gcc:
[official-gcc.git] / gcc / function.c
blob894930f75bb34fa76b55b74728d50ad4a371394e
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl-error.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "hashtab.h"
55 #include "ggc.h"
56 #include "tm_p.h"
57 #include "integrate.h"
58 #include "langhooks.h"
59 #include "target.h"
60 #include "common/common-target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
69 /* So we can assign to cfun in this file. */
70 #undef cfun
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
124 /* The currently compiled function. */
125 struct function *cfun = 0;
127 /* These hashes record the prologue and epilogue insns. */
128 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129 htab_t prologue_insn_hash;
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t epilogue_insn_hash;
134 htab_t types_used_by_vars_hash = NULL;
135 VEC(tree,gc) *types_used_by_cur_var_decl;
137 /* Forward declarations. */
139 static struct temp_slot *find_temp_slot_from_address (rtx);
140 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
141 static void pad_below (struct args_size *, enum machine_mode, tree);
142 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
143 static int all_blocks (tree, tree *);
144 static tree *get_block_vector (tree, int *);
145 extern tree debug_find_var_in_block_tree (tree, tree);
146 /* We always define `record_insns' even if it's not used so that we
147 can always export `prologue_epilogue_contains'. */
148 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
149 static bool contains (const_rtx, htab_t);
150 #ifdef HAVE_return
151 static void emit_return_into_block (basic_block);
152 #endif
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx, void *);
155 static void do_use_return_reg (rtx, void *);
156 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
161 typedef struct function *function_p;
163 DEF_VEC_P(function_p);
164 DEF_VEC_ALLOC_P(function_p,heap);
165 static VEC(function_p,heap) *function_context_stack;
167 /* Save the current context for compilation of a nested function.
168 This is called from language-specific code. */
170 void
171 push_function_context (void)
173 if (cfun == 0)
174 allocate_struct_function (NULL, false);
176 VEC_safe_push (function_p, heap, function_context_stack, cfun);
177 set_cfun (NULL);
180 /* Restore the last saved context, at the end of a nested function.
181 This function is called from language-specific code. */
183 void
184 pop_function_context (void)
186 struct function *p = VEC_pop (function_p, function_context_stack);
187 set_cfun (p);
188 current_function_decl = p->decl;
190 /* Reset variables that have known state during rtx generation. */
191 virtuals_instantiated = 0;
192 generating_concat_p = 1;
195 /* Clear out all parts of the state in F that can safely be discarded
196 after the function has been parsed, but not compiled, to let
197 garbage collection reclaim the memory. */
199 void
200 free_after_parsing (struct function *f)
202 f->language = 0;
205 /* Clear out all parts of the state in F that can safely be discarded
206 after the function has been compiled, to let garbage collection
207 reclaim the memory. */
209 void
210 free_after_compilation (struct function *f)
212 prologue_insn_hash = NULL;
213 epilogue_insn_hash = NULL;
215 free (crtl->emit.regno_pointer_align);
217 memset (crtl, 0, sizeof (struct rtl_data));
218 f->eh = NULL;
219 f->machine = NULL;
220 f->cfg = NULL;
222 regno_reg_rtx = NULL;
223 insn_locators_free ();
226 /* Return size needed for stack frame based on slots so far allocated.
227 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
228 the caller may have to do that. */
230 HOST_WIDE_INT
231 get_frame_size (void)
233 if (FRAME_GROWS_DOWNWARD)
234 return -frame_offset;
235 else
236 return frame_offset;
239 /* Issue an error message and return TRUE if frame OFFSET overflows in
240 the signed target pointer arithmetics for function FUNC. Otherwise
241 return FALSE. */
243 bool
244 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
246 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
248 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
249 /* Leave room for the fixed part of the frame. */
250 - 64 * UNITS_PER_WORD)
252 error_at (DECL_SOURCE_LOCATION (func),
253 "total size of local objects too large");
254 return TRUE;
257 return FALSE;
260 /* Return stack slot alignment in bits for TYPE and MODE. */
262 static unsigned int
263 get_stack_local_alignment (tree type, enum machine_mode mode)
265 unsigned int alignment;
267 if (mode == BLKmode)
268 alignment = BIGGEST_ALIGNMENT;
269 else
270 alignment = GET_MODE_ALIGNMENT (mode);
272 /* Allow the frond-end to (possibly) increase the alignment of this
273 stack slot. */
274 if (! type)
275 type = lang_hooks.types.type_for_mode (mode, 0);
277 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
280 /* Determine whether it is possible to fit a stack slot of size SIZE and
281 alignment ALIGNMENT into an area in the stack frame that starts at
282 frame offset START and has a length of LENGTH. If so, store the frame
283 offset to be used for the stack slot in *POFFSET and return true;
284 return false otherwise. This function will extend the frame size when
285 given a start/length pair that lies at the end of the frame. */
287 static bool
288 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
289 HOST_WIDE_INT size, unsigned int alignment,
290 HOST_WIDE_INT *poffset)
292 HOST_WIDE_INT this_frame_offset;
293 int frame_off, frame_alignment, frame_phase;
295 /* Calculate how many bytes the start of local variables is off from
296 stack alignment. */
297 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
298 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
299 frame_phase = frame_off ? frame_alignment - frame_off : 0;
301 /* Round the frame offset to the specified alignment. */
303 /* We must be careful here, since FRAME_OFFSET might be negative and
304 division with a negative dividend isn't as well defined as we might
305 like. So we instead assume that ALIGNMENT is a power of two and
306 use logical operations which are unambiguous. */
307 if (FRAME_GROWS_DOWNWARD)
308 this_frame_offset
309 = (FLOOR_ROUND (start + length - size - frame_phase,
310 (unsigned HOST_WIDE_INT) alignment)
311 + frame_phase);
312 else
313 this_frame_offset
314 = (CEIL_ROUND (start - frame_phase,
315 (unsigned HOST_WIDE_INT) alignment)
316 + frame_phase);
318 /* See if it fits. If this space is at the edge of the frame,
319 consider extending the frame to make it fit. Our caller relies on
320 this when allocating a new slot. */
321 if (frame_offset == start && this_frame_offset < frame_offset)
322 frame_offset = this_frame_offset;
323 else if (this_frame_offset < start)
324 return false;
325 else if (start + length == frame_offset
326 && this_frame_offset + size > start + length)
327 frame_offset = this_frame_offset + size;
328 else if (this_frame_offset + size > start + length)
329 return false;
331 *poffset = this_frame_offset;
332 return true;
335 /* Create a new frame_space structure describing free space in the stack
336 frame beginning at START and ending at END, and chain it into the
337 function's frame_space_list. */
339 static void
340 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
342 struct frame_space *space = ggc_alloc_frame_space ();
343 space->next = crtl->frame_space_list;
344 crtl->frame_space_list = space;
345 space->start = start;
346 space->length = end - start;
349 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
350 with machine mode MODE.
352 ALIGN controls the amount of alignment for the address of the slot:
353 0 means according to MODE,
354 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
355 -2 means use BITS_PER_UNIT,
356 positive specifies alignment boundary in bits.
358 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
359 alignment and ASLK_RECORD_PAD bit set if we should remember
360 extra space we allocated for alignment purposes. When we are
361 called from assign_stack_temp_for_type, it is not set so we don't
362 track the same stack slot in two independent lists.
364 We do not round to stack_boundary here. */
367 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
368 int align, int kind)
370 rtx x, addr;
371 int bigend_correction = 0;
372 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
373 unsigned int alignment, alignment_in_bits;
375 if (align == 0)
377 alignment = get_stack_local_alignment (NULL, mode);
378 alignment /= BITS_PER_UNIT;
380 else if (align == -1)
382 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
383 size = CEIL_ROUND (size, alignment);
385 else if (align == -2)
386 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
387 else
388 alignment = align / BITS_PER_UNIT;
390 alignment_in_bits = alignment * BITS_PER_UNIT;
392 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
393 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
395 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
396 alignment = alignment_in_bits / BITS_PER_UNIT;
399 if (SUPPORTS_STACK_ALIGNMENT)
401 if (crtl->stack_alignment_estimated < alignment_in_bits)
403 if (!crtl->stack_realign_processed)
404 crtl->stack_alignment_estimated = alignment_in_bits;
405 else
407 /* If stack is realigned and stack alignment value
408 hasn't been finalized, it is OK not to increase
409 stack_alignment_estimated. The bigger alignment
410 requirement is recorded in stack_alignment_needed
411 below. */
412 gcc_assert (!crtl->stack_realign_finalized);
413 if (!crtl->stack_realign_needed)
415 /* It is OK to reduce the alignment as long as the
416 requested size is 0 or the estimated stack
417 alignment >= mode alignment. */
418 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
419 || size == 0
420 || (crtl->stack_alignment_estimated
421 >= GET_MODE_ALIGNMENT (mode)));
422 alignment_in_bits = crtl->stack_alignment_estimated;
423 alignment = alignment_in_bits / BITS_PER_UNIT;
429 if (crtl->stack_alignment_needed < alignment_in_bits)
430 crtl->stack_alignment_needed = alignment_in_bits;
431 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
432 crtl->max_used_stack_slot_alignment = alignment_in_bits;
434 if (mode != BLKmode || size != 0)
436 if (kind & ASLK_RECORD_PAD)
438 struct frame_space **psp;
440 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
442 struct frame_space *space = *psp;
443 if (!try_fit_stack_local (space->start, space->length, size,
444 alignment, &slot_offset))
445 continue;
446 *psp = space->next;
447 if (slot_offset > space->start)
448 add_frame_space (space->start, slot_offset);
449 if (slot_offset + size < space->start + space->length)
450 add_frame_space (slot_offset + size,
451 space->start + space->length);
452 goto found_space;
456 else if (!STACK_ALIGNMENT_NEEDED)
458 slot_offset = frame_offset;
459 goto found_space;
462 old_frame_offset = frame_offset;
464 if (FRAME_GROWS_DOWNWARD)
466 frame_offset -= size;
467 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
469 if (kind & ASLK_RECORD_PAD)
471 if (slot_offset > frame_offset)
472 add_frame_space (frame_offset, slot_offset);
473 if (slot_offset + size < old_frame_offset)
474 add_frame_space (slot_offset + size, old_frame_offset);
477 else
479 frame_offset += size;
480 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
482 if (kind & ASLK_RECORD_PAD)
484 if (slot_offset > old_frame_offset)
485 add_frame_space (old_frame_offset, slot_offset);
486 if (slot_offset + size < frame_offset)
487 add_frame_space (slot_offset + size, frame_offset);
491 found_space:
492 /* On a big-endian machine, if we are allocating more space than we will use,
493 use the least significant bytes of those that are allocated. */
494 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
495 bigend_correction = size - GET_MODE_SIZE (mode);
497 /* If we have already instantiated virtual registers, return the actual
498 address relative to the frame pointer. */
499 if (virtuals_instantiated)
500 addr = plus_constant (frame_pointer_rtx,
501 trunc_int_for_mode
502 (slot_offset + bigend_correction
503 + STARTING_FRAME_OFFSET, Pmode));
504 else
505 addr = plus_constant (virtual_stack_vars_rtx,
506 trunc_int_for_mode
507 (slot_offset + bigend_correction,
508 Pmode));
510 x = gen_rtx_MEM (mode, addr);
511 set_mem_align (x, alignment_in_bits);
512 MEM_NOTRAP_P (x) = 1;
514 stack_slot_list
515 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
517 if (frame_offset_overflow (frame_offset, current_function_decl))
518 frame_offset = 0;
520 return x;
523 /* Wrap up assign_stack_local_1 with last parameter as false. */
526 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
528 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
532 /* In order to evaluate some expressions, such as function calls returning
533 structures in memory, we need to temporarily allocate stack locations.
534 We record each allocated temporary in the following structure.
536 Associated with each temporary slot is a nesting level. When we pop up
537 one level, all temporaries associated with the previous level are freed.
538 Normally, all temporaries are freed after the execution of the statement
539 in which they were created. However, if we are inside a ({...}) grouping,
540 the result may be in a temporary and hence must be preserved. If the
541 result could be in a temporary, we preserve it if we can determine which
542 one it is in. If we cannot determine which temporary may contain the
543 result, all temporaries are preserved. A temporary is preserved by
544 pretending it was allocated at the previous nesting level.
546 Automatic variables are also assigned temporary slots, at the nesting
547 level where they are defined. They are marked a "kept" so that
548 free_temp_slots will not free them. */
550 struct GTY(()) temp_slot {
551 /* Points to next temporary slot. */
552 struct temp_slot *next;
553 /* Points to previous temporary slot. */
554 struct temp_slot *prev;
555 /* The rtx to used to reference the slot. */
556 rtx slot;
557 /* The size, in units, of the slot. */
558 HOST_WIDE_INT size;
559 /* The type of the object in the slot, or zero if it doesn't correspond
560 to a type. We use this to determine whether a slot can be reused.
561 It can be reused if objects of the type of the new slot will always
562 conflict with objects of the type of the old slot. */
563 tree type;
564 /* The alignment (in bits) of the slot. */
565 unsigned int align;
566 /* Nonzero if this temporary is currently in use. */
567 char in_use;
568 /* Nonzero if this temporary has its address taken. */
569 char addr_taken;
570 /* Nesting level at which this slot is being used. */
571 int level;
572 /* Nonzero if this should survive a call to free_temp_slots. */
573 int keep;
574 /* The offset of the slot from the frame_pointer, including extra space
575 for alignment. This info is for combine_temp_slots. */
576 HOST_WIDE_INT base_offset;
577 /* The size of the slot, including extra space for alignment. This
578 info is for combine_temp_slots. */
579 HOST_WIDE_INT full_size;
582 /* A table of addresses that represent a stack slot. The table is a mapping
583 from address RTXen to a temp slot. */
584 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
586 /* Entry for the above hash table. */
587 struct GTY(()) temp_slot_address_entry {
588 hashval_t hash;
589 rtx address;
590 struct temp_slot *temp_slot;
593 /* Removes temporary slot TEMP from LIST. */
595 static void
596 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
598 if (temp->next)
599 temp->next->prev = temp->prev;
600 if (temp->prev)
601 temp->prev->next = temp->next;
602 else
603 *list = temp->next;
605 temp->prev = temp->next = NULL;
608 /* Inserts temporary slot TEMP to LIST. */
610 static void
611 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
613 temp->next = *list;
614 if (*list)
615 (*list)->prev = temp;
616 temp->prev = NULL;
617 *list = temp;
620 /* Returns the list of used temp slots at LEVEL. */
622 static struct temp_slot **
623 temp_slots_at_level (int level)
625 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
626 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
628 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
631 /* Returns the maximal temporary slot level. */
633 static int
634 max_slot_level (void)
636 if (!used_temp_slots)
637 return -1;
639 return VEC_length (temp_slot_p, used_temp_slots) - 1;
642 /* Moves temporary slot TEMP to LEVEL. */
644 static void
645 move_slot_to_level (struct temp_slot *temp, int level)
647 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
648 insert_slot_to_list (temp, temp_slots_at_level (level));
649 temp->level = level;
652 /* Make temporary slot TEMP available. */
654 static void
655 make_slot_available (struct temp_slot *temp)
657 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
658 insert_slot_to_list (temp, &avail_temp_slots);
659 temp->in_use = 0;
660 temp->level = -1;
663 /* Compute the hash value for an address -> temp slot mapping.
664 The value is cached on the mapping entry. */
665 static hashval_t
666 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
668 int do_not_record = 0;
669 return hash_rtx (t->address, GET_MODE (t->address),
670 &do_not_record, NULL, false);
673 /* Return the hash value for an address -> temp slot mapping. */
674 static hashval_t
675 temp_slot_address_hash (const void *p)
677 const struct temp_slot_address_entry *t;
678 t = (const struct temp_slot_address_entry *) p;
679 return t->hash;
682 /* Compare two address -> temp slot mapping entries. */
683 static int
684 temp_slot_address_eq (const void *p1, const void *p2)
686 const struct temp_slot_address_entry *t1, *t2;
687 t1 = (const struct temp_slot_address_entry *) p1;
688 t2 = (const struct temp_slot_address_entry *) p2;
689 return exp_equiv_p (t1->address, t2->address, 0, true);
692 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
693 static void
694 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
696 void **slot;
697 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
698 t->address = address;
699 t->temp_slot = temp_slot;
700 t->hash = temp_slot_address_compute_hash (t);
701 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
702 *slot = t;
705 /* Remove an address -> temp slot mapping entry if the temp slot is
706 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
707 static int
708 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
710 const struct temp_slot_address_entry *t;
711 t = (const struct temp_slot_address_entry *) *slot;
712 if (! t->temp_slot->in_use)
713 *slot = NULL;
714 return 1;
717 /* Remove all mappings of addresses to unused temp slots. */
718 static void
719 remove_unused_temp_slot_addresses (void)
721 htab_traverse (temp_slot_address_table,
722 remove_unused_temp_slot_addresses_1,
723 NULL);
726 /* Find the temp slot corresponding to the object at address X. */
728 static struct temp_slot *
729 find_temp_slot_from_address (rtx x)
731 struct temp_slot *p;
732 struct temp_slot_address_entry tmp, *t;
734 /* First try the easy way:
735 See if X exists in the address -> temp slot mapping. */
736 tmp.address = x;
737 tmp.temp_slot = NULL;
738 tmp.hash = temp_slot_address_compute_hash (&tmp);
739 t = (struct temp_slot_address_entry *)
740 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
741 if (t)
742 return t->temp_slot;
744 /* If we have a sum involving a register, see if it points to a temp
745 slot. */
746 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
747 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
748 return p;
749 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
750 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
751 return p;
753 /* Last resort: Address is a virtual stack var address. */
754 if (GET_CODE (x) == PLUS
755 && XEXP (x, 0) == virtual_stack_vars_rtx
756 && CONST_INT_P (XEXP (x, 1)))
758 int i;
759 for (i = max_slot_level (); i >= 0; i--)
760 for (p = *temp_slots_at_level (i); p; p = p->next)
762 if (INTVAL (XEXP (x, 1)) >= p->base_offset
763 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
764 return p;
768 return NULL;
771 /* Allocate a temporary stack slot and record it for possible later
772 reuse.
774 MODE is the machine mode to be given to the returned rtx.
776 SIZE is the size in units of the space required. We do no rounding here
777 since assign_stack_local will do any required rounding.
779 KEEP is 1 if this slot is to be retained after a call to
780 free_temp_slots. Automatic variables for a block are allocated
781 with this flag. KEEP values of 2 or 3 were needed respectively
782 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
783 or for SAVE_EXPRs, but they are now unused.
785 TYPE is the type that will be used for the stack slot. */
788 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
789 int keep, tree type)
791 unsigned int align;
792 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
793 rtx slot;
795 /* If SIZE is -1 it means that somebody tried to allocate a temporary
796 of a variable size. */
797 gcc_assert (size != -1);
799 /* These are now unused. */
800 gcc_assert (keep <= 1);
802 align = get_stack_local_alignment (type, mode);
804 /* Try to find an available, already-allocated temporary of the proper
805 mode which meets the size and alignment requirements. Choose the
806 smallest one with the closest alignment.
808 If assign_stack_temp is called outside of the tree->rtl expansion,
809 we cannot reuse the stack slots (that may still refer to
810 VIRTUAL_STACK_VARS_REGNUM). */
811 if (!virtuals_instantiated)
813 for (p = avail_temp_slots; p; p = p->next)
815 if (p->align >= align && p->size >= size
816 && GET_MODE (p->slot) == mode
817 && objects_must_conflict_p (p->type, type)
818 && (best_p == 0 || best_p->size > p->size
819 || (best_p->size == p->size && best_p->align > p->align)))
821 if (p->align == align && p->size == size)
823 selected = p;
824 cut_slot_from_list (selected, &avail_temp_slots);
825 best_p = 0;
826 break;
828 best_p = p;
833 /* Make our best, if any, the one to use. */
834 if (best_p)
836 selected = best_p;
837 cut_slot_from_list (selected, &avail_temp_slots);
839 /* If there are enough aligned bytes left over, make them into a new
840 temp_slot so that the extra bytes don't get wasted. Do this only
841 for BLKmode slots, so that we can be sure of the alignment. */
842 if (GET_MODE (best_p->slot) == BLKmode)
844 int alignment = best_p->align / BITS_PER_UNIT;
845 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
847 if (best_p->size - rounded_size >= alignment)
849 p = ggc_alloc_temp_slot ();
850 p->in_use = p->addr_taken = 0;
851 p->size = best_p->size - rounded_size;
852 p->base_offset = best_p->base_offset + rounded_size;
853 p->full_size = best_p->full_size - rounded_size;
854 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
855 p->align = best_p->align;
856 p->type = best_p->type;
857 insert_slot_to_list (p, &avail_temp_slots);
859 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
860 stack_slot_list);
862 best_p->size = rounded_size;
863 best_p->full_size = rounded_size;
868 /* If we still didn't find one, make a new temporary. */
869 if (selected == 0)
871 HOST_WIDE_INT frame_offset_old = frame_offset;
873 p = ggc_alloc_temp_slot ();
875 /* We are passing an explicit alignment request to assign_stack_local.
