* decl.c (grokfndecl): Remove dead code.
[official-gcc.git] / gcc / reg-stack.c
blobe20e92e859568bd7e487d71aefb055e4fd0d83f2
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 93-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 /* This pass converts stack-like registers from the "flat register
22 file" model that gcc uses, to a stack convention that the 387 uses.
24 * The form of the input:
26 On input, the function consists of insn that have had their
27 registers fully allocated to a set of "virtual" registers. Note that
28 the word "virtual" is used differently here than elsewhere in gcc: for
29 each virtual stack reg, there is a hard reg, but the mapping between
30 them is not known until this pass is run. On output, hard register
31 numbers have been substituted, and various pop and exchange insns have
32 been emitted. The hard register numbers and the virtual register
33 numbers completely overlap - before this pass, all stack register
34 numbers are virtual, and afterward they are all hard.
36 The virtual registers can be manipulated normally by gcc, and their
37 semantics are the same as for normal registers. After the hard
38 register numbers are substituted, the semantics of an insn containing
39 stack-like regs are not the same as for an insn with normal regs: for
40 instance, it is not safe to delete an insn that appears to be a no-op
41 move. In general, no insn containing hard regs should be changed
42 after this pass is done.
44 * The form of the output:
46 After this pass, hard register numbers represent the distance from
47 the current top of stack to the desired register. A reference to
48 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
49 represents the register just below that, and so forth. Also, REG_DEAD
50 notes indicate whether or not a stack register should be popped.
52 A "swap" insn looks like a parallel of two patterns, where each
53 pattern is a SET: one sets A to B, the other B to A.
55 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
56 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
57 will replace the existing stack top, not push a new value.
59 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
60 SET_SRC is REG or MEM.
62 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
63 appears ambiguous. As a special case, the presence of a REG_DEAD note
64 for FIRST_STACK_REG differentiates between a load insn and a pop.
66 If a REG_DEAD is present, the insn represents a "pop" that discards
67 the top of the register stack. If there is no REG_DEAD note, then the
68 insn represents a "dup" or a push of the current top of stack onto the
69 stack.
71 * Methodology:
73 Existing REG_DEAD and REG_UNUSED notes for stack registers are
74 deleted and recreated from scratch. REG_DEAD is never created for a
75 SET_DEST, only REG_UNUSED.
77 * asm_operands:
79 There are several rules on the usage of stack-like regs in
80 asm_operands insns. These rules apply only to the operands that are
81 stack-like regs:
83 1. Given a set of input regs that die in an asm_operands, it is
84 necessary to know which are implicitly popped by the asm, and
85 which must be explicitly popped by gcc.
87 An input reg that is implicitly popped by the asm must be
88 explicitly clobbered, unless it is constrained to match an
89 output operand.
91 2. For any input reg that is implicitly popped by an asm, it is
92 necessary to know how to adjust the stack to compensate for the pop.
93 If any non-popped input is closer to the top of the reg-stack than
94 the implicitly popped reg, it would not be possible to know what the
95 stack looked like - it's not clear how the rest of the stack "slides
96 up".
98 All implicitly popped input regs must be closer to the top of
99 the reg-stack than any input that is not implicitly popped.
101 3. It is possible that if an input dies in an insn, reload might
102 use the input reg for an output reload. Consider this example:
104 asm ("foo" : "=t" (a) : "f" (b));
106 This asm says that input B is not popped by the asm, and that
107 the asm pushes a result onto the reg-stack, ie, the stack is one
108 deeper after the asm than it was before. But, it is possible that
109 reload will think that it can use the same reg for both the input and
110 the output, if input B dies in this insn.
112 If any input operand uses the "f" constraint, all output reg
113 constraints must use the "&" earlyclobber.
115 The asm above would be written as
117 asm ("foo" : "=&t" (a) : "f" (b));
119 4. Some operands need to be in particular places on the stack. All
120 output operands fall in this category - there is no other way to
121 know which regs the outputs appear in unless the user indicates
122 this in the constraints.
124 Output operands must specifically indicate which reg an output
125 appears in after an asm. "=f" is not allowed: the operand
126 constraints must select a class with a single reg.
128 5. Output operands may not be "inserted" between existing stack regs.
129 Since no 387 opcode uses a read/write operand, all output operands
130 are dead before the asm_operands, and are pushed by the asm_operands.
131 It makes no sense to push anywhere but the top of the reg-stack.
133 Output operands must start at the top of the reg-stack: output
134 operands may not "skip" a reg.
136 6. Some asm statements may need extra stack space for internal
137 calculations. This can be guaranteed by clobbering stack registers
138 unrelated to the inputs and outputs.
140 Here are a couple of reasonable asms to want to write. This asm
141 takes one input, which is internally popped, and produces two outputs.
143 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
146 and replaces them with one output. The user must code the "st(1)"
147 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
153 #include "config.h"
154 #include "system.h"
155 #include "tree.h"
156 #include "rtl.h"
157 #include "tm_p.h"
158 #include "function.h"
159 #include "insn-config.h"
160 #include "regs.h"
161 #include "hard-reg-set.h"
162 #include "flags.h"
163 #include "insn-flags.h"
164 #include "toplev.h"
165 #include "recog.h"
166 #include "output.h"
167 #include "basic-block.h"
168 #include "varray.h"
170 #ifdef STACK_REGS
172 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
174 /* This is the basic stack record. TOP is an index into REG[] such
175 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
177 If TOP is -2, REG[] is not yet initialized. Stack initialization
178 consists of placing each live reg in array `reg' and setting `top'
179 appropriately.
181 REG_SET indicates which registers are live. */
183 typedef struct stack_def
185 int top; /* index to top stack element */
186 HARD_REG_SET reg_set; /* set of live registers */
187 char reg[REG_STACK_SIZE]; /* register - stack mapping */
188 } *stack;
190 /* This is used to carry information about basic blocks. It is
191 attached to the AUX field of the standard CFG block. */
193 typedef struct block_info_def
195 struct stack_def stack_in; /* Input stack configuration. */
196 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
197 int done; /* True if block already converted. */
198 } *block_info;
200 #define BLOCK_INFO(B) ((block_info) (B)->aux)
202 /* Passed to change_stack to indicate where to emit insns. */
203 enum emit_where
205 EMIT_AFTER,
206 EMIT_BEFORE
209 /* We use this array to cache info about insns, because otherwise we
210 spend too much time in stack_regs_mentioned_p.
212 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
213 the insn uses stack registers, two indicates the insn does not use
214 stack registers. */
215 static varray_type stack_regs_mentioned_data;
217 /* The block we're currently working on. */
218 static basic_block current_block;
220 /* This is the register file for all register after conversion */
221 static rtx
222 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
224 #define FP_MODE_REG(regno,mode) \
225 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int)(mode)])
227 /* Used to initialize uninitialized registers. */
228 static rtx nan;
230 /* Forward declarations */
232 static int stack_regs_mentioned_p PROTO((rtx pat));
233 static void straighten_stack PROTO((rtx, stack));
234 static void pop_stack PROTO((stack, int));
235 static rtx *get_true_reg PROTO((rtx *));
237 static int check_asm_stack_operands PROTO((rtx));
238 static int get_asm_operand_n_inputs PROTO((rtx));
239 static rtx stack_result PROTO((tree));
240 static void replace_reg PROTO((rtx *, int));
241 static void remove_regno_note PROTO((rtx, enum reg_note, int));
242 static int get_hard_regnum PROTO((stack, rtx));
243 static void delete_insn_for_stacker PROTO((rtx));
244 static rtx emit_pop_insn PROTO((rtx, stack, rtx,
245 enum emit_where));
246 static void emit_swap_insn PROTO((rtx, stack, rtx));
247 static void move_for_stack_reg PROTO((rtx, stack, rtx));
248 static int swap_rtx_condition_1 PROTO((rtx));
249 static int swap_rtx_condition PROTO((rtx));
250 static void compare_for_stack_reg PROTO((rtx, stack, rtx));
251 static void subst_stack_regs_pat PROTO((rtx, stack, rtx));
252 static void subst_asm_stack_regs PROTO((rtx, stack));
253 static void subst_stack_regs PROTO((rtx, stack));
254 static void change_stack PROTO((rtx, stack, stack,
255 enum emit_where));
256 static int convert_regs_entry PROTO((void));
257 static void convert_regs_exit PROTO((void));
258 static int convert_regs_1 PROTO((FILE *, basic_block));
259 static int convert_regs_2 PROTO((FILE *, basic_block));
260 static int convert_regs PROTO((FILE *));
261 static void print_stack PROTO((FILE *, stack));
263 /* Return non-zero if any stack register is mentioned somewhere within PAT. */
265 static int
266 stack_regs_mentioned_p (pat)
267 rtx pat;
269 register const char *fmt;
270 register int i;
272 if (STACK_REG_P (pat))
273 return 1;
275 fmt = GET_RTX_FORMAT (GET_CODE (pat));
276 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
278 if (fmt[i] == 'E')
280 register int j;
282 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
283 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
284 return 1;
286 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
287 return 1;
290 return 0;
293 /* Return nonzero if INSN mentions stacked registers, else return zero. */
296 stack_regs_mentioned (insn)
297 rtx insn;
299 unsigned int uid, max;
300 int test;
302 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
303 return 0;
305 uid = INSN_UID (insn);
306 max = VARRAY_SIZE (stack_regs_mentioned_data);
307 if (uid >= max)
309 /* Allocate some extra size to avoid too many reallocs, but
310 do not grow too quickly. */
311 max = uid + uid / 20;
312 VARRAY_GROW (stack_regs_mentioned_data, max);
315 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
316 if (test == 0)
318 /* This insn has yet to be examined. Do so now. */
319 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
320 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
323 return test == 1;
326 static rtx ix86_flags_rtx;
328 static rtx
329 next_flags_user (insn)
330 rtx insn;
332 /* Search forward looking for the first use of this value.
