* decl.c (grokfndecl): Remove dead code.
[official-gcc.git] / gcc / regclass.c
blobdfbc85c629e9930ebed0aee9a4fee3c03e8134d1
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 88, 91-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains two passes of the compiler: reg_scan and reg_class.
23 It also defines some tables of information about the hardware registers
24 and a function init_reg_sets to initialize the tables. */
26 #include "config.h"
27 #include "system.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "basic-block.h"
33 #include "regs.h"
34 #include "function.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "reload.h"
38 #include "real.h"
39 #include "toplev.h"
40 #include "output.h"
41 #include "ggc.h"
43 #ifndef REGISTER_MOVE_COST
44 #define REGISTER_MOVE_COST(x, y) 2
45 #endif
47 static void init_reg_sets_1 PROTO((void));
48 static void init_reg_modes PROTO((void));
50 /* If we have auto-increment or auto-decrement and we can have secondary
51 reloads, we are not allowed to use classes requiring secondary
52 reloads for pseudos auto-incremented since reload can't handle it. */
54 #ifdef AUTO_INC_DEC
55 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
56 #define FORBIDDEN_INC_DEC_CLASSES
57 #endif
58 #endif
60 /* Register tables used by many passes. */
62 /* Indexed by hard register number, contains 1 for registers
63 that are fixed use (stack pointer, pc, frame pointer, etc.).
64 These are the registers that cannot be used to allocate
65 a pseudo reg for general use. */
67 char fixed_regs[FIRST_PSEUDO_REGISTER];
69 /* Same info as a HARD_REG_SET. */
71 HARD_REG_SET fixed_reg_set;
73 /* Data for initializing the above. */
75 static char initial_fixed_regs[] = FIXED_REGISTERS;
77 /* Indexed by hard register number, contains 1 for registers
78 that are fixed use or are clobbered by function calls.
79 These are the registers that cannot be used to allocate
80 a pseudo reg whose life crosses calls unless we are able
81 to save/restore them across the calls. */
83 char call_used_regs[FIRST_PSEUDO_REGISTER];
85 /* Same info as a HARD_REG_SET. */
87 HARD_REG_SET call_used_reg_set;
89 /* HARD_REG_SET of registers we want to avoid caller saving. */
90 HARD_REG_SET losing_caller_save_reg_set;
92 /* Data for initializing the above. */
94 static char initial_call_used_regs[] = CALL_USED_REGISTERS;
96 /* Indexed by hard register number, contains 1 for registers that are
97 fixed use or call used registers that cannot hold quantities across
98 calls even if we are willing to save and restore them. call fixed
99 registers are a subset of call used registers. */
101 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
103 /* The same info as a HARD_REG_SET. */
105 HARD_REG_SET call_fixed_reg_set;
107 /* Number of non-fixed registers. */
109 int n_non_fixed_regs;
111 /* Indexed by hard register number, contains 1 for registers
112 that are being used for global register decls.
113 These must be exempt from ordinary flow analysis
114 and are also considered fixed. */
116 char global_regs[FIRST_PSEUDO_REGISTER];
118 /* Table of register numbers in the order in which to try to use them. */
119 #ifdef REG_ALLOC_ORDER
120 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
121 #endif
123 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
125 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
127 /* The same information, but as an array of unsigned ints. We copy from
128 these unsigned ints to the table above. We do this so the tm.h files
129 do not have to be aware of the wordsize for machines with <= 64 regs. */
131 #define N_REG_INTS \
132 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
134 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
135 = REG_CLASS_CONTENTS;
137 /* For each reg class, number of regs it contains. */
139 int reg_class_size[N_REG_CLASSES];
141 /* For each reg class, table listing all the containing classes. */
143 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
145 /* For each reg class, table listing all the classes contained in it. */
147 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
149 /* For each pair of reg classes,
150 a largest reg class contained in their union. */
152 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
154 /* For each pair of reg classes,
155 the smallest reg class containing their union. */
157 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
159 /* Array containing all of the register names */
161 const char *reg_names[] = REGISTER_NAMES;
163 /* For each hard register, the widest mode object that it can contain.
164 This will be a MODE_INT mode if the register can hold integers. Otherwise
165 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
166 register. */
168 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
170 /* Maximum cost of moving from a register in one class to a register in
171 another class. Based on REGISTER_MOVE_COST. */
173 static int move_cost[N_REG_CLASSES][N_REG_CLASSES];
175 /* Similar, but here we don't have to move if the first index is a subset
176 of the second so in that case the cost is zero. */
178 static int may_move_cost[N_REG_CLASSES][N_REG_CLASSES];
180 #ifdef FORBIDDEN_INC_DEC_CLASSES
182 /* These are the classes that regs which are auto-incremented or decremented
183 cannot be put in. */
185 static int forbidden_inc_dec_class[N_REG_CLASSES];
187 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
188 context. */
190 static char *in_inc_dec;
192 #endif /* FORBIDDEN_INC_DEC_CLASSES */
194 #ifdef HAVE_SECONDARY_RELOADS
196 /* Sample MEM values for use by memory_move_secondary_cost. */
198 static rtx top_of_stack[MAX_MACHINE_MODE];
200 #endif /* HAVE_SECONDARY_RELOADS */
202 /* Linked list of reg_info structures allocated for reg_n_info array.
203 Grouping all of the allocated structures together in one lump
204 means only one call to bzero to clear them, rather than n smaller
205 calls. */
206 struct reg_info_data {
207 struct reg_info_data *next; /* next set of reg_info structures */
208 size_t min_index; /* minimum index # */
209 size_t max_index; /* maximum index # */
210 char used_p; /* non-zero if this has been used previously */
211 reg_info data[1]; /* beginning of the reg_info data */
214 static struct reg_info_data *reg_info_head;
217 /* Function called only once to initialize the above data on reg usage.
218 Once this is done, various switches may override. */
220 void
221 init_reg_sets ()
223 register int i, j;
225 /* First copy the register information from the initial int form into
226 the regsets. */
228 for (i = 0; i < N_REG_CLASSES; i++)
230 CLEAR_HARD_REG_SET (reg_class_contents[i]);
232 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
233 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
234 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
235 SET_HARD_REG_BIT (reg_class_contents[i], j);
238 bcopy (initial_fixed_regs, fixed_regs, sizeof fixed_regs);
239 bcopy (initial_call_used_regs, call_used_regs, sizeof call_used_regs);
240 bzero (global_regs, sizeof global_regs);
242 /* Do any additional initialization regsets may need */
243 INIT_ONCE_REG_SET ();
246 /* After switches have been processed, which perhaps alter
247 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
249 static void
250 init_reg_sets_1 ()
252 register unsigned int i, j;
254 /* This macro allows the fixed or call-used registers
255 and the register classes to depend on target flags. */
257 #ifdef CONDITIONAL_REGISTER_USAGE
258 CONDITIONAL_REGISTER_USAGE;
259 #endif
261 /* Compute number of hard regs in each class. */
263 bzero ((char *) reg_class_size, sizeof reg_class_size);
264 for (i = 0; i < N_REG_CLASSES; i++)
265 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
266 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
267 reg_class_size[i]++;
269 /* Initialize the table of subunions.
270 reg_class_subunion[I][J] gets the largest-numbered reg-class
271 that is contained in the union of classes I and J. */
273 for (i = 0; i < N_REG_CLASSES; i++)
275 for (j = 0; j < N_REG_CLASSES; j++)
277 #ifdef HARD_REG_SET
278 register /* Declare it register if it's a scalar. */
279 #endif
280 HARD_REG_SET c;
281 register int k;
283 COPY_HARD_REG_SET (c, reg_class_contents[i]);
284 IOR_HARD_REG_SET (c, reg_class_contents[j]);
285 for (k = 0; k < N_REG_CLASSES; k++)
287 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
288 subclass1);
289 continue;
291 subclass1:
292 /* keep the largest subclass */ /* SPEE 900308 */
293 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
294 reg_class_contents[(int) reg_class_subunion[i][j]],
295 subclass2);
296 reg_class_subunion[i][j] = (enum reg_class) k;
297 subclass2:
303 /* Initialize the table of superunions.
