gcc:
[official-gcc.git] / gcc / tree-ssa-dce.c
blob9597b57393904d0f9f84551fb92f7d73e39d4ef4
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* Dead code elimination.
26 References:
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
51 #include "tree.h"
52 #include "tree-pretty-print.h"
53 #include "gimple-pretty-print.h"
54 #include "basic-block.h"
55 #include "tree-flow.h"
56 #include "gimple.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "flags.h"
61 #include "cfgloop.h"
62 #include "tree-scalar-evolution.h"
64 static struct stmt_stats
66 int total;
67 int total_phis;
68 int removed;
69 int removed_phis;
70 } stats;
72 #define STMT_NECESSARY GF_PLF_1
74 static VEC(gimple,heap) *worklist;
76 /* Vector indicating an SSA name has already been processed and marked
77 as necessary. */
78 static sbitmap processed;
80 /* Vector indicating that the last statement of a basic block has already
81 been marked as necessary. */
82 static sbitmap last_stmt_necessary;
84 /* Vector indicating that BB contains statements that are live. */
85 static sbitmap bb_contains_live_stmts;
87 /* Before we can determine whether a control branch is dead, we need to
88 compute which blocks are control dependent on which edges.
90 We expect each block to be control dependent on very few edges so we
91 use a bitmap for each block recording its edges. An array holds the
92 bitmap. The Ith bit in the bitmap is set if that block is dependent
93 on the Ith edge. */
94 static bitmap *control_dependence_map;
96 /* Vector indicating that a basic block has already had all the edges
97 processed that it is control dependent on. */
98 static sbitmap visited_control_parents;
100 /* TRUE if this pass alters the CFG (by removing control statements).
101 FALSE otherwise.
103 If this pass alters the CFG, then it will arrange for the dominators
104 to be recomputed. */
105 static bool cfg_altered;
107 /* Execute code that follows the macro for each edge (given number
108 EDGE_NUMBER within the CODE) for which the block with index N is
109 control dependent. */
110 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
111 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
112 (EDGE_NUMBER), (BI))
115 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
116 static inline void
117 set_control_dependence_map_bit (basic_block bb, int edge_index)
119 if (bb == ENTRY_BLOCK_PTR)
120 return;
121 gcc_assert (bb != EXIT_BLOCK_PTR);
122 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
125 /* Clear all control dependences for block BB. */
126 static inline void
127 clear_control_dependence_bitmap (basic_block bb)
129 bitmap_clear (control_dependence_map[bb->index]);
133 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
134 This function is necessary because some blocks have negative numbers. */
136 static inline basic_block
137 find_pdom (basic_block block)
139 gcc_assert (block != ENTRY_BLOCK_PTR);
141 if (block == EXIT_BLOCK_PTR)
142 return EXIT_BLOCK_PTR;
143 else
145 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
146 if (! bb)
147 return EXIT_BLOCK_PTR;
148 return bb;
153 /* Determine all blocks' control dependences on the given edge with edge_list
154 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
156 static void
157 find_control_dependence (struct edge_list *el, int edge_index)
159 basic_block current_block;
160 basic_block ending_block;
162 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
164 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
165 ending_block = single_succ (ENTRY_BLOCK_PTR);
166 else
167 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
169 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
170 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
171 current_block = find_pdom (current_block))
173 edge e = INDEX_EDGE (el, edge_index);
175 /* For abnormal edges, we don't make current_block control
176 dependent because instructions that throw are always necessary
177 anyway. */
178 if (e->flags & EDGE_ABNORMAL)
179 continue;
181 set_control_dependence_map_bit (current_block, edge_index);
186 /* Record all blocks' control dependences on all edges in the edge
187 list EL, ala Morgan, Section 3.6. */
189 static void
190 find_all_control_dependences (struct edge_list *el)
192 int i;
194 for (i = 0; i < NUM_EDGES (el); ++i)
195 find_control_dependence (el, i);
198 /* If STMT is not already marked necessary, mark it, and add it to the
199 worklist if ADD_TO_WORKLIST is true. */
201 static inline void
202 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
204 gcc_assert (stmt);
206 if (gimple_plf (stmt, STMT_NECESSARY))
207 return;
209 if (dump_file && (dump_flags & TDF_DETAILS))
211 fprintf (dump_file, "Marking useful stmt: ");
212 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
213 fprintf (dump_file, "\n");
216 gimple_set_plf (stmt, STMT_NECESSARY, true);
217 if (add_to_worklist)
218 VEC_safe_push (gimple, heap, worklist, stmt);
219 if (bb_contains_live_stmts && !is_gimple_debug (stmt))
220 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
224 /* Mark the statement defining operand OP as necessary. */
226 static inline void
227 mark_operand_necessary (tree op)
229 gimple stmt;
230 int ver;
232 gcc_assert (op);
234 ver = SSA_NAME_VERSION (op);
235 if (TEST_BIT (processed, ver))
237 stmt = SSA_NAME_DEF_STMT (op);
238 gcc_assert (gimple_nop_p (stmt)
239 || gimple_plf (stmt, STMT_NECESSARY));
240 return;
242 SET_BIT (processed, ver);
244 stmt = SSA_NAME_DEF_STMT (op);
245 gcc_assert (stmt);
247 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
248 return;
250 if (dump_file && (dump_flags & TDF_DETAILS))
252 fprintf (dump_file, "marking necessary through ");
253 print_generic_expr (dump_file, op, 0);
254 fprintf (dump_file, " stmt ");
255 print_gimple_stmt (dump_file, stmt, 0, 0);
258 gimple_set_plf (stmt, STMT_NECESSARY, true);
259 if (bb_contains_live_stmts)
260 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
261 VEC_safe_push (gimple, heap, worklist, stmt);
265 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
266 it can make other statements necessary.