333 Stop at block boundaries. */
334 /* ??? This really cries for BLOCK_END! */
336 while (1)
338 insn = NEXT_INSN (insn);
339 if (!insn)
340 return NULL_RTX;
342 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
343 && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
344 return insn;
346 if (GET_CODE (insn) == JUMP_INSN
347 || GET_CODE (insn) == CODE_LABEL
348 || GET_CODE (insn) == CALL_INSN)
349 return NULL_RTX;
353 /* Reorganise the stack into ascending numbers,
354 after this insn. */
356 static void
357 straighten_stack (insn, regstack)
358 rtx insn;
359 stack regstack;
361 struct stack_def temp_stack;
362 int top;
364 /* If there is only a single register on the stack, then the stack is
365 already in increasing order and no reorganization is needed.
367 Similarly if the stack is empty. */
368 if (regstack->top <= 0)
369 return;
371 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
373 for (top = temp_stack.top = regstack->top; top >= 0; top--)
374 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
376 change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
379 /* Pop a register from the stack */
381 static void
382 pop_stack (regstack, regno)
383 stack regstack;
384 int regno;
386 int top = regstack->top;
388 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
389 regstack->top--;
390 /* If regno was not at the top of stack then adjust stack */
391 if (regstack->reg [top] != regno)
393 int i;
394 for (i = regstack->top; i >= 0; i--)
395 if (regstack->reg [i] == regno)
397 int j;
398 for (j = i; j < top; j++)
399 regstack->reg [j] = regstack->reg [j + 1];
400 break;
405 /* Convert register usage from "flat" register file usage to a "stack
406 register file. FIRST is the first insn in the function, FILE is the
407 dump file, if used.
409 Construct a CFG and run life analysis. Then convert each insn one
410 by one. Run a last jump_optimize pass, if optimizing, to eliminate
411 code duplication created when the converter inserts pop insns on
412 the edges. */
414 void
415 reg_to_stack (first, file)
416 rtx first;
417 FILE *file;
419 int i;
420 int max_uid;
421 block_info bi;
423 /* See if there is something to do. Flow analysis is quite
424 expensive so we might save some compilation time. */
425 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
426 if (regs_ever_live[i])
427 break;
428 if (i > LAST_STACK_REG)
429 return;
431 /* Ok, floating point instructions exist. If not optimizing,
432 build the CFG and run life analysis. */
433 find_basic_blocks (first, max_reg_num (), file, 0);
434 count_or_remove_death_notes (NULL, 1);
435 life_analysis (first, max_reg_num (), file, 0);
437 /* Set up block info for each basic block. */
438 bi = (block_info) alloca ((n_basic_blocks + 1) * sizeof (*bi));
439 memset (bi, 0, (n_basic_blocks + 1) * sizeof (*bi));
440 for (i = n_basic_blocks - 1; i >= 0; --i)
441 BASIC_BLOCK (i)->aux = bi + i;
442 EXIT_BLOCK_PTR->aux = bi + n_basic_blocks;
444 /* Create the replacement registers up front. */
445 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
447 enum machine_mode mode;
448 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
449 mode != VOIDmode;
450 mode = GET_MODE_WIDER_MODE (mode))
451 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
452 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
453 mode != VOIDmode;
454 mode = GET_MODE_WIDER_MODE (mode))
455 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
458 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
460 /* A QNaN for initializing uninitialized variables.
462 ??? We can't load from constant memory in PIC mode, because
463 we're insertting these instructions before the prologue and
464 the PIC register hasn't been set up. In that case, fall back
465 on zero, which we can get from `ldz'. */
467 if (flag_pic)
468 nan = CONST0_RTX (SFmode);
469 else
471 nan = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
472 nan = force_const_mem (SFmode, nan);
475 /* Allocate a cache for stack_regs_mentioned. */
476 max_uid = get_max_uid ();
477 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
478 "stack_regs_mentioned cache");
480 if (convert_regs (file) && optimize)
482 jump_optimize (first, JUMP_CROSS_JUMP_DEATH_MATTERS,
483 !JUMP_NOOP_MOVES, !JUMP_AFTER_REGSCAN);
486 VARRAY_FREE (stack_regs_mentioned_data);
489 /* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
490 label's chain of references, and note which insn contains each
491 reference. */
493 static void
494 record_label_references (insn, pat)
495 rtx insn, pat;
497 register enum rtx_code code = GET_CODE (pat);
498 register int i;
499 register const char *fmt;
501 if (code == LABEL_REF)
503 register rtx label = XEXP (pat, 0);
504 register rtx ref;
506 if (GET_CODE (label) != CODE_LABEL)
507 abort ();
509 /* If this is an undefined label, LABEL_REFS (label) contains
510 garbage. */
511 if (INSN_UID (label) == 0)
512 return;
514 /* Don't make a duplicate in the code_label's chain. */
516 for (ref = LABEL_REFS (label);
517 ref && ref != label;
518 ref = LABEL_NEXTREF (ref))
519 if (CONTAINING_INSN (ref) == insn)
520 return;
522 CONTAINING_INSN (pat) = insn;
523 LABEL_NEXTREF (pat) = LABEL_REFS (label);
524 LABEL_REFS (label) = pat;
526 return;
529 fmt = GET_RTX_FORMAT (code);
530 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
532 if (fmt[i] == 'e')
533 record_label_references (insn, XEXP (pat, i));
534 if (fmt[i] == 'E')
536 register int j;
537 for (j = 0; j < XVECLEN (pat, i); j++)
538 record_label_references (insn, XVECEXP (pat, i, j));
543 /* Return a pointer to the REG expression within PAT. If PAT is not a
544 REG, possible enclosed by a conversion rtx, return the inner part of
545 PAT that stopped the search. */
547 static rtx *
548 get_true_reg (pat)
549 rtx *pat;
551 for (;;)
552 switch (GET_CODE (*pat))
554 case SUBREG:
555 /* Eliminate FP subregister accesses in favour of the
556 actual FP register in use. */
558 rtx subreg;
559 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
561 *pat = FP_MODE_REG (REGNO (subreg) + SUBREG_WORD (*pat),
562 GET_MODE (subreg));
563 default:
564 return pat;
567 case FLOAT:
568 case FIX:
569 case FLOAT_EXTEND:
570 pat = & XEXP (*pat, 0);
574 /* There are many rules that an asm statement for stack-like regs must
575 follow. Those rules are explained at the top of this file: the rule
576 numbers below refer to that explanation. */
578 static int
579 check_asm_stack_operands (insn)
580 rtx insn;
582 int i;
583 int n_clobbers;
584 int malformed_asm = 0;
585 rtx body = PATTERN (insn);
587 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
588 char implicitly_dies[FIRST_PSEUDO_REGISTER];
589 int alt;
591 rtx *clobber_reg;
592 int n_inputs, n_outputs;
594 /* Find out what the constraints require. If no constraint
595 alternative matches, this asm is malformed. */
596 extract_insn (insn);
597 constrain_operands (1);
598 alt = which_alternative;
600 preprocess_constraints ();
602 n_inputs = get_asm_operand_n_inputs (body);
603 n_outputs = recog_data.n_operands - n_inputs;
605 if (alt < 0)
607 malformed_asm = 1;
608 /* Avoid further trouble with this insn. */
609 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
610 return 0;
613 /* Strip SUBREGs here to make the following code simpler. */
614 for (i = 0; i < recog_data.n_operands; i++)
615 if (GET_CODE (recog_data.operand[i]) == SUBREG
616 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
617 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
619 /* Set up CLOBBER_REG. */
621 n_clobbers = 0;
623 if (GET_CODE (body) == PARALLEL)
625 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
627 for (i = 0; i < XVECLEN (body, 0); i++)
628 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
630 rtx clobber = XVECEXP (body, 0, i);
631 rtx reg = XEXP (clobber, 0);
633 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
634 reg = SUBREG_REG (reg);
636 if (STACK_REG_P (reg))
638 clobber_reg[n_clobbers] = reg;
639 n_clobbers++;
644 /* Enforce rule #4: Output operands must specifically indicate which
645 reg an output appears in after an asm. "=f" is not allowed: the
646 operand constraints must select a class with a single reg.
