1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
118 - pre/post modify transformation
126 #include "hard-reg-set.h"
127 #include "basic-block.h"
128 #include "insn-config.h"
132 #include "function.h"
141 #include "splay-tree.h"
143 #define obstack_chunk_alloc xmalloc
144 #define obstack_chunk_free free
146 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
147 the stack pointer does not matter. The value is tested only in
148 functions that have frame pointers.
149 No definition is equivalent to always zero. */
150 #ifndef EXIT_IGNORE_STACK
151 #define EXIT_IGNORE_STACK 0
154 #ifndef HAVE_epilogue
155 #define HAVE_epilogue 0
157 #ifndef HAVE_prologue
158 #define HAVE_prologue 0
160 #ifndef HAVE_sibcall_epilogue
161 #define HAVE_sibcall_epilogue 0
165 #define LOCAL_REGNO(REGNO) 0
167 #ifndef EPILOGUE_USES
168 #define EPILOGUE_USES(REGNO) 0
171 #define EH_USES(REGNO) 0
174 #ifdef HAVE_conditional_execution
175 #ifndef REVERSE_CONDEXEC_PREDICATES_P
176 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
180 /* Nonzero if the second flow pass has completed. */
183 /* Maximum register number used in this function, plus one. */
187 /* Indexed by n, giving various register information */
189 varray_type reg_n_info
;
191 /* Size of a regset for the current function,
192 in (1) bytes and (2) elements. */
197 /* Regset of regs live when calls to `setjmp'-like functions happen. */
198 /* ??? Does this exist only for the setjmp-clobbered warning message? */
200 regset regs_live_at_setjmp
;
202 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
203 that have to go in the same hard reg.
204 The first two regs in the list are a pair, and the next two
205 are another pair, etc. */
208 /* Callback that determines if it's ok for a function to have no
209 noreturn attribute. */
210 int (*lang_missing_noreturn_ok_p
) PARAMS ((tree
));
212 /* Set of registers that may be eliminable. These are handled specially
213 in updating regs_ever_live. */
215 static HARD_REG_SET elim_reg_set
;
217 /* Holds information for tracking conditional register life information. */
218 struct reg_cond_life_info
220 /* A boolean expression of conditions under which a register is dead. */
222 /* Conditions under which a register is dead at the basic block end. */
225 /* A boolean expression of conditions under which a register has been
229 /* ??? Could store mask of bytes that are dead, so that we could finally
230 track lifetimes of multi-word registers accessed via subregs. */
233 /* For use in communicating between propagate_block and its subroutines.
234 Holds all information needed to compute life and def-use information. */
236 struct propagate_block_info
238 /* The basic block we're considering. */
241 /* Bit N is set if register N is conditionally or unconditionally live. */
244 /* Bit N is set if register N is set this insn. */
247 /* Element N is the next insn that uses (hard or pseudo) register N
248 within the current basic block; or zero, if there is no such insn. */
251 /* Contains a list of all the MEMs we are tracking for dead store
255 /* If non-null, record the set of registers set unconditionally in the
259 /* If non-null, record the set of registers set conditionally in the
261 regset cond_local_set
;
263 #ifdef HAVE_conditional_execution
264 /* Indexed by register number, holds a reg_cond_life_info for each
265 register that is not unconditionally live or dead. */
266 splay_tree reg_cond_dead
;
268 /* Bit N is set if register N is in an expression in reg_cond_dead. */
272 /* The length of mem_set_list. */
273 int mem_set_list_len
;
275 /* Non-zero if the value of CC0 is live. */
278 /* Flags controling the set of information propagate_block collects. */
282 /* Maximum length of pbi->mem_set_list before we start dropping
283 new elements on the floor. */
284 #define MAX_MEM_SET_LIST_LEN 100
286 /* Forward declarations */
287 static int verify_wide_reg_1
PARAMS ((rtx
*, void *));
288 static void verify_wide_reg
PARAMS ((int, basic_block
));
289 static void verify_local_live_at_start
PARAMS ((regset
, basic_block
));
290 static void notice_stack_pointer_modification_1
PARAMS ((rtx
, rtx
, void *));
291 static void notice_stack_pointer_modification
PARAMS ((rtx
));
292 static void mark_reg
PARAMS ((rtx
, void *));
293 static void mark_regs_live_at_end
PARAMS ((regset
));
294 static int set_phi_alternative_reg
PARAMS ((rtx
, int, int, void *));
295 static void calculate_global_regs_live
PARAMS ((sbitmap
, sbitmap
, int));
296 static void propagate_block_delete_insn
PARAMS ((basic_block
, rtx
));
297 static rtx propagate_block_delete_libcall
PARAMS ((rtx
, rtx
));
298 static int insn_dead_p
PARAMS ((struct propagate_block_info
*,
300 static int libcall_dead_p
PARAMS ((struct propagate_block_info
*,
302 static void mark_set_regs
PARAMS ((struct propagate_block_info
*,
304 static void mark_set_1
PARAMS ((struct propagate_block_info
*,
305 enum rtx_code
, rtx
, rtx
,
307 static int find_regno_partial
PARAMS ((rtx
*, void *));
309 #ifdef HAVE_conditional_execution
310 static int mark_regno_cond_dead
PARAMS ((struct propagate_block_info
*,
312 static void free_reg_cond_life_info
PARAMS ((splay_tree_value
));
313 static int flush_reg_cond_reg_1
PARAMS ((splay_tree_node
, void *));
314 static void flush_reg_cond_reg
PARAMS ((struct propagate_block_info
*,
316 static rtx elim_reg_cond
PARAMS ((rtx
, unsigned int));
317 static rtx ior_reg_cond
PARAMS ((rtx
, rtx
, int));
318 static rtx not_reg_cond
PARAMS ((rtx
));
319 static rtx and_reg_cond
PARAMS ((rtx
, rtx
, int));
322 static void attempt_auto_inc
PARAMS ((struct propagate_block_info
*,
323 rtx
, rtx
, rtx
, rtx
, rtx
));
324 static void find_auto_inc
PARAMS ((struct propagate_block_info
*,
326 static int try_pre_increment_1
PARAMS ((struct propagate_block_info
*,
328 static int try_pre_increment
PARAMS ((rtx
, rtx
, HOST_WIDE_INT
));
330 static void mark_used_reg
PARAMS ((struct propagate_block_info
*,
332 static void mark_used_regs
PARAMS ((struct propagate_block_info
*,
334 void dump_flow_info
PARAMS ((FILE *));
335 void debug_flow_info
PARAMS ((void));
336 static void add_to_mem_set_list
PARAMS ((struct propagate_block_info
*,
338 static void invalidate_mems_from_autoinc
PARAMS ((struct propagate_block_info
*,
340 static void invalidate_mems_from_set
PARAMS ((struct propagate_block_info
*,
342 static void delete_dead_jumptables
PARAMS ((void));
343 static void clear_log_links
PARAMS ((sbitmap
));
347 check_function_return_warnings ()
349 if (warn_missing_noreturn
350 && !TREE_THIS_VOLATILE (cfun
->decl
)
351 && EXIT_BLOCK_PTR
->pred
== NULL
352 && (lang_missing_noreturn_ok_p
353 && !lang_missing_noreturn_ok_p (cfun
->decl
)))
354 warning ("function might be possible candidate for attribute `noreturn'");
356 /* If we have a path to EXIT, then we do return. */
357 if (TREE_THIS_VOLATILE (cfun
->decl
)
358 && EXIT_BLOCK_PTR
->pred
!= NULL
)
359 warning ("`noreturn' function does return");
361 /* If the clobber_return_insn appears in some basic block, then we
362 do reach the end without returning a value. */
363 else if (warn_return_type
364 && cfun
->x_clobber_return_insn
!= NULL
365 && EXIT_BLOCK_PTR
->pred
!= NULL
)
367 int max_uid
= get_max_uid ();
369 /* If clobber_return_insn was excised by jump1, then renumber_insns
370 can make max_uid smaller than the number still recorded in our rtx.
371 That's fine, since this is a quick way of verifying that the insn
372 is no longer in the chain. */
373 if (INSN_UID (cfun
->x_clobber_return_insn
) < max_uid
)
375 /* Recompute insn->block mapping, since the initial mapping is
376 set before we delete unreachable blocks. */
377 if (BLOCK_FOR_INSN (cfun
->x_clobber_return_insn
) != NULL
)
378 warning ("control reaches end of non-void function");
383 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
384 note associated with the BLOCK. */
387 first_insn_after_basic_block_note (block
)
392 /* Get the first instruction in the block. */
395 if (insn
== NULL_RTX
)
397 if (GET_CODE (insn
) == CODE_LABEL
)
398 insn
= NEXT_INSN (insn
);
399 if (!NOTE_INSN_BASIC_BLOCK_P (insn
))
402 return NEXT_INSN (insn
);
405 /* Perform data flow analysis.
406 F is the first insn of the function; FLAGS is a set of PROP_* flags
407 to be used in accumulating flow info. */
410 life_analysis (f
, file
, flags
)
415 #ifdef ELIMINABLE_REGS
417 static const struct {const int from
, to
; } eliminables
[] = ELIMINABLE_REGS
;
420 /* Record which registers will be eliminated. We use this in
423 CLEAR_HARD_REG_SET (elim_reg_set
);
425 #ifdef ELIMINABLE_REGS
426 for (i
= 0; i
< (int) ARRAY_SIZE (eliminables
); i
++)
427 SET_HARD_REG_BIT (elim_reg_set
, eliminables
[i
].from
);
429 SET_HARD_REG_BIT (elim_reg_set
, FRAME_POINTER_REGNUM
);
433 flags
&= ~(PROP_LOG_LINKS
| PROP_AUTOINC
| PROP_ALLOW_CFG_CHANGES
);
435 /* The post-reload life analysis have (on a global basis) the same
436 registers live as was computed by reload itself. elimination
437 Otherwise offsets and such may be incorrect.
439 Reload will make some registers as live even though they do not
442 We don't want to create new auto-incs after reload, since they
443 are unlikely to be useful and can cause problems with shared
445 if (reload_completed
)
446 flags
&= ~(PROP_REG_INFO
| PROP_AUTOINC
);
448 /* We want alias analysis information for local dead store elimination. */
449 if (optimize
&& (flags
& PROP_SCAN_DEAD_CODE
))
450 init_alias_analysis ();
452 /* Always remove no-op moves. Do this before other processing so
453 that we don't have to keep re-scanning them. */
454 delete_noop_moves (f
);
455 purge_all_dead_edges (false);
457 /* Some targets can emit simpler epilogues if they know that sp was
458 not ever modified during the function. After reload, of course,
459 we've already emitted the epilogue so there's no sense searching. */
460 if (! reload_completed
)
461 notice_stack_pointer_modification (f
);
463 /* Allocate and zero out data structures that will record the
464 data from lifetime analysis. */
465 allocate_reg_life_data ();
466 allocate_bb_life_data ();
468 /* Find the set of registers live on function exit. */
469 mark_regs_live_at_end (EXIT_BLOCK_PTR
->global_live_at_start
);
471 /* "Update" life info from zero. It'd be nice to begin the
472 relaxation with just the exit and noreturn blocks, but that set
473 is not immediately handy. */
475 if (flags
& PROP_REG_INFO
)
476 memset (regs_ever_live
, 0, sizeof (regs_ever_live
));
477 update_life_info (NULL
, UPDATE_LIFE_GLOBAL
, flags
);
480 if (optimize
&& (flags
& PROP_SCAN_DEAD_CODE
))
481 end_alias_analysis ();
484 dump_flow_info (file
);
486 free_basic_block_vars (1);
488 #ifdef ENABLE_CHECKING
492 /* Search for any REG_LABEL notes which reference deleted labels. */
493 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
495 rtx inote
= find_reg_note (insn
, REG_LABEL
, NULL_RTX
);
497 if (inote
&& GET_CODE (inote
) == NOTE_INSN_DELETED_LABEL
)
502 /* Removing dead insns should've made jumptables really dead. */
503 delete_dead_jumptables ();
506 /* A subroutine of verify_wide_reg, called through for_each_rtx.
507 Search for REGNO. If found, return 2 if it is not wider than
511 verify_wide_reg_1 (px
, pregno
)
516 unsigned int regno
= *(int *) pregno
;
518 if (GET_CODE (x
) == REG
&& REGNO (x
) == regno
)
520 if (GET_MODE_BITSIZE (GET_MODE (x
)) <= BITS_PER_WORD
)
527 /* A subroutine of verify_local_live_at_start. Search through insns
528 of BB looking for register REGNO. */
531 verify_wide_reg (regno
, bb
)
535 rtx head
= bb
->head
, end
= bb
->end
;
541 int r
= for_each_rtx (&PATTERN (head
), verify_wide_reg_1
, ®no
);
549 head
= NEXT_INSN (head
);
554 fprintf (rtl_dump_file
, "Register %d died unexpectedly.\n", regno
);
555 dump_bb (bb
, rtl_dump_file
);
560 /* A subroutine of update_life_info. Verify that there are no untoward
561 changes in live_at_start during a local update. */
564 verify_local_live_at_start (new_live_at_start
, bb
)
565 regset new_live_at_start
;
568 if (reload_completed
)
570 /* After reload, there are no pseudos, nor subregs of multi-word
571 registers. The regsets should exactly match. */
572 if (! REG_SET_EQUAL_P (new_live_at_start
, bb
->global_live_at_start
))
576 fprintf (rtl_dump_file
,
577 "live_at_start mismatch in bb %d, aborting\nNew:\n",
579 debug_bitmap_file (rtl_dump_file
, new_live_at_start
);
580 fputs ("Old:\n", rtl_dump_file
);
581 dump_bb (bb
, rtl_dump_file
);
590 /* Find the set of changed registers. */
591 XOR_REG_SET (new_live_at_start
, bb
->global_live_at_start
);
593 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start
, 0, i
,
595 /* No registers should die. */
596 if (REGNO_REG_SET_P (bb
->global_live_at_start
, i
))
600 fprintf (rtl_dump_file
,
601 "Register %d died unexpectedly.\n", i
);
602 dump_bb (bb
, rtl_dump_file
);
607 /* Verify that the now-live register is wider than word_mode. */
608 verify_wide_reg (i
, bb
);
613 /* Updates life information starting with the basic blocks set in BLOCKS.
614 If BLOCKS is null, consider it to be the universal set.
616 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
617 we are only expecting local modifications to basic blocks. If we find
618 extra registers live at the beginning of a block, then we either killed
619 useful data, or we have a broken split that wants data not provided.
620 If we find registers removed from live_at_start, that means we have
621 a broken peephole that is killing a register it shouldn't.
623 ??? This is not true in one situation -- when a pre-reload splitter
624 generates subregs of a multi-word pseudo, current life analysis will
625 lose the kill. So we _can_ have a pseudo go live. How irritating.