268 If AGGRESSIVE is false, control statements are conservatively marked as
269 necessary. */
271 static void
272 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
274 /* With non-call exceptions, we have to assume that all statements could
275 throw. If a statement may throw, it is inherently necessary. */
276 if (cfun->can_throw_non_call_exceptions && stmt_could_throw_p (stmt))
278 mark_stmt_necessary (stmt, true);
279 return;
282 /* Statements that are implicitly live. Most function calls, asm
283 and return statements are required. Labels and GIMPLE_BIND nodes
284 are kept because they are control flow, and we have no way of
285 knowing whether they can be removed. DCE can eliminate all the
286 other statements in a block, and CFG can then remove the block
287 and labels. */
288 switch (gimple_code (stmt))
290 case GIMPLE_PREDICT:
291 case GIMPLE_LABEL:
292 mark_stmt_necessary (stmt, false);
293 return;
295 case GIMPLE_ASM:
296 case GIMPLE_RESX:
297 case GIMPLE_RETURN:
298 mark_stmt_necessary (stmt, true);
299 return;
301 case GIMPLE_CALL:
302 /* Most, but not all function calls are required. Function calls that
303 produce no result and have no side effects (i.e. const pure
304 functions) are unnecessary. */
305 if (gimple_has_side_effects (stmt))
307 mark_stmt_necessary (stmt, true);
308 return;
310 if (!gimple_call_lhs (stmt))
311 return;
312 break;
314 case GIMPLE_DEBUG:
315 /* Debug temps without a value are not useful. ??? If we could
316 easily locate the debug temp bind stmt for a use thereof,
317 would could refrain from marking all debug temps here, and
318 mark them only if they're used. */
319 if (!gimple_debug_bind_p (stmt)
320 || gimple_debug_bind_has_value_p (stmt)
321 || TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
322 mark_stmt_necessary (stmt, false);
323 return;
325 case GIMPLE_GOTO:
326 gcc_assert (!simple_goto_p (stmt));
327 mark_stmt_necessary (stmt, true);
328 return;
330 case GIMPLE_COND:
331 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
332 /* Fall through. */
334 case GIMPLE_SWITCH:
335 if (! aggressive)
336 mark_stmt_necessary (stmt, true);
337 break;
339 default:
340 break;
343 /* If the statement has volatile operands, it needs to be preserved.
344 Same for statements that can alter control flow in unpredictable
345 ways. */
346 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
348 mark_stmt_necessary (stmt, true);
349 return;
352 if (is_hidden_global_store (stmt))
354 mark_stmt_necessary (stmt, true);
355 return;
358 return;
362 /* Mark the last statement of BB as necessary. */
364 static void
365 mark_last_stmt_necessary (basic_block bb)
367 gimple stmt = last_stmt (bb);
369 SET_BIT (last_stmt_necessary, bb->index);
370 SET_BIT (bb_contains_live_stmts, bb->index);
372 /* We actually mark the statement only if it is a control statement. */
373 if (stmt && is_ctrl_stmt (stmt))
374 mark_stmt_necessary (stmt, true);
378 /* Mark control dependent edges of BB as necessary. We have to do this only
379 once for each basic block so we set the appropriate bit after we're done.
381 When IGNORE_SELF is true, ignore BB in the list of control dependences. */
383 static void
384 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el,
385 bool ignore_self)
387 bitmap_iterator bi;
388 unsigned edge_number;
389 bool skipped = false;
391 gcc_assert (bb != EXIT_BLOCK_PTR);
393 if (bb == ENTRY_BLOCK_PTR)
394 return;
396 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
398 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
400 if (ignore_self && cd_bb == bb)
402 skipped = true;
403 continue;
406 if (!TEST_BIT (last_stmt_necessary, cd_bb->index))
407 mark_last_stmt_necessary (cd_bb);
410 if (!skipped)
411 SET_BIT (visited_control_parents, bb->index);
415 /* Find obviously necessary statements. These are things like most function
416 calls, and stores to file level variables.
