent_Of_Address (Derived_Type,
5552 Is_Descendent_Of_Address (Parent_Type));
5553 Set_Is_Descendent_Of_Address (Implicit_Base,
5554 Is_Descendent_Of_Address (Parent_Type));
5556 -- Set remaining type-specific fields, depending on numeric type
5558 if Is_Modular_Integer_Type (Parent_Type) then
5559 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
5561 Set_Non_Binary_Modulus
5562 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
5564 Set_Is_Known_Valid
5565 (Implicit_Base, Is_Known_Valid (Parent_Base));
5567 elsif Is_Floating_Point_Type (Parent_Type) then
5569 -- Digits of base type is always copied from the digits value of
5570 -- the parent base type, but the digits of the derived type will
5571 -- already have been set if there was a constraint present.
5573 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
5574 Set_Vax_Float (Implicit_Base, Vax_Float (Parent_Base));
5576 if No_Constraint then
5577 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
5578 end if;
5580 elsif Is_Fixed_Point_Type (Parent_Type) then
5582 -- Small of base type and derived type are always copied from the
5583 -- parent base type, since smalls never change. The delta of the
5584 -- base type is also copied from the parent base type. However the
5585 -- delta of the derived type will have been set already if a
5586 -- constraint was present.
5588 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
5589 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
5590 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
5592 if No_Constraint then
5593 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
5594 end if;
5596 -- The scale and machine radix in the decimal case are always
5597 -- copied from the parent base type.
5599 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
5600 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
5601 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
5603 Set_Machine_Radix_10
5604 (Derived_Type, Machine_Radix_10 (Parent_Base));
5605 Set_Machine_Radix_10
5606 (Implicit_Base, Machine_Radix_10 (Parent_Base));
5608 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
5610 if No_Constraint then
5611 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
5613 else
5614 -- the analysis of the subtype_indication sets the
5615 -- digits value of the derived type.
5617 null;
5618 end if;
5619 end if;
5620 end if;
5622 -- The type of the bounds is that of the parent type, and they
5623 -- must be converted to the derived type.
5625 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
5627 -- The implicit_base should be frozen when the derived type is frozen,
5628 -- but note that it is used in the conversions of the bounds. For fixed
5629 -- types we delay the determination of the bounds until the proper
5630 -- freezing point. For other numeric types this is rejected by GCC, for
5631 -- reasons that are currently unclear (???), so we choose to freeze the
5632 -- implicit base now. In the case of integers and floating point types
5633 -- this is harmless because subsequent representation clauses cannot
5634 -- affect anything, but it is still baffling that we cannot use the
5635 -- same mechanism for all derived numeric types.
5637 -- There is a further complication: actually *some* representation
5638 -- clauses can affect the implicit base type. Namely, attribute
5639 -- definition clauses for stream-oriented attributes need to set the
5640 -- corresponding TSS entries on the base type, and this normally cannot
5641 -- be done after the base type is frozen, so the circuitry in
5642 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility and
5643 -- not use Set_TSS in this case.
5645 if Is_Fixed_Point_Type (Parent_Type) then
5646 Conditional_Delay (Implicit_Base, Parent_Type);
5647 else
5648 Freeze_Before (N, Implicit_Base);
5649 end if;
5650 end Build_Derived_Numeric_Type;
5652 --------------------------------
5653 -- Build_Derived_Private_Type --
5654 --------------------------------
5656 procedure Build_Derived_Private_Type
5657 (N : Node_Id;
5658 Parent_Type : Entity_Id;
5659 Derived_Type : Entity_Id;
5660 Is_Completion : Boolean;
5661 Derive_Subps : Boolean := True)
5663 Loc : constant Source_Ptr := Sloc (N);
5664 Der_Base : Entity_Id;
5665 Discr : Entity_Id;
5666 Full_Decl : Node_Id := Empty;
5667 Full_Der : Entity_Id;
5668 Full_P : Entity_Id;
5669 Last_Discr : Entity_Id;
5670 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
5671 Swapped : Boolean := False;
5673 procedure Copy_And_Build;
5674 -- Copy derived type declaration, replace parent with its full view,
5675 -- and analyze new declaration.
5677 --------------------
5678 -- Copy_And_Build --
5679 --------------------
5681 procedure Copy_And_Build is
5682 Full_N : Node_Id;
5684 begin
5685 if Ekind (Parent_Type) in Record_Kind
5686 or else
5687 (Ekind (Parent_Type) in Enumeration_Kind
5688 and then not Is_Standard_Character_Type (Parent_Type)
5689 and then not Is_Generic_Type (Root_Type (Parent_Type)))
5690 then
5691 Full_N := New_Copy_Tree (N);
5692 Insert_After (N, Full_N);
5693 Build_Derived_Type (
5694 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
5696 else
5697 Build_Derived_Type (
5698 N, Parent_Type, Full_Der, True, Derive_Subps => False);
5699 end if;
5700 end Copy_And_Build;
5702 -- Start of processing for Build_Derived_Private_Type
5704 begin
5705 if Is_Tagged_Type (Parent_Type) then
5706 Full_P := Full_View (Parent_Type);
5708 -- A type extension of a type with unknown discriminants is an
5709 -- indefinite type that the back-end cannot handle directly.
5710 -- We treat it as a private type, and build a completion that is
5711 -- derived from the full view of the parent, and hopefully has
5712 -- known discriminants.
5714 -- If the full view of the parent type has an underlying record view,
5715 -- use it to generate the underlying record view of this derived type
5716 -- (required for chains of derivations with unknown discriminants).
5718 -- Minor optimization: we avoid the generation of useless underlying
5719 -- record view entities if the private type declaration has unknown
5720 -- discriminants but its corresponding full view has no
5721 -- discriminants.
5723 if Has_Unknown_Discriminants (Parent_Type)
5724 and then Present (Full_P)
5725 and then (Has_Discriminants (Full_P)
5726 or else Present (Underlying_Record_View (Full_P)))
5727 and then not In_Open_Scopes (Par_Scope)
5728 and then Expander_Active
5729 then
5730 declare
5731 Full_Der : constant Entity_Id :=
5732 Make_Defining_Identifier (Loc,
5733 Chars => New_Internal_Name ('T'));
5734 New_Ext : constant Node_Id :=
5735 Copy_Separate_Tree
5736 (Record_Extension_Part (Type_Definition (N)));
5737 Decl : Node_Id;
5739 begin
5740 Build_Derived_Record_Type
5741 (N, Parent_Type, Derived_Type, Derive_Subps);
5743 -- Build anonymous completion, as a derivation from the full
5744 -- view of the parent. This is not a completion in the usual
5745 -- sense, because the current type is not private.
5747 Decl :=
5748 Make_Full_Type_Declaration (Loc,
5749 Defining_Identifier => Full_Der,
5750 Type_Definition =>
5751 Make_Derived_Type_Definition (Loc,
5752 Subtype_Indication =>
5753 New_Copy_Tree
5754 (Subtype_Indication (Type_Definition (N))),
5755 Record_Extension_Part => New_Ext));
5757 -- If the parent type has an underlying record view, use it
5758 -- here to build the new underlying record view.
5760 if Present (Underlying_Record_View (Full_P)) then
5761 pragma Assert
5762 (Nkind (Subtype_Indication (Type_Definition (Decl)))
5763 = N_Identifier);
5764 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
5765 Underlying_Record_View (Full_P));
5766 end if;
5768 Install_Private_Declarations (Par_Scope);
5769 Install_Visible_Declarations (Par_Scope);
5770 Insert_Before (N, Decl);
5772 -- Mark entity as an underlying record view before analysis,
5773 -- to avoid generating the list of its primitive operations
5774 -- (which is not really required for this entity) and thus
5775 -- prevent spurious errors associated with missing overriding
5776 -- of abstract primitives (overridden only for Derived_Type).
5778 Set_Ekind (Full_Der, E_Record_Type);
5779 Set_Is_Underlying_Record_View (Full_Der);
5781 Analyze (Decl);
5783 pragma Assert (Has_Discriminants (Full_Der)
5784 and then not Has_Unknown_Discriminants (Full_Der));
5786 Uninstall_Declarations (Par_Scope);
5788 -- Freeze the underlying record view, to prevent generation of
5789 -- useless dispatching information, which is simply shared with
5790 -- the real derived type.
5792 Set_Is_Frozen (Full_Der);
5794 -- Set up links between real entity and underlying record view
5796 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
5797 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
5798 end;
5800 -- If discriminants are known, build derived record
5802 else
5803 Build_Derived_Record_Type
5804 (N, Parent_Type, Derived_Type, Derive_Subps);
5805 end if;
5807 return;
5809 elsif Has_Discriminants (Parent_Type) then
5810 if Present (Full_View (Parent_Type)) then
5811 if not Is_Completion then
5813 -- Copy declaration for subsequent analysis, to provide a
5814 -- completion for what is a private declaration. Indicate that
5815 -- the full type is internally generated.
5817 Full_Decl := New_Copy_Tree (N);
5818 Full_Der := New_Copy (Derived_Type);
5819 Set_Comes_From_Source (Full_Decl, False);
5820 Set_Comes_From_Source (Full_Der, False);
5822 Insert_After (N, Full_Decl);
5824 else
5825 -- If this is a completion, the full view being built is itself
5826 -- private. We build a subtype of the parent with the same
5827 -- constraints as this full view, to convey to the back end the
5828 -- constrained components and the size of this subtype. If the
5829 -- parent is constrained, its full view can serve as the
5830 -- underlying full view of the derived type.
5832 if No (Discriminant_Specifications (N)) then
5833 if Nkind (Subtype_Indication (Type_Definition (N))) =
5834 N_Subtype_Indication
5835 then
5836 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
5838 elsif Is_Constrained (Full_View (Parent_Type)) then
5839 Set_Underlying_Full_View
5840 (Derived_Type, Full_View (Parent_Type));
5841 end if;
5843 else
5844 -- If there are new discriminants, the parent subtype is
5845 -- constrained by them, but it is not clear how to build
5846 -- the Underlying_Full_View in this case???
5848 null;
5849 end if;
5850 end if;
5851 end if;
5853 -- Build partial view of derived type from partial view of parent
5855 Build_Derived_Record_Type
5856 (N, Parent_Type, Derived_Type, Derive_Subps);
5858 if Present (Full_View (Parent_Type)) and then not Is_Completion then
5859 if not In_Open_Scopes (Par_Scope)
5860 or else not In_Same_Source_Unit (N, Parent_Type)
5861 then
5862 -- Swap partial and full views temporarily
5864 Install_Private_Declarations (Par_Scope);
5865 Install_Visible_Declarations (Par_Scope);
5866 Swapped := True;
5867 end if;
5869 -- Build full view of derived type from full view of parent which
5870 -- is now installed. Subprograms have been derived on the partial
5871 -- view, the completion does not derive them anew.
5873 if not Is_Tagged_Type (Parent_Type) then
5875 -- If the parent is itself derived from another private type,
5876 -- installing the private declarations has not affected its
5877 -- privacy status, so use its own full view explicitly.
5879 if Is_Private_Type (Parent_Type) then
5880 Build_Derived_Record_Type
5881 (Full_Decl, Full_View (Parent_Type), Full_Der, False);
5882 else
5883 Build_Derived_Record_Type
5884 (Full_Decl, Parent_Type, Full_Der, False);
5885 end if;
5887 else
5888 -- If full view of parent is tagged, the completion inherits
5889 -- the proper primitive operations.
5891 Set_Defining_Identifier (Full_Decl, Full_Der);
5892 Build_Derived_Record_Type
5893 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
5894 Set_Analyzed (Full_Decl);
5895 end if;
5897 if Swapped then
5898 Uninstall_Declarations (Par_Scope);
5900 if In_Open_Scopes (Par_Scope) then
5901 Install_Visible_Declarations (Par_Scope);
5902 end if;
5903 end if;
5905 Der_Base := Base_Type (Derived_Type);
5906 Set_Full_View (Derived_Type, Full_Der);
5907 Set_Full_View (Der_Base, Base_Type (Full_Der));
5909 -- Copy the discriminant list from full view to the partial views
5910 -- (base type and its subtype). Gigi requires that the partial and
5911 -- full views have the same discriminants.
5913 -- Note that since the partial view is pointing to discriminants
5914 -- in the full view, their scope will be that of the full view.
5915 -- This might cause some front end problems and need adjustment???
5917 Discr := First_Discriminant (Base_Type (Full_Der));
5918 Set_First_Entity (Der_Base, Discr);
5920 loop
5921 Last_Discr := Discr;
5922 Next_Discriminant (Discr);
5923 exit when No (Discr);
5924 end loop;
5926 Set_Last_Entity (Der_Base, Last_Discr);
5928 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
5929 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
5930 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
5932 else
5933 -- If this is a completion, the derived type stays private and
5934 -- there is no need to create a further full view, except in the
5935 -- unusual case when the derivation is nested within a child unit,
5936 -- see below.
5938 null;
5939 end if;
5941 elsif Present (Full_View (Parent_Type))
5942 and then Has_Discriminants (Full_View (Parent_Type))
5943 then
5944 if Has_Unknown_Discriminants (Parent_Type)
5945 and then Nkind (Subtype_Indication (Type_Definition (N))) =
5946 N_Subtype_Indication
5947 then
5948 Error_Msg_N
5949 ("cannot constrain type with unknown discriminants",
5950 Subtype_Indication (Type_Definition (N)));
5951 return;
5952 end if;
5954 -- If full view of parent is a record type, build full view as a
5955 -- derivation from the parent's full view. Partial view remains
5956 -- private. For code generation and linking, the full view must have
5957 -- the same public status as the partial one. This full view is only
5958 -- needed if the parent type is in an enclosing scope, so that the
5959 -- full view may actually become visible, e.g. in a child unit. This
5960 -- is both more efficient, and avoids order of freezing problems with
5961 -- the added entities.
5963 if not Is_Private_Type (Full_View (Parent_Type))
5964 and then (In_Open_Scopes (Scope (Parent_Type)))
5965 then
5966 Full_Der := Make_Defining_Identifier (Sloc (Derived_Type),
5967 Chars (Derived_Type));
5968 Set_Is_Itype (Full_Der);
5969 Set_Has_Private_Declaration (Full_Der);
5970 Set_Has_Private_Declaration (Derived_Type);
5971 Set_Associated_Node_For_Itype (Full_Der, N);
5972 Set_Parent (Full_Der, Parent (Derived_Type));
5973 Set_Full_View (Derived_Type, Full_Der);
5974 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
5975 Full_P := Full_View (Parent_Type);
5976 Exchange_Declarations (Parent_Type);
5977 Copy_And_Build;
5978 Exchange_Declarations (Full_P);
5980 else
5981 Build_Derived_Record_Type
5982 (N, Full_View (Parent_Type), Derived_Type,
5983 Derive_Subps => False);
5984 end if;
5986 -- In any case, the primitive operations are inherited from the
5987 -- parent type, not from the internal full view.
5989 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
5991 if Derive_Subps then
5992 Derive_Subprograms (Parent_Type, Derived_Type);
5993 end if;
5995 else
5996 -- Untagged type, No discriminants on either view
5998 if Nkind (Subtype_Indication (Type_Definition (N))) =
5999 N_Subtype_Indication
6000 then
6001 Error_Msg_N
6002 ("illegal constraint on type without discriminants", N);
6003 end if;
6005 if Present (Discriminant_Specifications (N))
6006 and then Present (Full_View (Parent_Type))
6007 and then not Is_Tagged_Type (Full_View (Parent_Type))
6008 then
6009 Error_Msg_N ("cannot add discriminants to untagged type", N);
6010 end if;
6012 Set_Stored_Constraint (Derived_Type, No_Elist);
6013 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6014 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6015 Set_Has_Controlled_Component
6016 (Derived_Type, Has_Controlled_Component
6017 (Parent_Type));
6019 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6021 if not Is_Controlled (Parent_Type) then
6022 Set_Finalize_Storage_Only
6023 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
6024 end if;
6026 -- Construct the implicit full view by deriving from full view of the
6027 -- parent type. In order to get proper visibility, we install the
6028 -- parent scope and its declarations.
6030 -- ??? If the parent is untagged private and its completion is
6031 -- tagged, this mechanism will not work because we cannot derive from
6032 -- the tagged full view unless we have an extension.
6034 if Present (Full_View (Parent_Type))
6035 and then not Is_Tagged_Type (Full_View (Parent_Type))
6036 and then not Is_Completion
6037 then
6038 Full_Der :=
6039 Make_Defining_Identifier (Sloc (Derived_Type),
6040 Chars => Chars (Derived_Type));
6041 Set_Is_Itype (Full_Der);
6042 Set_Has_Private_Declaration (Full_Der);
6043 Set_Has_Private_Declaration (Derived_Type);
6044 Set_Associated_Node_For_Itype (Full_Der, N);
6045 Set_Parent (Full_Der, Parent (Derived_Type));
6046 Set_Full_View (Derived_Type, Full_Der);
6048 if not In_Open_Scopes (Par_Scope) then
6049 Install_Private_Declarations (Par_Scope);
6050 Install_Visible_Declarations (Par_Scope);
6051 Copy_And_Build;
6052 Uninstall_Declarations (Par_Scope);
6054 -- If parent scope is open and in another unit, and parent has a
6055 -- completion, then the derivation is taking place in the visible
6056 -- part of a child unit. In that case retrieve the full view of
6057 -- the parent momentarily.
6059 elsif not In_Same_Source_Unit (N, Parent_Type) then
6060 Full_P := Full_View (Parent_Type);
6061 Exchange_Declarations (Parent_Type);
6062 Copy_And_Build;
6063 Exchange_Declarations (Full_P);
6065 -- Otherwise it is a local derivation
6067 else
6068 Copy_And_Build;
6069 end if;
6071 Set_Scope (Full_Der, Current_Scope);
6072 Set_Is_First_Subtype (Full_Der,
6073 Is_First_Subtype (Derived_Type));
6074 Set_Has_Size_Clause (Full_Der, False);
6075 Set_Has_Alignment_Clause (Full_Der, False);
6076 Set_Next_Entity (Full_Der, Empty);
6077 Set_Has_Delayed_Freeze (Full_Der);
6078 Set_Is_Frozen (Full_Der, False);
6079 Set_Freeze_Node (Full_Der, Empty);
6080 Set_Depends_On_Private (Full_Der,
6081 Has_Private_Component (Full_Der));
6082 Set_Public_Status (Full_Der);
6083 end if;
6084 end if;
6086 Set_Has_Unknown_Discriminants (Derived_Type,
6087 Has_Unknown_Discriminants (Parent_Type));
6089 if Is_Private_Type (Derived_Type) then
6090 Set_Private_Dependents (Derived_Type, New_Elmt_List);
6091 end if;
6093 if Is_Private_Type (Parent_Type)
6094 and then Base_Type (Parent_Type) = Parent_Type
6095 and then In_Open_Scopes (Scope (Parent_Type))
6096 then
6097 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
6099 if Is_Child_Unit (Scope (Current_Scope))
6100 and then Is_Completion
6101 and then In_Private_Part (Current_Scope)
6102 and then Scope (Parent_Type) /= Current_Scope
6103 then
6104 -- This is the unusual case where a type completed by a private
6105 -- derivation occurs within a package nested in a child unit, and
6106 -- the parent is declared in an ancestor. In this case, the full
6107 -- view of the parent type will become visible in the body of
6108 -- the enclosing child, and only then will the current type be
6109 -- possibly non-private. We build a underlying full view that
6110 -- will be installed when the enclosing child body is compiled.
6112 Full_Der :=
6113 Make_Defining_Identifier (Sloc (Derived_Type),
6114 Chars => Chars (Derived_Type));
6115 Set_Is_Itype (Full_Der);
6116 Build_Itype_Reference (Full_Der, N);
6118 -- The full view will be used to swap entities on entry/exit to
6119 -- the body, and must appear in the entity list for the package.
6121 Append_Entity (Full_Der, Scope (Derived_Type));
6122 Set_Has_Private_Declaration (Full_Der);
6123 Set_Has_Private_Declaration (Derived_Type);
6124 Set_Associated_Node_For_Itype (Full_Der, N);
6125 Set_Parent (Full_Der, Parent (Derived_Type));
6126 Full_P := Full_View (Parent_Type);
6127 Exchange_Declarations (Parent_Type);
6128 Copy_And_Build;
6129 Exchange_Declarations (Full_P);
6130 Set_Underlying_Full_View (Derived_Type, Full_Der);
6131 end if;
6132 end if;
6133 end Build_Derived_Private_Type;
6135 -------------------------------
6136 -- Build_Derived_Record_Type --
6137 -------------------------------
6139 -- 1. INTRODUCTION
6141 -- Ideally we would like to use the same model of type derivation for
6142 -- tagged and untagged record types. Unfortunately this is not quite
6143 -- possible because the semantics of representation clauses is different
6144 -- for tagged and untagged records under inheritance. Consider the
6145 -- following:
6147 -- type R (...) is [tagged] record ... end record;
6148 -- type T (...) is new R (...) [with ...];
6150 -- The representation clauses for T can specify a completely different
6151 -- record layout from R's. Hence the same component can be placed in two
6152 -- very different positions in objects of type T and R. If R and T are
6153 -- tagged types, representation clauses for T can only specify the layout
6154 -- of non inherited components, thus components that are common in R and T
6155 -- have the same position in objects of type R and T.
6157 -- This has two implications. The first is that the entire tree for R's
6158 -- declaration needs to be copied for T in the untagged case, so that T
6159 -- can be viewed as a record type of its own with its own representation
6160 -- clauses. The second implication is the way we handle discriminants.
6161 -- Specifically, in the untagged case we need a way to communicate to Gigi
6162 -- what are the real discriminants in the record, while for the semantics
6163 -- we need to consider those introduced by the user to rename the
6164 -- discriminants in the parent type. This is handled by introducing the
6165 -- notion of stored discriminants. See below for more.
6167 -- Fortunately the way regular components are inherited can be handled in
6168 -- the same way in tagged and untagged types.
6170 -- To complicate things a bit more the private view of a private extension
6171 -- cannot be handled in the same way as the full view (for one thing the
6172 -- semantic rules are somewhat different). We will explain what differs
6173 -- below.
6175 -- 2. DISCRIMINANTS UNDER INHERITANCE
6177 -- The semantic rules governing the discriminants of derived types are
6178 -- quite subtle.
6180 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
6181 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
6183 -- If parent type has discriminants, then the discriminants that are
6184 -- declared in the derived type are [3.4 (11)]:
6186 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
6187 -- there is one;
6189 -- o Otherwise, each discriminant of the parent type (implicitly declared
6190 -- in the same order with the same specifications). In this case, the
6191 -- discriminants are said to be "inherited", or if unknown in the parent
6192 -- are also unknown in the derived type.
6194 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
6196 -- o The parent subtype shall be constrained;
6198 -- o If the parent type is not a tagged type, then each discriminant of
6199 -- the derived type shall be used in the constraint defining a parent
6200 -- subtype. [Implementation note: This ensures that the new discriminant
6201 -- can share storage with an existing discriminant.]
6203 -- For the derived type each discriminant of the parent type is either
6204 -- inherited, constrained to equal some new discriminant of the derived
6205 -- type, or constrained to the value of an expression.
6207 -- When inherited or constrained to equal some new discriminant, the
6208 -- parent discriminant and the discriminant of the derived type are said
6209 -- to "correspond".
6211 -- If a discriminant of the parent type is constrained to a specific value
6212 -- in the derived type definition, then the discriminant is said to be
6213 -- "specified" by that derived type definition.
6215 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
6217 -- We have spoken about stored discriminants in point 1 (introduction)
6218 -- above. There are two sort of stored discriminants: implicit and
6219 -- explicit. As long as the derived type inherits the same discriminants as
6220 -- the root record type, stored discriminants are the same as regular
6221 -- discriminants, and are said to be implicit. However, if any discriminant
6222 -- in the root type was renamed in the derived type, then the derived
6223 -- type will contain explicit stored discriminants. Explicit stored
6224 -- discriminants are discriminants in addition to the semantically visible
6225 -- discriminants defined for the derived type. Stored discriminants are
6226 -- used by Gigi to figure out what are the physical discriminants in
6227 -- objects of the derived type (see precise definition in einfo.ads).
6228 -- As an example, consider the following:
6230 -- type R (D1, D2, D3 : Int) is record ... end record;
6231 -- type T1 is new R;
6232 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
6233 -- type T3 is new T2;
6234 -- type T4 (Y : Int) is new T3 (Y, 99);
6236 -- The following table summarizes the discriminants and stored
6237 -- discriminants in R and T1 through T4.
6239 -- Type Discrim Stored Discrim Comment
6240 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
6241 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
6242 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
6243 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
6244 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
6246 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
6247 -- find the corresponding discriminant in the parent type, while
6248 -- Original_Record_Component (abbreviated ORC below), the actual physical
6249 -- component that is renamed. Finally the field Is_Completely_Hidden
6250 -- (abbreviated ICH below) is set for all explicit stored discriminants
6251 -- (see einfo.ads for more info). For the above example this gives:
6253 -- Discrim CD ORC ICH
6254 -- ^^^^^^^ ^^ ^^^ ^^^
6255 -- D1 in R empty itself no
6256 -- D2 in R empty itself no
6257 -- D3 in R empty itself no
6259 -- D1 in T1 D1 in R itself no
6260 -- D2 in T1 D2 in R itself no
6261 -- D3 in T1 D3 in R itself no
6263 -- X1 in T2 D3 in T1 D3 in T2 no
6264 -- X2 in T2 D1 in T1 D1 in T2 no
6265 -- D1 in T2 empty itself yes
6266 -- D2 in T2 empty itself yes
6267 -- D3 in T2 empty itself yes
6269 -- X1 in T3 X1 in T2 D3 in T3 no
6270 -- X2 in T3 X2 in T2 D1 in T3 no
6271 -- D1 in T3 empty itself yes
6272 -- D2 in T3 empty itself yes
6273 -- D3 in T3 empty itself yes
6275 -- Y in T4 X1 in T3 D3 in T3 no
6276 -- D1 in T3 empty itself yes
6277 -- D2 in T3 empty itself yes
6278 -- D3 in T3 empty itself yes
6280 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
6282 -- Type derivation for tagged types is fairly straightforward. If no
6283 -- discriminants are specified by the derived type, these are inherited
6284 -- from the parent. No explicit stored discriminants are ever necessary.
6285 -- The only manipulation that is done to the tree is that of adding a
6286 -- _parent field with parent type and constrained to the same constraint
6287 -- specified for the parent in the derived type definition. For instance:
6289 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
6290 -- type T1 is new R with null record;
6291 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
6293 -- are changed into:
6295 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
6296 -- _parent : R (D1, D2, D3);
6297 -- end record;
6299 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
6300 -- _parent : T1 (X2, 88, X1);
6301 -- end record;
6303 -- The discriminants actually present in R, T1 and T2 as well as their CD,
6304 -- ORC and ICH fields are:
6306 -- Discrim CD ORC ICH
6307 -- ^^^^^^^ ^^ ^^^ ^^^
6308 -- D1 in R empty itself no
6309 -- D2 in R empty itself no
6310 -- D3 in R empty itself no
6312 -- D1 in T1 D1 in R D1 in R no
6313 -- D2 in T1 D2 in R D2 in R no
6314 -- D3 in T1 D3 in R D3 in R no
6316 -- X1 in T2 D3 in T1 D3 in R no
6317 -- X2 in T2 D1 in T1 D1 in R no
6319 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
6321 -- Regardless of whether we dealing with a tagged or untagged type
6322 -- we will transform all derived type declarations of the form
6324 -- type T is new R (...) [with ...];
6325 -- or
6326 -- subtype S is R (...);
6327 -- type T is new S [with ...];
6328 -- into
6329 -- type BT is new R [with ...];
6330 -- subtype T is BT (...);
6332 -- That is, the base derived type is constrained only if it has no
6333 -- discriminants. The reason for doing this is that GNAT's semantic model
6334 -- assumes that a base type with discriminants is unconstrained.
6336 -- Note that, strictly speaking, the above transformation is not always
6337 -- correct. Consider for instance the following excerpt from ACVC b34011a:
6339 -- procedure B34011A is
6340 -- type REC (D : integer := 0) is record
6341 -- I : Integer;
6342 -- end record;
6344 -- package P is
6345 -- type T6 is new Rec;
6346 -- function F return T6;
6347 -- end P;
6349 -- use P;
6350 -- package Q6 is
6351 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
6352 -- end Q6;
6354 -- The definition of Q6.U is illegal. However transforming Q6.U into
6356 -- type BaseU is new T6;
6357 -- subtype U is BaseU (Q6.F.I)
6359 -- turns U into a legal subtype, which is incorrect. To avoid this problem
6360 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
6361 -- the transformation described above.
6363 -- There is another instance where the above transformation is incorrect.
6364 -- Consider:
6366 -- package Pack is
6367 -- type Base (D : Integer) is tagged null record;
6368 -- procedure P (X : Base);
6370 -- type Der is new Base (2) with null record;
6371 -- procedure P (X : Der);
6372 -- end Pack;
6374 -- Then the above transformation turns this into
6376 -- type Der_Base is new Base with null record;
6377 -- -- procedure P (X : Base) is implicitly inherited here
6378 -- -- as procedure P (X : Der_Base).
6380 -- subtype Der is Der_Base (2);
6381 -- procedure P (X : Der);
6382 -- -- The overriding of P (X : Der_Base) is illegal since we
6383 -- -- have a parameter conformance problem.
6385 -- To get around this problem, after having semantically processed Der_Base
6386 -- and the rewritten subtype declaration for Der, we copy Der_Base field
6387 -- Discriminant_Constraint from Der so that when parameter conformance is
6388 -- checked when P is overridden, no semantic errors are flagged.
6390 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
6392 -- Regardless of whether we are dealing with a tagged or untagged type
6393 -- we will transform all derived type declarations of the form
6395 -- type R (D1, .., Dn : ...) is [tagged] record ...;
6396 -- type T is new R [with ...];
6397 -- into
6398 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
6400 -- The reason for such transformation is that it allows us to implement a
6401 -- very clean form of component inheritance as explained below.
6403 -- Note that this transformation is not achieved by direct tree rewriting
6404 -- and manipulation, but rather by redoing the semantic actions that the
6405 -- above transformation will entail. This is done directly in routine
6406 -- Inherit_Components.
6408 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
6410 -- In both tagged and untagged derived types, regular non discriminant
6411 -- components are inherited in the derived type from the parent type. In
6412 -- the absence of discriminants component, inheritance is straightforward
6413 -- as components can simply be copied from the parent.
6415 -- If the parent has discriminants, inheriting components constrained with
6416 -- these discriminants requires caution. Consider the following example:
6418 -- type R (D1, D2 : Positive) is [tagged] record
6419 -- S : String (D1 .. D2);
6420 -- end record;
6422 -- type T1 is new R [with null record];
6423 -- type T2 (X : positive) is new R (1, X) [with null record];
6425 -- As explained in 6. above, T1 is rewritten as
6426 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
6427 -- which makes the treatment for T1 and T2 identical.
6429 -- What we want when inheriting S, is that references to D1 and D2 in R are
6430 -- replaced with references to their correct constraints, i.e. D1 and D2 in
6431 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
6432 -- with either discriminant references in the derived type or expressions.
6433 -- This replacement is achieved as follows: before inheriting R's
6434 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
6435 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
6436 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
6437 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
6438 -- by String (1 .. X).
6440 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
6442 -- We explain here the rules governing private type extensions relevant to
6443 -- type derivation. These rules are explained on the following example:
6445 -- type D [(...)] is new A [(...)] with private; <-- partial view
6446 -- type D [(...)] is new P [(...)] with null record; <-- full view
6448 -- Type A is called the ancestor subtype of the private extension.
6449 -- Type P is the parent type of the full view of the private extension. It
6450 -- must be A or a type derived from A.
6452 -- The rules concerning the discriminants of private type extensions are
6453 -- [7.3(10-13)]:
6455 -- o If a private extension inherits known discriminants from the ancestor
6456 -- subtype, then the full view shall also inherit its discriminants from
6457 -- the ancestor subtype and the parent subtype of the full view shall be
6458 -- constrained if and only if the ancestor subtype is constrained.
6460 -- o If a partial view has unknown discriminants, then the full view may
6461 -- define a definite or an indefinite subtype, with or without
6462 -- discriminants.
6464 -- o If a partial view has neither known nor unknown discriminants, then
6465 -- the full view shall define a definite subtype.
6467 -- o If the ancestor subtype of a private extension has constrained
6468 -- discriminants, then the parent subtype of the full view shall impose a
6469 -- statically matching constraint on those discriminants.
6471 -- This means that only the following forms of private extensions are
6472 -- allowed:
6474 -- type D is new A with private; <-- partial view
6475 -- type D is new P with null record; <-- full view
6477 -- If A has no discriminants than P has no discriminants, otherwise P must
6478 -- inherit A's discriminants.
6480 -- type D is new A (...) with private; <-- partial view
6481 -- type D is new P (:::) with null record; <-- full view
6483 -- P must inherit A's discriminants and (...) and (:::) must statically
6484 -- match.
6486 -- subtype A is R (...);
6487 -- type D is new A with private; <-- partial view
6488 -- type D is new P with null record; <-- full view
6490 -- P must have inherited R's discriminants and must be derived from A or
6491 -- any of its subtypes.
6493 -- type D (..) is new A with private; <-- partial view
6494 -- type D (..) is new P [(:::)] with null record; <-- full view
6496 -- No specific constraints on P's discriminants or constraint (:::).
6497 -- Note that A can be unconstrained, but the parent subtype P must either
6498 -- be constrained or (:::) must be present.
6500 -- type D (..) is new A [(...)] with private; <-- partial view
6501 -- type D (..) is new P [(:::)] with null record; <-- full view
6503 -- P's constraints on A's discriminants must statically match those
6504 -- imposed by (...).
6506 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
6508 -- The full view of a private extension is handled exactly as described
6509 -- above. The model chose for the private view of a private extension is
6510 -- the same for what concerns discriminants (i.e. they receive the same
6511 -- treatment as in the tagged case). However, the private view of the
6512 -- private extension always inherits the components of the parent base,
6513 -- without replacing any discriminant reference. Strictly speaking this is
6514 -- incorrect. However, Gigi never uses this view to generate code so this
6515 -- is a purely semantic issue. In theory, a set of transformations similar
6516 -- to those given in 5. and 6. above could be applied to private views of
6517 -- private extensions to have the same model of component inheritance as
6518 -- for non private extensions. However, this is not done because it would
6519 -- further complicate private type processing. Semantically speaking, this
6520 -- leaves us in an uncomfortable situation. As an example consider:
6522 -- package Pack is
6523 -- type R (D : integer) is tagged record
6524 -- S : String (1 .. D);
6525 -- end record;
6526 -- procedure P (X : R);
6527 -- type T is new R (1) with private;
6528 -- private
6529 -- type T is new R (1) with null record;
6530 -- end;
6532 -- This is transformed into:
6534 -- package Pack is
6535 -- type R (D : integer) is tagged record
6536 -- S : String (1 .. D);
6537 -- end record;
6538 -- procedure P (X : R);
6539 -- type T is new R (1) with private;
6540 -- private
6541 -- type BaseT is new R with null record;
6542 -- subtype T is BaseT (1);
6543 -- end;
6545 -- (strictly speaking the above is incorrect Ada)
6547 -- From the semantic standpoint the private view of private extension T
6548 -- should be flagged as constrained since one can clearly have
6550 -- Obj : T;
6552 -- in a unit withing Pack. However, when deriving subprograms for the
6553 -- private view of private extension T, T must be seen as unconstrained
6554 -- since T has discriminants (this is a constraint of the current
6555 -- subprogram derivation model). Thus, when processing the private view of
6556 -- a private extension such as T, we first mark T as unconstrained, we
6557 -- process it, we perform program derivation and just before returning from
6558 -- Build_Derived_Record_Type we mark T as constrained.
6560 -- ??? Are there are other uncomfortable cases that we will have to
6561 -- deal with.
6563 -- 10. RECORD_TYPE_WITH_PRIVATE complications
6565 -- Types that are derived from a visible record type and have a private
6566 -- extension present other peculiarities. They behave mostly like private
6567 -- types, but if they have primitive operations defined, these will not
6568 -- have the proper signatures for further inheritance, because other
6569 -- primitive operations will use the implicit base that we define for
6570 -- private derivations below. This affect subprogram inheritance (see
6571 -- Derive_Subprograms for details). We also derive the implicit base from
6572 -- the base type of the full view, so that the implicit base is a record
6573 -- type and not another private type, This avoids infinite loops.
6575 procedure Build_Derived_Record_Type
6576 (N : Node_Id;
6577 Parent_Type : Entity_Id;
6578 Derived_Type : Entity_Id;
6579 Derive_Subps : Boolean := True)
6581 Loc : constant Source_Ptr := Sloc (N);
6582 Parent_Base : Entity_Id;
6583 Type_Def : Node_Id;
6584 Indic : Node_Id;
6585 Discrim : Entity_Id;
6586 Last_Discrim : Entity_Id;
6587 Constrs : Elist_Id;
6589 Discs : Elist_Id := New_Elmt_List;
6590 -- An empty Discs list means that there were no constraints in the
6591 -- subtype indication or that there was an error processing it.
6593 Assoc_List : Elist_Id;
6594 New_Discrs : Elist_Id;
6595 New_Base : Entity_Id;
6596 New_Decl : Node_Id;
6597 New_Indic : Node_Id;
6599 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
6600 Discriminant_Specs : constant Boolean :=
6601 Present (Discriminant_Specifications (N));
6602 Private_Extension : constant Boolean :=
6603 Nkind (N) = N_Private_Extension_Declaration;
6605 Constraint_Present : Boolean;
6606 Inherit_Discrims : Boolean := False;
6607 Save_Etype : Entity_Id;
6608 Save_Discr_Constr : Elist_Id;
6609 Save_Next_Entity : Entity_Id;
6611 begin
6612 if Ekind (Parent_Type) = E_Record_Type_With_Private
6613 and then Present (Full_View (Parent_Type))
6614 and then Has_Discriminants (Parent_Type)
6615 then
6616 Parent_Base := Base_Type (Full_View (Parent_Type));
6617 else
6618 Parent_Base := Base_Type (Parent_Type);
6619 end if;
6621 -- Before we start the previously documented transformations, here is
6622 -- little fix for size and alignment of tagged types. Normally when we
6623 -- derive type D from type P, we copy the size and alignment of P as the
6624 -- default for D, and in the absence of explicit representation clauses
6625 -- for D, the size and alignment are indeed the same as the parent.
6627 -- But this is wrong for tagged types, since fields may be added, and
6628 -- the default size may need to be larger, and the default alignment may
6629 -- need to be larger.
6631 -- We therefore reset the size and alignment fields in the tagged case.
6632 -- Note that the size and alignment will in any case be at least as
6633 -- large as the parent type (since the derived type has a copy of the
6634 -- parent type in the _parent field)
6636 -- The type is also marked as being tagged here, which is needed when
6637 -- processing components with a self-referential anonymous access type
6638 -- in the call to Check_Anonymous_Access_Components below. Note that
6639 -- this flag is also set later on for completeness.
6641 if Is_Tagged then
6642 Set_Is_Tagged_Type (Derived_Type);
6643 Init_Size_Align (Derived_Type);
6644 end if;
6646 -- STEP 0a: figure out what kind of derived type declaration we have
6648 if Private_Extension then
6649 Type_Def := N;
6650 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
6652 else
6653 Type_Def := Type_Definition (N);
6655 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
6656 -- Parent_Base can be a private type or private extension. However,
6657 -- for tagged types with an extension the newly added fields are
6658 -- visible and hence the Derived_Type is always an E_Record_Type.
6659 -- (except that the parent may have its own private fields).
6660 -- For untagged types we preserve the Ekind of the Parent_Base.
6662 if Present (Record_Extension_Part (Type_Def)) then
6663 Set_Ekind (Derived_Type, E_Record_Type);
6665 -- Create internal access types for components with anonymous
6666 -- access types.
6668 if Ada_Version >= Ada_05 then
6669 Check_Anonymous_Access_Components
6670 (N, Derived_Type, Derived_Type,
6671 Component_List (Record_Extension_Part (Type_Def)));
6672 end if;
6674 else
6675 Set_Ekind (Derived_Type, Ekind (Parent_Base));
6676 end if;
6677 end if;
6679 -- Indic can either be an N_Identifier if the subtype indication
6680 -- contains no constraint or an N_Subtype_Indication if the subtype
6681 -- indication has a constraint.
6683 Indic := Subtype_Indication (Type_Def);
6684 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
6686 -- Check that the type has visible discriminants. The type may be
6687 -- a private type with unknown discriminants whose full view has
6688 -- discriminants which are invisible.
6690 if Constraint_Present then
6691 if not Has_Discriminants (Parent_Base)
6692 or else
6693 (Has_Unknown_Discriminants (Parent_Base)
6694 and then Is_Private_Type (Parent_Base))
6695 then
6696 Error_Msg_N
6697 ("invalid constraint: type has no discriminant",
6698 Constraint (Indic));
6700 Constraint_Present := False;
6701 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
6703 elsif Is_Constrained (Parent_Type) then
6704 Error_Msg_N
6705 ("invalid constraint: parent type is already constrained",
6706 Constraint (Indic));
6708 Constraint_Present := False;
6709 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
6710 end if;
6711 end if;
6713 -- STEP 0b: If needed, apply transformation given in point 5. above
6715 if not Private_Extension
6716 and then Has_Discriminants (Parent_Type)
6717 and then not Discriminant_Specs
6718 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
6719 then
6720 -- First, we must analyze the constraint (see comment in point 5.)
6722 if Constraint_Present then
6723 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
6725 if Has_Discriminants (Derived_Type)
6726 and then Has_Private_Declaration (Derived_Type)
6727 and then Present (Discriminant_Constraint (Derived_Type))
6728 then
6729 -- Verify that constraints of the full view statically match
6730 -- those given in the partial view.
6732 declare
6733 C1, C2 : Elmt_Id;
6735 begin
6736 C1 := First_Elmt (New_Discrs);
6737 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
6738 while Present (C1) and then Present (C2) loop
6739 if Fully_Conformant_Expressions (Node (C1), Node (C2))
6740 or else
6741 (Is_OK_Static_Expression (Node (C1))
6742 and then
6743 Is_OK_Static_Expression (Node (C2))
6744 and then
6745 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
6746 then
6747 null;
6749 else
6750 Error_Msg_N (
6751 "constraint not conformant to previous declaration",
6752 Node (C1));
6753 end if;
6755 Next_Elmt (C1);
6756 Next_Elmt (C2);
6757 end loop;
6758 end;
6759 end if;
6760 end if;
6762 -- Insert and analyze the declaration for the unconstrained base type
6764 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
6766 New_Decl :=
6767 Make_Full_Type_Declaration (Loc,
6768 Defining_Identifier => New_Base,
6769 Type_Definition =>
6770 Make_Derived_Type_Definition (Loc,
6771 Abstract_Present => Abstract_Present (Type_Def),
6772 Limited_Present => Limited_Present (Type_Def),
6773 Subtype_Indication =>
6774 New_Occurrence_Of (Parent_Base, Loc),
6775 Record_Extension_Part =>
6776 Relocate_Node (Record_Extension_Part (Type_Def)),
6777 Interface_List => Interface_List (Type_Def)));
6779 Set_Parent (New_Decl, Parent (N));
6780 Mark_Rewrite_Insertion (New_Decl);
6781 Insert_Before (N, New_Decl);
6783 -- Note that this call passes False for the Derive_Subps parameter
6784 -- because subprogram derivation is deferred until after creating
6785 -- the subtype (see below).
6787 Build_Derived_Type
6788 (New_Decl, Parent_Base, New_Base,
6789 Is_Completion => True, Derive_Subps => False);
6791 -- ??? This needs re-examination to determine whether the
6792 -- above call can simply be replaced by a call to Analyze.
6794 Set_Analyzed (New_Decl);
6796 -- Insert and analyze the declaration for the constrained subtype
6798 if Constraint_Present then
6799 New_Indic :=
6800 Make_Subtype_Indication (Loc,
6801 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
6802 Constraint => Relocate_Node (Constraint (Indic)));
6804 else
6805 declare
6806 Constr_List : constant List_Id := New_List;
6807 C : Elmt_Id;
6808 Expr : Node_Id;
6810 begin
6811 C := First_Elmt (Discriminant_Constraint (Parent_Type));
6812 while Present (C) loop
6813 Expr := Node (C);
6815 -- It is safe here to call New_Copy_Tree since
6816 -- Force_Evaluation was called on each constraint in
6817 -- Build_Discriminant_Constraints.
6819 Append (New_Copy_Tree (Expr), To => Constr_List);
6821 Next_Elmt (C);
6822 end loop;
6824 New_Indic :=
6825 Make_Subtype_Indication (Loc,
6826 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
6827 Constraint =>
6828 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
6829 end;
6830 end if;
6832 Rewrite (N,
6833 Make_Subtype_Declaration (Loc,
6834 Defining_Identifier => Derived_Type,
6835 Subtype_Indication => New_Indic));
6837 Analyze (N);
6839 -- Derivation of subprograms must be delayed until the full subtype
6840 -- has been established to ensure proper overriding of subprograms
6841 -- inherited by full types. If the derivations occurred as part of
6842 -- the call to Build_Derived_Type above, then the check for type
6843 -- conformance would fail because earlier primitive subprograms
6844 -- could still refer to the full type prior the change to the new
6845 -- subtype and hence would not match the new base type created here.
6847 Derive_Subprograms (Parent_Type, Derived_Type);
6849 -- For tagged types the Discriminant_Constraint of the new base itype
6850 -- is inherited from the first subtype so that no subtype conformance
6851 -- problem arise when the first subtype overrides primitive
6852 -- operations inherited by the implicit base type.
6854 if Is_Tagged then
6855 Set_Discriminant_Constraint
6856 (New_Base, Discriminant_Constraint (Derived_Type));
6857 end if;
6859 return;
6860 end if;
6862 -- If we get here Derived_Type will have no discriminants or it will be
6863 -- a discriminated unconstrained base type.
6865 -- STEP 1a: perform preliminary actions/checks for derived tagged types
6867 if Is_Tagged then
6869 -- The parent type is frozen for non-private extensions (RM 13.14(7))
6870 -- The declaration of a specific descendant of an interface type
6871 -- freezes the interface type (RM 13.14).
6873 if not Private_Extension
6874 or else Is_Interface (Parent_Base)
6875 then
6876 Freeze_Before (N, Parent_Type);
6877 end if;
6879 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
6880 -- cannot be declared at a deeper level than its parent type is
6881 -- removed. The check on derivation within a generic body is also
6882 -- relaxed, but there's a restriction that a derived tagged type
6883 -- cannot be declared in a generic body if it's derived directly
6884 -- or indirectly from a formal type of that generic.
6886 if Ada_Version >= Ada_05 then
6887 if Present (Enclosing_Generic_Body (Derived_Type)) then
6888 declare
6889 Ancestor_Type : Entity_Id;
6891 begin
6892 -- Check to see if any ancestor of the derived type is a
6893 -- formal type.
6895 Ancestor_Type := Parent_Type;
6896 while not Is_Generic_Type (Ancestor_Type)
6897 and then Etype (Ancestor_Type) /= Ancestor_Type
6898 loop
6899 Ancestor_Type := Etype (Ancestor_Type);
6900 end loop;
6902 -- If the derived type does have a formal type as an
6903 -- ancestor, then it's an error if the derived type is
6904 -- declared within the body of the generic unit that
6905 -- declares the formal type in its generic formal part. It's
6906 -- sufficient to check whether the ancestor type is declared
6907 -- inside the same generic body as the derived type (such as
6908 -- within a nested generic spec), in which case the
6909 -- derivation is legal. If the formal type is declared
6910 -- outside of that generic body, then it's guaranteed that
6911 -- the derived type is declared within the generic body of
6912 -- the generic unit declaring the formal type.
6914 if Is_Generic_Type (Ancestor_Type)
6915 and then Enclosing_Generic_Body (Ancestor_Type) /=
6916 Enclosing_Generic_Body (Derived_Type)
6917 then
6918 Error_Msg_NE
6919 ("parent type of& must not be descendant of formal type"
6920 & " of an enclosing generic body",
6921 Indic, Derived_Type);
6922 end if;
6923 end;
6924 end if;
6926 elsif Type_Access_Level (Derived_Type) /=
6927 Type_Access_Level (Parent_Type)
6928 and then not Is_Generic_Type (Derived_Type)
6929 then
6930 if Is_Controlled (Parent_Type) then
6931 Error_Msg_N
6932 ("controlled type must be declared at the library level",
6933 Indic);
6934 else
6935 Error_Msg_N
6936 ("type extension at deeper accessibility level than parent",
6937 Indic);
6938 end if;
6940 else
6941 declare
6942 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
6944 begin
6945 if Present (GB)
6946 and then GB /= Enclosing_Generic_Body (Parent_Base)
6947 then
6948 Error_Msg_NE
6949 ("parent type of& must not be outside generic body"
6950 & " (RM 3.9.1(4))",
6951 Indic, Derived_Type);
6952 end if;
6953 end;
6954 end if;
6955 end if;
6957 -- Ada 2005 (AI-251)
6959 if Ada_Version = Ada_05
6960 and then Is_Tagged
6961 then
6962 -- "The declaration of a specific descendant of an interface type
6963 -- freezes the interface type" (RM 13.14).
6965 declare
6966 Iface : Node_Id;
6967 begin
6968 if Is_Non_Empty_List (Interface_List (Type_Def)) then
6969 Iface := First (Interface_List (Type_Def));
6970 while Present (Iface) loop
6971 Freeze_Before (N, Etype (Iface));
6972 Next (Iface);
6973 end loop;
6974 end if;
6975 end;
6976 end if;
6978 -- STEP 1b : preliminary cleanup of the full view of private types
6980 -- If the type is already marked as having discriminants, then it's the
6981 -- completion of a private type or private extension and we need to
6982 -- retain the discriminants from the partial view if the current
6983 -- declaration has Discriminant_Specifications so that we can verify
6984 -- conformance. However, we must remove any existing components that
6985 -- were inherited from the parent (and attached in Copy_And_Swap)
6986 -- because the full type inherits all appropriate components anyway, and
6987 -- we do not want the partial view's components interfering.
6989 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
6990 Discrim := First_Discriminant (Derived_Type);
6991 loop
6992 Last_Discrim := Discrim;
6993 Next_Discriminant (Discrim);
6994 exit when No (Discrim);
6995 end loop;
6997 Set_Last_Entity (Derived_Type, Last_Discrim);
6999 -- In all other cases wipe out the list of inherited components (even
7000 -- inherited discriminants), it will be properly rebuilt here.
7002 else
7003 Set_First_Entity (Derived_Type, Empty);
7004 Set_Last_Entity (Derived_Type, Empty);
7005 end if;
7007 -- STEP 1c: Initialize some flags for the Derived_Type
7009 -- The following flags must be initialized here so that
7010 -- Process_Discriminants can check that discriminants of tagged types do
7011 -- not have a default initial value and that access discriminants are
7012 -- only specified for limited records. For completeness, these flags are
7013 -- also initialized along with all the other flags below.
7015 -- AI-419: Limitedness is not inherited from an interface parent, so to
7016 -- be limited in that case the type must be explicitly declared as
7017 -- limited. However, task and protected interfaces are always limited.