304 reg_class_superunion[I][J] gets the smallest-numbered reg-class
305 containing the union of classes I and J. */
307 for (i = 0; i < N_REG_CLASSES; i++)
309 for (j = 0; j < N_REG_CLASSES; j++)
311 #ifdef HARD_REG_SET
312 register /* Declare it register if it's a scalar. */
313 #endif
314 HARD_REG_SET c;
315 register int k;
317 COPY_HARD_REG_SET (c, reg_class_contents[i]);
318 IOR_HARD_REG_SET (c, reg_class_contents[j]);
319 for (k = 0; k < N_REG_CLASSES; k++)
320 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
322 superclass:
323 reg_class_superunion[i][j] = (enum reg_class) k;
327 /* Initialize the tables of subclasses and superclasses of each reg class.
328 First clear the whole table, then add the elements as they are found. */
330 for (i = 0; i < N_REG_CLASSES; i++)
332 for (j = 0; j < N_REG_CLASSES; j++)
334 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
335 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
339 for (i = 0; i < N_REG_CLASSES; i++)
341 if (i == (int) NO_REGS)
342 continue;
344 for (j = i + 1; j < N_REG_CLASSES; j++)
346 enum reg_class *p;
348 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
349 subclass);
350 continue;
351 subclass:
352 /* Reg class I is a subclass of J.
353 Add J to the table of superclasses of I. */
354 p = &reg_class_superclasses[i][0];
355 while (*p != LIM_REG_CLASSES) p++;
356 *p = (enum reg_class) j;
357 /* Add I to the table of superclasses of J. */
358 p = &reg_class_subclasses[j][0];
359 while (*p != LIM_REG_CLASSES) p++;
360 *p = (enum reg_class) i;
364 /* Initialize "constant" tables. */
366 CLEAR_HARD_REG_SET (fixed_reg_set);
367 CLEAR_HARD_REG_SET (call_used_reg_set);
368 CLEAR_HARD_REG_SET (call_fixed_reg_set);
370 bcopy (fixed_regs, call_fixed_regs, sizeof call_fixed_regs);
372 n_non_fixed_regs = 0;
374 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
376 if (fixed_regs[i])
377 SET_HARD_REG_BIT (fixed_reg_set, i);
378 else
379 n_non_fixed_regs++;
381 if (call_used_regs[i])
382 SET_HARD_REG_BIT (call_used_reg_set, i);
383 if (call_fixed_regs[i])
384 SET_HARD_REG_BIT (call_fixed_reg_set, i);
385 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
386 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
389 /* Initialize the move cost table. Find every subset of each class
390 and take the maximum cost of moving any subset to any other. */
392 for (i = 0; i < N_REG_CLASSES; i++)
393 for (j = 0; j < N_REG_CLASSES; j++)
395 int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
396 enum reg_class *p1, *p2;
398 for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
399 if (*p2 != i)
400 cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));
402 for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
404 if (*p1 != j)
405 cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));
407 for (p2 = &reg_class_subclasses[j][0];
408 *p2 != LIM_REG_CLASSES; p2++)
409 if (*p1 != *p2)
410 cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
413 move_cost[i][j] = cost;
415 if (reg_class_subset_p (i, j))
416 cost = 0;
418 may_move_cost[i][j] = cost;
422 /* Compute the table of register modes.
423 These values are used to record death information for individual registers
424 (as opposed to a multi-register mode). */
426 static void
427 init_reg_modes ()
429 register int i;
431 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
433 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
435 /* If we couldn't find a valid mode, just use the previous mode.
436 ??? One situation in which we need to do this is on the mips where
437 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
438 to use DF mode for the even registers and VOIDmode for the odd
439 (for the cpu models where the odd ones are inaccessible). */
440 if (reg_raw_mode[i] == VOIDmode)
441 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
445 /* Finish initializing the register sets and
446 initialize the register modes. */
448 void
449 init_regs ()
451 /* This finishes what was started by init_reg_sets, but couldn't be done
452 until after register usage was specified. */
453 init_reg_sets_1 ();
455 init_reg_modes ();
457 #ifdef HAVE_SECONDARY_RELOADS
459 /* Make some fake stack-frame MEM references for use in
460 memory_move_secondary_cost. */
461 int i;
462 for (i = 0; i < MAX_MACHINE_MODE; i++)
463 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
464 ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
466 #endif
469 #ifdef HAVE_SECONDARY_RELOADS
471 /* Compute extra cost of moving registers to/from memory due to reloads.
472 Only needed if secondary reloads are required for memory moves. */
475 memory_move_secondary_cost (mode, class, in)
476 enum machine_mode mode;
477 enum reg_class class;
478 int in;
480 enum reg_class altclass;
481 int partial_cost = 0;
482 /* We need a memory reference to feed to SECONDARY... macros. */
483 rtx mem = top_of_stack[(int) mode];
485 if (in)
487 #ifdef SECONDARY_INPUT_RELOAD_CLASS
488 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
489 #else
490 altclass = NO_REGS;
491 #endif
493 else
495 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
496 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
497 #else
498 altclass = NO_REGS;
499 #endif
502 if (altclass == NO_REGS)
503 return 0;
505 if (in)
506 partial_cost = REGISTER_MOVE_COST (altclass, class);
507 else
508 partial_cost = REGISTER_MOVE_COST (class, altclass);
510 if (class == altclass)
511 /* This isn't simply a copy-to-temporary situation. Can't guess
512 what it is, so MEMORY_MOVE_COST really ought not to be calling
513 here in that case.
515 I'm tempted to put in an abort here, but returning this will
516 probably only give poor estimates, which is what we would've
517 had before this code anyways. */
518 return partial_cost;
520 /* Check if the secondary reload register will also need a
521 secondary reload. */
522 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
524 #endif
526 /* Return a machine mode that is legitimate for hard reg REGNO and large
527 enough to save nregs. If we can't find one, return VOIDmode. */
529 enum machine_mode
530 choose_hard_reg_mode (regno, nregs)
531 int regno;
532 int nregs;
534 enum machine_mode found_mode = VOIDmode, mode;
536 /* We first look for the largest integer mode that can be validly
537 held in REGNO. If none, we look for the largest floating-point mode.
538 If we still didn't find a valid mode, try CCmode. */
540 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
541 mode != VOIDmode;
542 mode = GET_MODE_WIDER_MODE (mode))
543 if (HARD_REGNO_NREGS (regno, mode) == nregs
544 && HARD_REGNO_MODE_OK (regno, mode))
545 found_mode = mode;
547 if (found_mode != VOIDmode)
548 return found_mode;
550 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
551 mode != VOIDmode;
552 mode = GET_MODE_WIDER_MODE (mode))
553 if (HARD_REGNO_NREGS (regno, mode) == nregs
554 && HARD_REGNO_MODE_OK (regno, mode))
555 found_mode = mode;
557 if (found_mode != VOIDmode)
558 return found_mode;
560 if (HARD_REGNO_NREGS (regno, CCmode) == nregs
561 && HARD_REGNO_MODE_OK (regno, CCmode))
562 return CCmode;
564 /* We can't find a mode valid for this register. */
565 return VOIDmode;
568 /* Specify the usage characteristics of the register named NAME.