418 If EL is NULL, control statements are conservatively marked as
419 necessary. Otherwise it contains the list of edges used by control
420 dependence analysis. */
422 static void
423 find_obviously_necessary_stmts (struct edge_list *el)
425 basic_block bb;
426 gimple_stmt_iterator gsi;
427 edge e;
428 gimple phi, stmt;
429 int flags;
431 FOR_EACH_BB (bb)
433 /* PHI nodes are never inherently necessary. */
434 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
436 phi = gsi_stmt (gsi);
437 gimple_set_plf (phi, STMT_NECESSARY, false);
440 /* Check all statements in the block. */
441 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
443 stmt = gsi_stmt (gsi);
444 gimple_set_plf (stmt, STMT_NECESSARY, false);
445 mark_stmt_if_obviously_necessary (stmt, el != NULL);
449 /* Pure and const functions are finite and thus have no infinite loops in
450 them. */
451 flags = flags_from_decl_or_type (current_function_decl);
452 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
453 return;
455 /* Prevent the empty possibly infinite loops from being removed. */
456 if (el)
458 loop_iterator li;
459 struct loop *loop;
460 scev_initialize ();
461 if (mark_irreducible_loops ())
462 FOR_EACH_BB (bb)
464 edge_iterator ei;
465 FOR_EACH_EDGE (e, ei, bb->succs)
466 if ((e->flags & EDGE_DFS_BACK)
467 && (e->flags & EDGE_IRREDUCIBLE_LOOP))
469 if (dump_file)
470 fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
471 e->src->index, e->dest->index);
472 mark_control_dependent_edges_necessary (e->dest, el, false);
476 FOR_EACH_LOOP (li, loop, 0)
477 if (!finite_loop_p (loop))
479 if (dump_file)
480 fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
481 mark_control_dependent_edges_necessary (loop->latch, el, false);
483 scev_finalize ();
488 /* Return true if REF is based on an aliased base, otherwise false. */
490 static bool
491 ref_may_be_aliased (tree ref)
493 while (handled_component_p (ref))
494 ref = TREE_OPERAND (ref, 0);
495 if (TREE_CODE (ref) == MEM_REF
496 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
497 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
498 return !(DECL_P (ref)
499 && !may_be_aliased (ref));
502 static bitmap visited = NULL;
503 static unsigned int longest_chain = 0;
504 static unsigned int total_chain = 0;
505 static unsigned int nr_walks = 0;
506 static bool chain_ovfl = false;
508 /* Worker for the walker that marks reaching definitions of REF,
509 which is based on a non-aliased decl, necessary. It returns
510 true whenever the defining statement of the current VDEF is
511 a kill for REF, as no dominating may-defs are necessary for REF
512 anymore. DATA points to the basic-block that contains the
513 stmt that refers to REF. */
515 static bool
516 mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
518 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
520 /* All stmts we visit are necessary. */
521 mark_operand_necessary (vdef);
523 /* If the stmt lhs kills ref, then we can stop walking. */
524 if (gimple_has_lhs (def_stmt)
525 && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME
526 /* The assignment is not necessarily carried out if it can throw
527 and we can catch it in the current function where we could inspect
528 the previous value.
529 ??? We only need to care about the RHS throwing. For aggregate
530 assignments or similar calls and non-call exceptions the LHS
531 might throw as well. */
532 && !stmt_can_throw_internal (def_stmt))
534 tree base, lhs = gimple_get_lhs (def_stmt);
535 HOST_WIDE_INT size, offset, max_size;
536 ao_ref_base (ref);
537 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
538 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
539 so base == refd->base does not always hold. */
540 if (base == ref->base)
542 /* For a must-alias check we need to be able to constrain
543 the accesses properly. */
544 if (size != -1 && size == max_size
545 && ref->max_size != -1)
547 if (offset <= ref->offset
548 && offset + size >= ref->offset + ref->max_size)
549 return true;
551 /* Or they need to be exactly the same. */
552 else if (ref->ref
553 /* Make sure there is no induction variable involved
554 in the references (gcc.c-torture/execute/pr42142.c).
555 The simplest way is to check if the kill dominates
556 the use. */
557 && dominated_by_p (CDI_DOMINATORS, (basic_block) data,
558 gimple_bb (def_stmt))
559 && operand_equal_p (ref->ref, lhs, 0))
560 return true;
564 /* Otherwise keep walking. */
565 return false;
568 static void
569 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
571 unsigned int chain;
572 ao_ref refd;
573 gcc_assert (!chain_ovfl);
574 ao_ref_init (&refd, ref);
575 chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
576 mark_aliased_reaching_defs_necessary_1,
577 gimple_bb (stmt), NULL);
578 if (chain > longest_chain)
579 longest_chain = chain;
580 total_chain += chain;
581 nr_walks++;
584 /* Worker for the walker that marks reaching definitions of REF, which
585 is not based on a non-aliased decl. For simplicity we need to end
586 up marking all may-defs necessary that are not based on a non-aliased
587 decl. The only job of this walker is to skip may-defs based on
588 a non-aliased decl. */
590 static bool
591 mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
592 tree vdef, void *data ATTRIBUTE_UNUSED)
594 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
596 /* We have to skip already visited (and thus necessary) statements
597 to make the chaining work after we dropped back to simple mode. */
598 if (chain_ovfl
599 && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
601 gcc_assert (gimple_nop_p (def_stmt)
602 || gimple_plf (def_stmt, STMT_NECESSARY));
603 return false;
606 /* We want to skip stores to non-aliased variables. */
607 if (!chain_ovfl
608 && gimple_assign_single_p (def_stmt))
610 tree lhs = gimple_assign_lhs (def_stmt);
611 if (!ref_may_be_aliased (lhs))
612 return false;
615 mark_operand_necessary (vdef);
617 return false;
620 static void
621 mark_all_reaching_defs_necessary (gimple stmt)
623 walk_aliased_vdefs (NULL, gimple_vuse (stmt),
624 mark_all_reaching_defs_necessary_1, NULL, &visited);
627 /* Return true for PHI nodes with one or identical arguments
628 can be removed. */
629 static bool
630 degenerate_phi_p (gimple phi)
632 unsigned int i;
633 tree op = gimple_phi_arg_def (phi, 0);
634 for (i = 1; i < gimple_phi_num_args (phi); i++)
635 if (gimple_phi_arg_def (phi, i) != op)
636 return false;
637 return true;
640 /* Propagate necessity using the operands of necessary statements.
641 Process the uses on each statement in the worklist, and add all
642 feeding statements which contribute to the calculation of this
643 value to the worklist.
