Daily bump.
[official-gcc.git] / gcc / ada / a-nudira.ads
blob425aa6f9bc951d6423e317689ca2430b391d838e
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- A D A . N U M E R I C S . D I S C R E T E _ R A N D O M --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- This specification is derived from the Ada Reference Manual for use with --
12 -- GNAT. The copyright notice above, and the license provisions that follow --
13 -- apply solely to the contents of the part following the private keyword. --
14 -- --
15 -- GNAT is free software; you can redistribute it and/or modify it under --
16 -- terms of the GNU General Public License as published by the Free Soft- --
17 -- ware Foundation; either version 3, or (at your option) any later ver- --
18 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
19 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
20 -- or FITNESS FOR A PARTICULAR PURPOSE. --
21 -- --
22 -- As a special exception under Section 7 of GPL version 3, you are granted --
23 -- additional permissions described in the GCC Runtime Library Exception, --
24 -- version 3.1, as published by the Free Software Foundation. --
25 -- --
26 -- You should have received a copy of the GNU General Public License and --
27 -- a copy of the GCC Runtime Library Exception along with this program; --
28 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
29 -- <http://www.gnu.org/licenses/>. --
30 -- --
31 -- GNAT was originally developed by the GNAT team at New York University. --
32 -- Extensive contributions were provided by Ada Core Technologies Inc. --
33 -- --
34 ------------------------------------------------------------------------------
36 -- Note: the implementation used in this package was contributed by Robert
37 -- Eachus. It is based on the work of L. Blum, M. Blum, and M. Shub, SIAM
38 -- Journal of Computing, Vol 15. No 2, May 1986. The particular choices for P
39 -- and Q chosen here guarantee a period of 562,085,314,430,582 (about 2**49),
40 -- and the generated sequence has excellent randomness properties. For further
41 -- details, see the paper "Fast Generation of Trustworthy Random Numbers", by
42 -- Robert Eachus, which describes both the algorithm and the efficient
43 -- implementation approach used here.
45 with Interfaces;
47 generic
48 type Result_Subtype is (<>);
50 package Ada.Numerics.Discrete_Random is
52 -- The algorithm used here is reliable from a required statistical point of
53 -- view only up to 48 bits. We try to behave reasonably in the case of
54 -- larger types, but we can't guarantee the required properties. So
55 -- generate a warning for these (slightly) dubious cases.
57 pragma Compile_Time_Warning
58 (Result_Subtype'Size > 48,
59 "statistical properties not guaranteed for size > 48");
61 -- Basic facilities
63 type Generator is limited private;
65 function Random (Gen : Generator) return Result_Subtype;
67 procedure Reset (Gen : Generator);
68 procedure Reset (Gen : Generator; Initiator : Integer);
70 -- Advanced facilities
72 type State is private;
74 procedure Save (Gen : Generator; To_State : out State);
75 procedure Reset (Gen : Generator; From_State : State);
77 Max_Image_Width : constant := 80;
79 function Image (Of_State : State) return String;
80 function Value (Coded_State : String) return State;
82 private
83 subtype Int is Interfaces.Integer_32;
84 subtype Rst is Result_Subtype;
86 -- We prefer to use 14 digits for Flt, but some targets are more limited
88 type Flt is digits Positive'Min (14, Long_Long_Float'Digits);
90 RstF : constant Flt := Flt (Rst'Pos (Rst'First));
91 RstL : constant Flt := Flt (Rst'Pos (Rst'Last));
93 Offs : constant Flt := RstF - 0.5;
95 K1 : constant := 94_833_359;
96 K1F : constant := 94_833_359.0;
97 K2 : constant := 47_416_679;
98 K2F : constant := 47_416_679.0;
99 Scal : constant Flt := (RstL - RstF + 1.0) / (K1F * K2F);
101 type State is record
102 X1 : Int := Int (2999 ** 2);
103 X2 : Int := Int (1439 ** 2);
104 P : Int := K1;
105 Q : Int := K2;
106 FP : Flt := K1F;
107 Scl : Flt := Scal;
108 end record;
110 type Generator is limited record
111 Gen_State : State;
112 end record;
114 end Ada.Numerics.Discrete_Random;