LWG 3035. std::allocator's constructors should be constexpr
[official-gcc.git] / gcc / cse.c
blob4e94152b38047d336052f81d93a6d49c3ae2de2a
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "cfgrtl.h"
36 #include "cfganal.h"
37 #include "cfgcleanup.h"
38 #include "alias.h"
39 #include "toplev.h"
40 #include "params.h"
41 #include "rtlhooks-def.h"
42 #include "tree-pass.h"
43 #include "dbgcnt.h"
44 #include "rtl-iter.h"
46 /* The basic idea of common subexpression elimination is to go
47 through the code, keeping a record of expressions that would
48 have the same value at the current scan point, and replacing
49 expressions encountered with the cheapest equivalent expression.
51 It is too complicated to keep track of the different possibilities
52 when control paths merge in this code; so, at each label, we forget all
53 that is known and start fresh. This can be described as processing each
54 extended basic block separately. We have a separate pass to perform
55 global CSE.
57 Note CSE can turn a conditional or computed jump into a nop or
58 an unconditional jump. When this occurs we arrange to run the jump
59 optimizer after CSE to delete the unreachable code.
61 We use two data structures to record the equivalent expressions:
62 a hash table for most expressions, and a vector of "quantity
63 numbers" to record equivalent (pseudo) registers.
65 The use of the special data structure for registers is desirable
66 because it is faster. It is possible because registers references
67 contain a fairly small number, the register number, taken from
68 a contiguously allocated series, and two register references are
69 identical if they have the same number. General expressions
70 do not have any such thing, so the only way to retrieve the
71 information recorded on an expression other than a register
72 is to keep it in a hash table.
74 Registers and "quantity numbers":
76 At the start of each basic block, all of the (hardware and pseudo)
77 registers used in the function are given distinct quantity
78 numbers to indicate their contents. During scan, when the code
79 copies one register into another, we copy the quantity number.
80 When a register is loaded in any other way, we allocate a new
81 quantity number to describe the value generated by this operation.
82 `REG_QTY (N)' records what quantity register N is currently thought
83 of as containing.
85 All real quantity numbers are greater than or equal to zero.
86 If register N has not been assigned a quantity, `REG_QTY (N)' will
87 equal -N - 1, which is always negative.
89 Quantity numbers below zero do not exist and none of the `qty_table'
90 entries should be referenced with a negative index.
92 We also maintain a bidirectional chain of registers for each
93 quantity number. The `qty_table` members `first_reg' and `last_reg',
94 and `reg_eqv_table' members `next' and `prev' hold these chains.
96 The first register in a chain is the one whose lifespan is least local.
97 Among equals, it is the one that was seen first.
98 We replace any equivalent register with that one.
100 If two registers have the same quantity number, it must be true that
101 REG expressions with qty_table `mode' must be in the hash table for both
102 registers and must be in the same class.
104 The converse is not true. Since hard registers may be referenced in
105 any mode, two REG expressions might be equivalent in the hash table
106 but not have the same quantity number if the quantity number of one
107 of the registers is not the same mode as those expressions.
109 Constants and quantity numbers
111 When a quantity has a known constant value, that value is stored
112 in the appropriate qty_table `const_rtx'. This is in addition to
113 putting the constant in the hash table as is usual for non-regs.
115 Whether a reg or a constant is preferred is determined by the configuration
116 macro CONST_COSTS and will often depend on the constant value. In any
117 event, expressions containing constants can be simplified, by fold_rtx.
119 When a quantity has a known nearly constant value (such as an address
120 of a stack slot), that value is stored in the appropriate qty_table
121 `const_rtx'.
123 Integer constants don't have a machine mode. However, cse
124 determines the intended machine mode from the destination
125 of the instruction that moves the constant. The machine mode
126 is recorded in the hash table along with the actual RTL
127 constant expression so that different modes are kept separate.
129 Other expressions:
131 To record known equivalences among expressions in general
132 we use a hash table called `table'. It has a fixed number of buckets
133 that contain chains of `struct table_elt' elements for expressions.
134 These chains connect the elements whose expressions have the same
135 hash codes.
137 Other chains through the same elements connect the elements which
138 currently have equivalent values.
140 Register references in an expression are canonicalized before hashing
141 the expression. This is done using `reg_qty' and qty_table `first_reg'.
142 The hash code of a register reference is computed using the quantity
143 number, not the register number.
145 When the value of an expression changes, it is necessary to remove from the
146 hash table not just that expression but all expressions whose values
147 could be different as a result.
149 1. If the value changing is in memory, except in special cases
150 ANYTHING referring to memory could be changed. That is because
151 nobody knows where a pointer does not point.
152 The function `invalidate_memory' removes what is necessary.
154 The special cases are when the address is constant or is
155 a constant plus a fixed register such as the frame pointer
156 or a static chain pointer. When such addresses are stored in,
157 we can tell exactly which other such addresses must be invalidated
158 due to overlap. `invalidate' does this.
159 All expressions that refer to non-constant
160 memory addresses are also invalidated. `invalidate_memory' does this.
162 2. If the value changing is a register, all expressions
163 containing references to that register, and only those,
164 must be removed.
166 Because searching the entire hash table for expressions that contain
167 a register is very slow, we try to figure out when it isn't necessary.
168 Precisely, this is necessary only when expressions have been
169 entered in the hash table using this register, and then the value has
170 changed, and then another expression wants to be added to refer to
171 the register's new value. This sequence of circumstances is rare
172 within any one basic block.
174 `REG_TICK' and `REG_IN_TABLE', accessors for members of
175 cse_reg_info, are used to detect this case. REG_TICK (i) is
176 incremented whenever a value is stored in register i.
177 REG_IN_TABLE (i) holds -1 if no references to register i have been
178 entered in the table; otherwise, it contains the value REG_TICK (i)
179 had when the references were entered. If we want to enter a
180 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
181 remove old references. Until we want to enter a new entry, the
182 mere fact that the two vectors don't match makes the entries be
183 ignored if anyone tries to match them.
185 Registers themselves are entered in the hash table as well as in
186 the equivalent-register chains. However, `REG_TICK' and
187 `REG_IN_TABLE' do not apply to expressions which are simple
188 register references. These expressions are removed from the table
189 immediately when they become invalid, and this can be done even if
190 we do not immediately search for all the expressions that refer to
191 the register.
193 A CLOBBER rtx in an instruction invalidates its operand for further
194 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
195 invalidates everything that resides in memory.
197 Related expressions:
199 Constant expressions that differ only by an additive integer
200 are called related. When a constant expression is put in
201 the table, the related expression with no constant term
202 is also entered. These are made to point at each other
203 so that it is possible to find out if there exists any
204 register equivalent to an expression related to a given expression. */
206 /* Length of qty_table vector. We know in advance we will not need
207 a quantity number this big. */
209 static int max_qty;
211 /* Next quantity number to be allocated.
212 This is 1 + the largest number needed so far. */
214 static int next_qty;
216 /* Per-qty information tracking.
218 `first_reg' and `last_reg' track the head and tail of the
219 chain of registers which currently contain this quantity.
221 `mode' contains the machine mode of this quantity.
223 `const_rtx' holds the rtx of the constant value of this
224 quantity, if known. A summations of the frame/arg pointer
225 and a constant can also be entered here. When this holds
226 a known value, `const_insn' is the insn which stored the
227 constant value.
229 `comparison_{code,const,qty}' are used to track when a
230 comparison between a quantity and some constant or register has
231 been passed. In such a case, we know the results of the comparison
232 in case we see it again. These members record a comparison that
233 is known to be true. `comparison_code' holds the rtx code of such
234 a comparison, else it is set to UNKNOWN and the other two
235 comparison members are undefined. `comparison_const' holds
236 the constant being compared against, or zero if the comparison
237 is not against a constant. `comparison_qty' holds the quantity
238 being compared against when the result is known. If the comparison
239 is not with a register, `comparison_qty' is -1. */
241 struct qty_table_elem
243 rtx const_rtx;
244 rtx_insn *const_insn;
245 rtx comparison_const;
246 int comparison_qty;
247 unsigned int first_reg, last_reg;
248 /* The sizes of these fields should match the sizes of the
249 code and mode fields of struct rtx_def (see rtl.h). */
250 ENUM_BITFIELD(rtx_code) comparison_code : 16;
251 ENUM_BITFIELD(machine_mode) mode : 8;
254 /* The table of all qtys, indexed by qty number. */
255 static struct qty_table_elem *qty_table;
257 /* For machines that have a CC0, we do not record its value in the hash
258 table since its use is guaranteed to be the insn immediately following
259 its definition and any other insn is presumed to invalidate it.
261 Instead, we store below the current and last value assigned to CC0.
262 If it should happen to be a constant, it is stored in preference
263 to the actual assigned value. In case it is a constant, we store
264 the mode in which the constant should be interpreted. */
266 static rtx this_insn_cc0, prev_insn_cc0;
267 static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
269 /* Insn being scanned. */
271 static rtx_insn *this_insn;
272 static bool optimize_this_for_speed_p;
274 /* Index by register number, gives the number of the next (or
275 previous) register in the chain of registers sharing the same
276 value.
278 Or -1 if this register is at the end of the chain.
280 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
282 /* Per-register equivalence chain. */
283 struct reg_eqv_elem
285 int next, prev;
288 /* The table of all register equivalence chains. */
289 static struct reg_eqv_elem *reg_eqv_table;
291 struct cse_reg_info
293 /* The timestamp at which this register is initialized. */
294 unsigned int timestamp;
296 /* The quantity number of the register's current contents. */
297 int reg_qty;
299 /* The number of times the register has been altered in the current
300 basic block. */
301 int reg_tick;
303 /* The REG_TICK value at which rtx's containing this register are
304 valid in the hash table. If this does not equal the current
305 reg_tick value, such expressions existing in the hash table are
306 invalid. */
307 int reg_in_table;
309 /* The SUBREG that was set when REG_TICK was last incremented. Set
310 to -1 if the last store was to the whole register, not a subreg. */
311 unsigned int subreg_ticked;
314 /* A table of cse_reg_info indexed by register numbers. */
315 static struct cse_reg_info *cse_reg_info_table;
317 /* The size of the above table. */
318 static unsigned int cse_reg_info_table_size;
320 /* The index of the first entry that has not been initialized. */
321 static unsigned int cse_reg_info_table_first_uninitialized;
323 /* The timestamp at the beginning of the current run of
324 cse_extended_basic_block. We increment this variable at the beginning of
325 the current run of cse_extended_basic_block. The timestamp field of a
326 cse_reg_info entry matches the value of this variable if and only
327 if the entry has been initialized during the current run of
328 cse_extended_basic_block. */
329 static unsigned int cse_reg_info_timestamp;
331 /* A HARD_REG_SET containing all the hard registers for which there is
332 currently a REG expression in the hash table. Note the difference
333 from the above variables, which indicate if the REG is mentioned in some
334 expression in the table. */
336 static HARD_REG_SET hard_regs_in_table;
338 /* True if CSE has altered the CFG. */
339 static bool cse_cfg_altered;
341 /* True if CSE has altered conditional jump insns in such a way
342 that jump optimization should be redone. */
343 static bool cse_jumps_altered;
345 /* True if we put a LABEL_REF into the hash table for an INSN
346 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
347 to put in the note. */
348 static bool recorded_label_ref;
350 /* canon_hash stores 1 in do_not_record
351 if it notices a reference to CC0, PC, or some other volatile
352 subexpression. */
354 static int do_not_record;
356 /* canon_hash stores 1 in hash_arg_in_memory
357 if it notices a reference to memory within the expression being hashed. */
359 static int hash_arg_in_memory;
361 /* The hash table contains buckets which are chains of `struct table_elt's,
362 each recording one expression's information.
363 That expression is in the `exp' field.
365 The canon_exp field contains a canonical (from the point of view of
366 alias analysis) version of the `exp' field.
368 Those elements with the same hash code are chained in both directions
369 through the `next_same_hash' and `prev_same_hash' fields.
371 Each set of expressions with equivalent values
372 are on a two-way chain through the `next_same_value'
373 and `prev_same_value' fields, and all point with
374 the `first_same_value' field at the first element in
375 that chain. The chain is in order of increasing cost.
376 Each element's cost value is in its `cost' field.
378 The `in_memory' field is nonzero for elements that
379 involve any reference to memory. These elements are removed
380 whenever a write is done to an unidentified location in memory.
381 To be safe, we assume that a memory address is unidentified unless
382 the address is either a symbol constant or a constant plus
383 the frame pointer or argument pointer.
385 The `related_value' field is used to connect related expressions
386 (that differ by adding an integer).
387 The related expressions are chained in a circular fashion.
388 `related_value' is zero for expressions for which this
389 chain is not useful.
391 The `cost' field stores the cost of this element's expression.
392 The `regcost' field stores the value returned by approx_reg_cost for
393 this element's expression.
395 The `is_const' flag is set if the element is a constant (including
396 a fixed address).
398 The `flag' field is used as a temporary during some search routines.
400 The `mode' field is usually the same as GET_MODE (`exp'), but
401 if `exp' is a CONST_INT and has no machine mode then the `mode'
402 field is the mode it was being used as. Each constant is
403 recorded separately for each mode it is used with. */
405 struct table_elt
407 rtx exp;
408 rtx canon_exp;
409 struct table_elt *next_same_hash;
410 struct table_elt *prev_same_hash;
411 struct table_elt *next_same_value;
412 struct table_elt *prev_same_value;
413 struct table_elt *first_same_value;
414 struct table_elt *related_value;
415 int cost;
416 int regcost;
417 /* The size of this field should match the size
418 of the mode field of struct rtx_def (see rtl.h). */
419 ENUM_BITFIELD(machine_mode) mode : 8;
420 char in_memory;
421 char is_const;
422 char flag;
425 /* We don't want a lot of buckets, because we rarely have very many
426 things stored in the hash table, and a lot of buckets slows
427 down a lot of loops that happen frequently. */
428 #define HASH_SHIFT 5
429 #define HASH_SIZE (1 << HASH_SHIFT)
430 #define HASH_MASK (HASH_SIZE - 1)
432 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
433 register (hard registers may require `do_not_record' to be set). */
435 #define HASH(X, M) \
436 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
437 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
438 : canon_hash (X, M)) & HASH_MASK)
440 /* Like HASH, but without side-effects. */
441 #define SAFE_HASH(X, M) \
442 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
443 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
444 : safe_hash (X, M)) & HASH_MASK)
446 /* Determine whether register number N is considered a fixed register for the
447 purpose of approximating register costs.
448 It is desirable to replace other regs with fixed regs, to reduce need for
449 non-fixed hard regs.
450 A reg wins if it is either the frame pointer or designated as fixed. */
451 #define FIXED_REGNO_P(N) \
452 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
453 || fixed_regs[N] || global_regs[N])
455 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
456 hard registers and pointers into the frame are the cheapest with a cost
457 of 0. Next come pseudos with a cost of one and other hard registers with
458 a cost of 2. Aside from these special cases, call `rtx_cost'. */
460 #define CHEAP_REGNO(N) \
461 (REGNO_PTR_FRAME_P (N) \
462 || (HARD_REGISTER_NUM_P (N) \
463 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
465 #define COST(X, MODE) \
466 (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1))
467 #define COST_IN(X, MODE, OUTER, OPNO) \
468 (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO))
470 /* Get the number of times this register has been updated in this
471 basic block. */
473 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
475 /* Get the point at which REG was recorded in the table. */
477 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
479 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
480 SUBREG). */
482 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
484 /* Get the quantity number for REG. */
486 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
488 /* Determine if the quantity number for register X represents a valid index
489 into the qty_table. */
491 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
493 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
495 #define CHEAPER(X, Y) \
496 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
498 static struct table_elt *table[HASH_SIZE];
500 /* Chain of `struct table_elt's made so far for this function
501 but currently removed from the table. */
503 static struct table_elt *free_element_chain;
505 /* Set to the cost of a constant pool reference if one was found for a
506 symbolic constant. If this was found, it means we should try to
507 convert constants into constant pool entries if they don't fit in
508 the insn. */
510 static int constant_pool_entries_cost;
511 static int constant_pool_entries_regcost;
513 /* Trace a patch through the CFG. */
515 struct branch_path
517 /* The basic block for this path entry. */
518 basic_block bb;
521 /* This data describes a block that will be processed by
522 cse_extended_basic_block. */
524 struct cse_basic_block_data
526 /* Total number of SETs in block. */
527 int nsets;
528 /* Size of current branch path, if any. */
529 int path_size;
530 /* Current path, indicating which basic_blocks will be processed. */
531 struct branch_path *path;
535 /* Pointers to the live in/live out bitmaps for the boundaries of the
536 current EBB. */
537 static bitmap cse_ebb_live_in, cse_ebb_live_out;
539 /* A simple bitmap to track which basic blocks have been visited
540 already as part of an already processed extended basic block. */
541 static sbitmap cse_visited_basic_blocks;
543 static bool fixed_base_plus_p (rtx x);
544 static int notreg_cost (rtx, machine_mode, enum rtx_code, int);
545 static int preferable (int, int, int, int);
546 static void new_basic_block (void);
547 static void make_new_qty (unsigned int, machine_mode);
548 static void make_regs_eqv (unsigned int, unsigned int);
549 static void delete_reg_equiv (unsigned int);
550 static int mention_regs (rtx);
551 static int insert_regs (rtx, struct table_elt *, int);
552 static void remove_from_table (struct table_elt *, unsigned);
553 static void remove_pseudo_from_table (rtx, unsigned);
554 static struct table_elt *lookup (rtx, unsigned, machine_mode);
555 static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
556 static rtx lookup_as_function (rtx, enum rtx_code);
557 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
558 machine_mode, int, int);
559 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
560 machine_mode);
561 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
562 static void invalidate (rtx, machine_mode);
563 static void remove_invalid_refs (unsigned int);
564 static void remove_invalid_subreg_refs (unsigned int, poly_uint64,
565 machine_mode);
566 static void rehash_using_reg (rtx);
567 static void invalidate_memory (void);
568 static void invalidate_for_call (void);
569 static rtx use_related_value (rtx, struct table_elt *);
571 static inline unsigned canon_hash (rtx, machine_mode);
572 static inline unsigned safe_hash (rtx, machine_mode);
573 static inline unsigned hash_rtx_string (const char *);
575 static rtx canon_reg (rtx, rtx_insn *);
576 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
577 machine_mode *,
578 machine_mode *);
579 static rtx fold_rtx (rtx, rtx_insn *);
580 static rtx equiv_constant (rtx);
581 static void record_jump_equiv (rtx_insn *, bool);
582 static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx,
583 int);
584 static void cse_insn (rtx_insn *);
585 static void cse_prescan_path (struct cse_basic_block_data *);
586 static void invalidate_from_clobbers (rtx_insn *);
587 static void invalidate_from_sets_and_clobbers (rtx_insn *);
588 static rtx cse_process_notes (rtx, rtx, bool *);
589 static void cse_extended_basic_block (struct cse_basic_block_data *);
590 extern void dump_class (struct table_elt*);
591 static void get_cse_reg_info_1 (unsigned int regno);
592 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
594 static void flush_hash_table (void);
595 static bool insn_live_p (rtx_insn *, int *);
596 static bool set_live_p (rtx, rtx_insn *, int *);
597 static void cse_change_cc_mode_insn (rtx_insn *, rtx);
598 static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
599 static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
600 bool);
603 #undef RTL_HOOKS_GEN_LOWPART
604 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
606 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
608 /* Nonzero if X has the form (PLUS frame-pointer integer). */
610 static bool
611 fixed_base_plus_p (rtx x)
613 switch (GET_CODE (x))
615 case REG:
616 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
617 return true;
618 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
619 return true;
620 return false;
622 case PLUS:
623 if (!CONST_INT_P (XEXP (x, 1)))
624 return false;
625 return fixed_base_plus_p (XEXP (x, 0));
627 default:
628 return false;
632 /* Dump the expressions in the equivalence class indicated by CLASSP.
633 This function is used only for debugging. */
634 DEBUG_FUNCTION void
635 dump_class (struct table_elt *classp)
637 struct table_elt *elt;
639 fprintf (stderr, "Equivalence chain for ");
640 print_rtl (stderr, classp->exp);
641 fprintf (stderr, ": \n");
643 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
645 print_rtl (stderr, elt->exp);
646 fprintf (stderr, "\n");
650 /* Return an estimate of the cost of the registers used in an rtx.
651 This is mostly the number of different REG expressions in the rtx;
652 however for some exceptions like fixed registers we use a cost of
653 0. If any other hard register reference occurs, return MAX_COST. */
655 static int
656 approx_reg_cost (const_rtx x)
658 int cost = 0;
659 subrtx_iterator::array_type array;
660 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
662 const_rtx x = *iter;
663 if (REG_P (x))
665 unsigned int regno = REGNO (x);
666 if (!CHEAP_REGNO (regno))
668 if (regno < FIRST_PSEUDO_REGISTER)
670 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
671 return MAX_COST;
672 cost += 2;
674 else
675 cost += 1;
679 return cost;
682 /* Return a negative value if an rtx A, whose costs are given by COST_A
683 and REGCOST_A, is more desirable than an rtx B.
684 Return a positive value if A is less desirable, or 0 if the two are
685 equally good. */
686 static int
687 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
689 /* First, get rid of cases involving expressions that are entirely
690 unwanted. */
691 if (cost_a != cost_b)
693 if (cost_a == MAX_COST)
694 return 1;
695 if (cost_b == MAX_COST)
696 return -1;
699 /* Avoid extending lifetimes of hardregs. */
700 if (regcost_a != regcost_b)
702 if (regcost_a == MAX_COST)
703 return 1;
704 if (regcost_b == MAX_COST)
705 return -1;
708 /* Normal operation costs take precedence. */
709 if (cost_a != cost_b)
710 return cost_a - cost_b;
711 /* Only if these are identical consider effects on register pressure. */
712 if (regcost_a != regcost_b)
713 return regcost_a - regcost_b;
714 return 0;
717 /* Internal function, to compute cost when X is not a register; called
718 from COST macro to keep it simple. */
720 static int
721 notreg_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno)
723 scalar_int_mode int_mode, inner_mode;
724 return ((GET_CODE (x) == SUBREG
725 && REG_P (SUBREG_REG (x))
726 && is_int_mode (mode, &int_mode)
727 && is_int_mode (GET_MODE (SUBREG_REG (x)), &inner_mode)
728 && GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (inner_mode)
729 && subreg_lowpart_p (x)
730 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, inner_mode))
732 : rtx_cost (x, mode, outer, opno, optimize_this_for_speed_p) * 2);
736 /* Initialize CSE_REG_INFO_TABLE. */
738 static void
739 init_cse_reg_info (unsigned int nregs)
741 /* Do we need to grow the table? */
742 if (nregs > cse_reg_info_table_size)
744 unsigned int new_size;
746 if (cse_reg_info_table_size < 2048)
748 /* Compute a new size that is a power of 2 and no smaller
749 than the large of NREGS and 64. */
750 new_size = (cse_reg_info_table_size
751 ? cse_reg_info_table_size : 64);
753 while (new_size < nregs)
754 new_size *= 2;
756 else
758 /* If we need a big table, allocate just enough to hold
759 NREGS registers. */
760 new_size = nregs;
763 /* Reallocate the table with NEW_SIZE entries. */
764 free (cse_reg_info_table);
765 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
766 cse_reg_info_table_size = new_size;
767 cse_reg_info_table_first_uninitialized = 0;
770 /* Do we have all of the first NREGS entries initialized? */
771 if (cse_reg_info_table_first_uninitialized < nregs)
773 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
774 unsigned int i;
776 /* Put the old timestamp on newly allocated entries so that they
777 will all be considered out of date. We do not touch those
778 entries beyond the first NREGS entries to be nice to the
779 virtual memory. */
780 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
781 cse_reg_info_table[i].timestamp = old_timestamp;
783 cse_reg_info_table_first_uninitialized = nregs;
787 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
789 static void
790 get_cse_reg_info_1 (unsigned int regno)
792 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
793 entry will be considered to have been initialized. */
794 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
796 /* Initialize the rest of the entry. */
797 cse_reg_info_table[regno].reg_tick = 1;
798 cse_reg_info_table[regno].reg_in_table = -1;
799 cse_reg_info_table[regno].subreg_ticked = -1;
800 cse_reg_info_table[regno].reg_qty = -regno - 1;
803 /* Find a cse_reg_info entry for REGNO. */
805 static inline struct cse_reg_info *
806 get_cse_reg_info (unsigned int regno)
808 struct cse_reg_info *p = &cse_reg_info_table[regno];
810 /* If this entry has not been initialized, go ahead and initialize
811 it. */
812 if (p->timestamp != cse_reg_info_timestamp)
813 get_cse_reg_info_1 (regno);
815 return p;
818 /* Clear the hash table and initialize each register with its own quantity,
819 for a new basic block. */
821 static void
822 new_basic_block (void)
824 int i;
826 next_qty = 0;
828 /* Invalidate cse_reg_info_table. */
829 cse_reg_info_timestamp++;
831 /* Clear out hash table state for this pass. */
832 CLEAR_HARD_REG_SET (hard_regs_in_table);
834 /* The per-quantity values used to be initialized here, but it is
835 much faster to initialize each as it is made in `make_new_qty'. */
837 for (i = 0; i < HASH_SIZE; i++)
839 struct table_elt *first;
841 first = table[i];
842 if (first != NULL)
844 struct table_elt *last = first;
846 table[i] = NULL;
848 while (last->next_same_hash != NULL)
849 last = last->next_same_hash;
851 /* Now relink this hash entire chain into
852 the free element list. */
854 last->next_same_hash = free_element_chain;
855 free_element_chain = first;
859 prev_insn_cc0 = 0;
862 /* Say that register REG contains a quantity in mode MODE not in any
863 register before and initialize that quantity. */
865 static void
866 make_new_qty (unsigned int reg, machine_mode mode)
868 int q;
869 struct qty_table_elem *ent;
870 struct reg_eqv_elem *eqv;
872 gcc_assert (next_qty < max_qty);
874 q = REG_QTY (reg) = next_qty++;
875 ent = &qty_table[q];
876 ent->first_reg = reg;
877 ent->last_reg = reg;
878 ent->mode = mode;
879 ent->const_rtx = ent->const_insn = NULL;
880 ent->comparison_code = UNKNOWN;
882 eqv = &reg_eqv_table[reg];
883 eqv->next = eqv->prev = -1;
886 /* Make reg NEW equivalent to reg OLD.
887 OLD is not changing; NEW is. */
889 static void
890 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
892 unsigned int lastr, firstr;
893 int q = REG_QTY (old_reg);
894 struct qty_table_elem *ent;
896 ent = &qty_table[q];
898 /* Nothing should become eqv until it has a "non-invalid" qty number. */
899 gcc_assert (REGNO_QTY_VALID_P (old_reg));
901 REG_QTY (new_reg) = q;
902 firstr = ent->first_reg;
903 lastr = ent->last_reg;
905 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
906 hard regs. Among pseudos, if NEW will live longer than any other reg
907 of the same qty, and that is beyond the current basic block,
908 make it the new canonical replacement for this qty. */
909 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
910 /* Certain fixed registers might be of the class NO_REGS. This means
911 that not only can they not be allocated by the compiler, but
912 they cannot be used in substitutions or canonicalizations
913 either. */
914 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
915 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
916 || (new_reg >= FIRST_PSEUDO_REGISTER
917 && (firstr < FIRST_PSEUDO_REGISTER
918 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
919 && !bitmap_bit_p (cse_ebb_live_out, firstr))
920 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
921 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
923 reg_eqv_table[firstr].prev = new_reg;
924 reg_eqv_table[new_reg].next = firstr;
925 reg_eqv_table[new_reg].prev = -1;
926 ent->first_reg = new_reg;
928 else
930 /* If NEW is a hard reg (known to be non-fixed), insert at end.
