Daily bump.
[official-gcc.git] / gcc / ada / a-ngcoty.adb
blob81cc68a718a265df2233bf5ef333d74c32c8d94a
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- A D A . N U M E R I C S . G E N E R I C _ C O M P L E X _ T Y P E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 with Ada.Numerics.Aux; use Ada.Numerics.Aux;
34 package body Ada.Numerics.Generic_Complex_Types is
36 subtype R is Real'Base;
38 Two_Pi : constant R := R (2.0) * Pi;
39 Half_Pi : constant R := Pi / R (2.0);
41 ---------
42 -- "*" --
43 ---------
45 function "*" (Left, Right : Complex) return Complex is
46 X : R;
47 Y : R;
49 begin
50 X := Left.Re * Right.Re - Left.Im * Right.Im;
51 Y := Left.Re * Right.Im + Left.Im * Right.Re;
53 -- If either component overflows, try to scale (skip in fast math mode)
55 if not Standard'Fast_Math then
56 if abs (X) > R'Last then
57 X := R'(4.0) * (R'(Left.Re / 2.0) * R'(Right.Re / 2.0)
58 - R'(Left.Im / 2.0) * R'(Right.Im / 2.0));
59 end if;
61 if abs (Y) > R'Last then
62 Y := R'(4.0) * (R'(Left.Re / 2.0) * R'(Right.Im / 2.0)
63 - R'(Left.Im / 2.0) * R'(Right.Re / 2.0));
64 end if;
65 end if;
67 return (X, Y);
68 end "*";
70 function "*" (Left, Right : Imaginary) return Real'Base is
71 begin
72 return -(R (Left) * R (Right));
73 end "*";
75 function "*" (Left : Complex; Right : Real'Base) return Complex is
76 begin
77 return Complex'(Left.Re * Right, Left.Im * Right);
78 end "*";
80 function "*" (Left : Real'Base; Right : Complex) return Complex is
81 begin
82 return (Left * Right.Re, Left * Right.Im);
83 end "*";
85 function "*" (Left : Complex; Right : Imaginary) return Complex is
86 begin
87 return Complex'(-(Left.Im * R (Right)), Left.Re * R (Right));
88 end "*";
90 function "*" (Left : Imaginary; Right : Complex) return Complex is
91 begin
92 return Complex'(-(R (Left) * Right.Im), R (Left) * Right.Re);
93 end "*";
95 function "*" (Left : Imaginary; Right : Real'Base) return Imaginary is
96 begin
97 return Left * Imaginary (Right);
98 end "*";
100 function "*" (Left : Real'Base; Right : Imaginary) return Imaginary is
101 begin
102 return Imaginary (Left * R (Right));
103 end "*";
105 ----------
106 -- "**" --
107 ----------
109 function "**" (Left : Complex; Right : Integer) return Complex is
110 Result : Complex := (1.0, 0.0);
111 Factor : Complex := Left;
112 Exp : Integer := Right;
114 begin
115 -- We use the standard logarithmic approach, Exp gets shifted right
116 -- testing successive low order bits and Factor is the value of the
117 -- base raised to the next power of 2. For positive exponents we
118 -- multiply the result by this factor, for negative exponents, we
119 -- divide by this factor.
121 if Exp >= 0 then
123 -- For a positive exponent, if we get a constraint error during
124 -- this loop, it is an overflow, and the constraint error will
125 -- simply be passed on to the caller.
127 while Exp /= 0 loop
128 if Exp rem 2 /= 0 then
129 Result := Result * Factor;
130 end if;
132 Factor := Factor * Factor;
133 Exp := Exp / 2;
134 end loop;
136 return Result;
138 else -- Exp < 0 then
140 -- For the negative exponent case, a constraint error during this
141 -- calculation happens if Factor gets too large, and the proper
142 -- response is to return 0.0, since what we essentially have is
143 -- 1.0 / infinity, and the closest model number will be zero.