7019 if Limited_Present (Type_Def) then
7020 Set_Is_Limited_Record (Derived_Type);
7022 elsif Is_Limited_Record (Parent_Type)
7023 or else (Present (Full_View (Parent_Type))
7024 and then Is_Limited_Record (Full_View (Parent_Type)))
7025 then
7026 if not Is_Interface (Parent_Type)
7027 or else Is_Synchronized_Interface (Parent_Type)
7028 or else Is_Protected_Interface (Parent_Type)
7029 or else Is_Task_Interface (Parent_Type)
7030 then
7031 Set_Is_Limited_Record (Derived_Type);
7032 end if;
7033 end if;
7035 -- STEP 2a: process discriminants of derived type if any
7037 Push_Scope (Derived_Type);
7039 if Discriminant_Specs then
7040 Set_Has_Unknown_Discriminants (Derived_Type, False);
7042 -- The following call initializes fields Has_Discriminants and
7043 -- Discriminant_Constraint, unless we are processing the completion
7044 -- of a private type declaration.
7046 Check_Or_Process_Discriminants (N, Derived_Type);
7048 -- For non-tagged types the constraint on the Parent_Type must be
7049 -- present and is used to rename the discriminants.
7051 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
7052 Error_Msg_N ("untagged parent must have discriminants", Indic);
7054 elsif not Is_Tagged and then not Constraint_Present then
7055 Error_Msg_N
7056 ("discriminant constraint needed for derived untagged records",
7057 Indic);
7059 -- Otherwise the parent subtype must be constrained unless we have a
7060 -- private extension.
7062 elsif not Constraint_Present
7063 and then not Private_Extension
7064 and then not Is_Constrained (Parent_Type)
7065 then
7066 Error_Msg_N
7067 ("unconstrained type not allowed in this context", Indic);
7069 elsif Constraint_Present then
7070 -- The following call sets the field Corresponding_Discriminant
7071 -- for the discriminants in the Derived_Type.
7073 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
7075 -- For untagged types all new discriminants must rename
7076 -- discriminants in the parent. For private extensions new
7077 -- discriminants cannot rename old ones (implied by [7.3(13)]).
7079 Discrim := First_Discriminant (Derived_Type);
7080 while Present (Discrim) loop
7081 if not Is_Tagged
7082 and then No (Corresponding_Discriminant (Discrim))
7083 then
7084 Error_Msg_N
7085 ("new discriminants must constrain old ones", Discrim);
7087 elsif Private_Extension
7088 and then Present (Corresponding_Discriminant (Discrim))
7089 then
7090 Error_Msg_N
7091 ("only static constraints allowed for parent"
7092 & " discriminants in the partial view", Indic);
7093 exit;
7094 end if;
7096 -- If a new discriminant is used in the constraint, then its
7097 -- subtype must be statically compatible with the parent
7098 -- discriminant's subtype (3.7(15)).
7100 if Present (Corresponding_Discriminant (Discrim))
7101 and then
7102 not Subtypes_Statically_Compatible
7103 (Etype (Discrim),
7104 Etype (Corresponding_Discriminant (Discrim)))
7105 then
7106 Error_Msg_N
7107 ("subtype must be compatible with parent discriminant",
7108 Discrim);
7109 end if;
7111 Next_Discriminant (Discrim);
7112 end loop;
7114 -- Check whether the constraints of the full view statically
7115 -- match those imposed by the parent subtype [7.3(13)].
7117 if Present (Stored_Constraint (Derived_Type)) then
7118 declare
7119 C1, C2 : Elmt_Id;
7121 begin
7122 C1 := First_Elmt (Discs);
7123 C2 := First_Elmt (Stored_Constraint (Derived_Type));
7124 while Present (C1) and then Present (C2) loop
7125 if not
7126 Fully_Conformant_Expressions (Node (C1), Node (C2))
7127 then
7128 Error_Msg_N
7129 ("not conformant with previous declaration",
7130 Node (C1));
7131 end if;
7133 Next_Elmt (C1);
7134 Next_Elmt (C2);
7135 end loop;
7136 end;
7137 end if;
7138 end if;
7140 -- STEP 2b: No new discriminants, inherit discriminants if any
7142 else
7143 if Private_Extension then
7144 Set_Has_Unknown_Discriminants
7145 (Derived_Type,
7146 Has_Unknown_Discriminants (Parent_Type)
7147 or else Unknown_Discriminants_Present (N));
7149 -- The partial view of the parent may have unknown discriminants,
7150 -- but if the full view has discriminants and the parent type is
7151 -- in scope they must be inherited.
7153 elsif Has_Unknown_Discriminants (Parent_Type)
7154 and then
7155 (not Has_Discriminants (Parent_Type)
7156 or else not In_Open_Scopes (Scope (Parent_Type)))
7157 then
7158 Set_Has_Unknown_Discriminants (Derived_Type);
7159 end if;
7161 if not Has_Unknown_Discriminants (Derived_Type)
7162 and then not Has_Unknown_Discriminants (Parent_Base)
7163 and then Has_Discriminants (Parent_Type)
7164 then
7165 Inherit_Discrims := True;
7166 Set_Has_Discriminants
7167 (Derived_Type, True);
7168 Set_Discriminant_Constraint
7169 (Derived_Type, Discriminant_Constraint (Parent_Base));
7170 end if;
7172 -- The following test is true for private types (remember
7173 -- transformation 5. is not applied to those) and in an error
7174 -- situation.
7176 if Constraint_Present then
7177 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
7178 end if;
7180 -- For now mark a new derived type as constrained only if it has no
7181 -- discriminants. At the end of Build_Derived_Record_Type we properly
7182 -- set this flag in the case of private extensions. See comments in
7183 -- point 9. just before body of Build_Derived_Record_Type.
7185 Set_Is_Constrained
7186 (Derived_Type,
7187 not (Inherit_Discrims
7188 or else Has_Unknown_Discriminants (Derived_Type)));
7189 end if;
7191 -- STEP 3: initialize fields of derived type
7193 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
7194 Set_Stored_Constraint (Derived_Type, No_Elist);
7196 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
7197 -- but cannot be interfaces
7199 if not Private_Extension
7200 and then Ekind (Derived_Type) /= E_Private_Type
7201 and then Ekind (Derived_Type) /= E_Limited_Private_Type
7202 then
7203 if Interface_Present (Type_Def) then
7204 Analyze_Interface_Declaration (Derived_Type, Type_Def);
7205 end if;
7207 Set_Interfaces (Derived_Type, No_Elist);
7208 end if;
7210 -- Fields inherited from the Parent_Type
7212 Set_Discard_Names
7213 (Derived_Type, Einfo.Discard_Names (Parent_Type));
7214 Set_Has_Specified_Layout
7215 (Derived_Type, Has_Specified_Layout (Parent_Type));
7216 Set_Is_Limited_Composite
7217 (Derived_Type, Is_Limited_Composite (Parent_Type));
7218 Set_Is_Private_Composite
7219 (Derived_Type, Is_Private_Composite (Parent_Type));
7221 -- Fields inherited from the Parent_Base
7223 Set_Has_Controlled_Component
7224 (Derived_Type, Has_Controlled_Component (Parent_Base));
7225 Set_Has_Non_Standard_Rep
7226 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
7227 Set_Has_Primitive_Operations
7228 (Derived_Type, Has_Primitive_Operations (Parent_Base));
7230 -- Fields inherited from the Parent_Base in the non-private case
7232 if Ekind (Derived_Type) = E_Record_Type then
7233 Set_Has_Complex_Representation
7234 (Derived_Type, Has_Complex_Representation (Parent_Base));
7235 end if;
7237 -- Fields inherited from the Parent_Base for record types
7239 if Is_Record_Type (Derived_Type) then
7241 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7242 -- Parent_Base can be a private type or private extension.
7244 if Present (Full_View (Parent_Base)) then
7245 Set_OK_To_Reorder_Components
7246 (Derived_Type,
7247 OK_To_Reorder_Components (Full_View (Parent_Base)));
7248 Set_Reverse_Bit_Order
7249 (Derived_Type, Reverse_Bit_Order (Full_View (Parent_Base)));
7250 else
7251 Set_OK_To_Reorder_Components
7252 (Derived_Type, OK_To_Reorder_Components (Parent_Base));
7253 Set_Reverse_Bit_Order
7254 (Derived_Type, Reverse_Bit_Order (Parent_Base));
7255 end if;
7256 end if;
7258 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7260 if not Is_Controlled (Parent_Type) then
7261 Set_Finalize_Storage_Only
7262 (Derived_Type, Finalize_Storage_Only (Parent_Type));
7263 end if;
7265 -- Set fields for private derived types
7267 if Is_Private_Type (Derived_Type) then
7268 Set_Depends_On_Private (Derived_Type, True);
7269 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7271 -- Inherit fields from non private record types. If this is the
7272 -- completion of a derivation from a private type, the parent itself
7273 -- is private, and the attributes come from its full view, which must
7274 -- be present.
7276 else
7277 if Is_Private_Type (Parent_Base)
7278 and then not Is_Record_Type (Parent_Base)
7279 then
7280 Set_Component_Alignment
7281 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
7282 Set_C_Pass_By_Copy
7283 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
7284 else
7285 Set_Component_Alignment
7286 (Derived_Type, Component_Alignment (Parent_Base));
7287 Set_C_Pass_By_Copy
7288 (Derived_Type, C_Pass_By_Copy (Parent_Base));
7289 end if;
7290 end if;
7292 -- Set fields for tagged types
7294 if Is_Tagged then
7295 Set_Primitive_Operations (Derived_Type, New_Elmt_List);
7297 -- All tagged types defined in Ada.Finalization are controlled
7299 if Chars (Scope (Derived_Type)) = Name_Finalization
7300 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
7301 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
7302 then
7303 Set_Is_Controlled (Derived_Type);
7304 else
7305 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
7306 end if;
7308 -- Minor optimization: there is no need to generate the class-wide
7309 -- entity associated with an underlying record view.
7311 if not Is_Underlying_Record_View (Derived_Type) then
7312 Make_Class_Wide_Type (Derived_Type);
7313 end if;
7315 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
7317 if Has_Discriminants (Derived_Type)
7318 and then Constraint_Present
7319 then
7320 Set_Stored_Constraint
7321 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
7322 end if;
7324 if Ada_Version >= Ada_05 then
7325 declare
7326 Ifaces_List : Elist_Id;
7328 begin
7329 -- Checks rules 3.9.4 (13/2 and 14/2)
7331 if Comes_From_Source (Derived_Type)
7332 and then not Is_Private_Type (Derived_Type)
7333 and then Is_Interface (Parent_Type)
7334 and then not Is_Interface (Derived_Type)
7335 then
7336 if Is_Task_Interface (Parent_Type) then
7337 Error_Msg_N
7338 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
7339 Derived_Type);
7341 elsif Is_Protected_Interface (Parent_Type) then
7342 Error_Msg_N
7343 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
7344 Derived_Type);
7345 end if;
7346 end if;
7348 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
7350 Check_Interfaces (N, Type_Def);
7352 -- Ada 2005 (AI-251): Collect the list of progenitors that are
7353 -- not already in the parents.
7355 Collect_Interfaces
7356 (T => Derived_Type,
7357 Ifaces_List => Ifaces_List,
7358 Exclude_Parents => True);
7360 Set_Interfaces (Derived_Type, Ifaces_List);
7361 end;
7362 end if;
7364 else
7365 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
7366 Set_Has_Non_Standard_Rep
7367 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
7368 end if;
7370 -- STEP 4: Inherit components from the parent base and constrain them.
7371 -- Apply the second transformation described in point 6. above.
7373 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
7374 or else not Has_Discriminants (Parent_Type)
7375 or else not Is_Constrained (Parent_Type)
7376 then
7377 Constrs := Discs;
7378 else
7379 Constrs := Discriminant_Constraint (Parent_Type);
7380 end if;
7382 Assoc_List :=
7383 Inherit_Components
7384 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
7386 -- STEP 5a: Copy the parent record declaration for untagged types
7388 if not Is_Tagged then
7390 -- Discriminant_Constraint (Derived_Type) has been properly
7391 -- constructed. Save it and temporarily set it to Empty because we
7392 -- do not want the call to New_Copy_Tree below to mess this list.
7394 if Has_Discriminants (Derived_Type) then
7395 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
7396 Set_Discriminant_Constraint (Derived_Type, No_Elist);
7397 else
7398 Save_Discr_Constr := No_Elist;
7399 end if;
7401 -- Save the Etype field of Derived_Type. It is correctly set now,
7402 -- but the call to New_Copy tree may remap it to point to itself,
7403 -- which is not what we want. Ditto for the Next_Entity field.
7405 Save_Etype := Etype (Derived_Type);
7406 Save_Next_Entity := Next_Entity (Derived_Type);
7408 -- Assoc_List maps all stored discriminants in the Parent_Base to
7409 -- stored discriminants in the Derived_Type. It is fundamental that
7410 -- no types or itypes with discriminants other than the stored
7411 -- discriminants appear in the entities declared inside
7412 -- Derived_Type, since the back end cannot deal with it.
7414 New_Decl :=
7415 New_Copy_Tree
7416 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
7418 -- Restore the fields saved prior to the New_Copy_Tree call
7419 -- and compute the stored constraint.
7421 Set_Etype (Derived_Type, Save_Etype);
7422 Set_Next_Entity (Derived_Type, Save_Next_Entity);
7424 if Has_Discriminants (Derived_Type) then
7425 Set_Discriminant_Constraint
7426 (Derived_Type, Save_Discr_Constr);
7427 Set_Stored_Constraint
7428 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
7429 Replace_Components (Derived_Type, New_Decl);
7430 end if;
7432 -- Insert the new derived type declaration
7434 Rewrite (N, New_Decl);
7436 -- STEP 5b: Complete the processing for record extensions in generics
7438 -- There is no completion for record extensions declared in the
7439 -- parameter part of a generic, so we need to complete processing for
7440 -- these generic record extensions here. The Record_Type_Definition call
7441 -- will change the Ekind of the components from E_Void to E_Component.
7443 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
7444 Record_Type_Definition (Empty, Derived_Type);
7446 -- STEP 5c: Process the record extension for non private tagged types
7448 elsif not Private_Extension then
7450 -- Add the _parent field in the derived type
7452 Expand_Record_Extension (Derived_Type, Type_Def);
7454 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
7455 -- implemented interfaces if we are in expansion mode
7457 if Expander_Active
7458 and then Has_Interfaces (Derived_Type)
7459 then
7460 Add_Interface_Tag_Components (N, Derived_Type);
7461 end if;
7463 -- Analyze the record extension
7465 Record_Type_Definition
7466 (Record_Extension_Part (Type_Def), Derived_Type);
7467 end if;
7469 End_Scope;
7471 -- Nothing else to do if there is an error in the derivation.
7472 -- An unusual case: the full view may be derived from a type in an
7473 -- instance, when the partial view was used illegally as an actual
7474 -- in that instance, leading to a circular definition.
7476 if Etype (Derived_Type) = Any_Type
7477 or else Etype (Parent_Type) = Derived_Type
7478 then
7479 return;
7480 end if;
7482 -- Set delayed freeze and then derive subprograms, we need to do
7483 -- this in this order so that derived subprograms inherit the
7484 -- derived freeze if necessary.
7486 Set_Has_Delayed_Freeze (Derived_Type);
7488 if Derive_Subps then
7489 Derive_Subprograms (Parent_Type, Derived_Type);
7490 end if;
7492 -- If we have a private extension which defines a constrained derived
7493 -- type mark as constrained here after we have derived subprograms. See
7494 -- comment on point 9. just above the body of Build_Derived_Record_Type.
7496 if Private_Extension and then Inherit_Discrims then
7497 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
7498 Set_Is_Constrained (Derived_Type, True);
7499 Set_Discriminant_Constraint (Derived_Type, Discs);
7501 elsif Is_Constrained (Parent_Type) then
7502 Set_Is_Constrained
7503 (Derived_Type, True);
7504 Set_Discriminant_Constraint
7505 (Derived_Type, Discriminant_Constraint (Parent_Type));
7506 end if;
7507 end if;
7509 -- Update the class-wide type, which shares the now-completed entity
7510 -- list with its specific type. In case of underlying record views,
7511 -- we do not generate the corresponding class wide entity.
7513 if Is_Tagged
7514 and then not Is_Underlying_Record_View (Derived_Type)
7515 then
7516 Set_First_Entity
7517 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
7518 Set_Last_Entity
7519 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
7520 end if;
7522 -- Update the scope of anonymous access types of discriminants and other
7523 -- components, to prevent scope anomalies in gigi, when the derivation
7524 -- appears in a scope nested within that of the parent.
7526 declare
7527 D : Entity_Id;
7529 begin
7530 D := First_Entity (Derived_Type);
7531 while Present (D) loop
7532 if Ekind (D) = E_Discriminant
7533 or else Ekind (D) = E_Component
7534 then
7535 if Is_Itype (Etype (D))
7536 and then Ekind (Etype (D)) = E_Anonymous_Access_Type
7537 then
7538 Set_Scope (Etype (D), Current_Scope);
7539 end if;
7540 end if;
7542 Next_Entity (D);
7543 end loop;
7544 end;
7545 end Build_Derived_Record_Type;
7547 ------------------------
7548 -- Build_Derived_Type --
7549 ------------------------
7551 procedure Build_Derived_Type
7552 (N : Node_Id;
7553 Parent_Type : Entity_Id;
7554 Derived_Type : Entity_Id;
7555 Is_Completion : Boolean;
7556 Derive_Subps : Boolean := True)
7558 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7560 begin
7561 -- Set common attributes
7563 Set_Scope (Derived_Type, Current_Scope);
7565 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7566 Set_Etype (Derived_Type, Parent_Base);
7567 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
7569 Set_Size_Info (Derived_Type, Parent_Type);
7570 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
7571 Set_Convention (Derived_Type, Convention (Parent_Type));
7572 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7573 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
7575 -- The derived type inherits the representation clauses of the parent.
7576 -- However, for a private type that is completed by a derivation, there
7577 -- may be operation attributes that have been specified already (stream
7578 -- attributes and External_Tag) and those must be provided. Finally,
7579 -- if the partial view is a private extension, the representation items
7580 -- of the parent have been inherited already, and should not be chained
7581 -- twice to the derived type.
7583 if Is_Tagged_Type (Parent_Type)
7584 and then Present (First_Rep_Item (Derived_Type))
7585 then
7586 -- The existing items are either operational items or items inherited
7587 -- from a private extension declaration.
7589 declare
7590 Rep : Node_Id;
7591 -- Used to iterate over representation items of the derived type
7593 Last_Rep : Node_Id;
7594 -- Last representation item of the (non-empty) representation
7595 -- item list of the derived type.
7597 Found : Boolean := False;
7599 begin
7600 Rep := First_Rep_Item (Derived_Type);
7601 Last_Rep := Rep;
7602 while Present (Rep) loop
7603 if Rep = First_Rep_Item (Parent_Type) then
7604 Found := True;
7605 exit;
7607 else
7608 Rep := Next_Rep_Item (Rep);
7610 if Present (Rep) then
7611 Last_Rep := Rep;
7612 end if;
7613 end if;
7614 end loop;
7616 -- Here if we either encountered the parent type's first rep
7617 -- item on the derived type's rep item list (in which case
7618 -- Found is True, and we have nothing else to do), or if we
7619 -- reached the last rep item of the derived type, which is
7620 -- Last_Rep, in which case we further chain the parent type's
7621 -- rep items to those of the derived type.
7623 if not Found then
7624 Set_Next_Rep_Item (Last_Rep, First_Rep_Item (Parent_Type));
7625 end if;
7626 end;
7628 else
7629 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
7630 end if;
7632 case Ekind (Parent_Type) is
7633 when Numeric_Kind =>
7634 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
7636 when Array_Kind =>
7637 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
7639 when E_Record_Type
7640 | E_Record_Subtype
7641 | Class_Wide_Kind =>
7642 Build_Derived_Record_Type
7643 (N, Parent_Type, Derived_Type, Derive_Subps);
7644 return;
7646 when Enumeration_Kind =>
7647 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
7649 when Access_Kind =>
7650 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
7652 when Incomplete_Or_Private_Kind =>
7653 Build_Derived_Private_Type
7654 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
7656 -- For discriminated types, the derivation includes deriving
7657 -- primitive operations. For others it is done below.
7659 if Is_Tagged_Type (Parent_Type)
7660 or else Has_Discriminants (Parent_Type)
7661 or else (Present (Full_View (Parent_Type))
7662 and then Has_Discriminants (Full_View (Parent_Type)))
7663 then
7664 return;
7665 end if;
7667 when Concurrent_Kind =>
7668 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
7670 when others =>
7671 raise Program_Error;
7672 end case;
7674 if Etype (Derived_Type) = Any_Type then
7675 return;
7676 end if;
7678 -- Set delayed freeze and then derive subprograms, we need to do this
7679 -- in this order so that derived subprograms inherit the derived freeze
7680 -- if necessary.
7682 Set_Has_Delayed_Freeze (Derived_Type);
7683 if Derive_Subps then
7684 Derive_Subprograms (Parent_Type, Derived_Type);
7685 end if;
7687 Set_Has_Primitive_Operations
7688 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
7689 end Build_Derived_Type;
7691 -----------------------
7692 -- Build_Discriminal --
7693 -----------------------
7695 procedure Build_Discriminal (Discrim : Entity_Id) is
7696 D_Minal : Entity_Id;
7697 CR_Disc : Entity_Id;
7699 begin
7700 -- A discriminal has the same name as the discriminant
7702 D_Minal :=
7703 Make_Defining_Identifier (Sloc (Discrim),
7704 Chars => Chars (Discrim));
7706 Set_Ekind (D_Minal, E_In_Parameter);
7707 Set_Mechanism (D_Minal, Default_Mechanism);
7708 Set_Etype (D_Minal, Etype (Discrim));
7710 Set_Discriminal (Discrim, D_Minal);
7711 Set_Discriminal_Link (D_Minal, Discrim);
7713 -- For task types, build at once the discriminants of the corresponding
7714 -- record, which are needed if discriminants are used in entry defaults
7715 -- and in family bounds.
7717 if Is_Concurrent_Type (Current_Scope)
7718 or else Is_Limited_Type (Current_Scope)
7719 then
7720 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
7722 Set_Ekind (CR_Disc, E_In_Parameter);
7723 Set_Mechanism (CR_Disc, Default_Mechanism);
7724 Set_Etype (CR_Disc, Etype (Discrim));
7725 Set_Discriminal_Link (CR_Disc, Discrim);
7726 Set_CR_Discriminant (Discrim, CR_Disc);
7727 end if;
7728 end Build_Discriminal;
7730 ------------------------------------
7731 -- Build_Discriminant_Constraints --
7732 ------------------------------------
7734 function Build_Discriminant_Constraints
7735 (T : Entity_Id;
7736 Def : Node_Id;
7737 Derived_Def : Boolean := False) return Elist_Id
7739 C : constant Node_Id := Constraint (Def);
7740 Nb_Discr : constant Nat := Number_Discriminants (T);
7742 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
7743 -- Saves the expression corresponding to a given discriminant in T
7745 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
7746 -- Return the Position number within array Discr_Expr of a discriminant
7747 -- D within the discriminant list of the discriminated type T.
7749 ------------------
7750 -- Pos_Of_Discr --
7751 ------------------
7753 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
7754 Disc : Entity_Id;
7756 begin
7757 Disc := First_Discriminant (T);
7758 for J in Discr_Expr'Range loop
7759 if Disc = D then
7760 return J;
7761 end if;
7763 Next_Discriminant (Disc);
7764 end loop;
7766 -- Note: Since this function is called on discriminants that are
7767 -- known to belong to the discriminated type, falling through the
7768 -- loop with no match signals an internal compiler error.
7770 raise Program_Error;
7771 end Pos_Of_Discr;
7773 -- Declarations local to Build_Discriminant_Constraints
7775 Discr : Entity_Id;
7776 E : Entity_Id;
7777 Elist : constant Elist_Id := New_Elmt_List;
7779 Constr : Node_Id;
7780 Expr : Node_Id;
7781 Id : Node_Id;
7782 Position : Nat;
7783 Found : Boolean;
7785 Discrim_Present : Boolean := False;
7787 -- Start of processing for Build_Discriminant_Constraints
7789 begin
7790 -- The following loop will process positional associations only.
7791 -- For a positional association, the (single) discriminant is
7792 -- implicitly specified by position, in textual order (RM 3.7.2).
7794 Discr := First_Discriminant (T);
7795 Constr := First (Constraints (C));
7796 for D in Discr_Expr'Range loop
7797 exit when Nkind (Constr) = N_Discriminant_Association;
7799 if No (Constr) then
7800 Error_Msg_N ("too few discriminants given in constraint", C);
7801 return New_Elmt_List;
7803 elsif Nkind (Constr) = N_Range
7804 or else (Nkind (Constr) = N_Attribute_Reference
7805 and then
7806 Attribute_Name (Constr) = Name_Range)
7807 then
7808 Error_Msg_N
7809 ("a range is not a valid discriminant constraint", Constr);
7810 Discr_Expr (D) := Error;
7812 else
7813 Analyze_And_Resolve (Constr, Base_Type (Etype (Discr)));
7814 Discr_Expr (D) := Constr;
7815 end if;
7817 Next_Discriminant (Discr);
7818 Next (Constr);
7819 end loop;
7821 if No (Discr) and then Present (Constr) then
7822 Error_Msg_N ("too many discriminants given in constraint", Constr);
7823 return New_Elmt_List;
7824 end if;
7826 -- Named associations can be given in any order, but if both positional
7827 -- and named associations are used in the same discriminant constraint,
7828 -- then positional associations must occur first, at their normal
7829 -- position. Hence once a named association is used, the rest of the
7830 -- discriminant constraint must use only named associations.
7832 while Present (Constr) loop
7834 -- Positional association forbidden after a named association
7836 if Nkind (Constr) /= N_Discriminant_Association then
7837 Error_Msg_N ("positional association follows named one", Constr);
7838 return New_Elmt_List;
7840 -- Otherwise it is a named association
7842 else
7843 -- E records the type of the discriminants in the named
7844 -- association. All the discriminants specified in the same name
7845 -- association must have the same type.
7847 E := Empty;
7849 -- Search the list of discriminants in T to see if the simple name
7850 -- given in the constraint matches any of them.
7852 Id := First (Selector_Names (Constr));
7853 while Present (Id) loop
7854 Found := False;
7856 -- If Original_Discriminant is present, we are processing a
7857 -- generic instantiation and this is an instance node. We need
7858 -- to find the name of the corresponding discriminant in the
7859 -- actual record type T and not the name of the discriminant in
7860 -- the generic formal. Example:
7862 -- generic
7863 -- type G (D : int) is private;
7864 -- package P is
7865 -- subtype W is G (D => 1);
7866 -- end package;
7867 -- type Rec (X : int) is record ... end record;
7868 -- package Q is new P (G => Rec);
7870 -- At the point of the instantiation, formal type G is Rec
7871 -- and therefore when reanalyzing "subtype W is G (D => 1);"
7872 -- which really looks like "subtype W is Rec (D => 1);" at
7873 -- the point of instantiation, we want to find the discriminant
7874 -- that corresponds to D in Rec, i.e. X.
7876 if Present (Original_Discriminant (Id)) then
7877 Discr := Find_Corresponding_Discriminant (Id, T);
7878 Found := True;
7880 else
7881 Discr := First_Discriminant (T);
7882 while Present (Discr) loop
7883 if Chars (Discr) = Chars (Id) then
7884 Found := True;
7885 exit;
7886 end if;
7888 Next_Discriminant (Discr);
7889 end loop;
7891 if not Found then
7892 Error_Msg_N ("& does not match any discriminant", Id);
7893 return New_Elmt_List;
7895 -- The following is only useful for the benefit of generic
7896 -- instances but it does not interfere with other
7897 -- processing for the non-generic case so we do it in all
7898 -- cases (for generics this statement is executed when
7899 -- processing the generic definition, see comment at the
7900 -- beginning of this if statement).
7902 else
7903 Set_Original_Discriminant (Id, Discr);
7904 end if;
7905 end if;
7907 Position := Pos_Of_Discr (T, Discr);
7909 if Present (Discr_Expr (Position)) then
7910 Error_Msg_N ("duplicate constraint for discriminant&", Id);
7912 else
7913 -- Each discriminant specified in the same named association
7914 -- must be associated with a separate copy of the
7915 -- corresponding expression.
7917 if Present (Next (Id)) then
7918 Expr := New_Copy_Tree (Expression (Constr));
7919 Set_Parent (Expr, Parent (Expression (Constr)));
7920 else
7921 Expr := Expression (Constr);
7922 end if;
7924 Discr_Expr (Position) := Expr;
7925 Analyze_And_Resolve (Expr, Base_Type (Etype (Discr)));
7926 end if;
7928 -- A discriminant association with more than one discriminant
7929 -- name is only allowed if the named discriminants are all of
7930 -- the same type (RM 3.7.1(8)).
7932 if E = Empty then
7933 E := Base_Type (Etype (Discr));
7935 elsif Base_Type (Etype (Discr)) /= E then
7936 Error_Msg_N
7937 ("all discriminants in an association " &
7938 "must have the same type", Id);
7939 end if;
7941 Next (Id);
7942 end loop;
7943 end if;
7945 Next (Constr);
7946 end loop;
7948 -- A discriminant constraint must provide exactly one value for each
7949 -- discriminant of the type (RM 3.7.1(8)).
7951 for J in Discr_Expr'Range loop
7952 if No (Discr_Expr (J)) then
7953 Error_Msg_N ("too few discriminants given in constraint", C);
7954 return New_Elmt_List;
7955 end if;
7956 end loop;
7958 -- Determine if there are discriminant expressions in the constraint
7960 for J in Discr_Expr'Range loop
7961 if Denotes_Discriminant
7962 (Discr_Expr (J), Check_Concurrent => True)
7963 then
7964 Discrim_Present := True;
7965 end if;
7966 end loop;
7968 -- Build an element list consisting of the expressions given in the
7969 -- discriminant constraint and apply the appropriate checks. The list
7970 -- is constructed after resolving any named discriminant associations
7971 -- and therefore the expressions appear in the textual order of the
7972 -- discriminants.
7974 Discr := First_Discriminant (T);
7975 for J in Discr_Expr'Range loop
7976 if Discr_Expr (J) /= Error then
7977 Append_Elmt (Discr_Expr (J), Elist);
7979 -- If any of the discriminant constraints is given by a
7980 -- discriminant and we are in a derived type declaration we
7981 -- have a discriminant renaming. Establish link between new
7982 -- and old discriminant.
7984 if Denotes_Discriminant (Discr_Expr (J)) then
7985 if Derived_Def then
7986 Set_Corresponding_Discriminant
7987 (Entity (Discr_Expr (J)), Discr);
7988 end if;
7990 -- Force the evaluation of non-discriminant expressions.
7991 -- If we have found a discriminant in the constraint 3.4(26)
7992 -- and 3.8(18) demand that no range checks are performed are
7993 -- after evaluation. If the constraint is for a component
7994 -- definition that has a per-object constraint, expressions are
7995 -- evaluated but not checked either. In all other cases perform
7996 -- a range check.
7998 else
7999 if Discrim_Present then
8000 null;
8002 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
8003 and then
8004 Has_Per_Object_Constraint
8005 (Defining_Identifier (Parent (Parent (Def))))
8006 then
8007 null;
8009 elsif Is_Access_Type (Etype (Discr)) then
8010 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
8012 else
8013 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
8014 end if;
8016 Force_Evaluation (Discr_Expr (J));
8017 end if;
8019 -- Check that the designated type of an access discriminant's
8020 -- expression is not a class-wide type unless the discriminant's
8021 -- designated type is also class-wide.
8023 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
8024 and then not Is_Class_Wide_Type
8025 (Designated_Type (Etype (Discr)))
8026 and then Etype (Discr_Expr (J)) /= Any_Type
8027 and then Is_Class_Wide_Type
8028 (Designated_Type (Etype (Discr_Expr (J))))
8029 then
8030 Wrong_Type (Discr_Expr (J), Etype (Discr));
8032 elsif Is_Access_Type (Etype (Discr))
8033 and then not Is_Access_Constant (Etype (Discr))
8034 and then Is_Access_Type (Etype (Discr_Expr (J)))
8035 and then Is_Access_Constant (Etype (Discr_Expr (J)))
8036 then
8037 Error_Msg_NE
8038 ("constraint for discriminant& must be access to variable",
8039 Def, Discr);
8040 end if;
8041 end if;
8043 Next_Discriminant (Discr);
8044 end loop;
8046 return Elist;
8047 end Build_Discriminant_Constraints;
8049 ---------------------------------
8050 -- Build_Discriminated_Subtype --
8051 ---------------------------------
8053 procedure Build_Discriminated_Subtype
8054 (T : Entity_Id;
8055 Def_Id : Entity_Id;
8056 Elist : Elist_Id;
8057 Related_Nod : Node_Id;
8058 For_Access : Boolean := False)
8060 Has_Discrs : constant Boolean := Has_Discriminants (T);
8061 Constrained : constant Boolean :=
8062 (Has_Discrs
8063 and then not Is_Empty_Elmt_List (Elist)
8064 and then not Is_Class_Wide_Type (T))
8065 or else Is_Constrained (T);
8067 begin
8068 if Ekind (T) = E_Record_Type then
8069 if For_Access then
8070 Set_Ekind (Def_Id, E_Private_Subtype);
8071 Set_Is_For_Access_Subtype (Def_Id, True);
8072 else
8073 Set_Ekind (Def_Id, E_Record_Subtype);
8074 end if;
8076 -- Inherit preelaboration flag from base, for types for which it
8077 -- may have been set: records, private types, protected types.
8079 Set_Known_To_Have_Preelab_Init
8080 (Def_Id, Known_To_Have_Preelab_Init (T));
8082 elsif Ekind (T) = E_Task_Type then
8083 Set_Ekind (Def_Id, E_Task_Subtype);
8085 elsif Ekind (T) = E_Protected_Type then
8086 Set_Ekind (Def_Id, E_Protected_Subtype);
8087 Set_Known_To_Have_Preelab_Init
8088 (Def_Id, Known_To_Have_Preelab_Init (T));
8090 elsif Is_Private_Type (T) then
8091 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
8092 Set_Known_To_Have_Preelab_Init
8093 (Def_Id, Known_To_Have_Preelab_Init (T));
8095 elsif Is_Class_Wide_Type (T) then
8096 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
8098 else
8099 -- Incomplete type. Attach subtype to list of dependents, to be
8100 -- completed with full view of parent type, unless is it the
8101 -- designated subtype of a record component within an init_proc.
8102 -- This last case arises for a component of an access type whose
8103 -- designated type is incomplete (e.g. a Taft Amendment type).
8104 -- The designated subtype is within an inner scope, and needs no
8105 -- elaboration, because only the access type is needed in the
8106 -- initialization procedure.
8108 Set_Ekind (Def_Id, Ekind (T));
8110 if For_Access and then Within_Init_Proc then
8111 null;
8112 else
8113 Append_Elmt (Def_Id, Private_Dependents (T));
8114 end if;
8115 end if;
8117 Set_Etype (Def_Id, T);
8118 Init_Size_Align (Def_Id);
8119 Set_Has_Discriminants (Def_Id, Has_Discrs);
8120 Set_Is_Constrained (Def_Id, Constrained);
8122 Set_First_Entity (Def_Id, First_Entity (T));
8123 Set_Last_Entity (Def_Id, Last_Entity (T));
8125 -- If the subtype is the completion of a private declaration, there may
8126 -- have been representation clauses for the partial view, and they must
8127 -- be preserved. Build_Derived_Type chains the inherited clauses with
8128 -- the ones appearing on the extension. If this comes from a subtype
8129 -- declaration, all clauses are inherited.
8131 if No (First_Rep_Item (Def_Id)) then
8132 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8133 end if;
8135 if Is_Tagged_Type (T) then
8136 Set_Is_Tagged_Type (Def_Id);
8137 Make_Class_Wide_Type (Def_Id);
8138 end if;
8140 Set_Stored_Constraint (Def_Id, No_Elist);
8142 if Has_Discrs then
8143 Set_Discriminant_Constraint (Def_Id, Elist);
8144 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
8145 end if;
8147 if Is_Tagged_Type (T) then
8149 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
8150 -- concurrent record type (which has the list of primitive
8151 -- operations).
8153 if Ada_Version >= Ada_05
8154 and then Is_Concurrent_Type (T)
8155 then
8156 Set_Corresponding_Record_Type (Def_Id,
8157 Corresponding_Record_Type (T));
8158 else
8159 Set_Primitive_Operations (Def_Id, Primitive_Operations (T));
8160 end if;
8162 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
8163 end if;
8165 -- Subtypes introduced by component declarations do not need to be
8166 -- marked as delayed, and do not get freeze nodes, because the semantics
8167 -- verifies that the parents of the subtypes are frozen before the
8168 -- enclosing record is frozen.
8170 if not Is_Type (Scope (Def_Id)) then
8171 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
8173 if Is_Private_Type (T)
8174 and then Present (Full_View (T))
8175 then
8176 Conditional_Delay (Def_Id, Full_View (T));
8177 else
8178 Conditional_Delay (Def_Id, T);
8179 end if;
8180 end if;
8182 if Is_Record_Type (T) then
8183 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
8185 if Has_Discrs
8186 and then not Is_Empty_Elmt_List (Elist)
8187 and then not For_Access
8188 then
8189 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
8190 elsif not For_Access then
8191 Set_Cloned_Subtype (Def_Id, T);
8192 end if;
8193 end if;
8194 end Build_Discriminated_Subtype;
8196 ---------------------------
8197 -- Build_Itype_Reference --
8198 ---------------------------
8200 procedure Build_Itype_Reference
8201 (Ityp : Entity_Id;
8202 Nod : Node_Id)
8204 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
8205 begin
8206 Set_Itype (IR, Ityp);
8207 Insert_After (Nod, IR);
8208 end Build_Itype_Reference;
8210 ------------------------
8211 -- Build_Scalar_Bound --
8212 ------------------------
8214 function Build_Scalar_Bound
8215 (Bound : Node_Id;
8216 Par_T : Entity_Id;
8217 Der_T : Entity_Id) return Node_Id
8219 New_Bound : Entity_Id;
8221 begin
8222 -- Note: not clear why this is needed, how can the original bound
8223 -- be unanalyzed at this point? and if it is, what business do we
8224 -- have messing around with it? and why is the base type of the
8225 -- parent type the right type for the resolution. It probably is
8226 -- not! It is OK for the new bound we are creating, but not for
8227 -- the old one??? Still if it never happens, no problem!
8229 Analyze_And_Resolve (Bound, Base_Type (Par_T));
8231 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
8232 New_Bound := New_Copy (Bound);
8233 Set_Etype (New_Bound, Der_T);
8234 Set_Analyzed (New_Bound);
8236 elsif Is_Entity_Name (Bound) then
8237 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
8239 -- The following is almost certainly wrong. What business do we have
8240 -- relocating a node (Bound) that is presumably still attached to
8241 -- the tree elsewhere???
8243 else
8244 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
8245 end if;
8247 Set_Etype (New_Bound, Der_T);
8248 return New_Bound;
8249 end Build_Scalar_Bound;
8251 --------------------------------
8252 -- Build_Underlying_Full_View --
8253 --------------------------------
8255 procedure Build_Underlying_Full_View
8256 (N : Node_Id;
8257 Typ : Entity_Id;
8258 Par : Entity_Id)
8260 Loc : constant Source_Ptr := Sloc (N);
8261 Subt : constant Entity_Id :=
8262 Make_Defining_Identifier
8263 (Loc, New_External_Name (Chars (Typ), 'S'));
8265 Constr : Node_Id;
8266 Indic : Node_Id;
8267 C : Node_Id;
8268 Id : Node_Id;
8270 procedure Set_Discriminant_Name (Id : Node_Id);
8271 -- If the derived type has discriminants, they may rename discriminants
8272 -- of the parent. When building the full view of the parent, we need to
8273 -- recover the names of the original discriminants if the constraint is
8274 -- given by named associations.
8276 ---------------------------
8277 -- Set_Discriminant_Name --
8278 ---------------------------
8280 procedure Set_Discriminant_Name (Id : Node_Id) is
8281 Disc : Entity_Id;
8283 begin
8284 Set_Original_Discriminant (Id, Empty);
8286 if Has_Discriminants (Typ) then
8287 Disc := First_Discriminant (Typ);
8288 while Present (Disc) loop
8289 if Chars (Disc) = Chars (Id)
8290 and then Present (Corresponding_Discriminant (Disc))
8291 then
8292 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
8293 end if;
8294 Next_Discriminant (Disc);
8295 end loop;
8296 end if;
8297 end Set_Discriminant_Name;
8299 -- Start of processing for Build_Underlying_Full_View
8301 begin
8302 if Nkind (N) = N_Full_Type_Declaration then
8303 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
8305 elsif Nkind (N) = N_Subtype_Declaration then
8306 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
8308 elsif Nkind (N) = N_Component_Declaration then
8309 Constr :=
8310 New_Copy_Tree
8311 (Constraint (Subtype_Indication (Component_Definition (N))));
8313 else
8314 raise Program_Error;
8315 end if;
8317 C := First (Constraints (Constr));
8318 while Present (C) loop
8319 if Nkind (C) = N_Discriminant_Association then
8320 Id := First (Selector_Names (C));
8321 while Present (Id) loop
8322 Set_Discriminant_Name (Id);
8323 Next (Id);
8324 end loop;
8325 end if;
8327 Next (C);
8328 end loop;
8330 Indic :=
8331 Make_Subtype_Declaration (Loc,
8332 Defining_Identifier => Subt,
8333 Subtype_Indication =>
8334 Make_Subtype_Indication (Loc,
8335 Subtype_Mark => New_Reference_To (Par, Loc),
8336 Constraint => New_Copy_Tree (Constr)));
8338 -- If this is a component subtype for an outer itype, it is not
8339 -- a list member, so simply set the parent link for analysis: if
8340 -- the enclosing type does not need to be in a declarative list,
8341 -- neither do the components.
8343 if Is_List_Member (N)
8344 and then Nkind (N) /= N_Component_Declaration
8345 then
8346 Insert_Before (N, Indic);
8347 else
8348 Set_Parent (Indic, Parent (N));
8349 end if;
8351 Analyze (Indic);
8352 Set_Underlying_Full_View (Typ, Full_View (Subt));
8353 end Build_Underlying_Full_View;
8355 -------------------------------
8356 -- Check_Abstract_Overriding --
8357 -------------------------------
8359 procedure Check_Abstract_Overriding (T : Entity_Id) is
8360 Alias_Subp : Entity_Id;
8361 Elmt : Elmt_Id;
8362 Op_List : Elist_Id;
8363 Subp : Entity_Id;
8364 Type_Def : Node_Id;
8366 begin
8367 Op_List := Primitive_Operations (T);
8369 -- Loop to check primitive operations
8371 Elmt := First_Elmt (Op_List);
8372 while Present (Elmt) loop
8373 Subp := Node (Elmt);
8374 Alias_Subp := Alias (Subp);
8376 -- Inherited subprograms are identified by the fact that they do not
8377 -- come from source, and the associated source location is the
8378 -- location of the first subtype of the derived type.
8380 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
8381 -- subprograms that "require overriding".
8383 -- Special exception, do not complain about failure to override the
8384 -- stream routines _Input and _Output, as well as the primitive
8385 -- operations used in dispatching selects since we always provide
8386 -- automatic overridings for these subprograms.
8388 -- Also ignore this rule for convention CIL since .NET libraries
8389 -- do bizarre things with interfaces???
8391 -- The partial view of T may have been a private extension, for
8392 -- which inherited functions dispatching on result are abstract.
8393 -- If the full view is a null extension, there is no need for
8394 -- overriding in Ada2005, but wrappers need to be built for them
8395 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
8397 if Is_Null_Extension (T)
8398 and then Has_Controlling_Result (Subp)
8399 and then Ada_Version >= Ada_05
8400 and then Present (Alias_Subp)
8401 and then not Comes_From_Source (Subp)
8402 and then not Is_Abstract_Subprogram (Alias_Subp)
8403 and then not Is_Access_Type (Etype (Subp))
8404 then
8405 null;
8407 -- Ada 2005 (AI-251): Internal entities of interfaces need no
8408 -- processing because this check is done with the aliased
8409 -- entity
8411 elsif Present (Interface_Alias (Subp)) then
8412 null;
8414 elsif (Is_Abstract_Subprogram (Subp)
8415 or else Requires_Overriding (Subp)
8416 or else
8417 (Has_Controlling_Result (Subp)
8418 and then Present (Alias_Subp)
8419 and then not Comes_From_Source (Subp)
8420 and then Sloc (Subp) = Sloc (First_Subtype (T))))
8421 and then not Is_TSS (Subp, TSS_Stream_Input)
8422 and then not Is_TSS (Subp, TSS_Stream_Output)
8423 and then not Is_Abstract_Type (T)
8424 and then Convention (T) /= Convention_CIL
8425 and then not Is_Predefined_Interface_Primitive (Subp)
8427 -- Ada 2005 (AI-251): Do not consider hidden entities associated
8428 -- with abstract interface types because the check will be done
8429 -- with the aliased entity (otherwise we generate a duplicated
8430 -- error message).
8432 and then not Present (Interface_Alias (Subp))
8433 then
8434 if Present (Alias_Subp) then
8436 -- Only perform the check for a derived subprogram when the
8437 -- type has an explicit record extension. This avoids incorrect
8438 -- flagging of abstract subprograms for the case of a type
8439 -- without an extension that is derived from a formal type
8440 -- with a tagged actual (can occur within a private part).
8442 -- Ada 2005 (AI-391): In the case of an inherited function with
8443 -- a controlling result of the type, the rule does not apply if
8444 -- the type is a null extension (unless the parent function
8445 -- itself is abstract, in which case the function must still be
8446 -- be overridden). The expander will generate an overriding
8447 -- wrapper function calling the parent subprogram (see
8448 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
8450 Type_Def := Type_Definition (Parent (T));
8452 if Nkind (Type_Def) = N_Derived_Type_Definition
8453 and then Present (Record_Extension_Part (Type_Def))
8454 and then
8455 (Ada_Version < Ada_05
8456 or else not Is_Null_Extension (T)
8457 or else Ekind (Subp) = E_Procedure
8458 or else not Has_Controlling_Result (Subp)
8459 or else Is_Abstract_Subprogram (Alias_Subp)
8460 or else Requires_Overriding (Subp)
8461 or else Is_Access_Type (Etype (Subp)))
8462 then
8463 -- Avoid reporting error in case of abstract predefined
8464 -- primitive inherited from interface type because the
8465 -- body of internally generated predefined primitives
8466 -- of tagged types are generated later by Freeze_Type
8468 if Is_Interface (Root_Type (T))
8469 and then Is_Abstract_Subprogram (Subp)
8470 and then Is_Predefined_Dispatching_Operation (Subp)
8471 and then not Comes_From_Source (Ultimate_Alias (Subp))
8472 then
8473 null;
8475 else
8476 Error_Msg_NE
8477 ("type must be declared abstract or & overridden",
8478 T, Subp);
8480 -- Traverse the whole chain of aliased subprograms to
8481 -- complete the error notification. This is especially
8482 -- useful for traceability of the chain of entities when
8483 -- the subprogram corresponds with an interface
8484 -- subprogram (which may be defined in another package).
8486 if Present (Alias_Subp) then
8487 declare
8488 E : Entity_Id;
8490 begin
8491 E := Subp;
8492 while Present (Alias (E)) loop
8493 Error_Msg_Sloc := Sloc (E);
8494 Error_Msg_NE
8495 ("\& has been inherited #", T, Subp);
8496 E := Alias (E);
8497 end loop;
8499 Error_Msg_Sloc := Sloc (E);
8500 Error_Msg_NE
8501 ("\& has been inherited from subprogram #",
8502 T, Subp);
8503 end;
8504 end if;
8505 end if;
8507 -- Ada 2005 (AI-345): Protected or task type implementing
8508 -- abstract interfaces.
8510 elsif Is_Concurrent_Record_Type (T)
8511 and then Present (Interfaces (T))
8512 then
8513 -- The controlling formal of Subp must be of mode "out",
8514 -- "in out" or an access-to-variable to be overridden.
8516 -- Error message below needs rewording (remember comma
8517 -- in -gnatj mode) ???
8519 if Ekind (First_Formal (Subp)) = E_In_Parameter
8520 and then Ekind (Subp) /= E_Function
8521 then
8522 if not Is_Predefined_Dispatching_Operation (Subp) then
8523 Error_Msg_NE
8524 ("first formal of & must be of mode `OUT`, " &
8525 "`IN OUT` or access-to-variable", T, Subp);
8526 Error_Msg_N
8527 ("\to be overridden by protected procedure or " &
8528 "entry (RM 9.4(11.9/2))", T);
8529 end if;
8531 -- Some other kind of overriding failure
8533 else
8534 Error_Msg_NE
8535 ("interface subprogram & must be overridden",
8536 T, Subp);
8538 -- Examine primitive operations of synchronized type,
8539 -- to find homonyms that have the wrong profile.
8541 declare
8542 Prim : Entity_Id;
8544 begin
8545 Prim :=
8546 First_Entity (Corresponding_Concurrent_Type (T));
8547 while Present (Prim) loop
8548 if Chars (Prim) = Chars (Subp) then
8549 Error_Msg_NE
8550 ("profile is not type conformant with "
8551 & "prefixed view profile of "
8552 & "inherited operation&", Prim, Subp);
8553 end if;
8555 Next_Entity (Prim);
8556 end loop;
8557 end;
8558 end if;
8559 end if;
8561 else
8562 Error_Msg_Node_2 := T;
8563 Error_Msg_N
8564 ("abstract subprogram& not allowed for type&", Subp);
8566 -- Also post unconditional warning on the type (unconditional
8567 -- so that if there are more than one of these cases, we get
8568 -- them all, and not just the first one).
8570 Error_Msg_Node_2 := Subp;
8571 Error_Msg_N
8572 ("nonabstract type& has abstract subprogram&!", T);
8573 end if;
8574 end if;
8576 -- Ada 2005 (AI05-0030): Inspect hidden subprograms which provide
8577 -- the mapping between interface and implementing type primitives.
8578 -- If the interface alias is marked as Implemented_By_Entry, the
8579 -- alias must be an entry wrapper.