569 It should be a fixed register if FIXED and a
570 call-used register if CALL_USED. */
572 void
573 fix_register (name, fixed, call_used)
574 const char *name;
575 int fixed, call_used;
577 int i;
579 /* Decode the name and update the primary form of
580 the register info. */
582 if ((i = decode_reg_name (name)) >= 0)
584 if ((i == STACK_POINTER_REGNUM
585 #ifdef HARD_FRAME_POINTER_REGNUM
586 || i == HARD_FRAME_POINTER_REGNUM
587 #else
588 || i == FRAME_POINTER_REGNUM
589 #endif
591 && (fixed == 0 || call_used == 0))
593 static const char * const what_option[2][2] = {
594 { "call-saved", "call-used" },
595 { "no-such-option", "fixed" }};
597 error ("can't use '%s' as a %s register", name,
598 what_option[fixed][call_used]);
600 else
602 fixed_regs[i] = fixed;
603 call_used_regs[i] = call_used;
606 else
608 warning ("unknown register name: %s", name);
612 /* Mark register number I as global. */
614 void
615 globalize_reg (i)
616 int i;
618 if (global_regs[i])
620 warning ("register used for two global register variables");
621 return;
624 if (call_used_regs[i] && ! fixed_regs[i])
625 warning ("call-clobbered register used for global register variable");
627 global_regs[i] = 1;
629 /* If already fixed, nothing else to do. */
630 if (fixed_regs[i])
631 return;
633 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
634 n_non_fixed_regs--;
636 SET_HARD_REG_BIT (fixed_reg_set, i);
637 SET_HARD_REG_BIT (call_used_reg_set, i);
638 SET_HARD_REG_BIT (call_fixed_reg_set, i);
641 /* Now the data and code for the `regclass' pass, which happens
642 just before local-alloc. */
644 /* The `costs' struct records the cost of using a hard register of each class
645 and of using memory for each pseudo. We use this data to set up
646 register class preferences. */
648 struct costs
650 int cost[N_REG_CLASSES];
651 int mem_cost;
654 /* Record the cost of each class for each pseudo. */
656 static struct costs *costs;
658 /* Initialized once, and used to initialize cost values for each insn. */
660 static struct costs init_cost;
662 /* Record the same data by operand number, accumulated for each alternative
663 in an insn. The contribution to a pseudo is that of the minimum-cost
664 alternative. */
666 static struct costs op_costs[MAX_RECOG_OPERANDS];
668 /* (enum reg_class) prefclass[R] is the preferred class for pseudo number R.
669 This is available after `regclass' is run. */
671 static char *prefclass;
673 /* altclass[R] is a register class that we should use for allocating
674 pseudo number R if no register in the preferred class is available.
675 If no register in this class is available, memory is preferred.
677 It might appear to be more general to have a bitmask of classes here,
678 but since it is recommended that there be a class corresponding to the
679 union of most major pair of classes, that generality is not required.
681 This is available after `regclass' is run. */
683 static char *altclass;
685 /* Allocated buffers for prefclass and altclass. */
686 static char *prefclass_buffer;
687 static char *altclass_buffer;
689 /* Record the depth of loops that we are in. */
691 static int loop_depth;
693 /* Account for the fact that insns within a loop are executed very commonly,
694 but don't keep doing this as loops go too deep. */
696 static int loop_cost;
698 static rtx scan_one_insn PROTO((rtx, int));
699 static void record_reg_classes PROTO((int, int, rtx *, enum machine_mode *,
700 char *, const char **, rtx));
701 static int copy_cost PROTO((rtx, enum machine_mode,
702 enum reg_class, int));
703 static void record_address_regs PROTO((rtx, enum reg_class, int));
704 #ifdef FORBIDDEN_INC_DEC_CLASSES
705 static int auto_inc_dec_reg_p PROTO((rtx, enum machine_mode));
706 #endif
707 static void reg_scan_mark_refs PROTO((rtx, rtx, int, int));
709 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
710 This function is sometimes called before the info has been computed.
711 When that happens, just return GENERAL_REGS, which is innocuous. */
713 enum reg_class
714 reg_preferred_class (regno)
715 int regno;
717 if (prefclass == 0)
718 return GENERAL_REGS;
719 return (enum reg_class) prefclass[regno];
722 enum reg_class
723 reg_alternate_class (regno)
724 int regno;
726 if (prefclass == 0)
727 return ALL_REGS;
729 return (enum reg_class) altclass[regno];
732 /* Initialize some global data for this pass. */
734 void
735 regclass_init ()
737 int i;
739 init_cost.mem_cost = 10000;
740 for (i = 0; i < N_REG_CLASSES; i++)
741 init_cost.cost[i] = 10000;
743 /* This prevents dump_flow_info from losing if called
744 before regclass is run. */
745 prefclass = 0;
748 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
749 time it would save code to put a certain register in a certain class.
750 PASS, when nonzero, inhibits some optimizations which need only be done
751 once.
752 Return the last insn processed, so that the scan can be continued from
753 there. */
755 static rtx
756 scan_one_insn (insn, pass)
757 rtx insn;
758 int pass;
760 enum rtx_code code = GET_CODE (insn);
761 enum rtx_code pat_code;
762 const char *constraints[MAX_RECOG_OPERANDS];
763 enum machine_mode modes[MAX_RECOG_OPERANDS];
764 char subreg_changes_size[MAX_RECOG_OPERANDS];
765 rtx set, note;
766 int i, j;
768 /* Show that an insn inside a loop is likely to be executed three
769 times more than insns outside a loop. This is much more aggressive
770 than the assumptions made elsewhere and is being tried as an
771 experiment. */
773 if (code == NOTE)
775 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
776 loop_depth++, loop_cost = 1 << (2 * MIN (loop_depth, 5));
777 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
778 loop_depth--, loop_cost = 1 << (2 * MIN (loop_depth, 5));
780 return insn;
783 if (GET_RTX_CLASS (code) != 'i')
784 return insn;
786 pat_code = GET_CODE (PATTERN (insn));
787 if (pat_code == USE
788 || pat_code == CLOBBER
789 || pat_code == ASM_INPUT
790 || pat_code == ADDR_VEC
791 || pat_code == ADDR_DIFF_VEC)
792 return insn;
794 set = single_set (insn);
795 extract_insn (insn);
797 for (i = 0; i < recog_data.n_operands; i++)
799 constraints[i] = recog_data.constraints[i];
800 modes[i] = recog_data.operand_mode[i];
802 memset (subreg_changes_size, 0, sizeof (subreg_changes_size));
804 /* If this insn loads a parameter from its stack slot, then
805 it represents a savings, rather than a cost, if the
806 parameter is stored in memory. Record this fact. */
808 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
809 && GET_CODE (SET_SRC (set)) == MEM
810 && (note = find_reg_note (insn, REG_EQUIV,
811 NULL_RTX)) != 0
812 && GET_CODE (XEXP (note, 0)) == MEM)
814 costs[REGNO (SET_DEST (set))].mem_cost
815 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
816 GENERAL_REGS, 1)
817 * loop_cost);
818 record_address_regs (XEXP (SET_SRC (set), 0),
819 BASE_REG_CLASS, loop_cost * 2);
820 return insn;
823 /* Improve handling of two-address insns such as
824 (set X (ashift CONST Y)) where CONST must be made to
825 match X. Change it into two insns: (set X CONST)
826 (set X (ashift X Y)). If we left this for reloading, it
827 would probably get three insns because X and Y might go
828 in the same place. This prevents X and Y from receiving
829 the same hard reg.
831 We can only do this if the modes of operands 0 and 1
832 (which might not be the same) are tieable and we only need
833 do this during our first pass. */
835 if (pass == 0 && optimize
836 && recog_data.n_operands >= 3
837 && recog_data.constraints[1][0] == '0'
838 && recog_data.constraints[1][1] == 0
839 && CONSTANT_P (recog_data.operand[1])
840 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
841 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
842 && GET_CODE (recog_data.operand[0]) == REG
843 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
844 recog_data.operand_mode[1]))
846 rtx previnsn = prev_real_insn (insn);
847 rtx dest
848 = gen_lowpart (recog_data.operand_mode[1],
849 recog_data.operand[0]);
850 rtx newinsn
851 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
853 /* If this insn was the start of a basic block,
854 include the new insn in that block.
