1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 88, 89, 91-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
44 #include "insn-config.h"
45 #include "insn-flags.h"
47 #include "hard-reg-set.h"
55 /* Information about the loop being processed used to compute
56 the number of loop iterations for loop unrolling and doloop
58 static struct loop_info this_loop_info
;
60 /* Vector mapping INSN_UIDs to luids.
61 The luids are like uids but increase monotonically always.
62 We use them to see whether a jump comes from outside a given loop. */
66 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
67 number the insn is contained in. */
71 /* 1 + largest uid of any insn. */
75 /* 1 + luid of last insn. */
79 /* Number of loops detected in current function. Used as index to the
82 static int max_loop_num
;
84 /* Indexed by loop number, contains the first and last insn of each loop. */
86 static rtx
*loop_number_loop_starts
, *loop_number_loop_ends
;
88 /* Likewise for the continue insn */
89 static rtx
*loop_number_loop_cont
;
91 /* The first code_label that is reached in every loop iteration.
92 0 when not computed yet, initially const0_rtx if a jump couldn't be
94 Also set to 0 when there is no such label before the NOTE_INSN_LOOP_CONT
95 of this loop, or in verify_dominator, if a jump couldn't be followed. */
96 static rtx
*loop_number_cont_dominator
;
98 /* For each loop, gives the containing loop number, -1 if none. */
100 int *loop_outer_loop
;
102 #ifdef HAVE_decrement_and_branch_on_count
103 /* Records whether resource in use by inner loop. */
105 int *loop_used_count_register
;
106 #endif /* HAVE_decrement_and_branch_on_count */
108 /* Indexed by loop number, contains a nonzero value if the "loop" isn't
109 really a loop (an insn outside the loop branches into it). */
111 static char *loop_invalid
;
113 /* Indexed by loop number, links together all LABEL_REFs which refer to
114 code labels outside the loop. Used by routines that need to know all
115 loop exits, such as final_biv_value and final_giv_value.
117 This does not include loop exits due to return instructions. This is
118 because all bivs and givs are pseudos, and hence must be dead after a
119 return, so the presense of a return does not affect any of the
120 optimizations that use this info. It is simpler to just not include return
121 instructions on this list. */
123 rtx
*loop_number_exit_labels
;
125 /* Indexed by loop number, counts the number of LABEL_REFs on
126 loop_number_exit_labels for this loop and all loops nested inside it. */
128 int *loop_number_exit_count
;
130 /* Indexed by register number, contains the number of times the reg
131 is set during the loop being scanned.
132 During code motion, a negative value indicates a reg that has been
133 made a candidate; in particular -2 means that it is an candidate that
134 we know is equal to a constant and -1 means that it is an candidate
135 not known equal to a constant.
136 After code motion, regs moved have 0 (which is accurate now)
137 while the failed candidates have the original number of times set.
139 Therefore, at all times, == 0 indicates an invariant register;
140 < 0 a conditionally invariant one. */
142 static varray_type set_in_loop
;
144 /* Original value of set_in_loop; same except that this value
145 is not set negative for a reg whose sets have been made candidates
146 and not set to 0 for a reg that is moved. */
148 static varray_type n_times_set
;
150 /* Index by register number, 1 indicates that the register
151 cannot be moved or strength reduced. */
153 static varray_type may_not_optimize
;
155 /* Contains the insn in which a register was used if it was used
156 exactly once; contains const0_rtx if it was used more than once. */
158 static varray_type reg_single_usage
;
160 /* Nonzero means reg N has already been moved out of one loop.
161 This reduces the desire to move it out of another. */
163 static char *moved_once
;
165 /* List of MEMs that are stored in this loop. */
167 static rtx loop_store_mems
;
169 /* The insn where the first of these was found. */
170 static rtx first_loop_store_insn
;
172 typedef struct loop_mem_info
{
173 rtx mem
; /* The MEM itself. */
174 rtx reg
; /* Corresponding pseudo, if any. */
175 int optimize
; /* Nonzero if we can optimize access to this MEM. */
178 /* Array of MEMs that are used (read or written) in this loop, but
179 cannot be aliased by anything in this loop, except perhaps
180 themselves. In other words, if loop_mems[i] is altered during the
181 loop, it is altered by an expression that is rtx_equal_p to it. */
183 static loop_mem_info
*loop_mems
;
185 /* The index of the next available slot in LOOP_MEMS. */
187 static int loop_mems_idx
;
189 /* The number of elements allocated in LOOP_MEMs. */
191 static int loop_mems_allocated
;
193 /* Nonzero if we don't know what MEMs were changed in the current
194 loop. This happens if the loop contains a call (in which case
195 `loop_info->has_call' will also be set) or if we store into more
196 than NUM_STORES MEMs. */
198 static int unknown_address_altered
;
200 /* The above doesn't count any readonly memory locations that are stored.
203 static int unknown_constant_address_altered
;
205 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
206 static int num_movables
;
208 /* Count of memory write instructions discovered in the loop. */
209 static int num_mem_sets
;
211 /* Bound on pseudo register number before loop optimization.
212 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
213 int max_reg_before_loop
;
215 /* This obstack is used in product_cheap_p to allocate its rtl. It
216 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
217 If we used the same obstack that it did, we would be deallocating
220 static struct obstack temp_obstack
;
222 /* This is where the pointer to the obstack being used for RTL is stored. */
224 extern struct obstack
*rtl_obstack
;
226 #define obstack_chunk_alloc xmalloc
227 #define obstack_chunk_free free
229 /* During the analysis of a loop, a chain of `struct movable's
230 is made to record all the movable insns found.
231 Then the entire chain can be scanned to decide which to move. */
235 rtx insn
; /* A movable insn */
236 rtx set_src
; /* The expression this reg is set from. */
237 rtx set_dest
; /* The destination of this SET. */
238 rtx dependencies
; /* When INSN is libcall, this is an EXPR_LIST
239 of any registers used within the LIBCALL. */
240 int consec
; /* Number of consecutive following insns
241 that must be moved with this one. */
242 int regno
; /* The register it sets */
243 short lifetime
; /* lifetime of that register;
244 may be adjusted when matching movables
245 that load the same value are found. */
246 short savings
; /* Number of insns we can move for this reg,
247 including other movables that force this
248 or match this one. */
249 unsigned int cond
: 1; /* 1 if only conditionally movable */
250 unsigned int force
: 1; /* 1 means MUST move this insn */
251 unsigned int global
: 1; /* 1 means reg is live outside this loop */
252 /* If PARTIAL is 1, GLOBAL means something different:
253 that the reg is live outside the range from where it is set
254 to the following label. */
255 unsigned int done
: 1; /* 1 inhibits further processing of this */
257 unsigned int partial
: 1; /* 1 means this reg is used for zero-extending.
258 In particular, moving it does not make it
260 unsigned int move_insn
: 1; /* 1 means that we call emit_move_insn to
261 load SRC, rather than copying INSN. */
262 unsigned int move_insn_first
:1;/* Same as above, if this is necessary for the
263 first insn of a consecutive sets group. */
264 unsigned int is_equiv
: 1; /* 1 means a REG_EQUIV is present on INSN. */
265 enum machine_mode savemode
; /* Nonzero means it is a mode for a low part
266 that we should avoid changing when clearing
267 the rest of the reg. */
268 struct movable
*match
; /* First entry for same value */
269 struct movable
*forces
; /* An insn that must be moved if this is */
270 struct movable
*next
;
273 static struct movable
*the_movables
;
275 FILE *loop_dump_stream
;
277 /* Forward declarations. */
279 static void verify_dominator
PROTO((int));
280 static void find_and_verify_loops
PROTO((rtx
));
281 static void mark_loop_jump
PROTO((rtx
, int));
282 static void prescan_loop
PROTO((rtx
, rtx
, struct loop_info
*));
283 static int reg_in_basic_block_p
PROTO((rtx
, rtx
));
284 static int consec_sets_invariant_p
PROTO((rtx
, int, rtx
));
285 static int labels_in_range_p
PROTO((rtx
, int));
286 static void count_one_set
PROTO((rtx
, rtx
, varray_type
, rtx
*));
288 static void count_loop_regs_set
PROTO((rtx
, rtx
, varray_type
, varray_type
,
290 static void note_addr_stored
PROTO((rtx
, rtx
, void *));
291 static void note_set_pseudo_multiple_uses
PROTO((rtx
, rtx
, void *));
292 static int loop_reg_used_before_p
PROTO((rtx
, rtx
, rtx
, rtx
, rtx
));
293 static void scan_loop
PROTO((rtx
, rtx
, rtx
, int, int));
295 static void replace_call_address
PROTO((rtx
, rtx
, rtx
));
297 static rtx skip_consec_insns
PROTO((rtx
, int));
298 static int libcall_benefit
PROTO((rtx
));
299 static void ignore_some_movables
PROTO((struct movable
*));
300 static void force_movables
PROTO((struct movable
*));
301 static void combine_movables
PROTO((struct movable
*, int));
302 static int regs_match_p
PROTO((rtx
, rtx
, struct movable
*));
303 static int rtx_equal_for_loop_p
PROTO((rtx
, rtx
, struct movable
*));
304 static void add_label_notes
PROTO((rtx
, rtx
));
305 static void move_movables
PROTO((struct movable
*, int, int, rtx
, rtx
, int));
306 static int count_nonfixed_reads
PROTO((rtx
));
307 static void strength_reduce
PROTO((rtx
, rtx
, rtx
, int, rtx
, rtx
,
308 struct loop_info
*, rtx
, int, int));
309 static void find_single_use_in_loop
PROTO((rtx
, rtx
, varray_type
));
310 static int valid_initial_value_p
PROTO((rtx
, rtx
, int, rtx
));
311 static void find_mem_givs
PROTO((rtx
, rtx
, int, int, rtx
, rtx
));
312 static void record_biv
PROTO((struct induction
*, rtx
, rtx
, rtx
, rtx
, rtx
*, int, int));
313 static void check_final_value
PROTO((struct induction
*, rtx
, rtx
,
314 unsigned HOST_WIDE_INT
));
315 static void record_giv
PROTO((struct induction
*, rtx
, rtx
, rtx
, rtx
, rtx
, int, enum g_types
, int, int, rtx
*, rtx
, rtx
));
316 static void update_giv_derive
PROTO((rtx
));
317 static int basic_induction_var
PROTO((rtx
, enum machine_mode
, rtx
, rtx
, rtx
*, rtx
*, rtx
**));
318 static rtx simplify_giv_expr
PROTO((rtx
, int *));
319 static int general_induction_var
PROTO((rtx
, rtx
*, rtx
*, rtx
*, int, int *));
320 static int consec_sets_giv
PROTO((int, rtx
, rtx
, rtx
, rtx
*, rtx
*, rtx
*));
321 static int check_dbra_loop
PROTO((rtx
, int, rtx
, struct loop_info
*));
322 static rtx express_from_1
PROTO((rtx
, rtx
, rtx
));
323 static rtx combine_givs_p
PROTO((struct induction
*, struct induction
*));
324 static void combine_givs
PROTO((struct iv_class
*));
325 struct recombine_givs_stats
;
326 static int find_life_end
PROTO((rtx
, struct recombine_givs_stats
*, rtx
, rtx
));
327 static void recombine_givs
PROTO((struct iv_class
*, rtx
, rtx
, int));
328 static int product_cheap_p
PROTO((rtx
, rtx
));
329 static int maybe_eliminate_biv
PROTO((struct iv_class
*, rtx
, rtx
, int, int, int));
330 static int maybe_eliminate_biv_1
PROTO((rtx
, rtx
, struct iv_class
*, int, rtx
));
331 static int last_use_this_basic_block
PROTO((rtx
, rtx
));
332 static void record_initial
PROTO((rtx
, rtx
, void *));
333 static void update_reg_last_use
PROTO((rtx
, rtx
));
334 static rtx next_insn_in_loop
PROTO((rtx
, rtx
, rtx
, rtx
));
335 static void load_mems_and_recount_loop_regs_set
PROTO((rtx
, rtx
, rtx
,
337 static void load_mems
PROTO((rtx
, rtx
, rtx
, rtx
));
338 static int insert_loop_mem
PROTO((rtx
*, void *));
339 static int replace_loop_mem
PROTO((rtx
*, void *));
340 static int replace_label
PROTO((rtx
*, void *));
342 typedef struct rtx_and_int
{
347 typedef struct rtx_pair
{
352 /* Nonzero iff INSN is between START and END, inclusive. */
353 #define INSN_IN_RANGE_P(INSN, START, END) \
354 (INSN_UID (INSN) < max_uid_for_loop \
355 && INSN_LUID (INSN) >= INSN_LUID (START) \
356 && INSN_LUID (INSN) <= INSN_LUID (END))
358 #ifdef HAVE_decrement_and_branch_on_count
359 /* Test whether BCT applicable and safe. */
360 static void insert_bct
PROTO((rtx
, rtx
, struct loop_info
*));
362 /* Auxiliary function that inserts the BCT pattern into the loop. */
363 static void instrument_loop_bct
PROTO((rtx
, rtx
, rtx
));
364 #endif /* HAVE_decrement_and_branch_on_count */
366 /* Indirect_jump_in_function is computed once per function. */
367 int indirect_jump_in_function
= 0;
368 static int indirect_jump_in_function_p
PROTO((rtx
));
370 static int compute_luids
PROTO((rtx
, rtx
, int));
372 static int biv_elimination_giv_has_0_offset
PROTO((struct induction
*,
373 struct induction
*, rtx
));
375 /* Relative gain of eliminating various kinds of operations. */
378 static int shift_cost
;
379 static int mult_cost
;
382 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
383 copy the value of the strength reduced giv to its original register. */
384 static int copy_cost
;
386 /* Cost of using a register, to normalize the benefits of a giv. */
387 static int reg_address_cost
;
393 char *free_point
= (char *) oballoc (1);
394 rtx reg
= gen_rtx_REG (word_mode
, LAST_VIRTUAL_REGISTER
+ 1);
396 add_cost
= rtx_cost (gen_rtx_PLUS (word_mode
, reg
, reg
), SET
);
399 reg_address_cost
= ADDRESS_COST (reg
);
401 reg_address_cost
= rtx_cost (reg
, MEM
);
404 /* We multiply by 2 to reconcile the difference in scale between
405 these two ways of computing costs. Otherwise the cost of a copy
406 will be far less than the cost of an add. */
410 /* Free the objects we just allocated. */
413 /* Initialize the obstack used for rtl in product_cheap_p. */
414 gcc_obstack_init (&temp_obstack
);
417 /* Compute the mapping from uids to luids.
418 LUIDs are numbers assigned to insns, like uids,
419 except that luids increase monotonically through the code.
420 Start at insn START and stop just before END. Assign LUIDs
421 starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
423 compute_luids (start
, end
, prev_luid
)
430 for (insn
= start
, i
= prev_luid
; insn
!= end
; insn
= NEXT_INSN (insn
))
432 if (INSN_UID (insn
) >= max_uid_for_loop
)
434 /* Don't assign luids to line-number NOTEs, so that the distance in
435 luids between two insns is not affected by -g. */
436 if (GET_CODE (insn
) != NOTE
437 || NOTE_LINE_NUMBER (insn
) <= 0)
438 uid_luid
[INSN_UID (insn
)] = ++i
;
440 /* Give a line number note the same luid as preceding insn. */
441 uid_luid
[INSN_UID (insn
)] = i
;
446 /* Entry point of this file. Perform loop optimization
447 on the current function. F is the first insn of the function
448 and DUMPFILE is a stream for output of a trace of actions taken
449 (or 0 if none should be output). */
452 loop_optimize (f
, dumpfile
, unroll_p
, bct_p
)
453 /* f is the first instruction of a chain of insns for one function */
461 loop_dump_stream
= dumpfile
;
463 init_recog_no_volatile ();
465 max_reg_before_loop
= max_reg_num ();
469 /* Count the number of loops. */
472 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
474 if (GET_CODE (insn
) == NOTE
475 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
479 /* Don't waste time if no loops. */
480 if (max_loop_num
== 0)
483 moved_once
= (char *) xcalloc (max_reg_before_loop
, sizeof (char));
485 /* Get size to use for tables indexed by uids.
486 Leave some space for labels allocated by find_and_verify_loops. */
487 max_uid_for_loop
= get_max_uid () + 1 + max_loop_num
* 32;
489 uid_luid
= (int *) xcalloc (max_uid_for_loop
, sizeof (int));
490 uid_loop_num
= (int *) xcalloc (max_uid_for_loop
, sizeof (int));
492 /* Allocate tables for recording each loop. We set each entry, so they need
494 loop_number_loop_starts
= (rtx
*) xmalloc (max_loop_num
* sizeof (rtx
));
495 loop_number_loop_ends
= (rtx
*) xmalloc (max_loop_num
* sizeof (rtx
));
496 loop_number_loop_cont
= (rtx
*) xmalloc (max_loop_num
* sizeof (rtx
));
497 loop_number_cont_dominator
= (rtx
*) xmalloc (max_loop_num
* sizeof (rtx
));
498 loop_outer_loop
= (int *) xmalloc (max_loop_num
* sizeof (int));
499 loop_invalid
= (char *) xmalloc (max_loop_num
* sizeof (char));
500 loop_number_exit_labels
= (rtx
*) xmalloc (max_loop_num
* sizeof (rtx
));
501 loop_number_exit_count
= (int *) xmalloc (max_loop_num
* sizeof (int));
503 #ifdef HAVE_decrement_and_branch_on_count
504 /* Allocate for BCT optimization */
505 loop_used_count_register
= (int *) xcalloc (max_loop_num
, sizeof (int));
506 #endif /* HAVE_decrement_and_branch_on_count */
508 /* Find and process each loop.
509 First, find them, and record them in order of their beginnings. */
510 find_and_verify_loops (f
);
512 /* Now find all register lifetimes. This must be done after
513 find_and_verify_loops, because it might reorder the insns in the
515 reg_scan (f
, max_reg_num (), 1);
517 /* This must occur after reg_scan so that registers created by gcse
518 will have entries in the register tables.
520 We could have added a call to reg_scan after gcse_main in toplev.c,
521 but moving this call to init_alias_analysis is more efficient. */
522 init_alias_analysis ();
524 /* See if we went too far. Note that get_max_uid already returns
525 one more that the maximum uid of all insn. */
526 if (get_max_uid () > max_uid_for_loop
)
528 /* Now reset it to the actual size we need. See above. */
529 max_uid_for_loop
= get_max_uid ();
531 /* find_and_verify_loops has already called compute_luids, but it might
532 have rearranged code afterwards, so we need to recompute the luids now. */
533 max_luid
= compute_luids (f
, NULL_RTX
, 0);
535 /* Don't leave gaps in uid_luid for insns that have been
536 deleted. It is possible that the first or last insn
537 using some register has been deleted by cross-jumping.
538 Make sure that uid_luid for that former insn's uid
539 points to the general area where that insn used to be. */
540 for (i
= 0; i
< max_uid_for_loop
; i
++)
542 uid_luid
[0] = uid_luid
[i
];
543 if (uid_luid
[0] != 0)
546 for (i
= 0; i
< max_uid_for_loop
; i
++)
547 if (uid_luid
[i
] == 0)
548 uid_luid
[i
] = uid_luid
[i
- 1];
550 /* Create a mapping from loops to BLOCK tree nodes. */
551 if (unroll_p
&& write_symbols
!= NO_DEBUG
)
552 find_loop_tree_blocks ();
554 /* Determine if the function has indirect jump. On some systems
555 this prevents low overhead loop instructions from being used. */
556 indirect_jump_in_function
= indirect_jump_in_function_p (f
);
558 /* Now scan the loops, last ones first, since this means inner ones are done
559 before outer ones. */
560 for (i
= max_loop_num
-1; i
>= 0; i
--)
561 if (! loop_invalid
[i
] && loop_number_loop_ends
[i
])
562 scan_loop (loop_number_loop_starts
[i
], loop_number_loop_ends
[i
],
563 loop_number_loop_cont
[i
], unroll_p
, bct_p
);
565 /* If debugging and unrolling loops, we must replicate the tree nodes
566 corresponding to the blocks inside the loop, so that the original one
567 to one mapping will remain. */
568 if (unroll_p
&& write_symbols
!= NO_DEBUG
)
569 unroll_block_trees ();
571 end_alias_analysis ();
577 free (loop_number_loop_starts
);
578 free (loop_number_loop_ends
);
579 free (loop_number_loop_cont
);
580 free (loop_number_cont_dominator
);
581 free (loop_outer_loop
);
583 free (loop_number_exit_labels
);
584 free (loop_number_exit_count
);
585 #ifdef HAVE_decrement_and_branch_on_count
586 free (loop_used_count_register
);
587 #endif /* HAVE_decrement_and_branch_on_count */
591 /* Returns the next insn, in execution order, after INSN. START and
592 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
593 respectively. LOOP_TOP, if non-NULL, is the top of the loop in the
594 insn-stream; it is used with loops that are entered near the
598 next_insn_in_loop (insn
, start
, end
, loop_top
)
604 insn
= NEXT_INSN (insn
);
609 /* Go to the top of the loop, and continue there. */
623 /* Optimize one loop whose start is LOOP_START and end is END.
624 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
626 LOOP_CONT is the NOTE_INSN_LOOP_CONT. */
628 /* ??? Could also move memory writes out of loops if the destination address
629 is invariant, the source is invariant, the memory write is not volatile,
630 and if we can prove that no read inside the loop can read this address
631 before the write occurs. If there is a read of this address after the
632 write, then we can also mark the memory read as invariant. */
635 scan_loop (loop_start
, end
, loop_cont
, unroll_p
, bct_p
)
636 rtx loop_start
, end
, loop_cont
;
641 /* 1 if we are scanning insns that could be executed zero times. */
643 /* 1 if we are scanning insns that might never be executed
644 due to a subroutine call which might exit before they are reached. */
646 /* For a rotated loop that is entered near the bottom,
647 this is the label at the top. Otherwise it is zero. */
649 /* Jump insn that enters the loop, or 0 if control drops in. */
650 rtx loop_entry_jump
= 0;
651 /* Place in the loop where control enters. */
653 /* Number of insns in the loop. */
658 /* The SET from an insn, if it is the only SET in the insn. */
660 /* Chain describing insns movable in current loop. */
661 struct movable
*movables
= 0;
662 /* Last element in `movables' -- so we can add elements at the end. */
663 struct movable
*last_movable
= 0;
664 /* Ratio of extra register life span we can justify
665 for saving an instruction. More if loop doesn't call subroutines
666 since in that case saving an insn makes more difference
667 and more registers are available. */
669 /* Nonzero if we are scanning instructions in a sub-loop. */
672 struct loop_info
*loop_info
= &this_loop_info
;
674 /* Determine whether this loop starts with a jump down to a test at
675 the end. This will occur for a small number of loops with a test
676 that is too complex to duplicate in front of the loop.
678 We search for the first insn or label in the loop, skipping NOTEs.
679 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
680 (because we might have a loop executed only once that contains a
681 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
682 (in case we have a degenerate loop).
684 Note that if we mistakenly think that a loop is entered at the top
685 when, in fact, it is entered at the exit test, the only effect will be
686 slightly poorer optimization. Making the opposite error can generate
687 incorrect code. Since very few loops now start with a jump to the
688 exit test, the code here to detect that case is very conservative. */
690 for (p
= NEXT_INSN (loop_start
);
692 && GET_CODE (p
) != CODE_LABEL
&& GET_RTX_CLASS (GET_CODE (p
)) != 'i'
693 && (GET_CODE (p
) != NOTE
694 || (NOTE_LINE_NUMBER (p
) != NOTE_INSN_LOOP_BEG
695 && NOTE_LINE_NUMBER (p
) != NOTE_INSN_LOOP_END
));
701 /* Set up variables describing this loop. */
702 prescan_loop (loop_start
, end
, loop_info
);
703 threshold
= (loop_info
->has_call
? 1 : 2) * (1 + n_non_fixed_regs
);
705 /* If loop has a jump before the first label,
706 the true entry is the target of that jump.
707 Start scan from there.
708 But record in LOOP_TOP the place where the end-test jumps
709 back to so we can scan that after the end of the loop. */
710 if (GET_CODE (p
) == JUMP_INSN
)
714 /* Loop entry must be unconditional jump (and not a RETURN) */
716 && JUMP_LABEL (p
) != 0
717 /* Check to see whether the jump actually
718 jumps out of the loop (meaning it's no loop).
719 This case can happen for things like
720 do {..} while (0). If this label was generated previously
721 by loop, we can't tell anything about it and have to reject
723 && INSN_IN_RANGE_P (JUMP_LABEL (p
), loop_start
, end
))
725 loop_top
= next_label (scan_start
);
726 scan_start
= JUMP_LABEL (p
);
730 /* If SCAN_START was an insn created by loop, we don't know its luid
731 as required by loop_reg_used_before_p. So skip such loops. (This
732 test may never be true, but it's best to play it safe.)
734 Also, skip loops where we do not start scanning at a label. This
735 test also rejects loops starting with a JUMP_INSN that failed the
738 if (INSN_UID (scan_start
) >= max_uid_for_loop
739 || GET_CODE (scan_start
) != CODE_LABEL
)
741 if (loop_dump_stream
)
742 fprintf (loop_dump_stream
, "\nLoop from %d to %d is phony.\n\n",
743 INSN_UID (loop_start
), INSN_UID (end
));
747 /* Count number of times each reg is set during this loop.
748 Set VARRAY_CHAR (may_not_optimize, I) if it is not safe to move out
749 the setting of register I. Set VARRAY_RTX (reg_single_usage, I). */
751 /* Allocate extra space for REGS that might be created by
752 load_mems. We allocate a little extra slop as well, in the hopes
753 that even after the moving of movables creates some new registers
754 we won't have to reallocate these arrays. However, we do grow
755 the arrays, if necessary, in load_mems_recount_loop_regs_set. */
756 nregs
= max_reg_num () + loop_mems_idx
+ 16;
757 VARRAY_INT_INIT (set_in_loop
, nregs
, "set_in_loop");
758 VARRAY_INT_INIT (n_times_set
, nregs
, "n_times_set");
759 VARRAY_CHAR_INIT (may_not_optimize
, nregs
, "may_not_optimize");
760 VARRAY_RTX_INIT (reg_single_usage
, nregs
, "reg_single_usage");
762 count_loop_regs_set (loop_top
? loop_top
: loop_start
, end
,
763 may_not_optimize
, reg_single_usage
, &insn_count
, nregs
);
765 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
767 VARRAY_CHAR (may_not_optimize
, i
) = 1;
768 VARRAY_INT (set_in_loop
, i
) = 1;
771 #ifdef AVOID_CCMODE_COPIES
772 /* Don't try to move insns which set CC registers if we should not
773 create CCmode register copies. */
774 for (i
= max_reg_num () - 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
775 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx
[i
])) == MODE_CC
)
776 VARRAY_CHAR (may_not_optimize
, i
) = 1;
779 bcopy ((char *) &set_in_loop
->data
,
780 (char *) &n_times_set
->data
, nregs
* sizeof (int));
782 if (loop_dump_stream
)
784 fprintf (loop_dump_stream
, "\nLoop from %d to %d: %d real insns.\n",
785 INSN_UID (loop_start
), INSN_UID (end
), insn_count
);
787 fprintf (loop_dump_stream
, "Continue at insn %d.\n",
788 INSN_UID (loop_info
->cont
));
791 /* Scan through the loop finding insns that are safe to move.
792 Set set_in_loop negative for the reg being set, so that
793 this reg will be considered invariant for subsequent insns.
794 We consider whether subsequent insns use the reg
795 in deciding whether it is worth actually moving.
797 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
798 and therefore it is possible that the insns we are scanning
799 would never be executed. At such times, we must make sure
800 that it is safe to execute the insn once instead of zero times.
801 When MAYBE_NEVER is 0, all insns will be executed at least once
802 so that is not a problem. */
804 for (p
= next_insn_in_loop (scan_start
, scan_start
, end
, loop_top
);
806 p
= next_insn_in_loop (p
, scan_start
, end
, loop_top
))
808 if (GET_RTX_CLASS (GET_CODE (p
)) == 'i'
809 && find_reg_note (p
, REG_LIBCALL
, NULL_RTX
))
811 else if (GET_RTX_CLASS (GET_CODE (p
)) == 'i'
812 && find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
815 if (GET_CODE (p
) == INSN
816 && (set
= single_set (p
))
817 && GET_CODE (SET_DEST (set
)) == REG
818 && ! VARRAY_CHAR (may_not_optimize
, REGNO (SET_DEST (set
))))
823 rtx src
= SET_SRC (set
);
824 rtx dependencies
= 0;
826 /* Figure out what to use as a source of this insn. If a REG_EQUIV
827 note is given or if a REG_EQUAL note with a constant operand is
828 specified, use it as the source and mark that we should move
829 this insn by calling emit_move_insn rather that duplicating the
832 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
834 temp
= find_reg_note (p
, REG_EQUIV
, NULL_RTX
);
836 src
= XEXP (temp
, 0), move_insn
= 1;
839 temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
840 if (temp
&& CONSTANT_P (XEXP (temp
, 0)))
841 src
= XEXP (temp
, 0), move_insn
= 1;
842 if (temp
&& find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
844 src
= XEXP (temp
, 0);
845 /* A libcall block can use regs that don't appear in
846 the equivalent expression. To move the libcall,
847 we must move those regs too. */
848 dependencies
= libcall_other_reg (p
, src
);
852 /* Don't try to optimize a register that was made
853 by loop-optimization for an inner loop.
854 We don't know its life-span, so we can't compute the benefit. */
855 if (REGNO (SET_DEST (set
)) >= max_reg_before_loop
)
857 else if (/* The register is used in basic blocks other
858 than the one where it is set (meaning that
859 something after this point in the loop might
860 depend on its value before the set). */
861 ! reg_in_basic_block_p (p
, SET_DEST (set
))
862 /* And the set is not guaranteed to be executed one
863 the loop starts, or the value before the set is
864 needed before the set occurs...
866 ??? Note we have quadratic behaviour here, mitigated
867 by the fact that the previous test will often fail for
868 large loops. Rather than re-scanning the entire loop
869 each time for register usage, we should build tables
870 of the register usage and use them here instead. */
872 || loop_reg_used_before_p (set
, p
, loop_start
,
874 /* It is unsafe to move the set.
876 This code used to consider it OK to move a set of a variable
877 which was not created by the user and not used in an exit test.
878 That behavior is incorrect and was removed. */
880 else if ((tem
= invariant_p (src
))
881 && (dependencies
== 0
882 || (tem2
= invariant_p (dependencies
)) != 0)
883 && (VARRAY_INT (set_in_loop
,
884 REGNO (SET_DEST (set
))) == 1
886 = consec_sets_invariant_p
888 VARRAY_INT (set_in_loop
, REGNO (SET_DEST (set
))),
890 /* If the insn can cause a trap (such as divide by zero),
891 can't move it unless it's guaranteed to be executed
892 once loop is entered. Even a function call might
893 prevent the trap insn from being reached
894 (since it might exit!) */
895 && ! ((maybe_never
|| call_passed
)
896 && may_trap_p (src
)))
898 register struct movable
*m
;
899 register int regno
= REGNO (SET_DEST (set
));
901 /* A potential lossage is where we have a case where two insns
902 can be combined as long as they are both in the loop, but
903 we move one of them outside the loop. For large loops,
904 this can lose. The most common case of this is the address
905 of a function being called.
907 Therefore, if this register is marked as being used exactly
908 once if we are in a loop with calls (a "large loop"), see if
909 we can replace the usage of this register with the source
910 of this SET. If we can, delete this insn.
912 Don't do this if P has a REG_RETVAL note or if we have
913 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
915 if (loop_info
->has_call
916 && VARRAY_RTX (reg_single_usage
, regno
) != 0
917 && VARRAY_RTX (reg_single_usage
, regno
) != const0_rtx
918 && REGNO_FIRST_UID (regno
) == INSN_UID (p
)
919 && (REGNO_LAST_UID (regno
)
920 == INSN_UID (VARRAY_RTX (reg_single_usage
, regno
)))
921 && VARRAY_INT (set_in_loop
, regno
) == 1
922 && ! side_effects_p (SET_SRC (set
))
923 && ! find_reg_note (p
, REG_RETVAL
, NULL_RTX
)
924 && (! SMALL_REGISTER_CLASSES
925 || (! (GET_CODE (SET_SRC (set
)) == REG
926 && REGNO (SET_SRC (set
)) < FIRST_PSEUDO_REGISTER
)))
927 /* This test is not redundant; SET_SRC (set) might be
928 a call-clobbered register and the life of REGNO
929 might span a call. */
930 && ! modified_between_p (SET_SRC (set
), p
,
932 (reg_single_usage
, regno
))
933 && no_labels_between_p (p
, VARRAY_RTX (reg_single_usage
, regno
))
934 && validate_replace_rtx (SET_DEST (set
), SET_SRC (set
),
936 (reg_single_usage
, regno
)))
938 /* Replace any usage in a REG_EQUAL note. Must copy the
939 new source, so that we don't get rtx sharing between the
940 SET_SOURCE and REG_NOTES of insn p. */
941 REG_NOTES (VARRAY_RTX (reg_single_usage
, regno
))
942 = replace_rtx (REG_NOTES (VARRAY_RTX
943 (reg_single_usage
, regno
)),
944 SET_DEST (set
), copy_rtx (SET_SRC (set
)));
947 NOTE_LINE_NUMBER (p
) = NOTE_INSN_DELETED
;
948 NOTE_SOURCE_FILE (p
) = 0;
949 VARRAY_INT (set_in_loop
, regno
) = 0;
953 m
= (struct movable
*) alloca (sizeof (struct movable
));
957 m
->dependencies
= dependencies
;
958 m
->set_dest
= SET_DEST (set
);
960 m
->consec
= VARRAY_INT (set_in_loop
,
961 REGNO (SET_DEST (set
))) - 1;
965 m
->move_insn
= move_insn
;
966 m
->move_insn_first
= 0;
967 m
->is_equiv
= (find_reg_note (p
, REG_EQUIV
, NULL_RTX
) != 0);
968 m
->savemode
= VOIDmode
;
970 /* Set M->cond if either invariant_p or consec_sets_invariant_p
971 returned 2 (only conditionally invariant). */
972 m
->cond
= ((tem
| tem1
| tem2
) > 1);
973 m
->global
= (uid_luid
[REGNO_LAST_UID (regno
)] > INSN_LUID (end
)
974 || uid_luid
[REGNO_FIRST_UID (regno
)] < INSN_LUID (loop_start
));
976 m
->lifetime
= (uid_luid
[REGNO_LAST_UID (regno
)]
977 - uid_luid
[REGNO_FIRST_UID (regno
)]);
978 m
->savings
= VARRAY_INT (n_times_set
, regno
);
979 if (find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
980 m
->savings
+= libcall_benefit (p
);
981 VARRAY_INT (set_in_loop
, regno
) = move_insn
? -2 : -1;
982 /* Add M to the end of the chain MOVABLES. */
986 last_movable
->next
= m
;
991 /* It is possible for the first instruction to have a
992 REG_EQUAL note but a non-invariant SET_SRC, so we must
993 remember the status of the first instruction in case
994 the last instruction doesn't have a REG_EQUAL note. */
995 m
->move_insn_first
= m
->move_insn
;
997 /* Skip this insn, not checking REG_LIBCALL notes. */
998 p
= next_nonnote_insn (p
);
999 /* Skip the consecutive insns, if there are any. */
1000 p
= skip_consec_insns (p
, m
->consec
);
1001 /* Back up to the last insn of the consecutive group. */
1002 p
= prev_nonnote_insn (p
);
1004 /* We must now reset m->move_insn, m->is_equiv, and possibly
1005 m->set_src to correspond to the effects of all the
1007 temp
= find_reg_note (p
, REG_EQUIV
, NULL_RTX
);
1009 m
->set_src
= XEXP (temp
, 0), m
->move_insn
= 1;
1012 temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
1013 if (temp
&& CONSTANT_P (XEXP (temp
, 0)))
1014 m
->set_src
= XEXP (temp
, 0), m
->move_insn
= 1;
1019 m
->is_equiv
= (find_reg_note (p
, REG_EQUIV
, NULL_RTX
) != 0);
1022 /* If this register is always set within a STRICT_LOW_PART
1023 or set to zero, then its high bytes are constant.
1024 So clear them outside the loop and within the loop
1025 just load the low bytes.
1026 We must check that the machine has an instruction to do so.
1027 Also, if the value loaded into the register
1028 depends on the same register, this cannot be done. */
1029 else if (SET_SRC (set
) == const0_rtx
1030 && GET_CODE (NEXT_INSN (p
)) == INSN
1031 && (set1
= single_set (NEXT_INSN (p
)))
1032 && GET_CODE (set1
) == SET
1033 && (GET_CODE (SET_DEST (set1
)) == STRICT_LOW_PART
)
1034 && (GET_CODE (XEXP (SET_DEST (set1
), 0)) == SUBREG
)
1035 && (SUBREG_REG (XEXP (SET_DEST (set1
), 0))
1037 && !reg_mentioned_p (SET_DEST (set
), SET_SRC (set1
)))
1039 register int regno
= REGNO (SET_DEST (set
));
1040 if (VARRAY_INT (set_in_loop
, regno
) == 2)
1042 register struct movable
*m
;
1043 m
= (struct movable
*) alloca (sizeof (struct movable
));
1046 m
->set_dest
= SET_DEST (set
);
1047 m
->dependencies
= 0;
1053 m
->move_insn_first
= 0;
1055 /* If the insn may not be executed on some cycles,
1056 we can't clear the whole reg; clear just high part.
1057 Not even if the reg is used only within this loop.
1064 Clearing x before the inner loop could clobber a value
1065 being saved from the last time around the outer loop.
1066 However, if the reg is not used outside this loop
1067 and all uses of the register are in the same
1068 basic block as the store, there is no problem.
1070 If this insn was made by loop, we don't know its
1071 INSN_LUID and hence must make a conservative
1073 m
->global
= (INSN_UID (p
) >= max_uid_for_loop
1074 || (uid_luid
[REGNO_LAST_UID (regno
)]
1076 || (uid_luid
[REGNO_FIRST_UID (regno
)]
1078 || (labels_in_range_p
1079 (p
, uid_luid
[REGNO_FIRST_UID (regno
)])));
1080 if (maybe_never
&& m
->global
)
1081 m
->savemode
= GET_MODE (SET_SRC (set1
));
1083 m
->savemode
= VOIDmode
;
1087 m
->lifetime
= (uid_luid
[REGNO_LAST_UID (regno
)]
1088 - uid_luid
[REGNO_FIRST_UID (regno
)]);
1090 VARRAY_INT (set_in_loop
, regno
) = -1;
1091 /* Add M to the end of the chain MOVABLES. */
1095 last_movable
->next
= m
;
1100 /* Past a call insn, we get to insns which might not be executed
1101 because the call might exit. This matters for insns that trap.
