1 ------------------------------------------------------------------------------
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
30 ------------------------------------------------------------------------------
32 -- This is a POSIX-like version of this package
34 -- This package contains all the GNULL primitives that interface directly with
37 -- Note: this file can only be used for POSIX compliant systems that implement
38 -- SCHED_FIFO and Ceiling Locking correctly.
40 -- For configurations where SCHED_FIFO and priority ceiling are not a
41 -- requirement, this file can also be used (e.g AiX threads)
44 -- Turn off polling, we do not want ATC polling to take place during tasking
45 -- operations. It causes infinite loops and other problems.
47 with Ada
.Unchecked_Conversion
;
48 with Ada
.Unchecked_Deallocation
;
52 with System
.Tasking
.Debug
;
53 with System
.Interrupt_Management
;
54 with System
.OS_Primitives
;
55 with System
.Task_Info
;
57 with System
.Soft_Links
;
58 -- We use System.Soft_Links instead of System.Tasking.Initialization
59 -- because the later is a higher level package that we shouldn't depend on.
60 -- For example when using the restricted run time, it is replaced by
61 -- System.Tasking.Restricted.Stages.
63 package body System
.Task_Primitives
.Operations
is
65 package SSL
renames System
.Soft_Links
;
67 use System
.Tasking
.Debug
;
70 use System
.OS_Interface
;
71 use System
.Parameters
;
72 use System
.OS_Primitives
;
74 Use_Alternate_Stack
: constant Boolean := Alternate_Stack_Size
/= 0;
75 -- Whether to use an alternate signal stack for stack overflows
81 -- The followings are logically constants, but need to be initialized
84 Single_RTS_Lock
: aliased RTS_Lock
;
85 -- This is a lock to allow only one thread of control in the RTS at
86 -- a time; it is used to execute in mutual exclusion from all other tasks.
87 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
89 ATCB_Key
: aliased pthread_key_t
;
90 -- Key used to find the Ada Task_Id associated with a thread
92 Environment_Task_Id
: Task_Id
;
93 -- A variable to hold Task_Id for the environment task
95 Locking_Policy
: Character;
96 pragma Import
(C
, Locking_Policy
, "__gl_locking_policy");
97 -- Value of the pragma Locking_Policy:
98 -- 'C' for Ceiling_Locking
99 -- 'I' for Inherit_Locking
102 Unblocked_Signal_Mask
: aliased sigset_t
;
103 -- The set of signals that should unblocked in all tasks
105 -- The followings are internal configuration constants needed
107 Next_Serial_Number
: Task_Serial_Number
:= 100;
108 -- We start at 100, to reserve some special values for
109 -- using in error checking.
111 Time_Slice_Val
: Integer;
112 pragma Import
(C
, Time_Slice_Val
, "__gl_time_slice_val");
114 Dispatching_Policy
: Character;
115 pragma Import
(C
, Dispatching_Policy
, "__gl_task_dispatching_policy");
117 Foreign_Task_Elaborated
: aliased Boolean := True;
118 -- Used to identified fake tasks (i.e., non-Ada Threads)
126 procedure Initialize
(Environment_Task
: Task_Id
);
127 pragma Inline
(Initialize
);
128 -- Initialize various data needed by this package
130 function Is_Valid_Task
return Boolean;
131 pragma Inline
(Is_Valid_Task
);
132 -- Does executing thread have a TCB?
134 procedure Set
(Self_Id
: Task_Id
);
136 -- Set the self id for the current task
138 function Self
return Task_Id
;
139 pragma Inline
(Self
);
140 -- Return a pointer to the Ada Task Control Block of the calling task
144 package body Specific
is separate;
145 -- The body of this package is target specific
147 ---------------------------------
148 -- Support for foreign threads --
149 ---------------------------------
151 function Register_Foreign_Thread
(Thread
: Thread_Id
) return Task_Id
;
152 -- Allocate and Initialize a new ATCB for the current Thread
154 function Register_Foreign_Thread
155 (Thread
: Thread_Id
) return Task_Id
is separate;
157 -----------------------
158 -- Local Subprograms --
159 -----------------------
161 procedure Abort_Handler
(Sig
: Signal
);
162 -- Signal handler used to implement asynchronous abort.
163 -- See also comment before body, below.
165 function To_Address
is
166 new Ada
.Unchecked_Conversion
(Task_Id
, System
.Address
);
172 -- Target-dependent binding of inter-thread Abort signal to the raising of
173 -- the Abort_Signal exception.
175 -- The technical issues and alternatives here are essentially the
176 -- same as for raising exceptions in response to other signals
177 -- (e.g. Storage_Error). See code and comments in the package body
178 -- System.Interrupt_Management.