855 We need not check for code_label here;
856 while a basic block can start with a code_label,
857 INSN could not be at the beginning of that block. */
858 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
860 int b;
861 for (b = 0; b < n_basic_blocks; b++)
862 if (insn == BLOCK_HEAD (b))
863 BLOCK_HEAD (b) = newinsn;
866 /* This makes one more setting of new insns's dest. */
867 REG_N_SETS (REGNO (recog_data.operand[0]))++;
869 *recog_data.operand_loc[1] = recog_data.operand[0];
870 for (i = recog_data.n_dups - 1; i >= 0; i--)
871 if (recog_data.dup_num[i] == 1)
872 *recog_data.dup_loc[i] = recog_data.operand[0];
874 return PREV_INSN (newinsn);
877 /* If we get here, we are set up to record the costs of all the
878 operands for this insn. Start by initializing the costs.
879 Then handle any address registers. Finally record the desired
880 classes for any pseudos, doing it twice if some pair of
881 operands are commutative. */
883 for (i = 0; i < recog_data.n_operands; i++)
885 op_costs[i] = init_cost;
887 if (GET_CODE (recog_data.operand[i]) == SUBREG)
889 rtx inner = SUBREG_REG (recog_data.operand[i]);
890 if (GET_MODE_SIZE (modes[i]) != GET_MODE_SIZE (GET_MODE (inner)))
891 subreg_changes_size[i] = 1;
892 recog_data.operand[i] = inner;
895 if (GET_CODE (recog_data.operand[i]) == MEM)
896 record_address_regs (XEXP (recog_data.operand[i], 0),
897 BASE_REG_CLASS, loop_cost * 2);
898 else if (constraints[i][0] == 'p')
899 record_address_regs (recog_data.operand[i],
900 BASE_REG_CLASS, loop_cost * 2);
903 /* Check for commutative in a separate loop so everything will
904 have been initialized. We must do this even if one operand
905 is a constant--see addsi3 in m68k.md. */
907 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
908 if (constraints[i][0] == '%')
910 const char *xconstraints[MAX_RECOG_OPERANDS];
911 int j;
913 /* Handle commutative operands by swapping the constraints.
914 We assume the modes are the same. */
916 for (j = 0; j < recog_data.n_operands; j++)
917 xconstraints[j] = constraints[j];
919 xconstraints[i] = constraints[i+1];
920 xconstraints[i+1] = constraints[i];
921 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
922 recog_data.operand, modes, subreg_changes_size,
923 xconstraints, insn);
926 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
927 recog_data.operand, modes, subreg_changes_size,
928 constraints, insn);
930 /* Now add the cost for each operand to the total costs for
931 its register. */
933 for (i = 0; i < recog_data.n_operands; i++)
934 if (GET_CODE (recog_data.operand[i]) == REG
935 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
937 int regno = REGNO (recog_data.operand[i]);
938 struct costs *p = &costs[regno], *q = &op_costs[i];
940 p->mem_cost += q->mem_cost * loop_cost;
941 for (j = 0; j < N_REG_CLASSES; j++)
942 p->cost[j] += q->cost[j] * loop_cost;
945 return insn;
948 /* This is a pass of the compiler that scans all instructions
949 and calculates the preferred class for each pseudo-register.
950 This information can be accessed later by calling `reg_preferred_class'.
951 This pass comes just before local register allocation. */
953 void
954 regclass (f, nregs)
955 rtx f;
956 int nregs;
958 register rtx insn;
959 register int i;
960 int pass;
962 init_recog ();
964 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
966 #ifdef FORBIDDEN_INC_DEC_CLASSES
968 in_inc_dec = (char *) alloca (nregs);
970 /* Initialize information about which register classes can be used for
971 pseudos that are auto-incremented or auto-decremented. It would
972 seem better to put this in init_reg_sets, but we need to be able
973 to allocate rtx, which we can't do that early. */
975 for (i = 0; i < N_REG_CLASSES; i++)
977 rtx r = gen_rtx_REG (VOIDmode, 0);
978 enum machine_mode m;
979 register int j;
981 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
982 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
984 REGNO (r) = j;
986 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
987 m = (enum machine_mode) ((int) m + 1))
988 if (HARD_REGNO_MODE_OK (j, m))
990 PUT_MODE (r, m);
992 /* If a register is not directly suitable for an
993 auto-increment or decrement addressing mode and
994 requires secondary reloads, disallow its class from
995 being used in such addresses. */
997 if ((0
998 #ifdef SECONDARY_RELOAD_CLASS
999 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1000 != NO_REGS)
1001 #else
1002 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1003 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1004 != NO_REGS)
1005 #endif
1006 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1007 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1008 != NO_REGS)
1009 #endif
1010 #endif
1012 && ! auto_inc_dec_reg_p (r, m))
1013 forbidden_inc_dec_class[i] = 1;
1017 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1019 /* Normally we scan the insns once and determine the best class to use for
1020 each register. However, if -fexpensive_optimizations are on, we do so
1021 twice, the second time using the tentative best classes to guide the
1022 selection. */
1024 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1026 /* Zero out our accumulation of the cost of each class for each reg. */
1028 bzero ((char *) costs, nregs * sizeof (struct costs));
1030 #ifdef FORBIDDEN_INC_DEC_CLASSES
1031 bzero (in_inc_dec, nregs);
1032 #endif
1034 loop_depth = 0, loop_cost = 1;
1036 /* Scan the instructions and record each time it would
1037 save code to put a certain register in a certain class. */
1039 for (insn = f; insn; insn = NEXT_INSN (insn))
1041 insn = scan_one_insn (insn, pass);
1044 /* Now for each register look at how desirable each class is
1045 and find which class is preferred. Store that in
1046 `prefclass[REGNO]'. Record in `altclass[REGNO]' the largest register
1047 class any of whose registers is better than memory. */
1049 if (pass == 0)
1051 prefclass = prefclass_buffer;
1052 altclass = altclass_buffer;
1055 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1057 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1058 enum reg_class best = ALL_REGS, alt = NO_REGS;
1059 /* This is an enum reg_class, but we call it an int
1060 to save lots of casts. */
1061 register int class;
1062 register struct costs *p = &costs[i];
1064 for (class = (int) ALL_REGS - 1; class > 0; class--)
1066 /* Ignore classes that are too small for this operand or
1067 invalid for a operand that was auto-incremented. */
1068 if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
1069 > reg_class_size[class]
1070 #ifdef FORBIDDEN_INC_DEC_CLASSES
1071 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1072 #endif
1075 else if (p->cost[class] < best_cost)
1077 best_cost = p->cost[class];
1078 best = (enum reg_class) class;
1080 else if (p->cost[class] == best_cost)
1081 best = reg_class_subunion[(int)best][class];
1084 /* Record the alternate register class; i.e., a class for which
1085 every register in it is better than using memory. If adding a
1086 class would make a smaller class (i.e., no union of just those
1087 classes exists), skip that class. The major unions of classes
1088 should be provided as a register class. Don't do this if we
1089 will be doing it again later. */
1091 if (pass == 1 || ! flag_expensive_optimizations)
1092 for (class = 0; class < N_REG_CLASSES; class++)
1093 if (p->cost[class] < p->mem_cost
1094 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1095 > reg_class_size[(int) alt])
1096 #ifdef FORBIDDEN_INC_DEC_CLASSES
1097 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1098 #endif
1100 alt = reg_class_subunion[(int) alt][class];
1102 /* If we don't add any classes, nothing to try. */
1103 if (alt == best)
1104 alt = NO_REGS;
1106 /* We cast to (int) because (char) hits bugs in some compilers. */
1107 prefclass[i] = (int) best;
1108 altclass[i] = (int) alt;
1112 free (costs);
1115 /* Record the cost of using memory or registers of various classes for
1116 the operands in INSN.
1118 N_ALTS is the number of alternatives.
1120 N_OPS is the number of operands.
1122 OPS is an array of the operands.
1124 MODES are the modes of the operands, in case any are VOIDmode.
1126 CONSTRAINTS are the constraints to use for the operands. This array
1127 is modified by this procedure.
1129 This procedure works alternative by alternative. For each alternative
1130 we assume that we will be able to allocate all pseudos to their ideal
1131 register class and calculate the cost of using that alternative. Then
1132 we compute for each operand that is a pseudo-register, the cost of
1133 having the pseudo allocated to each register class and using it in that
1134 alternative. To this cost is added the cost of the alternative.