8581 if Ada_Version >= Ada_05
8582 and then Is_Hidden (Subp)
8583 and then Present (Interface_Alias (Subp))
8584 and then Implemented_By_Entry (Interface_Alias (Subp))
8585 and then Present (Alias_Subp)
8586 and then
8587 (not Is_Primitive_Wrapper (Alias_Subp)
8588 or else Ekind (Wrapped_Entity (Alias_Subp)) /= E_Entry)
8589 then
8590 declare
8591 Error_Ent : Entity_Id := T;
8593 begin
8594 if Is_Concurrent_Record_Type (Error_Ent) then
8595 Error_Ent := Corresponding_Concurrent_Type (Error_Ent);
8596 end if;
8598 Error_Msg_Node_2 := Interface_Alias (Subp);
8599 Error_Msg_NE
8600 ("type & must implement abstract subprogram & with an entry",
8601 Error_Ent, Error_Ent);
8602 end;
8603 end if;
8605 Next_Elmt (Elmt);
8606 end loop;
8607 end Check_Abstract_Overriding;
8609 ------------------------------------------------
8610 -- Check_Access_Discriminant_Requires_Limited --
8611 ------------------------------------------------
8613 procedure Check_Access_Discriminant_Requires_Limited
8614 (D : Node_Id;
8615 Loc : Node_Id)
8617 begin
8618 -- A discriminant_specification for an access discriminant shall appear
8619 -- only in the declaration for a task or protected type, or for a type
8620 -- with the reserved word 'limited' in its definition or in one of its
8621 -- ancestors. (RM 3.7(10))
8623 if Nkind (Discriminant_Type (D)) = N_Access_Definition
8624 and then not Is_Concurrent_Type (Current_Scope)
8625 and then not Is_Concurrent_Record_Type (Current_Scope)
8626 and then not Is_Limited_Record (Current_Scope)
8627 and then Ekind (Current_Scope) /= E_Limited_Private_Type
8628 then
8629 Error_Msg_N
8630 ("access discriminants allowed only for limited types", Loc);
8631 end if;
8632 end Check_Access_Discriminant_Requires_Limited;
8634 -----------------------------------
8635 -- Check_Aliased_Component_Types --
8636 -----------------------------------
8638 procedure Check_Aliased_Component_Types (T : Entity_Id) is
8639 C : Entity_Id;
8641 begin
8642 -- ??? Also need to check components of record extensions, but not
8643 -- components of protected types (which are always limited).
8645 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
8646 -- types to be unconstrained. This is safe because it is illegal to
8647 -- create access subtypes to such types with explicit discriminant
8648 -- constraints.
8650 if not Is_Limited_Type (T) then
8651 if Ekind (T) = E_Record_Type then
8652 C := First_Component (T);
8653 while Present (C) loop
8654 if Is_Aliased (C)
8655 and then Has_Discriminants (Etype (C))
8656 and then not Is_Constrained (Etype (C))
8657 and then not In_Instance_Body
8658 and then Ada_Version < Ada_05
8659 then
8660 Error_Msg_N
8661 ("aliased component must be constrained (RM 3.6(11))",
8663 end if;
8665 Next_Component (C);
8666 end loop;
8668 elsif Ekind (T) = E_Array_Type then
8669 if Has_Aliased_Components (T)
8670 and then Has_Discriminants (Component_Type (T))
8671 and then not Is_Constrained (Component_Type (T))
8672 and then not In_Instance_Body
8673 and then Ada_Version < Ada_05
8674 then
8675 Error_Msg_N
8676 ("aliased component type must be constrained (RM 3.6(11))",
8678 end if;
8679 end if;
8680 end if;
8681 end Check_Aliased_Component_Types;
8683 ----------------------
8684 -- Check_Completion --
8685 ----------------------
8687 procedure Check_Completion (Body_Id : Node_Id := Empty) is
8688 E : Entity_Id;
8690 procedure Post_Error;
8691 -- Post error message for lack of completion for entity E
8693 ----------------
8694 -- Post_Error --
8695 ----------------
8697 procedure Post_Error is
8699 procedure Missing_Body;
8700 -- Output missing body message
8702 ------------------
8703 -- Missing_Body --
8704 ------------------
8706 procedure Missing_Body is
8707 begin
8708 -- Spec is in same unit, so we can post on spec
8710 if In_Same_Source_Unit (Body_Id, E) then
8711 Error_Msg_N ("missing body for &", E);
8713 -- Spec is in a separate unit, so we have to post on the body
8715 else
8716 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
8717 end if;
8718 end Missing_Body;
8720 -- Start of processing for Post_Error
8722 begin
8723 if not Comes_From_Source (E) then
8725 if Ekind (E) = E_Task_Type
8726 or else Ekind (E) = E_Protected_Type
8727 then
8728 -- It may be an anonymous protected type created for a
8729 -- single variable. Post error on variable, if present.
8731 declare
8732 Var : Entity_Id;
8734 begin
8735 Var := First_Entity (Current_Scope);
8736 while Present (Var) loop
8737 exit when Etype (Var) = E
8738 and then Comes_From_Source (Var);
8740 Next_Entity (Var);
8741 end loop;
8743 if Present (Var) then
8744 E := Var;
8745 end if;
8746 end;
8747 end if;
8748 end if;
8750 -- If a generated entity has no completion, then either previous
8751 -- semantic errors have disabled the expansion phase, or else we had
8752 -- missing subunits, or else we are compiling without expansion,
8753 -- or else something is very wrong.
8755 if not Comes_From_Source (E) then
8756 pragma Assert
8757 (Serious_Errors_Detected > 0
8758 or else Configurable_Run_Time_Violations > 0
8759 or else Subunits_Missing
8760 or else not Expander_Active);
8761 return;
8763 -- Here for source entity
8765 else
8766 -- Here if no body to post the error message, so we post the error
8767 -- on the declaration that has no completion. This is not really
8768 -- the right place to post it, think about this later ???
8770 if No (Body_Id) then
8771 if Is_Type (E) then
8772 Error_Msg_NE
8773 ("missing full declaration for }", Parent (E), E);
8774 else
8775 Error_Msg_NE
8776 ("missing body for &", Parent (E), E);
8777 end if;
8779 -- Package body has no completion for a declaration that appears
8780 -- in the corresponding spec. Post error on the body, with a
8781 -- reference to the non-completed declaration.
8783 else
8784 Error_Msg_Sloc := Sloc (E);
8786 if Is_Type (E) then
8787 Error_Msg_NE
8788 ("missing full declaration for }!", Body_Id, E);
8790 elsif Is_Overloadable (E)
8791 and then Current_Entity_In_Scope (E) /= E
8792 then
8793 -- It may be that the completion is mistyped and appears as
8794 -- a distinct overloading of the entity.
8796 declare
8797 Candidate : constant Entity_Id :=
8798 Current_Entity_In_Scope (E);
8799 Decl : constant Node_Id :=
8800 Unit_Declaration_Node (Candidate);
8802 begin
8803 if Is_Overloadable (Candidate)
8804 and then Ekind (Candidate) = Ekind (E)
8805 and then Nkind (Decl) = N_Subprogram_Body
8806 and then Acts_As_Spec (Decl)
8807 then
8808 Check_Type_Conformant (Candidate, E);
8810 else
8811 Missing_Body;
8812 end if;
8813 end;
8815 else
8816 Missing_Body;
8817 end if;
8818 end if;
8819 end if;
8820 end Post_Error;
8822 -- Start of processing for Check_Completion
8824 begin
8825 E := First_Entity (Current_Scope);
8826 while Present (E) loop
8827 if Is_Intrinsic_Subprogram (E) then
8828 null;
8830 -- The following situation requires special handling: a child unit
8831 -- that appears in the context clause of the body of its parent:
8833 -- procedure Parent.Child (...);
8835 -- with Parent.Child;
8836 -- package body Parent is
8838 -- Here Parent.Child appears as a local entity, but should not be
8839 -- flagged as requiring completion, because it is a compilation
8840 -- unit.
8842 -- Ignore missing completion for a subprogram that does not come from
8843 -- source (including the _Call primitive operation of RAS types,
8844 -- which has to have the flag Comes_From_Source for other purposes):
8845 -- we assume that the expander will provide the missing completion.
8846 -- In case of previous errors, other expansion actions that provide
8847 -- bodies for null procedures with not be invoked, so inhibit message
8848 -- in those cases.
8849 -- Note that E_Operator is not in the list that follows, because
8850 -- this kind is reserved for predefined operators, that are
8851 -- intrinsic and do not need completion.
8853 elsif Ekind (E) = E_Function
8854 or else Ekind (E) = E_Procedure
8855 or else Ekind (E) = E_Generic_Function
8856 or else Ekind (E) = E_Generic_Procedure
8857 then
8858 if Has_Completion (E) then
8859 null;
8861 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
8862 null;
8864 elsif Is_Subprogram (E)
8865 and then (not Comes_From_Source (E)
8866 or else Chars (E) = Name_uCall)
8867 then
8868 null;
8870 elsif
8871 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8872 then
8873 null;
8875 elsif Nkind (Parent (E)) = N_Procedure_Specification
8876 and then Null_Present (Parent (E))
8877 and then Serious_Errors_Detected > 0
8878 then
8879 null;
8881 else
8882 Post_Error;
8883 end if;
8885 elsif Is_Entry (E) then
8886 if not Has_Completion (E) and then
8887 (Ekind (Scope (E)) = E_Protected_Object
8888 or else Ekind (Scope (E)) = E_Protected_Type)
8889 then
8890 Post_Error;
8891 end if;
8893 elsif Is_Package_Or_Generic_Package (E) then
8894 if Unit_Requires_Body (E) then
8895 if not Has_Completion (E)
8896 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
8897 N_Compilation_Unit
8898 then
8899 Post_Error;
8900 end if;
8902 elsif not Is_Child_Unit (E) then
8903 May_Need_Implicit_Body (E);
8904 end if;
8906 elsif Ekind (E) = E_Incomplete_Type
8907 and then No (Underlying_Type (E))
8908 then
8909 Post_Error;
8911 elsif (Ekind (E) = E_Task_Type or else
8912 Ekind (E) = E_Protected_Type)
8913 and then not Has_Completion (E)
8914 then
8915 Post_Error;
8917 -- A single task declared in the current scope is a constant, verify
8918 -- that the body of its anonymous type is in the same scope. If the
8919 -- task is defined elsewhere, this may be a renaming declaration for
8920 -- which no completion is needed.
8922 elsif Ekind (E) = E_Constant
8923 and then Ekind (Etype (E)) = E_Task_Type
8924 and then not Has_Completion (Etype (E))
8925 and then Scope (Etype (E)) = Current_Scope
8926 then
8927 Post_Error;
8929 elsif Ekind (E) = E_Protected_Object
8930 and then not Has_Completion (Etype (E))
8931 then
8932 Post_Error;
8934 elsif Ekind (E) = E_Record_Type then
8935 if Is_Tagged_Type (E) then
8936 Check_Abstract_Overriding (E);
8937 Check_Conventions (E);
8938 end if;
8940 Check_Aliased_Component_Types (E);
8942 elsif Ekind (E) = E_Array_Type then
8943 Check_Aliased_Component_Types (E);
8945 end if;
8947 Next_Entity (E);
8948 end loop;
8949 end Check_Completion;
8951 ----------------------------
8952 -- Check_Delta_Expression --
8953 ----------------------------
8955 procedure Check_Delta_Expression (E : Node_Id) is
8956 begin
8957 if not (Is_Real_Type (Etype (E))) then
8958 Wrong_Type (E, Any_Real);
8960 elsif not Is_OK_Static_Expression (E) then
8961 Flag_Non_Static_Expr
8962 ("non-static expression used for delta value!", E);
8964 elsif not UR_Is_Positive (Expr_Value_R (E)) then
8965 Error_Msg_N ("delta expression must be positive", E);
8967 else
8968 return;
8969 end if;
8971 -- If any of above errors occurred, then replace the incorrect
8972 -- expression by the real 0.1, which should prevent further errors.
8974 Rewrite (E,
8975 Make_Real_Literal (Sloc (E), Ureal_Tenth));
8976 Analyze_And_Resolve (E, Standard_Float);
8977 end Check_Delta_Expression;
8979 -----------------------------
8980 -- Check_Digits_Expression --
8981 -----------------------------
8983 procedure Check_Digits_Expression (E : Node_Id) is
8984 begin
8985 if not (Is_Integer_Type (Etype (E))) then
8986 Wrong_Type (E, Any_Integer);
8988 elsif not Is_OK_Static_Expression (E) then
8989 Flag_Non_Static_Expr
8990 ("non-static expression used for digits value!", E);
8992 elsif Expr_Value (E) <= 0 then
8993 Error_Msg_N ("digits value must be greater than zero", E);
8995 else
8996 return;
8997 end if;
8999 -- If any of above errors occurred, then replace the incorrect
9000 -- expression by the integer 1, which should prevent further errors.
9002 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
9003 Analyze_And_Resolve (E, Standard_Integer);
9005 end Check_Digits_Expression;
9007 --------------------------
9008 -- Check_Initialization --
9009 --------------------------
9011 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
9012 begin
9013 if Is_Limited_Type (T)
9014 and then not In_Instance
9015 and then not In_Inlined_Body
9016 then
9017 if not OK_For_Limited_Init (T, Exp) then
9019 -- In GNAT mode, this is just a warning, to allow it to be evilly
9020 -- turned off. Otherwise it is a real error.
9022 if GNAT_Mode then
9023 Error_Msg_N
9024 ("?cannot initialize entities of limited type!", Exp);
9026 elsif Ada_Version < Ada_05 then
9027 Error_Msg_N
9028 ("cannot initialize entities of limited type", Exp);
9029 Explain_Limited_Type (T, Exp);
9031 else
9032 -- Specialize error message according to kind of illegal
9033 -- initial expression.
9035 if Nkind (Exp) = N_Type_Conversion
9036 and then Nkind (Expression (Exp)) = N_Function_Call
9037 then
9038 Error_Msg_N
9039 ("illegal context for call"
9040 & " to function with limited result", Exp);
9042 else
9043 Error_Msg_N
9044 ("initialization of limited object requires aggregate "
9045 & "or function call", Exp);
9046 end if;
9047 end if;
9048 end if;
9049 end if;
9050 end Check_Initialization;
9052 ----------------------
9053 -- Check_Interfaces --
9054 ----------------------
9056 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
9057 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
9059 Iface : Node_Id;
9060 Iface_Def : Node_Id;
9061 Iface_Typ : Entity_Id;
9062 Parent_Node : Node_Id;
9064 Is_Task : Boolean := False;
9065 -- Set True if parent type or any progenitor is a task interface
9067 Is_Protected : Boolean := False;
9068 -- Set True if parent type or any progenitor is a protected interface
9070 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
9071 -- Check that a progenitor is compatible with declaration.
9072 -- Error is posted on Error_Node.
9074 ------------------
9075 -- Check_Ifaces --
9076 ------------------
9078 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
9079 Iface_Id : constant Entity_Id :=
9080 Defining_Identifier (Parent (Iface_Def));
9081 Type_Def : Node_Id;
9083 begin
9084 if Nkind (N) = N_Private_Extension_Declaration then
9085 Type_Def := N;
9086 else
9087 Type_Def := Type_Definition (N);
9088 end if;
9090 if Is_Task_Interface (Iface_Id) then
9091 Is_Task := True;
9093 elsif Is_Protected_Interface (Iface_Id) then
9094 Is_Protected := True;
9095 end if;
9097 if Is_Synchronized_Interface (Iface_Id) then
9099 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
9100 -- extension derived from a synchronized interface must explicitly
9101 -- be declared synchronized, because the full view will be a
9102 -- synchronized type.
9104 if Nkind (N) = N_Private_Extension_Declaration then
9105 if not Synchronized_Present (N) then
9106 Error_Msg_NE
9107 ("private extension of& must be explicitly synchronized",
9108 N, Iface_Id);
9109 end if;
9111 -- However, by 3.9.4(16/2), a full type that is a record extension
9112 -- is never allowed to derive from a synchronized interface (note
9113 -- that interfaces must be excluded from this check, because those
9114 -- are represented by derived type definitions in some cases).
9116 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
9117 and then not Interface_Present (Type_Definition (N))
9118 then
9119 Error_Msg_N ("record extension cannot derive from synchronized"
9120 & " interface", Error_Node);
9121 end if;
9122 end if;
9124 -- Check that the characteristics of the progenitor are compatible
9125 -- with the explicit qualifier in the declaration.
9126 -- The check only applies to qualifiers that come from source.
9127 -- Limited_Present also appears in the declaration of corresponding
9128 -- records, and the check does not apply to them.
9130 if Limited_Present (Type_Def)
9131 and then not
9132 Is_Concurrent_Record_Type (Defining_Identifier (N))
9133 then
9134 if Is_Limited_Interface (Parent_Type)
9135 and then not Is_Limited_Interface (Iface_Id)
9136 then
9137 Error_Msg_NE
9138 ("progenitor& must be limited interface",
9139 Error_Node, Iface_Id);
9141 elsif
9142 (Task_Present (Iface_Def)
9143 or else Protected_Present (Iface_Def)
9144 or else Synchronized_Present (Iface_Def))
9145 and then Nkind (N) /= N_Private_Extension_Declaration
9146 and then not Error_Posted (N)
9147 then
9148 Error_Msg_NE
9149 ("progenitor& must be limited interface",
9150 Error_Node, Iface_Id);
9151 end if;
9153 -- Protected interfaces can only inherit from limited, synchronized
9154 -- or protected interfaces.
9156 elsif Nkind (N) = N_Full_Type_Declaration
9157 and then Protected_Present (Type_Def)
9158 then
9159 if Limited_Present (Iface_Def)
9160 or else Synchronized_Present (Iface_Def)
9161 or else Protected_Present (Iface_Def)
9162 then
9163 null;
9165 elsif Task_Present (Iface_Def) then
9166 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
9167 & " from task interface", Error_Node);
9169 else
9170 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
9171 & " from non-limited interface", Error_Node);
9172 end if;
9174 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
9175 -- limited and synchronized.
9177 elsif Synchronized_Present (Type_Def) then
9178 if Limited_Present (Iface_Def)
9179 or else Synchronized_Present (Iface_Def)
9180 then
9181 null;
9183 elsif Protected_Present (Iface_Def)
9184 and then Nkind (N) /= N_Private_Extension_Declaration
9185 then
9186 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
9187 & " from protected interface", Error_Node);
9189 elsif Task_Present (Iface_Def)
9190 and then Nkind (N) /= N_Private_Extension_Declaration
9191 then
9192 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
9193 & " from task interface", Error_Node);
9195 elsif not Is_Limited_Interface (Iface_Id) then
9196 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
9197 & " from non-limited interface", Error_Node);
9198 end if;
9200 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
9201 -- synchronized or task interfaces.
9203 elsif Nkind (N) = N_Full_Type_Declaration
9204 and then Task_Present (Type_Def)
9205 then
9206 if Limited_Present (Iface_Def)
9207 or else Synchronized_Present (Iface_Def)
9208 or else Task_Present (Iface_Def)
9209 then
9210 null;
9212 elsif Protected_Present (Iface_Def) then
9213 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
9214 & " protected interface", Error_Node);
9216 else
9217 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
9218 & " non-limited interface", Error_Node);
9219 end if;
9220 end if;
9221 end Check_Ifaces;
9223 -- Start of processing for Check_Interfaces
9225 begin
9226 if Is_Interface (Parent_Type) then
9227 if Is_Task_Interface (Parent_Type) then
9228 Is_Task := True;
9230 elsif Is_Protected_Interface (Parent_Type) then
9231 Is_Protected := True;
9232 end if;
9233 end if;
9235 if Nkind (N) = N_Private_Extension_Declaration then
9237 -- Check that progenitors are compatible with declaration
9239 Iface := First (Interface_List (Def));
9240 while Present (Iface) loop
9241 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
9243 Parent_Node := Parent (Base_Type (Iface_Typ));
9244 Iface_Def := Type_Definition (Parent_Node);
9246 if not Is_Interface (Iface_Typ) then
9247 Diagnose_Interface (Iface, Iface_Typ);
9249 else
9250 Check_Ifaces (Iface_Def, Iface);
9251 end if;
9253 Next (Iface);
9254 end loop;
9256 if Is_Task and Is_Protected then
9257 Error_Msg_N
9258 ("type cannot derive from task and protected interface", N);
9259 end if;
9261 return;
9262 end if;
9264 -- Full type declaration of derived type.
9265 -- Check compatibility with parent if it is interface type
9267 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
9268 and then Is_Interface (Parent_Type)
9269 then
9270 Parent_Node := Parent (Parent_Type);
9272 -- More detailed checks for interface varieties
9274 Check_Ifaces
9275 (Iface_Def => Type_Definition (Parent_Node),
9276 Error_Node => Subtype_Indication (Type_Definition (N)));
9277 end if;
9279 Iface := First (Interface_List (Def));
9280 while Present (Iface) loop
9281 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
9283 Parent_Node := Parent (Base_Type (Iface_Typ));
9284 Iface_Def := Type_Definition (Parent_Node);
9286 if not Is_Interface (Iface_Typ) then
9287 Diagnose_Interface (Iface, Iface_Typ);
9289 else
9290 -- "The declaration of a specific descendant of an interface
9291 -- type freezes the interface type" RM 13.14
9293 Freeze_Before (N, Iface_Typ);
9294 Check_Ifaces (Iface_Def, Error_Node => Iface);
9295 end if;
9297 Next (Iface);
9298 end loop;
9300 if Is_Task and Is_Protected then
9301 Error_Msg_N
9302 ("type cannot derive from task and protected interface", N);
9303 end if;
9304 end Check_Interfaces;
9306 ------------------------------------
9307 -- Check_Or_Process_Discriminants --
9308 ------------------------------------
9310 -- If an incomplete or private type declaration was already given for the
9311 -- type, the discriminants may have already been processed if they were
9312 -- present on the incomplete declaration. In this case a full conformance
9313 -- check is performed otherwise just process them.
9315 procedure Check_Or_Process_Discriminants
9316 (N : Node_Id;
9317 T : Entity_Id;
9318 Prev : Entity_Id := Empty)
9320 begin
9321 if Has_Discriminants (T) then
9323 -- Make the discriminants visible to component declarations
9325 declare
9326 D : Entity_Id;
9327 Prev : Entity_Id;
9329 begin
9330 D := First_Discriminant (T);
9331 while Present (D) loop
9332 Prev := Current_Entity (D);
9333 Set_Current_Entity (D);
9334 Set_Is_Immediately_Visible (D);
9335 Set_Homonym (D, Prev);
9337 -- Ada 2005 (AI-230): Access discriminant allowed in
9338 -- non-limited record types.
9340 if Ada_Version < Ada_05 then
9342 -- This restriction gets applied to the full type here. It
9343 -- has already been applied earlier to the partial view.
9345 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
9346 end if;
9348 Next_Discriminant (D);
9349 end loop;
9350 end;
9352 elsif Present (Discriminant_Specifications (N)) then
9353 Process_Discriminants (N, Prev);
9354 end if;
9355 end Check_Or_Process_Discriminants;
9357 ----------------------
9358 -- Check_Real_Bound --
9359 ----------------------
9361 procedure Check_Real_Bound (Bound : Node_Id) is
9362 begin
9363 if not Is_Real_Type (Etype (Bound)) then
9364 Error_Msg_N
9365 ("bound in real type definition must be of real type", Bound);
9367 elsif not Is_OK_Static_Expression (Bound) then
9368 Flag_Non_Static_Expr
9369 ("non-static expression used for real type bound!", Bound);
9371 else
9372 return;
9373 end if;
9375 Rewrite
9376 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
9377 Analyze (Bound);
9378 Resolve (Bound, Standard_Float);
9379 end Check_Real_Bound;
9381 ------------------------------
9382 -- Complete_Private_Subtype --
9383 ------------------------------
9385 procedure Complete_Private_Subtype
9386 (Priv : Entity_Id;
9387 Full : Entity_Id;
9388 Full_Base : Entity_Id;
9389 Related_Nod : Node_Id)
9391 Save_Next_Entity : Entity_Id;
9392 Save_Homonym : Entity_Id;
9394 begin
9395 -- Set semantic attributes for (implicit) private subtype completion.
9396 -- If the full type has no discriminants, then it is a copy of the full
9397 -- view of the base. Otherwise, it is a subtype of the base with a
9398 -- possible discriminant constraint. Save and restore the original
9399 -- Next_Entity field of full to ensure that the calls to Copy_Node
9400 -- do not corrupt the entity chain.
9402 -- Note that the type of the full view is the same entity as the type of
9403 -- the partial view. In this fashion, the subtype has access to the
9404 -- correct view of the parent.
9406 Save_Next_Entity := Next_Entity (Full);
9407 Save_Homonym := Homonym (Priv);
9409 case Ekind (Full_Base) is
9410 when E_Record_Type |
9411 E_Record_Subtype |
9412 Class_Wide_Kind |
9413 Private_Kind |
9414 Task_Kind |
9415 Protected_Kind =>
9416 Copy_Node (Priv, Full);
9418 Set_Has_Discriminants (Full, Has_Discriminants (Full_Base));
9419 Set_First_Entity (Full, First_Entity (Full_Base));
9420 Set_Last_Entity (Full, Last_Entity (Full_Base));
9422 when others =>
9423 Copy_Node (Full_Base, Full);
9424 Set_Chars (Full, Chars (Priv));
9425 Conditional_Delay (Full, Priv);
9426 Set_Sloc (Full, Sloc (Priv));
9427 end case;
9429 Set_Next_Entity (Full, Save_Next_Entity);
9430 Set_Homonym (Full, Save_Homonym);
9431 Set_Associated_Node_For_Itype (Full, Related_Nod);
9433 -- Set common attributes for all subtypes
9435 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
9437 -- The Etype of the full view is inconsistent. Gigi needs to see the
9438 -- structural full view, which is what the current scheme gives:
9439 -- the Etype of the full view is the etype of the full base. However,
9440 -- if the full base is a derived type, the full view then looks like
9441 -- a subtype of the parent, not a subtype of the full base. If instead
9442 -- we write:
9444 -- Set_Etype (Full, Full_Base);
9446 -- then we get inconsistencies in the front-end (confusion between
9447 -- views). Several outstanding bugs are related to this ???
9449 Set_Is_First_Subtype (Full, False);
9450 Set_Scope (Full, Scope (Priv));
9451 Set_Size_Info (Full, Full_Base);
9452 Set_RM_Size (Full, RM_Size (Full_Base));
9453 Set_Is_Itype (Full);
9455 -- A subtype of a private-type-without-discriminants, whose full-view
9456 -- has discriminants with default expressions, is not constrained!
9458 if not Has_Discriminants (Priv) then
9459 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
9461 if Has_Discriminants (Full_Base) then
9462 Set_Discriminant_Constraint
9463 (Full, Discriminant_Constraint (Full_Base));
9465 -- The partial view may have been indefinite, the full view
9466 -- might not be.
9468 Set_Has_Unknown_Discriminants
9469 (Full, Has_Unknown_Discriminants (Full_Base));
9470 end if;
9471 end if;
9473 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
9474 Set_Depends_On_Private (Full, Has_Private_Component (Full));
9476 -- Freeze the private subtype entity if its parent is delayed, and not
9477 -- already frozen. We skip this processing if the type is an anonymous
9478 -- subtype of a record component, or is the corresponding record of a
9479 -- protected type, since ???
9481 if not Is_Type (Scope (Full)) then
9482 Set_Has_Delayed_Freeze (Full,
9483 Has_Delayed_Freeze (Full_Base)
9484 and then (not Is_Frozen (Full_Base)));
9485 end if;
9487 Set_Freeze_Node (Full, Empty);
9488 Set_Is_Frozen (Full, False);
9489 Set_Full_View (Priv, Full);
9491 if Has_Discriminants (Full) then
9492 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
9493 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
9495 if Has_Unknown_Discriminants (Full) then
9496 Set_Discriminant_Constraint (Full, No_Elist);
9497 end if;
9498 end if;
9500 if Ekind (Full_Base) = E_Record_Type
9501 and then Has_Discriminants (Full_Base)
9502 and then Has_Discriminants (Priv) -- might not, if errors
9503 and then not Has_Unknown_Discriminants (Priv)
9504 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
9505 then
9506 Create_Constrained_Components
9507 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
9509 -- If the full base is itself derived from private, build a congruent
9510 -- subtype of its underlying type, for use by the back end. For a
9511 -- constrained record component, the declaration cannot be placed on
9512 -- the component list, but it must nevertheless be built an analyzed, to
9513 -- supply enough information for Gigi to compute the size of component.
9515 elsif Ekind (Full_Base) in Private_Kind
9516 and then Is_Derived_Type (Full_Base)
9517 and then Has_Discriminants (Full_Base)
9518 and then (Ekind (Current_Scope) /= E_Record_Subtype)
9519 then
9520 if not Is_Itype (Priv)
9521 and then
9522 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
9523 then
9524 Build_Underlying_Full_View
9525 (Parent (Priv), Full, Etype (Full_Base));
9527 elsif Nkind (Related_Nod) = N_Component_Declaration then
9528 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
9529 end if;
9531 elsif Is_Record_Type (Full_Base) then
9533 -- Show Full is simply a renaming of Full_Base
9535 Set_Cloned_Subtype (Full, Full_Base);
9536 end if;
9538 -- It is unsafe to share to bounds of a scalar type, because the Itype
9539 -- is elaborated on demand, and if a bound is non-static then different
9540 -- orders of elaboration in different units will lead to different
9541 -- external symbols.
9543 if Is_Scalar_Type (Full_Base) then
9544 Set_Scalar_Range (Full,
9545 Make_Range (Sloc (Related_Nod),
9546 Low_Bound =>
9547 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
9548 High_Bound =>
9549 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
9551 -- This completion inherits the bounds of the full parent, but if
9552 -- the parent is an unconstrained floating point type, so is the
9553 -- completion.
9555 if Is_Floating_Point_Type (Full_Base) then
9556 Set_Includes_Infinities
9557 (Scalar_Range (Full), Has_Infinities (Full_Base));
9558 end if;
9559 end if;
9561 -- ??? It seems that a lot of fields are missing that should be copied
9562 -- from Full_Base to Full. Here are some that are introduced in a
9563 -- non-disruptive way but a cleanup is necessary.
9565 if Is_Tagged_Type (Full_Base) then
9566 Set_Is_Tagged_Type (Full);
9567 Set_Primitive_Operations (Full, Primitive_Operations (Full_Base));
9568 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
9570 -- If this is a subtype of a protected or task type, constrain its
9571 -- corresponding record, unless this is a subtype without constraints,
9572 -- i.e. a simple renaming as with an actual subtype in an instance.
9574 elsif Is_Concurrent_Type (Full_Base) then
9575 if Has_Discriminants (Full)
9576 and then Present (Corresponding_Record_Type (Full_Base))
9577 and then
9578 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
9579 then
9580 Set_Corresponding_Record_Type (Full,
9581 Constrain_Corresponding_Record
9582 (Full, Corresponding_Record_Type (Full_Base),
9583 Related_Nod, Full_Base));
9585 else
9586 Set_Corresponding_Record_Type (Full,
9587 Corresponding_Record_Type (Full_Base));
9588 end if;
9589 end if;
9590 end Complete_Private_Subtype;
9592 ----------------------------
9593 -- Constant_Redeclaration --
9594 ----------------------------
9596 procedure Constant_Redeclaration
9597 (Id : Entity_Id;
9598 N : Node_Id;
9599 T : out Entity_Id)
9601 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
9602 Obj_Def : constant Node_Id := Object_Definition (N);
9603 New_T : Entity_Id;
9605 procedure Check_Possible_Deferred_Completion
9606 (Prev_Id : Entity_Id;
9607 Prev_Obj_Def : Node_Id;
9608 Curr_Obj_Def : Node_Id);
9609 -- Determine whether the two object definitions describe the partial
9610 -- and the full view of a constrained deferred constant. Generate
9611 -- a subtype for the full view and verify that it statically matches
9612 -- the subtype of the partial view.
9614 procedure Check_Recursive_Declaration (Typ : Entity_Id);
9615 -- If deferred constant is an access type initialized with an allocator,
9616 -- check whether there is an illegal recursion in the definition,
9617 -- through a default value of some record subcomponent. This is normally
9618 -- detected when generating init procs, but requires this additional
9619 -- mechanism when expansion is disabled.
9621 ----------------------------------------
9622 -- Check_Possible_Deferred_Completion --
9623 ----------------------------------------
9625 procedure Check_Possible_Deferred_Completion
9626 (Prev_Id : Entity_Id;
9627 Prev_Obj_Def : Node_Id;
9628 Curr_Obj_Def : Node_Id)
9630 begin
9631 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
9632 and then Present (Constraint (Prev_Obj_Def))
9633 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
9634 and then Present (Constraint (Curr_Obj_Def))
9635 then
9636 declare
9637 Loc : constant Source_Ptr := Sloc (N);
9638 Def_Id : constant Entity_Id :=
9639 Make_Defining_Identifier (Loc,
9640 New_Internal_Name ('S'));
9641 Decl : constant Node_Id :=
9642 Make_Subtype_Declaration (Loc,
9643 Defining_Identifier =>
9644 Def_Id,
9645 Subtype_Indication =>
9646 Relocate_Node (Curr_Obj_Def));
9648 begin
9649 Insert_Before_And_Analyze (N, Decl);
9650 Set_Etype (Id, Def_Id);
9652 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
9653 Error_Msg_Sloc := Sloc (Prev_Id);
9654 Error_Msg_N ("subtype does not statically match deferred " &
9655 "declaration#", N);
9656 end if;
9657 end;
9658 end if;
9659 end Check_Possible_Deferred_Completion;
9661 ---------------------------------
9662 -- Check_Recursive_Declaration --
9663 ---------------------------------
9665 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
9666 Comp : Entity_Id;
9668 begin
9669 if Is_Record_Type (Typ) then
9670 Comp := First_Component (Typ);
9671 while Present (Comp) loop
9672 if Comes_From_Source (Comp) then
9673 if Present (Expression (Parent (Comp)))
9674 and then Is_Entity_Name (Expression (Parent (Comp)))
9675 and then Entity (Expression (Parent (Comp))) = Prev
9676 then
9677 Error_Msg_Sloc := Sloc (Parent (Comp));
9678 Error_Msg_NE
9679 ("illegal circularity with declaration for&#",
9680 N, Comp);
9681 return;
9683 elsif Is_Record_Type (Etype (Comp)) then
9684 Check_Recursive_Declaration (Etype (Comp));
9685 end if;
9686 end if;
9688 Next_Component (Comp);
9689 end loop;
9690 end if;
9691 end Check_Recursive_Declaration;
9693 -- Start of processing for Constant_Redeclaration
9695 begin
9696 if Nkind (Parent (Prev)) = N_Object_Declaration then
9697 if Nkind (Object_Definition
9698 (Parent (Prev))) = N_Subtype_Indication
9699 then
9700 -- Find type of new declaration. The constraints of the two
9701 -- views must match statically, but there is no point in
9702 -- creating an itype for the full view.
9704 if Nkind (Obj_Def) = N_Subtype_Indication then
9705 Find_Type (Subtype_Mark (Obj_Def));
9706 New_T := Entity (Subtype_Mark (Obj_Def));
9708 else
9709 Find_Type (Obj_Def);
9710 New_T := Entity (Obj_Def);
9711 end if;
9713 T := Etype (Prev);
9715 else
9716 -- The full view may impose a constraint, even if the partial
9717 -- view does not, so construct the subtype.
9719 New_T := Find_Type_Of_Object (Obj_Def, N);
9720 T := New_T;
9721 end if;
9723 else
9724 -- Current declaration is illegal, diagnosed below in Enter_Name
9726 T := Empty;
9727 New_T := Any_Type;
9728 end if;
9730 -- If previous full declaration exists, or if a homograph is present,
9731 -- let Enter_Name handle it, either with an error, or with the removal
9732 -- of an overridden implicit subprogram.
9734 if Ekind (Prev) /= E_Constant
9735 or else Present (Expression (Parent (Prev)))
9736 or else Present (Full_View (Prev))
9737 then
9738 Enter_Name (Id);
9740 -- Verify that types of both declarations match, or else that both types
9741 -- are anonymous access types whose designated subtypes statically match
9742 -- (as allowed in Ada 2005 by AI-385).
9744 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
9745 and then
9746 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
9747 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
9748 or else Is_Access_Constant (Etype (New_T)) /=
9749 Is_Access_Constant (Etype (Prev))
9750 or else Can_Never_Be_Null (Etype (New_T)) /=
9751 Can_Never_Be_Null (Etype (Prev))
9752 or else Null_Exclusion_Present (Parent (Prev)) /=
9753 Null_Exclusion_Present (Parent (Id))
9754 or else not Subtypes_Statically_Match
9755 (Designated_Type (Etype (Prev)),
9756 Designated_Type (Etype (New_T))))
9757 then
9758 Error_Msg_Sloc := Sloc (Prev);
9759 Error_Msg_N ("type does not match declaration#", N);
9760 Set_Full_View (Prev, Id);
9761 Set_Etype (Id, Any_Type);
9763 elsif
9764 Null_Exclusion_Present (Parent (Prev))
9765 and then not Null_Exclusion_Present (N)
9766 then
9767 Error_Msg_Sloc := Sloc (Prev);
9768 Error_Msg_N ("null-exclusion does not match declaration#", N);
9769 Set_Full_View (Prev, Id);
9770 Set_Etype (Id, Any_Type);
9772 -- If so, process the full constant declaration
9774 else
9775 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
9776 -- the deferred declaration is constrained, then the subtype defined
9777 -- by the subtype_indication in the full declaration shall match it
9778 -- statically.
9780 Check_Possible_Deferred_Completion
9781 (Prev_Id => Prev,
9782 Prev_Obj_Def => Object_Definition (Parent (Prev)),
9783 Curr_Obj_Def => Obj_Def);
9785 Set_Full_View (Prev, Id);
9786 Set_Is_Public (Id, Is_Public (Prev));
9787 Set_Is_Internal (Id);
9788 Append_Entity (Id, Current_Scope);
9790 -- Check ALIASED present if present before (RM 7.4(7))
9792 if Is_Aliased (Prev)
9793 and then not Aliased_Present (N)
9794 then
9795 Error_Msg_Sloc := Sloc (Prev);
9796 Error_Msg_N ("ALIASED required (see declaration#)", N);
9797 end if;
9799 -- Check that placement is in private part and that the incomplete
9800 -- declaration appeared in the visible part.
9802 if Ekind (Current_Scope) = E_Package
9803 and then not In_Private_Part (Current_Scope)
9804 then
9805 Error_Msg_Sloc := Sloc (Prev);
9806 Error_Msg_N ("full constant for declaration#"
9807 & " must be in private part", N);
9809 elsif Ekind (Current_Scope) = E_Package
9810 and then List_Containing (Parent (Prev))
9811 /= Visible_Declarations
9812 (Specification (Unit_Declaration_Node (Current_Scope)))
9813 then
9814 Error_Msg_N
9815 ("deferred constant must be declared in visible part",
9816 Parent (Prev));
9817 end if;
9819 if Is_Access_Type (T)
9820 and then Nkind (Expression (N)) = N_Allocator
9821 then
9822 Check_Recursive_Declaration (Designated_Type (T));
9823 end if;
9824 end if;
9825 end Constant_Redeclaration;
9827 ----------------------
9828 -- Constrain_Access --
9829 ----------------------
9831 procedure Constrain_Access
9832 (Def_Id : in out Entity_Id;
9833 S : Node_Id;
9834 Related_Nod : Node_Id)
9836 T : constant Entity_Id := Entity (Subtype_Mark (S));
9837 Desig_Type : constant Entity_Id := Designated_Type (T);
9838 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
9839 Constraint_OK : Boolean := True;
9841 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
9842 -- Simple predicate to test for defaulted discriminants
9843 -- Shouldn't this be in sem_util???
9845 ---------------------------------
9846 -- Has_Defaulted_Discriminants --
9847 ---------------------------------
9849 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
9850 begin
9851 return Has_Discriminants (Typ)
9852 and then Present (First_Discriminant (Typ))
9853 and then Present
9854 (Discriminant_Default_Value (First_Discriminant (Typ)));
9855 end Has_Defaulted_Discriminants;
9857 -- Start of processing for Constrain_Access
9859 begin
9860 if Is_Array_Type (Desig_Type) then
9861 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
9863 elsif (Is_Record_Type (Desig_Type)
9864 or else Is_Incomplete_Or_Private_Type (Desig_Type))
9865 and then not Is_Constrained (Desig_Type)
9866 then
9867 -- ??? The following code is a temporary kludge to ignore a
9868 -- discriminant constraint on access type if it is constraining
9869 -- the current record. Avoid creating the implicit subtype of the
9870 -- record we are currently compiling since right now, we cannot
9871 -- handle these. For now, just return the access type itself.
9873 if Desig_Type = Current_Scope
9874 and then No (Def_Id)
9875 then
9876 Set_Ekind (Desig_Subtype, E_Record_Subtype);
9877 Def_Id := Entity (Subtype_Mark (S));
9879 -- This call added to ensure that the constraint is analyzed
9880 -- (needed for a B test). Note that we still return early from
9881 -- this procedure to avoid recursive processing. ???
9883 Constrain_Discriminated_Type
9884 (Desig_Subtype, S, Related_Nod, For_Access => True);
9885 return;
9886 end if;
9888 if (Ekind (T) = E_General_Access_Type
9889 or else Ada_Version >= Ada_05)
9890 and then Has_Private_Declaration (Desig_Type)
9891 and then In_Open_Scopes (Scope (Desig_Type))
9892 and then Has_Discriminants (Desig_Type)
9893 then
9894 -- Enforce rule that the constraint is illegal if there is
9895 -- an unconstrained view of the designated type. This means
9896 -- that the partial view (either a private type declaration or
9897 -- a derivation from a private type) has no discriminants.
9898 -- (Defect Report 8652/0008, Technical Corrigendum 1, checked
9899 -- by ACATS B371001).
9901 -- Rule updated for Ada 2005: the private type is said to have
9902 -- a constrained partial view, given that objects of the type
9903 -- can be declared. Furthermore, the rule applies to all access
9904 -- types, unlike the rule concerning default discriminants.
9906 declare
9907 Pack : constant Node_Id :=
9908 Unit_Declaration_Node (Scope (Desig_Type));
9909 Decls : List_Id;
9910 Decl : Node_Id;
9912 begin
9913 if Nkind (Pack) = N_Package_Declaration then
9914 Decls := Visible_Declarations (Specification (Pack));
9915 Decl := First (Decls);
9916 while Present (Decl) loop
9917 if (Nkind (Decl) = N_Private_Type_Declaration
9918 and then
9919 Chars (Defining_Identifier (Decl)) =
9920 Chars (Desig_Type))
9922 or else
9923 (Nkind (Decl) = N_Full_Type_Declaration
9924 and then
9925 Chars (Defining_Identifier (Decl)) =
9926 Chars (Desig_Type)
9927 and then Is_Derived_Type (Desig_Type)
9928 and then
9929 Has_Private_Declaration (Etype (Desig_Type)))
9930 then
9931 if No (Discriminant_Specifications (Decl)) then
9932 Error_Msg_N
9933 ("cannot constrain general access type if " &
9934 "designated type has constrained partial view",
9936 end if;
9938 exit;
9939 end if;
9941 Next (Decl);
9942 end loop;
9943 end if;
9944 end;
9945 end if;
9947 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
9948 For_Access => True);
9950 elsif (Is_Task_Type (Desig_Type)
9951 or else Is_Protected_Type (Desig_Type))
9952 and then not Is_Constrained (Desig_Type)
9953 then
9954 Constrain_Concurrent
9955 (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
9957 else
9958 Error_Msg_N ("invalid constraint on access type", S);
9959 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
9960 Constraint_OK := False;
9961 end if;
9963 if No (Def_Id) then
9964 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
9965 else
9966 Set_Ekind (Def_Id, E_Access_Subtype);
9967 end if;
9969 if Constraint_OK then
9970 Set_Etype (Def_Id, Base_Type (T));
9972 if Is_Private_Type (Desig_Type) then
9973 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
9974 end if;
9975 else
9976 Set_Etype (Def_Id, Any_Type);
9977 end if;
9979 Set_Size_Info (Def_Id, T);
9980 Set_Is_Constrained (Def_Id, Constraint_OK);
9981 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
9982 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
9983 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
9985 Conditional_Delay (Def_Id, T);
9987 -- AI-363 : Subtypes of general access types whose designated types have
9988 -- default discriminants are disallowed. In instances, the rule has to
9989 -- be checked against the actual, of which T is the subtype. In a
9990 -- generic body, the rule is checked assuming that the actual type has
9991 -- defaulted discriminants.
9993 if Ada_Version >= Ada_05 or else Warn_On_Ada_2005_Compatibility then
9994 if Ekind (Base_Type (T)) = E_General_Access_Type
9995 and then Has_Defaulted_Discriminants (Desig_Type)
9996 then
9997 if Ada_Version < Ada_05 then
9998 Error_Msg_N
9999 ("access subtype of general access type would not " &
10000 "be allowed in Ada 2005?", S);
10001 else
10002 Error_Msg_N
10003 ("access subype of general access type not allowed", S);
10004 end if;
10006 Error_Msg_N ("\discriminants have defaults", S);
10008 elsif Is_Access_Type (T)
10009 and then Is_Generic_Type (Desig_Type)
10010 and then Has_Discriminants (Desig_Type)
10011 and then In_Package_Body (Current_Scope)
10012 then
10013 if Ada_Version < Ada_05 then
10014 Error_Msg_N
10015 ("access subtype would not be allowed in generic body " &
10016 "in Ada 2005?", S);
10017 else
10018 Error_Msg_N
10019 ("access subtype not allowed in generic body", S);
10020 end if;
10022 Error_Msg_N
10023 ("\designated type is a discriminated formal", S);
10024 end if;
10025 end if;
10026 end Constrain_Access;
10028 ---------------------
10029 -- Constrain_Array --
10030 ---------------------
10032 procedure Constrain_Array
10033 (Def_Id : in out Entity_Id;
10034 SI : Node_Id;
10035 Related_Nod : Node_Id;
10036 Related_Id : Entity_Id;
10037 Suffix : Character)
10039 C : constant Node_Id := Constraint (SI);
10040 Number_Of_Constraints : Nat := 0;
10041 Index : Node_Id;
10042 S, T : Entity_Id;
10043 Constraint_OK : Boolean := True;
10045 begin
10046 T := Entity (Subtype_Mark (SI));
10048 if Ekind (T) in Access_Kind then
10049 T := Designated_Type (T);
10050 end if;
10052 -- If an index constraint follows a subtype mark in a subtype indication
10053 -- then the type or subtype denoted by the subtype mark must not already
10054 -- impose an index constraint. The subtype mark must denote either an
10055 -- unconstrained array type or an access type whose designated type
10056 -- is such an array type... (RM 3.6.1)
10058 if Is_Constrained (T) then
10059 Error_Msg_N
10060 ("array type is already constrained", Subtype_Mark (SI));
10061 Constraint_OK := False;
10063 else
10064 S := First (Constraints (C));
10065 while Present (S) loop
10066 Number_Of_Constraints := Number_Of_Constraints + 1;
10067 Next (S);
10068 end loop;
10070 -- In either case, the index constraint must provide a discrete
10071 -- range for each index of the array type and the type of each
10072 -- discrete range must be the same as that of the corresponding
10073 -- index. (RM 3.6.1)
10075 if Number_Of_Constraints /= Number_Dimensions (T) then
10076 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
10077 Constraint_OK := False;
10079 else
10080 S := First (Constraints (C));
10081 Index := First_Index (T);
10082 Analyze (Index);
10084 -- Apply constraints to each index type
10086 for J in 1 .. Number_Of_Constraints loop
10087 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
10088 Next (Index);
10089 Next (S);
10090 end loop;
10092 end if;
10093 end if;
10095 if No (Def_Id) then
10096 Def_Id :=
10097 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
10098 Set_Parent (Def_Id, Related_Nod);
10100 else
10101 Set_Ekind (Def_Id, E_Array_Subtype);
10102 end if;
10104 Set_Size_Info (Def_Id, (T));
10105 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10106 Set_Etype (Def_Id, Base_Type (T));
10108 if Constraint_OK then
10109 Set_First_Index (Def_Id, First (Constraints (C)));
10110 else
10111 Set_First_Index (Def_Id, First_Index (T));
10112 end if;
10114 Set_Is_Constrained (Def_Id, True);
10115 Set_Is_Aliased (Def_Id, Is_Aliased (T));
10116 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
10118 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
10119 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
10121 -- A subtype does not inherit the packed_array_type of is parent. We
10122 -- need to initialize the attribute because if Def_Id is previously
10123 -- analyzed through a limited_with clause, it will have the attributes
10124 -- of an incomplete type, one of which is an Elist that overlaps the
10125 -- Packed_Array_Type field.
10127 Set_Packed_Array_Type (Def_Id, Empty);
10129 -- Build a freeze node if parent still needs one. Also make sure that
10130 -- the Depends_On_Private status is set because the subtype will need
10131 -- reprocessing at the time the base type does, and also we must set a
10132 -- conditional delay.
10134 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10135 Conditional_Delay (Def_Id, T);
10136 end Constrain_Array;
10138 ------------------------------
10139 -- Constrain_Component_Type --
10140 ------------------------------
10142 function Constrain_Component_Type
10143 (Comp : Entity_Id;
10144 Constrained_Typ : Entity_Id;
10145 Related_Node : Node_Id;
10146 Typ : Entity_Id;
10147 Constraints : Elist_Id) return Entity_Id
10149 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
10150 Compon_Type : constant Entity_Id := Etype (Comp);
10152 function Build_Constrained_Array_Type
10153 (Old_Type : Entity_Id) return Entity_Id;
10154 -- If Old_Type is an array type, one of whose indices is constrained
10155 -- by a discriminant, build an Itype whose constraint replaces the
10156 -- discriminant with its value in the constraint.
10158 function Build_Constrained_Discriminated_Type
10159 (Old_Type : Entity_Id) return Entity_Id;
10160 -- Ditto for record components
10162 function Build_Constrained_Access_Type
10163 (Old_Type : Entity_Id) return Entity_Id;
10164 -- Ditto for access types. Makes use of previous two functions, to
10165 -- constrain designated type.
10167 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
10168 -- T is an array or discriminated type, C is a list of constraints
10169 -- that apply to T. This routine builds the constrained subtype.
10171 function Is_Discriminant (Expr : Node_Id) return Boolean;
10172 -- Returns True if Expr is a discriminant
10174 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
10175 -- Find the value of discriminant Discrim in Constraint
10177 -----------------------------------
10178 -- Build_Constrained_Access_Type --
10179 -----------------------------------
10181 function Build_Constrained_Access_Type
10182 (Old_Type : Entity_Id) return Entity_Id
10184 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
10185 Itype : Entity_Id;
10186 Desig_Subtype : Entity_Id;
10187 Scop : Entity_Id;
10189 begin
10190 -- if the original access type was not embedded in the enclosing
10191 -- type definition, there is no need to produce a new access
10192 -- subtype. In fact every access type with an explicit constraint
10193 -- generates an itype whose scope is the enclosing record.
10195 if not Is_Type (Scope (Old_Type)) then
10196 return Old_Type;
10198 elsif Is_Array_Type (Desig_Type) then
10199 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
10201 elsif Has_Discriminants (Desig_Type) then
10203 -- This may be an access type to an enclosing record type for
10204 -- which we are constructing the constrained components. Return
10205 -- the enclosing record subtype. This is not always correct,
10206 -- but avoids infinite recursion. ???
10208 Desig_Subtype := Any_Type;
10210 for J in reverse 0 .. Scope_Stack.Last loop
10211 Scop := Scope_Stack.Table (J).Entity;
10213 if Is_Type (Scop)
10214 and then Base_Type (Scop) = Base_Type (Desig_Type)
10215 then
10216 Desig_Subtype := Scop;
10217 end if;
10219 exit when not Is_Type (Scop);
10220 end loop;
10222 if Desig_Subtype = Any_Type then
10223 Desig_Subtype :=
10224 Build_Constrained_Discriminated_Type (Desig_Type);
10225 end if;
10227 else
10228 return Old_Type;
10229 end if;
10231 if Desig_Subtype /= Desig_Type then
10233 -- The Related_Node better be here or else we won't be able
10234 -- to attach new itypes to a node in the tree.