1102 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
1103 so they don't count. */
1104 else if (GET_CODE (p
) == CALL_INSN
&& ! in_libcall
)
1106 /* Past a label or a jump, we get to insns for which we
1107 can't count on whether or how many times they will be
1108 executed during each iteration. Therefore, we can
1109 only move out sets of trivial variables
1110 (those not used after the loop). */
1111 /* Similar code appears twice in strength_reduce. */
1112 else if ((GET_CODE (p
) == CODE_LABEL
|| GET_CODE (p
) == JUMP_INSN
)
1113 /* If we enter the loop in the middle, and scan around to the
1114 beginning, don't set maybe_never for that. This must be an
1115 unconditional jump, otherwise the code at the top of the
1116 loop might never be executed. Unconditional jumps are
1117 followed a by barrier then loop end. */
1118 && ! (GET_CODE (p
) == JUMP_INSN
&& JUMP_LABEL (p
) == loop_top
1119 && NEXT_INSN (NEXT_INSN (p
)) == end
1120 && simplejump_p (p
)))
1122 else if (GET_CODE (p
) == NOTE
)
1124 /* At the virtual top of a converted loop, insns are again known to
1125 be executed: logically, the loop begins here even though the exit
1126 code has been duplicated. */
1127 if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_VTOP
&& loop_depth
== 0)
1128 maybe_never
= call_passed
= 0;
1129 else if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_BEG
)
1131 else if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_END
)
1136 /* If one movable subsumes another, ignore that other. */
1138 ignore_some_movables (movables
);
1140 /* For each movable insn, see if the reg that it loads
1141 leads when it dies right into another conditionally movable insn.
1142 If so, record that the second insn "forces" the first one,
1143 since the second can be moved only if the first is. */
1145 force_movables (movables
);
1147 /* See if there are multiple movable insns that load the same value.
1148 If there are, make all but the first point at the first one
1149 through the `match' field, and add the priorities of them
1150 all together as the priority of the first. */
1152 combine_movables (movables
, nregs
);
1154 /* Now consider each movable insn to decide whether it is worth moving.
1155 Store 0 in set_in_loop for each reg that is moved.
1157 Generally this increases code size, so do not move moveables when
1158 optimizing for code size. */
1160 if (! optimize_size
)
1161 move_movables (movables
, threshold
,
1162 insn_count
, loop_start
, end
, nregs
);
1164 /* Now candidates that still are negative are those not moved.
1165 Change set_in_loop to indicate that those are not actually invariant. */
1166 for (i
= 0; i
< nregs
; i
++)
1167 if (VARRAY_INT (set_in_loop
, i
) < 0)
1168 VARRAY_INT (set_in_loop
, i
) = VARRAY_INT (n_times_set
, i
);
1170 /* Now that we've moved some things out of the loop, we might be able to
1171 hoist even more memory references. */
1172 load_mems_and_recount_loop_regs_set (scan_start
, end
, loop_top
,
1173 loop_start
, &insn_count
);
1175 if (flag_strength_reduce
)
1177 the_movables
= movables
;
1178 strength_reduce (scan_start
, end
, loop_top
,
1179 insn_count
, loop_start
, end
,
1180 loop_info
, loop_cont
, unroll_p
, bct_p
);
1183 VARRAY_FREE (reg_single_usage
);
1184 VARRAY_FREE (set_in_loop
);
1185 VARRAY_FREE (n_times_set
);
1186 VARRAY_FREE (may_not_optimize
);
1189 /* Add elements to *OUTPUT to record all the pseudo-regs
1190 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1193 record_excess_regs (in_this
, not_in_this
, output
)
1194 rtx in_this
, not_in_this
;
1201 code
= GET_CODE (in_this
);
1215 if (REGNO (in_this
) >= FIRST_PSEUDO_REGISTER
1216 && ! reg_mentioned_p (in_this
, not_in_this
))
1217 *output
= gen_rtx_EXPR_LIST (VOIDmode
, in_this
, *output
);
1224 fmt
= GET_RTX_FORMAT (code
);
1225 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1232 for (j
= 0; j
< XVECLEN (in_this
, i
); j
++)
1233 record_excess_regs (XVECEXP (in_this
, i
, j
), not_in_this
, output
);
1237 record_excess_regs (XEXP (in_this
, i
), not_in_this
, output
);
1243 /* Check what regs are referred to in the libcall block ending with INSN,
1244 aside from those mentioned in the equivalent value.
1245 If there are none, return 0.
1246 If there are one or more, return an EXPR_LIST containing all of them. */
1249 libcall_other_reg (insn
, equiv
)
1252 rtx note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
1253 rtx p
= XEXP (note
, 0);
1256 /* First, find all the regs used in the libcall block
1257 that are not mentioned as inputs to the result. */
1261 if (GET_CODE (p
) == INSN
|| GET_CODE (p
) == JUMP_INSN
1262 || GET_CODE (p
) == CALL_INSN
)
1263 record_excess_regs (PATTERN (p
), equiv
, &output
);
1270 /* Return 1 if all uses of REG
1271 are between INSN and the end of the basic block. */
1274 reg_in_basic_block_p (insn
, reg
)
1277 int regno
= REGNO (reg
);
1280 if (REGNO_FIRST_UID (regno
) != INSN_UID (insn
))
1283 /* Search this basic block for the already recorded last use of the reg. */
1284 for (p
= insn
; p
; p
= NEXT_INSN (p
))
1286 switch (GET_CODE (p
))
1293 /* Ordinary insn: if this is the last use, we win. */
1294 if (REGNO_LAST_UID (regno
) == INSN_UID (p
))
1299 /* Jump insn: if this is the last use, we win. */
1300 if (REGNO_LAST_UID (regno
) == INSN_UID (p
))
1302 /* Otherwise, it's the end of the basic block, so we lose. */
1307 /* It's the end of the basic block, so we lose. */
1315 /* The "last use" doesn't follow the "first use"?? */
1319 /* Compute the benefit of eliminating the insns in the block whose
1320 last insn is LAST. This may be a group of insns used to compute a
1321 value directly or can contain a library call. */
1324 libcall_benefit (last
)
1330 for (insn
= XEXP (find_reg_note (last
, REG_RETVAL
, NULL_RTX
), 0);
1331 insn
!= last
; insn
= NEXT_INSN (insn
))
1333 if (GET_CODE (insn
) == CALL_INSN
)
1334 benefit
+= 10; /* Assume at least this many insns in a library
1336 else if (GET_CODE (insn
) == INSN
1337 && GET_CODE (PATTERN (insn
)) != USE
1338 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
1345 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1348 skip_consec_insns (insn
, count
)
1352 for (; count
> 0; count
--)
1356 /* If first insn of libcall sequence, skip to end. */
1357 /* Do this at start of loop, since INSN is guaranteed to
1359 if (GET_CODE (insn
) != NOTE
1360 && (temp
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
)))
1361 insn
= XEXP (temp
, 0);
1363 do insn
= NEXT_INSN (insn
);
1364 while (GET_CODE (insn
) == NOTE
);
1370 /* Ignore any movable whose insn falls within a libcall
1371 which is part of another movable.
1372 We make use of the fact that the movable for the libcall value
1373 was made later and so appears later on the chain. */
1376 ignore_some_movables (movables
)
1377 struct movable
*movables
;
1379 register struct movable
*m
, *m1
;
1381 for (m
= movables
; m
; m
= m
->next
)
1383 /* Is this a movable for the value of a libcall? */
1384 rtx note
= find_reg_note (m
->insn
, REG_RETVAL
, NULL_RTX
);
1388 /* Check for earlier movables inside that range,
1389 and mark them invalid. We cannot use LUIDs here because
1390 insns created by loop.c for prior loops don't have LUIDs.
1391 Rather than reject all such insns from movables, we just
1392 explicitly check each insn in the libcall (since invariant
1393 libcalls aren't that common). */
1394 for (insn
= XEXP (note
, 0); insn
!= m
->insn
; insn
= NEXT_INSN (insn
))
1395 for (m1
= movables
; m1
!= m
; m1
= m1
->next
)
1396 if (m1
->insn
== insn
)
1402 /* For each movable insn, see if the reg that it loads
1403 leads when it dies right into another conditionally movable insn.
1404 If so, record that the second insn "forces" the first one,
1405 since the second can be moved only if the first is. */
1408 force_movables (movables
)
1409 struct movable
*movables
;
1411 register struct movable
*m
, *m1
;
1412 for (m1
= movables
; m1
; m1
= m1
->next
)
1413 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1414 if (!m1
->partial
&& !m1
->done
)
1416 int regno
= m1
->regno
;
1417 for (m
= m1
->next
; m
; m
= m
->next
)
1418 /* ??? Could this be a bug? What if CSE caused the
1419 register of M1 to be used after this insn?
1420 Since CSE does not update regno_last_uid,
1421 this insn M->insn might not be where it dies.
1422 But very likely this doesn't matter; what matters is
1423 that M's reg is computed from M1's reg. */
1424 if (INSN_UID (m
->insn
) == REGNO_LAST_UID (regno
)
1427 if (m
!= 0 && m
->set_src
== m1
->set_dest
1428 /* If m->consec, m->set_src isn't valid. */
1432 /* Increase the priority of the moving the first insn
1433 since it permits the second to be moved as well. */
1437 m1
->lifetime
+= m
->lifetime
;
1438 m1
->savings
+= m
->savings
;
1443 /* Find invariant expressions that are equal and can be combined into
1447 combine_movables (movables
, nregs
)
1448 struct movable
*movables
;
1451 register struct movable
*m
;
1452 char *matched_regs
= (char *) alloca (nregs
);
1453 enum machine_mode mode
;
1455 /* Regs that are set more than once are not allowed to match
1456 or be matched. I'm no longer sure why not. */
1457 /* Perhaps testing m->consec_sets would be more appropriate here? */
1459 for (m
= movables
; m
; m
= m
->next
)
1460 if (m
->match
== 0 && VARRAY_INT (n_times_set
, m
->regno
) == 1 && !m
->partial
)
1462 register struct movable
*m1
;
1463 int regno
= m
->regno
;
1465 bzero (matched_regs
, nregs
);
1466 matched_regs
[regno
] = 1;
1468 /* We want later insns to match the first one. Don't make the first
1469 one match any later ones. So start this loop at m->next. */
1470 for (m1
= m
->next
; m1
; m1
= m1
->next
)
1471 if (m
!= m1
&& m1
->match
== 0 && VARRAY_INT (n_times_set
, m1
->regno
) == 1
1472 /* A reg used outside the loop mustn't be eliminated. */
1474 /* A reg used for zero-extending mustn't be eliminated. */
1476 && (matched_regs
[m1
->regno
]
1479 /* Can combine regs with different modes loaded from the
1480 same constant only if the modes are the same or
1481 if both are integer modes with M wider or the same
1482 width as M1. The check for integer is redundant, but
1483 safe, since the only case of differing destination
1484 modes with equal sources is when both sources are
1485 VOIDmode, i.e., CONST_INT. */
1486 (GET_MODE (m
->set_dest
) == GET_MODE (m1
->set_dest
)
1487 || (GET_MODE_CLASS (GET_MODE (m
->set_dest
)) == MODE_INT
1488 && GET_MODE_CLASS (GET_MODE (m1
->set_dest
)) == MODE_INT
1489 && (GET_MODE_BITSIZE (GET_MODE (m
->set_dest
))
1490 >= GET_MODE_BITSIZE (GET_MODE (m1
->set_dest
)))))
1491 /* See if the source of M1 says it matches M. */
1492 && ((GET_CODE (m1
->set_src
) == REG
1493 && matched_regs
[REGNO (m1
->set_src
)])
1494 || rtx_equal_for_loop_p (m
->set_src
, m1
->set_src
,
1496 && ((m
->dependencies
== m1
->dependencies
)
1497 || rtx_equal_p (m
->dependencies
, m1
->dependencies
)))
1499 m
->lifetime
+= m1
->lifetime
;
1500 m
->savings
+= m1
->savings
;
1503 matched_regs
[m1
->regno
] = 1;
1507 /* Now combine the regs used for zero-extension.
1508 This can be done for those not marked `global'
1509 provided their lives don't overlap. */
1511 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1512 mode
= GET_MODE_WIDER_MODE (mode
))
1514 register struct movable
*m0
= 0;
1516 /* Combine all the registers for extension from mode MODE.
1517 Don't combine any that are used outside this loop. */
1518 for (m
= movables
; m
; m
= m
->next
)
1519 if (m
->partial
&& ! m
->global
1520 && mode
== GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m
->insn
)))))
1522 register struct movable
*m1
;
1523 int first
= uid_luid
[REGNO_FIRST_UID (m
->regno
)];
1524 int last
= uid_luid
[REGNO_LAST_UID (m
->regno
)];
1528 /* First one: don't check for overlap, just record it. */
1533 /* Make sure they extend to the same mode.
1534 (Almost always true.) */
1535 if (GET_MODE (m
->set_dest
) != GET_MODE (m0
->set_dest
))
1538 /* We already have one: check for overlap with those
1539 already combined together. */
1540 for (m1
= movables
; m1
!= m
; m1
= m1
->next
)
1541 if (m1
== m0
|| (m1
->partial
&& m1
->match
== m0
))
1542 if (! (uid_luid
[REGNO_FIRST_UID (m1
->regno
)] > last
1543 || uid_luid
[REGNO_LAST_UID (m1
->regno
)] < first
))
1546 /* No overlap: we can combine this with the others. */
1547 m0
->lifetime
+= m
->lifetime
;
1548 m0
->savings
+= m
->savings
;
1557 /* Return 1 if regs X and Y will become the same if moved. */
1560 regs_match_p (x
, y
, movables
)
1562 struct movable
*movables
;
1566 struct movable
*mx
, *my
;
1568 for (mx
= movables
; mx
; mx
= mx
->next
)
1569 if (mx
->regno
== xn
)
1572 for (my
= movables
; my
; my
= my
->next
)
1573 if (my
->regno
== yn
)
1577 && ((mx
->match
== my
->match
&& mx
->match
!= 0)
1579 || mx
== my
->match
));
1582 /* Return 1 if X and Y are identical-looking rtx's.
1583 This is the Lisp function EQUAL for rtx arguments.
1585 If two registers are matching movables or a movable register and an
1586 equivalent constant, consider them equal. */
1589 rtx_equal_for_loop_p (x
, y
, movables
)
1591 struct movable
*movables
;
1595 register struct movable
*m
;
1596 register enum rtx_code code
;
1597 register const char *fmt
;
1601 if (x
== 0 || y
== 0)
1604 code
= GET_CODE (x
);
1606 /* If we have a register and a constant, they may sometimes be
1608 if (GET_CODE (x
) == REG
&& VARRAY_INT (set_in_loop
, REGNO (x
)) == -2
1611 for (m
= movables
; m
; m
= m
->next
)
1612 if (m
->move_insn
&& m
->regno
== REGNO (x
)
1613 && rtx_equal_p (m
->set_src
, y
))
1616 else if (GET_CODE (y
) == REG
&& VARRAY_INT (set_in_loop
, REGNO (y
)) == -2
1619 for (m
= movables
; m
; m
= m
->next
)
1620 if (m
->move_insn
&& m
->regno
== REGNO (y
)
1621 && rtx_equal_p (m
->set_src
, x
))
1625 /* Otherwise, rtx's of different codes cannot be equal. */
1626 if (code
!= GET_CODE (y
))
1629 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1630 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1632 if (GET_MODE (x
) != GET_MODE (y
))
1635 /* These three types of rtx's can be compared nonrecursively. */
1637 return (REGNO (x
) == REGNO (y
) || regs_match_p (x
, y
, movables
));
1639 if (code
== LABEL_REF
)
1640 return XEXP (x
, 0) == XEXP (y
, 0);
1641 if (code
== SYMBOL_REF
)
1642 return XSTR (x
, 0) == XSTR (y
, 0);
1644 /* Compare the elements. If any pair of corresponding elements
1645 fail to match, return 0 for the whole things. */
1647 fmt
= GET_RTX_FORMAT (code
);
1648 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1653 if (XWINT (x
, i
) != XWINT (y
, i
))
1658 if (XINT (x
, i
) != XINT (y
, i
))
1663 /* Two vectors must have the same length. */
1664 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1667 /* And the corresponding elements must match. */
1668 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1669 if (rtx_equal_for_loop_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
), movables
) == 0)
1674 if (rtx_equal_for_loop_p (XEXP (x
, i
), XEXP (y
, i
), movables
) == 0)
1679 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1684 /* These are just backpointers, so they don't matter. */
1690 /* It is believed that rtx's at this level will never
1691 contain anything but integers and other rtx's,
1692 except for within LABEL_REFs and SYMBOL_REFs. */
1700 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1701 insns in INSNS which use the reference. */
1704 add_label_notes (x
, insns
)
1708 enum rtx_code code
= GET_CODE (x
);
1713 if (code
== LABEL_REF
&& !LABEL_REF_NONLOCAL_P (x
))
1715 /* This code used to ignore labels that referred to dispatch tables to
1716 avoid flow generating (slighly) worse code.
1718 We no longer ignore such label references (see LABEL_REF handling in
1719 mark_jump_label for additional information). */
1720 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
1721 if (reg_mentioned_p (XEXP (x
, 0), insn
))
1722 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_LABEL
, XEXP (x
, 0),
1726 fmt
= GET_RTX_FORMAT (code
);
1727 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1730 add_label_notes (XEXP (x
, i
), insns
);
1731 else if (fmt
[i
] == 'E')
1732 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1733 add_label_notes (XVECEXP (x
, i
, j
), insns
);
1737 /* Scan MOVABLES, and move the insns that deserve to be moved.
1738 If two matching movables are combined, replace one reg with the
1739 other throughout. */
1742 move_movables (movables
, threshold
, insn_count
, loop_start
, end
, nregs
)
1743 struct movable
*movables
;
1751 register struct movable
*m
;
1753 /* Map of pseudo-register replacements to handle combining
1754 when we move several insns that load the same value
1755 into different pseudo-registers. */
1756 rtx
*reg_map
= (rtx
*) alloca (nregs
* sizeof (rtx
));
1757 char *already_moved
= (char *) alloca (nregs
);
1759 bzero (already_moved
, nregs
);
1760 bzero ((char *) reg_map
, nregs
* sizeof (rtx
));
1764 for (m
= movables
; m
; m
= m
->next
)
1766 /* Describe this movable insn. */
1768 if (loop_dump_stream
)
1770 fprintf (loop_dump_stream
, "Insn %d: regno %d (life %d), ",
1771 INSN_UID (m
->insn
), m
->regno
, m
->lifetime
);
1773 fprintf (loop_dump_stream
, "consec %d, ", m
->consec
);
1775 fprintf (loop_dump_stream
, "cond ");
1777 fprintf (loop_dump_stream
, "force ");
1779 fprintf (loop_dump_stream
, "global ");
1781 fprintf (loop_dump_stream
, "done ");
1783 fprintf (loop_dump_stream
, "move-insn ");
1785 fprintf (loop_dump_stream
, "matches %d ",
1786 INSN_UID (m
->match
->insn
));
1788 fprintf (loop_dump_stream
, "forces %d ",
1789 INSN_UID (m
->forces
->insn
));
1792 /* Count movables. Value used in heuristics in strength_reduce. */
1795 /* Ignore the insn if it's already done (it matched something else).
1796 Otherwise, see if it is now safe to move. */
1800 || (1 == invariant_p (m
->set_src
)
1801 && (m
->dependencies
== 0
1802 || 1 == invariant_p (m
->dependencies
))
1804 || 1 == consec_sets_invariant_p (m
->set_dest
,
1807 && (! m
->forces
|| m
->forces
->done
))
1811 int savings
= m
->savings
;
1813 /* We have an insn that is safe to move.
1814 Compute its desirability. */
1819 if (loop_dump_stream
)
1820 fprintf (loop_dump_stream
, "savings %d ", savings
);
1822 if (moved_once
[regno
] && loop_dump_stream
)
1823 fprintf (loop_dump_stream
, "halved since already moved ");
1825 /* An insn MUST be moved if we already moved something else
1826 which is safe only if this one is moved too: that is,
1827 if already_moved[REGNO] is nonzero. */
1829 /* An insn is desirable to move if the new lifetime of the
1830 register is no more than THRESHOLD times the old lifetime.
1831 If it's not desirable, it means the loop is so big
1832 that moving won't speed things up much,
1833 and it is liable to make register usage worse. */
1835 /* It is also desirable to move if it can be moved at no
1836 extra cost because something else was already moved. */
1838 if (already_moved
[regno
]
1839 || flag_move_all_movables
1840 || (threshold
* savings
* m
->lifetime
) >=
1841 (moved_once
[regno
] ? insn_count
* 2 : insn_count
)
1842 || (m
->forces
&& m
->forces
->done
1843 && VARRAY_INT (n_times_set
, m
->forces
->regno
) == 1))
1846 register struct movable
*m1
;
1847 rtx first
= NULL_RTX
;
1849 /* Now move the insns that set the reg. */
1851 if (m
->partial
&& m
->match
)
1855 /* Find the end of this chain of matching regs.
1856 Thus, we load each reg in the chain from that one reg.
1857 And that reg is loaded with 0 directly,
1858 since it has ->match == 0. */
1859 for (m1
= m
; m1
->match
; m1
= m1
->match
);
1860 newpat
= gen_move_insn (SET_DEST (PATTERN (m
->insn
)),
1861 SET_DEST (PATTERN (m1
->insn
)));
1862 i1
= emit_insn_before (newpat
, loop_start
);
1864 /* Mark the moved, invariant reg as being allowed to
1865 share a hard reg with the other matching invariant. */
1866 REG_NOTES (i1
) = REG_NOTES (m
->insn
);
1867 r1
= SET_DEST (PATTERN (m
->insn
));
1868 r2
= SET_DEST (PATTERN (m1
->insn
));
1870 = gen_rtx_EXPR_LIST (VOIDmode
, r1
,
1871 gen_rtx_EXPR_LIST (VOIDmode
, r2
,
1873 delete_insn (m
->insn
);
1878 if (loop_dump_stream
)
1879 fprintf (loop_dump_stream
, " moved to %d", INSN_UID (i1
));
1881 /* If we are to re-generate the item being moved with a
1882 new move insn, first delete what we have and then emit
1883 the move insn before the loop. */
1884 else if (m
->move_insn
)
1888 for (count
= m
->consec
; count
>= 0; count
--)
1890 /* If this is the first insn of a library call sequence,
1892 if (GET_CODE (p
) != NOTE
1893 && (temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)))
1896 /* If this is the last insn of a libcall sequence, then
1897 delete every insn in the sequence except the last.
1898 The last insn is handled in the normal manner. */
1899 if (GET_CODE (p
) != NOTE
1900 && (temp
= find_reg_note (p
, REG_RETVAL
, NULL_RTX
)))
1902 temp
= XEXP (temp
, 0);
1904 temp
= delete_insn (temp
);
1908 p
= delete_insn (p
);
1910 /* simplify_giv_expr expects that it can walk the insns
1911 at m->insn forwards and see this old sequence we are
1912 tossing here. delete_insn does preserve the next
1913 pointers, but when we skip over a NOTE we must fix
1914 it up. Otherwise that code walks into the non-deleted
1916 while (p
&& GET_CODE (p
) == NOTE
)
1917 p
= NEXT_INSN (temp
) = NEXT_INSN (p
);
1921 emit_move_insn (m
->set_dest
, m
->set_src
);
1922 temp
= get_insns ();
1925 add_label_notes (m
->set_src
, temp
);
1927 i1
= emit_insns_before (temp
, loop_start
);
1928 if (! find_reg_note (i1
, REG_EQUAL
, NULL_RTX
))
1930 = gen_rtx_EXPR_LIST (m
->is_equiv
? REG_EQUIV
: REG_EQUAL
,
1931 m
->set_src
, REG_NOTES (i1
));
1933 if (loop_dump_stream
)
1934 fprintf (loop_dump_stream
, " moved to %d", INSN_UID (i1
));
1936 /* The more regs we move, the less we like moving them. */
1941 for (count
= m
->consec
; count
>= 0; count
--)
1945 /* If first insn of libcall sequence, skip to end. */
1946 /* Do this at start of loop, since p is guaranteed to
1948 if (GET_CODE (p
) != NOTE
1949 && (temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)))
1952 /* If last insn of libcall sequence, move all
1953 insns except the last before the loop. The last
1954 insn is handled in the normal manner. */
1955 if (GET_CODE (p
) != NOTE
1956 && (temp
= find_reg_note (p
, REG_RETVAL
, NULL_RTX
)))
1960 rtx fn_address_insn
= 0;
1963 for (temp
= XEXP (temp
, 0); temp
!= p
;
1964 temp
= NEXT_INSN (temp
))
1970 if (GET_CODE (temp
) == NOTE
)
1973 body
= PATTERN (temp
);
1975 /* Find the next insn after TEMP,
1976 not counting USE or NOTE insns. */
1977 for (next
= NEXT_INSN (temp
); next
!= p
;
1978 next
= NEXT_INSN (next
))
1979 if (! (GET_CODE (next
) == INSN
1980 && GET_CODE (PATTERN (next
)) == USE
)
1981 && GET_CODE (next
) != NOTE
)
1984 /* If that is the call, this may be the insn
1985 that loads the function address.
1987 Extract the function address from the insn
1988 that loads it into a register.
1989 If this insn was cse'd, we get incorrect code.
1991 So emit a new move insn that copies the
1992 function address into the register that the
1993 call insn will use. flow.c will delete any
1994 redundant stores that we have created. */
1995 if (GET_CODE (next
) == CALL_INSN
1996 && GET_CODE (body
) == SET
1997 && GET_CODE (SET_DEST (body
)) == REG
1998 && (n
= find_reg_note (temp
, REG_EQUAL
,
2001 fn_reg
= SET_SRC (body
);
2002 if (GET_CODE (fn_reg
) != REG
)
2003 fn_reg
= SET_DEST (body
);
2004 fn_address
= XEXP (n
, 0);
2005 fn_address_insn
= temp
;
2007 /* We have the call insn.
2008 If it uses the register we suspect it might,
2009 load it with the correct address directly. */
2010 if (GET_CODE (temp
) == CALL_INSN
2012 && reg_referenced_p (fn_reg
, body
))
2013 emit_insn_after (gen_move_insn (fn_reg
,
2017 if (GET_CODE (temp
) == CALL_INSN
)
2019 i1
= emit_call_insn_before (body
, loop_start
);
2020 /* Because the USAGE information potentially
2021 contains objects other than hard registers
2022 we need to copy it. */
2023 if (CALL_INSN_FUNCTION_USAGE (temp
))
2024 CALL_INSN_FUNCTION_USAGE (i1
)
2025 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp
));
2028 i1
= emit_insn_before (body
, loop_start
);
2031 if (temp
== fn_address_insn
)
2032 fn_address_insn
= i1
;
2033 REG_NOTES (i1
) = REG_NOTES (temp
);
2039 if (m
->savemode
!= VOIDmode
)
2041 /* P sets REG to zero; but we should clear only
2042 the bits that are not covered by the mode
2044 rtx reg
= m
->set_dest
;
2050 (GET_MODE (reg
), and_optab
, reg
,
2051 GEN_INT ((((HOST_WIDE_INT
) 1
2052 << GET_MODE_BITSIZE (m
->savemode
)))
2054 reg
, 1, OPTAB_LIB_WIDEN
);
2058 emit_move_insn (reg
, tem
);
2059 sequence
= gen_sequence ();
2061 i1
= emit_insn_before (sequence
, loop_start
);
2063 else if (GET_CODE (p
) == CALL_INSN
)
2065 i1
= emit_call_insn_before (PATTERN (p
), loop_start
);
2066 /* Because the USAGE information potentially
2067 contains objects other than hard registers
2068 we need to copy it. */
2069 if (CALL_INSN_FUNCTION_USAGE (p
))
2070 CALL_INSN_FUNCTION_USAGE (i1
)
2071 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p
));
2073 else if (count
== m
->consec
&& m
->move_insn_first
)
2075 /* The SET_SRC might not be invariant, so we must
2076 use the REG_EQUAL note. */
2078 emit_move_insn (m
->set_dest
, m
->set_src
);
2079 temp
= get_insns ();
2082 add_label_notes (m
->set_src
, temp
);
2084 i1
= emit_insns_before (temp
, loop_start
);
2085 if (! find_reg_note (i1
, REG_EQUAL
, NULL_RTX
))
2087 = gen_rtx_EXPR_LIST ((m
->is_equiv
? REG_EQUIV
2089 m
->set_src
, REG_NOTES (i1
));
2092 i1
= emit_insn_before (PATTERN (p
), loop_start
);
2094 if (REG_NOTES (i1
) == 0)
2096 REG_NOTES (i1
) = REG_NOTES (p
);
2098 /* If there is a REG_EQUAL note present whose value
2099 is not loop invariant, then delete it, since it
2100 may cause problems with later optimization passes.
2101 It is possible for cse to create such notes
2102 like this as a result of record_jump_cond. */
2104 if ((temp
= find_reg_note (i1
, REG_EQUAL
, NULL_RTX
))
2105 && ! invariant_p (XEXP (temp
, 0)))
2106 remove_note (i1
, temp
);
2112 if (loop_dump_stream
)
2113 fprintf (loop_dump_stream
, " moved to %d",
2116 /* If library call, now fix the REG_NOTES that contain
2117 insn pointers, namely REG_LIBCALL on FIRST
2118 and REG_RETVAL on I1. */
2119 if ((temp
= find_reg_note (i1
, REG_RETVAL
, NULL_RTX
)))
2121 XEXP (temp
, 0) = first
;
2122 temp
= find_reg_note (first
, REG_LIBCALL
, NULL_RTX
);
2123 XEXP (temp
, 0) = i1
;
2130 /* simplify_giv_expr expects that it can walk the insns
2131 at m->insn forwards and see this old sequence we are
2132 tossing here. delete_insn does preserve the next
2133 pointers, but when we skip over a NOTE we must fix
2134 it up. Otherwise that code walks into the non-deleted
2136 while (p
&& GET_CODE (p
) == NOTE
)
2137 p
= NEXT_INSN (temp
) = NEXT_INSN (p
);
2140 /* The more regs we move, the less we like moving them. */
2144 /* Any other movable that loads the same register
2146 already_moved
[regno
] = 1;
2148 /* This reg has been moved out of one loop. */
2149 moved_once
[regno
] = 1;
2151 /* The reg set here is now invariant. */
2153 VARRAY_INT (set_in_loop
, regno
) = 0;
2157 /* Change the length-of-life info for the register
2158 to say it lives at least the full length of this loop.
2159 This will help guide optimizations in outer loops. */
2161 if (uid_luid
[REGNO_FIRST_UID (regno
)] > INSN_LUID (loop_start
))
2162 /* This is the old insn before all the moved insns.
2163 We can't use the moved insn because it is out of range
2164 in uid_luid. Only the old insns have luids. */
2165 REGNO_FIRST_UID (regno
) = INSN_UID (loop_start
);
2166 if (uid_luid
[REGNO_LAST_UID (regno
)] < INSN_LUID (end
))
2167 REGNO_LAST_UID (regno
) = INSN_UID (end
);
2169 /* Combine with this moved insn any other matching movables. */
2172 for (m1
= movables
; m1
; m1
= m1
->next
)
2177 /* Schedule the reg loaded by M1
2178 for replacement so that shares the reg of M.
2179 If the modes differ (only possible in restricted
2180 circumstances, make a SUBREG.
2182 Note this assumes that the target dependent files
2183 treat REG and SUBREG equally, including within
2184 GO_IF_LEGITIMATE_ADDRESS and in all the
2185 predicates since we never verify that replacing the
2186 original register with a SUBREG results in a
2187 recognizable insn. */
2188 if (GET_MODE (m
->set_dest
) == GET_MODE (m1
->set_dest
))
2189 reg_map
[m1
->regno
] = m
->set_dest
;
2192 = gen_lowpart_common (GET_MODE (m1
->set_dest
),
2195 /* Get rid of the matching insn
2196 and prevent further processing of it. */
2199 /* if library call, delete all insn except last, which
2201 if ((temp
= find_reg_note (m1
->insn
, REG_RETVAL
,
2204 for (temp
= XEXP (temp
, 0); temp
!= m1
->insn
;
2205 temp
= NEXT_INSN (temp
))
2208 delete_insn (m1
->insn
);
2210 /* Any other movable that loads the same register
2212 already_moved
[m1
->regno
] = 1;
2214 /* The reg merged here is now invariant,
2215 if the reg it matches is invariant. */
2217 VARRAY_INT (set_in_loop
, m1
->regno
) = 0;
2220 else if (loop_dump_stream
)
2221 fprintf (loop_dump_stream
, "not desirable");
2223 else if (loop_dump_stream
&& !m
->match
)
2224 fprintf (loop_dump_stream
, "not safe");
2226 if (loop_dump_stream
)
2227 fprintf (loop_dump_stream
, "\n");
2231 new_start
= loop_start
;
2233 /* Go through all the instructions in the loop, making
2234 all the register substitutions scheduled in REG_MAP. */
2235 for (p
= new_start
; p
!= end
; p
= NEXT_INSN (p
))
2236 if (GET_CODE (p
) == INSN
|| GET_CODE (p
) == JUMP_INSN
2237 || GET_CODE (p
) == CALL_INSN
)
2239 replace_regs (PATTERN (p
), reg_map
, nregs
, 0);
2240 replace_regs (REG_NOTES (p
), reg_map
, nregs
, 0);
2246 /* Scan X and replace the address of any MEM in it with ADDR.
2247 REG is the address that MEM should have before the replacement. */
2250 replace_call_address (x
, reg
, addr
)
2253 register enum rtx_code code
;
2255 register const char *fmt
;
2259 code
= GET_CODE (x
);
2273 /* Short cut for very common case. */
2274 replace_call_address (XEXP (x
, 1), reg
, addr
);
2278 /* Short cut for very common case. */
2279 replace_call_address (XEXP (x
, 0), reg
, addr
);
2283 /* If this MEM uses a reg other than the one we expected,
2284 something is wrong. */
2285 if (XEXP (x
, 0) != reg
)
2294 fmt
= GET_RTX_FORMAT (code
);
2295 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2298 replace_call_address (XEXP (x
, i
), reg
, addr
);
2302 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2303 replace_call_address (XVECEXP (x
, i
, j
), reg
, addr
);
2309 /* Return the number of memory refs to addresses that vary
2313 count_nonfixed_reads (x
)
2316 register enum rtx_code code
;
2318 register const char *fmt
;
2324 code
= GET_CODE (x
);
2338 return ((invariant_p (XEXP (x
, 0)) != 1)
2339 + count_nonfixed_reads (XEXP (x
, 0)));
2346 fmt
= GET_RTX_FORMAT (code
);
2347 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2350 value
+= count_nonfixed_reads (XEXP (x
, i
));
2354 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2355 value
+= count_nonfixed_reads (XVECEXP (x
, i
, j
));
2363 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2364 Replace it with an instruction to load just the low bytes
2365 if the machine supports such an instruction,
2366 and insert above LOOP_START an instruction to clear the register. */
2369 constant_high_bytes (p
, loop_start
)
2373 register int insn_code_number
;
2375 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2376 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2381 gen_rtx_STRICT_LOW_PART
2383 gen_rtx_SUBREG (GET_MODE (XEXP (SET_SRC (PATTERN (p
)), 0)),
2384 SET_DEST (PATTERN (p
)), 0)),
2385 XEXP (SET_SRC (PATTERN (p
)), 0));
2387 insn_code_number
= recog (new, p
);
2389 if (insn_code_number
)
2393 /* Clear destination register before the loop. */
2394 emit_insn_before (gen_rtx_SET (VOIDmode
,
2395 SET_DEST (PATTERN (p
)), const0_rtx
),
2398 /* Inside the loop, just load the low part. */
2404 /* Scan a loop setting the elements `cont', `vtop', `loops_enclosed',
2405 `has_call', `has_volatile', and `has_tablejump' within LOOP_INFO.
2406 Set the global variables `unknown_address_altered',
2407 `unknown_constant_address_altered', and `num_mem_sets'. Also, fill
2408 in the array `loop_mems' and the list `loop_store_mems'. */
2411 prescan_loop (start
, end
, loop_info
)
2413 struct loop_info
*loop_info
;
2415 register int level
= 1;
2417 /* The label after END. Jumping here is just like falling off the
2418 end of the loop. We use next_nonnote_insn instead of next_label
2419 as a hedge against the (pathological) case where some actual insn
2420 might end up between the two. */
2421 rtx exit_target
= next_nonnote_insn (end
);
2423 loop_info
->num
= uid_loop_num
[INSN_UID (start
)];
2424 loop_info
->has_indirect_jump
= indirect_jump_in_function
;
2425 loop_info
->has_call
= 0;
2426 loop_info
->has_volatile
= 0;
2427 loop_info
->has_tablejump
= 0;
2428 loop_info
->loops_enclosed
= 1;
2429 loop_info
->has_multiple_exit_targets
= 0;
2430 loop_info
->cont
= 0;
2431 loop_info
->vtop
= 0;
2433 unknown_address_altered
= 0;
2434 unknown_constant_address_altered
= 0;
2435 loop_store_mems
= NULL_RTX
;
2436 first_loop_store_insn
= NULL_RTX
;
2440 for (insn
= NEXT_INSN (start
); insn
!= NEXT_INSN (end
);
2441 insn
= NEXT_INSN (insn
))
2443 if (GET_CODE (insn
) == NOTE
)
2445 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
2448 /* Count number of loops contained in this one. */
2449 loop_info
->loops_enclosed
++;
2451 else if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
)
2460 else if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_CONT
)
2463 loop_info
->cont
= insn
;
2465 else if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_VTOP
)
2467 /* If there is a NOTE_INSN_LOOP_VTOP, then this is a for
2468 or while style loop, with a loop exit test at the
2469 start. Thus, we can assume that the loop condition
2470 was true when the loop was entered. */
2472 loop_info
->vtop
= insn
;
2475 else if (GET_CODE (insn
) == CALL_INSN
)
2477 if (! CONST_CALL_P (insn
))
2478 unknown_address_altered
= 1;
2479 loop_info
->has_call
= 1;
2481 else if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == JUMP_INSN
)
2483 rtx label1
= NULL_RTX
;
2484 rtx label2
= NULL_RTX
;
2486 if (volatile_refs_p (PATTERN (insn
)))
2487 loop_info
->has_volatile
= 1;
2489 if (GET_CODE (insn
) == JUMP_INSN
2490 && (GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
2491 || GET_CODE (PATTERN (insn
)) == ADDR_VEC
))
2492 loop_info
->has_tablejump
= 1;
2494 note_stores (PATTERN (insn
), note_addr_stored
, NULL
);
2495 if (! first_loop_store_insn
&& loop_store_mems
)
2496 first_loop_store_insn
= insn
;
2498 if (! loop_info
->has_multiple_exit_targets
2499 && GET_CODE (insn
) == JUMP_INSN
2500 && GET_CODE (PATTERN (insn
)) == SET
2501 && SET_DEST (PATTERN (insn
)) == pc_rtx
)
2503 if (GET_CODE (SET_SRC (PATTERN (insn
))) == IF_THEN_ELSE
)
2505 label1
= XEXP (SET_SRC (PATTERN (insn
)), 1);
2506 label2
= XEXP (SET_SRC (PATTERN (insn
)), 2);
2510 label1
= SET_SRC (PATTERN (insn
));
2514 if (label1
&& label1
!= pc_rtx
)
2516 if (GET_CODE (label1
) != LABEL_REF
)
2518 /* Something tricky. */
2519 loop_info
->has_multiple_exit_targets
= 1;
2522 else if (XEXP (label1
, 0) != exit_target
2523 && LABEL_OUTSIDE_LOOP_P (label1
))
2525 /* A jump outside the current loop. */
2526 loop_info
->has_multiple_exit_targets
= 1;
2536 else if (GET_CODE (insn
) == RETURN
)
2537 loop_info
->has_multiple_exit_targets
= 1;
2540 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
2541 if (/* We can't tell what MEMs are aliased by what. */
2542 !unknown_address_altered
2543 /* An exception thrown by a called function might land us
2545 && !loop_info
->has_call
2546 /* We don't want loads for MEMs moved to a location before the
2547 one at which their stack memory becomes allocated. (Note
2548 that this is not a problem for malloc, etc., since those
2549 require actual function calls. */
2550 && !current_function_calls_alloca
2551 /* There are ways to leave the loop other than falling off the
2553 && !loop_info
->has_multiple_exit_targets
)
2554 for (insn
= NEXT_INSN (start
); insn
!= NEXT_INSN (end
);
2555 insn
= NEXT_INSN (insn
))
2556 for_each_rtx (&insn
, insert_loop_mem
, 0);
2559 /* LOOP_NUMBER_CONT_DOMINATOR is now the last label between the loop start
2560 and the continue note that is a the destination of a (cond)jump after
2561 the continue note. If there is any (cond)jump between the loop start
2562 and what we have so far as LOOP_NUMBER_CONT_DOMINATOR that has a
2563 target between LOOP_DOMINATOR and the continue note, move
2564 LOOP_NUMBER_CONT_DOMINATOR forward to that label; if a jump's
2565 destination cannot be determined, clear LOOP_NUMBER_CONT_DOMINATOR. */
2568 verify_dominator (loop_number
)
2573 if (! loop_number_cont_dominator
[loop_number
])
2574 /* This can happen for an empty loop, e.g. in
2575 gcc.c-torture/compile/920410-2.c */
2577 if (loop_number_cont_dominator
[loop_number
] == const0_rtx
)
2579 loop_number_cont_dominator
[loop_number
] = 0;
2582 for (insn
= loop_number_loop_starts
[loop_number
];
2583 insn
!= loop_number_cont_dominator
[loop_number
];
2584 insn
= NEXT_INSN (insn
))
2586 if (GET_CODE (insn
) == JUMP_INSN
2587 && GET_CODE (PATTERN (insn
)) != RETURN
)
2589 rtx label
= JUMP_LABEL (insn
);
2592 /* If it is not a jump we can easily understand or for
2593 which we do not have jump target information in the JUMP_LABEL
2594 field (consider ADDR_VEC and ADDR_DIFF_VEC insns), then clear
2595 LOOP_NUMBER_CONT_DOMINATOR. */
2596 if ((! condjump_p (insn
)
2597 && ! condjump_in_parallel_p (insn
))
2598 || label
== NULL_RTX
)
2600 loop_number_cont_dominator
[loop_number
] = NULL_RTX
;
2604 label_luid
= INSN_LUID (label
);
2605 if (label_luid
< INSN_LUID (loop_number_loop_cont
[loop_number
])
2607 > INSN_LUID (loop_number_cont_dominator
[loop_number
])))
2608 loop_number_cont_dominator
[loop_number
] = label
;
2613 /* Scan the function looking for loops. Record the start and end of each loop.