1136 The cost of each class for this insn is its lowest cost among all the
1137 alternatives. */
1139 static void
1140 record_reg_classes (n_alts, n_ops, ops, modes, subreg_changes_size,
1141 constraints, insn)
1142 int n_alts;
1143 int n_ops;
1144 rtx *ops;
1145 enum machine_mode *modes;
1146 char *subreg_changes_size;
1147 const char **constraints;
1148 rtx insn;
1150 int alt;
1151 int i, j;
1152 rtx set;
1154 /* Process each alternative, each time minimizing an operand's cost with
1155 the cost for each operand in that alternative. */
1157 for (alt = 0; alt < n_alts; alt++)
1159 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1160 int alt_fail = 0;
1161 int alt_cost = 0;
1162 enum reg_class classes[MAX_RECOG_OPERANDS];
1163 int allows_mem[MAX_RECOG_OPERANDS];
1164 int class;
1166 for (i = 0; i < n_ops; i++)
1168 const char *p = constraints[i];
1169 rtx op = ops[i];
1170 enum machine_mode mode = modes[i];
1171 int allows_addr = 0;
1172 int win = 0;
1173 unsigned char c;
1175 /* Initially show we know nothing about the register class. */
1176 classes[i] = NO_REGS;
1177 allows_mem[i] = 0;
1179 /* If this operand has no constraints at all, we can conclude
1180 nothing about it since anything is valid. */
1182 if (*p == 0)
1184 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1185 bzero ((char *) &this_op_costs[i], sizeof this_op_costs[i]);
1187 continue;
1190 /* If this alternative is only relevant when this operand
1191 matches a previous operand, we do different things depending
1192 on whether this operand is a pseudo-reg or not. We must process
1193 any modifiers for the operand before we can make this test. */
1195 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1196 p++;
1198 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1200 /* Copy class and whether memory is allowed from the matching
1201 alternative. Then perform any needed cost computations
1202 and/or adjustments. */
1203 j = p[0] - '0';
1204 classes[i] = classes[j];
1205 allows_mem[i] = allows_mem[j];
1207 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1209 /* If this matches the other operand, we have no added
1210 cost and we win. */
1211 if (rtx_equal_p (ops[j], op))
1212 win = 1;
1214 /* If we can put the other operand into a register, add to
1215 the cost of this alternative the cost to copy this
1216 operand to the register used for the other operand. */
1218 else if (classes[j] != NO_REGS)
1219 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1221 else if (GET_CODE (ops[j]) != REG
1222 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1224 /* This op is a pseudo but the one it matches is not. */
1226 /* If we can't put the other operand into a register, this
1227 alternative can't be used. */
1229 if (classes[j] == NO_REGS)
1230 alt_fail = 1;
1232 /* Otherwise, add to the cost of this alternative the cost
1233 to copy the other operand to the register used for this
1234 operand. */
1236 else
1237 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1239 else
1241 /* The costs of this operand are not the same as the other
1242 operand since move costs are not symmetric. Moreover,
1243 if we cannot tie them, this alternative needs to do a
1244 copy, which is one instruction. */
1246 struct costs *pp = &this_op_costs[i];
1248 for (class = 0; class < N_REG_CLASSES; class++)
1249 pp->cost[class]
1250 = (recog_data.operand_type[i] == OP_IN
1251 ? may_move_cost[class][(int) classes[i]]
1252 : may_move_cost[(int) classes[i]][class]);
1254 /* If the alternative actually allows memory, make things
1255 a bit cheaper since we won't need an extra insn to
1256 load it. */
1258 pp->mem_cost
1259 = (MEMORY_MOVE_COST (mode, classes[i],
1260 recog_data.operand_type[i] == OP_IN)
1261 - allows_mem[i]);
1263 /* If we have assigned a class to this register in our
1264 first pass, add a cost to this alternative corresponding
1265 to what we would add if this register were not in the
1266 appropriate class. */
1268 if (prefclass)
1269 alt_cost
1270 += (may_move_cost[(unsigned char) prefclass[REGNO (op)]]
1271 [(int) classes[i]]);
1273 if (REGNO (ops[i]) != REGNO (ops[j])
1274 && ! find_reg_note (insn, REG_DEAD, op))
1275 alt_cost += 2;
1277 /* This is in place of ordinary cost computation
1278 for this operand, so skip to the end of the
1279 alternative (should be just one character). */
1280 while (*p && *p++ != ',')
1283 constraints[i] = p;
1284 continue;
1288 /* Scan all the constraint letters. See if the operand matches
1289 any of the constraints. Collect the valid register classes
1290 and see if this operand accepts memory. */
1292 while (*p && (c = *p++) != ',')
1293 switch (c)
1295 case '*':
1296 /* Ignore the next letter for this pass. */
1297 p++;
1298 break;
1300 case '?':
1301 alt_cost += 2;
1302 case '!': case '#': case '&':
1303 case '0': case '1': case '2': case '3': case '4':
1304 case '5': case '6': case '7': case '8': case '9':
1305 break;
1307 case 'p':
1308 allows_addr = 1;
1309 win = address_operand (op, GET_MODE (op));
1310 /* We know this operand is an address, so we want it to be
1311 allocated to a register that can be the base of an
1312 address, ie BASE_REG_CLASS. */
1313 classes[i]
1314 = reg_class_subunion[(int) classes[i]]
1315 [(int) BASE_REG_CLASS];
1316 break;
1318 case 'm': case 'o': case 'V':
1319 /* It doesn't seem worth distinguishing between offsettable
1320 and non-offsettable addresses here. */
1321 allows_mem[i] = 1;
1322 if (GET_CODE (op) == MEM)
1323 win = 1;
1324 break;
1326 case '<':
1327 if (GET_CODE (op) == MEM
1328 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1329 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1330 win = 1;
1331 break;
1333 case '>':
1334 if (GET_CODE (op) == MEM
1335 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1336 || GET_CODE (XEXP (op, 0)) == POST_INC))
1337 win = 1;
1338 break;
1340 case 'E':
1341 #ifndef REAL_ARITHMETIC
1342 /* Match any floating double constant, but only if
1343 we can examine the bits of it reliably. */
1344 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1345 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1346 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1347 break;
1348 #endif
1349 if (GET_CODE (op) == CONST_DOUBLE)
1350 win = 1;
1351 break;
1353 case 'F':
1354 if (GET_CODE (op) == CONST_DOUBLE)
1355 win = 1;
1356 break;
1358 case 'G':
1359 case 'H':
1360 if (GET_CODE (op) == CONST_DOUBLE
1361 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1362 win = 1;
1363 break;
1365 case 's':
1366 if (GET_CODE (op) == CONST_INT
1367 || (GET_CODE (op) == CONST_DOUBLE
1368 && GET_MODE (op) == VOIDmode))
1369 break;
1370 case 'i':
1371 if (CONSTANT_P (op)
1372 #ifdef LEGITIMATE_PIC_OPERAND_P
1373 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1374 #endif
1376 win = 1;
1377 break;
1379 case 'n':
1380 if (GET_CODE (op) == CONST_INT
1381 || (GET_CODE (op) == CONST_DOUBLE
1382 && GET_MODE (op) == VOIDmode))
1383 win = 1;
1384 break;
1386 case 'I':
1387 case 'J':
1388 case 'K':
1389 case 'L':
1390 case 'M':
1391 case 'N':
1392 case 'O':
1393 case 'P':
1394 if (GET_CODE (op) == CONST_INT
1395 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1396 win = 1;
1397 break;
1399 case 'X':
1400 win = 1;
1401 break;
1403 #ifdef EXTRA_CONSTRAINT
1404 case 'Q':
1405 case 'R':
1406 case 'S':
1407 case 'T':
1408 case 'U':
1409 if (EXTRA_CONSTRAINT (op, c))
1410 win = 1;
1411 break;
1412 #endif
1414 case 'g':
1415 if (GET_CODE (op) == MEM
1416 || (CONSTANT_P (op)
1417 #ifdef LEGITIMATE_PIC_OPERAND_P
1418 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1419 #endif
1421 win = 1;
1422 allows_mem[i] = 1;
1423 case 'r':
1424 classes[i]
1425 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1426 break;
1428 default:
1429 classes[i]
1430 = reg_class_subunion[(int) classes[i]]
1431 [(int) REG_CLASS_FROM_LETTER (c)];
1434 constraints[i] = p;
1436 #ifdef CLASS_CANNOT_CHANGE_SIZE
1437 /* If we noted a subreg earlier, and the selected class is a
1438 subclass of CLASS_CANNOT_CHANGE_SIZE, zap it. */
1439 if (subreg_changes_size[i]
1440 && (reg_class_subunion[(int) CLASS_CANNOT_CHANGE_SIZE]
1441 [(int) classes[i]]
1442 == CLASS_CANNOT_CHANGE_SIZE))
1443 classes[i] = NO_REGS;
1444 #endif
1446 /* How we account for this operand now depends on whether it is a
1447 pseudo register or not. If it is, we first check if any
1448 register classes are valid. If not, we ignore this alternative,
1449 since we want to assume that all pseudos get allocated for
1450 register preferencing. If some register class is valid, compute
1451 the costs of moving the pseudo into that class. */
1453 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1455 if (classes[i] == NO_REGS)
1457 /* We must always fail if the operand is a REG, but
1458 we did not find a suitable class.