10236 pragma Assert (Present (Related_Node));
10238 Itype := Create_Itype (E_Access_Subtype, Related_Node);
10240 Set_Etype (Itype, Base_Type (Old_Type));
10241 Set_Size_Info (Itype, (Old_Type));
10242 Set_Directly_Designated_Type (Itype, Desig_Subtype);
10243 Set_Depends_On_Private (Itype, Has_Private_Component
10244 (Old_Type));
10245 Set_Is_Access_Constant (Itype, Is_Access_Constant
10246 (Old_Type));
10248 -- The new itype needs freezing when it depends on a not frozen
10249 -- type and the enclosing subtype needs freezing.
10251 if Has_Delayed_Freeze (Constrained_Typ)
10252 and then not Is_Frozen (Constrained_Typ)
10253 then
10254 Conditional_Delay (Itype, Base_Type (Old_Type));
10255 end if;
10257 return Itype;
10259 else
10260 return Old_Type;
10261 end if;
10262 end Build_Constrained_Access_Type;
10264 ----------------------------------
10265 -- Build_Constrained_Array_Type --
10266 ----------------------------------
10268 function Build_Constrained_Array_Type
10269 (Old_Type : Entity_Id) return Entity_Id
10271 Lo_Expr : Node_Id;
10272 Hi_Expr : Node_Id;
10273 Old_Index : Node_Id;
10274 Range_Node : Node_Id;
10275 Constr_List : List_Id;
10277 Need_To_Create_Itype : Boolean := False;
10279 begin
10280 Old_Index := First_Index (Old_Type);
10281 while Present (Old_Index) loop
10282 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
10284 if Is_Discriminant (Lo_Expr)
10285 or else Is_Discriminant (Hi_Expr)
10286 then
10287 Need_To_Create_Itype := True;
10288 end if;
10290 Next_Index (Old_Index);
10291 end loop;
10293 if Need_To_Create_Itype then
10294 Constr_List := New_List;
10296 Old_Index := First_Index (Old_Type);
10297 while Present (Old_Index) loop
10298 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
10300 if Is_Discriminant (Lo_Expr) then
10301 Lo_Expr := Get_Discr_Value (Lo_Expr);
10302 end if;
10304 if Is_Discriminant (Hi_Expr) then
10305 Hi_Expr := Get_Discr_Value (Hi_Expr);
10306 end if;
10308 Range_Node :=
10309 Make_Range
10310 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
10312 Append (Range_Node, To => Constr_List);
10314 Next_Index (Old_Index);
10315 end loop;
10317 return Build_Subtype (Old_Type, Constr_List);
10319 else
10320 return Old_Type;
10321 end if;
10322 end Build_Constrained_Array_Type;
10324 ------------------------------------------
10325 -- Build_Constrained_Discriminated_Type --
10326 ------------------------------------------
10328 function Build_Constrained_Discriminated_Type
10329 (Old_Type : Entity_Id) return Entity_Id
10331 Expr : Node_Id;
10332 Constr_List : List_Id;
10333 Old_Constraint : Elmt_Id;
10335 Need_To_Create_Itype : Boolean := False;
10337 begin
10338 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
10339 while Present (Old_Constraint) loop
10340 Expr := Node (Old_Constraint);
10342 if Is_Discriminant (Expr) then
10343 Need_To_Create_Itype := True;
10344 end if;
10346 Next_Elmt (Old_Constraint);
10347 end loop;
10349 if Need_To_Create_Itype then
10350 Constr_List := New_List;
10352 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
10353 while Present (Old_Constraint) loop
10354 Expr := Node (Old_Constraint);
10356 if Is_Discriminant (Expr) then
10357 Expr := Get_Discr_Value (Expr);
10358 end if;
10360 Append (New_Copy_Tree (Expr), To => Constr_List);
10362 Next_Elmt (Old_Constraint);
10363 end loop;
10365 return Build_Subtype (Old_Type, Constr_List);
10367 else
10368 return Old_Type;
10369 end if;
10370 end Build_Constrained_Discriminated_Type;
10372 -------------------
10373 -- Build_Subtype --
10374 -------------------
10376 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
10377 Indic : Node_Id;
10378 Subtyp_Decl : Node_Id;
10379 Def_Id : Entity_Id;
10380 Btyp : Entity_Id := Base_Type (T);
10382 begin
10383 -- The Related_Node better be here or else we won't be able to
10384 -- attach new itypes to a node in the tree.
10386 pragma Assert (Present (Related_Node));
10388 -- If the view of the component's type is incomplete or private
10389 -- with unknown discriminants, then the constraint must be applied
10390 -- to the full type.
10392 if Has_Unknown_Discriminants (Btyp)
10393 and then Present (Underlying_Type (Btyp))
10394 then
10395 Btyp := Underlying_Type (Btyp);
10396 end if;
10398 Indic :=
10399 Make_Subtype_Indication (Loc,
10400 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
10401 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
10403 Def_Id := Create_Itype (Ekind (T), Related_Node);
10405 Subtyp_Decl :=
10406 Make_Subtype_Declaration (Loc,
10407 Defining_Identifier => Def_Id,
10408 Subtype_Indication => Indic);
10410 Set_Parent (Subtyp_Decl, Parent (Related_Node));
10412 -- Itypes must be analyzed with checks off (see package Itypes)
10414 Analyze (Subtyp_Decl, Suppress => All_Checks);
10416 return Def_Id;
10417 end Build_Subtype;
10419 ---------------------
10420 -- Get_Discr_Value --
10421 ---------------------
10423 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
10424 D : Entity_Id;
10425 E : Elmt_Id;
10427 begin
10428 -- The discriminant may be declared for the type, in which case we
10429 -- find it by iterating over the list of discriminants. If the
10430 -- discriminant is inherited from a parent type, it appears as the
10431 -- corresponding discriminant of the current type. This will be the
10432 -- case when constraining an inherited component whose constraint is
10433 -- given by a discriminant of the parent.
10435 D := First_Discriminant (Typ);
10436 E := First_Elmt (Constraints);
10438 while Present (D) loop
10439 if D = Entity (Discrim)
10440 or else D = CR_Discriminant (Entity (Discrim))
10441 or else Corresponding_Discriminant (D) = Entity (Discrim)
10442 then
10443 return Node (E);
10444 end if;
10446 Next_Discriminant (D);
10447 Next_Elmt (E);
10448 end loop;
10450 -- The corresponding_Discriminant mechanism is incomplete, because
10451 -- the correspondence between new and old discriminants is not one
10452 -- to one: one new discriminant can constrain several old ones. In
10453 -- that case, scan sequentially the stored_constraint, the list of
10454 -- discriminants of the parents, and the constraints.
10455 -- Previous code checked for the present of the Stored_Constraint
10456 -- list for the derived type, but did not use it at all. Should it
10457 -- be present when the component is a discriminated task type?
10459 if Is_Derived_Type (Typ)
10460 and then Scope (Entity (Discrim)) = Etype (Typ)
10461 then
10462 D := First_Discriminant (Etype (Typ));
10463 E := First_Elmt (Constraints);
10464 while Present (D) loop
10465 if D = Entity (Discrim) then
10466 return Node (E);
10467 end if;
10469 Next_Discriminant (D);
10470 Next_Elmt (E);
10471 end loop;
10472 end if;
10474 -- Something is wrong if we did not find the value
10476 raise Program_Error;
10477 end Get_Discr_Value;
10479 ---------------------
10480 -- Is_Discriminant --
10481 ---------------------
10483 function Is_Discriminant (Expr : Node_Id) return Boolean is
10484 Discrim_Scope : Entity_Id;
10486 begin
10487 if Denotes_Discriminant (Expr) then
10488 Discrim_Scope := Scope (Entity (Expr));
10490 -- Either we have a reference to one of Typ's discriminants,
10492 pragma Assert (Discrim_Scope = Typ
10494 -- or to the discriminants of the parent type, in the case
10495 -- of a derivation of a tagged type with variants.
10497 or else Discrim_Scope = Etype (Typ)
10498 or else Full_View (Discrim_Scope) = Etype (Typ)
10500 -- or same as above for the case where the discriminants
10501 -- were declared in Typ's private view.
10503 or else (Is_Private_Type (Discrim_Scope)
10504 and then Chars (Discrim_Scope) = Chars (Typ))
10506 -- or else we are deriving from the full view and the
10507 -- discriminant is declared in the private entity.
10509 or else (Is_Private_Type (Typ)
10510 and then Chars (Discrim_Scope) = Chars (Typ))
10512 -- Or we are constrained the corresponding record of a
10513 -- synchronized type that completes a private declaration.
10515 or else (Is_Concurrent_Record_Type (Typ)
10516 and then
10517 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
10519 -- or we have a class-wide type, in which case make sure the
10520 -- discriminant found belongs to the root type.
10522 or else (Is_Class_Wide_Type (Typ)
10523 and then Etype (Typ) = Discrim_Scope));
10525 return True;
10526 end if;
10528 -- In all other cases we have something wrong
10530 return False;
10531 end Is_Discriminant;
10533 -- Start of processing for Constrain_Component_Type
10535 begin
10536 if Nkind (Parent (Comp)) = N_Component_Declaration
10537 and then Comes_From_Source (Parent (Comp))
10538 and then Comes_From_Source
10539 (Subtype_Indication (Component_Definition (Parent (Comp))))
10540 and then
10541 Is_Entity_Name
10542 (Subtype_Indication (Component_Definition (Parent (Comp))))
10543 then
10544 return Compon_Type;
10546 elsif Is_Array_Type (Compon_Type) then
10547 return Build_Constrained_Array_Type (Compon_Type);
10549 elsif Has_Discriminants (Compon_Type) then
10550 return Build_Constrained_Discriminated_Type (Compon_Type);
10552 elsif Is_Access_Type (Compon_Type) then
10553 return Build_Constrained_Access_Type (Compon_Type);
10555 else
10556 return Compon_Type;
10557 end if;
10558 end Constrain_Component_Type;
10560 --------------------------
10561 -- Constrain_Concurrent --
10562 --------------------------
10564 -- For concurrent types, the associated record value type carries the same
10565 -- discriminants, so when we constrain a concurrent type, we must constrain
10566 -- the corresponding record type as well.
10568 procedure Constrain_Concurrent
10569 (Def_Id : in out Entity_Id;
10570 SI : Node_Id;
10571 Related_Nod : Node_Id;
10572 Related_Id : Entity_Id;
10573 Suffix : Character)
10575 T_Ent : Entity_Id := Entity (Subtype_Mark (SI));
10576 T_Val : Entity_Id;
10578 begin
10579 if Ekind (T_Ent) in Access_Kind then
10580 T_Ent := Designated_Type (T_Ent);
10581 end if;
10583 T_Val := Corresponding_Record_Type (T_Ent);
10585 if Present (T_Val) then
10587 if No (Def_Id) then
10588 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
10589 end if;
10591 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
10593 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
10594 Set_Corresponding_Record_Type (Def_Id,
10595 Constrain_Corresponding_Record
10596 (Def_Id, T_Val, Related_Nod, Related_Id));
10598 else
10599 -- If there is no associated record, expansion is disabled and this
10600 -- is a generic context. Create a subtype in any case, so that
10601 -- semantic analysis can proceed.
10603 if No (Def_Id) then
10604 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
10605 end if;
10607 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
10608 end if;
10609 end Constrain_Concurrent;
10611 ------------------------------------
10612 -- Constrain_Corresponding_Record --
10613 ------------------------------------
10615 function Constrain_Corresponding_Record
10616 (Prot_Subt : Entity_Id;
10617 Corr_Rec : Entity_Id;
10618 Related_Nod : Node_Id;
10619 Related_Id : Entity_Id) return Entity_Id
10621 T_Sub : constant Entity_Id :=
10622 Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
10624 begin
10625 Set_Etype (T_Sub, Corr_Rec);
10626 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
10627 Set_Is_Constrained (T_Sub, True);
10628 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
10629 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
10631 -- As elsewhere, we do not want to create a freeze node for this itype
10632 -- if it is created for a constrained component of an enclosing record
10633 -- because references to outer discriminants will appear out of scope.
10635 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
10636 Conditional_Delay (T_Sub, Corr_Rec);
10637 else
10638 Set_Is_Frozen (T_Sub);
10639 end if;
10641 if Has_Discriminants (Prot_Subt) then -- False only if errors.
10642 Set_Discriminant_Constraint
10643 (T_Sub, Discriminant_Constraint (Prot_Subt));
10644 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
10645 Create_Constrained_Components
10646 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
10647 end if;
10649 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
10651 return T_Sub;
10652 end Constrain_Corresponding_Record;
10654 -----------------------
10655 -- Constrain_Decimal --
10656 -----------------------
10658 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
10659 T : constant Entity_Id := Entity (Subtype_Mark (S));
10660 C : constant Node_Id := Constraint (S);
10661 Loc : constant Source_Ptr := Sloc (C);
10662 Range_Expr : Node_Id;
10663 Digits_Expr : Node_Id;
10664 Digits_Val : Uint;
10665 Bound_Val : Ureal;
10667 begin
10668 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
10670 if Nkind (C) = N_Range_Constraint then
10671 Range_Expr := Range_Expression (C);
10672 Digits_Val := Digits_Value (T);
10674 else
10675 pragma Assert (Nkind (C) = N_Digits_Constraint);
10676 Digits_Expr := Digits_Expression (C);
10677 Analyze_And_Resolve (Digits_Expr, Any_Integer);
10679 Check_Digits_Expression (Digits_Expr);
10680 Digits_Val := Expr_Value (Digits_Expr);
10682 if Digits_Val > Digits_Value (T) then
10683 Error_Msg_N
10684 ("digits expression is incompatible with subtype", C);
10685 Digits_Val := Digits_Value (T);
10686 end if;
10688 if Present (Range_Constraint (C)) then
10689 Range_Expr := Range_Expression (Range_Constraint (C));
10690 else
10691 Range_Expr := Empty;
10692 end if;
10693 end if;
10695 Set_Etype (Def_Id, Base_Type (T));
10696 Set_Size_Info (Def_Id, (T));
10697 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10698 Set_Delta_Value (Def_Id, Delta_Value (T));
10699 Set_Scale_Value (Def_Id, Scale_Value (T));
10700 Set_Small_Value (Def_Id, Small_Value (T));
10701 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
10702 Set_Digits_Value (Def_Id, Digits_Val);
10704 -- Manufacture range from given digits value if no range present
10706 if No (Range_Expr) then
10707 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
10708 Range_Expr :=
10709 Make_Range (Loc,
10710 Low_Bound =>
10711 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
10712 High_Bound =>
10713 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
10714 end if;
10716 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
10717 Set_Discrete_RM_Size (Def_Id);
10719 -- Unconditionally delay the freeze, since we cannot set size
10720 -- information in all cases correctly until the freeze point.
10722 Set_Has_Delayed_Freeze (Def_Id);
10723 end Constrain_Decimal;
10725 ----------------------------------
10726 -- Constrain_Discriminated_Type --
10727 ----------------------------------
10729 procedure Constrain_Discriminated_Type
10730 (Def_Id : Entity_Id;
10731 S : Node_Id;
10732 Related_Nod : Node_Id;
10733 For_Access : Boolean := False)
10735 E : constant Entity_Id := Entity (Subtype_Mark (S));
10736 T : Entity_Id;
10737 C : Node_Id;
10738 Elist : Elist_Id := New_Elmt_List;
10740 procedure Fixup_Bad_Constraint;
10741 -- This is called after finding a bad constraint, and after having
10742 -- posted an appropriate error message. The mission is to leave the
10743 -- entity T in as reasonable state as possible!
10745 --------------------------
10746 -- Fixup_Bad_Constraint --
10747 --------------------------
10749 procedure Fixup_Bad_Constraint is
10750 begin
10751 -- Set a reasonable Ekind for the entity. For an incomplete type,
10752 -- we can't do much, but for other types, we can set the proper
10753 -- corresponding subtype kind.
10755 if Ekind (T) = E_Incomplete_Type then
10756 Set_Ekind (Def_Id, Ekind (T));
10757 else
10758 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10759 end if;
10761 -- Set Etype to the known type, to reduce chances of cascaded errors
10763 Set_Etype (Def_Id, E);
10764 Set_Error_Posted (Def_Id);
10765 end Fixup_Bad_Constraint;
10767 -- Start of processing for Constrain_Discriminated_Type
10769 begin
10770 C := Constraint (S);
10772 -- A discriminant constraint is only allowed in a subtype indication,
10773 -- after a subtype mark. This subtype mark must denote either a type
10774 -- with discriminants, or an access type whose designated type is a
10775 -- type with discriminants. A discriminant constraint specifies the
10776 -- values of these discriminants (RM 3.7.2(5)).
10778 T := Base_Type (Entity (Subtype_Mark (S)));
10780 if Ekind (T) in Access_Kind then
10781 T := Designated_Type (T);
10782 end if;
10784 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
10785 -- Avoid generating an error for access-to-incomplete subtypes.
10787 if Ada_Version >= Ada_05
10788 and then Ekind (T) = E_Incomplete_Type
10789 and then Nkind (Parent (S)) = N_Subtype_Declaration
10790 and then not Is_Itype (Def_Id)
10791 then
10792 -- A little sanity check, emit an error message if the type
10793 -- has discriminants to begin with. Type T may be a regular
10794 -- incomplete type or imported via a limited with clause.
10796 if Has_Discriminants (T)
10797 or else
10798 (From_With_Type (T)
10799 and then Present (Non_Limited_View (T))
10800 and then Nkind (Parent (Non_Limited_View (T))) =
10801 N_Full_Type_Declaration
10802 and then Present (Discriminant_Specifications
10803 (Parent (Non_Limited_View (T)))))
10804 then
10805 Error_Msg_N
10806 ("(Ada 2005) incomplete subtype may not be constrained", C);
10807 else
10808 Error_Msg_N
10809 ("invalid constraint: type has no discriminant", C);
10810 end if;
10812 Fixup_Bad_Constraint;
10813 return;
10815 -- Check that the type has visible discriminants. The type may be
10816 -- a private type with unknown discriminants whose full view has
10817 -- discriminants which are invisible.
10819 elsif not Has_Discriminants (T)
10820 or else
10821 (Has_Unknown_Discriminants (T)
10822 and then Is_Private_Type (T))
10823 then
10824 Error_Msg_N ("invalid constraint: type has no discriminant", C);
10825 Fixup_Bad_Constraint;
10826 return;
10828 elsif Is_Constrained (E)
10829 or else (Ekind (E) = E_Class_Wide_Subtype
10830 and then Present (Discriminant_Constraint (E)))
10831 then
10832 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
10833 Fixup_Bad_Constraint;
10834 return;
10835 end if;
10837 -- T may be an unconstrained subtype (e.g. a generic actual).
10838 -- Constraint applies to the base type.
10840 T := Base_Type (T);
10842 Elist := Build_Discriminant_Constraints (T, S);
10844 -- If the list returned was empty we had an error in building the
10845 -- discriminant constraint. We have also already signalled an error
10846 -- in the incomplete type case
10848 if Is_Empty_Elmt_List (Elist) then
10849 Fixup_Bad_Constraint;
10850 return;
10851 end if;
10853 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
10854 end Constrain_Discriminated_Type;
10856 ---------------------------
10857 -- Constrain_Enumeration --
10858 ---------------------------
10860 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
10861 T : constant Entity_Id := Entity (Subtype_Mark (S));
10862 C : constant Node_Id := Constraint (S);
10864 begin
10865 Set_Ekind (Def_Id, E_Enumeration_Subtype);
10867 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
10869 Set_Etype (Def_Id, Base_Type (T));
10870 Set_Size_Info (Def_Id, (T));
10871 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10872 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
10874 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
10876 Set_Discrete_RM_Size (Def_Id);
10877 end Constrain_Enumeration;
10879 ----------------------
10880 -- Constrain_Float --
10881 ----------------------
10883 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
10884 T : constant Entity_Id := Entity (Subtype_Mark (S));
10885 C : Node_Id;
10886 D : Node_Id;
10887 Rais : Node_Id;
10889 begin
10890 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
10892 Set_Etype (Def_Id, Base_Type (T));
10893 Set_Size_Info (Def_Id, (T));
10894 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10896 -- Process the constraint
10898 C := Constraint (S);
10900 -- Digits constraint present
10902 if Nkind (C) = N_Digits_Constraint then
10903 Check_Restriction (No_Obsolescent_Features, C);
10905 if Warn_On_Obsolescent_Feature then
10906 Error_Msg_N
10907 ("subtype digits constraint is an " &
10908 "obsolescent feature (RM J.3(8))?", C);
10909 end if;
10911 D := Digits_Expression (C);
10912 Analyze_And_Resolve (D, Any_Integer);
10913 Check_Digits_Expression (D);
10914 Set_Digits_Value (Def_Id, Expr_Value (D));
10916 -- Check that digits value is in range. Obviously we can do this
10917 -- at compile time, but it is strictly a runtime check, and of
10918 -- course there is an ACVC test that checks this!
10920 if Digits_Value (Def_Id) > Digits_Value (T) then
10921 Error_Msg_Uint_1 := Digits_Value (T);
10922 Error_Msg_N ("?digits value is too large, maximum is ^", D);
10923 Rais :=
10924 Make_Raise_Constraint_Error (Sloc (D),
10925 Reason => CE_Range_Check_Failed);
10926 Insert_Action (Declaration_Node (Def_Id), Rais);
10927 end if;
10929 C := Range_Constraint (C);
10931 -- No digits constraint present
10933 else
10934 Set_Digits_Value (Def_Id, Digits_Value (T));
10935 end if;
10937 -- Range constraint present
10939 if Nkind (C) = N_Range_Constraint then
10940 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
10942 -- No range constraint present
10944 else
10945 pragma Assert (No (C));
10946 Set_Scalar_Range (Def_Id, Scalar_Range (T));
10947 end if;
10949 Set_Is_Constrained (Def_Id);
10950 end Constrain_Float;
10952 ---------------------
10953 -- Constrain_Index --
10954 ---------------------
10956 procedure Constrain_Index
10957 (Index : Node_Id;
10958 S : Node_Id;
10959 Related_Nod : Node_Id;
10960 Related_Id : Entity_Id;
10961 Suffix : Character;
10962 Suffix_Index : Nat)
10964 Def_Id : Entity_Id;
10965 R : Node_Id := Empty;
10966 T : constant Entity_Id := Etype (Index);
10968 begin
10969 if Nkind (S) = N_Range
10970 or else
10971 (Nkind (S) = N_Attribute_Reference
10972 and then Attribute_Name (S) = Name_Range)
10973 then
10974 -- A Range attribute will transformed into N_Range by Resolve
10976 Analyze (S);
10977 Set_Etype (S, T);
10978 R := S;
10980 Process_Range_Expr_In_Decl (R, T, Empty_List);
10982 if not Error_Posted (S)
10983 and then
10984 (Nkind (S) /= N_Range
10985 or else not Covers (T, (Etype (Low_Bound (S))))
10986 or else not Covers (T, (Etype (High_Bound (S)))))
10987 then
10988 if Base_Type (T) /= Any_Type
10989 and then Etype (Low_Bound (S)) /= Any_Type
10990 and then Etype (High_Bound (S)) /= Any_Type
10991 then
10992 Error_Msg_N ("range expected", S);
10993 end if;
10994 end if;
10996 elsif Nkind (S) = N_Subtype_Indication then
10998 -- The parser has verified that this is a discrete indication
11000 Resolve_Discrete_Subtype_Indication (S, T);
11001 R := Range_Expression (Constraint (S));
11003 elsif Nkind (S) = N_Discriminant_Association then
11005 -- Syntactically valid in subtype indication
11007 Error_Msg_N ("invalid index constraint", S);
11008 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
11009 return;
11011 -- Subtype_Mark case, no anonymous subtypes to construct
11013 else
11014 Analyze (S);
11016 if Is_Entity_Name (S) then
11017 if not Is_Type (Entity (S)) then
11018 Error_Msg_N ("expect subtype mark for index constraint", S);
11020 elsif Base_Type (Entity (S)) /= Base_Type (T) then
11021 Wrong_Type (S, Base_Type (T));
11022 end if;
11024 return;
11026 else
11027 Error_Msg_N ("invalid index constraint", S);
11028 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
11029 return;
11030 end if;
11031 end if;
11033 Def_Id :=
11034 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
11036 Set_Etype (Def_Id, Base_Type (T));
11038 if Is_Modular_Integer_Type (T) then
11039 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
11041 elsif Is_Integer_Type (T) then
11042 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
11044 else
11045 Set_Ekind (Def_Id, E_Enumeration_Subtype);
11046 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
11047 end if;
11049 Set_Size_Info (Def_Id, (T));
11050 Set_RM_Size (Def_Id, RM_Size (T));
11051 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11053 Set_Scalar_Range (Def_Id, R);
11055 Set_Etype (S, Def_Id);
11056 Set_Discrete_RM_Size (Def_Id);
11057 end Constrain_Index;
11059 -----------------------
11060 -- Constrain_Integer --
11061 -----------------------
11063 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
11064 T : constant Entity_Id := Entity (Subtype_Mark (S));
11065 C : constant Node_Id := Constraint (S);
11067 begin
11068 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
11070 if Is_Modular_Integer_Type (T) then
11071 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
11072 else
11073 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
11074 end if;
11076 Set_Etype (Def_Id, Base_Type (T));
11077 Set_Size_Info (Def_Id, (T));
11078 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11079 Set_Discrete_RM_Size (Def_Id);
11080 end Constrain_Integer;
11082 ------------------------------
11083 -- Constrain_Ordinary_Fixed --
11084 ------------------------------
11086 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
11087 T : constant Entity_Id := Entity (Subtype_Mark (S));
11088 C : Node_Id;
11089 D : Node_Id;
11090 Rais : Node_Id;
11092 begin
11093 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
11094 Set_Etype (Def_Id, Base_Type (T));
11095 Set_Size_Info (Def_Id, (T));
11096 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11097 Set_Small_Value (Def_Id, Small_Value (T));
11099 -- Process the constraint
11101 C := Constraint (S);
11103 -- Delta constraint present
11105 if Nkind (C) = N_Delta_Constraint then
11106 Check_Restriction (No_Obsolescent_Features, C);
11108 if Warn_On_Obsolescent_Feature then
11109 Error_Msg_S
11110 ("subtype delta constraint is an " &
11111 "obsolescent feature (RM J.3(7))?");
11112 end if;
11114 D := Delta_Expression (C);
11115 Analyze_And_Resolve (D, Any_Real);
11116 Check_Delta_Expression (D);
11117 Set_Delta_Value (Def_Id, Expr_Value_R (D));
11119 -- Check that delta value is in range. Obviously we can do this
11120 -- at compile time, but it is strictly a runtime check, and of
11121 -- course there is an ACVC test that checks this!
11123 if Delta_Value (Def_Id) < Delta_Value (T) then
11124 Error_Msg_N ("?delta value is too small", D);
11125 Rais :=
11126 Make_Raise_Constraint_Error (Sloc (D),
11127 Reason => CE_Range_Check_Failed);
11128 Insert_Action (Declaration_Node (Def_Id), Rais);
11129 end if;
11131 C := Range_Constraint (C);
11133 -- No delta constraint present
11135 else
11136 Set_Delta_Value (Def_Id, Delta_Value (T));
11137 end if;
11139 -- Range constraint present
11141 if Nkind (C) = N_Range_Constraint then
11142 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
11144 -- No range constraint present
11146 else
11147 pragma Assert (No (C));
11148 Set_Scalar_Range (Def_Id, Scalar_Range (T));
11150 end if;
11152 Set_Discrete_RM_Size (Def_Id);
11154 -- Unconditionally delay the freeze, since we cannot set size
11155 -- information in all cases correctly until the freeze point.
11157 Set_Has_Delayed_Freeze (Def_Id);
11158 end Constrain_Ordinary_Fixed;
11160 -----------------------
11161 -- Contain_Interface --
11162 -----------------------
11164 function Contain_Interface
11165 (Iface : Entity_Id;
11166 Ifaces : Elist_Id) return Boolean
11168 Iface_Elmt : Elmt_Id;
11170 begin
11171 if Present (Ifaces) then
11172 Iface_Elmt := First_Elmt (Ifaces);
11173 while Present (Iface_Elmt) loop
11174 if Node (Iface_Elmt) = Iface then
11175 return True;
11176 end if;
11178 Next_Elmt (Iface_Elmt);
11179 end loop;
11180 end if;
11182 return False;
11183 end Contain_Interface;
11185 ---------------------------
11186 -- Convert_Scalar_Bounds --
11187 ---------------------------
11189 procedure Convert_Scalar_Bounds
11190 (N : Node_Id;
11191 Parent_Type : Entity_Id;
11192 Derived_Type : Entity_Id;
11193 Loc : Source_Ptr)
11195 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
11197 Lo : Node_Id;
11198 Hi : Node_Id;
11199 Rng : Node_Id;
11201 begin
11202 Lo := Build_Scalar_Bound
11203 (Type_Low_Bound (Derived_Type),
11204 Parent_Type, Implicit_Base);
11206 Hi := Build_Scalar_Bound
11207 (Type_High_Bound (Derived_Type),
11208 Parent_Type, Implicit_Base);
11210 Rng :=
11211 Make_Range (Loc,
11212 Low_Bound => Lo,
11213 High_Bound => Hi);
11215 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
11217 Set_Parent (Rng, N);
11218 Set_Scalar_Range (Derived_Type, Rng);
11220 -- Analyze the bounds
11222 Analyze_And_Resolve (Lo, Implicit_Base);
11223 Analyze_And_Resolve (Hi, Implicit_Base);
11225 -- Analyze the range itself, except that we do not analyze it if
11226 -- the bounds are real literals, and we have a fixed-point type.
11227 -- The reason for this is that we delay setting the bounds in this
11228 -- case till we know the final Small and Size values (see circuit
11229 -- in Freeze.Freeze_Fixed_Point_Type for further details).
11231 if Is_Fixed_Point_Type (Parent_Type)
11232 and then Nkind (Lo) = N_Real_Literal
11233 and then Nkind (Hi) = N_Real_Literal
11234 then
11235 return;
11237 -- Here we do the analysis of the range
11239 -- Note: we do this manually, since if we do a normal Analyze and
11240 -- Resolve call, there are problems with the conversions used for
11241 -- the derived type range.
11243 else
11244 Set_Etype (Rng, Implicit_Base);
11245 Set_Analyzed (Rng, True);
11246 end if;
11247 end Convert_Scalar_Bounds;
11249 -------------------
11250 -- Copy_And_Swap --
11251 -------------------
11253 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
11254 begin
11255 -- Initialize new full declaration entity by copying the pertinent
11256 -- fields of the corresponding private declaration entity.
11258 -- We temporarily set Ekind to a value appropriate for a type to
11259 -- avoid assert failures in Einfo from checking for setting type
11260 -- attributes on something that is not a type. Ekind (Priv) is an
11261 -- appropriate choice, since it allowed the attributes to be set
11262 -- in the first place. This Ekind value will be modified later.
11264 Set_Ekind (Full, Ekind (Priv));
11266 -- Also set Etype temporarily to Any_Type, again, in the absence
11267 -- of errors, it will be properly reset, and if there are errors,
11268 -- then we want a value of Any_Type to remain.
11270 Set_Etype (Full, Any_Type);
11272 -- Now start copying attributes
11274 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
11276 if Has_Discriminants (Full) then
11277 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
11278 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
11279 end if;
11281 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11282 Set_Homonym (Full, Homonym (Priv));
11283 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
11284 Set_Is_Public (Full, Is_Public (Priv));
11285 Set_Is_Pure (Full, Is_Pure (Priv));
11286 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
11287 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
11288 Set_Has_Pragma_Unreferenced_Objects
11289 (Full, Has_Pragma_Unreferenced_Objects
11290 (Priv));
11292 Conditional_Delay (Full, Priv);
11294 if Is_Tagged_Type (Full) then
11295 Set_Primitive_Operations (Full, Primitive_Operations (Priv));
11297 if Priv = Base_Type (Priv) then
11298 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
11299 end if;
11300 end if;
11302 Set_Is_Volatile (Full, Is_Volatile (Priv));
11303 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
11304 Set_Scope (Full, Scope (Priv));
11305 Set_Next_Entity (Full, Next_Entity (Priv));
11306 Set_First_Entity (Full, First_Entity (Priv));
11307 Set_Last_Entity (Full, Last_Entity (Priv));
11309 -- If access types have been recorded for later handling, keep them in
11310 -- the full view so that they get handled when the full view freeze
11311 -- node is expanded.
11313 if Present (Freeze_Node (Priv))
11314 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
11315 then
11316 Ensure_Freeze_Node (Full);
11317 Set_Access_Types_To_Process
11318 (Freeze_Node (Full),
11319 Access_Types_To_Process (Freeze_Node (Priv)));
11320 end if;
11322 -- Swap the two entities. Now Privat is the full type entity and
11323 -- Full is the private one. They will be swapped back at the end
11324 -- of the private part. This swapping ensures that the entity that
11325 -- is visible in the private part is the full declaration.
11327 Exchange_Entities (Priv, Full);
11328 Append_Entity (Full, Scope (Full));
11329 end Copy_And_Swap;
11331 -------------------------------------
11332 -- Copy_Array_Base_Type_Attributes --
11333 -------------------------------------
11335 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
11336 begin
11337 Set_Component_Alignment (T1, Component_Alignment (T2));
11338 Set_Component_Type (T1, Component_Type (T2));
11339 Set_Component_Size (T1, Component_Size (T2));
11340 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
11341 Set_Finalize_Storage_Only (T1, Finalize_Storage_Only (T2));
11342 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
11343 Set_Has_Task (T1, Has_Task (T2));
11344 Set_Is_Packed (T1, Is_Packed (T2));
11345 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
11346 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
11347 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
11348 end Copy_Array_Base_Type_Attributes;
11350 -----------------------------------
11351 -- Copy_Array_Subtype_Attributes --
11352 -----------------------------------
11354 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
11355 begin
11356 Set_Size_Info (T1, T2);
11358 Set_First_Index (T1, First_Index (T2));
11359 Set_Is_Aliased (T1, Is_Aliased (T2));
11360 Set_Is_Atomic (T1, Is_Atomic (T2));
11361 Set_Is_Volatile (T1, Is_Volatile (T2));
11362 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
11363 Set_Is_Constrained (T1, Is_Constrained (T2));
11364 Set_Depends_On_Private (T1, Has_Private_Component (T2));
11365 Set_First_Rep_Item (T1, First_Rep_Item (T2));
11366 Set_Convention (T1, Convention (T2));
11367 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
11368 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
11369 Set_Packed_Array_Type (T1, Packed_Array_Type (T2));
11370 end Copy_Array_Subtype_Attributes;
11372 -----------------------------------
11373 -- Create_Constrained_Components --
11374 -----------------------------------
11376 procedure Create_Constrained_Components
11377 (Subt : Entity_Id;
11378 Decl_Node : Node_Id;
11379 Typ : Entity_Id;
11380 Constraints : Elist_Id)
11382 Loc : constant Source_Ptr := Sloc (Subt);
11383 Comp_List : constant Elist_Id := New_Elmt_List;
11384 Parent_Type : constant Entity_Id := Etype (Typ);
11385 Assoc_List : constant List_Id := New_List;
11386 Discr_Val : Elmt_Id;
11387 Errors : Boolean;
11388 New_C : Entity_Id;
11389 Old_C : Entity_Id;
11390 Is_Static : Boolean := True;
11392 procedure Collect_Fixed_Components (Typ : Entity_Id);
11393 -- Collect parent type components that do not appear in a variant part
11395 procedure Create_All_Components;
11396 -- Iterate over Comp_List to create the components of the subtype
11398 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
11399 -- Creates a new component from Old_Compon, copying all the fields from
11400 -- it, including its Etype, inserts the new component in the Subt entity
11401 -- chain and returns the new component.
11403 function Is_Variant_Record (T : Entity_Id) return Boolean;
11404 -- If true, and discriminants are static, collect only components from
11405 -- variants selected by discriminant values.
11407 ------------------------------
11408 -- Collect_Fixed_Components --
11409 ------------------------------
11411 procedure Collect_Fixed_Components (Typ : Entity_Id) is
11412 begin
11413 -- Build association list for discriminants, and find components of the
11414 -- variant part selected by the values of the discriminants.
11416 Old_C := First_Discriminant (Typ);
11417 Discr_Val := First_Elmt (Constraints);
11418 while Present (Old_C) loop
11419 Append_To (Assoc_List,
11420 Make_Component_Association (Loc,
11421 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
11422 Expression => New_Copy (Node (Discr_Val))));
11424 Next_Elmt (Discr_Val);
11425 Next_Discriminant (Old_C);
11426 end loop;
11428 -- The tag, and the possible parent and controller components
11429 -- are unconditionally in the subtype.
11431 if Is_Tagged_Type (Typ)
11432 or else Has_Controlled_Component (Typ)
11433 then
11434 Old_C := First_Component (Typ);
11435 while Present (Old_C) loop
11436 if Chars ((Old_C)) = Name_uTag
11437 or else Chars ((Old_C)) = Name_uParent
11438 or else Chars ((Old_C)) = Name_uController
11439 then
11440 Append_Elmt (Old_C, Comp_List);
11441 end if;
11443 Next_Component (Old_C);
11444 end loop;
11445 end if;
11446 end Collect_Fixed_Components;
11448 ---------------------------
11449 -- Create_All_Components --
11450 ---------------------------
11452 procedure Create_All_Components is
11453 Comp : Elmt_Id;
11455 begin
11456 Comp := First_Elmt (Comp_List);
11457 while Present (Comp) loop
11458 Old_C := Node (Comp);
11459 New_C := Create_Component (Old_C);
11461 Set_Etype
11462 (New_C,
11463 Constrain_Component_Type
11464 (Old_C, Subt, Decl_Node, Typ, Constraints));
11465 Set_Is_Public (New_C, Is_Public (Subt));
11467 Next_Elmt (Comp);
11468 end loop;
11469 end Create_All_Components;
11471 ----------------------
11472 -- Create_Component --
11473 ----------------------
11475 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
11476 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
11478 begin
11479 if Ekind (Old_Compon) = E_Discriminant
11480 and then Is_Completely_Hidden (Old_Compon)
11481 then
11482 -- This is a shadow discriminant created for a discriminant of
11483 -- the parent type, which needs to be present in the subtype.
11484 -- Give the shadow discriminant an internal name that cannot
11485 -- conflict with that of visible components.
11487 Set_Chars (New_Compon, New_Internal_Name ('C'));
11488 end if;
11490 -- Set the parent so we have a proper link for freezing etc. This is
11491 -- not a real parent pointer, since of course our parent does not own
11492 -- up to us and reference us, we are an illegitimate child of the
11493 -- original parent!
11495 Set_Parent (New_Compon, Parent (Old_Compon));
11497 -- If the old component's Esize was already determined and is a
11498 -- static value, then the new component simply inherits it. Otherwise
11499 -- the old component's size may require run-time determination, but
11500 -- the new component's size still might be statically determinable
11501 -- (if, for example it has a static constraint). In that case we want
11502 -- Layout_Type to recompute the component's size, so we reset its
11503 -- size and positional fields.
11505 if Frontend_Layout_On_Target
11506 and then not Known_Static_Esize (Old_Compon)
11507 then
11508 Set_Esize (New_Compon, Uint_0);
11509 Init_Normalized_First_Bit (New_Compon);
11510 Init_Normalized_Position (New_Compon);
11511 Init_Normalized_Position_Max (New_Compon);
11512 end if;
11514 -- We do not want this node marked as Comes_From_Source, since
11515 -- otherwise it would get first class status and a separate cross-
11516 -- reference line would be generated. Illegitimate children do not
11517 -- rate such recognition.
11519 Set_Comes_From_Source (New_Compon, False);
11521 -- But it is a real entity, and a birth certificate must be properly
11522 -- registered by entering it into the entity list.
11524 Enter_Name (New_Compon);
11526 return New_Compon;
11527 end Create_Component;
11529 -----------------------
11530 -- Is_Variant_Record --
11531 -----------------------
11533 function Is_Variant_Record (T : Entity_Id) return Boolean is
11534 begin
11535 return Nkind (Parent (T)) = N_Full_Type_Declaration
11536 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
11537 and then Present (Component_List (Type_Definition (Parent (T))))
11538 and then
11539 Present
11540 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
11541 end Is_Variant_Record;
11543 -- Start of processing for Create_Constrained_Components
11545 begin
11546 pragma Assert (Subt /= Base_Type (Subt));
11547 pragma Assert (Typ = Base_Type (Typ));
11549 Set_First_Entity (Subt, Empty);
11550 Set_Last_Entity (Subt, Empty);
11552 -- Check whether constraint is fully static, in which case we can
11553 -- optimize the list of components.
11555 Discr_Val := First_Elmt (Constraints);
11556 while Present (Discr_Val) loop
11557 if not Is_OK_Static_Expression (Node (Discr_Val)) then
11558 Is_Static := False;
11559 exit;
11560 end if;
11562 Next_Elmt (Discr_Val);
11563 end loop;
11565 Set_Has_Static_Discriminants (Subt, Is_Static);
11567 Push_Scope (Subt);
11569 -- Inherit the discriminants of the parent type
11571 Add_Discriminants : declare
11572 Num_Disc : Int;
11573 Num_Gird : Int;
11575 begin
11576 Num_Disc := 0;
11577 Old_C := First_Discriminant (Typ);
11579 while Present (Old_C) loop
11580 Num_Disc := Num_Disc + 1;
11581 New_C := Create_Component (Old_C);
11582 Set_Is_Public (New_C, Is_Public (Subt));
11583 Next_Discriminant (Old_C);
11584 end loop;
11586 -- For an untagged derived subtype, the number of discriminants may
11587 -- be smaller than the number of inherited discriminants, because
11588 -- several of them may be renamed by a single new discriminant or
11589 -- constrained. In this case, add the hidden discriminants back into
11590 -- the subtype, because they need to be present if the optimizer of
11591 -- the GCC 4.x back-end decides to break apart assignments between
11592 -- objects using the parent view into member-wise assignments.
11594 Num_Gird := 0;
11596 if Is_Derived_Type (Typ)
11597 and then not Is_Tagged_Type (Typ)
11598 then
11599 Old_C := First_Stored_Discriminant (Typ);
11601 while Present (Old_C) loop
11602 Num_Gird := Num_Gird + 1;
11603 Next_Stored_Discriminant (Old_C);
11604 end loop;
11605 end if;
11607 if Num_Gird > Num_Disc then
11609 -- Find out multiple uses of new discriminants, and add hidden
11610 -- components for the extra renamed discriminants. We recognize
11611 -- multiple uses through the Corresponding_Discriminant of a
11612 -- new discriminant: if it constrains several old discriminants,
11613 -- this field points to the last one in the parent type. The
11614 -- stored discriminants of the derived type have the same name
11615 -- as those of the parent.
11617 declare
11618 Constr : Elmt_Id;
11619 New_Discr : Entity_Id;
11620 Old_Discr : Entity_Id;
11622 begin
11623 Constr := First_Elmt (Stored_Constraint (Typ));
11624 Old_Discr := First_Stored_Discriminant (Typ);
11625 while Present (Constr) loop
11626 if Is_Entity_Name (Node (Constr))
11627 and then Ekind (Entity (Node (Constr))) = E_Discriminant
11628 then
11629 New_Discr := Entity (Node (Constr));
11631 if Chars (Corresponding_Discriminant (New_Discr)) /=
11632 Chars (Old_Discr)
11633 then
11634 -- The new discriminant has been used to rename a
11635 -- subsequent old discriminant. Introduce a shadow
11636 -- component for the current old discriminant.
11638 New_C := Create_Component (Old_Discr);
11639 Set_Original_Record_Component (New_C, Old_Discr);
11640 end if;
11642 else
11643 -- The constraint has eliminated the old discriminant.
11644 -- Introduce a shadow component.
11646 New_C := Create_Component (Old_Discr);
11647 Set_Original_Record_Component (New_C, Old_Discr);
11648 end if;
11650 Next_Elmt (Constr);
11651 Next_Stored_Discriminant (Old_Discr);
11652 end loop;
11653 end;
11654 end if;
11655 end Add_Discriminants;
11657 if Is_Static
11658 and then Is_Variant_Record (Typ)
11659 then
11660 Collect_Fixed_Components (Typ);
11662 Gather_Components (
11663 Typ,
11664 Component_List (Type_Definition (Parent (Typ))),
11665 Governed_By => Assoc_List,
11666 Into => Comp_List,
11667 Report_Errors => Errors);
11668 pragma Assert (not Errors);
11670 Create_All_Components;
11672 -- If the subtype declaration is created for a tagged type derivation
11673 -- with constraints, we retrieve the record definition of the parent
11674 -- type to select the components of the proper variant.
11676 elsif Is_Static
11677 and then Is_Tagged_Type (Typ)
11678 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
11679 and then
11680 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
11681 and then Is_Variant_Record (Parent_Type)
11682 then
11683 Collect_Fixed_Components (Typ);
11685 Gather_Components (
11686 Typ,
11687 Component_List (Type_Definition (Parent (Parent_Type))),
11688 Governed_By => Assoc_List,
11689 Into => Comp_List,
11690 Report_Errors => Errors);
11691 pragma Assert (not Errors);
11693 -- If the tagged derivation has a type extension, collect all the
11694 -- new components therein.
11696 if Present
11697 (Record_Extension_Part (Type_Definition (Parent (Typ))))
11698 then
11699 Old_C := First_Component (Typ);
11700 while Present (Old_C) loop
11701 if Original_Record_Component (Old_C) = Old_C
11702 and then Chars (Old_C) /= Name_uTag
11703 and then Chars (Old_C) /= Name_uParent
11704 and then Chars (Old_C) /= Name_uController
11705 then
11706 Append_Elmt (Old_C, Comp_List);
11707 end if;
11709 Next_Component (Old_C);
11710 end loop;
11711 end if;
11713 Create_All_Components;
11715 else
11716 -- If discriminants are not static, or if this is a multi-level type
11717 -- extension, we have to include all components of the parent type.
11719 Old_C := First_Component (Typ);
11720 while Present (Old_C) loop
11721 New_C := Create_Component (Old_C);
11723 Set_Etype
11724 (New_C,
11725 Constrain_Component_Type
11726 (Old_C, Subt, Decl_Node, Typ, Constraints));
11727 Set_Is_Public (New_C, Is_Public (Subt));
11729 Next_Component (Old_C);
11730 end loop;
11731 end if;
11733 End_Scope;
11734 end Create_Constrained_Components;
11736 ------------------------------------------
11737 -- Decimal_Fixed_Point_Type_Declaration --
11738 ------------------------------------------
11740 procedure Decimal_Fixed_Point_Type_Declaration
11741 (T : Entity_Id;
11742 Def : Node_Id)
11744 Loc : constant Source_Ptr := Sloc (Def);
11745 Digs_Expr : constant Node_Id := Digits_Expression (Def);
11746 Delta_Expr : constant Node_Id := Delta_Expression (Def);
11747 Implicit_Base : Entity_Id;
11748 Digs_Val : Uint;
11749 Delta_Val : Ureal;
11750 Scale_Val : Uint;
11751 Bound_Val : Ureal;
11753 begin
11754 Check_Restriction (No_Fixed_Point, Def);
11756 -- Create implicit base type
11758 Implicit_Base :=
11759 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
11760 Set_Etype (Implicit_Base, Implicit_Base);
11762 -- Analyze and process delta expression
11764 Analyze_And_Resolve (Delta_Expr, Universal_Real);
11766 Check_Delta_Expression (Delta_Expr);
11767 Delta_Val := Expr_Value_R (Delta_Expr);
11769 -- Check delta is power of 10, and determine scale value from it
11771 declare
11772 Val : Ureal;
11774 begin
11775 Scale_Val := Uint_0;
11776 Val := Delta_Val;
11778 if Val < Ureal_1 then
11779 while Val < Ureal_1 loop
11780 Val := Val * Ureal_10;
11781 Scale_Val := Scale_Val + 1;
11782 end loop;
11784 if Scale_Val > 18 then
11785 Error_Msg_N ("scale exceeds maximum value of 18", Def);
11786 Scale_Val := UI_From_Int (+18);
11787 end if;
11789 else
11790 while Val > Ureal_1 loop
11791 Val := Val / Ureal_10;
11792 Scale_Val := Scale_Val - 1;
11793 end loop;
11795 if Scale_Val < -18 then
11796 Error_Msg_N ("scale is less than minimum value of -18", Def);
11797 Scale_Val := UI_From_Int (-18);
11798 end if;
11799 end if;
11801 if Val /= Ureal_1 then
11802 Error_Msg_N ("delta expression must be a power of 10", Def);
11803 Delta_Val := Ureal_10 ** (-Scale_Val);
11804 end if;
11805 end;
11807 -- Set delta, scale and small (small = delta for decimal type)
11809 Set_Delta_Value (Implicit_Base, Delta_Val);
11810 Set_Scale_Value (Implicit_Base, Scale_Val);
11811 Set_Small_Value (Implicit_Base, Delta_Val);
11813 -- Analyze and process digits expression
11815 Analyze_And_Resolve (Digs_Expr, Any_Integer);
11816 Check_Digits_Expression (Digs_Expr);
11817 Digs_Val := Expr_Value (Digs_Expr);
11819 if Digs_Val > 18 then
11820 Digs_Val := UI_From_Int (+18);
11821 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
11822 end if;
11824 Set_Digits_Value (Implicit_Base, Digs_Val);
11825 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
11827 -- Set range of base type from digits value for now. This will be
11828 -- expanded to represent the true underlying base range by Freeze.
11830 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
11832 -- Note: We leave size as zero for now, size will be set at freeze
11833 -- time. We have to do this for ordinary fixed-point, because the size
11834 -- depends on the specified small, and we might as well do the same for
11835 -- decimal fixed-point.
11837 pragma Assert (Esize (Implicit_Base) = Uint_0);
11839 -- If there are bounds given in the declaration use them as the
11840 -- bounds of the first named subtype.
11842 if Present (Real_Range_Specification (Def)) then
11843 declare
11844 RRS : constant Node_Id := Real_Range_Specification (Def);
11845 Low : constant Node_Id := Low_Bound (RRS);
11846 High : constant Node_Id := High_Bound (RRS);
11847 Low_Val : Ureal;
11848 High_Val : Ureal;
11850 begin
11851 Analyze_And_Resolve (Low, Any_Real);
11852 Analyze_And_Resolve (High, Any_Real);
11853 Check_Real_Bound (Low);
11854 Check_Real_Bound (High);
11855 Low_Val := Expr_Value_R (Low);
11856 High_Val := Expr_Value_R (High);
11858 if Low_Val < (-Bound_Val) then
11859 Error_Msg_N
11860 ("range low bound too small for digits value", Low);
11861 Low_Val := -Bound_Val;
11862 end if;
11864 if High_Val > Bound_Val then
11865 Error_Msg_N
11866 ("range high bound too large for digits value", High);
11867 High_Val := Bound_Val;
11868 end if;
11870 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
11871 end;
11873 -- If no explicit range, use range that corresponds to given
11874 -- digits value. This will end up as the final range for the
11875 -- first subtype.