180 -- Some implementations may not allow an exception to be propagated out of
181 -- a handler, and others might leave the signal or interrupt that invoked
182 -- this handler masked after the exceptional return to the application
185 -- GNAT exceptions are originally implemented using setjmp()/longjmp(). On
186 -- most UNIX systems, this will allow transfer out of a signal handler,
187 -- which is usually the only mechanism available for implementing
188 -- asynchronous handlers of this kind. However, some systems do not
189 -- restore the signal mask on longjmp(), leaving the abort signal masked.
191 procedure Abort_Handler
(Sig
: Signal
) is
192 pragma Unreferenced
(Sig
);
194 T
: constant Task_Id
:= Self
;
195 Old_Set
: aliased sigset_t
;
197 Result
: Interfaces
.C
.int
;
198 pragma Warnings
(Off
, Result
);
201 -- It is not safe to raise an exception when using ZCX and the GCC
202 -- exception handling mechanism.
204 if ZCX_By_Default
and then GCC_ZCX_Support
then
208 if T
.Deferral_Level
= 0
209 and then T
.Pending_ATC_Level
< T
.ATC_Nesting_Level
and then
214 -- Make sure signals used for RTS internal purpose are unmasked
216 Result
:= pthread_sigmask
(SIG_UNBLOCK
,
217 Unblocked_Signal_Mask
'Access, Old_Set
'Access);
218 pragma Assert
(Result
= 0);
220 raise Standard
'Abort_Signal;
228 procedure Stack_Guard
(T
: ST
.Task_Id
; On
: Boolean) is
229 Stack_Base
: constant Address
:= Get_Stack_Base
(T
.Common
.LL
.Thread
);
230 Guard_Page_Address
: Address
;
232 Res
: Interfaces
.C
.int
;
235 if Stack_Base_Available
then
237 -- Compute the guard page address
239 Guard_Page_Address
:=
240 Stack_Base
- (Stack_Base
mod Get_Page_Size
) + Get_Page_Size
;
243 Res
:= mprotect
(Guard_Page_Address
, Get_Page_Size
, PROT_ON
);
245 Res
:= mprotect
(Guard_Page_Address
, Get_Page_Size
, PROT_OFF
);
248 pragma Assert
(Res
= 0);
256 function Get_Thread_Id
(T
: ST
.Task_Id
) return OSI
.Thread_Id
is
258 return T
.Common
.LL
.Thread
;
265 function Self
return Task_Id
renames Specific
.Self
;
267 ---------------------
268 -- Initialize_Lock --
269 ---------------------
271 -- Note: mutexes and cond_variables needed per-task basis are
272 -- initialized in Initialize_TCB and the Storage_Error is
273 -- handled. Other mutexes (such as RTS_Lock, Memory_Lock...)
274 -- used in RTS is initialized before any status change of RTS.
275 -- Therefore raising Storage_Error in the following routines
276 -- should be able to be handled safely.
278 procedure Initialize_Lock
279 (Prio
: System
.Any_Priority
;
280 L
: not null access Lock
)
282 Attributes
: aliased pthread_mutexattr_t
;
283 Result
: Interfaces
.C
.int
;
286 Result
:= pthread_mutexattr_init
(Attributes
'Access);
287 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
289 if Result
= ENOMEM
then
293 if Locking_Policy
= 'C' then
294 Result
:= pthread_mutexattr_setprotocol
295 (Attributes
'Access, PTHREAD_PRIO_PROTECT
);
296 pragma Assert
(Result
= 0);
298 Result
:= pthread_mutexattr_setprioceiling
299 (Attributes
'Access, Interfaces
.C
.int
(Prio
));
300 pragma Assert
(Result
= 0);
302 elsif Locking_Policy
= 'I' then
303 Result
:= pthread_mutexattr_setprotocol
304 (Attributes
'Access, PTHREAD_PRIO_INHERIT
);
305 pragma Assert
(Result
= 0);
308 Result
:= pthread_mutex_init
(L
, Attributes
'Access);
309 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
311 if Result
= ENOMEM
then
312 Result
:= pthread_mutexattr_destroy
(Attributes
'Access);
316 Result
:= pthread_mutexattr_destroy
(Attributes
'Access);
317 pragma Assert
(Result
= 0);
320 procedure Initialize_Lock