1460 Otherwise we may perform an uninitialized read
1461 from this_op_costs after the `continue' statement
1462 below. */
1463 alt_fail = 1;
1465 else
1467 struct costs *pp = &this_op_costs[i];
1469 for (class = 0; class < N_REG_CLASSES; class++)
1470 pp->cost[class]
1471 = (recog_data.operand_type[i] == OP_IN
1472 ? may_move_cost[class][(int) classes[i]]
1473 : may_move_cost[(int) classes[i]][class]);
1475 /* If the alternative actually allows memory, make things
1476 a bit cheaper since we won't need an extra insn to
1477 load it. */
1479 pp->mem_cost
1480 = (MEMORY_MOVE_COST (mode, classes[i],
1481 recog_data.operand_type[i] == OP_IN)
1482 - allows_mem[i]);
1484 /* If we have assigned a class to this register in our
1485 first pass, add a cost to this alternative corresponding
1486 to what we would add if this register were not in the
1487 appropriate class. */
1489 if (prefclass)
1490 alt_cost
1491 += (may_move_cost[(unsigned char) prefclass[REGNO (op)]]
1492 [(int) classes[i]]);
1496 /* Otherwise, if this alternative wins, either because we
1497 have already determined that or if we have a hard register of
1498 the proper class, there is no cost for this alternative. */
1500 else if (win
1501 || (GET_CODE (op) == REG
1502 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1505 /* If registers are valid, the cost of this alternative includes
1506 copying the object to and/or from a register. */
1508 else if (classes[i] != NO_REGS)
1510 if (recog_data.operand_type[i] != OP_OUT)
1511 alt_cost += copy_cost (op, mode, classes[i], 1);
1513 if (recog_data.operand_type[i] != OP_IN)
1514 alt_cost += copy_cost (op, mode, classes[i], 0);
1517 /* The only other way this alternative can be used is if this is a
1518 constant that could be placed into memory. */
1520 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1521 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1522 else
1523 alt_fail = 1;
1526 if (alt_fail)
1527 continue;
1529 /* Finally, update the costs with the information we've calculated
1530 about this alternative. */
1532 for (i = 0; i < n_ops; i++)
1533 if (GET_CODE (ops[i]) == REG
1534 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1536 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1537 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1539 pp->mem_cost = MIN (pp->mem_cost,
1540 (qq->mem_cost + alt_cost) * scale);
1542 for (class = 0; class < N_REG_CLASSES; class++)
1543 pp->cost[class] = MIN (pp->cost[class],
1544 (qq->cost[class] + alt_cost) * scale);
1548 /* If this insn is a single set copying operand 1 to operand 0
1549 and one is a pseudo with the other a hard reg that is in its
1550 own register class, set the cost of that register class to -1. */
1552 if ((set = single_set (insn)) != 0
1553 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1554 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG)
1555 for (i = 0; i <= 1; i++)
1556 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1558 int regno = REGNO (ops[!i]);
1559 enum machine_mode mode = GET_MODE (ops[!i]);
1560 int class;
1561 int nr;
1563 if (regno >= FIRST_PSEUDO_REGISTER && prefclass != 0
1564 && (reg_class_size[(unsigned char) prefclass[regno]]
1565 == CLASS_MAX_NREGS (prefclass[regno], mode)))
1566 op_costs[i].cost[(unsigned char) prefclass[regno]] = -1;
1567 else if (regno < FIRST_PSEUDO_REGISTER)
1568 for (class = 0; class < N_REG_CLASSES; class++)
1569 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1570 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1572 if (reg_class_size[class] == 1)
1573 op_costs[i].cost[class] = -1;
1574 else
1576 for (nr = 0; nr < HARD_REGNO_NREGS(regno, mode); nr++)
1578 if (!TEST_HARD_REG_BIT (reg_class_contents[class], regno + nr))
1579 break;
1582 if (nr == HARD_REGNO_NREGS(regno,mode))
1583 op_costs[i].cost[class] = -1;
1589 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1590 TO_P is zero) a register of class CLASS in mode MODE.
1592 X must not be a pseudo. */
1594 static int
1595 copy_cost (x, mode, class, to_p)
1596 rtx x;
1597 enum machine_mode mode;
1598 enum reg_class class;
1599 int to_p;
1601 #ifdef HAVE_SECONDARY_RELOADS
1602 enum reg_class secondary_class = NO_REGS;
1603 #endif
1605 /* If X is a SCRATCH, there is actually nothing to move since we are
1606 assuming optimal allocation. */
1608 if (GET_CODE (x) == SCRATCH)
1609 return 0;
1611 /* Get the class we will actually use for a reload. */
1612 class = PREFERRED_RELOAD_CLASS (x, class);
1614 #ifdef HAVE_SECONDARY_RELOADS
1615 /* If we need a secondary reload (we assume here that we are using
1616 the secondary reload as an intermediate, not a scratch register), the
1617 cost is that to load the input into the intermediate register, then
1618 to copy them. We use a special value of TO_P to avoid recursion. */
1620 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1621 if (to_p == 1)
1622 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1623 #endif
1625 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1626 if (! to_p)
1627 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1628 #endif
1630 if (secondary_class != NO_REGS)
1631 return (move_cost[(int) secondary_class][(int) class]
1632 + copy_cost (x, mode, secondary_class, 2));
1633 #endif /* HAVE_SECONDARY_RELOADS */
1635 /* For memory, use the memory move cost, for (hard) registers, use the
1636 cost to move between the register classes, and use 2 for everything
1637 else (constants). */
1639 if (GET_CODE (x) == MEM || class == NO_REGS)
1640 return MEMORY_MOVE_COST (mode, class, to_p);
1642 else if (GET_CODE (x) == REG)
1643 return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1645 else
1646 /* If this is a constant, we may eventually want to call rtx_cost here. */
1647 return 2;
1650 /* Record the pseudo registers we must reload into hard registers
1651 in a subexpression of a memory address, X.
1653 CLASS is the class that the register needs to be in and is either
1654 BASE_REG_CLASS or INDEX_REG_CLASS.
1656 SCALE is twice the amount to multiply the cost by (it is twice so we
1657 can represent half-cost adjustments). */
1659 static void
1660 record_address_regs (x, class, scale)
1661 rtx x;
1662 enum reg_class class;
1663 int scale;
1665 register enum rtx_code code = GET_CODE (x);
1667 switch (code)
1669 case CONST_INT:
1670 case CONST:
1671 case CC0:
1672 case PC:
1673 case SYMBOL_REF:
1674 case LABEL_REF:
1675 return;
1677 case PLUS:
1678 /* When we have an address that is a sum,
1679 we must determine whether registers are "base" or "index" regs.