876 One side effect of that is assign_stack_local will not round SIZE
877 to ensure the frame offset remains suitably aligned.
879 So for requests which depended on the rounding of SIZE, we go ahead
880 and round it now. We also make sure ALIGNMENT is at least
881 BIGGEST_ALIGNMENT. */
882 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
883 p->slot = assign_stack_local_1 (mode,
884 (mode == BLKmode
885 ? CEIL_ROUND (size,
886 (int) align
887 / BITS_PER_UNIT)
888 : size),
889 align, 0);
891 p->align = align;
893 /* The following slot size computation is necessary because we don't
894 know the actual size of the temporary slot until assign_stack_local
895 has performed all the frame alignment and size rounding for the
896 requested temporary. Note that extra space added for alignment
897 can be either above or below this stack slot depending on which
898 way the frame grows. We include the extra space if and only if it
899 is above this slot. */
900 if (FRAME_GROWS_DOWNWARD)
901 p->size = frame_offset_old - frame_offset;
902 else
903 p->size = size;
905 /* Now define the fields used by combine_temp_slots. */
906 if (FRAME_GROWS_DOWNWARD)
908 p->base_offset = frame_offset;
909 p->full_size = frame_offset_old - frame_offset;
911 else
913 p->base_offset = frame_offset_old;
914 p->full_size = frame_offset - frame_offset_old;
917 selected = p;
920 p = selected;
921 p->in_use = 1;
922 p->addr_taken = 0;
923 p->type = type;
924 p->level = temp_slot_level;
925 p->keep = keep;
927 pp = temp_slots_at_level (p->level);
928 insert_slot_to_list (p, pp);
929 insert_temp_slot_address (XEXP (p->slot, 0), p);
931 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
932 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
933 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
935 /* If we know the alias set for the memory that will be used, use
936 it. If there's no TYPE, then we don't know anything about the
937 alias set for the memory. */
938 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
939 set_mem_align (slot, align);
941 /* If a type is specified, set the relevant flags. */
942 if (type != 0)
944 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
945 gcc_checking_assert (!MEM_SCALAR_P (slot) && !MEM_IN_STRUCT_P (slot));
946 if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
947 MEM_IN_STRUCT_P (slot) = 1;
948 else
949 MEM_SCALAR_P (slot) = 1;
951 MEM_NOTRAP_P (slot) = 1;
953 return slot;
956 /* Allocate a temporary stack slot and record it for possible later
957 reuse. First three arguments are same as in preceding function. */
960 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
962 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
965 /* Assign a temporary.
966 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
967 and so that should be used in error messages. In either case, we
968 allocate of the given type.
969 KEEP is as for assign_stack_temp.
970 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
971 it is 0 if a register is OK.
972 DONT_PROMOTE is 1 if we should not promote values in register
973 to wider modes. */
976 assign_temp (tree type_or_decl, int keep, int memory_required,
977 int dont_promote ATTRIBUTE_UNUSED)
979 tree type, decl;
980 enum machine_mode mode;
981 #ifdef PROMOTE_MODE
982 int unsignedp;
983 #endif
985 if (DECL_P (type_or_decl))
986 decl = type_or_decl, type = TREE_TYPE (decl);
987 else
988 decl = NULL, type = type_or_decl;
990 mode = TYPE_MODE (type);
991 #ifdef PROMOTE_MODE
992 unsignedp = TYPE_UNSIGNED (type);
993 #endif
995 if (mode == BLKmode || memory_required)
997 HOST_WIDE_INT size = int_size_in_bytes (type);
998 rtx tmp;
1000 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
1001 problems with allocating the stack space. */
1002 if (size == 0)
1003 size = 1;
1005 /* Unfortunately, we don't yet know how to allocate variable-sized
1006 temporaries. However, sometimes we can find a fixed upper limit on
1007 the size, so try that instead. */
1008 else if (size == -1)
1009 size = max_int_size_in_bytes (type);
1011 /* The size of the temporary may be too large to fit into an integer. */
1012 /* ??? Not sure this should happen except for user silliness, so limit
1013 this to things that aren't compiler-generated temporaries. The
1014 rest of the time we'll die in assign_stack_temp_for_type. */
1015 if (decl && size == -1
1016 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1018 error ("size of variable %q+D is too large", decl);
1019 size = 1;
1022 tmp = assign_stack_temp_for_type (mode, size, keep, type);
1023 return tmp;
1026 #ifdef PROMOTE_MODE
1027 if (! dont_promote)
1028 mode = promote_mode (type, mode, &unsignedp);
1029 #endif
1031 return gen_reg_rtx (mode);
1034 /* Combine temporary stack slots which are adjacent on the stack.
1036 This allows for better use of already allocated stack space. This is only
1037 done for BLKmode slots because we can be sure that we won't have alignment
1038 problems in this case. */
1040 static void
1041 combine_temp_slots (void)
1043 struct temp_slot *p, *q, *next, *next_q;
1044 int num_slots;
1046 /* We can't combine slots, because the information about which slot
1047 is in which alias set will be lost. */
1048 if (flag_strict_aliasing)
1049 return;
1051 /* If there are a lot of temp slots, don't do anything unless
1052 high levels of optimization. */
1053 if (! flag_expensive_optimizations)
1054 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1055 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1056 return;
1058 for (p = avail_temp_slots; p; p = next)
1060 int delete_p = 0;
1062 next = p->next;
1064 if (GET_MODE (p->slot) != BLKmode)
1065 continue;
1067 for (q = p->next; q; q = next_q)
1069 int delete_q = 0;
1071 next_q = q->next;
1073 if (GET_MODE (q->slot) != BLKmode)
1074 continue;
1076 if (p->base_offset + p->full_size == q->base_offset)
1078 /* Q comes after P; combine Q into P. */
1079 p->size += q->size;
1080 p->full_size += q->full_size;
1081 delete_q = 1;
1083 else if (q->base_offset + q->full_size == p->base_offset)
1085 /* P comes after Q; combine P into Q. */
1086 q->size += p->size;
1087 q->full_size += p->full_size;
1088 delete_p = 1;
1089 break;
1091 if (delete_q)
1092 cut_slot_from_list (q, &avail_temp_slots);
1095 /* Either delete P or advance past it. */
1096 if (delete_p)
1097 cut_slot_from_list (p, &avail_temp_slots);
1101 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1102 slot that previously was known by OLD_RTX. */
1104 void
1105 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1107 struct temp_slot *p;
1109 if (rtx_equal_p (old_rtx, new_rtx))
1110 return;
1112 p = find_temp_slot_from_address (old_rtx);
1114 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1115 NEW_RTX is a register, see if one operand of the PLUS is a
1116 temporary location. If so, NEW_RTX points into it. Otherwise,
1117 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1118 in common between them. If so, try a recursive call on those
1119 values. */
1120 if (p == 0)
1122 if (GET_CODE (old_rtx) != PLUS)
1123 return;
1125 if (REG_P (new_rtx))
1127 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1128 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1129 return;
1131 else if (GET_CODE (new_rtx) != PLUS)
1132 return;
1134 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1135 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1136 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1137 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1138 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1139 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1140 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1141 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1143 return;
1146 /* Otherwise add an alias for the temp's address. */
1147 insert_temp_slot_address (new_rtx, p);
1150 /* If X could be a reference to a temporary slot, mark the fact that its
1151 address was taken. */
1153 void
1154 mark_temp_addr_taken (rtx x)
1156 struct temp_slot *p;
1158 if (x == 0)
1159 return;
1161 /* If X is not in memory or is at a constant address, it cannot be in
1162 a temporary slot. */
1163 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1164 return;
1166 p = find_temp_slot_from_address (XEXP (x, 0));
1167 if (p != 0)
1168 p->addr_taken = 1;
1171 /* If X could be a reference to a temporary slot, mark that slot as
1172 belonging to the to one level higher than the current level. If X
1173 matched one of our slots, just mark that one. Otherwise, we can't
1174 easily predict which it is, so upgrade all of them. Kept slots
1175 need not be touched.
1177 This is called when an ({...}) construct occurs and a statement
1178 returns a value in memory. */
1180 void
1181 preserve_temp_slots (rtx x)
1183 struct temp_slot *p = 0, *next;
1185 /* If there is no result, we still might have some objects whose address
1186 were taken, so we need to make sure they stay around. */
1187 if (x == 0)
1189 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1191 next = p->next;
1193 if (p->addr_taken)
1194 move_slot_to_level (p, temp_slot_level - 1);
1197 return;
1200 /* If X is a register that is being used as a pointer, see if we have
1201 a temporary slot we know it points to. To be consistent with
1202 the code below, we really should preserve all non-kept slots
1203 if we can't find a match, but that seems to be much too costly. */
1204 if (REG_P (x) && REG_POINTER (x))
1205 p = find_temp_slot_from_address (x);
1207 /* If X is not in memory or is at a constant address, it cannot be in
1208 a temporary slot, but it can contain something whose address was
1209 taken. */
1210 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1212 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1214 next = p->next;
1216 if (p->addr_taken)
1217 move_slot_to_level (p, temp_slot_level - 1);
1220 return;
1223 /* First see if we can find a match. */
1224 if (p == 0)
1225 p = find_temp_slot_from_address (XEXP (x, 0));
1227 if (p != 0)
1229 /* Move everything at our level whose address was taken to our new
1230 level in case we used its address. */
1231 struct temp_slot *q;
1233 if (p->level == temp_slot_level)
1235 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1237 next = q->next;
1239 if (p != q && q->addr_taken)
1240 move_slot_to_level (q, temp_slot_level - 1);
1243 move_slot_to_level (p, temp_slot_level - 1);
1244 p->addr_taken = 0;
1246 return;
1249 /* Otherwise, preserve all non-kept slots at this level. */
1250 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1252 next = p->next;
1254 if (!p->keep)
1255 move_slot_to_level (p, temp_slot_level - 1);
1259 /* Free all temporaries used so far. This is normally called at the
1260 end of generating code for a statement. */
1262 void
1263 free_temp_slots (void)
1265 struct temp_slot *p, *next;
1266 bool some_available = false;
1268 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1270 next = p->next;
1272 if (!p->keep)
1274 make_slot_available (p);
1275 some_available = true;
1279 if (some_available)
1281 remove_unused_temp_slot_addresses ();
1282 combine_temp_slots ();
1286 /* Push deeper into the nesting level for stack temporaries. */
1288 void
1289 push_temp_slots (void)
1291 temp_slot_level++;
1294 /* Pop a temporary nesting level. All slots in use in the current level
1295 are freed. */
1297 void
1298 pop_temp_slots (void)
1300 struct temp_slot *p, *next;
1301 bool some_available = false;
1303 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1305 next = p->next;
1306 make_slot_available (p);
1307 some_available = true;
1310 if (some_available)
1312 remove_unused_temp_slot_addresses ();
1313 combine_temp_slots ();
1316 temp_slot_level--;
1319 /* Initialize temporary slots. */
1321 void
1322 init_temp_slots (void)
1324 /* We have not allocated any temporaries yet. */
1325 avail_temp_slots = 0;
1326 used_temp_slots = 0;
1327 temp_slot_level = 0;
1329 /* Set up the table to map addresses to temp slots. */
1330 if (! temp_slot_address_table)
1331 temp_slot_address_table = htab_create_ggc (32,
1332 temp_slot_address_hash,
1333 temp_slot_address_eq,
1334 NULL);
1335 else
1336 htab_empty (temp_slot_address_table);
1339 /* These routines are responsible for converting virtual register references
1340 to the actual hard register references once RTL generation is complete.
1342 The following four variables are used for communication between the
1343 routines. They contain the offsets of the virtual registers from their
1344 respective hard registers. */
1346 static int in_arg_offset;
1347 static int var_offset;
1348 static int dynamic_offset;
1349 static int out_arg_offset;
1350 static int cfa_offset;
1352 /* In most machines, the stack pointer register is equivalent to the bottom
1353 of the stack. */
1355 #ifndef STACK_POINTER_OFFSET
1356 #define STACK_POINTER_OFFSET 0
1357 #endif
1359 /* If not defined, pick an appropriate default for the offset of dynamically
1360 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1361 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1363 #ifndef STACK_DYNAMIC_OFFSET
1365 /* The bottom of the stack points to the actual arguments. If
1366 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1367 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1368 stack space for register parameters is not pushed by the caller, but
1369 rather part of the fixed stack areas and hence not included in
1370 `crtl->outgoing_args_size'. Nevertheless, we must allow
1371 for it when allocating stack dynamic objects. */
1373 #if defined(REG_PARM_STACK_SPACE)
1374 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1375 ((ACCUMULATE_OUTGOING_ARGS \
1376 ? (crtl->outgoing_args_size \
1377 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1378 : REG_PARM_STACK_SPACE (FNDECL))) \
1379 : 0) + (STACK_POINTER_OFFSET))
1380 #else
1381 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1382 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1383 + (STACK_POINTER_OFFSET))
1384 #endif
1385 #endif
1388 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1389 is a virtual register, return the equivalent hard register and set the
1390 offset indirectly through the pointer. Otherwise, return 0. */
1392 static rtx
1393 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1395 rtx new_rtx;
1396 HOST_WIDE_INT offset;
1398 if (x == virtual_incoming_args_rtx)
1400 if (stack_realign_drap)
1402 /* Replace virtual_incoming_args_rtx with internal arg
1403 pointer if DRAP is used to realign stack. */
1404 new_rtx = crtl->args.internal_arg_pointer;
1405 offset = 0;
1407 else
1408 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1410 else if (x == virtual_stack_vars_rtx)
1411 new_rtx = frame_pointer_rtx, offset = var_offset;
1412 else if (x == virtual_stack_dynamic_rtx)
1413 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1414 else if (x == virtual_outgoing_args_rtx)
1415 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1416 else if (x == virtual_cfa_rtx)
1418 #ifdef FRAME_POINTER_CFA_OFFSET
1419 new_rtx = frame_pointer_rtx;
1420 #else
1421 new_rtx = arg_pointer_rtx;
1422 #endif
1423 offset = cfa_offset;
1425 else if (x == virtual_preferred_stack_boundary_rtx)
1427 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1428 offset = 0;
1430 else
1431 return NULL_RTX;
1433 *poffset = offset;
1434 return new_rtx;
1437 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1438 Instantiate any virtual registers present inside of *LOC. The expression
1439 is simplified, as much as possible, but is not to be considered "valid"
1440 in any sense implied by the target. If any change is made, set CHANGED
1441 to true. */
1443 static int
1444 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1446 HOST_WIDE_INT offset;
1447 bool *changed = (bool *) data;
1448 rtx x, new_rtx;
1450 x = *loc;
1451 if (x == 0)
1452 return 0;
1454 switch (GET_CODE (x))
1456 case REG:
1457 new_rtx = instantiate_new_reg (x, &offset);
1458 if (new_rtx)
1460 *loc = plus_constant (new_rtx, offset);
1461 if (changed)
1462 *changed = true;
1464 return -1;
1466 case PLUS:
1467 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1468 if (new_rtx)
1470 new_rtx = plus_constant (new_rtx, offset);
1471 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1472 if (changed)
1473 *changed = true;
1474 return -1;
1477 /* FIXME -- from old code */
1478 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1479 we can commute the PLUS and SUBREG because pointers into the
1480 frame are well-behaved. */
1481 break;
1483 default:
1484 break;
1487 return 0;
1490 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1491 matches the predicate for insn CODE operand OPERAND. */
1493 static int
1494 safe_insn_predicate (int code, int operand, rtx x)
1496 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1499 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1500 registers present inside of insn. The result will be a valid insn. */
1502 static void
1503 instantiate_virtual_regs_in_insn (rtx insn)
1505 HOST_WIDE_INT offset;
1506 int insn_code, i;
1507 bool any_change = false;
1508 rtx set, new_rtx, x, seq;
1510 /* There are some special cases to be handled first. */
1511 set = single_set (insn);
1512 if (set)
1514 /* We're allowed to assign to a virtual register. This is interpreted
1515 to mean that the underlying register gets assigned the inverse
1516 transformation. This is used, for example, in the handling of
1517 non-local gotos. */
1518 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1519 if (new_rtx)
1521 start_sequence ();
1523 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1524 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1525 GEN_INT (-offset));
1526 x = force_operand (x, new_rtx);
1527 if (x != new_rtx)
1528 emit_move_insn (new_rtx, x);
1530 seq = get_insns ();
1531 end_sequence ();
1533 emit_insn_before (seq, insn);
1534 delete_insn (insn);
1535 return;
1538 /* Handle a straight copy from a virtual register by generating a
1539 new add insn. The difference between this and falling through
1540 to the generic case is avoiding a new pseudo and eliminating a
1541 move insn in the initial rtl stream. */
1542 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1543 if (new_rtx && offset != 0
1544 && REG_P (SET_DEST (set))
1545 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1547 start_sequence ();
1549 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1550 new_rtx, GEN_INT (offset), SET_DEST (set),
1551 1, OPTAB_LIB_WIDEN);
1552 if (x != SET_DEST (set))
1553 emit_move_insn (SET_DEST (set), x);
1555 seq = get_insns ();
1556 end_sequence ();
1558 emit_insn_before (seq, insn);
1559 delete_insn (insn);
1560 return;
1563 extract_insn (insn);
1564 insn_code = INSN_CODE (insn);
1566 /* Handle a plus involving a virtual register by determining if the
1567 operands remain valid if they're modified in place. */
1568 if (GET_CODE (SET_SRC (set)) == PLUS
1569 && recog_data.n_operands >= 3
1570 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1571 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1572 && CONST_INT_P (recog_data.operand[2])
1573 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1575 offset += INTVAL (recog_data.operand[2]);
1577 /* If the sum is zero, then replace with a plain move. */
1578 if (offset == 0
1579 && REG_P (SET_DEST (set))
1580 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1582 start_sequence ();
1583 emit_move_insn (SET_DEST (set), new_rtx);
1584 seq = get_insns ();
1585 end_sequence ();
1587 emit_insn_before (seq, insn);
1588 delete_insn (insn);
1589 return;
1592 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1594 /* Using validate_change and apply_change_group here leaves
1595 recog_data in an invalid state. Since we know exactly what
1596 we want to check, do those two by hand. */
1597 if (safe_insn_predicate (insn_code, 1, new_rtx)
1598 && safe_insn_predicate (insn_code, 2, x))
1600 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1601 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1602 any_change = true;
1604 /* Fall through into the regular operand fixup loop in
1605 order to take care of operands other than 1 and 2. */
1609 else
1611 extract_insn (insn);
1612 insn_code = INSN_CODE (insn);
1615 /* In the general case, we expect virtual registers to appear only in
1616 operands, and then only as either bare registers or inside memories. */
1617 for (i = 0; i < recog_data.n_operands; ++i)
1619 x = recog_data.operand[i];
1620 switch (GET_CODE (x))
1622 case MEM:
1624 rtx addr = XEXP (x, 0);
1625 bool changed = false;
1627 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1628 if (!changed)
1629 continue;
1631 start_sequence ();
1632 x = replace_equiv_address (x, addr);
1633 /* It may happen that the address with the virtual reg
1634 was valid (e.g. based on the virtual stack reg, which might
1635 be acceptable to the predicates with all offsets), whereas
1636 the address now isn't anymore, for instance when the address
1637 is still offsetted, but the base reg isn't virtual-stack-reg
1638 anymore. Below we would do a force_reg on the whole operand,
1639 but this insn might actually only accept memory. Hence,
1640 before doing that last resort, try to reload the address into
1641 a register, so this operand stays a MEM. */
1642 if (!safe_insn_predicate (insn_code, i, x))
1644 addr = force_reg (GET_MODE (addr), addr);
1645 x = replace_equiv_address (x, addr);
1647 seq = get_insns ();
1648 end_sequence ();
1649 if (seq)
1650 emit_insn_before (seq, insn);
1652 break;
1654 case REG:
1655 new_rtx = instantiate_new_reg (x, &offset);
1656 if (new_rtx == NULL)
1657 continue;
1658 if (offset == 0)
1659 x = new_rtx;
1660 else
1662 start_sequence ();
1664 /* Careful, special mode predicates may have stuff in
1665 insn_data[insn_code].operand[i].mode that isn't useful
1666 to us for computing a new value. */
1667 /* ??? Recognize address_operand and/or "p" constraints
1668 to see if (plus new offset) is a valid before we put
1669 this through expand_simple_binop. */
1670 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1671 GEN_INT (offset), NULL_RTX,
1672 1, OPTAB_LIB_WIDEN);
1673 seq = get_insns ();
1674 end_sequence ();
1675 emit_insn_before (seq, insn);
1677 break;
1679 case SUBREG:
1680 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1681 if (new_rtx == NULL)
1682 continue;
1683 if (offset != 0)
1685 start_sequence ();
1686 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1687 GEN_INT (offset), NULL_RTX,
1688 1, OPTAB_LIB_WIDEN);
1689 seq = get_insns ();
1690 end_sequence ();
1691 emit_insn_before (seq, insn);
1693 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1694 GET_MODE (new_rtx), SUBREG_BYTE (x));
1695 gcc_assert (x);
1696 break;
1698 default:
1699 continue;
1702 /* At this point, X contains the new value for the operand.