645 In conservative mode, EL is NULL. */
647 static void
648 propagate_necessity (struct edge_list *el)
650 gimple stmt;
651 bool aggressive = (el ? true : false);
653 if (dump_file && (dump_flags & TDF_DETAILS))
654 fprintf (dump_file, "\nProcessing worklist:\n");
656 while (VEC_length (gimple, worklist) > 0)
658 /* Take STMT from worklist. */
659 stmt = VEC_pop (gimple, worklist);
661 if (dump_file && (dump_flags & TDF_DETAILS))
663 fprintf (dump_file, "processing: ");
664 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
665 fprintf (dump_file, "\n");
668 if (aggressive)
670 /* Mark the last statement of the basic blocks on which the block
671 containing STMT is control dependent, but only if we haven't
672 already done so. */
673 basic_block bb = gimple_bb (stmt);
674 if (bb != ENTRY_BLOCK_PTR
675 && !TEST_BIT (visited_control_parents, bb->index))
676 mark_control_dependent_edges_necessary (bb, el, false);
679 if (gimple_code (stmt) == GIMPLE_PHI
680 /* We do not process virtual PHI nodes nor do we track their
681 necessity. */
682 && is_gimple_reg (gimple_phi_result (stmt)))
684 /* PHI nodes are somewhat special in that each PHI alternative has
685 data and control dependencies. All the statements feeding the
686 PHI node's arguments are always necessary. In aggressive mode,
687 we also consider the control dependent edges leading to the
688 predecessor block associated with each PHI alternative as
689 necessary. */
690 size_t k;
692 for (k = 0; k < gimple_phi_num_args (stmt); k++)
694 tree arg = PHI_ARG_DEF (stmt, k);
695 if (TREE_CODE (arg) == SSA_NAME)
696 mark_operand_necessary (arg);
699 /* For PHI operands it matters from where the control flow arrives
700 to the BB. Consider the following example:
702 a=exp1;
703 b=exp2;
704 if (test)
706 else
708 c=PHI(a,b)
710 We need to mark control dependence of the empty basic blocks, since they
711 contains computation of PHI operands.
713 Doing so is too restrictive in the case the predecestor block is in
714 the loop. Consider:
716 if (b)
718 int i;
719 for (i = 0; i<1000; ++i)
721 j = 0;
723 return j;
725 There is PHI for J in the BB containing return statement.
726 In this case the control dependence of predecestor block (that is
727 within the empty loop) also contains the block determining number
728 of iterations of the block that would prevent removing of empty
729 loop in this case.
731 This scenario can be avoided by splitting critical edges.
732 To save the critical edge splitting pass we identify how the control
733 dependence would look like if the edge was split.
735 Consider the modified CFG created from current CFG by splitting
736 edge B->C. In the postdominance tree of modified CFG, C' is
737 always child of C. There are two cases how chlids of C' can look
738 like:
740 1) C' is leaf
742 In this case the only basic block C' is control dependent on is B.
744 2) C' has single child that is B
746 In this case control dependence of C' is same as control
747 dependence of B in original CFG except for block B itself.
748 (since C' postdominate B in modified CFG)
750 Now how to decide what case happens? There are two basic options:
752 a) C postdominate B. Then C immediately postdominate B and
753 case 2 happens iff there is no other way from B to C except
754 the edge B->C.
756 There is other way from B to C iff there is succesor of B that
757 is not postdominated by B. Testing this condition is somewhat
758 expensive, because we need to iterate all succesors of B.
759 We are safe to assume that this does not happen: we will mark B
760 as needed when processing the other path from B to C that is
761 conrol dependent on B and marking control dependencies of B
762 itself is harmless because they will be processed anyway after
763 processing control statement in B.
765 b) C does not postdominate B. Always case 1 happens since there is
766 path from C to exit that does not go through B and thus also C'. */
768 if (aggressive && !degenerate_phi_p (stmt))
770 for (k = 0; k < gimple_phi_num_args (stmt); k++)
772 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
774 if (gimple_bb (stmt)
775 != get_immediate_dominator (CDI_POST_DOMINATORS, arg_bb))
777 if (!TEST_BIT (last_stmt_necessary, arg_bb->index))
778 mark_last_stmt_necessary (arg_bb);
780 else if (arg_bb != ENTRY_BLOCK_PTR
781 && !TEST_BIT (visited_control_parents,
782 arg_bb->index))
783 mark_control_dependent_edges_necessary (arg_bb, el, true);
787 else
789 /* Propagate through the operands. Examine all the USE, VUSE and
790 VDEF operands in this statement. Mark all the statements
791 which feed this statement's uses as necessary. */
792 ssa_op_iter iter;
793 tree use;
795 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
796 mark_operand_necessary (use);
798 use = gimple_vuse (stmt);
799 if (!use)
800 continue;
802 /* If we dropped to simple mode make all immediately
803 reachable definitions necessary. */
804 if (chain_ovfl)
806 mark_all_reaching_defs_necessary (stmt);
807 continue;
810 /* For statements that may load from memory (have a VUSE) we
811 have to mark all reaching (may-)definitions as necessary.
