1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
5 -- S Y S T E M . F A T _ G E N --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
30 ------------------------------------------------------------------------------
32 -- The implementation here is portable to any IEEE implementation. It does
33 -- not handle non-binary radix, and also assumes that model numbers and
34 -- machine numbers are basically identical, which is not true of all possible
35 -- floating-point implementations. On a non-IEEE machine, this body must be
36 -- specialized appropriately, or better still, its generic instantiations
37 -- should be replaced by efficient machine-specific code.
39 with Ada
.Unchecked_Conversion
;
41 package body System
.Fat_Gen
is
43 Float_Radix
: constant T
:= T
(T
'Machine_Radix);
44 Radix_To_M_Minus_1
: constant T
:= Float_Radix
** (T
'Machine_Mantissa - 1);
46 pragma Assert
(T
'Machine_Radix = 2);
47 -- This version does not handle radix 16
49 -- Constants for Decompose and Scaling
51 Rad
: constant T
:= T
(T
'Machine_Radix);
52 Invrad
: constant T
:= 1.0 / Rad
;
54 subtype Expbits
is Integer range 0 .. 6;
55 -- 2 ** (2 ** 7) might overflow. How big can radix-16 exponents get?
57 Log_Power
: constant array (Expbits
) of Integer := (1, 2, 4, 8, 16, 32, 64);
59 R_Power
: constant array (Expbits
) of T
:=
68 R_Neg_Power
: constant array (Expbits
) of T
:=
77 -----------------------
78 -- Local Subprograms --
79 -----------------------
81 procedure Decompose
(XX
: T
; Frac
: out T
; Expo
: out UI
);
82 -- Decomposes a floating-point number into fraction and exponent parts.
83 -- Both results are signed, with Frac having the sign of XX, and UI has
84 -- the sign of the exponent. The absolute value of Frac is in the range
85 -- 0.0 <= Frac < 1.0. If Frac = 0.0 or -0.0, then Expo is always zero.
87 function Gradual_Scaling
(Adjustment
: UI
) return T
;
88 -- Like Scaling with a first argument of 1.0, but returns the smallest
89 -- denormal rather than zero when the adjustment is smaller than
90 -- Machine_Emin. Used for Succ and Pred.
96 function Adjacent
(X
, Towards
: T
) return T
is
100 elsif Towards
> X
then
111 function Ceiling
(X
: T
) return T
is
112 XT
: constant T
:= Truncation
(X
);
127 function Compose
(Fraction
: T
; Exponent
: UI
) return T
is
130 pragma Unreferenced
(Arg_Exp
);
132 Decompose
(Fraction
, Arg_Frac
, Arg_Exp
);
133 return Scaling
(Arg_Frac
, Exponent
);
140 function Copy_Sign
(Value
, Sign
: T
) return T
is
143 function Is_Negative
(V
: T
) return Boolean;
144 pragma Import
(Intrinsic
, Is_Negative
);
149 if Is_Negative
(Sign
) then
160 procedure Decompose
(XX
: T
; Frac
: out T
; Expo
: out UI
) is
161 X
: constant T
:= T
'Machine (XX
);
168 -- More useful would be defining Expo to be T'Machine_Emin - 1 or
169 -- T'Machine_Emin - T'Machine_Mantissa, which would preserve
170 -- monotonicity of the exponent function ???
172 -- Check for infinities, transfinites, whatnot
174 elsif X
> T
'Safe_Last then
176 Expo
:= T
'Machine_Emax + 1;
178 elsif X
< T
'Safe_First then
180 Expo
:= T
'Machine_Emax + 2; -- how many extra negative values?
183 -- Case of nonzero finite x. Essentially, we just multiply
184 -- by Rad ** (+-2**N) to reduce the range.