1703 Validate the new value vs the insn predicate. Note that
1704 asm insns will have insn_code -1 here. */
1705 if (!safe_insn_predicate (insn_code, i, x))
1707 start_sequence ();
1708 if (REG_P (x))
1710 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1711 x = copy_to_reg (x);
1713 else
1714 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1715 seq = get_insns ();
1716 end_sequence ();
1717 if (seq)
1718 emit_insn_before (seq, insn);
1721 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1722 any_change = true;
1725 if (any_change)
1727 /* Propagate operand changes into the duplicates. */
1728 for (i = 0; i < recog_data.n_dups; ++i)
1729 *recog_data.dup_loc[i]
1730 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1732 /* Force re-recognition of the instruction for validation. */
1733 INSN_CODE (insn) = -1;
1736 if (asm_noperands (PATTERN (insn)) >= 0)
1738 if (!check_asm_operands (PATTERN (insn)))
1740 error_for_asm (insn, "impossible constraint in %<asm%>");
1741 delete_insn (insn);
1744 else
1746 if (recog_memoized (insn) < 0)
1747 fatal_insn_not_found (insn);
1751 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1752 do any instantiation required. */
1754 void
1755 instantiate_decl_rtl (rtx x)
1757 rtx addr;
1759 if (x == 0)
1760 return;
1762 /* If this is a CONCAT, recurse for the pieces. */
1763 if (GET_CODE (x) == CONCAT)
1765 instantiate_decl_rtl (XEXP (x, 0));
1766 instantiate_decl_rtl (XEXP (x, 1));
1767 return;
1770 /* If this is not a MEM, no need to do anything. Similarly if the
1771 address is a constant or a register that is not a virtual register. */
1772 if (!MEM_P (x))
1773 return;
1775 addr = XEXP (x, 0);
1776 if (CONSTANT_P (addr)
1777 || (REG_P (addr)
1778 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1779 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1780 return;
1782 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1785 /* Helper for instantiate_decls called via walk_tree: Process all decls
1786 in the given DECL_VALUE_EXPR. */
1788 static tree
1789 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1791 tree t = *tp;
1792 if (! EXPR_P (t))
1794 *walk_subtrees = 0;
1795 if (DECL_P (t))
1797 if (DECL_RTL_SET_P (t))
1798 instantiate_decl_rtl (DECL_RTL (t));
1799 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1800 && DECL_INCOMING_RTL (t))
1801 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1802 if ((TREE_CODE (t) == VAR_DECL
1803 || TREE_CODE (t) == RESULT_DECL)
1804 && DECL_HAS_VALUE_EXPR_P (t))
1806 tree v = DECL_VALUE_EXPR (t);
1807 walk_tree (&v, instantiate_expr, NULL, NULL);
1811 return NULL;
1814 /* Subroutine of instantiate_decls: Process all decls in the given
1815 BLOCK node and all its subblocks. */
1817 static void
1818 instantiate_decls_1 (tree let)
1820 tree t;
1822 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1824 if (DECL_RTL_SET_P (t))
1825 instantiate_decl_rtl (DECL_RTL (t));
1826 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1828 tree v = DECL_VALUE_EXPR (t);
1829 walk_tree (&v, instantiate_expr, NULL, NULL);
1833 /* Process all subblocks. */
1834 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1835 instantiate_decls_1 (t);
1838 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1839 all virtual registers in their DECL_RTL's. */
1841 static void
1842 instantiate_decls (tree fndecl)
1844 tree decl;
1845 unsigned ix;
1847 /* Process all parameters of the function. */
1848 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1850 instantiate_decl_rtl (DECL_RTL (decl));
1851 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1852 if (DECL_HAS_VALUE_EXPR_P (decl))
1854 tree v = DECL_VALUE_EXPR (decl);
1855 walk_tree (&v, instantiate_expr, NULL, NULL);
1859 if ((decl = DECL_RESULT (fndecl))
1860 && TREE_CODE (decl) == RESULT_DECL)
1862 if (DECL_RTL_SET_P (decl))
1863 instantiate_decl_rtl (DECL_RTL (decl));
1864 if (DECL_HAS_VALUE_EXPR_P (decl))
1866 tree v = DECL_VALUE_EXPR (decl);
1867 walk_tree (&v, instantiate_expr, NULL, NULL);
1871 /* Now process all variables defined in the function or its subblocks. */
1872 instantiate_decls_1 (DECL_INITIAL (fndecl));
1874 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1875 if (DECL_RTL_SET_P (decl))
1876 instantiate_decl_rtl (DECL_RTL (decl));
1877 VEC_free (tree, gc, cfun->local_decls);
1880 /* Pass through the INSNS of function FNDECL and convert virtual register
1881 references to hard register references. */
1883 static unsigned int
1884 instantiate_virtual_regs (void)
1886 rtx insn;
1888 /* Compute the offsets to use for this function. */
1889 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1890 var_offset = STARTING_FRAME_OFFSET;
1891 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1892 out_arg_offset = STACK_POINTER_OFFSET;
1893 #ifdef FRAME_POINTER_CFA_OFFSET
1894 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1895 #else
1896 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1897 #endif
1899 /* Initialize recognition, indicating that volatile is OK. */
1900 init_recog ();
1902 /* Scan through all the insns, instantiating every virtual register still
1903 present. */
1904 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1905 if (INSN_P (insn))
1907 /* These patterns in the instruction stream can never be recognized.
1908 Fortunately, they shouldn't contain virtual registers either. */
1909 if (GET_CODE (PATTERN (insn)) == USE
1910 || GET_CODE (PATTERN (insn)) == CLOBBER
1911 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1912 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1913 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1914 continue;
1915 else if (DEBUG_INSN_P (insn))
1916 for_each_rtx (&INSN_VAR_LOCATION (insn),
1917 instantiate_virtual_regs_in_rtx, NULL);
1918 else
1919 instantiate_virtual_regs_in_insn (insn);
1921 if (INSN_DELETED_P (insn))
1922 continue;
1924 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1926 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1927 if (CALL_P (insn))
1928 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1929 instantiate_virtual_regs_in_rtx, NULL);
1932 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1933 instantiate_decls (current_function_decl);
1935 targetm.instantiate_decls ();
1937 /* Indicate that, from now on, assign_stack_local should use
1938 frame_pointer_rtx. */
1939 virtuals_instantiated = 1;
1941 return 0;
1944 struct rtl_opt_pass pass_instantiate_virtual_regs =
1947 RTL_PASS,
1948 "vregs", /* name */
1949 NULL, /* gate */
1950 instantiate_virtual_regs, /* execute */
1951 NULL, /* sub */
1952 NULL, /* next */
1953 0, /* static_pass_number */
1954 TV_NONE, /* tv_id */
1955 0, /* properties_required */
1956 0, /* properties_provided */
1957 0, /* properties_destroyed */
1958 0, /* todo_flags_start */
1959 0 /* todo_flags_finish */
1964 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1965 This means a type for which function calls must pass an address to the
1966 function or get an address back from the function.
1967 EXP may be a type node or an expression (whose type is tested). */
1970 aggregate_value_p (const_tree exp, const_tree fntype)
1972 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1973 int i, regno, nregs;
1974 rtx reg;
1976 if (fntype)
1977 switch (TREE_CODE (fntype))
1979 case CALL_EXPR:
1981 tree fndecl = get_callee_fndecl (fntype);
1982 fntype = (fndecl
1983 ? TREE_TYPE (fndecl)
1984 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1986 break;
1987 case FUNCTION_DECL:
1988 fntype = TREE_TYPE (fntype);
1989 break;
1990 case FUNCTION_TYPE:
1991 case METHOD_TYPE:
1992 break;
1993 case IDENTIFIER_NODE:
1994 fntype = NULL_TREE;
1995 break;
1996 default:
1997 /* We don't expect other tree types here. */
1998 gcc_unreachable ();
2001 if (VOID_TYPE_P (type))
2002 return 0;
2004 /* If a record should be passed the same as its first (and only) member
2005 don't pass it as an aggregate. */
2006 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2007 return aggregate_value_p (first_field (type), fntype);
2009 /* If the front end has decided that this needs to be passed by
2010 reference, do so. */
2011 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2012 && DECL_BY_REFERENCE (exp))
2013 return 1;
2015 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2016 if (fntype && TREE_ADDRESSABLE (fntype))
2017 return 1;
2019 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2020 and thus can't be returned in registers. */
2021 if (TREE_ADDRESSABLE (type))
2022 return 1;
2024 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2025 return 1;
2027 if (targetm.calls.return_in_memory (type, fntype))
2028 return 1;
2030 /* Make sure we have suitable call-clobbered regs to return
2031 the value in; if not, we must return it in memory. */
2032 reg = hard_function_value (type, 0, fntype, 0);
2034 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2035 it is OK. */
2036 if (!REG_P (reg))
2037 return 0;
2039 regno = REGNO (reg);
2040 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2041 for (i = 0; i < nregs; i++)
2042 if (! call_used_regs[regno + i])
2043 return 1;
2045 return 0;
2048 /* Return true if we should assign DECL a pseudo register; false if it
2049 should live on the local stack. */
2051 bool
2052 use_register_for_decl (const_tree decl)
2054 if (!targetm.calls.allocate_stack_slots_for_args())
2055 return true;
2057 /* Honor volatile. */
2058 if (TREE_SIDE_EFFECTS (decl))
2059 return false;
2061 /* Honor addressability. */
2062 if (TREE_ADDRESSABLE (decl))
2063 return false;
2065 /* Only register-like things go in registers. */
2066 if (DECL_MODE (decl) == BLKmode)
2067 return false;
2069 /* If -ffloat-store specified, don't put explicit float variables
2070 into registers. */
2071 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2072 propagates values across these stores, and it probably shouldn't. */
2073 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2074 return false;
2076 /* If we're not interested in tracking debugging information for
2077 this decl, then we can certainly put it in a register. */
2078 if (DECL_IGNORED_P (decl))
2079 return true;
2081 if (optimize)
2082 return true;
2084 if (!DECL_REGISTER (decl))
2085 return false;
2087 switch (TREE_CODE (TREE_TYPE (decl)))
2089 case RECORD_TYPE:
2090 case UNION_TYPE:
2091 case QUAL_UNION_TYPE:
2092 /* When not optimizing, disregard register keyword for variables with
2093 types containing methods, otherwise the methods won't be callable
2094 from the debugger. */
2095 if (TYPE_METHODS (TREE_TYPE (decl)))
2096 return false;
2097 break;
2098 default:
2099 break;
2102 return true;
2105 /* Return true if TYPE should be passed by invisible reference. */
2107 bool
2108 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2109 tree type, bool named_arg)
2111 if (type)
2113 /* If this type contains non-trivial constructors, then it is
2114 forbidden for the middle-end to create any new copies. */
2115 if (TREE_ADDRESSABLE (type))
2116 return true;
2118 /* GCC post 3.4 passes *all* variable sized types by reference. */
2119 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2120 return true;
2122 /* If a record type should be passed the same as its first (and only)
2123 member, use the type and mode of that member. */
2124 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2126 type = TREE_TYPE (first_field (type));
2127 mode = TYPE_MODE (type);
2131 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2132 type, named_arg);
2135 /* Return true if TYPE, which is passed by reference, should be callee
2136 copied instead of caller copied. */
2138 bool
2139 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2140 tree type, bool named_arg)
2142 if (type && TREE_ADDRESSABLE (type))
2143 return false;
2144 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2145 named_arg);
2148 /* Structures to communicate between the subroutines of assign_parms.
2149 The first holds data persistent across all parameters, the second
2150 is cleared out for each parameter. */
2152 struct assign_parm_data_all
2154 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2155 should become a job of the target or otherwise encapsulated. */
2156 CUMULATIVE_ARGS args_so_far_v;
2157 cumulative_args_t args_so_far;
2158 struct args_size stack_args_size;
2159 tree function_result_decl;
2160 tree orig_fnargs;
2161 rtx first_conversion_insn;
2162 rtx last_conversion_insn;
2163 HOST_WIDE_INT pretend_args_size;
2164 HOST_WIDE_INT extra_pretend_bytes;
2165 int reg_parm_stack_space;
2168 struct assign_parm_data_one
2170 tree nominal_type;
2171 tree passed_type;
2172 rtx entry_parm;
2173 rtx stack_parm;
2174 enum machine_mode nominal_mode;
2175 enum machine_mode passed_mode;
2176 enum machine_mode promoted_mode;
2177 struct locate_and_pad_arg_data locate;
2178 int partial;
2179 BOOL_BITFIELD named_arg : 1;
2180 BOOL_BITFIELD passed_pointer : 1;
2181 BOOL_BITFIELD on_stack : 1;
2182 BOOL_BITFIELD loaded_in_reg : 1;
2185 /* A subroutine of assign_parms. Initialize ALL. */
2187 static void
2188 assign_parms_initialize_all (struct assign_parm_data_all *all)
2190 tree fntype ATTRIBUTE_UNUSED;
2192 memset (all, 0, sizeof (*all));
2194 fntype = TREE_TYPE (current_function_decl);
2196 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2197 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2198 #else
2199 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2200 current_function_decl, -1);
2201 #endif
2202 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2204 #ifdef REG_PARM_STACK_SPACE
2205 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2206 #endif
2209 /* If ARGS contains entries with complex types, split the entry into two
2210 entries of the component type. Return a new list of substitutions are
2211 needed, else the old list. */
2213 static void
2214 split_complex_args (VEC(tree, heap) **args)
2216 unsigned i;
2217 tree p;
2219 FOR_EACH_VEC_ELT (tree, *args, i, p)
2221 tree type = TREE_TYPE (p);
2222 if (TREE_CODE (type) == COMPLEX_TYPE
2223 && targetm.calls.split_complex_arg (type))
2225 tree decl;
2226 tree subtype = TREE_TYPE (type);
2227 bool addressable = TREE_ADDRESSABLE (p);
2229 /* Rewrite the PARM_DECL's type with its component. */
2230 p = copy_node (p);
2231 TREE_TYPE (p) = subtype;
2232 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2233 DECL_MODE (p) = VOIDmode;
2234 DECL_SIZE (p) = NULL;
2235 DECL_SIZE_UNIT (p) = NULL;
2236 /* If this arg must go in memory, put it in a pseudo here.
2237 We can't allow it to go in memory as per normal parms,
2238 because the usual place might not have the imag part
2239 adjacent to the real part. */
2240 DECL_ARTIFICIAL (p) = addressable;
2241 DECL_IGNORED_P (p) = addressable;
2242 TREE_ADDRESSABLE (p) = 0;
2243 layout_decl (p, 0);
2244 VEC_replace (tree, *args, i, p);
2246 /* Build a second synthetic decl. */
2247 decl = build_decl (EXPR_LOCATION (p),
2248 PARM_DECL, NULL_TREE, subtype);
2249 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2250 DECL_ARTIFICIAL (decl) = addressable;
2251 DECL_IGNORED_P (decl) = addressable;
2252 layout_decl (decl, 0);
2253 VEC_safe_insert (tree, heap, *args, ++i, decl);
2258 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2259 the hidden struct return argument, and (abi willing) complex args.
2260 Return the new parameter list. */
2262 static VEC(tree, heap) *
2263 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2265 tree fndecl = current_function_decl;
2266 tree fntype = TREE_TYPE (fndecl);
2267 VEC(tree, heap) *fnargs = NULL;
2268 tree arg;
2270 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2271 VEC_safe_push (tree, heap, fnargs, arg);
2273 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2275 /* If struct value address is treated as the first argument, make it so. */
2276 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2277 && ! cfun->returns_pcc_struct
2278 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2280 tree type = build_pointer_type (TREE_TYPE (fntype));
2281 tree decl;
2283 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2284 PARM_DECL, get_identifier (".result_ptr"), type);
2285 DECL_ARG_TYPE (decl) = type;
2286 DECL_ARTIFICIAL (decl) = 1;
2287 DECL_NAMELESS (decl) = 1;
2288 TREE_CONSTANT (decl) = 1;
2290 DECL_CHAIN (decl) = all->orig_fnargs;
2291 all->orig_fnargs = decl;
2292 VEC_safe_insert (tree, heap, fnargs, 0, decl);
2294 all->function_result_decl = decl;
2297 /* If the target wants to split complex arguments into scalars, do so. */
2298 if (targetm.calls.split_complex_arg)
2299 split_complex_args (&fnargs);
2301 return fnargs;
2304 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2305 data for the parameter. Incorporate ABI specifics such as pass-by-
2306 reference and type promotion. */
2308 static void
2309 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2310 struct assign_parm_data_one *data)
2312 tree nominal_type, passed_type;
2313 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2314 int unsignedp;
2316 memset (data, 0, sizeof (*data));
2318 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2319 if (!cfun->stdarg)
2320 data->named_arg = 1; /* No variadic parms. */
2321 else if (DECL_CHAIN (parm))
2322 data->named_arg = 1; /* Not the last non-variadic parm. */
2323 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2324 data->named_arg = 1; /* Only variadic ones are unnamed. */
2325 else
2326 data->named_arg = 0; /* Treat as variadic. */
2328 nominal_type = TREE_TYPE (parm);
2329 passed_type = DECL_ARG_TYPE (parm);
2331 /* Look out for errors propagating this far. Also, if the parameter's
2332 type is void then its value doesn't matter. */
2333 if (TREE_TYPE (parm) == error_mark_node
2334 /* This can happen after weird syntax errors
2335 or if an enum type is defined among the parms. */
2336 || TREE_CODE (parm) != PARM_DECL
2337 || passed_type == NULL
2338 || VOID_TYPE_P (nominal_type))
2340 nominal_type = passed_type = void_type_node;
2341 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2342 goto egress;
2345 /* Find mode of arg as it is passed, and mode of arg as it should be
2346 during execution of this function. */
2347 passed_mode = TYPE_MODE (passed_type);
2348 nominal_mode = TYPE_MODE (nominal_type);
2350 /* If the parm is to be passed as a transparent union or record, use the
2351 type of the first field for the tests below. We have already verified
2352 that the modes are the same. */
2353 if ((TREE_CODE (passed_type) == UNION_TYPE
2354 || TREE_CODE (passed_type) == RECORD_TYPE)
2355 && TYPE_TRANSPARENT_AGGR (passed_type))
2356 passed_type = TREE_TYPE (first_field (passed_type));
2358 /* See if this arg was passed by invisible reference. */
2359 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2360 passed_type, data->named_arg))
2362 passed_type = nominal_type = build_pointer_type (passed_type);
2363 data->passed_pointer = true;
2364 passed_mode = nominal_mode = Pmode;
2367 /* Find mode as it is passed by the ABI. */
2368 unsignedp = TYPE_UNSIGNED (passed_type);
2369 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2370 TREE_TYPE (current_function_decl), 0);
2372 egress:
2373 data->nominal_type = nominal_type;
2374 data->passed_type = passed_type;
2375 data->nominal_mode = nominal_mode;
2376 data->passed_mode = passed_mode;
2377 data->promoted_mode = promoted_mode;
2380 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2382 static void
2383 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2384 struct assign_parm_data_one *data, bool no_rtl)
2386 int varargs_pretend_bytes = 0;
2388 targetm.calls.setup_incoming_varargs (all->args_so_far,
2389 data->promoted_mode,
2390 data->passed_type,
2391 &varargs_pretend_bytes, no_rtl);
2393 /* If the back-end has requested extra stack space, record how much is
2394 needed. Do not change pretend_args_size otherwise since it may be
2395 nonzero from an earlier partial argument. */
2396 if (varargs_pretend_bytes > 0)
2397 all->pretend_args_size = varargs_pretend_bytes;
2400 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2401 the incoming location of the current parameter. */
2403 static void
2404 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2405 struct assign_parm_data_one *data)
2407 HOST_WIDE_INT pretend_bytes = 0;
2408 rtx entry_parm;
2409 bool in_regs;
2411 if (data->promoted_mode == VOIDmode)
2413 data->entry_parm = data->stack_parm = const0_rtx;
2414 return;
2417 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2418 data->promoted_mode,
2419 data->passed_type,
2420 data->named_arg);
2422 if (entry_parm == 0)
2423 data->promoted_mode = data->passed_mode;
2425 /* Determine parm's home in the stack, in case it arrives in the stack
2426 or we should pretend it did. Compute the stack position and rtx where
2427 the argument arrives and its size.