931 Otherwise, insert before any non-fixed hard regs that are at the
932 end. Registers of class NO_REGS cannot be used as an
933 equivalent for anything. */
934 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
935 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
936 && new_reg >= FIRST_PSEUDO_REGISTER)
937 lastr = reg_eqv_table[lastr].prev;
938 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
939 if (reg_eqv_table[lastr].next >= 0)
940 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
941 else
942 qty_table[q].last_reg = new_reg;
943 reg_eqv_table[lastr].next = new_reg;
944 reg_eqv_table[new_reg].prev = lastr;
948 /* Remove REG from its equivalence class. */
950 static void
951 delete_reg_equiv (unsigned int reg)
953 struct qty_table_elem *ent;
954 int q = REG_QTY (reg);
955 int p, n;
957 /* If invalid, do nothing. */
958 if (! REGNO_QTY_VALID_P (reg))
959 return;
961 ent = &qty_table[q];
963 p = reg_eqv_table[reg].prev;
964 n = reg_eqv_table[reg].next;
966 if (n != -1)
967 reg_eqv_table[n].prev = p;
968 else
969 ent->last_reg = p;
970 if (p != -1)
971 reg_eqv_table[p].next = n;
972 else
973 ent->first_reg = n;
975 REG_QTY (reg) = -reg - 1;
978 /* Remove any invalid expressions from the hash table
979 that refer to any of the registers contained in expression X.
981 Make sure that newly inserted references to those registers
982 as subexpressions will be considered valid.
984 mention_regs is not called when a register itself
985 is being stored in the table.
987 Return 1 if we have done something that may have changed the hash code
988 of X. */
990 static int
991 mention_regs (rtx x)
993 enum rtx_code code;
994 int i, j;
995 const char *fmt;
996 int changed = 0;
998 if (x == 0)
999 return 0;
1001 code = GET_CODE (x);
1002 if (code == REG)
1004 unsigned int regno = REGNO (x);
1005 unsigned int endregno = END_REGNO (x);
1006 unsigned int i;
1008 for (i = regno; i < endregno; i++)
1010 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1011 remove_invalid_refs (i);
1013 REG_IN_TABLE (i) = REG_TICK (i);
1014 SUBREG_TICKED (i) = -1;
1017 return 0;
1020 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1021 pseudo if they don't use overlapping words. We handle only pseudos
1022 here for simplicity. */
1023 if (code == SUBREG && REG_P (SUBREG_REG (x))
1024 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1026 unsigned int i = REGNO (SUBREG_REG (x));
1028 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1030 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1031 the last store to this register really stored into this
1032 subreg, then remove the memory of this subreg.
1033 Otherwise, remove any memory of the entire register and
1034 all its subregs from the table. */
1035 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1036 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1037 remove_invalid_refs (i);
1038 else
1039 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1042 REG_IN_TABLE (i) = REG_TICK (i);
1043 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1044 return 0;
1047 /* If X is a comparison or a COMPARE and either operand is a register
1048 that does not have a quantity, give it one. This is so that a later
1049 call to record_jump_equiv won't cause X to be assigned a different
1050 hash code and not found in the table after that call.
1052 It is not necessary to do this here, since rehash_using_reg can
1053 fix up the table later, but doing this here eliminates the need to
1054 call that expensive function in the most common case where the only
1055 use of the register is in the comparison. */
1057 if (code == COMPARE || COMPARISON_P (x))
1059 if (REG_P (XEXP (x, 0))
1060 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1061 if (insert_regs (XEXP (x, 0), NULL, 0))
1063 rehash_using_reg (XEXP (x, 0));
1064 changed = 1;
1067 if (REG_P (XEXP (x, 1))
1068 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1069 if (insert_regs (XEXP (x, 1), NULL, 0))
1071 rehash_using_reg (XEXP (x, 1));
1072 changed = 1;
1076 fmt = GET_RTX_FORMAT (code);
1077 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1078 if (fmt[i] == 'e')
1079 changed |= mention_regs (XEXP (x, i));
1080 else if (fmt[i] == 'E')
1081 for (j = 0; j < XVECLEN (x, i); j++)
1082 changed |= mention_regs (XVECEXP (x, i, j));
1084 return changed;
1087 /* Update the register quantities for inserting X into the hash table
1088 with a value equivalent to CLASSP.
1089 (If the class does not contain a REG, it is irrelevant.)
1090 If MODIFIED is nonzero, X is a destination; it is being modified.
1091 Note that delete_reg_equiv should be called on a register
1092 before insert_regs is done on that register with MODIFIED != 0.
1094 Nonzero value means that elements of reg_qty have changed
1095 so X's hash code may be different. */
1097 static int
1098 insert_regs (rtx x, struct table_elt *classp, int modified)
1100 if (REG_P (x))
1102 unsigned int regno = REGNO (x);
1103 int qty_valid;
1105 /* If REGNO is in the equivalence table already but is of the
1106 wrong mode for that equivalence, don't do anything here. */
1108 qty_valid = REGNO_QTY_VALID_P (regno);
1109 if (qty_valid)
1111 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1113 if (ent->mode != GET_MODE (x))
1114 return 0;
1117 if (modified || ! qty_valid)
1119 if (classp)
1120 for (classp = classp->first_same_value;
1121 classp != 0;
1122 classp = classp->next_same_value)
1123 if (REG_P (classp->exp)
1124 && GET_MODE (classp->exp) == GET_MODE (x))
1126 unsigned c_regno = REGNO (classp->exp);
1128 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1130 /* Suppose that 5 is hard reg and 100 and 101 are
1131 pseudos. Consider
1133 (set (reg:si 100) (reg:si 5))
1134 (set (reg:si 5) (reg:si 100))
1135 (set (reg:di 101) (reg:di 5))
1137 We would now set REG_QTY (101) = REG_QTY (5), but the
1138 entry for 5 is in SImode. When we use this later in
1139 copy propagation, we get the register in wrong mode. */
1140 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1141 continue;
1143 make_regs_eqv (regno, c_regno);
1144 return 1;
1147 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1148 than REG_IN_TABLE to find out if there was only a single preceding
1149 invalidation - for the SUBREG - or another one, which would be
1150 for the full register. However, if we find here that REG_TICK
1151 indicates that the register is invalid, it means that it has
1152 been invalidated in a separate operation. The SUBREG might be used
1153 now (then this is a recursive call), or we might use the full REG
1154 now and a SUBREG of it later. So bump up REG_TICK so that
1155 mention_regs will do the right thing. */
1156 if (! modified
1157 && REG_IN_TABLE (regno) >= 0
1158 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1159 REG_TICK (regno)++;
1160 make_new_qty (regno, GET_MODE (x));
1161 return 1;
1164 return 0;
1167 /* If X is a SUBREG, we will likely be inserting the inner register in the
1168 table. If that register doesn't have an assigned quantity number at
1169 this point but does later, the insertion that we will be doing now will
1170 not be accessible because its hash code will have changed. So assign
1171 a quantity number now. */
1173 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1174 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1176 insert_regs (SUBREG_REG (x), NULL, 0);
1177 mention_regs (x);
1178 return 1;
1180 else
1181 return mention_regs (x);
1185 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1186 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1187 CST is equal to an anchor. */
1189 static bool
1190 compute_const_anchors (rtx cst,
1191 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1192 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1194 HOST_WIDE_INT n = INTVAL (cst);
1196 *lower_base = n & ~(targetm.const_anchor - 1);
1197 if (*lower_base == n)
1198 return false;
1200 *upper_base =
1201 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1202 *upper_offs = n - *upper_base;
1203 *lower_offs = n - *lower_base;
1204 return true;
1207 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1209 static void
1210 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1211 machine_mode mode)
1213 struct table_elt *elt;
1214 unsigned hash;
1215 rtx anchor_exp;
1216 rtx exp;
1218 anchor_exp = GEN_INT (anchor);
1219 hash = HASH (anchor_exp, mode);
1220 elt = lookup (anchor_exp, hash, mode);
1221 if (!elt)
1222 elt = insert (anchor_exp, NULL, hash, mode);
1224 exp = plus_constant (mode, reg, offs);
1225 /* REG has just been inserted and the hash codes recomputed. */
1226 mention_regs (exp);
1227 hash = HASH (exp, mode);
1229 /* Use the cost of the register rather than the whole expression. When
1230 looking up constant anchors we will further offset the corresponding
1231 expression therefore it does not make sense to prefer REGs over
1232 reg-immediate additions. Prefer instead the oldest expression. Also
1233 don't prefer pseudos over hard regs so that we derive constants in
1234 argument registers from other argument registers rather than from the
1235 original pseudo that was used to synthesize the constant. */
1236 insert_with_costs (exp, elt, hash, mode, COST (reg, mode), 1);
1239 /* The constant CST is equivalent to the register REG. Create
1240 equivalences between the two anchors of CST and the corresponding
1241 register-offset expressions using REG. */
1243 static void
1244 insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
1246 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1248 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1249 &upper_base, &upper_offs))
1250 return;
1252 /* Ignore anchors of value 0. Constants accessible from zero are
1253 simple. */
1254 if (lower_base != 0)
1255 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1257 if (upper_base != 0)
1258 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1261 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1262 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1263 valid expression. Return the cheapest and oldest of such expressions. In
1264 *OLD, return how old the resulting expression is compared to the other
1265 equivalent expressions. */
1267 static rtx
1268 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1269 unsigned *old)
1271 struct table_elt *elt;
1272 unsigned idx;
1273 struct table_elt *match_elt;
1274 rtx match;
1276 /* Find the cheapest and *oldest* expression to maximize the chance of
1277 reusing the same pseudo. */
1279 match_elt = NULL;
1280 match = NULL_RTX;
1281 for (elt = anchor_elt->first_same_value, idx = 0;
1282 elt;
1283 elt = elt->next_same_value, idx++)
1285 if (match_elt && CHEAPER (match_elt, elt))
1286 return match;
1288 if (REG_P (elt->exp)
1289 || (GET_CODE (elt->exp) == PLUS
1290 && REG_P (XEXP (elt->exp, 0))
1291 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1293 rtx x;
1295 /* Ignore expressions that are no longer valid. */
1296 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1297 continue;
1299 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1300 if (REG_P (x)
1301 || (GET_CODE (x) == PLUS
1302 && IN_RANGE (INTVAL (XEXP (x, 1)),
1303 -targetm.const_anchor,
1304 targetm.const_anchor - 1)))
1306 match = x;
1307 match_elt = elt;
1308 *old = idx;
1313 return match;
1316 /* Try to express the constant SRC_CONST using a register+offset expression
1317 derived from a constant anchor. Return it if successful or NULL_RTX,
1318 otherwise. */
1320 static rtx
1321 try_const_anchors (rtx src_const, machine_mode mode)
1323 struct table_elt *lower_elt, *upper_elt;
1324 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1325 rtx lower_anchor_rtx, upper_anchor_rtx;
1326 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1327 unsigned lower_old, upper_old;
1329 /* CONST_INT is used for CC modes, but we should leave those alone. */
1330 if (GET_MODE_CLASS (mode) == MODE_CC)
1331 return NULL_RTX;
1333 gcc_assert (SCALAR_INT_MODE_P (mode));
1334 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1335 &upper_base, &upper_offs))
1336 return NULL_RTX;
1338 lower_anchor_rtx = GEN_INT (lower_base);
1339 upper_anchor_rtx = GEN_INT (upper_base);
1340 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1341 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1343 if (lower_elt)
1344 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1345 if (upper_elt)
1346 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1348 if (!lower_exp)
1349 return upper_exp;
1350 if (!upper_exp)
1351 return lower_exp;
1353 /* Return the older expression. */
1354 return (upper_old > lower_old ? upper_exp : lower_exp);
1357 /* Look in or update the hash table. */
1359 /* Remove table element ELT from use in the table.
1360 HASH is its hash code, made using the HASH macro.
1361 It's an argument because often that is known in advance
1362 and we save much time not recomputing it. */
1364 static void
1365 remove_from_table (struct table_elt *elt, unsigned int hash)
1367 if (elt == 0)
1368 return;
1370 /* Mark this element as removed. See cse_insn. */
1371 elt->first_same_value = 0;
1373 /* Remove the table element from its equivalence class. */
1376 struct table_elt *prev = elt->prev_same_value;
1377 struct table_elt *next = elt->next_same_value;
1379 if (next)
1380 next->prev_same_value = prev;
1382 if (prev)
1383 prev->next_same_value = next;
1384 else
1386 struct table_elt *newfirst = next;
1387 while (next)
1389 next->first_same_value = newfirst;
1390 next = next->next_same_value;
1395 /* Remove the table element from its hash bucket. */
1398 struct table_elt *prev = elt->prev_same_hash;
1399 struct table_elt *next = elt->next_same_hash;
1401 if (next)
1402 next->prev_same_hash = prev;
1404 if (prev)
1405 prev->next_same_hash = next;
1406 else if (table[hash] == elt)
1407 table[hash] = next;
1408 else
1410 /* This entry is not in the proper hash bucket. This can happen
1411 when two classes were merged by `merge_equiv_classes'. Search
1412 for the hash bucket that it heads. This happens only very
1413 rarely, so the cost is acceptable. */
1414 for (hash = 0; hash < HASH_SIZE; hash++)
1415 if (table[hash] == elt)
1416 table[hash] = next;
1420 /* Remove the table element from its related-value circular chain. */
1422 if (elt->related_value != 0 && elt->related_value != elt)
1424 struct table_elt *p = elt->related_value;
1426 while (p->related_value != elt)
1427 p = p->related_value;
1428 p->related_value = elt->related_value;
1429 if (p->related_value == p)
1430 p->related_value = 0;
1433 /* Now add it to the free element chain. */
1434 elt->next_same_hash = free_element_chain;
1435 free_element_chain = elt;
1438 /* Same as above, but X is a pseudo-register. */
1440 static void
1441 remove_pseudo_from_table (rtx x, unsigned int hash)
1443 struct table_elt *elt;
1445 /* Because a pseudo-register can be referenced in more than one
1446 mode, we might have to remove more than one table entry. */
1447 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1448 remove_from_table (elt, hash);
1451 /* Look up X in the hash table and return its table element,
1452 or 0 if X is not in the table.
1454 MODE is the machine-mode of X, or if X is an integer constant
1455 with VOIDmode then MODE is the mode with which X will be used.
1457 Here we are satisfied to find an expression whose tree structure
1458 looks like X. */
1460 static struct table_elt *
1461 lookup (rtx x, unsigned int hash, machine_mode mode)
1463 struct table_elt *p;
1465 for (p = table[hash]; p; p = p->next_same_hash)
1466 if (mode == p->mode && ((x == p->exp && REG_P (x))
1467 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1468 return p;
1470 return 0;
1473 /* Like `lookup' but don't care whether the table element uses invalid regs.
1474 Also ignore discrepancies in the machine mode of a register. */
1476 static struct table_elt *
1477 lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
1479 struct table_elt *p;
1481 if (REG_P (x))
1483 unsigned int regno = REGNO (x);
1485 /* Don't check the machine mode when comparing registers;
1486 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1487 for (p = table[hash]; p; p = p->next_same_hash)
1488 if (REG_P (p->exp)
1489 && REGNO (p->exp) == regno)
1490 return p;
1492 else
1494 for (p = table[hash]; p; p = p->next_same_hash)
1495 if (mode == p->mode
1496 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1497 return p;
1500 return 0;
1503 /* Look for an expression equivalent to X and with code CODE.
1504 If one is found, return that expression. */
1506 static rtx
1507 lookup_as_function (rtx x, enum rtx_code code)
1509 struct table_elt *p
1510 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1512 if (p == 0)
1513 return 0;
1515 for (p = p->first_same_value; p; p = p->next_same_value)
1516 if (GET_CODE (p->exp) == code
1517 /* Make sure this is a valid entry in the table. */
1518 && exp_equiv_p (p->exp, p->exp, 1, false))
1519 return p->exp;
1521 return 0;
1524 /* Insert X in the hash table, assuming HASH is its hash code and
1525 CLASSP is an element of the class it should go in (or 0 if a new
1526 class should be made). COST is the code of X and reg_cost is the
1527 cost of registers in X. It is inserted at the proper position to
1528 keep the class in the order cheapest first.
1530 MODE is the machine-mode of X, or if X is an integer constant
1531 with VOIDmode then MODE is the mode with which X will be used.
1533 For elements of equal cheapness, the most recent one
1534 goes in front, except that the first element in the list
1535 remains first unless a cheaper element is added. The order of
1536 pseudo-registers does not matter, as canon_reg will be called to
1537 find the cheapest when a register is retrieved from the table.
1539 The in_memory field in the hash table element is set to 0.
1540 The caller must set it nonzero if appropriate.
1542 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1543 and if insert_regs returns a nonzero value
1544 you must then recompute its hash code before calling here.
1546 If necessary, update table showing constant values of quantities. */
1548 static struct table_elt *
1549 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1550 machine_mode mode, int cost, int reg_cost)
1552 struct table_elt *elt;
1554 /* If X is a register and we haven't made a quantity for it,
1555 something is wrong. */
1556 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1558 /* If X is a hard register, show it is being put in the table. */
1559 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1560 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1562 /* Put an element for X into the right hash bucket. */
1564 elt = free_element_chain;
1565 if (elt)
1566 free_element_chain = elt->next_same_hash;
1567 else
1568 elt = XNEW (struct table_elt);
1570 elt->exp = x;
1571 elt->canon_exp = NULL_RTX;
1572 elt->cost = cost;
1573 elt->regcost = reg_cost;
1574 elt->next_same_value = 0;
1575 elt->prev_same_value = 0;
1576 elt->next_same_hash = table[hash];
1577 elt->prev_same_hash = 0;
1578 elt->related_value = 0;
1579 elt->in_memory = 0;
1580 elt->mode = mode;
1581 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1583 if (table[hash])
1584 table[hash]->prev_same_hash = elt;
1585 table[hash] = elt;
1587 /* Put it into the proper value-class. */
1588 if (classp)
1590 classp = classp->first_same_value;
1591 if (CHEAPER (elt, classp))
1592 /* Insert at the head of the class. */
1594 struct table_elt *p;
1595 elt->next_same_value = classp;
1596 classp->prev_same_value = elt;
1597 elt->first_same_value = elt;
1599 for (p = classp; p; p = p->next_same_value)
1600 p->first_same_value = elt;
1602 else
1604 /* Insert not at head of the class. */
1605 /* Put it after the last element cheaper than X. */
1606 struct table_elt *p, *next;
1608 for (p = classp;
1609 (next = p->next_same_value) && CHEAPER (next, elt);
1610 p = next)
1613 /* Put it after P and before NEXT. */
1614 elt->next_same_value = next;
1615 if (next)
1616 next->prev_same_value = elt;
1618 elt->prev_same_value = p;
1619 p->next_same_value = elt;
1620 elt->first_same_value = classp;
1623 else
1624 elt->first_same_value = elt;
1626 /* If this is a constant being set equivalent to a register or a register
1627 being set equivalent to a constant, note the constant equivalence.
1629 If this is a constant, it cannot be equivalent to a different constant,
1630 and a constant is the only thing that can be cheaper than a register. So
1631 we know the register is the head of the class (before the constant was
1632 inserted).
1634 If this is a register that is not already known equivalent to a
1635 constant, we must check the entire class.
1637 If this is a register that is already known equivalent to an insn,
1638 update the qtys `const_insn' to show that `this_insn' is the latest
1639 insn making that quantity equivalent to the constant. */
1641 if (elt->is_const && classp && REG_P (classp->exp)
1642 && !REG_P (x))
1644 int exp_q = REG_QTY (REGNO (classp->exp));
1645 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1647 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1648 exp_ent->const_insn = this_insn;
1651 else if (REG_P (x)
1652 && classp
1653 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1654 && ! elt->is_const)
1656 struct table_elt *p;
1658 for (p = classp; p != 0; p = p->next_same_value)
1660 if (p->is_const && !REG_P (p->exp))
1662 int x_q = REG_QTY (REGNO (x));
1663 struct qty_table_elem *x_ent = &qty_table[x_q];
1665 x_ent->const_rtx
1666 = gen_lowpart (GET_MODE (x), p->exp);
1667 x_ent->const_insn = this_insn;
1668 break;
1673 else if (REG_P (x)
1674 && qty_table[REG_QTY (REGNO (x))].const_rtx
1675 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1676 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1678 /* If this is a constant with symbolic value,
1679 and it has a term with an explicit integer value,
1680 link it up with related expressions. */
1681 if (GET_CODE (x) == CONST)
1683 rtx subexp = get_related_value (x);
1684 unsigned subhash;
1685 struct table_elt *subelt, *subelt_prev;
1687 if (subexp != 0)
1689 /* Get the integer-free subexpression in the hash table. */
1690 subhash = SAFE_HASH (subexp, mode);
1691 subelt = lookup (subexp, subhash, mode);
1692 if (subelt == 0)
1693 subelt = insert (subexp, NULL, subhash, mode);
1694 /* Initialize SUBELT's circular chain if it has none. */
1695 if (subelt->related_value == 0)
1696 subelt->related_value = subelt;
1697 /* Find the element in the circular chain that precedes SUBELT. */
1698 subelt_prev = subelt;
1699 while (subelt_prev->related_value != subelt)
1700 subelt_prev = subelt_prev->related_value;
1701 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1702 This way the element that follows SUBELT is the oldest one. */
1703 elt->related_value = subelt_prev->related_value;
1704 subelt_prev->related_value = elt;
1708 return elt;
1711 /* Wrap insert_with_costs by passing the default costs. */
1713 static struct table_elt *
1714 insert (rtx x, struct table_elt *classp, unsigned int hash,
1715 machine_mode mode)
1717 return insert_with_costs (x, classp, hash, mode,
1718 COST (x, mode), approx_reg_cost (x));
1722 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1723 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1724 the two classes equivalent.
1726 CLASS1 will be the surviving class; CLASS2 should not be used after this
1727 call.
1729 Any invalid entries in CLASS2 will not be copied. */
1731 static void
1732 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1734 struct table_elt *elt, *next, *new_elt;
1736 /* Ensure we start with the head of the classes. */
1737 class1 = class1->first_same_value;
1738 class2 = class2->first_same_value;
1740 /* If they were already equal, forget it. */
1741 if (class1 == class2)
1742 return;
1744 for (elt = class2; elt; elt = next)
1746 unsigned int hash;
1747 rtx exp = elt->exp;
1748 machine_mode mode = elt->mode;
1750 next = elt->next_same_value;
1752 /* Remove old entry, make a new one in CLASS1's class.
1753 Don't do this for invalid entries as we cannot find their
1754 hash code (it also isn't necessary). */
1755 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1757 bool need_rehash = false;
1759 hash_arg_in_memory = 0;
1760 hash = HASH (exp, mode);
1762 if (REG_P (exp))
1764 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1765 delete_reg_equiv (REGNO (exp));
1768 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1769 remove_pseudo_from_table (exp, hash);
1770 else
1771 remove_from_table (elt, hash);
1773 if (insert_regs (exp, class1, 0) || need_rehash)
1775 rehash_using_reg (exp);
1776 hash = HASH (exp, mode);
1778 new_elt = insert (exp, class1, hash, mode);
1779 new_elt->in_memory = hash_arg_in_memory;
1780 if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1781 new_elt->cost = MAX_COST;
1786 /* Flush the entire hash table. */
1788 static void
1789 flush_hash_table (void)
1791 int i;
1792 struct table_elt *p;
1794 for (i = 0; i < HASH_SIZE; i++)
1795 for (p = table[i]; p; p = table[i])
1797 /* Note that invalidate can remove elements
1798 after P in the current hash chain. */
1799 if (REG_P (p->exp))
1800 invalidate (p->exp, VOIDmode);
1801 else
1802 remove_from_table (p, i);
1806 /* Check whether an anti dependence exists between X and EXP. MODE and
1807 ADDR are as for canon_anti_dependence. */
1809 static bool
1810 check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
1812 subrtx_iterator::array_type array;
1813 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1815 const_rtx x = *iter;
1816 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1817 return true;
1819 return false;
1822 /* Remove from the hash table, or mark as invalid, all expressions whose
1823 values could be altered by storing in X. X is a register, a subreg, or
1824 a memory reference with nonvarying address (because, when a memory
1825 reference with a varying address is stored in, all memory references are
1826 removed by invalidate_memory so specific invalidation is superfluous).
1827 FULL_MODE, if not VOIDmode, indicates that this much should be
1828 invalidated instead of just the amount indicated by the mode of X. This
1829 is only used for bitfield stores into memory.
1831 A nonvarying address may be just a register or just a symbol reference,
1832 or it may be either of those plus a numeric offset. */
1834 static void
1835 invalidate (rtx x, machine_mode full_mode)
1837 int i;
1838 struct table_elt *p;
1839 rtx addr;
1841 switch (GET_CODE (x))
1843 case REG:
1845 /* If X is a register, dependencies on its contents are recorded
1846 through the qty number mechanism. Just change the qty number of
1847 the register, mark it as invalid for expressions that refer to it,
1848 and remove it itself. */
1849 unsigned int regno = REGNO (x);
1850 unsigned int hash = HASH (x, GET_MODE (x));
1852 /* Remove REGNO from any quantity list it might be on and indicate
1853 that its value might have changed. If it is a pseudo, remove its
1854 entry from the hash table.
1856 For a hard register, we do the first two actions above for any
1857 additional hard registers corresponding to X. Then, if any of these
1858 registers are in the table, we must remove any REG entries that
1859 overlap these registers. */
1861 delete_reg_equiv (regno);
1862 REG_TICK (regno)++;
1863 SUBREG_TICKED (regno) = -1;
1865 if (regno >= FIRST_PSEUDO_REGISTER)
1866 remove_pseudo_from_table (x, hash);
1867 else
1869 HOST_WIDE_INT in_table
1870 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1871 unsigned int endregno = END_REGNO (x);
1872 unsigned int tregno, tendregno, rn;
1873 struct table_elt *p, *next;
1875 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1877 for (rn = regno + 1; rn < endregno; rn++)
1879 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1880 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1881 delete_reg_equiv (rn);
1882 REG_TICK (rn)++;
1883 SUBREG_TICKED (rn) = -1;
1886 if (in_table)
1887 for (hash = 0; hash < HASH_SIZE; hash++)
1888 for (p = table[hash]; p; p = next)
1890 next = p->next_same_hash;
1892 if (!REG_P (p->exp)
1893 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1894 continue;
1896 tregno = REGNO (p->exp);
1897 tendregno = END_REGNO (p->exp);
1898 if (tendregno > regno && tregno < endregno)
1899 remove_from_table (p, hash);
1903 return;
1905 case SUBREG:
1906 invalidate (SUBREG_REG (x), VOIDmode);
1907 return;
1909 case PARALLEL:
1910 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1911 invalidate (XVECEXP (x, 0, i), VOIDmode);
1912 return;
1914 case EXPR_LIST:
1915 /* This is part of a disjoint return value; extract the location in
1916 question ignoring the offset. */
1917 invalidate (XEXP (x, 0), VOIDmode);
1918 return;
1920 case MEM:
1921 addr = canon_rtx (get_addr (XEXP (x, 0)));
1922 /* Calculate the canonical version of X here so that
1923 true_dependence doesn't generate new RTL for X on each call. */
1924 x = canon_rtx (x);
1926 /* Remove all hash table elements that refer to overlapping pieces of
1927 memory. */
1928 if (full_mode == VOIDmode)
1929 full_mode = GET_MODE (x);
1931 for (i = 0; i < HASH_SIZE; i++)
1933 struct table_elt *next;
1935 for (p = table[i]; p; p = next)
1937 next = p->next_same_hash;
1938 if (p->in_memory)
1940 /* Just canonicalize the expression once;
1941 otherwise each time we call invalidate
1942 true_dependence will canonicalize the
1943 expression again. */
1944 if (!p->canon_exp)
1945 p->canon_exp = canon_rtx (p->exp);
1946 if (check_dependence (p->canon_exp, x, full_mode, addr))
1947 remove_from_table (p, i);
1951 return;
1953 default:
1954 gcc_unreachable ();
1958 /* Invalidate DEST. Used when DEST is not going to be added
1959 into the hash table for some reason, e.g. do_not_record
1960 flagged on it. */
1962 static void
1963 invalidate_dest (rtx dest)
1965 if (REG_P (dest)
1966 || GET_CODE (dest) == SUBREG
1967 || MEM_P (dest))
1968 invalidate (dest, VOIDmode);
1969 else if (GET_CODE (dest) == STRICT_LOW_PART
1970 || GET_CODE (dest) == ZERO_EXTRACT)
1971 invalidate (XEXP (dest, 0), GET_MODE (dest));
1974 /* Remove all expressions that refer to register REGNO,
1975 since they are already invalid, and we are about to
1976 mark that register valid again and don't want the old
1977 expressions to reappear as valid. */
1979 static void
1980 remove_invalid_refs (unsigned int regno)
1982 unsigned int i;
1983 struct table_elt *p, *next;
1985 for (i = 0; i < HASH_SIZE; i++)
1986 for (p = table[i]; p; p = next)
1988 next = p->next_same_hash;
1989 if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
1990 remove_from_table (p, i);
1994 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1995 and mode MODE. */
1996 static void
1997 remove_invalid_subreg_refs (unsigned int regno, poly_uint64 offset,
1998 machine_mode mode)
2000 unsigned int i;
2001 struct table_elt *p, *next;
2003 for (i = 0; i < HASH_SIZE; i++)
2004 for (p = table[i]; p; p = next)
2006 rtx exp = p->exp;
2007 next = p->next_same_hash;
2009 if (!REG_P (exp)
2010 && (GET_CODE (exp) != SUBREG
2011 || !REG_P (SUBREG_REG (exp))
2012 || REGNO (SUBREG_REG (exp)) != regno
2013 || ranges_maybe_overlap_p (SUBREG_BYTE (exp),
2014 GET_MODE_SIZE (GET_MODE (exp)),
2015 offset, GET_MODE_SIZE (mode)))
2016 && refers_to_regno_p (regno, p->exp))
2017 remove_from_table (p, i);
2021 /* Recompute the hash codes of any valid entries in the hash table that
2022 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2024 This is called when we make a jump equivalence. */
2026 static void
2027 rehash_using_reg (rtx x)
2029 unsigned int i;
2030 struct table_elt *p, *next;
2031 unsigned hash;
2033 if (GET_CODE (x) == SUBREG)
2034 x = SUBREG_REG (x);
2036 /* If X is not a register or if the register is known not to be in any
2037 valid entries in the table, we have no work to do. */
2039 if (!REG_P (x)
2040 || REG_IN_TABLE (REGNO (x)) < 0
2041 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2042 return;
2044 /* Scan all hash chains looking for valid entries that mention X.