190 -- Ax * Rad ** Ex is invariant
194 while Ax
>= R_Power
(Expbits
'Last) loop
195 Ax
:= Ax
* R_Neg_Power
(Expbits
'Last);
196 Ex
:= Ex
+ Log_Power
(Expbits
'Last);
201 for N
in reverse Expbits
'First .. Expbits
'Last - 1 loop
202 if Ax
>= R_Power
(N
) then
203 Ax
:= Ax
* R_Neg_Power
(N
);
204 Ex
:= Ex
+ Log_Power
(N
);
218 while Ax
< R_Neg_Power
(Expbits
'Last) loop
219 Ax
:= Ax
* R_Power
(Expbits
'Last);
220 Ex
:= Ex
- Log_Power
(Expbits
'Last);
223 -- Rad ** -64 <= Ax < 1
225 for N
in reverse Expbits
'First .. Expbits
'Last - 1 loop
226 if Ax
< R_Neg_Power
(N
) then
227 Ax
:= Ax
* R_Power
(N
);
228 Ex
:= Ex
- Log_Power
(N
);
231 -- R_Neg_Power (N) <= Ax < 1
250 function Exponent
(X
: T
) return UI
is
253 pragma Unreferenced
(X_Frac
);
255 Decompose
(X
, X_Frac
, X_Exp
);
263 function Floor
(X
: T
) return T
is
264 XT
: constant T
:= Truncation
(X
);
279 function Fraction
(X
: T
) return T
is
282 pragma Unreferenced
(X_Exp
);
284 Decompose
(X
, X_Frac
, X_Exp
);
288 ---------------------
289 -- Gradual_Scaling --
290 ---------------------
292 function Gradual_Scaling
(Adjustment
: UI
) return T
is
295 Ex
: UI
:= Adjustment
;
298 if Adjustment
< T
'Machine_Emin - 1 then
299 Y
:= 2.0 ** T
'Machine_Emin;
301 Ex
:= Ex
- T
'Machine_Emin;
303 Y
:= T
'Machine (Y
/ 2.0);
316 return Scaling
(1.0, Adjustment
);
324 function Leading_Part
(X
: T
; Radix_Digits
: UI
) return T
is
329 if Radix_Digits
>= T
'Machine_Mantissa then
332 elsif Radix_Digits
<= 0 then
333 raise Constraint_Error
;
336 L
:= Exponent
(X
) - Radix_Digits
;
337 Y
:= Truncation
(Scaling
(X
, -L
));
347 -- The trick with Machine is to force the compiler to store the result
348 -- in memory so that we do not have extra precision used. The compiler
349 -- is clever, so we have to outwit its possible optimizations! We do
350 -- this by using an intermediate pragma Volatile location.
352 function Machine
(X
: T
) return T
is
354 pragma Volatile
(Temp
);
360 ----------------------
361 -- Machine_Rounding --
362 ----------------------
364 -- For now, the implementation is identical to that of Rounding, which is
365 -- a permissible behavior, but is not the most efficient possible approach.
367 function Machine_Rounding
(X
: T
) return T
is
372 Result
:= Truncation
(abs X
);
373 Tail
:= abs X
- Result
;
376 Result
:= Result
+ 1.0;
385 -- For zero case, make sure sign of zero is preserved
390 end Machine_Rounding
;
396 -- We treat Model as identical to Machine. This is true of IEEE and other
397 -- nice floating-point systems, but not necessarily true of all systems.
399 function Model
(X
: T
) return T
is
408 -- Subtract from the given number a number equivalent to the value of its
409 -- least significant bit. Given that the most significant bit represents
410 -- a value of 1.0 * radix ** (exp - 1), the value we want is obtained by
411 -- shifting this by (mantissa-1) bits to the right, i.e. decreasing the
412 -- exponent by that amount.
414 -- Zero has to be treated specially, since its exponent is zero
416 function Pred
(X
: T
) return T
is
425 Decompose
(X
, X_Frac
, X_Exp
);
427 -- A special case, if the number we had was a positive power of
428 -- two, then we want to subtract half of what we would otherwise
429 -- subtract, since the exponent is going to be reduced.
431 -- Note that X_Frac has the same sign as X, so if X_Frac is 0.5,
432 -- then we know that we have a positive number (and hence a
433 -- positive power of 2).