648 Also enforce rule #5: Output operands must start at the top of
649 the reg-stack: output operands may not "skip" a reg. */
651 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
652 for (i = 0; i < n_outputs; i++)
653 if (STACK_REG_P (recog_data.operand[i]))
655 if (reg_class_size[(int) recog_op_alt[i][alt].class] != 1)
657 error_for_asm (insn, "Output constraint %d must specify a single register", i);
658 malformed_asm = 1;
660 else
661 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
665 /* Search for first non-popped reg. */
666 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
667 if (! reg_used_as_output[i])
668 break;
670 /* If there are any other popped regs, that's an error. */
671 for (; i < LAST_STACK_REG + 1; i++)
672 if (reg_used_as_output[i])
673 break;
675 if (i != LAST_STACK_REG + 1)
677 error_for_asm (insn, "Output regs must be grouped at top of stack");
678 malformed_asm = 1;
681 /* Enforce rule #2: All implicitly popped input regs must be closer
682 to the top of the reg-stack than any input that is not implicitly
683 popped. */
685 memset (implicitly_dies, 0, sizeof (implicitly_dies));
686 for (i = n_outputs; i < n_outputs + n_inputs; i++)
687 if (STACK_REG_P (recog_data.operand[i]))
689 /* An input reg is implicitly popped if it is tied to an
690 output, or if there is a CLOBBER for it. */
691 int j;
693 for (j = 0; j < n_clobbers; j++)
694 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
695 break;
697 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
698 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
701 /* Search for first non-popped reg. */
702 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
703 if (! implicitly_dies[i])
704 break;
706 /* If there are any other popped regs, that's an error. */
707 for (; i < LAST_STACK_REG + 1; i++)
708 if (implicitly_dies[i])
709 break;
711 if (i != LAST_STACK_REG + 1)
713 error_for_asm (insn,
714 "Implicitly popped regs must be grouped at top of stack");
715 malformed_asm = 1;
718 /* Enfore rule #3: If any input operand uses the "f" constraint, all
719 output constraints must use the "&" earlyclobber.
721 ??? Detect this more deterministically by having constrain_asm_operands
722 record any earlyclobber. */
724 for (i = n_outputs; i < n_outputs + n_inputs; i++)
725 if (recog_op_alt[i][alt].matches == -1)
727 int j;
729 for (j = 0; j < n_outputs; j++)
730 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
732 error_for_asm (insn,
733 "Output operand %d must use `&' constraint", j);
734 malformed_asm = 1;
738 if (malformed_asm)
740 /* Avoid further trouble with this insn. */
741 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
742 return 0;
745 return 1;
748 /* Calculate the number of inputs and outputs in BODY, an
749 asm_operands. N_OPERANDS is the total number of operands, and
750 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
751 placed. */
753 static int
754 get_asm_operand_n_inputs (body)
755 rtx body;
757 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
758 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
760 else if (GET_CODE (body) == ASM_OPERANDS)
761 return ASM_OPERANDS_INPUT_LENGTH (body);
763 else if (GET_CODE (body) == PARALLEL
764 && GET_CODE (XVECEXP (body, 0, 0)) == SET)
765 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
767 else if (GET_CODE (body) == PARALLEL
768 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
769 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
771 abort ();
774 /* If current function returns its result in an fp stack register,
775 return the REG. Otherwise, return 0. */
777 static rtx
778 stack_result (decl)
779 tree decl;
781 rtx result;
783 /* If the value is supposed to be returned in memory, then clearly
784 it is not returned in a stack register. */
785 if (aggregate_value_p (DECL_RESULT (decl)))
786 return 0;
788 result = DECL_RTL (DECL_RESULT (decl));
789 /* ?!? What is this code supposed to do? Can this code actually
790 trigger if we kick out aggregates above? */
791 if (result != 0
792 && ! (GET_CODE (result) == REG
793 && REGNO (result) < FIRST_PSEUDO_REGISTER))
795 #ifdef FUNCTION_OUTGOING_VALUE
796 result
797 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
798 #else
799 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
800 #endif
803 return result != 0 && STACK_REG_P (result) ? result : 0;
808 * This section deals with stack register substitution, and forms the second
809 * pass over the RTL.
812 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
813 the desired hard REGNO. */
815 static void
816 replace_reg (reg, regno)
817 rtx *reg;
818 int regno;
820 if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
821 || ! STACK_REG_P (*reg))
822 abort ();
824 switch (GET_MODE_CLASS (GET_MODE (*reg)))
826 default: abort ();
827 case MODE_FLOAT:
828 case MODE_COMPLEX_FLOAT:;
831 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
834 /* Remove a note of type NOTE, which must be found, for register
835 number REGNO from INSN. Remove only one such note. */
837 static void
838 remove_regno_note (insn, note, regno)
839 rtx insn;
840 enum reg_note note;
841 int regno;
843 register rtx *note_link, this;
845 note_link = &REG_NOTES(insn);
846 for (this = *note_link; this; this = XEXP (this, 1))
847 if (REG_NOTE_KIND (this) == note
848 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
850 *note_link = XEXP (this, 1);
851 return;
853 else
854 note_link = &XEXP (this, 1);
856 abort ();
859 /* Find the hard register number of virtual register REG in REGSTACK.
860 The hard register number is relative to the top of the stack. -1 is
861 returned if the register is not found. */
863 static int
864 get_hard_regnum (regstack, reg)
865 stack regstack;
866 rtx reg;
868 int i;
870 if (! STACK_REG_P (reg))
871 abort ();
873 for (i = regstack->top; i >= 0; i--)
874 if (regstack->reg[i] == REGNO (reg))
875 break;
877 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
880 /* Delete INSN from the RTL. Mark the insn, but don't remove it from
881 the chain of insns. Doing so could confuse block_begin and block_end
882 if this were the only insn in the block. */
884 static void
885 delete_insn_for_stacker (insn)
886 rtx insn;
888 PUT_CODE (insn, NOTE);
889 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
890 NOTE_SOURCE_FILE (insn) = 0;
893 /* Emit an insn to pop virtual register REG before or after INSN.
894 REGSTACK is the stack state after INSN and is updated to reflect this
895 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
896 is represented as a SET whose destination is the register to be popped
897 and source is the top of stack. A death note for the top of stack
898 cases the movdf pattern to pop. */
900 static rtx
901 emit_pop_insn (insn, regstack, reg, where)
902 rtx insn;
903 stack regstack;
904 rtx reg;
905 enum emit_where where;
907 rtx pop_insn, pop_rtx;
908 int hard_regno;
910 hard_regno = get_hard_regnum (regstack, reg);
912 if (hard_regno < FIRST_STACK_REG)
913 abort ();
915 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
916 FP_MODE_REG (FIRST_STACK_REG, DFmode));
918 if (where == EMIT_AFTER)
919 pop_insn = emit_block_insn_after (pop_rtx, insn, current_block);
920 else
921 pop_insn = emit_block_insn_before (pop_rtx, insn, current_block);
923 REG_NOTES (pop_insn)
924 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
925 REG_NOTES (pop_insn));
927 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
928 = regstack->reg[regstack->top];
929 regstack->top -= 1;
930 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
932 return pop_insn;
935 /* Emit an insn before or after INSN to swap virtual register REG with
936 the top of stack. REGSTACK is the stack state before the swap, and
937 is updated to reflect the swap. A swap insn is represented as a
938 PARALLEL of two patterns: each pattern moves one reg to the other.
940 If REG is already at the top of the stack, no insn is emitted. */
942 static void
943 emit_swap_insn (insn, regstack, reg)
944 rtx insn;
945 stack regstack;
946 rtx reg;
948 int hard_regno;
949 rtx swap_rtx;
950 int tmp, other_reg; /* swap regno temps */
951 rtx i1; /* the stack-reg insn prior to INSN */
952 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
954 hard_regno = get_hard_regnum (regstack, reg);
956 if (hard_regno < FIRST_STACK_REG)
957 abort ();
958 if (hard_regno == FIRST_STACK_REG)
959 return;
961 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
963 tmp = regstack->reg[other_reg];
964 regstack->reg[other_reg] = regstack->reg[regstack->top];
965 regstack->reg[regstack->top] = tmp;
967 /* Find the previous insn involving stack regs, but don't pass a
968 block boundary. */
969 i1 = NULL;
970 if (current_block && insn != current_block->head)
972 rtx tmp = PREV_INSN (insn);
973 while (tmp != current_block->head)
975 if (GET_CODE (tmp) == CODE_LABEL
976 || (GET_CODE (tmp) == NOTE
977 && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BASIC_BLOCK)
978 || (GET_CODE (tmp) == INSN
979 && stack_regs_mentioned (tmp)))
981 i1 = tmp;
982 break;
984 tmp = PREV_INSN (tmp);
988 if (i1 != NULL_RTX
989 && (i1set = single_set (i1)) != NULL_RTX)
991 rtx i1src = *get_true_reg (&SET_SRC (i1set));
992 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
994 /* If the previous register stack push was from the reg we are to
995 swap with, omit the swap. */
997 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == FIRST_STACK_REG
998 && GET_CODE (i1src) == REG && REGNO (i1src) == hard_regno - 1
999 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1000 return;
1002 /* If the previous insn wrote to the reg we are to swap with,
1003 omit the swap. */
1005 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == hard_regno
1006 && GET_CODE (i1src) == REG && REGNO (i1src) == FIRST_STACK_REG
1007 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1008 return;
1011 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
1012 FP_MODE_REG (FIRST_STACK_REG, XFmode));
1014 if (i1)
1015 emit_block_insn_after (swap_rtx, i1, current_block);
1016 else if (current_block)
1018 i1 = emit_insn_before (swap_rtx, current_block->head);
1019 current_block->head = i1;
1021 else
1022 emit_insn_before (swap_rtx, insn);
1025 /* Handle a move to or from a stack register in PAT, which is in INSN.