1680 If there is a sum of two registers, we must choose one to be
1681 the "base". Luckily, we can use the REGNO_POINTER_FLAG
1682 to make a good choice most of the time. We only need to do this
1683 on machines that can have two registers in an address and where
1684 the base and index register classes are different.
1686 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1687 that seems bogus since it should only be set when we are sure
1688 the register is being used as a pointer. */
1691 rtx arg0 = XEXP (x, 0);
1692 rtx arg1 = XEXP (x, 1);
1693 register enum rtx_code code0 = GET_CODE (arg0);
1694 register enum rtx_code code1 = GET_CODE (arg1);
1696 /* Look inside subregs. */
1697 if (code0 == SUBREG)
1698 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1699 if (code1 == SUBREG)
1700 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1702 /* If this machine only allows one register per address, it must
1703 be in the first operand. */
1705 if (MAX_REGS_PER_ADDRESS == 1)
1706 record_address_regs (arg0, class, scale);
1708 /* If index and base registers are the same on this machine, just
1709 record registers in any non-constant operands. We assume here,
1710 as well as in the tests below, that all addresses are in
1711 canonical form. */
1713 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
1715 record_address_regs (arg0, class, scale);
1716 if (! CONSTANT_P (arg1))
1717 record_address_regs (arg1, class, scale);
1720 /* If the second operand is a constant integer, it doesn't change
1721 what class the first operand must be. */
1723 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1724 record_address_regs (arg0, class, scale);
1726 /* If the second operand is a symbolic constant, the first operand
1727 must be an index register. */
1729 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1730 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1732 /* If both operands are registers but one is already a hard register
1733 of index or base class, give the other the class that the hard
1734 register is not. */
1736 #ifdef REG_OK_FOR_BASE_P
1737 else if (code0 == REG && code1 == REG
1738 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1739 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1740 record_address_regs (arg1,
1741 REG_OK_FOR_BASE_P (arg0)
1742 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1743 scale);
1744 else if (code0 == REG && code1 == REG
1745 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1746 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1747 record_address_regs (arg0,
1748 REG_OK_FOR_BASE_P (arg1)
1749 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1750 scale);
1751 #endif
1753 /* If one operand is known to be a pointer, it must be the base
1754 with the other operand the index. Likewise if the other operand
1755 is a MULT. */
1757 else if ((code0 == REG && REGNO_POINTER_FLAG (REGNO (arg0)))
1758 || code1 == MULT)
1760 record_address_regs (arg0, BASE_REG_CLASS, scale);
1761 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1763 else if ((code1 == REG && REGNO_POINTER_FLAG (REGNO (arg1)))
1764 || code0 == MULT)
1766 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1767 record_address_regs (arg1, BASE_REG_CLASS, scale);
1770 /* Otherwise, count equal chances that each might be a base
1771 or index register. This case should be rare. */
1773 else
1775 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
1776 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
1777 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
1778 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
1781 break;
1783 case POST_INC:
1784 case PRE_INC:
1785 case POST_DEC:
1786 case PRE_DEC:
1787 /* Double the importance of a pseudo register that is incremented
1788 or decremented, since it would take two extra insns
1789 if it ends up in the wrong place. If the operand is a pseudo,
1790 show it is being used in an INC_DEC context. */
1792 #ifdef FORBIDDEN_INC_DEC_CLASSES
1793 if (GET_CODE (XEXP (x, 0)) == REG
1794 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
1795 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
1796 #endif
1798 record_address_regs (XEXP (x, 0), class, 2 * scale);
1799 break;
1801 case REG:
1803 register struct costs *pp = &costs[REGNO (x)];
1804 register int i;
1806 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
1808 for (i = 0; i < N_REG_CLASSES; i++)
1809 pp->cost[i] += (may_move_cost[i][(int) class] * scale) / 2;
1811 break;
1813 default:
1815 register const char *fmt = GET_RTX_FORMAT (code);
1816 register int i;
1817 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1818 if (fmt[i] == 'e')
1819 record_address_regs (XEXP (x, i), class, scale);
1824 #ifdef FORBIDDEN_INC_DEC_CLASSES
1826 /* Return 1 if REG is valid as an auto-increment memory reference
1827 to an object of MODE. */
1829 static int
1830 auto_inc_dec_reg_p (reg, mode)
1831 rtx reg;
1832 enum machine_mode mode;
1834 if (HAVE_POST_INCREMENT
1835 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
1836 return 1;
1838 if (HAVE_POST_DECREMENT
1839 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
1840 return 1;
1842 if (HAVE_PRE_INCREMENT
1843 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
1844 return 1;
1846 if (HAVE_PRE_DECREMENT
1847 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
1848 return 1;
1850 return 0;
1852 #endif
1854 static short *renumber = (short *)0;
1855 static size_t regno_allocated = 0;
1857 /* Allocate enough space to hold NUM_REGS registers for the tables used for
1858 reg_scan and flow_analysis that are indexed by the register number. If
1859 NEW_P is non zero, initialize all of the registers, otherwise only
1860 initialize the new registers allocated. The same table is kept from
1861 function to function, only reallocating it when we need more room. If
1862 RENUMBER_P is non zero, allocate the reg_renumber array also. */
1864 void
1865 allocate_reg_info (num_regs, new_p, renumber_p)
1866 size_t num_regs;
1867 int new_p;
1868 int renumber_p;
1870 size_t size_info;
1871 size_t size_renumber;
1872 size_t min = (new_p) ? 0 : reg_n_max;
1873 struct reg_info_data *reg_data;
1874 struct reg_info_data *reg_next;
1876 if (num_regs > regno_allocated)
1878 size_t old_allocated = regno_allocated;
1880 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
1881 size_renumber = regno_allocated * sizeof (short);
1883 if (!reg_n_info)
1885 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
1886 renumber = (short *) xmalloc (size_renumber);
1887 prefclass_buffer = (char *) xmalloc (regno_allocated);
1888 altclass_buffer = (char *) xmalloc (regno_allocated);
1891 else
1893 VARRAY_GROW (reg_n_info, regno_allocated);
1895 if (new_p) /* if we're zapping everything, no need to realloc */
1897 free ((char *)renumber);
1898 free ((char *)prefclass_buffer);
1899 free ((char *)altclass_buffer);
1900 renumber = (short *) xmalloc (size_renumber);
1901 prefclass_buffer = (char *) xmalloc (regno_allocated);
1902 altclass_buffer = (char *) xmalloc (regno_allocated);
1905 else
1907 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
1908 prefclass_buffer = (char *) xrealloc ((char *)prefclass_buffer,
1909 regno_allocated);
1911 altclass_buffer = (char *) xrealloc ((char *)altclass_buffer,
1912 regno_allocated);
1916 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
1917 + sizeof (struct reg_info_data) - sizeof (reg_info);
1918 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
1919 reg_data->min_index = old_allocated;
1920 reg_data->max_index = regno_allocated - 1;
1921 reg_data->next = reg_info_head;
1922 reg_info_head = reg_data;
1925 reg_n_max = num_regs;
1926 if (min < num_regs)
1928 /* Loop through each of the segments allocated for the actual
1929 reg_info pages, and set up the pointers, zero the pages, etc. */
1930 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
1932 size_t min_index = reg_data->min_index;
1933 size_t max_index = reg_data->max_index;
1935 reg_next = reg_data->next;
1936 if (min <= max_index)
1938 size_t max = max_index;
1939 size_t local_min = min - min_index;
1940 size_t i;
1942 if (min < min_index)
1943 local_min = 0;
1944 if (!reg_data->used_p) /* page just allocated with calloc */
1945 reg_data->used_p = 1; /* no need to zero */
1946 else
1947 bzero ((char *) &reg_data->data[local_min],
1948 sizeof (reg_info) * (max - min_index - local_min + 1));
1950 for (i = min_index+local_min; i <= max; i++)
1952 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
1953 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1954 renumber[i] = -1;
1955 prefclass_buffer[i] = (char) NO_REGS;
1956 altclass_buffer[i] = (char) NO_REGS;
1962 /* If {pref,alt}class have already been allocated, update the pointers to
1963 the newly realloced ones. */
1964 if (prefclass)
1966 prefclass = prefclass_buffer;
1967 altclass = altclass_buffer;
1970 if (renumber_p)
1971 reg_renumber = renumber;
1973 /* Tell the regset code about the new number of registers */
1974 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
1977 /* Free up the space allocated by allocate_reg_info. */
1978 void
1979 free_reg_info ()
1981 if (reg_n_info)
1983 struct reg_info_data *reg_data;
1984 struct reg_info_data *reg_next;
1986 VARRAY_FREE (reg_n_info);
1987 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
1989 reg_next = reg_data->next;
1990 free ((char *)reg_data);
1993 free (prefclass_buffer);
1994 free (altclass_buffer);
1995 prefclass_buffer = (char *)0;
1996 altclass_buffer = (char *)0;
1997 reg_info_head = (struct reg_info_data *)0;
1998 renumber = (short *)0;
2000 regno_allocated = 0;
2001 reg_n_max = 0;
2004 /* This is the `regscan' pass of the compiler, run just before cse
2005 and again just before loop.