436 return X
- Gradual_Scaling
(X_Exp
- T
'Machine_Mantissa - 1);
438 -- Otherwise the exponent is unchanged
441 return X
- Gradual_Scaling
(X_Exp
- T
'Machine_Mantissa);
450 function Remainder
(X
, Y
: T
) return T
is
464 pragma Unreferenced
(Arg_Frac
);
468 raise Constraint_Error
;
484 P_Exp
:= Exponent
(P
);
487 Decompose
(Arg
, Arg_Frac
, Arg_Exp
);
488 Decompose
(P
, P_Frac
, P_Exp
);
490 P
:= Compose
(P_Frac
, Arg_Exp
);
491 K
:= Arg_Exp
- P_Exp
;
495 for Cnt
in reverse 0 .. K
loop
496 if IEEE_Rem
>= P
then
498 IEEE_Rem
:= IEEE_Rem
- P
;
507 -- That completes the calculation of modulus remainder. The final
508 -- step is get the IEEE remainder. Here we need to compare Rem with
509 -- (abs Y) / 2. We must be careful of unrepresentable Y/2 value
510 -- caused by subnormal numbers
521 if A
> B
or else (A
= B
and then not P_Even
) then
522 IEEE_Rem
:= IEEE_Rem
- abs Y
;
525 return Sign_X
* IEEE_Rem
;
532 function Rounding
(X
: T
) return T
is
537 Result
:= Truncation
(abs X
);
538 Tail
:= abs X
- Result
;
541 Result
:= Result
+ 1.0;
550 -- For zero case, make sure sign of zero is preserved
561 -- Return x * rad ** adjustment quickly,
562 -- or quietly underflow to zero, or overflow naturally.
564 function Scaling
(X
: T
; Adjustment
: UI
) return T
is
566 if X
= 0.0 or else Adjustment
= 0 then
570 -- Nonzero x essentially, just multiply repeatedly by Rad ** (+-2**n)
574 Ex
: UI
:= Adjustment
;
576 -- Y * Rad ** Ex is invariant
580 while Ex
<= -Log_Power
(Expbits
'Last) loop
581 Y
:= Y
* R_Neg_Power
(Expbits
'Last);
582 Ex
:= Ex
+ Log_Power
(Expbits
'Last);
587 for N
in reverse Expbits
'First .. Expbits
'Last - 1 loop
588 if Ex
<= -Log_Power
(N
) then
589 Y
:= Y
* R_Neg_Power
(N
);
590 Ex
:= Ex
+ Log_Power
(N
);
593 -- -Log_Power (N) < Ex <= 0
601 while Ex
>= Log_Power
(Expbits
'Last) loop
602 Y
:= Y
* R_Power
(Expbits
'Last);
603 Ex
:= Ex
- Log_Power
(Expbits
'Last);
608 for N
in reverse Expbits
'First .. Expbits
'Last - 1 loop
609 if Ex
>= Log_Power
(N
) then
610 Y
:= Y
* R_Power
(N
);
611 Ex
:= Ex
- Log_Power
(N
);
614 -- 0 <= Ex < Log_Power (N)
629 -- Similar computation to that of Pred: find value of least significant
630 -- bit of given number, and add. Zero has to be treated specially since
631 -- the exponent can be zero, and also we want the smallest denormal if
632 -- denormals are supported.
634 function Succ
(X
: T
) return T
is
641 X1
:= 2.0 ** T
'Machine_Emin;
643 -- Following loop generates smallest denormal
646 X2
:= T
'Machine (X1
/ 2.0);
654 Decompose
(X
, X_Frac
, X_Exp
);
656 -- A special case, if the number we had was a negative power of
657 -- two, then we want to add half of what we would otherwise add,
658 -- since the exponent is going to be reduced.
660 -- Note that X_Frac has the same sign as X, so if X_Frac is -0.5,
661 -- then we know that we have a negative number (and hence a
662 -- negative power of 2).