1026 REGSTACK is the current stack. */
1028 static void
1029 move_for_stack_reg (insn, regstack, pat)
1030 rtx insn;
1031 stack regstack;
1032 rtx pat;
1034 rtx *psrc = get_true_reg (&SET_SRC (pat));
1035 rtx *pdest = get_true_reg (&SET_DEST (pat));
1036 rtx src, dest;
1037 rtx note;
1039 src = *psrc; dest = *pdest;
1041 if (STACK_REG_P (src) && STACK_REG_P (dest))
1043 /* Write from one stack reg to another. If SRC dies here, then
1044 just change the register mapping and delete the insn. */
1046 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1047 if (note)
1049 int i;
1051 /* If this is a no-op move, there must not be a REG_DEAD note. */
1052 if (REGNO (src) == REGNO (dest))
1053 abort ();
1055 for (i = regstack->top; i >= 0; i--)
1056 if (regstack->reg[i] == REGNO (src))
1057 break;
1059 /* The source must be live, and the dest must be dead. */
1060 if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1061 abort ();
1063 /* It is possible that the dest is unused after this insn.
1064 If so, just pop the src. */
1066 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1068 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1070 delete_insn_for_stacker (insn);
1071 return;
1074 regstack->reg[i] = REGNO (dest);
1076 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1077 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1079 delete_insn_for_stacker (insn);
1081 return;
1084 /* The source reg does not die. */
1086 /* If this appears to be a no-op move, delete it, or else it
1087 will confuse the machine description output patterns. But if
1088 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1089 for REG_UNUSED will not work for deleted insns. */
1091 if (REGNO (src) == REGNO (dest))
1093 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1094 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1096 delete_insn_for_stacker (insn);
1097 return;
1100 /* The destination ought to be dead */
1101 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1102 abort ();
1104 replace_reg (psrc, get_hard_regnum (regstack, src));
1106 regstack->reg[++regstack->top] = REGNO (dest);
1107 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1108 replace_reg (pdest, FIRST_STACK_REG);
1110 else if (STACK_REG_P (src))
1112 /* Save from a stack reg to MEM, or possibly integer reg. Since
1113 only top of stack may be saved, emit an exchange first if
1114 needs be. */
1116 emit_swap_insn (insn, regstack, src);
1118 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1119 if (note)
1121 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1122 regstack->top--;
1123 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1125 else if (GET_MODE (src) == XFmode && regstack->top < REG_STACK_SIZE - 1)
1127 /* A 387 cannot write an XFmode value to a MEM without
1128 clobbering the source reg. The output code can handle
1129 this by reading back the value from the MEM.
1130 But it is more efficient to use a temp register if one is
1131 available. Push the source value here if the register
1132 stack is not full, and then write the value to memory via
1133 a pop. */
1134 rtx push_rtx, push_insn;
1135 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, XFmode);
1137 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1138 push_insn = emit_insn_before (push_rtx, insn);
1139 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1140 REG_NOTES (insn));
1143 replace_reg (psrc, FIRST_STACK_REG);
1145 else if (STACK_REG_P (dest))
1147 /* Load from MEM, or possibly integer REG or constant, into the
1148 stack regs. The actual target is always the top of the
1149 stack. The stack mapping is changed to reflect that DEST is
1150 now at top of stack. */
1152 /* The destination ought to be dead */
1153 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1154 abort ();
1156 if (regstack->top >= REG_STACK_SIZE)
1157 abort ();
1159 regstack->reg[++regstack->top] = REGNO (dest);
1160 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1161 replace_reg (pdest, FIRST_STACK_REG);
1163 else
1164 abort ();
1167 /* Swap the condition on a branch, if there is one. Return true if we
1168 found a condition to swap. False if the condition was not used as
1169 such. */
1171 static int
1172 swap_rtx_condition_1 (pat)
1173 rtx pat;
1175 register const char *fmt;
1176 register int i, r = 0;
1178 if (GET_RTX_CLASS (GET_CODE (pat)) == '<')
1180 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1181 r = 1;
1183 else
1185 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1186 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1188 if (fmt[i] == 'E')
1190 register int j;
1192 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1193 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1195 else if (fmt[i] == 'e')
1196 r |= swap_rtx_condition_1 (XEXP (pat, i));
1200 return r;
1203 static int
1204 swap_rtx_condition (insn)
1205 rtx insn;
1207 rtx pat = PATTERN (insn);
1209 /* We're looking for a single set to cc0 or an HImode temporary. */
1211 if (GET_CODE (pat) == SET
1212 && GET_CODE (SET_DEST (pat)) == REG
1213 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1215 insn = next_flags_user (insn);
1216 if (insn == NULL_RTX)
1217 return 0;
1218 pat = PATTERN (insn);
1221 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1222 not doing anything with the cc value right now. We may be able to
1223 search for one though. */
1225 if (GET_CODE (pat) == SET
1226 && GET_CODE (SET_SRC (pat)) == UNSPEC
1227 && XINT (SET_SRC (pat), 1) == 9)
1229 rtx dest = SET_DEST (pat);
1231 /* Search forward looking for the first use of this value.
1232 Stop at block boundaries. */
1233 /* ??? This really cries for BLOCK_END! */
1234 while (1)
1236 insn = NEXT_INSN (insn);
1237 if (insn == NULL_RTX)
1238 return 0;
1239 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
1240 && reg_mentioned_p (dest, insn))
1241 break;
1242 if (GET_CODE (insn) == JUMP_INSN)
1243 return 0;
1244 if (GET_CODE (insn) == CODE_LABEL)
1245 return 0;
1248 /* So we've found the insn using this value. If it is anything
1249 other than sahf, aka unspec 10, or the value does not die
1250 (meaning we'd have to search further), then we must give up. */
1251 pat = PATTERN (insn);
1252 if (GET_CODE (pat) != SET
1253 || GET_CODE (SET_SRC (pat)) != UNSPEC
1254 || XINT (SET_SRC (pat), 1) != 10
1255 || ! dead_or_set_p (insn, dest))
1256 return 0;
1258 /* Now we are prepared to handle this as a normal cc0 setter. */
1259 insn = next_flags_user (insn);
1260 if (insn == NULL_RTX)
1261 return 0;
1262 pat = PATTERN (insn);
1265 return swap_rtx_condition_1 (pat);
1268 /* Handle a comparison. Special care needs to be taken to avoid
1269 causing comparisons that a 387 cannot do correctly, such as EQ.
1271 Also, a pop insn may need to be emitted. The 387 does have an
1272 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1273 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1274 set up. */
1276 static void
1277 compare_for_stack_reg (insn, regstack, pat_src)
1278 rtx insn;
1279 stack regstack;
1280 rtx pat_src;
1282 rtx *src1, *src2;
1283 rtx src1_note, src2_note;
1284 rtx flags_user;
1286 src1 = get_true_reg (&XEXP (pat_src, 0));
1287 src2 = get_true_reg (&XEXP (pat_src, 1));
1288 flags_user = next_flags_user (insn);
1290 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1291 registers that die in this insn - move those to stack top first. */
1292 if ((! STACK_REG_P (*src1)
1293 || (STACK_REG_P (*src2)
1294 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1295 && swap_rtx_condition (insn))
1297 rtx temp;
1298 temp = XEXP (pat_src, 0);
1299 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1300 XEXP (pat_src, 1) = temp;
1302 src1 = get_true_reg (&XEXP (pat_src, 0));
1303 src2 = get_true_reg (&XEXP (pat_src, 1));
1305 INSN_CODE (insn) = -1;
1308 /* We will fix any death note later. */
1310 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1312 if (STACK_REG_P (*src2))
1313 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1314 else
1315 src2_note = NULL_RTX;
1317 emit_swap_insn (insn, regstack, *src1);
1319 replace_reg (src1, FIRST_STACK_REG);
1321 if (STACK_REG_P (*src2))
1322 replace_reg (src2, get_hard_regnum (regstack, *src2));
1324 if (src1_note)
1326 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1327 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1330 /* If the second operand dies, handle that. But if the operands are
1331 the same stack register, don't bother, because only one death is
1332 needed, and it was just handled. */
1334 if (src2_note
1335 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1336 && REGNO (*src1) == REGNO (*src2)))
1338 /* As a special case, two regs may die in this insn if src2 is
1339 next to top of stack and the top of stack also dies. Since
1340 we have already popped src1, "next to top of stack" is really
1341 at top (FIRST_STACK_REG) now. */
1343 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1344 && src1_note)
1346 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1347 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1349 else
1351 /* The 386 can only represent death of the first operand in
1352 the case handled above. In all other cases, emit a separate
1353 pop and remove the death note from here. */
1355 /* link_cc0_insns (insn); */
1357 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1359 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1360 EMIT_AFTER);
1365 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1366 is the current register layout. */
1368 static void
1369 subst_stack_regs_pat (insn, regstack, pat)
1370 rtx insn;
1371 stack regstack;
1372 rtx pat;
1374 rtx *dest, *src;
1376 switch (GET_CODE (pat))
1378 case USE:
1379 /* Deaths in USE insns can happen in non optimizing compilation.