627 Including PROP_REG_INFO does not properly refresh regs_ever_live
628 unless the caller resets it to zero. */
631 update_life_info (blocks
, extent
, prop_flags
)
633 enum update_life_extent extent
;
637 regset_head tmp_head
;
639 int stabilized_prop_flags
= prop_flags
;
641 tmp
= INITIALIZE_REG_SET (tmp_head
);
643 timevar_push ((extent
== UPDATE_LIFE_LOCAL
|| blocks
)
644 ? TV_LIFE_UPDATE
: TV_LIFE
);
646 /* Changes to the CFG are only allowed when
647 doing a global update for the entire CFG. */
648 if ((prop_flags
& PROP_ALLOW_CFG_CHANGES
)
649 && (extent
== UPDATE_LIFE_LOCAL
|| blocks
))
652 /* Clear log links in case we are asked to (re)compute them. */
653 if (prop_flags
& PROP_LOG_LINKS
)
654 clear_log_links (blocks
);
656 /* For a global update, we go through the relaxation process again. */
657 if (extent
!= UPDATE_LIFE_LOCAL
)
663 calculate_global_regs_live (blocks
, blocks
,
664 prop_flags
& (PROP_SCAN_DEAD_CODE
665 | PROP_ALLOW_CFG_CHANGES
));
667 if ((prop_flags
& (PROP_KILL_DEAD_CODE
| PROP_ALLOW_CFG_CHANGES
))
668 != (PROP_KILL_DEAD_CODE
| PROP_ALLOW_CFG_CHANGES
))
671 /* Removing dead code may allow the CFG to be simplified which
672 in turn may allow for further dead code detection / removal. */
673 for (i
= n_basic_blocks
- 1; i
>= 0; --i
)
675 basic_block bb
= BASIC_BLOCK (i
);
677 COPY_REG_SET (tmp
, bb
->global_live_at_end
);
678 changed
|= propagate_block (bb
, tmp
, NULL
, NULL
,
679 prop_flags
& (PROP_SCAN_DEAD_CODE
680 | PROP_KILL_DEAD_CODE
));
683 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
684 subsequent propagate_block calls, since removing or acting as
685 removing dead code can affect global register liveness, which
686 is supposed to be finalized for this call after this loop. */
687 stabilized_prop_flags
688 &= ~(PROP_SCAN_DEAD_CODE
| PROP_KILL_DEAD_CODE
);
693 /* We repeat regardless of what cleanup_cfg says. If there were
694 instructions deleted above, that might have been only a
695 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
696 Further improvement may be possible. */
697 cleanup_cfg (CLEANUP_EXPENSIVE
);
700 /* If asked, remove notes from the blocks we'll update. */
701 if (extent
== UPDATE_LIFE_GLOBAL_RM_NOTES
)
702 count_or_remove_death_notes (blocks
, 1);
707 EXECUTE_IF_SET_IN_SBITMAP (blocks
, 0, i
,
709 basic_block bb
= BASIC_BLOCK (i
);
711 COPY_REG_SET (tmp
, bb
->global_live_at_end
);
712 propagate_block (bb
, tmp
, NULL
, NULL
, stabilized_prop_flags
);
714 if (extent
== UPDATE_LIFE_LOCAL
)
715 verify_local_live_at_start (tmp
, bb
);
720 for (i
= n_basic_blocks
- 1; i
>= 0; --i
)
722 basic_block bb
= BASIC_BLOCK (i
);
724 COPY_REG_SET (tmp
, bb
->global_live_at_end
);
726 propagate_block (bb
, tmp
, NULL
, NULL
, stabilized_prop_flags
);
728 if (extent
== UPDATE_LIFE_LOCAL
)
729 verify_local_live_at_start (tmp
, bb
);
735 if (prop_flags
& PROP_REG_INFO
)
737 /* The only pseudos that are live at the beginning of the function
738 are those that were not set anywhere in the function. local-alloc
739 doesn't know how to handle these correctly, so mark them as not
740 local to any one basic block. */
741 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR
->global_live_at_end
,
742 FIRST_PSEUDO_REGISTER
, i
,
743 { REG_BASIC_BLOCK (i
) = REG_BLOCK_GLOBAL
; });
745 /* We have a problem with any pseudoreg that lives across the setjmp.
746 ANSI says that if a user variable does not change in value between
747 the setjmp and the longjmp, then the longjmp preserves it. This
748 includes longjmp from a place where the pseudo appears dead.
749 (In principle, the value still exists if it is in scope.)
750 If the pseudo goes in a hard reg, some other value may occupy
751 that hard reg where this pseudo is dead, thus clobbering the pseudo.
752 Conclusion: such a pseudo must not go in a hard reg. */
753 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp
,
754 FIRST_PSEUDO_REGISTER
, i
,
756 if (regno_reg_rtx
[i
] != 0)
758 REG_LIVE_LENGTH (i
) = -1;
759 REG_BASIC_BLOCK (i
) = REG_BLOCK_UNKNOWN
;
763 timevar_pop ((extent
== UPDATE_LIFE_LOCAL
|| blocks
)
764 ? TV_LIFE_UPDATE
: TV_LIFE
);
767 /* Free the variables allocated by find_basic_blocks.
769 KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
772 free_basic_block_vars (keep_head_end_p
)
775 if (! keep_head_end_p
)
777 if (basic_block_info
)
780 VARRAY_FREE (basic_block_info
);
784 ENTRY_BLOCK_PTR
->aux
= NULL
;
785 ENTRY_BLOCK_PTR
->global_live_at_end
= NULL
;
786 EXIT_BLOCK_PTR
->aux
= NULL
;
787 EXIT_BLOCK_PTR
->global_live_at_start
= NULL
;
791 /* Delete any insns that copy a register to itself. */
794 delete_noop_moves (f
)
795 rtx f ATTRIBUTE_UNUSED
;
801 for (i
= 0; i
< n_basic_blocks
; i
++)
803 bb
= BASIC_BLOCK (i
);
804 for (insn
= bb
->head
; insn
!= NEXT_INSN (bb
->end
); insn
= next
)
806 next
= NEXT_INSN (insn
);
807 if (INSN_P (insn
) && noop_move_p (insn
))
811 /* If we're about to remove the first insn of a libcall
812 then move the libcall note to the next real insn and
813 update the retval note. */
814 if ((note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
815 && XEXP (note
, 0) != insn
)
817 rtx new_libcall_insn
= next_real_insn (insn
);
818 rtx retval_note
= find_reg_note (XEXP (note
, 0),
819 REG_RETVAL
, NULL_RTX
);
820 REG_NOTES (new_libcall_insn
)
821 = gen_rtx_INSN_LIST (REG_LIBCALL
, XEXP (note
, 0),
822 REG_NOTES (new_libcall_insn
));
823 XEXP (retval_note
, 0) = new_libcall_insn
;
826 /* Do not call delete_insn here since that may change
827 the basic block boundaries which upsets some callers. */
828 PUT_CODE (insn
, NOTE
);
829 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
830 NOTE_SOURCE_FILE (insn
) = 0;
836 /* Delete any jump tables never referenced. We can't delete them at the
837 time of removing tablejump insn as they are referenced by the preceding
838 insns computing the destination, so we delay deleting and garbagecollect
839 them once life information is computed. */
841 delete_dead_jumptables ()
844 for (insn
= get_insns (); insn
; insn
= next
)
846 next
= NEXT_INSN (insn
);
847 if (GET_CODE (insn
) == CODE_LABEL
848 && LABEL_NUSES (insn
) == LABEL_PRESERVE_P (insn
)
849 && GET_CODE (next
) == JUMP_INSN
850 && (GET_CODE (PATTERN (next
)) == ADDR_VEC
851 || GET_CODE (PATTERN (next
)) == ADDR_DIFF_VEC
))
854 fprintf (rtl_dump_file
, "Dead jumptable %i removed\n", INSN_UID (insn
));
855 delete_insn (NEXT_INSN (insn
));
857 next
= NEXT_INSN (next
);
862 /* Determine if the stack pointer is constant over the life of the function.
863 Only useful before prologues have been emitted. */
866 notice_stack_pointer_modification_1 (x
, pat
, data
)
868 rtx pat ATTRIBUTE_UNUSED
;
869 void *data ATTRIBUTE_UNUSED
;
871 if (x
== stack_pointer_rtx
872 /* The stack pointer is only modified indirectly as the result
873 of a push until later in flow. See the comments in rtl.texi
874 regarding Embedded Side-Effects on Addresses. */
875 || (GET_CODE (x
) == MEM
876 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) == 'a'
877 && XEXP (XEXP (x
, 0), 0) == stack_pointer_rtx
))
878 current_function_sp_is_unchanging
= 0;
882 notice_stack_pointer_modification (f
)
887 /* Assume that the stack pointer is unchanging if alloca hasn't
889 current_function_sp_is_unchanging
= !current_function_calls_alloca
;
890 if (! current_function_sp_is_unchanging
)
893 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
897 /* Check if insn modifies the stack pointer. */
898 note_stores (PATTERN (insn
), notice_stack_pointer_modification_1
,
900 if (! current_function_sp_is_unchanging
)
906 /* Mark a register in SET. Hard registers in large modes get all
907 of their component registers set as well. */
914 regset set
= (regset
) xset
;
915 int regno
= REGNO (reg
);
917 if (GET_MODE (reg
) == BLKmode
)
920 SET_REGNO_REG_SET (set
, regno
);
921 if (regno
< FIRST_PSEUDO_REGISTER
)
923 int n
= HARD_REGNO_NREGS (regno
, GET_MODE (reg
));
925 SET_REGNO_REG_SET (set
, regno
+ n
);
929 /* Mark those regs which are needed at the end of the function as live
930 at the end of the last basic block. */
933 mark_regs_live_at_end (set
)
938 /* If exiting needs the right stack value, consider the stack pointer
939 live at the end of the function. */
940 if ((HAVE_epilogue
&& reload_completed
)
941 || ! EXIT_IGNORE_STACK
942 || (! FRAME_POINTER_REQUIRED
943 && ! current_function_calls_alloca
944 && flag_omit_frame_pointer
)
945 || current_function_sp_is_unchanging
)
947 SET_REGNO_REG_SET (set
, STACK_POINTER_REGNUM
);
950 /* Mark the frame pointer if needed at the end of the function. If
951 we end up eliminating it, it will be removed from the live list
952 of each basic block by reload. */
954 if (! reload_completed
|| frame_pointer_needed
)
956 SET_REGNO_REG_SET (set
, FRAME_POINTER_REGNUM
);
957 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
958 /* If they are different, also mark the hard frame pointer as live. */
959 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM
))
960 SET_REGNO_REG_SET (set
, HARD_FRAME_POINTER_REGNUM
);
964 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
965 /* Many architectures have a GP register even without flag_pic.
966 Assume the pic register is not in use, or will be handled by
967 other means, if it is not fixed. */
968 if (PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
969 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
970 SET_REGNO_REG_SET (set
, PIC_OFFSET_TABLE_REGNUM
);
973 /* Mark all global registers, and all registers used by the epilogue
974 as being live at the end of the function since they may be
975 referenced by our caller. */
976 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
977 if (global_regs
[i
] || EPILOGUE_USES (i
))
978 SET_REGNO_REG_SET (set
, i
);
980 if (HAVE_epilogue
&& reload_completed
)
982 /* Mark all call-saved registers that we actually used. */
983 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
984 if (regs_ever_live
[i
] && ! LOCAL_REGNO (i
)
985 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
986 SET_REGNO_REG_SET (set
, i
);
989 #ifdef EH_RETURN_DATA_REGNO
990 /* Mark the registers that will contain data for the handler. */
991 if (reload_completed
&& current_function_calls_eh_return
)
994 unsigned regno
= EH_RETURN_DATA_REGNO(i
);
995 if (regno
== INVALID_REGNUM
)
997 SET_REGNO_REG_SET (set
, regno
);
1000 #ifdef EH_RETURN_STACKADJ_RTX
1001 if ((! HAVE_epilogue
|| ! reload_completed
)
1002 && current_function_calls_eh_return
)
1004 rtx tmp
= EH_RETURN_STACKADJ_RTX
;
1005 if (tmp
&& REG_P (tmp
))
1006 mark_reg (tmp
, set
);
1009 #ifdef EH_RETURN_HANDLER_RTX
1010 if ((! HAVE_epilogue
|| ! reload_completed
)
1011 && current_function_calls_eh_return
)
1013 rtx tmp
= EH_RETURN_HANDLER_RTX
;
1014 if (tmp
&& REG_P (tmp
))
1015 mark_reg (tmp
, set
);
1019 /* Mark function return value. */
1020 diddle_return_value (mark_reg
, set
);
1023 /* Callback function for for_each_successor_phi. DATA is a regset.
1024 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1025 INSN, in the regset. */
1028 set_phi_alternative_reg (insn
, dest_regno
, src_regno
, data
)
1029 rtx insn ATTRIBUTE_UNUSED
;
1030 int dest_regno ATTRIBUTE_UNUSED
;
1034 regset live
= (regset
) data
;
1035 SET_REGNO_REG_SET (live
, src_regno
);
1039 /* Propagate global life info around the graph of basic blocks. Begin
1040 considering blocks with their corresponding bit set in BLOCKS_IN.
1041 If BLOCKS_IN is null, consider it the universal set.
1043 BLOCKS_OUT is set for every block that was changed. */
1046 calculate_global_regs_live (blocks_in
, blocks_out
, flags
)
1047 sbitmap blocks_in
, blocks_out
;
1050 basic_block
*queue
, *qhead
, *qtail
, *qend
;
1051 regset tmp
, new_live_at_end
, call_used
;
1052 regset_head tmp_head
, call_used_head
;
1053 regset_head new_live_at_end_head
;
1056 tmp
= INITIALIZE_REG_SET (tmp_head
);
1057 new_live_at_end
= INITIALIZE_REG_SET (new_live_at_end_head
);
1058 call_used
= INITIALIZE_REG_SET (call_used_head
);
1060 /* Inconveniently, this is only readily available in hard reg set form. */
1061 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1062 if (call_used_regs
[i
])
1063 SET_REGNO_REG_SET (call_used
, i
);
1065 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1066 because the `head == tail' style test for an empty queue doesn't
1067 work with a full queue. */
1068 queue
= (basic_block
*) xmalloc ((n_basic_blocks
+ 2) * sizeof (*queue
));
1070 qhead
= qend
= queue
+ n_basic_blocks
+ 2;
1072 /* Queue the blocks set in the initial mask. Do this in reverse block
1073 number order so that we are more likely for the first round to do
1074 useful work. We use AUX non-null to flag that the block is queued. */
1077 /* Clear out the garbage that might be hanging out in bb->aux. */
1078 for (i
= n_basic_blocks
- 1; i
>= 0; --i
)
1079 BASIC_BLOCK (i
)->aux
= NULL
;
1081 EXECUTE_IF_SET_IN_SBITMAP (blocks_in
, 0, i
,
1083 basic_block bb
= BASIC_BLOCK (i
);
1090 for (i
= 0; i
< n_basic_blocks
; ++i
)
1092 basic_block bb
= BASIC_BLOCK (i
);
1098 /* We clean aux when we remove the initially-enqueued bbs, but we
1099 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1101 ENTRY_BLOCK_PTR
->aux
= EXIT_BLOCK_PTR
->aux
= NULL
;
1104 sbitmap_zero (blocks_out
);
1106 /* We work through the queue until there are no more blocks. What
1107 is live at the end of this block is precisely the union of what
1108 is live at the beginning of all its successors. So, we set its
1109 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1110 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1111 this block by walking through the instructions in this block in
1112 reverse order and updating as we go. If that changed
1113 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1114 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1116 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1117 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1118 must either be live at the end of the block, or used within the
1119 block. In the latter case, it will certainly never disappear
1120 from GLOBAL_LIVE_AT_START. In the former case, the register
1121 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1122 for one of the successor blocks. By induction, that cannot
1124 while (qhead
!= qtail
)
1126 int rescan
, changed
;
1135 /* Begin by propagating live_at_start from the successor blocks. */
1136 CLEAR_REG_SET (new_live_at_end
);
1139 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
1141 basic_block sb
= e
->dest
;
1143 /* Call-clobbered registers die across exception and
1145 /* ??? Abnormal call edges ignored for the moment, as this gets
1146 confused by sibling call edges, which crashes reg-stack. */
1147 if (e
->flags
& EDGE_EH
)
1149 bitmap_operation (tmp
, sb
->global_live_at_start
,
1150 call_used
, BITMAP_AND_COMPL
);
1151 IOR_REG_SET (new_live_at_end
, tmp
);
1154 IOR_REG_SET (new_live_at_end
, sb
->global_live_at_start
);
1156 /* If a target saves one register in another (instead of on
1157 the stack) the save register will need to be live for EH. */
1158 if (e
->flags
& EDGE_EH
)
1159 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1161 SET_REGNO_REG_SET (new_live_at_end
, i
);
1165 /* This might be a noreturn function that throws. And
1166 even if it isn't, getting the unwind info right helps
1168 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1170 SET_REGNO_REG_SET (new_live_at_end
, i
);
1173 /* The all-important stack pointer must always be live. */
1174 SET_REGNO_REG_SET (new_live_at_end
, STACK_POINTER_REGNUM
);
1176 /* Before reload, there are a few registers that must be forced
1177 live everywhere -- which might not already be the case for
1178 blocks within infinite loops. */
1179 if (! reload_completed
)
1181 /* Any reference to any pseudo before reload is a potential
1182 reference of the frame pointer. */
1183 SET_REGNO_REG_SET (new_live_at_end
, FRAME_POINTER_REGNUM
);
1185 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1186 /* Pseudos with argument area equivalences may require
1187 reloading via the argument pointer. */
1188 if (fixed_regs
[ARG_POINTER_REGNUM
])
1189 SET_REGNO_REG_SET (new_live_at_end
, ARG_POINTER_REGNUM
);
1192 /* Any constant, or pseudo with constant equivalences, may
1193 require reloading from memory using the pic register. */
1194 if (PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
1195 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
1196 SET_REGNO_REG_SET (new_live_at_end
, PIC_OFFSET_TABLE_REGNUM
);
1199 /* Regs used in phi nodes are not included in
1200 global_live_at_start, since they are live only along a
1201 particular edge. Set those regs that are live because of a
1202 phi node alternative corresponding to this particular block. */
1204 for_each_successor_phi (bb
, &set_phi_alternative_reg
,
1207 if (bb
== ENTRY_BLOCK_PTR
)
1209 COPY_REG_SET (bb
->global_live_at_end
, new_live_at_end
);
1213 /* On our first pass through this block, we'll go ahead and continue.