664 if X_Frac
= -0.5 then
665 return X
+ Gradual_Scaling
(X_Exp
- T
'Machine_Mantissa - 1);
667 -- Otherwise the exponent is unchanged
670 return X
+ Gradual_Scaling
(X_Exp
- T
'Machine_Mantissa);
679 -- The basic approach is to compute
681 -- T'Machine (RM1 + N) - RM1
683 -- where N >= 0.0 and RM1 = radix ** (mantissa - 1)
685 -- This works provided that the intermediate result (RM1 + N) does not
686 -- have extra precision (which is why we call Machine). When we compute
687 -- RM1 + N, the exponent of N will be normalized and the mantissa shifted
688 -- shifted appropriately so the lower order bits, which cannot contribute
689 -- to the integer part of N, fall off on the right. When we subtract RM1
690 -- again, the significant bits of N are shifted to the left, and what we
691 -- have is an integer, because only the first e bits are different from
692 -- zero (assuming binary radix here).
694 function Truncation
(X
: T
) return T
is
700 if Result
>= Radix_To_M_Minus_1
then
704 Result
:= Machine
(Radix_To_M_Minus_1
+ Result
) - Radix_To_M_Minus_1
;
706 if Result
> abs X
then
707 Result
:= Result
- 1.0;
716 -- For zero case, make sure sign of zero is preserved
724 -----------------------
725 -- Unbiased_Rounding --
726 -----------------------
728 function Unbiased_Rounding
(X
: T
) return T
is
729 Abs_X
: constant T
:= abs X
;
734 Result
:= Truncation
(Abs_X
);
735 Tail
:= Abs_X
- Result
;
738 Result
:= Result
+ 1.0;
740 elsif Tail
= 0.5 then
741 Result
:= 2.0 * Truncation
((Result
/ 2.0) + 0.5);
750 -- For zero case, make sure sign of zero is preserved
755 end Unbiased_Rounding
;
761 -- Note: this routine does not work for VAX float. We compensate for this
762 -- in Exp_Attr by using the Valid functions in Vax_Float_Operations rather
763 -- than the corresponding instantiation of this function.
765 function Valid
(X
: not null access T
) return Boolean is
767 IEEE_Emin
: constant Integer := T
'Machine_Emin - 1;
768 IEEE_Emax
: constant Integer := T
'Machine_Emax - 1;
770 IEEE_Bias
: constant Integer := -(IEEE_Emin
- 1);
772 subtype IEEE_Exponent_Range
is
773 Integer range IEEE_Emin
- 1 .. IEEE_Emax
+ 1;
775 -- The implementation of this floating point attribute uses a
776 -- representation type Float_Rep that allows direct access to the
777 -- exponent and mantissa parts of a floating point number.
779 -- The Float_Rep type is an array of Float_Word elements. This
780 -- representation is chosen to make it possible to size the type based
781 -- on a generic parameter. Since the array size is known at compile
782 -- time, efficient code can still be generated. The size of Float_Word
783 -- elements should be large enough to allow accessing the exponent in
784 -- one read, but small enough so that all floating point object sizes
785 -- are a multiple of the Float_Word'Size.
787 -- The following conditions must be met for all possible
788 -- instantiations of the attributes package:
790 -- - T'Size is an integral multiple of Float_Word'Size
792 -- - The exponent and sign are completely contained in a single
793 -- component of Float_Rep, named Most_Significant_Word (MSW).
795 -- - The sign occupies the most significant bit of the MSW and the
796 -- exponent is in the following bits. Unused bits (if any) are in
797 -- the least significant part.
799 type Float_Word
is mod 2**Positive'Min (System
.Word_Size
, 32);
800 type Rep_Index
is range 0 .. 7;
802 Rep_Words
: constant Positive :=
803 (T
'Size + Float_Word
'Size - 1) / Float_Word
'Size;
804 Rep_Last
: constant Rep_Index
:= Rep_Index
'Min
805 (Rep_Index
(Rep_Words
- 1), (T
'Mantissa + 16) / Float_Word
'Size);
806 -- Determine the number of Float_Words needed for representing the
807 -- entire floating-point value. Do not take into account excessive
808 -- padding, as occurs on IA-64 where 80 bits floats get padded to 128
809 -- bits. In general, the exponent field cannot be larger than 15 bits,
810 -- even for 128-bit floating-point types, so the final format size
811 -- won't be larger than T'Mantissa + 16.