2045 If we find one and it is in the wrong hash chain, move it. */
2047 for (i = 0; i < HASH_SIZE; i++)
2048 for (p = table[i]; p; p = next)
2050 next = p->next_same_hash;
2051 if (reg_mentioned_p (x, p->exp)
2052 && exp_equiv_p (p->exp, p->exp, 1, false)
2053 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2055 if (p->next_same_hash)
2056 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2058 if (p->prev_same_hash)
2059 p->prev_same_hash->next_same_hash = p->next_same_hash;
2060 else
2061 table[i] = p->next_same_hash;
2063 p->next_same_hash = table[hash];
2064 p->prev_same_hash = 0;
2065 if (table[hash])
2066 table[hash]->prev_same_hash = p;
2067 table[hash] = p;
2072 /* Remove from the hash table any expression that is a call-clobbered
2073 register. Also update their TICK values. */
2075 static void
2076 invalidate_for_call (void)
2078 unsigned int regno, endregno;
2079 unsigned int i;
2080 unsigned hash;
2081 struct table_elt *p, *next;
2082 int in_table = 0;
2083 hard_reg_set_iterator hrsi;
2085 /* Go through all the hard registers. For each that is clobbered in
2086 a CALL_INSN, remove the register from quantity chains and update
2087 reg_tick if defined. Also see if any of these registers is currently
2088 in the table. */
2089 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2091 delete_reg_equiv (regno);
2092 if (REG_TICK (regno) >= 0)
2094 REG_TICK (regno)++;
2095 SUBREG_TICKED (regno) = -1;
2097 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2100 /* In the case where we have no call-clobbered hard registers in the
2101 table, we are done. Otherwise, scan the table and remove any
2102 entry that overlaps a call-clobbered register. */
2104 if (in_table)
2105 for (hash = 0; hash < HASH_SIZE; hash++)
2106 for (p = table[hash]; p; p = next)
2108 next = p->next_same_hash;
2110 if (!REG_P (p->exp)
2111 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2112 continue;
2114 regno = REGNO (p->exp);
2115 endregno = END_REGNO (p->exp);
2117 for (i = regno; i < endregno; i++)
2118 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2120 remove_from_table (p, hash);
2121 break;
2126 /* Given an expression X of type CONST,
2127 and ELT which is its table entry (or 0 if it
2128 is not in the hash table),
2129 return an alternate expression for X as a register plus integer.
2130 If none can be found, return 0. */
2132 static rtx
2133 use_related_value (rtx x, struct table_elt *elt)
2135 struct table_elt *relt = 0;
2136 struct table_elt *p, *q;
2137 HOST_WIDE_INT offset;
2139 /* First, is there anything related known?
2140 If we have a table element, we can tell from that.
2141 Otherwise, must look it up. */
2143 if (elt != 0 && elt->related_value != 0)
2144 relt = elt;
2145 else if (elt == 0 && GET_CODE (x) == CONST)
2147 rtx subexp = get_related_value (x);
2148 if (subexp != 0)
2149 relt = lookup (subexp,
2150 SAFE_HASH (subexp, GET_MODE (subexp)),
2151 GET_MODE (subexp));
2154 if (relt == 0)
2155 return 0;
2157 /* Search all related table entries for one that has an
2158 equivalent register. */
2160 p = relt;
2161 while (1)
2163 /* This loop is strange in that it is executed in two different cases.
2164 The first is when X is already in the table. Then it is searching
2165 the RELATED_VALUE list of X's class (RELT). The second case is when
2166 X is not in the table. Then RELT points to a class for the related
2167 value.
2169 Ensure that, whatever case we are in, that we ignore classes that have
2170 the same value as X. */
2172 if (rtx_equal_p (x, p->exp))
2173 q = 0;
2174 else
2175 for (q = p->first_same_value; q; q = q->next_same_value)
2176 if (REG_P (q->exp))
2177 break;
2179 if (q)
2180 break;
2182 p = p->related_value;
2184 /* We went all the way around, so there is nothing to be found.
2185 Alternatively, perhaps RELT was in the table for some other reason
2186 and it has no related values recorded. */
2187 if (p == relt || p == 0)
2188 break;
2191 if (q == 0)
2192 return 0;
2194 offset = (get_integer_term (x) - get_integer_term (p->exp));
2195 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2196 return plus_constant (q->mode, q->exp, offset);
2200 /* Hash a string. Just add its bytes up. */
2201 static inline unsigned
2202 hash_rtx_string (const char *ps)
2204 unsigned hash = 0;
2205 const unsigned char *p = (const unsigned char *) ps;
2207 if (p)
2208 while (*p)
2209 hash += *p++;
2211 return hash;
2214 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2215 When the callback returns true, we continue with the new rtx. */
2217 unsigned
2218 hash_rtx_cb (const_rtx x, machine_mode mode,
2219 int *do_not_record_p, int *hash_arg_in_memory_p,
2220 bool have_reg_qty, hash_rtx_callback_function cb)
2222 int i, j;
2223 unsigned hash = 0;
2224 enum rtx_code code;
2225 const char *fmt;
2226 machine_mode newmode;
2227 rtx newx;
2229 /* Used to turn recursion into iteration. We can't rely on GCC's
2230 tail-recursion elimination since we need to keep accumulating values
2231 in HASH. */
2232 repeat:
2233 if (x == 0)
2234 return hash;
2236 /* Invoke the callback first. */
2237 if (cb != NULL
2238 && ((*cb) (x, mode, &newx, &newmode)))
2240 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2241 hash_arg_in_memory_p, have_reg_qty, cb);
2242 return hash;
2245 code = GET_CODE (x);
2246 switch (code)
2248 case REG:
2250 unsigned int regno = REGNO (x);
2252 if (do_not_record_p && !reload_completed)
2254 /* On some machines, we can't record any non-fixed hard register,
2255 because extending its life will cause reload problems. We
2256 consider ap, fp, sp, gp to be fixed for this purpose.
2258 We also consider CCmode registers to be fixed for this purpose;
2259 failure to do so leads to failure to simplify 0<100 type of
2260 conditionals.
2262 On all machines, we can't record any global registers.
2263 Nor should we record any register that is in a small
2264 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2265 bool record;
2267 if (regno >= FIRST_PSEUDO_REGISTER)
2268 record = true;
2269 else if (x == frame_pointer_rtx
2270 || x == hard_frame_pointer_rtx
2271 || x == arg_pointer_rtx
2272 || x == stack_pointer_rtx
2273 || x == pic_offset_table_rtx)
2274 record = true;
2275 else if (global_regs[regno])
2276 record = false;
2277 else if (fixed_regs[regno])
2278 record = true;
2279 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2280 record = true;
2281 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2282 record = false;
2283 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2284 record = false;
2285 else
2286 record = true;
2288 if (!record)
2290 *do_not_record_p = 1;
2291 return 0;
2295 hash += ((unsigned int) REG << 7);
2296 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2297 return hash;
2300 /* We handle SUBREG of a REG specially because the underlying
2301 reg changes its hash value with every value change; we don't
2302 want to have to forget unrelated subregs when one subreg changes. */
2303 case SUBREG:
2305 if (REG_P (SUBREG_REG (x)))
2307 hash += (((unsigned int) SUBREG << 7)
2308 + REGNO (SUBREG_REG (x))
2309 + (constant_lower_bound (SUBREG_BYTE (x))
2310 / UNITS_PER_WORD));
2311 return hash;
2313 break;
2316 case CONST_INT:
2317 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2318 + (unsigned int) INTVAL (x));
2319 return hash;
2321 case CONST_WIDE_INT:
2322 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2323 hash += CONST_WIDE_INT_ELT (x, i);
2324 return hash;
2326 case CONST_POLY_INT:
2328 inchash::hash h;
2329 h.add_int (hash);
2330 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2331 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
2332 return h.end ();
2335 case CONST_DOUBLE:
2336 /* This is like the general case, except that it only counts
2337 the integers representing the constant. */
2338 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2339 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
2340 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2341 + (unsigned int) CONST_DOUBLE_HIGH (x));
2342 else
2343 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2344 return hash;
2346 case CONST_FIXED:
2347 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2348 hash += fixed_hash (CONST_FIXED_VALUE (x));
2349 return hash;
2351 case CONST_VECTOR:
2353 int units;
2354 rtx elt;
2356 units = const_vector_encoded_nelts (x);
2358 for (i = 0; i < units; ++i)
2360 elt = CONST_VECTOR_ENCODED_ELT (x, i);
2361 hash += hash_rtx_cb (elt, GET_MODE (elt),
2362 do_not_record_p, hash_arg_in_memory_p,
2363 have_reg_qty, cb);
2366 return hash;
2369 /* Assume there is only one rtx object for any given label. */
2370 case LABEL_REF:
2371 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2372 differences and differences between each stage's debugging dumps. */
2373 hash += (((unsigned int) LABEL_REF << 7)
2374 + CODE_LABEL_NUMBER (label_ref_label (x)));
2375 return hash;
2377 case SYMBOL_REF:
2379 /* Don't hash on the symbol's address to avoid bootstrap differences.
2380 Different hash values may cause expressions to be recorded in
2381 different orders and thus different registers to be used in the
2382 final assembler. This also avoids differences in the dump files
2383 between various stages. */
2384 unsigned int h = 0;
2385 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2387 while (*p)
2388 h += (h << 7) + *p++; /* ??? revisit */
2390 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2391 return hash;
2394 case MEM:
2395 /* We don't record if marked volatile or if BLKmode since we don't
2396 know the size of the move. */
2397 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2399 *do_not_record_p = 1;
2400 return 0;
2402 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2403 *hash_arg_in_memory_p = 1;
2405 /* Now that we have already found this special case,
2406 might as well speed it up as much as possible. */
2407 hash += (unsigned) MEM;
2408 x = XEXP (x, 0);
2409 goto repeat;
2411 case USE:
2412 /* A USE that mentions non-volatile memory needs special
2413 handling since the MEM may be BLKmode which normally
2414 prevents an entry from being made. Pure calls are
2415 marked by a USE which mentions BLKmode memory.
2416 See calls.c:emit_call_1. */
2417 if (MEM_P (XEXP (x, 0))
2418 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2420 hash += (unsigned) USE;
2421 x = XEXP (x, 0);
2423 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2424 *hash_arg_in_memory_p = 1;
2426 /* Now that we have already found this special case,
2427 might as well speed it up as much as possible. */
2428 hash += (unsigned) MEM;
2429 x = XEXP (x, 0);
2430 goto repeat;
2432 break;
2434 case PRE_DEC:
2435 case PRE_INC:
2436 case POST_DEC:
2437 case POST_INC:
2438 case PRE_MODIFY:
2439 case POST_MODIFY:
2440 case PC:
2441 case CC0:
2442 case CALL:
2443 case UNSPEC_VOLATILE:
2444 if (do_not_record_p) {
2445 *do_not_record_p = 1;
2446 return 0;
2448 else
2449 return hash;
2450 break;
2452 case ASM_OPERANDS:
2453 if (do_not_record_p && MEM_VOLATILE_P (x))
2455 *do_not_record_p = 1;
2456 return 0;
2458 else
2460 /* We don't want to take the filename and line into account. */
2461 hash += (unsigned) code + (unsigned) GET_MODE (x)
2462 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2463 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2464 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2466 if (ASM_OPERANDS_INPUT_LENGTH (x))
2468 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2470 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2471 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2472 do_not_record_p, hash_arg_in_memory_p,
2473 have_reg_qty, cb)
2474 + hash_rtx_string
2475 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2478 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2479 x = ASM_OPERANDS_INPUT (x, 0);
2480 mode = GET_MODE (x);
2481 goto repeat;
2484 return hash;
2486 break;
2488 default:
2489 break;
2492 i = GET_RTX_LENGTH (code) - 1;
2493 hash += (unsigned) code + (unsigned) GET_MODE (x);
2494 fmt = GET_RTX_FORMAT (code);
2495 for (; i >= 0; i--)
2497 switch (fmt[i])
2499 case 'e':
2500 /* If we are about to do the last recursive call
2501 needed at this level, change it into iteration.
2502 This function is called enough to be worth it. */
2503 if (i == 0)
2505 x = XEXP (x, i);
2506 goto repeat;
2509 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2510 hash_arg_in_memory_p,
2511 have_reg_qty, cb);
2512 break;
2514 case 'E':
2515 for (j = 0; j < XVECLEN (x, i); j++)
2516 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2517 hash_arg_in_memory_p,
2518 have_reg_qty, cb);
2519 break;
2521 case 's':
2522 hash += hash_rtx_string (XSTR (x, i));
2523 break;
2525 case 'i':
2526 hash += (unsigned int) XINT (x, i);
2527 break;
2529 case 'p':
2530 hash += constant_lower_bound (SUBREG_BYTE (x));
2531 break;
2533 case '0': case 't':
2534 /* Unused. */
2535 break;
2537 default:
2538 gcc_unreachable ();
2542 return hash;
2545 /* Hash an rtx. We are careful to make sure the value is never negative.
2546 Equivalent registers hash identically.
2547 MODE is used in hashing for CONST_INTs only;
2548 otherwise the mode of X is used.
2550 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2552 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2553 a MEM rtx which does not have the MEM_READONLY_P flag set.
2555 Note that cse_insn knows that the hash code of a MEM expression
2556 is just (int) MEM plus the hash code of the address. */
2558 unsigned
2559 hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p,
2560 int *hash_arg_in_memory_p, bool have_reg_qty)
2562 return hash_rtx_cb (x, mode, do_not_record_p,
2563 hash_arg_in_memory_p, have_reg_qty, NULL);
2566 /* Hash an rtx X for cse via hash_rtx.
2567 Stores 1 in do_not_record if any subexpression is volatile.
2568 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2569 does not have the MEM_READONLY_P flag set. */
2571 static inline unsigned
2572 canon_hash (rtx x, machine_mode mode)
2574 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2577 /* Like canon_hash but with no side effects, i.e. do_not_record
2578 and hash_arg_in_memory are not changed. */
2580 static inline unsigned
2581 safe_hash (rtx x, machine_mode mode)
2583 int dummy_do_not_record;
2584 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2587 /* Return 1 iff X and Y would canonicalize into the same thing,
2588 without actually constructing the canonicalization of either one.
2589 If VALIDATE is nonzero,
2590 we assume X is an expression being processed from the rtl
2591 and Y was found in the hash table. We check register refs
2592 in Y for being marked as valid.
2594 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2597 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2599 int i, j;
2600 enum rtx_code code;
2601 const char *fmt;
2603 /* Note: it is incorrect to assume an expression is equivalent to itself
2604 if VALIDATE is nonzero. */
2605 if (x == y && !validate)
2606 return 1;
2608 if (x == 0 || y == 0)
2609 return x == y;
2611 code = GET_CODE (x);
2612 if (code != GET_CODE (y))
2613 return 0;
2615 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2616 if (GET_MODE (x) != GET_MODE (y))
2617 return 0;
2619 /* MEMs referring to different address space are not equivalent. */
2620 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2621 return 0;
2623 switch (code)
2625 case PC:
2626 case CC0:
2627 CASE_CONST_UNIQUE:
2628 return x == y;
2630 case LABEL_REF:
2631 return label_ref_label (x) == label_ref_label (y);
2633 case SYMBOL_REF:
2634 return XSTR (x, 0) == XSTR (y, 0);
2636 case REG:
2637 if (for_gcse)
2638 return REGNO (x) == REGNO (y);
2639 else
2641 unsigned int regno = REGNO (y);
2642 unsigned int i;
2643 unsigned int endregno = END_REGNO (y);
2645 /* If the quantities are not the same, the expressions are not
2646 equivalent. If there are and we are not to validate, they
2647 are equivalent. Otherwise, ensure all regs are up-to-date. */
2649 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2650 return 0;
2652 if (! validate)
2653 return 1;
2655 for (i = regno; i < endregno; i++)
2656 if (REG_IN_TABLE (i) != REG_TICK (i))
2657 return 0;
2659 return 1;
2662 case MEM:
2663 if (for_gcse)
2665 /* A volatile mem should not be considered equivalent to any
2666 other. */
2667 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2668 return 0;
2670 /* Can't merge two expressions in different alias sets, since we
2671 can decide that the expression is transparent in a block when
2672 it isn't, due to it being set with the different alias set.
2674 Also, can't merge two expressions with different MEM_ATTRS.
2675 They could e.g. be two different entities allocated into the
2676 same space on the stack (see e.g. PR25130). In that case, the
2677 MEM addresses can be the same, even though the two MEMs are
2678 absolutely not equivalent.
2680 But because really all MEM attributes should be the same for
2681 equivalent MEMs, we just use the invariant that MEMs that have
2682 the same attributes share the same mem_attrs data structure. */
2683 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
2684 return 0;
2686 /* If we are handling exceptions, we cannot consider two expressions
2687 with different trapping status as equivalent, because simple_mem
2688 might accept one and reject the other. */
2689 if (cfun->can_throw_non_call_exceptions
2690 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2691 return 0;
2693 break;
2695 /* For commutative operations, check both orders. */
2696 case PLUS:
2697 case MULT:
2698 case AND:
2699 case IOR:
2700 case XOR:
2701 case NE:
2702 case EQ:
2703 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2704 validate, for_gcse)
2705 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2706 validate, for_gcse))
2707 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2708 validate, for_gcse)
2709 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2710 validate, for_gcse)));
2712 case ASM_OPERANDS:
2713 /* We don't use the generic code below because we want to
2714 disregard filename and line numbers. */
2716 /* A volatile asm isn't equivalent to any other. */
2717 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2718 return 0;
2720 if (GET_MODE (x) != GET_MODE (y)
2721 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2722 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2723 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2724 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2725 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2726 return 0;
2728 if (ASM_OPERANDS_INPUT_LENGTH (x))
2730 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2731 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2732 ASM_OPERANDS_INPUT (y, i),
2733 validate, for_gcse)
2734 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2735 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2736 return 0;
2739 return 1;
2741 default:
2742 break;
2745 /* Compare the elements. If any pair of corresponding elements
2746 fail to match, return 0 for the whole thing. */
2748 fmt = GET_RTX_FORMAT (code);
2749 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2751 switch (fmt[i])
2753 case 'e':
2754 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2755 validate, for_gcse))
2756 return 0;
2757 break;
2759 case 'E':
2760 if (XVECLEN (x, i) != XVECLEN (y, i))
2761 return 0;
2762 for (j = 0; j < XVECLEN (x, i); j++)
2763 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2764 validate, for_gcse))
2765 return 0;
2766 break;
2768 case 's':
2769 if (strcmp (XSTR (x, i), XSTR (y, i)))
2770 return 0;
2771 break;
2773 case 'i':
2774 if (XINT (x, i) != XINT (y, i))
2775 return 0;
2776 break;
2778 case 'w':
2779 if (XWINT (x, i) != XWINT (y, i))
2780 return 0;
2781 break;
2783 case 'p':
2784 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
2785 return 0;
2786 break;
2788 case '0':
2789 case 't':
2790 break;
2792 default:
2793 gcc_unreachable ();
2797 return 1;
2800 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2801 the result if necessary. INSN is as for canon_reg. */
2803 static void
2804 validate_canon_reg (rtx *xloc, rtx_insn *insn)
2806 if (*xloc)
2808 rtx new_rtx = canon_reg (*xloc, insn);
2810 /* If replacing pseudo with hard reg or vice versa, ensure the
2811 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2812 gcc_assert (insn && new_rtx);
2813 validate_change (insn, xloc, new_rtx, 1);
2817 /* Canonicalize an expression:
2818 replace each register reference inside it
2819 with the "oldest" equivalent register.
2821 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2822 after we make our substitution. The calls are made with IN_GROUP nonzero
2823 so apply_change_group must be called upon the outermost return from this
2824 function (unless INSN is zero). The result of apply_change_group can
2825 generally be discarded since the changes we are making are optional. */
2827 static rtx
2828 canon_reg (rtx x, rtx_insn *insn)
2830 int i;
2831 enum rtx_code code;
2832 const char *fmt;
2834 if (x == 0)
2835 return x;
2837 code = GET_CODE (x);
2838 switch (code)
2840 case PC:
2841 case CC0:
2842 case CONST:
2843 CASE_CONST_ANY:
2844 case SYMBOL_REF:
2845 case LABEL_REF:
2846 case ADDR_VEC:
2847 case ADDR_DIFF_VEC:
2848 return x;
2850 case REG:
2852 int first;
2853 int q;
2854 struct qty_table_elem *ent;
2856 /* Never replace a hard reg, because hard regs can appear
2857 in more than one machine mode, and we must preserve the mode
2858 of each occurrence. Also, some hard regs appear in
2859 MEMs that are shared and mustn't be altered. Don't try to
2860 replace any reg that maps to a reg of class NO_REGS. */
2861 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2862 || ! REGNO_QTY_VALID_P (REGNO (x)))
2863 return x;
2865 q = REG_QTY (REGNO (x));
2866 ent = &qty_table[q];
2867 first = ent->first_reg;
2868 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2869 : REGNO_REG_CLASS (first) == NO_REGS ? x
2870 : gen_rtx_REG (ent->mode, first));
2873 default:
2874 break;
2877 fmt = GET_RTX_FORMAT (code);
2878 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2880 int j;
2882 if (fmt[i] == 'e')
2883 validate_canon_reg (&XEXP (x, i), insn);
2884 else if (fmt[i] == 'E')
2885 for (j = 0; j < XVECLEN (x, i); j++)
2886 validate_canon_reg (&XVECEXP (x, i, j), insn);
2889 return x;
2892 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2893 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2894 what values are being compared.
2896 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2897 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2898 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2899 compared to produce cc0.
2901 The return value is the comparison operator and is either the code of
2902 A or the code corresponding to the inverse of the comparison. */
2904 static enum rtx_code
2905 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2906 machine_mode *pmode1, machine_mode *pmode2)
2908 rtx arg1, arg2;
2909 hash_set<rtx> *visited = NULL;
2910 /* Set nonzero when we find something of interest. */
2911 rtx x = NULL;
2913 arg1 = *parg1, arg2 = *parg2;
2915 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2917 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2919 int reverse_code = 0;
2920 struct table_elt *p = 0;
2922 /* Remember state from previous iteration. */
2923 if (x)
2925 if (!visited)
2926 visited = new hash_set<rtx>;
2927 visited->add (x);
2928 x = 0;
2931 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2932 On machines with CC0, this is the only case that can occur, since
2933 fold_rtx will return the COMPARE or item being compared with zero
2934 when given CC0. */
2936 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2937 x = arg1;
2939 /* If ARG1 is a comparison operator and CODE is testing for
2940 STORE_FLAG_VALUE, get the inner arguments. */
2942 else if (COMPARISON_P (arg1))
2944 #ifdef FLOAT_STORE_FLAG_VALUE
2945 REAL_VALUE_TYPE fsfv;
2946 #endif
2948 if (code == NE
2949 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2950 && code == LT && STORE_FLAG_VALUE == -1)
2951 #ifdef FLOAT_STORE_FLAG_VALUE
2952 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2953 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2954 REAL_VALUE_NEGATIVE (fsfv)))
2955 #endif
2957 x = arg1;
2958 else if (code == EQ
2959 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2960 && code == GE && STORE_FLAG_VALUE == -1)
2961 #ifdef FLOAT_STORE_FLAG_VALUE
2962 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2963 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2964 REAL_VALUE_NEGATIVE (fsfv)))
2965 #endif
2967 x = arg1, reverse_code = 1;
2970 /* ??? We could also check for
2972 (ne (and (eq (...) (const_int 1))) (const_int 0))
2974 and related forms, but let's wait until we see them occurring. */
2976 if (x == 0)
2977 /* Look up ARG1 in the hash table and see if it has an equivalence
2978 that lets us see what is being compared. */
2979 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2980 if (p)
2982 p = p->first_same_value;
2984 /* If what we compare is already known to be constant, that is as
2985 good as it gets.
2986 We need to break the loop in this case, because otherwise we
2987 can have an infinite loop when looking at a reg that is known
2988 to be a constant which is the same as a comparison of a reg
2989 against zero which appears later in the insn stream, which in
2990 turn is constant and the same as the comparison of the first reg
2991 against zero... */
2992 if (p->is_const)
2993 break;
2996 for (; p; p = p->next_same_value)
2998 machine_mode inner_mode = GET_MODE (p->exp);
2999 #ifdef FLOAT_STORE_FLAG_VALUE
3000 REAL_VALUE_TYPE fsfv;
3001 #endif
3003 /* If the entry isn't valid, skip it. */
3004 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3005 continue;
3007 /* If it's a comparison we've used before, skip it. */
3008 if (visited && visited->contains (p->exp))
3009 continue;
3011 if (GET_CODE (p->exp) == COMPARE
3012 /* Another possibility is that this machine has a compare insn
3013 that includes the comparison code. In that case, ARG1 would
3014 be equivalent to a comparison operation that would set ARG1 to
3015 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3016 ORIG_CODE is the actual comparison being done; if it is an EQ,
3017 we must reverse ORIG_CODE. On machine with a negative value
3018 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3019 || ((code == NE
3020 || (code == LT
3021 && val_signbit_known_set_p (inner_mode,
3022 STORE_FLAG_VALUE))
3023 #ifdef FLOAT_STORE_FLAG_VALUE
3024 || (code == LT
3025 && SCALAR_FLOAT_MODE_P (inner_mode)
3026 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3027 REAL_VALUE_NEGATIVE (fsfv)))
3028 #endif
3030 && COMPARISON_P (p->exp)))
3032 x = p->exp;
3033 break;
3035 else if ((code == EQ
3036 || (code == GE
3037 && val_signbit_known_set_p (inner_mode,
3038 STORE_FLAG_VALUE))
3039 #ifdef FLOAT_STORE_FLAG_VALUE
3040 || (code == GE
3041 && SCALAR_FLOAT_MODE_P (inner_mode)
3042 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3043 REAL_VALUE_NEGATIVE (fsfv)))
3044 #endif
3046 && COMPARISON_P (p->exp))
3048 reverse_code = 1;
3049 x = p->exp;
3050 break;
3053 /* If this non-trapping address, e.g. fp + constant, the
3054 equivalent is a better operand since it may let us predict
3055 the value of the comparison. */
3056 else if (!rtx_addr_can_trap_p (p->exp))
3058 arg1 = p->exp;
3059 continue;
3063 /* If we didn't find a useful equivalence for ARG1, we are done.