1214 Recognize first pass by local_set NULL. On subsequent passes, we
1215 get to skip out early if live_at_end wouldn't have changed. */
1217 if (bb
->local_set
== NULL
)
1219 bb
->local_set
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1220 bb
->cond_local_set
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1225 /* If any bits were removed from live_at_end, we'll have to
1226 rescan the block. This wouldn't be necessary if we had
1227 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1228 local_live is really dependent on live_at_end. */
1229 CLEAR_REG_SET (tmp
);
1230 rescan
= bitmap_operation (tmp
, bb
->global_live_at_end
,
1231 new_live_at_end
, BITMAP_AND_COMPL
);
1235 /* If any of the registers in the new live_at_end set are
1236 conditionally set in this basic block, we must rescan.
1237 This is because conditional lifetimes at the end of the
1238 block do not just take the live_at_end set into account,
1239 but also the liveness at the start of each successor
1240 block. We can miss changes in those sets if we only
1241 compare the new live_at_end against the previous one. */
1242 CLEAR_REG_SET (tmp
);
1243 rescan
= bitmap_operation (tmp
, new_live_at_end
,
1244 bb
->cond_local_set
, BITMAP_AND
);
1249 /* Find the set of changed bits. Take this opportunity
1250 to notice that this set is empty and early out. */
1251 CLEAR_REG_SET (tmp
);
1252 changed
= bitmap_operation (tmp
, bb
->global_live_at_end
,
1253 new_live_at_end
, BITMAP_XOR
);
1257 /* If any of the changed bits overlap with local_set,
1258 we'll have to rescan the block. Detect overlap by
1259 the AND with ~local_set turning off bits. */
1260 rescan
= bitmap_operation (tmp
, tmp
, bb
->local_set
,
1265 /* Let our caller know that BB changed enough to require its
1266 death notes updated. */
1268 SET_BIT (blocks_out
, bb
->index
);
1272 /* Add to live_at_start the set of all registers in
1273 new_live_at_end that aren't in the old live_at_end. */
1275 bitmap_operation (tmp
, new_live_at_end
, bb
->global_live_at_end
,
1277 COPY_REG_SET (bb
->global_live_at_end
, new_live_at_end
);
1279 changed
= bitmap_operation (bb
->global_live_at_start
,
1280 bb
->global_live_at_start
,
1287 COPY_REG_SET (bb
->global_live_at_end
, new_live_at_end
);
1289 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1290 into live_at_start. */
1291 propagate_block (bb
, new_live_at_end
, bb
->local_set
,
1292 bb
->cond_local_set
, flags
);
1294 /* If live_at start didn't change, no need to go farther. */
1295 if (REG_SET_EQUAL_P (bb
->global_live_at_start
, new_live_at_end
))
1298 COPY_REG_SET (bb
->global_live_at_start
, new_live_at_end
);
1301 /* Queue all predecessors of BB so that we may re-examine
1302 their live_at_end. */
1303 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
1305 basic_block pb
= e
->src
;
1306 if (pb
->aux
== NULL
)
1317 FREE_REG_SET (new_live_at_end
);
1318 FREE_REG_SET (call_used
);
1322 EXECUTE_IF_SET_IN_SBITMAP (blocks_out
, 0, i
,
1324 basic_block bb
= BASIC_BLOCK (i
);
1325 FREE_REG_SET (bb
->local_set
);
1326 FREE_REG_SET (bb
->cond_local_set
);
1331 for (i
= n_basic_blocks
- 1; i
>= 0; --i
)
1333 basic_block bb
= BASIC_BLOCK (i
);
1334 FREE_REG_SET (bb
->local_set
);
1335 FREE_REG_SET (bb
->cond_local_set
);
1343 /* This structure is used to pass parameters to an from the
1344 the function find_regno_partial(). It is used to pass in the
1345 register number we are looking, as well as to return any rtx
1349 unsigned regno_to_find
;
1351 } find_regno_partial_param
;
1354 /* Find the rtx for the reg numbers specified in 'data' if it is
1355 part of an expression which only uses part of the register. Return
1356 it in the structure passed in. */
1358 find_regno_partial (ptr
, data
)
1362 find_regno_partial_param
*param
= (find_regno_partial_param
*)data
;
1363 unsigned reg
= param
->regno_to_find
;
1364 param
->retval
= NULL_RTX
;
1366 if (*ptr
== NULL_RTX
)
1369 switch (GET_CODE (*ptr
))
1373 case STRICT_LOW_PART
:
1374 if (GET_CODE (XEXP (*ptr
, 0)) == REG
&& REGNO (XEXP (*ptr
, 0)) == reg
)
1376 param
->retval
= XEXP (*ptr
, 0);
1382 if (GET_CODE (SUBREG_REG (*ptr
)) == REG
1383 && REGNO (SUBREG_REG (*ptr
)) == reg
)
1385 param
->retval
= SUBREG_REG (*ptr
);
1397 /* Process all immediate successors of the entry block looking for pseudo
1398 registers which are live on entry. Find all of those whose first
1399 instance is a partial register reference of some kind, and initialize
1400 them to 0 after the entry block. This will prevent bit sets within
1401 registers whose value is unknown, and may contain some kind of sticky
1402 bits we don't want. */
1405 initialize_uninitialized_subregs ()
1409 int reg
, did_something
= 0;
1410 find_regno_partial_param param
;
1412 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= e
->succ_next
)
1414 basic_block bb
= e
->dest
;
1415 regset map
= bb
->global_live_at_start
;
1416 EXECUTE_IF_SET_IN_REG_SET (map
,
1417 FIRST_PSEUDO_REGISTER
, reg
,
1419 int uid
= REGNO_FIRST_UID (reg
);
1422 /* Find an insn which mentions the register we are looking for.
1423 Its preferable to have an instance of the register's rtl since
1424 there may be various flags set which we need to duplicate.
1425 If we can't find it, its probably an automatic whose initial
1426 value doesn't matter, or hopefully something we don't care about. */
1427 for (i
= get_insns (); i
&& INSN_UID (i
) != uid
; i
= NEXT_INSN (i
))
1431 /* Found the insn, now get the REG rtx, if we can. */
1432 param
.regno_to_find
= reg
;
1433 for_each_rtx (&i
, find_regno_partial
, ¶m
);
1434 if (param
.retval
!= NULL_RTX
)
1436 insn
= gen_move_insn (param
.retval
,
1437 CONST0_RTX (GET_MODE (param
.retval
)));
1438 insert_insn_on_edge (insn
, e
);
1446 commit_edge_insertions ();
1447 return did_something
;
1451 /* Subroutines of life analysis. */
1453 /* Allocate the permanent data structures that represent the results
1454 of life analysis. Not static since used also for stupid life analysis. */
1457 allocate_bb_life_data ()
1461 for (i
= 0; i
< n_basic_blocks
; i
++)
1463 basic_block bb
= BASIC_BLOCK (i
);
1465 bb
->global_live_at_start
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1466 bb
->global_live_at_end
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1469 ENTRY_BLOCK_PTR
->global_live_at_end
1470 = OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1471 EXIT_BLOCK_PTR
->global_live_at_start
1472 = OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1474 regs_live_at_setjmp
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1478 allocate_reg_life_data ()
1482 max_regno
= max_reg_num ();
1484 /* Recalculate the register space, in case it has grown. Old style
1485 vector oriented regsets would set regset_{size,bytes} here also. */
1486 allocate_reg_info (max_regno
, FALSE
, FALSE
);
1488 /* Reset all the data we'll collect in propagate_block and its
1490 for (i
= 0; i
< max_regno
; i
++)
1494 REG_N_DEATHS (i
) = 0;
1495 REG_N_CALLS_CROSSED (i
) = 0;
1496 REG_LIVE_LENGTH (i
) = 0;
1497 REG_BASIC_BLOCK (i
) = REG_BLOCK_UNKNOWN
;
1501 /* Delete dead instructions for propagate_block. */
1504 propagate_block_delete_insn (bb
, insn
)
1508 rtx inote
= find_reg_note (insn
, REG_LABEL
, NULL_RTX
);
1511 /* If the insn referred to a label, and that label was attached to
1512 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1513 pretty much mandatory to delete it, because the ADDR_VEC may be
1514 referencing labels that no longer exist.
1516 INSN may reference a deleted label, particularly when a jump
1517 table has been optimized into a direct jump. There's no
1518 real good way to fix up the reference to the deleted label
1519 when the label is deleted, so we just allow it here.
1521 After dead code elimination is complete, we do search for
1522 any REG_LABEL notes which reference deleted labels as a
1525 if (inote
&& GET_CODE (inote
) == CODE_LABEL
)
1527 rtx label
= XEXP (inote
, 0);
1530 /* The label may be forced if it has been put in the constant
1531 pool. If that is the only use we must discard the table
1532 jump following it, but not the label itself. */
1533 if (LABEL_NUSES (label
) == 1 + LABEL_PRESERVE_P (label
)
1534 && (next
= next_nonnote_insn (label
)) != NULL
1535 && GET_CODE (next
) == JUMP_INSN
1536 && (GET_CODE (PATTERN (next
)) == ADDR_VEC
1537 || GET_CODE (PATTERN (next
)) == ADDR_DIFF_VEC
))
1539 rtx pat
= PATTERN (next
);
1540 int diff_vec_p
= GET_CODE (pat
) == ADDR_DIFF_VEC
;
1541 int len
= XVECLEN (pat
, diff_vec_p
);
1544 for (i
= 0; i
< len
; i
++)
1545 LABEL_NUSES (XEXP (XVECEXP (pat
, diff_vec_p
, i
), 0))--;
1551 if (bb
->end
== insn
)
1555 purge_dead_edges (bb
);
1558 /* Delete dead libcalls for propagate_block. Return the insn
1559 before the libcall. */
1562 propagate_block_delete_libcall ( insn
, note
)
1565 rtx first
= XEXP (note
, 0);
1566 rtx before
= PREV_INSN (first
);
1568 delete_insn_chain (first
, insn
);
1572 /* Update the life-status of regs for one insn. Return the previous insn. */
1575 propagate_one_insn (pbi
, insn
)
1576 struct propagate_block_info
*pbi
;
1579 rtx prev
= PREV_INSN (insn
);
1580 int flags
= pbi
->flags
;
1581 int insn_is_dead
= 0;
1582 int libcall_is_dead
= 0;
1586 if (! INSN_P (insn
))
1589 note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
1590 if (flags
& PROP_SCAN_DEAD_CODE
)
1592 insn_is_dead
= insn_dead_p (pbi
, PATTERN (insn
), 0, REG_NOTES (insn
));
1593 libcall_is_dead
= (insn_is_dead
&& note
!= 0
1594 && libcall_dead_p (pbi
, note
, insn
));
1597 /* If an instruction consists of just dead store(s) on final pass,
1599 if ((flags
& PROP_KILL_DEAD_CODE
) && insn_is_dead
)
1601 /* If we're trying to delete a prologue or epilogue instruction
1602 that isn't flagged as possibly being dead, something is wrong.
1603 But if we are keeping the stack pointer depressed, we might well
1604 be deleting insns that are used to compute the amount to update
1605 it by, so they are fine. */
1606 if (reload_completed
1607 && !(TREE_CODE (TREE_TYPE (current_function_decl
)) == FUNCTION_TYPE
1608 && (TYPE_RETURNS_STACK_DEPRESSED
1609 (TREE_TYPE (current_function_decl
))))
1610 && (((HAVE_epilogue
|| HAVE_prologue
)
1611 && prologue_epilogue_contains (insn
))
1612 || (HAVE_sibcall_epilogue
1613 && sibcall_epilogue_contains (insn
)))
1614 && find_reg_note (insn
, REG_MAYBE_DEAD
, NULL_RTX
) == 0)
1615 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn
);
1617 /* Record sets. Do this even for dead instructions, since they
1618 would have killed the values if they hadn't been deleted. */
1619 mark_set_regs (pbi
, PATTERN (insn
), insn
);
1621 /* CC0 is now known to be dead. Either this insn used it,
1622 in which case it doesn't anymore, or clobbered it,
1623 so the next insn can't use it. */
1626 if (libcall_is_dead
)
1627 prev
= propagate_block_delete_libcall ( insn
, note
);
1629 propagate_block_delete_insn (pbi
->bb
, insn
);
1634 /* See if this is an increment or decrement that can be merged into
1635 a following memory address. */
1638 rtx x
= single_set (insn
);
1640 /* Does this instruction increment or decrement a register? */
1641 if ((flags
& PROP_AUTOINC
)
1643 && GET_CODE (SET_DEST (x
)) == REG
1644 && (GET_CODE (SET_SRC (x
)) == PLUS
1645 || GET_CODE (SET_SRC (x
)) == MINUS
)
1646 && XEXP (SET_SRC (x
), 0) == SET_DEST (x
)
1647 && GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
1648 /* Ok, look for a following memory ref we can combine with.
1649 If one is found, change the memory ref to a PRE_INC
1650 or PRE_DEC, cancel this insn, and return 1.
1651 Return 0 if nothing has been done. */
1652 && try_pre_increment_1 (pbi
, insn
))
1655 #endif /* AUTO_INC_DEC */
1657 CLEAR_REG_SET (pbi
->new_set
);
1659 /* If this is not the final pass, and this insn is copying the value of
1660 a library call and it's dead, don't scan the insns that perform the
1661 library call, so that the call's arguments are not marked live. */
1662 if (libcall_is_dead
)
1664 /* Record the death of the dest reg. */
1665 mark_set_regs (pbi
, PATTERN (insn
), insn
);
1667 insn
= XEXP (note
, 0);
1668 return PREV_INSN (insn
);
1670 else if (GET_CODE (PATTERN (insn
)) == SET
1671 && SET_DEST (PATTERN (insn
)) == stack_pointer_rtx
1672 && GET_CODE (SET_SRC (PATTERN (insn
))) == PLUS
1673 && XEXP (SET_SRC (PATTERN (insn
)), 0) == stack_pointer_rtx
1674 && GET_CODE (XEXP (SET_SRC (PATTERN (insn
)), 1)) == CONST_INT
)
1675 /* We have an insn to pop a constant amount off the stack.
1676 (Such insns use PLUS regardless of the direction of the stack,
1677 and any insn to adjust the stack by a constant is always a pop.)