2614 Also mark as invalid loops any loops that contain a setjmp or are branched
2615 to from outside the loop. */
2618 find_and_verify_loops (f
)
2622 int current_loop
= -1;
2626 compute_luids (f
, NULL_RTX
, 0);
2628 /* If there are jumps to undefined labels,
2629 treat them as jumps out of any/all loops.
2630 This also avoids writing past end of tables when there are no loops. */
2631 uid_loop_num
[0] = -1;
2633 /* Find boundaries of loops, mark which loops are contained within
2634 loops, and invalidate loops that have setjmp. */
2636 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
2638 if (GET_CODE (insn
) == NOTE
)
2639 switch (NOTE_LINE_NUMBER (insn
))
2641 case NOTE_INSN_LOOP_BEG
:
2642 loop_number_loop_starts
[++next_loop
] = insn
;
2643 loop_number_loop_ends
[next_loop
] = 0;
2644 loop_number_loop_cont
[next_loop
] = 0;
2645 loop_number_cont_dominator
[next_loop
] = 0;
2646 loop_outer_loop
[next_loop
] = current_loop
;
2647 loop_invalid
[next_loop
] = 0;
2648 loop_number_exit_labels
[next_loop
] = 0;
2649 loop_number_exit_count
[next_loop
] = 0;
2650 current_loop
= next_loop
;
2653 case NOTE_INSN_SETJMP
:
2654 /* In this case, we must invalidate our current loop and any
2656 for (loop
= current_loop
; loop
!= -1; loop
= loop_outer_loop
[loop
])
2658 loop_invalid
[loop
] = 1;
2659 if (loop_dump_stream
)
2660 fprintf (loop_dump_stream
,
2661 "\nLoop at %d ignored due to setjmp.\n",
2662 INSN_UID (loop_number_loop_starts
[loop
]));
2666 case NOTE_INSN_LOOP_CONT
:
2667 loop_number_loop_cont
[current_loop
] = insn
;
2669 case NOTE_INSN_LOOP_END
:
2670 if (current_loop
== -1)
2673 loop_number_loop_ends
[current_loop
] = insn
;
2674 verify_dominator (current_loop
);
2675 current_loop
= loop_outer_loop
[current_loop
];
2681 /* If for any loop, this is a jump insn between the NOTE_INSN_LOOP_CONT
2682 and NOTE_INSN_LOOP_END notes, update loop_number_loop_dominator. */
2683 else if (GET_CODE (insn
) == JUMP_INSN
2684 && GET_CODE (PATTERN (insn
)) != RETURN
2685 && current_loop
>= 0)
2688 rtx label
= JUMP_LABEL (insn
);
2690 if (! condjump_p (insn
) && ! condjump_in_parallel_p (insn
))
2693 this_loop_num
= current_loop
;
2696 /* First see if we care about this loop. */
2697 if (loop_number_loop_cont
[this_loop_num
]
2698 && loop_number_cont_dominator
[this_loop_num
] != const0_rtx
)
2700 /* If the jump destination is not known, invalidate
2701 loop_number_const_dominator. */
2703 loop_number_cont_dominator
[this_loop_num
] = const0_rtx
;
2705 /* Check if the destination is between loop start and
2707 if ((INSN_LUID (label
)
2708 < INSN_LUID (loop_number_loop_cont
[this_loop_num
]))
2709 && (INSN_LUID (label
)
2710 > INSN_LUID (loop_number_loop_starts
[this_loop_num
]))
2711 /* And if there is no later destination already
2713 && (! loop_number_cont_dominator
[this_loop_num
]
2714 || (INSN_LUID (label
)
2715 > INSN_LUID (loop_number_cont_dominator
2717 loop_number_cont_dominator
[this_loop_num
] = label
;
2719 this_loop_num
= loop_outer_loop
[this_loop_num
];
2721 while (this_loop_num
>= 0);
2724 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2725 enclosing loop, but this doesn't matter. */
2726 uid_loop_num
[INSN_UID (insn
)] = current_loop
;
2729 /* Any loop containing a label used in an initializer must be invalidated,
2730 because it can be jumped into from anywhere. */
2732 for (label
= forced_labels
; label
; label
= XEXP (label
, 1))
2736 for (loop_num
= uid_loop_num
[INSN_UID (XEXP (label
, 0))];
2738 loop_num
= loop_outer_loop
[loop_num
])
2739 loop_invalid
[loop_num
] = 1;
2742 /* Any loop containing a label used for an exception handler must be
2743 invalidated, because it can be jumped into from anywhere. */
2745 for (label
= exception_handler_labels
; label
; label
= XEXP (label
, 1))
2749 for (loop_num
= uid_loop_num
[INSN_UID (XEXP (label
, 0))];
2751 loop_num
= loop_outer_loop
[loop_num
])
2752 loop_invalid
[loop_num
] = 1;
2755 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2756 loop that it is not contained within, that loop is marked invalid.
2757 If any INSN or CALL_INSN uses a label's address, then the loop containing
2758 that label is marked invalid, because it could be jumped into from
2761 Also look for blocks of code ending in an unconditional branch that
2762 exits the loop. If such a block is surrounded by a conditional
2763 branch around the block, move the block elsewhere (see below) and
2764 invert the jump to point to the code block. This may eliminate a
2765 label in our loop and will simplify processing by both us and a
2766 possible second cse pass. */
2768 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
2769 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
2771 int this_loop_num
= uid_loop_num
[INSN_UID (insn
)];
2773 if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == CALL_INSN
)
2775 rtx note
= find_reg_note (insn
, REG_LABEL
, NULL_RTX
);
2780 for (loop_num
= uid_loop_num
[INSN_UID (XEXP (note
, 0))];
2782 loop_num
= loop_outer_loop
[loop_num
])
2783 loop_invalid
[loop_num
] = 1;
2787 if (GET_CODE (insn
) != JUMP_INSN
)
2790 mark_loop_jump (PATTERN (insn
), this_loop_num
);
2792 /* See if this is an unconditional branch outside the loop. */
2793 if (this_loop_num
!= -1
2794 && (GET_CODE (PATTERN (insn
)) == RETURN
2795 || (simplejump_p (insn
)
2796 && (uid_loop_num
[INSN_UID (JUMP_LABEL (insn
))]
2798 && get_max_uid () < max_uid_for_loop
)
2801 rtx our_next
= next_real_insn (insn
);
2802 rtx last_insn_to_move
= NEXT_INSN (insn
);
2804 int outer_loop
= -1;
2806 /* Go backwards until we reach the start of the loop, a label,
2808 for (p
= PREV_INSN (insn
);
2809 GET_CODE (p
) != CODE_LABEL
2810 && ! (GET_CODE (p
) == NOTE
2811 && NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_BEG
)
2812 && GET_CODE (p
) != JUMP_INSN
;
2816 /* Check for the case where we have a jump to an inner nested
2817 loop, and do not perform the optimization in that case. */
2819 if (JUMP_LABEL (insn
))
2821 dest_loop
= uid_loop_num
[INSN_UID (JUMP_LABEL (insn
))];
2822 if (dest_loop
!= -1)
2824 for (outer_loop
= dest_loop
; outer_loop
!= -1;
2825 outer_loop
= loop_outer_loop
[outer_loop
])
2826 if (outer_loop
== this_loop_num
)
2831 /* Make sure that the target of P is within the current loop. */
2833 if (GET_CODE (p
) == JUMP_INSN
&& JUMP_LABEL (p
)
2834 && uid_loop_num
[INSN_UID (JUMP_LABEL (p
))] != this_loop_num
)
2835 outer_loop
= this_loop_num
;
2837 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2838 we have a block of code to try to move.
2840 We look backward and then forward from the target of INSN
2841 to find a BARRIER at the same loop depth as the target.
2842 If we find such a BARRIER, we make a new label for the start
2843 of the block, invert the jump in P and point it to that label,
2844 and move the block of code to the spot we found. */
2846 if (outer_loop
== -1
2847 && GET_CODE (p
) == JUMP_INSN
2848 && JUMP_LABEL (p
) != 0
2849 /* Just ignore jumps to labels that were never emitted.
2850 These always indicate compilation errors. */
2851 && INSN_UID (JUMP_LABEL (p
)) != 0
2853 && ! simplejump_p (p
)
2854 && next_real_insn (JUMP_LABEL (p
)) == our_next
2855 /* If it's not safe to move the sequence, then we
2857 && insns_safe_to_move_p (p
, NEXT_INSN (insn
),
2858 &last_insn_to_move
))
2861 = JUMP_LABEL (insn
) ? JUMP_LABEL (insn
) : get_last_insn ();
2862 int target_loop_num
= uid_loop_num
[INSN_UID (target
)];
2865 for (loc
= target
; loc
; loc
= PREV_INSN (loc
))
2866 if (GET_CODE (loc
) == BARRIER
2867 /* Don't move things inside a tablejump. */
2868 && ((loc2
= next_nonnote_insn (loc
)) == 0
2869 || GET_CODE (loc2
) != CODE_LABEL
2870 || (loc2
= next_nonnote_insn (loc2
)) == 0
2871 || GET_CODE (loc2
) != JUMP_INSN
2872 || (GET_CODE (PATTERN (loc2
)) != ADDR_VEC
2873 && GET_CODE (PATTERN (loc2
)) != ADDR_DIFF_VEC
))
2874 && uid_loop_num
[INSN_UID (loc
)] == target_loop_num
)
2878 for (loc
= target
; loc
; loc
= NEXT_INSN (loc
))
2879 if (GET_CODE (loc
) == BARRIER
2880 /* Don't move things inside a tablejump. */
2881 && ((loc2
= next_nonnote_insn (loc
)) == 0
2882 || GET_CODE (loc2
) != CODE_LABEL
2883 || (loc2
= next_nonnote_insn (loc2
)) == 0
2884 || GET_CODE (loc2
) != JUMP_INSN
2885 || (GET_CODE (PATTERN (loc2
)) != ADDR_VEC
2886 && GET_CODE (PATTERN (loc2
)) != ADDR_DIFF_VEC
))
2887 && uid_loop_num
[INSN_UID (loc
)] == target_loop_num
)
2892 rtx cond_label
= JUMP_LABEL (p
);
2893 rtx new_label
= get_label_after (p
);
2895 /* Ensure our label doesn't go away. */
2896 LABEL_NUSES (cond_label
)++;
2898 /* Verify that uid_loop_num is large enough and that
2900 if (invert_jump (p
, new_label
))
2904 /* If no suitable BARRIER was found, create a suitable
2905 one before TARGET. Since TARGET is a fall through
2906 path, we'll need to insert an jump around our block
2907 and a add a BARRIER before TARGET.
2909 This creates an extra unconditional jump outside
2910 the loop. However, the benefits of removing rarely
2911 executed instructions from inside the loop usually
2912 outweighs the cost of the extra unconditional jump
2913 outside the loop. */
2918 temp
= gen_jump (JUMP_LABEL (insn
));
2919 temp
= emit_jump_insn_before (temp
, target
);
2920 JUMP_LABEL (temp
) = JUMP_LABEL (insn
);
2921 LABEL_NUSES (JUMP_LABEL (insn
))++;
2922 loc
= emit_barrier_before (target
);
2925 /* Include the BARRIER after INSN and copy the
2927 new_label
= squeeze_notes (new_label
,
2929 reorder_insns (new_label
, last_insn_to_move
, loc
);
2931 /* All those insns are now in TARGET_LOOP_NUM. */
2933 q
!= NEXT_INSN (last_insn_to_move
);
2935 uid_loop_num
[INSN_UID (q
)] = target_loop_num
;
2937 /* The label jumped to by INSN is no longer a loop exit.
2938 Unless INSN does not have a label (e.g., it is a
2939 RETURN insn), search loop_number_exit_labels to find
2940 its label_ref, and remove it. Also turn off
2941 LABEL_OUTSIDE_LOOP_P bit. */
2942 if (JUMP_LABEL (insn
))
2947 r
= loop_number_exit_labels
[this_loop_num
];
2948 r
; q
= r
, r
= LABEL_NEXTREF (r
))
2949 if (XEXP (r
, 0) == JUMP_LABEL (insn
))
2951 LABEL_OUTSIDE_LOOP_P (r
) = 0;
2953 LABEL_NEXTREF (q
) = LABEL_NEXTREF (r
);
2955 loop_number_exit_labels
[this_loop_num
]
2956 = LABEL_NEXTREF (r
);
2960 for (loop_num
= this_loop_num
;
2961 loop_num
!= -1 && loop_num
!= target_loop_num
;
2962 loop_num
= loop_outer_loop
[loop_num
])
2963 loop_number_exit_count
[loop_num
]--;
2965 /* If we didn't find it, then something is wrong. */
2970 /* P is now a jump outside the loop, so it must be put
2971 in loop_number_exit_labels, and marked as such.
2972 The easiest way to do this is to just call
2973 mark_loop_jump again for P. */
2974 mark_loop_jump (PATTERN (p
), this_loop_num
);
2976 /* If INSN now jumps to the insn after it,
2978 if (JUMP_LABEL (insn
) != 0
2979 && (next_real_insn (JUMP_LABEL (insn
))
2980 == next_real_insn (insn
)))
2984 /* Continue the loop after where the conditional
2985 branch used to jump, since the only branch insn
2986 in the block (if it still remains) is an inter-loop
2987 branch and hence needs no processing. */
2988 insn
= NEXT_INSN (cond_label
);
2990 if (--LABEL_NUSES (cond_label
) == 0)
2991 delete_insn (cond_label
);
2993 /* This loop will be continued with NEXT_INSN (insn). */
2994 insn
= PREV_INSN (insn
);
3001 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
3002 loops it is contained in, mark the target loop invalid.
3004 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
3007 mark_loop_jump (x
, loop_num
)
3015 switch (GET_CODE (x
))
3028 /* There could be a label reference in here. */
3029 mark_loop_jump (XEXP (x
, 0), loop_num
);
3035 mark_loop_jump (XEXP (x
, 0), loop_num
);
3036 mark_loop_jump (XEXP (x
, 1), loop_num
);
3040 /* This may refer to a LABEL_REF or SYMBOL_REF. */
3041 mark_loop_jump (XEXP (x
, 1), loop_num
);
3046 mark_loop_jump (XEXP (x
, 0), loop_num
);
3050 dest_loop
= uid_loop_num
[INSN_UID (XEXP (x
, 0))];
3052 /* Link together all labels that branch outside the loop. This
3053 is used by final_[bg]iv_value and the loop unrolling code. Also
3054 mark this LABEL_REF so we know that this branch should predict
3057 /* A check to make sure the label is not in an inner nested loop,
3058 since this does not count as a loop exit. */
3059 if (dest_loop
!= -1)
3061 for (outer_loop
= dest_loop
; outer_loop
!= -1;
3062 outer_loop
= loop_outer_loop
[outer_loop
])
3063 if (outer_loop
== loop_num
)
3069 if (loop_num
!= -1 && outer_loop
== -1)
3071 LABEL_OUTSIDE_LOOP_P (x
) = 1;
3072 LABEL_NEXTREF (x
) = loop_number_exit_labels
[loop_num
];
3073 loop_number_exit_labels
[loop_num
] = x
;
3075 for (outer_loop
= loop_num
;
3076 outer_loop
!= -1 && outer_loop
!= dest_loop
;
3077 outer_loop
= loop_outer_loop
[outer_loop
])
3078 loop_number_exit_count
[outer_loop
]++;
3081 /* If this is inside a loop, but not in the current loop or one enclosed
3082 by it, it invalidates at least one loop. */
3084 if (dest_loop
== -1)
3087 /* We must invalidate every nested loop containing the target of this
3088 label, except those that also contain the jump insn. */
3090 for (; dest_loop
!= -1; dest_loop
= loop_outer_loop
[dest_loop
])
3092 /* Stop when we reach a loop that also contains the jump insn. */
3093 for (outer_loop
= loop_num
; outer_loop
!= -1;
3094 outer_loop
= loop_outer_loop
[outer_loop
])
3095 if (dest_loop
== outer_loop
)
3098 /* If we get here, we know we need to invalidate a loop. */
3099 if (loop_dump_stream
&& ! loop_invalid
[dest_loop
])
3100 fprintf (loop_dump_stream
,
3101 "\nLoop at %d ignored due to multiple entry points.\n",
3102 INSN_UID (loop_number_loop_starts
[dest_loop
]));
3104 loop_invalid
[dest_loop
] = 1;
3109 /* If this is not setting pc, ignore. */
3110 if (SET_DEST (x
) == pc_rtx
)
3111 mark_loop_jump (SET_SRC (x
), loop_num
);
3115 mark_loop_jump (XEXP (x
, 1), loop_num
);
3116 mark_loop_jump (XEXP (x
, 2), loop_num
);
3121 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
3122 mark_loop_jump (XVECEXP (x
, 0, i
), loop_num
);
3126 for (i
= 0; i
< XVECLEN (x
, 1); i
++)
3127 mark_loop_jump (XVECEXP (x
, 1, i
), loop_num
);
3131 /* Strictly speaking this is not a jump into the loop, only a possible
3132 jump out of the loop. However, we have no way to link the destination
3133 of this jump onto the list of exit labels. To be safe we mark this
3134 loop and any containing loops as invalid. */
3137 for (outer_loop
= loop_num
; outer_loop
!= -1;
3138 outer_loop
= loop_outer_loop
[outer_loop
])
3140 if (loop_dump_stream
&& ! loop_invalid
[outer_loop
])
3141 fprintf (loop_dump_stream
,
3142 "\nLoop at %d ignored due to unknown exit jump.\n",
3143 INSN_UID (loop_number_loop_starts
[outer_loop
]));
3144 loop_invalid
[outer_loop
] = 1;
3151 /* Return nonzero if there is a label in the range from
3152 insn INSN to and including the insn whose luid is END
3153 INSN must have an assigned luid (i.e., it must not have
3154 been previously created by loop.c). */
3157 labels_in_range_p (insn
, end
)
3161 while (insn
&& INSN_LUID (insn
) <= end
)
3163 if (GET_CODE (insn
) == CODE_LABEL
)
3165 insn
= NEXT_INSN (insn
);
3171 /* Record that a memory reference X is being set. */
3174 note_addr_stored (x
, y
, data
)
3176 rtx y ATTRIBUTE_UNUSED
;
3177 void *data ATTRIBUTE_UNUSED
;
3179 if (x
== 0 || GET_CODE (x
) != MEM
)
3182 /* Count number of memory writes.
3183 This affects heuristics in strength_reduce. */
3186 /* BLKmode MEM means all memory is clobbered. */
3187 if (GET_MODE (x
) == BLKmode
)
3189 if (RTX_UNCHANGING_P (x
))
3190 unknown_constant_address_altered
= 1;
3192 unknown_address_altered
= 1;
3197 loop_store_mems
= gen_rtx_EXPR_LIST (VOIDmode
, x
, loop_store_mems
);
3200 /* X is a value modified by an INSN that references a biv inside a loop
3201 exit test (ie, X is somehow related to the value of the biv). If X
3202 is a pseudo that is used more than once, then the biv is (effectively)
3203 used more than once. DATA is really an `int *', and is set if the
3204 biv is used more than once. */
3207 note_set_pseudo_multiple_uses (x
, y
, data
)
3209 rtx y ATTRIBUTE_UNUSED
;
3215 while (GET_CODE (x
) == STRICT_LOW_PART
3216 || GET_CODE (x
) == SIGN_EXTRACT
3217 || GET_CODE (x
) == ZERO_EXTRACT
3218 || GET_CODE (x
) == SUBREG
)
3221 if (GET_CODE (x
) != REG
|| REGNO (x
) < FIRST_PSEUDO_REGISTER
)
3224 /* If we do not have usage information, or if we know the register
3225 is used more than once, note that fact for check_dbra_loop. */
3226 if (REGNO (x
) >= max_reg_before_loop
3227 || ! VARRAY_RTX (reg_single_usage
, REGNO (x
))
3228 || VARRAY_RTX (reg_single_usage
, REGNO (x
)) == const0_rtx
)
3229 *((int *) data
) = 1;
3232 /* Return nonzero if the rtx X is invariant over the current loop.
3234 The value is 2 if we refer to something only conditionally invariant.
3236 If `unknown_address_altered' is nonzero, no memory ref is invariant.
3237 Otherwise, a memory ref is invariant if it does not conflict with
3238 anything stored in `loop_store_mems'. */
3245 register enum rtx_code code
;
3246 register const char *fmt
;
3247 int conditional
= 0;
3252 code
= GET_CODE (x
);
3262 /* A LABEL_REF is normally invariant, however, if we are unrolling
3263 loops, and this label is inside the loop, then it isn't invariant.
3264 This is because each unrolled copy of the loop body will have
3265 a copy of this label. If this was invariant, then an insn loading
3266 the address of this label into a register might get moved outside
3267 the loop, and then each loop body would end up using the same label.
3269 We don't know the loop bounds here though, so just fail for all
3271 if (flag_unroll_loops
)
3278 case UNSPEC_VOLATILE
:
3282 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
3283 since the reg might be set by initialization within the loop. */
3285 if ((x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
3286 || x
== arg_pointer_rtx
)
3287 && ! current_function_has_nonlocal_goto
)
3290 if (this_loop_info
.has_call
3291 && REGNO (x
) < FIRST_PSEUDO_REGISTER
&& call_used_regs
[REGNO (x
)])
3294 if (VARRAY_INT (set_in_loop
, REGNO (x
)) < 0)
3297 return VARRAY_INT (set_in_loop
, REGNO (x
)) == 0;
3300 /* If we had a subroutine call, any location in memory could
3301 have been clobbered. We used to test here for volatile and
3302 readonly, but true_dependence knows how to do that better
3304 if (RTX_UNCHANGING_P (x
)
3305 ? unknown_constant_address_altered
: unknown_address_altered
)
3308 /* See if there is any dependence between a store and this load. */
3309 mem_list_entry
= loop_store_mems
;
3310 while (mem_list_entry
)
3312 if (true_dependence (XEXP (mem_list_entry
, 0), VOIDmode
,
3316 mem_list_entry
= XEXP (mem_list_entry
, 1);
3319 /* It's not invalidated by a store in memory
3320 but we must still verify the address is invariant. */
3324 /* Don't mess with insns declared volatile. */
3325 if (MEM_VOLATILE_P (x
))
3333 fmt
= GET_RTX_FORMAT (code
);
3334 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3338 int tem
= invariant_p (XEXP (x
, i
));
3344 else if (fmt
[i
] == 'E')
3347 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3349 int tem
= invariant_p (XVECEXP (x
, i
, j
));
3359 return 1 + conditional
;
3363 /* Return nonzero if all the insns in the loop that set REG
3364 are INSN and the immediately following insns,
3365 and if each of those insns sets REG in an invariant way
3366 (not counting uses of REG in them).
3368 The value is 2 if some of these insns are only conditionally invariant.
3370 We assume that INSN itself is the first set of REG
3371 and that its source is invariant. */
3374 consec_sets_invariant_p (reg
, n_sets
, insn
)
3378 register rtx p
= insn
;
3379 register int regno
= REGNO (reg
);
3381 /* Number of sets we have to insist on finding after INSN. */
3382 int count
= n_sets
- 1;
3383 int old
= VARRAY_INT (set_in_loop
, regno
);
3387 /* If N_SETS hit the limit, we can't rely on its value. */
3391 VARRAY_INT (set_in_loop
, regno
) = 0;
3395 register enum rtx_code code
;
3399 code
= GET_CODE (p
);
3401 /* If library call, skip to end of it. */
3402 if (code
== INSN
&& (temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)))
3407 && (set
= single_set (p
))
3408 && GET_CODE (SET_DEST (set
)) == REG
3409 && REGNO (SET_DEST (set
)) == regno
)
3411 this = invariant_p (SET_SRC (set
));
3414 else if ((temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
)))
3416 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3417 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3419 this = (CONSTANT_P (XEXP (temp
, 0))
3420 || (find_reg_note (p
, REG_RETVAL
, NULL_RTX
)
3421 && invariant_p (XEXP (temp
, 0))));
3428 else if (code
!= NOTE
)
3430 VARRAY_INT (set_in_loop
, regno
) = old
;
3435 VARRAY_INT (set_in_loop
, regno
) = old
;
3436 /* If invariant_p ever returned 2, we return 2. */
3437 return 1 + (value
& 2);
3441 /* I don't think this condition is sufficient to allow INSN
3442 to be moved, so we no longer test it. */
3444 /* Return 1 if all insns in the basic block of INSN and following INSN
3445 that set REG are invariant according to TABLE. */
3448 all_sets_invariant_p (reg
, insn
, table
)
3452 register rtx p
= insn
;
3453 register int regno
= REGNO (reg
);
3457 register enum rtx_code code
;
3459 code
= GET_CODE (p
);
3460 if (code
== CODE_LABEL
|| code
== JUMP_INSN
)
3462 if (code
== INSN
&& GET_CODE (PATTERN (p
)) == SET
3463 && GET_CODE (SET_DEST (PATTERN (p
))) == REG
3464 && REGNO (SET_DEST (PATTERN (p
))) == regno
)
3466 if (!invariant_p (SET_SRC (PATTERN (p
)), table
))
3473 /* Look at all uses (not sets) of registers in X. For each, if it is
3474 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3475 a different insn, set USAGE[REGNO] to const0_rtx. */
3478 find_single_use_in_loop (insn
, x
, usage
)
3483 enum rtx_code code
= GET_CODE (x
);
3484 const char *fmt
= GET_RTX_FORMAT (code
);
3488 VARRAY_RTX (usage
, REGNO (x
))
3489 = (VARRAY_RTX (usage
, REGNO (x
)) != 0
3490 && VARRAY_RTX (usage
, REGNO (x
)) != insn
)
3491 ? const0_rtx
: insn
;
3493 else if (code
== SET
)
3495 /* Don't count SET_DEST if it is a REG; otherwise count things
3496 in SET_DEST because if a register is partially modified, it won't
3497 show up as a potential movable so we don't care how USAGE is set
3499 if (GET_CODE (SET_DEST (x
)) != REG
)
3500 find_single_use_in_loop (insn
, SET_DEST (x
), usage
);
3501 find_single_use_in_loop (insn
, SET_SRC (x
), usage
);
3504 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3506 if (fmt
[i
] == 'e' && XEXP (x
, i
) != 0)
3507 find_single_use_in_loop (insn
, XEXP (x
, i
), usage
);
3508 else if (fmt
[i
] == 'E')
3509 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3510 find_single_use_in_loop (insn
, XVECEXP (x
, i
, j
), usage
);
3514 /* Count and record any set in X which is contained in INSN. Update
3515 MAY_NOT_MOVE and LAST_SET for any register set in X. */
3518 count_one_set (insn
, x
, may_not_move
, last_set
)
3520 varray_type may_not_move
;
3523 if (GET_CODE (x
) == CLOBBER
&& GET_CODE (XEXP (x
, 0)) == REG
)
3524 /* Don't move a reg that has an explicit clobber.
3525 It's not worth the pain to try to do it correctly. */
3526 VARRAY_CHAR (may_not_move
, REGNO (XEXP (x
, 0))) = 1;
3528 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
3530 rtx dest
= SET_DEST (x
);
3531 while (GET_CODE (dest
) == SUBREG
3532 || GET_CODE (dest
) == ZERO_EXTRACT
3533 || GET_CODE (dest
) == SIGN_EXTRACT
3534 || GET_CODE (dest
) == STRICT_LOW_PART
)
3535 dest
= XEXP (dest
, 0);
3536 if (GET_CODE (dest
) == REG
)
3538 register int regno
= REGNO (dest
);
3539 /* If this is the first setting of this reg
3540 in current basic block, and it was set before,
3541 it must be set in two basic blocks, so it cannot
3542 be moved out of the loop. */
3543 if (VARRAY_INT (set_in_loop
, regno
) > 0
3544 && last_set
[regno
] == 0)
3545 VARRAY_CHAR (may_not_move
, regno
) = 1;
3546 /* If this is not first setting in current basic block,
3547 see if reg was used in between previous one and this.
3548 If so, neither one can be moved. */
3549 if (last_set
[regno
] != 0
3550 && reg_used_between_p (dest
, last_set
[regno
], insn
))
3551 VARRAY_CHAR (may_not_move
, regno
) = 1;
3552 if (VARRAY_INT (set_in_loop
, regno
) < 127)
3553 ++VARRAY_INT (set_in_loop
, regno
);
3554 last_set
[regno
] = insn
;
3559 /* Increment SET_IN_LOOP at the index of each register
3560 that is modified by an insn between FROM and TO.
3561 If the value of an element of SET_IN_LOOP becomes 127 or more,
3562 stop incrementing it, to avoid overflow.
3564 Store in SINGLE_USAGE[I] the single insn in which register I is
3565 used, if it is only used once. Otherwise, it is set to 0 (for no
3566 uses) or const0_rtx for more than one use. This parameter may be zero,
3567 in which case this processing is not done.
3569 Store in *COUNT_PTR the number of actual instruction
3570 in the loop. We use this to decide what is worth moving out. */
3572 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
3573 In that case, it is the insn that last set reg n. */
3576 count_loop_regs_set (from
, to
, may_not_move
, single_usage
, count_ptr
, nregs
)
3577 register rtx from
, to
;
3578 varray_type may_not_move
;
3579 varray_type single_usage
;
3583 register rtx
*last_set
= (rtx
*) alloca (nregs
* sizeof (rtx
));
3585 register int count
= 0;
3587 bzero ((char *) last_set
, nregs
* sizeof (rtx
));
3588 for (insn
= from
; insn
!= to
; insn
= NEXT_INSN (insn
))
3590 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
3594 /* Record registers that have exactly one use. */
3595 find_single_use_in_loop (insn
, PATTERN (insn
), single_usage
);
3597 /* Include uses in REG_EQUAL notes. */
3598 if (REG_NOTES (insn
))
3599 find_single_use_in_loop (insn
, REG_NOTES (insn
), single_usage
);
3601 if (GET_CODE (PATTERN (insn
)) == SET
3602 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
3603 count_one_set (insn
, PATTERN (insn
), may_not_move
, last_set
);
3604 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
3607 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
3608 count_one_set (insn
, XVECEXP (PATTERN (insn
), 0, i
),
3609 may_not_move
, last_set
);
3613 if (GET_CODE (insn
) == CODE_LABEL
|| GET_CODE (insn
) == JUMP_INSN
)
3614 bzero ((char *) last_set
, nregs
* sizeof (rtx
));
3619 /* Given a loop that is bounded by LOOP_START and LOOP_END
3620 and that is entered at SCAN_START,
3621 return 1 if the register set in SET contained in insn INSN is used by
3622 any insn that precedes INSN in cyclic order starting
3623 from the loop entry point.
3625 We don't want to use INSN_LUID here because if we restrict INSN to those
3626 that have a valid INSN_LUID, it means we cannot move an invariant out
3627 from an inner loop past two loops. */
3630 loop_reg_used_before_p (set
, insn
, loop_start
, scan_start
, loop_end
)
3631 rtx set
, insn
, loop_start
, scan_start
, loop_end
;
3633 rtx reg
= SET_DEST (set
);
3636 /* Scan forward checking for register usage. If we hit INSN, we
3637 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3638 for (p
= scan_start
; p
!= insn
; p
= NEXT_INSN (p
))
3640 if (GET_RTX_CLASS (GET_CODE (p
)) == 'i'
3641 && reg_overlap_mentioned_p (reg
, PATTERN (p
)))
3651 /* A "basic induction variable" or biv is a pseudo reg that is set
3652 (within this loop) only by incrementing or decrementing it. */
3653 /* A "general induction variable" or giv is a pseudo reg whose
3654 value is a linear function of a biv. */
3656 /* Bivs are recognized by `basic_induction_var';
3657 Givs by `general_induction_var'. */
3659 /* Indexed by register number, indicates whether or not register is an
3660 induction variable, and if so what type. */
3662 varray_type reg_iv_type
;
3664 /* Indexed by register number, contains pointer to `struct induction'
3665 if register is an induction variable. This holds general info for
3666 all induction variables. */
3668 varray_type reg_iv_info
;
3670 /* Indexed by register number, contains pointer to `struct iv_class'
3671 if register is a basic induction variable. This holds info describing
3672 the class (a related group) of induction variables that the biv belongs
3675 struct iv_class
**reg_biv_class
;
3677 /* The head of a list which links together (via the next field)
3678 every iv class for the current loop. */
3680 struct iv_class
*loop_iv_list
;
3682 /* Givs made from biv increments are always splittable for loop unrolling.
3683 Since there is no regscan info for them, we have to keep track of them
3685 int first_increment_giv
, last_increment_giv
;
3687 /* Communication with routines called via `note_stores'. */
3689 static rtx note_insn
;
3691 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3693 static rtx addr_placeholder
;
3695 /* ??? Unfinished optimizations, and possible future optimizations,
3696 for the strength reduction code. */
3698 /* ??? The interaction of biv elimination, and recognition of 'constant'
3699 bivs, may cause problems. */
3701 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3702 performance problems.
3704 Perhaps don't eliminate things that can be combined with an addressing
3705 mode. Find all givs that have the same biv, mult_val, and add_val;
3706 then for each giv, check to see if its only use dies in a following
3707 memory address. If so, generate a new memory address and check to see
3708 if it is valid. If it is valid, then store the modified memory address,
3709 otherwise, mark the giv as not done so that it will get its own iv. */
3711 /* ??? Could try to optimize branches when it is known that a biv is always
3714 /* ??? When replace a biv in a compare insn, we should replace with closest
3715 giv so that an optimized branch can still be recognized by the combiner,
3716 e.g. the VAX acb insn. */
3718 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3719 was rerun in loop_optimize whenever a register was added or moved.
3720 Also, some of the optimizations could be a little less conservative. */
3722 /* Perform strength reduction and induction variable elimination.
3724 Pseudo registers created during this function will be beyond the last
3725 valid index in several tables including n_times_set and regno_last_uid.
3726 This does not cause a problem here, because the added registers cannot be
3727 givs outside of their loop, and hence will never be reconsidered.
3728 But scan_loop must check regnos to make sure they are in bounds.
3730 SCAN_START is the first instruction in the loop, as the loop would
3731 actually be executed. END is the NOTE_INSN_LOOP_END. LOOP_TOP is
3732 the first instruction in the loop, as it is layed out in the
3733 instruction stream. LOOP_START is the NOTE_INSN_LOOP_BEG.
3734 LOOP_CONT is the NOTE_INSN_LOOP_CONT. */
3737 strength_reduce (scan_start
, end
, loop_top
, insn_count
,
3738 loop_start
, loop_end
, loop_info
, loop_cont
, unroll_p
, bct_p
)
3745 struct loop_info
*loop_info
;
3747 int unroll_p
, bct_p ATTRIBUTE_UNUSED
;
3755 /* This is 1 if current insn is not executed at least once for every loop
3757 int not_every_iteration
= 0;
3758 /* This is 1 if current insn may be executed more than once for every
3760 int maybe_multiple
= 0;
3761 /* This is 1 if we have past a branch back to the top of the loop
3762 (aka a loop latch). */
3763 int past_loop_latch
= 0;
3764 /* Temporary list pointers for traversing loop_iv_list. */
3765 struct iv_class
*bl
, **backbl
;
3766 /* Ratio of extra register life span we can justify
3767 for saving an instruction. More if loop doesn't call subroutines
3768 since in that case saving an insn makes more difference
3769 and more registers are available. */
3770 /* ??? could set this to last value of threshold in move_movables */
3771 int threshold
= (loop_info
->has_call
? 1 : 2) * (3 + n_non_fixed_regs
);
3772 /* Map of pseudo-register replacements. */
3777 rtx end_insert_before
;
3779 int n_extra_increment
;
3780 int unrolled_insn_copies
= 0;
3782 /* If scan_start points to the loop exit test, we have to be wary of
3783 subversive use of gotos inside expression statements. */
3784 if (prev_nonnote_insn (scan_start
) != prev_nonnote_insn (loop_start
))
3785 maybe_multiple
= back_branch_in_range_p (scan_start
, loop_start
, loop_end
);
3787 VARRAY_INT_INIT (reg_iv_type
, max_reg_before_loop
, "reg_iv_type");
3788 VARRAY_GENERIC_PTR_INIT (reg_iv_info
, max_reg_before_loop
, "reg_iv_info");
3789 reg_biv_class
= (struct iv_class
**)
3790 alloca (max_reg_before_loop
* sizeof (struct iv_class
*));
3791 bzero ((char *) reg_biv_class
, (max_reg_before_loop
3792 * sizeof (struct iv_class
*)));
3795 addr_placeholder
= gen_reg_rtx (Pmode
);
3797 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3798 must be put before this insn, so that they will appear in the right
3799 order (i.e. loop order).