321 (L
: not null access RTS_Lock
; Level
: Lock_Level
)
323 pragma Unreferenced
(Level
);
325 Attributes
: aliased pthread_mutexattr_t
;
326 Result
: Interfaces
.C
.int
;
329 Result
:= pthread_mutexattr_init
(Attributes
'Access);
330 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
332 if Result
= ENOMEM
then
336 if Locking_Policy
= 'C' then
337 Result
:= pthread_mutexattr_setprotocol
338 (Attributes
'Access, PTHREAD_PRIO_PROTECT
);
339 pragma Assert
(Result
= 0);
341 Result
:= pthread_mutexattr_setprioceiling
342 (Attributes
'Access, Interfaces
.C
.int
(System
.Any_Priority
'Last));
343 pragma Assert
(Result
= 0);
345 elsif Locking_Policy
= 'I' then
346 Result
:= pthread_mutexattr_setprotocol
347 (Attributes
'Access, PTHREAD_PRIO_INHERIT
);
348 pragma Assert
(Result
= 0);
351 Result
:= pthread_mutex_init
(L
, Attributes
'Access);
352 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
354 if Result
= ENOMEM
then
355 Result
:= pthread_mutexattr_destroy
(Attributes
'Access);
359 Result
:= pthread_mutexattr_destroy
(Attributes
'Access);
360 pragma Assert
(Result
= 0);
367 procedure Finalize_Lock
(L
: not null access Lock
) is
368 Result
: Interfaces
.C
.int
;
370 Result
:= pthread_mutex_destroy
(L
);
371 pragma Assert
(Result
= 0);
374 procedure Finalize_Lock
(L
: not null access RTS_Lock
) is
375 Result
: Interfaces
.C
.int
;
377 Result
:= pthread_mutex_destroy
(L
);
378 pragma Assert
(Result
= 0);
386 (L
: not null access Lock
; Ceiling_Violation
: out Boolean)
388 Result
: Interfaces
.C
.int
;
391 Result
:= pthread_mutex_lock
(L
);
393 -- Assume that the cause of EINVAL is a priority ceiling violation
395 Ceiling_Violation
:= (Result
= EINVAL
);
396 pragma Assert
(Result
= 0 or else Result
= EINVAL
);
400 (L
: not null access RTS_Lock
;
401 Global_Lock
: Boolean := False)
403 Result
: Interfaces
.C
.int
;
405 if not Single_Lock
or else Global_Lock
then
406 Result
:= pthread_mutex_lock
(L
);
407 pragma Assert
(Result
= 0);
411 procedure Write_Lock
(T
: Task_Id
) is
412 Result
: Interfaces
.C
.int
;
414 if not Single_Lock
then
415 Result
:= pthread_mutex_lock
(T
.Common
.LL
.L
'Access);
416 pragma Assert
(Result
= 0);
425 (L
: not null access Lock
; Ceiling_Violation
: out Boolean) is
427 Write_Lock
(L
, Ceiling_Violation
);
434 procedure Unlock
(L
: not null access Lock
) is
435 Result
: Interfaces
.C
.int
;
437 Result
:= pthread_mutex_unlock
(L
);
438 pragma Assert
(Result
= 0);
442 (L
: not null access RTS_Lock
; Global_Lock
: Boolean := False)
444 Result
: Interfaces
.C
.int
;
446 if not Single_Lock
or else Global_Lock
then
447 Result
:= pthread_mutex_unlock
(L
);
448 pragma Assert
(Result
= 0);
452 procedure Unlock
(T
: Task_Id
) is
453 Result
: Interfaces
.C
.int
;
455 if not Single_Lock
then
456 Result
:= pthread_mutex_unlock
(T
.Common
.LL
.L
'Access);
457 pragma Assert
(Result
= 0);
465 -- Dynamic priority ceilings are not supported by the underlying system
467 procedure Set_Ceiling
468 (L
: not null access Lock
;
469 Prio
: System
.Any_Priority
)
471 pragma Unreferenced
(L
, Prio
);
482 Reason
: System
.Tasking
.Task_States
)
484 pragma Unreferenced
(Reason
);
486 Result
: Interfaces
.C
.int
;
492 (Self_ID
.Common
.LL
.CV
'Access, Single_RTS_Lock
'Access);
496 (Self_ID
.Common
.LL
.CV
'Access, Self_ID
.Common
.LL
.L
'Access);
499 -- EINTR is not considered a failure
501 pragma Assert
(Result
= 0 or else Result
= EINTR
);
508 -- This is for use within the run-time system, so abort is
509 -- assumed to be already deferred, and the caller should be
510 -- holding its own ATCB lock.