1678 These insns, if not dead stores, have no effect on life. */
1683 /* Any regs live at the time of a call instruction must not go
1684 in a register clobbered by calls. Find all regs now live and
1685 record this for them. */
1687 if (GET_CODE (insn
) == CALL_INSN
&& (flags
& PROP_REG_INFO
))
1688 EXECUTE_IF_SET_IN_REG_SET (pbi
->reg_live
, 0, i
,
1689 { REG_N_CALLS_CROSSED (i
)++; });
1691 /* Record sets. Do this even for dead instructions, since they
1692 would have killed the values if they hadn't been deleted. */
1693 mark_set_regs (pbi
, PATTERN (insn
), insn
);
1695 if (GET_CODE (insn
) == CALL_INSN
)
1701 if (GET_CODE (PATTERN (insn
)) == COND_EXEC
)
1702 cond
= COND_EXEC_TEST (PATTERN (insn
));
1704 /* Non-constant calls clobber memory. */
1705 if (! CONST_OR_PURE_CALL_P (insn
))
1707 free_EXPR_LIST_list (&pbi
->mem_set_list
);
1708 pbi
->mem_set_list_len
= 0;
1711 /* There may be extra registers to be clobbered. */
1712 for (note
= CALL_INSN_FUNCTION_USAGE (insn
);
1714 note
= XEXP (note
, 1))
1715 if (GET_CODE (XEXP (note
, 0)) == CLOBBER
)
1716 mark_set_1 (pbi
, CLOBBER
, XEXP (XEXP (note
, 0), 0),
1717 cond
, insn
, pbi
->flags
);
1719 /* Calls change all call-used and global registers. */
1720 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1721 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1723 /* We do not want REG_UNUSED notes for these registers. */
1724 mark_set_1 (pbi
, CLOBBER
, gen_rtx_REG (reg_raw_mode
[i
], i
),
1726 pbi
->flags
& ~(PROP_DEATH_NOTES
| PROP_REG_INFO
));
1730 /* If an insn doesn't use CC0, it becomes dead since we assume
1731 that every insn clobbers it. So show it dead here;
1732 mark_used_regs will set it live if it is referenced. */
1737 mark_used_regs (pbi
, PATTERN (insn
), NULL_RTX
, insn
);
1738 if ((flags
& PROP_EQUAL_NOTES
)
1739 && ((note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1740 || (note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
))))
1741 mark_used_regs (pbi
, XEXP (note
, 0), NULL_RTX
, insn
);
1743 /* Sometimes we may have inserted something before INSN (such as a move)
1744 when we make an auto-inc. So ensure we will scan those insns. */
1746 prev
= PREV_INSN (insn
);
1749 if (! insn_is_dead
&& GET_CODE (insn
) == CALL_INSN
)
1755 if (GET_CODE (PATTERN (insn
)) == COND_EXEC
)
1756 cond
= COND_EXEC_TEST (PATTERN (insn
));
1758 /* Calls use their arguments. */
1759 for (note
= CALL_INSN_FUNCTION_USAGE (insn
);
1761 note
= XEXP (note
, 1))
1762 if (GET_CODE (XEXP (note
, 0)) == USE
)
1763 mark_used_regs (pbi
, XEXP (XEXP (note
, 0), 0),
1766 /* The stack ptr is used (honorarily) by a CALL insn. */
1767 SET_REGNO_REG_SET (pbi
->reg_live
, STACK_POINTER_REGNUM
);
1769 /* Calls may also reference any of the global registers,
1770 so they are made live. */
1771 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1773 mark_used_reg (pbi
, gen_rtx_REG (reg_raw_mode
[i
], i
),
1778 /* On final pass, update counts of how many insns in which each reg
1780 if (flags
& PROP_REG_INFO
)
1781 EXECUTE_IF_SET_IN_REG_SET (pbi
->reg_live
, 0, i
,
1782 { REG_LIVE_LENGTH (i
)++; });
1787 /* Initialize a propagate_block_info struct for public consumption.
1788 Note that the structure itself is opaque to this file, but that
1789 the user can use the regsets provided here. */
1791 struct propagate_block_info
*
1792 init_propagate_block_info (bb
, live
, local_set
, cond_local_set
, flags
)
1794 regset live
, local_set
, cond_local_set
;
1797 struct propagate_block_info
*pbi
= xmalloc (sizeof (*pbi
));
1800 pbi
->reg_live
= live
;
1801 pbi
->mem_set_list
= NULL_RTX
;
1802 pbi
->mem_set_list_len
= 0;
1803 pbi
->local_set
= local_set
;
1804 pbi
->cond_local_set
= cond_local_set
;
1808 if (flags
& (PROP_LOG_LINKS
| PROP_AUTOINC
))
1809 pbi
->reg_next_use
= (rtx
*) xcalloc (max_reg_num (), sizeof (rtx
));
1811 pbi
->reg_next_use
= NULL
;
1813 pbi
->new_set
= BITMAP_XMALLOC ();
1815 #ifdef HAVE_conditional_execution
1816 pbi
->reg_cond_dead
= splay_tree_new (splay_tree_compare_ints
, NULL
,
1817 free_reg_cond_life_info
);
1818 pbi
->reg_cond_reg
= BITMAP_XMALLOC ();
1820 /* If this block ends in a conditional branch, for each register live
1821 from one side of the branch and not the other, record the register
1822 as conditionally dead. */
1823 if (GET_CODE (bb
->end
) == JUMP_INSN
1824 && any_condjump_p (bb
->end
))
1826 regset_head diff_head
;
1827 regset diff
= INITIALIZE_REG_SET (diff_head
);
1828 basic_block bb_true
, bb_false
;
1829 rtx cond_true
, cond_false
, set_src
;
1832 /* Identify the successor blocks. */
1833 bb_true
= bb
->succ
->dest
;
1834 if (bb
->succ
->succ_next
!= NULL
)
1836 bb_false
= bb
->succ
->succ_next
->dest
;
1838 if (bb
->succ
->flags
& EDGE_FALLTHRU
)
1840 basic_block t
= bb_false
;
1844 else if (! (bb
->succ
->succ_next
->flags
& EDGE_FALLTHRU
))
1849 /* This can happen with a conditional jump to the next insn. */
1850 if (JUMP_LABEL (bb
->end
) != bb_true
->head
)
1853 /* Simplest way to do nothing. */
1857 /* Extract the condition from the branch. */
1858 set_src
= SET_SRC (pc_set (bb
->end
));
1859 cond_true
= XEXP (set_src
, 0);
1860 cond_false
= gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true
)),
1861 GET_MODE (cond_true
), XEXP (cond_true
, 0),
1862 XEXP (cond_true
, 1));
1863 if (GET_CODE (XEXP (set_src
, 1)) == PC
)
1866 cond_false
= cond_true
;
1870 /* Compute which register lead different lives in the successors. */
1871 if (bitmap_operation (diff
, bb_true
->global_live_at_start
,
1872 bb_false
->global_live_at_start
, BITMAP_XOR
))
1874 rtx reg
= XEXP (cond_true
, 0);
1876 if (GET_CODE (reg
) == SUBREG
)
1877 reg
= SUBREG_REG (reg
);
1879 if (GET_CODE (reg
) != REG
)
1882 SET_REGNO_REG_SET (pbi
->reg_cond_reg
, REGNO (reg
));
1884 /* For each such register, mark it conditionally dead. */
1885 EXECUTE_IF_SET_IN_REG_SET
1888 struct reg_cond_life_info
*rcli
;
1891 rcli
= (struct reg_cond_life_info
*) xmalloc (sizeof (*rcli
));
1893 if (REGNO_REG_SET_P (bb_true
->global_live_at_start
, i
))
1897 rcli
->condition
= cond
;
1898 rcli
->stores
= const0_rtx
;
1899 rcli
->orig_condition
= cond
;
1901 splay_tree_insert (pbi
->reg_cond_dead
, i
,
1902 (splay_tree_value
) rcli
);
1906 FREE_REG_SET (diff
);
1910 /* If this block has no successors, any stores to the frame that aren't
1911 used later in the block are dead. So make a pass over the block
1912 recording any such that are made and show them dead at the end. We do
1913 a very conservative and simple job here. */
1915 && ! (TREE_CODE (TREE_TYPE (current_function_decl
)) == FUNCTION_TYPE
1916 && (TYPE_RETURNS_STACK_DEPRESSED
1917 (TREE_TYPE (current_function_decl
))))
1918 && (flags
& PROP_SCAN_DEAD_CODE
)
1919 && (bb
->succ
== NULL
1920 || (bb
->succ
->succ_next
== NULL
1921 && bb
->succ
->dest
== EXIT_BLOCK_PTR
1922 && ! current_function_calls_eh_return
)))
1925 for (insn
= bb
->end
; insn
!= bb
->head
; insn
= PREV_INSN (insn
))
1926 if (GET_CODE (insn
) == INSN
1927 && (set
= single_set (insn
))
1928 && GET_CODE (SET_DEST (set
)) == MEM
)
1930 rtx mem
= SET_DEST (set
);
1931 rtx canon_mem
= canon_rtx (mem
);
1933 /* This optimization is performed by faking a store to the
1934 memory at the end of the block. This doesn't work for
1935 unchanging memories because multiple stores to unchanging
1936 memory is illegal and alias analysis doesn't consider it. */
1937 if (RTX_UNCHANGING_P (canon_mem
))
1940 if (XEXP (canon_mem
, 0) == frame_pointer_rtx
1941 || (GET_CODE (XEXP (canon_mem
, 0)) == PLUS
1942 && XEXP (XEXP (canon_mem
, 0), 0) == frame_pointer_rtx
1943 && GET_CODE (XEXP (XEXP (canon_mem
, 0), 1)) == CONST_INT
))
1944 add_to_mem_set_list (pbi
, canon_mem
);
1951 /* Release a propagate_block_info struct. */
1954 free_propagate_block_info (pbi
)
1955 struct propagate_block_info
*pbi
;
1957 free_EXPR_LIST_list (&pbi
->mem_set_list
);
1959 BITMAP_XFREE (pbi
->new_set
);
1961 #ifdef HAVE_conditional_execution
1962 splay_tree_delete (pbi
->reg_cond_dead
);
1963 BITMAP_XFREE (pbi
->reg_cond_reg
);
1966 if (pbi
->reg_next_use
)
1967 free (pbi
->reg_next_use
);
1972 /* Compute the registers live at the beginning of a basic block BB from
1973 those live at the end.
1975 When called, REG_LIVE contains those live at the end. On return, it
1976 contains those live at the beginning.
1978 LOCAL_SET, if non-null, will be set with all registers killed
1979 unconditionally by this basic block.
1980 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
1981 killed conditionally by this basic block. If there is any unconditional
1982 set of a register, then the corresponding bit will be set in LOCAL_SET
1983 and cleared in COND_LOCAL_SET.
1984 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
1985 case, the resulting set will be equal to the union of the two sets that
1986 would otherwise be computed.
1988 Return non-zero if an INSN is deleted (i.e. by dead code removal). */
1991 propagate_block (bb
, live
, local_set
, cond_local_set
, flags
)
1995 regset cond_local_set
;
1998 struct propagate_block_info
*pbi
;
2002 pbi
= init_propagate_block_info (bb
, live
, local_set
, cond_local_set
, flags
);
2004 if (flags
& PROP_REG_INFO
)
2008 /* Process the regs live at the end of the block.
2009 Mark them as not local to any one basic block. */
2010 EXECUTE_IF_SET_IN_REG_SET (live
, 0, i
,
2011 { REG_BASIC_BLOCK (i
) = REG_BLOCK_GLOBAL
; });
2014 /* Scan the block an insn at a time from end to beginning. */
2017 for (insn
= bb
->end
;; insn
= prev
)
2019 /* If this is a call to `setjmp' et al, warn if any
2020 non-volatile datum is live. */
2021 if ((flags
& PROP_REG_INFO
)
2022 && GET_CODE (insn
) == CALL_INSN
2023 && find_reg_note (insn
, REG_SETJMP
, NULL
))
2024 IOR_REG_SET (regs_live_at_setjmp
, pbi
->reg_live
);
2026 prev
= propagate_one_insn (pbi
, insn
);
2027 changed
|= NEXT_INSN (prev
) != insn
;
2029 if (insn
== bb
->head
)
2033 free_propagate_block_info (pbi
);
2038 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2039 (SET expressions whose destinations are registers dead after the insn).
2040 NEEDED is the regset that says which regs are alive after the insn.
2042 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
2044 If X is the entire body of an insn, NOTES contains the reg notes
2045 pertaining to the insn. */
2048 insn_dead_p (pbi
, x
, call_ok
, notes
)
2049 struct propagate_block_info
*pbi
;
2052 rtx notes ATTRIBUTE_UNUSED
;
2054 enum rtx_code code
= GET_CODE (x
);
2057 /* As flow is invoked after combine, we must take existing AUTO_INC
2058 expressions into account. */
2059 for (; notes
; notes
= XEXP (notes
, 1))
2061 if (REG_NOTE_KIND (notes
) == REG_INC
)
2063 int regno
= REGNO (XEXP (notes
, 0));
2065 /* Don't delete insns to set global regs. */
2066 if ((regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
2067 || REGNO_REG_SET_P (pbi
->reg_live
, regno
))
2073 /* If setting something that's a reg or part of one,
2074 see if that register's altered value will be live. */
2078 rtx r
= SET_DEST (x
);
2081 if (GET_CODE (r
) == CC0
)
2082 return ! pbi
->cc0_live
;
2085 /* A SET that is a subroutine call cannot be dead. */
2086 if (GET_CODE (SET_SRC (x
)) == CALL
)
2092 /* Don't eliminate loads from volatile memory or volatile asms. */
2093 else if (volatile_refs_p (SET_SRC (x
)))
2096 if (GET_CODE (r
) == MEM
)
2100 if (MEM_VOLATILE_P (r
) || GET_MODE (r
) == BLKmode
)
2103 canon_r
= canon_rtx (r
);
2105 /* Walk the set of memory locations we are currently tracking
2106 and see if one is an identical match to this memory location.
2107 If so, this memory write is dead (remember, we're walking
2108 backwards from the end of the block to the start). Since
2109 rtx_equal_p does not check the alias set or flags, we also
2110 must have the potential for them to conflict (anti_dependence). */
2111 for (temp
= pbi
->mem_set_list
; temp
!= 0; temp
= XEXP (temp
, 1))
2112 if (anti_dependence (r
, XEXP (temp
, 0)))
2114 rtx mem
= XEXP (temp
, 0);
2116 if (rtx_equal_p (XEXP (canon_r
, 0), XEXP (mem
, 0))
2117 && (GET_MODE_SIZE (GET_MODE (canon_r
))
2118 <= GET_MODE_SIZE (GET_MODE (mem
))))
2122 /* Check if memory reference matches an auto increment. Only
2123 post increment/decrement or modify are valid. */
2124 if (GET_MODE (mem
) == GET_MODE (r
)
2125 && (GET_CODE (XEXP (mem
, 0)) == POST_DEC
2126 || GET_CODE (XEXP (mem
, 0)) == POST_INC
2127 || GET_CODE (XEXP (mem
, 0)) == POST_MODIFY
)
2128 && GET_MODE (XEXP (mem
, 0)) == GET_MODE (r
)
2129 && rtx_equal_p (XEXP (XEXP (mem
, 0), 0), XEXP (r
, 0)))
2136 while (GET_CODE (r
) == SUBREG
2137 || GET_CODE (r
) == STRICT_LOW_PART
2138 || GET_CODE (r
) == ZERO_EXTRACT
)
2141 if (GET_CODE (r
) == REG
)
2143 int regno
= REGNO (r
);
2146 if (REGNO_REG_SET_P (pbi
->reg_live
, regno
))
2149 /* If this is a hard register, verify that subsequent
2150 words are not needed. */
2151 if (regno
< FIRST_PSEUDO_REGISTER
)
2153 int n
= HARD_REGNO_NREGS (regno
, GET_MODE (r
));
2156 if (REGNO_REG_SET_P (pbi
->reg_live
, regno
+n
))
2160 /* Don't delete insns to set global regs. */
2161 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
2164 /* Make sure insns to set the stack pointer aren't deleted. */
2165 if (regno
== STACK_POINTER_REGNUM
)
2168 /* ??? These bits might be redundant with the force live bits
2169 in calculate_global_regs_live. We would delete from
2170 sequential sets; whether this actually affects real code
2171 for anything but the stack pointer I don't know. */
2172 /* Make sure insns to set the frame pointer aren't deleted. */
2173 if (regno
== FRAME_POINTER_REGNUM
2174 && (! reload_completed
|| frame_pointer_needed
))
2176 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2177 if (regno
== HARD_FRAME_POINTER_REGNUM
2178 && (! reload_completed
|| frame_pointer_needed
))
2182 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2183 /* Make sure insns to set arg pointer are never deleted
2184 (if the arg pointer isn't fixed, there will be a USE
2185 for it, so we can treat it normally). */
2186 if (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
2190 /* Otherwise, the set is dead. */
2196 /* If performing several activities, insn is dead if each activity
2197 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2198 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2200 else if (code
== PARALLEL
)
2202 int i
= XVECLEN (x
, 0);
2204 for (i
--; i
>= 0; i
--)
2205 if (GET_CODE (XVECEXP (x
, 0, i
)) != CLOBBER
2206 && GET_CODE (XVECEXP (x
, 0, i
)) != USE
2207 && ! insn_dead_p (pbi
, XVECEXP (x
, 0, i
), call_ok
, NULL_RTX
))
2213 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2214 is not necessarily true for hard registers. */
2215 else if (code
== CLOBBER
&& GET_CODE (XEXP (x
, 0)) == REG
2216 && REGNO (XEXP (x
, 0)) >= FIRST_PSEUDO_REGISTER
2217 && ! REGNO_REG_SET_P (pbi
->reg_live
, REGNO (XEXP (x
, 0))))
2220 /* We do not check other CLOBBER or USE here. An insn consisting of just
2221 a CLOBBER or just a USE should not be deleted. */
2225 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2226 return 1 if the entire library call is dead.