3801 If loop_end is the end of the current function, then emit a
3802 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3804 if (NEXT_INSN (loop_end
) != 0)
3805 end_insert_before
= NEXT_INSN (loop_end
);
3807 end_insert_before
= emit_note_after (NOTE_INSN_DELETED
, loop_end
);
3809 /* Scan through loop to find all possible bivs. */
3811 for (p
= next_insn_in_loop (scan_start
, scan_start
, end
, loop_top
);
3813 p
= next_insn_in_loop (p
, scan_start
, end
, loop_top
))
3815 if (GET_CODE (p
) == INSN
3816 && (set
= single_set (p
))
3817 && GET_CODE (SET_DEST (set
)) == REG
)
3819 dest_reg
= SET_DEST (set
);
3820 if (REGNO (dest_reg
) < max_reg_before_loop
3821 && REGNO (dest_reg
) >= FIRST_PSEUDO_REGISTER
3822 && REG_IV_TYPE (REGNO (dest_reg
)) != NOT_BASIC_INDUCT
)
3824 if (basic_induction_var (SET_SRC (set
), GET_MODE (SET_SRC (set
)),
3825 dest_reg
, p
, &inc_val
, &mult_val
,
3828 /* It is a possible basic induction variable.
3829 Create and initialize an induction structure for it. */
3832 = (struct induction
*) alloca (sizeof (struct induction
));
3834 record_biv (v
, p
, dest_reg
, inc_val
, mult_val
, location
,
3835 not_every_iteration
, maybe_multiple
);
3836 REG_IV_TYPE (REGNO (dest_reg
)) = BASIC_INDUCT
;
3838 else if (REGNO (dest_reg
) < max_reg_before_loop
)
3839 REG_IV_TYPE (REGNO (dest_reg
)) = NOT_BASIC_INDUCT
;
3843 /* Past CODE_LABEL, we get to insns that may be executed multiple
3844 times. The only way we can be sure that they can't is if every
3845 jump insn between here and the end of the loop either
3846 returns, exits the loop, is a jump to a location that is still
3847 behind the label, or is a jump to the loop start. */
3849 if (GET_CODE (p
) == CODE_LABEL
)
3857 insn
= NEXT_INSN (insn
);
3858 if (insn
== scan_start
)
3866 if (insn
== scan_start
)
3870 if (GET_CODE (insn
) == JUMP_INSN
3871 && GET_CODE (PATTERN (insn
)) != RETURN
3872 && (! condjump_p (insn
)
3873 || (JUMP_LABEL (insn
) != 0
3874 && JUMP_LABEL (insn
) != scan_start
3875 && ! loop_insn_first_p (p
, JUMP_LABEL (insn
)))))
3883 /* Past a jump, we get to insns for which we can't count
3884 on whether they will be executed during each iteration. */
3885 /* This code appears twice in strength_reduce. There is also similar
3886 code in scan_loop. */
3887 if (GET_CODE (p
) == JUMP_INSN
3888 /* If we enter the loop in the middle, and scan around to the
3889 beginning, don't set not_every_iteration for that.
3890 This can be any kind of jump, since we want to know if insns
3891 will be executed if the loop is executed. */
3892 && ! (JUMP_LABEL (p
) == loop_top
3893 && ((NEXT_INSN (NEXT_INSN (p
)) == loop_end
&& simplejump_p (p
))
3894 || (NEXT_INSN (p
) == loop_end
&& condjump_p (p
)))))
3898 /* If this is a jump outside the loop, then it also doesn't
3899 matter. Check to see if the target of this branch is on the
3900 loop_number_exits_labels list. */
3902 for (label
= loop_number_exit_labels
[uid_loop_num
[INSN_UID (loop_start
)]];
3904 label
= LABEL_NEXTREF (label
))
3905 if (XEXP (label
, 0) == JUMP_LABEL (p
))
3909 not_every_iteration
= 1;
3912 else if (GET_CODE (p
) == NOTE
)
3914 /* At the virtual top of a converted loop, insns are again known to
3915 be executed each iteration: logically, the loop begins here
3916 even though the exit code has been duplicated.
3918 Insns are also again known to be executed each iteration at
3919 the LOOP_CONT note. */
3920 if ((NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_VTOP
3921 || NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_CONT
)
3923 not_every_iteration
= 0;
3924 else if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_BEG
)
3926 else if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_END
)
3930 /* Note if we pass a loop latch. If we do, then we can not clear
3931 NOT_EVERY_ITERATION below when we pass the last CODE_LABEL in
3932 a loop since a jump before the last CODE_LABEL may have started
3933 a new loop iteration.
3935 Note that LOOP_TOP is only set for rotated loops and we need
3936 this check for all loops, so compare against the CODE_LABEL
3937 which immediately follows LOOP_START. */
3938 if (GET_CODE (p
) == JUMP_INSN
&& JUMP_LABEL (p
) == NEXT_INSN (loop_start
))
3939 past_loop_latch
= 1;
3941 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3942 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3943 or not an insn is known to be executed each iteration of the
3944 loop, whether or not any iterations are known to occur.
3946 Therefore, if we have just passed a label and have no more labels
3947 between here and the test insn of the loop, and we have not passed
3948 a jump to the top of the loop, then we know these insns will be
3949 executed each iteration. */
3951 if (not_every_iteration
3952 && ! past_loop_latch
3953 && GET_CODE (p
) == CODE_LABEL
3954 && no_labels_between_p (p
, loop_end
)
3955 && loop_insn_first_p (p
, loop_cont
))
3956 not_every_iteration
= 0;
3959 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3960 Make a sanity check against n_times_set. */
3961 for (backbl
= &loop_iv_list
, bl
= *backbl
; bl
; bl
= bl
->next
)
3963 if (REG_IV_TYPE (bl
->regno
) != BASIC_INDUCT
3964 /* Above happens if register modified by subreg, etc. */
3965 /* Make sure it is not recognized as a basic induction var: */
3966 || VARRAY_INT (n_times_set
, bl
->regno
) != bl
->biv_count
3967 /* If never incremented, it is invariant that we decided not to
3968 move. So leave it alone. */
3969 || ! bl
->incremented
)
3971 if (loop_dump_stream
)
3972 fprintf (loop_dump_stream
, "Reg %d: biv discarded, %s\n",
3974 (REG_IV_TYPE (bl
->regno
) != BASIC_INDUCT
3975 ? "not induction variable"
3976 : (! bl
->incremented
? "never incremented"
3979 REG_IV_TYPE (bl
->regno
) = NOT_BASIC_INDUCT
;
3986 if (loop_dump_stream
)
3987 fprintf (loop_dump_stream
, "Reg %d: biv verified\n", bl
->regno
);
3991 /* Exit if there are no bivs. */
3994 /* Can still unroll the loop anyways, but indicate that there is no
3995 strength reduction info available. */
3997 unroll_loop (loop_end
, insn_count
, loop_start
, end_insert_before
,
4003 /* Find initial value for each biv by searching backwards from loop_start,
4004 halting at first label. Also record any test condition. */
4007 for (p
= loop_start
; p
&& GET_CODE (p
) != CODE_LABEL
; p
= PREV_INSN (p
))
4011 if (GET_CODE (p
) == CALL_INSN
)
4014 if (GET_CODE (p
) == INSN
|| GET_CODE (p
) == JUMP_INSN
4015 || GET_CODE (p
) == CALL_INSN
)
4016 note_stores (PATTERN (p
), record_initial
, NULL
);
4018 /* Record any test of a biv that branches around the loop if no store
4019 between it and the start of loop. We only care about tests with
4020 constants and registers and only certain of those. */
4021 if (GET_CODE (p
) == JUMP_INSN
4022 && JUMP_LABEL (p
) != 0
4023 && next_real_insn (JUMP_LABEL (p
)) == next_real_insn (loop_end
)
4024 && (test
= get_condition_for_loop (p
)) != 0
4025 && GET_CODE (XEXP (test
, 0)) == REG
4026 && REGNO (XEXP (test
, 0)) < max_reg_before_loop
4027 && (bl
= reg_biv_class
[REGNO (XEXP (test
, 0))]) != 0
4028 && valid_initial_value_p (XEXP (test
, 1), p
, call_seen
, loop_start
)
4029 && bl
->init_insn
== 0)
4031 /* If an NE test, we have an initial value! */
4032 if (GET_CODE (test
) == NE
)
4035 bl
->init_set
= gen_rtx_SET (VOIDmode
,
4036 XEXP (test
, 0), XEXP (test
, 1));
4039 bl
->initial_test
= test
;
4043 /* Look at the each biv and see if we can say anything better about its
4044 initial value from any initializing insns set up above. (This is done
4045 in two passes to avoid missing SETs in a PARALLEL.) */
4046 for (backbl
= &loop_iv_list
; (bl
= *backbl
); backbl
= &bl
->next
)
4051 if (! bl
->init_insn
)
4054 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
4055 is a constant, use the value of that. */
4056 if (((note
= find_reg_note (bl
->init_insn
, REG_EQUAL
, 0)) != NULL
4057 && CONSTANT_P (XEXP (note
, 0)))
4058 || ((note
= find_reg_note (bl
->init_insn
, REG_EQUIV
, 0)) != NULL
4059 && CONSTANT_P (XEXP (note
, 0))))
4060 src
= XEXP (note
, 0);
4062 src
= SET_SRC (bl
->init_set
);
4064 if (loop_dump_stream
)
4065 fprintf (loop_dump_stream
,
4066 "Biv %d initialized at insn %d: initial value ",
4067 bl
->regno
, INSN_UID (bl
->init_insn
));
4069 if ((GET_MODE (src
) == GET_MODE (regno_reg_rtx
[bl
->regno
])
4070 || GET_MODE (src
) == VOIDmode
)
4071 && valid_initial_value_p (src
, bl
->init_insn
, call_seen
, loop_start
))
4073 bl
->initial_value
= src
;
4075 if (loop_dump_stream
)
4077 if (GET_CODE (src
) == CONST_INT
)
4079 fprintf (loop_dump_stream
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (src
));
4080 fputc ('\n', loop_dump_stream
);
4084 print_rtl (loop_dump_stream
, src
);
4085 fprintf (loop_dump_stream
, "\n");
4091 struct iv_class
*bl2
= 0;
4092 rtx increment
= NULL_RTX
;
4094 /* Biv initial value is not a simple move. If it is the sum of
4095 another biv and a constant, check if both bivs are incremented
4096 in lockstep. Then we are actually looking at a giv.
4097 For simplicity, we only handle the case where there is but a
4098 single increment, and the register is not used elsewhere. */
4099 if (bl
->biv_count
== 1
4100 && bl
->regno
< max_reg_before_loop
4101 && uid_luid
[REGNO_LAST_UID (bl
->regno
)] < INSN_LUID (loop_end
)
4102 && GET_CODE (src
) == PLUS
4103 && GET_CODE (XEXP (src
, 0)) == REG
4104 && CONSTANT_P (XEXP (src
, 1))
4105 && ((increment
= biv_total_increment (bl
, loop_start
, loop_end
))
4108 int regno
= REGNO (XEXP (src
, 0));
4110 for (bl2
= loop_iv_list
; bl2
; bl2
= bl2
->next
)
4111 if (bl2
->regno
== regno
)
4115 /* Now, can we transform this biv into a giv? */
4117 && bl2
->biv_count
== 1
4118 && rtx_equal_p (increment
,
4119 biv_total_increment (bl2
, loop_start
, loop_end
))
4120 /* init_insn is only set to insns that are before loop_start
4121 without any intervening labels. */
4122 && ! reg_set_between_p (bl2
->biv
->src_reg
,
4123 PREV_INSN (bl
->init_insn
), loop_start
)
4124 /* The register from BL2 must be set before the register from
4125 BL is set, or we must be able to move the latter set after
4126 the former set. Currently there can't be any labels
4127 in-between when biv_total_increment returns nonzero both times
4128 but we test it here in case some day some real cfg analysis
4129 gets used to set always_computable. */
4130 && (loop_insn_first_p (bl2
->biv
->insn
, bl
->biv
->insn
)
4131 ? no_labels_between_p (bl2
->biv
->insn
, bl
->biv
->insn
)
4132 : (! reg_used_between_p (bl
->biv
->src_reg
, bl
->biv
->insn
,
4134 && no_jumps_between_p (bl
->biv
->insn
, bl2
->biv
->insn
)))
4135 && validate_change (bl
->biv
->insn
,
4136 &SET_SRC (single_set (bl
->biv
->insn
)),
4139 int loop_num
= uid_loop_num
[INSN_UID (loop_start
)];
4140 rtx dominator
= loop_number_cont_dominator
[loop_num
];
4141 rtx giv
= bl
->biv
->src_reg
;
4142 rtx giv_insn
= bl
->biv
->insn
;
4143 rtx after_giv
= NEXT_INSN (giv_insn
);
4145 if (loop_dump_stream
)
4146 fprintf (loop_dump_stream
, "is giv of biv %d\n", bl2
->regno
);
4147 /* Let this giv be discovered by the generic code. */
4148 REG_IV_TYPE (bl
->regno
) = UNKNOWN_INDUCT
;
4149 reg_biv_class
[bl
->regno
] = NULL_PTR
;
4150 /* We can get better optimization if we can move the giv setting
4151 before the first giv use. */
4153 && ! loop_insn_first_p (dominator
, scan_start
)
4154 && ! reg_set_between_p (bl2
->biv
->src_reg
, loop_start
,
4156 && ! reg_used_between_p (giv
, loop_start
, dominator
)
4157 && ! reg_used_between_p (giv
, giv_insn
, loop_end
))
4162 for (next
= NEXT_INSN (dominator
); ; next
= NEXT_INSN (next
))
4164 if ((GET_RTX_CLASS (GET_CODE (next
)) == 'i'
4165 && (reg_mentioned_p (giv
, PATTERN (next
))
4166 || reg_set_p (bl2
->biv
->src_reg
, next
)))
4167 || GET_CODE (next
) == JUMP_INSN
)
4170 if (GET_RTX_CLASS (GET_CODE (next
)) != 'i'
4171 || ! sets_cc0_p (PATTERN (next
)))
4175 if (loop_dump_stream
)
4176 fprintf (loop_dump_stream
, "move after insn %d\n",
4177 INSN_UID (dominator
));
4178 /* Avoid problems with luids by actually moving the insn
4179 and adjusting all luids in the range. */
4180 reorder_insns (giv_insn
, giv_insn
, dominator
);
4181 for (p
= dominator
; INSN_UID (p
) >= max_uid_for_loop
; )
4183 compute_luids (giv_insn
, after_giv
, INSN_LUID (p
));
4184 /* If the only purpose of the init insn is to initialize
4185 this giv, delete it. */
4186 if (single_set (bl
->init_insn
)
4187 && ! reg_used_between_p (giv
, bl
->init_insn
, loop_start
))
4188 delete_insn (bl
->init_insn
);
4190 else if (! loop_insn_first_p (bl2
->biv
->insn
, bl
->biv
->insn
))
4192 rtx p
= PREV_INSN (giv_insn
);
4193 while (INSN_UID (p
) >= max_uid_for_loop
)
4195 reorder_insns (giv_insn
, giv_insn
, bl2
->biv
->insn
);
4196 compute_luids (after_giv
, NEXT_INSN (giv_insn
),
4199 /* Remove this biv from the chain. */
4202 /* We move the following giv from *bl->next into *bl.
4203 We have to update reg_biv_class for that moved biv
4204 to point to its new address. */
4206 reg_biv_class
[bl
->regno
] = bl
;
4215 /* If we can't make it a giv,
4216 let biv keep initial value of "itself". */
4217 else if (loop_dump_stream
)
4218 fprintf (loop_dump_stream
, "is complex\n");
4222 /* If a biv is unconditionally incremented several times in a row, convert
4223 all but the last increment into a giv. */
4225 /* Get an upper bound for the number of registers
4226 we might have after all bivs have been processed. */
4227 first_increment_giv
= max_reg_num ();
4228 for (n_extra_increment
= 0, bl
= loop_iv_list
; bl
; bl
= bl
->next
)
4229 n_extra_increment
+= bl
->biv_count
- 1;
4231 /* If the loop contains volatile memory references do not allow any
4232 replacements to take place, since this could loose the volatile markers. */
4233 if (n_extra_increment
&& ! loop_info
->has_volatile
)
4235 int nregs
= first_increment_giv
+ n_extra_increment
;
4237 /* Reallocate reg_iv_type and reg_iv_info. */
4238 VARRAY_GROW (reg_iv_type
, nregs
);
4239 VARRAY_GROW (reg_iv_info
, nregs
);
4241 for (bl
= loop_iv_list
; bl
; bl
= bl
->next
)
4243 struct induction
**vp
, *v
, *next
;
4244 int biv_dead_after_loop
= 0;
4246 /* The biv increments lists are in reverse order. Fix this first. */
4247 for (v
= bl
->biv
, bl
->biv
= 0; v
; v
= next
)
4250 v
->next_iv
= bl
->biv
;
4254 /* We must guard against the case that an early exit between v->insn
4255 and next->insn leaves the biv live after the loop, since that
4256 would mean that we'd be missing an increment for the final
4257 value. The following test to set biv_dead_after_loop is like
4258 the first part of the test to set bl->eliminable.
4259 We don't check here if we can calculate the final value, since
4260 this can't succeed if we already know that there is a jump
4261 between v->insn and next->insn, yet next->always_executed is
4262 set and next->maybe_multiple is cleared. Such a combination
4263 implies that the jump destination is outside the loop.
4264 If we want to make this check more sophisticated, we should
4265 check each branch between v->insn and next->insn individually
4266 to see if the biv is dead at its destination. */
4268 if (uid_luid
[REGNO_LAST_UID (bl
->regno
)] < INSN_LUID (loop_end
)
4270 && INSN_UID (bl
->init_insn
) < max_uid_for_loop
4271 && (uid_luid
[REGNO_FIRST_UID (bl
->regno
)]
4272 >= INSN_LUID (bl
->init_insn
))
4273 #ifdef HAVE_decrement_and_branch_until_zero
4276 && ! reg_mentioned_p (bl
->biv
->dest_reg
, SET_SRC (bl
->init_set
)))
4277 biv_dead_after_loop
= 1;
4279 for (vp
= &bl
->biv
, next
= *vp
; v
= next
, next
= v
->next_iv
;)
4281 HOST_WIDE_INT offset
;
4282 rtx set
, add_val
, old_reg
, dest_reg
, last_use_insn
, note
;
4283 int old_regno
, new_regno
;
4285 if (! v
->always_executed
4286 || v
->maybe_multiple
4287 || GET_CODE (v
->add_val
) != CONST_INT
4288 || ! next
->always_executed
4289 || next
->maybe_multiple
4290 || ! CONSTANT_P (next
->add_val
)
4291 || v
->mult_val
!= const1_rtx
4292 || next
->mult_val
!= const1_rtx
4293 || ! (biv_dead_after_loop
4294 || no_jumps_between_p (v
->insn
, next
->insn
)))
4299 offset
= INTVAL (v
->add_val
);
4300 set
= single_set (v
->insn
);
4301 add_val
= plus_constant (next
->add_val
, offset
);
4302 old_reg
= v
->dest_reg
;
4303 dest_reg
= gen_reg_rtx (v
->mode
);
4305 /* Unlike reg_iv_type / reg_iv_info, the other three arrays
4306 have been allocated with some slop space, so we may not
4307 actually need to reallocate them. If we do, the following
4308 if statement will be executed just once in this loop. */
4309 if ((unsigned) max_reg_num () > n_times_set
->num_elements
)
4311 /* Grow all the remaining arrays. */
4312 VARRAY_GROW (set_in_loop
, nregs
);
4313 VARRAY_GROW (n_times_set
, nregs
);
4314 VARRAY_GROW (may_not_optimize
, nregs
);
4315 VARRAY_GROW (reg_single_usage
, nregs
);
4318 if (! validate_change (next
->insn
, next
->location
, add_val
, 0))
4324 /* Here we can try to eliminate the increment by combining
4325 it into the uses. */
4327 /* Set last_use_insn so that we can check against it. */
4329 for (last_use_insn
= v
->insn
, p
= NEXT_INSN (v
->insn
);
4331 p
= next_insn_in_loop (p
, scan_start
, end
, loop_top
))
4333 if (GET_RTX_CLASS (GET_CODE (p
)) != 'i')
4335 if (reg_mentioned_p (old_reg
, PATTERN (p
)))
4341 /* If we can't get the LUIDs for the insns, we can't
4342 calculate the lifetime. This is likely from unrolling
4343 of an inner loop, so there is little point in making this
4344 a DEST_REG giv anyways. */
4345 if (INSN_UID (v
->insn
) >= max_uid_for_loop
4346 || INSN_UID (last_use_insn
) >= max_uid_for_loop
4347 || ! validate_change (v
->insn
, &SET_DEST (set
), dest_reg
, 0))
4349 /* Change the increment at NEXT back to what it was. */
4350 if (! validate_change (next
->insn
, next
->location
,
4356 next
->add_val
= add_val
;
4357 v
->dest_reg
= dest_reg
;
4358 v
->giv_type
= DEST_REG
;
4359 v
->location
= &SET_SRC (set
);
4361 v
->combined_with
= 0;
4363 v
->derive_adjustment
= 0;
4369 v
->auto_inc_opt
= 0;
4372 v
->derived_from
= 0;
4373 v
->always_computable
= 1;
4374 v
->always_executed
= 1;
4376 v
->no_const_addval
= 0;
4378 old_regno
= REGNO (old_reg
);
4379 new_regno
= REGNO (dest_reg
);
4380 VARRAY_INT (set_in_loop
, old_regno
)--;
4381 VARRAY_INT (set_in_loop
, new_regno
) = 1;
4382 VARRAY_INT (n_times_set
, old_regno
)--;
4383 VARRAY_INT (n_times_set
, new_regno
) = 1;
4384 VARRAY_CHAR (may_not_optimize
, new_regno
) = 0;
4386 REG_IV_TYPE (new_regno
) = GENERAL_INDUCT
;
4387 REG_IV_INFO (new_regno
) = v
;
4389 /* If next_insn has a REG_EQUAL note that mentiones OLD_REG,
4390 it must be replaced. */
4391 note
= find_reg_note (next
->insn
, REG_EQUAL
, NULL_RTX
);
4392 if (note
&& reg_mentioned_p (old_reg
, XEXP (note
, 0)))
4393 XEXP (note
, 0) = copy_rtx (SET_SRC (single_set (next
->insn
)));
4395 /* Remove the increment from the list of biv increments,
4396 and record it as a giv. */
4399 v
->next_iv
= bl
->giv
;
4402 v
->benefit
= rtx_cost (SET_SRC (set
), SET
);
4403 bl
->total_benefit
+= v
->benefit
;
4405 /* Now replace the biv with DEST_REG in all insns between
4406 the replaced increment and the next increment, and
4407 remember the last insn that needed a replacement. */
4408 for (last_use_insn
= v
->insn
, p
= NEXT_INSN (v
->insn
);
4410 p
= next_insn_in_loop (p
, scan_start
, end
, loop_top
))
4414 if (GET_RTX_CLASS (GET_CODE (p
)) != 'i')
4416 if (reg_mentioned_p (old_reg
, PATTERN (p
)))
4419 if (! validate_replace_rtx (old_reg
, dest_reg
, p
))
4422 for (note
= REG_NOTES (p
); note
; note
= XEXP (note
, 1))
4424 if (GET_CODE (note
) == EXPR_LIST
)
4426 = replace_rtx (XEXP (note
, 0), old_reg
, dest_reg
);
4430 v
->last_use
= last_use_insn
;
4431 v
->lifetime
= INSN_LUID (v
->insn
) - INSN_LUID (last_use_insn
);
4432 /* If the lifetime is zero, it means that this register is really
4433 a dead store. So mark this as a giv that can be ignored.
4434 This will not prevent the biv from being eliminated. */
4435 if (v
->lifetime
== 0)
4438 if (loop_dump_stream
)
4439 fprintf (loop_dump_stream
,
4440 "Increment %d of biv %d converted to giv %d.\n\n",
4441 INSN_UID (v
->insn
), old_regno
, new_regno
);
4445 last_increment_giv
= max_reg_num () - 1;
4447 /* Search the loop for general induction variables. */
4449 /* A register is a giv if: it is only set once, it is a function of a
4450 biv and a constant (or invariant), and it is not a biv. */
4452 not_every_iteration
= 0;
4459 /* At end of a straight-in loop, we are done.
4460 At end of a loop entered at the bottom, scan the top. */
4461 if (p
== scan_start
)
4469 if (p
== scan_start
)
4473 /* Look for a general induction variable in a register. */
4474 if (GET_CODE (p
) == INSN
4475 && (set
= single_set (p
))
4476 && GET_CODE (SET_DEST (set
)) == REG
4477 && ! VARRAY_CHAR (may_not_optimize
, REGNO (SET_DEST (set
))))
4484 rtx last_consec_insn
;
4486 dest_reg
= SET_DEST (set
);
4487 if (REGNO (dest_reg
) < FIRST_PSEUDO_REGISTER
)
4490 if (/* SET_SRC is a giv. */
4491 (general_induction_var (SET_SRC (set
), &src_reg
, &add_val
,
4492 &mult_val
, 0, &benefit
)
4493 /* Equivalent expression is a giv. */
4494 || ((regnote
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
))
4495 && general_induction_var (XEXP (regnote
, 0), &src_reg
,
4496 &add_val
, &mult_val
, 0,
4498 /* Don't try to handle any regs made by loop optimization.
4499 We have nothing on them in regno_first_uid, etc. */
4500 && REGNO (dest_reg
) < max_reg_before_loop
4501 /* Don't recognize a BASIC_INDUCT_VAR here. */
4502 && dest_reg
!= src_reg
4503 /* This must be the only place where the register is set. */
4504 && (VARRAY_INT (n_times_set
, REGNO (dest_reg
)) == 1
4505 /* or all sets must be consecutive and make a giv. */
4506 || (benefit
= consec_sets_giv (benefit
, p
,
4508 &add_val
, &mult_val
,
4509 &last_consec_insn
))))
4512 = (struct induction
*) alloca (sizeof (struct induction
));
4514 /* If this is a library call, increase benefit. */
4515 if (find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
4516 benefit
+= libcall_benefit (p
);
4518 /* Skip the consecutive insns, if there are any. */
4519 if (VARRAY_INT (n_times_set
, REGNO (dest_reg
)) != 1)
4520 p
= last_consec_insn
;
4522 record_giv (v
, p
, src_reg
, dest_reg
, mult_val
, add_val
, benefit
,
4523 DEST_REG
, not_every_iteration
, maybe_multiple
,
4524 NULL_PTR
, loop_start
, loop_end
);
4529 #ifndef DONT_REDUCE_ADDR
4530 /* Look for givs which are memory addresses. */
4531 /* This resulted in worse code on a VAX 8600. I wonder if it
4533 if (GET_CODE (p
) == INSN
)
4534 find_mem_givs (PATTERN (p
), p
, not_every_iteration
, maybe_multiple
,
4535 loop_start
, loop_end
);
4538 /* Update the status of whether giv can derive other givs. This can
4539 change when we pass a label or an insn that updates a biv. */
4540 if (GET_CODE (p
) == INSN
|| GET_CODE (p
) == JUMP_INSN
4541 || GET_CODE (p
) == CODE_LABEL
)
4542 update_giv_derive (p
);
4544 /* Past CODE_LABEL, we get to insns that may be executed multiple
4545 times. The only way we can be sure that they can't is if every
4546 every jump insn between here and the end of the loop either
4547 returns, exits the loop, is a forward jump, or is a jump
4548 to the loop start. */
4550 if (GET_CODE (p
) == CODE_LABEL
)
4558 insn
= NEXT_INSN (insn
);
4559 if (insn
== scan_start
)
4567 if (insn
== scan_start
)
4571 if (GET_CODE (insn
) == JUMP_INSN
4572 && GET_CODE (PATTERN (insn
)) != RETURN
4573 && (! condjump_p (insn
)
4574 || (JUMP_LABEL (insn
) != 0
4575 && JUMP_LABEL (insn
) != scan_start
4576 && (INSN_UID (JUMP_LABEL (insn
)) >= max_uid_for_loop
4577 || INSN_UID (insn
) >= max_uid_for_loop
4578 || (INSN_LUID (JUMP_LABEL (insn
))
4579 < INSN_LUID (insn
))))))
4587 /* Past a jump, we get to insns for which we can't count
4588 on whether they will be executed during each iteration. */
4589 /* This code appears twice in strength_reduce. There is also similar
4590 code in scan_loop. */
4591 if (GET_CODE (p
) == JUMP_INSN
4592 /* If we enter the loop in the middle, and scan around to the
4593 beginning, don't set not_every_iteration for that.
4594 This can be any kind of jump, since we want to know if insns
4595 will be executed if the loop is executed. */
4596 && ! (JUMP_LABEL (p
) == loop_top
4597 && ((NEXT_INSN (NEXT_INSN (p
)) == loop_end
&& simplejump_p (p
))
4598 || (NEXT_INSN (p
) == loop_end
&& condjump_p (p
)))))
4602 /* If this is a jump outside the loop, then it also doesn't
4603 matter. Check to see if the target of this branch is on the
4604 loop_number_exits_labels list. */
4606 for (label
= loop_number_exit_labels
[uid_loop_num
[INSN_UID (loop_start
)]];
4608 label
= LABEL_NEXTREF (label
))
4609 if (XEXP (label
, 0) == JUMP_LABEL (p
))
4613 not_every_iteration
= 1;
4616 else if (GET_CODE (p
) == NOTE
)
4618 /* At the virtual top of a converted loop, insns are again known to
4619 be executed each iteration: logically, the loop begins here
4620 even though the exit code has been duplicated.
4622 Insns are also again known to be executed each iteration at
4623 the LOOP_CONT note. */
4624 if ((NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_VTOP
4625 || NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_CONT
)
4627 not_every_iteration
= 0;
4628 else if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_BEG
)
4630 else if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_END
)
4634 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
4635 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
4636 or not an insn is known to be executed each iteration of the
4637 loop, whether or not any iterations are known to occur.
4639 Therefore, if we have just passed a label and have no more labels
4640 between here and the test insn of the loop, we know these insns
4641 will be executed each iteration. */
4643 if (not_every_iteration
&& GET_CODE (p
) == CODE_LABEL
4644 && no_labels_between_p (p
, loop_end
)
4645 && loop_insn_first_p (p
, loop_cont
))
4646 not_every_iteration
= 0;
4649 /* Try to calculate and save the number of loop iterations. This is
4650 set to zero if the actual number can not be calculated. This must
4651 be called after all giv's have been identified, since otherwise it may
4652 fail if the iteration variable is a giv. */
4654 loop_iterations (loop_start
, loop_end
, loop_info
);
4656 /* Now for each giv for which we still don't know whether or not it is
4657 replaceable, check to see if it is replaceable because its final value
4658 can be calculated. This must be done after loop_iterations is called,
4659 so that final_giv_value will work correctly. */
4661 for (bl
= loop_iv_list
; bl
; bl
= bl
->next
)
4663 struct induction
*v
;
4665 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
4666 if (! v
->replaceable
&& ! v
->not_replaceable
)
4667 check_final_value (v
, loop_start
, loop_end
, loop_info
->n_iterations
);
4670 /* Try to prove that the loop counter variable (if any) is always
4671 nonnegative; if so, record that fact with a REG_NONNEG note
4672 so that "decrement and branch until zero" insn can be used. */
4673 check_dbra_loop (loop_end
, insn_count
, loop_start
, loop_info
);
4675 /* Create reg_map to hold substitutions for replaceable giv regs.
4676 Some givs might have been made from biv increments, so look at
4677 reg_iv_type for a suitable size. */
4678 reg_map_size
= reg_iv_type
->num_elements
;
4679 reg_map
= (rtx
*) alloca (reg_map_size
* sizeof (rtx
));
4680 bzero ((char *) reg_map
, reg_map_size
* sizeof (rtx
));
4682 /* Examine each iv class for feasibility of strength reduction/induction
4683 variable elimination. */
4685 for (bl
= loop_iv_list
; bl
; bl
= bl
->next
)
4687 struct induction
*v
;
4690 rtx final_value
= 0;
4693 /* Test whether it will be possible to eliminate this biv
4694 provided all givs are reduced. This is possible if either
4695 the reg is not used outside the loop, or we can compute
4696 what its final value will be.
4698 For architectures with a decrement_and_branch_until_zero insn,
4699 don't do this if we put a REG_NONNEG note on the endtest for
4702 /* Compare against bl->init_insn rather than loop_start.
4703 We aren't concerned with any uses of the biv between
4704 init_insn and loop_start since these won't be affected
4705 by the value of the biv elsewhere in the function, so
4706 long as init_insn doesn't use the biv itself.
4707 March 14, 1989 -- self@bayes.arc.nasa.gov */
4709 if ((uid_luid
[REGNO_LAST_UID (bl
->regno
)] < INSN_LUID (loop_end
)
4711 && INSN_UID (bl
->init_insn
) < max_uid_for_loop
4712 && uid_luid
[REGNO_FIRST_UID (bl
->regno
)] >= INSN_LUID (bl
->init_insn
)
4713 #ifdef HAVE_decrement_and_branch_until_zero
4716 && ! reg_mentioned_p (bl
->biv
->dest_reg
, SET_SRC (bl
->init_set
)))
4717 || ((final_value
= final_biv_value (bl
, loop_start
, loop_end
,
4718 loop_info
->n_iterations
))
4719 #ifdef HAVE_decrement_and_branch_until_zero
4723 bl
->eliminable
= maybe_eliminate_biv (bl
, loop_start
, end
, 0,
4724 threshold
, insn_count
);
4727 if (loop_dump_stream
)
4729 fprintf (loop_dump_stream
,
4730 "Cannot eliminate biv %d.\n",
4732 fprintf (loop_dump_stream
,
4733 "First use: insn %d, last use: insn %d.\n",
4734 REGNO_FIRST_UID (bl
->regno
),
4735 REGNO_LAST_UID (bl
->regno
));
4739 /* Combine all giv's for this iv_class. */
4742 /* This will be true at the end, if all givs which depend on this
4743 biv have been strength reduced.
4744 We can't (currently) eliminate the biv unless this is so. */
4747 /* Check each giv in this class to see if we will benefit by reducing
4748 it. Skip giv's combined with others. */
4749 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
4751 struct induction
*tv
;
4753 if (v
->ignore
|| v
->same
)
4756 benefit
= v
->benefit
;
4758 /* Reduce benefit if not replaceable, since we will insert
4759 a move-insn to replace the insn that calculates this giv.
4760 Don't do this unless the giv is a user variable, since it
4761 will often be marked non-replaceable because of the duplication
4762 of the exit code outside the loop. In such a case, the copies
4763 we insert are dead and will be deleted. So they don't have
4764 a cost. Similar situations exist. */
4765 /* ??? The new final_[bg]iv_value code does a much better job
4766 of finding replaceable giv's, and hence this code may no longer
4768 if (! v
->replaceable
&& ! bl
->eliminable
4769 && REG_USERVAR_P (v
->dest_reg
))
4770 benefit
-= copy_cost
;
4772 /* Decrease the benefit to count the add-insns that we will
4773 insert to increment the reduced reg for the giv. */
4774 benefit
-= add_cost
* bl
->biv_count
;
4776 /* Decide whether to strength-reduce this giv or to leave the code
4777 unchanged (recompute it from the biv each time it is used).
4778 This decision can be made independently for each giv. */
4781 /* Attempt to guess whether autoincrement will handle some of the
4782 new add insns; if so, increase BENEFIT (undo the subtraction of
4783 add_cost that was done above). */
4784 if (v
->giv_type
== DEST_ADDR
4785 && GET_CODE (v
->mult_val
) == CONST_INT
)
4787 if (HAVE_POST_INCREMENT
4788 && INTVAL (v
->mult_val
) == GET_MODE_SIZE (v
->mem_mode
))
4789 benefit
+= add_cost
* bl
->biv_count
;
4790 else if (HAVE_PRE_INCREMENT
4791 && INTVAL (v
->mult_val
) == GET_MODE_SIZE (v
->mem_mode
))
4792 benefit
+= add_cost
* bl
->biv_count
;
4793 else if (HAVE_POST_DECREMENT
4794 && -INTVAL (v
->mult_val
) == GET_MODE_SIZE (v
->mem_mode
))
4795 benefit
+= add_cost
* bl
->biv_count
;
4796 else if (HAVE_PRE_DECREMENT
4797 && -INTVAL (v
->mult_val
) == GET_MODE_SIZE (v
->mem_mode
))
4798 benefit
+= add_cost
* bl
->biv_count
;
4802 /* If an insn is not to be strength reduced, then set its ignore
4803 flag, and clear all_reduced. */
4805 /* A giv that depends on a reversed biv must be reduced if it is
4806 used after the loop exit, otherwise, it would have the wrong
4807 value after the loop exit. To make it simple, just reduce all
4808 of such giv's whether or not we know they are used after the loop
4811 if ( ! flag_reduce_all_givs
&& v
->lifetime
* threshold
* benefit
< insn_count
4814 if (loop_dump_stream
)
4815 fprintf (loop_dump_stream
,
4816 "giv of insn %d not worth while, %d vs %d.\n",
4818 v
->lifetime
* threshold
* benefit
, insn_count
);
4824 /* Check that we can increment the reduced giv without a
4825 multiply insn. If not, reject it. */
4827 for (tv
= bl
->biv
; tv
; tv
= tv
->next_iv
)
4828 if (tv
->mult_val
== const1_rtx
4829 && ! product_cheap_p (tv
->add_val
, v
->mult_val
))
4831 if (loop_dump_stream
)
4832 fprintf (loop_dump_stream
,
4833 "giv of insn %d: would need a multiply.\n",
4834 INSN_UID (v
->insn
));
4842 /* Check for givs whose first use is their definition and whose
4843 last use is the definition of another giv. If so, it is likely
4844 dead and should not be used to derive another giv nor to
4846 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
4849 || (v
->same
&& v
->same
->ignore
))
4854 struct induction
*v1
;
4856 for (v1
= bl
->giv
; v1
; v1
= v1
->next_iv
)
4857 if (v
->last_use
== v1
->insn
)
4860 else if (v
->giv_type
== DEST_REG
4861 && REGNO_FIRST_UID (REGNO (v
->dest_reg
)) == INSN_UID (v
->insn
))
4863 struct induction
*v1
;
4865 for (v1
= bl
->giv
; v1
; v1
= v1
->next_iv
)
4866 if (REGNO_LAST_UID (REGNO (v
->dest_reg
)) == INSN_UID (v1
->insn
))
4871 /* Now that we know which givs will be reduced, try to rearrange the
4872 combinations to reduce register pressure.