2429 There is one complexity here: If this was a parameter that would
2430 have been passed in registers, but wasn't only because it is
2431 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2432 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2433 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2434 as it was the previous time. */
2435 in_regs = entry_parm != 0;
2436 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2437 in_regs = true;
2438 #endif
2439 if (!in_regs && !data->named_arg)
2441 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2443 rtx tem;
2444 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2445 data->promoted_mode,
2446 data->passed_type, true);
2447 in_regs = tem != NULL;
2451 /* If this parameter was passed both in registers and in the stack, use
2452 the copy on the stack. */
2453 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2454 data->passed_type))
2455 entry_parm = 0;
2457 if (entry_parm)
2459 int partial;
2461 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2462 data->promoted_mode,
2463 data->passed_type,
2464 data->named_arg);
2465 data->partial = partial;
2467 /* The caller might already have allocated stack space for the
2468 register parameters. */
2469 if (partial != 0 && all->reg_parm_stack_space == 0)
2471 /* Part of this argument is passed in registers and part
2472 is passed on the stack. Ask the prologue code to extend
2473 the stack part so that we can recreate the full value.
2475 PRETEND_BYTES is the size of the registers we need to store.
2476 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2477 stack space that the prologue should allocate.
2479 Internally, gcc assumes that the argument pointer is aligned
2480 to STACK_BOUNDARY bits. This is used both for alignment
2481 optimizations (see init_emit) and to locate arguments that are
2482 aligned to more than PARM_BOUNDARY bits. We must preserve this
2483 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2484 a stack boundary. */
2486 /* We assume at most one partial arg, and it must be the first
2487 argument on the stack. */
2488 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2490 pretend_bytes = partial;
2491 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2493 /* We want to align relative to the actual stack pointer, so
2494 don't include this in the stack size until later. */
2495 all->extra_pretend_bytes = all->pretend_args_size;
2499 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2500 entry_parm ? data->partial : 0, current_function_decl,
2501 &all->stack_args_size, &data->locate);
2503 /* Update parm_stack_boundary if this parameter is passed in the
2504 stack. */
2505 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2506 crtl->parm_stack_boundary = data->locate.boundary;
2508 /* Adjust offsets to include the pretend args. */
2509 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2510 data->locate.slot_offset.constant += pretend_bytes;
2511 data->locate.offset.constant += pretend_bytes;
2513 data->entry_parm = entry_parm;
2516 /* A subroutine of assign_parms. If there is actually space on the stack
2517 for this parm, count it in stack_args_size and return true. */
2519 static bool
2520 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2521 struct assign_parm_data_one *data)
2523 /* Trivially true if we've no incoming register. */
2524 if (data->entry_parm == NULL)
2526 /* Also true if we're partially in registers and partially not,
2527 since we've arranged to drop the entire argument on the stack. */
2528 else if (data->partial != 0)
2530 /* Also true if the target says that it's passed in both registers
2531 and on the stack. */
2532 else if (GET_CODE (data->entry_parm) == PARALLEL
2533 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2535 /* Also true if the target says that there's stack allocated for
2536 all register parameters. */
2537 else if (all->reg_parm_stack_space > 0)
2539 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2540 else
2541 return false;
2543 all->stack_args_size.constant += data->locate.size.constant;
2544 if (data->locate.size.var)
2545 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2547 return true;
2550 /* A subroutine of assign_parms. Given that this parameter is allocated
2551 stack space by the ABI, find it. */
2553 static void
2554 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2556 rtx offset_rtx, stack_parm;
2557 unsigned int align, boundary;
2559 /* If we're passing this arg using a reg, make its stack home the
2560 aligned stack slot. */
2561 if (data->entry_parm)
2562 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2563 else
2564 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2566 stack_parm = crtl->args.internal_arg_pointer;
2567 if (offset_rtx != const0_rtx)
2568 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2569 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2571 if (!data->passed_pointer)
2573 set_mem_attributes (stack_parm, parm, 1);
2574 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2575 while promoted mode's size is needed. */
2576 if (data->promoted_mode != BLKmode
2577 && data->promoted_mode != DECL_MODE (parm))
2579 set_mem_size (stack_parm,
2580 GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2581 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2583 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2584 data->promoted_mode);
2585 if (offset)
2586 set_mem_offset (stack_parm,
2587 plus_constant (MEM_OFFSET (stack_parm),
2588 -offset));
2593 boundary = data->locate.boundary;
2594 align = BITS_PER_UNIT;
2596 /* If we're padding upward, we know that the alignment of the slot
2597 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2598 intentionally forcing upward padding. Otherwise we have to come
2599 up with a guess at the alignment based on OFFSET_RTX. */
2600 if (data->locate.where_pad != downward || data->entry_parm)
2601 align = boundary;
2602 else if (CONST_INT_P (offset_rtx))
2604 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2605 align = align & -align;
2607 set_mem_align (stack_parm, align);
2609 if (data->entry_parm)
2610 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2612 data->stack_parm = stack_parm;
2615 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2616 always valid and contiguous. */
2618 static void
2619 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2621 rtx entry_parm = data->entry_parm;
2622 rtx stack_parm = data->stack_parm;
2624 /* If this parm was passed part in regs and part in memory, pretend it
2625 arrived entirely in memory by pushing the register-part onto the stack.
2626 In the special case of a DImode or DFmode that is split, we could put
2627 it together in a pseudoreg directly, but for now that's not worth
2628 bothering with. */
2629 if (data->partial != 0)
2631 /* Handle calls that pass values in multiple non-contiguous
2632 locations. The Irix 6 ABI has examples of this. */
2633 if (GET_CODE (entry_parm) == PARALLEL)
2634 emit_group_store (validize_mem (stack_parm), entry_parm,
2635 data->passed_type,
2636 int_size_in_bytes (data->passed_type));
2637 else
2639 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2640 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2641 data->partial / UNITS_PER_WORD);
2644 entry_parm = stack_parm;
2647 /* If we didn't decide this parm came in a register, by default it came
2648 on the stack. */
2649 else if (entry_parm == NULL)
2650 entry_parm = stack_parm;
2652 /* When an argument is passed in multiple locations, we can't make use
2653 of this information, but we can save some copying if the whole argument
2654 is passed in a single register. */
2655 else if (GET_CODE (entry_parm) == PARALLEL
2656 && data->nominal_mode != BLKmode
2657 && data->passed_mode != BLKmode)
2659 size_t i, len = XVECLEN (entry_parm, 0);
2661 for (i = 0; i < len; i++)
2662 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2663 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2664 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2665 == data->passed_mode)
2666 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2668 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2669 break;
2673 data->entry_parm = entry_parm;
2676 /* A subroutine of assign_parms. Reconstitute any values which were
2677 passed in multiple registers and would fit in a single register. */
2679 static void
2680 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2682 rtx entry_parm = data->entry_parm;
2684 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2685 This can be done with register operations rather than on the
2686 stack, even if we will store the reconstituted parameter on the
2687 stack later. */
2688 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2690 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2691 emit_group_store (parmreg, entry_parm, data->passed_type,
2692 GET_MODE_SIZE (GET_MODE (entry_parm)));
2693 entry_parm = parmreg;
2696 data->entry_parm = entry_parm;
2699 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2700 always valid and properly aligned. */
2702 static void
2703 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2705 rtx stack_parm = data->stack_parm;
2707 /* If we can't trust the parm stack slot to be aligned enough for its
2708 ultimate type, don't use that slot after entry. We'll make another
2709 stack slot, if we need one. */
2710 if (stack_parm
2711 && ((STRICT_ALIGNMENT
2712 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2713 || (data->nominal_type
2714 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2715 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2716 stack_parm = NULL;
2718 /* If parm was passed in memory, and we need to convert it on entry,
2719 don't store it back in that same slot. */
2720 else if (data->entry_parm == stack_parm
2721 && data->nominal_mode != BLKmode
2722 && data->nominal_mode != data->passed_mode)
2723 stack_parm = NULL;
2725 /* If stack protection is in effect for this function, don't leave any
2726 pointers in their passed stack slots. */
2727 else if (crtl->stack_protect_guard
2728 && (flag_stack_protect == 2
2729 || data->passed_pointer
2730 || POINTER_TYPE_P (data->nominal_type)))
2731 stack_parm = NULL;
2733 data->stack_parm = stack_parm;
2736 /* A subroutine of assign_parms. Return true if the current parameter
2737 should be stored as a BLKmode in the current frame. */
2739 static bool
2740 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2742 if (data->nominal_mode == BLKmode)
2743 return true;
2744 if (GET_MODE (data->entry_parm) == BLKmode)
2745 return true;
2747 #ifdef BLOCK_REG_PADDING
2748 /* Only assign_parm_setup_block knows how to deal with register arguments
2749 that are padded at the least significant end. */
2750 if (REG_P (data->entry_parm)
2751 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2752 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2753 == (BYTES_BIG_ENDIAN ? upward : downward)))
2754 return true;
2755 #endif
2757 return false;
2760 /* A subroutine of assign_parms. Arrange for the parameter to be
2761 present and valid in DATA->STACK_RTL. */
2763 static void
2764 assign_parm_setup_block (struct assign_parm_data_all *all,
2765 tree parm, struct assign_parm_data_one *data)
2767 rtx entry_parm = data->entry_parm;
2768 rtx stack_parm = data->stack_parm;
2769 HOST_WIDE_INT size;
2770 HOST_WIDE_INT size_stored;
2772 if (GET_CODE (entry_parm) == PARALLEL)
2773 entry_parm = emit_group_move_into_temps (entry_parm);
2775 size = int_size_in_bytes (data->passed_type);
2776 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2777 if (stack_parm == 0)
2779 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2780 stack_parm = assign_stack_local (BLKmode, size_stored,
2781 DECL_ALIGN (parm));
2782 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2783 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2784 set_mem_attributes (stack_parm, parm, 1);
2787 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2788 calls that pass values in multiple non-contiguous locations. */
2789 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2791 rtx mem;
2793 /* Note that we will be storing an integral number of words.
2794 So we have to be careful to ensure that we allocate an
2795 integral number of words. We do this above when we call
2796 assign_stack_local if space was not allocated in the argument
2797 list. If it was, this will not work if PARM_BOUNDARY is not
2798 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2799 if it becomes a problem. Exception is when BLKmode arrives
2800 with arguments not conforming to word_mode. */
2802 if (data->stack_parm == 0)
2804 else if (GET_CODE (entry_parm) == PARALLEL)
2806 else
2807 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2809 mem = validize_mem (stack_parm);
2811 /* Handle values in multiple non-contiguous locations. */
2812 if (GET_CODE (entry_parm) == PARALLEL)
2814 push_to_sequence2 (all->first_conversion_insn,
2815 all->last_conversion_insn);
2816 emit_group_store (mem, entry_parm, data->passed_type, size);
2817 all->first_conversion_insn = get_insns ();
2818 all->last_conversion_insn = get_last_insn ();
2819 end_sequence ();
2822 else if (size == 0)
2825 /* If SIZE is that of a mode no bigger than a word, just use
2826 that mode's store operation. */
2827 else if (size <= UNITS_PER_WORD)
2829 enum machine_mode mode
2830 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2832 if (mode != BLKmode
2833 #ifdef BLOCK_REG_PADDING
2834 && (size == UNITS_PER_WORD
2835 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2836 != (BYTES_BIG_ENDIAN ? upward : downward)))
2837 #endif
2840 rtx reg;
2842 /* We are really truncating a word_mode value containing
2843 SIZE bytes into a value of mode MODE. If such an
2844 operation requires no actual instructions, we can refer
2845 to the value directly in mode MODE, otherwise we must
2846 start with the register in word_mode and explicitly
2847 convert it. */
2848 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2849 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2850 else
2852 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2853 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2855 emit_move_insn (change_address (mem, mode, 0), reg);
2858 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2859 machine must be aligned to the left before storing
2860 to memory. Note that the previous test doesn't
2861 handle all cases (e.g. SIZE == 3). */
2862 else if (size != UNITS_PER_WORD
2863 #ifdef BLOCK_REG_PADDING
2864 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2865 == downward)
2866 #else
2867 && BYTES_BIG_ENDIAN
2868 #endif
2871 rtx tem, x;
2872 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2873 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2875 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2876 tem = change_address (mem, word_mode, 0);
2877 emit_move_insn (tem, x);
2879 else
2880 move_block_from_reg (REGNO (entry_parm), mem,
2881 size_stored / UNITS_PER_WORD);
2883 else
2884 move_block_from_reg (REGNO (entry_parm), mem,
2885 size_stored / UNITS_PER_WORD);
2887 else if (data->stack_parm == 0)
2889 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2890 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2891 BLOCK_OP_NORMAL);
2892 all->first_conversion_insn = get_insns ();
2893 all->last_conversion_insn = get_last_insn ();
2894 end_sequence ();
2897 data->stack_parm = stack_parm;
2898 SET_DECL_RTL (parm, stack_parm);
2901 /* A subroutine of assign_parm_setup_reg, called through note_stores.
2902 This collects sets and clobbers of hard registers in a HARD_REG_SET,
2903 which is pointed to by DATA. */
2904 static void
2905 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2907 HARD_REG_SET *pset = (HARD_REG_SET *)data;
2908 if (REG_P (x) && HARD_REGISTER_P (x))
2909 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
2912 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2913 parameter. Get it there. Perform all ABI specified conversions. */
2915 static void
2916 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2917 struct assign_parm_data_one *data)
2919 rtx parmreg, validated_mem;
2920 rtx equiv_stack_parm;
2921 enum machine_mode promoted_nominal_mode;
2922 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2923 bool did_conversion = false;
2924 bool need_conversion, moved;
2926 /* Store the parm in a pseudoregister during the function, but we may
2927 need to do it in a wider mode. Using 2 here makes the result
2928 consistent with promote_decl_mode and thus expand_expr_real_1. */
2929 promoted_nominal_mode
2930 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2931 TREE_TYPE (current_function_decl), 2);
2933 parmreg = gen_reg_rtx (promoted_nominal_mode);
2935 if (!DECL_ARTIFICIAL (parm))
2936 mark_user_reg (parmreg);
2938 /* If this was an item that we received a pointer to,
2939 set DECL_RTL appropriately. */
2940 if (data->passed_pointer)
2942 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2943 set_mem_attributes (x, parm, 1);
2944 SET_DECL_RTL (parm, x);
2946 else
2947 SET_DECL_RTL (parm, parmreg);
2949 assign_parm_remove_parallels (data);
2951 /* Copy the value into the register, thus bridging between
2952 assign_parm_find_data_types and expand_expr_real_1. */
2954 equiv_stack_parm = data->stack_parm;
2955 validated_mem = validize_mem (data->entry_parm);
2957 need_conversion = (data->nominal_mode != data->passed_mode
2958 || promoted_nominal_mode != data->promoted_mode);
2959 moved = false;
2961 if (need_conversion
2962 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2963 && data->nominal_mode == data->passed_mode
2964 && data->nominal_mode == GET_MODE (data->entry_parm))
2966 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2967 mode, by the caller. We now have to convert it to
2968 NOMINAL_MODE, if different. However, PARMREG may be in
2969 a different mode than NOMINAL_MODE if it is being stored
2970 promoted.
2972 If ENTRY_PARM is a hard register, it might be in a register
2973 not valid for operating in its mode (e.g., an odd-numbered
2974 register for a DFmode). In that case, moves are the only
2975 thing valid, so we can't do a convert from there. This
2976 occurs when the calling sequence allow such misaligned
2977 usages.
2979 In addition, the conversion may involve a call, which could
2980 clobber parameters which haven't been copied to pseudo
2981 registers yet.