145 begin
146 while Exp /= 0 loop
147 if Exp rem 2 /= 0 then
148 Result := Result * Factor;
149 end if;
151 Factor := Factor * Factor;
152 Exp := Exp / 2;
153 end loop;
155 return R'(1.0) / Result;
157 exception
158 when Constraint_Error =>
159 return (0.0, 0.0);
160 end;
161 end if;
162 end "**";
164 function "**" (Left : Imaginary; Right : Integer) return Complex is
165 M : constant R := R (Left) ** Right;
166 begin
167 case Right mod 4 is
168 when 0 => return (M, 0.0);
169 when 1 => return (0.0, M);
170 when 2 => return (-M, 0.0);
171 when 3 => return (0.0, -M);
172 when others => raise Program_Error;
173 end case;
174 end "**";
176 ---------
177 -- "+" --
178 ---------
180 function "+" (Right : Complex) return Complex is
181 begin
182 return Right;
183 end "+";
185 function "+" (Left, Right : Complex) return Complex is
186 begin
187 return Complex'(Left.Re + Right.Re, Left.Im + Right.Im);
188 end "+";
190 function "+" (Right : Imaginary) return Imaginary is
191 begin
192 return Right;
193 end "+";
195 function "+" (Left, Right : Imaginary) return Imaginary is
196 begin
197 return Imaginary (R (Left) + R (Right));
198 end "+";
200 function "+" (Left : Complex; Right : Real'Base) return Complex is
201 begin
202 return Complex'(Left.Re + Right, Left.Im);
203 end "+";
205 function "+" (Left : Real'Base; Right : Complex) return Complex is
206 begin
207 return Complex'(Left + Right.Re, Right.Im);
208 end "+";
210 function "+" (Left : Complex; Right : Imaginary) return Complex is
211 begin
212 return Complex'(Left.Re, Left.Im + R (Right));
213 end "+";
215 function "+" (Left : Imaginary; Right : Complex) return Complex is
216 begin
217 return Complex'(Right.Re, R (Left) + Right.Im);
218 end "+";
220 function "+" (Left : Imaginary; Right : Real'Base) return Complex is
221 begin
222 return Complex'(Right, R (Left));
223 end "+";
225 function "+" (Left : Real'Base; Right : Imaginary) return Complex is
226 begin
227 return Complex'(Left, R (Right));
228 end "+";
230 ---------
231 -- "-" --
232 ---------
234 function "-" (Right : Complex) return Complex is
235 begin
236 return (-Right.Re, -Right.Im);
237 end "-";
239 function "-" (Left, Right : Complex) return Complex is
240 begin
241 return (Left.Re - Right.Re, Left.Im - Right.Im);
242 end "-";
244 function "-" (Right : Imaginary) return Imaginary is
245 begin
246 return Imaginary (-R (Right));
247 end "-";
249 function "-" (Left, Right : Imaginary) return Imaginary is
250 begin
251 return Imaginary (R (Left) - R (Right));
252 end "-";
254 function "-" (Left : Complex; Right : Real'Base) return Complex is
255 begin
256 return Complex'(Left.Re - Right, Left.Im);
257 end "-";
259 function "-" (Left : Real'Base; Right : Complex) return Complex is
260 begin
261 return Complex'(Left - Right.Re, -Right.Im);
262 end "-";
264 function "-" (Left : Complex; Right : Imaginary) return Complex is
265 begin
266 return Complex'(Left.Re, Left.Im - R (Right));
267 end "-";
269 function "-" (Left : Imaginary; Right : Complex) return Complex is
270 begin
271 return Complex'(-Right.Re, R (Left) - Right.Im);
272 end "-";
274 function "-" (Left : Imaginary; Right : Real'Base) return Complex is
275 begin
276 return Complex'(-Right, R (Left));
277 end "-";
279 function "-" (Left : Real'Base; Right : Imaginary) return Complex is
280 begin
281 return Complex'(Left, -R (Right));
282 end "-";
284 ---------
285 -- "/" --
286 ---------
288 function "/" (Left, Right : Complex) return Complex is
289 a : constant R := Left.Re;
290 b : constant R := Left.Im;
291 c : constant R := Right.Re;
292 d : constant R := Right.Im;
294 begin
295 if c = 0.0 and then d = 0.0 then
296 raise Constraint_Error;
297 else
298 return Complex'(Re => ((a * c) + (b * d)) / (c ** 2 + d ** 2),
299 Im => ((b * c) - (a * d)) / (c ** 2 + d ** 2));
300 end if;
301 end "/";