812 We partition this task into two cases:
813 1) explicit loads based on decls that are not aliased
814 2) implicit loads (like calls) and explicit loads not
815 based on decls that are not aliased (like indirect
816 references or loads from globals)
817 For 1) we mark all reaching may-defs as necessary, stopping
818 at dominating kills. For 2) we want to mark all dominating
819 references necessary, but non-aliased ones which we handle
820 in 1). By keeping a global visited bitmap for references
821 we walk for 2) we avoid quadratic behavior for those. */
823 if (is_gimple_call (stmt))
825 tree callee = gimple_call_fndecl (stmt);
826 unsigned i;
828 /* Calls to functions that are merely acting as barriers
829 or that only store to memory do not make any previous
830 stores necessary. */
831 if (callee != NULL_TREE
832 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
833 && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
834 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET_CHK
835 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
836 || DECL_FUNCTION_CODE (callee) == BUILT_IN_CALLOC
837 || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE
838 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
839 || DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE
840 || DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE
841 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ASSUME_ALIGNED))
842 continue;
844 /* Calls implicitly load from memory, their arguments
845 in addition may explicitly perform memory loads. */
846 mark_all_reaching_defs_necessary (stmt);
847 for (i = 0; i < gimple_call_num_args (stmt); ++i)
849 tree arg = gimple_call_arg (stmt, i);
850 if (TREE_CODE (arg) == SSA_NAME
851 || is_gimple_min_invariant (arg))
852 continue;
853 if (!ref_may_be_aliased (arg))
854 mark_aliased_reaching_defs_necessary (stmt, arg);
857 else if (gimple_assign_single_p (stmt))
859 tree rhs;
860 bool rhs_aliased = false;
861 /* If this is a load mark things necessary. */
862 rhs = gimple_assign_rhs1 (stmt);
863 if (TREE_CODE (rhs) != SSA_NAME
864 && !is_gimple_min_invariant (rhs))
866 if (!ref_may_be_aliased (rhs))
867 mark_aliased_reaching_defs_necessary (stmt, rhs);
868 else
869 rhs_aliased = true;
871 if (rhs_aliased)
872 mark_all_reaching_defs_necessary (stmt);
874 else if (gimple_code (stmt) == GIMPLE_RETURN)
876 tree rhs = gimple_return_retval (stmt);
877 /* A return statement may perform a load. */
878 if (rhs
879 && TREE_CODE (rhs) != SSA_NAME
880 && !is_gimple_min_invariant (rhs))
882 if (!ref_may_be_aliased (rhs))
883 mark_aliased_reaching_defs_necessary (stmt, rhs);
884 else
885 mark_all_reaching_defs_necessary (stmt);
888 else if (gimple_code (stmt) == GIMPLE_ASM)
890 unsigned i;
891 mark_all_reaching_defs_necessary (stmt);
892 /* Inputs may perform loads. */
893 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
895 tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
896 if (TREE_CODE (op) != SSA_NAME
897 && !is_gimple_min_invariant (op)
898 && !ref_may_be_aliased (op))
899 mark_aliased_reaching_defs_necessary (stmt, op);
902 else
903 gcc_unreachable ();
905 /* If we over-used our alias oracle budget drop to simple
906 mode. The cost metric allows quadratic behavior
907 (number of uses times number of may-defs queries) up to
908 a constant maximal number of queries and after that falls back to
909 super-linear complexity. */
910 if (/* Constant but quadratic for small functions. */
911 total_chain > 128 * 128
912 /* Linear in the number of may-defs. */
913 && total_chain > 32 * longest_chain
914 /* Linear in the number of uses. */
915 && total_chain > nr_walks * 32)
917 chain_ovfl = true;
918 if (visited)
919 bitmap_clear (visited);
925 /* Replace all uses of result of PHI by underlying variable and mark it
926 for renaming. */
928 void
929 mark_virtual_phi_result_for_renaming (gimple phi)
931 bool used = false;
932 imm_use_iterator iter;
933 use_operand_p use_p;
934 gimple stmt;
935 tree result_ssa, result_var;
937 if (dump_file && (dump_flags & TDF_DETAILS))
939 fprintf (dump_file, "Marking result for renaming : ");
940 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
941 fprintf (dump_file, "\n");
944 result_ssa = gimple_phi_result (phi);
945 result_var = SSA_NAME_VAR (result_ssa);
946 FOR_EACH_IMM_USE_STMT (stmt, iter, result_ssa)
948 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
949 SET_USE (use_p, result_var);
950 update_stmt (stmt);
951 used = true;
953 if (used)
954 mark_sym_for_renaming (result_var);
957 /* Remove dead PHI nodes from block BB. */
959 static bool
960 remove_dead_phis (basic_block bb)
962 bool something_changed = false;
963 gimple_seq phis;
964 gimple phi;
965 gimple_stmt_iterator gsi;
966 phis = phi_nodes (bb);
968 for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
970 stats.total_phis++;
971 phi = gsi_stmt (gsi);
973 /* We do not track necessity of virtual PHI nodes. Instead do
974 very simple dead PHI removal here. */
975 if (!is_gimple_reg (gimple_phi_result (phi)))
977 /* Virtual PHI nodes with one or identical arguments
978 can be removed. */
979 if (degenerate_phi_p (phi))
981 tree vdef = gimple_phi_result (phi);
982 tree vuse = gimple_phi_arg_def (phi, 0);
984 use_operand_p use_p;
985 imm_use_iterator iter;
986 gimple use_stmt;
987 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
988 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
989 SET_USE (use_p, vuse);
990 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
991 && TREE_CODE (vuse) == SSA_NAME)
992 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
994 else
995 gimple_set_plf (phi, STMT_NECESSARY, true);
998 if (!gimple_plf (phi, STMT_NECESSARY))
1000 something_changed = true;
1001 if (dump_file && (dump_flags & TDF_DETAILS))
1003 fprintf (dump_file, "Deleting : ");
1004 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
1005 fprintf (dump_file, "\n");
1008 remove_phi_node (&gsi, true);
1009 stats.removed_phis++;
1010 continue;
1013 gsi_next (&gsi);
1015 return something_changed;
1018 /* Forward edge E to respective POST_DOM_BB and update PHIs. */
1020 static edge
1021 forward_edge_to_pdom (edge e, basic_block post_dom_bb)
1023 gimple_stmt_iterator gsi;
1024 edge e2 = NULL;
1025 edge_iterator ei;
1027 if (dump_file && (dump_flags & TDF_DETAILS))
1028 fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
1029 e->dest->index, post_dom_bb->index);
1031 e2 = redirect_edge_and_branch (e, post_dom_bb);
1032 cfg_altered = true;
1034 /* If edge was already around, no updating is neccesary. */
1035 if (e2 != e)
1036 return e2;
1038 if (!gimple_seq_empty_p (phi_nodes (post_dom_bb)))
1040 /* We are sure that for every live PHI we are seeing control dependent BB.