4873 recombine_givs calls find_life_end, which needs reg_iv_type and
4874 reg_iv_info to be valid for all pseudos. We do the necessary
4875 reallocation here since it allows to check if there are still
4876 more bivs to process. */
4877 nregs
= max_reg_num ();
4878 if (nregs
> reg_iv_type
->num_elements
)
4880 /* If there are still more bivs to process, allocate some slack
4881 space so that we're not constantly reallocating these arrays. */
4884 /* Reallocate reg_iv_type and reg_iv_info. */
4885 VARRAY_GROW (reg_iv_type
, nregs
);
4886 VARRAY_GROW (reg_iv_info
, nregs
);
4888 recombine_givs (bl
, loop_start
, loop_end
, unroll_p
);
4890 /* Reduce each giv that we decided to reduce. */
4892 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
4894 struct induction
*tv
;
4895 if (! v
->ignore
&& v
->same
== 0)
4897 int auto_inc_opt
= 0;
4899 /* If the code for derived givs immediately below has already
4900 allocated a new_reg, we must keep it. */
4902 v
->new_reg
= gen_reg_rtx (v
->mode
);
4904 if (v
->derived_from
)
4906 struct induction
*d
= v
->derived_from
;
4908 /* In case d->dest_reg is not replaceable, we have
4909 to replace it in v->insn now. */
4911 d
->new_reg
= gen_reg_rtx (d
->mode
);
4913 = replace_rtx (PATTERN (v
->insn
), d
->dest_reg
, d
->new_reg
);
4915 = replace_rtx (PATTERN (v
->insn
), v
->dest_reg
, v
->new_reg
);
4916 /* For each place where the biv is incremented, add an
4917 insn to set the new, reduced reg for the giv.
4918 We used to do this only for biv_count != 1, but
4919 this fails when there is a giv after a single biv
4920 increment, e.g. when the last giv was expressed as
4922 for (tv
= bl
->biv
; tv
; tv
= tv
->next_iv
)
4924 /* We always emit reduced giv increments before the
4925 biv increment when bl->biv_count != 1. So by
4926 emitting the add insns for derived givs after the
4927 biv increment, they pick up the updated value of
4929 If the reduced giv is processed with
4930 auto_inc_opt == 1, then it is incremented earlier
4931 than the biv, hence we'll still pick up the right
4933 If it's processed with auto_inc_opt == -1,
4934 that implies that the biv increment is before the
4935 first reduced giv's use. The derived giv's lifetime
4936 is after the reduced giv's lifetime, hence in this
4937 case, the biv increment doesn't matter. */
4938 emit_insn_after (copy_rtx (PATTERN (v
->insn
)), tv
->insn
);
4944 /* If the target has auto-increment addressing modes, and
4945 this is an address giv, then try to put the increment
4946 immediately after its use, so that flow can create an
4947 auto-increment addressing mode. */
4948 if (v
->giv_type
== DEST_ADDR
&& bl
->biv_count
== 1
4949 && bl
->biv
->always_executed
&& ! bl
->biv
->maybe_multiple
4950 /* We don't handle reversed biv's because bl->biv->insn
4951 does not have a valid INSN_LUID. */
4953 && v
->always_executed
&& ! v
->maybe_multiple
4954 && INSN_UID (v
->insn
) < max_uid_for_loop
)
4956 /* If other giv's have been combined with this one, then
4957 this will work only if all uses of the other giv's occur
4958 before this giv's insn. This is difficult to check.
4960 We simplify this by looking for the common case where
4961 there is one DEST_REG giv, and this giv's insn is the
4962 last use of the dest_reg of that DEST_REG giv. If the
4963 increment occurs after the address giv, then we can
4964 perform the optimization. (Otherwise, the increment
4965 would have to go before other_giv, and we would not be
4966 able to combine it with the address giv to get an
4967 auto-inc address.) */
4968 if (v
->combined_with
)
4970 struct induction
*other_giv
= 0;
4972 for (tv
= bl
->giv
; tv
; tv
= tv
->next_iv
)
4980 if (! tv
&& other_giv
4981 && REGNO (other_giv
->dest_reg
) < max_reg_before_loop
4982 && (REGNO_LAST_UID (REGNO (other_giv
->dest_reg
))
4983 == INSN_UID (v
->insn
))
4984 && INSN_LUID (v
->insn
) < INSN_LUID (bl
->biv
->insn
))
4987 /* Check for case where increment is before the address
4988 giv. Do this test in "loop order". */
4989 else if ((INSN_LUID (v
->insn
) > INSN_LUID (bl
->biv
->insn
)
4990 && (INSN_LUID (v
->insn
) < INSN_LUID (scan_start
)
4991 || (INSN_LUID (bl
->biv
->insn
)
4992 > INSN_LUID (scan_start
))))
4993 || (INSN_LUID (v
->insn
) < INSN_LUID (scan_start
)
4994 && (INSN_LUID (scan_start
)
4995 < INSN_LUID (bl
->biv
->insn
))))
5004 /* We can't put an insn immediately after one setting
5005 cc0, or immediately before one using cc0. */
5006 if ((auto_inc_opt
== 1 && sets_cc0_p (PATTERN (v
->insn
)))
5007 || (auto_inc_opt
== -1
5008 && (prev
= prev_nonnote_insn (v
->insn
)) != 0
5009 && GET_RTX_CLASS (GET_CODE (prev
)) == 'i'
5010 && sets_cc0_p (PATTERN (prev
))))
5016 v
->auto_inc_opt
= 1;
5020 /* For each place where the biv is incremented, add an insn
5021 to increment the new, reduced reg for the giv. */
5022 for (tv
= bl
->biv
; tv
; tv
= tv
->next_iv
)
5027 insert_before
= tv
->insn
;
5028 else if (auto_inc_opt
== 1)
5029 insert_before
= NEXT_INSN (v
->insn
);
5031 insert_before
= v
->insn
;
5033 if (tv
->mult_val
== const1_rtx
)
5034 emit_iv_add_mult (tv
->add_val
, v
->mult_val
,
5035 v
->new_reg
, v
->new_reg
, insert_before
);
5036 else /* tv->mult_val == const0_rtx */
5037 /* A multiply is acceptable here
5038 since this is presumed to be seldom executed. */
5039 emit_iv_add_mult (tv
->add_val
, v
->mult_val
,
5040 v
->add_val
, v
->new_reg
, insert_before
);
5043 /* Add code at loop start to initialize giv's reduced reg. */
5045 emit_iv_add_mult (bl
->initial_value
, v
->mult_val
,
5046 v
->add_val
, v
->new_reg
, loop_start
);
5050 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
5053 For each giv register that can be reduced now: if replaceable,
5054 substitute reduced reg wherever the old giv occurs;
5055 else add new move insn "giv_reg = reduced_reg". */
5057 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
5059 if (v
->same
&& v
->same
->ignore
)
5065 /* Update expression if this was combined, in case other giv was
5068 v
->new_reg
= replace_rtx (v
->new_reg
,
5069 v
->same
->dest_reg
, v
->same
->new_reg
);
5071 if (v
->giv_type
== DEST_ADDR
)
5072 /* Store reduced reg as the address in the memref where we found
5074 validate_change (v
->insn
, v
->location
, v
->new_reg
, 0);
5075 else if (v
->replaceable
)
5077 reg_map
[REGNO (v
->dest_reg
)] = v
->new_reg
;
5080 /* I can no longer duplicate the original problem. Perhaps
5081 this is unnecessary now? */
5083 /* Replaceable; it isn't strictly necessary to delete the old
5084 insn and emit a new one, because v->dest_reg is now dead.
5086 However, especially when unrolling loops, the special
5087 handling for (set REG0 REG1) in the second cse pass may
5088 make v->dest_reg live again. To avoid this problem, emit
5089 an insn to set the original giv reg from the reduced giv.
5090 We can not delete the original insn, since it may be part
5091 of a LIBCALL, and the code in flow that eliminates dead
5092 libcalls will fail if it is deleted. */
5093 emit_insn_after (gen_move_insn (v
->dest_reg
, v
->new_reg
),
5099 /* Not replaceable; emit an insn to set the original giv reg from
5100 the reduced giv, same as above. */
5101 emit_insn_after (gen_move_insn (v
->dest_reg
, v
->new_reg
),
5105 /* When a loop is reversed, givs which depend on the reversed
5106 biv, and which are live outside the loop, must be set to their
5107 correct final value. This insn is only needed if the giv is
5108 not replaceable. The correct final value is the same as the
5109 value that the giv starts the reversed loop with. */
5110 if (bl
->reversed
&& ! v
->replaceable
)
5111 emit_iv_add_mult (bl
->initial_value
, v
->mult_val
,
5112 v
->add_val
, v
->dest_reg
, end_insert_before
);
5113 else if (v
->final_value
)
5117 /* If the loop has multiple exits, emit the insn before the
5118 loop to ensure that it will always be executed no matter
5119 how the loop exits. Otherwise, emit the insn after the loop,
5120 since this is slightly more efficient. */
5121 if (loop_number_exit_count
[uid_loop_num
[INSN_UID (loop_start
)]])
5122 insert_before
= loop_start
;
5124 insert_before
= end_insert_before
;
5125 emit_insn_before (gen_move_insn (v
->dest_reg
, v
->final_value
),
5129 /* If the insn to set the final value of the giv was emitted
5130 before the loop, then we must delete the insn inside the loop
5131 that sets it. If this is a LIBCALL, then we must delete
5132 every insn in the libcall. Note, however, that
5133 final_giv_value will only succeed when there are multiple
5134 exits if the giv is dead at each exit, hence it does not
5135 matter that the original insn remains because it is dead
5137 /* Delete the insn inside the loop that sets the giv since
5138 the giv is now set before (or after) the loop. */
5139 delete_insn (v
->insn
);
5143 if (loop_dump_stream
)
5145 fprintf (loop_dump_stream
, "giv at %d reduced to ",
5146 INSN_UID (v
->insn
));
5147 print_rtl (loop_dump_stream
, v
->new_reg
);
5148 fprintf (loop_dump_stream
, "\n");
5152 /* All the givs based on the biv bl have been reduced if they
5155 /* For each giv not marked as maybe dead that has been combined with a
5156 second giv, clear any "maybe dead" mark on that second giv.
5157 v->new_reg will either be or refer to the register of the giv it
5160 Doing this clearing avoids problems in biv elimination where a
5161 giv's new_reg is a complex value that can't be put in the insn but
5162 the giv combined with (with a reg as new_reg) is marked maybe_dead.
5163 Since the register will be used in either case, we'd prefer it be
5164 used from the simpler giv. */
5166 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
5167 if (! v
->maybe_dead
&& v
->same
)
5168 v
->same
->maybe_dead
= 0;
5170 /* Try to eliminate the biv, if it is a candidate.
5171 This won't work if ! all_reduced,
5172 since the givs we planned to use might not have been reduced.
5174 We have to be careful that we didn't initially think we could eliminate
5175 this biv because of a giv that we now think may be dead and shouldn't
5176 be used as a biv replacement.
5178 Also, there is the possibility that we may have a giv that looks
5179 like it can be used to eliminate a biv, but the resulting insn
5180 isn't valid. This can happen, for example, on the 88k, where a
5181 JUMP_INSN can compare a register only with zero. Attempts to
5182 replace it with a compare with a constant will fail.
5184 Note that in cases where this call fails, we may have replaced some
5185 of the occurrences of the biv with a giv, but no harm was done in
5186 doing so in the rare cases where it can occur. */
5188 if (all_reduced
== 1 && bl
->eliminable
5189 && maybe_eliminate_biv (bl
, loop_start
, end
, 1,
5190 threshold
, insn_count
))
5193 /* ?? If we created a new test to bypass the loop entirely,
5194 or otherwise drop straight in, based on this test, then
5195 we might want to rewrite it also. This way some later
5196 pass has more hope of removing the initialization of this
5199 /* If final_value != 0, then the biv may be used after loop end
5200 and we must emit an insn to set it just in case.
5202 Reversed bivs already have an insn after the loop setting their
5203 value, so we don't need another one. We can't calculate the
5204 proper final value for such a biv here anyways. */
5205 if (final_value
!= 0 && ! bl
->reversed
)
5209 /* If the loop has multiple exits, emit the insn before the
5210 loop to ensure that it will always be executed no matter
5211 how the loop exits. Otherwise, emit the insn after the
5212 loop, since this is slightly more efficient. */
5213 if (loop_number_exit_count
[uid_loop_num
[INSN_UID (loop_start
)]])
5214 insert_before
= loop_start
;
5216 insert_before
= end_insert_before
;
5218 emit_insn_before (gen_move_insn (bl
->biv
->dest_reg
, final_value
),
5223 /* Delete all of the instructions inside the loop which set
5224 the biv, as they are all dead. If is safe to delete them,
5225 because an insn setting a biv will never be part of a libcall. */
5226 /* However, deleting them will invalidate the regno_last_uid info,
5227 so keeping them around is more convenient. Final_biv_value
5228 will only succeed when there are multiple exits if the biv
5229 is dead at each exit, hence it does not matter that the original
5230 insn remains, because it is dead anyways. */
5231 for (v
= bl
->biv
; v
; v
= v
->next_iv
)
5232 delete_insn (v
->insn
);
5235 if (loop_dump_stream
)
5236 fprintf (loop_dump_stream
, "Reg %d: biv eliminated\n",
5241 /* Go through all the instructions in the loop, making all the
5242 register substitutions scheduled in REG_MAP. */
5244 for (p
= loop_start
; p
!= end
; p
= NEXT_INSN (p
))
5245 if (GET_CODE (p
) == INSN
|| GET_CODE (p
) == JUMP_INSN
5246 || GET_CODE (p
) == CALL_INSN
)
5248 replace_regs (PATTERN (p
), reg_map
, reg_map_size
, 0);
5249 replace_regs (REG_NOTES (p
), reg_map
, reg_map_size
, 0);
5253 if (loop_info
->n_iterations
> 0)
5255 /* When we completely unroll a loop we will likely not need the increment
5256 of the loop BIV and we will not need the conditional branch at the
5258 unrolled_insn_copies
= insn_count
- 2;
5261 /* When we completely unroll a loop on a HAVE_cc0 machine we will not
5262 need the comparison before the conditional branch at the end of the
5264 unrolled_insn_copies
-= 1;
5267 /* We'll need one copy for each loop iteration. */
5268 unrolled_insn_copies
*= loop_info
->n_iterations
;
5270 /* A little slop to account for the ability to remove initialization
5271 code, better CSE, and other secondary benefits of completely
5272 unrolling some loops. */
5273 unrolled_insn_copies
-= 1;
5275 /* Clamp the value. */
5276 if (unrolled_insn_copies
< 0)
5277 unrolled_insn_copies
= 0;
5280 /* Unroll loops from within strength reduction so that we can use the
5281 induction variable information that strength_reduce has already
5282 collected. Always unroll loops that would be as small or smaller
5283 unrolled than when rolled. */
5285 || (loop_info
->n_iterations
> 0
5286 && unrolled_insn_copies
<= insn_count
))
5287 unroll_loop (loop_end
, insn_count
, loop_start
, end_insert_before
,
5290 #ifdef HAVE_decrement_and_branch_on_count
5291 /* Instrument the loop with BCT insn. */
5292 if (HAVE_decrement_and_branch_on_count
&& bct_p
5293 && flag_branch_on_count_reg
)
5294 insert_bct (loop_start
, loop_end
, loop_info
);
5295 #endif /* HAVE_decrement_and_branch_on_count */
5297 if (loop_dump_stream
)
5298 fprintf (loop_dump_stream
, "\n");
5301 VARRAY_FREE (reg_iv_type
);
5302 VARRAY_FREE (reg_iv_info
);
5305 /* Return 1 if X is a valid source for an initial value (or as value being
5306 compared against in an initial test).
5308 X must be either a register or constant and must not be clobbered between
5309 the current insn and the start of the loop.
5311 INSN is the insn containing X. */
5314 valid_initial_value_p (x
, insn
, call_seen
, loop_start
)
5323 /* Only consider pseudos we know about initialized in insns whose luids
5325 if (GET_CODE (x
) != REG
5326 || REGNO (x
) >= max_reg_before_loop
)
5329 /* Don't use call-clobbered registers across a call which clobbers it. On
5330 some machines, don't use any hard registers at all. */
5331 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
5332 && (SMALL_REGISTER_CLASSES
5333 || (call_used_regs
[REGNO (x
)] && call_seen
)))
5336 /* Don't use registers that have been clobbered before the start of the
5338 if (reg_set_between_p (x
, insn
, loop_start
))
5344 /* Scan X for memory refs and check each memory address
5345 as a possible giv. INSN is the insn whose pattern X comes from.
5346 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
5347 every loop iteration. MAYBE_MULTIPLE is 1 if the insn might be executed
5348 more thanonce in each loop iteration. */
5351 find_mem_givs (x
, insn
, not_every_iteration
, maybe_multiple
, loop_start
,
5355 int not_every_iteration
, maybe_multiple
;
5356 rtx loop_start
, loop_end
;
5359 register enum rtx_code code
;
5360 register const char *fmt
;
5365 code
= GET_CODE (x
);
5389 /* This code used to disable creating GIVs with mult_val == 1 and
5390 add_val == 0. However, this leads to lost optimizations when
5391 it comes time to combine a set of related DEST_ADDR GIVs, since
5392 this one would not be seen. */
5394 if (general_induction_var (XEXP (x
, 0), &src_reg
, &add_val
,
5395 &mult_val
, 1, &benefit
))
5397 /* Found one; record it. */
5399 = (struct induction
*) oballoc (sizeof (struct induction
));
5401 record_giv (v
, insn
, src_reg
, addr_placeholder
, mult_val
,
5402 add_val
, benefit
, DEST_ADDR
, not_every_iteration
,
5403 maybe_multiple
, &XEXP (x
, 0), loop_start
, loop_end
);
5405 v
->mem_mode
= GET_MODE (x
);
5414 /* Recursively scan the subexpressions for other mem refs. */
5416 fmt
= GET_RTX_FORMAT (code
);
5417 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5419 find_mem_givs (XEXP (x
, i
), insn
, not_every_iteration
, maybe_multiple
,
5420 loop_start
, loop_end
);
5421 else if (fmt
[i
] == 'E')
5422 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
5423 find_mem_givs (XVECEXP (x
, i
, j
), insn
, not_every_iteration
,
5424 maybe_multiple
, loop_start
, loop_end
);
5427 /* Fill in the data about one biv update.
5428 V is the `struct induction' in which we record the biv. (It is
5429 allocated by the caller, with alloca.)
5430 INSN is the insn that sets it.
5431 DEST_REG is the biv's reg.
5433 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
5434 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
5435 being set to INC_VAL.
5437 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
5438 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
5439 can be executed more than once per iteration. If MAYBE_MULTIPLE
5440 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
5441 executed exactly once per iteration. */
5444 record_biv (v
, insn
, dest_reg
, inc_val
, mult_val
, location
,
5445 not_every_iteration
, maybe_multiple
)
5446 struct induction
*v
;
5452 int not_every_iteration
;
5455 struct iv_class
*bl
;
5458 v
->src_reg
= dest_reg
;
5459 v
->dest_reg
= dest_reg
;
5460 v
->mult_val
= mult_val
;
5461 v
->add_val
= inc_val
;
5462 v
->location
= location
;
5463 v
->mode
= GET_MODE (dest_reg
);
5464 v
->always_computable
= ! not_every_iteration
;
5465 v
->always_executed
= ! not_every_iteration
;
5466 v
->maybe_multiple
= maybe_multiple
;
5468 /* Add this to the reg's iv_class, creating a class
5469 if this is the first incrementation of the reg. */
5471 bl
= reg_biv_class
[REGNO (dest_reg
)];
5474 /* Create and initialize new iv_class. */
5476 bl
= (struct iv_class
*) oballoc (sizeof (struct iv_class
));
5478 bl
->regno
= REGNO (dest_reg
);
5484 /* Set initial value to the reg itself. */
5485 bl
->initial_value
= dest_reg
;
5486 /* We haven't seen the initializing insn yet */
5489 bl
->initial_test
= 0;
5490 bl
->incremented
= 0;
5494 bl
->total_benefit
= 0;
5496 /* Add this class to loop_iv_list. */
5497 bl
->next
= loop_iv_list
;
5500 /* Put it in the array of biv register classes. */
5501 reg_biv_class
[REGNO (dest_reg
)] = bl
;
5504 /* Update IV_CLASS entry for this biv. */
5505 v
->next_iv
= bl
->biv
;
5508 if (mult_val
== const1_rtx
)
5509 bl
->incremented
= 1;
5511 if (loop_dump_stream
)
5513 fprintf (loop_dump_stream
,
5514 "Insn %d: possible biv, reg %d,",
5515 INSN_UID (insn
), REGNO (dest_reg
));
5516 if (GET_CODE (inc_val
) == CONST_INT
)
5518 fprintf (loop_dump_stream
, " const =");
5519 fprintf (loop_dump_stream
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (inc_val
));
5520 fputc ('\n', loop_dump_stream
);
5524 fprintf (loop_dump_stream
, " const = ");
5525 print_rtl (loop_dump_stream
, inc_val
);
5526 fprintf (loop_dump_stream
, "\n");
5531 /* Fill in the data about one giv.
5532 V is the `struct induction' in which we record the giv. (It is
5533 allocated by the caller, with alloca.)
5534 INSN is the insn that sets it.
5535 BENEFIT estimates the savings from deleting this insn.
5536 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
5537 into a register or is used as a memory address.
5539 SRC_REG is the biv reg which the giv is computed from.
5540 DEST_REG is the giv's reg (if the giv is stored in a reg).
5541 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
5542 LOCATION points to the place where this giv's value appears in INSN. */
5545 record_giv (v
, insn
, src_reg
, dest_reg
, mult_val
, add_val
, benefit
,
5546 type
, not_every_iteration
, maybe_multiple
, location
, loop_start
,
5548 struct induction
*v
;
5552 rtx mult_val
, add_val
;
5555 int not_every_iteration
, maybe_multiple
;
5557 rtx loop_start
, loop_end
;
5559 struct induction
*b
;
5560 struct iv_class
*bl
;
5561 rtx set
= single_set (insn
);
5564 v
->src_reg
= src_reg
;
5566 v
->dest_reg
= dest_reg
;
5567 v
->mult_val
= mult_val
;
5568 v
->add_val
= add_val
;
5569 v
->benefit
= benefit
;
5570 v
->location
= location
;
5572 v
->combined_with
= 0;
5573 v
->maybe_multiple
= maybe_multiple
;
5575 v
->derive_adjustment
= 0;
5581 v
->auto_inc_opt
= 0;
5584 v
->derived_from
= 0;
5587 /* The v->always_computable field is used in update_giv_derive, to
5588 determine whether a giv can be used to derive another giv. For a
5589 DEST_REG giv, INSN computes a new value for the giv, so its value
5590 isn't computable if INSN insn't executed every iteration.
5591 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
5592 it does not compute a new value. Hence the value is always computable
5593 regardless of whether INSN is executed each iteration. */
5595 if (type
== DEST_ADDR
)
5596 v
->always_computable
= 1;
5598 v
->always_computable
= ! not_every_iteration
;
5600 v
->always_executed
= ! not_every_iteration
;
5602 if (type
== DEST_ADDR
)
5604 v
->mode
= GET_MODE (*location
);
5607 else /* type == DEST_REG */
5609 v
->mode
= GET_MODE (SET_DEST (set
));
5611 v
->lifetime
= (uid_luid
[REGNO_LAST_UID (REGNO (dest_reg
))]
5612 - uid_luid
[REGNO_FIRST_UID (REGNO (dest_reg
))]);
5614 /* If the lifetime is zero, it means that this register is
5615 really a dead store. So mark this as a giv that can be
5616 ignored. This will not prevent the biv from being eliminated. */
5617 if (v
->lifetime
== 0)
5620 REG_IV_TYPE (REGNO (dest_reg
)) = GENERAL_INDUCT
;
5621 REG_IV_INFO (REGNO (dest_reg
)) = v
;
5624 /* Add the giv to the class of givs computed from one biv. */
5626 bl
= reg_biv_class
[REGNO (src_reg
)];
5629 v
->next_iv
= bl
->giv
;
5631 /* Don't count DEST_ADDR. This is supposed to count the number of
5632 insns that calculate givs. */
5633 if (type
== DEST_REG
)
5635 bl
->total_benefit
+= benefit
;
5638 /* Fatal error, biv missing for this giv? */
5641 if (type
== DEST_ADDR
)
5645 /* The giv can be replaced outright by the reduced register only if all
5646 of the following conditions are true:
5647 - the insn that sets the giv is always executed on any iteration
5648 on which the giv is used at all
5649 (there are two ways to deduce this:
5650 either the insn is executed on every iteration,
5651 or all uses follow that insn in the same basic block),
5652 - the giv is not used outside the loop
5653 - no assignments to the biv occur during the giv's lifetime. */
5655 if (REGNO_FIRST_UID (REGNO (dest_reg
)) == INSN_UID (insn
)
5656 /* Previous line always fails if INSN was moved by loop opt. */
5657 && uid_luid
[REGNO_LAST_UID (REGNO (dest_reg
))] < INSN_LUID (loop_end
)
5658 && (! not_every_iteration
5659 || last_use_this_basic_block (dest_reg
, insn
)))
5661 /* Now check that there are no assignments to the biv within the
5662 giv's lifetime. This requires two separate checks. */
5664 /* Check each biv update, and fail if any are between the first
5665 and last use of the giv.
5667 If this loop contains an inner loop that was unrolled, then
5668 the insn modifying the biv may have been emitted by the loop
5669 unrolling code, and hence does not have a valid luid. Just
5670 mark the biv as not replaceable in this case. It is not very
5671 useful as a biv, because it is used in two different loops.
5672 It is very unlikely that we would be able to optimize the giv
5673 using this biv anyways. */
5676 for (b
= bl
->biv
; b
; b
= b
->next_iv
)
5678 if (INSN_UID (b
->insn
) >= max_uid_for_loop
5679 || ((uid_luid
[INSN_UID (b
->insn
)]
5680 >= uid_luid
[REGNO_FIRST_UID (REGNO (dest_reg
))])
5681 && (uid_luid
[INSN_UID (b
->insn
)]
5682 <= uid_luid
[REGNO_LAST_UID (REGNO (dest_reg
))])))
5685 v
->not_replaceable
= 1;
5690 /* If there are any backwards branches that go from after the
5691 biv update to before it, then this giv is not replaceable. */
5693 for (b
= bl
->biv
; b
; b
= b
->next_iv
)
5694 if (back_branch_in_range_p (b
->insn
, loop_start
, loop_end
))
5697 v
->not_replaceable
= 1;
5703 /* May still be replaceable, we don't have enough info here to
5706 v
->not_replaceable
= 0;
5710 /* Record whether the add_val contains a const_int, for later use by
5715 v
->no_const_addval
= 1;
5716 if (tem
== const0_rtx
)
5718 else if (GET_CODE (tem
) == CONST_INT
)
5719 v
->no_const_addval
= 0;
5720 else if (GET_CODE (tem
) == PLUS
)
5724 if (GET_CODE (XEXP (tem
, 0)) == PLUS
)
5725 tem
= XEXP (tem
, 0);
5726 else if (GET_CODE (XEXP (tem
, 1)) == PLUS
)
5727 tem
= XEXP (tem
, 1);
5731 if (GET_CODE (XEXP (tem
, 1)) == CONST_INT
)
5732 v
->no_const_addval
= 0;
5736 if (loop_dump_stream
)
5738 if (type
== DEST_REG
)
5739 fprintf (loop_dump_stream
, "Insn %d: giv reg %d",
5740 INSN_UID (insn
), REGNO (dest_reg
));
5742 fprintf (loop_dump_stream
, "Insn %d: dest address",
5745 fprintf (loop_dump_stream
, " src reg %d benefit %d",
5746 REGNO (src_reg
), v
->benefit
);
5747 fprintf (loop_dump_stream
, " lifetime %d",
5751 fprintf (loop_dump_stream
, " replaceable");
5753 if (v
->no_const_addval
)
5754 fprintf (loop_dump_stream
, " ncav");
5756 if (GET_CODE (mult_val
) == CONST_INT
)
5758 fprintf (loop_dump_stream
, " mult ");
5759 fprintf (loop_dump_stream
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (mult_val
));
5763 fprintf (loop_dump_stream
, " mult ");
5764 print_rtl (loop_dump_stream
, mult_val
);
5767 if (GET_CODE (add_val
) == CONST_INT
)
5769 fprintf (loop_dump_stream
, " add ");
5770 fprintf (loop_dump_stream
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (add_val
));
5774 fprintf (loop_dump_stream
, " add ");
5775 print_rtl (loop_dump_stream
, add_val
);
5779 if (loop_dump_stream
)
5780 fprintf (loop_dump_stream
, "\n");
5785 /* All this does is determine whether a giv can be made replaceable because
5786 its final value can be calculated. This code can not be part of record_giv
5787 above, because final_giv_value requires that the number of loop iterations
5788 be known, and that can not be accurately calculated until after all givs
5789 have been identified. */
5792 check_final_value (v
, loop_start
, loop_end
, n_iterations
)
5793 struct induction
*v
;
5794 rtx loop_start
, loop_end
;
5795 unsigned HOST_WIDE_INT n_iterations
;
5797 struct iv_class
*bl
;
5798 rtx final_value
= 0;
5800 bl
= reg_biv_class
[REGNO (v
->src_reg
)];
5802 /* DEST_ADDR givs will never reach here, because they are always marked
5803 replaceable above in record_giv. */
5805 /* The giv can be replaced outright by the reduced register only if all
5806 of the following conditions are true:
5807 - the insn that sets the giv is always executed on any iteration
5808 on which the giv is used at all
5809 (there are two ways to deduce this:
5810 either the insn is executed on every iteration,
5811 or all uses follow that insn in the same basic block),
5812 - its final value can be calculated (this condition is different
5813 than the one above in record_giv)
5814 - no assignments to the biv occur during the giv's lifetime. */
5817 /* This is only called now when replaceable is known to be false. */
5818 /* Clear replaceable, so that it won't confuse final_giv_value. */
5822 if ((final_value
= final_giv_value (v
, loop_start
, loop_end
, n_iterations
))
5823 && (v
->always_computable
|| last_use_this_basic_block (v
->dest_reg
, v
->insn
)))
5825 int biv_increment_seen
= 0;
5831 /* When trying to determine whether or not a biv increment occurs
5832 during the lifetime of the giv, we can ignore uses of the variable
5833 outside the loop because final_value is true. Hence we can not
5834 use regno_last_uid and regno_first_uid as above in record_giv. */
5836 /* Search the loop to determine whether any assignments to the
5837 biv occur during the giv's lifetime. Start with the insn
5838 that sets the giv, and search around the loop until we come
5839 back to that insn again.
5841 Also fail if there is a jump within the giv's lifetime that jumps
5842 to somewhere outside the lifetime but still within the loop. This
5843 catches spaghetti code where the execution order is not linear, and
5844 hence the above test fails. Here we assume that the giv lifetime
5845 does not extend from one iteration of the loop to the next, so as
5846 to make the test easier. Since the lifetime isn't known yet,
5847 this requires two loops. See also record_giv above. */
5849 last_giv_use
= v
->insn
;
5855 p
= NEXT_INSN (loop_start
);
5859 if (GET_CODE (p
) == INSN
|| GET_CODE (p
) == JUMP_INSN
5860 || GET_CODE (p
) == CALL_INSN
)
5862 if (biv_increment_seen
)
5864 if (reg_mentioned_p (v
->dest_reg
, PATTERN (p
)))
5867 v
->not_replaceable
= 1;
5871 else if (reg_set_p (v
->src_reg
, PATTERN (p
)))
5872 biv_increment_seen
= 1;
5873 else if (reg_mentioned_p (v
->dest_reg
, PATTERN (p
)))
5878 /* Now that the lifetime of the giv is known, check for branches
5879 from within the lifetime to outside the lifetime if it is still
5889 p
= NEXT_INSN (loop_start
);
5890 if (p
== last_giv_use
)
5893 if (GET_CODE (p
) == JUMP_INSN
&& JUMP_LABEL (p
)
5894 && LABEL_NAME (JUMP_LABEL (p
))
5895 && ((loop_insn_first_p (JUMP_LABEL (p
), v
->insn
)
5896 && loop_insn_first_p (loop_start
, JUMP_LABEL (p
)))
5897 || (loop_insn_first_p (last_giv_use
, JUMP_LABEL (p
))
5898 && loop_insn_first_p (JUMP_LABEL (p
), loop_end
))))
5901 v
->not_replaceable
= 1;
5903 if (loop_dump_stream
)
5904 fprintf (loop_dump_stream
,
5905 "Found branch outside giv lifetime.\n");
5912 /* If it is replaceable, then save the final value. */
5914 v
->final_value
= final_value
;
5917 if (loop_dump_stream
&& v
->replaceable
)
5918 fprintf (loop_dump_stream
, "Insn %d: giv reg %d final_value replaceable\n",
5919 INSN_UID (v
->insn
), REGNO (v
->dest_reg
));
5922 /* Update the status of whether a giv can derive other givs.
5924 We need to do something special if there is or may be an update to the biv
5925 between the time the giv is defined and the time it is used to derive
5928 In addition, a giv that is only conditionally set is not allowed to
5929 derive another giv once a label has been passed.
5931 The cases we look at are when a label or an update to a biv is passed. */
5934 update_giv_derive (p
)
5937 struct iv_class
*bl
;
5938 struct induction
*biv
, *giv
;
5942 /* Search all IV classes, then all bivs, and finally all givs.
5944 There are three cases we are concerned with. First we have the situation
5945 of a giv that is only updated conditionally. In that case, it may not
5946 derive any givs after a label is passed.
5948 The second case is when a biv update occurs, or may occur, after the
5949 definition of a giv. For certain biv updates (see below) that are
5950 known to occur between the giv definition and use, we can adjust the
5951 giv definition. For others, or when the biv update is conditional,
5952 we must prevent the giv from deriving any other givs. There are two
5953 sub-cases within this case.
5955 If this is a label, we are concerned with any biv update that is done
5956 conditionally, since it may be done after the giv is defined followed by
5957 a branch here (actually, we need to pass both a jump and a label, but
5958 this extra tracking doesn't seem worth it).
5960 If this is a jump, we are concerned about any biv update that may be
5961 executed multiple times. We are actually only concerned about
5962 backward jumps, but it is probably not worth performing the test
5963 on the jump again here.
5965 If this is a biv update, we must adjust the giv status to show that a
5966 subsequent biv update was performed. If this adjustment cannot be done,
5967 the giv cannot derive further givs. */
5969 for (bl
= loop_iv_list
; bl
; bl
= bl
->next
)
5970 for (biv
= bl
->biv
; biv
; biv
= biv
->next_iv
)
5971 if (GET_CODE (p
) == CODE_LABEL
|| GET_CODE (p
) == JUMP_INSN
5974 for (giv
= bl
->giv
; giv
; giv
= giv
->next_iv
)
5976 /* If cant_derive is already true, there is no point in
5977 checking all of these conditions again. */
5978 if (giv
->cant_derive
)
5981 /* If this giv is conditionally set and we have passed a label,
5982 it cannot derive anything. */
5983 if (GET_CODE (p
) == CODE_LABEL
&& ! giv
->always_computable
)
5984 giv
->cant_derive
= 1;
5986 /* Skip givs that have mult_val == 0, since
5987 they are really invariants. Also skip those that are
5988 replaceable, since we know their lifetime doesn't contain
5990 else if (giv
->mult_val
== const0_rtx
|| giv
->replaceable
)
5993 /* The only way we can allow this giv to derive another
5994 is if this is a biv increment and we can form the product
5995 of biv->add_val and giv->mult_val. In this case, we will
5996 be able to compute a compensation. */
5997 else if (biv
->insn
== p
)
6001 if (biv
->mult_val
== const1_rtx
)
6002 tem
= simplify_giv_expr (gen_rtx_MULT (giv
->mode
,
6007 if (tem
&& giv
->derive_adjustment
)
6008 tem
= simplify_giv_expr
6009 (gen_rtx_PLUS (giv
->mode
, tem
, giv
->derive_adjustment
),
6013 giv
->derive_adjustment
= tem
;
6015 giv
->cant_derive
= 1;
6017 else if ((GET_CODE (p
) == CODE_LABEL
&& ! biv
->always_computable
)
6018 || (GET_CODE (p
) == JUMP_INSN
&& biv
->maybe_multiple
))
6019 giv
->cant_derive
= 1;
6024 /* Check whether an insn is an increment legitimate for a basic induction var.
6025 X is the source of insn P, or a part of it.
6026 MODE is the mode in which X should be interpreted.
6028 DEST_REG is the putative biv, also the destination of the insn.
6029 We accept patterns of these forms:
6030 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
6031 REG = INVARIANT + REG
6033 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
6034 store the additive term into *INC_VAL, and store the place where
6035 we found the additive term into *LOCATION.
6037 If X is an assignment of an invariant into DEST_REG, we set
6038 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
6040 We also want to detect a BIV when it corresponds to a variable
6041 whose mode was promoted via PROMOTED_MODE. In that case, an increment
6042 of the variable may be a PLUS that adds a SUBREG of that variable to
6043 an invariant and then sign- or zero-extends the result of the PLUS
6046 Most GIVs in such cases will be in the promoted mode, since that is the
6047 probably the natural computation mode (and almost certainly the mode
6048 used for addresses) on the machine. So we view the pseudo-reg containing
6049 the variable as the BIV, as if it were simply incremented.
6051 Note that treating the entire pseudo as a BIV will result in making
6052 simple increments to any GIVs based on it. However, if the variable
6053 overflows in its declared mode but not its promoted mode, the result will
6054 be incorrect. This is acceptable if the variable is signed, since
6055 overflows in such cases are undefined, but not if it is unsigned, since
6056 those overflows are defined. So we only check for SIGN_EXTEND and
6059 If we cannot find a biv, we return 0. */
6062 basic_induction_var (x
, mode
, dest_reg
, p
, inc_val
, mult_val
, location
)
6064 enum machine_mode mode
;
6071 register enum rtx_code code
;
6075 code
= GET_CODE (x
);
6080 if (rtx_equal_p (XEXP (x
, 0), dest_reg
)
6081 || (GET_CODE (XEXP (x
, 0)) == SUBREG
6082 && SUBREG_PROMOTED_VAR_P (XEXP (x
, 0))
6083 && SUBREG_REG (XEXP (x
, 0)) == dest_reg
))
6085 argp
= &XEXP (x
, 1);
6087 else if (rtx_equal_p (XEXP (x
, 1), dest_reg
)
6088 || (GET_CODE (XEXP (x
, 1)) == SUBREG
6089 && SUBREG_PROMOTED_VAR_P (XEXP (x
, 1))
6090 && SUBREG_REG (XEXP (x
, 1)) == dest_reg
))
6092 argp
= &XEXP (x
, 0);
6098 if (invariant_p (arg
) != 1)
6101 *inc_val
= convert_modes (GET_MODE (dest_reg
), GET_MODE (x
), arg
, 0);
6102 *mult_val
= const1_rtx
;
6107 /* If this is a SUBREG for a promoted variable, check the inner
6109 if (SUBREG_PROMOTED_VAR_P (x
))
6110 return basic_induction_var (SUBREG_REG (x
), GET_MODE (SUBREG_REG (x
)),
6111 dest_reg
, p
, inc_val
, mult_val
, location
);
6115 /* If this register is assigned in a previous insn, look at its
6116 source, but don't go outside the loop or past a label. */
6122 insn
= PREV_INSN (insn
);
6123 } while (insn
&& GET_CODE (insn
) == NOTE
6124 && NOTE_LINE_NUMBER (insn
) != NOTE_INSN_LOOP_BEG
);
6128 set
= single_set (insn
);
6132 if ((SET_DEST (set
) == x
6133 || (GET_CODE (SET_DEST (set
)) == SUBREG
6134 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set
)))
6136 && (GET_MODE_CLASS (GET_MODE (SET_DEST (set
)))
6138 && SUBREG_REG (SET_DEST (set
)) == x
))
6139 && basic_induction_var (SET_SRC (set
),
6140 (GET_MODE (SET_SRC (set
)) == VOIDmode
6142 : GET_MODE (SET_SRC (set
))),
6144 inc_val
, mult_val
, location
))
6147 /* ... fall through ... */
6149 /* Can accept constant setting of biv only when inside inner most loop.