2227 This is true if INSN copies a register (hard or pseudo)
2228 and if the hard return reg of the call insn is dead.
2229 (The caller should have tested the destination of the SET inside
2230 INSN already for death.)
2232 If this insn doesn't just copy a register, then we don't
2233 have an ordinary libcall. In that case, cse could not have
2234 managed to substitute the source for the dest later on,
2235 so we can assume the libcall is dead.
2237 PBI is the block info giving pseudoregs live before this insn.
2238 NOTE is the REG_RETVAL note of the insn. */
2241 libcall_dead_p (pbi
, note
, insn
)
2242 struct propagate_block_info
*pbi
;
2246 rtx x
= single_set (insn
);
2250 rtx r
= SET_SRC (x
);
2252 if (GET_CODE (r
) == REG
)
2254 rtx call
= XEXP (note
, 0);
2258 /* Find the call insn. */
2259 while (call
!= insn
&& GET_CODE (call
) != CALL_INSN
)
2260 call
= NEXT_INSN (call
);
2262 /* If there is none, do nothing special,
2263 since ordinary death handling can understand these insns. */
2267 /* See if the hard reg holding the value is dead.
2268 If this is a PARALLEL, find the call within it. */
2269 call_pat
= PATTERN (call
);
2270 if (GET_CODE (call_pat
) == PARALLEL
)
2272 for (i
= XVECLEN (call_pat
, 0) - 1; i
>= 0; i
--)
2273 if (GET_CODE (XVECEXP (call_pat
, 0, i
)) == SET
2274 && GET_CODE (SET_SRC (XVECEXP (call_pat
, 0, i
))) == CALL
)
2277 /* This may be a library call that is returning a value
2278 via invisible pointer. Do nothing special, since
2279 ordinary death handling can understand these insns. */
2283 call_pat
= XVECEXP (call_pat
, 0, i
);
2286 return insn_dead_p (pbi
, call_pat
, 1, REG_NOTES (call
));
2292 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2293 live at function entry. Don't count global register variables, variables
2294 in registers that can be used for function arg passing, or variables in
2295 fixed hard registers. */
2298 regno_uninitialized (regno
)
2301 if (n_basic_blocks
== 0
2302 || (regno
< FIRST_PSEUDO_REGISTER
2303 && (global_regs
[regno
]
2304 || fixed_regs
[regno
]
2305 || FUNCTION_ARG_REGNO_P (regno
))))
2308 return REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start
, regno
);
2311 /* 1 if register REGNO was alive at a place where `setjmp' was called
2312 and was set more than once or is an argument.
2313 Such regs may be clobbered by `longjmp'. */
2316 regno_clobbered_at_setjmp (regno
)
2319 if (n_basic_blocks
== 0)
2322 return ((REG_N_SETS (regno
) > 1
2323 || REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start
, regno
))
2324 && REGNO_REG_SET_P (regs_live_at_setjmp
, regno
));
2327 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2328 maximal list size; look for overlaps in mode and select the largest. */
2330 add_to_mem_set_list (pbi
, mem
)
2331 struct propagate_block_info
*pbi
;
2336 /* We don't know how large a BLKmode store is, so we must not
2337 take them into consideration. */
2338 if (GET_MODE (mem
) == BLKmode
)
2341 for (i
= pbi
->mem_set_list
; i
; i
= XEXP (i
, 1))
2343 rtx e
= XEXP (i
, 0);
2344 if (rtx_equal_p (XEXP (mem
, 0), XEXP (e
, 0)))
2346 if (GET_MODE_SIZE (GET_MODE (mem
)) > GET_MODE_SIZE (GET_MODE (e
)))
2349 /* If we must store a copy of the mem, we can just modify
2350 the mode of the stored copy. */
2351 if (pbi
->flags
& PROP_AUTOINC
)
2352 PUT_MODE (e
, GET_MODE (mem
));
2361 if (pbi
->mem_set_list_len
< MAX_MEM_SET_LIST_LEN
)
2364 /* Store a copy of mem, otherwise the address may be
2365 scrogged by find_auto_inc. */
2366 if (pbi
->flags
& PROP_AUTOINC
)
2367 mem
= shallow_copy_rtx (mem
);
2369 pbi
->mem_set_list
= alloc_EXPR_LIST (0, mem
, pbi
->mem_set_list
);
2370 pbi
->mem_set_list_len
++;
2374 /* INSN references memory, possibly using autoincrement addressing modes.
2375 Find any entries on the mem_set_list that need to be invalidated due
2376 to an address change. */
2379 invalidate_mems_from_autoinc (pbi
, insn
)
2380 struct propagate_block_info
*pbi
;
2383 rtx note
= REG_NOTES (insn
);
2384 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2385 if (REG_NOTE_KIND (note
) == REG_INC
)
2386 invalidate_mems_from_set (pbi
, XEXP (note
, 0));
2389 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2392 invalidate_mems_from_set (pbi
, exp
)
2393 struct propagate_block_info
*pbi
;
2396 rtx temp
= pbi
->mem_set_list
;
2397 rtx prev
= NULL_RTX
;
2402 next
= XEXP (temp
, 1);
2403 if (reg_overlap_mentioned_p (exp
, XEXP (temp
, 0)))
2405 /* Splice this entry out of the list. */
2407 XEXP (prev
, 1) = next
;
2409 pbi
->mem_set_list
= next
;
2410 free_EXPR_LIST_node (temp
);
2411 pbi
->mem_set_list_len
--;
2419 /* Process the registers that are set within X. Their bits are set to
2420 1 in the regset DEAD, because they are dead prior to this insn.
2422 If INSN is nonzero, it is the insn being processed.
2424 FLAGS is the set of operations to perform. */
2427 mark_set_regs (pbi
, x
, insn
)
2428 struct propagate_block_info
*pbi
;
2431 rtx cond
= NULL_RTX
;
2436 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2438 if (REG_NOTE_KIND (link
) == REG_INC
)
2439 mark_set_1 (pbi
, SET
, XEXP (link
, 0),
2440 (GET_CODE (x
) == COND_EXEC
2441 ? COND_EXEC_TEST (x
) : NULL_RTX
),
2445 switch (code
= GET_CODE (x
))
2449 mark_set_1 (pbi
, code
, SET_DEST (x
), cond
, insn
, pbi
->flags
);
2453 cond
= COND_EXEC_TEST (x
);
2454 x
= COND_EXEC_CODE (x
);
2461 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
2463 rtx sub
= XVECEXP (x
, 0, i
);
2464 switch (code
= GET_CODE (sub
))
2467 if (cond
!= NULL_RTX
)
2470 cond
= COND_EXEC_TEST (sub
);
2471 sub
= COND_EXEC_CODE (sub
);
2472 if (GET_CODE (sub
) != SET
&& GET_CODE (sub
) != CLOBBER
)
2478 mark_set_1 (pbi
, code
, SET_DEST (sub
), cond
, insn
, pbi
->flags
);
2493 /* Process a single set, which appears in INSN. REG (which may not
2494 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2495 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2496 If the set is conditional (because it appear in a COND_EXEC), COND
2497 will be the condition. */
2500 mark_set_1 (pbi
, code
, reg
, cond
, insn
, flags
)
2501 struct propagate_block_info
*pbi
;
2503 rtx reg
, cond
, insn
;
2506 int regno_first
= -1, regno_last
= -1;
2507 unsigned long not_dead
= 0;
2510 /* Modifying just one hardware register of a multi-reg value or just a
2511 byte field of a register does not mean the value from before this insn
2512 is now dead. Of course, if it was dead after it's unused now. */
2514 switch (GET_CODE (reg
))
2517 /* Some targets place small structures in registers for return values of
2518 functions. We have to detect this case specially here to get correct
2519 flow information. */
2520 for (i
= XVECLEN (reg
, 0) - 1; i
>= 0; i
--)
2521 if (XEXP (XVECEXP (reg
, 0, i
), 0) != 0)
2522 mark_set_1 (pbi
, code
, XEXP (XVECEXP (reg
, 0, i
), 0), cond
, insn
,
2528 case STRICT_LOW_PART
:
2529 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2531 reg
= XEXP (reg
, 0);
2532 while (GET_CODE (reg
) == SUBREG
2533 || GET_CODE (reg
) == ZERO_EXTRACT
2534 || GET_CODE (reg
) == SIGN_EXTRACT
2535 || GET_CODE (reg
) == STRICT_LOW_PART
);
2536 if (GET_CODE (reg
) == MEM
)
2538 not_dead
= (unsigned long) REGNO_REG_SET_P (pbi
->reg_live
, REGNO (reg
));
2542 regno_last
= regno_first
= REGNO (reg
);
2543 if (regno_first
< FIRST_PSEUDO_REGISTER
)
2544 regno_last
+= HARD_REGNO_NREGS (regno_first
, GET_MODE (reg
)) - 1;
2548 if (GET_CODE (SUBREG_REG (reg
)) == REG
)
2550 enum machine_mode outer_mode
= GET_MODE (reg
);
2551 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (reg
));
2553 /* Identify the range of registers affected. This is moderately
2554 tricky for hard registers. See alter_subreg. */
2556 regno_last
= regno_first
= REGNO (SUBREG_REG (reg
));
2557 if (regno_first
< FIRST_PSEUDO_REGISTER
)
2559 regno_first
+= subreg_regno_offset (regno_first
, inner_mode
,
2562 regno_last
= (regno_first
2563 + HARD_REGNO_NREGS (regno_first
, outer_mode
) - 1);
2565 /* Since we've just adjusted the register number ranges, make
2566 sure REG matches. Otherwise some_was_live will be clear
2567 when it shouldn't have been, and we'll create incorrect
2568 REG_UNUSED notes. */
2569 reg
= gen_rtx_REG (outer_mode
, regno_first
);
2573 /* If the number of words in the subreg is less than the number
2574 of words in the full register, we have a well-defined partial
2575 set. Otherwise the high bits are undefined.
2577 This is only really applicable to pseudos, since we just took
2578 care of multi-word hard registers. */
2579 if (((GET_MODE_SIZE (outer_mode
)
2580 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
2581 < ((GET_MODE_SIZE (inner_mode
)
2582 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))
2583 not_dead
= (unsigned long) REGNO_REG_SET_P (pbi
->reg_live
,
2586 reg
= SUBREG_REG (reg
);
2590 reg
= SUBREG_REG (reg
);
2597 /* If this set is a MEM, then it kills any aliased writes.
2598 If this set is a REG, then it kills any MEMs which use the reg. */
2599 if (optimize
&& (flags
& PROP_SCAN_DEAD_CODE
))
2601 if (GET_CODE (reg
) == REG
)
2602 invalidate_mems_from_set (pbi
, reg
);
2604 /* If the memory reference had embedded side effects (autoincrement
2605 address modes. Then we may need to kill some entries on the
2607 if (insn
&& GET_CODE (reg
) == MEM
)
2608 invalidate_mems_from_autoinc (pbi
, insn
);
2610 if (GET_CODE (reg
) == MEM
&& ! side_effects_p (reg
)
2611 /* ??? With more effort we could track conditional memory life. */
2613 /* There are no REG_INC notes for SP, so we can't assume we'll see
2614 everything that invalidates it. To be safe, don't eliminate any
2615 stores though SP; none of them should be redundant anyway. */
2616 && ! reg_mentioned_p (stack_pointer_rtx
, reg
))
2617 add_to_mem_set_list (pbi
, canon_rtx (reg
));
2620 if (GET_CODE (reg
) == REG
2621 && ! (regno_first
== FRAME_POINTER_REGNUM
2622 && (! reload_completed
|| frame_pointer_needed
))
2623 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2624 && ! (regno_first
== HARD_FRAME_POINTER_REGNUM
2625 && (! reload_completed
|| frame_pointer_needed
))
2627 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2628 && ! (regno_first
== ARG_POINTER_REGNUM
&& fixed_regs
[regno_first
])
2632 int some_was_live
= 0, some_was_dead
= 0;
2634 for (i
= regno_first
; i
<= regno_last
; ++i
)
2636 int needed_regno
= REGNO_REG_SET_P (pbi
->reg_live
, i
);
2639 /* Order of the set operation matters here since both
2640 sets may be the same. */
2641 CLEAR_REGNO_REG_SET (pbi
->cond_local_set
, i
);
2642 if (cond
!= NULL_RTX
2643 && ! REGNO_REG_SET_P (pbi
->local_set
, i
))
2644 SET_REGNO_REG_SET (pbi
->cond_local_set
, i
);
2646 SET_REGNO_REG_SET (pbi
->local_set
, i
);
2648 if (code
!= CLOBBER
)
2649 SET_REGNO_REG_SET (pbi
->new_set
, i
);
2651 some_was_live
|= needed_regno
;
2652 some_was_dead
|= ! needed_regno
;
2655 #ifdef HAVE_conditional_execution
2656 /* Consider conditional death in deciding that the register needs
2658 if (some_was_live
&& ! not_dead
2659 /* The stack pointer is never dead. Well, not strictly true,
2660 but it's very difficult to tell from here. Hopefully
2661 combine_stack_adjustments will fix up the most egregious
2663 && regno_first
!= STACK_POINTER_REGNUM
)
2665 for (i
= regno_first
; i
<= regno_last
; ++i
)
2666 if (! mark_regno_cond_dead (pbi
, i
, cond
))
2667 not_dead
|= ((unsigned long) 1) << (i
- regno_first
);
2671 /* Additional data to record if this is the final pass. */
2672 if (flags
& (PROP_LOG_LINKS
| PROP_REG_INFO
2673 | PROP_DEATH_NOTES
| PROP_AUTOINC
))
2676 int blocknum
= pbi
->bb
->index
;
2679 if (flags
& (PROP_LOG_LINKS
| PROP_AUTOINC
))
2681 y
= pbi
->reg_next_use
[regno_first
];
2683 /* The next use is no longer next, since a store intervenes. */
2684 for (i
= regno_first
; i
<= regno_last
; ++i
)
2685 pbi
->reg_next_use
[i
] = 0;
2688 if (flags
& PROP_REG_INFO
)
2690 for (i
= regno_first
; i
<= regno_last
; ++i
)
2692 /* Count (weighted) references, stores, etc. This counts a
2693 register twice if it is modified, but that is correct. */
2694 REG_N_SETS (i
) += 1;
2695 REG_N_REFS (i
) += 1;
2696 REG_FREQ (i
) += REG_FREQ_FROM_BB (pbi
->bb
);
2698 /* The insns where a reg is live are normally counted
2699 elsewhere, but we want the count to include the insn
2700 where the reg is set, and the normal counting mechanism
2701 would not count it. */
2702 REG_LIVE_LENGTH (i
) += 1;
2705 /* If this is a hard reg, record this function uses the reg. */
2706 if (regno_first
< FIRST_PSEUDO_REGISTER
)
2708 for (i
= regno_first
; i
<= regno_last
; i
++)
2709 regs_ever_live
[i
] = 1;
2713 /* Keep track of which basic blocks each reg appears in. */
2714 if (REG_BASIC_BLOCK (regno_first
) == REG_BLOCK_UNKNOWN
)
2715 REG_BASIC_BLOCK (regno_first
) = blocknum
;
2716 else if (REG_BASIC_BLOCK (regno_first
) != blocknum
)
2717 REG_BASIC_BLOCK (regno_first
) = REG_BLOCK_GLOBAL
;
2721 if (! some_was_dead
)
2723 if (flags
& PROP_LOG_LINKS
)
2725 /* Make a logical link from the next following insn
2726 that uses this register, back to this insn.