1380 Handle them by popping the dying register. */
1381 src = get_true_reg (&XEXP (pat, 0));
1382 if (STACK_REG_P (*src)
1383 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1385 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1386 return;
1388 /* ??? Uninitialized USE should not happen. */
1389 else if (get_hard_regnum (regstack, *src) == -1)
1390 abort();
1391 break;
1393 case CLOBBER:
1395 rtx note;
1397 /* The fix_truncdi_1 pattern wants to be able to allocate it's
1398 own scratch register. It does this by clobbering an fp reg
1399 so that it is assured of an empty reg-stack register.
1400 If the register is live, kill it now. Remove the DEAD/UNUSED
1401 note so we don't try to kill it later too. */
1403 dest = get_true_reg (&XEXP (pat, 0));
1404 if (STACK_REG_P (*dest))
1406 note = find_reg_note (insn, REG_DEAD, *dest);
1407 if (note)
1408 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1409 else
1411 note = find_reg_note (insn, REG_UNUSED, *dest);
1412 if (!note)
1413 abort ();
1416 remove_note (insn, note);
1417 replace_reg (dest, LAST_STACK_REG);
1419 break;
1422 case SET:
1424 rtx *src1 = (rtx *) NULL_PTR, *src2;
1425 rtx src1_note, src2_note;
1426 rtx pat_src;
1428 dest = get_true_reg (&SET_DEST (pat));
1429 src = get_true_reg (&SET_SRC (pat));
1430 pat_src = SET_SRC (pat);
1432 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1433 if (STACK_REG_P (*src)
1434 || (STACK_REG_P (*dest)
1435 && (GET_CODE (*src) == REG || GET_CODE (*src) == MEM
1436 || GET_CODE (*src) == CONST_DOUBLE)))
1438 move_for_stack_reg (insn, regstack, pat);
1439 break;
1442 switch (GET_CODE (pat_src))
1444 case COMPARE:
1445 compare_for_stack_reg (insn, regstack, pat_src);
1446 break;
1448 case CALL:
1450 int count;
1451 for (count = HARD_REGNO_NREGS (REGNO (*dest), GET_MODE (*dest));
1452 --count >= 0;)
1454 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1455 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1458 replace_reg (dest, FIRST_STACK_REG);
1459 break;
1461 case REG:
1462 /* This is a `tstM2' case. */
1463 if (*dest != cc0_rtx)
1464 abort ();
1465 src1 = src;
1467 /* Fall through. */
1469 case FLOAT_TRUNCATE:
1470 case SQRT:
1471 case ABS:
1472 case NEG:
1473 /* These insns only operate on the top of the stack. DEST might
1474 be cc0_rtx if we're processing a tstM pattern. Also, it's
1475 possible that the tstM case results in a REG_DEAD note on the
1476 source. */
1478 if (src1 == 0)
1479 src1 = get_true_reg (&XEXP (pat_src, 0));
1481 emit_swap_insn (insn, regstack, *src1);
1483 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1485 if (STACK_REG_P (*dest))
1486 replace_reg (dest, FIRST_STACK_REG);
1488 if (src1_note)
1490 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1491 regstack->top--;
1492 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1495 replace_reg (src1, FIRST_STACK_REG);
1496 break;
1498 case MINUS:
1499 case DIV:
1500 /* On i386, reversed forms of subM3 and divM3 exist for
1501 MODE_FLOAT, so the same code that works for addM3 and mulM3
1502 can be used. */
1503 case MULT:
1504 case PLUS:
1505 /* These insns can accept the top of stack as a destination
1506 from a stack reg or mem, or can use the top of stack as a
1507 source and some other stack register (possibly top of stack)
1508 as a destination. */
1510 src1 = get_true_reg (&XEXP (pat_src, 0));
1511 src2 = get_true_reg (&XEXP (pat_src, 1));
1513 /* We will fix any death note later. */
1515 if (STACK_REG_P (*src1))
1516 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1517 else
1518 src1_note = NULL_RTX;
1519 if (STACK_REG_P (*src2))
1520 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1521 else
1522 src2_note = NULL_RTX;
1524 /* If either operand is not a stack register, then the dest
1525 must be top of stack. */
1527 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1528 emit_swap_insn (insn, regstack, *dest);
1529 else
1531 /* Both operands are REG. If neither operand is already
1532 at the top of stack, choose to make the one that is the dest
1533 the new top of stack. */
1535 int src1_hard_regnum, src2_hard_regnum;
1537 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1538 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1539 if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
1540 abort ();
1542 if (src1_hard_regnum != FIRST_STACK_REG
1543 && src2_hard_regnum != FIRST_STACK_REG)
1544 emit_swap_insn (insn, regstack, *dest);
1547 if (STACK_REG_P (*src1))
1548 replace_reg (src1, get_hard_regnum (regstack, *src1));
1549 if (STACK_REG_P (*src2))
1550 replace_reg (src2, get_hard_regnum (regstack, *src2));
1552 if (src1_note)
1554 rtx src1_reg = XEXP (src1_note, 0);
1556 /* If the register that dies is at the top of stack, then
1557 the destination is somewhere else - merely substitute it.
1558 But if the reg that dies is not at top of stack, then
1559 move the top of stack to the dead reg, as though we had
1560 done the insn and then a store-with-pop. */
1562 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1564 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1565 replace_reg (dest, get_hard_regnum (regstack, *dest));
1567 else
1569 int regno = get_hard_regnum (regstack, src1_reg);
1571 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1572 replace_reg (dest, regno);
1574 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1575 = regstack->reg[regstack->top];
1578 CLEAR_HARD_REG_BIT (regstack->reg_set,
1579 REGNO (XEXP (src1_note, 0)));
1580 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1581 regstack->top--;
1583 else if (src2_note)
1585 rtx src2_reg = XEXP (src2_note, 0);
1586 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1588 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1589 replace_reg (dest, get_hard_regnum (regstack, *dest));
1591 else
1593 int regno = get_hard_regnum (regstack, src2_reg);
1595 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1596 replace_reg (dest, regno);
1598 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1599 = regstack->reg[regstack->top];
1602 CLEAR_HARD_REG_BIT (regstack->reg_set,
1603 REGNO (XEXP (src2_note, 0)));
1604 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1605 regstack->top--;
1607 else
1609 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1610 replace_reg (dest, get_hard_regnum (regstack, *dest));
1612 break;
1614 case UNSPEC:
1615 switch (XINT (pat_src, 1))
1617 case 1: /* sin */
1618 case 2: /* cos */
1619 /* These insns only operate on the top of the stack. */
1621 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1623 emit_swap_insn (insn, regstack, *src1);
1625 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1627 if (STACK_REG_P (*dest))
1628 replace_reg (dest, FIRST_STACK_REG);
1630 if (src1_note)
1632 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1633 regstack->top--;
1634 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1637 replace_reg (src1, FIRST_STACK_REG);
1638 break;
1640 case 10:
1641 /* (unspec [(unspec [(compare ..)] 9)] 10)
1642 Unspec 9 is fnstsw; unspec 10 is sahf. The combination
1643 matches the PPRO fcomi instruction. */
1645 pat_src = XVECEXP (pat_src, 0, 0);
1646 if (GET_CODE (pat_src) != UNSPEC
1647 || XINT (pat_src, 1) != 9)
1648 abort ();
1649 /* FALLTHRU */
1651 case 9:
1652 /* (unspec [(compare ..)] 9) */
1653 /* Combined fcomp+fnstsw generated for doing well with
1654 CSE. When optimizing this would have been broken
1655 up before now. */
1657 pat_src = XVECEXP (pat_src, 0, 0);
1658 if (GET_CODE (pat_src) != COMPARE)
1659 abort ();
1661 compare_for_stack_reg (insn, regstack, pat_src);
1662 break;
1664 default:
1665 abort ();
1667 break;
1669 case IF_THEN_ELSE:
1670 /* This insn requires the top of stack to be the destination. */
1672 /* If the comparison operator is an FP comparison operator,
1673 it is handled correctly by compare_for_stack_reg () who
1674 will move the destination to the top of stack. But if the
1675 comparison operator is not an FP comparison operator, we
1676 have to handle it here. */
1677 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1678 && REGNO (*dest) != regstack->reg[regstack->top])
1679 emit_swap_insn (insn, regstack, *dest);
1681 src1 = get_true_reg (&XEXP (pat_src, 1));
1682 src2 = get_true_reg (&XEXP (pat_src, 2));
1684 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1685 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1688 rtx src_note [3];
1689 int i;
1691 src_note[0] = 0;
1692 src_note[1] = src1_note;
1693 src_note[2] = src2_note;
1695 if (STACK_REG_P (*src1))
1696 replace_reg (src1, get_hard_regnum (regstack, *src1));
1697 if (STACK_REG_P (*src2))
1698 replace_reg (src2, get_hard_regnum (regstack, *src2));
1700 for (i = 1; i <= 2; i++)
1701 if (src_note [i])
1703 int regno = REGNO (XEXP (src_note[i], 0));
1705 /* If the register that dies is not at the top of
1706 stack, then move the top of stack to the dead reg */
1707 if (regno != regstack->reg[regstack->top])
1709 remove_regno_note (insn, REG_DEAD, regno);
1710 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1711 EMIT_AFTER);
1713 else
1715 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
1716 replace_reg (&XEXP (src_note[i], 0), FIRST_STACK_REG);
1717 regstack->top--;
1722 /* Make dest the top of stack. Add dest to regstack if
1723 not present. */
1724 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1725 regstack->reg[++regstack->top] = REGNO (*dest);
1726 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1727 replace_reg (dest, FIRST_STACK_REG);
1728 break;
1730 default:
1731 abort ();
1733 break;
1736 default:
1737 break;
1741 /* Substitute hard regnums for any stack regs in INSN, which has
1742 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1743 before the insn, and is updated with changes made here.