11877 else
11878 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
11879 end if;
11881 -- Complete entity for first subtype
11883 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
11884 Set_Etype (T, Implicit_Base);
11885 Set_Size_Info (T, Implicit_Base);
11886 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
11887 Set_Digits_Value (T, Digs_Val);
11888 Set_Delta_Value (T, Delta_Val);
11889 Set_Small_Value (T, Delta_Val);
11890 Set_Scale_Value (T, Scale_Val);
11891 Set_Is_Constrained (T);
11892 end Decimal_Fixed_Point_Type_Declaration;
11894 -----------------------------------
11895 -- Derive_Progenitor_Subprograms --
11896 -----------------------------------
11898 procedure Derive_Progenitor_Subprograms
11899 (Parent_Type : Entity_Id;
11900 Tagged_Type : Entity_Id)
11902 E : Entity_Id;
11903 Elmt : Elmt_Id;
11904 Iface : Entity_Id;
11905 Iface_Elmt : Elmt_Id;
11906 Iface_Subp : Entity_Id;
11907 New_Subp : Entity_Id := Empty;
11908 Prim_Elmt : Elmt_Id;
11909 Subp : Entity_Id;
11910 Typ : Entity_Id;
11912 begin
11913 pragma Assert (Ada_Version >= Ada_05
11914 and then Is_Record_Type (Tagged_Type)
11915 and then Is_Tagged_Type (Tagged_Type)
11916 and then Has_Interfaces (Tagged_Type));
11918 -- Step 1: Transfer to the full-view primitives associated with the
11919 -- partial-view that cover interface primitives. Conceptually this
11920 -- work should be done later by Process_Full_View; done here to
11921 -- simplify its implementation at later stages. It can be safely
11922 -- done here because interfaces must be visible in the partial and
11923 -- private view (RM 7.3(7.3/2)).
11925 -- Small optimization: This work is only required if the parent is
11926 -- abstract. If the tagged type is not abstract, it cannot have
11927 -- abstract primitives (the only entities in the list of primitives of
11928 -- non-abstract tagged types that can reference abstract primitives
11929 -- through its Alias attribute are the internal entities that have
11930 -- attribute Interface_Alias, and these entities are generated later
11931 -- by Freeze_Record_Type).
11933 if In_Private_Part (Current_Scope)
11934 and then Is_Abstract_Type (Parent_Type)
11935 then
11936 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
11937 while Present (Elmt) loop
11938 Subp := Node (Elmt);
11940 -- At this stage it is not possible to have entities in the list
11941 -- of primitives that have attribute Interface_Alias
11943 pragma Assert (No (Interface_Alias (Subp)));
11945 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
11947 if Is_Interface (Typ) then
11948 E := Find_Primitive_Covering_Interface
11949 (Tagged_Type => Tagged_Type,
11950 Iface_Prim => Subp);
11952 if Present (E)
11953 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
11954 then
11955 Replace_Elmt (Elmt, E);
11956 Remove_Homonym (Subp);
11957 end if;
11958 end if;
11960 Next_Elmt (Elmt);
11961 end loop;
11962 end if;
11964 -- Step 2: Add primitives of progenitors that are not implemented by
11965 -- parents of Tagged_Type
11967 if Present (Interfaces (Base_Type (Tagged_Type))) then
11968 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
11969 while Present (Iface_Elmt) loop
11970 Iface := Node (Iface_Elmt);
11972 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
11973 while Present (Prim_Elmt) loop
11974 Iface_Subp := Node (Prim_Elmt);
11976 -- Exclude derivation of predefined primitives except those
11977 -- that come from source. Required to catch declarations of
11978 -- equality operators of interfaces. For example:
11980 -- type Iface is interface;
11981 -- function "=" (Left, Right : Iface) return Boolean;
11983 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
11984 or else Comes_From_Source (Iface_Subp)
11985 then
11986 E := Find_Primitive_Covering_Interface
11987 (Tagged_Type => Tagged_Type,
11988 Iface_Prim => Iface_Subp);
11990 -- If not found we derive a new primitive leaving its alias
11991 -- attribute referencing the interface primitive
11993 if No (E) then
11994 Derive_Subprogram
11995 (New_Subp, Iface_Subp, Tagged_Type, Iface);
11997 -- Propagate to the full view interface entities associated
11998 -- with the partial view
12000 elsif In_Private_Part (Current_Scope)
12001 and then Present (Alias (E))
12002 and then Alias (E) = Iface_Subp
12003 and then
12004 List_Containing (Parent (E)) /=
12005 Private_Declarations
12006 (Specification
12007 (Unit_Declaration_Node (Current_Scope)))
12008 then
12009 Append_Elmt (E, Primitive_Operations (Tagged_Type));
12010 end if;
12011 end if;
12013 Next_Elmt (Prim_Elmt);
12014 end loop;
12016 Next_Elmt (Iface_Elmt);
12017 end loop;
12018 end if;
12019 end Derive_Progenitor_Subprograms;
12021 -----------------------
12022 -- Derive_Subprogram --
12023 -----------------------
12025 procedure Derive_Subprogram
12026 (New_Subp : in out Entity_Id;
12027 Parent_Subp : Entity_Id;
12028 Derived_Type : Entity_Id;
12029 Parent_Type : Entity_Id;
12030 Actual_Subp : Entity_Id := Empty)
12032 Formal : Entity_Id;
12033 -- Formal parameter of parent primitive operation
12035 Formal_Of_Actual : Entity_Id;
12036 -- Formal parameter of actual operation, when the derivation is to
12037 -- create a renaming for a primitive operation of an actual in an
12038 -- instantiation.
12040 New_Formal : Entity_Id;
12041 -- Formal of inherited operation
12043 Visible_Subp : Entity_Id := Parent_Subp;
12045 function Is_Private_Overriding return Boolean;
12046 -- If Subp is a private overriding of a visible operation, the inherited
12047 -- operation derives from the overridden op (even though its body is the
12048 -- overriding one) and the inherited operation is visible now. See
12049 -- sem_disp to see the full details of the handling of the overridden
12050 -- subprogram, which is removed from the list of primitive operations of
12051 -- the type. The overridden subprogram is saved locally in Visible_Subp,
12052 -- and used to diagnose abstract operations that need overriding in the
12053 -- derived type.
12055 procedure Replace_Type (Id, New_Id : Entity_Id);
12056 -- When the type is an anonymous access type, create a new access type
12057 -- designating the derived type.
12059 procedure Set_Derived_Name;
12060 -- This procedure sets the appropriate Chars name for New_Subp. This
12061 -- is normally just a copy of the parent name. An exception arises for
12062 -- type support subprograms, where the name is changed to reflect the
12063 -- name of the derived type, e.g. if type foo is derived from type bar,
12064 -- then a procedure barDA is derived with a name fooDA.
12066 ---------------------------
12067 -- Is_Private_Overriding --
12068 ---------------------------
12070 function Is_Private_Overriding return Boolean is
12071 Prev : Entity_Id;
12073 begin
12074 -- If the parent is not a dispatching operation there is no
12075 -- need to investigate overridings
12077 if not Is_Dispatching_Operation (Parent_Subp) then
12078 return False;
12079 end if;
12081 -- The visible operation that is overridden is a homonym of the
12082 -- parent subprogram. We scan the homonym chain to find the one
12083 -- whose alias is the subprogram we are deriving.
12085 Prev := Current_Entity (Parent_Subp);
12086 while Present (Prev) loop
12087 if Ekind (Prev) = Ekind (Parent_Subp)
12088 and then Alias (Prev) = Parent_Subp
12089 and then Scope (Parent_Subp) = Scope (Prev)
12090 and then not Is_Hidden (Prev)
12091 then
12092 Visible_Subp := Prev;
12093 return True;
12094 end if;
12096 Prev := Homonym (Prev);
12097 end loop;
12099 return False;
12100 end Is_Private_Overriding;
12102 ------------------
12103 -- Replace_Type --
12104 ------------------
12106 procedure Replace_Type (Id, New_Id : Entity_Id) is
12107 Acc_Type : Entity_Id;
12108 Par : constant Node_Id := Parent (Derived_Type);
12110 begin
12111 -- When the type is an anonymous access type, create a new access
12112 -- type designating the derived type. This itype must be elaborated
12113 -- at the point of the derivation, not on subsequent calls that may
12114 -- be out of the proper scope for Gigi, so we insert a reference to
12115 -- it after the derivation.
12117 if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
12118 declare
12119 Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
12121 begin
12122 if Ekind (Desig_Typ) = E_Record_Type_With_Private
12123 and then Present (Full_View (Desig_Typ))
12124 and then not Is_Private_Type (Parent_Type)
12125 then
12126 Desig_Typ := Full_View (Desig_Typ);
12127 end if;
12129 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
12131 -- Ada 2005 (AI-251): Handle also derivations of abstract
12132 -- interface primitives.
12134 or else (Is_Interface (Desig_Typ)
12135 and then not Is_Class_Wide_Type (Desig_Typ))
12136 then
12137 Acc_Type := New_Copy (Etype (Id));
12138 Set_Etype (Acc_Type, Acc_Type);
12139 Set_Scope (Acc_Type, New_Subp);
12141 -- Compute size of anonymous access type
12143 if Is_Array_Type (Desig_Typ)
12144 and then not Is_Constrained (Desig_Typ)
12145 then
12146 Init_Size (Acc_Type, 2 * System_Address_Size);
12147 else
12148 Init_Size (Acc_Type, System_Address_Size);
12149 end if;
12151 Init_Alignment (Acc_Type);
12152 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
12154 Set_Etype (New_Id, Acc_Type);
12155 Set_Scope (New_Id, New_Subp);
12157 -- Create a reference to it
12158 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
12160 else
12161 Set_Etype (New_Id, Etype (Id));
12162 end if;
12163 end;
12165 elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
12166 or else
12167 (Ekind (Etype (Id)) = E_Record_Type_With_Private
12168 and then Present (Full_View (Etype (Id)))
12169 and then
12170 Base_Type (Full_View (Etype (Id))) = Base_Type (Parent_Type))
12171 then
12172 -- Constraint checks on formals are generated during expansion,
12173 -- based on the signature of the original subprogram. The bounds
12174 -- of the derived type are not relevant, and thus we can use
12175 -- the base type for the formals. However, the return type may be
12176 -- used in a context that requires that the proper static bounds
12177 -- be used (a case statement, for example) and for those cases
12178 -- we must use the derived type (first subtype), not its base.
12180 -- If the derived_type_definition has no constraints, we know that
12181 -- the derived type has the same constraints as the first subtype
12182 -- of the parent, and we can also use it rather than its base,
12183 -- which can lead to more efficient code.
12185 if Etype (Id) = Parent_Type then
12186 if Is_Scalar_Type (Parent_Type)
12187 and then
12188 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
12189 then
12190 Set_Etype (New_Id, Derived_Type);
12192 elsif Nkind (Par) = N_Full_Type_Declaration
12193 and then
12194 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
12195 and then
12196 Is_Entity_Name
12197 (Subtype_Indication (Type_Definition (Par)))
12198 then
12199 Set_Etype (New_Id, Derived_Type);
12201 else
12202 Set_Etype (New_Id, Base_Type (Derived_Type));
12203 end if;
12205 else
12206 Set_Etype (New_Id, Base_Type (Derived_Type));
12207 end if;
12209 -- Ada 2005 (AI-251): Handle derivations of abstract interface
12210 -- primitives.
12212 elsif Is_Interface (Etype (Id))
12213 and then not Is_Class_Wide_Type (Etype (Id))
12214 and then Is_Progenitor (Etype (Id), Derived_Type)
12215 then
12216 Set_Etype (New_Id, Derived_Type);
12218 else
12219 Set_Etype (New_Id, Etype (Id));
12220 end if;
12221 end Replace_Type;
12223 ----------------------
12224 -- Set_Derived_Name --
12225 ----------------------
12227 procedure Set_Derived_Name is
12228 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
12229 begin
12230 if Nm = TSS_Null then
12231 Set_Chars (New_Subp, Chars (Parent_Subp));
12232 else
12233 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
12234 end if;
12235 end Set_Derived_Name;
12237 -- Local variables
12239 Parent_Overrides_Interface_Primitive : Boolean := False;
12241 -- Start of processing for Derive_Subprogram
12243 begin
12244 New_Subp :=
12245 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
12246 Set_Ekind (New_Subp, Ekind (Parent_Subp));
12248 -- Check whether the parent overrides an interface primitive
12250 if Is_Overriding_Operation (Parent_Subp) then
12251 declare
12252 E : Entity_Id := Parent_Subp;
12253 begin
12254 while Present (Overridden_Operation (E)) loop
12255 E := Ultimate_Alias (Overridden_Operation (E));
12256 end loop;
12258 Parent_Overrides_Interface_Primitive :=
12259 Is_Dispatching_Operation (E)
12260 and then Present (Find_Dispatching_Type (E))
12261 and then Is_Interface (Find_Dispatching_Type (E));
12262 end;
12263 end if;
12265 -- Check whether the inherited subprogram is a private operation that
12266 -- should be inherited but not yet made visible. Such subprograms can
12267 -- become visible at a later point (e.g., the private part of a public
12268 -- child unit) via Declare_Inherited_Private_Subprograms. If the
12269 -- following predicate is true, then this is not such a private
12270 -- operation and the subprogram simply inherits the name of the parent
12271 -- subprogram. Note the special check for the names of controlled
12272 -- operations, which are currently exempted from being inherited with
12273 -- a hidden name because they must be findable for generation of
12274 -- implicit run-time calls.
12276 if not Is_Hidden (Parent_Subp)
12277 or else Is_Internal (Parent_Subp)
12278 or else Is_Private_Overriding
12279 or else Is_Internal_Name (Chars (Parent_Subp))
12280 or else Chars (Parent_Subp) = Name_Initialize
12281 or else Chars (Parent_Subp) = Name_Adjust
12282 or else Chars (Parent_Subp) = Name_Finalize
12283 then
12284 Set_Derived_Name;
12286 -- An inherited dispatching equality will be overridden by an internally
12287 -- generated one, or by an explicit one, so preserve its name and thus
12288 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
12289 -- private operation it may become invisible if the full view has
12290 -- progenitors, and the dispatch table will be malformed.
12291 -- We check that the type is limited to handle the anomalous declaration
12292 -- of Limited_Controlled, which is derived from a non-limited type, and
12293 -- which is handled specially elsewhere as well.
12295 elsif Chars (Parent_Subp) = Name_Op_Eq
12296 and then Is_Dispatching_Operation (Parent_Subp)
12297 and then Etype (Parent_Subp) = Standard_Boolean
12298 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
12299 and then
12300 Etype (First_Formal (Parent_Subp)) =
12301 Etype (Next_Formal (First_Formal (Parent_Subp)))
12302 then
12303 Set_Derived_Name;
12305 -- If parent is hidden, this can be a regular derivation if the
12306 -- parent is immediately visible in a non-instantiating context,
12307 -- or if we are in the private part of an instance. This test
12308 -- should still be refined ???
12310 -- The test for In_Instance_Not_Visible avoids inheriting the derived
12311 -- operation as a non-visible operation in cases where the parent
12312 -- subprogram might not be visible now, but was visible within the
12313 -- original generic, so it would be wrong to make the inherited
12314 -- subprogram non-visible now. (Not clear if this test is fully
12315 -- correct; are there any cases where we should declare the inherited
12316 -- operation as not visible to avoid it being overridden, e.g., when
12317 -- the parent type is a generic actual with private primitives ???)
12319 -- (they should be treated the same as other private inherited
12320 -- subprograms, but it's not clear how to do this cleanly). ???
12322 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
12323 and then Is_Immediately_Visible (Parent_Subp)
12324 and then not In_Instance)
12325 or else In_Instance_Not_Visible
12326 then
12327 Set_Derived_Name;
12329 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
12330 -- overrides an interface primitive because interface primitives
12331 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
12333 elsif Parent_Overrides_Interface_Primitive then
12334 Set_Derived_Name;
12336 -- Otherwise, the type is inheriting a private operation, so enter
12337 -- it with a special name so it can't be overridden.
12339 else
12340 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
12341 end if;
12343 Set_Parent (New_Subp, Parent (Derived_Type));
12345 if Present (Actual_Subp) then
12346 Replace_Type (Actual_Subp, New_Subp);
12347 else
12348 Replace_Type (Parent_Subp, New_Subp);
12349 end if;
12351 Conditional_Delay (New_Subp, Parent_Subp);
12353 -- If we are creating a renaming for a primitive operation of an
12354 -- actual of a generic derived type, we must examine the signature
12355 -- of the actual primitive, not that of the generic formal, which for
12356 -- example may be an interface. However the name and initial value
12357 -- of the inherited operation are those of the formal primitive.
12359 Formal := First_Formal (Parent_Subp);
12361 if Present (Actual_Subp) then
12362 Formal_Of_Actual := First_Formal (Actual_Subp);
12363 else
12364 Formal_Of_Actual := Empty;
12365 end if;
12367 while Present (Formal) loop
12368 New_Formal := New_Copy (Formal);
12370 -- Normally we do not go copying parents, but in the case of
12371 -- formals, we need to link up to the declaration (which is the
12372 -- parameter specification), and it is fine to link up to the
12373 -- original formal's parameter specification in this case.
12375 Set_Parent (New_Formal, Parent (Formal));
12376 Append_Entity (New_Formal, New_Subp);
12378 if Present (Formal_Of_Actual) then
12379 Replace_Type (Formal_Of_Actual, New_Formal);
12380 Next_Formal (Formal_Of_Actual);
12381 else
12382 Replace_Type (Formal, New_Formal);
12383 end if;
12385 Next_Formal (Formal);
12386 end loop;
12388 -- If this derivation corresponds to a tagged generic actual, then
12389 -- primitive operations rename those of the actual. Otherwise the
12390 -- primitive operations rename those of the parent type, If the parent
12391 -- renames an intrinsic operator, so does the new subprogram. We except
12392 -- concatenation, which is always properly typed, and does not get
12393 -- expanded as other intrinsic operations.
12395 if No (Actual_Subp) then
12396 if Is_Intrinsic_Subprogram (Parent_Subp) then
12397 Set_Is_Intrinsic_Subprogram (New_Subp);
12399 if Present (Alias (Parent_Subp))
12400 and then Chars (Parent_Subp) /= Name_Op_Concat
12401 then
12402 Set_Alias (New_Subp, Alias (Parent_Subp));
12403 else
12404 Set_Alias (New_Subp, Parent_Subp);
12405 end if;
12407 else
12408 Set_Alias (New_Subp, Parent_Subp);
12409 end if;
12411 else
12412 Set_Alias (New_Subp, Actual_Subp);
12413 end if;
12415 -- Derived subprograms of a tagged type must inherit the convention
12416 -- of the parent subprogram (a requirement of AI-117). Derived
12417 -- subprograms of untagged types simply get convention Ada by default.
12419 if Is_Tagged_Type (Derived_Type) then
12420 Set_Convention (New_Subp, Convention (Parent_Subp));
12421 end if;
12423 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
12424 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
12426 if Ekind (Parent_Subp) = E_Procedure then
12427 Set_Is_Valued_Procedure
12428 (New_Subp, Is_Valued_Procedure (Parent_Subp));
12429 end if;
12431 -- No_Return must be inherited properly. If this is overridden in the
12432 -- case of a dispatching operation, then a check is made in Sem_Disp
12433 -- that the overriding operation is also No_Return (no such check is
12434 -- required for the case of non-dispatching operation.
12436 Set_No_Return (New_Subp, No_Return (Parent_Subp));
12438 -- A derived function with a controlling result is abstract. If the
12439 -- Derived_Type is a nonabstract formal generic derived type, then
12440 -- inherited operations are not abstract: the required check is done at
12441 -- instantiation time. If the derivation is for a generic actual, the
12442 -- function is not abstract unless the actual is.
12444 if Is_Generic_Type (Derived_Type)
12445 and then not Is_Abstract_Type (Derived_Type)
12446 then
12447 null;
12449 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
12450 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
12452 elsif Ada_Version >= Ada_05
12453 and then (Is_Abstract_Subprogram (Alias (New_Subp))
12454 or else (Is_Tagged_Type (Derived_Type)
12455 and then Etype (New_Subp) = Derived_Type
12456 and then not Is_Null_Extension (Derived_Type))
12457 or else (Is_Tagged_Type (Derived_Type)
12458 and then Ekind (Etype (New_Subp)) =
12459 E_Anonymous_Access_Type
12460 and then Designated_Type (Etype (New_Subp)) =
12461 Derived_Type
12462 and then not Is_Null_Extension (Derived_Type)))
12463 and then No (Actual_Subp)
12464 then
12465 if not Is_Tagged_Type (Derived_Type)
12466 or else Is_Abstract_Type (Derived_Type)
12467 or else Is_Abstract_Subprogram (Alias (New_Subp))
12468 then
12469 Set_Is_Abstract_Subprogram (New_Subp);
12470 else
12471 Set_Requires_Overriding (New_Subp);
12472 end if;
12474 elsif Ada_Version < Ada_05
12475 and then (Is_Abstract_Subprogram (Alias (New_Subp))
12476 or else (Is_Tagged_Type (Derived_Type)
12477 and then Etype (New_Subp) = Derived_Type
12478 and then No (Actual_Subp)))
12479 then
12480 Set_Is_Abstract_Subprogram (New_Subp);
12482 -- Finally, if the parent type is abstract we must verify that all
12483 -- inherited operations are either non-abstract or overridden, or that
12484 -- the derived type itself is abstract (this check is performed at the
12485 -- end of a package declaration, in Check_Abstract_Overriding). A
12486 -- private overriding in the parent type will not be visible in the
12487 -- derivation if we are not in an inner package or in a child unit of
12488 -- the parent type, in which case the abstractness of the inherited
12489 -- operation is carried to the new subprogram.
12491 elsif Is_Abstract_Type (Parent_Type)
12492 and then not In_Open_Scopes (Scope (Parent_Type))
12493 and then Is_Private_Overriding
12494 and then Is_Abstract_Subprogram (Visible_Subp)
12495 then
12496 if No (Actual_Subp) then
12497 Set_Alias (New_Subp, Visible_Subp);
12498 Set_Is_Abstract_Subprogram
12499 (New_Subp, True);
12500 else
12501 -- If this is a derivation for an instance of a formal derived
12502 -- type, abstractness comes from the primitive operation of the
12503 -- actual, not from the operation inherited from the ancestor.
12505 Set_Is_Abstract_Subprogram
12506 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
12507 end if;
12508 end if;
12510 New_Overloaded_Entity (New_Subp, Derived_Type);
12512 -- Check for case of a derived subprogram for the instantiation of a
12513 -- formal derived tagged type, if so mark the subprogram as dispatching
12514 -- and inherit the dispatching attributes of the parent subprogram. The
12515 -- derived subprogram is effectively renaming of the actual subprogram,
12516 -- so it needs to have the same attributes as the actual.
12518 if Present (Actual_Subp)
12519 and then Is_Dispatching_Operation (Parent_Subp)
12520 then
12521 Set_Is_Dispatching_Operation (New_Subp);
12523 if Present (DTC_Entity (Parent_Subp)) then
12524 Set_DTC_Entity (New_Subp, DTC_Entity (Parent_Subp));
12525 Set_DT_Position (New_Subp, DT_Position (Parent_Subp));
12526 end if;
12527 end if;
12529 -- Indicate that a derived subprogram does not require a body and that
12530 -- it does not require processing of default expressions.
12532 Set_Has_Completion (New_Subp);
12533 Set_Default_Expressions_Processed (New_Subp);
12535 if Ekind (New_Subp) = E_Function then
12536 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
12537 end if;
12538 end Derive_Subprogram;
12540 ------------------------
12541 -- Derive_Subprograms --
12542 ------------------------
12544 procedure Derive_Subprograms
12545 (Parent_Type : Entity_Id;
12546 Derived_Type : Entity_Id;
12547 Generic_Actual : Entity_Id := Empty)
12549 Op_List : constant Elist_Id :=
12550 Collect_Primitive_Operations (Parent_Type);
12552 function Check_Derived_Type return Boolean;
12553 -- Check that all primitive inherited from Parent_Type are found in
12554 -- the list of primitives of Derived_Type exactly in the same order.
12556 function Check_Derived_Type return Boolean is
12557 E : Entity_Id;
12558 Elmt : Elmt_Id;
12559 List : Elist_Id;
12560 New_Subp : Entity_Id;
12561 Op_Elmt : Elmt_Id;
12562 Subp : Entity_Id;
12564 begin
12565 -- Traverse list of entities in the current scope searching for
12566 -- an incomplete type whose full-view is derived type
12568 E := First_Entity (Scope (Derived_Type));
12569 while Present (E)
12570 and then E /= Derived_Type
12571 loop
12572 if Ekind (E) = E_Incomplete_Type
12573 and then Present (Full_View (E))
12574 and then Full_View (E) = Derived_Type
12575 then
12576 -- Disable this test if Derived_Type completes an incomplete
12577 -- type because in such case more primitives can be added
12578 -- later to the list of primitives of Derived_Type by routine
12579 -- Process_Incomplete_Dependents
12581 return True;
12582 end if;
12584 E := Next_Entity (E);
12585 end loop;
12587 List := Collect_Primitive_Operations (Derived_Type);
12588 Elmt := First_Elmt (List);
12590 Op_Elmt := First_Elmt (Op_List);
12591 while Present (Op_Elmt) loop
12592 Subp := Node (Op_Elmt);
12593 New_Subp := Node (Elmt);
12595 -- At this early stage Derived_Type has no entities with attribute
12596 -- Interface_Alias. In addition, such primitives are always
12597 -- located at the end of the list of primitives of Parent_Type.
12598 -- Therefore, if found we can safely stop processing pending
12599 -- entities.
12601 exit when Present (Interface_Alias (Subp));
12603 -- Handle hidden entities
12605 if not Is_Predefined_Dispatching_Operation (Subp)
12606 and then Is_Hidden (Subp)
12607 then
12608 if Present (New_Subp)
12609 and then Primitive_Names_Match (Subp, New_Subp)
12610 then
12611 Next_Elmt (Elmt);
12612 end if;
12614 else
12615 if not Present (New_Subp)
12616 or else Ekind (Subp) /= Ekind (New_Subp)
12617 or else not Primitive_Names_Match (Subp, New_Subp)
12618 then
12619 return False;
12620 end if;
12622 Next_Elmt (Elmt);
12623 end if;
12625 Next_Elmt (Op_Elmt);
12626 end loop;
12628 return True;
12629 end Check_Derived_Type;
12631 -- Local variables
12633 Alias_Subp : Entity_Id;
12634 Act_List : Elist_Id;
12635 Act_Elmt : Elmt_Id := No_Elmt;
12636 Act_Subp : Entity_Id := Empty;
12637 Elmt : Elmt_Id;
12638 Need_Search : Boolean := False;
12639 New_Subp : Entity_Id := Empty;
12640 Parent_Base : Entity_Id;
12641 Subp : Entity_Id;
12643 -- Start of processing for Derive_Subprograms
12645 begin
12646 if Ekind (Parent_Type) = E_Record_Type_With_Private
12647 and then Has_Discriminants (Parent_Type)
12648 and then Present (Full_View (Parent_Type))
12649 then
12650 Parent_Base := Full_View (Parent_Type);
12651 else
12652 Parent_Base := Parent_Type;
12653 end if;
12655 if Present (Generic_Actual) then
12656 Act_List := Collect_Primitive_Operations (Generic_Actual);
12657 Act_Elmt := First_Elmt (Act_List);
12658 end if;
12660 -- Derive primitives inherited from the parent. Note that if the generic
12661 -- actual is present, this is not really a type derivation, it is a
12662 -- completion within an instance.
12664 -- Case 1: Derived_Type does not implement interfaces
12666 if not Is_Tagged_Type (Derived_Type)
12667 or else (not Has_Interfaces (Derived_Type)
12668 and then not (Present (Generic_Actual)
12669 and then
12670 Has_Interfaces (Generic_Actual)))
12671 then
12672 Elmt := First_Elmt (Op_List);
12673 while Present (Elmt) loop
12674 Subp := Node (Elmt);
12676 -- Literals are derived earlier in the process of building the
12677 -- derived type, and are skipped here.
12679 if Ekind (Subp) = E_Enumeration_Literal then
12680 null;
12682 -- The actual is a direct descendant and the common primitive
12683 -- operations appear in the same order.
12685 -- If the generic parent type is present, the derived type is an
12686 -- instance of a formal derived type, and within the instance its
12687 -- operations are those of the actual. We derive from the formal
12688 -- type but make the inherited operations aliases of the
12689 -- corresponding operations of the actual.
12691 else
12692 Derive_Subprogram
12693 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
12695 if Present (Act_Elmt) then
12696 Next_Elmt (Act_Elmt);
12697 end if;
12698 end if;
12700 Next_Elmt (Elmt);
12701 end loop;
12703 -- Case 2: Derived_Type implements interfaces
12705 else
12706 -- If the parent type has no predefined primitives we remove
12707 -- predefined primitives from the list of primitives of generic
12708 -- actual to simplify the complexity of this algorithm.
12710 if Present (Generic_Actual) then
12711 declare
12712 Has_Predefined_Primitives : Boolean := False;
12714 begin
12715 -- Check if the parent type has predefined primitives
12717 Elmt := First_Elmt (Op_List);
12718 while Present (Elmt) loop
12719 Subp := Node (Elmt);
12721 if Is_Predefined_Dispatching_Operation (Subp)
12722 and then not Comes_From_Source (Ultimate_Alias (Subp))
12723 then
12724 Has_Predefined_Primitives := True;
12725 exit;
12726 end if;
12728 Next_Elmt (Elmt);
12729 end loop;
12731 -- Remove predefined primitives of Generic_Actual. We must use
12732 -- an auxiliary list because in case of tagged types the value
12733 -- returned by Collect_Primitive_Operations is the value stored
12734 -- in its Primitive_Operations attribute (and we don't want to
12735 -- modify its current contents).
12737 if not Has_Predefined_Primitives then
12738 declare
12739 Aux_List : constant Elist_Id := New_Elmt_List;
12741 begin
12742 Elmt := First_Elmt (Act_List);
12743 while Present (Elmt) loop
12744 Subp := Node (Elmt);
12746 if not Is_Predefined_Dispatching_Operation (Subp)
12747 or else Comes_From_Source (Subp)
12748 then
12749 Append_Elmt (Subp, Aux_List);
12750 end if;
12752 Next_Elmt (Elmt);
12753 end loop;
12755 Act_List := Aux_List;
12756 end;
12757 end if;
12759 Act_Elmt := First_Elmt (Act_List);
12760 Act_Subp := Node (Act_Elmt);
12761 end;
12762 end if;
12764 -- Stage 1: If the generic actual is not present we derive the
12765 -- primitives inherited from the parent type. If the generic parent
12766 -- type is present, the derived type is an instance of a formal
12767 -- derived type, and within the instance its operations are those of
12768 -- the actual. We derive from the formal type but make the inherited
12769 -- operations aliases of the corresponding operations of the actual.
12771 Elmt := First_Elmt (Op_List);
12772 while Present (Elmt) loop
12773 Subp := Node (Elmt);
12774 Alias_Subp := Ultimate_Alias (Subp);
12776 -- At this early stage Derived_Type has no entities with attribute
12777 -- Interface_Alias. In addition, such primitives are always
12778 -- located at the end of the list of primitives of Parent_Type.
12779 -- Therefore, if found we can safely stop processing pending
12780 -- entities.
12782 exit when Present (Interface_Alias (Subp));
12784 -- If the generic actual is present find the corresponding
12785 -- operation in the generic actual. If the parent type is a
12786 -- direct ancestor of the derived type then, even if it is an
12787 -- interface, the operations are inherited from the primary
12788 -- dispatch table and are in the proper order. If we detect here
12789 -- that primitives are not in the same order we traverse the list
12790 -- of primitive operations of the actual to find the one that
12791 -- implements the interface primitive.
12793 if Need_Search
12794 or else
12795 (Present (Generic_Actual)
12796 and then Present (Act_Subp)
12797 and then not Primitive_Names_Match (Subp, Act_Subp))
12798 then
12799 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual));
12800 pragma Assert (Is_Interface (Parent_Base));
12802 -- Remember that we need searching for all the pending
12803 -- primitives
12805 Need_Search := True;
12807 -- Handle entities associated with interface primitives
12809 if Present (Alias (Subp))
12810 and then Is_Interface (Find_Dispatching_Type (Alias (Subp)))
12811 and then not Is_Predefined_Dispatching_Operation (Subp)
12812 then
12813 Act_Subp :=
12814 Find_Primitive_Covering_Interface
12815 (Tagged_Type => Generic_Actual,
12816 Iface_Prim => Subp);
12818 -- Handle predefined primitives plus the rest of user-defined
12819 -- primitives
12821 else
12822 Act_Elmt := First_Elmt (Act_List);
12823 while Present (Act_Elmt) loop
12824 Act_Subp := Node (Act_Elmt);
12826 exit when Primitive_Names_Match (Subp, Act_Subp)
12827 and then Type_Conformant (Subp, Act_Subp,
12828 Skip_Controlling_Formals => True)
12829 and then No (Interface_Alias (Act_Subp));
12831 Next_Elmt (Act_Elmt);
12832 end loop;
12833 end if;
12834 end if;
12836 -- Case 1: If the parent is a limited interface then it has the
12837 -- predefined primitives of synchronized interfaces. However, the
12838 -- actual type may be a non-limited type and hence it does not
12839 -- have such primitives.
12841 if Present (Generic_Actual)
12842 and then not Present (Act_Subp)
12843 and then Is_Limited_Interface (Parent_Base)
12844 and then Is_Predefined_Interface_Primitive (Subp)
12845 then
12846 null;
12848 -- Case 2: Inherit entities associated with interfaces that
12849 -- were not covered by the parent type. We exclude here null
12850 -- interface primitives because they do not need special
12851 -- management.
12853 elsif Present (Alias (Subp))
12854 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
12855 and then not
12856 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
12857 and then Null_Present (Parent (Alias_Subp)))
12858 then
12859 Derive_Subprogram
12860 (New_Subp => New_Subp,
12861 Parent_Subp => Alias_Subp,
12862 Derived_Type => Derived_Type,
12863 Parent_Type => Find_Dispatching_Type (Alias_Subp),
12864 Actual_Subp => Act_Subp);
12866 if No (Generic_Actual) then
12867 Set_Alias (New_Subp, Subp);
12868 end if;
12870 -- Case 3: Common derivation
12872 else
12873 Derive_Subprogram
12874 (New_Subp => New_Subp,
12875 Parent_Subp => Subp,
12876 Derived_Type => Derived_Type,
12877 Parent_Type => Parent_Base,
12878 Actual_Subp => Act_Subp);
12879 end if;
12881 -- No need to update Act_Elm if we must search for the
12882 -- corresponding operation in the generic actual
12884 if not Need_Search
12885 and then Present (Act_Elmt)
12886 then
12887 Next_Elmt (Act_Elmt);
12888 Act_Subp := Node (Act_Elmt);
12889 end if;
12891 Next_Elmt (Elmt);
12892 end loop;
12894 -- Inherit additional operations from progenitors. If the derived
12895 -- type is a generic actual, there are not new primitive operations
12896 -- for the type because it has those of the actual, and therefore
12897 -- nothing needs to be done. The renamings generated above are not
12898 -- primitive operations, and their purpose is simply to make the
12899 -- proper operations visible within an instantiation.
12901 if No (Generic_Actual) then
12902 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
12903 end if;
12904 end if;
12906 -- Final check: Direct descendants must have their primitives in the
12907 -- same order. We exclude from this test non-tagged types and instances
12908 -- of formal derived types. We skip this test if we have already
12909 -- reported serious errors in the sources.
12911 pragma Assert (not Is_Tagged_Type (Derived_Type)
12912 or else Present (Generic_Actual)
12913 or else Serious_Errors_Detected > 0
12914 or else Check_Derived_Type);
12915 end Derive_Subprograms;
12917 --------------------------------
12918 -- Derived_Standard_Character --
12919 --------------------------------
12921 procedure Derived_Standard_Character
12922 (N : Node_Id;
12923 Parent_Type : Entity_Id;
12924 Derived_Type : Entity_Id)
12926 Loc : constant Source_Ptr := Sloc (N);
12927 Def : constant Node_Id := Type_Definition (N);
12928 Indic : constant Node_Id := Subtype_Indication (Def);
12929 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
12930 Implicit_Base : constant Entity_Id :=
12931 Create_Itype
12932 (E_Enumeration_Type, N, Derived_Type, 'B');
12934 Lo : Node_Id;
12935 Hi : Node_Id;
12937 begin
12938 Discard_Node (Process_Subtype (Indic, N));
12940 Set_Etype (Implicit_Base, Parent_Base);
12941 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
12942 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
12944 Set_Is_Character_Type (Implicit_Base, True);
12945 Set_Has_Delayed_Freeze (Implicit_Base);
12947 -- The bounds of the implicit base are the bounds of the parent base.
12948 -- Note that their type is the parent base.
12950 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
12951 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
12953 Set_Scalar_Range (Implicit_Base,
12954 Make_Range (Loc,
12955 Low_Bound => Lo,
12956 High_Bound => Hi));
12958 Conditional_Delay (Derived_Type, Parent_Type);
12960 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
12961 Set_Etype (Derived_Type, Implicit_Base);
12962 Set_Size_Info (Derived_Type, Parent_Type);
12964 if Unknown_RM_Size (Derived_Type) then
12965 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
12966 end if;
12968 Set_Is_Character_Type (Derived_Type, True);
12970 if Nkind (Indic) /= N_Subtype_Indication then
12972 -- If no explicit constraint, the bounds are those
12973 -- of the parent type.
12975 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
12976 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
12977 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
12978 end if;
12980 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
12982 -- Because the implicit base is used in the conversion of the bounds, we
12983 -- have to freeze it now. This is similar to what is done for numeric
12984 -- types, and it equally suspicious, but otherwise a non-static bound
12985 -- will have a reference to an unfrozen type, which is rejected by Gigi
12986 -- (???). This requires specific care for definition of stream
12987 -- attributes. For details, see comments at the end of
12988 -- Build_Derived_Numeric_Type.
12990 Freeze_Before (N, Implicit_Base);
12991 end Derived_Standard_Character;
12993 ------------------------------
12994 -- Derived_Type_Declaration --
12995 ------------------------------
12997 procedure Derived_Type_Declaration
12998 (T : Entity_Id;
12999 N : Node_Id;
13000 Is_Completion : Boolean)
13002 Parent_Type : Entity_Id;
13004 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
13005 -- Check whether the parent type is a generic formal, or derives
13006 -- directly or indirectly from one.
13008 ------------------------
13009 -- Comes_From_Generic --
13010 ------------------------
13012 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
13013 begin
13014 if Is_Generic_Type (Typ) then
13015 return True;
13017 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
13018 return True;
13020 elsif Is_Private_Type (Typ)
13021 and then Present (Full_View (Typ))
13022 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
13023 then
13024 return True;
13026 elsif Is_Generic_Actual_Type (Typ) then
13027 return True;
13029 else
13030 return False;
13031 end if;
13032 end Comes_From_Generic;
13034 -- Local variables
13036 Def : constant Node_Id := Type_Definition (N);
13037 Iface_Def : Node_Id;
13038 Indic : constant Node_Id := Subtype_Indication (Def);
13039 Extension : constant Node_Id := Record_Extension_Part (Def);
13040 Parent_Node : Node_Id;
13041 Parent_Scope : Entity_Id;
13042 Taggd : Boolean;
13044 -- Start of processing for Derived_Type_Declaration
13046 begin
13047 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
13049 -- Ada 2005 (AI-251): In case of interface derivation check that the
13050 -- parent is also an interface.
13052 if Interface_Present (Def) then
13053 if not Is_Interface (Parent_Type) then
13054 Diagnose_Interface (Indic, Parent_Type);
13056 else
13057 Parent_Node := Parent (Base_Type (Parent_Type));
13058 Iface_Def := Type_Definition (Parent_Node);
13060 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
13061 -- other limited interfaces.
13063 if Limited_Present (Def) then
13064 if Limited_Present (Iface_Def) then
13065 null;
13067 elsif Protected_Present (Iface_Def) then
13068 Error_Msg_NE
13069 ("descendant of& must be declared"
13070 & " as a protected interface",
13071 N, Parent_Type);
13073 elsif Synchronized_Present (Iface_Def) then
13074 Error_Msg_NE
13075 ("descendant of& must be declared"
13076 & " as a synchronized interface",
13077 N, Parent_Type);
13079 elsif Task_Present (Iface_Def) then
13080 Error_Msg_NE
13081 ("descendant of& must be declared as a task interface",
13082 N, Parent_Type);
13084 else
13085 Error_Msg_N
13086 ("(Ada 2005) limited interface cannot "
13087 & "inherit from non-limited interface", Indic);
13088 end if;
13090 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
13091 -- from non-limited or limited interfaces.
13093 elsif not Protected_Present (Def)
13094 and then not Synchronized_Present (Def)
13095 and then not Task_Present (Def)
13096 then
13097 if Limited_Present (Iface_Def) then
13098 null;
13100 elsif Protected_Present (Iface_Def) then
13101 Error_Msg_NE
13102 ("descendant of& must be declared"
13103 & " as a protected interface",
13104 N, Parent_Type);
13106 elsif Synchronized_Present (Iface_Def) then
13107 Error_Msg_NE
13108 ("descendant of& must be declared"
13109 & " as a synchronized interface",
13110 N, Parent_Type);
13112 elsif Task_Present (Iface_Def) then
13113 Error_Msg_NE
13114 ("descendant of& must be declared as a task interface",
13115 N, Parent_Type);
13116 else
13117 null;
13118 end if;
13119 end if;
13120 end if;
13121 end if;
13123 if Is_Tagged_Type (Parent_Type)
13124 and then Is_Concurrent_Type (Parent_Type)
13125 and then not Is_Interface (Parent_Type)
13126 then
13127 Error_Msg_N
13128 ("parent type of a record extension cannot be "
13129 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
13130 Set_Etype (T, Any_Type);
13131 return;
13132 end if;
13134 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
13135 -- interfaces
13137 if Is_Tagged_Type (Parent_Type)
13138 and then Is_Non_Empty_List (Interface_List (Def))
13139 then
13140 declare
13141 Intf : Node_Id;
13142 T : Entity_Id;
13144 begin
13145 Intf := First (Interface_List (Def));
13146 while Present (Intf) loop
13147 T := Find_Type_Of_Subtype_Indic (Intf);
13149 if not Is_Interface (T) then
13150 Diagnose_Interface (Intf, T);
13152 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
13153 -- a limited type from having a nonlimited progenitor.
13155 elsif (Limited_Present (Def)
13156 or else (not Is_Interface (Parent_Type)
13157 and then Is_Limited_Type (Parent_Type)))
13158 and then not Is_Limited_Interface (T)
13159 then
13160 Error_Msg_NE
13161 ("progenitor interface& of limited type must be limited",
13162 N, T);
13163 end if;
13165 Next (Intf);
13166 end loop;
13167 end;
13168 end if;
13170 if Parent_Type = Any_Type
13171 or else Etype (Parent_Type) = Any_Type
13172 or else (Is_Class_Wide_Type (Parent_Type)
13173 and then Etype (Parent_Type) = T)
13174 then
13175 -- If Parent_Type is undefined or illegal, make new type into a
13176 -- subtype of Any_Type, and set a few attributes to prevent cascaded
13177 -- errors. If this is a self-definition, emit error now.
13179 if T = Parent_Type
13180 or else T = Etype (Parent_Type)
13181 then
13182 Error_Msg_N ("type cannot be used in its own definition", Indic);
13183 end if;
13185 Set_Ekind (T, Ekind (Parent_Type));
13186 Set_Etype (T, Any_Type);
13187 Set_Scalar_Range (T, Scalar_Range (Any_Type));
13189 if Is_Tagged_Type (T) then
13190 Set_Primitive_Operations (T, New_Elmt_List);
13191 end if;
13193 return;
13194 end if;
13196 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
13197 -- an interface is special because the list of interfaces in the full
13198 -- view can be given in any order. For example:
13200 -- type A is interface;
13201 -- type B is interface and A;
13202 -- type D is new B with private;
13203 -- private
13204 -- type D is new A and B with null record; -- 1 --
13206 -- In this case we perform the following transformation of -1-:
13208 -- type D is new B and A with null record;
13210 -- If the parent of the full-view covers the parent of the partial-view
13211 -- we have two possible cases:
13213 -- 1) They have the same parent
13214 -- 2) The parent of the full-view implements some further interfaces
13216 -- In both cases we do not need to perform the transformation. In the
13217 -- first case the source program is correct and the transformation is
13218 -- not needed; in the second case the source program does not fulfill
13219 -- the no-hidden interfaces rule (AI-396) and the error will be reported
13220 -- later.
13222 -- This transformation not only simplifies the rest of the analysis of
13223 -- this type declaration but also simplifies the correct generation of
13224 -- the object layout to the expander.
13226 if In_Private_Part (Current_Scope)
13227 and then Is_Interface (Parent_Type)
13228 then
13229 declare
13230 Iface : Node_Id;
13231 Partial_View : Entity_Id;
13232 Partial_View_Parent : Entity_Id;
13233 New_Iface : Node_Id;
13235 begin
13236 -- Look for the associated private type declaration
13238 Partial_View := First_Entity (Current_Scope);
13239 loop
13240 exit when No (Partial_View)
13241 or else (Has_Private_Declaration (Partial_View)
13242 and then Full_View (Partial_View) = T);
13244 Next_Entity (Partial_View);
13245 end loop;
13247 -- If the partial view was not found then the source code has
13248 -- errors and the transformation is not needed.
13250 if Present (Partial_View) then
13251 Partial_View_Parent := Etype (Partial_View);
13253 -- If the parent of the full-view covers the parent of the
13254 -- partial-view we have nothing else to do.
13256 if Interface_Present_In_Ancestor
13257 (Parent_Type, Partial_View_Parent)
13258 then
13259 null;
13261 -- Traverse the list of interfaces of the full-view to look
13262 -- for the parent of the partial-view and perform the tree
13263 -- transformation.
13265 else
13266 Iface := First (Interface_List (Def));
13267 while Present (Iface) loop
13268 if Etype (Iface) = Etype (Partial_View) then
13269 Rewrite (Subtype_Indication (Def),
13270 New_Copy (Subtype_Indication
13271 (Parent (Partial_View))));
13273 New_Iface := Make_Identifier (Sloc (N),
13274 Chars (Parent_Type));
13275 Append (New_Iface, Interface_List (Def));
13277 -- Analyze the transformed code
13279 Derived_Type_Declaration (T, N, Is_Completion);
13280 return;
13281 end if;
13283 Next (Iface);
13284 end loop;
13285 end if;
13286 end if;
13287 end;
13288 end if;
13290 -- Only composite types other than array types are allowed to have
13291 -- discriminants.
13293 if Present (Discriminant_Specifications (N))
13294 and then (Is_Elementary_Type (Parent_Type)
13295 or else Is_Array_Type (Parent_Type))
13296 and then not Error_Posted (N)
13297 then
13298 Error_Msg_N
13299 ("elementary or array type cannot have discriminants",
13300 Defining_Identifier (First (Discriminant_Specifications (N))));
13301 Set_Has_Discriminants (T, False);
13302 end if;
13304 -- In Ada 83, a derived type defined in a package specification cannot
13305 -- be used for further derivation until the end of its visible part.
13306 -- Note that derivation in the private part of the package is allowed.
13308 if Ada_Version = Ada_83
13309 and then Is_Derived_Type (Parent_Type)
13310 and then In_Visible_Part (Scope (Parent_Type))
13311 then
13312 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
13313 Error_Msg_N
13314 ("(Ada 83): premature use of type for derivation", Indic);
13315 end if;
13316 end if;
13318 -- Check for early use of incomplete or private type
13320 if Ekind (Parent_Type) = E_Void
13321 or else Ekind (Parent_Type) = E_Incomplete_Type
13322 then
13323 Error_Msg_N ("premature derivation of incomplete type", Indic);
13324 return;
13326 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
13327 and then not Comes_From_Generic (Parent_Type))
13328 or else Has_Private_Component (Parent_Type)
13329 then
13330 -- The ancestor type of a formal type can be incomplete, in which
13331 -- case only the operations of the partial view are available in
13332 -- the generic. Subsequent checks may be required when the full
13333 -- view is analyzed, to verify that derivation from a tagged type
13334 -- has an extension.
13336 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
13337 null;
13339 elsif No (Underlying_Type (Parent_Type))
13340 or else Has_Private_Component (Parent_Type)
13341 then
13342 Error_Msg_N
13343 ("premature derivation of derived or private type", Indic);
13345 -- Flag the type itself as being in error, this prevents some
13346 -- nasty problems with subsequent uses of the malformed type.
13348 Set_Error_Posted (T);
13350 -- Check that within the immediate scope of an untagged partial
13351 -- view it's illegal to derive from the partial view if the
13352 -- full view is tagged. (7.3(7))
13354 -- We verify that the Parent_Type is a partial view by checking
13355 -- that it is not a Full_Type_Declaration (i.e. a private type or
13356 -- private extension declaration), to distinguish a partial view
13357 -- from a derivation from a private type which also appears as
13358 -- E_Private_Type.
13360 elsif Present (Full_View (Parent_Type))
13361 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
13362 and then not Is_Tagged_Type (Parent_Type)
13363 and then Is_Tagged_Type (Full_View (Parent_Type))
13364 then
13365 Parent_Scope := Scope (T);
13366 while Present (Parent_Scope)
13367 and then Parent_Scope /= Standard_Standard
13368 loop
13369 if Parent_Scope = Scope (Parent_Type) then
13370 Error_Msg_N
13371 ("premature derivation from type with tagged full view",
13372 Indic);
13373 end if;
13375 Parent_Scope := Scope (Parent_Scope);
13376 end loop;
13377 end if;
13378 end if;
13380 -- Check that form of derivation is appropriate
13382 Taggd := Is_Tagged_Type (Parent_Type);
13384 -- Perhaps the parent type should be changed to the class-wide type's
13385 -- specific type in this case to prevent cascading errors ???
13387 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
13388 Error_Msg_N ("parent type must not be a class-wide type", Indic);
13389 return;
13390 end if;
13392 if Present (Extension) and then not Taggd then
13393 Error_Msg_N
13394 ("type derived from untagged type cannot have extension", Indic);
13396 elsif No (Extension) and then Taggd then
13398 -- If this declaration is within a private part (or body) of a
13399 -- generic instantiation then the derivation is allowed (the parent
13400 -- type can only appear tagged in this case if it's a generic actual
13401 -- type, since it would otherwise have been rejected in the analysis
13402 -- of the generic template).
13404 if not Is_Generic_Actual_Type (Parent_Type)
13405 or else In_Visible_Part (Scope (Parent_Type))
13406 then
13407 Error_Msg_N
13408 ("type derived from tagged type must have extension", Indic);
13409 end if;
13410 end if;
13412 -- AI-443: Synchronized formal derived types require a private
13413 -- extension. There is no point in checking the ancestor type or
13414 -- the progenitors since the construct is wrong to begin with.