512 procedure Timed_Sleep
515 Mode
: ST
.Delay_Modes
;
516 Reason
: Task_States
;
517 Timedout
: out Boolean;
518 Yielded
: out Boolean)
520 pragma Unreferenced
(Reason
);
522 Base_Time
: constant Duration := Monotonic_Clock
;
523 Check_Time
: Duration := Base_Time
;
526 Request
: aliased timespec
;
527 Result
: Interfaces
.C
.int
;
533 if Mode
= Relative
then
534 Abs_Time
:= Duration'Min (Time
, Max_Sensible_Delay
) + Check_Time
;
536 if Relative_Timed_Wait
then
537 Rel_Time
:= Duration'Min (Max_Sensible_Delay
, Time
);
541 Abs_Time
:= Duration'Min (Check_Time
+ Max_Sensible_Delay
, Time
);
543 if Relative_Timed_Wait
then
544 Rel_Time
:= Duration'Min (Max_Sensible_Delay
, Time
- Check_Time
);
548 if Abs_Time
> Check_Time
then
549 if Relative_Timed_Wait
then
550 Request
:= To_Timespec
(Rel_Time
);
552 Request
:= To_Timespec
(Abs_Time
);
556 exit when Self_ID
.Pending_ATC_Level
< Self_ID
.ATC_Nesting_Level
;
560 pthread_cond_timedwait
561 (Self_ID
.Common
.LL
.CV
'Access, Single_RTS_Lock
'Access,
566 pthread_cond_timedwait
567 (Self_ID
.Common
.LL
.CV
'Access, Self_ID
.Common
.LL
.L
'Access,
571 Check_Time
:= Monotonic_Clock
;
572 exit when Abs_Time
<= Check_Time
or else Check_Time
< Base_Time
;
574 if Result
= 0 or Result
= EINTR
then
576 -- Somebody may have called Wakeup for us
582 pragma Assert
(Result
= ETIMEDOUT
);
591 -- This is for use in implementing delay statements, so we assume the
592 -- caller is abort-deferred but is holding no locks.
594 procedure Timed_Delay
597 Mode
: ST
.Delay_Modes
)
599 Base_Time
: constant Duration := Monotonic_Clock
;
600 Check_Time
: Duration := Base_Time
;
603 Request
: aliased timespec
;
605 Result
: Interfaces
.C
.int
;
606 pragma Warnings
(Off
, Result
);
613 Write_Lock
(Self_ID
);
615 if Mode
= Relative
then
616 Abs_Time
:= Duration'Min (Time
, Max_Sensible_Delay
) + Check_Time
;
618 if Relative_Timed_Wait
then
619 Rel_Time
:= Duration'Min (Max_Sensible_Delay
, Time
);
623 Abs_Time
:= Duration'Min (Check_Time
+ Max_Sensible_Delay
, Time
);
625 if Relative_Timed_Wait
then
626 Rel_Time
:= Duration'Min (Max_Sensible_Delay
, Time
- Check_Time
);
630 if Abs_Time
> Check_Time
then
631 if Relative_Timed_Wait
then
632 Request
:= To_Timespec
(Rel_Time
);
634 Request
:= To_Timespec
(Abs_Time
);
637 Self_ID
.Common
.State
:= Delay_Sleep
;
640 exit when Self_ID
.Pending_ATC_Level
< Self_ID
.ATC_Nesting_Level
;
643 Result
:= pthread_cond_timedwait
644 (Self_ID
.Common
.LL
.CV
'Access,
645 Single_RTS_Lock
'Access,
648 Result
:= pthread_cond_timedwait
649 (Self_ID
.Common
.LL
.CV
'Access,
650 Self_ID
.Common
.LL
.L
'Access,
654 Check_Time
:= Monotonic_Clock
;
655 exit when Abs_Time
<= Check_Time
or else Check_Time
< Base_Time
;
657 pragma Assert
(Result
= 0
658 or else Result
= ETIMEDOUT
659 or else Result
= EINTR
);
662 Self_ID
.Common
.State
:= Runnable
;
671 Result
:= sched_yield
;
674 ---------------------
675 -- Monotonic_Clock --
676 ---------------------
678 function Monotonic_Clock
return Duration is
679 TS
: aliased timespec
;
680 Result
: Interfaces
.C
.int
;
682 Result
:= clock_gettime
683 (clock_id
=> CLOCK_REALTIME
, tp
=> TS
'Unchecked_Access);
684 pragma Assert
(Result
= 0);
685 return To_Duration
(TS
);
692 function RT_Resolution
return Duration is
701 procedure Wakeup
(T
: Task_Id
; Reason
: System
.Tasking
.Task_States
) is
702 pragma Unreferenced
(Reason
);
703 Result
: Interfaces
.C
.int
;
705 Result
:= pthread_cond_signal
(T
.Common
.LL
.CV
'Access);
706 pragma Assert
(Result
= 0);
713 procedure Yield
(Do_Yield
: Boolean := True) is
714 Result
: Interfaces
.C
.int
;
715 pragma Unreferenced
(Result
);
718 Result
:= sched_yield
;
726 procedure Set_Priority
728 Prio
: System
.Any_Priority
;
729 Loss_Of_Inheritance
: Boolean := False)
731 pragma Unreferenced
(Loss_Of_Inheritance
);
733 Result
: Interfaces
.C
.int
;
734 Param
: aliased struct_sched_param
;
736 function Get_Policy
(Prio
: System
.Any_Priority
) return Character;
737 pragma Import
(C
, Get_Policy
, "__gnat_get_specific_dispatching");
738 -- Get priority specific dispatching policy
740 Priority_Specific_Policy
: constant Character := Get_Policy
(Prio
);
741 -- Upper case first character of the policy name corresponding to the
742 -- task as set by a Priority_Specific_Dispatching pragma.