2007 It finds the first and last use of each pseudo-register
2008 and records them in the vectors regno_first_uid, regno_last_uid
2009 and counts the number of sets in the vector reg_n_sets.
2011 REPEAT is nonzero the second time this is called. */
2013 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2014 Always at least 3, since the combiner could put that many together
2015 and we want this to remain correct for all the remaining passes. */
2017 int max_parallel;
2019 void
2020 reg_scan (f, nregs, repeat)
2021 rtx f;
2022 int nregs;
2023 int repeat;
2025 register rtx insn;
2027 allocate_reg_info (nregs, TRUE, FALSE);
2028 max_parallel = 3;
2030 for (insn = f; insn; insn = NEXT_INSN (insn))
2031 if (GET_CODE (insn) == INSN
2032 || GET_CODE (insn) == CALL_INSN
2033 || GET_CODE (insn) == JUMP_INSN)
2035 if (GET_CODE (PATTERN (insn)) == PARALLEL
2036 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2037 max_parallel = XVECLEN (PATTERN (insn), 0);
2038 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2040 if (REG_NOTES (insn))
2041 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2045 /* Update 'regscan' information by looking at the insns
2046 from FIRST to LAST. Some new REGs have been created,
2047 and any REG with number greater than OLD_MAX_REGNO is
2048 such a REG. We only update information for those. */
2050 void
2051 reg_scan_update(first, last, old_max_regno)
2052 rtx first;
2053 rtx last;
2054 int old_max_regno;
2056 register rtx insn;
2058 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2060 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2061 if (GET_CODE (insn) == INSN
2062 || GET_CODE (insn) == CALL_INSN
2063 || GET_CODE (insn) == JUMP_INSN)
2065 if (GET_CODE (PATTERN (insn)) == PARALLEL
2066 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2067 max_parallel = XVECLEN (PATTERN (insn), 0);
2068 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2070 if (REG_NOTES (insn))
2071 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2075 /* X is the expression to scan. INSN is the insn it appears in.
2076 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2077 We should only record information for REGs with numbers
2078 greater than or equal to MIN_REGNO. */
2080 static void
2081 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2082 rtx x;
2083 rtx insn;
2084 int note_flag;
2085 int min_regno;
2087 register enum rtx_code code;
2088 register rtx dest;
2089 register rtx note;
2091 code = GET_CODE (x);
2092 switch (code)
2094 case CONST:
2095 case CONST_INT:
2096 case CONST_DOUBLE:
2097 case CC0:
2098 case PC:
2099 case SYMBOL_REF:
2100 case LABEL_REF:
2101 case ADDR_VEC:
2102 case ADDR_DIFF_VEC:
2103 return;
2105 case REG:
2107 register int regno = REGNO (x);
2109 if (regno >= min_regno)
2111 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2112 if (!note_flag)
2113 REGNO_LAST_UID (regno) = INSN_UID (insn);
2114 if (REGNO_FIRST_UID (regno) == 0)
2115 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2118 break;
2120 case EXPR_LIST:
2121 if (XEXP (x, 0))
2122 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2123 if (XEXP (x, 1))
2124 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2125 break;
2127 case INSN_LIST:
2128 if (XEXP (x, 1))
2129 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2130 break;
2132 case SET:
2133 /* Count a set of the destination if it is a register. */
2134 for (dest = SET_DEST (x);
2135 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2136 || GET_CODE (dest) == ZERO_EXTEND;
2137 dest = XEXP (dest, 0))
2140 if (GET_CODE (dest) == REG
2141 && REGNO (dest) >= min_regno)
2142 REG_N_SETS (REGNO (dest))++;
2144 /* If this is setting a pseudo from another pseudo or the sum of a
2145 pseudo and a constant integer and the other pseudo is known to be
2146 a pointer, set the destination to be a pointer as well.
2148 Likewise if it is setting the destination from an address or from a
2149 value equivalent to an address or to the sum of an address and
2150 something else.
2152 But don't do any of this if the pseudo corresponds to a user
2153 variable since it should have already been set as a pointer based
2154 on the type. */
2156 if (GET_CODE (SET_DEST (x)) == REG
2157 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2158 && REGNO (SET_DEST (x)) >= min_regno
2159 /* If the destination pseudo is set more than once, then other
2160 sets might not be to a pointer value (consider access to a
2161 union in two threads of control in the presense of global
2162 optimizations). So only set REGNO_POINTER_FLAG on the destination
2163 pseudo if this is the only set of that pseudo. */
2164 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2165 && ! REG_USERVAR_P (SET_DEST (x))
2166 && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x)))
2167 && ((GET_CODE (SET_SRC (x)) == REG
2168 && REGNO_POINTER_FLAG (REGNO (SET_SRC (x))))
2169 || ((GET_CODE (SET_SRC (x)) == PLUS
2170 || GET_CODE (SET_SRC (x)) == LO_SUM)
2171 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2172 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2173 && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x), 0))))
2174 || GET_CODE (SET_SRC (x)) == CONST
2175 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2176 || GET_CODE (SET_SRC (x)) == LABEL_REF
2177 || (GET_CODE (SET_SRC (x)) == HIGH
2178 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2179 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2180 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2181 || ((GET_CODE (SET_SRC (x)) == PLUS
2182 || GET_CODE (SET_SRC (x)) == LO_SUM)
2183 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2184 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2185 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2186 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2187 && (GET_CODE (XEXP (note, 0)) == CONST
2188 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2189 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2190 REGNO_POINTER_FLAG (REGNO (SET_DEST (x))) = 1;
2192 /* ... fall through ... */
2194 default:
2196 register const char *fmt = GET_RTX_FORMAT (code);
2197 register int i;
2198 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2200 if (fmt[i] == 'e')
2201 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2202 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2204 register int j;
2205 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2206 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2213 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2214 is also in C2. */
2217 reg_class_subset_p (c1, c2)
2218 register enum reg_class c1;
2219 register enum reg_class c2;
2221 if (c1 == c2) return 1;
2223 if (c2 == ALL_REGS)
2224 win:
2225 return 1;
2226 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2227 reg_class_contents[(int)c2],
2228 win);
2229 return 0;
2232 /* Return nonzero if there is a register that is in both C1 and C2. */
2235 reg_classes_intersect_p (c1, c2)
2236 register enum reg_class c1;
2237 register enum reg_class c2;
2239 #ifdef HARD_REG_SET
2240 register
2241 #endif
2242 HARD_REG_SET c;
2244 if (c1 == c2) return 1;
2246 if (c1 == ALL_REGS || c2 == ALL_REGS)
2247 return 1;
2249 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2250 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2252 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2253 return 1;
2255 lose:
2256 return 0;
2259 /* Release any memory allocated by register sets. */
2261 void
2262 regset_release_memory ()
2264 bitmap_release_memory ();