13416 if Ada_Version >= Ada_05
13417 and then Is_Generic_Type (T)
13418 and then Present (Original_Node (N))
13419 then
13420 declare
13421 Decl : constant Node_Id := Original_Node (N);
13423 begin
13424 if Nkind (Decl) = N_Formal_Type_Declaration
13425 and then Nkind (Formal_Type_Definition (Decl)) =
13426 N_Formal_Derived_Type_Definition
13427 and then Synchronized_Present (Formal_Type_Definition (Decl))
13428 and then No (Extension)
13430 -- Avoid emitting a duplicate error message
13432 and then not Error_Posted (Indic)
13433 then
13434 Error_Msg_N
13435 ("synchronized derived type must have extension", N);
13436 end if;
13437 end;
13438 end if;
13440 if Null_Exclusion_Present (Def)
13441 and then not Is_Access_Type (Parent_Type)
13442 then
13443 Error_Msg_N ("null exclusion can only apply to an access type", N);
13444 end if;
13446 -- Avoid deriving parent primitives of underlying record views
13448 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
13449 Derive_Subps => not Is_Underlying_Record_View (T));
13451 -- AI-419: The parent type of an explicitly limited derived type must
13452 -- be a limited type or a limited interface.
13454 if Limited_Present (Def) then
13455 Set_Is_Limited_Record (T);
13457 if Is_Interface (T) then
13458 Set_Is_Limited_Interface (T);
13459 end if;
13461 if not Is_Limited_Type (Parent_Type)
13462 and then
13463 (not Is_Interface (Parent_Type)
13464 or else not Is_Limited_Interface (Parent_Type))
13465 then
13466 Error_Msg_NE ("parent type& of limited type must be limited",
13467 N, Parent_Type);
13468 end if;
13469 end if;
13470 end Derived_Type_Declaration;
13472 ------------------------
13473 -- Diagnose_Interface --
13474 ------------------------
13476 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
13477 begin
13478 if not Is_Interface (E)
13479 and then E /= Any_Type
13480 then
13481 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
13482 end if;
13483 end Diagnose_Interface;
13485 ----------------------------------
13486 -- Enumeration_Type_Declaration --
13487 ----------------------------------
13489 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
13490 Ev : Uint;
13491 L : Node_Id;
13492 R_Node : Node_Id;
13493 B_Node : Node_Id;
13495 begin
13496 -- Create identifier node representing lower bound
13498 B_Node := New_Node (N_Identifier, Sloc (Def));
13499 L := First (Literals (Def));
13500 Set_Chars (B_Node, Chars (L));
13501 Set_Entity (B_Node, L);
13502 Set_Etype (B_Node, T);
13503 Set_Is_Static_Expression (B_Node, True);
13505 R_Node := New_Node (N_Range, Sloc (Def));
13506 Set_Low_Bound (R_Node, B_Node);
13508 Set_Ekind (T, E_Enumeration_Type);
13509 Set_First_Literal (T, L);
13510 Set_Etype (T, T);
13511 Set_Is_Constrained (T);
13513 Ev := Uint_0;
13515 -- Loop through literals of enumeration type setting pos and rep values
13516 -- except that if the Ekind is already set, then it means the literal
13517 -- was already constructed (case of a derived type declaration and we
13518 -- should not disturb the Pos and Rep values.
13520 while Present (L) loop
13521 if Ekind (L) /= E_Enumeration_Literal then
13522 Set_Ekind (L, E_Enumeration_Literal);
13523 Set_Enumeration_Pos (L, Ev);
13524 Set_Enumeration_Rep (L, Ev);
13525 Set_Is_Known_Valid (L, True);
13526 end if;
13528 Set_Etype (L, T);
13529 New_Overloaded_Entity (L);
13530 Generate_Definition (L);
13531 Set_Convention (L, Convention_Intrinsic);
13533 if Nkind (L) = N_Defining_Character_Literal then
13534 Set_Is_Character_Type (T, True);
13535 end if;
13537 Ev := Ev + 1;
13538 Next (L);
13539 end loop;
13541 -- Now create a node representing upper bound
13543 B_Node := New_Node (N_Identifier, Sloc (Def));
13544 Set_Chars (B_Node, Chars (Last (Literals (Def))));
13545 Set_Entity (B_Node, Last (Literals (Def)));
13546 Set_Etype (B_Node, T);
13547 Set_Is_Static_Expression (B_Node, True);
13549 Set_High_Bound (R_Node, B_Node);
13551 -- Initialize various fields of the type. Some of this information
13552 -- may be overwritten later through rep.clauses.
13554 Set_Scalar_Range (T, R_Node);
13555 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
13556 Set_Enum_Esize (T);
13557 Set_Enum_Pos_To_Rep (T, Empty);
13559 -- Set Discard_Names if configuration pragma set, or if there is
13560 -- a parameterless pragma in the current declarative region
13562 if Global_Discard_Names
13563 or else Discard_Names (Scope (T))
13564 then
13565 Set_Discard_Names (T);
13566 end if;
13568 -- Process end label if there is one
13570 if Present (Def) then
13571 Process_End_Label (Def, 'e', T);
13572 end if;
13573 end Enumeration_Type_Declaration;
13575 ---------------------------------
13576 -- Expand_To_Stored_Constraint --
13577 ---------------------------------
13579 function Expand_To_Stored_Constraint
13580 (Typ : Entity_Id;
13581 Constraint : Elist_Id) return Elist_Id
13583 Explicitly_Discriminated_Type : Entity_Id;
13584 Expansion : Elist_Id;
13585 Discriminant : Entity_Id;
13587 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
13588 -- Find the nearest type that actually specifies discriminants
13590 ---------------------------------
13591 -- Type_With_Explicit_Discrims --
13592 ---------------------------------
13594 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
13595 Typ : constant E := Base_Type (Id);
13597 begin
13598 if Ekind (Typ) in Incomplete_Or_Private_Kind then
13599 if Present (Full_View (Typ)) then
13600 return Type_With_Explicit_Discrims (Full_View (Typ));
13601 end if;
13603 else
13604 if Has_Discriminants (Typ) then
13605 return Typ;
13606 end if;
13607 end if;
13609 if Etype (Typ) = Typ then
13610 return Empty;
13611 elsif Has_Discriminants (Typ) then
13612 return Typ;
13613 else
13614 return Type_With_Explicit_Discrims (Etype (Typ));
13615 end if;
13617 end Type_With_Explicit_Discrims;
13619 -- Start of processing for Expand_To_Stored_Constraint
13621 begin
13622 if No (Constraint)
13623 or else Is_Empty_Elmt_List (Constraint)
13624 then
13625 return No_Elist;
13626 end if;
13628 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
13630 if No (Explicitly_Discriminated_Type) then
13631 return No_Elist;
13632 end if;
13634 Expansion := New_Elmt_List;
13636 Discriminant :=
13637 First_Stored_Discriminant (Explicitly_Discriminated_Type);
13638 while Present (Discriminant) loop
13639 Append_Elmt (
13640 Get_Discriminant_Value (
13641 Discriminant, Explicitly_Discriminated_Type, Constraint),
13642 Expansion);
13643 Next_Stored_Discriminant (Discriminant);
13644 end loop;
13646 return Expansion;
13647 end Expand_To_Stored_Constraint;
13649 ---------------------------
13650 -- Find_Hidden_Interface --
13651 ---------------------------
13653 function Find_Hidden_Interface
13654 (Src : Elist_Id;
13655 Dest : Elist_Id) return Entity_Id
13657 Iface : Entity_Id;
13658 Iface_Elmt : Elmt_Id;
13660 begin
13661 if Present (Src) and then Present (Dest) then
13662 Iface_Elmt := First_Elmt (Src);
13663 while Present (Iface_Elmt) loop
13664 Iface := Node (Iface_Elmt);
13666 if Is_Interface (Iface)
13667 and then not Contain_Interface (Iface, Dest)
13668 then
13669 return Iface;
13670 end if;
13672 Next_Elmt (Iface_Elmt);
13673 end loop;
13674 end if;
13676 return Empty;
13677 end Find_Hidden_Interface;
13679 --------------------
13680 -- Find_Type_Name --
13681 --------------------
13683 function Find_Type_Name (N : Node_Id) return Entity_Id is
13684 Id : constant Entity_Id := Defining_Identifier (N);
13685 Prev : Entity_Id;
13686 New_Id : Entity_Id;
13687 Prev_Par : Node_Id;
13689 procedure Tag_Mismatch;
13690 -- Diagnose a tagged partial view whose full view is untagged.
13691 -- We post the message on the full view, with a reference to
13692 -- the previous partial view. The partial view can be private
13693 -- or incomplete, and these are handled in a different manner,
13694 -- so we determine the position of the error message from the
13695 -- respective slocs of both.
13697 ------------------
13698 -- Tag_Mismatch --
13699 ------------------
13701 procedure Tag_Mismatch is
13702 begin
13703 if Sloc (Prev) < Sloc (Id) then
13704 Error_Msg_NE
13705 ("full declaration of } must be a tagged type ", Id, Prev);
13706 else
13707 Error_Msg_NE
13708 ("full declaration of } must be a tagged type ", Prev, Id);
13709 end if;
13710 end Tag_Mismatch;
13712 -- Start of processing for Find_Type_Name
13714 begin
13715 -- Find incomplete declaration, if one was given
13717 Prev := Current_Entity_In_Scope (Id);
13719 if Present (Prev) then
13721 -- Previous declaration exists. Error if not incomplete/private case
13722 -- except if previous declaration is implicit, etc. Enter_Name will
13723 -- emit error if appropriate.
13725 Prev_Par := Parent (Prev);
13727 if not Is_Incomplete_Or_Private_Type (Prev) then
13728 Enter_Name (Id);
13729 New_Id := Id;
13731 elsif not Nkind_In (N, N_Full_Type_Declaration,
13732 N_Task_Type_Declaration,
13733 N_Protected_Type_Declaration)
13734 then
13735 -- Completion must be a full type declarations (RM 7.3(4))
13737 Error_Msg_Sloc := Sloc (Prev);
13738 Error_Msg_NE ("invalid completion of }", Id, Prev);
13740 -- Set scope of Id to avoid cascaded errors. Entity is never
13741 -- examined again, except when saving globals in generics.
13743 Set_Scope (Id, Current_Scope);
13744 New_Id := Id;
13746 -- If this is a repeated incomplete declaration, no further
13747 -- checks are possible.
13749 if Nkind (N) = N_Incomplete_Type_Declaration then
13750 return Prev;
13751 end if;
13753 -- Case of full declaration of incomplete type
13755 elsif Ekind (Prev) = E_Incomplete_Type then
13757 -- Indicate that the incomplete declaration has a matching full
13758 -- declaration. The defining occurrence of the incomplete
13759 -- declaration remains the visible one, and the procedure
13760 -- Get_Full_View dereferences it whenever the type is used.
13762 if Present (Full_View (Prev)) then
13763 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
13764 end if;
13766 Set_Full_View (Prev, Id);
13767 Append_Entity (Id, Current_Scope);
13768 Set_Is_Public (Id, Is_Public (Prev));
13769 Set_Is_Internal (Id);
13770 New_Id := Prev;
13772 -- Case of full declaration of private type
13774 else
13775 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
13776 if Etype (Prev) /= Prev then
13778 -- Prev is a private subtype or a derived type, and needs
13779 -- no completion.
13781 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
13782 New_Id := Id;
13784 elsif Ekind (Prev) = E_Private_Type
13785 and then Nkind_In (N, N_Task_Type_Declaration,
13786 N_Protected_Type_Declaration)
13787 then
13788 Error_Msg_N
13789 ("completion of nonlimited type cannot be limited", N);
13791 elsif Ekind (Prev) = E_Record_Type_With_Private
13792 and then Nkind_In (N, N_Task_Type_Declaration,
13793 N_Protected_Type_Declaration)
13794 then
13795 if not Is_Limited_Record (Prev) then
13796 Error_Msg_N
13797 ("completion of nonlimited type cannot be limited", N);
13799 elsif No (Interface_List (N)) then
13800 Error_Msg_N
13801 ("completion of tagged private type must be tagged",
13803 end if;
13805 elsif Nkind (N) = N_Full_Type_Declaration
13806 and then
13807 Nkind (Type_Definition (N)) = N_Record_Definition
13808 and then Interface_Present (Type_Definition (N))
13809 then
13810 Error_Msg_N
13811 ("completion of private type cannot be an interface", N);
13812 end if;
13814 -- Ada 2005 (AI-251): Private extension declaration of a task
13815 -- type or a protected type. This case arises when covering
13816 -- interface types.
13818 elsif Nkind_In (N, N_Task_Type_Declaration,
13819 N_Protected_Type_Declaration)
13820 then
13821 null;
13823 elsif Nkind (N) /= N_Full_Type_Declaration
13824 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
13825 then
13826 Error_Msg_N
13827 ("full view of private extension must be an extension", N);
13829 elsif not (Abstract_Present (Parent (Prev)))
13830 and then Abstract_Present (Type_Definition (N))
13831 then
13832 Error_Msg_N
13833 ("full view of non-abstract extension cannot be abstract", N);
13834 end if;
13836 if not In_Private_Part (Current_Scope) then
13837 Error_Msg_N
13838 ("declaration of full view must appear in private part", N);
13839 end if;
13841 Copy_And_Swap (Prev, Id);
13842 Set_Has_Private_Declaration (Prev);
13843 Set_Has_Private_Declaration (Id);
13845 -- If no error, propagate freeze_node from private to full view.
13846 -- It may have been generated for an early operational item.
13848 if Present (Freeze_Node (Id))
13849 and then Serious_Errors_Detected = 0
13850 and then No (Full_View (Id))
13851 then
13852 Set_Freeze_Node (Prev, Freeze_Node (Id));
13853 Set_Freeze_Node (Id, Empty);
13854 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
13855 end if;
13857 Set_Full_View (Id, Prev);
13858 New_Id := Prev;
13859 end if;
13861 -- Verify that full declaration conforms to partial one
13863 if Is_Incomplete_Or_Private_Type (Prev)
13864 and then Present (Discriminant_Specifications (Prev_Par))
13865 then
13866 if Present (Discriminant_Specifications (N)) then
13867 if Ekind (Prev) = E_Incomplete_Type then
13868 Check_Discriminant_Conformance (N, Prev, Prev);
13869 else
13870 Check_Discriminant_Conformance (N, Prev, Id);
13871 end if;
13873 else
13874 Error_Msg_N
13875 ("missing discriminants in full type declaration", N);
13877 -- To avoid cascaded errors on subsequent use, share the
13878 -- discriminants of the partial view.
13880 Set_Discriminant_Specifications (N,
13881 Discriminant_Specifications (Prev_Par));
13882 end if;
13883 end if;
13885 -- A prior untagged partial view can have an associated class-wide
13886 -- type due to use of the class attribute, and in this case the full
13887 -- type must also be tagged. This Ada 95 usage is deprecated in favor
13888 -- of incomplete tagged declarations, but we check for it.
13890 if Is_Type (Prev)
13891 and then (Is_Tagged_Type (Prev)
13892 or else Present (Class_Wide_Type (Prev)))
13893 then
13894 -- The full declaration is either a tagged type (including
13895 -- a synchronized type that implements interfaces) or a
13896 -- type extension, otherwise this is an error.
13898 if Nkind_In (N, N_Task_Type_Declaration,
13899 N_Protected_Type_Declaration)
13900 then
13901 if No (Interface_List (N))
13902 and then not Error_Posted (N)
13903 then
13904 Tag_Mismatch;
13905 end if;
13907 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
13909 -- Indicate that the previous declaration (tagged incomplete
13910 -- or private declaration) requires the same on the full one.
13912 if not Tagged_Present (Type_Definition (N)) then
13913 Tag_Mismatch;
13914 Set_Is_Tagged_Type (Id);
13915 Set_Primitive_Operations (Id, New_Elmt_List);
13916 end if;
13918 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
13919 if No (Record_Extension_Part (Type_Definition (N))) then
13920 Error_Msg_NE (
13921 "full declaration of } must be a record extension",
13922 Prev, Id);
13924 -- Set some attributes to produce a usable full view
13926 Set_Is_Tagged_Type (Id);
13927 Set_Primitive_Operations (Id, New_Elmt_List);
13928 end if;
13930 else
13931 Tag_Mismatch;
13932 end if;
13933 end if;
13935 return New_Id;
13937 else
13938 -- New type declaration
13940 Enter_Name (Id);
13941 return Id;
13942 end if;
13943 end Find_Type_Name;
13945 -------------------------
13946 -- Find_Type_Of_Object --
13947 -------------------------
13949 function Find_Type_Of_Object
13950 (Obj_Def : Node_Id;
13951 Related_Nod : Node_Id) return Entity_Id
13953 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
13954 P : Node_Id := Parent (Obj_Def);
13955 T : Entity_Id;
13956 Nam : Name_Id;
13958 begin
13959 -- If the parent is a component_definition node we climb to the
13960 -- component_declaration node
13962 if Nkind (P) = N_Component_Definition then
13963 P := Parent (P);
13964 end if;
13966 -- Case of an anonymous array subtype
13968 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
13969 N_Unconstrained_Array_Definition)
13970 then
13971 T := Empty;
13972 Array_Type_Declaration (T, Obj_Def);
13974 -- Create an explicit subtype whenever possible
13976 elsif Nkind (P) /= N_Component_Declaration
13977 and then Def_Kind = N_Subtype_Indication
13978 then
13979 -- Base name of subtype on object name, which will be unique in
13980 -- the current scope.
13982 -- If this is a duplicate declaration, return base type, to avoid
13983 -- generating duplicate anonymous types.
13985 if Error_Posted (P) then
13986 Analyze (Subtype_Mark (Obj_Def));
13987 return Entity (Subtype_Mark (Obj_Def));
13988 end if;
13990 Nam :=
13991 New_External_Name
13992 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
13994 T := Make_Defining_Identifier (Sloc (P), Nam);
13996 Insert_Action (Obj_Def,
13997 Make_Subtype_Declaration (Sloc (P),
13998 Defining_Identifier => T,
13999 Subtype_Indication => Relocate_Node (Obj_Def)));
14001 -- This subtype may need freezing, and this will not be done
14002 -- automatically if the object declaration is not in declarative
14003 -- part. Since this is an object declaration, the type cannot always
14004 -- be frozen here. Deferred constants do not freeze their type
14005 -- (which often enough will be private).
14007 if Nkind (P) = N_Object_Declaration
14008 and then Constant_Present (P)
14009 and then No (Expression (P))
14010 then
14011 null;
14012 else
14013 Insert_Actions (Obj_Def, Freeze_Entity (T, Sloc (P)));
14014 end if;
14016 -- Ada 2005 AI-406: the object definition in an object declaration
14017 -- can be an access definition.
14019 elsif Def_Kind = N_Access_Definition then
14020 T := Access_Definition (Related_Nod, Obj_Def);
14021 Set_Is_Local_Anonymous_Access (T);
14023 -- Otherwise, the object definition is just a subtype_mark
14025 else
14026 T := Process_Subtype (Obj_Def, Related_Nod);
14027 end if;
14029 return T;
14030 end Find_Type_Of_Object;
14032 --------------------------------
14033 -- Find_Type_Of_Subtype_Indic --
14034 --------------------------------
14036 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
14037 Typ : Entity_Id;
14039 begin
14040 -- Case of subtype mark with a constraint
14042 if Nkind (S) = N_Subtype_Indication then
14043 Find_Type (Subtype_Mark (S));
14044 Typ := Entity (Subtype_Mark (S));
14046 if not
14047 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
14048 then
14049 Error_Msg_N
14050 ("incorrect constraint for this kind of type", Constraint (S));
14051 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
14052 end if;
14054 -- Otherwise we have a subtype mark without a constraint
14056 elsif Error_Posted (S) then
14057 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
14058 return Any_Type;
14060 else
14061 Find_Type (S);
14062 Typ := Entity (S);
14063 end if;
14065 -- Check No_Wide_Characters restriction
14067 if Typ = Standard_Wide_Character
14068 or else Typ = Standard_Wide_Wide_Character
14069 or else Typ = Standard_Wide_String
14070 or else Typ = Standard_Wide_Wide_String
14071 then
14072 Check_Restriction (No_Wide_Characters, S);
14073 end if;
14075 return Typ;
14076 end Find_Type_Of_Subtype_Indic;
14078 -------------------------------------
14079 -- Floating_Point_Type_Declaration --
14080 -------------------------------------
14082 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
14083 Digs : constant Node_Id := Digits_Expression (Def);
14084 Digs_Val : Uint;
14085 Base_Typ : Entity_Id;
14086 Implicit_Base : Entity_Id;
14087 Bound : Node_Id;
14089 function Can_Derive_From (E : Entity_Id) return Boolean;
14090 -- Find if given digits value allows derivation from specified type
14092 ---------------------
14093 -- Can_Derive_From --
14094 ---------------------
14096 function Can_Derive_From (E : Entity_Id) return Boolean is
14097 Spec : constant Entity_Id := Real_Range_Specification (Def);
14099 begin
14100 if Digs_Val > Digits_Value (E) then
14101 return False;
14102 end if;
14104 if Present (Spec) then
14105 if Expr_Value_R (Type_Low_Bound (E)) >
14106 Expr_Value_R (Low_Bound (Spec))
14107 then
14108 return False;
14109 end if;
14111 if Expr_Value_R (Type_High_Bound (E)) <
14112 Expr_Value_R (High_Bound (Spec))
14113 then
14114 return False;
14115 end if;
14116 end if;
14118 return True;
14119 end Can_Derive_From;
14121 -- Start of processing for Floating_Point_Type_Declaration
14123 begin
14124 Check_Restriction (No_Floating_Point, Def);
14126 -- Create an implicit base type
14128 Implicit_Base :=
14129 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
14131 -- Analyze and verify digits value
14133 Analyze_And_Resolve (Digs, Any_Integer);
14134 Check_Digits_Expression (Digs);
14135 Digs_Val := Expr_Value (Digs);
14137 -- Process possible range spec and find correct type to derive from
14139 Process_Real_Range_Specification (Def);
14141 if Can_Derive_From (Standard_Short_Float) then
14142 Base_Typ := Standard_Short_Float;
14143 elsif Can_Derive_From (Standard_Float) then
14144 Base_Typ := Standard_Float;
14145 elsif Can_Derive_From (Standard_Long_Float) then
14146 Base_Typ := Standard_Long_Float;
14147 elsif Can_Derive_From (Standard_Long_Long_Float) then
14148 Base_Typ := Standard_Long_Long_Float;
14150 -- If we can't derive from any existing type, use long_long_float
14151 -- and give appropriate message explaining the problem.
14153 else
14154 Base_Typ := Standard_Long_Long_Float;
14156 if Digs_Val >= Digits_Value (Standard_Long_Long_Float) then
14157 Error_Msg_Uint_1 := Digits_Value (Standard_Long_Long_Float);
14158 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
14160 else
14161 Error_Msg_N
14162 ("range too large for any predefined type",
14163 Real_Range_Specification (Def));
14164 end if;
14165 end if;
14167 -- If there are bounds given in the declaration use them as the bounds
14168 -- of the type, otherwise use the bounds of the predefined base type
14169 -- that was chosen based on the Digits value.
14171 if Present (Real_Range_Specification (Def)) then
14172 Set_Scalar_Range (T, Real_Range_Specification (Def));
14173 Set_Is_Constrained (T);
14175 -- The bounds of this range must be converted to machine numbers
14176 -- in accordance with RM 4.9(38).
14178 Bound := Type_Low_Bound (T);
14180 if Nkind (Bound) = N_Real_Literal then
14181 Set_Realval
14182 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
14183 Set_Is_Machine_Number (Bound);
14184 end if;
14186 Bound := Type_High_Bound (T);
14188 if Nkind (Bound) = N_Real_Literal then
14189 Set_Realval
14190 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
14191 Set_Is_Machine_Number (Bound);
14192 end if;
14194 else
14195 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
14196 end if;
14198 -- Complete definition of implicit base and declared first subtype
14200 Set_Etype (Implicit_Base, Base_Typ);
14202 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
14203 Set_Size_Info (Implicit_Base, (Base_Typ));
14204 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
14205 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
14206 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
14207 Set_Vax_Float (Implicit_Base, Vax_Float (Base_Typ));
14209 Set_Ekind (T, E_Floating_Point_Subtype);
14210 Set_Etype (T, Implicit_Base);
14212 Set_Size_Info (T, (Implicit_Base));
14213 Set_RM_Size (T, RM_Size (Implicit_Base));
14214 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
14215 Set_Digits_Value (T, Digs_Val);
14216 end Floating_Point_Type_Declaration;
14218 ----------------------------
14219 -- Get_Discriminant_Value --
14220 ----------------------------
14222 -- This is the situation:
14224 -- There is a non-derived type
14226 -- type T0 (Dx, Dy, Dz...)
14228 -- There are zero or more levels of derivation, with each derivation
14229 -- either purely inheriting the discriminants, or defining its own.
14231 -- type Ti is new Ti-1
14232 -- or
14233 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
14234 -- or
14235 -- subtype Ti is ...
14237 -- The subtype issue is avoided by the use of Original_Record_Component,
14238 -- and the fact that derived subtypes also derive the constraints.
14240 -- This chain leads back from
14242 -- Typ_For_Constraint
14244 -- Typ_For_Constraint has discriminants, and the value for each
14245 -- discriminant is given by its corresponding Elmt of Constraints.
14247 -- Discriminant is some discriminant in this hierarchy
14249 -- We need to return its value
14251 -- We do this by recursively searching each level, and looking for
14252 -- Discriminant. Once we get to the bottom, we start backing up
14253 -- returning the value for it which may in turn be a discriminant
14254 -- further up, so on the backup we continue the substitution.
14256 function Get_Discriminant_Value
14257 (Discriminant : Entity_Id;
14258 Typ_For_Constraint : Entity_Id;
14259 Constraint : Elist_Id) return Node_Id
14261 function Search_Derivation_Levels
14262 (Ti : Entity_Id;
14263 Discrim_Values : Elist_Id;
14264 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
14265 -- This is the routine that performs the recursive search of levels
14266 -- as described above.
14268 ------------------------------
14269 -- Search_Derivation_Levels --
14270 ------------------------------
14272 function Search_Derivation_Levels
14273 (Ti : Entity_Id;
14274 Discrim_Values : Elist_Id;
14275 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
14277 Assoc : Elmt_Id;
14278 Disc : Entity_Id;
14279 Result : Node_Or_Entity_Id;
14280 Result_Entity : Node_Id;
14282 begin
14283 -- If inappropriate type, return Error, this happens only in
14284 -- cascaded error situations, and we want to avoid a blow up.
14286 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
14287 return Error;
14288 end if;
14290 -- Look deeper if possible. Use Stored_Constraints only for
14291 -- untagged types. For tagged types use the given constraint.
14292 -- This asymmetry needs explanation???
14294 if not Stored_Discrim_Values
14295 and then Present (Stored_Constraint (Ti))
14296 and then not Is_Tagged_Type (Ti)
14297 then
14298 Result :=
14299 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
14300 else
14301 declare
14302 Td : constant Entity_Id := Etype (Ti);
14304 begin
14305 if Td = Ti then
14306 Result := Discriminant;
14308 else
14309 if Present (Stored_Constraint (Ti)) then
14310 Result :=
14311 Search_Derivation_Levels
14312 (Td, Stored_Constraint (Ti), True);
14313 else
14314 Result :=
14315 Search_Derivation_Levels
14316 (Td, Discrim_Values, Stored_Discrim_Values);
14317 end if;
14318 end if;
14319 end;
14320 end if;
14322 -- Extra underlying places to search, if not found above. For
14323 -- concurrent types, the relevant discriminant appears in the
14324 -- corresponding record. For a type derived from a private type
14325 -- without discriminant, the full view inherits the discriminants
14326 -- of the full view of the parent.
14328 if Result = Discriminant then
14329 if Is_Concurrent_Type (Ti)
14330 and then Present (Corresponding_Record_Type (Ti))
14331 then
14332 Result :=
14333 Search_Derivation_Levels (
14334 Corresponding_Record_Type (Ti),
14335 Discrim_Values,
14336 Stored_Discrim_Values);
14338 elsif Is_Private_Type (Ti)
14339 and then not Has_Discriminants (Ti)
14340 and then Present (Full_View (Ti))
14341 and then Etype (Full_View (Ti)) /= Ti
14342 then
14343 Result :=
14344 Search_Derivation_Levels (
14345 Full_View (Ti),
14346 Discrim_Values,
14347 Stored_Discrim_Values);
14348 end if;
14349 end if;
14351 -- If Result is not a (reference to a) discriminant, return it,
14352 -- otherwise set Result_Entity to the discriminant.
14354 if Nkind (Result) = N_Defining_Identifier then
14355 pragma Assert (Result = Discriminant);
14356 Result_Entity := Result;
14358 else
14359 if not Denotes_Discriminant (Result) then
14360 return Result;
14361 end if;
14363 Result_Entity := Entity (Result);
14364 end if;
14366 -- See if this level of derivation actually has discriminants
14367 -- because tagged derivations can add them, hence the lower
14368 -- levels need not have any.
14370 if not Has_Discriminants (Ti) then
14371 return Result;
14372 end if;
14374 -- Scan Ti's discriminants for Result_Entity,
14375 -- and return its corresponding value, if any.
14377 Result_Entity := Original_Record_Component (Result_Entity);
14379 Assoc := First_Elmt (Discrim_Values);
14381 if Stored_Discrim_Values then
14382 Disc := First_Stored_Discriminant (Ti);
14383 else
14384 Disc := First_Discriminant (Ti);
14385 end if;
14387 while Present (Disc) loop
14388 pragma Assert (Present (Assoc));
14390 if Original_Record_Component (Disc) = Result_Entity then
14391 return Node (Assoc);
14392 end if;
14394 Next_Elmt (Assoc);
14396 if Stored_Discrim_Values then
14397 Next_Stored_Discriminant (Disc);
14398 else
14399 Next_Discriminant (Disc);
14400 end if;
14401 end loop;
14403 -- Could not find it
14405 return Result;
14406 end Search_Derivation_Levels;
14408 -- Local Variables
14410 Result : Node_Or_Entity_Id;
14412 -- Start of processing for Get_Discriminant_Value
14414 begin
14415 -- ??? This routine is a gigantic mess and will be deleted. For the
14416 -- time being just test for the trivial case before calling recurse.
14418 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
14419 declare
14420 D : Entity_Id;
14421 E : Elmt_Id;
14423 begin
14424 D := First_Discriminant (Typ_For_Constraint);
14425 E := First_Elmt (Constraint);
14426 while Present (D) loop
14427 if Chars (D) = Chars (Discriminant) then
14428 return Node (E);
14429 end if;
14431 Next_Discriminant (D);
14432 Next_Elmt (E);
14433 end loop;
14434 end;
14435 end if;
14437 Result := Search_Derivation_Levels
14438 (Typ_For_Constraint, Constraint, False);
14440 -- ??? hack to disappear when this routine is gone
14442 if Nkind (Result) = N_Defining_Identifier then
14443 declare
14444 D : Entity_Id;
14445 E : Elmt_Id;
14447 begin
14448 D := First_Discriminant (Typ_For_Constraint);
14449 E := First_Elmt (Constraint);
14450 while Present (D) loop
14451 if Corresponding_Discriminant (D) = Discriminant then
14452 return Node (E);
14453 end if;
14455 Next_Discriminant (D);
14456 Next_Elmt (E);
14457 end loop;
14458 end;
14459 end if;
14461 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
14462 return Result;
14463 end Get_Discriminant_Value;
14465 --------------------------
14466 -- Has_Range_Constraint --
14467 --------------------------
14469 function Has_Range_Constraint (N : Node_Id) return Boolean is
14470 C : constant Node_Id := Constraint (N);
14472 begin
14473 if Nkind (C) = N_Range_Constraint then
14474 return True;
14476 elsif Nkind (C) = N_Digits_Constraint then
14477 return
14478 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
14479 or else
14480 Present (Range_Constraint (C));
14482 elsif Nkind (C) = N_Delta_Constraint then
14483 return Present (Range_Constraint (C));
14485 else
14486 return False;
14487 end if;
14488 end Has_Range_Constraint;
14490 ------------------------
14491 -- Inherit_Components --
14492 ------------------------
14494 function Inherit_Components
14495 (N : Node_Id;
14496 Parent_Base : Entity_Id;
14497 Derived_Base : Entity_Id;
14498 Is_Tagged : Boolean;
14499 Inherit_Discr : Boolean;
14500 Discs : Elist_Id) return Elist_Id
14502 Assoc_List : constant Elist_Id := New_Elmt_List;
14504 procedure Inherit_Component
14505 (Old_C : Entity_Id;
14506 Plain_Discrim : Boolean := False;
14507 Stored_Discrim : Boolean := False);
14508 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
14509 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
14510 -- True, Old_C is a stored discriminant. If they are both false then
14511 -- Old_C is a regular component.
14513 -----------------------
14514 -- Inherit_Component --
14515 -----------------------
14517 procedure Inherit_Component
14518 (Old_C : Entity_Id;
14519 Plain_Discrim : Boolean := False;
14520 Stored_Discrim : Boolean := False)
14522 New_C : constant Entity_Id := New_Copy (Old_C);
14524 Discrim : Entity_Id;
14525 Corr_Discrim : Entity_Id;
14527 begin
14528 pragma Assert (not Is_Tagged or else not Stored_Discrim);
14530 Set_Parent (New_C, Parent (Old_C));
14532 -- Regular discriminants and components must be inserted in the scope
14533 -- of the Derived_Base. Do it here.
14535 if not Stored_Discrim then
14536 Enter_Name (New_C);
14537 end if;
14539 -- For tagged types the Original_Record_Component must point to
14540 -- whatever this field was pointing to in the parent type. This has
14541 -- already been achieved by the call to New_Copy above.
14543 if not Is_Tagged then
14544 Set_Original_Record_Component (New_C, New_C);
14545 end if;
14547 -- If we have inherited a component then see if its Etype contains
14548 -- references to Parent_Base discriminants. In this case, replace
14549 -- these references with the constraints given in Discs. We do not
14550 -- do this for the partial view of private types because this is
14551 -- not needed (only the components of the full view will be used
14552 -- for code generation) and cause problem. We also avoid this
14553 -- transformation in some error situations.
14555 if Ekind (New_C) = E_Component then
14556 if (Is_Private_Type (Derived_Base)
14557 and then not Is_Generic_Type (Derived_Base))
14558 or else (Is_Empty_Elmt_List (Discs)
14559 and then not Expander_Active)
14560 then
14561 Set_Etype (New_C, Etype (Old_C));
14563 else
14564 -- The current component introduces a circularity of the
14565 -- following kind:
14567 -- limited with Pack_2;
14568 -- package Pack_1 is
14569 -- type T_1 is tagged record
14570 -- Comp : access Pack_2.T_2;
14571 -- ...
14572 -- end record;
14573 -- end Pack_1;
14575 -- with Pack_1;
14576 -- package Pack_2 is
14577 -- type T_2 is new Pack_1.T_1 with ...;
14578 -- end Pack_2;
14580 Set_Etype
14581 (New_C,
14582 Constrain_Component_Type
14583 (Old_C, Derived_Base, N, Parent_Base, Discs));
14584 end if;
14585 end if;
14587 -- In derived tagged types it is illegal to reference a non
14588 -- discriminant component in the parent type. To catch this, mark
14589 -- these components with an Ekind of E_Void. This will be reset in
14590 -- Record_Type_Definition after processing the record extension of
14591 -- the derived type.
14593 -- If the declaration is a private extension, there is no further
14594 -- record extension to process, and the components retain their
14595 -- current kind, because they are visible at this point.
14597 if Is_Tagged and then Ekind (New_C) = E_Component
14598 and then Nkind (N) /= N_Private_Extension_Declaration
14599 then
14600 Set_Ekind (New_C, E_Void);
14601 end if;
14603 if Plain_Discrim then
14604 Set_Corresponding_Discriminant (New_C, Old_C);
14605 Build_Discriminal (New_C);
14607 -- If we are explicitly inheriting a stored discriminant it will be
14608 -- completely hidden.
14610 elsif Stored_Discrim then
14611 Set_Corresponding_Discriminant (New_C, Empty);
14612 Set_Discriminal (New_C, Empty);
14613 Set_Is_Completely_Hidden (New_C);
14615 -- Set the Original_Record_Component of each discriminant in the
14616 -- derived base to point to the corresponding stored that we just
14617 -- created.
14619 Discrim := First_Discriminant (Derived_Base);
14620 while Present (Discrim) loop
14621 Corr_Discrim := Corresponding_Discriminant (Discrim);
14623 -- Corr_Discrim could be missing in an error situation
14625 if Present (Corr_Discrim)
14626 and then Original_Record_Component (Corr_Discrim) = Old_C
14627 then
14628 Set_Original_Record_Component (Discrim, New_C);
14629 end if;
14631 Next_Discriminant (Discrim);
14632 end loop;
14634 Append_Entity (New_C, Derived_Base);
14635 end if;
14637 if not Is_Tagged then
14638 Append_Elmt (Old_C, Assoc_List);
14639 Append_Elmt (New_C, Assoc_List);
14640 end if;
14641 end Inherit_Component;
14643 -- Variables local to Inherit_Component
14645 Loc : constant Source_Ptr := Sloc (N);
14647 Parent_Discrim : Entity_Id;
14648 Stored_Discrim : Entity_Id;
14649 D : Entity_Id;
14650 Component : Entity_Id;
14652 -- Start of processing for Inherit_Components
14654 begin
14655 if not Is_Tagged then
14656 Append_Elmt (Parent_Base, Assoc_List);
14657 Append_Elmt (Derived_Base, Assoc_List);
14658 end if;
14660 -- Inherit parent discriminants if needed
14662 if Inherit_Discr then
14663 Parent_Discrim := First_Discriminant (Parent_Base);
14664 while Present (Parent_Discrim) loop
14665 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
14666 Next_Discriminant (Parent_Discrim);
14667 end loop;
14668 end if;
14670 -- Create explicit stored discrims for untagged types when necessary
14672 if not Has_Unknown_Discriminants (Derived_Base)
14673 and then Has_Discriminants (Parent_Base)
14674 and then not Is_Tagged
14675 and then
14676 (not Inherit_Discr
14677 or else First_Discriminant (Parent_Base) /=
14678 First_Stored_Discriminant (Parent_Base))
14679 then
14680 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
14681 while Present (Stored_Discrim) loop
14682 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
14683 Next_Stored_Discriminant (Stored_Discrim);
14684 end loop;
14685 end if;
14687 -- See if we can apply the second transformation for derived types, as
14688 -- explained in point 6. in the comments above Build_Derived_Record_Type
14689 -- This is achieved by appending Derived_Base discriminants into Discs,
14690 -- which has the side effect of returning a non empty Discs list to the
14691 -- caller of Inherit_Components, which is what we want. This must be
14692 -- done for private derived types if there are explicit stored
14693 -- discriminants, to ensure that we can retrieve the values of the
14694 -- constraints provided in the ancestors.
14696 if Inherit_Discr
14697 and then Is_Empty_Elmt_List (Discs)
14698 and then Present (First_Discriminant (Derived_Base))
14699 and then
14700 (not Is_Private_Type (Derived_Base)
14701 or else Is_Completely_Hidden
14702 (First_Stored_Discriminant (Derived_Base))
14703 or else Is_Generic_Type (Derived_Base))
14704 then
14705 D := First_Discriminant (Derived_Base);
14706 while Present (D) loop
14707 Append_Elmt (New_Reference_To (D, Loc), Discs);
14708 Next_Discriminant (D);
14709 end loop;
14710 end if;
14712 -- Finally, inherit non-discriminant components unless they are not
14713 -- visible because defined or inherited from the full view of the
14714 -- parent. Don't inherit the _parent field of the parent type.
14716 Component := First_Entity (Parent_Base);
14717 while Present (Component) loop
14719 -- Ada 2005 (AI-251): Do not inherit components associated with
14720 -- secondary tags of the parent.
14722 if Ekind (Component) = E_Component
14723 and then Present (Related_Type (Component))
14724 then
14725 null;
14727 elsif Ekind (Component) /= E_Component
14728 or else Chars (Component) = Name_uParent
14729 then
14730 null;
14732 -- If the derived type is within the parent type's declarative
14733 -- region, then the components can still be inherited even though
14734 -- they aren't visible at this point. This can occur for cases
14735 -- such as within public child units where the components must
14736 -- become visible upon entering the child unit's private part.
14738 elsif not Is_Visible_Component (Component)
14739 and then not In_Open_Scopes (Scope (Parent_Base))
14740 then
14741 null;
14743 elsif Ekind (Derived_Base) = E_Private_Type
14744 or else Ekind (Derived_Base) = E_Limited_Private_Type
14745 then
14746 null;
14748 else
14749 Inherit_Component (Component);
14750 end if;
14752 Next_Entity (Component);
14753 end loop;
14755 -- For tagged derived types, inherited discriminants cannot be used in
14756 -- component declarations of the record extension part. To achieve this
14757 -- we mark the inherited discriminants as not visible.
14759 if Is_Tagged and then Inherit_Discr then
14760 D := First_Discriminant (Derived_Base);
14761 while Present (D) loop
14762 Set_Is_Immediately_Visible (D, False);
14763 Next_Discriminant (D);
14764 end loop;
14765 end if;
14767 return Assoc_List;
14768 end Inherit_Components;
14770 -----------------------
14771 -- Is_Null_Extension --
14772 -----------------------
14774 function Is_Null_Extension (T : Entity_Id) return Boolean is
14775 Type_Decl : constant Node_Id := Parent (Base_Type (T));
14776 Comp_List : Node_Id;
14777 Comp : Node_Id;
14779 begin
14780 if Nkind (Type_Decl) /= N_Full_Type_Declaration
14781 or else not Is_Tagged_Type (T)
14782 or else Nkind (Type_Definition (Type_Decl)) /=
14783 N_Derived_Type_Definition
14784 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
14785 then
14786 return False;
14787 end if;
14789 Comp_List :=
14790 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
14792 if Present (Discriminant_Specifications (Type_Decl)) then
14793 return False;
14795 elsif Present (Comp_List)
14796 and then Is_Non_Empty_List (Component_Items (Comp_List))
14797 then
14798 Comp := First (Component_Items (Comp_List));
14800 -- Only user-defined components are relevant. The component list
14801 -- may also contain a parent component and internal components
14802 -- corresponding to secondary tags, but these do not determine
14803 -- whether this is a null extension.
14805 while Present (Comp) loop
14806 if Comes_From_Source (Comp) then
14807 return False;
14808 end if;
14810 Next (Comp);
14811 end loop;
14813 return True;
14814 else
14815 return True;
14816 end if;
14817 end Is_Null_Extension;
14819 --------------------
14820 -- Is_Progenitor --
14821 --------------------
14823 function Is_Progenitor
14824 (Iface : Entity_Id;
14825 Typ : Entity_Id) return Boolean
14827 begin
14828 return Implements_Interface (Typ, Iface,
14829 Exclude_Parents => True);
14830 end Is_Progenitor;
14832 ------------------------------
14833 -- Is_Valid_Constraint_Kind --
14834 ------------------------------
14836 function Is_Valid_Constraint_Kind
14837 (T_Kind : Type_Kind;
14838 Constraint_Kind : Node_Kind) return Boolean
14840 begin
14841 case T_Kind is
14842 when Enumeration_Kind |
14843 Integer_Kind =>
14844 return Constraint_Kind = N_Range_Constraint;
14846 when Decimal_Fixed_Point_Kind =>
14847 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
14848 N_Range_Constraint);
14850 when Ordinary_Fixed_Point_Kind =>
14851 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
14852 N_Range_Constraint);
14854 when Float_Kind =>
14855 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
14856 N_Range_Constraint);
14858 when Access_Kind |
14859 Array_Kind |
14860 E_Record_Type |
14861 E_Record_Subtype |
14862 Class_Wide_Kind |
14863 E_Incomplete_Type |
14864 Private_Kind |
14865 Concurrent_Kind =>
14866 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
14868 when others =>
14869 return True; -- Error will be detected later
14870 end case;
14871 end Is_Valid_Constraint_Kind;
14873 --------------------------
14874 -- Is_Visible_Component --
14875 --------------------------
14877 function Is_Visible_Component (C : Entity_Id) return Boolean is
14878 Original_Comp : Entity_Id := Empty;
14879 Original_Scope : Entity_Id;
14880 Type_Scope : Entity_Id;
14882 function Is_Local_Type (Typ : Entity_Id) return Boolean;
14883 -- Check whether parent type of inherited component is declared locally,
14884 -- possibly within a nested package or instance. The current scope is
14885 -- the derived record itself.
14887 -------------------
14888 -- Is_Local_Type --
14889 -------------------
14891 function Is_Local_Type (Typ : Entity_Id) return Boolean is
14892 Scop : Entity_Id;
14894 begin
14895 Scop := Scope (Typ);
14896 while Present (Scop)
14897 and then Scop /= Standard_Standard
14898 loop
14899 if Scop = Scope (Current_Scope) then
14900 return True;
14901 end if;
14903 Scop := Scope (Scop);
14904 end loop;
14906 return False;
14907 end Is_Local_Type;
14909 -- Start of processing for Is_Visible_Component
14911 begin
14912 if Ekind (C) = E_Component
14913 or else Ekind (C) = E_Discriminant
14914 then
14915 Original_Comp := Original_Record_Component (C);
14916 end if;
14918 if No (Original_Comp) then
14920 -- Premature usage, or previous error
14922 return False;
14924 else
14925 Original_Scope := Scope (Original_Comp);
14926 Type_Scope := Scope (Base_Type (Scope (C)));
14927 end if;
14929 -- This test only concerns tagged types
14931 if not Is_Tagged_Type (Original_Scope) then
14932 return True;
14934 -- If it is _Parent or _Tag, there is no visibility issue
14936 elsif not Comes_From_Source (Original_Comp) then
14937 return True;
14939 -- If we are in the body of an instantiation, the component is visible
14940 -- even when the parent type (possibly defined in an enclosing unit or
14941 -- in a parent unit) might not.
14943 elsif In_Instance_Body then
14944 return True;
14946 -- Discriminants are always visible
14948 elsif Ekind (Original_Comp) = E_Discriminant
14949 and then not Has_Unknown_Discriminants (Original_Scope)
14950 then
14951 return True;
14953 -- If the component has been declared in an ancestor which is currently
14954 -- a private type, then it is not visible. The same applies if the
14955 -- component's containing type is not in an open scope and the original
14956 -- component's enclosing type is a visible full view of a private type
14957 -- (which can occur in cases where an attempt is being made to reference
14958 -- a component in a sibling package that is inherited from a visible
14959 -- component of a type in an ancestor package; the component in the
14960 -- sibling package should not be visible even though the component it
14961 -- inherited from is visible). This does not apply however in the case
14962 -- where the scope of the type is a private child unit, or when the
14963 -- parent comes from a local package in which the ancestor is currently
14964 -- visible. The latter suppression of visibility is needed for cases
14965 -- that are tested in B730006.
14967 elsif Is_Private_Type (Original_Scope)
14968 or else
14969 (not Is_Private_Descendant (Type_Scope)
14970 and then not In_Open_Scopes (Type_Scope)
14971 and then Has_Private_Declaration (Original_Scope))
14972 then
14973 -- If the type derives from an entity in a formal package, there
14974 -- are no additional visible components.
14976 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
14977 N_Formal_Package_Declaration
14978 then
14979 return False;
14981 -- if we are not in the private part of the current package, there
14982 -- are no additional visible components.
14984 elsif Ekind (Scope (Current_Scope)) = E_Package
14985 and then not In_Private_Part (Scope (Current_Scope))
14986 then
14987 return False;
14988 else
14989 return
14990 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
14991 and then In_Open_Scopes (Scope (Original_Scope))
14992 and then Is_Local_Type (Type_Scope);
14993 end if;
14995 -- There is another weird way in which a component may be invisible
14996 -- when the private and the full view are not derived from the same
14997 -- ancestor. Here is an example :
14999 -- type A1 is tagged record F1 : integer; end record;
15000 -- type A2 is new A1 with record F2 : integer; end record;
15001 -- type T is new A1 with private;
15002 -- private
15003 -- type T is new A2 with null record;
15005 -- In this case, the full view of T inherits F1 and F2 but the private
15006 -- view inherits only F1
15008 else
15009 declare
15010 Ancestor : Entity_Id := Scope (C);
15012 begin
15013 loop
15014 if Ancestor = Original_Scope then
15015 return True;
15016 elsif Ancestor = Etype (Ancestor) then
15017 return False;
15018 end if;
15020 Ancestor := Etype (Ancestor);
15021 end loop;
15022 end;
15023 end if;
15024 end Is_Visible_Component;
15026 --------------------------
15027 -- Make_Class_Wide_Type --
15028 --------------------------
15030 procedure Make_Class_Wide_Type (T : Entity_Id) is
15031 CW_Type : Entity_Id;
15032 CW_Name : Name_Id;
15033 Next_E : Entity_Id;
15035 begin
15036 -- The class wide type can have been defined by the partial view, in
15037 -- which case everything is already done.
15039 if Present (Class_Wide_Type (T)) then
15040 return;
15041 end if;
15043 CW_Type :=
15044 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
15046 -- Inherit root type characteristics
15048 CW_Name := Chars (CW_Type);
15049 Next_E := Next_Entity (CW_Type);
15050 Copy_Node (T, CW_Type);
15051 Set_Comes_From_Source (CW_Type, False);
15052 Set_Chars (CW_Type, CW_Name);
15053 Set_Parent (CW_Type, Parent (T));
15054 Set_Next_Entity (CW_Type, Next_E);
15056 -- Ensure we have a new freeze node for the class-wide type. The partial
15057 -- view may have freeze action of its own, requiring a proper freeze
15058 -- node, and the same freeze node cannot be shared between the two
15059 -- types.
15061 Set_Has_Delayed_Freeze (CW_Type);
15062 Set_Freeze_Node (CW_Type, Empty);
15064 -- Customize the class-wide type: It has no prim. op., it cannot be
15065 -- abstract and its Etype points back to the specific root type.
15067 Set_Ekind (CW_Type, E_Class_Wide_Type);
15068 Set_Is_Tagged_Type (CW_Type, True);
15069 Set_Primitive_Operations (CW_Type, New_Elmt_List);
15070 Set_Is_Abstract_Type (CW_Type, False);
15071 Set_Is_Constrained (CW_Type, False);
15072 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
15074 if Ekind (T) = E_Class_Wide_Subtype then
15075 Set_Etype (CW_Type, Etype (Base_Type (T)));
15076 else
15077 Set_Etype (CW_Type, T);
15078 end if;
15080 -- If this is the class_wide type of a constrained subtype, it does
15081 -- not have discriminants.
15083 Set_Has_Discriminants (CW_Type,
15084 Has_Discriminants (T) and then not Is_Constrained (T));
15086 Set_Has_Unknown_Discriminants (CW_Type, True);
15087 Set_Class_Wide_Type (T, CW_Type);
15088 Set_Equivalent_Type (CW_Type, Empty);
15090 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
15092 Set_Class_Wide_Type (CW_Type, CW_Type);
15093 end Make_Class_Wide_Type;
15095 ----------------
15096 -- Make_Index --
15097 ----------------
15099 procedure Make_Index
15100 (I : Node_Id;
15101 Related_Nod : Node_Id;
15102 Related_Id : Entity_Id := Empty;
15103 Suffix_Index : Nat := 1)
15105 R : Node_Id;
15106 T : Entity_Id;
15107 Def_Id : Entity_Id := Empty;
15108 Found : Boolean := False;
15110 begin
15111 -- For a discrete range used in a constrained array definition and
15112 -- defined by a range, an implicit conversion to the predefined type
15113 -- INTEGER is assumed if each bound is either a numeric literal, a named
15114 -- number, or an attribute, and the type of both bounds (prior to the
15115 -- implicit conversion) is the type universal_integer. Otherwise, both
15116 -- bounds must be of the same discrete type, other than universal
15117 -- integer; this type must be determinable independently of the
15118 -- context, but using the fact that the type must be discrete and that
15119 -- both bounds must have the same type.