745 T
.Common
.Current_Priority
:= Prio
;
746 Param
.sched_priority
:= To_Target_Priority
(Prio
);
748 if Time_Slice_Supported
749 and then (Dispatching_Policy
= 'R'
750 or else Priority_Specific_Policy
= 'R'
751 or else Time_Slice_Val
> 0)
753 Result
:= pthread_setschedparam
754 (T
.Common
.LL
.Thread
, SCHED_RR
, Param
'Access);
756 elsif Dispatching_Policy
= 'F'
757 or else Priority_Specific_Policy
= 'F'
758 or else Time_Slice_Val
= 0
760 Result
:= pthread_setschedparam
761 (T
.Common
.LL
.Thread
, SCHED_FIFO
, Param
'Access);
764 Result
:= pthread_setschedparam
765 (T
.Common
.LL
.Thread
, SCHED_OTHER
, Param
'Access);
768 pragma Assert
(Result
= 0);
775 function Get_Priority
(T
: Task_Id
) return System
.Any_Priority
is
777 return T
.Common
.Current_Priority
;
784 procedure Enter_Task
(Self_ID
: Task_Id
) is
786 Self_ID
.Common
.LL
.Thread
:= pthread_self
;
787 Self_ID
.Common
.LL
.LWP
:= lwp_self
;
789 Specific
.Set
(Self_ID
);
791 if Use_Alternate_Stack
then
793 Stack
: aliased stack_t
;
794 Result
: Interfaces
.C
.int
;
796 Stack
.ss_sp
:= Self_ID
.Common
.Task_Alternate_Stack
;
797 Stack
.ss_size
:= Alternate_Stack_Size
;
799 Result
:= sigaltstack
(Stack
'Access, null);
800 pragma Assert
(Result
= 0);
809 function New_ATCB
(Entry_Num
: Task_Entry_Index
) return Task_Id
is
811 return new Ada_Task_Control_Block
(Entry_Num
);
818 function Is_Valid_Task
return Boolean renames Specific
.Is_Valid_Task
;
820 -----------------------------
821 -- Register_Foreign_Thread --
822 -----------------------------
824 function Register_Foreign_Thread
return Task_Id
is
826 if Is_Valid_Task
then
829 return Register_Foreign_Thread
(pthread_self
);
831 end Register_Foreign_Thread
;
837 procedure Initialize_TCB
(Self_ID
: Task_Id
; Succeeded
: out Boolean) is
838 Mutex_Attr
: aliased pthread_mutexattr_t
;
839 Result
: Interfaces
.C
.int
;
840 Cond_Attr
: aliased pthread_condattr_t
;
843 -- Give the task a unique serial number
845 Self_ID
.Serial_Number
:= Next_Serial_Number
;
846 Next_Serial_Number
:= Next_Serial_Number
+ 1;
847 pragma Assert
(Next_Serial_Number
/= 0);
849 if not Single_Lock
then
850 Result
:= pthread_mutexattr_init
(Mutex_Attr
'Access);
851 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
854 if Locking_Policy
= 'C' then
856 pthread_mutexattr_setprotocol
858 PTHREAD_PRIO_PROTECT
);
859 pragma Assert
(Result
= 0);
862 pthread_mutexattr_setprioceiling
864 Interfaces
.C
.int
(System
.Any_Priority
'Last));
865 pragma Assert
(Result
= 0);
867 elsif Locking_Policy
= 'I' then
869 pthread_mutexattr_setprotocol
871 PTHREAD_PRIO_INHERIT
);
872 pragma Assert
(Result
= 0);
877 (Self_ID
.Common
.LL
.L
'Access,
879 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
887 Result
:= pthread_mutexattr_destroy
(Mutex_Attr
'Access);
888 pragma Assert
(Result
= 0);
891 Result
:= pthread_condattr_init
(Cond_Attr
'Access);
892 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
897 (Self_ID
.Common
.LL
.CV
'Access, Cond_Attr
'Access);
898 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
904 if not Single_Lock
then
905 Result
:= pthread_mutex_destroy
(Self_ID
.Common
.LL
.L
'Access);
906 pragma Assert
(Result
= 0);
912 Result
:= pthread_condattr_destroy
(Cond_Attr
'Access);