1041 This means that we can pick any edge to duplicate PHI args from. */
1042 FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
1043 if (e2 != e)
1044 break;
1045 for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
1047 gimple phi = gsi_stmt (gsi);
1048 tree op;
1049 source_location locus;
1051 /* PHIs for virtuals have no control dependency relation on them.
1052 We are lost here and must force renaming of the symbol. */
1053 if (!is_gimple_reg (gimple_phi_result (phi)))
1055 mark_virtual_phi_result_for_renaming (phi);
1056 remove_phi_node (&gsi, true);
1057 continue;
1060 /* Dead PHI do not imply control dependency. */
1061 if (!gimple_plf (phi, STMT_NECESSARY))
1063 gsi_next (&gsi);
1064 continue;
1067 op = gimple_phi_arg_def (phi, e2->dest_idx);
1068 locus = gimple_phi_arg_location (phi, e2->dest_idx);
1069 add_phi_arg (phi, op, e, locus);
1070 /* The resulting PHI if not dead can only be degenerate. */
1071 gcc_assert (degenerate_phi_p (phi));
1072 gsi_next (&gsi);
1075 return e;
1078 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
1079 containing I so that we don't have to look it up. */
1081 static void
1082 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
1084 gimple stmt = gsi_stmt (*i);
1086 if (dump_file && (dump_flags & TDF_DETAILS))
1088 fprintf (dump_file, "Deleting : ");
1089 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1090 fprintf (dump_file, "\n");
1093 stats.removed++;
1095 /* If we have determined that a conditional branch statement contributes
1096 nothing to the program, then we not only remove it, but we also change
1097 the flow graph so that the current block will simply fall-thru to its
1098 immediate post-dominator. The blocks we are circumventing will be
1099 removed by cleanup_tree_cfg if this change in the flow graph makes them
1100 unreachable. */
1101 if (is_ctrl_stmt (stmt))
1103 basic_block post_dom_bb;
1104 edge e, e2;
1105 edge_iterator ei;
1107 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1109 e = find_edge (bb, post_dom_bb);
1111 /* If edge is already there, try to use it. This avoids need to update
1112 PHI nodes. Also watch for cases where post dominator does not exists
1113 or is exit block. These can happen for infinite loops as we create
1114 fake edges in the dominator tree. */
1115 if (e)
1117 else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
1118 e = EDGE_SUCC (bb, 0);
1119 else
1120 e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
1121 gcc_assert (e);
1122 e->probability = REG_BR_PROB_BASE;
1123 e->count = bb->count;
1125 /* The edge is no longer associated with a conditional, so it does
1126 not have TRUE/FALSE flags. */
1127 e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
1129 /* The lone outgoing edge from BB will be a fallthru edge. */
1130 e->flags |= EDGE_FALLTHRU;
1132 /* Remove the remaining outgoing edges. */
1133 for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
1134 if (e != e2)
1136 cfg_altered = true;
1137 remove_edge (e2);
1139 else
1140 ei_next (&ei);
1143 unlink_stmt_vdef (stmt);
1144 gsi_remove (i, true);
1145 release_defs (stmt);
1148 /* Eliminate unnecessary statements. Any instruction not marked as necessary
1149 contributes nothing to the program, and can be deleted. */
1151 static bool
1152 eliminate_unnecessary_stmts (void)
1154 bool something_changed = false;
1155 basic_block bb;
1156 gimple_stmt_iterator gsi, psi;
1157 gimple stmt;
1158 tree call;
1159 VEC (basic_block, heap) *h;
1161 if (dump_file && (dump_flags & TDF_DETAILS))
1162 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
1164 clear_special_calls ();
1166 /* Walking basic blocks and statements in reverse order avoids
1167 releasing SSA names before any other DEFs that refer to them are
1168 released. This helps avoid loss of debug information, as we get
1169 a chance to propagate all RHSs of removed SSAs into debug uses,
1170 rather than only the latest ones. E.g., consider:
1172 x_3 = y_1 + z_2;
1173 a_5 = x_3 - b_4;
1174 # DEBUG a => a_5
1176 If we were to release x_3 before a_5, when we reached a_5 and
1177 tried to substitute it into the debug stmt, we'd see x_3 there,
1178 but x_3's DEF, type, etc would have already been disconnected.