15121 -- Character literals also have a universal type in the absence of
15122 -- of additional context, and are resolved to Standard_Character.
15124 if Nkind (I) = N_Range then
15126 -- The index is given by a range constraint. The bounds are known
15127 -- to be of a consistent type.
15129 if not Is_Overloaded (I) then
15130 T := Etype (I);
15132 -- For universal bounds, choose the specific predefined type
15134 if T = Universal_Integer then
15135 T := Standard_Integer;
15137 elsif T = Any_Character then
15138 Ambiguous_Character (Low_Bound (I));
15140 T := Standard_Character;
15141 end if;
15143 -- The node may be overloaded because some user-defined operators
15144 -- are available, but if a universal interpretation exists it is
15145 -- also the selected one.
15147 elsif Universal_Interpretation (I) = Universal_Integer then
15148 T := Standard_Integer;
15150 else
15151 T := Any_Type;
15153 declare
15154 Ind : Interp_Index;
15155 It : Interp;
15157 begin
15158 Get_First_Interp (I, Ind, It);
15159 while Present (It.Typ) loop
15160 if Is_Discrete_Type (It.Typ) then
15162 if Found
15163 and then not Covers (It.Typ, T)
15164 and then not Covers (T, It.Typ)
15165 then
15166 Error_Msg_N ("ambiguous bounds in discrete range", I);
15167 exit;
15168 else
15169 T := It.Typ;
15170 Found := True;
15171 end if;
15172 end if;
15174 Get_Next_Interp (Ind, It);
15175 end loop;
15177 if T = Any_Type then
15178 Error_Msg_N ("discrete type required for range", I);
15179 Set_Etype (I, Any_Type);
15180 return;
15182 elsif T = Universal_Integer then
15183 T := Standard_Integer;
15184 end if;
15185 end;
15186 end if;
15188 if not Is_Discrete_Type (T) then
15189 Error_Msg_N ("discrete type required for range", I);
15190 Set_Etype (I, Any_Type);
15191 return;
15192 end if;
15194 if Nkind (Low_Bound (I)) = N_Attribute_Reference
15195 and then Attribute_Name (Low_Bound (I)) = Name_First
15196 and then Is_Entity_Name (Prefix (Low_Bound (I)))
15197 and then Is_Type (Entity (Prefix (Low_Bound (I))))
15198 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (I))))
15199 then
15200 -- The type of the index will be the type of the prefix, as long
15201 -- as the upper bound is 'Last of the same type.
15203 Def_Id := Entity (Prefix (Low_Bound (I)));
15205 if Nkind (High_Bound (I)) /= N_Attribute_Reference
15206 or else Attribute_Name (High_Bound (I)) /= Name_Last
15207 or else not Is_Entity_Name (Prefix (High_Bound (I)))
15208 or else Entity (Prefix (High_Bound (I))) /= Def_Id
15209 then
15210 Def_Id := Empty;
15211 end if;
15212 end if;
15214 R := I;
15215 Process_Range_Expr_In_Decl (R, T);
15217 elsif Nkind (I) = N_Subtype_Indication then
15219 -- The index is given by a subtype with a range constraint
15221 T := Base_Type (Entity (Subtype_Mark (I)));
15223 if not Is_Discrete_Type (T) then
15224 Error_Msg_N ("discrete type required for range", I);
15225 Set_Etype (I, Any_Type);
15226 return;
15227 end if;
15229 R := Range_Expression (Constraint (I));
15231 Resolve (R, T);
15232 Process_Range_Expr_In_Decl (R, Entity (Subtype_Mark (I)));
15234 elsif Nkind (I) = N_Attribute_Reference then
15236 -- The parser guarantees that the attribute is a RANGE attribute
15238 -- If the node denotes the range of a type mark, that is also the
15239 -- resulting type, and we do no need to create an Itype for it.
15241 if Is_Entity_Name (Prefix (I))
15242 and then Comes_From_Source (I)
15243 and then Is_Type (Entity (Prefix (I)))
15244 and then Is_Discrete_Type (Entity (Prefix (I)))
15245 then
15246 Def_Id := Entity (Prefix (I));
15247 end if;
15249 Analyze_And_Resolve (I);
15250 T := Etype (I);
15251 R := I;
15253 -- If none of the above, must be a subtype. We convert this to a
15254 -- range attribute reference because in the case of declared first
15255 -- named subtypes, the types in the range reference can be different
15256 -- from the type of the entity. A range attribute normalizes the
15257 -- reference and obtains the correct types for the bounds.
15259 -- This transformation is in the nature of an expansion, is only
15260 -- done if expansion is active. In particular, it is not done on
15261 -- formal generic types, because we need to retain the name of the
15262 -- original index for instantiation purposes.
15264 else
15265 if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
15266 Error_Msg_N ("invalid subtype mark in discrete range ", I);
15267 Set_Etype (I, Any_Integer);
15268 return;
15270 else
15271 -- The type mark may be that of an incomplete type. It is only
15272 -- now that we can get the full view, previous analysis does
15273 -- not look specifically for a type mark.
15275 Set_Entity (I, Get_Full_View (Entity (I)));
15276 Set_Etype (I, Entity (I));
15277 Def_Id := Entity (I);
15279 if not Is_Discrete_Type (Def_Id) then
15280 Error_Msg_N ("discrete type required for index", I);
15281 Set_Etype (I, Any_Type);
15282 return;
15283 end if;
15284 end if;
15286 if Expander_Active then
15287 Rewrite (I,
15288 Make_Attribute_Reference (Sloc (I),
15289 Attribute_Name => Name_Range,
15290 Prefix => Relocate_Node (I)));
15292 -- The original was a subtype mark that does not freeze. This
15293 -- means that the rewritten version must not freeze either.
15295 Set_Must_Not_Freeze (I);
15296 Set_Must_Not_Freeze (Prefix (I));
15298 -- Is order critical??? if so, document why, if not
15299 -- use Analyze_And_Resolve
15301 Analyze_And_Resolve (I);
15302 T := Etype (I);
15303 R := I;
15305 -- If expander is inactive, type is legal, nothing else to construct
15307 else
15308 return;
15309 end if;
15310 end if;
15312 if not Is_Discrete_Type (T) then
15313 Error_Msg_N ("discrete type required for range", I);
15314 Set_Etype (I, Any_Type);
15315 return;
15317 elsif T = Any_Type then
15318 Set_Etype (I, Any_Type);
15319 return;
15320 end if;
15322 -- We will now create the appropriate Itype to describe the range, but
15323 -- first a check. If we originally had a subtype, then we just label
15324 -- the range with this subtype. Not only is there no need to construct
15325 -- a new subtype, but it is wrong to do so for two reasons:
15327 -- 1. A legality concern, if we have a subtype, it must not freeze,
15328 -- and the Itype would cause freezing incorrectly
15330 -- 2. An efficiency concern, if we created an Itype, it would not be
15331 -- recognized as the same type for the purposes of eliminating
15332 -- checks in some circumstances.
15334 -- We signal this case by setting the subtype entity in Def_Id
15336 if No (Def_Id) then
15337 Def_Id :=
15338 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
15339 Set_Etype (Def_Id, Base_Type (T));
15341 if Is_Signed_Integer_Type (T) then
15342 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
15344 elsif Is_Modular_Integer_Type (T) then
15345 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
15347 else
15348 Set_Ekind (Def_Id, E_Enumeration_Subtype);
15349 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
15350 Set_First_Literal (Def_Id, First_Literal (T));
15351 end if;
15353 Set_Size_Info (Def_Id, (T));
15354 Set_RM_Size (Def_Id, RM_Size (T));
15355 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
15357 Set_Scalar_Range (Def_Id, R);
15358 Conditional_Delay (Def_Id, T);
15360 -- In the subtype indication case, if the immediate parent of the
15361 -- new subtype is non-static, then the subtype we create is non-
15362 -- static, even if its bounds are static.
15364 if Nkind (I) = N_Subtype_Indication
15365 and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
15366 then
15367 Set_Is_Non_Static_Subtype (Def_Id);
15368 end if;
15369 end if;
15371 -- Final step is to label the index with this constructed type
15373 Set_Etype (I, Def_Id);
15374 end Make_Index;
15376 ------------------------------
15377 -- Modular_Type_Declaration --
15378 ------------------------------
15380 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15381 Mod_Expr : constant Node_Id := Expression (Def);
15382 M_Val : Uint;
15384 procedure Set_Modular_Size (Bits : Int);
15385 -- Sets RM_Size to Bits, and Esize to normal word size above this
15387 ----------------------
15388 -- Set_Modular_Size --
15389 ----------------------
15391 procedure Set_Modular_Size (Bits : Int) is
15392 begin
15393 Set_RM_Size (T, UI_From_Int (Bits));
15395 if Bits <= 8 then
15396 Init_Esize (T, 8);
15398 elsif Bits <= 16 then
15399 Init_Esize (T, 16);
15401 elsif Bits <= 32 then
15402 Init_Esize (T, 32);
15404 else
15405 Init_Esize (T, System_Max_Binary_Modulus_Power);
15406 end if;
15408 if not Non_Binary_Modulus (T)
15409 and then Esize (T) = RM_Size (T)
15410 then
15411 Set_Is_Known_Valid (T);
15412 end if;
15413 end Set_Modular_Size;
15415 -- Start of processing for Modular_Type_Declaration
15417 begin
15418 Analyze_And_Resolve (Mod_Expr, Any_Integer);
15419 Set_Etype (T, T);
15420 Set_Ekind (T, E_Modular_Integer_Type);
15421 Init_Alignment (T);
15422 Set_Is_Constrained (T);
15424 if not Is_OK_Static_Expression (Mod_Expr) then
15425 Flag_Non_Static_Expr
15426 ("non-static expression used for modular type bound!", Mod_Expr);
15427 M_Val := 2 ** System_Max_Binary_Modulus_Power;
15428 else
15429 M_Val := Expr_Value (Mod_Expr);
15430 end if;
15432 if M_Val < 1 then
15433 Error_Msg_N ("modulus value must be positive", Mod_Expr);
15434 M_Val := 2 ** System_Max_Binary_Modulus_Power;
15435 end if;
15437 Set_Modulus (T, M_Val);
15439 -- Create bounds for the modular type based on the modulus given in
15440 -- the type declaration and then analyze and resolve those bounds.
15442 Set_Scalar_Range (T,
15443 Make_Range (Sloc (Mod_Expr),
15444 Low_Bound =>
15445 Make_Integer_Literal (Sloc (Mod_Expr), 0),
15446 High_Bound =>
15447 Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
15449 -- Properly analyze the literals for the range. We do this manually
15450 -- because we can't go calling Resolve, since we are resolving these
15451 -- bounds with the type, and this type is certainly not complete yet!
15453 Set_Etype (Low_Bound (Scalar_Range (T)), T);
15454 Set_Etype (High_Bound (Scalar_Range (T)), T);
15455 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
15456 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
15458 -- Loop through powers of two to find number of bits required
15460 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
15462 -- Binary case
15464 if M_Val = 2 ** Bits then
15465 Set_Modular_Size (Bits);
15466 return;
15468 -- Non-binary case
15470 elsif M_Val < 2 ** Bits then
15471 Set_Non_Binary_Modulus (T);
15473 if Bits > System_Max_Nonbinary_Modulus_Power then
15474 Error_Msg_Uint_1 :=
15475 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
15476 Error_Msg_F
15477 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
15478 Set_Modular_Size (System_Max_Binary_Modulus_Power);
15479 return;
15481 else
15482 -- In the non-binary case, set size as per RM 13.3(55)
15484 Set_Modular_Size (Bits);
15485 return;
15486 end if;
15487 end if;
15489 end loop;
15491 -- If we fall through, then the size exceed System.Max_Binary_Modulus
15492 -- so we just signal an error and set the maximum size.
15494 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
15495 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
15497 Set_Modular_Size (System_Max_Binary_Modulus_Power);
15498 Init_Alignment (T);
15500 end Modular_Type_Declaration;
15502 --------------------------
15503 -- New_Concatenation_Op --
15504 --------------------------
15506 procedure New_Concatenation_Op (Typ : Entity_Id) is
15507 Loc : constant Source_Ptr := Sloc (Typ);
15508 Op : Entity_Id;
15510 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
15511 -- Create abbreviated declaration for the formal of a predefined
15512 -- Operator 'Op' of type 'Typ'
15514 --------------------
15515 -- Make_Op_Formal --
15516 --------------------
15518 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
15519 Formal : Entity_Id;
15520 begin
15521 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
15522 Set_Etype (Formal, Typ);
15523 Set_Mechanism (Formal, Default_Mechanism);
15524 return Formal;
15525 end Make_Op_Formal;
15527 -- Start of processing for New_Concatenation_Op
15529 begin
15530 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
15532 Set_Ekind (Op, E_Operator);
15533 Set_Scope (Op, Current_Scope);
15534 Set_Etype (Op, Typ);
15535 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
15536 Set_Is_Immediately_Visible (Op);
15537 Set_Is_Intrinsic_Subprogram (Op);
15538 Set_Has_Completion (Op);
15539 Append_Entity (Op, Current_Scope);
15541 Set_Name_Entity_Id (Name_Op_Concat, Op);
15543 Append_Entity (Make_Op_Formal (Typ, Op), Op);
15544 Append_Entity (Make_Op_Formal (Typ, Op), Op);
15545 end New_Concatenation_Op;
15547 -------------------------
15548 -- OK_For_Limited_Init --
15549 -------------------------
15551 -- ???Check all calls of this, and compare the conditions under which it's
15552 -- called.
15554 function OK_For_Limited_Init
15555 (Typ : Entity_Id;
15556 Exp : Node_Id) return Boolean
15558 begin
15559 return Is_CPP_Constructor_Call (Exp)
15560 or else (Ada_Version >= Ada_05
15561 and then not Debug_Flag_Dot_L
15562 and then OK_For_Limited_Init_In_05 (Typ, Exp));
15563 end OK_For_Limited_Init;
15565 -------------------------------
15566 -- OK_For_Limited_Init_In_05 --
15567 -------------------------------
15569 function OK_For_Limited_Init_In_05
15570 (Typ : Entity_Id;
15571 Exp : Node_Id) return Boolean
15573 begin
15574 -- An object of a limited interface type can be initialized with any
15575 -- expression of a nonlimited descendant type.
15577 if Is_Class_Wide_Type (Typ)
15578 and then Is_Limited_Interface (Typ)
15579 and then not Is_Limited_Type (Etype (Exp))
15580 then
15581 return True;
15582 end if;
15584 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
15585 -- case of limited aggregates (including extension aggregates), and
15586 -- function calls. The function call may have been give in prefixed
15587 -- notation, in which case the original node is an indexed component.
15589 case Nkind (Original_Node (Exp)) is
15590 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
15591 return True;
15593 when N_Qualified_Expression =>
15594 return
15595 OK_For_Limited_Init_In_05
15596 (Typ, Expression (Original_Node (Exp)));
15598 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
15599 -- with a function call, the expander has rewritten the call into an
15600 -- N_Type_Conversion node to force displacement of the pointer to
15601 -- reference the component containing the secondary dispatch table.
15602 -- Otherwise a type conversion is not a legal context.
15603 -- A return statement for a build-in-place function returning a
15604 -- synchronized type also introduces an unchecked conversion.
15606 when N_Type_Conversion | N_Unchecked_Type_Conversion =>
15607 return not Comes_From_Source (Exp)
15608 and then
15609 OK_For_Limited_Init_In_05
15610 (Typ, Expression (Original_Node (Exp)));
15612 when N_Indexed_Component | N_Selected_Component =>
15613 return Nkind (Exp) = N_Function_Call;
15615 -- A use of 'Input is a function call, hence allowed. Normally the
15616 -- attribute will be changed to a call, but the attribute by itself
15617 -- can occur with -gnatc.
15619 when N_Attribute_Reference =>
15620 return Attribute_Name (Original_Node (Exp)) = Name_Input;
15622 when others =>
15623 return False;
15624 end case;
15625 end OK_For_Limited_Init_In_05;
15627 -------------------------------------------
15628 -- Ordinary_Fixed_Point_Type_Declaration --
15629 -------------------------------------------
15631 procedure Ordinary_Fixed_Point_Type_Declaration
15632 (T : Entity_Id;
15633 Def : Node_Id)
15635 Loc : constant Source_Ptr := Sloc (Def);
15636 Delta_Expr : constant Node_Id := Delta_Expression (Def);
15637 RRS : constant Node_Id := Real_Range_Specification (Def);
15638 Implicit_Base : Entity_Id;
15639 Delta_Val : Ureal;
15640 Small_Val : Ureal;
15641 Low_Val : Ureal;
15642 High_Val : Ureal;
15644 begin
15645 Check_Restriction (No_Fixed_Point, Def);
15647 -- Create implicit base type
15649 Implicit_Base :=
15650 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
15651 Set_Etype (Implicit_Base, Implicit_Base);
15653 -- Analyze and process delta expression
15655 Analyze_And_Resolve (Delta_Expr, Any_Real);
15657 Check_Delta_Expression (Delta_Expr);
15658 Delta_Val := Expr_Value_R (Delta_Expr);
15660 Set_Delta_Value (Implicit_Base, Delta_Val);
15662 -- Compute default small from given delta, which is the largest power
15663 -- of two that does not exceed the given delta value.
15665 declare
15666 Tmp : Ureal;
15667 Scale : Int;
15669 begin
15670 Tmp := Ureal_1;
15671 Scale := 0;
15673 if Delta_Val < Ureal_1 then
15674 while Delta_Val < Tmp loop
15675 Tmp := Tmp / Ureal_2;
15676 Scale := Scale + 1;
15677 end loop;
15679 else
15680 loop
15681 Tmp := Tmp * Ureal_2;
15682 exit when Tmp > Delta_Val;
15683 Scale := Scale - 1;
15684 end loop;
15685 end if;
15687 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
15688 end;
15690 Set_Small_Value (Implicit_Base, Small_Val);
15692 -- If no range was given, set a dummy range
15694 if RRS <= Empty_Or_Error then
15695 Low_Val := -Small_Val;
15696 High_Val := Small_Val;
15698 -- Otherwise analyze and process given range
15700 else
15701 declare
15702 Low : constant Node_Id := Low_Bound (RRS);
15703 High : constant Node_Id := High_Bound (RRS);
15705 begin
15706 Analyze_And_Resolve (Low, Any_Real);
15707 Analyze_And_Resolve (High, Any_Real);
15708 Check_Real_Bound (Low);
15709 Check_Real_Bound (High);
15711 -- Obtain and set the range
15713 Low_Val := Expr_Value_R (Low);
15714 High_Val := Expr_Value_R (High);
15716 if Low_Val > High_Val then
15717 Error_Msg_NE ("?fixed point type& has null range", Def, T);
15718 end if;
15719 end;
15720 end if;
15722 -- The range for both the implicit base and the declared first subtype
15723 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
15724 -- set a temporary range in place. Note that the bounds of the base
15725 -- type will be widened to be symmetrical and to fill the available
15726 -- bits when the type is frozen.
15728 -- We could do this with all discrete types, and probably should, but
15729 -- we absolutely have to do it for fixed-point, since the end-points
15730 -- of the range and the size are determined by the small value, which
15731 -- could be reset before the freeze point.
15733 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
15734 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
15736 -- Complete definition of first subtype
15738 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
15739 Set_Etype (T, Implicit_Base);
15740 Init_Size_Align (T);
15741 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
15742 Set_Small_Value (T, Small_Val);
15743 Set_Delta_Value (T, Delta_Val);
15744 Set_Is_Constrained (T);
15746 end Ordinary_Fixed_Point_Type_Declaration;
15748 ----------------------------------------
15749 -- Prepare_Private_Subtype_Completion --
15750 ----------------------------------------
15752 procedure Prepare_Private_Subtype_Completion
15753 (Id : Entity_Id;
15754 Related_Nod : Node_Id)
15756 Id_B : constant Entity_Id := Base_Type (Id);
15757 Full_B : constant Entity_Id := Full_View (Id_B);
15758 Full : Entity_Id;
15760 begin
15761 if Present (Full_B) then
15763 -- The Base_Type is already completed, we can complete the subtype
15764 -- now. We have to create a new entity with the same name, Thus we
15765 -- can't use Create_Itype.
15767 -- This is messy, should be fixed ???
15769 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
15770 Set_Is_Itype (Full);
15771 Set_Associated_Node_For_Itype (Full, Related_Nod);
15772 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
15773 end if;
15775 -- The parent subtype may be private, but the base might not, in some
15776 -- nested instances. In that case, the subtype does not need to be
15777 -- exchanged. It would still be nice to make private subtypes and their
15778 -- bases consistent at all times ???
15780 if Is_Private_Type (Id_B) then
15781 Append_Elmt (Id, Private_Dependents (Id_B));
15782 end if;
15784 end Prepare_Private_Subtype_Completion;
15786 ---------------------------
15787 -- Process_Discriminants --
15788 ---------------------------
15790 procedure Process_Discriminants
15791 (N : Node_Id;
15792 Prev : Entity_Id := Empty)
15794 Elist : constant Elist_Id := New_Elmt_List;
15795 Id : Node_Id;
15796 Discr : Node_Id;
15797 Discr_Number : Uint;
15798 Discr_Type : Entity_Id;
15799 Default_Present : Boolean := False;
15800 Default_Not_Present : Boolean := False;
15802 begin
15803 -- A composite type other than an array type can have discriminants.
15804 -- On entry, the current scope is the composite type.
15806 -- The discriminants are initially entered into the scope of the type
15807 -- via Enter_Name with the default Ekind of E_Void to prevent premature
15808 -- use, as explained at the end of this procedure.
15810 Discr := First (Discriminant_Specifications (N));
15811 while Present (Discr) loop
15812 Enter_Name (Defining_Identifier (Discr));
15814 -- For navigation purposes we add a reference to the discriminant
15815 -- in the entity for the type. If the current declaration is a
15816 -- completion, place references on the partial view. Otherwise the
15817 -- type is the current scope.
15819 if Present (Prev) then
15821 -- The references go on the partial view, if present. If the
15822 -- partial view has discriminants, the references have been
15823 -- generated already.
15825 if not Has_Discriminants (Prev) then
15826 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
15827 end if;
15828 else
15829 Generate_Reference
15830 (Current_Scope, Defining_Identifier (Discr), 'd');
15831 end if;
15833 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
15834 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
15836 -- Ada 2005 (AI-254)
15838 if Present (Access_To_Subprogram_Definition
15839 (Discriminant_Type (Discr)))
15840 and then Protected_Present (Access_To_Subprogram_Definition
15841 (Discriminant_Type (Discr)))
15842 then
15843 Discr_Type :=
15844 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
15845 end if;
15847 else
15848 Find_Type (Discriminant_Type (Discr));
15849 Discr_Type := Etype (Discriminant_Type (Discr));
15851 if Error_Posted (Discriminant_Type (Discr)) then
15852 Discr_Type := Any_Type;
15853 end if;
15854 end if;
15856 if Is_Access_Type (Discr_Type) then
15858 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
15859 -- record types
15861 if Ada_Version < Ada_05 then
15862 Check_Access_Discriminant_Requires_Limited
15863 (Discr, Discriminant_Type (Discr));
15864 end if;
15866 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
15867 Error_Msg_N
15868 ("(Ada 83) access discriminant not allowed", Discr);
15869 end if;
15871 elsif not Is_Discrete_Type (Discr_Type) then
15872 Error_Msg_N ("discriminants must have a discrete or access type",
15873 Discriminant_Type (Discr));
15874 end if;
15876 Set_Etype (Defining_Identifier (Discr), Discr_Type);
15878 -- If a discriminant specification includes the assignment compound
15879 -- delimiter followed by an expression, the expression is the default
15880 -- expression of the discriminant; the default expression must be of
15881 -- the type of the discriminant. (RM 3.7.1) Since this expression is
15882 -- a default expression, we do the special preanalysis, since this
15883 -- expression does not freeze (see "Handling of Default and Per-
15884 -- Object Expressions" in spec of package Sem).
15886 if Present (Expression (Discr)) then
15887 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
15889 if Nkind (N) = N_Formal_Type_Declaration then
15890 Error_Msg_N
15891 ("discriminant defaults not allowed for formal type",
15892 Expression (Discr));
15894 -- Tagged types cannot have defaulted discriminants, but a
15895 -- non-tagged private type with defaulted discriminants
15896 -- can have a tagged completion.
15898 elsif Is_Tagged_Type (Current_Scope)
15899 and then Comes_From_Source (N)
15900 then
15901 Error_Msg_N
15902 ("discriminants of tagged type cannot have defaults",
15903 Expression (Discr));
15905 else
15906 Default_Present := True;
15907 Append_Elmt (Expression (Discr), Elist);
15909 -- Tag the defining identifiers for the discriminants with
15910 -- their corresponding default expressions from the tree.
15912 Set_Discriminant_Default_Value
15913 (Defining_Identifier (Discr), Expression (Discr));
15914 end if;
15916 else
15917 Default_Not_Present := True;
15918 end if;
15920 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
15921 -- Discr_Type but with the null-exclusion attribute
15923 if Ada_Version >= Ada_05 then
15925 -- Ada 2005 (AI-231): Static checks
15927 if Can_Never_Be_Null (Discr_Type) then
15928 Null_Exclusion_Static_Checks (Discr);
15930 elsif Is_Access_Type (Discr_Type)
15931 and then Null_Exclusion_Present (Discr)
15933 -- No need to check itypes because in their case this check
15934 -- was done at their point of creation
15936 and then not Is_Itype (Discr_Type)
15937 then
15938 if Can_Never_Be_Null (Discr_Type) then
15939 Error_Msg_NE
15940 ("`NOT NULL` not allowed (& already excludes null)",
15941 Discr,
15942 Discr_Type);
15943 end if;
15945 Set_Etype (Defining_Identifier (Discr),
15946 Create_Null_Excluding_Itype
15947 (T => Discr_Type,
15948 Related_Nod => Discr));
15950 -- Check for improper null exclusion if the type is otherwise
15951 -- legal for a discriminant.
15953 elsif Null_Exclusion_Present (Discr)
15954 and then Is_Discrete_Type (Discr_Type)
15955 then
15956 Error_Msg_N
15957 ("null exclusion can only apply to an access type", Discr);
15958 end if;
15960 -- Ada 2005 (AI-402): access discriminants of nonlimited types
15961 -- can't have defaults. Synchronized types, or types that are
15962 -- explicitly limited are fine, but special tests apply to derived
15963 -- types in generics: in a generic body we have to assume the
15964 -- worst, and therefore defaults are not allowed if the parent is
15965 -- a generic formal private type (see ACATS B370001).
15967 if Is_Access_Type (Discr_Type) then
15968 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
15969 or else not Default_Present
15970 or else Is_Limited_Record (Current_Scope)
15971 or else Is_Concurrent_Type (Current_Scope)
15972 or else Is_Concurrent_Record_Type (Current_Scope)
15973 or else Ekind (Current_Scope) = E_Limited_Private_Type
15974 then
15975 if not Is_Derived_Type (Current_Scope)
15976 or else not Is_Generic_Type (Etype (Current_Scope))
15977 or else not In_Package_Body (Scope (Etype (Current_Scope)))
15978 or else Limited_Present
15979 (Type_Definition (Parent (Current_Scope)))
15980 then
15981 null;
15983 else
15984 Error_Msg_N ("access discriminants of nonlimited types",
15985 Expression (Discr));
15986 Error_Msg_N ("\cannot have defaults", Expression (Discr));
15987 end if;
15989 elsif Present (Expression (Discr)) then
15990 Error_Msg_N
15991 ("(Ada 2005) access discriminants of nonlimited types",
15992 Expression (Discr));
15993 Error_Msg_N ("\cannot have defaults", Expression (Discr));
15994 end if;
15995 end if;
15996 end if;
15998 Next (Discr);
15999 end loop;
16001 -- An element list consisting of the default expressions of the
16002 -- discriminants is constructed in the above loop and used to set
16003 -- the Discriminant_Constraint attribute for the type. If an object
16004 -- is declared of this (record or task) type without any explicit
16005 -- discriminant constraint given, this element list will form the
16006 -- actual parameters for the corresponding initialization procedure
16007 -- for the type.
16009 Set_Discriminant_Constraint (Current_Scope, Elist);
16010 Set_Stored_Constraint (Current_Scope, No_Elist);
16012 -- Default expressions must be provided either for all or for none
16013 -- of the discriminants of a discriminant part. (RM 3.7.1)
16015 if Default_Present and then Default_Not_Present then
16016 Error_Msg_N
16017 ("incomplete specification of defaults for discriminants", N);
16018 end if;
16020 -- The use of the name of a discriminant is not allowed in default
16021 -- expressions of a discriminant part if the specification of the
16022 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
16024 -- To detect this, the discriminant names are entered initially with an
16025 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
16026 -- attempt to use a void entity (for example in an expression that is
16027 -- type-checked) produces the error message: premature usage. Now after
16028 -- completing the semantic analysis of the discriminant part, we can set
16029 -- the Ekind of all the discriminants appropriately.
16031 Discr := First (Discriminant_Specifications (N));
16032 Discr_Number := Uint_1;
16033 while Present (Discr) loop
16034 Id := Defining_Identifier (Discr);
16035 Set_Ekind (Id, E_Discriminant);
16036 Init_Component_Location (Id);
16037 Init_Esize (Id);
16038 Set_Discriminant_Number (Id, Discr_Number);
16040 -- Make sure this is always set, even in illegal programs
16042 Set_Corresponding_Discriminant (Id, Empty);
16044 -- Initialize the Original_Record_Component to the entity itself.
16045 -- Inherit_Components will propagate the right value to
16046 -- discriminants in derived record types.
16048 Set_Original_Record_Component (Id, Id);
16050 -- Create the discriminal for the discriminant
16052 Build_Discriminal (Id);
16054 Next (Discr);
16055 Discr_Number := Discr_Number + 1;
16056 end loop;
16058 Set_Has_Discriminants (Current_Scope);
16059 end Process_Discriminants;
16061 -----------------------
16062 -- Process_Full_View --
16063 -----------------------
16065 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
16066 Priv_Parent : Entity_Id;
16067 Full_Parent : Entity_Id;
16068 Full_Indic : Node_Id;
16070 procedure Collect_Implemented_Interfaces
16071 (Typ : Entity_Id;
16072 Ifaces : Elist_Id);
16073 -- Ada 2005: Gather all the interfaces that Typ directly or
16074 -- inherently implements. Duplicate entries are not added to
16075 -- the list Ifaces.
16077 ------------------------------------
16078 -- Collect_Implemented_Interfaces --
16079 ------------------------------------
16081 procedure Collect_Implemented_Interfaces
16082 (Typ : Entity_Id;
16083 Ifaces : Elist_Id)
16085 Iface : Entity_Id;
16086 Iface_Elmt : Elmt_Id;
16088 begin
16089 -- Abstract interfaces are only associated with tagged record types
16091 if not Is_Tagged_Type (Typ)
16092 or else not Is_Record_Type (Typ)
16093 then
16094 return;
16095 end if;
16097 -- Recursively climb to the ancestors
16099 if Etype (Typ) /= Typ
16101 -- Protect the frontend against wrong cyclic declarations like:
16103 -- type B is new A with private;
16104 -- type C is new A with private;
16105 -- private
16106 -- type B is new C with null record;
16107 -- type C is new B with null record;
16109 and then Etype (Typ) /= Priv_T
16110 and then Etype (Typ) /= Full_T
16111 then
16112 -- Keep separate the management of private type declarations
16114 if Ekind (Typ) = E_Record_Type_With_Private then
16116 -- Handle the following erronous case:
16117 -- type Private_Type is tagged private;
16118 -- private
16119 -- type Private_Type is new Type_Implementing_Iface;
16121 if Present (Full_View (Typ))
16122 and then Etype (Typ) /= Full_View (Typ)
16123 then
16124 if Is_Interface (Etype (Typ)) then
16125 Append_Unique_Elmt (Etype (Typ), Ifaces);
16126 end if;
16128 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
16129 end if;
16131 -- Non-private types
16133 else
16134 if Is_Interface (Etype (Typ)) then
16135 Append_Unique_Elmt (Etype (Typ), Ifaces);
16136 end if;
16138 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
16139 end if;
16140 end if;
16142 -- Handle entities in the list of abstract interfaces
16144 if Present (Interfaces (Typ)) then
16145 Iface_Elmt := First_Elmt (Interfaces (Typ));
16146 while Present (Iface_Elmt) loop
16147 Iface := Node (Iface_Elmt);
16149 pragma Assert (Is_Interface (Iface));
16151 if not Contain_Interface (Iface, Ifaces) then
16152 Append_Elmt (Iface, Ifaces);
16153 Collect_Implemented_Interfaces (Iface, Ifaces);
16154 end if;
16156 Next_Elmt (Iface_Elmt);
16157 end loop;
16158 end if;
16159 end Collect_Implemented_Interfaces;
16161 -- Start of processing for Process_Full_View
16163 begin
16164 -- First some sanity checks that must be done after semantic
16165 -- decoration of the full view and thus cannot be placed with other
16166 -- similar checks in Find_Type_Name
16168 if not Is_Limited_Type (Priv_T)
16169 and then (Is_Limited_Type (Full_T)
16170 or else Is_Limited_Composite (Full_T))
16171 then
16172 Error_Msg_N
16173 ("completion of nonlimited type cannot be limited", Full_T);
16174 Explain_Limited_Type (Full_T, Full_T);
16176 elsif Is_Abstract_Type (Full_T)
16177 and then not Is_Abstract_Type (Priv_T)
16178 then
16179 Error_Msg_N
16180 ("completion of nonabstract type cannot be abstract", Full_T);
16182 elsif Is_Tagged_Type (Priv_T)
16183 and then Is_Limited_Type (Priv_T)
16184 and then not Is_Limited_Type (Full_T)
16185 then
16186 -- If pragma CPP_Class was applied to the private declaration
16187 -- propagate the limitedness to the full-view
16189 if Is_CPP_Class (Priv_T) then
16190 Set_Is_Limited_Record (Full_T);
16192 -- GNAT allow its own definition of Limited_Controlled to disobey
16193 -- this rule in order in ease the implementation. The next test is
16194 -- safe because Root_Controlled is defined in a private system child
16196 elsif Etype (Full_T) = Full_View (RTE (RE_Root_Controlled)) then
16197 Set_Is_Limited_Composite (Full_T);
16198 else
16199 Error_Msg_N
16200 ("completion of limited tagged type must be limited", Full_T);
16201 end if;
16203 elsif Is_Generic_Type (Priv_T) then
16204 Error_Msg_N ("generic type cannot have a completion", Full_T);
16205 end if;
16207 -- Check that ancestor interfaces of private and full views are
16208 -- consistent. We omit this check for synchronized types because
16209 -- they are performed on the corresponding record type when frozen.
16211 if Ada_Version >= Ada_05
16212 and then Is_Tagged_Type (Priv_T)
16213 and then Is_Tagged_Type (Full_T)
16214 and then not Is_Concurrent_Type (Full_T)
16215 then
16216 declare
16217 Iface : Entity_Id;
16218 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
16219 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
16221 begin
16222 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
16223 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
16225 -- Ada 2005 (AI-251): The partial view shall be a descendant of
16226 -- an interface type if and only if the full type is descendant
16227 -- of the interface type (AARM 7.3 (7.3/2).
16229 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
16231 if Present (Iface) then
16232 Error_Msg_NE ("interface & not implemented by full type " &
16233 "(RM-2005 7.3 (7.3/2))", Priv_T, Iface);
16234 end if;
16236 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
16238 if Present (Iface) then
16239 Error_Msg_NE ("interface & not implemented by partial view " &
16240 "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
16241 end if;
16242 end;
16243 end if;
16245 if Is_Tagged_Type (Priv_T)
16246 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
16247 and then Is_Derived_Type (Full_T)
16248 then
16249 Priv_Parent := Etype (Priv_T);
16251 -- The full view of a private extension may have been transformed
16252 -- into an unconstrained derived type declaration and a subtype
16253 -- declaration (see build_derived_record_type for details).
16255 if Nkind (N) = N_Subtype_Declaration then
16256 Full_Indic := Subtype_Indication (N);
16257 Full_Parent := Etype (Base_Type (Full_T));
16258 else
16259 Full_Indic := Subtype_Indication (Type_Definition (N));
16260 Full_Parent := Etype (Full_T);
16261 end if;
16263 -- Check that the parent type of the full type is a descendant of
16264 -- the ancestor subtype given in the private extension. If either
16265 -- entity has an Etype equal to Any_Type then we had some previous
16266 -- error situation [7.3(8)].
16268 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
16269 return;
16271 -- Ada 2005 (AI-251): Interfaces in the full-typ can be given in
16272 -- any order. Therefore we don't have to check that its parent must
16273 -- be a descendant of the parent of the private type declaration.
16275 elsif Is_Interface (Priv_Parent)
16276 and then Is_Interface (Full_Parent)
16277 then
16278 null;
16280 -- Ada 2005 (AI-251): If the parent of the private type declaration
16281 -- is an interface there is no need to check that it is an ancestor
16282 -- of the associated full type declaration. The required tests for
16283 -- this case are performed by Build_Derived_Record_Type.
16285 elsif not Is_Interface (Base_Type (Priv_Parent))
16286 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
16287 then
16288 Error_Msg_N
16289 ("parent of full type must descend from parent"
16290 & " of private extension", Full_Indic);
16292 -- Check the rules of 7.3(10): if the private extension inherits
16293 -- known discriminants, then the full type must also inherit those
16294 -- discriminants from the same (ancestor) type, and the parent
16295 -- subtype of the full type must be constrained if and only if
16296 -- the ancestor subtype of the private extension is constrained.
16298 elsif No (Discriminant_Specifications (Parent (Priv_T)))
16299 and then not Has_Unknown_Discriminants (Priv_T)
16300 and then Has_Discriminants (Base_Type (Priv_Parent))
16301 then
16302 declare
16303 Priv_Indic : constant Node_Id :=
16304 Subtype_Indication (Parent (Priv_T));
16306 Priv_Constr : constant Boolean :=
16307 Is_Constrained (Priv_Parent)
16308 or else
16309 Nkind (Priv_Indic) = N_Subtype_Indication
16310 or else Is_Constrained (Entity (Priv_Indic));
16312 Full_Constr : constant Boolean :=
16313 Is_Constrained (Full_Parent)
16314 or else
16315 Nkind (Full_Indic) = N_Subtype_Indication
16316 or else Is_Constrained (Entity (Full_Indic));
16318 Priv_Discr : Entity_Id;
16319 Full_Discr : Entity_Id;
16321 begin
16322 Priv_Discr := First_Discriminant (Priv_Parent);
16323 Full_Discr := First_Discriminant (Full_Parent);
16324 while Present (Priv_Discr) and then Present (Full_Discr) loop
16325 if Original_Record_Component (Priv_Discr) =
16326 Original_Record_Component (Full_Discr)
16327 or else
16328 Corresponding_Discriminant (Priv_Discr) =
16329 Corresponding_Discriminant (Full_Discr)
16330 then
16331 null;
16332 else
16333 exit;
16334 end if;
16336 Next_Discriminant (Priv_Discr);
16337 Next_Discriminant (Full_Discr);
16338 end loop;
16340 if Present (Priv_Discr) or else Present (Full_Discr) then
16341 Error_Msg_N
16342 ("full view must inherit discriminants of the parent type"
16343 & " used in the private extension", Full_Indic);
16345 elsif Priv_Constr and then not Full_Constr then
16346 Error_Msg_N
16347 ("parent subtype of full type must be constrained",
16348 Full_Indic);
16350 elsif Full_Constr and then not Priv_Constr then
16351 Error_Msg_N
16352 ("parent subtype of full type must be unconstrained",
16353 Full_Indic);
16354 end if;
16355 end;
16357 -- Check the rules of 7.3(12): if a partial view has neither known
16358 -- or unknown discriminants, then the full type declaration shall
16359 -- define a definite subtype.
16361 elsif not Has_Unknown_Discriminants (Priv_T)
16362 and then not Has_Discriminants (Priv_T)
16363 and then not Is_Constrained (Full_T)
16364 then
16365 Error_Msg_N
16366 ("full view must define a constrained type if partial view"
16367 & " has no discriminants", Full_T);
16368 end if;
16370 -- ??????? Do we implement the following properly ?????
16371 -- If the ancestor subtype of a private extension has constrained
16372 -- discriminants, then the parent subtype of the full view shall
16373 -- impose a statically matching constraint on those discriminants
16374 -- [7.3(13)].
16376 else
16377 -- For untagged types, verify that a type without discriminants
16378 -- is not completed with an unconstrained type.
16380 if not Is_Indefinite_Subtype (Priv_T)
16381 and then Is_Indefinite_Subtype (Full_T)
16382 then
16383 Error_Msg_N ("full view of type must be definite subtype", Full_T);
16384 end if;
16385 end if;
16387 -- AI-419: verify that the use of "limited" is consistent
16389 declare
16390 Orig_Decl : constant Node_Id := Original_Node (N);
16392 begin
16393 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
16394 and then not Limited_Present (Parent (Priv_T))
16395 and then not Synchronized_Present (Parent (Priv_T))
16396 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
16397 and then Nkind
16398 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
16399 and then Limited_Present (Type_Definition (Orig_Decl))
16400 then
16401 Error_Msg_N
16402 ("full view of non-limited extension cannot be limited", N);
16403 end if;
16404 end;
16406 -- Ada 2005 (AI-443): A synchronized private extension must be
16407 -- completed by a task or protected type.
16409 if Ada_Version >= Ada_05
16410 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
16411 and then Synchronized_Present (Parent (Priv_T))
16412 and then not Is_Concurrent_Type (Full_T)
16413 then
16414 Error_Msg_N ("full view of synchronized extension must " &
16415 "be synchronized type", N);
16416 end if;
16418 -- Ada 2005 AI-363: if the full view has discriminants with
16419 -- defaults, it is illegal to declare constrained access subtypes
16420 -- whose designated type is the current type. This allows objects
16421 -- of the type that are declared in the heap to be unconstrained.
16423 if not Has_Unknown_Discriminants (Priv_T)
16424 and then not Has_Discriminants (Priv_T)
16425 and then Has_Discriminants (Full_T)
16426 and then
16427 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
16428 then
16429 Set_Has_Constrained_Partial_View (Full_T);
16430 Set_Has_Constrained_Partial_View (Priv_T);
16431 end if;
16433 -- Create a full declaration for all its subtypes recorded in
16434 -- Private_Dependents and swap them similarly to the base type. These
16435 -- are subtypes that have been define before the full declaration of
16436 -- the private type. We also swap the entry in Private_Dependents list
16437 -- so we can properly restore the private view on exit from the scope.
16439 declare
16440 Priv_Elmt : Elmt_Id;
16441 Priv : Entity_Id;
16442 Full : Entity_Id;
16444 begin
16445 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
16446 while Present (Priv_Elmt) loop
16447 Priv := Node (Priv_Elmt);
16449 if Ekind (Priv) = E_Private_Subtype
16450 or else Ekind (Priv) = E_Limited_Private_Subtype
16451 or else Ekind (Priv) = E_Record_Subtype_With_Private
16452 then
16453 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
16454 Set_Is_Itype (Full);
16455 Set_Parent (Full, Parent (Priv));
16456 Set_Associated_Node_For_Itype (Full, N);
16458 -- Now we need to complete the private subtype, but since the
16459 -- base type has already been swapped, we must also swap the
16460 -- subtypes (and thus, reverse the arguments in the call to
16461 -- Complete_Private_Subtype).
16463 Copy_And_Swap (Priv, Full);
16464 Complete_Private_Subtype (Full, Priv, Full_T, N);
16465 Replace_Elmt (Priv_Elmt, Full);
16466 end if;
16468 Next_Elmt (Priv_Elmt);
16469 end loop;
16470 end;
16472 -- If the private view was tagged, copy the new primitive operations
16473 -- from the private view to the full view.
16475 if Is_Tagged_Type (Full_T) then
16476 declare
16477 Disp_Typ : Entity_Id;
16478 Full_List : Elist_Id;
16479 Prim : Entity_Id;
16480 Prim_Elmt : Elmt_Id;
16481 Priv_List : Elist_Id;
16483 function Contains
16484 (E : Entity_Id;
16485 L : Elist_Id) return Boolean;
16486 -- Determine whether list L contains element E
16488 --------------
16489 -- Contains --
16490 --------------
16492 function Contains
16493 (E : Entity_Id;
16494 L : Elist_Id) return Boolean
16496 List_Elmt : Elmt_Id;
16498 begin
16499 List_Elmt := First_Elmt (L);
16500 while Present (List_Elmt) loop
16501 if Node (List_Elmt) = E then
16502 return True;
16503 end if;
16505 Next_Elmt (List_Elmt);
16506 end loop;
16508 return False;
16509 end Contains;
16511 -- Start of processing
16513 begin
16514 if Is_Tagged_Type (Priv_T) then
16515 Priv_List := Primitive_Operations (Priv_T);
16516 Prim_Elmt := First_Elmt (Priv_List);
16518 -- In the case of a concurrent type completing a private tagged
16519 -- type, primitives may have been declared in between the two
16520 -- views. These subprograms need to be wrapped the same way
16521 -- entries and protected procedures are handled because they
16522 -- cannot be directly shared by the two views.
16524 if Is_Concurrent_Type (Full_T) then
16525 declare
16526 Conc_Typ : constant Entity_Id :=
16527 Corresponding_Record_Type (Full_T);
16528 Curr_Nod : Node_Id := Parent (Conc_Typ);
16529 Wrap_Spec : Node_Id;
16531 begin
16532 while Present (Prim_Elmt) loop
16533 Prim := Node (Prim_Elmt);
16535 if Comes_From_Source (Prim)
16536 and then not Is_Abstract_Subprogram (Prim)
16537 then
16538 Wrap_Spec :=
16539 Make_Subprogram_Declaration (Sloc (Prim),
16540 Specification =>
16541 Build_Wrapper_Spec
16542 (Subp_Id => Prim,
16543 Obj_Typ => Conc_Typ,
16544 Formals =>
16545 Parameter_Specifications (
16546 Parent (Prim))));
16548 Insert_After (Curr_Nod, Wrap_Spec);
16549 Curr_Nod := Wrap_Spec;
16551 Analyze (Wrap_Spec);
16552 end if;
16554 Next_Elmt (Prim_Elmt);
16555 end loop;
16557 return;
16558 end;
16560 -- For non-concurrent types, transfer explicit primitives, but
16561 -- omit those inherited from the parent of the private view
16562 -- since they will be re-inherited later on.
16564 else
16565 Full_List := Primitive_Operations (Full_T);
16567 while Present (Prim_Elmt) loop
16568 Prim := Node (Prim_Elmt);
16570 if Comes_From_Source (Prim)
16571 and then not Contains (Prim, Full_List)
16572 then
16573 Append_Elmt (Prim, Full_List);
16574 end if;
16576 Next_Elmt (Prim_Elmt);
16577 end loop;
16578 end if;
16580 -- Untagged private view
16582 else
16583 Full_List := Primitive_Operations (Full_T);
16585 -- In this case the partial view is untagged, so here we locate
16586 -- all of the earlier primitives that need to be treated as
16587 -- dispatching (those that appear between the two views). Note
16588 -- that these additional operations must all be new operations
16589 -- (any earlier operations that override inherited operations
16590 -- of the full view will already have been inserted in the
16591 -- primitives list, marked by Check_Operation_From_Private_View
16592 -- as dispatching. Note that implicit "/=" operators are
16593 -- excluded from being added to the primitives list since they
16594 -- shouldn't be treated as dispatching (tagged "/=" is handled
16595 -- specially).
16597 Prim := Next_Entity (Full_T);
16598 while Present (Prim) and then Prim /= Priv_T loop
16599 if Ekind (Prim) = E_Procedure
16600 or else
16601 Ekind (Prim) = E_Function
16602 then
16603 Disp_Typ := Find_Dispatching_Type (Prim);
16605 if Disp_Typ = Full_T
16606 and then (Chars (Prim) /= Name_Op_Ne
16607 or else Comes_From_Source (Prim))
16608 then
16609 Check_Controlling_Formals (Full_T, Prim);
16611 if not Is_Dispatching_Operation (Prim) then
16612 Append_Elmt (Prim, Full_List);
16613 Set_Is_Dispatching_Operation (Prim, True);
16614 Set_DT_Position (Prim, No_Uint);
16615 end if;
16617 elsif Is_Dispatching_Operation (Prim)
16618 and then Disp_Typ /= Full_T
16619 then
16621 -- Verify that it is not otherwise controlled by a
16622 -- formal or a return value of type T.
16624 Check_Controlling_Formals (Disp_Typ, Prim);
16625 end if;
16626 end if;
16628 Next_Entity (Prim);
16629 end loop;
16630 end if;
16632 -- For the tagged case, the two views can share the same
16633 -- Primitive Operation list and the same class wide type.
16634 -- Update attributes of the class-wide type which depend on
16635 -- the full declaration.
16637 if Is_Tagged_Type (Priv_T) then
16638 Set_Primitive_Operations (Priv_T, Full_List);
16639 Set_Class_Wide_Type
16640 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
16642 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
16643 end if;
16644 end;
16645 end if;
16647 -- Ada 2005 AI 161: Check preelaboratable initialization consistency
16649 if Known_To_Have_Preelab_Init (Priv_T) then
16651 -- Case where there is a pragma Preelaborable_Initialization. We
16652 -- always allow this in predefined units, which is a bit of a kludge,
16653 -- but it means we don't have to struggle to meet the requirements in
16654 -- the RM for having Preelaborable Initialization. Otherwise we
16655 -- require that the type meets the RM rules. But we can't check that
16656 -- yet, because of the rule about overriding Ininitialize, so we
16657 -- simply set a flag that will be checked at freeze time.
16659 if not In_Predefined_Unit (Full_T) then
16660 Set_Must_Have_Preelab_Init (Full_T);
16661 end if;
16662 end if;
16664 -- If pragma CPP_Class was applied to the private type declaration,
16665 -- propagate it now to the full type declaration.
16667 if Is_CPP_Class (Priv_T) then
16668 Set_Is_CPP_Class (Full_T);
16669 Set_Convention (Full_T, Convention_CPP);
16670 end if;
16672 -- If the private view has user specified stream attributes, then so has
16673 -- the full view.
16675 if Has_Specified_Stream_Read (Priv_T) then
16676 Set_Has_Specified_Stream_Read (Full_T);
16677 end if;
16678 if Has_Specified_Stream_Write (Priv_T) then
16679 Set_Has_Specified_Stream_Write (Full_T);
16680 end if;
16681 if Has_Specified_Stream_Input (Priv_T) then
16682 Set_Has_Specified_Stream_Input (Full_T);
16683 end if;
16684 if Has_Specified_Stream_Output (Priv_T) then
16685 Set_Has_Specified_Stream_Output (Full_T);
16686 end if;
16687 end Process_Full_View;
16689 -----------------------------------
16690 -- Process_Incomplete_Dependents --
16691 -----------------------------------
16693 procedure Process_Incomplete_Dependents
16694 (N : Node_Id;
16695 Full_T : Entity_Id;
16696 Inc_T : Entity_Id)
16698 Inc_Elmt : Elmt_Id;
16699 Priv_Dep : Entity_Id;
16700 New_Subt : Entity_Id;
16702 Disc_Constraint : Elist_Id;
16704 begin
16705 if No (Private_Dependents (Inc_T)) then
16706 return;
16707 end if;
16709 -- Itypes that may be generated by the completion of an incomplete
16710 -- subtype are not used by the back-end and not attached to the tree.