3064 Otherwise, set up for the next iteration. */
3065 if (x == 0)
3066 break;
3068 /* If we need to reverse the comparison, make sure that is
3069 possible -- we can't necessarily infer the value of GE from LT
3070 with floating-point operands. */
3071 if (reverse_code)
3073 enum rtx_code reversed = reversed_comparison_code (x, NULL);
3074 if (reversed == UNKNOWN)
3075 break;
3076 else
3077 code = reversed;
3079 else if (COMPARISON_P (x))
3080 code = GET_CODE (x);
3081 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3084 /* Return our results. Return the modes from before fold_rtx
3085 because fold_rtx might produce const_int, and then it's too late. */
3086 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3087 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3089 if (visited)
3090 delete visited;
3091 return code;
3094 /* If X is a nontrivial arithmetic operation on an argument for which
3095 a constant value can be determined, return the result of operating
3096 on that value, as a constant. Otherwise, return X, possibly with
3097 one or more operands changed to a forward-propagated constant.
3099 If X is a register whose contents are known, we do NOT return
3100 those contents here; equiv_constant is called to perform that task.
3101 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3103 INSN is the insn that we may be modifying. If it is 0, make a copy
3104 of X before modifying it. */
3106 static rtx
3107 fold_rtx (rtx x, rtx_insn *insn)
3109 enum rtx_code code;
3110 machine_mode mode;
3111 const char *fmt;
3112 int i;
3113 rtx new_rtx = 0;
3114 int changed = 0;
3115 poly_int64 xval;
3117 /* Operands of X. */
3118 /* Workaround -Wmaybe-uninitialized false positive during
3119 profiledbootstrap by initializing them. */
3120 rtx folded_arg0 = NULL_RTX;
3121 rtx folded_arg1 = NULL_RTX;
3123 /* Constant equivalents of first three operands of X;
3124 0 when no such equivalent is known. */
3125 rtx const_arg0;
3126 rtx const_arg1;
3127 rtx const_arg2;
3129 /* The mode of the first operand of X. We need this for sign and zero
3130 extends. */
3131 machine_mode mode_arg0;
3133 if (x == 0)
3134 return x;
3136 /* Try to perform some initial simplifications on X. */
3137 code = GET_CODE (x);
3138 switch (code)
3140 case MEM:
3141 case SUBREG:
3142 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3143 than it would in other contexts. Basically its mode does not
3144 signify the size of the object read. That information is carried
3145 by size operand. If we happen to have a MEM of the appropriate
3146 mode in our tables with a constant value we could simplify the
3147 extraction incorrectly if we allowed substitution of that value
3148 for the MEM. */
3149 case ZERO_EXTRACT:
3150 case SIGN_EXTRACT:
3151 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3152 return new_rtx;
3153 return x;
3155 case CONST:
3156 CASE_CONST_ANY:
3157 case SYMBOL_REF:
3158 case LABEL_REF:
3159 case REG:
3160 case PC:
3161 /* No use simplifying an EXPR_LIST
3162 since they are used only for lists of args
3163 in a function call's REG_EQUAL note. */
3164 case EXPR_LIST:
3165 return x;
3167 case CC0:
3168 return prev_insn_cc0;
3170 case ASM_OPERANDS:
3171 if (insn)
3173 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3174 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3175 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3177 return x;
3179 case CALL:
3180 if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3181 return x;
3182 break;
3184 /* Anything else goes through the loop below. */
3185 default:
3186 break;
3189 mode = GET_MODE (x);
3190 const_arg0 = 0;
3191 const_arg1 = 0;
3192 const_arg2 = 0;
3193 mode_arg0 = VOIDmode;
3195 /* Try folding our operands.
3196 Then see which ones have constant values known. */
3198 fmt = GET_RTX_FORMAT (code);
3199 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3200 if (fmt[i] == 'e')
3202 rtx folded_arg = XEXP (x, i), const_arg;
3203 machine_mode mode_arg = GET_MODE (folded_arg);
3205 switch (GET_CODE (folded_arg))
3207 case MEM:
3208 case REG:
3209 case SUBREG:
3210 const_arg = equiv_constant (folded_arg);
3211 break;
3213 case CONST:
3214 CASE_CONST_ANY:
3215 case SYMBOL_REF:
3216 case LABEL_REF:
3217 const_arg = folded_arg;
3218 break;
3220 case CC0:
3221 /* The cc0-user and cc0-setter may be in different blocks if
3222 the cc0-setter potentially traps. In that case PREV_INSN_CC0
3223 will have been cleared as we exited the block with the
3224 setter.
3226 While we could potentially track cc0 in this case, it just
3227 doesn't seem to be worth it given that cc0 targets are not
3228 terribly common or important these days and trapping math
3229 is rarely used. The combination of those two conditions
3230 necessary to trip this situation is exceedingly rare in the
3231 real world. */
3232 if (!prev_insn_cc0)
3234 const_arg = NULL_RTX;
3236 else
3238 folded_arg = prev_insn_cc0;
3239 mode_arg = prev_insn_cc0_mode;
3240 const_arg = equiv_constant (folded_arg);
3242 break;
3244 default:
3245 folded_arg = fold_rtx (folded_arg, insn);
3246 const_arg = equiv_constant (folded_arg);
3247 break;
3250 /* For the first three operands, see if the operand
3251 is constant or equivalent to a constant. */
3252 switch (i)
3254 case 0:
3255 folded_arg0 = folded_arg;
3256 const_arg0 = const_arg;
3257 mode_arg0 = mode_arg;
3258 break;
3259 case 1:
3260 folded_arg1 = folded_arg;
3261 const_arg1 = const_arg;
3262 break;
3263 case 2:
3264 const_arg2 = const_arg;
3265 break;
3268 /* Pick the least expensive of the argument and an equivalent constant
3269 argument. */
3270 if (const_arg != 0
3271 && const_arg != folded_arg
3272 && (COST_IN (const_arg, mode_arg, code, i)
3273 <= COST_IN (folded_arg, mode_arg, code, i))
3275 /* It's not safe to substitute the operand of a conversion
3276 operator with a constant, as the conversion's identity
3277 depends upon the mode of its operand. This optimization
3278 is handled by the call to simplify_unary_operation. */
3279 && (GET_RTX_CLASS (code) != RTX_UNARY
3280 || GET_MODE (const_arg) == mode_arg0
3281 || (code != ZERO_EXTEND
3282 && code != SIGN_EXTEND
3283 && code != TRUNCATE
3284 && code != FLOAT_TRUNCATE
3285 && code != FLOAT_EXTEND
3286 && code != FLOAT
3287 && code != FIX
3288 && code != UNSIGNED_FLOAT
3289 && code != UNSIGNED_FIX)))
3290 folded_arg = const_arg;
3292 if (folded_arg == XEXP (x, i))
3293 continue;
3295 if (insn == NULL_RTX && !changed)
3296 x = copy_rtx (x);
3297 changed = 1;
3298 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3301 if (changed)
3303 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3304 consistent with the order in X. */
3305 if (canonicalize_change_group (insn, x))
3307 std::swap (const_arg0, const_arg1);
3308 std::swap (folded_arg0, folded_arg1);
3311 apply_change_group ();
3314 /* If X is an arithmetic operation, see if we can simplify it. */
3316 switch (GET_RTX_CLASS (code))
3318 case RTX_UNARY:
3320 /* We can't simplify extension ops unless we know the
3321 original mode. */
3322 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3323 && mode_arg0 == VOIDmode)
3324 break;
3326 new_rtx = simplify_unary_operation (code, mode,
3327 const_arg0 ? const_arg0 : folded_arg0,
3328 mode_arg0);
3330 break;
3332 case RTX_COMPARE:
3333 case RTX_COMM_COMPARE:
3334 /* See what items are actually being compared and set FOLDED_ARG[01]
3335 to those values and CODE to the actual comparison code. If any are
3336 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3337 do anything if both operands are already known to be constant. */
3339 /* ??? Vector mode comparisons are not supported yet. */
3340 if (VECTOR_MODE_P (mode))
3341 break;
3343 if (const_arg0 == 0 || const_arg1 == 0)
3345 struct table_elt *p0, *p1;
3346 rtx true_rtx, false_rtx;
3347 machine_mode mode_arg1;
3349 if (SCALAR_FLOAT_MODE_P (mode))
3351 #ifdef FLOAT_STORE_FLAG_VALUE
3352 true_rtx = (const_double_from_real_value
3353 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3354 #else
3355 true_rtx = NULL_RTX;
3356 #endif
3357 false_rtx = CONST0_RTX (mode);
3359 else
3361 true_rtx = const_true_rtx;
3362 false_rtx = const0_rtx;
3365 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3366 &mode_arg0, &mode_arg1);
3368 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3369 what kinds of things are being compared, so we can't do
3370 anything with this comparison. */
3372 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3373 break;
3375 const_arg0 = equiv_constant (folded_arg0);
3376 const_arg1 = equiv_constant (folded_arg1);
3378 /* If we do not now have two constants being compared, see
3379 if we can nevertheless deduce some things about the
3380 comparison. */
3381 if (const_arg0 == 0 || const_arg1 == 0)
3383 if (const_arg1 != NULL)
3385 rtx cheapest_simplification;
3386 int cheapest_cost;
3387 rtx simp_result;
3388 struct table_elt *p;
3390 /* See if we can find an equivalent of folded_arg0
3391 that gets us a cheaper expression, possibly a
3392 constant through simplifications. */
3393 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3394 mode_arg0);
3396 if (p != NULL)
3398 cheapest_simplification = x;
3399 cheapest_cost = COST (x, mode);
3401 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3403 int cost;
3405 /* If the entry isn't valid, skip it. */
3406 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3407 continue;
3409 /* Try to simplify using this equivalence. */
3410 simp_result
3411 = simplify_relational_operation (code, mode,
3412 mode_arg0,
3413 p->exp,
3414 const_arg1);
3416 if (simp_result == NULL)
3417 continue;
3419 cost = COST (simp_result, mode);
3420 if (cost < cheapest_cost)
3422 cheapest_cost = cost;
3423 cheapest_simplification = simp_result;
3427 /* If we have a cheaper expression now, use that
3428 and try folding it further, from the top. */
3429 if (cheapest_simplification != x)
3430 return fold_rtx (copy_rtx (cheapest_simplification),
3431 insn);
3435 /* See if the two operands are the same. */
3437 if ((REG_P (folded_arg0)
3438 && REG_P (folded_arg1)
3439 && (REG_QTY (REGNO (folded_arg0))
3440 == REG_QTY (REGNO (folded_arg1))))
3441 || ((p0 = lookup (folded_arg0,
3442 SAFE_HASH (folded_arg0, mode_arg0),
3443 mode_arg0))
3444 && (p1 = lookup (folded_arg1,
3445 SAFE_HASH (folded_arg1, mode_arg0),
3446 mode_arg0))
3447 && p0->first_same_value == p1->first_same_value))
3448 folded_arg1 = folded_arg0;
3450 /* If FOLDED_ARG0 is a register, see if the comparison we are
3451 doing now is either the same as we did before or the reverse
3452 (we only check the reverse if not floating-point). */
3453 else if (REG_P (folded_arg0))
3455 int qty = REG_QTY (REGNO (folded_arg0));
3457 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3459 struct qty_table_elem *ent = &qty_table[qty];
3461 if ((comparison_dominates_p (ent->comparison_code, code)
3462 || (! FLOAT_MODE_P (mode_arg0)
3463 && comparison_dominates_p (ent->comparison_code,
3464 reverse_condition (code))))
3465 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3466 || (const_arg1
3467 && rtx_equal_p (ent->comparison_const,
3468 const_arg1))
3469 || (REG_P (folded_arg1)
3470 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3472 if (comparison_dominates_p (ent->comparison_code, code))
3474 if (true_rtx)
3475 return true_rtx;
3476 else
3477 break;
3479 else
3480 return false_rtx;
3487 /* If we are comparing against zero, see if the first operand is
3488 equivalent to an IOR with a constant. If so, we may be able to
3489 determine the result of this comparison. */
3490 if (const_arg1 == const0_rtx && !const_arg0)
3492 rtx y = lookup_as_function (folded_arg0, IOR);
3493 rtx inner_const;
3495 if (y != 0
3496 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3497 && CONST_INT_P (inner_const)
3498 && INTVAL (inner_const) != 0)
3499 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3503 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3504 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3505 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3506 op0, op1);
3508 break;
3510 case RTX_BIN_ARITH:
3511 case RTX_COMM_ARITH:
3512 switch (code)
3514 case PLUS:
3515 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3516 with that LABEL_REF as its second operand. If so, the result is
3517 the first operand of that MINUS. This handles switches with an
3518 ADDR_DIFF_VEC table. */
3519 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3521 rtx y
3522 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3523 : lookup_as_function (folded_arg0, MINUS);
3525 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3526 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg1))
3527 return XEXP (y, 0);
3529 /* Now try for a CONST of a MINUS like the above. */
3530 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3531 : lookup_as_function (folded_arg0, CONST))) != 0
3532 && GET_CODE (XEXP (y, 0)) == MINUS
3533 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3534 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg1))
3535 return XEXP (XEXP (y, 0), 0);
3538 /* Likewise if the operands are in the other order. */
3539 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3541 rtx y
3542 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3543 : lookup_as_function (folded_arg1, MINUS);
3545 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3546 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg0))
3547 return XEXP (y, 0);
3549 /* Now try for a CONST of a MINUS like the above. */
3550 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3551 : lookup_as_function (folded_arg1, CONST))) != 0
3552 && GET_CODE (XEXP (y, 0)) == MINUS
3553 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3554 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg0))
3555 return XEXP (XEXP (y, 0), 0);
3558 /* If second operand is a register equivalent to a negative
3559 CONST_INT, see if we can find a register equivalent to the
3560 positive constant. Make a MINUS if so. Don't do this for
3561 a non-negative constant since we might then alternate between
3562 choosing positive and negative constants. Having the positive
3563 constant previously-used is the more common case. Be sure
3564 the resulting constant is non-negative; if const_arg1 were
3565 the smallest negative number this would overflow: depending
3566 on the mode, this would either just be the same value (and
3567 hence not save anything) or be incorrect. */
3568 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3569 && INTVAL (const_arg1) < 0
3570 /* This used to test
3572 -INTVAL (const_arg1) >= 0
3574 But The Sun V5.0 compilers mis-compiled that test. So
3575 instead we test for the problematic value in a more direct
3576 manner and hope the Sun compilers get it correct. */
3577 && INTVAL (const_arg1) !=
3578 (HOST_WIDE_INT_1 << (HOST_BITS_PER_WIDE_INT - 1))
3579 && REG_P (folded_arg1))
3581 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3582 struct table_elt *p
3583 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3585 if (p)
3586 for (p = p->first_same_value; p; p = p->next_same_value)
3587 if (REG_P (p->exp))
3588 return simplify_gen_binary (MINUS, mode, folded_arg0,
3589 canon_reg (p->exp, NULL));
3591 goto from_plus;
3593 case MINUS:
3594 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3595 If so, produce (PLUS Z C2-C). */
3596 if (const_arg1 != 0 && poly_int_rtx_p (const_arg1, &xval))
3598 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3599 if (y && poly_int_rtx_p (XEXP (y, 1)))
3600 return fold_rtx (plus_constant (mode, copy_rtx (y), -xval),
3601 NULL);
3604 /* Fall through. */
3606 from_plus:
3607 case SMIN: case SMAX: case UMIN: case UMAX:
3608 case IOR: case AND: case XOR:
3609 case MULT:
3610 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3611 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3612 is known to be of similar form, we may be able to replace the
3613 operation with a combined operation. This may eliminate the
3614 intermediate operation if every use is simplified in this way.
3615 Note that the similar optimization done by combine.c only works
3616 if the intermediate operation's result has only one reference. */
3618 if (REG_P (folded_arg0)
3619 && const_arg1 && CONST_INT_P (const_arg1))
3621 int is_shift
3622 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3623 rtx y, inner_const, new_const;
3624 rtx canon_const_arg1 = const_arg1;
3625 enum rtx_code associate_code;
3627 if (is_shift
3628 && (INTVAL (const_arg1) >= GET_MODE_UNIT_PRECISION (mode)
3629 || INTVAL (const_arg1) < 0))
3631 if (SHIFT_COUNT_TRUNCATED)
3632 canon_const_arg1 = gen_int_shift_amount
3633 (mode, (INTVAL (const_arg1)
3634 & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
3635 else
3636 break;
3639 y = lookup_as_function (folded_arg0, code);
3640 if (y == 0)
3641 break;
3643 /* If we have compiled a statement like
3644 "if (x == (x & mask1))", and now are looking at
3645 "x & mask2", we will have a case where the first operand
3646 of Y is the same as our first operand. Unless we detect
3647 this case, an infinite loop will result. */
3648 if (XEXP (y, 0) == folded_arg0)
3649 break;
3651 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3652 if (!inner_const || !CONST_INT_P (inner_const))
3653 break;
3655 /* Don't associate these operations if they are a PLUS with the
3656 same constant and it is a power of two. These might be doable
3657 with a pre- or post-increment. Similarly for two subtracts of
3658 identical powers of two with post decrement. */
3660 if (code == PLUS && const_arg1 == inner_const
3661 && ((HAVE_PRE_INCREMENT
3662 && pow2p_hwi (INTVAL (const_arg1)))
3663 || (HAVE_POST_INCREMENT
3664 && pow2p_hwi (INTVAL (const_arg1)))
3665 || (HAVE_PRE_DECREMENT
3666 && pow2p_hwi (- INTVAL (const_arg1)))
3667 || (HAVE_POST_DECREMENT
3668 && pow2p_hwi (- INTVAL (const_arg1)))))
3669 break;
3671 /* ??? Vector mode shifts by scalar
3672 shift operand are not supported yet. */
3673 if (is_shift && VECTOR_MODE_P (mode))
3674 break;
3676 if (is_shift
3677 && (INTVAL (inner_const) >= GET_MODE_UNIT_PRECISION (mode)
3678 || INTVAL (inner_const) < 0))
3680 if (SHIFT_COUNT_TRUNCATED)
3681 inner_const = gen_int_shift_amount
3682 (mode, (INTVAL (inner_const)
3683 & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
3684 else
3685 break;
3688 /* Compute the code used to compose the constants. For example,
3689 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3691 associate_code = (is_shift || code == MINUS ? PLUS : code);
3693 new_const = simplify_binary_operation (associate_code, mode,
3694 canon_const_arg1,
3695 inner_const);
3697 if (new_const == 0)
3698 break;
3700 /* If we are associating shift operations, don't let this
3701 produce a shift of the size of the object or larger.
3702 This could occur when we follow a sign-extend by a right
3703 shift on a machine that does a sign-extend as a pair
3704 of shifts. */
3706 if (is_shift
3707 && CONST_INT_P (new_const)
3708 && INTVAL (new_const) >= GET_MODE_UNIT_PRECISION (mode))
3710 /* As an exception, we can turn an ASHIFTRT of this
3711 form into a shift of the number of bits - 1. */
3712 if (code == ASHIFTRT)
3713 new_const = gen_int_shift_amount
3714 (mode, GET_MODE_UNIT_BITSIZE (mode) - 1);
3715 else if (!side_effects_p (XEXP (y, 0)))
3716 return CONST0_RTX (mode);
3717 else
3718 break;
3721 y = copy_rtx (XEXP (y, 0));
3723 /* If Y contains our first operand (the most common way this
3724 can happen is if Y is a MEM), we would do into an infinite
3725 loop if we tried to fold it. So don't in that case. */
3727 if (! reg_mentioned_p (folded_arg0, y))
3728 y = fold_rtx (y, insn);
3730 return simplify_gen_binary (code, mode, y, new_const);
3732 break;
3734 case DIV: case UDIV:
3735 /* ??? The associative optimization performed immediately above is
3736 also possible for DIV and UDIV using associate_code of MULT.
3737 However, we would need extra code to verify that the
3738 multiplication does not overflow, that is, there is no overflow
3739 in the calculation of new_const. */
3740 break;
3742 default:
3743 break;
3746 new_rtx = simplify_binary_operation (code, mode,
3747 const_arg0 ? const_arg0 : folded_arg0,
3748 const_arg1 ? const_arg1 : folded_arg1);
3749 break;
3751 case RTX_OBJ:
3752 /* (lo_sum (high X) X) is simply X. */
3753 if (code == LO_SUM && const_arg0 != 0
3754 && GET_CODE (const_arg0) == HIGH
3755 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3756 return const_arg1;
3757 break;
3759 case RTX_TERNARY:
3760 case RTX_BITFIELD_OPS:
3761 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3762 const_arg0 ? const_arg0 : folded_arg0,
3763 const_arg1 ? const_arg1 : folded_arg1,
3764 const_arg2 ? const_arg2 : XEXP (x, 2));
3765 break;
3767 default:
3768 break;
3771 return new_rtx ? new_rtx : x;
3774 /* Return a constant value currently equivalent to X.
3775 Return 0 if we don't know one. */
3777 static rtx
3778 equiv_constant (rtx x)
3780 if (REG_P (x)
3781 && REGNO_QTY_VALID_P (REGNO (x)))
3783 int x_q = REG_QTY (REGNO (x));
3784 struct qty_table_elem *x_ent = &qty_table[x_q];
3786 if (x_ent->const_rtx)
3787 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3790 if (x == 0 || CONSTANT_P (x))
3791 return x;
3793 if (GET_CODE (x) == SUBREG)
3795 machine_mode mode = GET_MODE (x);
3796 machine_mode imode = GET_MODE (SUBREG_REG (x));
3797 rtx new_rtx;
3799 /* See if we previously assigned a constant value to this SUBREG. */
3800 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3801 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
3802 || (NUM_POLY_INT_COEFFS > 1
3803 && (new_rtx = lookup_as_function (x, CONST_POLY_INT)) != 0)
3804 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3805 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3806 return new_rtx;
3808 /* If we didn't and if doing so makes sense, see if we previously
3809 assigned a constant value to the enclosing word mode SUBREG. */
3810 if (known_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD)
3811 && known_lt (UNITS_PER_WORD, GET_MODE_SIZE (imode)))
3813 poly_int64 byte = (SUBREG_BYTE (x)
3814 - subreg_lowpart_offset (mode, word_mode));
3815 if (known_ge (byte, 0) && multiple_p (byte, UNITS_PER_WORD))
3817 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3818 new_rtx = lookup_as_function (y, CONST_INT);
3819 if (new_rtx)
3820 return gen_lowpart (mode, new_rtx);
3824 /* Otherwise see if we already have a constant for the inner REG,
3825 and if that is enough to calculate an equivalent constant for
3826 the subreg. Note that the upper bits of paradoxical subregs
3827 are undefined, so they cannot be said to equal anything. */
3828 if (REG_P (SUBREG_REG (x))
3829 && !paradoxical_subreg_p (x)
3830 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3831 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3833 return 0;
3836 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3837 the hash table in case its value was seen before. */
3839 if (MEM_P (x))
3841 struct table_elt *elt;
3843 x = avoid_constant_pool_reference (x);
3844 if (CONSTANT_P (x))
3845 return x;
3847 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3848 if (elt == 0)
3849 return 0;
3851 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3852 if (elt->is_const && CONSTANT_P (elt->exp))
3853 return elt->exp;
3856 return 0;
3859 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3860 "taken" branch.
3862 In certain cases, this can cause us to add an equivalence. For example,
3863 if we are following the taken case of
3864 if (i == 2)
3865 we can add the fact that `i' and '2' are now equivalent.
3867 In any case, we can record that this comparison was passed. If the same
3868 comparison is seen later, we will know its value. */
3870 static void
3871 record_jump_equiv (rtx_insn *insn, bool taken)
3873 int cond_known_true;
3874 rtx op0, op1;
3875 rtx set;
3876 machine_mode mode, mode0, mode1;
3877 int reversed_nonequality = 0;
3878 enum rtx_code code;
3880 /* Ensure this is the right kind of insn. */
3881 gcc_assert (any_condjump_p (insn));
3883 set = pc_set (insn);
3885 /* See if this jump condition is known true or false. */
3886 if (taken)
3887 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3888 else
3889 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3891 /* Get the type of comparison being done and the operands being compared.