1179 By going backwards, the debug stmt first changes to:
1181 # DEBUG a => x_3 - b_4
1183 and then to:
1185 # DEBUG a => y_1 + z_2 - b_4
1187 as desired. */
1188 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
1189 h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
1191 while (VEC_length (basic_block, h))
1193 bb = VEC_pop (basic_block, h);
1195 /* Remove dead statements. */
1196 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
1198 stmt = gsi_stmt (gsi);
1200 psi = gsi;
1201 gsi_prev (&psi);
1203 stats.total++;
1205 /* If GSI is not necessary then remove it. */
1206 if (!gimple_plf (stmt, STMT_NECESSARY))
1208 if (!is_gimple_debug (stmt))
1209 something_changed = true;
1210 remove_dead_stmt (&gsi, bb);
1212 else if (is_gimple_call (stmt))
1214 call = gimple_call_fndecl (stmt);
1215 if (call)
1217 tree name;
1219 /* When LHS of var = call (); is dead, simplify it into
1220 call (); saving one operand. */
1221 name = gimple_call_lhs (stmt);
1222 if (name && TREE_CODE (name) == SSA_NAME
1223 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
1225 something_changed = true;
1226 if (dump_file && (dump_flags & TDF_DETAILS))
1228 fprintf (dump_file, "Deleting LHS of call: ");
1229 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1230 fprintf (dump_file, "\n");
1233 gimple_call_set_lhs (stmt, NULL_TREE);
1234 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1235 update_stmt (stmt);
1236 release_ssa_name (name);
1238 notice_special_calls (stmt);
1244 VEC_free (basic_block, heap, h);
1246 /* Since we don't track liveness of virtual PHI nodes, it is possible that we
1247 rendered some PHI nodes unreachable while they are still in use.
1248 Mark them for renaming. */
1249 if (cfg_altered)
1251 basic_block prev_bb;
1253 find_unreachable_blocks ();
1255 /* Delete all unreachable basic blocks in reverse dominator order. */
1256 for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
1258 prev_bb = bb->prev_bb;
1260 if (!TEST_BIT (bb_contains_live_stmts, bb->index)
1261 || !(bb->flags & BB_REACHABLE))
1263 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1264 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1266 bool found = false;
1267 imm_use_iterator iter;
1269 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
1271 if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
1272 continue;
1273 if (gimple_code (stmt) == GIMPLE_PHI
1274 || gimple_plf (stmt, STMT_NECESSARY))
1276 found = true;
1277 BREAK_FROM_IMM_USE_STMT (iter);
1280 if (found)
1281 mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
1284 if (!(bb->flags & BB_REACHABLE))
1286 /* Speed up the removal of blocks that don't
1287 dominate others. Walking backwards, this should
1288 be the common case. ??? Do we need to recompute
1289 dominators because of cfg_altered? */
1290 if (!MAY_HAVE_DEBUG_STMTS
1291 || !first_dom_son (CDI_DOMINATORS, bb))
1292 delete_basic_block (bb);
1293 else
1295 h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
1297 while (VEC_length (basic_block, h))
1299 bb = VEC_pop (basic_block, h);
1300 prev_bb = bb->prev_bb;
1301 /* Rearrangements to the CFG may have failed
1302 to update the dominators tree, so that
1303 formerly-dominated blocks are now
1304 otherwise reachable. */
1305 if (!!(bb->flags & BB_REACHABLE))
1306 continue;
1307 delete_basic_block (bb);
1310 VEC_free (basic_block, heap, h);
1316 FOR_EACH_BB (bb)
1318 /* Remove dead PHI nodes. */
1319 something_changed |= remove_dead_phis (bb);
1322 return something_changed;
1326 /* Print out removed statement statistics. */
1328 static void
1329 print_stats (void)
1331 float percg;
1333 percg = ((float) stats.removed / (float) stats.total) * 100;
1334 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1335 stats.removed, stats.total, (int) percg);
1337 if (stats.total_phis == 0)
1338 percg = 0;
1339 else
1340 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1342 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1343 stats.removed_phis, stats.total_phis, (int) percg);
1346 /* Initialization for this pass. Set up the used data structures. */
1348 static void
1349 tree_dce_init (bool aggressive)
1351 memset ((void *) &stats, 0, sizeof (stats));
1353 if (aggressive)
1355 int i;
1357 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1358 for (i = 0; i < last_basic_block; ++i)
1359 control_dependence_map[i] = BITMAP_ALLOC (NULL);
1361 last_stmt_necessary = sbitmap_alloc (last_basic_block);
1362 sbitmap_zero (last_stmt_necessary);
1363 bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
1364 sbitmap_zero (bb_contains_live_stmts);
1367 processed = sbitmap_alloc (num_ssa_names + 1);
1368 sbitmap_zero (processed);
1370 worklist = VEC_alloc (gimple, heap, 64);
1371 cfg_altered = false;
1374 /* Cleanup after this pass. */
1376 static void
1377 tree_dce_done (bool aggressive)
1379 if (aggressive)
1381 int i;
1383 for (i = 0; i < last_basic_block; ++i)
1384 BITMAP_FREE (control_dependence_map[i]);
1385 free (control_dependence_map);
1387 sbitmap_free (visited_control_parents);
1388 sbitmap_free (last_stmt_necessary);
1389 sbitmap_free (bb_contains_live_stmts);
1390 bb_contains_live_stmts = NULL;
1393 sbitmap_free (processed);
1395 VEC_free (gimple, heap, worklist);
1398 /* Main routine to eliminate dead code.