303 function "/" (Left, Right : Imaginary) return Real'Base is
304 begin
305 return R (Left) / R (Right);
306 end "/";
308 function "/" (Left : Complex; Right : Real'Base) return Complex is
309 begin
310 return Complex'(Left.Re / Right, Left.Im / Right);
311 end "/";
313 function "/" (Left : Real'Base; Right : Complex) return Complex is
314 a : constant R := Left;
315 c : constant R := Right.Re;
316 d : constant R := Right.Im;
317 begin
318 return Complex'(Re => (a * c) / (c ** 2 + d ** 2),
319 Im => -((a * d) / (c ** 2 + d ** 2)));
320 end "/";
322 function "/" (Left : Complex; Right : Imaginary) return Complex is
323 a : constant R := Left.Re;
324 b : constant R := Left.Im;
325 d : constant R := R (Right);
327 begin
328 return (b / d, -(a / d));
329 end "/";
331 function "/" (Left : Imaginary; Right : Complex) return Complex is
332 b : constant R := R (Left);
333 c : constant R := Right.Re;
334 d : constant R := Right.Im;
336 begin
337 return (Re => b * d / (c ** 2 + d ** 2),
338 Im => b * c / (c ** 2 + d ** 2));
339 end "/";
341 function "/" (Left : Imaginary; Right : Real'Base) return Imaginary is
342 begin
343 return Imaginary (R (Left) / Right);
344 end "/";
346 function "/" (Left : Real'Base; Right : Imaginary) return Imaginary is
347 begin
348 return Imaginary (-(Left / R (Right)));
349 end "/";
351 ---------
352 -- "<" --
353 ---------
355 function "<" (Left, Right : Imaginary) return Boolean is
356 begin
357 return R (Left) < R (Right);
358 end "<";
360 ----------
361 -- "<=" --
362 ----------
364 function "<=" (Left, Right : Imaginary) return Boolean is
365 begin
366 return R (Left) <= R (Right);
367 end "<=";
369 ---------
370 -- ">" --
371 ---------
373 function ">" (Left, Right : Imaginary) return Boolean is
374 begin
375 return R (Left) > R (Right);
376 end ">";
378 ----------
379 -- ">=" --
380 ----------
382 function ">=" (Left, Right : Imaginary) return Boolean is
383 begin
384 return R (Left) >= R (Right);
385 end ">=";
387 -----------
388 -- "abs" --
389 -----------
391 function "abs" (Right : Imaginary) return Real'Base is
392 begin
393 return abs R (Right);
394 end "abs";
396 --------------
397 -- Argument --
398 --------------
400 function Argument (X : Complex) return Real'Base is
401 a : constant R := X.Re;
402 b : constant R := X.Im;
403 arg : R;
405 begin
406 if b = 0.0 then
408 if a >= 0.0 then
409 return 0.0;
410 else
411 return R'Copy_Sign (Pi, b);
412 end if;
414 elsif a = 0.0 then
416 if b >= 0.0 then
417 return Half_Pi;
418 else
419 return -Half_Pi;
420 end if;
422 else
423 arg := R (Atan (Double (abs (b / a))));
425 if a > 0.0 then
426 if b > 0.0 then
427 return arg;
428 else -- b < 0.0
429 return -arg;
430 end if;
432 else -- a < 0.0
433 if b >= 0.0 then
434 return Pi - arg;
435 else -- b < 0.0
436 return -(Pi - arg);
437 end if;
438 end if;
439 end if;
441 exception
442 when Constraint_Error =>
443 if b > 0.0 then
444 return Half_Pi;
445 else
446 return -Half_Pi;
447 end if;
448 end Argument;
450 function Argument (X : Complex; Cycle : Real'Base) return Real'Base is
451 begin
452 if Cycle > 0.0 then
453 return Argument (X) * Cycle / Two_Pi;
454 else
455 raise Argument_Error;
456 end if;
457 end Argument;
459 ----------------------------
460 -- Compose_From_Cartesian --
461 ----------------------------
463 function Compose_From_Cartesian (Re, Im : Real'Base) return Complex is
464 begin
465 return (Re, Im);
466 end Compose_From_Cartesian;
468 function Compose_From_Cartesian (Re : Real'Base) return Complex is
469 begin
470 return (Re, 0.0);
471 end Compose_From_Cartesian;
473 function Compose_From_Cartesian (Im : Imaginary) return Complex is
474 begin
475 return (0.0, R (Im));
476 end Compose_From_Cartesian;
478 ------------------------
479 -- Compose_From_Polar --
480 ------------------------
482 function Compose_From_Polar (
483 Modulus, Argument : Real'Base)