2983 First, we try to emit an insn which performs the necessary
2984 conversion. We verify that this insn does not clobber any
2985 hard registers. */
2987 enum insn_code icode;
2988 rtx op0, op1;
2990 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2991 unsignedp);
2993 op0 = parmreg;
2994 op1 = validated_mem;
2995 if (icode != CODE_FOR_nothing
2996 && insn_operand_matches (icode, 0, op0)
2997 && insn_operand_matches (icode, 1, op1))
2999 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3000 rtx insn, insns;
3001 HARD_REG_SET hardregs;
3003 start_sequence ();
3004 insn = gen_extend_insn (op0, op1, promoted_nominal_mode,
3005 data->passed_mode, unsignedp);
3006 emit_insn (insn);
3007 insns = get_insns ();
3009 moved = true;
3010 CLEAR_HARD_REG_SET (hardregs);
3011 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3013 if (INSN_P (insn))
3014 note_stores (PATTERN (insn), record_hard_reg_sets,
3015 &hardregs);
3016 if (!hard_reg_set_empty_p (hardregs))
3017 moved = false;
3020 end_sequence ();
3022 if (moved)
3024 emit_insn (insns);
3025 if (equiv_stack_parm != NULL_RTX)
3026 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3027 equiv_stack_parm);
3032 if (moved)
3033 /* Nothing to do. */
3035 else if (need_conversion)
3037 /* We did not have an insn to convert directly, or the sequence
3038 generated appeared unsafe. We must first copy the parm to a
3039 pseudo reg, and save the conversion until after all
3040 parameters have been moved. */
3042 int save_tree_used;
3043 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3045 emit_move_insn (tempreg, validated_mem);
3047 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3048 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3050 if (GET_CODE (tempreg) == SUBREG
3051 && GET_MODE (tempreg) == data->nominal_mode
3052 && REG_P (SUBREG_REG (tempreg))
3053 && data->nominal_mode == data->passed_mode
3054 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3055 && GET_MODE_SIZE (GET_MODE (tempreg))
3056 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3058 /* The argument is already sign/zero extended, so note it
3059 into the subreg. */
3060 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3061 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3064 /* TREE_USED gets set erroneously during expand_assignment. */
3065 save_tree_used = TREE_USED (parm);
3066 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3067 TREE_USED (parm) = save_tree_used;
3068 all->first_conversion_insn = get_insns ();
3069 all->last_conversion_insn = get_last_insn ();
3070 end_sequence ();
3072 did_conversion = true;
3074 else
3075 emit_move_insn (parmreg, validated_mem);
3077 /* If we were passed a pointer but the actual value can safely live
3078 in a register, put it in one. */
3079 if (data->passed_pointer
3080 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3081 /* If by-reference argument was promoted, demote it. */
3082 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3083 || use_register_for_decl (parm)))
3085 /* We can't use nominal_mode, because it will have been set to
3086 Pmode above. We must use the actual mode of the parm. */
3087 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3088 mark_user_reg (parmreg);
3090 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3092 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3093 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3095 push_to_sequence2 (all->first_conversion_insn,
3096 all->last_conversion_insn);
3097 emit_move_insn (tempreg, DECL_RTL (parm));
3098 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3099 emit_move_insn (parmreg, tempreg);
3100 all->first_conversion_insn = get_insns ();
3101 all->last_conversion_insn = get_last_insn ();
3102 end_sequence ();
3104 did_conversion = true;
3106 else
3107 emit_move_insn (parmreg, DECL_RTL (parm));
3109 SET_DECL_RTL (parm, parmreg);
3111 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3112 now the parm. */
3113 data->stack_parm = NULL;
3116 /* Mark the register as eliminable if we did no conversion and it was
3117 copied from memory at a fixed offset, and the arg pointer was not
3118 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3119 offset formed an invalid address, such memory-equivalences as we
3120 make here would screw up life analysis for it. */
3121 if (data->nominal_mode == data->passed_mode
3122 && !did_conversion
3123 && data->stack_parm != 0
3124 && MEM_P (data->stack_parm)
3125 && data->locate.offset.var == 0
3126 && reg_mentioned_p (virtual_incoming_args_rtx,
3127 XEXP (data->stack_parm, 0)))
3129 rtx linsn = get_last_insn ();
3130 rtx sinsn, set;
3132 /* Mark complex types separately. */
3133 if (GET_CODE (parmreg) == CONCAT)
3135 enum machine_mode submode
3136 = GET_MODE_INNER (GET_MODE (parmreg));
3137 int regnor = REGNO (XEXP (parmreg, 0));
3138 int regnoi = REGNO (XEXP (parmreg, 1));
3139 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3140 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3141 GET_MODE_SIZE (submode));
3143 /* Scan backwards for the set of the real and
3144 imaginary parts. */
3145 for (sinsn = linsn; sinsn != 0;
3146 sinsn = prev_nonnote_insn (sinsn))
3148 set = single_set (sinsn);
3149 if (set == 0)
3150 continue;
3152 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3153 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3154 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3155 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3158 else if ((set = single_set (linsn)) != 0
3159 && SET_DEST (set) == parmreg)
3160 set_unique_reg_note (linsn, REG_EQUIV, equiv_stack_parm);
3163 /* For pointer data type, suggest pointer register. */
3164 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3165 mark_reg_pointer (parmreg,
3166 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3169 /* A subroutine of assign_parms. Allocate stack space to hold the current
3170 parameter. Get it there. Perform all ABI specified conversions. */
3172 static void
3173 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3174 struct assign_parm_data_one *data)
3176 /* Value must be stored in the stack slot STACK_PARM during function
3177 execution. */
3178 bool to_conversion = false;
3180 assign_parm_remove_parallels (data);
3182 if (data->promoted_mode != data->nominal_mode)
3184 /* Conversion is required. */
3185 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3187 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3189 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3190 to_conversion = true;
3192 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3193 TYPE_UNSIGNED (TREE_TYPE (parm)));
3195 if (data->stack_parm)
3197 int offset = subreg_lowpart_offset (data->nominal_mode,
3198 GET_MODE (data->stack_parm));
3199 /* ??? This may need a big-endian conversion on sparc64. */
3200 data->stack_parm
3201 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3202 if (offset && MEM_OFFSET (data->stack_parm))
3203 set_mem_offset (data->stack_parm,
3204 plus_constant (MEM_OFFSET (data->stack_parm),
3205 offset));
3209 if (data->entry_parm != data->stack_parm)
3211 rtx src, dest;
3213 if (data->stack_parm == 0)
3215 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3216 GET_MODE (data->entry_parm),
3217 TYPE_ALIGN (data->passed_type));
3218 data->stack_parm
3219 = assign_stack_local (GET_MODE (data->entry_parm),
3220 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3221 align);
3222 set_mem_attributes (data->stack_parm, parm, 1);
3225 dest = validize_mem (data->stack_parm);
3226 src = validize_mem (data->entry_parm);
3228 if (MEM_P (src))
3230 /* Use a block move to handle potentially misaligned entry_parm. */
3231 if (!to_conversion)
3232 push_to_sequence2 (all->first_conversion_insn,
3233 all->last_conversion_insn);
3234 to_conversion = true;
3236 emit_block_move (dest, src,
3237 GEN_INT (int_size_in_bytes (data->passed_type)),
3238 BLOCK_OP_NORMAL);
3240 else
3241 emit_move_insn (dest, src);
3244 if (to_conversion)
3246 all->first_conversion_insn = get_insns ();
3247 all->last_conversion_insn = get_last_insn ();
3248 end_sequence ();
3251 SET_DECL_RTL (parm, data->stack_parm);
3254 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3255 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3257 static void
3258 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3259 VEC(tree, heap) *fnargs)
3261 tree parm;
3262 tree orig_fnargs = all->orig_fnargs;
3263 unsigned i = 0;
3265 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3267 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3268 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3270 rtx tmp, real, imag;
3271 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3273 real = DECL_RTL (VEC_index (tree, fnargs, i));
3274 imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
3275 if (inner != GET_MODE (real))
3277 real = gen_lowpart_SUBREG (inner, real);
3278 imag = gen_lowpart_SUBREG (inner, imag);
3281 if (TREE_ADDRESSABLE (parm))
3283 rtx rmem, imem;
3284 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3285 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3286 DECL_MODE (parm),
3287 TYPE_ALIGN (TREE_TYPE (parm)));
3289 /* split_complex_arg put the real and imag parts in
3290 pseudos. Move them to memory. */
3291 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3292 set_mem_attributes (tmp, parm, 1);
3293 rmem = adjust_address_nv (tmp, inner, 0);
3294 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3295 push_to_sequence2 (all->first_conversion_insn,
3296 all->last_conversion_insn);
3297 emit_move_insn (rmem, real);
3298 emit_move_insn (imem, imag);
3299 all->first_conversion_insn = get_insns ();
3300 all->last_conversion_insn = get_last_insn ();
3301 end_sequence ();
3303 else
3304 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3305 SET_DECL_RTL (parm, tmp);
3307 real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3308 imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
3309 if (inner != GET_MODE (real))
3311 real = gen_lowpart_SUBREG (inner, real);
3312 imag = gen_lowpart_SUBREG (inner, imag);
3314 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3315 set_decl_incoming_rtl (parm, tmp, false);
3316 i++;
3321 /* Assign RTL expressions to the function's parameters. This may involve
3322 copying them into registers and using those registers as the DECL_RTL. */
3324 static void
3325 assign_parms (tree fndecl)
3327 struct assign_parm_data_all all;
3328 tree parm;
3329 VEC(tree, heap) *fnargs;
3330 unsigned i;
3332 crtl->args.internal_arg_pointer
3333 = targetm.calls.internal_arg_pointer ();
3335 assign_parms_initialize_all (&all);
3336 fnargs = assign_parms_augmented_arg_list (&all);
3338 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3340 struct assign_parm_data_one data;
3342 /* Extract the type of PARM; adjust it according to ABI. */
3343 assign_parm_find_data_types (&all, parm, &data);
3345 /* Early out for errors and void parameters. */
3346 if (data.passed_mode == VOIDmode)
3348 SET_DECL_RTL (parm, const0_rtx);
3349 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3350 continue;
3353 /* Estimate stack alignment from parameter alignment. */
3354 if (SUPPORTS_STACK_ALIGNMENT)
3356 unsigned int align
3357 = targetm.calls.function_arg_boundary (data.promoted_mode,
3358 data.passed_type);
3359 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3360 align);
3361 if (TYPE_ALIGN (data.nominal_type) > align)
3362 align = MINIMUM_ALIGNMENT (data.nominal_type,
3363 TYPE_MODE (data.nominal_type),
3364 TYPE_ALIGN (data.nominal_type));
3365 if (crtl->stack_alignment_estimated < align)
3367 gcc_assert (!crtl->stack_realign_processed);
3368 crtl->stack_alignment_estimated = align;
3372 if (cfun->stdarg && !DECL_CHAIN (parm))
3373 assign_parms_setup_varargs (&all, &data, false);
3375 /* Find out where the parameter arrives in this function. */
3376 assign_parm_find_entry_rtl (&all, &data);
3378 /* Find out where stack space for this parameter might be. */
3379 if (assign_parm_is_stack_parm (&all, &data))
3381 assign_parm_find_stack_rtl (parm, &data);
3382 assign_parm_adjust_entry_rtl (&data);
3385 /* Record permanently how this parm was passed. */
3386 if (data.passed_pointer)
3388 rtx incoming_rtl
3389 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3390 data.entry_parm);
3391 set_decl_incoming_rtl (parm, incoming_rtl, true);
3393 else
3394 set_decl_incoming_rtl (parm, data.entry_parm, false);
3396 /* Update info on where next arg arrives in registers. */
3397 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3398 data.passed_type, data.named_arg);
3400 assign_parm_adjust_stack_rtl (&data);
3402 if (assign_parm_setup_block_p (&data))
3403 assign_parm_setup_block (&all, parm, &data);
3404 else if (data.passed_pointer || use_register_for_decl (parm))
3405 assign_parm_setup_reg (&all, parm, &data);
3406 else
3407 assign_parm_setup_stack (&all, parm, &data);
3410 if (targetm.calls.split_complex_arg)
3411 assign_parms_unsplit_complex (&all, fnargs);
3413 VEC_free (tree, heap, fnargs);
3415 /* Output all parameter conversion instructions (possibly including calls)
3416 now that all parameters have been copied out of hard registers. */
3417 emit_insn (all.first_conversion_insn);
3419 /* Estimate reload stack alignment from scalar return mode. */
3420 if (SUPPORTS_STACK_ALIGNMENT)
3422 if (DECL_RESULT (fndecl))
3424 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3425 enum machine_mode mode = TYPE_MODE (type);
3427 if (mode != BLKmode
3428 && mode != VOIDmode
3429 && !AGGREGATE_TYPE_P (type))
3431 unsigned int align = GET_MODE_ALIGNMENT (mode);
3432 if (crtl->stack_alignment_estimated < align)
3434 gcc_assert (!crtl->stack_realign_processed);
3435 crtl->stack_alignment_estimated = align;
3441 /* If we are receiving a struct value address as the first argument, set up
3442 the RTL for the function result. As this might require code to convert
3443 the transmitted address to Pmode, we do this here to ensure that possible
3444 preliminary conversions of the address have been emitted already. */
3445 if (all.function_result_decl)
3447 tree result = DECL_RESULT (current_function_decl);
3448 rtx addr = DECL_RTL (all.function_result_decl);
3449 rtx x;
3451 if (DECL_BY_REFERENCE (result))
3453 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3454 x = addr;
3456 else
3458 SET_DECL_VALUE_EXPR (result,
3459 build1 (INDIRECT_REF, TREE_TYPE (result),
3460 all.function_result_decl));
3461 addr = convert_memory_address (Pmode, addr);
3462 x = gen_rtx_MEM (DECL_MODE (result), addr);
3463 set_mem_attributes (x, result, 1);
3466 DECL_HAS_VALUE_EXPR_P (result) = 1;
3468 SET_DECL_RTL (result, x);
3471 /* We have aligned all the args, so add space for the pretend args. */
3472 crtl->args.pretend_args_size = all.pretend_args_size;
3473 all.stack_args_size.constant += all.extra_pretend_bytes;
3474 crtl->args.size = all.stack_args_size.constant;
3476 /* Adjust function incoming argument size for alignment and
3477 minimum length. */
3479 #ifdef REG_PARM_STACK_SPACE
3480 crtl->args.size = MAX (crtl->args.size,
3481 REG_PARM_STACK_SPACE (fndecl));
3482 #endif
3484 crtl->args.size = CEIL_ROUND (crtl->args.size,
3485 PARM_BOUNDARY / BITS_PER_UNIT);
3487 #ifdef ARGS_GROW_DOWNWARD
3488 crtl->args.arg_offset_rtx
3489 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3490 : expand_expr (size_diffop (all.stack_args_size.var,
3491 size_int (-all.stack_args_size.constant)),
3492 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3493 #else
3494 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3495 #endif
3497 /* See how many bytes, if any, of its args a function should try to pop
3498 on return. */
3500 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3501 TREE_TYPE (fndecl),
3502 crtl->args.size);
3504 /* For stdarg.h function, save info about
3505 regs and stack space used by the named args. */
3507 crtl->args.info = all.args_so_far_v;
3509 /* Set the rtx used for the function return value. Put this in its
3510 own variable so any optimizers that need this information don't have
3511 to include tree.h. Do this here so it gets done when an inlined
3512 function gets output. */
3514 crtl->return_rtx
3515 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3516 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3518 /* If scalar return value was computed in a pseudo-reg, or was a named
3519 return value that got dumped to the stack, copy that to the hard
3520 return register. */
3521 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3523 tree decl_result = DECL_RESULT (fndecl);
3524 rtx decl_rtl = DECL_RTL (decl_result);
3526 if (REG_P (decl_rtl)
3527 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3528 : DECL_REGISTER (decl_result))
3530 rtx real_decl_rtl;
3532 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3533 fndecl, true);
3534 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3535 /* The delay slot scheduler assumes that crtl->return_rtx
3536 holds the hard register containing the return value, not a
3537 temporary pseudo. */
3538 crtl->return_rtx = real_decl_rtl;
3543 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3544 For all seen types, gimplify their sizes. */
3546 static tree
3547 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3549 tree t = *tp;
3551 *walk_subtrees = 0;
3552 if (TYPE_P (t))
3554 if (POINTER_TYPE_P (t))
3555 *walk_subtrees = 1;
3556 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3557 && !TYPE_SIZES_GIMPLIFIED (t))
3559 gimplify_type_sizes (t, (gimple_seq *) data);
3560 *walk_subtrees = 1;
3564 return NULL;
3567 /* Gimplify the parameter list for current_function_decl. This involves
3568 evaluating SAVE_EXPRs of variable sized parameters and generating code
3569 to implement callee-copies reference parameters. Returns a sequence of
3570 statements to add to the beginning of the function. */
3572 gimple_seq
3573 gimplify_parameters (void)
3575 struct assign_parm_data_all all;
3576 tree parm;
3577 gimple_seq stmts = NULL;
3578 VEC(tree, heap) *fnargs;
3579 unsigned i;
3581 assign_parms_initialize_all (&all);
3582 fnargs = assign_parms_augmented_arg_list (&all);
3584 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3586 struct assign_parm_data_one data;
3588 /* Extract the type of PARM; adjust it according to ABI. */
3589 assign_parm_find_data_types (&all, parm, &data);
3591 /* Early out for errors and void parameters. */
3592 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3593 continue;
3595 /* Update info on where next arg arrives in registers. */
3596 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3597 data.passed_type, data.named_arg);
3599 /* ??? Once upon a time variable_size stuffed parameter list
3600 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3601 turned out to be less than manageable in the gimple world.
3602 Now we have to hunt them down ourselves. */
3603 walk_tree_without_duplicates (&data.passed_type,
3604 gimplify_parm_type, &stmts);
3606 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3608 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3609 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3612 if (data.passed_pointer)
3614 tree type = TREE_TYPE (data.passed_type);
3615 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3616 type, data.named_arg))
3618 tree local, t;
3620 /* For constant-sized objects, this is trivial; for
3621 variable-sized objects, we have to play games. */
3622 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3623 && !(flag_stack_check == GENERIC_STACK_CHECK
3624 && compare_tree_int (DECL_SIZE_UNIT (parm),
3625 STACK_CHECK_MAX_VAR_SIZE) > 0))
3627 local = create_tmp_reg (type, get_name (parm));
3628 DECL_IGNORED_P (local) = 0;
3629 /* If PARM was addressable, move that flag over
3630 to the local copy, as its address will be taken,
3631 not the PARMs. Keep the parms address taken
3632 as we'll query that flag during gimplification. */
3633 if (TREE_ADDRESSABLE (parm))
3634 TREE_ADDRESSABLE (local) = 1;
3636 else
3638 tree ptr_type, addr;
3640 ptr_type = build_pointer_type (type);
3641 addr = create_tmp_reg (ptr_type, get_name (parm));
3642 DECL_IGNORED_P (addr) = 0;
3643 local = build_fold_indirect_ref (addr);
3645 t = built_in_decls[BUILT_IN_ALLOCA];
3646 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3647 /* The call has been built for a variable-sized object. */
3648 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3649 t = fold_convert (ptr_type, t);
3650 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3651 gimplify_and_add (t, &stmts);
3654 gimplify_assign (local, parm, &stmts);
3656 SET_DECL_VALUE_EXPR (parm, local);
3657 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3662 VEC_free (tree, heap, fnargs);
3664 return stmts;
3667 /* Compute the size and offset from the start of the stacked arguments for a
3668 parm passed in mode PASSED_MODE and with type TYPE.
3670 INITIAL_OFFSET_PTR points to the current offset into the stacked
3671 arguments.
3673 The starting offset and size for this parm are returned in
3674 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3675 nonzero, the offset is that of stack slot, which is returned in
3676 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3677 padding required from the initial offset ptr to the stack slot.
3679 IN_REGS is nonzero if the argument will be passed in registers. It will
3680 never be set if REG_PARM_STACK_SPACE is not defined.
3682 FNDECL is the function in which the argument was defined.
3684 There are two types of rounding that are done. The first, controlled by
3685 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3686 argument list to be aligned to the specific boundary (in bits). This
3687 rounding affects the initial and starting offsets, but not the argument
3688 size.