2727 The following insns have already been processed.
2729 We don't build a LOG_LINK for hard registers containing
2730 in ASM_OPERANDs. If these registers get replaced,
2731 we might wind up changing the semantics of the insn,
2732 even if reload can make what appear to be valid
2733 assignments later. */
2734 if (y
&& (BLOCK_NUM (y
) == blocknum
)
2735 && (regno_first
>= FIRST_PSEUDO_REGISTER
2736 || asm_noperands (PATTERN (y
)) < 0))
2737 LOG_LINKS (y
) = alloc_INSN_LIST (insn
, LOG_LINKS (y
));
2742 else if (! some_was_live
)
2744 if (flags
& PROP_REG_INFO
)
2745 REG_N_DEATHS (regno_first
) += 1;
2747 if (flags
& PROP_DEATH_NOTES
)
2749 /* Note that dead stores have already been deleted
2750 when possible. If we get here, we have found a
2751 dead store that cannot be eliminated (because the
2752 same insn does something useful). Indicate this
2753 by marking the reg being set as dying here. */
2755 = alloc_EXPR_LIST (REG_UNUSED
, reg
, REG_NOTES (insn
));
2760 if (flags
& PROP_DEATH_NOTES
)
2762 /* This is a case where we have a multi-word hard register
2763 and some, but not all, of the words of the register are
2764 needed in subsequent insns. Write REG_UNUSED notes
2765 for those parts that were not needed. This case should
2768 for (i
= regno_first
; i
<= regno_last
; ++i
)
2769 if (! REGNO_REG_SET_P (pbi
->reg_live
, i
))
2771 = alloc_EXPR_LIST (REG_UNUSED
,
2772 gen_rtx_REG (reg_raw_mode
[i
], i
),
2778 /* Mark the register as being dead. */
2780 /* The stack pointer is never dead. Well, not strictly true,
2781 but it's very difficult to tell from here. Hopefully
2782 combine_stack_adjustments will fix up the most egregious
2784 && regno_first
!= STACK_POINTER_REGNUM
)
2786 for (i
= regno_first
; i
<= regno_last
; ++i
)
2787 if (!(not_dead
& (((unsigned long) 1) << (i
- regno_first
))))
2788 CLEAR_REGNO_REG_SET (pbi
->reg_live
, i
);
2791 else if (GET_CODE (reg
) == REG
)
2793 if (flags
& (PROP_LOG_LINKS
| PROP_AUTOINC
))
2794 pbi
->reg_next_use
[regno_first
] = 0;
2797 /* If this is the last pass and this is a SCRATCH, show it will be dying
2798 here and count it. */
2799 else if (GET_CODE (reg
) == SCRATCH
)
2801 if (flags
& PROP_DEATH_NOTES
)
2803 = alloc_EXPR_LIST (REG_UNUSED
, reg
, REG_NOTES (insn
));
2807 #ifdef HAVE_conditional_execution
2808 /* Mark REGNO conditionally dead.
2809 Return true if the register is now unconditionally dead. */
2812 mark_regno_cond_dead (pbi
, regno
, cond
)
2813 struct propagate_block_info
*pbi
;
2817 /* If this is a store to a predicate register, the value of the
2818 predicate is changing, we don't know that the predicate as seen
2819 before is the same as that seen after. Flush all dependent
2820 conditions from reg_cond_dead. This will make all such
2821 conditionally live registers unconditionally live. */
2822 if (REGNO_REG_SET_P (pbi
->reg_cond_reg
, regno
))
2823 flush_reg_cond_reg (pbi
, regno
);
2825 /* If this is an unconditional store, remove any conditional
2826 life that may have existed. */
2827 if (cond
== NULL_RTX
)
2828 splay_tree_remove (pbi
->reg_cond_dead
, regno
);
2831 splay_tree_node node
;
2832 struct reg_cond_life_info
*rcli
;
2835 /* Otherwise this is a conditional set. Record that fact.
2836 It may have been conditionally used, or there may be a
2837 subsequent set with a complimentary condition. */
2839 node
= splay_tree_lookup (pbi
->reg_cond_dead
, regno
);
2842 /* The register was unconditionally live previously.
2843 Record the current condition as the condition under
2844 which it is dead. */
2845 rcli
= (struct reg_cond_life_info
*) xmalloc (sizeof (*rcli
));
2846 rcli
->condition
= cond
;
2847 rcli
->stores
= cond
;
2848 rcli
->orig_condition
= const0_rtx
;
2849 splay_tree_insert (pbi
->reg_cond_dead
, regno
,
2850 (splay_tree_value
) rcli
);
2852 SET_REGNO_REG_SET (pbi
->reg_cond_reg
, REGNO (XEXP (cond
, 0)));
2854 /* Not unconditionally dead. */
2859 /* The register was conditionally live previously.
2860 Add the new condition to the old. */
2861 rcli
= (struct reg_cond_life_info
*) node
->value
;
2862 ncond
= rcli
->condition
;
2863 ncond
= ior_reg_cond (ncond
, cond
, 1);
2864 if (rcli
->stores
== const0_rtx
)
2865 rcli
->stores
= cond
;
2866 else if (rcli
->stores
!= const1_rtx
)
2867 rcli
->stores
= ior_reg_cond (rcli
->stores
, cond
, 1);
2869 /* If the register is now unconditionally dead, remove the entry
2870 in the splay_tree. A register is unconditionally dead if the
2871 dead condition ncond is true. A register is also unconditionally
2872 dead if the sum of all conditional stores is an unconditional
2873 store (stores is true), and the dead condition is identically the
2874 same as the original dead condition initialized at the end of
2875 the block. This is a pointer compare, not an rtx_equal_p
2877 if (ncond
== const1_rtx
2878 || (ncond
== rcli
->orig_condition
&& rcli
->stores
== const1_rtx
))
2879 splay_tree_remove (pbi
->reg_cond_dead
, regno
);
2882 rcli
->condition
= ncond
;
2884 SET_REGNO_REG_SET (pbi
->reg_cond_reg
, REGNO (XEXP (cond
, 0)));
2886 /* Not unconditionally dead. */
2895 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2898 free_reg_cond_life_info (value
)
2899 splay_tree_value value
;
2901 struct reg_cond_life_info
*rcli
= (struct reg_cond_life_info
*) value
;
2905 /* Helper function for flush_reg_cond_reg. */
2908 flush_reg_cond_reg_1 (node
, data
)
2909 splay_tree_node node
;
2912 struct reg_cond_life_info
*rcli
;
2913 int *xdata
= (int *) data
;
2914 unsigned int regno
= xdata
[0];
2916 /* Don't need to search if last flushed value was farther on in
2917 the in-order traversal. */
2918 if (xdata
[1] >= (int) node
->key
)
2921 /* Splice out portions of the expression that refer to regno. */
2922 rcli
= (struct reg_cond_life_info
*) node
->value
;
2923 rcli
->condition
= elim_reg_cond (rcli
->condition
, regno
);
2924 if (rcli
->stores
!= const0_rtx
&& rcli
->stores
!= const1_rtx
)
2925 rcli
->stores
= elim_reg_cond (rcli
->stores
, regno
);
2927 /* If the entire condition is now false, signal the node to be removed. */
2928 if (rcli
->condition
== const0_rtx
)
2930 xdata
[1] = node
->key
;
2933 else if (rcli
->condition
== const1_rtx
)
2939 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2942 flush_reg_cond_reg (pbi
, regno
)
2943 struct propagate_block_info
*pbi
;
2950 while (splay_tree_foreach (pbi
->reg_cond_dead
,
2951 flush_reg_cond_reg_1
, pair
) == -1)
2952 splay_tree_remove (pbi
->reg_cond_dead
, pair
[1]);
2954 CLEAR_REGNO_REG_SET (pbi
->reg_cond_reg
, regno
);
2957 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
2958 For ior/and, the ADD flag determines whether we want to add the new
2959 condition X to the old one unconditionally. If it is zero, we will
2960 only return a new expression if X allows us to simplify part of
2961 OLD, otherwise we return NULL to the caller.
2962 If ADD is nonzero, we will return a new condition in all cases. The
2963 toplevel caller of one of these functions should always pass 1 for
2967 ior_reg_cond (old
, x
, add
)
2973 if (GET_RTX_CLASS (GET_CODE (old
)) == '<')
2975 if (GET_RTX_CLASS (GET_CODE (x
)) == '<'
2976 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x
), GET_CODE (old
))
2977 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (old
, 0)))
2979 if (GET_CODE (x
) == GET_CODE (old
)
2980 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (old
, 0)))
2984 return gen_rtx_IOR (0, old
, x
);
2987 switch (GET_CODE (old
))
2990 op0
= ior_reg_cond (XEXP (old
, 0), x
, 0);
2991 op1
= ior_reg_cond (XEXP (old
, 1), x
, 0);
2992 if (op0
!= NULL
|| op1
!= NULL
)
2994 if (op0
== const0_rtx
)
2995 return op1
? op1
: gen_rtx_IOR (0, XEXP (old
, 1), x
);
2996 if (op1
== const0_rtx
)
2997 return op0
? op0
: gen_rtx_IOR (0, XEXP (old
, 0), x
);
2998 if (op0
== const1_rtx
|| op1
== const1_rtx
)
3001 op0
= gen_rtx_IOR (0, XEXP (old
, 0), x
);
3002 else if (rtx_equal_p (x
, op0
))
3003 /* (x | A) | x ~ (x | A). */
3006 op1
= gen_rtx_IOR (0, XEXP (old
, 1), x
);
3007 else if (rtx_equal_p (x
, op1
))
3008 /* (A | x) | x ~ (A | x). */
3010 return gen_rtx_IOR (0, op0
, op1
);
3014 return gen_rtx_IOR (0, old
, x
);
3017 op0
= ior_reg_cond (XEXP (old
, 0), x
, 0);
3018 op1
= ior_reg_cond (XEXP (old
, 1), x
, 0);
3019 if (op0
!= NULL
|| op1
!= NULL
)
3021 if (op0
== const1_rtx
)
3022 return op1
? op1
: gen_rtx_IOR (0, XEXP (old
, 1), x
);
3023 if (op1
== const1_rtx
)
3024 return op0
? op0
: gen_rtx_IOR (0, XEXP (old
, 0), x
);
3025 if (op0
== const0_rtx
|| op1
== const0_rtx
)
3028 op0
= gen_rtx_IOR (0, XEXP (old
, 0), x
);
3029 else if (rtx_equal_p (x
, op0
))
3030 /* (x & A) | x ~ x. */
3033 op1
= gen_rtx_IOR (0, XEXP (old
, 1), x
);
3034 else if (rtx_equal_p (x
, op1
))
3035 /* (A & x) | x ~ x. */
3037 return gen_rtx_AND (0, op0
, op1
);
3041 return gen_rtx_IOR (0, old
, x
);
3044 op0
= and_reg_cond (XEXP (old
, 0), not_reg_cond (x
), 0);
3046 return not_reg_cond (op0
);
3049 return gen_rtx_IOR (0, old
, x
);
3060 enum rtx_code x_code
;
3062 if (x
== const0_rtx
)
3064 else if (x
== const1_rtx
)
3066 x_code
= GET_CODE (x
);
3069 if (GET_RTX_CLASS (x_code
) == '<'
3070 && GET_CODE (XEXP (x
, 0)) == REG
)
3072 if (XEXP (x
, 1) != const0_rtx
)
3075 return gen_rtx_fmt_ee (reverse_condition (x_code
),
3076 VOIDmode
, XEXP (x
, 0), const0_rtx
);
3078 return gen_rtx_NOT (0, x
);
3082 and_reg_cond (old
, x
, add
)
3088 if (GET_RTX_CLASS (GET_CODE (old
)) == '<')
3090 if (GET_RTX_CLASS (GET_CODE (x
)) == '<'
3091 && GET_CODE (x
) == reverse_condition (GET_CODE (old
))
3092 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (old
, 0)))
3094 if (GET_CODE (x
) == GET_CODE (old
)
3095 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (old
, 0)))
3099 return gen_rtx_AND (0, old
, x
);
3102 switch (GET_CODE (old
))
3105 op0
= and_reg_cond (XEXP (old
, 0), x
, 0);
3106 op1
= and_reg_cond (XEXP (old
, 1), x
, 0);
3107 if (op0
!= NULL
|| op1
!= NULL
)
3109 if (op0
== const0_rtx
)
3110 return op1
? op1
: gen_rtx_AND (0, XEXP (old
, 1), x
);
3111 if (op1
== const0_rtx
)
3112 return op0
? op0
: gen_rtx_AND (0, XEXP (old
, 0), x
);
3113 if (op0
== const1_rtx
|| op1
== const1_rtx
)
3116 op0
= gen_rtx_AND (0, XEXP (old
, 0), x
);
3117 else if (rtx_equal_p (x
, op0
))
3118 /* (x | A) & x ~ x. */
3121 op1
= gen_rtx_AND (0, XEXP (old
, 1), x
);
3122 else if (rtx_equal_p (x
, op1
))
3123 /* (A | x) & x ~ x. */
3125 return gen_rtx_IOR (0, op0
, op1
);
3129 return gen_rtx_AND (0, old
, x
);
3132 op0
= and_reg_cond (XEXP (old
, 0), x
, 0);
3133 op1
= and_reg_cond (XEXP (old
, 1), x
, 0);
3134 if (op0
!= NULL
|| op1
!= NULL
)
3136 if (op0
== const1_rtx
)
3137 return op1
? op1
: gen_rtx_AND (0, XEXP (old
, 1), x
);
3138 if (op1
== const1_rtx
)
3139 return op0
? op0
: gen_rtx_AND (0, XEXP (old
, 0), x
);
3140 if (op0
== const0_rtx
|| op1
== const0_rtx
)
3143 op0
= gen_rtx_AND (0, XEXP (old
, 0), x
);
3144 else if (rtx_equal_p (x
, op0
))
3145 /* (x & A) & x ~ (x & A). */
3148 op1
= gen_rtx_AND (0, XEXP (old
, 1), x
);
3149 else if (rtx_equal_p (x
, op1
))
3150 /* (A & x) & x ~ (A & x). */
3152 return gen_rtx_AND (0, op0
, op1
);
3156 return gen_rtx_AND (0, old
, x
);
3159 op0
= ior_reg_cond (XEXP (old
, 0), not_reg_cond (x
), 0);
3161 return not_reg_cond (op0
);
3164 return gen_rtx_AND (0, old
, x
);
3171 /* Given a condition X, remove references to reg REGNO and return the
3172 new condition. The removal will be done so that all conditions
3173 involving REGNO are considered to evaluate to false. This function
3174 is used when the value of REGNO changes. */
3177 elim_reg_cond (x
, regno
)
3183 if (GET_RTX_CLASS (GET_CODE (x
)) == '<')
3185 if (REGNO (XEXP (x
, 0)) == regno
)
3190 switch (GET_CODE (x
))
3193 op0
= elim_reg_cond (XEXP (x
, 0), regno
);
3194 op1
= elim_reg_cond (XEXP (x
, 1), regno
);
3195 if (op0
== const0_rtx
|| op1
== const0_rtx
)
3197 if (op0
== const1_rtx
)
3199 if (op1
== const1_rtx
)
3201 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
3203 return gen_rtx_AND (0, op0
, op1
);
3206 op0
= elim_reg_cond (XEXP (x
, 0), regno
);
3207 op1
= elim_reg_cond (XEXP (x
, 1), regno
);
3208 if (op0
== const1_rtx
|| op1
== const1_rtx
)
3210 if (op0
== const0_rtx
)
3212 if (op1
== const0_rtx
)
3214 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
3216 return gen_rtx_IOR (0, op0
, op1
);
3219 op0
= elim_reg_cond (XEXP (x
, 0), regno
);
3220 if (op0
== const0_rtx
)
3222 if (op0
== const1_rtx
)
3224 if (op0
!= XEXP (x
, 0))
3225 return not_reg_cond (op0
);
3232 #endif /* HAVE_conditional_execution */
3236 /* Try to substitute the auto-inc expression INC as the address inside
3237 MEM which occurs in INSN. Currently, the address of MEM is an expression
3238 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3239 that has a single set whose source is a PLUS of INCR_REG and something
3243 attempt_auto_inc (pbi
, inc
, insn
, mem
, incr
, incr_reg
)
3244 struct propagate_block_info
*pbi
;
3245 rtx inc
, insn
, mem
, incr
, incr_reg
;
3247 int regno
= REGNO (incr_reg
);
3248 rtx set
= single_set (incr
);
3249 rtx q
= SET_DEST (set
);
3250 rtx y
= SET_SRC (set
);
3251 int opnum
= XEXP (y
, 0) == incr_reg
? 0 : 1;
3253 /* Make sure this reg appears only once in this insn. */
3254 if (count_occurrences (PATTERN (insn
), incr_reg
, 1) != 1)
3257 if (dead_or_set_p (incr
, incr_reg
)
3258 /* Mustn't autoinc an eliminable register. */
3259 && (regno
>= FIRST_PSEUDO_REGISTER
3260 || ! TEST_HARD_REG_BIT (elim_reg_set
, regno
)))
3262 /* This is the simple case. Try to make the auto-inc. If
3263 we can't, we are done. Otherwise, we will do any
3264 needed updates below. */
3265 if (! validate_change (insn
, &XEXP (mem
, 0), inc
, 0))
3268 else if (GET_CODE (q
) == REG
3269 /* PREV_INSN used here to check the semi-open interval
3271 && ! reg_used_between_p (q
, PREV_INSN (insn
), incr
)
3272 /* We must also check for sets of q as q may be
3273 a call clobbered hard register and there may
3274 be a call between PREV_INSN (insn) and incr. */
3275 && ! reg_set_between_p (q
, PREV_INSN (insn
), incr
))
3277 /* We have *p followed sometime later by q = p+size.