1745 There are several requirements and assumptions about the use of
1746 stack-like regs in asm statements. These rules are enforced by
1747 record_asm_stack_regs; see comments there for details. Any
1748 asm_operands left in the RTL at this point may be assume to meet the
1749 requirements, since record_asm_stack_regs removes any problem asm. */
1751 static void
1752 subst_asm_stack_regs (insn, regstack)
1753 rtx insn;
1754 stack regstack;
1756 rtx body = PATTERN (insn);
1757 int alt;
1759 rtx *note_reg; /* Array of note contents */
1760 rtx **note_loc; /* Address of REG field of each note */
1761 enum reg_note *note_kind; /* The type of each note */
1763 rtx *clobber_reg;
1764 rtx **clobber_loc;
1766 struct stack_def temp_stack;
1767 int n_notes;
1768 int n_clobbers;
1769 rtx note;
1770 int i;
1771 int n_inputs, n_outputs;
1773 if (! check_asm_stack_operands (insn))
1774 return;
1776 /* Find out what the constraints required. If no constraint
1777 alternative matches, that is a compiler bug: we should have caught
1778 such an insn in check_asm_stack_operands. */
1779 extract_insn (insn);
1780 constrain_operands (1);
1781 alt = which_alternative;
1783 preprocess_constraints ();
1785 n_inputs = get_asm_operand_n_inputs (body);
1786 n_outputs = recog_data.n_operands - n_inputs;
1788 if (alt < 0)
1789 abort ();
1791 /* Strip SUBREGs here to make the following code simpler. */
1792 for (i = 0; i < recog_data.n_operands; i++)
1793 if (GET_CODE (recog_data.operand[i]) == SUBREG
1794 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
1796 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1797 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1800 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1802 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
1803 i++;
1805 note_reg = (rtx *) alloca (i * sizeof (rtx));
1806 note_loc = (rtx **) alloca (i * sizeof (rtx *));
1807 note_kind = (enum reg_note *) alloca (i * sizeof (enum reg_note));
1809 n_notes = 0;
1810 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1812 rtx reg = XEXP (note, 0);
1813 rtx *loc = & XEXP (note, 0);
1815 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1817 loc = & SUBREG_REG (reg);
1818 reg = SUBREG_REG (reg);
1821 if (STACK_REG_P (reg)
1822 && (REG_NOTE_KIND (note) == REG_DEAD
1823 || REG_NOTE_KIND (note) == REG_UNUSED))
1825 note_reg[n_notes] = reg;
1826 note_loc[n_notes] = loc;
1827 note_kind[n_notes] = REG_NOTE_KIND (note);
1828 n_notes++;
1832 /* Set up CLOBBER_REG and CLOBBER_LOC. */
1834 n_clobbers = 0;
1836 if (GET_CODE (body) == PARALLEL)
1838 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
1839 clobber_loc = (rtx **) alloca (XVECLEN (body, 0) * sizeof (rtx *));
1841 for (i = 0; i < XVECLEN (body, 0); i++)
1842 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1844 rtx clobber = XVECEXP (body, 0, i);
1845 rtx reg = XEXP (clobber, 0);
1846 rtx *loc = & XEXP (clobber, 0);
1848 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
1850 loc = & SUBREG_REG (reg);
1851 reg = SUBREG_REG (reg);
1854 if (STACK_REG_P (reg))
1856 clobber_reg[n_clobbers] = reg;
1857 clobber_loc[n_clobbers] = loc;
1858 n_clobbers++;
1863 temp_stack = *regstack;
1865 /* Put the input regs into the desired place in TEMP_STACK. */
1867 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1868 if (STACK_REG_P (recog_data.operand[i])
1869 && reg_class_subset_p (recog_op_alt[i][alt].class,
1870 FLOAT_REGS)
1871 && recog_op_alt[i][alt].class != FLOAT_REGS)
1873 /* If an operand needs to be in a particular reg in
1874 FLOAT_REGS, the constraint was either 't' or 'u'. Since
1875 these constraints are for single register classes, and
1876 reload guaranteed that operand[i] is already in that class,
1877 we can just use REGNO (recog_data.operand[i]) to know which
1878 actual reg this operand needs to be in. */
1880 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
1882 if (regno < 0)
1883 abort ();
1885 if (regno != REGNO (recog_data.operand[i]))
1887 /* recog_data.operand[i] is not in the right place. Find
1888 it and swap it with whatever is already in I's place.
1889 K is where recog_data.operand[i] is now. J is where it
1890 should be. */
1891 int j, k, temp;
1893 k = temp_stack.top - (regno - FIRST_STACK_REG);
1894 j = (temp_stack.top
1895 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
1897 temp = temp_stack.reg[k];
1898 temp_stack.reg[k] = temp_stack.reg[j];
1899 temp_stack.reg[j] = temp;
1903 /* Emit insns before INSN to make sure the reg-stack is in the right
1904 order. */
1906 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1908 /* Make the needed input register substitutions. Do death notes and
1909 clobbers too, because these are for inputs, not outputs. */
1911 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1912 if (STACK_REG_P (recog_data.operand[i]))
1914 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
1916 if (regnum < 0)
1917 abort ();
1919 replace_reg (recog_data.operand_loc[i], regnum);
1922 for (i = 0; i < n_notes; i++)
1923 if (note_kind[i] == REG_DEAD)
1925 int regnum = get_hard_regnum (regstack, note_reg[i]);
1927 if (regnum < 0)
1928 abort ();
1930 replace_reg (note_loc[i], regnum);
1933 for (i = 0; i < n_clobbers; i++)
1935 /* It's OK for a CLOBBER to reference a reg that is not live.
1936 Don't try to replace it in that case. */
1937 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
1939 if (regnum >= 0)
1941 /* Sigh - clobbers always have QImode. But replace_reg knows
1942 that these regs can't be MODE_INT and will abort. Just put
1943 the right reg there without calling replace_reg. */
1945 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
1949 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
1951 for (i = n_outputs; i < n_outputs + n_inputs; i++)
1952 if (STACK_REG_P (recog_data.operand[i]))
1954 /* An input reg is implicitly popped if it is tied to an
1955 output, or if there is a CLOBBER for it. */
1956 int j;
1958 for (j = 0; j < n_clobbers; j++)
1959 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
1960 break;
1962 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
1964 /* recog_data.operand[i] might not be at the top of stack.
1965 But that's OK, because all we need to do is pop the
1966 right number of regs off of the top of the reg-stack.
1967 record_asm_stack_regs guaranteed that all implicitly
1968 popped regs were grouped at the top of the reg-stack. */
1970 CLEAR_HARD_REG_BIT (regstack->reg_set,
1971 regstack->reg[regstack->top]);
1972 regstack->top--;
1976 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
1977 Note that there isn't any need to substitute register numbers.
1978 ??? Explain why this is true. */
1980 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
1982 /* See if there is an output for this hard reg. */
1983 int j;
1985 for (j = 0; j < n_outputs; j++)
1986 if (STACK_REG_P (recog_data.operand[j])
1987 && REGNO (recog_data.operand[j]) == i)
1989 regstack->reg[++regstack->top] = i;
1990 SET_HARD_REG_BIT (regstack->reg_set, i);
1991 break;
1995 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
1996 input that the asm didn't implicitly pop. If the asm didn't
1997 implicitly pop an input reg, that reg will still be live.