3892 If we had to reverse a non-equality condition, record that fact so we
3893 know that it isn't valid for floating-point. */
3894 code = GET_CODE (XEXP (SET_SRC (set), 0));
3895 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3896 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3898 /* On a cc0 target the cc0-setter and cc0-user may end up in different
3899 blocks. When that happens the tracking of the cc0-setter via
3900 PREV_INSN_CC0 is spoiled. That means that fold_rtx may return
3901 NULL_RTX. In those cases, there's nothing to record. */
3902 if (op0 == NULL_RTX || op1 == NULL_RTX)
3903 return;
3905 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3906 if (! cond_known_true)
3908 code = reversed_comparison_code_parts (code, op0, op1, insn);
3910 /* Don't remember if we can't find the inverse. */
3911 if (code == UNKNOWN)
3912 return;
3915 /* The mode is the mode of the non-constant. */
3916 mode = mode0;
3917 if (mode1 != VOIDmode)
3918 mode = mode1;
3920 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3923 /* Yet another form of subreg creation. In this case, we want something in
3924 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3926 static rtx
3927 record_jump_cond_subreg (machine_mode mode, rtx op)
3929 machine_mode op_mode = GET_MODE (op);
3930 if (op_mode == mode || op_mode == VOIDmode)
3931 return op;
3932 return lowpart_subreg (mode, op, op_mode);
3935 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3936 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3937 Make any useful entries we can with that information. Called from
3938 above function and called recursively. */
3940 static void
3941 record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0,
3942 rtx op1, int reversed_nonequality)
3944 unsigned op0_hash, op1_hash;
3945 int op0_in_memory, op1_in_memory;
3946 struct table_elt *op0_elt, *op1_elt;
3948 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3949 we know that they are also equal in the smaller mode (this is also
3950 true for all smaller modes whether or not there is a SUBREG, but
3951 is not worth testing for with no SUBREG). */
3953 /* Note that GET_MODE (op0) may not equal MODE. */
3954 if (code == EQ && paradoxical_subreg_p (op0))
3956 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3957 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3958 if (tem)
3959 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3960 reversed_nonequality);
3963 if (code == EQ && paradoxical_subreg_p (op1))
3965 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3966 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3967 if (tem)
3968 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3969 reversed_nonequality);
3972 /* Similarly, if this is an NE comparison, and either is a SUBREG
3973 making a smaller mode, we know the whole thing is also NE. */
3975 /* Note that GET_MODE (op0) may not equal MODE;
3976 if we test MODE instead, we can get an infinite recursion
3977 alternating between two modes each wider than MODE. */
3979 if (code == NE
3980 && partial_subreg_p (op0)
3981 && subreg_lowpart_p (op0))
3983 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3984 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3985 if (tem)
3986 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3987 reversed_nonequality);
3990 if (code == NE
3991 && partial_subreg_p (op1)
3992 && subreg_lowpart_p (op1))
3994 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3995 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3996 if (tem)
3997 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3998 reversed_nonequality);
4001 /* Hash both operands. */
4003 do_not_record = 0;
4004 hash_arg_in_memory = 0;
4005 op0_hash = HASH (op0, mode);
4006 op0_in_memory = hash_arg_in_memory;
4008 if (do_not_record)
4009 return;
4011 do_not_record = 0;
4012 hash_arg_in_memory = 0;
4013 op1_hash = HASH (op1, mode);
4014 op1_in_memory = hash_arg_in_memory;
4016 if (do_not_record)
4017 return;
4019 /* Look up both operands. */
4020 op0_elt = lookup (op0, op0_hash, mode);
4021 op1_elt = lookup (op1, op1_hash, mode);
4023 /* If both operands are already equivalent or if they are not in the
4024 table but are identical, do nothing. */
4025 if ((op0_elt != 0 && op1_elt != 0
4026 && op0_elt->first_same_value == op1_elt->first_same_value)
4027 || op0 == op1 || rtx_equal_p (op0, op1))
4028 return;
4030 /* If we aren't setting two things equal all we can do is save this
4031 comparison. Similarly if this is floating-point. In the latter
4032 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4033 If we record the equality, we might inadvertently delete code
4034 whose intent was to change -0 to +0. */
4036 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4038 struct qty_table_elem *ent;
4039 int qty;
4041 /* If we reversed a floating-point comparison, if OP0 is not a
4042 register, or if OP1 is neither a register or constant, we can't
4043 do anything. */
4045 if (!REG_P (op1))
4046 op1 = equiv_constant (op1);
4048 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4049 || !REG_P (op0) || op1 == 0)
4050 return;
4052 /* Put OP0 in the hash table if it isn't already. This gives it a
4053 new quantity number. */
4054 if (op0_elt == 0)
4056 if (insert_regs (op0, NULL, 0))
4058 rehash_using_reg (op0);
4059 op0_hash = HASH (op0, mode);
4061 /* If OP0 is contained in OP1, this changes its hash code
4062 as well. Faster to rehash than to check, except
4063 for the simple case of a constant. */
4064 if (! CONSTANT_P (op1))
4065 op1_hash = HASH (op1,mode);
4068 op0_elt = insert (op0, NULL, op0_hash, mode);
4069 op0_elt->in_memory = op0_in_memory;
4072 qty = REG_QTY (REGNO (op0));
4073 ent = &qty_table[qty];
4075 ent->comparison_code = code;
4076 if (REG_P (op1))
4078 /* Look it up again--in case op0 and op1 are the same. */
4079 op1_elt = lookup (op1, op1_hash, mode);
4081 /* Put OP1 in the hash table so it gets a new quantity number. */
4082 if (op1_elt == 0)
4084 if (insert_regs (op1, NULL, 0))
4086 rehash_using_reg (op1);
4087 op1_hash = HASH (op1, mode);
4090 op1_elt = insert (op1, NULL, op1_hash, mode);
4091 op1_elt->in_memory = op1_in_memory;
4094 ent->comparison_const = NULL_RTX;
4095 ent->comparison_qty = REG_QTY (REGNO (op1));
4097 else
4099 ent->comparison_const = op1;
4100 ent->comparison_qty = -1;
4103 return;
4106 /* If either side is still missing an equivalence, make it now,
4107 then merge the equivalences. */
4109 if (op0_elt == 0)
4111 if (insert_regs (op0, NULL, 0))
4113 rehash_using_reg (op0);
4114 op0_hash = HASH (op0, mode);
4117 op0_elt = insert (op0, NULL, op0_hash, mode);
4118 op0_elt->in_memory = op0_in_memory;
4121 if (op1_elt == 0)
4123 if (insert_regs (op1, NULL, 0))
4125 rehash_using_reg (op1);
4126 op1_hash = HASH (op1, mode);
4129 op1_elt = insert (op1, NULL, op1_hash, mode);
4130 op1_elt->in_memory = op1_in_memory;
4133 merge_equiv_classes (op0_elt, op1_elt);
4136 /* CSE processing for one instruction.
4138 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4139 but the few that "leak through" are cleaned up by cse_insn, and complex
4140 addressing modes are often formed here.
4142 The main function is cse_insn, and between here and that function
4143 a couple of helper functions is defined to keep the size of cse_insn
4144 within reasonable proportions.
4146 Data is shared between the main and helper functions via STRUCT SET,
4147 that contains all data related for every set in the instruction that
4148 is being processed.
4150 Note that cse_main processes all sets in the instruction. Most
4151 passes in GCC only process simple SET insns or single_set insns, but
4152 CSE processes insns with multiple sets as well. */
4154 /* Data on one SET contained in the instruction. */
4156 struct set
4158 /* The SET rtx itself. */
4159 rtx rtl;
4160 /* The SET_SRC of the rtx (the original value, if it is changing). */
4161 rtx src;
4162 /* The hash-table element for the SET_SRC of the SET. */
4163 struct table_elt *src_elt;
4164 /* Hash value for the SET_SRC. */
4165 unsigned src_hash;
4166 /* Hash value for the SET_DEST. */
4167 unsigned dest_hash;
4168 /* The SET_DEST, with SUBREG, etc., stripped. */
4169 rtx inner_dest;
4170 /* Nonzero if the SET_SRC is in memory. */
4171 char src_in_memory;
4172 /* Nonzero if the SET_SRC contains something
4173 whose value cannot be predicted and understood. */
4174 char src_volatile;
4175 /* Original machine mode, in case it becomes a CONST_INT.
4176 The size of this field should match the size of the mode
4177 field of struct rtx_def (see rtl.h). */
4178 ENUM_BITFIELD(machine_mode) mode : 8;
4179 /* Hash value of constant equivalent for SET_SRC. */
4180 unsigned src_const_hash;
4181 /* A constant equivalent for SET_SRC, if any. */
4182 rtx src_const;
4183 /* Table entry for constant equivalent for SET_SRC, if any. */
4184 struct table_elt *src_const_elt;
4185 /* Table entry for the destination address. */
4186 struct table_elt *dest_addr_elt;
4189 /* Special handling for (set REG0 REG1) where REG0 is the
4190 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4191 be used in the sequel, so (if easily done) change this insn to
4192 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4193 that computed their value. Then REG1 will become a dead store
4194 and won't cloud the situation for later optimizations.
4196 Do not make this change if REG1 is a hard register, because it will
4197 then be used in the sequel and we may be changing a two-operand insn
4198 into a three-operand insn.
4200 This is the last transformation that cse_insn will try to do. */
4202 static void
4203 try_back_substitute_reg (rtx set, rtx_insn *insn)
4205 rtx dest = SET_DEST (set);
4206 rtx src = SET_SRC (set);
4208 if (REG_P (dest)
4209 && REG_P (src) && ! HARD_REGISTER_P (src)
4210 && REGNO_QTY_VALID_P (REGNO (src)))
4212 int src_q = REG_QTY (REGNO (src));
4213 struct qty_table_elem *src_ent = &qty_table[src_q];
4215 if (src_ent->first_reg == REGNO (dest))
4217 /* Scan for the previous nonnote insn, but stop at a basic
4218 block boundary. */
4219 rtx_insn *prev = insn;
4220 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4223 prev = PREV_INSN (prev);
4225 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4227 /* Do not swap the registers around if the previous instruction
4228 attaches a REG_EQUIV note to REG1.
4230 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4231 from the pseudo that originally shadowed an incoming argument
4232 to another register. Some uses of REG_EQUIV might rely on it
4233 being attached to REG1 rather than REG2.
4235 This section previously turned the REG_EQUIV into a REG_EQUAL
4236 note. We cannot do that because REG_EQUIV may provide an
4237 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4238 if (NONJUMP_INSN_P (prev)
4239 && GET_CODE (PATTERN (prev)) == SET
4240 && SET_DEST (PATTERN (prev)) == src
4241 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4243 rtx note;
4245 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4246 validate_change (insn, &SET_DEST (set), src, 1);
4247 validate_change (insn, &SET_SRC (set), dest, 1);
4248 apply_change_group ();
4250 /* If INSN has a REG_EQUAL note, and this note mentions
4251 REG0, then we must delete it, because the value in
4252 REG0 has changed. If the note's value is REG1, we must
4253 also delete it because that is now this insn's dest. */
4254 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4255 if (note != 0
4256 && (reg_mentioned_p (dest, XEXP (note, 0))
4257 || rtx_equal_p (src, XEXP (note, 0))))
4258 remove_note (insn, note);
4260 /* If INSN has a REG_ARGS_SIZE note, move it to PREV. */
4261 note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4262 if (note != 0)
4264 remove_note (insn, note);
4265 gcc_assert (!find_reg_note (prev, REG_ARGS_SIZE, NULL_RTX));
4266 set_unique_reg_note (prev, REG_ARGS_SIZE, XEXP (note, 0));
4273 /* Record all the SETs in this instruction into SETS_PTR,
4274 and return the number of recorded sets. */
4275 static int
4276 find_sets_in_insn (rtx_insn *insn, struct set **psets)
4278 struct set *sets = *psets;
4279 int n_sets = 0;
4280 rtx x = PATTERN (insn);
4282 if (GET_CODE (x) == SET)
4284 /* Ignore SETs that are unconditional jumps.
4285 They never need cse processing, so this does not hurt.
4286 The reason is not efficiency but rather
4287 so that we can test at the end for instructions
4288 that have been simplified to unconditional jumps
4289 and not be misled by unchanged instructions
4290 that were unconditional jumps to begin with. */
4291 if (SET_DEST (x) == pc_rtx
4292 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4294 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4295 The hard function value register is used only once, to copy to
4296 someplace else, so it isn't worth cse'ing. */
4297 else if (GET_CODE (SET_SRC (x)) == CALL)
4299 else
4300 sets[n_sets++].rtl = x;
4302 else if (GET_CODE (x) == PARALLEL)
4304 int i, lim = XVECLEN (x, 0);
4306 /* Go over the expressions of the PARALLEL in forward order, to
4307 put them in the same order in the SETS array. */
4308 for (i = 0; i < lim; i++)
4310 rtx y = XVECEXP (x, 0, i);
4311 if (GET_CODE (y) == SET)
4313 /* As above, we ignore unconditional jumps and call-insns and
4314 ignore the result of apply_change_group. */
4315 if (SET_DEST (y) == pc_rtx
4316 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4318 else if (GET_CODE (SET_SRC (y)) == CALL)
4320 else
4321 sets[n_sets++].rtl = y;
4326 return n_sets;
4329 /* Subroutine of canonicalize_insn. X is an ASM_OPERANDS in INSN. */
4331 static void
4332 canon_asm_operands (rtx x, rtx_insn *insn)
4334 for (int i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4336 rtx input = ASM_OPERANDS_INPUT (x, i);
4337 if (!(REG_P (input) && HARD_REGISTER_P (input)))
4339 input = canon_reg (input, insn);
4340 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4345 /* Where possible, substitute every register reference in the N_SETS
4346 number of SETS in INSN with the canonical register.
4348 Register canonicalization propagatest the earliest register (i.e.
4349 one that is set before INSN) with the same value. This is a very
4350 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4351 to RTL. For instance, a CONST for an address is usually expanded
4352 multiple times to loads into different registers, thus creating many
4353 subexpressions of the form:
4355 (set (reg1) (some_const))
4356 (set (mem (... reg1 ...) (thing)))
4357 (set (reg2) (some_const))
4358 (set (mem (... reg2 ...) (thing)))
4360 After canonicalizing, the code takes the following form:
4362 (set (reg1) (some_const))
4363 (set (mem (... reg1 ...) (thing)))
4364 (set (reg2) (some_const))
4365 (set (mem (... reg1 ...) (thing)))
4367 The set to reg2 is now trivially dead, and the memory reference (or
4368 address, or whatever) may be a candidate for further CSEing.
4370 In this function, the result of apply_change_group can be ignored;
4371 see canon_reg. */
4373 static void
4374 canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
4376 struct set *sets = *psets;
4377 rtx tem;
4378 rtx x = PATTERN (insn);
4379 int i;
4381 if (CALL_P (insn))
4383 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4384 if (GET_CODE (XEXP (tem, 0)) != SET)
4385 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4388 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4390 canon_reg (SET_SRC (x), insn);
4391 apply_change_group ();
4392 fold_rtx (SET_SRC (x), insn);
4394 else if (GET_CODE (x) == CLOBBER)
4396 /* If we clobber memory, canon the address.
4397 This does nothing when a register is clobbered
4398 because we have already invalidated the reg. */
4399 if (MEM_P (XEXP (x, 0)))
4400 canon_reg (XEXP (x, 0), insn);
4402 else if (GET_CODE (x) == USE
4403 && ! (REG_P (XEXP (x, 0))
4404 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4405 /* Canonicalize a USE of a pseudo register or memory location. */
4406 canon_reg (x, insn);
4407 else if (GET_CODE (x) == ASM_OPERANDS)
4408 canon_asm_operands (x, insn);
4409 else if (GET_CODE (x) == CALL)
4411 canon_reg (x, insn);
4412 apply_change_group ();
4413 fold_rtx (x, insn);
4415 else if (DEBUG_INSN_P (insn))
4416 canon_reg (PATTERN (insn), insn);
4417 else if (GET_CODE (x) == PARALLEL)
4419 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4421 rtx y = XVECEXP (x, 0, i);
4422 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4424 canon_reg (SET_SRC (y), insn);
4425 apply_change_group ();
4426 fold_rtx (SET_SRC (y), insn);
4428 else if (GET_CODE (y) == CLOBBER)
4430 if (MEM_P (XEXP (y, 0)))
4431 canon_reg (XEXP (y, 0), insn);
4433 else if (GET_CODE (y) == USE
4434 && ! (REG_P (XEXP (y, 0))
4435 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4436 canon_reg (y, insn);
4437 else if (GET_CODE (y) == ASM_OPERANDS)
4438 canon_asm_operands (y, insn);
4439 else if (GET_CODE (y) == CALL)
4441 canon_reg (y, insn);
4442 apply_change_group ();
4443 fold_rtx (y, insn);
4448 if (n_sets == 1 && REG_NOTES (insn) != 0
4449 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4451 /* We potentially will process this insn many times. Therefore,
4452 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4453 unique set in INSN.
4455 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4456 because cse_insn handles those specially. */
4457 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4458 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4459 remove_note (insn, tem);
4460 else
4462 canon_reg (XEXP (tem, 0), insn);
4463 apply_change_group ();
4464 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4465 df_notes_rescan (insn);
4469 /* Canonicalize sources and addresses of destinations.
4470 We do this in a separate pass to avoid problems when a MATCH_DUP is
4471 present in the insn pattern. In that case, we want to ensure that
4472 we don't break the duplicate nature of the pattern. So we will replace
4473 both operands at the same time. Otherwise, we would fail to find an
4474 equivalent substitution in the loop calling validate_change below.
4476 We used to suppress canonicalization of DEST if it appears in SRC,
4477 but we don't do this any more. */
4479 for (i = 0; i < n_sets; i++)
4481 rtx dest = SET_DEST (sets[i].rtl);
4482 rtx src = SET_SRC (sets[i].rtl);
4483 rtx new_rtx = canon_reg (src, insn);
4485 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4487 if (GET_CODE (dest) == ZERO_EXTRACT)
4489 validate_change (insn, &XEXP (dest, 1),
4490 canon_reg (XEXP (dest, 1), insn), 1);
4491 validate_change (insn, &XEXP (dest, 2),
4492 canon_reg (XEXP (dest, 2), insn), 1);
4495 while (GET_CODE (dest) == SUBREG
4496 || GET_CODE (dest) == ZERO_EXTRACT
4497 || GET_CODE (dest) == STRICT_LOW_PART)
4498 dest = XEXP (dest, 0);
4500 if (MEM_P (dest))
4501 canon_reg (dest, insn);
4504 /* Now that we have done all the replacements, we can apply the change
4505 group and see if they all work. Note that this will cause some
4506 canonicalizations that would have worked individually not to be applied
4507 because some other canonicalization didn't work, but this should not
4508 occur often.
4510 The result of apply_change_group can be ignored; see canon_reg. */
4512 apply_change_group ();
4515 /* Main function of CSE.
4516 First simplify sources and addresses of all assignments
4517 in the instruction, using previously-computed equivalents values.
4518 Then install the new sources and destinations in the table
4519 of available values. */
4521 static void
4522 cse_insn (rtx_insn *insn)
4524 rtx x = PATTERN (insn);
4525 int i;
4526 rtx tem;
4527 int n_sets = 0;
4529 rtx src_eqv = 0;
4530 struct table_elt *src_eqv_elt = 0;
4531 int src_eqv_volatile = 0;
4532 int src_eqv_in_memory = 0;
4533 unsigned src_eqv_hash = 0;
4535 struct set *sets = (struct set *) 0;
4537 if (GET_CODE (x) == SET)
4538 sets = XALLOCA (struct set);
4539 else if (GET_CODE (x) == PARALLEL)
4540 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4542 this_insn = insn;
4543 /* Records what this insn does to set CC0. */
4544 this_insn_cc0 = 0;
4545 this_insn_cc0_mode = VOIDmode;
4547 /* Find all regs explicitly clobbered in this insn,
4548 to ensure they are not replaced with any other regs
4549 elsewhere in this insn. */
4550 invalidate_from_sets_and_clobbers (insn);
4552 /* Record all the SETs in this instruction. */
4553 n_sets = find_sets_in_insn (insn, &sets);
4555 /* Substitute the canonical register where possible. */
4556 canonicalize_insn (insn, &sets, n_sets);
4558 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4559 if different, or if the DEST is a STRICT_LOW_PART/ZERO_EXTRACT. The
4560 latter condition is necessary because SRC_EQV is handled specially for
4561 this case, and if it isn't set, then there will be no equivalence
4562 for the destination. */
4563 if (n_sets == 1 && REG_NOTES (insn) != 0
4564 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4567 if (GET_CODE (SET_DEST (sets[0].rtl)) != ZERO_EXTRACT
4568 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4569 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4570 src_eqv = copy_rtx (XEXP (tem, 0));
4571 /* If DEST is of the form ZERO_EXTACT, as in:
4572 (set (zero_extract:SI (reg:SI 119)
4573 (const_int 16 [0x10])
4574 (const_int 16 [0x10]))
4575 (const_int 51154 [0xc7d2]))
4576 REG_EQUAL note will specify the value of register (reg:SI 119) at this
4577 point. Note that this is different from SRC_EQV. We can however
4578 calculate SRC_EQV with the position and width of ZERO_EXTRACT. */
4579 else if (GET_CODE (SET_DEST (sets[0].rtl)) == ZERO_EXTRACT
4580 && CONST_INT_P (XEXP (tem, 0))
4581 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 1))
4582 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 2)))
4584 rtx dest_reg = XEXP (SET_DEST (sets[0].rtl), 0);
4585 /* This is the mode of XEXP (tem, 0) as well. */
4586 scalar_int_mode dest_mode
4587 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
4588 rtx width = XEXP (SET_DEST (sets[0].rtl), 1);
4589 rtx pos = XEXP (SET_DEST (sets[0].rtl), 2);
4590 HOST_WIDE_INT val = INTVAL (XEXP (tem, 0));
4591 HOST_WIDE_INT mask;
4592 unsigned int shift;
4593 if (BITS_BIG_ENDIAN)
4594 shift = (GET_MODE_PRECISION (dest_mode)
4595 - INTVAL (pos) - INTVAL (width));
4596 else
4597 shift = INTVAL (pos);
4598 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
4599 mask = HOST_WIDE_INT_M1;
4600 else
4601 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
4602 val = (val >> shift) & mask;
4603 src_eqv = GEN_INT (val);
4607 /* Set sets[i].src_elt to the class each source belongs to.
4608 Detect assignments from or to volatile things
4609 and set set[i] to zero so they will be ignored
4610 in the rest of this function.
4612 Nothing in this loop changes the hash table or the register chains. */
4614 for (i = 0; i < n_sets; i++)
4616 bool repeat = false;
4617 bool mem_noop_insn = false;
4618 rtx src, dest;
4619 rtx src_folded;
4620 struct table_elt *elt = 0, *p;
4621 machine_mode mode;
4622 rtx src_eqv_here;
4623 rtx src_const = 0;
4624 rtx src_related = 0;
4625 bool src_related_is_const_anchor = false;
4626 struct table_elt *src_const_elt = 0;
4627 int src_cost = MAX_COST;
4628 int src_eqv_cost = MAX_COST;
4629 int src_folded_cost = MAX_COST;
4630 int src_related_cost = MAX_COST;
4631 int src_elt_cost = MAX_COST;
4632 int src_regcost = MAX_COST;
4633 int src_eqv_regcost = MAX_COST;
4634 int src_folded_regcost = MAX_COST;
4635 int src_related_regcost = MAX_COST;
4636 int src_elt_regcost = MAX_COST;
4637 /* Set nonzero if we need to call force_const_mem on with the
4638 contents of src_folded before using it. */
4639 int src_folded_force_flag = 0;
4640 scalar_int_mode int_mode;
4642 dest = SET_DEST (sets[i].rtl);
4643 src = SET_SRC (sets[i].rtl);
4645 /* If SRC is a constant that has no machine mode,
4646 hash it with the destination's machine mode.
4647 This way we can keep different modes separate. */
4649 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4650 sets[i].mode = mode;
4652 if (src_eqv)
4654 machine_mode eqvmode = mode;
4655 if (GET_CODE (dest) == STRICT_LOW_PART)
4656 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4657 do_not_record = 0;
4658 hash_arg_in_memory = 0;
4659 src_eqv_hash = HASH (src_eqv, eqvmode);
4661 /* Find the equivalence class for the equivalent expression. */
4663 if (!do_not_record)
4664 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4666 src_eqv_volatile = do_not_record;
4667 src_eqv_in_memory = hash_arg_in_memory;
4670 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4671 value of the INNER register, not the destination. So it is not
4672 a valid substitution for the source. But save it for later. */
4673 if (GET_CODE (dest) == STRICT_LOW_PART)
4674 src_eqv_here = 0;
4675 else
4676 src_eqv_here = src_eqv;
4678 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4679 simplified result, which may not necessarily be valid. */
4680 src_folded = fold_rtx (src, NULL);
4682 #if 0
4683 /* ??? This caused bad code to be generated for the m68k port with -O2.
4684 Suppose src is (CONST_INT -1), and that after truncation src_folded
4685 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4686 At the end we will add src and src_const to the same equivalence
4687 class. We now have 3 and -1 on the same equivalence class. This
4688 causes later instructions to be mis-optimized. */
4689 /* If storing a constant in a bitfield, pre-truncate the constant
4690 so we will be able to record it later. */
4691 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4693 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4695 if (CONST_INT_P (src)
4696 && CONST_INT_P (width)
4697 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4698 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4699 src_folded
4700 = GEN_INT (INTVAL (src) & ((HOST_WIDE_INT_1
4701 << INTVAL (width)) - 1));
4703 #endif
4705 /* Compute SRC's hash code, and also notice if it
4706 should not be recorded at all. In that case,
4707 prevent any further processing of this assignment. */
4708 do_not_record = 0;
4709 hash_arg_in_memory = 0;
4711 sets[i].src = src;
4712 sets[i].src_hash = HASH (src, mode);
4713 sets[i].src_volatile = do_not_record;
4714 sets[i].src_in_memory = hash_arg_in_memory;
4716 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4717 a pseudo, do not record SRC. Using SRC as a replacement for
4718 anything else will be incorrect in that situation. Note that
4719 this usually occurs only for stack slots, in which case all the
4720 RTL would be referring to SRC, so we don't lose any optimization
4721 opportunities by not having SRC in the hash table. */
4723 if (MEM_P (src)
4724 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4725 && REG_P (dest)
4726 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4727 sets[i].src_volatile = 1;
4729 else if (GET_CODE (src) == ASM_OPERANDS
4730 && GET_CODE (x) == PARALLEL)
4732 /* Do not record result of a non-volatile inline asm with
4733 more than one result. */
4734 if (n_sets > 1)
4735 sets[i].src_volatile = 1;
4737 int j, lim = XVECLEN (x, 0);
4738 for (j = 0; j < lim; j++)
4740 rtx y = XVECEXP (x, 0, j);
4741 /* And do not record result of a non-volatile inline asm
4742 with "memory" clobber. */
4743 if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4745 sets[i].src_volatile = 1;
4746 break;
4751 #if 0
4752 /* It is no longer clear why we used to do this, but it doesn't
4753 appear to still be needed. So let's try without it since this
4754 code hurts cse'ing widened ops. */
4755 /* If source is a paradoxical subreg (such as QI treated as an SI),
4756 treat it as volatile. It may do the work of an SI in one context
4757 where the extra bits are not being used, but cannot replace an SI
4758 in general. */
4759 if (paradoxical_subreg_p (src))
4760 sets[i].src_volatile = 1;
4761 #endif
4763 /* Locate all possible equivalent forms for SRC. Try to replace
4764 SRC in the insn with each cheaper equivalent.
4766 We have the following types of equivalents: SRC itself, a folded
4767 version, a value given in a REG_EQUAL note, or a value related
4768 to a constant.
4770 Each of these equivalents may be part of an additional class
4771 of equivalents (if more than one is in the table, they must be in
4772 the same class; we check for this).
4774 If the source is volatile, we don't do any table lookups.
4776 We note any constant equivalent for possible later use in a
4777 REG_NOTE. */
4779 if (!sets[i].src_volatile)
4780 elt = lookup (src, sets[i].src_hash, mode);
4782 sets[i].src_elt = elt;
4784 if (elt && src_eqv_here && src_eqv_elt)
4786 if (elt->first_same_value != src_eqv_elt->first_same_value)
4788 /* The REG_EQUAL is indicating that two formerly distinct
4789 classes are now equivalent. So merge them. */
4790 merge_equiv_classes (elt, src_eqv_elt);
4791 src_eqv_hash = HASH (src_eqv, elt->mode);
4792 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4795 src_eqv_here = 0;
4798 else if (src_eqv_elt)
4799 elt = src_eqv_elt;
4801 /* Try to find a constant somewhere and record it in `src_const'.