3690 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3691 optionally rounds the size of the parm to PARM_BOUNDARY. The
3692 initial offset is not affected by this rounding, while the size always
3693 is and the starting offset may be. */
3695 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3696 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3697 callers pass in the total size of args so far as
3698 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3700 void
3701 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3702 int partial, tree fndecl ATTRIBUTE_UNUSED,
3703 struct args_size *initial_offset_ptr,
3704 struct locate_and_pad_arg_data *locate)
3706 tree sizetree;
3707 enum direction where_pad;
3708 unsigned int boundary, round_boundary;
3709 int reg_parm_stack_space = 0;
3710 int part_size_in_regs;
3712 #ifdef REG_PARM_STACK_SPACE
3713 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3715 /* If we have found a stack parm before we reach the end of the
3716 area reserved for registers, skip that area. */
3717 if (! in_regs)
3719 if (reg_parm_stack_space > 0)
3721 if (initial_offset_ptr->var)
3723 initial_offset_ptr->var
3724 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3725 ssize_int (reg_parm_stack_space));
3726 initial_offset_ptr->constant = 0;
3728 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3729 initial_offset_ptr->constant = reg_parm_stack_space;
3732 #endif /* REG_PARM_STACK_SPACE */
3734 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3736 sizetree
3737 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3738 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3739 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3740 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3741 type);
3742 locate->where_pad = where_pad;
3744 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3745 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3746 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3748 locate->boundary = boundary;
3750 if (SUPPORTS_STACK_ALIGNMENT)
3752 /* stack_alignment_estimated can't change after stack has been
3753 realigned. */
3754 if (crtl->stack_alignment_estimated < boundary)
3756 if (!crtl->stack_realign_processed)
3757 crtl->stack_alignment_estimated = boundary;
3758 else
3760 /* If stack is realigned and stack alignment value
3761 hasn't been finalized, it is OK not to increase
3762 stack_alignment_estimated. The bigger alignment
3763 requirement is recorded in stack_alignment_needed
3764 below. */
3765 gcc_assert (!crtl->stack_realign_finalized
3766 && crtl->stack_realign_needed);
3771 /* Remember if the outgoing parameter requires extra alignment on the
3772 calling function side. */
3773 if (crtl->stack_alignment_needed < boundary)
3774 crtl->stack_alignment_needed = boundary;
3775 if (crtl->preferred_stack_boundary < boundary)
3776 crtl->preferred_stack_boundary = boundary;
3778 #ifdef ARGS_GROW_DOWNWARD
3779 locate->slot_offset.constant = -initial_offset_ptr->constant;
3780 if (initial_offset_ptr->var)
3781 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3782 initial_offset_ptr->var);
3785 tree s2 = sizetree;
3786 if (where_pad != none
3787 && (!host_integerp (sizetree, 1)
3788 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3789 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3790 SUB_PARM_SIZE (locate->slot_offset, s2);
3793 locate->slot_offset.constant += part_size_in_regs;
3795 if (!in_regs
3796 #ifdef REG_PARM_STACK_SPACE
3797 || REG_PARM_STACK_SPACE (fndecl) > 0
3798 #endif
3800 pad_to_arg_alignment (&locate->slot_offset, boundary,
3801 &locate->alignment_pad);
3803 locate->size.constant = (-initial_offset_ptr->constant
3804 - locate->slot_offset.constant);
3805 if (initial_offset_ptr->var)
3806 locate->size.var = size_binop (MINUS_EXPR,
3807 size_binop (MINUS_EXPR,
3808 ssize_int (0),
3809 initial_offset_ptr->var),
3810 locate->slot_offset.var);
3812 /* Pad_below needs the pre-rounded size to know how much to pad
3813 below. */
3814 locate->offset = locate->slot_offset;
3815 if (where_pad == downward)
3816 pad_below (&locate->offset, passed_mode, sizetree);
3818 #else /* !ARGS_GROW_DOWNWARD */
3819 if (!in_regs
3820 #ifdef REG_PARM_STACK_SPACE
3821 || REG_PARM_STACK_SPACE (fndecl) > 0
3822 #endif
3824 pad_to_arg_alignment (initial_offset_ptr, boundary,
3825 &locate->alignment_pad);
3826 locate->slot_offset = *initial_offset_ptr;
3828 #ifdef PUSH_ROUNDING
3829 if (passed_mode != BLKmode)
3830 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3831 #endif
3833 /* Pad_below needs the pre-rounded size to know how much to pad below
3834 so this must be done before rounding up. */
3835 locate->offset = locate->slot_offset;
3836 if (where_pad == downward)
3837 pad_below (&locate->offset, passed_mode, sizetree);
3839 if (where_pad != none
3840 && (!host_integerp (sizetree, 1)
3841 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3842 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3844 ADD_PARM_SIZE (locate->size, sizetree);
3846 locate->size.constant -= part_size_in_regs;
3847 #endif /* ARGS_GROW_DOWNWARD */
3849 #ifdef FUNCTION_ARG_OFFSET
3850 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3851 #endif
3854 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3855 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3857 static void
3858 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3859 struct args_size *alignment_pad)
3861 tree save_var = NULL_TREE;
3862 HOST_WIDE_INT save_constant = 0;
3863 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3864 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3866 #ifdef SPARC_STACK_BOUNDARY_HACK
3867 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3868 the real alignment of %sp. However, when it does this, the
3869 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3870 if (SPARC_STACK_BOUNDARY_HACK)
3871 sp_offset = 0;
3872 #endif
3874 if (boundary > PARM_BOUNDARY)
3876 save_var = offset_ptr->var;
3877 save_constant = offset_ptr->constant;
3880 alignment_pad->var = NULL_TREE;
3881 alignment_pad->constant = 0;
3883 if (boundary > BITS_PER_UNIT)
3885 if (offset_ptr->var)
3887 tree sp_offset_tree = ssize_int (sp_offset);
3888 tree offset = size_binop (PLUS_EXPR,
3889 ARGS_SIZE_TREE (*offset_ptr),
3890 sp_offset_tree);
3891 #ifdef ARGS_GROW_DOWNWARD
3892 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3893 #else
3894 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3895 #endif
3897 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3898 /* ARGS_SIZE_TREE includes constant term. */
3899 offset_ptr->constant = 0;
3900 if (boundary > PARM_BOUNDARY)
3901 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3902 save_var);
3904 else
3906 offset_ptr->constant = -sp_offset +
3907 #ifdef ARGS_GROW_DOWNWARD
3908 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3909 #else
3910 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3911 #endif
3912 if (boundary > PARM_BOUNDARY)
3913 alignment_pad->constant = offset_ptr->constant - save_constant;
3918 static void
3919 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3921 if (passed_mode != BLKmode)
3923 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3924 offset_ptr->constant
3925 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3926 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3927 - GET_MODE_SIZE (passed_mode));
3929 else
3931 if (TREE_CODE (sizetree) != INTEGER_CST
3932 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3934 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3935 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3936 /* Add it in. */
3937 ADD_PARM_SIZE (*offset_ptr, s2);
3938 SUB_PARM_SIZE (*offset_ptr, sizetree);
3944 /* True if register REGNO was alive at a place where `setjmp' was
3945 called and was set more than once or is an argument. Such regs may
3946 be clobbered by `longjmp'. */
3948 static bool
3949 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3951 /* There appear to be cases where some local vars never reach the
3952 backend but have bogus regnos. */
3953 if (regno >= max_reg_num ())
3954 return false;
3956 return ((REG_N_SETS (regno) > 1
3957 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3958 && REGNO_REG_SET_P (setjmp_crosses, regno));
3961 /* Walk the tree of blocks describing the binding levels within a
3962 function and warn about variables the might be killed by setjmp or
3963 vfork. This is done after calling flow_analysis before register
3964 allocation since that will clobber the pseudo-regs to hard
3965 regs. */
3967 static void
3968 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3970 tree decl, sub;
3972 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3974 if (TREE_CODE (decl) == VAR_DECL
3975 && DECL_RTL_SET_P (decl)
3976 && REG_P (DECL_RTL (decl))
3977 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3978 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3979 " %<longjmp%> or %<vfork%>", decl);
3982 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3983 setjmp_vars_warning (setjmp_crosses, sub);
3986 /* Do the appropriate part of setjmp_vars_warning
3987 but for arguments instead of local variables. */
3989 static void
3990 setjmp_args_warning (bitmap setjmp_crosses)
3992 tree decl;
3993 for (decl = DECL_ARGUMENTS (current_function_decl);
3994 decl; decl = DECL_CHAIN (decl))
3995 if (DECL_RTL (decl) != 0
3996 && REG_P (DECL_RTL (decl))
3997 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3998 warning (OPT_Wclobbered,
3999 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4000 decl);
4003 /* Generate warning messages for variables live across setjmp. */
4005 void
4006 generate_setjmp_warnings (void)
4008 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4010 if (n_basic_blocks == NUM_FIXED_BLOCKS
4011 || bitmap_empty_p (setjmp_crosses))
4012 return;
4014 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4015 setjmp_args_warning (setjmp_crosses);
4019 /* Reverse the order of elements in the fragment chain T of blocks,
4020 and return the new head of the chain (old last element). */
4022 static tree
4023 block_fragments_nreverse (tree t)
4025 tree prev = 0, block, next;
4026 for (block = t; block; block = next)
4028 next = BLOCK_FRAGMENT_CHAIN (block);
4029 BLOCK_FRAGMENT_CHAIN (block) = prev;
4030 prev = block;
4032 return prev;
4035 /* Reverse the order of elements in the chain T of blocks,
4036 and return the new head of the chain (old last element).
4037 Also do the same on subblocks and reverse the order of elements
4038 in BLOCK_FRAGMENT_CHAIN as well. */
4040 static tree
4041 blocks_nreverse_all (tree t)
4043 tree prev = 0, block, next;
4044 for (block = t; block; block = next)
4046 next = BLOCK_CHAIN (block);
4047 BLOCK_CHAIN (block) = prev;
4048 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4049 if (BLOCK_FRAGMENT_CHAIN (block)
4050 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4051 BLOCK_FRAGMENT_CHAIN (block)
4052 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4053 prev = block;
4055 return prev;
4059 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4060 and create duplicate blocks. */
4061 /* ??? Need an option to either create block fragments or to create
4062 abstract origin duplicates of a source block. It really depends
4063 on what optimization has been performed. */
4065 void
4066 reorder_blocks (void)
4068 tree block = DECL_INITIAL (current_function_decl);
4069 VEC(tree,heap) *block_stack;
4071 if (block == NULL_TREE)
4072 return;
4074 block_stack = VEC_alloc (tree, heap, 10);
4076 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4077 clear_block_marks (block);
4079 /* Prune the old trees away, so that they don't get in the way. */
4080 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4081 BLOCK_CHAIN (block) = NULL_TREE;
4083 /* Recreate the block tree from the note nesting. */
4084 reorder_blocks_1 (get_insns (), block, &block_stack);
4085 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4087 VEC_free (tree, heap, block_stack);
4090 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4092 void
4093 clear_block_marks (tree block)
4095 while (block)
4097 TREE_ASM_WRITTEN (block) = 0;
4098 clear_block_marks (BLOCK_SUBBLOCKS (block));
4099 block = BLOCK_CHAIN (block);
4103 static void
4104 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
4106 rtx insn;
4108 for (insn = insns; insn; insn = NEXT_INSN (insn))
4110 if (NOTE_P (insn))
4112 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4114 tree block = NOTE_BLOCK (insn);
4115 tree origin;
4117 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4118 origin = block;
4120 /* If we have seen this block before, that means it now
4121 spans multiple address regions. Create a new fragment. */
4122 if (TREE_ASM_WRITTEN (block))
4124 tree new_block = copy_node (block);
4126 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4127 BLOCK_FRAGMENT_CHAIN (new_block)
4128 = BLOCK_FRAGMENT_CHAIN (origin);
4129 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4131 NOTE_BLOCK (insn) = new_block;
4132 block = new_block;
4135 BLOCK_SUBBLOCKS (block) = 0;
4136 TREE_ASM_WRITTEN (block) = 1;
4137 /* When there's only one block for the entire function,
4138 current_block == block and we mustn't do this, it
4139 will cause infinite recursion. */
4140 if (block != current_block)
4142 if (block != origin)
4143 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
4145 BLOCK_SUPERCONTEXT (block) = current_block;
4146 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4147 BLOCK_SUBBLOCKS (current_block) = block;
4148 current_block = origin;
4150 VEC_safe_push (tree, heap, *p_block_stack, block);
4152 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4154 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
4155 current_block = BLOCK_SUPERCONTEXT (current_block);
4161 /* Reverse the order of elements in the chain T of blocks,
4162 and return the new head of the chain (old last element). */
4164 tree
4165 blocks_nreverse (tree t)
4167 tree prev = 0, block, next;
4168 for (block = t; block; block = next)
4170 next = BLOCK_CHAIN (block);
4171 BLOCK_CHAIN (block) = prev;
4172 prev = block;
4174 return prev;
4177 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4178 by modifying the last node in chain 1 to point to chain 2. */
4180 tree
4181 block_chainon (tree op1, tree op2)
4183 tree t1;
4185 if (!op1)
4186 return op2;
4187 if (!op2)
4188 return op1;
4190 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4191 continue;
4192 BLOCK_CHAIN (t1) = op2;
4194 #ifdef ENABLE_TREE_CHECKING
4196 tree t2;
4197 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4198 gcc_assert (t2 != t1);
4200 #endif
4202 return op1;
4205 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4206 non-NULL, list them all into VECTOR, in a depth-first preorder
4207 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4208 blocks. */
4210 static int
4211 all_blocks (tree block, tree *vector)
4213 int n_blocks = 0;
4215 while (block)
4217 TREE_ASM_WRITTEN (block) = 0;
4219 /* Record this block. */
4220 if (vector)
4221 vector[n_blocks] = block;
4223 ++n_blocks;
4225 /* Record the subblocks, and their subblocks... */
4226 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4227 vector ? vector + n_blocks : 0);
4228 block = BLOCK_CHAIN (block);
4231 return n_blocks;
4234 /* Return a vector containing all the blocks rooted at BLOCK. The
4235 number of elements in the vector is stored in N_BLOCKS_P. The
4236 vector is dynamically allocated; it is the caller's responsibility
4237 to call `free' on the pointer returned. */
4239 static tree *
4240 get_block_vector (tree block, int *n_blocks_p)
4242 tree *block_vector;
4244 *n_blocks_p = all_blocks (block, NULL);
4245 block_vector = XNEWVEC (tree, *n_blocks_p);
4246 all_blocks (block, block_vector);
4248 return block_vector;
4251 static GTY(()) int next_block_index = 2;
4253 /* Set BLOCK_NUMBER for all the blocks in FN. */
4255 void
4256 number_blocks (tree fn)
4258 int i;
4259 int n_blocks;
4260 tree *block_vector;
4262 /* For SDB and XCOFF debugging output, we start numbering the blocks
4263 from 1 within each function, rather than keeping a running
4264 count. */
4265 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4266 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4267 next_block_index = 1;
4268 #endif
4270 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4272 /* The top-level BLOCK isn't numbered at all. */
4273 for (i = 1; i < n_blocks; ++i)
4274 /* We number the blocks from two. */
4275 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4277 free (block_vector);
4279 return;
4282 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4284 DEBUG_FUNCTION tree
4285 debug_find_var_in_block_tree (tree var, tree block)
4287 tree t;
4289 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4290 if (t == var)
4291 return block;
4293 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4295 tree ret = debug_find_var_in_block_tree (var, t);
4296 if (ret)
4297 return ret;
4300 return NULL_TREE;
4303 /* Keep track of whether we're in a dummy function context. If we are,
4304 we don't want to invoke the set_current_function hook, because we'll
4305 get into trouble if the hook calls target_reinit () recursively or
4306 when the initial initialization is not yet complete. */
4308 static bool in_dummy_function;
4310 /* Invoke the target hook when setting cfun. Update the optimization options
4311 if the function uses different options than the default. */
4313 static void
4314 invoke_set_current_function_hook (tree fndecl)
4316 if (!in_dummy_function)
4318 tree opts = ((fndecl)
4319 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4320 : optimization_default_node);
4322 if (!opts)
4323 opts = optimization_default_node;
4325 /* Change optimization options if needed. */
4326 if (optimization_current_node != opts)
4328 optimization_current_node = opts;
4329 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4332 targetm.set_current_function (fndecl);
4336 /* cfun should never be set directly; use this function. */
4338 void
4339 set_cfun (struct function *new_cfun)
4341 if (cfun != new_cfun)
4343 cfun = new_cfun;
4344 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4348 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4350 static VEC(function_p,heap) *cfun_stack;
4352 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4354 void
4355 push_cfun (struct function *new_cfun)
4357 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4358 set_cfun (new_cfun);
4361 /* Pop cfun from the stack. */
4363 void
4364 pop_cfun (void)
4366 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4367 set_cfun (new_cfun);
4370 /* Return value of funcdef and increase it. */
4372 get_next_funcdef_no (void)
4374 return funcdef_no++;
4377 /* Return value of funcdef. */
4379 get_last_funcdef_no (void)
4381 return funcdef_no;
4384 /* Allocate a function structure for FNDECL and set its contents
4385 to the defaults. Set cfun to the newly-allocated object.
4386 Some of the helper functions invoked during initialization assume
4387 that cfun has already been set. Therefore, assign the new object
4388 directly into cfun and invoke the back end hook explicitly at the
4389 very end, rather than initializing a temporary and calling set_cfun
4390 on it.
4392 ABSTRACT_P is true if this is a function that will never be seen by
4393 the middle-end. Such functions are front-end concepts (like C++
4394 function templates) that do not correspond directly to functions
4395 placed in object files. */
4397 void
4398 allocate_struct_function (tree fndecl, bool abstract_p)
4400 tree result;
4401 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4403 cfun = ggc_alloc_cleared_function ();
4405 init_eh_for_function ();
4407 if (init_machine_status)
4408 cfun->machine = (*init_machine_status) ();
4410 #ifdef OVERRIDE_ABI_FORMAT
4411 OVERRIDE_ABI_FORMAT (fndecl);
4412 #endif
4414 invoke_set_current_function_hook (fndecl);
4416 if (fndecl != NULL_TREE)
4418 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4419 cfun->decl = fndecl;
4420 current_function_funcdef_no = get_next_funcdef_no ();
4422 result = DECL_RESULT (fndecl);
4423 if (!abstract_p && aggregate_value_p (result, fndecl))
4425 #ifdef PCC_STATIC_STRUCT_RETURN
4426 cfun->returns_pcc_struct = 1;
4427 #endif
4428 cfun->returns_struct = 1;
4431 cfun->stdarg = stdarg_p (fntype);
4433 /* Assume all registers in stdarg functions need to be saved. */
4434 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4435 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4437 /* ??? This could be set on a per-function basis by the front-end
4438 but is this worth the hassle? */
4439 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4443 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4444 instead of just setting it. */
4446 void
4447 push_struct_function (tree fndecl)
4449 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4450 allocate_struct_function (fndecl, false);
4453 /* Reset crtl and other non-struct-function variables to defaults as
4454 appropriate for emitting rtl at the start of a function. */
4456 static void
4457 prepare_function_start (void)
4459 gcc_assert (!crtl->emit.x_last_insn);
4460 init_temp_slots ();
4461 init_emit ();
4462 init_varasm_status ();
4463 init_expr ();
4464 default_rtl_profile ();
4466 if (flag_stack_usage_info)
4468 cfun->su = ggc_alloc_cleared_stack_usage ();
4469 cfun->su->static_stack_size = -1;
4472 cse_not_expected = ! optimize;
4474 /* Caller save not needed yet. */
4475 caller_save_needed = 0;
4477 /* We haven't done register allocation yet. */
4478 reg_renumber = 0;
4480 /* Indicate that we have not instantiated virtual registers yet. */
4481 virtuals_instantiated = 0;
4483 /* Indicate that we want CONCATs now. */
4484 generating_concat_p = 1;
4486 /* Indicate we have no need of a frame pointer yet. */
4487 frame_pointer_needed = 0;
4490 /* Initialize the rtl expansion mechanism so that we can do simple things
4491 like generate sequences. This is used to provide a context during global
4492 initialization of some passes. You must call expand_dummy_function_end
4493 to exit this context. */
4495 void
4496 init_dummy_function_start (void)
4498 gcc_assert (!in_dummy_function);
4499 in_dummy_function = true;
4500 push_struct_function (NULL_TREE);
4501 prepare_function_start ();
4504 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4505 and initialize static variables for generating RTL for the statements
4506 of the function. */
4508 void
4509 init_function_start (tree subr)
4511 if (subr && DECL_STRUCT_FUNCTION (subr))
4512 set_cfun (DECL_STRUCT_FUNCTION (subr));
4513 else
4514 allocate_struct_function (subr, false);
4515 prepare_function_start ();
4516 decide_function_section (subr);
4518 /* Warn if this value is an aggregate type,
4519 regardless of which calling convention we are using for it. */
4520 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4521 warning (OPT_Waggregate_return, "function returns an aggregate");
4524 /* Make sure all values used by the optimization passes have sane defaults. */
4525 unsigned int
4526 init_function_for_compilation (void)
4528 reg_renumber = 0;
4529 return 0;
4532 struct rtl_opt_pass pass_init_function =
4535 RTL_PASS,
4536 "*init_function", /* name */
4537 NULL, /* gate */
4538 init_function_for_compilation, /* execute */
4539 NULL, /* sub */
4540 NULL, /* next */
4541 0, /* static_pass_number */
4542 TV_NONE, /* tv_id */
4543 0, /* properties_required */
4544 0, /* properties_provided */
4545 0, /* properties_destroyed */
4546 0, /* todo_flags_start */
4547 0 /* todo_flags_finish */
4552 void
4553 expand_main_function (void)
4555 #if (defined(INVOKE__main) \
4556 || (!defined(HAS_INIT_SECTION) \
4557 && !defined(INIT_SECTION_ASM_OP) \
4558 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4559 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4560 #endif
4563 /* Expand code to initialize the stack_protect_guard. This is invoked at
4564 the beginning of a function to be protected. */
4566 #ifndef HAVE_stack_protect_set
4567 # define HAVE_stack_protect_set 0
4568 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4569 #endif
4571 void
4572 stack_protect_prologue (void)
4574 tree guard_decl = targetm.stack_protect_guard ();
4575 rtx x, y;
4577 x = expand_normal (crtl->stack_protect_guard);
4578 y = expand_normal (guard_decl);
4580 /* Allow the target to copy from Y to X without leaking Y into a
4581 register. */
4582 if (HAVE_stack_protect_set)
4584 rtx insn = gen_stack_protect_set (x, y);
4585 if (insn)
4587 emit_insn (insn);
4588 return;
4592 /* Otherwise do a straight move. */
4593 emit_move_insn (x, y);
4596 /* Expand code to verify the stack_protect_guard. This is invoked at
4597 the end of a function to be protected. */
4599 #ifndef HAVE_stack_protect_test
4600 # define HAVE_stack_protect_test 0
4601 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4602 #endif
4604 void
4605 stack_protect_epilogue (void)
4607 tree guard_decl = targetm.stack_protect_guard ();
4608 rtx label = gen_label_rtx ();
4609 rtx x, y, tmp;
4611 x = expand_normal (crtl->stack_protect_guard);
4612 y = expand_normal (guard_decl);
4614 /* Allow the target to compare Y with X without leaking either into
4615 a register. */
4616 switch (HAVE_stack_protect_test != 0)
4618 case 1:
4619 tmp = gen_stack_protect_test (x, y, label);
4620 if (tmp)
4622 emit_insn (tmp);
4623 break;
4625 /* FALLTHRU */
4627 default:
4628 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4629 break;
4632 /* The noreturn predictor has been moved to the tree level. The rtl-level
4633 predictors estimate this branch about 20%, which isn't enough to get
4634 things moved out of line. Since this is the only extant case of adding
4635 a noreturn function at the rtl level, it doesn't seem worth doing ought
4636 except adding the prediction by hand. */
4637 tmp = get_last_insn ();
4638 if (JUMP_P (tmp))
4639 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4641 expand_expr_stmt (targetm.stack_protect_fail ());
4642 emit_label (label);
4645 /* Start the RTL for a new function, and set variables used for
4646 emitting RTL.