6150 Otherwise, a biv of an inner loop may be incorrectly recognized
6151 as a biv of the outer loop,
6152 causing code to be moved INTO the inner loop. */
6154 if (invariant_p (x
) != 1)
6159 /* convert_modes aborts if we try to convert to or from CCmode, so just
6160 exclude that case. It is very unlikely that a condition code value
6161 would be a useful iterator anyways. */
6162 if (this_loop_info
.loops_enclosed
== 1
6163 && GET_MODE_CLASS (mode
) != MODE_CC
6164 && GET_MODE_CLASS (GET_MODE (dest_reg
)) != MODE_CC
)
6166 /* Possible bug here? Perhaps we don't know the mode of X. */
6167 *inc_val
= convert_modes (GET_MODE (dest_reg
), mode
, x
, 0);
6168 *mult_val
= const0_rtx
;
6175 return basic_induction_var (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
6176 dest_reg
, p
, inc_val
, mult_val
, location
);
6179 /* Similar, since this can be a sign extension. */
6180 for (insn
= PREV_INSN (p
);
6181 (insn
&& GET_CODE (insn
) == NOTE
6182 && NOTE_LINE_NUMBER (insn
) != NOTE_INSN_LOOP_BEG
);
6183 insn
= PREV_INSN (insn
))
6187 set
= single_set (insn
);
6189 if (set
&& SET_DEST (set
) == XEXP (x
, 0)
6190 && GET_CODE (XEXP (x
, 1)) == CONST_INT
6191 && INTVAL (XEXP (x
, 1)) >= 0
6192 && GET_CODE (SET_SRC (set
)) == ASHIFT
6193 && XEXP (x
, 1) == XEXP (SET_SRC (set
), 1))
6194 return basic_induction_var (XEXP (SET_SRC (set
), 0),
6195 GET_MODE (XEXP (x
, 0)),
6196 dest_reg
, insn
, inc_val
, mult_val
,
6205 /* A general induction variable (giv) is any quantity that is a linear
6206 function of a basic induction variable,
6207 i.e. giv = biv * mult_val + add_val.
6208 The coefficients can be any loop invariant quantity.
6209 A giv need not be computed directly from the biv;
6210 it can be computed by way of other givs. */
6212 /* Determine whether X computes a giv.
6213 If it does, return a nonzero value
6214 which is the benefit from eliminating the computation of X;
6215 set *SRC_REG to the register of the biv that it is computed from;
6216 set *ADD_VAL and *MULT_VAL to the coefficients,
6217 such that the value of X is biv * mult + add; */
6220 general_induction_var (x
, src_reg
, add_val
, mult_val
, is_addr
, pbenefit
)
6231 /* If this is an invariant, forget it, it isn't a giv. */
6232 if (invariant_p (x
) == 1)
6235 /* See if the expression could be a giv and get its form.
6236 Mark our place on the obstack in case we don't find a giv. */
6237 storage
= (char *) oballoc (0);
6239 x
= simplify_giv_expr (x
, pbenefit
);
6246 switch (GET_CODE (x
))
6250 /* Since this is now an invariant and wasn't before, it must be a giv
6251 with MULT_VAL == 0. It doesn't matter which BIV we associate this
6253 *src_reg
= loop_iv_list
->biv
->dest_reg
;
6254 *mult_val
= const0_rtx
;
6259 /* This is equivalent to a BIV. */
6261 *mult_val
= const1_rtx
;
6262 *add_val
= const0_rtx
;
6266 /* Either (plus (biv) (invar)) or
6267 (plus (mult (biv) (invar_1)) (invar_2)). */
6268 if (GET_CODE (XEXP (x
, 0)) == MULT
)
6270 *src_reg
= XEXP (XEXP (x
, 0), 0);
6271 *mult_val
= XEXP (XEXP (x
, 0), 1);
6275 *src_reg
= XEXP (x
, 0);
6276 *mult_val
= const1_rtx
;
6278 *add_val
= XEXP (x
, 1);
6282 /* ADD_VAL is zero. */
6283 *src_reg
= XEXP (x
, 0);
6284 *mult_val
= XEXP (x
, 1);
6285 *add_val
= const0_rtx
;
6292 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
6293 unless they are CONST_INT). */
6294 if (GET_CODE (*add_val
) == USE
)
6295 *add_val
= XEXP (*add_val
, 0);
6296 if (GET_CODE (*mult_val
) == USE
)
6297 *mult_val
= XEXP (*mult_val
, 0);
6302 *pbenefit
+= ADDRESS_COST (orig_x
) - reg_address_cost
;
6304 *pbenefit
+= rtx_cost (orig_x
, MEM
) - reg_address_cost
;
6308 *pbenefit
+= rtx_cost (orig_x
, SET
);
6310 /* Always return true if this is a giv so it will be detected as such,
6311 even if the benefit is zero or negative. This allows elimination
6312 of bivs that might otherwise not be eliminated. */
6316 /* Given an expression, X, try to form it as a linear function of a biv.
6317 We will canonicalize it to be of the form
6318 (plus (mult (BIV) (invar_1))
6320 with possible degeneracies.
6322 The invariant expressions must each be of a form that can be used as a
6323 machine operand. We surround then with a USE rtx (a hack, but localized
6324 and certainly unambiguous!) if not a CONST_INT for simplicity in this
6325 routine; it is the caller's responsibility to strip them.
6327 If no such canonicalization is possible (i.e., two biv's are used or an
6328 expression that is neither invariant nor a biv or giv), this routine
6331 For a non-zero return, the result will have a code of CONST_INT, USE,
6332 REG (for a BIV), PLUS, or MULT. No other codes will occur.
6334 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
6336 static rtx sge_plus
PARAMS ((enum machine_mode
, rtx
, rtx
));
6337 static rtx sge_plus_constant
PARAMS ((rtx
, rtx
));
6338 static int cmp_combine_givs_stats
PARAMS ((const PTR
, const PTR
));
6339 static int cmp_recombine_givs_stats
PARAMS ((const PTR
, const PTR
));
6342 simplify_giv_expr (x
, benefit
)
6346 enum machine_mode mode
= GET_MODE (x
);
6350 /* If this is not an integer mode, or if we cannot do arithmetic in this
6351 mode, this can't be a giv. */
6352 if (mode
!= VOIDmode
6353 && (GET_MODE_CLASS (mode
) != MODE_INT
6354 || GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
))
6357 switch (GET_CODE (x
))
6360 arg0
= simplify_giv_expr (XEXP (x
, 0), benefit
);
6361 arg1
= simplify_giv_expr (XEXP (x
, 1), benefit
);
6362 if (arg0
== 0 || arg1
== 0)
6365 /* Put constant last, CONST_INT last if both constant. */
6366 if ((GET_CODE (arg0
) == USE
6367 || GET_CODE (arg0
) == CONST_INT
)
6368 && ! ((GET_CODE (arg0
) == USE
6369 && GET_CODE (arg1
) == USE
)
6370 || GET_CODE (arg1
) == CONST_INT
))
6371 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
6373 /* Handle addition of zero, then addition of an invariant. */
6374 if (arg1
== const0_rtx
)
6376 else if (GET_CODE (arg1
) == CONST_INT
|| GET_CODE (arg1
) == USE
)
6377 switch (GET_CODE (arg0
))
6381 /* Adding two invariants must result in an invariant, so enclose
6382 addition operation inside a USE and return it. */
6383 if (GET_CODE (arg0
) == USE
)
6384 arg0
= XEXP (arg0
, 0);
6385 if (GET_CODE (arg1
) == USE
)
6386 arg1
= XEXP (arg1
, 0);
6388 if (GET_CODE (arg0
) == CONST_INT
)
6389 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
6390 if (GET_CODE (arg1
) == CONST_INT
)
6391 tem
= sge_plus_constant (arg0
, arg1
);
6393 tem
= sge_plus (mode
, arg0
, arg1
);
6395 if (GET_CODE (tem
) != CONST_INT
)
6396 tem
= gen_rtx_USE (mode
, tem
);
6401 /* biv + invar or mult + invar. Return sum. */
6402 return gen_rtx_PLUS (mode
, arg0
, arg1
);
6405 /* (a + invar_1) + invar_2. Associate. */
6407 simplify_giv_expr (gen_rtx_PLUS (mode
,
6418 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
6419 MULT to reduce cases. */
6420 if (GET_CODE (arg0
) == REG
)
6421 arg0
= gen_rtx_MULT (mode
, arg0
, const1_rtx
);
6422 if (GET_CODE (arg1
) == REG
)
6423 arg1
= gen_rtx_MULT (mode
, arg1
, const1_rtx
);
6425 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
6426 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
6427 Recurse to associate the second PLUS. */
6428 if (GET_CODE (arg1
) == MULT
)
6429 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
6431 if (GET_CODE (arg1
) == PLUS
)
6433 simplify_giv_expr (gen_rtx_PLUS (mode
,
6434 gen_rtx_PLUS (mode
, arg0
,
6439 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
6440 if (GET_CODE (arg0
) != MULT
|| GET_CODE (arg1
) != MULT
)
6443 if (!rtx_equal_p (arg0
, arg1
))
6446 return simplify_giv_expr (gen_rtx_MULT (mode
,
6454 /* Handle "a - b" as "a + b * (-1)". */
6455 return simplify_giv_expr (gen_rtx_PLUS (mode
,
6463 arg0
= simplify_giv_expr (XEXP (x
, 0), benefit
);
6464 arg1
= simplify_giv_expr (XEXP (x
, 1), benefit
);
6465 if (arg0
== 0 || arg1
== 0)
6468 /* Put constant last, CONST_INT last if both constant. */
6469 if ((GET_CODE (arg0
) == USE
|| GET_CODE (arg0
) == CONST_INT
)
6470 && GET_CODE (arg1
) != CONST_INT
)
6471 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
6473 /* If second argument is not now constant, not giv. */
6474 if (GET_CODE (arg1
) != USE
&& GET_CODE (arg1
) != CONST_INT
)
6477 /* Handle multiply by 0 or 1. */
6478 if (arg1
== const0_rtx
)
6481 else if (arg1
== const1_rtx
)
6484 switch (GET_CODE (arg0
))
6487 /* biv * invar. Done. */
6488 return gen_rtx_MULT (mode
, arg0
, arg1
);
6491 /* Product of two constants. */
6492 return GEN_INT (INTVAL (arg0
) * INTVAL (arg1
));
6495 /* invar * invar. It is a giv, but very few of these will
6496 actually pay off, so limit to simple registers. */
6497 if (GET_CODE (arg1
) != CONST_INT
)
6500 arg0
= XEXP (arg0
, 0);
6501 if (GET_CODE (arg0
) == REG
)
6502 tem
= gen_rtx_MULT (mode
, arg0
, arg1
);
6503 else if (GET_CODE (arg0
) == MULT
6504 && GET_CODE (XEXP (arg0
, 0)) == REG
6505 && GET_CODE (XEXP (arg0
, 1)) == CONST_INT
)
6507 tem
= gen_rtx_MULT (mode
, XEXP (arg0
, 0),
6508 GEN_INT (INTVAL (XEXP (arg0
, 1))
6513 return gen_rtx_USE (mode
, tem
);
6516 /* (a * invar_1) * invar_2. Associate. */
6517 return simplify_giv_expr (gen_rtx_MULT (mode
,
6525 /* (a + invar_1) * invar_2. Distribute. */
6526 return simplify_giv_expr (gen_rtx_PLUS (mode
,
6540 /* Shift by constant is multiply by power of two. */
6541 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
)
6545 simplify_giv_expr (gen_rtx_MULT (mode
,
6547 GEN_INT ((HOST_WIDE_INT
) 1
6548 << INTVAL (XEXP (x
, 1)))),
6552 /* "-a" is "a * (-1)" */
6553 return simplify_giv_expr (gen_rtx_MULT (mode
, XEXP (x
, 0), constm1_rtx
),
6557 /* "~a" is "-a - 1". Silly, but easy. */
6558 return simplify_giv_expr (gen_rtx_MINUS (mode
,
6559 gen_rtx_NEG (mode
, XEXP (x
, 0)),
6564 /* Already in proper form for invariant. */
6568 /* If this is a new register, we can't deal with it. */
6569 if (REGNO (x
) >= max_reg_before_loop
)
6572 /* Check for biv or giv. */
6573 switch (REG_IV_TYPE (REGNO (x
)))
6577 case GENERAL_INDUCT
:
6579 struct induction
*v
= REG_IV_INFO (REGNO (x
));
6581 /* Form expression from giv and add benefit. Ensure this giv
6582 can derive another and subtract any needed adjustment if so. */
6583 *benefit
+= v
->benefit
;
6587 tem
= gen_rtx_PLUS (mode
, gen_rtx_MULT (mode
,
6588 v
->src_reg
, v
->mult_val
),
6591 if (v
->derive_adjustment
)
6592 tem
= gen_rtx_MINUS (mode
, tem
, v
->derive_adjustment
);
6593 return simplify_giv_expr (tem
, benefit
);
6597 /* If it isn't an induction variable, and it is invariant, we
6598 may be able to simplify things further by looking through
6599 the bits we just moved outside the loop. */
6600 if (invariant_p (x
) == 1)
6604 for (m
= the_movables
; m
; m
= m
->next
)
6605 if (rtx_equal_p (x
, m
->set_dest
))
6607 /* Ok, we found a match. Substitute and simplify. */
6609 /* If we match another movable, we must use that, as
6610 this one is going away. */
6612 return simplify_giv_expr (m
->match
->set_dest
, benefit
);
6614 /* If consec is non-zero, this is a member of a group of
6615 instructions that were moved together. We handle this
6616 case only to the point of seeking to the last insn and
6617 looking for a REG_EQUAL. Fail if we don't find one. */
6622 do { tem
= NEXT_INSN (tem
); } while (--i
> 0);
6624 tem
= find_reg_note (tem
, REG_EQUAL
, NULL_RTX
);
6626 tem
= XEXP (tem
, 0);
6630 tem
= single_set (m
->insn
);
6632 tem
= SET_SRC (tem
);
6637 /* What we are most interested in is pointer
6638 arithmetic on invariants -- only take
6639 patterns we may be able to do something with. */
6640 if (GET_CODE (tem
) == PLUS
6641 || GET_CODE (tem
) == MULT
6642 || GET_CODE (tem
) == ASHIFT
6643 || GET_CODE (tem
) == CONST_INT
6644 || GET_CODE (tem
) == SYMBOL_REF
)
6646 tem
= simplify_giv_expr (tem
, benefit
);
6650 else if (GET_CODE (tem
) == CONST
6651 && GET_CODE (XEXP (tem
, 0)) == PLUS
6652 && GET_CODE (XEXP (XEXP (tem
, 0), 0)) == SYMBOL_REF
6653 && GET_CODE (XEXP (XEXP (tem
, 0), 1)) == CONST_INT
)
6655 tem
= simplify_giv_expr (XEXP (tem
, 0), benefit
);
6666 /* Fall through to general case. */
6668 /* If invariant, return as USE (unless CONST_INT).
6669 Otherwise, not giv. */
6670 if (GET_CODE (x
) == USE
)
6673 if (invariant_p (x
) == 1)
6675 if (GET_CODE (x
) == CONST_INT
)
6677 if (GET_CODE (x
) == CONST
6678 && GET_CODE (XEXP (x
, 0)) == PLUS
6679 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
6680 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
6682 return gen_rtx_USE (mode
, x
);
6689 /* This routine folds invariants such that there is only ever one
6690 CONST_INT in the summation. It is only used by simplify_giv_expr. */
6693 sge_plus_constant (x
, c
)
6696 if (GET_CODE (x
) == CONST_INT
)
6697 return GEN_INT (INTVAL (x
) + INTVAL (c
));
6698 else if (GET_CODE (x
) != PLUS
)
6699 return gen_rtx_PLUS (GET_MODE (x
), x
, c
);
6700 else if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
6702 return gen_rtx_PLUS (GET_MODE (x
), XEXP (x
, 0),
6703 GEN_INT (INTVAL (XEXP (x
, 1)) + INTVAL (c
)));
6705 else if (GET_CODE (XEXP (x
, 0)) == PLUS
6706 || GET_CODE (XEXP (x
, 1)) != PLUS
)
6708 return gen_rtx_PLUS (GET_MODE (x
),
6709 sge_plus_constant (XEXP (x
, 0), c
), XEXP (x
, 1));
6713 return gen_rtx_PLUS (GET_MODE (x
),
6714 sge_plus_constant (XEXP (x
, 1), c
), XEXP (x
, 0));
6719 sge_plus (mode
, x
, y
)
6720 enum machine_mode mode
;
6723 while (GET_CODE (y
) == PLUS
)
6725 rtx a
= XEXP (y
, 0);
6726 if (GET_CODE (a
) == CONST_INT
)
6727 x
= sge_plus_constant (x
, a
);
6729 x
= gen_rtx_PLUS (mode
, x
, a
);
6732 if (GET_CODE (y
) == CONST_INT
)
6733 x
= sge_plus_constant (x
, y
);
6735 x
= gen_rtx_PLUS (mode
, x
, y
);
6739 /* Help detect a giv that is calculated by several consecutive insns;
6743 The caller has already identified the first insn P as having a giv as dest;
6744 we check that all other insns that set the same register follow
6745 immediately after P, that they alter nothing else,
6746 and that the result of the last is still a giv.
6748 The value is 0 if the reg set in P is not really a giv.
6749 Otherwise, the value is the amount gained by eliminating
6750 all the consecutive insns that compute the value.
6752 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
6753 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
6755 The coefficients of the ultimate giv value are stored in
6756 *MULT_VAL and *ADD_VAL. */
6759 consec_sets_giv (first_benefit
, p
, src_reg
, dest_reg
,
6760 add_val
, mult_val
, last_consec_insn
)
6767 rtx
*last_consec_insn
;
6775 /* Indicate that this is a giv so that we can update the value produced in
6776 each insn of the multi-insn sequence.
6778 This induction structure will be used only by the call to
6779 general_induction_var below, so we can allocate it on our stack.
6780 If this is a giv, our caller will replace the induct var entry with
6781 a new induction structure. */
6783 = (struct induction
*) alloca (sizeof (struct induction
));
6784 v
->src_reg
= src_reg
;
6785 v
->mult_val
= *mult_val
;
6786 v
->add_val
= *add_val
;
6787 v
->benefit
= first_benefit
;
6789 v
->derive_adjustment
= 0;
6791 REG_IV_TYPE (REGNO (dest_reg
)) = GENERAL_INDUCT
;
6792 REG_IV_INFO (REGNO (dest_reg
)) = v
;
6794 count
= VARRAY_INT (n_times_set
, REGNO (dest_reg
)) - 1;
6799 code
= GET_CODE (p
);
6801 /* If libcall, skip to end of call sequence. */
6802 if (code
== INSN
&& (temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)))
6806 && (set
= single_set (p
))
6807 && GET_CODE (SET_DEST (set
)) == REG
6808 && SET_DEST (set
) == dest_reg
6809 && (general_induction_var (SET_SRC (set
), &src_reg
,
6810 add_val
, mult_val
, 0, &benefit
)
6811 /* Giv created by equivalent expression. */
6812 || ((temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
))
6813 && general_induction_var (XEXP (temp
, 0), &src_reg
,
6814 add_val
, mult_val
, 0, &benefit
)))
6815 && src_reg
== v
->src_reg
)
6817 if (find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
6818 benefit
+= libcall_benefit (p
);
6821 v
->mult_val
= *mult_val
;
6822 v
->add_val
= *add_val
;
6823 v
->benefit
= benefit
;
6825 else if (code
!= NOTE
)
6827 /* Allow insns that set something other than this giv to a
6828 constant. Such insns are needed on machines which cannot
6829 include long constants and should not disqualify a giv. */
6831 && (set
= single_set (p
))
6832 && SET_DEST (set
) != dest_reg
6833 && CONSTANT_P (SET_SRC (set
)))
6836 REG_IV_TYPE (REGNO (dest_reg
)) = UNKNOWN_INDUCT
;
6841 *last_consec_insn
= p
;
6845 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6846 represented by G1. If no such expression can be found, or it is clear that
6847 it cannot possibly be a valid address, 0 is returned.
6849 To perform the computation, we note that
6852 where `v' is the biv.
6854 So G2 = (y/b) * G1 + (b - a*y/x).
6856 Note that MULT = y/x.
6858 Update: A and B are now allowed to be additive expressions such that
6859 B contains all variables in A. That is, computing B-A will not require
6860 subtracting variables. */
6863 express_from_1 (a
, b
, mult
)
6866 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
6868 if (mult
== const0_rtx
)
6871 /* If MULT is not 1, we cannot handle A with non-constants, since we
6872 would then be required to subtract multiples of the registers in A.
6873 This is theoretically possible, and may even apply to some Fortran
6874 constructs, but it is a lot of work and we do not attempt it here. */
6876 if (mult
!= const1_rtx
&& GET_CODE (a
) != CONST_INT
)
6879 /* In general these structures are sorted top to bottom (down the PLUS
6880 chain), but not left to right across the PLUS. If B is a higher
6881 order giv than A, we can strip one level and recurse. If A is higher
6882 order, we'll eventually bail out, but won't know that until the end.
6883 If they are the same, we'll strip one level around this loop. */
6885 while (GET_CODE (a
) == PLUS
&& GET_CODE (b
) == PLUS
)
6887 rtx ra
, rb
, oa
, ob
, tmp
;
6889 ra
= XEXP (a
, 0), oa
= XEXP (a
, 1);
6890 if (GET_CODE (ra
) == PLUS
)
6891 tmp
= ra
, ra
= oa
, oa
= tmp
;
6893 rb
= XEXP (b
, 0), ob
= XEXP (b
, 1);
6894 if (GET_CODE (rb
) == PLUS
)
6895 tmp
= rb
, rb
= ob
, ob
= tmp
;
6897 if (rtx_equal_p (ra
, rb
))
6898 /* We matched: remove one reg completely. */
6900 else if (GET_CODE (ob
) != PLUS
&& rtx_equal_p (ra
, ob
))
6901 /* An alternate match. */
6903 else if (GET_CODE (oa
) != PLUS
&& rtx_equal_p (oa
, rb
))
6904 /* An alternate match. */
6908 /* Indicates an extra register in B. Strip one level from B and
6909 recurse, hoping B was the higher order expression. */
6910 ob
= express_from_1 (a
, ob
, mult
);
6913 return gen_rtx_PLUS (GET_MODE (b
), rb
, ob
);
6917 /* Here we are at the last level of A, go through the cases hoping to
6918 get rid of everything but a constant. */
6920 if (GET_CODE (a
) == PLUS
)
6924 ra
= XEXP (a
, 0), oa
= XEXP (a
, 1);
6925 if (rtx_equal_p (oa
, b
))
6927 else if (!rtx_equal_p (ra
, b
))
6930 if (GET_CODE (oa
) != CONST_INT
)
6933 return GEN_INT (-INTVAL (oa
) * INTVAL (mult
));
6935 else if (GET_CODE (a
) == CONST_INT
)
6937 return plus_constant (b
, -INTVAL (a
) * INTVAL (mult
));
6939 else if (GET_CODE (b
) == PLUS
)
6941 if (rtx_equal_p (a
, XEXP (b
, 0)))
6943 else if (rtx_equal_p (a
, XEXP (b
, 1)))
6948 else if (rtx_equal_p (a
, b
))
6955 express_from (g1
, g2
)
6956 struct induction
*g1
, *g2
;
6960 /* The value that G1 will be multiplied by must be a constant integer. Also,
6961 the only chance we have of getting a valid address is if b*c/a (see above
6962 for notation) is also an integer. */
6963 if (GET_CODE (g1
->mult_val
) == CONST_INT
6964 && GET_CODE (g2
->mult_val
) == CONST_INT
)
6966 if (g1
->mult_val
== const0_rtx
6967 || INTVAL (g2
->mult_val
) % INTVAL (g1
->mult_val
) != 0)
6969 mult
= GEN_INT (INTVAL (g2
->mult_val
) / INTVAL (g1
->mult_val
));
6971 else if (rtx_equal_p (g1
->mult_val
, g2
->mult_val
))
6975 /* ??? Find out if the one is a multiple of the other? */
6979 add
= express_from_1 (g1
->add_val
, g2
->add_val
, mult
);
6980 if (add
== NULL_RTX
)
6982 /* Failed. If we've got a multiplication factor between G1 and G2,
6983 scale G1's addend and try again. */
6984 if (INTVAL (mult
) > 1)
6986 rtx g1_add_val
= g1
->add_val
;
6987 if (GET_CODE (g1_add_val
) == MULT
6988 && GET_CODE (XEXP (g1_add_val
, 1)) == CONST_INT
)
6991 m
= INTVAL (mult
) * INTVAL (XEXP (g1_add_val
, 1));
6992 g1_add_val
= gen_rtx_MULT (GET_MODE (g1_add_val
),
6993 XEXP (g1_add_val
, 0), GEN_INT (m
));
6997 g1_add_val
= gen_rtx_MULT (GET_MODE (g1_add_val
), g1_add_val
,
7001 add
= express_from_1 (g1_add_val
, g2
->add_val
, const1_rtx
);
7004 if (add
== NULL_RTX
)
7007 /* Form simplified final result. */
7008 if (mult
== const0_rtx
)
7010 else if (mult
== const1_rtx
)
7011 mult
= g1
->dest_reg
;
7013 mult
= gen_rtx_MULT (g2
->mode
, g1
->dest_reg
, mult
);
7015 if (add
== const0_rtx
)
7019 if (GET_CODE (add
) == PLUS
7020 && CONSTANT_P (XEXP (add
, 1)))
7022 rtx tem
= XEXP (add
, 1);
7023 mult
= gen_rtx_PLUS (g2
->mode
, mult
, XEXP (add
, 0));
7027 return gen_rtx_PLUS (g2
->mode
, mult
, add
);
7032 /* Return an rtx, if any, that expresses giv G2 as a function of the register
7033 represented by G1. This indicates that G2 should be combined with G1 and
7034 that G2 can use (either directly or via an address expression) a register
7035 used to represent G1. */
7038 combine_givs_p (g1
, g2
)
7039 struct induction
*g1
, *g2
;
7041 rtx tem
= express_from (g1
, g2
);
7043 /* If these givs are identical, they can be combined. We use the results
7044 of express_from because the addends are not in a canonical form, so
7045 rtx_equal_p is a weaker test. */
7046 /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
7047 combination to be the other way round. */
7048 if (tem
== g1
->dest_reg
7049 && (g1
->giv_type
== DEST_REG
|| g2
->giv_type
== DEST_ADDR
))
7051 return g1
->dest_reg
;
7054 /* If G2 can be expressed as a function of G1 and that function is valid
7055 as an address and no more expensive than using a register for G2,
7056 the expression of G2 in terms of G1 can be used. */
7058 && g2
->giv_type
== DEST_ADDR
7059 && memory_address_p (g2
->mem_mode
, tem
)
7060 /* ??? Looses, especially with -fforce-addr, where *g2->location
7061 will always be a register, and so anything more complicated
7065 && ADDRESS_COST (tem
) <= ADDRESS_COST (*g2
->location
)
7067 && rtx_cost (tem
, MEM
) <= rtx_cost (*g2
->location
, MEM
)
7078 struct combine_givs_stats
7085 cmp_combine_givs_stats (xp
, yp
)
7089 const struct combine_givs_stats
* const x
=
7090 (const struct combine_givs_stats
*) xp
;
7091 const struct combine_givs_stats
* const y
=
7092 (const struct combine_givs_stats
*) yp
;
7094 d
= y
->total_benefit
- x
->total_benefit
;
7095 /* Stabilize the sort. */
7097 d
= x
->giv_number
- y
->giv_number
;
7101 /* Check all pairs of givs for iv_class BL and see if any can be combined with
7102 any other. If so, point SAME to the giv combined with and set NEW_REG to
7103 be an expression (in terms of the other giv's DEST_REG) equivalent to the
7104 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
7108 struct iv_class
*bl
;
7110 /* Additional benefit to add for being combined multiple times. */
7111 const int extra_benefit
= 3;
7113 struct induction
*g1
, *g2
, **giv_array
;
7114 int i
, j
, k
, giv_count
;
7115 struct combine_givs_stats
*stats
;
7118 /* Count givs, because bl->giv_count is incorrect here. */
7120 for (g1
= bl
->giv
; g1
; g1
= g1
->next_iv
)
7125 = (struct induction
**) alloca (giv_count
* sizeof (struct induction
*));
7127 for (g1
= bl
->giv
; g1
; g1
= g1
->next_iv
)
7129 giv_array
[i
++] = g1
;
7131 stats
= (struct combine_givs_stats
*) xcalloc (giv_count
, sizeof (*stats
));
7132 can_combine
= (rtx
*) xcalloc (giv_count
, giv_count
* sizeof(rtx
));
7134 for (i
= 0; i
< giv_count
; i
++)
7140 stats
[i
].giv_number
= i
;
7142 /* If a DEST_REG GIV is used only once, do not allow it to combine
7143 with anything, for in doing so we will gain nothing that cannot
7144 be had by simply letting the GIV with which we would have combined
7145 to be reduced on its own. The losage shows up in particular with
7146 DEST_ADDR targets on hosts with reg+reg addressing, though it can
7147 be seen elsewhere as well. */
7148 if (g1
->giv_type
== DEST_REG
7149 && (single_use
= VARRAY_RTX (reg_single_usage
, REGNO (g1
->dest_reg
)))
7150 && single_use
!= const0_rtx
)
7153 this_benefit
= g1
->benefit
;
7154 /* Add an additional weight for zero addends. */
7155 if (g1
->no_const_addval
)
7158 for (j
= 0; j
< giv_count
; j
++)
7164 && (this_combine
= combine_givs_p (g1
, g2
)) != NULL_RTX
)
7166 can_combine
[i
*giv_count
+ j
] = this_combine
;
7167 this_benefit
+= g2
->benefit
+ extra_benefit
;
7170 stats
[i
].total_benefit
= this_benefit
;
7173 /* Iterate, combining until we can't. */
7175 qsort (stats
, giv_count
, sizeof(*stats
), cmp_combine_givs_stats
);
7177 if (loop_dump_stream
)
7179 fprintf (loop_dump_stream
, "Sorted combine statistics:\n");
7180 for (k
= 0; k
< giv_count
; k
++)
7182 g1
= giv_array
[stats
[k
].giv_number
];
7183 if (!g1
->combined_with
&& !g1
->same
)
7184 fprintf (loop_dump_stream
, " {%d, %d}",
7185 INSN_UID (giv_array
[stats
[k
].giv_number
]->insn
),
7186 stats
[k
].total_benefit
);
7188 putc ('\n', loop_dump_stream
);
7191 for (k
= 0; k
< giv_count
; k
++)
7193 int g1_add_benefit
= 0;
7195 i
= stats
[k
].giv_number
;
7198 /* If it has already been combined, skip. */
7199 if (g1
->combined_with
|| g1
->same
)
7202 for (j
= 0; j
< giv_count
; j
++)
7205 if (g1
!= g2
&& can_combine
[i
*giv_count
+ j
]
7206 /* If it has already been combined, skip. */
7207 && ! g2
->same
&& ! g2
->combined_with
)
7211 g2
->new_reg
= can_combine
[i
*giv_count
+ j
];
7213 g1
->combined_with
++;
7214 g1
->lifetime
+= g2
->lifetime
;
7216 g1_add_benefit
+= g2
->benefit
;
7218 /* ??? The new final_[bg]iv_value code does a much better job
7219 of finding replaceable giv's, and hence this code may no
7220 longer be necessary. */
7221 if (! g2
->replaceable
&& REG_USERVAR_P (g2
->dest_reg
))
7222 g1_add_benefit
-= copy_cost
;
7224 /* To help optimize the next set of combinations, remove
7225 this giv from the benefits of other potential mates. */
7226 for (l
= 0; l
< giv_count
; ++l
)
7228 int m
= stats
[l
].giv_number
;
7229 if (can_combine
[m
*giv_count
+ j
])
7230 stats
[l
].total_benefit
-= g2
->benefit
+ extra_benefit
;
7233 if (loop_dump_stream
)
7234 fprintf (loop_dump_stream
,
7235 "giv at %d combined with giv at %d\n",
7236 INSN_UID (g2
->insn
), INSN_UID (g1
->insn
));
7240 /* To help optimize the next set of combinations, remove
7241 this giv from the benefits of other potential mates. */
7242 if (g1
->combined_with
)
7244 for (j
= 0; j
< giv_count
; ++j
)
7246 int m
= stats
[j
].giv_number
;
7247 if (can_combine
[m
*giv_count
+ i
])
7248 stats
[j
].total_benefit
-= g1
->benefit
+ extra_benefit
;
7251 g1
->benefit
+= g1_add_benefit
;
7253 /* We've finished with this giv, and everything it touched.
7254 Restart the combination so that proper weights for the
7255 rest of the givs are properly taken into account. */
7256 /* ??? Ideally we would compact the arrays at this point, so
7257 as to not cover old ground. But sanely compacting
7258 can_combine is tricky. */
7268 struct recombine_givs_stats
7271 int start_luid
, end_luid
;
7274 /* Used below as comparison function for qsort. We want a ascending luid
7275 when scanning the array starting at the end, thus the arguments are
7278 cmp_recombine_givs_stats (xp
, yp
)
7282 const struct recombine_givs_stats
* const x
=
7283 (const struct recombine_givs_stats
*) xp
;
7284 const struct recombine_givs_stats
* const y
=
7285 (const struct recombine_givs_stats
*) yp
;
7287 d
= y
->start_luid
- x
->start_luid
;
7288 /* Stabilize the sort. */
7290 d
= y
->giv_number
- x
->giv_number
;
7294 /* Scan X, which is a part of INSN, for the end of life of a giv. Also
7295 look for the start of life of a giv where the start has not been seen
7296 yet to unlock the search for the end of its life.
7297 Only consider givs that belong to BIV.
7298 Return the total number of lifetime ends that have been found. */
7300 find_life_end (x
, stats
, insn
, biv
)
7302 struct recombine_givs_stats
*stats
;
7309 code
= GET_CODE (x
);
7314 rtx reg
= SET_DEST (x
);
7315 if (GET_CODE (reg
) == REG
)
7317 int regno
= REGNO (reg
);
7318 struct induction
*v
= REG_IV_INFO (regno
);
7320 if (REG_IV_TYPE (regno
) == GENERAL_INDUCT
7322 && v
->src_reg
== biv
7323 && stats
[v
->ix
].end_luid
<= 0)
7325 /* If we see a 0 here for end_luid, it means that we have
7326 scanned the entire loop without finding any use at all.
7327 We must not predicate this code on a start_luid match
7328 since that would make the test fail for givs that have
7329 been hoisted out of inner loops. */
7330 if (stats
[v
->ix
].end_luid
== 0)
7332 stats
[v
->ix
].end_luid
= stats
[v
->ix
].start_luid
;
7333 return 1 + find_life_end (SET_SRC (x
), stats
, insn
, biv
);
7335 else if (stats
[v
->ix
].start_luid
== INSN_LUID (insn
))
7336 stats
[v
->ix
].end_luid
= 0;
7338 return find_life_end (SET_SRC (x
), stats
, insn
, biv
);
7344 int regno
= REGNO (x
);
7345 struct induction
*v
= REG_IV_INFO (regno
);
7347 if (REG_IV_TYPE (regno
) == GENERAL_INDUCT
7349 && v
->src_reg
== biv
7350 && stats
[v
->ix
].end_luid
== 0)
7352 while (INSN_UID (insn
) >= max_uid_for_loop
)
7353 insn
= NEXT_INSN (insn
);
7354 stats
[v
->ix
].end_luid
= INSN_LUID (insn
);
7367 fmt
= GET_RTX_FORMAT (code
);
7369 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
7372 retval
+= find_life_end (XEXP (x
, i
), stats
, insn
, biv
);
7374 else if (fmt
[i
] == 'E')
7375 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
7376 retval
+= find_life_end (XVECEXP (x
, i
, j
), stats
, insn
, biv
);
7381 /* For each giv that has been combined with another, look if
7382 we can combine it with the most recently used one instead.
7383 This tends to shorten giv lifetimes, and helps the next step:
7384 try to derive givs from other givs. */
7386 recombine_givs (bl
, loop_start
, loop_end
, unroll_p
)
7387 struct iv_class
*bl
;
7388 rtx loop_start
, loop_end
;
7391 struct induction
*v
, **giv_array
, *last_giv
;
7392 struct recombine_givs_stats
*stats
;
7395 int ends_need_computing
;
7397 for (giv_count
= 0, v
= bl
->giv
; v
; v
= v
->next_iv
)
7403 = (struct induction
**) xmalloc (giv_count
* sizeof (struct induction
*));
7404 stats
= (struct recombine_givs_stats
*) xmalloc (giv_count
* sizeof *stats
);
7406 /* Initialize stats and set up the ix field for each giv in stats to name
7407 the corresponding index into stats. */
7408 for (i
= 0, v
= bl
->giv
; v
; v
= v
->next_iv
)
7415 stats
[i
].giv_number
= i
;
7416 /* If this giv has been hoisted out of an inner loop, use the luid of
7417 the previous insn. */
7418 for (p
= v
->insn
; INSN_UID (p
) >= max_uid_for_loop
; )
7420 stats
[i
].start_luid
= INSN_LUID (p
);
7424 qsort (stats
, giv_count
, sizeof(*stats
), cmp_recombine_givs_stats
);
7426 /* Set up the ix field for each giv in stats to name
7427 the corresponding index into stats, and
7428 do the actual most-recently-used recombination. */
7429 for (last_giv
= 0, i
= giv_count
- 1; i
>= 0; i
--)
7431 v
= giv_array
[stats
[i
].giv_number
];
7435 struct induction
*old_same
= v
->same
;
7438 /* combine_givs_p actually says if we can make this transformation.