4802 Record its table element, if any, in `src_const_elt'. Look in
4803 any known equivalences first. (If the constant is not in the
4804 table, also set `sets[i].src_const_hash'). */
4805 if (elt)
4806 for (p = elt->first_same_value; p; p = p->next_same_value)
4807 if (p->is_const)
4809 src_const = p->exp;
4810 src_const_elt = elt;
4811 break;
4814 if (src_const == 0
4815 && (CONSTANT_P (src_folded)
4816 /* Consider (minus (label_ref L1) (label_ref L2)) as
4817 "constant" here so we will record it. This allows us
4818 to fold switch statements when an ADDR_DIFF_VEC is used. */
4819 || (GET_CODE (src_folded) == MINUS
4820 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4821 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4822 src_const = src_folded, src_const_elt = elt;
4823 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4824 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4826 /* If we don't know if the constant is in the table, get its
4827 hash code and look it up. */
4828 if (src_const && src_const_elt == 0)
4830 sets[i].src_const_hash = HASH (src_const, mode);
4831 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4834 sets[i].src_const = src_const;
4835 sets[i].src_const_elt = src_const_elt;
4837 /* If the constant and our source are both in the table, mark them as
4838 equivalent. Otherwise, if a constant is in the table but the source
4839 isn't, set ELT to it. */
4840 if (src_const_elt && elt
4841 && src_const_elt->first_same_value != elt->first_same_value)
4842 merge_equiv_classes (elt, src_const_elt);
4843 else if (src_const_elt && elt == 0)
4844 elt = src_const_elt;
4846 /* See if there is a register linearly related to a constant
4847 equivalent of SRC. */
4848 if (src_const
4849 && (GET_CODE (src_const) == CONST
4850 || (src_const_elt && src_const_elt->related_value != 0)))
4852 src_related = use_related_value (src_const, src_const_elt);
4853 if (src_related)
4855 struct table_elt *src_related_elt
4856 = lookup (src_related, HASH (src_related, mode), mode);
4857 if (src_related_elt && elt)
4859 if (elt->first_same_value
4860 != src_related_elt->first_same_value)
4861 /* This can occur when we previously saw a CONST
4862 involving a SYMBOL_REF and then see the SYMBOL_REF
4863 twice. Merge the involved classes. */
4864 merge_equiv_classes (elt, src_related_elt);
4866 src_related = 0;
4867 src_related_elt = 0;
4869 else if (src_related_elt && elt == 0)
4870 elt = src_related_elt;
4874 /* See if we have a CONST_INT that is already in a register in a
4875 wider mode. */
4877 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4878 && is_int_mode (mode, &int_mode)
4879 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4881 opt_scalar_int_mode wider_mode_iter;
4882 FOR_EACH_WIDER_MODE (wider_mode_iter, int_mode)
4884 scalar_int_mode wider_mode = wider_mode_iter.require ();
4885 if (GET_MODE_PRECISION (wider_mode) > BITS_PER_WORD)
4886 break;
4888 struct table_elt *const_elt
4889 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4891 if (const_elt == 0)
4892 continue;
4894 for (const_elt = const_elt->first_same_value;
4895 const_elt; const_elt = const_elt->next_same_value)
4896 if (REG_P (const_elt->exp))
4898 src_related = gen_lowpart (int_mode, const_elt->exp);
4899 break;
4902 if (src_related != 0)
4903 break;
4907 /* Another possibility is that we have an AND with a constant in
4908 a mode narrower than a word. If so, it might have been generated
4909 as part of an "if" which would narrow the AND. If we already
4910 have done the AND in a wider mode, we can use a SUBREG of that
4911 value. */
4913 if (flag_expensive_optimizations && ! src_related
4914 && is_a <scalar_int_mode> (mode, &int_mode)
4915 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4916 && GET_MODE_SIZE (int_mode) < UNITS_PER_WORD)
4918 opt_scalar_int_mode tmode_iter;
4919 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4921 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
4923 scalar_int_mode tmode = tmode_iter.require ();
4924 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
4925 break;
4927 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4928 struct table_elt *larger_elt;
4930 if (inner)
4932 PUT_MODE (new_and, tmode);
4933 XEXP (new_and, 0) = inner;
4934 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4935 if (larger_elt == 0)
4936 continue;
4938 for (larger_elt = larger_elt->first_same_value;
4939 larger_elt; larger_elt = larger_elt->next_same_value)
4940 if (REG_P (larger_elt->exp))
4942 src_related
4943 = gen_lowpart (int_mode, larger_elt->exp);
4944 break;
4947 if (src_related)
4948 break;
4953 /* See if a MEM has already been loaded with a widening operation;
4954 if it has, we can use a subreg of that. Many CISC machines
4955 also have such operations, but this is only likely to be
4956 beneficial on these machines. */
4958 rtx_code extend_op;
4959 if (flag_expensive_optimizations && src_related == 0
4960 && MEM_P (src) && ! do_not_record
4961 && is_a <scalar_int_mode> (mode, &int_mode)
4962 && (extend_op = load_extend_op (int_mode)) != UNKNOWN)
4964 struct rtx_def memory_extend_buf;
4965 rtx memory_extend_rtx = &memory_extend_buf;
4967 /* Set what we are trying to extend and the operation it might
4968 have been extended with. */
4969 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
4970 PUT_CODE (memory_extend_rtx, extend_op);
4971 XEXP (memory_extend_rtx, 0) = src;
4973 opt_scalar_int_mode tmode_iter;
4974 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
4976 struct table_elt *larger_elt;
4978 scalar_int_mode tmode = tmode_iter.require ();
4979 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
4980 break;
4982 PUT_MODE (memory_extend_rtx, tmode);
4983 larger_elt = lookup (memory_extend_rtx,
4984 HASH (memory_extend_rtx, tmode), tmode);
4985 if (larger_elt == 0)
4986 continue;
4988 for (larger_elt = larger_elt->first_same_value;
4989 larger_elt; larger_elt = larger_elt->next_same_value)
4990 if (REG_P (larger_elt->exp))
4992 src_related = gen_lowpart (int_mode, larger_elt->exp);
4993 break;
4996 if (src_related)
4997 break;
5001 /* Try to express the constant using a register+offset expression
5002 derived from a constant anchor. */
5004 if (targetm.const_anchor
5005 && !src_related
5006 && src_const
5007 && GET_CODE (src_const) == CONST_INT)
5009 src_related = try_const_anchors (src_const, mode);
5010 src_related_is_const_anchor = src_related != NULL_RTX;
5014 if (src == src_folded)
5015 src_folded = 0;
5017 /* At this point, ELT, if nonzero, points to a class of expressions
5018 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5019 and SRC_RELATED, if nonzero, each contain additional equivalent
5020 expressions. Prune these latter expressions by deleting expressions
5021 already in the equivalence class.
5023 Check for an equivalent identical to the destination. If found,
5024 this is the preferred equivalent since it will likely lead to
5025 elimination of the insn. Indicate this by placing it in
5026 `src_related'. */
5028 if (elt)
5029 elt = elt->first_same_value;
5030 for (p = elt; p; p = p->next_same_value)
5032 enum rtx_code code = GET_CODE (p->exp);
5034 /* If the expression is not valid, ignore it. Then we do not
5035 have to check for validity below. In most cases, we can use
5036 `rtx_equal_p', since canonicalization has already been done. */
5037 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
5038 continue;
5040 /* Also skip paradoxical subregs, unless that's what we're
5041 looking for. */
5042 if (paradoxical_subreg_p (p->exp)
5043 && ! (src != 0
5044 && GET_CODE (src) == SUBREG
5045 && GET_MODE (src) == GET_MODE (p->exp)
5046 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5047 GET_MODE (SUBREG_REG (p->exp)))))
5048 continue;
5050 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5051 src = 0;
5052 else if (src_folded && GET_CODE (src_folded) == code
5053 && rtx_equal_p (src_folded, p->exp))
5054 src_folded = 0;
5055 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5056 && rtx_equal_p (src_eqv_here, p->exp))
5057 src_eqv_here = 0;
5058 else if (src_related && GET_CODE (src_related) == code
5059 && rtx_equal_p (src_related, p->exp))
5060 src_related = 0;
5062 /* This is the same as the destination of the insns, we want
5063 to prefer it. Copy it to src_related. The code below will
5064 then give it a negative cost. */
5065 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5066 src_related = dest;
5069 /* Find the cheapest valid equivalent, trying all the available
5070 possibilities. Prefer items not in the hash table to ones
5071 that are when they are equal cost. Note that we can never
5072 worsen an insn as the current contents will also succeed.
5073 If we find an equivalent identical to the destination, use it as best,
5074 since this insn will probably be eliminated in that case. */
5075 if (src)
5077 if (rtx_equal_p (src, dest))
5078 src_cost = src_regcost = -1;
5079 else
5081 src_cost = COST (src, mode);
5082 src_regcost = approx_reg_cost (src);
5086 if (src_eqv_here)
5088 if (rtx_equal_p (src_eqv_here, dest))
5089 src_eqv_cost = src_eqv_regcost = -1;
5090 else
5092 src_eqv_cost = COST (src_eqv_here, mode);
5093 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5097 if (src_folded)
5099 if (rtx_equal_p (src_folded, dest))
5100 src_folded_cost = src_folded_regcost = -1;
5101 else
5103 src_folded_cost = COST (src_folded, mode);
5104 src_folded_regcost = approx_reg_cost (src_folded);
5108 if (src_related)
5110 if (rtx_equal_p (src_related, dest))
5111 src_related_cost = src_related_regcost = -1;
5112 else
5114 src_related_cost = COST (src_related, mode);
5115 src_related_regcost = approx_reg_cost (src_related);
5117 /* If a const-anchor is used to synthesize a constant that
5118 normally requires multiple instructions then slightly prefer
5119 it over the original sequence. These instructions are likely
5120 to become redundant now. We can't compare against the cost
5121 of src_eqv_here because, on MIPS for example, multi-insn
5122 constants have zero cost; they are assumed to be hoisted from
5123 loops. */
5124 if (src_related_is_const_anchor
5125 && src_related_cost == src_cost
5126 && src_eqv_here)
5127 src_related_cost--;
5131 /* If this was an indirect jump insn, a known label will really be
5132 cheaper even though it looks more expensive. */
5133 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5134 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5136 /* Terminate loop when replacement made. This must terminate since
5137 the current contents will be tested and will always be valid. */
5138 while (1)
5140 rtx trial;
5142 /* Skip invalid entries. */
5143 while (elt && !REG_P (elt->exp)
5144 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5145 elt = elt->next_same_value;
5147 /* A paradoxical subreg would be bad here: it'll be the right
5148 size, but later may be adjusted so that the upper bits aren't
5149 what we want. So reject it. */
5150 if (elt != 0
5151 && paradoxical_subreg_p (elt->exp)
5152 /* It is okay, though, if the rtx we're trying to match
5153 will ignore any of the bits we can't predict. */
5154 && ! (src != 0
5155 && GET_CODE (src) == SUBREG
5156 && GET_MODE (src) == GET_MODE (elt->exp)
5157 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5158 GET_MODE (SUBREG_REG (elt->exp)))))
5160 elt = elt->next_same_value;
5161 continue;
5164 if (elt)
5166 src_elt_cost = elt->cost;
5167 src_elt_regcost = elt->regcost;
5170 /* Find cheapest and skip it for the next time. For items
5171 of equal cost, use this order:
5172 src_folded, src, src_eqv, src_related and hash table entry. */
5173 if (src_folded
5174 && preferable (src_folded_cost, src_folded_regcost,
5175 src_cost, src_regcost) <= 0
5176 && preferable (src_folded_cost, src_folded_regcost,
5177 src_eqv_cost, src_eqv_regcost) <= 0
5178 && preferable (src_folded_cost, src_folded_regcost,
5179 src_related_cost, src_related_regcost) <= 0
5180 && preferable (src_folded_cost, src_folded_regcost,
5181 src_elt_cost, src_elt_regcost) <= 0)
5183 trial = src_folded, src_folded_cost = MAX_COST;
5184 if (src_folded_force_flag)
5186 rtx forced = force_const_mem (mode, trial);
5187 if (forced)
5188 trial = forced;
5191 else if (src
5192 && preferable (src_cost, src_regcost,
5193 src_eqv_cost, src_eqv_regcost) <= 0
5194 && preferable (src_cost, src_regcost,
5195 src_related_cost, src_related_regcost) <= 0
5196 && preferable (src_cost, src_regcost,
5197 src_elt_cost, src_elt_regcost) <= 0)
5198 trial = src, src_cost = MAX_COST;
5199 else if (src_eqv_here
5200 && preferable (src_eqv_cost, src_eqv_regcost,
5201 src_related_cost, src_related_regcost) <= 0
5202 && preferable (src_eqv_cost, src_eqv_regcost,
5203 src_elt_cost, src_elt_regcost) <= 0)
5204 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5205 else if (src_related
5206 && preferable (src_related_cost, src_related_regcost,
5207 src_elt_cost, src_elt_regcost) <= 0)
5208 trial = src_related, src_related_cost = MAX_COST;
5209 else
5211 trial = elt->exp;
5212 elt = elt->next_same_value;
5213 src_elt_cost = MAX_COST;
5216 /* Avoid creation of overlapping memory moves. */
5217 if (MEM_P (trial) && MEM_P (dest) && !rtx_equal_p (trial, dest))
5219 rtx src, dest;
5221 /* BLKmode moves are not handled by cse anyway. */
5222 if (GET_MODE (trial) == BLKmode)
5223 break;
5225 src = canon_rtx (trial);
5226 dest = canon_rtx (SET_DEST (sets[i].rtl));
5228 if (!MEM_P (src) || !MEM_P (dest)
5229 || !nonoverlapping_memrefs_p (src, dest, false))
5230 break;
5233 /* Try to optimize
5234 (set (reg:M N) (const_int A))
5235 (set (reg:M2 O) (const_int B))
5236 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5237 (reg:M2 O)). */
5238 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5239 && CONST_INT_P (trial)
5240 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5241 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5242 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5243 && (known_ge
5244 (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl))),
5245 INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))))
5246 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5247 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5248 <= HOST_BITS_PER_WIDE_INT))
5250 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5251 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5252 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5253 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5254 struct table_elt *dest_elt
5255 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5256 rtx dest_cst = NULL;
5258 if (dest_elt)
5259 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5260 if (p->is_const && CONST_INT_P (p->exp))
5262 dest_cst = p->exp;
5263 break;
5265 if (dest_cst)
5267 HOST_WIDE_INT val = INTVAL (dest_cst);
5268 HOST_WIDE_INT mask;
5269 unsigned int shift;
5270 /* This is the mode of DEST_CST as well. */
5271 scalar_int_mode dest_mode
5272 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
5273 if (BITS_BIG_ENDIAN)
5274 shift = GET_MODE_PRECISION (dest_mode)
5275 - INTVAL (pos) - INTVAL (width);
5276 else
5277 shift = INTVAL (pos);
5278 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5279 mask = HOST_WIDE_INT_M1;
5280 else
5281 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
5282 val &= ~(mask << shift);
5283 val |= (INTVAL (trial) & mask) << shift;
5284 val = trunc_int_for_mode (val, dest_mode);
5285 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5286 dest_reg, 1);
5287 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5288 GEN_INT (val), 1);
5289 if (apply_change_group ())
5291 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5292 if (note)
5294 remove_note (insn, note);
5295 df_notes_rescan (insn);
5297 src_eqv = NULL_RTX;
5298 src_eqv_elt = NULL;
5299 src_eqv_volatile = 0;
5300 src_eqv_in_memory = 0;
5301 src_eqv_hash = 0;
5302 repeat = true;
5303 break;
5308 /* We don't normally have an insn matching (set (pc) (pc)), so
5309 check for this separately here. We will delete such an
5310 insn below.
5312 For other cases such as a table jump or conditional jump
5313 where we know the ultimate target, go ahead and replace the
5314 operand. While that may not make a valid insn, we will
5315 reemit the jump below (and also insert any necessary
5316 barriers). */
5317 if (n_sets == 1 && dest == pc_rtx
5318 && (trial == pc_rtx
5319 || (GET_CODE (trial) == LABEL_REF
5320 && ! condjump_p (insn))))
5322 /* Don't substitute non-local labels, this confuses CFG. */
5323 if (GET_CODE (trial) == LABEL_REF
5324 && LABEL_REF_NONLOCAL_P (trial))
5325 continue;
5327 SET_SRC (sets[i].rtl) = trial;
5328 cse_jumps_altered = true;
5329 break;
5332 /* Similarly, lots of targets don't allow no-op
5333 (set (mem x) (mem x)) moves. */
5334 else if (n_sets == 1
5335 && MEM_P (trial)
5336 && MEM_P (dest)
5337 && rtx_equal_p (trial, dest)
5338 && !side_effects_p (dest)
5339 && (cfun->can_delete_dead_exceptions
5340 || insn_nothrow_p (insn)))
5342 SET_SRC (sets[i].rtl) = trial;
5343 mem_noop_insn = true;
5344 break;
5347 /* Reject certain invalid forms of CONST that we create. */
5348 else if (CONSTANT_P (trial)
5349 && GET_CODE (trial) == CONST
5350 /* Reject cases that will cause decode_rtx_const to
5351 die. On the alpha when simplifying a switch, we
5352 get (const (truncate (minus (label_ref)
5353 (label_ref)))). */
5354 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5355 /* Likewise on IA-64, except without the
5356 truncate. */
5357 || (GET_CODE (XEXP (trial, 0)) == MINUS
5358 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5359 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5360 /* Do nothing for this case. */
5363 /* Look for a substitution that makes a valid insn. */
5364 else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5365 trial, 0))
5367 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5369 /* The result of apply_change_group can be ignored; see
5370 canon_reg. */
5372 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5373 apply_change_group ();
5375 break;
5378 /* If we previously found constant pool entries for
5379 constants and this is a constant, try making a
5380 pool entry. Put it in src_folded unless we already have done
5381 this since that is where it likely came from. */
5383 else if (constant_pool_entries_cost
5384 && CONSTANT_P (trial)
5385 && (src_folded == 0
5386 || (!MEM_P (src_folded)
5387 && ! src_folded_force_flag))
5388 && GET_MODE_CLASS (mode) != MODE_CC
5389 && mode != VOIDmode)
5391 src_folded_force_flag = 1;
5392 src_folded = trial;
5393 src_folded_cost = constant_pool_entries_cost;
5394 src_folded_regcost = constant_pool_entries_regcost;
5398 /* If we changed the insn too much, handle this set from scratch. */
5399 if (repeat)
5401 i--;
5402 continue;
5405 src = SET_SRC (sets[i].rtl);
5407 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5408 However, there is an important exception: If both are registers
5409 that are not the head of their equivalence class, replace SET_SRC
5410 with the head of the class. If we do not do this, we will have
5411 both registers live over a portion of the basic block. This way,
5412 their lifetimes will likely abut instead of overlapping. */
5413 if (REG_P (dest)
5414 && REGNO_QTY_VALID_P (REGNO (dest)))
5416 int dest_q = REG_QTY (REGNO (dest));
5417 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5419 if (dest_ent->mode == GET_MODE (dest)
5420 && dest_ent->first_reg != REGNO (dest)
5421 && REG_P (src) && REGNO (src) == REGNO (dest)
5422 /* Don't do this if the original insn had a hard reg as
5423 SET_SRC or SET_DEST. */
5424 && (!REG_P (sets[i].src)
5425 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5426 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5427 /* We can't call canon_reg here because it won't do anything if
5428 SRC is a hard register. */
5430 int src_q = REG_QTY (REGNO (src));
5431 struct qty_table_elem *src_ent = &qty_table[src_q];
5432 int first = src_ent->first_reg;
5433 rtx new_src
5434 = (first >= FIRST_PSEUDO_REGISTER
5435 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5437 /* We must use validate-change even for this, because this
5438 might be a special no-op instruction, suitable only to
5439 tag notes onto. */
5440 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5442 src = new_src;
5443 /* If we had a constant that is cheaper than what we are now
5444 setting SRC to, use that constant. We ignored it when we
5445 thought we could make this into a no-op. */
5446 if (src_const && COST (src_const, mode) < COST (src, mode)
5447 && validate_change (insn, &SET_SRC (sets[i].rtl),
5448 src_const, 0))
5449 src = src_const;
5454 /* If we made a change, recompute SRC values. */
5455 if (src != sets[i].src)
5457 do_not_record = 0;
5458 hash_arg_in_memory = 0;
5459 sets[i].src = src;
5460 sets[i].src_hash = HASH (src, mode);
5461 sets[i].src_volatile = do_not_record;
5462 sets[i].src_in_memory = hash_arg_in_memory;
5463 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5466 /* If this is a single SET, we are setting a register, and we have an
5467 equivalent constant, we want to add a REG_EQUAL note if the constant
5468 is different from the source. We don't want to do it for a constant
5469 pseudo since verifying that this pseudo hasn't been eliminated is a
5470 pain; moreover such a note won't help anything.
5472 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5473 which can be created for a reference to a compile time computable
5474 entry in a jump table. */
5475 if (n_sets == 1
5476 && REG_P (dest)
5477 && src_const
5478 && !REG_P (src_const)
5479 && !(GET_CODE (src_const) == SUBREG
5480 && REG_P (SUBREG_REG (src_const)))
5481 && !(GET_CODE (src_const) == CONST
5482 && GET_CODE (XEXP (src_const, 0)) == MINUS
5483 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5484 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5485 && !rtx_equal_p (src, src_const))
5487 /* Make sure that the rtx is not shared. */
5488 src_const = copy_rtx (src_const);
5490 /* Record the actual constant value in a REG_EQUAL note,
5491 making a new one if one does not already exist. */
5492 set_unique_reg_note (insn, REG_EQUAL, src_const);
5493 df_notes_rescan (insn);
5496 /* Now deal with the destination. */
5497 do_not_record = 0;
5499 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5500 while (GET_CODE (dest) == SUBREG
5501 || GET_CODE (dest) == ZERO_EXTRACT
5502 || GET_CODE (dest) == STRICT_LOW_PART)
5503 dest = XEXP (dest, 0);
5505 sets[i].inner_dest = dest;
5507 if (MEM_P (dest))
5509 #ifdef PUSH_ROUNDING
5510 /* Stack pushes invalidate the stack pointer. */
5511 rtx addr = XEXP (dest, 0);
5512 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5513 && XEXP (addr, 0) == stack_pointer_rtx)
5514 invalidate (stack_pointer_rtx, VOIDmode);
5515 #endif
5516 dest = fold_rtx (dest, insn);
5519 /* Compute the hash code of the destination now,
5520 before the effects of this instruction are recorded,
5521 since the register values used in the address computation
5522 are those before this instruction. */
5523 sets[i].dest_hash = HASH (dest, mode);
5525 /* Don't enter a bit-field in the hash table
5526 because the value in it after the store
5527 may not equal what was stored, due to truncation. */
5529 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5531 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5533 if (src_const != 0 && CONST_INT_P (src_const)
5534 && CONST_INT_P (width)
5535 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5536 && ! (INTVAL (src_const)
5537 & (HOST_WIDE_INT_M1U << INTVAL (width))))
5538 /* Exception: if the value is constant,
5539 and it won't be truncated, record it. */
5541 else
5543 /* This is chosen so that the destination will be invalidated
5544 but no new value will be recorded.
5545 We must invalidate because sometimes constant
5546 values can be recorded for bitfields. */
5547 sets[i].src_elt = 0;
5548 sets[i].src_volatile = 1;
5549 src_eqv = 0;
5550 src_eqv_elt = 0;
5554 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5555 the insn. */
5556 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5558 /* One less use of the label this insn used to jump to. */
5559 cse_cfg_altered |= delete_insn_and_edges (insn);
5560 cse_jumps_altered = true;
5561 /* No more processing for this set. */
5562 sets[i].rtl = 0;
5565 /* Similarly for no-op MEM moves. */
5566 else if (mem_noop_insn)
5568 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5569 cse_cfg_altered = true;
5570 cse_cfg_altered |= delete_insn_and_edges (insn);
5571 /* No more processing for this set. */
5572 sets[i].rtl = 0;
5575 /* If this SET is now setting PC to a label, we know it used to
5576 be a conditional or computed branch. */
5577 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5578 && !LABEL_REF_NONLOCAL_P (src))
5580 /* We reemit the jump in as many cases as possible just in
5581 case the form of an unconditional jump is significantly
5582 different than a computed jump or conditional jump.
5584 If this insn has multiple sets, then reemitting the
5585 jump is nontrivial. So instead we just force rerecognition
5586 and hope for the best. */
5587 if (n_sets == 1)
5589 rtx_jump_insn *new_rtx;
5590 rtx note;
5592 rtx_insn *seq = targetm.gen_jump (XEXP (src, 0));
5593 new_rtx = emit_jump_insn_before (seq, insn);
5594 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5595 LABEL_NUSES (XEXP (src, 0))++;
5597 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5598 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5599 if (note)
5601 XEXP (note, 1) = NULL_RTX;
5602 REG_NOTES (new_rtx) = note;
5605 cse_cfg_altered |= delete_insn_and_edges (insn);
5606 insn = new_rtx;
5608 else
5609 INSN_CODE (insn) = -1;
5611 /* Do not bother deleting any unreachable code, let jump do it. */
5612 cse_jumps_altered = true;
5613 sets[i].rtl = 0;
5616 /* If destination is volatile, invalidate it and then do no further
5617 processing for this assignment. */
5619 else if (do_not_record)
5621 invalidate_dest (dest);
5622 sets[i].rtl = 0;
5625 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5627 do_not_record = 0;
5628 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5629 if (do_not_record)
5631 invalidate_dest (SET_DEST (sets[i].rtl));
5632 sets[i].rtl = 0;
5636 /* If setting CC0, record what it was set to, or a constant, if it
5637 is equivalent to a constant. If it is being set to a floating-point
5638 value, make a COMPARE with the appropriate constant of 0. If we
5639 don't do this, later code can interpret this as a test against
5640 const0_rtx, which can cause problems if we try to put it into an
5641 insn as a floating-point operand. */
5642 if (dest == cc0_rtx)
5644 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5645 this_insn_cc0_mode = mode;
5646 if (FLOAT_MODE_P (mode))
5647 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5648 CONST0_RTX (mode));
5652 /* Now enter all non-volatile source expressions in the hash table
5653 if they are not already present.
5654 Record their equivalence classes in src_elt.
5655 This way we can insert the corresponding destinations into
5656 the same classes even if the actual sources are no longer in them
5657 (having been invalidated). */
5659 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5660 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5662 struct table_elt *elt;
5663 struct table_elt *classp = sets[0].src_elt;
5664 rtx dest = SET_DEST (sets[0].rtl);
5665 machine_mode eqvmode = GET_MODE (dest);
5667 if (GET_CODE (dest) == STRICT_LOW_PART)
5669 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5670 classp = 0;
5672 if (insert_regs (src_eqv, classp, 0))
5674 rehash_using_reg (src_eqv);
5675 src_eqv_hash = HASH (src_eqv, eqvmode);
5677 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5678 elt->in_memory = src_eqv_in_memory;
5679 src_eqv_elt = elt;
5681 /* Check to see if src_eqv_elt is the same as a set source which
5682 does not yet have an elt, and if so set the elt of the set source
5683 to src_eqv_elt. */
5684 for (i = 0; i < n_sets; i++)
5685 if (sets[i].rtl && sets[i].src_elt == 0
5686 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5687 sets[i].src_elt = src_eqv_elt;
5690 for (i = 0; i < n_sets; i++)
5691 if (sets[i].rtl && ! sets[i].src_volatile
5692 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5694 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5696 /* REG_EQUAL in setting a STRICT_LOW_PART
5697 gives an equivalent for the entire destination register,
5698 not just for the subreg being stored in now.
5699 This is a more interesting equivalence, so we arrange later
5700 to treat the entire reg as the destination. */
5701 sets[i].src_elt = src_eqv_elt;
5702 sets[i].src_hash = src_eqv_hash;
5704 else
5706 /* Insert source and constant equivalent into hash table, if not
5707 already present. */
5708 struct table_elt *classp = src_eqv_elt;
5709 rtx src = sets[i].src;
5710 rtx dest = SET_DEST (sets[i].rtl);
5711 machine_mode mode
5712 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5714 /* It's possible that we have a source value known to be
5715 constant but don't have a REG_EQUAL note on the insn.
5716 Lack of a note will mean src_eqv_elt will be NULL. This
5717 can happen where we've generated a SUBREG to access a
5718 CONST_INT that is already in a register in a wider mode.
5719 Ensure that the source expression is put in the proper
5720 constant class. */
5721 if (!classp)
5722 classp = sets[i].src_const_elt;
5724 if (sets[i].src_elt == 0)
5726 struct table_elt *elt;
5728 /* Note that these insert_regs calls cannot remove
5729 any of the src_elt's, because they would have failed to
5730 match if not still valid. */
5731 if (insert_regs (src, classp, 0))
5733 rehash_using_reg (src);
5734 sets[i].src_hash = HASH (src, mode);
5736 elt = insert (src, classp, sets[i].src_hash, mode);
5737 elt->in_memory = sets[i].src_in_memory;
5738 /* If inline asm has any clobbers, ensure we only reuse
5739 existing inline asms and never try to put the ASM_OPERANDS
5740 into an insn that isn't inline asm. */
5741 if (GET_CODE (src) == ASM_OPERANDS
5742 && GET_CODE (x) == PARALLEL)
5743 elt->cost = MAX_COST;
5744 sets[i].src_elt = classp = elt;
5746 if (sets[i].src_const && sets[i].src_const_elt == 0
5747 && src != sets[i].src_const
5748 && ! rtx_equal_p (sets[i].src_const, src))
5749 sets[i].src_elt = insert (sets[i].src_const, classp,
5750 sets[i].src_const_hash, mode);
5753 else if (sets[i].src_elt == 0)
5754 /* If we did not insert the source into the hash table (e.g., it was
5755 volatile), note the equivalence class for the REG_EQUAL value, if any,
5756 so that the destination goes into that class. */
5757 sets[i].src_elt = src_eqv_elt;
5759 /* Record destination addresses in the hash table. This allows us to
5760 check if they are invalidated by other sets. */
5761 for (i = 0; i < n_sets; i++)
5763 if (sets[i].rtl)
5765 rtx x = sets[i].inner_dest;
5766 struct table_elt *elt;
5767 machine_mode mode;
5768 unsigned hash;
5770 if (MEM_P (x))
5772 x = XEXP (x, 0);
5773 mode = GET_MODE (x);
5774 hash = HASH (x, mode);
5775 elt = lookup (x, hash, mode);
5776 if (!elt)
5778 if (insert_regs (x, NULL, 0))
5780 rtx dest = SET_DEST (sets[i].rtl);
5782 rehash_using_reg (x);
5783 hash = HASH (x, mode);
5784 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5786 elt = insert (x, NULL, hash, mode);
5789 sets[i].dest_addr_elt = elt;
5791 else
5792 sets[i].dest_addr_elt = NULL;
5796 invalidate_from_clobbers (insn);
5798 /* Some registers are invalidated by subroutine calls. Memory is
5799 invalidated by non-constant calls. */
5801 if (CALL_P (insn))
5803 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5804 invalidate_memory ();
5805 else
5806 /* For const/pure calls, invalidate any argument slots, because
5807 those are owned by the callee. */
5808 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
5809 if (GET_CODE (XEXP (tem, 0)) == USE
5810 && MEM_P (XEXP (XEXP (tem, 0), 0)))
5811 invalidate (XEXP (XEXP (tem, 0), 0), VOIDmode);
5812 invalidate_for_call ();
5815 /* Now invalidate everything set by this instruction.