484 return Complex
486 begin
487 if Modulus = 0.0 then
488 return (0.0, 0.0);
489 else
490 return (Modulus * R (Cos (Double (Argument))),
491 Modulus * R (Sin (Double (Argument))));
492 end if;
493 end Compose_From_Polar;
495 function Compose_From_Polar (
496 Modulus, Argument, Cycle : Real'Base)
497 return Complex
499 Arg : Real'Base;
501 begin
502 if Modulus = 0.0 then
503 return (0.0, 0.0);
505 elsif Cycle > 0.0 then
506 if Argument = 0.0 then
507 return (Modulus, 0.0);
509 elsif Argument = Cycle / 4.0 then
510 return (0.0, Modulus);
512 elsif Argument = Cycle / 2.0 then
513 return (-Modulus, 0.0);
515 elsif Argument = 3.0 * Cycle / R (4.0) then
516 return (0.0, -Modulus);
517 else
518 Arg := Two_Pi * Argument / Cycle;
519 return (Modulus * R (Cos (Double (Arg))),
520 Modulus * R (Sin (Double (Arg))));
521 end if;
522 else
523 raise Argument_Error;
524 end if;
525 end Compose_From_Polar;
527 ---------------
528 -- Conjugate --
529 ---------------
531 function Conjugate (X : Complex) return Complex is
532 begin
533 return Complex'(X.Re, -X.Im);
534 end Conjugate;
536 --------
537 -- Im --
538 --------
540 function Im (X : Complex) return Real'Base is
541 begin
542 return X.Im;
543 end Im;
545 function Im (X : Imaginary) return Real'Base is
546 begin
547 return R (X);
548 end Im;
550 -------------
551 -- Modulus --
552 -------------
554 function Modulus (X : Complex) return Real'Base is
555 Re2, Im2 : R;
557 begin
559 begin
560 Re2 := X.Re ** 2;
562 -- To compute (a**2 + b**2) ** (0.5) when a**2 may be out of bounds,
563 -- compute a * (1 + (b/a) **2) ** (0.5). On a machine where the
564 -- squaring does not raise constraint_error but generates infinity,
565 -- we can use an explicit comparison to determine whether to use
566 -- the scaling expression.
568 -- The scaling expression is computed in double format throughout
569 -- in order to prevent inaccuracies on machines where not all
570 -- immediate expressions are rounded, such as PowerPC.
572 if Re2 > R'Last then
573 raise Constraint_Error;
574 end if;
576 exception
577 when Constraint_Error =>
578 return R (Double (abs (X.Re))
579 * Sqrt (1.0 + (Double (X.Im) / Double (X.Re)) ** 2));
580 end;
582 begin
583 Im2 := X.Im ** 2;
585 if Im2 > R'Last then
586 raise Constraint_Error;
587 end if;
589 exception
590 when Constraint_Error =>
591 return R (Double (abs (X.Im))
592 * Sqrt (1.0 + (Double (X.Re) / Double (X.Im)) ** 2));
593 end;
595 -- Now deal with cases of underflow. If only one of the squares
596 -- underflows, return the modulus of the other component. If both
597 -- squares underflow, use scaling as above.
599 if Re2 = 0.0 then
601 if X.Re = 0.0 then
602 return abs (X.Im);
604 elsif Im2 = 0.0 then
606 if X.Im = 0.0 then
607 return abs (X.Re);
609 else
610 if abs (X.Re) > abs (X.Im) then
611 return
612 R (Double (abs (X.Re))
613 * Sqrt (1.0 + (Double (X.Im) / Double (X.Re)) ** 2));
614 else
615 return
616 R (Double (abs (X.Im))
617 * Sqrt (1.0 + (Double (X.Re) / Double (X.Im)) ** 2));
618 end if;
619 end if;
621 else
622 return abs (X.Im);
623 end if;
625 elsif Im2 = 0.0 then
626 return abs (X.Re);
628 -- In all other cases, the naive computation will do
630 else
631 return R (Sqrt (Double (Re2 + Im2)));
632 end if;
633 end Modulus;
635 --------
636 -- Re --
637 --------
639 function Re (X : Complex) return Real'Base is
640 begin
641 return X.Re;
642 end Re;
644 ------------
645 -- Set_Im --
646 ------------
648 procedure Set_Im (X : in out Complex; Im : Real'Base) is
649 begin
650 X.Im := Im;
651 end Set_Im;
653 procedure Set_Im (X : out Imaginary; Im : Real'Base) is
654 begin
655 X := Imaginary (Im);
656 end Set_Im;
658 ------------
659 -- Set_Re --
660 ------------
662 procedure Set_Re (X : in out Complex; Re : Real'Base) is
663 begin
664 X.Re := Re;
665 end Set_Re;
667 end Ada.Numerics.Generic_Complex_Types;