7439 The other tests are here only to avoid keeping a giv alive
7440 that could otherwise be eliminated. */
7442 && ((old_same
->maybe_dead
&& ! old_same
->combined_with
)
7443 || ! last_giv
->maybe_dead
7444 || last_giv
->combined_with
)
7445 && (new_combine
= combine_givs_p (last_giv
, v
)))
7447 old_same
->combined_with
--;
7448 v
->new_reg
= new_combine
;
7450 last_giv
->combined_with
++;
7451 /* No need to update lifetimes / benefits here since we have
7452 already decided what to reduce. */
7454 if (loop_dump_stream
)
7456 fprintf (loop_dump_stream
,
7457 "giv at %d recombined with giv at %d as ",
7458 INSN_UID (v
->insn
), INSN_UID (last_giv
->insn
));
7459 print_rtl (loop_dump_stream
, v
->new_reg
);
7460 putc ('\n', loop_dump_stream
);
7466 else if (v
->giv_type
!= DEST_REG
)
7469 || (last_giv
->maybe_dead
&& ! last_giv
->combined_with
)
7471 || v
->combined_with
)
7475 ends_need_computing
= 0;
7476 /* For each DEST_REG giv, compute lifetime starts, and try to compute
7477 lifetime ends from regscan info. */
7478 for (i
= giv_count
- 1; i
>= 0; i
--)
7480 v
= giv_array
[stats
[i
].giv_number
];
7483 if (v
->giv_type
== DEST_ADDR
)
7485 /* Loop unrolling of an inner loop can even create new DEST_REG
7488 for (p
= v
->insn
; INSN_UID (p
) >= max_uid_for_loop
; )
7490 stats
[i
].start_luid
= stats
[i
].end_luid
= INSN_LUID (p
);
7492 stats
[i
].end_luid
++;
7494 else /* v->giv_type == DEST_REG */
7498 stats
[i
].start_luid
= INSN_LUID (v
->insn
);
7499 stats
[i
].end_luid
= INSN_LUID (v
->last_use
);
7501 else if (INSN_UID (v
->insn
) >= max_uid_for_loop
)
7504 /* This insn has been created by loop optimization on an inner
7505 loop. We don't have a proper start_luid that will match
7506 when we see the first set. But we do know that there will
7507 be no use before the set, so we can set end_luid to 0 so that
7508 we'll start looking for the last use right away. */
7509 for (p
= PREV_INSN (v
->insn
); INSN_UID (p
) >= max_uid_for_loop
; )
7511 stats
[i
].start_luid
= INSN_LUID (p
);
7512 stats
[i
].end_luid
= 0;
7513 ends_need_computing
++;
7517 int regno
= REGNO (v
->dest_reg
);
7518 int count
= VARRAY_INT (n_times_set
, regno
) - 1;
7521 /* Find the first insn that sets the giv, so that we can verify
7522 if this giv's lifetime wraps around the loop. We also need
7523 the luid of the first setting insn in order to detect the
7524 last use properly. */
7527 p
= prev_nonnote_insn (p
);
7528 if (reg_set_p (v
->dest_reg
, p
))
7532 stats
[i
].start_luid
= INSN_LUID (p
);
7533 if (stats
[i
].start_luid
> uid_luid
[REGNO_FIRST_UID (regno
)])
7535 stats
[i
].end_luid
= -1;
7536 ends_need_computing
++;
7540 stats
[i
].end_luid
= uid_luid
[REGNO_LAST_UID (regno
)];
7541 if (stats
[i
].end_luid
> INSN_LUID (loop_end
))
7543 stats
[i
].end_luid
= -1;
7544 ends_need_computing
++;
7551 /* If the regscan information was unconclusive for one or more DEST_REG
7552 givs, scan the all insn in the loop to find out lifetime ends. */
7553 if (ends_need_computing
)
7555 rtx biv
= bl
->biv
->src_reg
;
7560 if (p
== loop_start
)
7563 if (GET_RTX_CLASS (GET_CODE (p
)) != 'i')
7565 ends_need_computing
-= find_life_end (PATTERN (p
), stats
, p
, biv
);
7567 while (ends_need_computing
);
7570 /* Set start_luid back to the last insn that sets the giv. This allows
7571 more combinations. */
7572 for (i
= giv_count
- 1; i
>= 0; i
--)
7574 v
= giv_array
[stats
[i
].giv_number
];
7577 if (INSN_UID (v
->insn
) < max_uid_for_loop
)
7578 stats
[i
].start_luid
= INSN_LUID (v
->insn
);
7581 /* Now adjust lifetime ends by taking combined givs into account. */
7582 for (i
= giv_count
- 1; i
>= 0; i
--)
7587 v
= giv_array
[stats
[i
].giv_number
];
7590 if (v
->same
&& ! v
->same
->ignore
)
7593 luid
= stats
[i
].start_luid
;
7594 /* Use unsigned arithmetic to model loop wrap-around. */
7595 if (luid
- stats
[j
].start_luid
7596 > (unsigned) stats
[j
].end_luid
- stats
[j
].start_luid
)
7597 stats
[j
].end_luid
= luid
;
7601 qsort (stats
, giv_count
, sizeof(*stats
), cmp_recombine_givs_stats
);
7603 /* Try to derive DEST_REG givs from previous DEST_REG givs with the
7604 same mult_val and non-overlapping lifetime. This reduces register
7606 Once we find a DEST_REG giv that is suitable to derive others from,
7607 we set last_giv to this giv, and try to derive as many other DEST_REG
7608 givs from it without joining overlapping lifetimes. If we then
7609 encounter a DEST_REG giv that we can't derive, we set rescan to the
7610 index for this giv (unless rescan is already set).
7611 When we are finished with the current LAST_GIV (i.e. the inner loop
7612 terminates), we start again with rescan, which then becomes the new
7614 for (i
= giv_count
- 1; i
>= 0; i
= rescan
)
7616 int life_start
, life_end
;
7618 for (last_giv
= 0, rescan
= -1; i
>= 0; i
--)
7622 v
= giv_array
[stats
[i
].giv_number
];
7623 if (v
->giv_type
!= DEST_REG
|| v
->derived_from
|| v
->same
)
7627 /* Don't use a giv that's likely to be dead to derive
7628 others - that would be likely to keep that giv alive. */
7629 if (! v
->maybe_dead
|| v
->combined_with
)
7632 life_start
= stats
[i
].start_luid
;
7633 life_end
= stats
[i
].end_luid
;
7637 /* Use unsigned arithmetic to model loop wrap around. */
7638 if (((unsigned) stats
[i
].start_luid
- life_start
7639 >= (unsigned) life_end
- life_start
)
7640 && ((unsigned) stats
[i
].end_luid
- life_start
7641 > (unsigned) life_end
- life_start
)
7642 /* Check that the giv insn we're about to use for deriving
7643 precedes all uses of that giv. Note that initializing the
7644 derived giv would defeat the purpose of reducing register
7646 ??? We could arrange to move the insn. */
7647 && ((unsigned) stats
[i
].end_luid
- INSN_LUID (loop_start
)
7648 > (unsigned) stats
[i
].start_luid
- INSN_LUID (loop_start
))
7649 && rtx_equal_p (last_giv
->mult_val
, v
->mult_val
)
7650 /* ??? Could handle libcalls, but would need more logic. */
7651 && ! find_reg_note (v
->insn
, REG_RETVAL
, NULL_RTX
)
7652 /* We would really like to know if for any giv that v
7653 is combined with, v->insn or any intervening biv increment
7654 dominates that combined giv. However, we
7655 don't have this detailed control flow information.
7656 N.B. since last_giv will be reduced, it is valid
7657 anywhere in the loop, so we don't need to check the
7658 validity of last_giv.
7659 We rely here on the fact that v->always_executed implies that
7660 there is no jump to someplace else in the loop before the
7661 giv insn, and hence any insn that is executed before the
7662 giv insn in the loop will have a lower luid. */
7663 && (v
->always_executed
|| ! v
->combined_with
)
7664 && (sum
= express_from (last_giv
, v
))
7665 /* Make sure we don't make the add more expensive. ADD_COST
7666 doesn't take different costs of registers and constants into
7667 account, so compare the cost of the actual SET_SRCs. */
7668 && (rtx_cost (sum
, SET
)
7669 <= rtx_cost (SET_SRC (single_set (v
->insn
)), SET
))
7670 /* ??? unroll can't understand anything but reg + const_int
7671 sums. It would be cleaner to fix unroll. */
7672 && ((GET_CODE (sum
) == PLUS
7673 && GET_CODE (XEXP (sum
, 0)) == REG
7674 && GET_CODE (XEXP (sum
, 1)) == CONST_INT
)
7676 && validate_change (v
->insn
, &PATTERN (v
->insn
),
7677 gen_rtx_SET (VOIDmode
, v
->dest_reg
, sum
), 0))
7679 v
->derived_from
= last_giv
;
7680 life_end
= stats
[i
].end_luid
;
7682 if (loop_dump_stream
)
7684 fprintf (loop_dump_stream
,
7685 "giv at %d derived from %d as ",
7686 INSN_UID (v
->insn
), INSN_UID (last_giv
->insn
));
7687 print_rtl (loop_dump_stream
, sum
);
7688 putc ('\n', loop_dump_stream
);
7691 else if (rescan
< 0)
7701 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
7704 emit_iv_add_mult (b
, m
, a
, reg
, insert_before
)
7705 rtx b
; /* initial value of basic induction variable */
7706 rtx m
; /* multiplicative constant */
7707 rtx a
; /* additive constant */
7708 rtx reg
; /* destination register */
7714 /* Prevent unexpected sharing of these rtx. */
7718 /* Increase the lifetime of any invariants moved further in code. */
7719 update_reg_last_use (a
, insert_before
);
7720 update_reg_last_use (b
, insert_before
);
7721 update_reg_last_use (m
, insert_before
);
7724 result
= expand_mult_add (b
, reg
, m
, a
, GET_MODE (reg
), 0);
7726 emit_move_insn (reg
, result
);
7727 seq
= gen_sequence ();
7730 emit_insn_before (seq
, insert_before
);
7732 /* It is entirely possible that the expansion created lots of new
7733 registers. Iterate over the sequence we just created and
7736 if (GET_CODE (seq
) == SEQUENCE
)
7739 for (i
= 0; i
< XVECLEN (seq
, 0); ++i
)
7741 rtx set
= single_set (XVECEXP (seq
, 0, i
));
7742 if (set
&& GET_CODE (SET_DEST (set
)) == REG
)
7743 record_base_value (REGNO (SET_DEST (set
)), SET_SRC (set
), 0);
7746 else if (GET_CODE (seq
) == SET
7747 && GET_CODE (SET_DEST (seq
)) == REG
)
7748 record_base_value (REGNO (SET_DEST (seq
)), SET_SRC (seq
), 0);
7751 /* Test whether A * B can be computed without
7752 an actual multiply insn. Value is 1 if so. */
7755 product_cheap_p (a
, b
)
7761 struct obstack
*old_rtl_obstack
= rtl_obstack
;
7762 char *storage
= (char *) obstack_alloc (&temp_obstack
, 0);
7765 /* If only one is constant, make it B. */
7766 if (GET_CODE (a
) == CONST_INT
)
7767 tmp
= a
, a
= b
, b
= tmp
;
7769 /* If first constant, both constant, so don't need multiply. */
7770 if (GET_CODE (a
) == CONST_INT
)
7773 /* If second not constant, neither is constant, so would need multiply. */
7774 if (GET_CODE (b
) != CONST_INT
)
7777 /* One operand is constant, so might not need multiply insn. Generate the
7778 code for the multiply and see if a call or multiply, or long sequence
7779 of insns is generated. */
7781 rtl_obstack
= &temp_obstack
;
7783 expand_mult (GET_MODE (a
), a
, b
, NULL_RTX
, 0);
7784 tmp
= gen_sequence ();
7787 if (GET_CODE (tmp
) == SEQUENCE
)
7789 if (XVEC (tmp
, 0) == 0)
7791 else if (XVECLEN (tmp
, 0) > 3)
7794 for (i
= 0; i
< XVECLEN (tmp
, 0); i
++)
7796 rtx insn
= XVECEXP (tmp
, 0, i
);
7798 if (GET_CODE (insn
) != INSN
7799 || (GET_CODE (PATTERN (insn
)) == SET
7800 && GET_CODE (SET_SRC (PATTERN (insn
))) == MULT
)
7801 || (GET_CODE (PATTERN (insn
)) == PARALLEL
7802 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
7803 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn
), 0, 0))) == MULT
))
7810 else if (GET_CODE (tmp
) == SET
7811 && GET_CODE (SET_SRC (tmp
)) == MULT
)
7813 else if (GET_CODE (tmp
) == PARALLEL
7814 && GET_CODE (XVECEXP (tmp
, 0, 0)) == SET
7815 && GET_CODE (SET_SRC (XVECEXP (tmp
, 0, 0))) == MULT
)
7818 /* Free any storage we obtained in generating this multiply and restore rtl
7819 allocation to its normal obstack. */
7820 obstack_free (&temp_obstack
, storage
);
7821 rtl_obstack
= old_rtl_obstack
;
7826 /* Check to see if loop can be terminated by a "decrement and branch until
7827 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
7828 Also try reversing an increment loop to a decrement loop
7829 to see if the optimization can be performed.
7830 Value is nonzero if optimization was performed. */
7832 /* This is useful even if the architecture doesn't have such an insn,
7833 because it might change a loops which increments from 0 to n to a loop
7834 which decrements from n to 0. A loop that decrements to zero is usually
7835 faster than one that increments from zero. */
7837 /* ??? This could be rewritten to use some of the loop unrolling procedures,
7838 such as approx_final_value, biv_total_increment, loop_iterations, and
7839 final_[bg]iv_value. */
7842 check_dbra_loop (loop_end
, insn_count
, loop_start
, loop_info
)
7846 struct loop_info
*loop_info
;
7848 struct iv_class
*bl
;
7855 rtx before_comparison
;
7859 int compare_and_branch
;
7861 /* If last insn is a conditional branch, and the insn before tests a
7862 register value, try to optimize it. Otherwise, we can't do anything. */
7864 jump
= PREV_INSN (loop_end
);
7865 comparison
= get_condition_for_loop (jump
);
7866 if (comparison
== 0)
7869 /* Try to compute whether the compare/branch at the loop end is one or
7870 two instructions. */
7871 get_condition (jump
, &first_compare
);
7872 if (first_compare
== jump
)
7873 compare_and_branch
= 1;
7874 else if (first_compare
== prev_nonnote_insn (jump
))
7875 compare_and_branch
= 2;
7879 /* Check all of the bivs to see if the compare uses one of them.
7880 Skip biv's set more than once because we can't guarantee that
7881 it will be zero on the last iteration. Also skip if the biv is
7882 used between its update and the test insn. */
7884 for (bl
= loop_iv_list
; bl
; bl
= bl
->next
)
7886 if (bl
->biv_count
== 1
7887 && bl
->biv
->dest_reg
== XEXP (comparison
, 0)
7888 && ! reg_used_between_p (regno_reg_rtx
[bl
->regno
], bl
->biv
->insn
,
7896 /* Look for the case where the basic induction variable is always
7897 nonnegative, and equals zero on the last iteration.
7898 In this case, add a reg_note REG_NONNEG, which allows the
7899 m68k DBRA instruction to be used. */
7901 if (((GET_CODE (comparison
) == GT
7902 && GET_CODE (XEXP (comparison
, 1)) == CONST_INT
7903 && INTVAL (XEXP (comparison
, 1)) == -1)
7904 || (GET_CODE (comparison
) == NE
&& XEXP (comparison
, 1) == const0_rtx
))
7905 && GET_CODE (bl
->biv
->add_val
) == CONST_INT
7906 && INTVAL (bl
->biv
->add_val
) < 0)
7908 /* Initial value must be greater than 0,
7909 init_val % -dec_value == 0 to ensure that it equals zero on
7910 the last iteration */
7912 if (GET_CODE (bl
->initial_value
) == CONST_INT
7913 && INTVAL (bl
->initial_value
) > 0
7914 && (INTVAL (bl
->initial_value
)
7915 % (-INTVAL (bl
->biv
->add_val
))) == 0)
7917 /* register always nonnegative, add REG_NOTE to branch */
7918 REG_NOTES (PREV_INSN (loop_end
))
7919 = gen_rtx_EXPR_LIST (REG_NONNEG
, NULL_RTX
,
7920 REG_NOTES (PREV_INSN (loop_end
)));
7926 /* If the decrement is 1 and the value was tested as >= 0 before
7927 the loop, then we can safely optimize. */
7928 for (p
= loop_start
; p
; p
= PREV_INSN (p
))
7930 if (GET_CODE (p
) == CODE_LABEL
)
7932 if (GET_CODE (p
) != JUMP_INSN
)
7935 before_comparison
= get_condition_for_loop (p
);
7936 if (before_comparison
7937 && XEXP (before_comparison
, 0) == bl
->biv
->dest_reg
7938 && GET_CODE (before_comparison
) == LT
7939 && XEXP (before_comparison
, 1) == const0_rtx
7940 && ! reg_set_between_p (bl
->biv
->dest_reg
, p
, loop_start
)
7941 && INTVAL (bl
->biv
->add_val
) == -1)
7943 REG_NOTES (PREV_INSN (loop_end
))
7944 = gen_rtx_EXPR_LIST (REG_NONNEG
, NULL_RTX
,
7945 REG_NOTES (PREV_INSN (loop_end
)));
7952 else if (GET_CODE (bl
->biv
->add_val
) == CONST_INT
7953 && INTVAL (bl
->biv
->add_val
) > 0)
7955 /* Try to change inc to dec, so can apply above optimization. */
7957 all registers modified are induction variables or invariant,
7958 all memory references have non-overlapping addresses
7959 (obviously true if only one write)
7960 allow 2 insns for the compare/jump at the end of the loop. */
7961 /* Also, we must avoid any instructions which use both the reversed
7962 biv and another biv. Such instructions will fail if the loop is
7963 reversed. We meet this condition by requiring that either
7964 no_use_except_counting is true, or else that there is only
7966 int num_nonfixed_reads
= 0;
7967 /* 1 if the iteration var is used only to count iterations. */
7968 int no_use_except_counting
= 0;
7969 /* 1 if the loop has no memory store, or it has a single memory store
7970 which is reversible. */
7971 int reversible_mem_store
= 1;
7973 if (bl
->giv_count
== 0
7974 && ! loop_number_exit_count
[uid_loop_num
[INSN_UID (loop_start
)]])
7976 rtx bivreg
= regno_reg_rtx
[bl
->regno
];
7978 /* If there are no givs for this biv, and the only exit is the
7979 fall through at the end of the loop, then
7980 see if perhaps there are no uses except to count. */
7981 no_use_except_counting
= 1;
7982 for (p
= loop_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
7983 if (GET_RTX_CLASS (GET_CODE (p
)) == 'i')
7985 rtx set
= single_set (p
);
7987 if (set
&& GET_CODE (SET_DEST (set
)) == REG
7988 && REGNO (SET_DEST (set
)) == bl
->regno
)
7989 /* An insn that sets the biv is okay. */
7991 else if ((p
== prev_nonnote_insn (prev_nonnote_insn (loop_end
))
7992 || p
== prev_nonnote_insn (loop_end
))
7993 && reg_mentioned_p (bivreg
, PATTERN (p
)))
7995 /* If either of these insns uses the biv and sets a pseudo
7996 that has more than one usage, then the biv has uses
7997 other than counting since it's used to derive a value
7998 that is used more than one time. */
7999 int note_set_pseudo_multiple_uses_retval
= 0;
8000 note_stores (PATTERN (p
), note_set_pseudo_multiple_uses
,
8001 ¬e_set_pseudo_multiple_uses_retval
);
8002 if (note_set_pseudo_multiple_uses_retval
)
8004 no_use_except_counting
= 0;
8008 else if (reg_mentioned_p (bivreg
, PATTERN (p
)))
8010 no_use_except_counting
= 0;
8016 if (no_use_except_counting
)
8017 ; /* no need to worry about MEMs. */
8018 else if (num_mem_sets
<= 1)
8020 for (p
= loop_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
8021 if (GET_RTX_CLASS (GET_CODE (p
)) == 'i')
8022 num_nonfixed_reads
+= count_nonfixed_reads (PATTERN (p
));
8024 /* If the loop has a single store, and the destination address is
8025 invariant, then we can't reverse the loop, because this address
8026 might then have the wrong value at loop exit.
8027 This would work if the source was invariant also, however, in that
8028 case, the insn should have been moved out of the loop. */
8030 if (num_mem_sets
== 1)
8032 struct induction
*v
;
8034 reversible_mem_store
8035 = (! unknown_address_altered
8036 && ! unknown_constant_address_altered
8037 && ! invariant_p (XEXP (XEXP (loop_store_mems
, 0), 0)));
8039 /* If the store depends on a register that is set after the
8040 store, it depends on the initial value, and is thus not
8042 for (v
= bl
->giv
; reversible_mem_store
&& v
; v
= v
->next_iv
)
8044 if (v
->giv_type
== DEST_REG
8045 && reg_mentioned_p (v
->dest_reg
,
8046 XEXP (loop_store_mems
, 0))
8047 && loop_insn_first_p (first_loop_store_insn
, v
->insn
))
8048 reversible_mem_store
= 0;
8055 /* This code only acts for innermost loops. Also it simplifies
8056 the memory address check by only reversing loops with
8057 zero or one memory access.
8058 Two memory accesses could involve parts of the same array,
8059 and that can't be reversed.
8060 If the biv is used only for counting, than we don't need to worry
8061 about all these things. */
8063 if ((num_nonfixed_reads
<= 1
8064 && ! loop_info
->has_call
8065 && ! loop_info
->has_volatile
8066 && reversible_mem_store
8067 && (bl
->giv_count
+ bl
->biv_count
+ num_mem_sets
8068 + num_movables
+ compare_and_branch
== insn_count
)
8069 && (bl
== loop_iv_list
&& bl
->next
== 0))
8070 || no_use_except_counting
)
8074 /* Loop can be reversed. */
8075 if (loop_dump_stream
)
8076 fprintf (loop_dump_stream
, "Can reverse loop\n");
8078 /* Now check other conditions:
8080 The increment must be a constant, as must the initial value,
8081 and the comparison code must be LT.
8083 This test can probably be improved since +/- 1 in the constant
8084 can be obtained by changing LT to LE and vice versa; this is
8088 /* for constants, LE gets turned into LT */
8089 && (GET_CODE (comparison
) == LT
8090 || (GET_CODE (comparison
) == LE
8091 && no_use_except_counting
)))
8093 HOST_WIDE_INT add_val
, add_adjust
, comparison_val
= 0;
8094 rtx initial_value
, comparison_value
;
8096 enum rtx_code cmp_code
;
8097 int comparison_const_width
;
8098 unsigned HOST_WIDE_INT comparison_sign_mask
;
8100 add_val
= INTVAL (bl
->biv
->add_val
);
8101 comparison_value
= XEXP (comparison
, 1);
8102 if (GET_MODE (comparison_value
) == VOIDmode
)
8103 comparison_const_width
8104 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison
, 0)));
8106 comparison_const_width
8107 = GET_MODE_BITSIZE (GET_MODE (comparison_value
));
8108 if (comparison_const_width
> HOST_BITS_PER_WIDE_INT
)
8109 comparison_const_width
= HOST_BITS_PER_WIDE_INT
;
8110 comparison_sign_mask
8111 = (unsigned HOST_WIDE_INT
)1 << (comparison_const_width
- 1);
8113 /* If the comparison value is not a loop invariant, then we
8114 can not reverse this loop.
8116 ??? If the insns which initialize the comparison value as
8117 a whole compute an invariant result, then we could move
8118 them out of the loop and proceed with loop reversal. */
8119 if (!invariant_p (comparison_value
))
8122 if (GET_CODE (comparison_value
) == CONST_INT
)
8123 comparison_val
= INTVAL (comparison_value
);
8124 initial_value
= bl
->initial_value
;
8126 /* Normalize the initial value if it is an integer and
8127 has no other use except as a counter. This will allow
8128 a few more loops to be reversed. */
8129 if (no_use_except_counting
8130 && GET_CODE (comparison_value
) == CONST_INT
8131 && GET_CODE (initial_value
) == CONST_INT
)
8133 comparison_val
= comparison_val
- INTVAL (bl
->initial_value
);
8134 /* The code below requires comparison_val to be a multiple
8135 of add_val in order to do the loop reversal, so
8136 round up comparison_val to a multiple of add_val.
8137 Since comparison_value is constant, we know that the
8138 current comparison code is LT. */
8139 comparison_val
= comparison_val
+ add_val
- 1;
8141 -= (unsigned HOST_WIDE_INT
) comparison_val
% add_val
;
8142 /* We postpone overflow checks for COMPARISON_VAL here;
8143 even if there is an overflow, we might still be able to
8144 reverse the loop, if converting the loop exit test to
8146 initial_value
= const0_rtx
;
8149 /* First check if we can do a vanilla loop reversal. */
8150 if (initial_value
== const0_rtx
8151 /* If we have a decrement_and_branch_on_count,
8152 prefer the NE test, since this will allow that
8153 instruction to be generated. Note that we must
8154 use a vanilla loop reversal if the biv is used to
8155 calculate a giv or has a non-counting use. */
8156 #if ! defined (HAVE_decrement_and_branch_until_zero) \
8157 && defined (HAVE_decrement_and_branch_on_count)
8158 && (! (add_val
== 1 && loop_info
->vtop
8159 && (bl
->biv_count
== 0
8160 || no_use_except_counting
)))
8162 && GET_CODE (comparison_value
) == CONST_INT
8163 /* Now do postponed overflow checks on COMPARISON_VAL. */
8164 && ! (((comparison_val
- add_val
) ^ INTVAL (comparison_value
))
8165 & comparison_sign_mask
))
8167 /* Register will always be nonnegative, with value
8168 0 on last iteration */
8169 add_adjust
= add_val
;
8173 else if (add_val
== 1 && loop_info
->vtop
8174 && (bl
->biv_count
== 0
8175 || no_use_except_counting
))
8183 if (GET_CODE (comparison
) == LE
)
8184 add_adjust
-= add_val
;
8186 /* If the initial value is not zero, or if the comparison
8187 value is not an exact multiple of the increment, then we
8188 can not reverse this loop. */
8189 if (initial_value
== const0_rtx
8190 && GET_CODE (comparison_value
) == CONST_INT
)
8192 if (((unsigned HOST_WIDE_INT
) comparison_val
% add_val
) != 0)
8197 if (! no_use_except_counting
|| add_val
!= 1)
8201 final_value
= comparison_value
;
8203 /* Reset these in case we normalized the initial value
8204 and comparison value above. */
8205 if (GET_CODE (comparison_value
) == CONST_INT
8206 && GET_CODE (initial_value
) == CONST_INT
)
8208 comparison_value
= GEN_INT (comparison_val
);
8210 = GEN_INT (comparison_val
+ INTVAL (bl
->initial_value
));
8212 bl
->initial_value
= initial_value
;
8214 /* Save some info needed to produce the new insns. */
8215 reg
= bl
->biv
->dest_reg
;
8216 jump_label
= XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end
))), 1);
8217 if (jump_label
== pc_rtx
)
8218 jump_label
= XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end
))), 2);
8219 new_add_val
= GEN_INT (- INTVAL (bl
->biv
->add_val
));
8221 /* Set start_value; if this is not a CONST_INT, we need
8223 Initialize biv to start_value before loop start.
8224 The old initializing insn will be deleted as a
8225 dead store by flow.c. */
8226 if (initial_value
== const0_rtx
8227 && GET_CODE (comparison_value
) == CONST_INT
)
8229 start_value
= GEN_INT (comparison_val
- add_adjust
);
8230 emit_insn_before (gen_move_insn (reg
, start_value
),
8233 else if (GET_CODE (initial_value
) == CONST_INT
)
8235 rtx offset
= GEN_INT (-INTVAL (initial_value
) - add_adjust
);
8236 enum machine_mode mode
= GET_MODE (reg
);
8237 enum insn_code icode
8238 = add_optab
->handlers
[(int) mode
].insn_code
;
8240 if (! (*insn_data
[icode
].operand
[0].predicate
) (reg
, mode
)
8241 || ! ((*insn_data
[icode
].operand
[1].predicate
)
8242 (comparison_value
, mode
))
8243 || ! ((*insn_data
[icode
].operand
[2].predicate
)
8247 = gen_rtx_PLUS (mode
, comparison_value
, offset
);
8248 emit_insn_before ((GEN_FCN (icode
)
8249 (reg
, comparison_value
, offset
)),
8251 if (GET_CODE (comparison
) == LE
)
8252 final_value
= gen_rtx_PLUS (mode
, comparison_value
,
8255 else if (! add_adjust
)
8257 enum machine_mode mode
= GET_MODE (reg
);
8258 enum insn_code icode
8259 = sub_optab
->handlers
[(int) mode
].insn_code
;
8260 if (! (*insn_data
[icode
].operand
[0].predicate
) (reg
, mode
)
8261 || ! ((*insn_data
[icode
].operand
[1].predicate
)
8262 (comparison_value
, mode
))
8263 || ! ((*insn_data
[icode
].operand
[2].predicate
)
8264 (initial_value
, mode
)))
8267 = gen_rtx_MINUS (mode
, comparison_value
, initial_value
);
8268 emit_insn_before ((GEN_FCN (icode
)
8269 (reg
, comparison_value
, initial_value
)),
8273 /* We could handle the other cases too, but it'll be
8274 better to have a testcase first. */
8277 /* We may not have a single insn which can increment a reg, so
8278 create a sequence to hold all the insns from expand_inc. */
8280 expand_inc (reg
, new_add_val
);
8281 tem
= gen_sequence ();
8284 p
= emit_insn_before (tem
, bl
->biv
->insn
);
8285 delete_insn (bl
->biv
->insn
);
8287 /* Update biv info to reflect its new status. */
8289 bl
->initial_value
= start_value
;
8290 bl
->biv
->add_val
= new_add_val
;
8292 /* Update loop info. */
8293 loop_info
->initial_value
= reg
;
8294 loop_info
->initial_equiv_value
= reg
;
8295 loop_info
->final_value
= const0_rtx
;
8296 loop_info
->final_equiv_value
= const0_rtx
;
8297 loop_info
->comparison_value
= const0_rtx
;
8298 loop_info
->comparison_code
= cmp_code
;
8299 loop_info
->increment
= new_add_val
;
8301 /* Inc LABEL_NUSES so that delete_insn will
8302 not delete the label. */
8303 LABEL_NUSES (XEXP (jump_label
, 0)) ++;
8305 /* Emit an insn after the end of the loop to set the biv's
8306 proper exit value if it is used anywhere outside the loop. */
8307 if ((REGNO_LAST_UID (bl
->regno
) != INSN_UID (first_compare
))
8309 || REGNO_FIRST_UID (bl
->regno
) != INSN_UID (bl
->init_insn
))
8310 emit_insn_after (gen_move_insn (reg
, final_value
),
8313 /* Delete compare/branch at end of loop. */
8314 delete_insn (PREV_INSN (loop_end
));
8315 if (compare_and_branch
== 2)
8316 delete_insn (first_compare
);
8318 /* Add new compare/branch insn at end of loop. */
8320 emit_cmp_and_jump_insns (reg
, const0_rtx
, cmp_code
, NULL_RTX
,
8321 GET_MODE (reg
), 0, 0,
8322 XEXP (jump_label
, 0));
8323 tem
= gen_sequence ();
8325 emit_jump_insn_before (tem
, loop_end
);
8327 for (tem
= PREV_INSN (loop_end
);
8328 tem
&& GET_CODE (tem
) != JUMP_INSN
;
8329 tem
= PREV_INSN (tem
))
8333 JUMP_LABEL (tem
) = XEXP (jump_label
, 0);
8339 /* Increment of LABEL_NUSES done above. */
8340 /* Register is now always nonnegative,
8341 so add REG_NONNEG note to the branch. */
8342 REG_NOTES (tem
) = gen_rtx_EXPR_LIST (REG_NONNEG
, NULL_RTX
,
8348 /* No insn may reference both the reversed and another biv or it
8349 will fail (see comment near the top of the loop reversal
8351 Earlier on, we have verified that the biv has no use except
8352 counting, or it is the only biv in this function.
8353 However, the code that computes no_use_except_counting does
8354 not verify reg notes. It's possible to have an insn that
8355 references another biv, and has a REG_EQUAL note with an
8356 expression based on the reversed biv. To avoid this case,
8357 remove all REG_EQUAL notes based on the reversed biv
8359 for (p
= loop_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
8360 if (GET_RTX_CLASS (GET_CODE (p
)) == 'i')
8363 rtx set
= single_set (p
);
8364 /* If this is a set of a GIV based on the reversed biv, any
8365 REG_EQUAL notes should still be correct. */
8367 || GET_CODE (SET_DEST (set
)) != REG
8368 || (size_t) REGNO (SET_DEST (set
)) >= reg_iv_type
->num_elements
8369 || REG_IV_TYPE (REGNO (SET_DEST (set
))) != GENERAL_INDUCT
8370 || REG_IV_INFO (REGNO (SET_DEST (set
)))->src_reg
!= bl
->biv
->src_reg
)
8371 for (pnote
= ®_NOTES (p
); *pnote
;)
8373 if (REG_NOTE_KIND (*pnote
) == REG_EQUAL
8374 && reg_mentioned_p (regno_reg_rtx
[bl
->regno
],
8376 *pnote
= XEXP (*pnote
, 1);
8378 pnote
= &XEXP (*pnote
, 1);
8382 /* Mark that this biv has been reversed. Each giv which depends
8383 on this biv, and which is also live past the end of the loop
8384 will have to be fixed up. */
8388 if (loop_dump_stream
)
8390 fprintf (loop_dump_stream
, "Reversed loop");
8392 fprintf (loop_dump_stream
, " and added reg_nonneg\n");
8394 fprintf (loop_dump_stream
, "\n");
8405 /* Verify whether the biv BL appears to be eliminable,
8406 based on the insns in the loop that refer to it.
8407 LOOP_START is the first insn of the loop, and END is the end insn.
8409 If ELIMINATE_P is non-zero, actually do the elimination.
8411 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
8412 determine whether invariant insns should be placed inside or at the
8413 start of the loop. */
8416 maybe_eliminate_biv (bl
, loop_start
, end
, eliminate_p
, threshold
, insn_count
)
8417 struct iv_class
*bl
;
8421 int threshold
, insn_count
;
8423 rtx reg
= bl
->biv
->dest_reg
;
8426 /* Scan all insns in the loop, stopping if we find one that uses the
8427 biv in a way that we cannot eliminate. */
8429 for (p
= loop_start
; p
!= end
; p
= NEXT_INSN (p
))
8431 enum rtx_code code
= GET_CODE (p
);
8432 rtx where
= threshold
>= insn_count
? loop_start
: p
;
8434 /* If this is a libcall that sets a giv, skip ahead to its end. */
8435 if (GET_RTX_CLASS (code
) == 'i')
8437 rtx note
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
);
8441 rtx last
= XEXP (note
, 0);
8442 rtx set
= single_set (last
);
8444 if (set
&& GET_CODE (SET_DEST (set
)) == REG
)
8446 int regno
= REGNO (SET_DEST (set
));
8448 if (regno
< max_reg_before_loop
8449 && REG_IV_TYPE (regno
) == GENERAL_INDUCT
8450 && REG_IV_INFO (regno
)->src_reg
== bl
->biv
->src_reg
)
8455 if ((code
== INSN
|| code
== JUMP_INSN
|| code
== CALL_INSN
)
8456 && reg_mentioned_p (reg
, PATTERN (p
))
8457 && ! maybe_eliminate_biv_1 (PATTERN (p
), p
, bl
, eliminate_p
, where
))
8459 if (loop_dump_stream
)
8460 fprintf (loop_dump_stream
,
8461 "Cannot eliminate biv %d: biv used in insn %d.\n",
8462 bl
->regno
, INSN_UID (p
));
8469 if (loop_dump_stream
)
8470 fprintf (loop_dump_stream
, "biv %d %s eliminated.\n",
8471 bl
->regno
, eliminate_p
? "was" : "can be");
8478 /* INSN and REFERENCE are instructions in the same insn chain.
8479 Return non-zero if INSN is first. */
8482 loop_insn_first_p (insn
, reference
)
8483 rtx insn
, reference
;
8487 for (p
= insn
, q
= reference
; ;)
8489 /* Start with test for not first so that INSN == REFERENCE yields not
8491 if (q
== insn
|| ! p
)
8493 if (p
== reference
|| ! q
)
8496 /* Either of P or Q might be a NOTE. Notes have the same LUID as the
8497 previous insn, hence the <= comparison below does not work if
8499 if (INSN_UID (p
) < max_uid_for_loop
8500 && INSN_UID (q
) < max_uid_for_loop
8501 && GET_CODE (p
) != NOTE
)
8502 return INSN_LUID (p
) <= INSN_LUID (q
);
8504 if (INSN_UID (p
) >= max_uid_for_loop
8505 || GET_CODE (p
) == NOTE
)
8507 if (INSN_UID (q
) >= max_uid_for_loop
)
8512 /* We are trying to eliminate BIV in INSN using GIV. Return non-zero if
8513 the offset that we have to take into account due to auto-increment /
8514 div derivation is zero. */
8516 biv_elimination_giv_has_0_offset (biv
, giv
, insn
)
8517 struct induction
*biv
, *giv
;
8520 /* If the giv V had the auto-inc address optimization applied
8521 to it, and INSN occurs between the giv insn and the biv
8522 insn, then we'd have to adjust the value used here.
8523 This is rare, so we don't bother to make this possible. */
8524 if (giv
->auto_inc_opt
8525 && ((loop_insn_first_p (giv
->insn
, insn
)
8526 && loop_insn_first_p (insn
, biv
->insn
))
8527 || (loop_insn_first_p (biv
->insn
, insn
)
8528 && loop_insn_first_p (insn
, giv
->insn
))))
8531 /* If the giv V was derived from another giv, and INSN does
8532 not occur between the giv insn and the biv insn, then we'd
8533 have to adjust the value used here. This is rare, so we don't
8534 bother to make this possible. */
8535 if (giv
->derived_from
8536 && ! (giv
->always_executed
8537 && loop_insn_first_p (giv
->insn
, insn
)
8538 && loop_insn_first_p (insn
, biv
->insn
)))
8541 && giv
->same
->derived_from
8542 && ! (giv
->same
->always_executed
8543 && loop_insn_first_p (giv
->same
->insn
, insn
)
8544 && loop_insn_first_p (insn
, biv
->insn
)))
8550 /* If BL appears in X (part of the pattern of INSN), see if we can
8551 eliminate its use. If so, return 1. If not, return 0.
8553 If BIV does not appear in X, return 1.
8555 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
8556 where extra insns should be added. Depending on how many items have been
8557 moved out of the loop, it will either be before INSN or at the start of
8561 maybe_eliminate_biv_1 (x
, insn
, bl
, eliminate_p
, where
)
8563 struct iv_class
*bl
;
8567 enum rtx_code code
= GET_CODE (x
);
8568 rtx reg
= bl
->biv
->dest_reg
;
8569 enum machine_mode mode
= GET_MODE (reg
);
8570 struct induction
*v
;
8582 /* If we haven't already been able to do something with this BIV,
8583 we can't eliminate it. */
8589 /* If this sets the BIV, it is not a problem. */
8590 if (SET_DEST (x
) == reg
)
8593 /* If this is an insn that defines a giv, it is also ok because
8594 it will go away when the giv is reduced. */
8595 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8596 if (v
->giv_type
== DEST_REG
&& SET_DEST (x
) == v
->dest_reg
)
8600 if (SET_DEST (x
) == cc0_rtx
&& SET_SRC (x
) == reg
)
8602 /* Can replace with any giv that was reduced and
8603 that has (MULT_VAL != 0) and (ADD_VAL == 0).