913 pragma Assert
(Result
= 0);
920 procedure Create_Task
922 Wrapper
: System
.Address
;
923 Stack_Size
: System
.Parameters
.Size_Type
;
924 Priority
: System
.Any_Priority
;
925 Succeeded
: out Boolean)
927 Attributes
: aliased pthread_attr_t
;
928 Adjusted_Stack_Size
: Interfaces
.C
.size_t
;
929 Page_Size
: constant Interfaces
.C
.size_t
:= Get_Page_Size
;
930 Result
: Interfaces
.C
.int
;
932 function Thread_Body_Access
is new
933 Ada
.Unchecked_Conversion
(System
.Address
, Thread_Body
);
935 use System
.Task_Info
;
938 Adjusted_Stack_Size
:=
939 Interfaces
.C
.size_t
(Stack_Size
+ Alternate_Stack_Size
);
941 if Stack_Base_Available
then
943 -- If Stack Checking is supported then allocate 2 additional pages:
945 -- In the worst case, stack is allocated at something like
946 -- N * Get_Page_Size - epsilon, we need to add the size for 2 pages
947 -- to be sure the effective stack size is greater than what
950 Adjusted_Stack_Size
:= Adjusted_Stack_Size
+ 2 * Page_Size
;
953 -- Round stack size as this is required by some OSes (Darwin)
955 Adjusted_Stack_Size
:= Adjusted_Stack_Size
+ Page_Size
- 1;
956 Adjusted_Stack_Size
:=
957 Adjusted_Stack_Size
- Adjusted_Stack_Size
mod Page_Size
;
959 Result
:= pthread_attr_init
(Attributes
'Access);
960 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
968 pthread_attr_setdetachstate
969 (Attributes
'Access, PTHREAD_CREATE_DETACHED
);
970 pragma Assert
(Result
= 0);
973 pthread_attr_setstacksize
974 (Attributes
'Access, Adjusted_Stack_Size
);
975 pragma Assert
(Result
= 0);
977 if T
.Common
.Task_Info
/= Default_Scope
then
978 case T
.Common
.Task_Info
is
979 when System
.Task_Info
.Process_Scope
=>
981 pthread_attr_setscope
982 (Attributes
'Access, PTHREAD_SCOPE_PROCESS
);
984 when System
.Task_Info
.System_Scope
=>
986 pthread_attr_setscope
987 (Attributes
'Access, PTHREAD_SCOPE_SYSTEM
);
989 when System
.Task_Info
.Default_Scope
=>
993 pragma Assert
(Result
= 0);
996 -- Since the initial signal mask of a thread is inherited from the
997 -- creator, and the Environment task has all its signals masked, we
998 -- do not need to manipulate caller's signal mask at this point.
999 -- All tasks in RTS will have All_Tasks_Mask initially.
1001 Result
:= pthread_create
1002 (T
.Common
.LL
.Thread
'Access,
1004 Thread_Body_Access
(Wrapper
),
1006 pragma Assert
(Result
= 0 or else Result
= EAGAIN
);
1008 Succeeded
:= Result
= 0;
1010 Result
:= pthread_attr_destroy
(Attributes
'Access);
1011 pragma Assert
(Result
= 0);
1014 Set_Priority
(T
, Priority
);
1022 procedure Finalize_TCB
(T
: Task_Id
) is
1023 Result
: Interfaces
.C
.int
;
1025 Is_Self
: constant Boolean := T
= Self
;
1027 procedure Free
is new
1028 Ada
.Unchecked_Deallocation
(Ada_Task_Control_Block
, Task_Id
);
1031 if not Single_Lock
then
1032 Result
:= pthread_mutex_destroy
(T
.Common
.LL
.L
'Access);
1033 pragma Assert
(Result
= 0);
1036 Result
:= pthread_cond_destroy
(T
.Common
.LL
.CV
'Access);
1037 pragma Assert
(Result
= 0);
1039 if T
.Known_Tasks_Index
/= -1 then
1040 Known_Tasks
(T
.Known_Tasks_Index
) := null;
1046 Specific
.Set
(null);
1054 procedure Exit_Task
is
1056 -- Mark this task as unknown, so that if Self is called, it won't
1057 -- return a dangling pointer.