1999 Note that we can't use find_regno_note here: the register numbers
2000 in the death notes have already been substituted. */
2002 for (i = 0; i < n_outputs; i++)
2003 if (STACK_REG_P (recog_data.operand[i]))
2005 int j;
2007 for (j = 0; j < n_notes; j++)
2008 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2009 && note_kind[j] == REG_UNUSED)
2011 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2012 EMIT_AFTER);
2013 break;
2017 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2018 if (STACK_REG_P (recog_data.operand[i]))
2020 int j;
2022 for (j = 0; j < n_notes; j++)
2023 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2024 && note_kind[j] == REG_DEAD
2025 && TEST_HARD_REG_BIT (regstack->reg_set,
2026 REGNO (recog_data.operand[i])))
2028 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2029 EMIT_AFTER);
2030 break;
2035 /* Substitute stack hard reg numbers for stack virtual registers in
2036 INSN. Non-stack register numbers are not changed. REGSTACK is the
2037 current stack content. Insns may be emitted as needed to arrange the
2038 stack for the 387 based on the contents of the insn. */
2040 static void
2041 subst_stack_regs (insn, regstack)
2042 rtx insn;
2043 stack regstack;
2045 register rtx *note_link, note;
2046 register int i;
2048 if (GET_CODE (insn) == CALL_INSN)
2050 int top = regstack->top;
2052 /* If there are any floating point parameters to be passed in
2053 registers for this call, make sure they are in the right
2054 order. */
2056 if (top >= 0)
2058 straighten_stack (PREV_INSN (insn), regstack);
2060 /* Now mark the arguments as dead after the call. */
2062 while (regstack->top >= 0)
2064 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2065 regstack->top--;
2070 /* Do the actual substitution if any stack regs are mentioned.
2071 Since we only record whether entire insn mentions stack regs, and
2072 subst_stack_regs_pat only works for patterns that contain stack regs,
2073 we must check each pattern in a parallel here. A call_value_pop could
2074 fail otherwise. */
2076 if (stack_regs_mentioned (insn))
2078 int n_operands = asm_noperands (PATTERN (insn));
2079 if (n_operands >= 0)
2081 /* This insn is an `asm' with operands. Decode the operands,
2082 decide how many are inputs, and do register substitution.
2083 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2085 subst_asm_stack_regs (insn, regstack);
2086 return;
2089 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2090 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2092 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2093 subst_stack_regs_pat (insn, regstack,
2094 XVECEXP (PATTERN (insn), 0, i));
2096 else
2097 subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2100 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2101 REG_UNUSED will already have been dealt with, so just return. */
2103 if (GET_CODE (insn) == NOTE)
2104 return;
2106 /* If there is a REG_UNUSED note on a stack register on this insn,
2107 the indicated reg must be popped. The REG_UNUSED note is removed,
2108 since the form of the newly emitted pop insn references the reg,
2109 making it no longer `unset'. */
2111 note_link = &REG_NOTES(insn);
2112 for (note = *note_link; note; note = XEXP (note, 1))
2113 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2115 *note_link = XEXP (note, 1);
2116 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2118 else
2119 note_link = &XEXP (note, 1);
2122 /* Change the organization of the stack so that it fits a new basic
2123 block. Some registers might have to be popped, but there can never be
2124 a register live in the new block that is not now live.
2126 Insert any needed insns before or after INSN, as indicated by
2127 WHERE. OLD is the original stack layout, and NEW is the desired
2128 form. OLD is updated to reflect the code emitted, ie, it will be
2129 the same as NEW upon return.
2131 This function will not preserve block_end[]. But that information
2132 is no longer needed once this has executed. */
2134 static void
2135 change_stack (insn, old, new, where)
2136 rtx insn;
2137 stack old;
2138 stack new;
2139 enum emit_where where;
2141 int reg;
2142 int update_end = 0;
2144 /* We will be inserting new insns "backwards". If we are to insert
2145 after INSN, find the next insn, and insert before it. */
2147 if (where == EMIT_AFTER)
2149 if (current_block && current_block->end == insn)
2150 update_end = 1;
2151 insn = NEXT_INSN (insn);
2154 /* Pop any registers that are not needed in the new block. */
2156 for (reg = old->top; reg >= 0; reg--)
2157 if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2158 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
2159 EMIT_BEFORE);
2161 if (new->top == -2)
2163 /* If the new block has never been processed, then it can inherit
2164 the old stack order. */
2166 new->top = old->top;
2167 memcpy (new->reg, old->reg, sizeof (new->reg));
2169 else
2171 /* This block has been entered before, and we must match the
2172 previously selected stack order. */
2174 /* By now, the only difference should be the order of the stack,
2175 not their depth or liveliness. */
2177 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2178 abort ();
2179 win:
2180 if (old->top != new->top)
2181 abort ();
2183 /* If the stack is not empty (new->top != -1), loop here emitting
2184 swaps until the stack is correct.
2186 The worst case number of swaps emitted is N + 2, where N is the
2187 depth of the stack. In some cases, the reg at the top of
2188 stack may be correct, but swapped anyway in order to fix
2189 other regs. But since we never swap any other reg away from
2190 its correct slot, this algorithm will converge. */
2192 if (new->top != -1)
2195 /* Swap the reg at top of stack into the position it is
2196 supposed to be in, until the correct top of stack appears. */
2198 while (old->reg[old->top] != new->reg[new->top])
2200 for (reg = new->top; reg >= 0; reg--)
2201 if (new->reg[reg] == old->reg[old->top])
2202 break;
2204 if (reg == -1)
2205 abort ();
2207 emit_swap_insn (insn, old,
2208 FP_MODE_REG (old->reg[reg], DFmode));
2211 /* See if any regs remain incorrect. If so, bring an
2212 incorrect reg to the top of stack, and let the while loop
2213 above fix it. */
2215 for (reg = new->top; reg >= 0; reg--)
2216 if (new->reg[reg] != old->reg[reg])
2218 emit_swap_insn (insn, old,
2219 FP_MODE_REG (old->reg[reg], DFmode));
2220 break;
2222 } while (reg >= 0);
2224 /* At this point there must be no differences. */
2226 for (reg = old->top; reg >= 0; reg--)
2227 if (old->reg[reg] != new->reg[reg])
2228 abort ();
2231 if (update_end)
2232 current_block->end = PREV_INSN (insn);
2235 /* Print stack configuration. */
2237 static void
2238 print_stack (file, s)
2239 FILE *file;
2240 stack s;
2242 if (! file)
2243 return;
2245 if (s->top == -2)
2246 fprintf (file, "uninitialized\n");
2247 else if (s->top == -1)
2248 fprintf (file, "empty\n");
2249 else
2251 int i;
2252 fputs ("[ ", file);
2253 for (i = 0; i <= s->top; ++i)
2254 fprintf (file, "%d ", s->reg[i]);
2255 fputs ("]\n", file);
2259 /* This function was doing life analysis. We now let the regular live
2260 code do it's job, so we only need to check some extra invariants
2261 that reg-stack expects. Primary among these being that all registers
2262 are initialized before use.
2264 The function returns true when code was emitted to CFG edges and
2265 commit_edge_insertions needs to be called. */
2267 static int
2268 convert_regs_entry ()
2270 int inserted = 0, i;
2271 edge e;
2273 for (i = n_basic_blocks - 1; i >= 0; --i)
2275 basic_block block = BASIC_BLOCK (i);
2276 block_info bi = BLOCK_INFO (block);
2277 int reg;
2279 /* Set current register status at last instruction `uninitialized'. */
2280 bi->stack_in.top = -2;
2282 /* Copy live_at_end and live_at_start into temporaries. */
2283 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
2285 if (REGNO_REG_SET_P (block->global_live_at_end, reg))
2286 SET_HARD_REG_BIT (bi->out_reg_set, reg);
2287 if (REGNO_REG_SET_P (block->global_live_at_start, reg))
2288 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
2292 /* Load something into each stack register live at function entry.
2293 Such live registers can be caused by uninitialized variables or
2294 functions not returning values on all paths. In order to keep
2295 the push/pop code happy, and to not scrog the register stack, we
2296 must put something in these registers. Use a QNaN.