4647 SUBR is the FUNCTION_DECL node.
4648 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4649 the function's parameters, which must be run at any return statement. */
4651 void
4652 expand_function_start (tree subr)
4654 /* Make sure volatile mem refs aren't considered
4655 valid operands of arithmetic insns. */
4656 init_recog_no_volatile ();
4658 crtl->profile
4659 = (profile_flag
4660 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4662 crtl->limit_stack
4663 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4665 /* Make the label for return statements to jump to. Do not special
4666 case machines with special return instructions -- they will be
4667 handled later during jump, ifcvt, or epilogue creation. */
4668 return_label = gen_label_rtx ();
4670 /* Initialize rtx used to return the value. */
4671 /* Do this before assign_parms so that we copy the struct value address
4672 before any library calls that assign parms might generate. */
4674 /* Decide whether to return the value in memory or in a register. */
4675 if (aggregate_value_p (DECL_RESULT (subr), subr))
4677 /* Returning something that won't go in a register. */
4678 rtx value_address = 0;
4680 #ifdef PCC_STATIC_STRUCT_RETURN
4681 if (cfun->returns_pcc_struct)
4683 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4684 value_address = assemble_static_space (size);
4686 else
4687 #endif
4689 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4690 /* Expect to be passed the address of a place to store the value.
4691 If it is passed as an argument, assign_parms will take care of
4692 it. */
4693 if (sv)
4695 value_address = gen_reg_rtx (Pmode);
4696 emit_move_insn (value_address, sv);
4699 if (value_address)
4701 rtx x = value_address;
4702 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4704 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4705 set_mem_attributes (x, DECL_RESULT (subr), 1);
4707 SET_DECL_RTL (DECL_RESULT (subr), x);
4710 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4711 /* If return mode is void, this decl rtl should not be used. */
4712 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4713 else
4715 /* Compute the return values into a pseudo reg, which we will copy
4716 into the true return register after the cleanups are done. */
4717 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4718 if (TYPE_MODE (return_type) != BLKmode
4719 && targetm.calls.return_in_msb (return_type))
4720 /* expand_function_end will insert the appropriate padding in
4721 this case. Use the return value's natural (unpadded) mode
4722 within the function proper. */
4723 SET_DECL_RTL (DECL_RESULT (subr),
4724 gen_reg_rtx (TYPE_MODE (return_type)));
4725 else
4727 /* In order to figure out what mode to use for the pseudo, we
4728 figure out what the mode of the eventual return register will
4729 actually be, and use that. */
4730 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4732 /* Structures that are returned in registers are not
4733 aggregate_value_p, so we may see a PARALLEL or a REG. */
4734 if (REG_P (hard_reg))
4735 SET_DECL_RTL (DECL_RESULT (subr),
4736 gen_reg_rtx (GET_MODE (hard_reg)));
4737 else
4739 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4740 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4744 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4745 result to the real return register(s). */
4746 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4749 /* Initialize rtx for parameters and local variables.
4750 In some cases this requires emitting insns. */
4751 assign_parms (subr);
4753 /* If function gets a static chain arg, store it. */
4754 if (cfun->static_chain_decl)
4756 tree parm = cfun->static_chain_decl;
4757 rtx local, chain, insn;
4759 local = gen_reg_rtx (Pmode);
4760 chain = targetm.calls.static_chain (current_function_decl, true);
4762 set_decl_incoming_rtl (parm, chain, false);
4763 SET_DECL_RTL (parm, local);
4764 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4766 insn = emit_move_insn (local, chain);
4768 /* Mark the register as eliminable, similar to parameters. */
4769 if (MEM_P (chain)
4770 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4771 set_unique_reg_note (insn, REG_EQUIV, chain);
4774 /* If the function receives a non-local goto, then store the
4775 bits we need to restore the frame pointer. */
4776 if (cfun->nonlocal_goto_save_area)
4778 tree t_save;
4779 rtx r_save;
4781 /* ??? We need to do this save early. Unfortunately here is
4782 before the frame variable gets declared. Help out... */
4783 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4784 if (!DECL_RTL_SET_P (var))
4785 expand_decl (var);
4787 t_save = build4 (ARRAY_REF,
4788 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4789 cfun->nonlocal_goto_save_area,
4790 integer_zero_node, NULL_TREE, NULL_TREE);
4791 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4792 gcc_assert (GET_MODE (r_save) == Pmode);
4794 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4795 update_nonlocal_goto_save_area ();
4798 /* The following was moved from init_function_start.
4799 The move is supposed to make sdb output more accurate. */
4800 /* Indicate the beginning of the function body,
4801 as opposed to parm setup. */
4802 emit_note (NOTE_INSN_FUNCTION_BEG);
4804 gcc_assert (NOTE_P (get_last_insn ()));
4806 parm_birth_insn = get_last_insn ();
4808 if (crtl->profile)
4810 #ifdef PROFILE_HOOK
4811 PROFILE_HOOK (current_function_funcdef_no);
4812 #endif
4815 /* If we are doing generic stack checking, the probe should go here. */
4816 if (flag_stack_check == GENERIC_STACK_CHECK)
4817 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4819 /* Make sure there is a line number after the function entry setup code. */
4820 force_next_line_note ();
4823 /* Undo the effects of init_dummy_function_start. */
4824 void
4825 expand_dummy_function_end (void)
4827 gcc_assert (in_dummy_function);
4829 /* End any sequences that failed to be closed due to syntax errors. */
4830 while (in_sequence_p ())
4831 end_sequence ();
4833 /* Outside function body, can't compute type's actual size
4834 until next function's body starts. */
4836 free_after_parsing (cfun);
4837 free_after_compilation (cfun);
4838 pop_cfun ();
4839 in_dummy_function = false;
4842 /* Call DOIT for each hard register used as a return value from
4843 the current function. */
4845 void
4846 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4848 rtx outgoing = crtl->return_rtx;
4850 if (! outgoing)
4851 return;
4853 if (REG_P (outgoing))
4854 (*doit) (outgoing, arg);
4855 else if (GET_CODE (outgoing) == PARALLEL)
4857 int i;
4859 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4861 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4863 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4864 (*doit) (x, arg);
4869 static void
4870 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4872 emit_clobber (reg);
4875 void
4876 clobber_return_register (void)
4878 diddle_return_value (do_clobber_return_reg, NULL);
4880 /* In case we do use pseudo to return value, clobber it too. */
4881 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4883 tree decl_result = DECL_RESULT (current_function_decl);
4884 rtx decl_rtl = DECL_RTL (decl_result);
4885 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4887 do_clobber_return_reg (decl_rtl, NULL);
4892 static void
4893 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4895 emit_use (reg);
4898 static void
4899 use_return_register (void)
4901 diddle_return_value (do_use_return_reg, NULL);
4904 /* Possibly warn about unused parameters. */
4905 void
4906 do_warn_unused_parameter (tree fn)
4908 tree decl;
4910 for (decl = DECL_ARGUMENTS (fn);
4911 decl; decl = DECL_CHAIN (decl))
4912 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4913 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4914 && !TREE_NO_WARNING (decl))
4915 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4918 static GTY(()) rtx initial_trampoline;
4920 /* Generate RTL for the end of the current function. */
4922 void
4923 expand_function_end (void)
4925 rtx clobber_after;
4927 /* If arg_pointer_save_area was referenced only from a nested
4928 function, we will not have initialized it yet. Do that now. */
4929 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4930 get_arg_pointer_save_area ();
4932 /* If we are doing generic stack checking and this function makes calls,
4933 do a stack probe at the start of the function to ensure we have enough
4934 space for another stack frame. */
4935 if (flag_stack_check == GENERIC_STACK_CHECK)
4937 rtx insn, seq;
4939 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4940 if (CALL_P (insn))
4942 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4943 start_sequence ();
4944 if (STACK_CHECK_MOVING_SP)
4945 anti_adjust_stack_and_probe (max_frame_size, true);
4946 else
4947 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4948 seq = get_insns ();
4949 end_sequence ();
4950 set_insn_locators (seq, prologue_locator);
4951 emit_insn_before (seq, stack_check_probe_note);
4952 break;
4956 /* End any sequences that failed to be closed due to syntax errors. */
4957 while (in_sequence_p ())
4958 end_sequence ();
4960 clear_pending_stack_adjust ();
4961 do_pending_stack_adjust ();
4963 /* Output a linenumber for the end of the function.
4964 SDB depends on this. */
4965 force_next_line_note ();
4966 set_curr_insn_source_location (input_location);
4968 /* Before the return label (if any), clobber the return
4969 registers so that they are not propagated live to the rest of
4970 the function. This can only happen with functions that drop
4971 through; if there had been a return statement, there would
4972 have either been a return rtx, or a jump to the return label.
4974 We delay actual code generation after the current_function_value_rtx
4975 is computed. */
4976 clobber_after = get_last_insn ();
4978 /* Output the label for the actual return from the function. */
4979 emit_label (return_label);
4981 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
4983 /* Let except.c know where it should emit the call to unregister
4984 the function context for sjlj exceptions. */
4985 if (flag_exceptions)
4986 sjlj_emit_function_exit_after (get_last_insn ());
4988 else
4990 /* We want to ensure that instructions that may trap are not
4991 moved into the epilogue by scheduling, because we don't
4992 always emit unwind information for the epilogue. */
4993 if (cfun->can_throw_non_call_exceptions)
4994 emit_insn (gen_blockage ());
4997 /* If this is an implementation of throw, do what's necessary to
4998 communicate between __builtin_eh_return and the epilogue. */
4999 expand_eh_return ();
5001 /* If scalar return value was computed in a pseudo-reg, or was a named
5002 return value that got dumped to the stack, copy that to the hard
5003 return register. */
5004 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5006 tree decl_result = DECL_RESULT (current_function_decl);
5007 rtx decl_rtl = DECL_RTL (decl_result);
5009 if (REG_P (decl_rtl)
5010 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5011 : DECL_REGISTER (decl_result))
5013 rtx real_decl_rtl = crtl->return_rtx;
5015 /* This should be set in assign_parms. */
5016 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5018 /* If this is a BLKmode structure being returned in registers,
5019 then use the mode computed in expand_return. Note that if
5020 decl_rtl is memory, then its mode may have been changed,
5021 but that crtl->return_rtx has not. */
5022 if (GET_MODE (real_decl_rtl) == BLKmode)
5023 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5025 /* If a non-BLKmode return value should be padded at the least
5026 significant end of the register, shift it left by the appropriate
5027 amount. BLKmode results are handled using the group load/store
5028 machinery. */
5029 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5030 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5032 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5033 REGNO (real_decl_rtl)),
5034 decl_rtl);
5035 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5037 /* If a named return value dumped decl_return to memory, then
5038 we may need to re-do the PROMOTE_MODE signed/unsigned
5039 extension. */
5040 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5042 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5043 promote_function_mode (TREE_TYPE (decl_result),
5044 GET_MODE (decl_rtl), &unsignedp,
5045 TREE_TYPE (current_function_decl), 1);
5047 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5049 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5051 /* If expand_function_start has created a PARALLEL for decl_rtl,
5052 move the result to the real return registers. Otherwise, do
5053 a group load from decl_rtl for a named return. */
5054 if (GET_CODE (decl_rtl) == PARALLEL)
5055 emit_group_move (real_decl_rtl, decl_rtl);
5056 else
5057 emit_group_load (real_decl_rtl, decl_rtl,
5058 TREE_TYPE (decl_result),
5059 int_size_in_bytes (TREE_TYPE (decl_result)));
5061 /* In the case of complex integer modes smaller than a word, we'll
5062 need to generate some non-trivial bitfield insertions. Do that
5063 on a pseudo and not the hard register. */
5064 else if (GET_CODE (decl_rtl) == CONCAT
5065 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5066 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5068 int old_generating_concat_p;
5069 rtx tmp;
5071 old_generating_concat_p = generating_concat_p;
5072 generating_concat_p = 0;
5073 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5074 generating_concat_p = old_generating_concat_p;
5076 emit_move_insn (tmp, decl_rtl);
5077 emit_move_insn (real_decl_rtl, tmp);
5079 else
5080 emit_move_insn (real_decl_rtl, decl_rtl);
5084 /* If returning a structure, arrange to return the address of the value
5085 in a place where debuggers expect to find it.
5087 If returning a structure PCC style,
5088 the caller also depends on this value.
5089 And cfun->returns_pcc_struct is not necessarily set. */
5090 if (cfun->returns_struct
5091 || cfun->returns_pcc_struct)
5093 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5094 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5095 rtx outgoing;
5097 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5098 type = TREE_TYPE (type);
5099 else
5100 value_address = XEXP (value_address, 0);
5102 outgoing = targetm.calls.function_value (build_pointer_type (type),
5103 current_function_decl, true);
5105 /* Mark this as a function return value so integrate will delete the
5106 assignment and USE below when inlining this function. */
5107 REG_FUNCTION_VALUE_P (outgoing) = 1;
5109 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5110 value_address = convert_memory_address (GET_MODE (outgoing),
5111 value_address);
5113 emit_move_insn (outgoing, value_address);
5115 /* Show return register used to hold result (in this case the address
5116 of the result. */
5117 crtl->return_rtx = outgoing;
5120 /* Emit the actual code to clobber return register. */
5122 rtx seq;
5124 start_sequence ();
5125 clobber_return_register ();
5126 seq = get_insns ();
5127 end_sequence ();
5129 emit_insn_after (seq, clobber_after);
5132 /* Output the label for the naked return from the function. */
5133 if (naked_return_label)
5134 emit_label (naked_return_label);
5136 /* @@@ This is a kludge. We want to ensure that instructions that
5137 may trap are not moved into the epilogue by scheduling, because
5138 we don't always emit unwind information for the epilogue. */
5139 if (cfun->can_throw_non_call_exceptions
5140 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5141 emit_insn (gen_blockage ());
5143 /* If stack protection is enabled for this function, check the guard. */
5144 if (crtl->stack_protect_guard)
5145 stack_protect_epilogue ();
5147 /* If we had calls to alloca, and this machine needs
5148 an accurate stack pointer to exit the function,
5149 insert some code to save and restore the stack pointer. */
5150 if (! EXIT_IGNORE_STACK
5151 && cfun->calls_alloca)
5153 rtx tem = 0, seq;
5155 start_sequence ();
5156 emit_stack_save (SAVE_FUNCTION, &tem);
5157 seq = get_insns ();
5158 end_sequence ();
5159 emit_insn_before (seq, parm_birth_insn);
5161 emit_stack_restore (SAVE_FUNCTION, tem);
5164 /* ??? This should no longer be necessary since stupid is no longer with
5165 us, but there are some parts of the compiler (eg reload_combine, and
5166 sh mach_dep_reorg) that still try and compute their own lifetime info
5167 instead of using the general framework. */
5168 use_return_register ();
5172 get_arg_pointer_save_area (void)
5174 rtx ret = arg_pointer_save_area;
5176 if (! ret)
5178 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5179 arg_pointer_save_area = ret;
5182 if (! crtl->arg_pointer_save_area_init)
5184 rtx seq;
5186 /* Save the arg pointer at the beginning of the function. The
5187 generated stack slot may not be a valid memory address, so we
5188 have to check it and fix it if necessary. */
5189 start_sequence ();
5190 emit_move_insn (validize_mem (ret),
5191 crtl->args.internal_arg_pointer);
5192 seq = get_insns ();
5193 end_sequence ();
5195 push_topmost_sequence ();
5196 emit_insn_after (seq, entry_of_function ());
5197 pop_topmost_sequence ();
5199 crtl->arg_pointer_save_area_init = true;
5202 return ret;
5205 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5206 for the first time. */
5208 static void
5209 record_insns (rtx insns, rtx end, htab_t *hashp)
5211 rtx tmp;
5212 htab_t hash = *hashp;
5214 if (hash == NULL)
5215 *hashp = hash
5216 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5218 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5220 void **slot = htab_find_slot (hash, tmp, INSERT);
5221 gcc_assert (*slot == NULL);
5222 *slot = tmp;
5226 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5227 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5228 insn, then record COPY as well. */
5230 void
5231 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5233 htab_t hash;
5234 void **slot;
5236 hash = epilogue_insn_hash;
5237 if (!hash || !htab_find (hash, insn))
5239 hash = prologue_insn_hash;
5240 if (!hash || !htab_find (hash, insn))
5241 return;
5244 slot = htab_find_slot (hash, copy, INSERT);
5245 gcc_assert (*slot == NULL);
5246 *slot = copy;
5249 /* Set the locator of the insn chain starting at INSN to LOC. */
5250 static void
5251 set_insn_locators (rtx insn, int loc)
5253 while (insn != NULL_RTX)
5255 if (INSN_P (insn))
5256 INSN_LOCATOR (insn) = loc;
5257 insn = NEXT_INSN (insn);
5261 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5262 we can be running after reorg, SEQUENCE rtl is possible. */
5264 static bool
5265 contains (const_rtx insn, htab_t hash)
5267 if (hash == NULL)
5268 return false;
5270 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5272 int i;
5273 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5274 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5275 return true;
5276 return false;
5279 return htab_find (hash, insn) != NULL;
5283 prologue_epilogue_contains (const_rtx insn)
5285 if (contains (insn, prologue_insn_hash))
5286 return 1;
5287 if (contains (insn, epilogue_insn_hash))
5288 return 1;
5289 return 0;
5292 #ifdef HAVE_return
5293 /* Insert use of return register before the end of BB. */
5295 static void
5296 emit_use_return_register_into_block (basic_block bb)
5298 rtx seq;
5299 start_sequence ();
5300 use_return_register ();
5301 seq = get_insns ();
5302 end_sequence ();
5303 emit_insn_before (seq, BB_END (bb));
5306 /* Insert gen_return at the end of block BB. This also means updating
5307 block_for_insn appropriately. */
5309 static void
5310 emit_return_into_block (basic_block bb)
5312 emit_jump_insn_after (gen_return (), BB_END (bb));
5314 #endif /* HAVE_return */
5316 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5317 this into place with notes indicating where the prologue ends and where
5318 the epilogue begins. Update the basic block information when possible. */
5320 static void
5321 thread_prologue_and_epilogue_insns (void)
5323 bool inserted;
5324 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5325 edge entry_edge, e;
5326 edge_iterator ei;
5328 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5330 inserted = false;
5331 seq = NULL_RTX;
5332 epilogue_end = NULL_RTX;
5334 /* Can't deal with multiple successors of the entry block at the
5335 moment. Function should always have at least one entry
5336 point. */
5337 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5338 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5340 if (flag_split_stack
5341 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5342 == NULL))
5344 #ifndef HAVE_split_stack_prologue
5345 gcc_unreachable ();
5346 #else
5347 gcc_assert (HAVE_split_stack_prologue);
5349 start_sequence ();
5350 emit_insn (gen_split_stack_prologue ());
5351 seq = get_insns ();
5352 end_sequence ();
5354 record_insns (seq, NULL, &prologue_insn_hash);
5355 set_insn_locators (seq, prologue_locator);
5357 insert_insn_on_edge (seq, entry_edge);
5358 inserted = true;
5359 #endif
5362 #ifdef HAVE_prologue
5363 if (HAVE_prologue)
5365 start_sequence ();
5366 seq = gen_prologue ();
5367 emit_insn (seq);
5369 /* Insert an explicit USE for the frame pointer
5370 if the profiling is on and the frame pointer is required. */
5371 if (crtl->profile && frame_pointer_needed)
5372 emit_use (hard_frame_pointer_rtx);
5374 /* Retain a map of the prologue insns. */
5375 record_insns (seq, NULL, &prologue_insn_hash);
5376 emit_note (NOTE_INSN_PROLOGUE_END);
5378 /* Ensure that instructions are not moved into the prologue when
5379 profiling is on. The call to the profiling routine can be
5380 emitted within the live range of a call-clobbered register. */
5381 if (!targetm.profile_before_prologue () && crtl->profile)
5382 emit_insn (gen_blockage ());
5384 seq = get_insns ();
5385 end_sequence ();
5386 set_insn_locators (seq, prologue_locator);
5388 insert_insn_on_edge (seq, entry_edge);
5389 inserted = true;
5391 #endif
5393 /* If the exit block has no non-fake predecessors, we don't need
5394 an epilogue. */
5395 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5396 if ((e->flags & EDGE_FAKE) == 0)
5397 break;
5398 if (e == NULL)
5399 goto epilogue_done;
5401 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5402 #ifdef HAVE_return
5403 if (optimize && HAVE_return)
5405 /* If we're allowed to generate a simple return instruction,
5406 then by definition we don't need a full epilogue. Examine
5407 the block that falls through to EXIT. If it does not
5408 contain any code, examine its predecessors and try to
5409 emit (conditional) return instructions. */
5411 basic_block last;
5412 rtx label;
5414 e = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
5415 if (e == NULL)
5416 goto epilogue_done;
5417 last = e->src;
5419 /* Verify that there are no active instructions in the last block. */
5420 label = BB_END (last);
5421 while (label && !LABEL_P (label))
5423 if (active_insn_p (label))
5424 break;
5425 label = PREV_INSN (label);
5428 if (BB_HEAD (last) == label && LABEL_P (label))
5430 edge_iterator ei2;
5432 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5434 basic_block bb = e->src;
5435 rtx jump;
5437 if (bb == ENTRY_BLOCK_PTR)
5439 ei_next (&ei2);
5440 continue;
5443 jump = BB_END (bb);
5444 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5446 ei_next (&ei2);
5447 continue;
5450 /* If we have an unconditional jump, we can replace that
5451 with a simple return instruction. */
5452 if (simplejump_p (jump))
5454 /* The use of the return register might be present in the exit
5455 fallthru block. Either:
5456 - removing the use is safe, and we should remove the use in
5457 the exit fallthru block, or
5458 - removing the use is not safe, and we should add it here.