5816 If a SUBREG or other funny destination is being set,
5817 sets[i].rtl is still nonzero, so here we invalidate the reg
5818 a part of which is being set. */
5820 for (i = 0; i < n_sets; i++)
5821 if (sets[i].rtl)
5823 /* We can't use the inner dest, because the mode associated with
5824 a ZERO_EXTRACT is significant. */
5825 rtx dest = SET_DEST (sets[i].rtl);
5827 /* Needed for registers to remove the register from its
5828 previous quantity's chain.
5829 Needed for memory if this is a nonvarying address, unless
5830 we have just done an invalidate_memory that covers even those. */
5831 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5832 invalidate (dest, VOIDmode);
5833 else if (MEM_P (dest))
5834 invalidate (dest, VOIDmode);
5835 else if (GET_CODE (dest) == STRICT_LOW_PART
5836 || GET_CODE (dest) == ZERO_EXTRACT)
5837 invalidate (XEXP (dest, 0), GET_MODE (dest));
5840 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5841 the regs restored by the longjmp come from a later time
5842 than the setjmp. */
5843 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5845 flush_hash_table ();
5846 goto done;
5849 /* Make sure registers mentioned in destinations
5850 are safe for use in an expression to be inserted.
5851 This removes from the hash table
5852 any invalid entry that refers to one of these registers.
5854 We don't care about the return value from mention_regs because
5855 we are going to hash the SET_DEST values unconditionally. */
5857 for (i = 0; i < n_sets; i++)
5859 if (sets[i].rtl)
5861 rtx x = SET_DEST (sets[i].rtl);
5863 if (!REG_P (x))
5864 mention_regs (x);
5865 else
5867 /* We used to rely on all references to a register becoming
5868 inaccessible when a register changes to a new quantity,
5869 since that changes the hash code. However, that is not
5870 safe, since after HASH_SIZE new quantities we get a
5871 hash 'collision' of a register with its own invalid
5872 entries. And since SUBREGs have been changed not to
5873 change their hash code with the hash code of the register,
5874 it wouldn't work any longer at all. So we have to check
5875 for any invalid references lying around now.
5876 This code is similar to the REG case in mention_regs,
5877 but it knows that reg_tick has been incremented, and
5878 it leaves reg_in_table as -1 . */
5879 unsigned int regno = REGNO (x);
5880 unsigned int endregno = END_REGNO (x);
5881 unsigned int i;
5883 for (i = regno; i < endregno; i++)
5885 if (REG_IN_TABLE (i) >= 0)
5887 remove_invalid_refs (i);
5888 REG_IN_TABLE (i) = -1;
5895 /* We may have just removed some of the src_elt's from the hash table.
5896 So replace each one with the current head of the same class.
5897 Also check if destination addresses have been removed. */
5899 for (i = 0; i < n_sets; i++)
5900 if (sets[i].rtl)
5902 if (sets[i].dest_addr_elt
5903 && sets[i].dest_addr_elt->first_same_value == 0)
5905 /* The elt was removed, which means this destination is not
5906 valid after this instruction. */
5907 sets[i].rtl = NULL_RTX;
5909 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5910 /* If elt was removed, find current head of same class,
5911 or 0 if nothing remains of that class. */
5913 struct table_elt *elt = sets[i].src_elt;
5915 while (elt && elt->prev_same_value)
5916 elt = elt->prev_same_value;
5918 while (elt && elt->first_same_value == 0)
5919 elt = elt->next_same_value;
5920 sets[i].src_elt = elt ? elt->first_same_value : 0;
5924 /* Now insert the destinations into their equivalence classes. */
5926 for (i = 0; i < n_sets; i++)
5927 if (sets[i].rtl)
5929 rtx dest = SET_DEST (sets[i].rtl);
5930 struct table_elt *elt;
5932 /* Don't record value if we are not supposed to risk allocating
5933 floating-point values in registers that might be wider than
5934 memory. */
5935 if ((flag_float_store
5936 && MEM_P (dest)
5937 && FLOAT_MODE_P (GET_MODE (dest)))
5938 /* Don't record BLKmode values, because we don't know the
5939 size of it, and can't be sure that other BLKmode values
5940 have the same or smaller size. */
5941 || GET_MODE (dest) == BLKmode
5942 /* If we didn't put a REG_EQUAL value or a source into the hash
5943 table, there is no point is recording DEST. */
5944 || sets[i].src_elt == 0)
5945 continue;
5947 /* STRICT_LOW_PART isn't part of the value BEING set,
5948 and neither is the SUBREG inside it.
5949 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5950 if (GET_CODE (dest) == STRICT_LOW_PART)
5951 dest = SUBREG_REG (XEXP (dest, 0));
5953 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5954 /* Registers must also be inserted into chains for quantities. */
5955 if (insert_regs (dest, sets[i].src_elt, 1))
5957 /* If `insert_regs' changes something, the hash code must be
5958 recalculated. */
5959 rehash_using_reg (dest);
5960 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5963 /* If DEST is a paradoxical SUBREG, don't record DEST since the bits
5964 outside the mode of GET_MODE (SUBREG_REG (dest)) are undefined. */
5965 if (paradoxical_subreg_p (dest))
5966 continue;
5968 elt = insert (dest, sets[i].src_elt,
5969 sets[i].dest_hash, GET_MODE (dest));
5971 /* If this is a constant, insert the constant anchors with the
5972 equivalent register-offset expressions using register DEST. */
5973 if (targetm.const_anchor
5974 && REG_P (dest)
5975 && SCALAR_INT_MODE_P (GET_MODE (dest))
5976 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5977 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5979 elt->in_memory = (MEM_P (sets[i].inner_dest)
5980 && !MEM_READONLY_P (sets[i].inner_dest));
5982 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5983 narrower than M2, and both M1 and M2 are the same number of words,
5984 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5985 make that equivalence as well.
5987 However, BAR may have equivalences for which gen_lowpart
5988 will produce a simpler value than gen_lowpart applied to
5989 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5990 BAR's equivalences. If we don't get a simplified form, make
5991 the SUBREG. It will not be used in an equivalence, but will
5992 cause two similar assignments to be detected.
5994 Note the loop below will find SUBREG_REG (DEST) since we have
5995 already entered SRC and DEST of the SET in the table. */
5997 if (GET_CODE (dest) == SUBREG
5998 && (known_equal_after_align_down
5999 (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1,
6000 GET_MODE_SIZE (GET_MODE (dest)) - 1,
6001 UNITS_PER_WORD))
6002 && !partial_subreg_p (dest)
6003 && sets[i].src_elt != 0)
6005 machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6006 struct table_elt *elt, *classp = 0;
6008 for (elt = sets[i].src_elt->first_same_value; elt;
6009 elt = elt->next_same_value)
6011 rtx new_src = 0;
6012 unsigned src_hash;
6013 struct table_elt *src_elt;
6015 /* Ignore invalid entries. */
6016 if (!REG_P (elt->exp)
6017 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
6018 continue;
6020 /* We may have already been playing subreg games. If the
6021 mode is already correct for the destination, use it. */
6022 if (GET_MODE (elt->exp) == new_mode)
6023 new_src = elt->exp;
6024 else
6026 poly_uint64 byte
6027 = subreg_lowpart_offset (new_mode, GET_MODE (dest));
6028 new_src = simplify_gen_subreg (new_mode, elt->exp,
6029 GET_MODE (dest), byte);
6032 /* The call to simplify_gen_subreg fails if the value
6033 is VOIDmode, yet we can't do any simplification, e.g.
6034 for EXPR_LISTs denoting function call results.
6035 It is invalid to construct a SUBREG with a VOIDmode
6036 SUBREG_REG, hence a zero new_src means we can't do
6037 this substitution. */
6038 if (! new_src)
6039 continue;
6041 src_hash = HASH (new_src, new_mode);
6042 src_elt = lookup (new_src, src_hash, new_mode);
6044 /* Put the new source in the hash table is if isn't
6045 already. */
6046 if (src_elt == 0)
6048 if (insert_regs (new_src, classp, 0))
6050 rehash_using_reg (new_src);
6051 src_hash = HASH (new_src, new_mode);
6053 src_elt = insert (new_src, classp, src_hash, new_mode);
6054 src_elt->in_memory = elt->in_memory;
6055 if (GET_CODE (new_src) == ASM_OPERANDS
6056 && elt->cost == MAX_COST)
6057 src_elt->cost = MAX_COST;
6059 else if (classp && classp != src_elt->first_same_value)
6060 /* Show that two things that we've seen before are
6061 actually the same. */
6062 merge_equiv_classes (src_elt, classp);
6064 classp = src_elt->first_same_value;
6065 /* Ignore invalid entries. */
6066 while (classp
6067 && !REG_P (classp->exp)
6068 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
6069 classp = classp->next_same_value;
6074 /* Special handling for (set REG0 REG1) where REG0 is the
6075 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6076 be used in the sequel, so (if easily done) change this insn to
6077 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6078 that computed their value. Then REG1 will become a dead store
6079 and won't cloud the situation for later optimizations.
6081 Do not make this change if REG1 is a hard register, because it will
6082 then be used in the sequel and we may be changing a two-operand insn
6083 into a three-operand insn.
6085 Also do not do this if we are operating on a copy of INSN. */
6087 if (n_sets == 1 && sets[0].rtl)
6088 try_back_substitute_reg (sets[0].rtl, insn);
6090 done:;
6093 /* Remove from the hash table all expressions that reference memory. */
6095 static void
6096 invalidate_memory (void)
6098 int i;
6099 struct table_elt *p, *next;
6101 for (i = 0; i < HASH_SIZE; i++)
6102 for (p = table[i]; p; p = next)
6104 next = p->next_same_hash;
6105 if (p->in_memory)
6106 remove_from_table (p, i);
6110 /* Perform invalidation on the basis of everything about INSN,
6111 except for invalidating the actual places that are SET in it.
6112 This includes the places CLOBBERed, and anything that might
6113 alias with something that is SET or CLOBBERed. */
6115 static void
6116 invalidate_from_clobbers (rtx_insn *insn)
6118 rtx x = PATTERN (insn);
6120 if (GET_CODE (x) == CLOBBER)
6122 rtx ref = XEXP (x, 0);
6123 if (ref)
6125 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6126 || MEM_P (ref))
6127 invalidate (ref, VOIDmode);
6128 else if (GET_CODE (ref) == STRICT_LOW_PART
6129 || GET_CODE (ref) == ZERO_EXTRACT)
6130 invalidate (XEXP (ref, 0), GET_MODE (ref));
6133 else if (GET_CODE (x) == PARALLEL)
6135 int i;
6136 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6138 rtx y = XVECEXP (x, 0, i);
6139 if (GET_CODE (y) == CLOBBER)
6141 rtx ref = XEXP (y, 0);
6142 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6143 || MEM_P (ref))
6144 invalidate (ref, VOIDmode);
6145 else if (GET_CODE (ref) == STRICT_LOW_PART
6146 || GET_CODE (ref) == ZERO_EXTRACT)
6147 invalidate (XEXP (ref, 0), GET_MODE (ref));
6153 /* Perform invalidation on the basis of everything about INSN.
6154 This includes the places CLOBBERed, and anything that might
6155 alias with something that is SET or CLOBBERed. */
6157 static void
6158 invalidate_from_sets_and_clobbers (rtx_insn *insn)
6160 rtx tem;
6161 rtx x = PATTERN (insn);
6163 if (CALL_P (insn))
6165 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6166 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6167 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6170 /* Ensure we invalidate the destination register of a CALL insn.
6171 This is necessary for machines where this register is a fixed_reg,
6172 because no other code would invalidate it. */
6173 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6174 invalidate (SET_DEST (x), VOIDmode);
6176 else if (GET_CODE (x) == PARALLEL)
6178 int i;
6180 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6182 rtx y = XVECEXP (x, 0, i);
6183 if (GET_CODE (y) == CLOBBER)
6185 rtx clobbered = XEXP (y, 0);
6187 if (REG_P (clobbered)
6188 || GET_CODE (clobbered) == SUBREG)
6189 invalidate (clobbered, VOIDmode);
6190 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6191 || GET_CODE (clobbered) == ZERO_EXTRACT)
6192 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6194 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6195 invalidate (SET_DEST (y), VOIDmode);
6200 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6201 and replace any registers in them with either an equivalent constant
6202 or the canonical form of the register. If we are inside an address,
6203 only do this if the address remains valid.
6205 OBJECT is 0 except when within a MEM in which case it is the MEM.
6207 Return the replacement for X. */
6209 static rtx
6210 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6212 enum rtx_code code = GET_CODE (x);
6213 const char *fmt = GET_RTX_FORMAT (code);
6214 int i;
6216 switch (code)
6218 case CONST:
6219 case SYMBOL_REF:
6220 case LABEL_REF:
6221 CASE_CONST_ANY:
6222 case PC:
6223 case CC0:
6224 case LO_SUM:
6225 return x;
6227 case MEM:
6228 validate_change (x, &XEXP (x, 0),
6229 cse_process_notes (XEXP (x, 0), x, changed), 0);
6230 return x;
6232 case EXPR_LIST:
6233 if (REG_NOTE_KIND (x) == REG_EQUAL)
6234 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6235 /* Fall through. */
6237 case INSN_LIST:
6238 case INT_LIST:
6239 if (XEXP (x, 1))
6240 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6241 return x;
6243 case SIGN_EXTEND:
6244 case ZERO_EXTEND:
6245 case SUBREG:
6247 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6248 /* We don't substitute VOIDmode constants into these rtx,
6249 since they would impede folding. */
6250 if (GET_MODE (new_rtx) != VOIDmode)
6251 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6252 return x;
6255 case UNSIGNED_FLOAT:
6257 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6258 /* We don't substitute negative VOIDmode constants into these rtx,
6259 since they would impede folding. */
6260 if (GET_MODE (new_rtx) != VOIDmode
6261 || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6262 || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6263 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6264 return x;
6267 case REG:
6268 i = REG_QTY (REGNO (x));
6270 /* Return a constant or a constant register. */
6271 if (REGNO_QTY_VALID_P (REGNO (x)))
6273 struct qty_table_elem *ent = &qty_table[i];
6275 if (ent->const_rtx != NULL_RTX
6276 && (CONSTANT_P (ent->const_rtx)
6277 || REG_P (ent->const_rtx)))
6279 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6280 if (new_rtx)
6281 return copy_rtx (new_rtx);
6285 /* Otherwise, canonicalize this register. */
6286 return canon_reg (x, NULL);
6288 default:
6289 break;
6292 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6293 if (fmt[i] == 'e')
6294 validate_change (object, &XEXP (x, i),
6295 cse_process_notes (XEXP (x, i), object, changed), 0);
6297 return x;
6300 static rtx
6301 cse_process_notes (rtx x, rtx object, bool *changed)
6303 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6304 if (new_rtx != x)
6305 *changed = true;
6306 return new_rtx;
6310 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6312 DATA is a pointer to a struct cse_basic_block_data, that is used to
6313 describe the path.
6314 It is filled with a queue of basic blocks, starting with FIRST_BB
6315 and following a trace through the CFG.
6317 If all paths starting at FIRST_BB have been followed, or no new path
6318 starting at FIRST_BB can be constructed, this function returns FALSE.
6319 Otherwise, DATA->path is filled and the function returns TRUE indicating
6320 that a path to follow was found.
6322 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6323 block in the path will be FIRST_BB. */
6325 static bool
6326 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6327 int follow_jumps)
6329 basic_block bb;
6330 edge e;
6331 int path_size;
6333 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6335 /* See if there is a previous path. */
6336 path_size = data->path_size;
6338 /* There is a previous path. Make sure it started with FIRST_BB. */
6339 if (path_size)
6340 gcc_assert (data->path[0].bb == first_bb);
6342 /* There was only one basic block in the last path. Clear the path and
6343 return, so that paths starting at another basic block can be tried. */
6344 if (path_size == 1)
6346 path_size = 0;
6347 goto done;
6350 /* If the path was empty from the beginning, construct a new path. */
6351 if (path_size == 0)
6352 data->path[path_size++].bb = first_bb;
6353 else
6355 /* Otherwise, path_size must be equal to or greater than 2, because
6356 a previous path exists that is at least two basic blocks long.
6358 Update the previous branch path, if any. If the last branch was
6359 previously along the branch edge, take the fallthrough edge now. */
6360 while (path_size >= 2)
6362 basic_block last_bb_in_path, previous_bb_in_path;
6363 edge e;
6365 --path_size;
6366 last_bb_in_path = data->path[path_size].bb;
6367 previous_bb_in_path = data->path[path_size - 1].bb;
6369 /* If we previously followed a path along the branch edge, try
6370 the fallthru edge now. */
6371 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6372 && any_condjump_p (BB_END (previous_bb_in_path))
6373 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6374 && e == BRANCH_EDGE (previous_bb_in_path))
6376 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6377 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
6378 && single_pred_p (bb)
6379 /* We used to assert here that we would only see blocks
6380 that we have not visited yet. But we may end up
6381 visiting basic blocks twice if the CFG has changed
6382 in this run of cse_main, because when the CFG changes
6383 the topological sort of the CFG also changes. A basic
6384 blocks that previously had more than two predecessors
6385 may now have a single predecessor, and become part of
6386 a path that starts at another basic block.
6388 We still want to visit each basic block only once, so
6389 halt the path here if we have already visited BB. */
6390 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6392 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6393 data->path[path_size++].bb = bb;
6394 break;
6398 data->path[path_size].bb = NULL;
6401 /* If only one block remains in the path, bail. */
6402 if (path_size == 1)
6404 path_size = 0;
6405 goto done;
6409 /* Extend the path if possible. */
6410 if (follow_jumps)
6412 bb = data->path[path_size - 1].bb;
6413 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6415 if (single_succ_p (bb))
6416 e = single_succ_edge (bb);
6417 else if (EDGE_COUNT (bb->succs) == 2
6418 && any_condjump_p (BB_END (bb)))
6420 /* First try to follow the branch. If that doesn't lead
6421 to a useful path, follow the fallthru edge. */
6422 e = BRANCH_EDGE (bb);
6423 if (!single_pred_p (e->dest))
6424 e = FALLTHRU_EDGE (bb);
6426 else
6427 e = NULL;
6429 if (e
6430 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6431 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6432 && single_pred_p (e->dest)
6433 /* Avoid visiting basic blocks twice. The large comment
6434 above explains why this can happen. */
6435 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6437 basic_block bb2 = e->dest;
6438 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6439 data->path[path_size++].bb = bb2;
6440 bb = bb2;
6442 else
6443 bb = NULL;
6447 done:
6448 data->path_size = path_size;
6449 return path_size != 0;
6452 /* Dump the path in DATA to file F. NSETS is the number of sets
6453 in the path. */
6455 static void
6456 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6458 int path_entry;
6460 fprintf (f, ";; Following path with %d sets: ", nsets);
6461 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6462 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6463 fputc ('\n', dump_file);
6464 fflush (f);
6468 /* Return true if BB has exception handling successor edges. */
6470 static bool
6471 have_eh_succ_edges (basic_block bb)
6473 edge e;
6474 edge_iterator ei;
6476 FOR_EACH_EDGE (e, ei, bb->succs)
6477 if (e->flags & EDGE_EH)
6478 return true;
6480 return false;
6484 /* Scan to the end of the path described by DATA. Return an estimate of
6485 the total number of SETs of all insns in the path. */
6487 static void
6488 cse_prescan_path (struct cse_basic_block_data *data)
6490 int nsets = 0;
6491 int path_size = data->path_size;
6492 int path_entry;
6494 /* Scan to end of each basic block in the path. */
6495 for (path_entry = 0; path_entry < path_size; path_entry++)
6497 basic_block bb;
6498 rtx_insn *insn;
6500 bb = data->path[path_entry].bb;
6502 FOR_BB_INSNS (bb, insn)
6504 if (!INSN_P (insn))
6505 continue;
6507 /* A PARALLEL can have lots of SETs in it,
6508 especially if it is really an ASM_OPERANDS. */
6509 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6510 nsets += XVECLEN (PATTERN (insn), 0);
6511 else
6512 nsets += 1;
6516 data->nsets = nsets;
6519 /* Return true if the pattern of INSN uses a LABEL_REF for which
6520 there isn't a REG_LABEL_OPERAND note. */
6522 static bool
6523 check_for_label_ref (rtx_insn *insn)
6525 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6526 note for it, we must rerun jump since it needs to place the note. If
6527 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6528 don't do this since no REG_LABEL_OPERAND will be added. */
6529 subrtx_iterator::array_type array;
6530 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6532 const_rtx x = *iter;
6533 if (GET_CODE (x) == LABEL_REF
6534 && !LABEL_REF_NONLOCAL_P (x)
6535 && (!JUMP_P (insn)
6536 || !label_is_jump_target_p (label_ref_label (x), insn))
6537 && LABEL_P (label_ref_label (x))
6538 && INSN_UID (label_ref_label (x)) != 0
6539 && !find_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x)))
6540 return true;
6542 return false;
6545 /* Process a single extended basic block described by EBB_DATA. */
6547 static void
6548 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6550 int path_size = ebb_data->path_size;
6551 int path_entry;
6552 int num_insns = 0;
6554 /* Allocate the space needed by qty_table. */
6555 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6557 new_basic_block ();
6558 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6559 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6560 for (path_entry = 0; path_entry < path_size; path_entry++)
6562 basic_block bb;
6563 rtx_insn *insn;
6565 bb = ebb_data->path[path_entry].bb;
6567 /* Invalidate recorded information for eh regs if there is an EH
6568 edge pointing to that bb. */
6569 if (bb_has_eh_pred (bb))
6571 df_ref def;
6573 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6574 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6575 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6578 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6579 FOR_BB_INSNS (bb, insn)
6581 /* If we have processed 1,000 insns, flush the hash table to
6582 avoid extreme quadratic behavior. We must not include NOTEs
6583 in the count since there may be more of them when generating
6584 debugging information. If we clear the table at different
6585 times, code generated with -g -O might be different than code
6586 generated with -O but not -g.
6588 FIXME: This is a real kludge and needs to be done some other
6589 way. */
6590 if (NONDEBUG_INSN_P (insn)
6591 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6593 flush_hash_table ();
6594 num_insns = 0;
6597 if (INSN_P (insn))
6599 /* Process notes first so we have all notes in canonical forms
6600 when looking for duplicate operations. */
6601 if (REG_NOTES (insn))
6603 bool changed = false;
6604 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6605 NULL_RTX, &changed);
6606 if (changed)
6607 df_notes_rescan (insn);
6610 cse_insn (insn);
6612 /* If we haven't already found an insn where we added a LABEL_REF,
6613 check this one. */
6614 if (INSN_P (insn) && !recorded_label_ref
6615 && check_for_label_ref (insn))
6616 recorded_label_ref = true;
6618 if (HAVE_cc0 && NONDEBUG_INSN_P (insn))
6620 /* If the previous insn sets CC0 and this insn no
6621 longer references CC0, delete the previous insn.
6622 Here we use fact that nothing expects CC0 to be
6623 valid over an insn, which is true until the final
6624 pass. */
6625 rtx_insn *prev_insn;
6626 rtx tem;
6628 prev_insn = prev_nonnote_nondebug_insn (insn);
6629 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6630 && (tem = single_set (prev_insn)) != NULL_RTX
6631 && SET_DEST (tem) == cc0_rtx
6632 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6633 delete_insn (prev_insn);
6635 /* If this insn is not the last insn in the basic
6636 block, it will be PREV_INSN(insn) in the next
6637 iteration. If we recorded any CC0-related
6638 information for this insn, remember it. */
6639 if (insn != BB_END (bb))
6641 prev_insn_cc0 = this_insn_cc0;
6642 prev_insn_cc0_mode = this_insn_cc0_mode;
6648 /* With non-call exceptions, we are not always able to update
6649 the CFG properly inside cse_insn. So clean up possibly
6650 redundant EH edges here. */
6651 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6652 cse_cfg_altered |= purge_dead_edges (bb);
6654 /* If we changed a conditional jump, we may have terminated
6655 the path we are following. Check that by verifying that
6656 the edge we would take still exists. If the edge does
6657 not exist anymore, purge the remainder of the path.
6658 Note that this will cause us to return to the caller. */
6659 if (path_entry < path_size - 1)
6661 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6662 if (!find_edge (bb, next_bb))
6666 path_size--;
6668 /* If we truncate the path, we must also reset the
6669 visited bit on the remaining blocks in the path,
6670 or we will never visit them at all. */
6671 bitmap_clear_bit (cse_visited_basic_blocks,
6672 ebb_data->path[path_size].bb->index);
6673 ebb_data->path[path_size].bb = NULL;
6675 while (path_size - 1 != path_entry);
6676 ebb_data->path_size = path_size;
6680 /* If this is a conditional jump insn, record any known
6681 equivalences due to the condition being tested. */
6682 insn = BB_END (bb);
6683 if (path_entry < path_size - 1
6684 && EDGE_COUNT (bb->succs) == 2
6685 && JUMP_P (insn)
6686 && single_set (insn)
6687 && any_condjump_p (insn))
6689 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6690 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6691 record_jump_equiv (insn, taken);
6694 /* Clear the CC0-tracking related insns, they can't provide
6695 useful information across basic block boundaries. */
6696 prev_insn_cc0 = 0;
6699 gcc_assert (next_qty <= max_qty);
6701 free (qty_table);
6705 /* Perform cse on the instructions of a function.
6706 F is the first instruction.
6707 NREGS is one plus the highest pseudo-reg number used in the instruction.
6709 Return 2 if jump optimizations should be redone due to simplifications
6710 in conditional jump instructions.
6711 Return 1 if the CFG should be cleaned up because it has been modified.
6712 Return 0 otherwise. */
6714 static int
6715 cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
6717 struct cse_basic_block_data ebb_data;
6718 basic_block bb;
6719 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6720 int i, n_blocks;
6722 /* CSE doesn't use dominane info but can invalidate it in different ways.