3278 Both p and q must be live afterward,
3279 and q is not used between INSN and its assignment.
3280 Change it to q = p, ...*q..., q = q+size.
3281 Then fall into the usual case. */
3285 emit_move_insn (q
, incr_reg
);
3286 insns
= get_insns ();
3289 /* If we can't make the auto-inc, or can't make the
3290 replacement into Y, exit. There's no point in making
3291 the change below if we can't do the auto-inc and doing
3292 so is not correct in the pre-inc case. */
3295 validate_change (insn
, &XEXP (mem
, 0), inc
, 1);
3296 validate_change (incr
, &XEXP (y
, opnum
), q
, 1);
3297 if (! apply_change_group ())
3300 /* We now know we'll be doing this change, so emit the
3301 new insn(s) and do the updates. */
3302 emit_insns_before (insns
, insn
);
3304 if (pbi
->bb
->head
== insn
)
3305 pbi
->bb
->head
= insns
;
3307 /* INCR will become a NOTE and INSN won't contain a
3308 use of INCR_REG. If a use of INCR_REG was just placed in
3309 the insn before INSN, make that the next use.
3310 Otherwise, invalidate it. */
3311 if (GET_CODE (PREV_INSN (insn
)) == INSN
3312 && GET_CODE (PATTERN (PREV_INSN (insn
))) == SET
3313 && SET_SRC (PATTERN (PREV_INSN (insn
))) == incr_reg
)
3314 pbi
->reg_next_use
[regno
] = PREV_INSN (insn
);
3316 pbi
->reg_next_use
[regno
] = 0;
3321 /* REGNO is now used in INCR which is below INSN, but
3322 it previously wasn't live here. If we don't mark
3323 it as live, we'll put a REG_DEAD note for it
3324 on this insn, which is incorrect. */
3325 SET_REGNO_REG_SET (pbi
->reg_live
, regno
);
3327 /* If there are any calls between INSN and INCR, show
3328 that REGNO now crosses them. */
3329 for (temp
= insn
; temp
!= incr
; temp
= NEXT_INSN (temp
))
3330 if (GET_CODE (temp
) == CALL_INSN
)
3331 REG_N_CALLS_CROSSED (regno
)++;
3333 /* Invalidate alias info for Q since we just changed its value. */
3334 clear_reg_alias_info (q
);
3339 /* If we haven't returned, it means we were able to make the
3340 auto-inc, so update the status. First, record that this insn
3341 has an implicit side effect. */
3343 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_INC
, incr_reg
, REG_NOTES (insn
));
3345 /* Modify the old increment-insn to simply copy
3346 the already-incremented value of our register. */
3347 if (! validate_change (incr
, &SET_SRC (set
), incr_reg
, 0))
3350 /* If that makes it a no-op (copying the register into itself) delete
3351 it so it won't appear to be a "use" and a "set" of this
3353 if (REGNO (SET_DEST (set
)) == REGNO (incr_reg
))
3355 /* If the original source was dead, it's dead now. */
3358 while ((note
= find_reg_note (incr
, REG_DEAD
, NULL_RTX
)) != NULL_RTX
)
3360 remove_note (incr
, note
);
3361 if (XEXP (note
, 0) != incr_reg
)
3362 CLEAR_REGNO_REG_SET (pbi
->reg_live
, REGNO (XEXP (note
, 0)));
3365 PUT_CODE (incr
, NOTE
);
3366 NOTE_LINE_NUMBER (incr
) = NOTE_INSN_DELETED
;
3367 NOTE_SOURCE_FILE (incr
) = 0;
3370 if (regno
>= FIRST_PSEUDO_REGISTER
)
3372 /* Count an extra reference to the reg. When a reg is
3373 incremented, spilling it is worse, so we want to make
3374 that less likely. */
3375 REG_FREQ (regno
) += REG_FREQ_FROM_BB (pbi
->bb
);
3377 /* Count the increment as a setting of the register,
3378 even though it isn't a SET in rtl. */
3379 REG_N_SETS (regno
)++;
3383 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3387 find_auto_inc (pbi
, x
, insn
)
3388 struct propagate_block_info
*pbi
;
3392 rtx addr
= XEXP (x
, 0);
3393 HOST_WIDE_INT offset
= 0;
3394 rtx set
, y
, incr
, inc_val
;
3396 int size
= GET_MODE_SIZE (GET_MODE (x
));
3398 if (GET_CODE (insn
) == JUMP_INSN
)
3401 /* Here we detect use of an index register which might be good for
3402 postincrement, postdecrement, preincrement, or predecrement. */
3404 if (GET_CODE (addr
) == PLUS
&& GET_CODE (XEXP (addr
, 1)) == CONST_INT
)
3405 offset
= INTVAL (XEXP (addr
, 1)), addr
= XEXP (addr
, 0);
3407 if (GET_CODE (addr
) != REG
)
3410 regno
= REGNO (addr
);
3412 /* Is the next use an increment that might make auto-increment? */
3413 incr
= pbi
->reg_next_use
[regno
];
3414 if (incr
== 0 || BLOCK_NUM (incr
) != BLOCK_NUM (insn
))
3416 set
= single_set (incr
);
3417 if (set
== 0 || GET_CODE (set
) != SET
)
3421 if (GET_CODE (y
) != PLUS
)
3424 if (REG_P (XEXP (y
, 0)) && REGNO (XEXP (y
, 0)) == REGNO (addr
))
3425 inc_val
= XEXP (y
, 1);
3426 else if (REG_P (XEXP (y
, 1)) && REGNO (XEXP (y
, 1)) == REGNO (addr
))
3427 inc_val
= XEXP (y
, 0);
3431 if (GET_CODE (inc_val
) == CONST_INT
)
3433 if (HAVE_POST_INCREMENT
3434 && (INTVAL (inc_val
) == size
&& offset
== 0))
3435 attempt_auto_inc (pbi
, gen_rtx_POST_INC (Pmode
, addr
), insn
, x
,
3437 else if (HAVE_POST_DECREMENT
3438 && (INTVAL (inc_val
) == -size
&& offset
== 0))
3439 attempt_auto_inc (pbi
, gen_rtx_POST_DEC (Pmode
, addr
), insn
, x
,
3441 else if (HAVE_PRE_INCREMENT
3442 && (INTVAL (inc_val
) == size
&& offset
== size
))
3443 attempt_auto_inc (pbi
, gen_rtx_PRE_INC (Pmode
, addr
), insn
, x
,
3445 else if (HAVE_PRE_DECREMENT
3446 && (INTVAL (inc_val
) == -size
&& offset
== -size
))
3447 attempt_auto_inc (pbi
, gen_rtx_PRE_DEC (Pmode
, addr
), insn
, x
,
3449 else if (HAVE_POST_MODIFY_DISP
&& offset
== 0)
3450 attempt_auto_inc (pbi
, gen_rtx_POST_MODIFY (Pmode
, addr
,
3451 gen_rtx_PLUS (Pmode
,
3454 insn
, x
, incr
, addr
);
3456 else if (GET_CODE (inc_val
) == REG
3457 && ! reg_set_between_p (inc_val
, PREV_INSN (insn
),
3461 if (HAVE_POST_MODIFY_REG
&& offset
== 0)
3462 attempt_auto_inc (pbi
, gen_rtx_POST_MODIFY (Pmode
, addr
,
3463 gen_rtx_PLUS (Pmode
,
3466 insn
, x
, incr
, addr
);
3470 #endif /* AUTO_INC_DEC */
3473 mark_used_reg (pbi
, reg
, cond
, insn
)
3474 struct propagate_block_info
*pbi
;
3476 rtx cond ATTRIBUTE_UNUSED
;
3479 unsigned int regno_first
, regno_last
, i
;
3480 int some_was_live
, some_was_dead
, some_not_set
;
3482 regno_last
= regno_first
= REGNO (reg
);
3483 if (regno_first
< FIRST_PSEUDO_REGISTER
)
3484 regno_last
+= HARD_REGNO_NREGS (regno_first
, GET_MODE (reg
)) - 1;
3486 /* Find out if any of this register is live after this instruction. */
3487 some_was_live
= some_was_dead
= 0;
3488 for (i
= regno_first
; i
<= regno_last
; ++i
)
3490 int needed_regno
= REGNO_REG_SET_P (pbi
->reg_live
, i
);
3491 some_was_live
|= needed_regno
;
3492 some_was_dead
|= ! needed_regno
;
3495 /* Find out if any of the register was set this insn. */
3497 for (i
= regno_first
; i
<= regno_last
; ++i
)
3498 some_not_set
|= ! REGNO_REG_SET_P (pbi
->new_set
, i
);
3500 if (pbi
->flags
& (PROP_LOG_LINKS
| PROP_AUTOINC
))
3502 /* Record where each reg is used, so when the reg is set we know
3503 the next insn that uses it. */
3504 pbi
->reg_next_use
[regno_first
] = insn
;
3507 if (pbi
->flags
& PROP_REG_INFO
)
3509 if (regno_first
< FIRST_PSEUDO_REGISTER
)
3511 /* If this is a register we are going to try to eliminate,
3512 don't mark it live here. If we are successful in
3513 eliminating it, it need not be live unless it is used for
3514 pseudos, in which case it will have been set live when it
3515 was allocated to the pseudos. If the register will not
3516 be eliminated, reload will set it live at that point.
3518 Otherwise, record that this function uses this register. */
3519 /* ??? The PPC backend tries to "eliminate" on the pic
3520 register to itself. This should be fixed. In the mean
3521 time, hack around it. */
3523 if (! (TEST_HARD_REG_BIT (elim_reg_set
, regno_first
)
3524 && (regno_first
== FRAME_POINTER_REGNUM
3525 || regno_first
== ARG_POINTER_REGNUM
)))
3526 for (i
= regno_first
; i
<= regno_last
; ++i
)
3527 regs_ever_live
[i
] = 1;
3531 /* Keep track of which basic block each reg appears in. */
3533 int blocknum
= pbi
->bb
->index
;
3534 if (REG_BASIC_BLOCK (regno_first
) == REG_BLOCK_UNKNOWN
)
3535 REG_BASIC_BLOCK (regno_first
) = blocknum
;
3536 else if (REG_BASIC_BLOCK (regno_first
) != blocknum
)
3537 REG_BASIC_BLOCK (regno_first
) = REG_BLOCK_GLOBAL
;
3539 /* Count (weighted) number of uses of each reg. */
3540 REG_FREQ (regno_first
) += REG_FREQ_FROM_BB (pbi
->bb
);
3541 REG_N_REFS (regno_first
)++;
3545 /* Record and count the insns in which a reg dies. If it is used in
3546 this insn and was dead below the insn then it dies in this insn.
3547 If it was set in this insn, we do not make a REG_DEAD note;
3548 likewise if we already made such a note. */
3549 if ((pbi
->flags
& (PROP_DEATH_NOTES
| PROP_REG_INFO
))
3553 /* Check for the case where the register dying partially
3554 overlaps the register set by this insn. */
3555 if (regno_first
!= regno_last
)
3556 for (i
= regno_first
; i
<= regno_last
; ++i
)
3557 some_was_live
|= REGNO_REG_SET_P (pbi
->new_set
, i
);
3559 /* If none of the words in X is needed, make a REG_DEAD note.
3560 Otherwise, we must make partial REG_DEAD notes. */
3561 if (! some_was_live
)
3563 if ((pbi
->flags
& PROP_DEATH_NOTES
)
3564 && ! find_regno_note (insn
, REG_DEAD
, regno_first
))
3566 = alloc_EXPR_LIST (REG_DEAD
, reg
, REG_NOTES (insn
));
3568 if (pbi
->flags
& PROP_REG_INFO
)
3569 REG_N_DEATHS (regno_first
)++;
3573 /* Don't make a REG_DEAD note for a part of a register
3574 that is set in the insn. */
3575 for (i
= regno_first
; i
<= regno_last
; ++i
)
3576 if (! REGNO_REG_SET_P (pbi
->reg_live
, i
)
3577 && ! dead_or_set_regno_p (insn
, i
))
3579 = alloc_EXPR_LIST (REG_DEAD
,
3580 gen_rtx_REG (reg_raw_mode
[i
], i
),
3585 /* Mark the register as being live. */
3586 for (i
= regno_first
; i
<= regno_last
; ++i
)
3588 #ifdef HAVE_conditional_execution
3589 int this_was_live
= REGNO_REG_SET_P (pbi
->reg_live
, i
);
3592 SET_REGNO_REG_SET (pbi
->reg_live
, i
);
3594 #ifdef HAVE_conditional_execution
3595 /* If this is a conditional use, record that fact. If it is later
3596 conditionally set, we'll know to kill the register. */
3597 if (cond
!= NULL_RTX
)
3599 splay_tree_node node
;
3600 struct reg_cond_life_info
*rcli
;
3605 node
= splay_tree_lookup (pbi
->reg_cond_dead
, i
);
3608 /* The register was unconditionally live previously.
3609 No need to do anything. */
3613 /* The register was conditionally live previously.
3614 Subtract the new life cond from the old death cond. */
3615 rcli
= (struct reg_cond_life_info
*) node
->value
;
3616 ncond
= rcli
->condition
;
3617 ncond
= and_reg_cond (ncond
, not_reg_cond (cond
), 1);
3619 /* If the register is now unconditionally live,
3620 remove the entry in the splay_tree. */
3621 if (ncond
== const0_rtx
)
3622 splay_tree_remove (pbi
->reg_cond_dead
, i
);
3625 rcli
->condition
= ncond
;
3626 SET_REGNO_REG_SET (pbi
->reg_cond_reg
,
3627 REGNO (XEXP (cond
, 0)));
3633 /* The register was not previously live at all. Record
3634 the condition under which it is still dead. */
3635 rcli
= (struct reg_cond_life_info
*) xmalloc (sizeof (*rcli
));
3636 rcli
->condition
= not_reg_cond (cond
);
3637 rcli
->stores
= const0_rtx
;
3638 rcli
->orig_condition
= const0_rtx
;
3639 splay_tree_insert (pbi
->reg_cond_dead
, i
,
3640 (splay_tree_value
) rcli
);
3642 SET_REGNO_REG_SET (pbi
->reg_cond_reg
, REGNO (XEXP (cond
, 0)));
3645 else if (this_was_live
)
3647 /* The register may have been conditionally live previously, but
3648 is now unconditionally live. Remove it from the conditionally
3649 dead list, so that a conditional set won't cause us to think
3651 splay_tree_remove (pbi
->reg_cond_dead
, i
);
3657 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3658 This is done assuming the registers needed from X are those that
3659 have 1-bits in PBI->REG_LIVE.