1400 AGGRESSIVE controls the aggressiveness of the algorithm.
1401 In conservative mode, we ignore control dependence and simply declare
1402 all but the most trivially dead branches necessary. This mode is fast.
1403 In aggressive mode, control dependences are taken into account, which
1404 results in more dead code elimination, but at the cost of some time.
1406 FIXME: Aggressive mode before PRE doesn't work currently because
1407 the dominance info is not invalidated after DCE1. This is
1408 not an issue right now because we only run aggressive DCE
1409 as the last tree SSA pass, but keep this in mind when you
1410 start experimenting with pass ordering. */
1412 static unsigned int
1413 perform_tree_ssa_dce (bool aggressive)
1415 struct edge_list *el = NULL;
1416 bool something_changed = 0;
1418 calculate_dominance_info (CDI_DOMINATORS);
1420 /* Preheaders are needed for SCEV to work.
1421 Simple lateches and recorded exits improve chances that loop will
1422 proved to be finite in testcases such as in loop-15.c and loop-24.c */
1423 if (aggressive)
1424 loop_optimizer_init (LOOPS_NORMAL
1425 | LOOPS_HAVE_RECORDED_EXITS);
1427 tree_dce_init (aggressive);
1429 if (aggressive)
1431 /* Compute control dependence. */
1432 timevar_push (TV_CONTROL_DEPENDENCES);
1433 calculate_dominance_info (CDI_POST_DOMINATORS);
1434 el = create_edge_list ();
1435 find_all_control_dependences (el);
1436 timevar_pop (TV_CONTROL_DEPENDENCES);
1438 visited_control_parents = sbitmap_alloc (last_basic_block);
1439 sbitmap_zero (visited_control_parents);
1441 mark_dfs_back_edges ();
1444 find_obviously_necessary_stmts (el);
1446 if (aggressive)
1447 loop_optimizer_finalize ();
1449 longest_chain = 0;
1450 total_chain = 0;
1451 nr_walks = 0;
1452 chain_ovfl = false;
1453 visited = BITMAP_ALLOC (NULL);
1454 propagate_necessity (el);
1455 BITMAP_FREE (visited);
1457 something_changed |= eliminate_unnecessary_stmts ();
1458 something_changed |= cfg_altered;
1460 /* We do not update postdominators, so free them unconditionally. */
1461 free_dominance_info (CDI_POST_DOMINATORS);
1463 /* If we removed paths in the CFG, then we need to update
1464 dominators as well. I haven't investigated the possibility
1465 of incrementally updating dominators. */
1466 if (cfg_altered)
1467 free_dominance_info (CDI_DOMINATORS);
1469 statistics_counter_event (cfun, "Statements deleted", stats.removed);
1470 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1472 /* Debugging dumps. */
1473 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1474 print_stats ();
1476 tree_dce_done (aggressive);
1478 free_edge_list (el);
1480 if (something_changed)
1481 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1482 | TODO_remove_unused_locals);
1483 else
1484 return 0;
1487 /* Pass entry points. */
1488 static unsigned int
1489 tree_ssa_dce (void)
1491 return perform_tree_ssa_dce (/*aggressive=*/false);
1494 static unsigned int
1495 tree_ssa_dce_loop (void)
1497 unsigned int todo;
1498 todo = perform_tree_ssa_dce (/*aggressive=*/false);
1499 if (todo)
1501 free_numbers_of_iterations_estimates ();
1502 scev_reset ();
1504 return todo;
1507 static unsigned int
1508 tree_ssa_cd_dce (void)
1510 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1513 static bool
1514 gate_dce (void)
1516 return flag_tree_dce != 0;
1519 struct gimple_opt_pass pass_dce =
1522 GIMPLE_PASS,
1523 "dce", /* name */
1524 gate_dce, /* gate */
1525 tree_ssa_dce, /* execute */
1526 NULL, /* sub */
1527 NULL, /* next */
1528 0, /* static_pass_number */
1529 TV_TREE_DCE, /* tv_id */
1530 PROP_cfg | PROP_ssa, /* properties_required */
1531 0, /* properties_provided */
1532 0, /* properties_destroyed */
1533 0, /* todo_flags_start */
1534 TODO_verify_ssa /* todo_flags_finish */
1538 struct gimple_opt_pass pass_dce_loop =
1541 GIMPLE_PASS,
1542 "dceloop", /* name */
1543 gate_dce, /* gate */
1544 tree_ssa_dce_loop, /* execute */
1545 NULL, /* sub */
1546 NULL, /* next */
1547 0, /* static_pass_number */
1548 TV_TREE_DCE, /* tv_id */
1549 PROP_cfg | PROP_ssa, /* properties_required */
1550 0, /* properties_provided */
1551 0, /* properties_destroyed */
1552 0, /* todo_flags_start */
1553 TODO_verify_ssa /* todo_flags_finish */
1557 struct gimple_opt_pass pass_cd_dce =
1560 GIMPLE_PASS,
1561 "cddce", /* name */
1562 gate_dce, /* gate */
1563 tree_ssa_cd_dce, /* execute */
1564 NULL, /* sub */
1565 NULL, /* next */
1566 0, /* static_pass_number */
1567 TV_TREE_CD_DCE, /* tv_id */
1568 PROP_cfg | PROP_ssa, /* properties_required */
1569 0, /* properties_provided */
1570 0, /* properties_destroyed */
1571 0, /* todo_flags_start */
1572 TODO_verify_ssa
1573 | TODO_verify_flow /* todo_flags_finish */