6723 For simplicity free dominance info here. */
6724 free_dominance_info (CDI_DOMINATORS);
6726 df_set_flags (DF_LR_RUN_DCE);
6727 df_note_add_problem ();
6728 df_analyze ();
6729 df_set_flags (DF_DEFER_INSN_RESCAN);
6731 reg_scan (get_insns (), max_reg_num ());
6732 init_cse_reg_info (nregs);
6734 ebb_data.path = XNEWVEC (struct branch_path,
6735 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6737 cse_cfg_altered = false;
6738 cse_jumps_altered = false;
6739 recorded_label_ref = false;
6740 constant_pool_entries_cost = 0;
6741 constant_pool_entries_regcost = 0;
6742 ebb_data.path_size = 0;
6743 ebb_data.nsets = 0;
6744 rtl_hooks = cse_rtl_hooks;
6746 init_recog ();
6747 init_alias_analysis ();
6749 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6751 /* Set up the table of already visited basic blocks. */
6752 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6753 bitmap_clear (cse_visited_basic_blocks);
6755 /* Loop over basic blocks in reverse completion order (RPO),
6756 excluding the ENTRY and EXIT blocks. */
6757 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6758 i = 0;
6759 while (i < n_blocks)
6761 /* Find the first block in the RPO queue that we have not yet
6762 processed before. */
6765 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
6767 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6768 && i < n_blocks);
6770 /* Find all paths starting with BB, and process them. */
6771 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6773 /* Pre-scan the path. */
6774 cse_prescan_path (&ebb_data);
6776 /* If this basic block has no sets, skip it. */
6777 if (ebb_data.nsets == 0)
6778 continue;
6780 /* Get a reasonable estimate for the maximum number of qty's
6781 needed for this path. For this, we take the number of sets
6782 and multiply that by MAX_RECOG_OPERANDS. */
6783 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6785 /* Dump the path we're about to process. */
6786 if (dump_file)
6787 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6789 cse_extended_basic_block (&ebb_data);
6793 /* Clean up. */
6794 end_alias_analysis ();
6795 free (reg_eqv_table);
6796 free (ebb_data.path);
6797 sbitmap_free (cse_visited_basic_blocks);
6798 free (rc_order);
6799 rtl_hooks = general_rtl_hooks;
6801 if (cse_jumps_altered || recorded_label_ref)
6802 return 2;
6803 else if (cse_cfg_altered)
6804 return 1;
6805 else
6806 return 0;
6809 /* Count the number of times registers are used (not set) in X.
6810 COUNTS is an array in which we accumulate the count, INCR is how much
6811 we count each register usage.
6813 Don't count a usage of DEST, which is the SET_DEST of a SET which
6814 contains X in its SET_SRC. This is because such a SET does not
6815 modify the liveness of DEST.
6816 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6817 We must then count uses of a SET_DEST regardless, because the insn can't be
6818 deleted here. */
6820 static void
6821 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6823 enum rtx_code code;
6824 rtx note;
6825 const char *fmt;
6826 int i, j;
6828 if (x == 0)
6829 return;
6831 switch (code = GET_CODE (x))
6833 case REG:
6834 if (x != dest)
6835 counts[REGNO (x)] += incr;
6836 return;
6838 case PC:
6839 case CC0:
6840 case CONST:
6841 CASE_CONST_ANY:
6842 case SYMBOL_REF:
6843 case LABEL_REF:
6844 return;
6846 case CLOBBER:
6847 /* If we are clobbering a MEM, mark any registers inside the address
6848 as being used. */
6849 if (MEM_P (XEXP (x, 0)))
6850 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6851 return;
6853 case SET:
6854 /* Unless we are setting a REG, count everything in SET_DEST. */
6855 if (!REG_P (SET_DEST (x)))
6856 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6857 count_reg_usage (SET_SRC (x), counts,
6858 dest ? dest : SET_DEST (x),
6859 incr);
6860 return;
6862 case DEBUG_INSN:
6863 return;
6865 case CALL_INSN:
6866 case INSN:
6867 case JUMP_INSN:
6868 /* We expect dest to be NULL_RTX here. If the insn may throw,
6869 or if it cannot be deleted due to side-effects, mark this fact
6870 by setting DEST to pc_rtx. */
6871 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6872 || side_effects_p (PATTERN (x)))
6873 dest = pc_rtx;
6874 if (code == CALL_INSN)
6875 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6876 count_reg_usage (PATTERN (x), counts, dest, incr);
6878 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6879 use them. */
6881 note = find_reg_equal_equiv_note (x);
6882 if (note)
6884 rtx eqv = XEXP (note, 0);
6886 if (GET_CODE (eqv) == EXPR_LIST)
6887 /* This REG_EQUAL note describes the result of a function call.
6888 Process all the arguments. */
6891 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6892 eqv = XEXP (eqv, 1);
6894 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6895 else
6896 count_reg_usage (eqv, counts, dest, incr);
6898 return;
6900 case EXPR_LIST:
6901 if (REG_NOTE_KIND (x) == REG_EQUAL
6902 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6903 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6904 involving registers in the address. */
6905 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6906 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6908 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6909 return;
6911 case ASM_OPERANDS:
6912 /* Iterate over just the inputs, not the constraints as well. */
6913 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6914 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6915 return;
6917 case INSN_LIST:
6918 case INT_LIST:
6919 gcc_unreachable ();
6921 default:
6922 break;
6925 fmt = GET_RTX_FORMAT (code);
6926 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6928 if (fmt[i] == 'e')
6929 count_reg_usage (XEXP (x, i), counts, dest, incr);
6930 else if (fmt[i] == 'E')
6931 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6932 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6936 /* Return true if X is a dead register. */
6938 static inline int
6939 is_dead_reg (const_rtx x, int *counts)
6941 return (REG_P (x)
6942 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6943 && counts[REGNO (x)] == 0);
6946 /* Return true if set is live. */
6947 static bool
6948 set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6949 int *counts)
6951 rtx_insn *tem;
6953 if (set_noop_p (set))
6956 else if (GET_CODE (SET_DEST (set)) == CC0
6957 && !side_effects_p (SET_SRC (set))
6958 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6959 || !INSN_P (tem)
6960 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6961 return false;
6962 else if (!is_dead_reg (SET_DEST (set), counts)
6963 || side_effects_p (SET_SRC (set)))
6964 return true;
6965 return false;
6968 /* Return true if insn is live. */
6970 static bool
6971 insn_live_p (rtx_insn *insn, int *counts)
6973 int i;
6974 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6975 return true;
6976 else if (GET_CODE (PATTERN (insn)) == SET)
6977 return set_live_p (PATTERN (insn), insn, counts);
6978 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6980 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6982 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6984 if (GET_CODE (elt) == SET)
6986 if (set_live_p (elt, insn, counts))
6987 return true;
6989 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6990 return true;
6992 return false;
6994 else if (DEBUG_INSN_P (insn))
6996 rtx_insn *next;
6998 if (DEBUG_MARKER_INSN_P (insn))
6999 return true;
7001 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
7002 if (NOTE_P (next))
7003 continue;
7004 else if (!DEBUG_INSN_P (next))
7005 return true;
7006 /* If we find an inspection point, such as a debug begin stmt,
7007 we want to keep the earlier debug insn. */
7008 else if (DEBUG_MARKER_INSN_P (next))
7009 return true;
7010 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
7011 return false;
7013 return true;
7015 else
7016 return true;
7019 /* Count the number of stores into pseudo. Callback for note_stores. */
7021 static void
7022 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
7024 int *counts = (int *) data;
7025 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
7026 counts[REGNO (x)]++;
7029 /* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
7030 pseudo doesn't have a replacement. COUNTS[X] is zero if register X
7031 is dead and REPLACEMENTS[X] is null if it has no replacemenet.
7032 Set *SEEN_REPL to true if we see a dead register that does have
7033 a replacement. */
7035 static bool
7036 is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
7037 bool *seen_repl)
7039 subrtx_iterator::array_type array;
7040 FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
7042 const_rtx x = *iter;
7043 if (is_dead_reg (x, counts))
7045 if (replacements && replacements[REGNO (x)] != NULL_RTX)
7046 *seen_repl = true;
7047 else
7048 return true;
7051 return false;
7054 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
7055 Callback for simplify_replace_fn_rtx. */
7057 static rtx
7058 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
7060 rtx *replacements = (rtx *) data;
7062 if (REG_P (x)
7063 && REGNO (x) >= FIRST_PSEUDO_REGISTER
7064 && replacements[REGNO (x)] != NULL_RTX)
7066 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
7067 return replacements[REGNO (x)];
7068 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
7069 GET_MODE (replacements[REGNO (x)]));
7071 return NULL_RTX;
7074 /* Scan all the insns and delete any that are dead; i.e., they store a register
7075 that is never used or they copy a register to itself.
7077 This is used to remove insns made obviously dead by cse, loop or other
7078 optimizations. It improves the heuristics in loop since it won't try to
7079 move dead invariants out of loops or make givs for dead quantities. The
7080 remaining passes of the compilation are also sped up. */
7083 delete_trivially_dead_insns (rtx_insn *insns, int nreg)
7085 int *counts;
7086 rtx_insn *insn, *prev;
7087 rtx *replacements = NULL;
7088 int ndead = 0;
7090 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7091 /* First count the number of times each register is used. */
7092 if (MAY_HAVE_DEBUG_BIND_INSNS)
7094 counts = XCNEWVEC (int, nreg * 3);
7095 for (insn = insns; insn; insn = NEXT_INSN (insn))
7096 if (DEBUG_BIND_INSN_P (insn))
7097 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7098 NULL_RTX, 1);
7099 else if (INSN_P (insn))
7101 count_reg_usage (insn, counts, NULL_RTX, 1);
7102 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
7104 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
7105 First one counts how many times each pseudo is used outside
7106 of debug insns, second counts how many times each pseudo is
7107 used in debug insns and third counts how many times a pseudo
7108 is stored. */
7110 else
7112 counts = XCNEWVEC (int, nreg);
7113 for (insn = insns; insn; insn = NEXT_INSN (insn))
7114 if (INSN_P (insn))
7115 count_reg_usage (insn, counts, NULL_RTX, 1);
7116 /* If no debug insns can be present, COUNTS is just an array
7117 which counts how many times each pseudo is used. */
7119 /* Pseudo PIC register should be considered as used due to possible
7120 new usages generated. */
7121 if (!reload_completed
7122 && pic_offset_table_rtx
7123 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7124 counts[REGNO (pic_offset_table_rtx)]++;
7125 /* Go from the last insn to the first and delete insns that only set unused
7126 registers or copy a register to itself. As we delete an insn, remove
7127 usage counts for registers it uses.
7129 The first jump optimization pass may leave a real insn as the last
7130 insn in the function. We must not skip that insn or we may end
7131 up deleting code that is not really dead.
7133 If some otherwise unused register is only used in DEBUG_INSNs,
7134 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7135 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
7136 has been created for the unused register, replace it with
7137 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
7138 for (insn = get_last_insn (); insn; insn = prev)
7140 int live_insn = 0;
7142 prev = PREV_INSN (insn);
7143 if (!INSN_P (insn))
7144 continue;
7146 live_insn = insn_live_p (insn, counts);
7148 /* If this is a dead insn, delete it and show registers in it aren't
7149 being used. */
7151 if (! live_insn && dbg_cnt (delete_trivial_dead))
7153 if (DEBUG_INSN_P (insn))
7155 if (DEBUG_BIND_INSN_P (insn))
7156 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7157 NULL_RTX, -1);
7159 else
7161 rtx set;
7162 if (MAY_HAVE_DEBUG_BIND_INSNS
7163 && (set = single_set (insn)) != NULL_RTX
7164 && is_dead_reg (SET_DEST (set), counts)
7165 /* Used at least once in some DEBUG_INSN. */
7166 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7167 /* And set exactly once. */
7168 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7169 && !side_effects_p (SET_SRC (set))
7170 && asm_noperands (PATTERN (insn)) < 0)
7172 rtx dval, bind_var_loc;
7173 rtx_insn *bind;
7175 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7176 dval = make_debug_expr_from_rtl (SET_DEST (set));
7178 /* Emit a debug bind insn before the insn in which
7179 reg dies. */
7180 bind_var_loc =
7181 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7182 DEBUG_EXPR_TREE_DECL (dval),
7183 SET_SRC (set),
7184 VAR_INIT_STATUS_INITIALIZED);
7185 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7187 bind = emit_debug_insn_before (bind_var_loc, insn);
7188 df_insn_rescan (bind);
7190 if (replacements == NULL)
7191 replacements = XCNEWVEC (rtx, nreg);
7192 replacements[REGNO (SET_DEST (set))] = dval;
7195 count_reg_usage (insn, counts, NULL_RTX, -1);
7196 ndead++;
7198 cse_cfg_altered |= delete_insn_and_edges (insn);
7202 if (MAY_HAVE_DEBUG_BIND_INSNS)
7204 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7205 if (DEBUG_BIND_INSN_P (insn))
7207 /* If this debug insn references a dead register that wasn't replaced
7208 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7209 bool seen_repl = false;
7210 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7211 counts, replacements, &seen_repl))
7213 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7214 df_insn_rescan (insn);
7216 else if (seen_repl)
7218 INSN_VAR_LOCATION_LOC (insn)
7219 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7220 NULL_RTX, replace_dead_reg,
7221 replacements);
7222 df_insn_rescan (insn);
7225 free (replacements);
7228 if (dump_file && ndead)
7229 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7230 ndead);
7231 /* Clean up. */
7232 free (counts);
7233 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7234 return ndead;
7237 /* If LOC contains references to NEWREG in a different mode, change them
7238 to use NEWREG instead. */
7240 static void
7241 cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
7242 rtx *loc, rtx_insn *insn, rtx newreg)
7244 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
7246 rtx *loc = *iter;
7247 rtx x = *loc;
7248 if (x
7249 && REG_P (x)
7250 && REGNO (x) == REGNO (newreg)
7251 && GET_MODE (x) != GET_MODE (newreg))
7253 validate_change (insn, loc, newreg, 1);
7254 iter.skip_subrtxes ();
7259 /* Change the mode of any reference to the register REGNO (NEWREG) to
7260 GET_MODE (NEWREG) in INSN. */
7262 static void
7263 cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
7265 int success;
7267 if (!INSN_P (insn))
7268 return;
7270 subrtx_ptr_iterator::array_type array;
7271 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7272 cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
7274 /* If the following assertion was triggered, there is most probably
7275 something wrong with the cc_modes_compatible back end function.
7276 CC modes only can be considered compatible if the insn - with the mode
7277 replaced by any of the compatible modes - can still be recognized. */
7278 success = apply_change_group ();
7279 gcc_assert (success);
7282 /* Change the mode of any reference to the register REGNO (NEWREG) to
7283 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7284 any instruction which modifies NEWREG. */
7286 static void
7287 cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
7289 rtx_insn *insn;
7291 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7293 if (! INSN_P (insn))
7294 continue;
7296 if (reg_set_p (newreg, insn))
7297 return;
7299 cse_change_cc_mode_insn (insn, newreg);
7303 /* BB is a basic block which finishes with CC_REG as a condition code
7304 register which is set to CC_SRC. Look through the successors of BB
7305 to find blocks which have a single predecessor (i.e., this one),
7306 and look through those blocks for an assignment to CC_REG which is
7307 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7308 permitted to change the mode of CC_SRC to a compatible mode. This
7309 returns VOIDmode if no equivalent assignments were found.
7310 Otherwise it returns the mode which CC_SRC should wind up with.
7311 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7312 but is passed unmodified down to recursive calls in order to prevent
7313 endless recursion.
7315 The main complexity in this function is handling the mode issues.
7316 We may have more than one duplicate which we can eliminate, and we
7317 try to find a mode which will work for multiple duplicates. */
7319 static machine_mode
7320 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7321 bool can_change_mode)
7323 bool found_equiv;
7324 machine_mode mode;
7325 unsigned int insn_count;
7326 edge e;
7327 rtx_insn *insns[2];
7328 machine_mode modes[2];
7329 rtx_insn *last_insns[2];
7330 unsigned int i;
7331 rtx newreg;
7332 edge_iterator ei;
7334 /* We expect to have two successors. Look at both before picking
7335 the final mode for the comparison. If we have more successors
7336 (i.e., some sort of table jump, although that seems unlikely),
7337 then we require all beyond the first two to use the same
7338 mode. */
7340 found_equiv = false;
7341 mode = GET_MODE (cc_src);
7342 insn_count = 0;
7343 FOR_EACH_EDGE (e, ei, bb->succs)
7345 rtx_insn *insn;
7346 rtx_insn *end;
7348 if (e->flags & EDGE_COMPLEX)
7349 continue;
7351 if (EDGE_COUNT (e->dest->preds) != 1
7352 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
7353 /* Avoid endless recursion on unreachable blocks. */
7354 || e->dest == orig_bb)
7355 continue;
7357 end = NEXT_INSN (BB_END (e->dest));
7358 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7360 rtx set;
7362 if (! INSN_P (insn))
7363 continue;
7365 /* If CC_SRC is modified, we have to stop looking for
7366 something which uses it. */
7367 if (modified_in_p (cc_src, insn))
7368 break;
7370 /* Check whether INSN sets CC_REG to CC_SRC. */
7371 set = single_set (insn);
7372 if (set
7373 && REG_P (SET_DEST (set))
7374 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7376 bool found;
7377 machine_mode set_mode;
7378 machine_mode comp_mode;
7380 found = false;
7381 set_mode = GET_MODE (SET_SRC (set));
7382 comp_mode = set_mode;
7383 if (rtx_equal_p (cc_src, SET_SRC (set)))
7384 found = true;
7385 else if (GET_CODE (cc_src) == COMPARE
7386 && GET_CODE (SET_SRC (set)) == COMPARE
7387 && mode != set_mode
7388 && rtx_equal_p (XEXP (cc_src, 0),
7389 XEXP (SET_SRC (set), 0))
7390 && rtx_equal_p (XEXP (cc_src, 1),
7391 XEXP (SET_SRC (set), 1)))
7394 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7395 if (comp_mode != VOIDmode
7396 && (can_change_mode || comp_mode == mode))
7397 found = true;
7400 if (found)
7402 found_equiv = true;
7403 if (insn_count < ARRAY_SIZE (insns))
7405 insns[insn_count] = insn;
7406 modes[insn_count] = set_mode;
7407 last_insns[insn_count] = end;
7408 ++insn_count;
7410 if (mode != comp_mode)
7412 gcc_assert (can_change_mode);
7413 mode = comp_mode;
7415 /* The modified insn will be re-recognized later. */
7416 PUT_MODE (cc_src, mode);
7419 else
7421 if (set_mode != mode)
7423 /* We found a matching expression in the
7424 wrong mode, but we don't have room to
7425 store it in the array. Punt. This case
7426 should be rare. */
7427 break;
7429 /* INSN sets CC_REG to a value equal to CC_SRC
7430 with the right mode. We can simply delete
7431 it. */
7432 delete_insn (insn);
7435 /* We found an instruction to delete. Keep looking,
7436 in the hopes of finding a three-way jump. */
7437 continue;
7440 /* We found an instruction which sets the condition
7441 code, so don't look any farther. */
7442 break;
7445 /* If INSN sets CC_REG in some other way, don't look any
7446 farther. */
7447 if (reg_set_p (cc_reg, insn))
7448 break;
7451 /* If we fell off the bottom of the block, we can keep looking
7452 through successors. We pass CAN_CHANGE_MODE as false because
7453 we aren't prepared to handle compatibility between the
7454 further blocks and this block. */
7455 if (insn == end)
7457 machine_mode submode;
7459 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7460 if (submode != VOIDmode)
7462 gcc_assert (submode == mode);
7463 found_equiv = true;
7464 can_change_mode = false;
7469 if (! found_equiv)
7470 return VOIDmode;
7472 /* Now INSN_COUNT is the number of instructions we found which set
7473 CC_REG to a value equivalent to CC_SRC. The instructions are in
7474 INSNS. The modes used by those instructions are in MODES. */
7476 newreg = NULL_RTX;
7477 for (i = 0; i < insn_count; ++i)
7479 if (modes[i] != mode)
7481 /* We need to change the mode of CC_REG in INSNS[i] and
7482 subsequent instructions. */
7483 if (! newreg)
7485 if (GET_MODE (cc_reg) == mode)
7486 newreg = cc_reg;
7487 else
7488 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7490 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7491 newreg);
7494 cse_cfg_altered |= delete_insn_and_edges (insns[i]);
7497 return mode;
7500 /* If we have a fixed condition code register (or two), walk through
7501 the instructions and try to eliminate duplicate assignments. */
7503 static void
7504 cse_condition_code_reg (void)
7506 unsigned int cc_regno_1;
7507 unsigned int cc_regno_2;
7508 rtx cc_reg_1;
7509 rtx cc_reg_2;
7510 basic_block bb;
7512 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7513 return;
7515 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7516 if (cc_regno_2 != INVALID_REGNUM)
7517 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7518 else
7519 cc_reg_2 = NULL_RTX;
7521 FOR_EACH_BB_FN (bb, cfun)
7523 rtx_insn *last_insn;
7524 rtx cc_reg;
7525 rtx_insn *insn;
7526 rtx_insn *cc_src_insn;
7527 rtx cc_src;
7528 machine_mode mode;
7529 machine_mode orig_mode;
7531 /* Look for blocks which end with a conditional jump based on a
7532 condition code register. Then look for the instruction which
7533 sets the condition code register. Then look through the
7534 successor blocks for instructions which set the condition
7535 code register to the same value. There are other possible
7536 uses of the condition code register, but these are by far the
7537 most common and the ones which we are most likely to be able
7538 to optimize. */
7540 last_insn = BB_END (bb);
7541 if (!JUMP_P (last_insn))
7542 continue;
7544 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7545 cc_reg = cc_reg_1;
7546 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7547 cc_reg = cc_reg_2;
7548 else
7549 continue;
7551 cc_src_insn = NULL;
7552 cc_src = NULL_RTX;
7553 for (insn = PREV_INSN (last_insn);
7554 insn && insn != PREV_INSN (BB_HEAD (bb));
7555 insn = PREV_INSN (insn))
7557 rtx set;
7559 if (! INSN_P (insn))
7560 continue;
7561 set = single_set (insn);
7562 if (set
7563 && REG_P (SET_DEST (set))
7564 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7566 cc_src_insn = insn;
7567 cc_src = SET_SRC (set);
7568 break;
7570 else if (reg_set_p (cc_reg, insn))
7571 break;
7574 if (! cc_src_insn)
7575 continue;
7577 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7578 continue;
7580 /* Now CC_REG is a condition code register used for a
7581 conditional jump at the end of the block, and CC_SRC, in
7582 CC_SRC_INSN, is the value to which that condition code
7583 register is set, and CC_SRC is still meaningful at the end of
7584 the basic block. */
7586 orig_mode = GET_MODE (cc_src);
7587 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7588 if (mode != VOIDmode)
7590 gcc_assert (mode == GET_MODE (cc_src));
7591 if (mode != orig_mode)
7593 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7595 cse_change_cc_mode_insn (cc_src_insn, newreg);
7597 /* Do the same in the following insns that use the
7598 current value of CC_REG within BB. */
7599 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7600 NEXT_INSN (last_insn),
7601 newreg);
7608 /* Perform common subexpression elimination. Nonzero value from
7609 `cse_main' means that jumps were simplified and some code may now
7610 be unreachable, so do jump optimization again. */
7611 static unsigned int
7612 rest_of_handle_cse (void)
7614 int tem;
7616 if (dump_file)
7617 dump_flow_info (dump_file, dump_flags);
7619 tem = cse_main (get_insns (), max_reg_num ());
7621 /* If we are not running more CSE passes, then we are no longer
7622 expecting CSE to be run. But always rerun it in a cheap mode. */
7623 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7625 if (tem == 2)
7627 timevar_push (TV_JUMP);
7628 rebuild_jump_labels (get_insns ());
7629 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7630 timevar_pop (TV_JUMP);
7632 else if (tem == 1 || optimize > 1)
7633 cse_cfg_altered |= cleanup_cfg (0);
7635 return 0;
7638 namespace {
7640 const pass_data pass_data_cse =
7642 RTL_PASS, /* type */
7643 "cse1", /* name */
7644 OPTGROUP_NONE, /* optinfo_flags */
7645 TV_CSE, /* tv_id */
7646 0, /* properties_required */
7647 0, /* properties_provided */
7648 0, /* properties_destroyed */
7649 0, /* todo_flags_start */
7650 TODO_df_finish, /* todo_flags_finish */
7653 class pass_cse : public rtl_opt_pass
7655 public:
7656 pass_cse (gcc::context *ctxt)
7657 : rtl_opt_pass (pass_data_cse, ctxt)
7660 /* opt_pass methods: */
7661 virtual bool gate (function *) { return optimize > 0; }
7662 virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
7664 }; // class pass_cse
7666 } // anon namespace
7668 rtl_opt_pass *
7669 make_pass_cse (gcc::context *ctxt)
7671 return new pass_cse (ctxt);
7675 /* Run second CSE pass after loop optimizations. */
7676 static unsigned int
7677 rest_of_handle_cse2 (void)
7679 int tem;
7681 if (dump_file)
7682 dump_flow_info (dump_file, dump_flags);
7684 tem = cse_main (get_insns (), max_reg_num ());
7686 /* Run a pass to eliminate duplicated assignments to condition code
7687 registers. We have to run this after bypass_jumps, because it
7688 makes it harder for that pass to determine whether a jump can be
7689 bypassed safely. */
7690 cse_condition_code_reg ();
7692 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7694 if (tem == 2)
7696 timevar_push (TV_JUMP);
7697 rebuild_jump_labels (get_insns ());
7698 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7699 timevar_pop (TV_JUMP);
7701 else if (tem == 1)
7702 cse_cfg_altered |= cleanup_cfg (0);
7704 cse_not_expected = 1;
7705 return 0;
7709 namespace {
7711 const pass_data pass_data_cse2 =
7713 RTL_PASS, /* type */
7714 "cse2", /* name */
7715 OPTGROUP_NONE, /* optinfo_flags */
7716 TV_CSE2, /* tv_id */
7717 0, /* properties_required */
7718 0, /* properties_provided */
7719 0, /* properties_destroyed */
7720 0, /* todo_flags_start */
7721 TODO_df_finish, /* todo_flags_finish */
7724 class pass_cse2 : public rtl_opt_pass
7726 public:
7727 pass_cse2 (gcc::context *ctxt)
7728 : rtl_opt_pass (pass_data_cse2, ctxt)
7731 /* opt_pass methods: */
7732 virtual bool gate (function *)
7734 return optimize > 0 && flag_rerun_cse_after_loop;
7737 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
7739 }; // class pass_cse2
7741 } // anon namespace
7743 rtl_opt_pass *
7744 make_pass_cse2 (gcc::context *ctxt)
7746 return new pass_cse2 (ctxt);
7749 /* Run second CSE pass after loop optimizations. */
7750 static unsigned int
7751 rest_of_handle_cse_after_global_opts (void)
7753 int save_cfj;
7754 int tem;
7756 /* We only want to do local CSE, so don't follow jumps. */
7757 save_cfj = flag_cse_follow_jumps;
7758 flag_cse_follow_jumps = 0;
7760 rebuild_jump_labels (get_insns ());
7761 tem = cse_main (get_insns (), max_reg_num ());
7762 cse_cfg_altered |= purge_all_dead_edges ();
7763 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7765 cse_not_expected = !flag_rerun_cse_after_loop;
7767 /* If cse altered any jumps, rerun jump opts to clean things up. */
7768 if (tem == 2)
7770 timevar_push (TV_JUMP);
7771 rebuild_jump_labels (get_insns ());
7772 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7773 timevar_pop (TV_JUMP);
7775 else if (tem == 1)
7776 cse_cfg_altered |= cleanup_cfg (0);
7778 flag_cse_follow_jumps = save_cfj;
7779 return 0;
7782 namespace {
7784 const pass_data pass_data_cse_after_global_opts =
7786 RTL_PASS, /* type */
7787 "cse_local", /* name */
7788 OPTGROUP_NONE, /* optinfo_flags */
7789 TV_CSE, /* tv_id */
7790 0, /* properties_required */
7791 0, /* properties_provided */
7792 0, /* properties_destroyed */
7793 0, /* todo_flags_start */
7794 TODO_df_finish, /* todo_flags_finish */
7797 class pass_cse_after_global_opts : public rtl_opt_pass
7799 public:
7800 pass_cse_after_global_opts (gcc::context *ctxt)
7801 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
7804 /* opt_pass methods: */
7805 virtual bool gate (function *)
7807 return optimize > 0 && flag_rerun_cse_after_global_opts;
7810 virtual unsigned int execute (function *)
7812 return rest_of_handle_cse_after_global_opts ();
7815 }; // class pass_cse_after_global_opts
7817 } // anon namespace
7819 rtl_opt_pass *
7820 make_pass_cse_after_global_opts (gcc::context *ctxt)
7822 return new pass_cse_after_global_opts (ctxt);