3661 INSN is the containing instruction. If INSN is dead, this function
3665 mark_used_regs (pbi
, x
, cond
, insn
)
3666 struct propagate_block_info
*pbi
;
3671 int flags
= pbi
->flags
;
3676 code
= GET_CODE (x
);
3697 /* If we are clobbering a MEM, mark any registers inside the address
3699 if (GET_CODE (XEXP (x
, 0)) == MEM
)
3700 mark_used_regs (pbi
, XEXP (XEXP (x
, 0), 0), cond
, insn
);
3704 /* Don't bother watching stores to mems if this is not the
3705 final pass. We'll not be deleting dead stores this round. */
3706 if (optimize
&& (flags
& PROP_SCAN_DEAD_CODE
))
3708 /* Invalidate the data for the last MEM stored, but only if MEM is
3709 something that can be stored into. */
3710 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
3711 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
3712 /* Needn't clear the memory set list. */
3716 rtx temp
= pbi
->mem_set_list
;
3717 rtx prev
= NULL_RTX
;
3722 next
= XEXP (temp
, 1);
3723 if (anti_dependence (XEXP (temp
, 0), x
))
3725 /* Splice temp out of the list. */
3727 XEXP (prev
, 1) = next
;
3729 pbi
->mem_set_list
= next
;
3730 free_EXPR_LIST_node (temp
);
3731 pbi
->mem_set_list_len
--;
3739 /* If the memory reference had embedded side effects (autoincrement
3740 address modes. Then we may need to kill some entries on the
3743 invalidate_mems_from_autoinc (pbi
, insn
);
3747 if (flags
& PROP_AUTOINC
)
3748 find_auto_inc (pbi
, x
, insn
);
3753 #ifdef CLASS_CANNOT_CHANGE_MODE
3754 if (GET_CODE (SUBREG_REG (x
)) == REG
3755 && REGNO (SUBREG_REG (x
)) >= FIRST_PSEUDO_REGISTER
3756 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x
),
3757 GET_MODE (SUBREG_REG (x
))))
3758 REG_CHANGES_MODE (REGNO (SUBREG_REG (x
))) = 1;
3761 /* While we're here, optimize this case. */
3763 if (GET_CODE (x
) != REG
)
3768 /* See a register other than being set => mark it as needed. */
3769 mark_used_reg (pbi
, x
, cond
, insn
);
3774 rtx testreg
= SET_DEST (x
);
3777 /* If storing into MEM, don't show it as being used. But do
3778 show the address as being used. */
3779 if (GET_CODE (testreg
) == MEM
)
3782 if (flags
& PROP_AUTOINC
)
3783 find_auto_inc (pbi
, testreg
, insn
);
3785 mark_used_regs (pbi
, XEXP (testreg
, 0), cond
, insn
);
3786 mark_used_regs (pbi
, SET_SRC (x
), cond
, insn
);
3790 /* Storing in STRICT_LOW_PART is like storing in a reg
3791 in that this SET might be dead, so ignore it in TESTREG.
3792 but in some other ways it is like using the reg.
3794 Storing in a SUBREG or a bit field is like storing the entire
3795 register in that if the register's value is not used
3796 then this SET is not needed. */
3797 while (GET_CODE (testreg
) == STRICT_LOW_PART
3798 || GET_CODE (testreg
) == ZERO_EXTRACT
3799 || GET_CODE (testreg
) == SIGN_EXTRACT
3800 || GET_CODE (testreg
) == SUBREG
)
3802 #ifdef CLASS_CANNOT_CHANGE_MODE
3803 if (GET_CODE (testreg
) == SUBREG
3804 && GET_CODE (SUBREG_REG (testreg
)) == REG
3805 && REGNO (SUBREG_REG (testreg
)) >= FIRST_PSEUDO_REGISTER
3806 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (testreg
)),
3807 GET_MODE (testreg
)))
3808 REG_CHANGES_MODE (REGNO (SUBREG_REG (testreg
))) = 1;
3811 /* Modifying a single register in an alternate mode
3812 does not use any of the old value. But these other
3813 ways of storing in a register do use the old value. */
3814 if (GET_CODE (testreg
) == SUBREG
3815 && !((REG_BYTES (SUBREG_REG (testreg
))
3816 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
3817 > (REG_BYTES (testreg
)
3818 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))
3823 testreg
= XEXP (testreg
, 0);
3826 /* If this is a store into a register or group of registers,
3827 recursively scan the value being stored. */
3829 if ((GET_CODE (testreg
) == PARALLEL
3830 && GET_MODE (testreg
) == BLKmode
)
3831 || (GET_CODE (testreg
) == REG
3832 && (regno
= REGNO (testreg
),
3833 ! (regno
== FRAME_POINTER_REGNUM
3834 && (! reload_completed
|| frame_pointer_needed
)))
3835 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3836 && ! (regno
== HARD_FRAME_POINTER_REGNUM
3837 && (! reload_completed
|| frame_pointer_needed
))
3839 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3840 && ! (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
3845 mark_used_regs (pbi
, SET_DEST (x
), cond
, insn
);
3846 mark_used_regs (pbi
, SET_SRC (x
), cond
, insn
);
3853 case UNSPEC_VOLATILE
:
3857 /* Traditional and volatile asm instructions must be considered to use
3858 and clobber all hard registers, all pseudo-registers and all of
3859 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3861 Consider for instance a volatile asm that changes the fpu rounding
3862 mode. An insn should not be moved across this even if it only uses
3863 pseudo-regs because it might give an incorrectly rounded result.
3865 ?!? Unfortunately, marking all hard registers as live causes massive
3866 problems for the register allocator and marking all pseudos as live
3867 creates mountains of uninitialized variable warnings.
3869 So for now, just clear the memory set list and mark any regs
3870 we can find in ASM_OPERANDS as used. */
3871 if (code
!= ASM_OPERANDS
|| MEM_VOLATILE_P (x
))
3873 free_EXPR_LIST_list (&pbi
->mem_set_list
);
3874 pbi
->mem_set_list_len
= 0;
3877 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3878 We can not just fall through here since then we would be confused
3879 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3880 traditional asms unlike their normal usage. */
3881 if (code
== ASM_OPERANDS
)
3885 for (j
= 0; j
< ASM_OPERANDS_INPUT_LENGTH (x
); j
++)
3886 mark_used_regs (pbi
, ASM_OPERANDS_INPUT (x
, j
), cond
, insn
);
3892 if (cond
!= NULL_RTX
)
3895 mark_used_regs (pbi
, COND_EXEC_TEST (x
), NULL_RTX
, insn
);
3897 cond
= COND_EXEC_TEST (x
);
3898 x
= COND_EXEC_CODE (x
);
3902 /* We _do_not_ want to scan operands of phi nodes. Operands of
3903 a phi function are evaluated only when control reaches this
3904 block along a particular edge. Therefore, regs that appear
3905 as arguments to phi should not be added to the global live at
3913 /* Recursively scan the operands of this expression. */
3916 const char * const fmt
= GET_RTX_FORMAT (code
);
3919 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3923 /* Tail recursive case: save a function call level. */
3929 mark_used_regs (pbi
, XEXP (x
, i
), cond
, insn
);
3931 else if (fmt
[i
] == 'E')
3934 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3935 mark_used_regs (pbi
, XVECEXP (x
, i
, j
), cond
, insn
);
3944 try_pre_increment_1 (pbi
, insn
)
3945 struct propagate_block_info
*pbi
;
3948 /* Find the next use of this reg. If in same basic block,
3949 make it do pre-increment or pre-decrement if appropriate. */
3950 rtx x
= single_set (insn
);
3951 HOST_WIDE_INT amount
= ((GET_CODE (SET_SRC (x
)) == PLUS
? 1 : -1)
3952 * INTVAL (XEXP (SET_SRC (x
), 1)));
3953 int regno
= REGNO (SET_DEST (x
));
3954 rtx y
= pbi
->reg_next_use
[regno
];
3956 && SET_DEST (x
) != stack_pointer_rtx
3957 && BLOCK_NUM (y
) == BLOCK_NUM (insn
)
3958 /* Don't do this if the reg dies, or gets set in y; a standard addressing
3959 mode would be better. */
3960 && ! dead_or_set_p (y
, SET_DEST (x
))
3961 && try_pre_increment (y
, SET_DEST (x
), amount
))
3963 /* We have found a suitable auto-increment and already changed
3964 insn Y to do it. So flush this increment instruction. */
3965 propagate_block_delete_insn (pbi
->bb
, insn
);
3967 /* Count a reference to this reg for the increment insn we are
3968 deleting. When a reg is incremented, spilling it is worse,
3969 so we want to make that less likely. */
3970 if (regno
>= FIRST_PSEUDO_REGISTER
)
3972 REG_FREQ (regno
) += REG_FREQ_FROM_BB (pbi
->bb
);
3973 REG_N_SETS (regno
)++;
3976 /* Flush any remembered memories depending on the value of
3977 the incremented register. */
3978 invalidate_mems_from_set (pbi
, SET_DEST (x
));
3985 /* Try to change INSN so that it does pre-increment or pre-decrement
3986 addressing on register REG in order to add AMOUNT to REG.
3987 AMOUNT is negative for pre-decrement.
3988 Returns 1 if the change could be made.
3989 This checks all about the validity of the result of modifying INSN. */
3992 try_pre_increment (insn
, reg
, amount
)
3994 HOST_WIDE_INT amount
;
3998 /* Nonzero if we can try to make a pre-increment or pre-decrement.
3999 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4001 /* Nonzero if we can try to make a post-increment or post-decrement.
4002 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4003 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4004 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4007 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4010 /* From the sign of increment, see which possibilities are conceivable
4011 on this target machine. */
4012 if (HAVE_PRE_INCREMENT
&& amount
> 0)
4014 if (HAVE_POST_INCREMENT
&& amount
> 0)
4017 if (HAVE_PRE_DECREMENT
&& amount
< 0)
4019 if (HAVE_POST_DECREMENT
&& amount
< 0)
4022 if (! (pre_ok
|| post_ok
))
4025 /* It is not safe to add a side effect to a jump insn
4026 because if the incremented register is spilled and must be reloaded
4027 there would be no way to store the incremented value back in memory. */
4029 if (GET_CODE (insn
) == JUMP_INSN
)
4034 use
= find_use_as_address (PATTERN (insn
), reg
, 0);
4035 if (post_ok
&& (use
== 0 || use
== (rtx
) (size_t) 1))
4037 use
= find_use_as_address (PATTERN (insn
), reg
, -amount
);
4041 if (use
== 0 || use
== (rtx
) (size_t) 1)
4044 if (GET_MODE_SIZE (GET_MODE (use
)) != (amount
> 0 ? amount
: - amount
))
4047 /* See if this combination of instruction and addressing mode exists. */
4048 if (! validate_change (insn
, &XEXP (use
, 0),
4049 gen_rtx_fmt_e (amount
> 0
4050 ? (do_post
? POST_INC
: PRE_INC
)
4051 : (do_post
? POST_DEC
: PRE_DEC
),
4055 /* Record that this insn now has an implicit side effect on X. */
4056 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_INC
, reg
, REG_NOTES (insn
));
4060 #endif /* AUTO_INC_DEC */
4062 /* Find the place in the rtx X where REG is used as a memory address.
4063 Return the MEM rtx that so uses it.
4064 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4065 (plus REG (const_int PLUSCONST)).
4067 If such an address does not appear, return 0.
4068 If REG appears more than once, or is used other than in such an address,
4072 find_use_as_address (x
, reg
, plusconst
)
4075 HOST_WIDE_INT plusconst
;
4077 enum rtx_code code
= GET_CODE (x
);
4078 const char * const fmt
= GET_RTX_FORMAT (code
);
4083 if (code
== MEM
&& XEXP (x
, 0) == reg
&& plusconst
== 0)
4086 if (code
== MEM
&& GET_CODE (XEXP (x
, 0)) == PLUS
4087 && XEXP (XEXP (x
, 0), 0) == reg
4088 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
4089 && INTVAL (XEXP (XEXP (x
, 0), 1)) == plusconst
)
4092 if (code
== SIGN_EXTRACT
|| code
== ZERO_EXTRACT
)
4094 /* If REG occurs inside a MEM used in a bit-field reference,
4095 that is unacceptable. */
4096 if (find_use_as_address (XEXP (x
, 0), reg
, 0) != 0)
4097 return (rtx
) (size_t) 1;
4101 return (rtx
) (size_t) 1;
4103 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4107 tem
= find_use_as_address (XEXP (x
, i
), reg
, plusconst
);
4111 return (rtx
) (size_t) 1;
4113 else if (fmt
[i
] == 'E')
4116 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4118 tem
= find_use_as_address (XVECEXP (x
, i
, j
), reg
, plusconst
);
4122 return (rtx
) (size_t) 1;
4130 /* Write information about registers and basic blocks into FILE.
4131 This is part of making a debugging dump. */
4134 dump_regset (r
, outf
)
4141 fputs (" (nil)", outf
);
4145 EXECUTE_IF_SET_IN_REG_SET (r
, 0, i
,
4147 fprintf (outf
, " %d", i
);
4148 if (i
< FIRST_PSEUDO_REGISTER
)
4149 fprintf (outf
, " [%s]",
4154 /* Print a human-reaable representation of R on the standard error
4155 stream. This function is designed to be used from within the
4162 dump_regset (r
, stderr
);
4163 putc ('\n', stderr
);
4166 /* Recompute register set/reference counts immediately prior to register
4169 This avoids problems with set/reference counts changing to/from values
4170 which have special meanings to the register allocators.
4172 Additionally, the reference counts are the primary component used by the
4173 register allocators to prioritize pseudos for allocation to hard regs.
4174 More accurate reference counts generally lead to better register allocation.
4176 F is the first insn to be scanned.
4178 LOOP_STEP denotes how much loop_depth should be incremented per
4179 loop nesting level in order to increase the ref count more for
4180 references in a loop.
4182 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4183 possibly other information which is used by the register allocators. */
4186 recompute_reg_usage (f
, loop_step
)
4187 rtx f ATTRIBUTE_UNUSED
;
4188 int loop_step ATTRIBUTE_UNUSED
;
4190 allocate_reg_life_data ();
4191 update_life_info (NULL
, UPDATE_LIFE_LOCAL
, PROP_REG_INFO
);
4194 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4195 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4196 of the number of registers that died. */
4199 count_or_remove_death_notes (blocks
, kill
)
4205 for (i
= n_basic_blocks
- 1; i
>= 0; --i
)
4210 if (blocks
&& ! TEST_BIT (blocks
, i
))
4213 bb
= BASIC_BLOCK (i
);
4215 for (insn
= bb
->head
;; insn
= NEXT_INSN (insn
))
4219 rtx
*pprev
= ®_NOTES (insn
);
4224 switch (REG_NOTE_KIND (link
))
4227 if (GET_CODE (XEXP (link
, 0)) == REG
)
4229 rtx reg
= XEXP (link
, 0);
4232 if (REGNO (reg
) >= FIRST_PSEUDO_REGISTER
)
4235 n
= HARD_REGNO_NREGS (REGNO (reg
), GET_MODE (reg
));
4243 rtx next
= XEXP (link
, 1);
4244 free_EXPR_LIST_node (link
);
4245 *pprev
= link
= next
;
4251 pprev
= &XEXP (link
, 1);
4258 if (insn
== bb
->end
)
4265 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4266 if blocks is NULL. */
4269 clear_log_links (blocks
)
4277 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4279 free_INSN_LIST_list (&LOG_LINKS (insn
));
4282 EXECUTE_IF_SET_IN_SBITMAP (blocks
, 0, i
,
4284 basic_block bb
= BASIC_BLOCK (i
);
4286 for (insn
= bb
->head
; insn
!= NEXT_INSN (bb
->end
);
4287 insn
= NEXT_INSN (insn
))
4289 free_INSN_LIST_list (&LOG_LINKS (insn
));
4293 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4294 correspond to the hard registers, if any, set in that map. This
4295 could be done far more efficiently by having all sorts of special-cases
4296 with moving single words, but probably isn't worth the trouble. */
4299 reg_set_to_hard_reg_set (to
, from
)
4305 EXECUTE_IF_SET_IN_BITMAP
4308 if (i
>= FIRST_PSEUDO_REGISTER
)
4310 SET_HARD_REG_BIT (*to
, i
);