2298 Note that we are insertting converted code here. This code is
2299 never seen by the convert_regs pass. */
2301 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2303 basic_block block = e->dest;
2304 block_info bi = BLOCK_INFO (block);
2305 int reg, top = -1;
2307 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2308 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2310 rtx init;
2312 bi->stack_in.reg[++top] = reg;
2314 init = gen_rtx_SET (VOIDmode,
2315 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2316 nan);
2317 insert_insn_on_edge (init, e);
2318 inserted = 1;
2321 bi->stack_in.top = top;
2324 return inserted;
2327 /* Construct the desired stack for function exit. This will either
2328 be `empty', or the function return value at top-of-stack. */
2330 static void
2331 convert_regs_exit ()
2333 int value_reg_low, value_reg_high;
2334 stack output_stack;
2335 rtx retvalue;
2337 retvalue = stack_result (current_function_decl);
2338 value_reg_low = value_reg_high = -1;
2339 if (retvalue)
2341 value_reg_low = REGNO (retvalue);
2342 value_reg_high = value_reg_low
2343 + HARD_REGNO_NREGS (value_reg_low, GET_MODE (retvalue)) - 1;
2346 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2347 if (value_reg_low == -1)
2348 output_stack->top = -1;
2349 else
2351 int reg;
2353 output_stack->top = value_reg_high - value_reg_low;
2354 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2356 output_stack->reg[reg - value_reg_low] = reg;
2357 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2362 /* Convert stack register references in one block. */
2364 static int
2365 convert_regs_1 (file, block)
2366 FILE *file;
2367 basic_block block;
2369 struct stack_def regstack, tmpstack;
2370 block_info bi = BLOCK_INFO (block);
2371 int inserted, reg;
2372 rtx insn, next;
2373 edge e;
2375 current_block = block;
2377 if (file)
2379 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
2380 print_stack (file, &bi->stack_in);
2383 /* Process all insns in this block. Keep track of NEXT so that we
2384 don't process insns emitted while substituting in INSN. */
2385 next = block->head;
2386 regstack = bi->stack_in;
2389 insn = next;
2390 next = NEXT_INSN (insn);
2392 /* Ensure we have not missed a block boundary. */
2393 if (next == NULL)
2394 abort ();
2395 if (insn == block->end)
2396 next = NULL;
2398 /* Don't bother processing unless there is a stack reg
2399 mentioned or if it's a CALL_INSN. */
2400 if (stack_regs_mentioned (insn)
2401 || GET_CODE (insn) == CALL_INSN)
2403 if (file)
2405 fprintf (file, " insn %d input stack: ",
2406 INSN_UID (insn));
2407 print_stack (file, &regstack);
2409 subst_stack_regs (insn, &regstack);
2412 while (next);
2414 if (file)
2416 fprintf (file, "Expected live registers [");
2417 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2418 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2419 fprintf (file, " %d", reg);
2420 fprintf (file, " ]\nOutput stack: ");
2421 print_stack (file, &regstack);
2424 insn = block->end;
2425 if (GET_CODE (insn) == JUMP_INSN)
2426 insn = PREV_INSN (insn);
2428 /* If the function is declared to return a value, but it returns one
2429 in only some cases, some registers might come live here. Emit
2430 necessary moves for them. */
2432 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2434 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2435 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2437 rtx set;
2439 if (file)
2441 fprintf (file, "Emitting insn initializing reg %d\n",
2442 reg);
2445 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode),
2446 nan);
2447 insn = emit_block_insn_after (set, insn, block);
2448 subst_stack_regs (insn, &regstack);
2452 /* Something failed if the stack lives don't match. */
2453 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2454 abort ();
2455 win:
2457 /* Adjust the stack of this block on exit to match the stack of the
2458 target block, or copy stack info into the stack of the successor
2459 of the successor hasn't been processed yet. */
2460 inserted = 0;
2461 for (e = block->succ; e ; e = e->succ_next)
2463 basic_block target = e->dest;
2464 stack target_stack = &BLOCK_INFO (target)->stack_in;
2466 if (file)
2467 fprintf (file, "Edge to block %d: ", target->index);
2469 if (target_stack->top == -2)
2471 /* The target block hasn't had a stack order selected.
2472 We need merely ensure that no pops are needed. */
2473 for (reg = regstack.top; reg >= 0; --reg)
2474 if (! TEST_HARD_REG_BIT (target_stack->reg_set,
2475 regstack.reg[reg]))
2476 break;
2478 if (reg == -1)
2480 if (file)
2481 fprintf (file, "new block; copying stack position\n");
2483 /* change_stack kills values in regstack. */
2484 tmpstack = regstack;
2486 change_stack (block->end, &tmpstack,
2487 target_stack, EMIT_AFTER);
2488 continue;
2491 if (file)
2492 fprintf (file, "new block; pops needed\n");
2494 else
2496 if (target_stack->top == regstack.top)
2498 for (reg = target_stack->top; reg >= 0; --reg)
2499 if (target_stack->reg[reg] != regstack.reg[reg])
2500 break;
2502 if (reg == -1)
2504 if (file)
2505 fprintf (file, "no changes needed\n");
2506 continue;
2510 if (file)
2512 fprintf (file, "correcting stack to ");
2513 print_stack (file, target_stack);
2517 /* Care for EH edges specially. The normal return path may return
2518 a value in st(0), but the EH path will not, and there's no need
2519 to add popping code to the edge. */
2520 if (e->flags & EDGE_EH)
2522 /* Assert that the lifetimes are as we expect -- one value
2523 live at st(0) on the end of the source block, and no
2524 values live at the beginning of the destination block. */
2525 HARD_REG_SET tmp;
2527 CLEAR_HARD_REG_SET (tmp);
2528 GO_IF_HARD_REG_EQUAL (BLOCK_INFO (e->dest)->stack_in.reg_set,
2529 tmp, eh1);
2530 abort();
2531 eh1:
2533 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
2534 GO_IF_HARD_REG_EQUAL (BLOCK_INFO (e->src)->out_reg_set, tmp, eh2);
2535 abort();
2536 eh2:;
2539 /* It is better to output directly to the end of the block
2540 instead of to the edge, because emit_swap can do minimal
2541 insn scheduling. We can do this when there is only one
2542 edge out, and it is not abnormal. */
2543 else if (block->succ->succ_next == NULL
2544 && ! (e->flags & EDGE_ABNORMAL))
2546 /* change_stack kills values in regstack. */
2547 tmpstack = regstack;
2549 change_stack (block->end, &tmpstack, target_stack,
2550 (GET_CODE (block->end) == JUMP_INSN
2551 ? EMIT_BEFORE : EMIT_AFTER));
2553 else
2555 rtx seq, after;
2557 /* We don't support abnormal edges. Global takes care to
2558 avoid any live register across them, so we should never
2559 have to insert instructions on such edges. */
2560 if (e->flags & EDGE_ABNORMAL)
2561 abort ();
2563 current_block = NULL;
2564 start_sequence ();
2566 /* ??? change_stack needs some point to emit insns after.
2567 Also needed to keep gen_sequence from returning a
2568 pattern as opposed to a sequence, which would lose
2569 REG_DEAD notes. */
2570 after = emit_note (NULL, NOTE_INSN_DELETED);
2572 tmpstack = regstack;
2573 change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
2575 seq = gen_sequence ();
2576 end_sequence ();
2578 insert_insn_on_edge (seq, e);
2579 inserted = 1;
2580 current_block = block;
2584 return inserted;
2587 /* Convert registers in all blocks reachable from BLOCK. */
2589 static int
2590 convert_regs_2 (file, block)
2591 FILE *file;
2592 basic_block block;
2594 basic_block *stack, *sp;
2595 int inserted;
2597 stack = (basic_block *) alloca (sizeof (*stack) * n_basic_blocks);
2598 sp = stack;
2600 *sp++ = block;
2601 BLOCK_INFO (block)->done = 1;
2603 inserted = 0;
2606 edge e;
2608 block = *--sp;
2609 inserted |= convert_regs_1 (file, block);
2611 for (e = block->succ; e ; e = e->succ_next)
2612 if (! BLOCK_INFO (e->dest)->done)
2614 *sp++ = e->dest;
2615 BLOCK_INFO (e->dest)->done = 1;
2618 while (sp != stack);
2620 return inserted;
2623 /* Traverse all basic blocks in a function, converting the register
2624 references in each insn from the "flat" register file that gcc uses,
2625 to the stack-like registers the 387 uses. */
2627 static int
2628 convert_regs (file)
2629 FILE *file;
2631 int inserted, i;
2632 edge e;
2634 /* Initialize uninitialized registers on function entry. */
2635 inserted = convert_regs_entry ();
2637 /* Construct the desired stack for function exit. */
2638 convert_regs_exit ();
2639 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
2641 /* ??? Future: process inner loops first, and give them arbitrary
2642 initial stacks which emit_swap_insn can modify. This ought to
2643 prevent double fxch that aften appears at the head of a loop. */
2645 /* Process all blocks reachable from all entry points. */
2646 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2647 inserted |= convert_regs_2 (file, e->dest);
2649 /* ??? Process all unreachable blocks. Though there's no excuse
2650 for keeping these even when not optimizing. */
2651 for (i = 0; i < n_basic_blocks; ++i)
2653 basic_block b = BASIC_BLOCK (i);
2654 block_info bi = BLOCK_INFO (b);
2656 if (! bi->done)
2658 int reg;
2660 /* Create an arbitrary input stack. */
2661 bi->stack_in.top = -1;
2662 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2663 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2664 bi->stack_in.reg[++bi->stack_in.top] = reg;
2666 inserted |= convert_regs_2 (file, b);
2670 if (inserted)
2671 commit_edge_insertions ();
2673 if (file)
2674 fputc ('\n', file);
2676 return inserted;
2678 #endif /* STACK_REGS */