1059 Specific
.Set
(null);
1066 procedure Abort_Task
(T
: Task_Id
) is
1067 Result
: Interfaces
.C
.int
;
1071 (T
.Common
.LL
.Thread
,
1072 Signal
(System
.Interrupt_Management
.Abort_Task_Interrupt
));
1073 pragma Assert
(Result
= 0);
1080 procedure Initialize
(S
: in out Suspension_Object
) is
1081 Mutex_Attr
: aliased pthread_mutexattr_t
;
1082 Cond_Attr
: aliased pthread_condattr_t
;
1083 Result
: Interfaces
.C
.int
;
1086 -- Initialize internal state (always to False (RM D.10 (6)))
1091 -- Initialize internal mutex
1093 Result
:= pthread_mutexattr_init
(Mutex_Attr
'Access);
1094 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
1096 if Result
= ENOMEM
then
1097 raise Storage_Error
;
1100 Result
:= pthread_mutex_init
(S
.L
'Access, Mutex_Attr
'Access);
1101 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
1103 if Result
= ENOMEM
then
1104 Result
:= pthread_mutexattr_destroy
(Mutex_Attr
'Access);
1105 pragma Assert
(Result
= 0);
1107 raise Storage_Error
;
1110 Result
:= pthread_mutexattr_destroy
(Mutex_Attr
'Access);
1111 pragma Assert
(Result
= 0);
1113 -- Initialize internal condition variable
1115 Result
:= pthread_condattr_init
(Cond_Attr
'Access);
1116 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
1119 Result
:= pthread_mutex_destroy
(S
.L
'Access);
1120 pragma Assert
(Result
= 0);
1122 if Result
= ENOMEM
then
1123 raise Storage_Error
;
1127 Result
:= pthread_cond_init
(S
.CV
'Access, Cond_Attr
'Access);
1128 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
1131 Result
:= pthread_mutex_destroy
(S
.L
'Access);
1132 pragma Assert
(Result
= 0);
1134 if Result
= ENOMEM
then
1135 Result
:= pthread_condattr_destroy
(Cond_Attr
'Access);
1136 pragma Assert
(Result
= 0);
1137 raise Storage_Error
;
1141 Result
:= pthread_condattr_destroy
(Cond_Attr
'Access);
1142 pragma Assert
(Result
= 0);
1149 procedure Finalize
(S
: in out Suspension_Object
) is
1150 Result
: Interfaces
.C
.int
;
1153 -- Destroy internal mutex
1155 Result
:= pthread_mutex_destroy
(S
.L
'Access);
1156 pragma Assert
(Result
= 0);
1158 -- Destroy internal condition variable
1160 Result
:= pthread_cond_destroy
(S
.CV
'Access);
1161 pragma Assert
(Result
= 0);
1168 function Current_State
(S
: Suspension_Object
) return Boolean is
1170 -- We do not want to use lock on this read operation. State is marked
1171 -- as Atomic so that we ensure that the value retrieved is correct.
1180 procedure Set_False
(S
: in out Suspension_Object
) is
1181 Result
: Interfaces
.C
.int
;
1184 SSL
.Abort_Defer
.all;
1186 Result
:= pthread_mutex_lock
(S
.L
'Access);
1187 pragma Assert
(Result
= 0);
1191 Result
:= pthread_mutex_unlock
(S
.L
'Access);
1192 pragma Assert
(Result
= 0);
1194 SSL
.Abort_Undefer
.all;
1201 procedure Set_True
(S
: in out Suspension_Object
) is
1202 Result
: Interfaces
.C
.int
;
1205 SSL
.Abort_Defer
.all;
1207 Result
:= pthread_mutex_lock
(S
.L
'Access);
1208 pragma Assert
(Result
= 0);
1210 -- If there is already a task waiting on this suspension object then
1211 -- we resume it, leaving the state of the suspension object to False,
1212 -- as it is specified in (RM D.10(9)). Otherwise, it just leaves
1213 -- the state to True.
1219 Result
:= pthread_cond_signal
(S
.CV
'Access);
1220 pragma Assert
(Result
= 0);
1226 Result
:= pthread_mutex_unlock
(S
.L
'Access);
1227 pragma Assert
(Result
= 0);
1229 SSL
.Abort_Undefer
.all;
1232 ------------------------
1233 -- Suspend_Until_True --
1234 ------------------------
1236 procedure Suspend_Until_True
(S
: in out Suspension_Object
) is
1237 Result
: Interfaces
.C
.int
;
1240 SSL
.Abort_Defer
.all;
1242 Result
:= pthread_mutex_lock
(S
.L
'Access);
1243 pragma Assert
(Result
= 0);
1247 -- Program_Error must be raised upon calling Suspend_Until_True
1248 -- if another task is already waiting on that suspension object
1251 Result
:= pthread_mutex_unlock
(S
.L
'Access);
1252 pragma Assert
(Result
= 0);
1254 SSL
.Abort_Undefer
.all;
1256 raise Program_Error
;
1259 -- Suspend the task if the state is False. Otherwise, the task
1260 -- continues its execution, and the state of the suspension object
1261 -- is set to False (ARM D.10 par. 9).
1269 -- Loop in case pthread_cond_wait returns earlier than expected
1270 -- (e.g. in case of EINTR caused by a signal).