814 array (Rep_Index
range 0 .. Rep_Index
(Rep_Words
- 1)) of Float_Word
;
816 pragma Suppress_Initialization
(Float_Rep
);
817 -- This pragma suppresses the generation of an initialization procedure
818 -- for type Float_Rep when operating in Initialize/Normalize_Scalars
819 -- mode. This is not just a matter of efficiency, but of functionality,
820 -- since Valid has a pragma Inline_Always, which is not permitted if
821 -- there are nested subprograms present.
823 Most_Significant_Word
: constant Rep_Index
:=
824 Rep_Last
* Standard
'Default_Bit_Order;
825 -- Finding the location of the Exponent_Word is a bit tricky. In general
826 -- we assume Word_Order = Bit_Order. This expression needs to be refined
829 Exponent_Factor
: constant Float_Word
:=
830 2**(Float_Word
'Size - 1) /
831 Float_Word
(IEEE_Emax
- IEEE_Emin
+ 3) *
832 Boolean'Pos (Most_Significant_Word
/= 2) +
833 Boolean'Pos (Most_Significant_Word
= 2);
834 -- Factor that the extracted exponent needs to be divided by to be in
835 -- range 0 .. IEEE_Emax - IEEE_Emin + 2. Special kludge: Exponent_Factor
836 -- is 1 for x86/IA64 double extended as GCC adds unused bits to the
839 Exponent_Mask
: constant Float_Word
:=
840 Float_Word
(IEEE_Emax
- IEEE_Emin
+ 2) *
842 -- Value needed to mask out the exponent field. This assumes that the
843 -- range IEEE_Emin - 1 .. IEEE_Emax + contains 2**N values, for some N
846 function To_Float
is new Ada
.Unchecked_Conversion
(Float_Rep
, T
);
848 type Float_Access
is access all T
;
849 function To_Address
is
850 new Ada
.Unchecked_Conversion
(Float_Access
, System
.Address
);
852 XA
: constant System
.Address
:= To_Address
(Float_Access
(X
));
855 pragma Import
(Ada
, R
);
856 for R
'Address use XA
;
857 -- R is a view of the input floating-point parameter. Note that we
858 -- must avoid copying the actual bits of this parameter in float
859 -- form (since it may be a signalling NaN.
861 E
: constant IEEE_Exponent_Range
:=
862 Integer ((R
(Most_Significant_Word
) and Exponent_Mask
) /
865 -- Mask/Shift T to only get bits from the exponent. Then convert biased
866 -- value to integer value.
869 -- Float_Rep representation of significant of X.all
874 -- All denormalized numbers are valid, so the only invalid numbers
875 -- are overflows and NaNs, both with exponent = Emax + 1.
877 return E
/= IEEE_Emax
+ 1;
881 -- All denormalized numbers except 0.0 are invalid
883 -- Set exponent of X to zero, so we end up with the significand, which
884 -- definitely is a valid number and can be converted back to a float.
887 SR
(Most_Significant_Word
) :=
888 (SR
(Most_Significant_Word
)
889 and not Exponent_Mask
) + Float_Word
(IEEE_Bias
) * Exponent_Factor
;
891 return (E
in IEEE_Emin
.. IEEE_Emax
) or else
892 ((E
= IEEE_Emin
- 1) and then abs To_Float
(SR
) = 1.0);
895 ---------------------
896 -- Unaligned_Valid --
897 ---------------------
899 function Unaligned_Valid
(A
: System
.Address
) return Boolean is
900 subtype FS
is String (1 .. T
'Size / Character'Size);
901 type FSP
is access FS
;
903 function To_FSP
is new Ada
.Unchecked_Conversion
(Address
, FSP
);
908 -- Note that we have to be sure that we do not load the value into a
909 -- floating-point register, since a signalling NaN may cause a trap.
910 -- The following assignment is what does the actual alignment, since
911 -- we know that the target Local_T is aligned.
913 To_FSP
(Local_T
'Address).all := To_FSP
(A
).all;
915 -- Now that we have an aligned value, we can use the normal aligned
916 -- version of Valid to obtain the required result.
918 return Valid
(Local_T
'Access);