8604 Require a constant for MULT_VAL, so we know it's nonzero.
8605 ??? We disable this optimization to avoid potential
8608 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8609 if (CONSTANT_P (v
->mult_val
) && v
->mult_val
!= const0_rtx
8610 && v
->add_val
== const0_rtx
8611 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
8615 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
8621 /* If the giv has the opposite direction of change,
8622 then reverse the comparison. */
8623 if (INTVAL (v
->mult_val
) < 0)
8624 new = gen_rtx_COMPARE (GET_MODE (v
->new_reg
),
8625 const0_rtx
, v
->new_reg
);
8629 /* We can probably test that giv's reduced reg. */
8630 if (validate_change (insn
, &SET_SRC (x
), new, 0))
8634 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
8635 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
8636 Require a constant for MULT_VAL, so we know it's nonzero.
8637 ??? Do this only if ADD_VAL is a pointer to avoid a potential
8638 overflow problem. */
8640 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8641 if (CONSTANT_P (v
->mult_val
) && v
->mult_val
!= const0_rtx
8642 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
8644 && (GET_CODE (v
->add_val
) == SYMBOL_REF
8645 || GET_CODE (v
->add_val
) == LABEL_REF
8646 || GET_CODE (v
->add_val
) == CONST
8647 || (GET_CODE (v
->add_val
) == REG
8648 && REGNO_POINTER_FLAG (REGNO (v
->add_val
)))))
8650 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
8656 /* If the giv has the opposite direction of change,
8657 then reverse the comparison. */
8658 if (INTVAL (v
->mult_val
) < 0)
8659 new = gen_rtx_COMPARE (VOIDmode
, copy_rtx (v
->add_val
),
8662 new = gen_rtx_COMPARE (VOIDmode
, v
->new_reg
,
8663 copy_rtx (v
->add_val
));
8665 /* Replace biv with the giv's reduced register. */
8666 update_reg_last_use (v
->add_val
, insn
);
8667 if (validate_change (insn
, &SET_SRC (PATTERN (insn
)), new, 0))
8670 /* Insn doesn't support that constant or invariant. Copy it
8671 into a register (it will be a loop invariant.) */
8672 tem
= gen_reg_rtx (GET_MODE (v
->new_reg
));
8674 emit_insn_before (gen_move_insn (tem
, copy_rtx (v
->add_val
)),
8677 /* Substitute the new register for its invariant value in
8678 the compare expression. */
8679 XEXP (new, (INTVAL (v
->mult_val
) < 0) ? 0 : 1) = tem
;
8680 if (validate_change (insn
, &SET_SRC (PATTERN (insn
)), new, 0))
8689 case GT
: case GE
: case GTU
: case GEU
:
8690 case LT
: case LE
: case LTU
: case LEU
:
8691 /* See if either argument is the biv. */
8692 if (XEXP (x
, 0) == reg
)
8693 arg
= XEXP (x
, 1), arg_operand
= 1;
8694 else if (XEXP (x
, 1) == reg
)
8695 arg
= XEXP (x
, 0), arg_operand
= 0;
8699 if (CONSTANT_P (arg
))
8701 /* First try to replace with any giv that has constant positive
8702 mult_val and constant add_val. We might be able to support
8703 negative mult_val, but it seems complex to do it in general. */
8705 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8706 if (CONSTANT_P (v
->mult_val
) && INTVAL (v
->mult_val
) > 0
8707 && (GET_CODE (v
->add_val
) == SYMBOL_REF
8708 || GET_CODE (v
->add_val
) == LABEL_REF
8709 || GET_CODE (v
->add_val
) == CONST
8710 || (GET_CODE (v
->add_val
) == REG
8711 && REGNO_POINTER_FLAG (REGNO (v
->add_val
))))
8712 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
8715 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
8721 /* Replace biv with the giv's reduced reg. */
8722 XEXP (x
, 1-arg_operand
) = v
->new_reg
;
8724 /* If all constants are actually constant integers and
8725 the derived constant can be directly placed in the COMPARE,
8727 if (GET_CODE (arg
) == CONST_INT
8728 && GET_CODE (v
->mult_val
) == CONST_INT
8729 && GET_CODE (v
->add_val
) == CONST_INT
8730 && validate_change (insn
, &XEXP (x
, arg_operand
),
8731 GEN_INT (INTVAL (arg
)
8732 * INTVAL (v
->mult_val
)
8733 + INTVAL (v
->add_val
)), 0))
8736 /* Otherwise, load it into a register. */
8737 tem
= gen_reg_rtx (mode
);
8738 emit_iv_add_mult (arg
, v
->mult_val
, v
->add_val
, tem
, where
);
8739 if (validate_change (insn
, &XEXP (x
, arg_operand
), tem
, 0))
8742 /* If that failed, put back the change we made above. */
8743 XEXP (x
, 1-arg_operand
) = reg
;
8746 /* Look for giv with positive constant mult_val and nonconst add_val.
8747 Insert insns to calculate new compare value.
8748 ??? Turn this off due to possible overflow. */
8750 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8751 if (CONSTANT_P (v
->mult_val
) && INTVAL (v
->mult_val
) > 0
8752 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
8758 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
8764 tem
= gen_reg_rtx (mode
);
8766 /* Replace biv with giv's reduced register. */
8767 validate_change (insn
, &XEXP (x
, 1 - arg_operand
),
8770 /* Compute value to compare against. */
8771 emit_iv_add_mult (arg
, v
->mult_val
, v
->add_val
, tem
, where
);
8772 /* Use it in this insn. */
8773 validate_change (insn
, &XEXP (x
, arg_operand
), tem
, 1);
8774 if (apply_change_group ())
8778 else if (GET_CODE (arg
) == REG
|| GET_CODE (arg
) == MEM
)
8780 if (invariant_p (arg
) == 1)
8782 /* Look for giv with constant positive mult_val and nonconst
8783 add_val. Insert insns to compute new compare value.
8784 ??? Turn this off due to possible overflow. */
8786 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8787 if (CONSTANT_P (v
->mult_val
) && INTVAL (v
->mult_val
) > 0
8788 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
8794 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
8800 tem
= gen_reg_rtx (mode
);
8802 /* Replace biv with giv's reduced register. */
8803 validate_change (insn
, &XEXP (x
, 1 - arg_operand
),
8806 /* Compute value to compare against. */
8807 emit_iv_add_mult (arg
, v
->mult_val
, v
->add_val
,
8809 validate_change (insn
, &XEXP (x
, arg_operand
), tem
, 1);
8810 if (apply_change_group ())
8815 /* This code has problems. Basically, you can't know when
8816 seeing if we will eliminate BL, whether a particular giv
8817 of ARG will be reduced. If it isn't going to be reduced,
8818 we can't eliminate BL. We can try forcing it to be reduced,
8819 but that can generate poor code.
8821 The problem is that the benefit of reducing TV, below should
8822 be increased if BL can actually be eliminated, but this means
8823 we might have to do a topological sort of the order in which
8824 we try to process biv. It doesn't seem worthwhile to do
8825 this sort of thing now. */
8828 /* Otherwise the reg compared with had better be a biv. */
8829 if (GET_CODE (arg
) != REG
8830 || REG_IV_TYPE (REGNO (arg
)) != BASIC_INDUCT
)
8833 /* Look for a pair of givs, one for each biv,
8834 with identical coefficients. */
8835 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8837 struct induction
*tv
;
8839 if (v
->ignore
|| v
->maybe_dead
|| v
->mode
!= mode
)
8842 for (tv
= reg_biv_class
[REGNO (arg
)]->giv
; tv
; tv
= tv
->next_iv
)
8843 if (! tv
->ignore
&& ! tv
->maybe_dead
8844 && rtx_equal_p (tv
->mult_val
, v
->mult_val
)
8845 && rtx_equal_p (tv
->add_val
, v
->add_val
)
8846 && tv
->mode
== mode
)
8848 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
8854 /* Replace biv with its giv's reduced reg. */
8855 XEXP (x
, 1-arg_operand
) = v
->new_reg
;
8856 /* Replace other operand with the other giv's
8858 XEXP (x
, arg_operand
) = tv
->new_reg
;
8865 /* If we get here, the biv can't be eliminated. */
8869 /* If this address is a DEST_ADDR giv, it doesn't matter if the
8870 biv is used in it, since it will be replaced. */
8871 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8872 if (v
->giv_type
== DEST_ADDR
&& v
->location
== &XEXP (x
, 0))
8880 /* See if any subexpression fails elimination. */
8881 fmt
= GET_RTX_FORMAT (code
);
8882 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
8887 if (! maybe_eliminate_biv_1 (XEXP (x
, i
), insn
, bl
,
8888 eliminate_p
, where
))
8893 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
8894 if (! maybe_eliminate_biv_1 (XVECEXP (x
, i
, j
), insn
, bl
,
8895 eliminate_p
, where
))
8904 /* Return nonzero if the last use of REG
8905 is in an insn following INSN in the same basic block. */
8908 last_use_this_basic_block (reg
, insn
)
8914 n
&& GET_CODE (n
) != CODE_LABEL
&& GET_CODE (n
) != JUMP_INSN
;
8917 if (REGNO_LAST_UID (REGNO (reg
)) == INSN_UID (n
))
8923 /* Called via `note_stores' to record the initial value of a biv. Here we
8924 just record the location of the set and process it later. */
8927 record_initial (dest
, set
, data
)
8930 void *data ATTRIBUTE_UNUSED
;
8932 struct iv_class
*bl
;
8934 if (GET_CODE (dest
) != REG
8935 || REGNO (dest
) >= max_reg_before_loop
8936 || REG_IV_TYPE (REGNO (dest
)) != BASIC_INDUCT
)
8939 bl
= reg_biv_class
[REGNO (dest
)];
8941 /* If this is the first set found, record it. */
8942 if (bl
->init_insn
== 0)
8944 bl
->init_insn
= note_insn
;
8949 /* If any of the registers in X are "old" and currently have a last use earlier
8950 than INSN, update them to have a last use of INSN. Their actual last use
8951 will be the previous insn but it will not have a valid uid_luid so we can't
8955 update_reg_last_use (x
, insn
)
8959 /* Check for the case where INSN does not have a valid luid. In this case,
8960 there is no need to modify the regno_last_uid, as this can only happen
8961 when code is inserted after the loop_end to set a pseudo's final value,
8962 and hence this insn will never be the last use of x. */
8963 if (GET_CODE (x
) == REG
&& REGNO (x
) < max_reg_before_loop
8964 && INSN_UID (insn
) < max_uid_for_loop
8965 && uid_luid
[REGNO_LAST_UID (REGNO (x
))] < uid_luid
[INSN_UID (insn
)])
8966 REGNO_LAST_UID (REGNO (x
)) = INSN_UID (insn
);
8970 register const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
8971 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
8974 update_reg_last_use (XEXP (x
, i
), insn
);
8975 else if (fmt
[i
] == 'E')
8976 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
8977 update_reg_last_use (XVECEXP (x
, i
, j
), insn
);
8982 /* Given a jump insn JUMP, return the condition that will cause it to branch
8983 to its JUMP_LABEL. If the condition cannot be understood, or is an
8984 inequality floating-point comparison which needs to be reversed, 0 will
8987 If EARLIEST is non-zero, it is a pointer to a place where the earliest
8988 insn used in locating the condition was found. If a replacement test
8989 of the condition is desired, it should be placed in front of that
8990 insn and we will be sure that the inputs are still valid.
8992 The condition will be returned in a canonical form to simplify testing by
8993 callers. Specifically:
8995 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
8996 (2) Both operands will be machine operands; (cc0) will have been replaced.
8997 (3) If an operand is a constant, it will be the second operand.
8998 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
8999 for GE, GEU, and LEU. */
9002 get_condition (jump
, earliest
)
9011 int reverse_code
= 0;
9012 int did_reverse_condition
= 0;
9013 enum machine_mode mode
;
9015 /* If this is not a standard conditional jump, we can't parse it. */
9016 if (GET_CODE (jump
) != JUMP_INSN
9017 || ! condjump_p (jump
) || simplejump_p (jump
))
9020 code
= GET_CODE (XEXP (SET_SRC (PATTERN (jump
)), 0));
9021 mode
= GET_MODE (XEXP (SET_SRC (PATTERN (jump
)), 0));
9022 op0
= XEXP (XEXP (SET_SRC (PATTERN (jump
)), 0), 0);
9023 op1
= XEXP (XEXP (SET_SRC (PATTERN (jump
)), 0), 1);
9028 /* If this branches to JUMP_LABEL when the condition is false, reverse
9030 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump
)), 2)) == LABEL_REF
9031 && XEXP (XEXP (SET_SRC (PATTERN (jump
)), 2), 0) == JUMP_LABEL (jump
))
9032 code
= reverse_condition (code
), did_reverse_condition
^= 1;
9034 /* If we are comparing a register with zero, see if the register is set
9035 in the previous insn to a COMPARE or a comparison operation. Perform
9036 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
9039 while (GET_RTX_CLASS (code
) == '<' && op1
== CONST0_RTX (GET_MODE (op0
)))
9041 /* Set non-zero when we find something of interest. */
9045 /* If comparison with cc0, import actual comparison from compare
9049 if ((prev
= prev_nonnote_insn (prev
)) == 0
9050 || GET_CODE (prev
) != INSN
9051 || (set
= single_set (prev
)) == 0
9052 || SET_DEST (set
) != cc0_rtx
)
9055 op0
= SET_SRC (set
);
9056 op1
= CONST0_RTX (GET_MODE (op0
));
9062 /* If this is a COMPARE, pick up the two things being compared. */
9063 if (GET_CODE (op0
) == COMPARE
)
9065 op1
= XEXP (op0
, 1);
9066 op0
= XEXP (op0
, 0);
9069 else if (GET_CODE (op0
) != REG
)
9072 /* Go back to the previous insn. Stop if it is not an INSN. We also
9073 stop if it isn't a single set or if it has a REG_INC note because
9074 we don't want to bother dealing with it. */
9076 if ((prev
= prev_nonnote_insn (prev
)) == 0
9077 || GET_CODE (prev
) != INSN
9078 || FIND_REG_INC_NOTE (prev
, 0)
9079 || (set
= single_set (prev
)) == 0)
9082 /* If this is setting OP0, get what it sets it to if it looks
9084 if (rtx_equal_p (SET_DEST (set
), op0
))
9086 enum machine_mode inner_mode
= GET_MODE (SET_SRC (set
));
9088 /* ??? We may not combine comparisons done in a CCmode with
9089 comparisons not done in a CCmode. This is to aid targets
9090 like Alpha that have an IEEE compliant EQ instruction, and
9091 a non-IEEE compliant BEQ instruction. The use of CCmode is
9092 actually artificial, simply to prevent the combination, but
9093 should not affect other platforms.
9095 However, we must allow VOIDmode comparisons to match either
9096 CCmode or non-CCmode comparison, because some ports have
9097 modeless comparisons inside branch patterns.
9099 ??? This mode check should perhaps look more like the mode check
9100 in simplify_comparison in combine. */
9102 if ((GET_CODE (SET_SRC (set
)) == COMPARE
9105 && GET_MODE_CLASS (inner_mode
) == MODE_INT
9106 && (GET_MODE_BITSIZE (inner_mode
)
9107 <= HOST_BITS_PER_WIDE_INT
)
9108 && (STORE_FLAG_VALUE
9109 & ((HOST_WIDE_INT
) 1
9110 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
9111 #ifdef FLOAT_STORE_FLAG_VALUE
9113 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
9114 && FLOAT_STORE_FLAG_VALUE
< 0)
9117 && GET_RTX_CLASS (GET_CODE (SET_SRC (set
))) == '<'))
9118 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
9119 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
9120 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
9122 else if (((code
== EQ
9124 && (GET_MODE_BITSIZE (inner_mode
)
9125 <= HOST_BITS_PER_WIDE_INT
)
9126 && GET_MODE_CLASS (inner_mode
) == MODE_INT
9127 && (STORE_FLAG_VALUE
9128 & ((HOST_WIDE_INT
) 1
9129 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
9130 #ifdef FLOAT_STORE_FLAG_VALUE
9132 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
9133 && FLOAT_STORE_FLAG_VALUE
< 0)
9136 && GET_RTX_CLASS (GET_CODE (SET_SRC (set
))) == '<'
9137 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
9138 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
9139 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
9142 /* We might have reversed a LT to get a GE here. But this wasn't
9143 actually the comparison of data, so we don't flag that we
9144 have had to reverse the condition. */
9145 did_reverse_condition
^= 1;
9153 else if (reg_set_p (op0
, prev
))
9154 /* If this sets OP0, but not directly, we have to give up. */
9159 if (GET_RTX_CLASS (GET_CODE (x
)) == '<')
9160 code
= GET_CODE (x
);
9163 code
= reverse_condition (code
);
9164 did_reverse_condition
^= 1;
9168 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
9174 /* If constant is first, put it last. */
9175 if (CONSTANT_P (op0
))
9176 code
= swap_condition (code
), tem
= op0
, op0
= op1
, op1
= tem
;
9178 /* If OP0 is the result of a comparison, we weren't able to find what
9179 was really being compared, so fail. */
9180 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
9183 /* Canonicalize any ordered comparison with integers involving equality
9184 if we can do computations in the relevant mode and we do not
9187 if (GET_CODE (op1
) == CONST_INT
9188 && GET_MODE (op0
) != VOIDmode
9189 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
)
9191 HOST_WIDE_INT const_val
= INTVAL (op1
);
9192 unsigned HOST_WIDE_INT uconst_val
= const_val
;
9193 unsigned HOST_WIDE_INT max_val
9194 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (GET_MODE (op0
));
9199 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
9200 code
= LT
, op1
= GEN_INT (const_val
+ 1);
9203 /* When cross-compiling, const_val might be sign-extended from
9204 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
9206 if ((HOST_WIDE_INT
) (const_val
& max_val
)
9207 != (((HOST_WIDE_INT
) 1
9208 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
9209 code
= GT
, op1
= GEN_INT (const_val
- 1);
9213 if (uconst_val
< max_val
)
9214 code
= LTU
, op1
= GEN_INT (uconst_val
+ 1);
9218 if (uconst_val
!= 0)
9219 code
= GTU
, op1
= GEN_INT (uconst_val
- 1);
9227 /* If this was floating-point and we reversed anything other than an
9228 EQ or NE, return zero. */
9229 if (TARGET_FLOAT_FORMAT
== IEEE_FLOAT_FORMAT
9230 && did_reverse_condition
&& code
!= NE
&& code
!= EQ
9232 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_FLOAT
)
9236 /* Never return CC0; return zero instead. */
9241 return gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
9244 /* Similar to above routine, except that we also put an invariant last
9245 unless both operands are invariants. */
9248 get_condition_for_loop (x
)
9251 rtx comparison
= get_condition (x
, NULL_PTR
);
9254 || ! invariant_p (XEXP (comparison
, 0))
9255 || invariant_p (XEXP (comparison
, 1)))
9258 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison
)), VOIDmode
,
9259 XEXP (comparison
, 1), XEXP (comparison
, 0));
9262 #ifdef HAVE_decrement_and_branch_on_count
9263 /* Instrument loop for insertion of bct instruction. We distinguish between
9264 loops with compile-time bounds and those with run-time bounds.
9265 Information from loop_iterations() is used to compute compile-time bounds.
9266 Run-time bounds should use loop preconditioning, but currently ignored.
9270 insert_bct (loop_start
, loop_end
, loop_info
)
9271 rtx loop_start
, loop_end
;
9272 struct loop_info
*loop_info
;
9275 unsigned HOST_WIDE_INT n_iterations
;
9277 int increment_direction
, compare_direction
;
9279 /* If the loop condition is <= or >=, the number of iteration
9280 is 1 more than the range of the bounds of the loop. */
9281 int add_iteration
= 0;
9283 enum machine_mode loop_var_mode
= word_mode
;
9285 int loop_num
= uid_loop_num
[INSN_UID (loop_start
)];
9287 /* It's impossible to instrument a competely unrolled loop. */
9288 if (loop_info
->unroll_number
== loop_info
->n_iterations
)
9291 /* Make sure that the count register is not in use. */
9292 if (loop_used_count_register
[loop_num
])
9294 if (loop_dump_stream
)
9295 fprintf (loop_dump_stream
,
9296 "insert_bct %d: BCT instrumentation failed: count register already in use\n",
9301 /* Make sure that the function has no indirect jumps. */
9302 if (indirect_jump_in_function
)
9304 if (loop_dump_stream
)
9305 fprintf (loop_dump_stream
,
9306 "insert_bct %d: BCT instrumentation failed: indirect jump in function\n",
9311 /* Make sure that the last loop insn is a conditional jump. */
9312 if (GET_CODE (PREV_INSN (loop_end
)) != JUMP_INSN
9313 || ! condjump_p (PREV_INSN (loop_end
))
9314 || simplejump_p (PREV_INSN (loop_end
)))
9316 if (loop_dump_stream
)
9317 fprintf (loop_dump_stream
,
9318 "insert_bct %d: BCT instrumentation failed: invalid jump at loop end\n",
9323 /* Make sure that the loop does not contain a function call
9324 (the count register might be altered by the called function). */
9325 if (loop_info
->has_call
)
9327 if (loop_dump_stream
)
9328 fprintf (loop_dump_stream
,
9329 "insert_bct %d: BCT instrumentation failed: function call in loop\n",
9334 /* Make sure that the loop does not jump via a table.
9335 (the count register might be used to perform the branch on table). */
9336 if (loop_info
->has_tablejump
)
9338 if (loop_dump_stream
)
9339 fprintf (loop_dump_stream
,
9340 "insert_bct %d: BCT instrumentation failed: computed branch in the loop\n",
9345 /* Account for loop unrolling in instrumented iteration count. */
9346 if (loop_info
->unroll_number
> 1)
9347 n_iterations
= loop_info
->n_iterations
/ loop_info
->unroll_number
;
9349 n_iterations
= loop_info
->n_iterations
;
9351 if (n_iterations
!= 0 && n_iterations
< 3)
9353 /* Allow an enclosing outer loop to benefit if possible. */
9354 if (loop_dump_stream
)
9355 fprintf (loop_dump_stream
,
9356 "insert_bct %d: Too few iterations to benefit from BCT optimization\n",
9361 /* Try to instrument the loop. */
9363 /* Handle the simpler case, where the bounds are known at compile time. */
9364 if (n_iterations
> 0)
9366 /* Mark all enclosing loops that they cannot use count register. */
9367 for (i
= loop_num
; i
!= -1; i
= loop_outer_loop
[i
])
9368 loop_used_count_register
[i
] = 1;
9369 instrument_loop_bct (loop_start
, loop_end
, GEN_INT (n_iterations
));
9373 /* Handle the more complex case, that the bounds are NOT known
9374 at compile time. In this case we generate run_time calculation
9375 of the number of iterations. */
9377 if (loop_info
->iteration_var
== 0)
9379 if (loop_dump_stream
)
9380 fprintf (loop_dump_stream
,
9381 "insert_bct %d: BCT Runtime Instrumentation failed: no loop iteration variable found\n",
9386 if (GET_MODE_CLASS (GET_MODE (loop_info
->iteration_var
)) != MODE_INT
9387 || GET_MODE_SIZE (GET_MODE (loop_info
->iteration_var
)) != UNITS_PER_WORD
)
9389 if (loop_dump_stream
)
9390 fprintf (loop_dump_stream
,
9391 "insert_bct %d: BCT Runtime Instrumentation failed: loop variable not integer\n",
9396 /* With runtime bounds, if the compare is of the form '!=' we give up */
9397 if (loop_info
->comparison_code
== NE
)
9399 if (loop_dump_stream
)
9400 fprintf (loop_dump_stream
,
9401 "insert_bct %d: BCT Runtime Instrumentation failed: runtime bounds with != comparison\n",
9405 /* Use common loop preconditioning code instead. */
9409 /* We rely on the existence of run-time guard to ensure that the
9410 loop executes at least once. */
9412 rtx iterations_num_reg
;
9414 unsigned HOST_WIDE_INT increment_value_abs
9415 = INTVAL (increment
) * increment_direction
;
9417 /* make sure that the increment is a power of two, otherwise (an
9418 expensive) divide is needed. */
9419 if (exact_log2 (increment_value_abs
) == -1)
9421 if (loop_dump_stream
)
9422 fprintf (loop_dump_stream
,
9423 "insert_bct: not instrumenting BCT because the increment is not power of 2\n");
9427 /* compute the number of iterations */
9432 /* Again, the number of iterations is calculated by:
9434 ; compare-val - initial-val + (increment -1) + additional-iteration
9435 ; num_iterations = -----------------------------------------------------------------
9438 /* ??? Do we have to call copy_rtx here before passing rtx to
9440 if (compare_direction
> 0)
9442 /* <, <= :the loop variable is increasing */
9443 temp_reg
= expand_binop (loop_var_mode
, sub_optab
,
9444 comparison_value
, initial_value
,
9445 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
9449 temp_reg
= expand_binop (loop_var_mode
, sub_optab
,
9450 initial_value
, comparison_value
,
9451 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
9454 if (increment_value_abs
- 1 + add_iteration
!= 0)
9455 temp_reg
= expand_binop (loop_var_mode
, add_optab
, temp_reg
,
9456 GEN_INT (increment_value_abs
- 1
9458 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
9460 if (increment_value_abs
!= 1)
9461 iterations_num_reg
= expand_binop (loop_var_mode
, asr_optab
,
9463 GEN_INT (exact_log2 (increment_value_abs
)),
9464 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
9466 iterations_num_reg
= temp_reg
;
9468 sequence
= gen_sequence ();
9470 emit_insn_before (sequence
, loop_start
);
9471 instrument_loop_bct (loop_start
, loop_end
, iterations_num_reg
);
9475 #endif /* Complex case */
9478 /* Instrument loop by inserting a bct in it as follows:
9479 1. A new counter register is created.
9480 2. In the head of the loop the new variable is initialized to the value
9481 passed in the loop_num_iterations parameter.
9482 3. At the end of the loop, comparison of the register with 0 is generated.
9483 The created comparison follows the pattern defined for the
9484 decrement_and_branch_on_count insn, so this insn will be generated.
9485 4. The branch on the old variable are deleted. The compare must remain
9486 because it might be used elsewhere. If the loop-variable or condition
9487 register are used elsewhere, they will be eliminated by flow. */
9490 instrument_loop_bct (loop_start
, loop_end
, loop_num_iterations
)
9491 rtx loop_start
, loop_end
;
9492 rtx loop_num_iterations
;
9498 if (HAVE_decrement_and_branch_on_count
)
9500 if (loop_dump_stream
)
9502 fputs ("instrument_bct: Inserting BCT (", loop_dump_stream
);
9503 if (GET_CODE (loop_num_iterations
) == CONST_INT
)
9504 fprintf (loop_dump_stream
, HOST_WIDE_INT_PRINT_DEC
,
9505 INTVAL (loop_num_iterations
));
9507 fputs ("runtime", loop_dump_stream
);
9508 fputs (" iterations)", loop_dump_stream
);
9511 /* Discard original jump to continue loop. Original compare result
9512 may still be live, so it cannot be discarded explicitly. */
9513 delete_insn (PREV_INSN (loop_end
));
9515 /* Insert the label which will delimit the start of the loop. */
9516 start_label
= gen_label_rtx ();
9517 emit_label_after (start_label
, loop_start
);
9519 /* Insert initialization of the count register into the loop header. */
9521 counter_reg
= gen_reg_rtx (word_mode
);
9522 emit_insn (gen_move_insn (counter_reg
, loop_num_iterations
));
9523 sequence
= gen_sequence ();
9525 emit_insn_before (sequence
, loop_start
);
9527 /* Insert new comparison on the count register instead of the
9528 old one, generating the needed BCT pattern (that will be
9529 later recognized by assembly generation phase). */
9530 emit_jump_insn_before (gen_decrement_and_branch_on_count (counter_reg
,
9533 LABEL_NUSES (start_label
)++;
9537 #endif /* HAVE_decrement_and_branch_on_count */
9539 /* Scan the function and determine whether it has indirect (computed) jumps.
9541 This is taken mostly from flow.c; similar code exists elsewhere
9542 in the compiler. It may be useful to put this into rtlanal.c. */
9544 indirect_jump_in_function_p (start
)
9549 for (insn
= start
; insn
; insn
= NEXT_INSN (insn
))
9550 if (computed_jump_p (insn
))
9556 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
9557 documentation for LOOP_MEMS for the definition of `appropriate'.
9558 This function is called from prescan_loop via for_each_rtx. */
9561 insert_loop_mem (mem
, data
)
9563 void *data ATTRIBUTE_UNUSED
;
9571 switch (GET_CODE (m
))
9577 /* We're not interested in the MEM associated with a
9578 CONST_DOUBLE, so there's no need to traverse into this. */
9582 /* This is not a MEM. */
9586 /* See if we've already seen this MEM. */
9587 for (i
= 0; i
< loop_mems_idx
; ++i
)
9588 if (rtx_equal_p (m
, loop_mems
[i
].mem
))
9590 if (GET_MODE (m
) != GET_MODE (loop_mems
[i
].mem
))
9591 /* The modes of the two memory accesses are different. If
9592 this happens, something tricky is going on, and we just
9593 don't optimize accesses to this MEM. */
9594 loop_mems
[i
].optimize
= 0;
9599 /* Resize the array, if necessary. */
9600 if (loop_mems_idx
== loop_mems_allocated
)
9602 if (loop_mems_allocated
!= 0)
9603 loop_mems_allocated
*= 2;
9605 loop_mems_allocated
= 32;
9607 loop_mems
= (loop_mem_info
*)
9608 xrealloc (loop_mems
,
9609 loop_mems_allocated
* sizeof (loop_mem_info
));
9612 /* Actually insert the MEM. */
9613 loop_mems
[loop_mems_idx
].mem
= m
;
9614 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
9615 because we can't put it in a register. We still store it in the
9616 table, though, so that if we see the same address later, but in a
9617 non-BLK mode, we'll not think we can optimize it at that point. */
9618 loop_mems
[loop_mems_idx
].optimize
= (GET_MODE (m
) != BLKmode
);
9619 loop_mems
[loop_mems_idx
].reg
= NULL_RTX
;
9625 /* Like load_mems, but also ensures that SET_IN_LOOP,
9626 MAY_NOT_OPTIMIZE, REG_SINGLE_USAGE, and INSN_COUNT have the correct
9627 values after load_mems. */
9630 load_mems_and_recount_loop_regs_set (scan_start
, end
, loop_top
, start
,
9638 int nregs
= max_reg_num ();
9640 load_mems (scan_start
, end
, loop_top
, start
);
9642 /* Recalculate set_in_loop and friends since load_mems may have
9643 created new registers. */
9644 if (max_reg_num () > nregs
)
9650 nregs
= max_reg_num ();
9652 if ((unsigned) nregs
> set_in_loop
->num_elements
)
9654 /* Grow all the arrays. */
9655 VARRAY_GROW (set_in_loop
, nregs
);
9656 VARRAY_GROW (n_times_set
, nregs
);
9657 VARRAY_GROW (may_not_optimize
, nregs
);
9658 VARRAY_GROW (reg_single_usage
, nregs
);
9660 /* Clear the arrays */
9661 bzero ((char *) &set_in_loop
->data
, nregs
* sizeof (int));
9662 bzero ((char *) &may_not_optimize
->data
, nregs
* sizeof (char));
9663 bzero ((char *) ®_single_usage
->data
, nregs
* sizeof (rtx
));
9665 count_loop_regs_set (loop_top
? loop_top
: start
, end
,
9666 may_not_optimize
, reg_single_usage
,
9669 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
9671 VARRAY_CHAR (may_not_optimize
, i
) = 1;
9672 VARRAY_INT (set_in_loop
, i
) = 1;
9675 #ifdef AVOID_CCMODE_COPIES
9676 /* Don't try to move insns which set CC registers if we should not
9677 create CCmode register copies. */
9678 for (i
= max_reg_num () - 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
9679 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx
[i
])) == MODE_CC
)
9680 VARRAY_CHAR (may_not_optimize
, i
) = 1;
9683 /* Set n_times_set for the new registers. */
9684 bcopy ((char *) (&set_in_loop
->data
.i
[0] + old_nregs
),
9685 (char *) (&n_times_set
->data
.i
[0] + old_nregs
),
9686 (nregs
- old_nregs
) * sizeof (int));
9690 /* Move MEMs into registers for the duration of the loop. SCAN_START
9691 is the first instruction in the loop (as it is executed). The
9692 other parameters are as for next_insn_in_loop. */
9695 load_mems (scan_start
, end
, loop_top
, start
)
9701 int maybe_never
= 0;
9704 rtx label
= NULL_RTX
;
9705 rtx end_label
= NULL_RTX
;
9707 if (loop_mems_idx
> 0)
9709 /* Nonzero if the next instruction may never be executed. */
9710 int next_maybe_never
= 0;
9712 /* Check to see if it's possible that some instructions in the
9713 loop are never executed. */
9714 for (p
= next_insn_in_loop (scan_start
, scan_start
, end
, loop_top
);
9715 p
!= NULL_RTX
&& !maybe_never
;
9716 p
= next_insn_in_loop (p
, scan_start
, end
, loop_top
))
9718 if (GET_CODE (p
) == CODE_LABEL
)
9720 else if (GET_CODE (p
) == JUMP_INSN
9721 /* If we enter the loop in the middle, and scan
9722 around to the beginning, don't set maybe_never
9723 for that. This must be an unconditional jump,
9724 otherwise the code at the top of the loop might
9725 never be executed. Unconditional jumps are
9726 followed a by barrier then loop end. */
9727 && ! (GET_CODE (p
) == JUMP_INSN
9728 && JUMP_LABEL (p
) == loop_top
9729 && NEXT_INSN (NEXT_INSN (p
)) == end
9730 && simplejump_p (p
)))
9732 if (!condjump_p (p
))
9733 /* Something complicated. */
9736 /* If there are any more instructions in the loop, they
9737 might not be reached. */
9738 next_maybe_never
= 1;
9740 else if (next_maybe_never
)
9744 /* Actually move the MEMs. */
9745 for (i
= 0; i
< loop_mems_idx
; ++i
)
9749 rtx mem
= loop_mems
[i
].mem
;
9752 if (MEM_VOLATILE_P (mem
)
9753 || invariant_p (XEXP (mem
, 0)) != 1)
9754 /* There's no telling whether or not MEM is modified. */
9755 loop_mems
[i
].optimize
= 0;
9757 /* Go through the MEMs written to in the loop to see if this
9758 one is aliased by one of them. */
9759 mem_list_entry
= loop_store_mems
;
9760 while (mem_list_entry
)
9762 if (rtx_equal_p (mem
, XEXP (mem_list_entry
, 0)))
9764 else if (true_dependence (XEXP (mem_list_entry
, 0), VOIDmode
,
9767 /* MEM is indeed aliased by this store. */
9768 loop_mems
[i
].optimize
= 0;
9771 mem_list_entry
= XEXP (mem_list_entry
, 1);
9774 /* If this MEM is written to, we must be sure that there
9775 are no reads from another MEM that aliases this one. */
9776 if (loop_mems
[i
].optimize
&& written
)
9780 for (j
= 0; j
< loop_mems_idx
; ++j
)
9784 else if (true_dependence (mem
,
9789 /* It's not safe to hoist loop_mems[i] out of
9790 the loop because writes to it might not be
9791 seen by reads from loop_mems[j]. */
9792 loop_mems
[i
].optimize
= 0;
9798 if (maybe_never
&& may_trap_p (mem
))
9799 /* We can't access the MEM outside the loop; it might
9800 cause a trap that wouldn't have happened otherwise. */
9801 loop_mems
[i
].optimize
= 0;
9803 if (!loop_mems
[i
].optimize
)
9804 /* We thought we were going to lift this MEM out of the
9805 loop, but later discovered that we could not. */
9808 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
9809 order to keep scan_loop from moving stores to this MEM
9810 out of the loop just because this REG is neither a
9811 user-variable nor used in the loop test. */
9812 reg
= gen_reg_rtx (GET_MODE (mem
));
9813 REG_USERVAR_P (reg
) = 1;
9814 loop_mems
[i
].reg
= reg
;
9816 /* Now, replace all references to the MEM with the
9817 corresponding pesudos. */
9818 for (p
= next_insn_in_loop (scan_start
, scan_start
, end
, loop_top
);
9820 p
= next_insn_in_loop (p
, scan_start
, end
, loop_top
))
9825 for_each_rtx (&p
, replace_loop_mem
, &ri
);
9828 if (!apply_change_group ())
9829 /* We couldn't replace all occurrences of the MEM. */
9830 loop_mems
[i
].optimize
= 0;
9835 /* Load the memory immediately before START, which is
9836 the NOTE_LOOP_BEG. */
9837 set
= gen_move_insn (reg
, mem
);
9838 emit_insn_before (set
, start
);
9842 if (label
== NULL_RTX
)
9844 /* We must compute the former
9845 right-after-the-end label before we insert
9847 end_label
= next_label (end
);
9848 label
= gen_label_rtx ();
9849 emit_label_after (label
, end
);
9852 /* Store the memory immediately after END, which is
9853 the NOTE_LOOP_END. */
9854 set
= gen_move_insn (copy_rtx (mem
), reg
);
9855 emit_insn_after (set
, label
);
9858 if (loop_dump_stream
)
9860 fprintf (loop_dump_stream
, "Hoisted regno %d %s from ",
9861 REGNO (reg
), (written
? "r/w" : "r/o"));
9862 print_rtl (loop_dump_stream
, mem
);
9863 fputc ('\n', loop_dump_stream
);
9869 if (label
!= NULL_RTX
)
9871 /* Now, we need to replace all references to the previous exit
9872 label with the new one. */
9877 for (p
= start
; p
!= end
; p
= NEXT_INSN (p
))
9879 for_each_rtx (&p
, replace_label
, &rr
);
9881 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
9882 field. This is not handled by for_each_rtx because it doesn't
9883 handle unprinted ('0') fields. We need to update JUMP_LABEL
9884 because the immediately following unroll pass will use it.
9885 replace_label would not work anyways, because that only handles
9887 if (GET_CODE (p
) == JUMP_INSN
&& JUMP_LABEL (p
) == end_label
)
9888 JUMP_LABEL (p
) = label
;
9893 /* Replace MEM with its associated pseudo register. This function is
9894 called from load_mems via for_each_rtx. DATA is actually an
9895 rtx_and_int * describing the instruction currently being scanned
9896 and the MEM we are currently replacing. */
9899 replace_loop_mem (mem
, data
)
9911 switch (GET_CODE (m
))
9917 /* We're not interested in the MEM associated with a
9918 CONST_DOUBLE, so there's no need to traverse into one. */
9922 /* This is not a MEM. */
9926 ri
= (rtx_and_int
*) data
;
9929 if (!rtx_equal_p (loop_mems
[i
].mem
, m
))
9930 /* This is not the MEM we are currently replacing. */
9935 /* Actually replace the MEM. */
9936 validate_change (insn
, mem
, loop_mems
[i
].reg
, 1);
9941 /* Replace occurrences of the old exit label for the loop with the new
9942 one. DATA is an rtx_pair containing the old and new labels,
9946 replace_label (x
, data
)
9951 rtx old_label
= ((rtx_pair
*) data
)->r1
;
9952 rtx new_label
= ((rtx_pair
*) data
)->r2
;
9957 if (GET_CODE (l
) != LABEL_REF
)
9960 if (XEXP (l
, 0) != old_label
)
9963 XEXP (l
, 0) = new_label
;
9964 ++LABEL_NUSES (new_label
);
9965 --LABEL_NUSES (old_label
);