1272 Result
:= pthread_cond_wait
(S
.CV
'Access, S
.L
'Access);
1273 pragma Assert
(Result
= 0 or else Result
= EINTR
);
1275 exit when not S
.Waiting
;
1279 Result
:= pthread_mutex_unlock
(S
.L
'Access);
1280 pragma Assert
(Result
= 0);
1282 SSL
.Abort_Undefer
.all;
1284 end Suspend_Until_True
;
1292 function Check_Exit
(Self_ID
: ST
.Task_Id
) return Boolean is
1293 pragma Unreferenced
(Self_ID
);
1298 --------------------
1299 -- Check_No_Locks --
1300 --------------------
1302 function Check_No_Locks
(Self_ID
: ST
.Task_Id
) return Boolean is
1303 pragma Unreferenced
(Self_ID
);
1308 ----------------------
1309 -- Environment_Task --
1310 ----------------------
1312 function Environment_Task
return Task_Id
is
1314 return Environment_Task_Id
;
1315 end Environment_Task
;
1321 procedure Lock_RTS
is
1323 Write_Lock
(Single_RTS_Lock
'Access, Global_Lock
=> True);
1330 procedure Unlock_RTS
is
1332 Unlock
(Single_RTS_Lock
'Access, Global_Lock
=> True);
1339 function Suspend_Task
1341 Thread_Self
: Thread_Id
) return Boolean
1343 pragma Unreferenced
(T
, Thread_Self
);
1352 function Resume_Task
1354 Thread_Self
: Thread_Id
) return Boolean
1356 pragma Unreferenced
(T
, Thread_Self
);
1361 --------------------
1362 -- Stop_All_Tasks --
1363 --------------------
1365 procedure Stop_All_Tasks
is
1374 function Stop_Task
(T
: ST
.Task_Id
) return Boolean is
1375 pragma Unreferenced
(T
);
1384 function Continue_Task
(T
: ST
.Task_Id
) return Boolean is
1385 pragma Unreferenced
(T
);
1394 procedure Initialize
(Environment_Task
: Task_Id
) is
1395 act
: aliased struct_sigaction
;
1396 old_act
: aliased struct_sigaction
;
1397 Tmp_Set
: aliased sigset_t
;
1398 Result
: Interfaces
.C
.int
;
1401 (Int
: System
.Interrupt_Management
.Interrupt_ID
) return Character;
1402 pragma Import
(C
, State
, "__gnat_get_interrupt_state");
1403 -- Get interrupt state. Defined in a-init.c
1404 -- The input argument is the interrupt number,
1405 -- and the result is one of the following:
1407 Default
: constant Character := 's';
1408 -- 'n' this interrupt not set by any Interrupt_State pragma
1409 -- 'u' Interrupt_State pragma set state to User
1410 -- 'r' Interrupt_State pragma set state to Runtime
1411 -- 's' Interrupt_State pragma set state to System (use "default"
1415 Environment_Task_Id
:= Environment_Task
;
1417 Interrupt_Management
.Initialize
;
1419 -- Prepare the set of signals that should unblocked in all tasks
1421 Result
:= sigemptyset
(Unblocked_Signal_Mask
'Access);
1422 pragma Assert
(Result
= 0);
1424 for J
in Interrupt_Management
.Interrupt_ID
loop
1425 if System
.Interrupt_Management
.Keep_Unmasked
(J
) then
1426 Result
:= sigaddset
(Unblocked_Signal_Mask
'Access, Signal
(J
));
1427 pragma Assert
(Result
= 0);
1431 -- Initialize the lock used to synchronize chain of all ATCBs
1433 Initialize_Lock
(Single_RTS_Lock
'Access, RTS_Lock_Level
);
1435 Specific
.Initialize
(Environment_Task
);
1437 if Use_Alternate_Stack
then
1438 Environment_Task
.Common
.Task_Alternate_Stack
:=
1439 Alternate_Stack
'Address;
1442 -- Make environment task known here because it doesn't go through
1443 -- Activate_Tasks, which does it for all other tasks.
1445 Known_Tasks
(Known_Tasks
'First) := Environment_Task
;
1446 Environment_Task
.Known_Tasks_Index
:= Known_Tasks
'First;
1448 Enter_Task
(Environment_Task
);
1450 -- Install the abort-signal handler
1453 (System
.Interrupt_Management
.Abort_Task_Interrupt
) /= Default
1456 act
.sa_handler
:= Abort_Handler
'Address;
1458 Result
:= sigemptyset
(Tmp_Set
'Access);
1459 pragma Assert
(Result
= 0);
1460 act
.sa_mask
:= Tmp_Set
;
1464 (Signal
(System
.Interrupt_Management
.Abort_Task_Interrupt
),
1465 act
'Unchecked_Access,
1466 old_act
'Unchecked_Access);
1467 pragma Assert
(Result
= 0);
1471 end System
.Task_Primitives
.Operations
;