16711 -- They are created only for constraint-checking purposes.
16713 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
16714 while Present (Inc_Elmt) loop
16715 Priv_Dep := Node (Inc_Elmt);
16717 if Ekind (Priv_Dep) = E_Subprogram_Type then
16719 -- An Access_To_Subprogram type may have a return type or a
16720 -- parameter type that is incomplete. Replace with the full view.
16722 if Etype (Priv_Dep) = Inc_T then
16723 Set_Etype (Priv_Dep, Full_T);
16724 end if;
16726 declare
16727 Formal : Entity_Id;
16729 begin
16730 Formal := First_Formal (Priv_Dep);
16731 while Present (Formal) loop
16732 if Etype (Formal) = Inc_T then
16733 Set_Etype (Formal, Full_T);
16734 end if;
16736 Next_Formal (Formal);
16737 end loop;
16738 end;
16740 elsif Is_Overloadable (Priv_Dep) then
16742 -- A protected operation is never dispatching: only its
16743 -- wrapper operation (which has convention Ada) is.
16745 if Is_Tagged_Type (Full_T)
16746 and then Convention (Priv_Dep) /= Convention_Protected
16747 then
16749 -- Subprogram has an access parameter whose designated type
16750 -- was incomplete. Reexamine declaration now, because it may
16751 -- be a primitive operation of the full type.
16753 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
16754 Set_Is_Dispatching_Operation (Priv_Dep);
16755 Check_Controlling_Formals (Full_T, Priv_Dep);
16756 end if;
16758 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
16760 -- Can happen during processing of a body before the completion
16761 -- of a TA type. Ignore, because spec is also on dependent list.
16763 return;
16765 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
16766 -- corresponding subtype of the full view.
16768 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
16769 Set_Subtype_Indication
16770 (Parent (Priv_Dep), New_Reference_To (Full_T, Sloc (Priv_Dep)));
16771 Set_Etype (Priv_Dep, Full_T);
16772 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
16773 Set_Analyzed (Parent (Priv_Dep), False);
16775 -- Reanalyze the declaration, suppressing the call to
16776 -- Enter_Name to avoid duplicate names.
16778 Analyze_Subtype_Declaration
16779 (N => Parent (Priv_Dep),
16780 Skip => True);
16782 -- Dependent is a subtype
16784 else
16785 -- We build a new subtype indication using the full view of the
16786 -- incomplete parent. The discriminant constraints have been
16787 -- elaborated already at the point of the subtype declaration.
16789 New_Subt := Create_Itype (E_Void, N);
16791 if Has_Discriminants (Full_T) then
16792 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
16793 else
16794 Disc_Constraint := No_Elist;
16795 end if;
16797 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
16798 Set_Full_View (Priv_Dep, New_Subt);
16799 end if;
16801 Next_Elmt (Inc_Elmt);
16802 end loop;
16803 end Process_Incomplete_Dependents;
16805 --------------------------------
16806 -- Process_Range_Expr_In_Decl --
16807 --------------------------------
16809 procedure Process_Range_Expr_In_Decl
16810 (R : Node_Id;
16811 T : Entity_Id;
16812 Check_List : List_Id := Empty_List;
16813 R_Check_Off : Boolean := False)
16815 Lo, Hi : Node_Id;
16816 R_Checks : Check_Result;
16817 Type_Decl : Node_Id;
16818 Def_Id : Entity_Id;
16820 begin
16821 Analyze_And_Resolve (R, Base_Type (T));
16823 if Nkind (R) = N_Range then
16824 Lo := Low_Bound (R);
16825 Hi := High_Bound (R);
16827 -- We need to ensure validity of the bounds here, because if we
16828 -- go ahead and do the expansion, then the expanded code will get
16829 -- analyzed with range checks suppressed and we miss the check.
16831 Validity_Check_Range (R);
16833 -- If there were errors in the declaration, try and patch up some
16834 -- common mistakes in the bounds. The cases handled are literals
16835 -- which are Integer where the expected type is Real and vice versa.
16836 -- These corrections allow the compilation process to proceed further
16837 -- along since some basic assumptions of the format of the bounds
16838 -- are guaranteed.
16840 if Etype (R) = Any_Type then
16842 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
16843 Rewrite (Lo,
16844 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
16846 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
16847 Rewrite (Hi,
16848 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
16850 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
16851 Rewrite (Lo,
16852 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
16854 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
16855 Rewrite (Hi,
16856 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
16857 end if;
16859 Set_Etype (Lo, T);
16860 Set_Etype (Hi, T);
16861 end if;
16863 -- If the bounds of the range have been mistakenly given as string
16864 -- literals (perhaps in place of character literals), then an error
16865 -- has already been reported, but we rewrite the string literal as a
16866 -- bound of the range's type to avoid blowups in later processing
16867 -- that looks at static values.
16869 if Nkind (Lo) = N_String_Literal then
16870 Rewrite (Lo,
16871 Make_Attribute_Reference (Sloc (Lo),
16872 Attribute_Name => Name_First,
16873 Prefix => New_Reference_To (T, Sloc (Lo))));
16874 Analyze_And_Resolve (Lo);
16875 end if;
16877 if Nkind (Hi) = N_String_Literal then
16878 Rewrite (Hi,
16879 Make_Attribute_Reference (Sloc (Hi),
16880 Attribute_Name => Name_First,
16881 Prefix => New_Reference_To (T, Sloc (Hi))));
16882 Analyze_And_Resolve (Hi);
16883 end if;
16885 -- If bounds aren't scalar at this point then exit, avoiding
16886 -- problems with further processing of the range in this procedure.
16888 if not Is_Scalar_Type (Etype (Lo)) then
16889 return;
16890 end if;
16892 -- Resolve (actually Sem_Eval) has checked that the bounds are in
16893 -- then range of the base type. Here we check whether the bounds
16894 -- are in the range of the subtype itself. Note that if the bounds
16895 -- represent the null range the Constraint_Error exception should
16896 -- not be raised.
16898 -- ??? The following code should be cleaned up as follows
16900 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
16901 -- is done in the call to Range_Check (R, T); below
16903 -- 2. The use of R_Check_Off should be investigated and possibly
16904 -- removed, this would clean up things a bit.
16906 if Is_Null_Range (Lo, Hi) then
16907 null;
16909 else
16910 -- Capture values of bounds and generate temporaries for them
16911 -- if needed, before applying checks, since checks may cause
16912 -- duplication of the expression without forcing evaluation.
16914 if Expander_Active then
16915 Force_Evaluation (Lo);
16916 Force_Evaluation (Hi);
16917 end if;
16919 -- We use a flag here instead of suppressing checks on the
16920 -- type because the type we check against isn't necessarily
16921 -- the place where we put the check.
16923 if not R_Check_Off then
16924 R_Checks := Get_Range_Checks (R, T);
16926 -- Look up tree to find an appropriate insertion point.
16927 -- This seems really junk code, and very brittle, couldn't
16928 -- we just use an insert actions call of some kind ???
16930 Type_Decl := Parent (R);
16931 while Present (Type_Decl) and then not
16932 (Nkind_In (Type_Decl, N_Full_Type_Declaration,
16933 N_Subtype_Declaration,
16934 N_Loop_Statement,
16935 N_Task_Type_Declaration)
16936 or else
16937 Nkind_In (Type_Decl, N_Single_Task_Declaration,
16938 N_Protected_Type_Declaration,
16939 N_Single_Protected_Declaration))
16940 loop
16941 Type_Decl := Parent (Type_Decl);
16942 end loop;
16944 -- Why would Type_Decl not be present??? Without this test,
16945 -- short regression tests fail.
16947 if Present (Type_Decl) then
16949 -- Case of loop statement (more comments ???)
16951 if Nkind (Type_Decl) = N_Loop_Statement then
16952 declare
16953 Indic : Node_Id;
16955 begin
16956 Indic := Parent (R);
16957 while Present (Indic)
16958 and then Nkind (Indic) /= N_Subtype_Indication
16959 loop
16960 Indic := Parent (Indic);
16961 end loop;
16963 if Present (Indic) then
16964 Def_Id := Etype (Subtype_Mark (Indic));
16966 Insert_Range_Checks
16967 (R_Checks,
16968 Type_Decl,
16969 Def_Id,
16970 Sloc (Type_Decl),
16972 Do_Before => True);
16973 end if;
16974 end;
16976 -- All other cases (more comments ???)
16978 else
16979 Def_Id := Defining_Identifier (Type_Decl);
16981 if (Ekind (Def_Id) = E_Record_Type
16982 and then Depends_On_Discriminant (R))
16983 or else
16984 (Ekind (Def_Id) = E_Protected_Type
16985 and then Has_Discriminants (Def_Id))
16986 then
16987 Append_Range_Checks
16988 (R_Checks, Check_List, Def_Id, Sloc (Type_Decl), R);
16990 else
16991 Insert_Range_Checks
16992 (R_Checks, Type_Decl, Def_Id, Sloc (Type_Decl), R);
16994 end if;
16995 end if;
16996 end if;
16997 end if;
16998 end if;
17000 elsif Expander_Active then
17001 Get_Index_Bounds (R, Lo, Hi);
17002 Force_Evaluation (Lo);
17003 Force_Evaluation (Hi);
17004 end if;
17005 end Process_Range_Expr_In_Decl;
17007 --------------------------------------
17008 -- Process_Real_Range_Specification --
17009 --------------------------------------
17011 procedure Process_Real_Range_Specification (Def : Node_Id) is
17012 Spec : constant Node_Id := Real_Range_Specification (Def);
17013 Lo : Node_Id;
17014 Hi : Node_Id;
17015 Err : Boolean := False;
17017 procedure Analyze_Bound (N : Node_Id);
17018 -- Analyze and check one bound
17020 -------------------
17021 -- Analyze_Bound --
17022 -------------------
17024 procedure Analyze_Bound (N : Node_Id) is
17025 begin
17026 Analyze_And_Resolve (N, Any_Real);
17028 if not Is_OK_Static_Expression (N) then
17029 Flag_Non_Static_Expr
17030 ("bound in real type definition is not static!", N);
17031 Err := True;
17032 end if;
17033 end Analyze_Bound;
17035 -- Start of processing for Process_Real_Range_Specification
17037 begin
17038 if Present (Spec) then
17039 Lo := Low_Bound (Spec);
17040 Hi := High_Bound (Spec);
17041 Analyze_Bound (Lo);
17042 Analyze_Bound (Hi);
17044 -- If error, clear away junk range specification
17046 if Err then
17047 Set_Real_Range_Specification (Def, Empty);
17048 end if;
17049 end if;
17050 end Process_Real_Range_Specification;
17052 ---------------------
17053 -- Process_Subtype --
17054 ---------------------
17056 function Process_Subtype
17057 (S : Node_Id;
17058 Related_Nod : Node_Id;
17059 Related_Id : Entity_Id := Empty;
17060 Suffix : Character := ' ') return Entity_Id
17062 P : Node_Id;
17063 Def_Id : Entity_Id;
17064 Error_Node : Node_Id;
17065 Full_View_Id : Entity_Id;
17066 Subtype_Mark_Id : Entity_Id;
17068 May_Have_Null_Exclusion : Boolean;
17070 procedure Check_Incomplete (T : Entity_Id);
17071 -- Called to verify that an incomplete type is not used prematurely
17073 ----------------------
17074 -- Check_Incomplete --
17075 ----------------------
17077 procedure Check_Incomplete (T : Entity_Id) is
17078 begin
17079 -- Ada 2005 (AI-412): Incomplete subtypes are legal
17081 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
17082 and then
17083 not (Ada_Version >= Ada_05
17084 and then
17085 (Nkind (Parent (T)) = N_Subtype_Declaration
17086 or else
17087 (Nkind (Parent (T)) = N_Subtype_Indication
17088 and then Nkind (Parent (Parent (T))) =
17089 N_Subtype_Declaration)))
17090 then
17091 Error_Msg_N ("invalid use of type before its full declaration", T);
17092 end if;
17093 end Check_Incomplete;
17095 -- Start of processing for Process_Subtype
17097 begin
17098 -- Case of no constraints present
17100 if Nkind (S) /= N_Subtype_Indication then
17101 Find_Type (S);
17102 Check_Incomplete (S);
17103 P := Parent (S);
17105 -- Ada 2005 (AI-231): Static check
17107 if Ada_Version >= Ada_05
17108 and then Present (P)
17109 and then Null_Exclusion_Present (P)
17110 and then Nkind (P) /= N_Access_To_Object_Definition
17111 and then not Is_Access_Type (Entity (S))
17112 then
17113 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
17114 end if;
17116 -- The following is ugly, can't we have a range or even a flag???
17118 May_Have_Null_Exclusion :=
17119 Nkind_In (P, N_Access_Definition,
17120 N_Access_Function_Definition,
17121 N_Access_Procedure_Definition,
17122 N_Access_To_Object_Definition,
17123 N_Allocator,
17124 N_Component_Definition)
17125 or else
17126 Nkind_In (P, N_Derived_Type_Definition,
17127 N_Discriminant_Specification,
17128 N_Formal_Object_Declaration,
17129 N_Object_Declaration,
17130 N_Object_Renaming_Declaration,
17131 N_Parameter_Specification,
17132 N_Subtype_Declaration);
17134 -- Create an Itype that is a duplicate of Entity (S) but with the
17135 -- null-exclusion attribute
17137 if May_Have_Null_Exclusion
17138 and then Is_Access_Type (Entity (S))
17139 and then Null_Exclusion_Present (P)
17141 -- No need to check the case of an access to object definition.
17142 -- It is correct to define double not-null pointers.
17144 -- Example:
17145 -- type Not_Null_Int_Ptr is not null access Integer;
17146 -- type Acc is not null access Not_Null_Int_Ptr;
17148 and then Nkind (P) /= N_Access_To_Object_Definition
17149 then
17150 if Can_Never_Be_Null (Entity (S)) then
17151 case Nkind (Related_Nod) is
17152 when N_Full_Type_Declaration =>
17153 if Nkind (Type_Definition (Related_Nod))
17154 in N_Array_Type_Definition
17155 then
17156 Error_Node :=
17157 Subtype_Indication
17158 (Component_Definition
17159 (Type_Definition (Related_Nod)));
17160 else
17161 Error_Node :=
17162 Subtype_Indication (Type_Definition (Related_Nod));
17163 end if;
17165 when N_Subtype_Declaration =>
17166 Error_Node := Subtype_Indication (Related_Nod);
17168 when N_Object_Declaration =>
17169 Error_Node := Object_Definition (Related_Nod);
17171 when N_Component_Declaration =>
17172 Error_Node :=
17173 Subtype_Indication (Component_Definition (Related_Nod));
17175 when N_Allocator =>
17176 Error_Node := Expression (Related_Nod);
17178 when others =>
17179 pragma Assert (False);
17180 Error_Node := Related_Nod;
17181 end case;
17183 Error_Msg_NE
17184 ("`NOT NULL` not allowed (& already excludes null)",
17185 Error_Node,
17186 Entity (S));
17187 end if;
17189 Set_Etype (S,
17190 Create_Null_Excluding_Itype
17191 (T => Entity (S),
17192 Related_Nod => P));
17193 Set_Entity (S, Etype (S));
17194 end if;
17196 return Entity (S);
17198 -- Case of constraint present, so that we have an N_Subtype_Indication
17199 -- node (this node is created only if constraints are present).
17201 else
17202 Find_Type (Subtype_Mark (S));
17204 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
17205 and then not
17206 (Nkind (Parent (S)) = N_Subtype_Declaration
17207 and then Is_Itype (Defining_Identifier (Parent (S))))
17208 then
17209 Check_Incomplete (Subtype_Mark (S));
17210 end if;
17212 P := Parent (S);
17213 Subtype_Mark_Id := Entity (Subtype_Mark (S));
17215 -- Explicit subtype declaration case
17217 if Nkind (P) = N_Subtype_Declaration then
17218 Def_Id := Defining_Identifier (P);
17220 -- Explicit derived type definition case
17222 elsif Nkind (P) = N_Derived_Type_Definition then
17223 Def_Id := Defining_Identifier (Parent (P));
17225 -- Implicit case, the Def_Id must be created as an implicit type.
17226 -- The one exception arises in the case of concurrent types, array
17227 -- and access types, where other subsidiary implicit types may be
17228 -- created and must appear before the main implicit type. In these
17229 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
17230 -- has not yet been called to create Def_Id.
17232 else
17233 if Is_Array_Type (Subtype_Mark_Id)
17234 or else Is_Concurrent_Type (Subtype_Mark_Id)
17235 or else Is_Access_Type (Subtype_Mark_Id)
17236 then
17237 Def_Id := Empty;
17239 -- For the other cases, we create a new unattached Itype,
17240 -- and set the indication to ensure it gets attached later.
17242 else
17243 Def_Id :=
17244 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
17245 end if;
17246 end if;
17248 -- If the kind of constraint is invalid for this kind of type,
17249 -- then give an error, and then pretend no constraint was given.
17251 if not Is_Valid_Constraint_Kind
17252 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
17253 then
17254 Error_Msg_N
17255 ("incorrect constraint for this kind of type", Constraint (S));
17257 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17259 -- Set Ekind of orphan itype, to prevent cascaded errors
17261 if Present (Def_Id) then
17262 Set_Ekind (Def_Id, Ekind (Any_Type));
17263 end if;
17265 -- Make recursive call, having got rid of the bogus constraint
17267 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
17268 end if;
17270 -- Remaining processing depends on type
17272 case Ekind (Subtype_Mark_Id) is
17273 when Access_Kind =>
17274 Constrain_Access (Def_Id, S, Related_Nod);
17276 if Expander_Active
17277 and then Is_Itype (Designated_Type (Def_Id))
17278 and then Nkind (Related_Nod) = N_Subtype_Declaration
17279 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
17280 then
17281 Build_Itype_Reference
17282 (Designated_Type (Def_Id), Related_Nod);
17283 end if;
17285 when Array_Kind =>
17286 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
17288 when Decimal_Fixed_Point_Kind =>
17289 Constrain_Decimal (Def_Id, S);
17291 when Enumeration_Kind =>
17292 Constrain_Enumeration (Def_Id, S);
17294 when Ordinary_Fixed_Point_Kind =>
17295 Constrain_Ordinary_Fixed (Def_Id, S);
17297 when Float_Kind =>
17298 Constrain_Float (Def_Id, S);
17300 when Integer_Kind =>
17301 Constrain_Integer (Def_Id, S);
17303 when E_Record_Type |
17304 E_Record_Subtype |
17305 Class_Wide_Kind |
17306 E_Incomplete_Type =>
17307 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
17309 if Ekind (Def_Id) = E_Incomplete_Type then
17310 Set_Private_Dependents (Def_Id, New_Elmt_List);
17311 end if;
17313 when Private_Kind =>
17314 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
17315 Set_Private_Dependents (Def_Id, New_Elmt_List);
17317 -- In case of an invalid constraint prevent further processing
17318 -- since the type constructed is missing expected fields.
17320 if Etype (Def_Id) = Any_Type then
17321 return Def_Id;
17322 end if;
17324 -- If the full view is that of a task with discriminants,
17325 -- we must constrain both the concurrent type and its
17326 -- corresponding record type. Otherwise we will just propagate
17327 -- the constraint to the full view, if available.
17329 if Present (Full_View (Subtype_Mark_Id))
17330 and then Has_Discriminants (Subtype_Mark_Id)
17331 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
17332 then
17333 Full_View_Id :=
17334 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
17336 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
17337 Constrain_Concurrent (Full_View_Id, S,
17338 Related_Nod, Related_Id, Suffix);
17339 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
17340 Set_Full_View (Def_Id, Full_View_Id);
17342 -- Introduce an explicit reference to the private subtype,
17343 -- to prevent scope anomalies in gigi if first use appears
17344 -- in a nested context, e.g. a later function body.
17345 -- Should this be generated in other contexts than a full
17346 -- type declaration?
17348 if Is_Itype (Def_Id)
17349 and then
17350 Nkind (Parent (P)) = N_Full_Type_Declaration
17351 then
17352 Build_Itype_Reference (Def_Id, Parent (P));
17353 end if;
17355 else
17356 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
17357 end if;
17359 when Concurrent_Kind =>
17360 Constrain_Concurrent (Def_Id, S,
17361 Related_Nod, Related_Id, Suffix);
17363 when others =>
17364 Error_Msg_N ("invalid subtype mark in subtype indication", S);
17365 end case;
17367 -- Size and Convention are always inherited from the base type
17369 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
17370 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
17372 return Def_Id;
17373 end if;
17374 end Process_Subtype;
17376 ---------------------------------------
17377 -- Check_Anonymous_Access_Components --
17378 ---------------------------------------
17380 procedure Check_Anonymous_Access_Components
17381 (Typ_Decl : Node_Id;
17382 Typ : Entity_Id;
17383 Prev : Entity_Id;
17384 Comp_List : Node_Id)
17386 Loc : constant Source_Ptr := Sloc (Typ_Decl);
17387 Anon_Access : Entity_Id;
17388 Acc_Def : Node_Id;
17389 Comp : Node_Id;
17390 Comp_Def : Node_Id;
17391 Decl : Node_Id;
17392 Type_Def : Node_Id;
17394 procedure Build_Incomplete_Type_Declaration;
17395 -- If the record type contains components that include an access to the
17396 -- current record, then create an incomplete type declaration for the
17397 -- record, to be used as the designated type of the anonymous access.
17398 -- This is done only once, and only if there is no previous partial
17399 -- view of the type.
17401 function Designates_T (Subt : Node_Id) return Boolean;
17402 -- Check whether a node designates the enclosing record type, or 'Class
17403 -- of that type
17405 function Mentions_T (Acc_Def : Node_Id) return Boolean;
17406 -- Check whether an access definition includes a reference to
17407 -- the enclosing record type. The reference can be a subtype mark
17408 -- in the access definition itself, a 'Class attribute reference, or
17409 -- recursively a reference appearing in a parameter specification
17410 -- or result definition of an access_to_subprogram definition.
17412 --------------------------------------
17413 -- Build_Incomplete_Type_Declaration --
17414 --------------------------------------
17416 procedure Build_Incomplete_Type_Declaration is
17417 Decl : Node_Id;
17418 Inc_T : Entity_Id;
17419 H : Entity_Id;
17421 -- Is_Tagged indicates whether the type is tagged. It is tagged if
17422 -- it's "is new ... with record" or else "is tagged record ...".
17424 Is_Tagged : constant Boolean :=
17425 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
17426 and then
17427 Present
17428 (Record_Extension_Part (Type_Definition (Typ_Decl))))
17429 or else
17430 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
17431 and then Tagged_Present (Type_Definition (Typ_Decl)));
17433 begin
17434 -- If there is a previous partial view, no need to create a new one
17435 -- If the partial view, given by Prev, is incomplete, If Prev is
17436 -- a private declaration, full declaration is flagged accordingly.
17438 if Prev /= Typ then
17439 if Is_Tagged then
17440 Make_Class_Wide_Type (Prev);
17441 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
17442 Set_Etype (Class_Wide_Type (Typ), Typ);
17443 end if;
17445 return;
17447 elsif Has_Private_Declaration (Typ) then
17449 -- If we refer to T'Class inside T, and T is the completion of a
17450 -- private type, then we need to make sure the class-wide type
17451 -- exists.
17453 if Is_Tagged then
17454 Make_Class_Wide_Type (Typ);
17455 end if;
17457 return;
17459 -- If there was a previous anonymous access type, the incomplete
17460 -- type declaration will have been created already.
17462 elsif Present (Current_Entity (Typ))
17463 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
17464 and then Full_View (Current_Entity (Typ)) = Typ
17465 then
17466 return;
17468 else
17469 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
17470 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
17472 -- Type has already been inserted into the current scope.
17473 -- Remove it, and add incomplete declaration for type, so
17474 -- that subsequent anonymous access types can use it.
17475 -- The entity is unchained from the homonym list and from
17476 -- immediate visibility. After analysis, the entity in the
17477 -- incomplete declaration becomes immediately visible in the
17478 -- record declaration that follows.
17480 H := Current_Entity (Typ);
17482 if H = Typ then
17483 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
17484 else
17485 while Present (H)
17486 and then Homonym (H) /= Typ
17487 loop
17488 H := Homonym (Typ);
17489 end loop;
17491 Set_Homonym (H, Homonym (Typ));
17492 end if;
17494 Insert_Before (Typ_Decl, Decl);
17495 Analyze (Decl);
17496 Set_Full_View (Inc_T, Typ);
17498 if Is_Tagged then
17499 -- Create a common class-wide type for both views, and set
17500 -- the Etype of the class-wide type to the full view.
17502 Make_Class_Wide_Type (Inc_T);
17503 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
17504 Set_Etype (Class_Wide_Type (Typ), Typ);
17505 end if;
17506 end if;
17507 end Build_Incomplete_Type_Declaration;
17509 ------------------
17510 -- Designates_T --
17511 ------------------
17513 function Designates_T (Subt : Node_Id) return Boolean is
17514 Type_Id : constant Name_Id := Chars (Typ);
17516 function Names_T (Nam : Node_Id) return Boolean;
17517 -- The record type has not been introduced in the current scope
17518 -- yet, so we must examine the name of the type itself, either
17519 -- an identifier T, or an expanded name of the form P.T, where
17520 -- P denotes the current scope.
17522 -------------
17523 -- Names_T --
17524 -------------
17526 function Names_T (Nam : Node_Id) return Boolean is
17527 begin
17528 if Nkind (Nam) = N_Identifier then
17529 return Chars (Nam) = Type_Id;
17531 elsif Nkind (Nam) = N_Selected_Component then
17532 if Chars (Selector_Name (Nam)) = Type_Id then
17533 if Nkind (Prefix (Nam)) = N_Identifier then
17534 return Chars (Prefix (Nam)) = Chars (Current_Scope);
17536 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
17537 return Chars (Selector_Name (Prefix (Nam))) =
17538 Chars (Current_Scope);
17539 else
17540 return False;
17541 end if;
17543 else
17544 return False;
17545 end if;
17547 else
17548 return False;
17549 end if;
17550 end Names_T;
17552 -- Start of processing for Designates_T
17554 begin
17555 if Nkind (Subt) = N_Identifier then
17556 return Chars (Subt) = Type_Id;
17558 -- Reference can be through an expanded name which has not been
17559 -- analyzed yet, and which designates enclosing scopes.
17561 elsif Nkind (Subt) = N_Selected_Component then
17562 if Names_T (Subt) then
17563 return True;
17565 -- Otherwise it must denote an entity that is already visible.
17566 -- The access definition may name a subtype of the enclosing
17567 -- type, if there is a previous incomplete declaration for it.
17569 else
17570 Find_Selected_Component (Subt);
17571 return
17572 Is_Entity_Name (Subt)
17573 and then Scope (Entity (Subt)) = Current_Scope
17574 and then
17575 (Chars (Base_Type (Entity (Subt))) = Type_Id
17576 or else
17577 (Is_Class_Wide_Type (Entity (Subt))
17578 and then
17579 Chars (Etype (Base_Type (Entity (Subt)))) =
17580 Type_Id));
17581 end if;
17583 -- A reference to the current type may appear as the prefix of
17584 -- a 'Class attribute.
17586 elsif Nkind (Subt) = N_Attribute_Reference
17587 and then Attribute_Name (Subt) = Name_Class
17588 then
17589 return Names_T (Prefix (Subt));
17591 else
17592 return False;
17593 end if;
17594 end Designates_T;
17596 ----------------
17597 -- Mentions_T --
17598 ----------------
17600 function Mentions_T (Acc_Def : Node_Id) return Boolean is
17601 Param_Spec : Node_Id;
17603 Acc_Subprg : constant Node_Id :=
17604 Access_To_Subprogram_Definition (Acc_Def);
17606 begin
17607 if No (Acc_Subprg) then
17608 return Designates_T (Subtype_Mark (Acc_Def));
17609 end if;
17611 -- Component is an access_to_subprogram: examine its formals,
17612 -- and result definition in the case of an access_to_function.
17614 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
17615 while Present (Param_Spec) loop
17616 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
17617 and then Mentions_T (Parameter_Type (Param_Spec))
17618 then
17619 return True;
17621 elsif Designates_T (Parameter_Type (Param_Spec)) then
17622 return True;
17623 end if;
17625 Next (Param_Spec);
17626 end loop;
17628 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
17629 if Nkind (Result_Definition (Acc_Subprg)) =
17630 N_Access_Definition
17631 then
17632 return Mentions_T (Result_Definition (Acc_Subprg));
17633 else
17634 return Designates_T (Result_Definition (Acc_Subprg));
17635 end if;
17636 end if;
17638 return False;
17639 end Mentions_T;
17641 -- Start of processing for Check_Anonymous_Access_Components
17643 begin
17644 if No (Comp_List) then
17645 return;
17646 end if;
17648 Comp := First (Component_Items (Comp_List));
17649 while Present (Comp) loop
17650 if Nkind (Comp) = N_Component_Declaration
17651 and then Present
17652 (Access_Definition (Component_Definition (Comp)))
17653 and then
17654 Mentions_T (Access_Definition (Component_Definition (Comp)))
17655 then
17656 Comp_Def := Component_Definition (Comp);
17657 Acc_Def :=
17658 Access_To_Subprogram_Definition
17659 (Access_Definition (Comp_Def));
17661 Build_Incomplete_Type_Declaration;
17662 Anon_Access :=
17663 Make_Defining_Identifier (Loc,
17664 Chars => New_Internal_Name ('S'));
17666 -- Create a declaration for the anonymous access type: either
17667 -- an access_to_object or an access_to_subprogram.
17669 if Present (Acc_Def) then
17670 if Nkind (Acc_Def) = N_Access_Function_Definition then
17671 Type_Def :=
17672 Make_Access_Function_Definition (Loc,
17673 Parameter_Specifications =>
17674 Parameter_Specifications (Acc_Def),
17675 Result_Definition => Result_Definition (Acc_Def));
17676 else
17677 Type_Def :=
17678 Make_Access_Procedure_Definition (Loc,
17679 Parameter_Specifications =>
17680 Parameter_Specifications (Acc_Def));
17681 end if;
17683 else
17684 Type_Def :=
17685 Make_Access_To_Object_Definition (Loc,
17686 Subtype_Indication =>
17687 Relocate_Node
17688 (Subtype_Mark
17689 (Access_Definition (Comp_Def))));
17691 Set_Constant_Present
17692 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
17693 Set_All_Present
17694 (Type_Def, All_Present (Access_Definition (Comp_Def)));
17695 end if;
17697 Set_Null_Exclusion_Present
17698 (Type_Def,
17699 Null_Exclusion_Present (Access_Definition (Comp_Def)));
17701 Decl :=
17702 Make_Full_Type_Declaration (Loc,
17703 Defining_Identifier => Anon_Access,
17704 Type_Definition => Type_Def);
17706 Insert_Before (Typ_Decl, Decl);
17707 Analyze (Decl);
17709 -- If an access to object, Preserve entity of designated type,
17710 -- for ASIS use, before rewriting the component definition.
17712 if No (Acc_Def) then
17713 declare
17714 Desig : Entity_Id;
17716 begin
17717 Desig := Entity (Subtype_Indication (Type_Def));
17719 -- If the access definition is to the current record,
17720 -- the visible entity at this point is an incomplete
17721 -- type. Retrieve the full view to simplify ASIS queries
17723 if Ekind (Desig) = E_Incomplete_Type then
17724 Desig := Full_View (Desig);
17725 end if;
17727 Set_Entity
17728 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
17729 end;
17730 end if;
17732 Rewrite (Comp_Def,
17733 Make_Component_Definition (Loc,
17734 Subtype_Indication =>
17735 New_Occurrence_Of (Anon_Access, Loc)));
17737 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
17738 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
17739 else
17740 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
17741 end if;
17743 Set_Is_Local_Anonymous_Access (Anon_Access);
17744 end if;
17746 Next (Comp);
17747 end loop;
17749 if Present (Variant_Part (Comp_List)) then
17750 declare
17751 V : Node_Id;
17752 begin
17753 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
17754 while Present (V) loop
17755 Check_Anonymous_Access_Components
17756 (Typ_Decl, Typ, Prev, Component_List (V));
17757 Next_Non_Pragma (V);
17758 end loop;
17759 end;
17760 end if;
17761 end Check_Anonymous_Access_Components;
17763 --------------------------------
17764 -- Preanalyze_Spec_Expression --
17765 --------------------------------
17767 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
17768 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
17769 begin
17770 In_Spec_Expression := True;
17771 Preanalyze_And_Resolve (N, T);
17772 In_Spec_Expression := Save_In_Spec_Expression;
17773 end Preanalyze_Spec_Expression;
17775 -----------------------------
17776 -- Record_Type_Declaration --
17777 -----------------------------
17779 procedure Record_Type_Declaration
17780 (T : Entity_Id;
17781 N : Node_Id;
17782 Prev : Entity_Id)
17784 Def : constant Node_Id := Type_Definition (N);
17785 Is_Tagged : Boolean;
17786 Tag_Comp : Entity_Id;
17788 begin
17789 -- These flags must be initialized before calling Process_Discriminants
17790 -- because this routine makes use of them.
17792 Set_Ekind (T, E_Record_Type);
17793 Set_Etype (T, T);
17794 Init_Size_Align (T);
17795 Set_Interfaces (T, No_Elist);
17796 Set_Stored_Constraint (T, No_Elist);
17798 -- Normal case
17800 if Ada_Version < Ada_05
17801 or else not Interface_Present (Def)
17802 then
17803 -- The flag Is_Tagged_Type might have already been set by
17804 -- Find_Type_Name if it detected an error for declaration T. This
17805 -- arises in the case of private tagged types where the full view
17806 -- omits the word tagged.
17808 Is_Tagged :=
17809 Tagged_Present (Def)
17810 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
17812 Set_Is_Tagged_Type (T, Is_Tagged);
17813 Set_Is_Limited_Record (T, Limited_Present (Def));
17815 -- Type is abstract if full declaration carries keyword, or if
17816 -- previous partial view did.
17818 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
17819 or else Abstract_Present (Def));
17821 else
17822 Is_Tagged := True;
17823 Analyze_Interface_Declaration (T, Def);
17825 if Present (Discriminant_Specifications (N)) then
17826 Error_Msg_N
17827 ("interface types cannot have discriminants",
17828 Defining_Identifier
17829 (First (Discriminant_Specifications (N))));
17830 end if;
17831 end if;
17833 -- First pass: if there are self-referential access components,
17834 -- create the required anonymous access type declarations, and if
17835 -- need be an incomplete type declaration for T itself.
17837 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
17839 if Ada_Version >= Ada_05
17840 and then Present (Interface_List (Def))
17841 then
17842 Check_Interfaces (N, Def);
17844 declare
17845 Ifaces_List : Elist_Id;
17847 begin
17848 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
17849 -- already in the parents.
17851 Collect_Interfaces
17852 (T => T,
17853 Ifaces_List => Ifaces_List,
17854 Exclude_Parents => True);
17856 Set_Interfaces (T, Ifaces_List);
17857 end;
17858 end if;
17860 -- Records constitute a scope for the component declarations within.
17861 -- The scope is created prior to the processing of these declarations.
17862 -- Discriminants are processed first, so that they are visible when
17863 -- processing the other components. The Ekind of the record type itself
17864 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
17866 -- Enter record scope
17868 Push_Scope (T);
17870 -- If an incomplete or private type declaration was already given for
17871 -- the type, then this scope already exists, and the discriminants have
17872 -- been declared within. We must verify that the full declaration
17873 -- matches the incomplete one.
17875 Check_Or_Process_Discriminants (N, T, Prev);
17877 Set_Is_Constrained (T, not Has_Discriminants (T));
17878 Set_Has_Delayed_Freeze (T, True);
17880 -- For tagged types add a manually analyzed component corresponding
17881 -- to the component _tag, the corresponding piece of tree will be
17882 -- expanded as part of the freezing actions if it is not a CPP_Class.
17884 if Is_Tagged then
17886 -- Do not add the tag unless we are in expansion mode
17888 if Expander_Active then
17889 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
17890 Enter_Name (Tag_Comp);
17892 Set_Ekind (Tag_Comp, E_Component);
17893 Set_Is_Tag (Tag_Comp);
17894 Set_Is_Aliased (Tag_Comp);
17895 Set_Etype (Tag_Comp, RTE (RE_Tag));
17896 Set_DT_Entry_Count (Tag_Comp, No_Uint);
17897 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
17898 Init_Component_Location (Tag_Comp);
17900 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
17901 -- implemented interfaces.
17903 if Has_Interfaces (T) then
17904 Add_Interface_Tag_Components (N, T);
17905 end if;
17906 end if;
17908 Make_Class_Wide_Type (T);
17909 Set_Primitive_Operations (T, New_Elmt_List);
17910 end if;
17912 -- We must suppress range checks when processing the components
17913 -- of a record in the presence of discriminants, since we don't
17914 -- want spurious checks to be generated during their analysis, but
17915 -- must reset the Suppress_Range_Checks flags after having processed
17916 -- the record definition.
17918 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
17919 -- couldn't we just use the normal range check suppression method here.
17920 -- That would seem cleaner ???
17922 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
17923 Set_Kill_Range_Checks (T, True);
17924 Record_Type_Definition (Def, Prev);
17925 Set_Kill_Range_Checks (T, False);
17926 else
17927 Record_Type_Definition (Def, Prev);
17928 end if;
17930 -- Exit from record scope
17932 End_Scope;
17934 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
17935 -- the implemented interfaces and associate them an aliased entity.
17937 if Is_Tagged
17938 and then not Is_Empty_List (Interface_List (Def))
17939 then
17940 Derive_Progenitor_Subprograms (T, T);
17941 end if;
17942 end Record_Type_Declaration;
17944 ----------------------------
17945 -- Record_Type_Definition --
17946 ----------------------------
17948 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
17949 Component : Entity_Id;
17950 Ctrl_Components : Boolean := False;
17951 Final_Storage_Only : Boolean;
17952 T : Entity_Id;
17954 begin
17955 if Ekind (Prev_T) = E_Incomplete_Type then
17956 T := Full_View (Prev_T);
17957 else
17958 T := Prev_T;
17959 end if;
17961 Final_Storage_Only := not Is_Controlled (T);
17963 -- Ada 2005: check whether an explicit Limited is present in a derived
17964 -- type declaration.
17966 if Nkind (Parent (Def)) = N_Derived_Type_Definition
17967 and then Limited_Present (Parent (Def))
17968 then
17969 Set_Is_Limited_Record (T);
17970 end if;
17972 -- If the component list of a record type is defined by the reserved
17973 -- word null and there is no discriminant part, then the record type has
17974 -- no components and all records of the type are null records (RM 3.7)
17975 -- This procedure is also called to process the extension part of a
17976 -- record extension, in which case the current scope may have inherited
17977 -- components.
17979 if No (Def)
17980 or else No (Component_List (Def))
17981 or else Null_Present (Component_List (Def))
17982 then
17983 null;
17985 else
17986 Analyze_Declarations (Component_Items (Component_List (Def)));
17988 if Present (Variant_Part (Component_List (Def))) then
17989 Analyze (Variant_Part (Component_List (Def)));
17990 end if;
17991 end if;
17993 -- After completing the semantic analysis of the record definition,
17994 -- record components, both new and inherited, are accessible. Set their
17995 -- kind accordingly. Exclude malformed itypes from illegal declarations,
17996 -- whose Ekind may be void.
17998 Component := First_Entity (Current_Scope);
17999 while Present (Component) loop
18000 if Ekind (Component) = E_Void
18001 and then not Is_Itype (Component)
18002 then
18003 Set_Ekind (Component, E_Component);
18004 Init_Component_Location (Component);
18005 end if;
18007 if Has_Task (Etype (Component)) then
18008 Set_Has_Task (T);
18009 end if;
18011 if Ekind (Component) /= E_Component then
18012 null;
18014 elsif Has_Controlled_Component (Etype (Component))
18015 or else (Chars (Component) /= Name_uParent
18016 and then Is_Controlled (Etype (Component)))
18017 then
18018 Set_Has_Controlled_Component (T, True);
18019 Final_Storage_Only :=
18020 Final_Storage_Only
18021 and then Finalize_Storage_Only (Etype (Component));
18022 Ctrl_Components := True;
18023 end if;
18025 Next_Entity (Component);
18026 end loop;
18028 -- A Type is Finalize_Storage_Only only if all its controlled components
18029 -- are also.
18031 if Ctrl_Components then
18032 Set_Finalize_Storage_Only (T, Final_Storage_Only);
18033 end if;
18035 -- Place reference to end record on the proper entity, which may
18036 -- be a partial view.
18038 if Present (Def) then
18039 Process_End_Label (Def, 'e', Prev_T);
18040 end if;
18041 end Record_Type_Definition;
18043 ------------------------
18044 -- Replace_Components --
18045 ------------------------
18047 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
18048 function Process (N : Node_Id) return Traverse_Result;
18050 -------------
18051 -- Process --
18052 -------------
18054 function Process (N : Node_Id) return Traverse_Result is
18055 Comp : Entity_Id;
18057 begin
18058 if Nkind (N) = N_Discriminant_Specification then
18059 Comp := First_Discriminant (Typ);
18060 while Present (Comp) loop
18061 if Chars (Comp) = Chars (Defining_Identifier (N)) then
18062 Set_Defining_Identifier (N, Comp);
18063 exit;
18064 end if;
18066 Next_Discriminant (Comp);
18067 end loop;
18069 elsif Nkind (N) = N_Component_Declaration then
18070 Comp := First_Component (Typ);
18071 while Present (Comp) loop
18072 if Chars (Comp) = Chars (Defining_Identifier (N)) then
18073 Set_Defining_Identifier (N, Comp);
18074 exit;
18075 end if;
18077 Next_Component (Comp);
18078 end loop;
18079 end if;
18081 return OK;
18082 end Process;
18084 procedure Replace is new Traverse_Proc (Process);
18086 -- Start of processing for Replace_Components
18088 begin
18089 Replace (Decl);
18090 end Replace_Components;
18092 -------------------------------
18093 -- Set_Completion_Referenced --
18094 -------------------------------
18096 procedure Set_Completion_Referenced (E : Entity_Id) is
18097 begin
18098 -- If in main unit, mark entity that is a completion as referenced,
18099 -- warnings go on the partial view when needed.
18101 if In_Extended_Main_Source_Unit (E) then
18102 Set_Referenced (E);
18103 end if;
18104 end Set_Completion_Referenced;
18106 ---------------------
18107 -- Set_Fixed_Range --
18108 ---------------------
18110 -- The range for fixed-point types is complicated by the fact that we
18111 -- do not know the exact end points at the time of the declaration. This
18112 -- is true for three reasons:
18114 -- A size clause may affect the fudging of the end-points
18115 -- A small clause may affect the values of the end-points
18116 -- We try to include the end-points if it does not affect the size
18118 -- This means that the actual end-points must be established at the point
18119 -- when the type is frozen. Meanwhile, we first narrow the range as
18120 -- permitted (so that it will fit if necessary in a small specified size),
18121 -- and then build a range subtree with these narrowed bounds.
18123 -- Set_Fixed_Range constructs the range from real literal values, and sets
18124 -- the range as the Scalar_Range of the given fixed-point type entity.
18126 -- The parent of this range is set to point to the entity so that it is
18127 -- properly hooked into the tree (unlike normal Scalar_Range entries for
18128 -- other scalar types, which are just pointers to the range in the
18129 -- original tree, this would otherwise be an orphan).
18131 -- The tree is left unanalyzed. When the type is frozen, the processing
18132 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
18133 -- analyzed, and uses this as an indication that it should complete
18134 -- work on the range (it will know the final small and size values).
18136 procedure Set_Fixed_Range
18137 (E : Entity_Id;
18138 Loc : Source_Ptr;
18139 Lo : Ureal;
18140 Hi : Ureal)
18142 S : constant Node_Id :=
18143 Make_Range (Loc,
18144 Low_Bound => Make_Real_Literal (Loc, Lo),
18145 High_Bound => Make_Real_Literal (Loc, Hi));
18146 begin
18147 Set_Scalar_Range (E, S);
18148 Set_Parent (S, E);
18149 end Set_Fixed_Range;
18151 ----------------------------------
18152 -- Set_Scalar_Range_For_Subtype --
18153 ----------------------------------
18155 procedure Set_Scalar_Range_For_Subtype
18156 (Def_Id : Entity_Id;
18157 R : Node_Id;
18158 Subt : Entity_Id)
18160 Kind : constant Entity_Kind := Ekind (Def_Id);
18162 begin
18163 Set_Scalar_Range (Def_Id, R);
18165 -- We need to link the range into the tree before resolving it so
18166 -- that types that are referenced, including importantly the subtype
18167 -- itself, are properly frozen (Freeze_Expression requires that the
18168 -- expression be properly linked into the tree). Of course if it is
18169 -- already linked in, then we do not disturb the current link.
18171 if No (Parent (R)) then
18172 Set_Parent (R, Def_Id);
18173 end if;
18175 -- Reset the kind of the subtype during analysis of the range, to
18176 -- catch possible premature use in the bounds themselves.
18178 Set_Ekind (Def_Id, E_Void);
18179 Process_Range_Expr_In_Decl (R, Subt);
18180 Set_Ekind (Def_Id, Kind);
18181 end Set_Scalar_Range_For_Subtype;
18183 --------------------------------------------------------
18184 -- Set_Stored_Constraint_From_Discriminant_Constraint --
18185 --------------------------------------------------------
18187 procedure Set_Stored_Constraint_From_Discriminant_Constraint
18188 (E : Entity_Id)
18190 begin
18191 -- Make sure set if encountered during Expand_To_Stored_Constraint
18193 Set_Stored_Constraint (E, No_Elist);
18195 -- Give it the right value
18197 if Is_Constrained (E) and then Has_Discriminants (E) then
18198 Set_Stored_Constraint (E,
18199 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
18200 end if;
18201 end Set_Stored_Constraint_From_Discriminant_Constraint;
18203 -------------------------------------
18204 -- Signed_Integer_Type_Declaration --
18205 -------------------------------------
18207 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18208 Implicit_Base : Entity_Id;
18209 Base_Typ : Entity_Id;
18210 Lo_Val : Uint;
18211 Hi_Val : Uint;
18212 Errs : Boolean := False;
18213 Lo : Node_Id;
18214 Hi : Node_Id;
18216 function Can_Derive_From (E : Entity_Id) return Boolean;
18217 -- Determine whether given bounds allow derivation from specified type
18219 procedure Check_Bound (Expr : Node_Id);
18220 -- Check bound to make sure it is integral and static. If not, post
18221 -- appropriate error message and set Errs flag
18223 ---------------------
18224 -- Can_Derive_From --
18225 ---------------------
18227 -- Note we check both bounds against both end values, to deal with
18228 -- strange types like ones with a range of 0 .. -12341234.
18230 function Can_Derive_From (E : Entity_Id) return Boolean is
18231 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
18232 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
18233 begin
18234 return Lo <= Lo_Val and then Lo_Val <= Hi
18235 and then
18236 Lo <= Hi_Val and then Hi_Val <= Hi;
18237 end Can_Derive_From;
18239 -----------------
18240 -- Check_Bound --
18241 -----------------
18243 procedure Check_Bound (Expr : Node_Id) is
18244 begin
18245 -- If a range constraint is used as an integer type definition, each
18246 -- bound of the range must be defined by a static expression of some
18247 -- integer type, but the two bounds need not have the same integer
18248 -- type (Negative bounds are allowed.) (RM 3.5.4)
18250 if not Is_Integer_Type (Etype (Expr)) then
18251 Error_Msg_N
18252 ("integer type definition bounds must be of integer type", Expr);
18253 Errs := True;
18255 elsif not Is_OK_Static_Expression (Expr) then
18256 Flag_Non_Static_Expr
18257 ("non-static expression used for integer type bound!", Expr);
18258 Errs := True;
18260 -- The bounds are folded into literals, and we set their type to be
18261 -- universal, to avoid typing difficulties: we cannot set the type
18262 -- of the literal to the new type, because this would be a forward
18263 -- reference for the back end, and if the original type is user-
18264 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
18266 else
18267 if Is_Entity_Name (Expr) then
18268 Fold_Uint (Expr, Expr_Value (Expr), True);
18269 end if;
18271 Set_Etype (Expr, Universal_Integer);
18272 end if;
18273 end Check_Bound;
18275 -- Start of processing for Signed_Integer_Type_Declaration
18277 begin
18278 -- Create an anonymous base type
18280 Implicit_Base :=
18281 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
18283 -- Analyze and check the bounds, they can be of any integer type
18285 Lo := Low_Bound (Def);
18286 Hi := High_Bound (Def);
18288 -- Arbitrarily use Integer as the type if either bound had an error
18290 if Hi = Error or else Lo = Error then
18291 Base_Typ := Any_Integer;
18292 Set_Error_Posted (T, True);
18294 -- Here both bounds are OK expressions
18296 else
18297 Analyze_And_Resolve (Lo, Any_Integer);
18298 Analyze_And_Resolve (Hi, Any_Integer);
18300 Check_Bound (Lo);
18301 Check_Bound (Hi);
18303 if Errs then
18304 Hi := Type_High_Bound (Standard_Long_Long_Integer);
18305 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
18306 end if;
18308 -- Find type to derive from
18310 Lo_Val := Expr_Value (Lo);
18311 Hi_Val := Expr_Value (Hi);
18313 if Can_Derive_From (Standard_Short_Short_Integer) then
18314 Base_Typ := Base_Type (Standard_Short_Short_Integer);
18316 elsif Can_Derive_From (Standard_Short_Integer) then
18317 Base_Typ := Base_Type (Standard_Short_Integer);
18319 elsif Can_Derive_From (Standard_Integer) then
18320 Base_Typ := Base_Type (Standard_Integer);
18322 elsif Can_Derive_From (Standard_Long_Integer) then
18323 Base_Typ := Base_Type (Standard_Long_Integer);
18325 elsif Can_Derive_From (Standard_Long_Long_Integer) then
18326 Base_Typ := Base_Type (Standard_Long_Long_Integer);
18328 else
18329 Base_Typ := Base_Type (Standard_Long_Long_Integer);
18330 Error_Msg_N ("integer type definition bounds out of range", Def);
18331 Hi := Type_High_Bound (Standard_Long_Long_Integer);
18332 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
18333 end if;
18334 end if;
18336 -- Complete both implicit base and declared first subtype entities
18338 Set_Etype (Implicit_Base, Base_Typ);
18339 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
18340 Set_Size_Info (Implicit_Base, (Base_Typ));
18341 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
18342 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
18344 Set_Ekind (T, E_Signed_Integer_Subtype);
18345 Set_Etype (T, Implicit_Base);
18347 Set_Size_Info (T, (Implicit_Base));
18348 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
18349 Set_Scalar_Range (T, Def);
18350 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
18351 Set_Is_Constrained (T);
18352 end Signed_Integer_Type_Declaration;
18354 end Sem_Ch3;