5459 For now, we conservatively choose the latter. Either of the
5460 2 helps in crossjumping. */
5461 emit_use_return_register_into_block (bb);
5463 emit_return_into_block (bb);
5464 delete_insn (jump);
5467 /* If we have a conditional jump, we can try to replace
5468 that with a conditional return instruction. */
5469 else if (condjump_p (jump))
5471 if (! redirect_jump (jump, 0, 0))
5473 ei_next (&ei2);
5474 continue;
5477 /* See comment in simple_jump_p case above. */
5478 emit_use_return_register_into_block (bb);
5480 /* If this block has only one successor, it both jumps
5481 and falls through to the fallthru block, so we can't
5482 delete the edge. */
5483 if (single_succ_p (bb))
5485 ei_next (&ei2);
5486 continue;
5489 else
5491 ei_next (&ei2);
5492 continue;
5495 /* Fix up the CFG for the successful change we just made. */
5496 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5499 /* Emit a return insn for the exit fallthru block. Whether
5500 this is still reachable will be determined later. */
5502 emit_barrier_after (BB_END (last));
5503 emit_return_into_block (last);
5504 epilogue_end = BB_END (last);
5505 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5506 goto epilogue_done;
5509 #endif
5511 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5512 this marker for the splits of EH_RETURN patterns, and nothing else
5513 uses the flag in the meantime. */
5514 epilogue_completed = 1;
5516 #ifdef HAVE_eh_return
5517 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5518 some targets, these get split to a special version of the epilogue
5519 code. In order to be able to properly annotate these with unwind
5520 info, try to split them now. If we get a valid split, drop an
5521 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5522 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5524 rtx prev, last, trial;
5526 if (e->flags & EDGE_FALLTHRU)
5527 continue;
5528 last = BB_END (e->src);
5529 if (!eh_returnjump_p (last))
5530 continue;
5532 prev = PREV_INSN (last);
5533 trial = try_split (PATTERN (last), last, 1);
5534 if (trial == last)
5535 continue;
5537 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5538 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5540 #endif
5542 /* Find the edge that falls through to EXIT. Other edges may exist
5543 due to RETURN instructions, but those don't need epilogues.
5544 There really shouldn't be a mixture -- either all should have
5545 been converted or none, however... */
5547 e = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
5548 if (e == NULL)
5549 goto epilogue_done;
5551 #ifdef HAVE_epilogue
5552 if (HAVE_epilogue)
5554 start_sequence ();
5555 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5556 seq = gen_epilogue ();
5557 if (seq)
5558 emit_jump_insn (seq);
5560 /* Retain a map of the epilogue insns. */
5561 record_insns (seq, NULL, &epilogue_insn_hash);
5562 set_insn_locators (seq, epilogue_locator);
5564 seq = get_insns ();
5565 end_sequence ();
5567 insert_insn_on_edge (seq, e);
5568 inserted = true;
5570 else
5571 #endif
5573 basic_block cur_bb;
5575 if (! next_active_insn (BB_END (e->src)))
5576 goto epilogue_done;
5577 /* We have a fall-through edge to the exit block, the source is not
5578 at the end of the function, and there will be an assembler epilogue
5579 at the end of the function.
5580 We can't use force_nonfallthru here, because that would try to
5581 use return. Inserting a jump 'by hand' is extremely messy, so
5582 we take advantage of cfg_layout_finalize using
5583 fixup_fallthru_exit_predecessor. */
5584 cfg_layout_initialize (0);
5585 FOR_EACH_BB (cur_bb)
5586 if (cur_bb->index >= NUM_FIXED_BLOCKS
5587 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5588 cur_bb->aux = cur_bb->next_bb;
5589 cfg_layout_finalize ();
5592 epilogue_done:
5593 default_rtl_profile ();
5595 if (inserted)
5597 sbitmap blocks;
5599 commit_edge_insertions ();
5601 /* Look for basic blocks within the prologue insns. */
5602 blocks = sbitmap_alloc (last_basic_block);
5603 sbitmap_zero (blocks);
5604 SET_BIT (blocks, entry_edge->dest->index);
5605 find_many_sub_basic_blocks (blocks);
5606 sbitmap_free (blocks);
5608 /* The epilogue insns we inserted may cause the exit edge to no longer
5609 be fallthru. */
5610 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5612 if (((e->flags & EDGE_FALLTHRU) != 0)
5613 && returnjump_p (BB_END (e->src)))
5614 e->flags &= ~EDGE_FALLTHRU;
5618 #ifdef HAVE_sibcall_epilogue
5619 /* Emit sibling epilogues before any sibling call sites. */
5620 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5622 basic_block bb = e->src;
5623 rtx insn = BB_END (bb);
5625 if (!CALL_P (insn)
5626 || ! SIBLING_CALL_P (insn))
5628 ei_next (&ei);
5629 continue;
5632 start_sequence ();
5633 emit_note (NOTE_INSN_EPILOGUE_BEG);
5634 emit_insn (gen_sibcall_epilogue ());
5635 seq = get_insns ();
5636 end_sequence ();
5638 /* Retain a map of the epilogue insns. Used in life analysis to
5639 avoid getting rid of sibcall epilogue insns. Do this before we
5640 actually emit the sequence. */
5641 record_insns (seq, NULL, &epilogue_insn_hash);
5642 set_insn_locators (seq, epilogue_locator);
5644 emit_insn_before (seq, insn);
5645 ei_next (&ei);
5647 #endif
5649 #ifdef HAVE_epilogue
5650 if (epilogue_end)
5652 rtx insn, next;
5654 /* Similarly, move any line notes that appear after the epilogue.
5655 There is no need, however, to be quite so anal about the existence
5656 of such a note. Also possibly move
5657 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5658 info generation. */
5659 for (insn = epilogue_end; insn; insn = next)
5661 next = NEXT_INSN (insn);
5662 if (NOTE_P (insn)
5663 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5664 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5667 #endif
5669 /* Threading the prologue and epilogue changes the artificial refs
5670 in the entry and exit blocks. */
5671 epilogue_completed = 1;
5672 df_update_entry_exit_and_calls ();
5675 /* Reposition the prologue-end and epilogue-begin notes after
5676 instruction scheduling. */
5678 void
5679 reposition_prologue_and_epilogue_notes (void)
5681 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5682 || defined (HAVE_sibcall_epilogue)
5683 /* Since the hash table is created on demand, the fact that it is
5684 non-null is a signal that it is non-empty. */
5685 if (prologue_insn_hash != NULL)
5687 size_t len = htab_elements (prologue_insn_hash);
5688 rtx insn, last = NULL, note = NULL;
5690 /* Scan from the beginning until we reach the last prologue insn. */
5691 /* ??? While we do have the CFG intact, there are two problems:
5692 (1) The prologue can contain loops (typically probing the stack),
5693 which means that the end of the prologue isn't in the first bb.
5694 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5695 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5697 if (NOTE_P (insn))
5699 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5700 note = insn;
5702 else if (contains (insn, prologue_insn_hash))
5704 last = insn;
5705 if (--len == 0)
5706 break;
5710 if (last)
5712 if (note == NULL)
5714 /* Scan forward looking for the PROLOGUE_END note. It should
5715 be right at the beginning of the block, possibly with other
5716 insn notes that got moved there. */
5717 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5719 if (NOTE_P (note)
5720 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5721 break;
5725 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5726 if (LABEL_P (last))
5727 last = NEXT_INSN (last);
5728 reorder_insns (note, note, last);
5732 if (epilogue_insn_hash != NULL)
5734 edge_iterator ei;
5735 edge e;
5737 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5739 rtx insn, first = NULL, note = NULL;
5740 basic_block bb = e->src;
5742 /* Scan from the beginning until we reach the first epilogue insn. */
5743 FOR_BB_INSNS (bb, insn)
5745 if (NOTE_P (insn))
5747 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5749 note = insn;
5750 if (first != NULL)
5751 break;
5754 else if (first == NULL && contains (insn, epilogue_insn_hash))
5756 first = insn;
5757 if (note != NULL)
5758 break;
5762 if (note)
5764 /* If the function has a single basic block, and no real
5765 epilogue insns (e.g. sibcall with no cleanup), the
5766 epilogue note can get scheduled before the prologue
5767 note. If we have frame related prologue insns, having
5768 them scanned during the epilogue will result in a crash.
5769 In this case re-order the epilogue note to just before
5770 the last insn in the block. */
5771 if (first == NULL)
5772 first = BB_END (bb);
5774 if (PREV_INSN (first) != note)
5775 reorder_insns (note, note, PREV_INSN (first));
5779 #endif /* HAVE_prologue or HAVE_epilogue */
5782 /* Returns the name of the current function. */
5783 const char *
5784 current_function_name (void)
5786 if (cfun == NULL)
5787 return "<none>";
5788 return lang_hooks.decl_printable_name (cfun->decl, 2);
5792 static unsigned int
5793 rest_of_handle_check_leaf_regs (void)
5795 #ifdef LEAF_REGISTERS
5796 current_function_uses_only_leaf_regs
5797 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5798 #endif
5799 return 0;
5802 /* Insert a TYPE into the used types hash table of CFUN. */
5804 static void
5805 used_types_insert_helper (tree type, struct function *func)
5807 if (type != NULL && func != NULL)
5809 void **slot;
5811 if (func->used_types_hash == NULL)
5812 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5813 htab_eq_pointer, NULL);
5814 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5815 if (*slot == NULL)
5816 *slot = type;
5820 /* Given a type, insert it into the used hash table in cfun. */
5821 void
5822 used_types_insert (tree t)
5824 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5825 if (TYPE_NAME (t))
5826 break;
5827 else
5828 t = TREE_TYPE (t);
5829 if (TREE_CODE (t) == ERROR_MARK)
5830 return;
5831 if (TYPE_NAME (t) == NULL_TREE
5832 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
5833 t = TYPE_MAIN_VARIANT (t);
5834 if (debug_info_level > DINFO_LEVEL_NONE)
5836 if (cfun)
5837 used_types_insert_helper (t, cfun);
5838 else
5839 /* So this might be a type referenced by a global variable.
5840 Record that type so that we can later decide to emit its debug
5841 information. */
5842 VEC_safe_push (tree, gc, types_used_by_cur_var_decl, t);
5846 /* Helper to Hash a struct types_used_by_vars_entry. */
5848 static hashval_t
5849 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
5851 gcc_assert (entry && entry->var_decl && entry->type);
5853 return iterative_hash_object (entry->type,
5854 iterative_hash_object (entry->var_decl, 0));
5857 /* Hash function of the types_used_by_vars_entry hash table. */
5859 hashval_t
5860 types_used_by_vars_do_hash (const void *x)
5862 const struct types_used_by_vars_entry *entry =
5863 (const struct types_used_by_vars_entry *) x;
5865 return hash_types_used_by_vars_entry (entry);
5868 /*Equality function of the types_used_by_vars_entry hash table. */
5871 types_used_by_vars_eq (const void *x1, const void *x2)
5873 const struct types_used_by_vars_entry *e1 =
5874 (const struct types_used_by_vars_entry *) x1;
5875 const struct types_used_by_vars_entry *e2 =
5876 (const struct types_used_by_vars_entry *)x2;
5878 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
5881 /* Inserts an entry into the types_used_by_vars_hash hash table. */
5883 void
5884 types_used_by_var_decl_insert (tree type, tree var_decl)
5886 if (type != NULL && var_decl != NULL)
5888 void **slot;
5889 struct types_used_by_vars_entry e;
5890 e.var_decl = var_decl;
5891 e.type = type;
5892 if (types_used_by_vars_hash == NULL)
5893 types_used_by_vars_hash =
5894 htab_create_ggc (37, types_used_by_vars_do_hash,
5895 types_used_by_vars_eq, NULL);
5896 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
5897 hash_types_used_by_vars_entry (&e), INSERT);
5898 if (*slot == NULL)
5900 struct types_used_by_vars_entry *entry;
5901 entry = ggc_alloc_types_used_by_vars_entry ();
5902 entry->type = type;
5903 entry->var_decl = var_decl;
5904 *slot = entry;
5909 struct rtl_opt_pass pass_leaf_regs =
5912 RTL_PASS,
5913 "*leaf_regs", /* name */
5914 NULL, /* gate */
5915 rest_of_handle_check_leaf_regs, /* execute */
5916 NULL, /* sub */
5917 NULL, /* next */
5918 0, /* static_pass_number */
5919 TV_NONE, /* tv_id */
5920 0, /* properties_required */
5921 0, /* properties_provided */
5922 0, /* properties_destroyed */
5923 0, /* todo_flags_start */
5924 0 /* todo_flags_finish */
5928 static unsigned int
5929 rest_of_handle_thread_prologue_and_epilogue (void)
5931 if (optimize)
5932 cleanup_cfg (CLEANUP_EXPENSIVE);
5934 /* On some machines, the prologue and epilogue code, or parts thereof,
5935 can be represented as RTL. Doing so lets us schedule insns between
5936 it and the rest of the code and also allows delayed branch
5937 scheduling to operate in the epilogue. */
5938 thread_prologue_and_epilogue_insns ();
5940 /* The stack usage info is finalized during prologue expansion. */
5941 if (flag_stack_usage_info)
5942 output_stack_usage ();
5944 return 0;
5947 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5950 RTL_PASS,
5951 "pro_and_epilogue", /* name */
5952 NULL, /* gate */
5953 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5954 NULL, /* sub */
5955 NULL, /* next */
5956 0, /* static_pass_number */
5957 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5958 0, /* properties_required */
5959 0, /* properties_provided */
5960 0, /* properties_destroyed */
5961 TODO_verify_flow, /* todo_flags_start */
5962 TODO_df_verify |
5963 TODO_df_finish | TODO_verify_rtl_sharing |
5964 TODO_ggc_collect /* todo_flags_finish */
5969 /* This mini-pass fixes fall-out from SSA in asm statements that have
5970 in-out constraints. Say you start with
5972 orig = inout;
5973 asm ("": "+mr" (inout));
5974 use (orig);
5976 which is transformed very early to use explicit output and match operands:
5978 orig = inout;
5979 asm ("": "=mr" (inout) : "0" (inout));
5980 use (orig);
5982 Or, after SSA and copyprop,
5984 asm ("": "=mr" (inout_2) : "0" (inout_1));
5985 use (inout_1);
5987 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5988 they represent two separate values, so they will get different pseudo
5989 registers during expansion. Then, since the two operands need to match
5990 per the constraints, but use different pseudo registers, reload can
5991 only register a reload for these operands. But reloads can only be
5992 satisfied by hardregs, not by memory, so we need a register for this
5993 reload, just because we are presented with non-matching operands.
5994 So, even though we allow memory for this operand, no memory can be
5995 used for it, just because the two operands don't match. This can
5996 cause reload failures on register-starved targets.
5998 So it's a symptom of reload not being able to use memory for reloads
5999 or, alternatively it's also a symptom of both operands not coming into
6000 reload as matching (in which case the pseudo could go to memory just
6001 fine, as the alternative allows it, and no reload would be necessary).
6002 We fix the latter problem here, by transforming
6004 asm ("": "=mr" (inout_2) : "0" (inout_1));
6006 back to
6008 inout_2 = inout_1;
6009 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6011 static void
6012 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
6014 int i;
6015 bool changed = false;
6016 rtx op = SET_SRC (p_sets[0]);
6017 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6018 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6019 bool *output_matched = XALLOCAVEC (bool, noutputs);
6021 memset (output_matched, 0, noutputs * sizeof (bool));
6022 for (i = 0; i < ninputs; i++)
6024 rtx input, output, insns;
6025 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6026 char *end;
6027 int match, j;
6029 if (*constraint == '%')
6030 constraint++;
6032 match = strtoul (constraint, &end, 10);
6033 if (end == constraint)
6034 continue;
6036 gcc_assert (match < noutputs);
6037 output = SET_DEST (p_sets[match]);
6038 input = RTVEC_ELT (inputs, i);
6039 /* Only do the transformation for pseudos. */
6040 if (! REG_P (output)
6041 || rtx_equal_p (output, input)
6042 || (GET_MODE (input) != VOIDmode
6043 && GET_MODE (input) != GET_MODE (output)))
6044 continue;
6046 /* We can't do anything if the output is also used as input,
6047 as we're going to overwrite it. */
6048 for (j = 0; j < ninputs; j++)
6049 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6050 break;
6051 if (j != ninputs)
6052 continue;
6054 /* Avoid changing the same input several times. For
6055 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6056 only change in once (to out1), rather than changing it
6057 first to out1 and afterwards to out2. */
6058 if (i > 0)
6060 for (j = 0; j < noutputs; j++)
6061 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6062 break;
6063 if (j != noutputs)
6064 continue;
6066 output_matched[match] = true;
6068 start_sequence ();
6069 emit_move_insn (output, input);
6070 insns = get_insns ();
6071 end_sequence ();
6072 emit_insn_before (insns, insn);
6074 /* Now replace all mentions of the input with output. We can't
6075 just replace the occurrence in inputs[i], as the register might
6076 also be used in some other input (or even in an address of an
6077 output), which would mean possibly increasing the number of
6078 inputs by one (namely 'output' in addition), which might pose
6079 a too complicated problem for reload to solve. E.g. this situation:
6081 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6083 Here 'input' is used in two occurrences as input (once for the
6084 input operand, once for the address in the second output operand).
6085 If we would replace only the occurrence of the input operand (to
6086 make the matching) we would be left with this:
6088 output = input
6089 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6091 Now we suddenly have two different input values (containing the same
6092 value, but different pseudos) where we formerly had only one.
6093 With more complicated asms this might lead to reload failures
6094 which wouldn't have happen without this pass. So, iterate over
6095 all operands and replace all occurrences of the register used. */
6096 for (j = 0; j < noutputs; j++)
6097 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6098 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6099 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6100 input, output);
6101 for (j = 0; j < ninputs; j++)
6102 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6103 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6104 input, output);
6106 changed = true;
6109 if (changed)
6110 df_insn_rescan (insn);
6113 static unsigned
6114 rest_of_match_asm_constraints (void)
6116 basic_block bb;
6117 rtx insn, pat, *p_sets;
6118 int noutputs;
6120 if (!crtl->has_asm_statement)
6121 return 0;
6123 df_set_flags (DF_DEFER_INSN_RESCAN);
6124 FOR_EACH_BB (bb)
6126 FOR_BB_INSNS (bb, insn)
6128 if (!INSN_P (insn))
6129 continue;
6131 pat = PATTERN (insn);
6132 if (GET_CODE (pat) == PARALLEL)
6133 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6134 else if (GET_CODE (pat) == SET)
6135 p_sets = &PATTERN (insn), noutputs = 1;
6136 else
6137 continue;
6139 if (GET_CODE (*p_sets) == SET
6140 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6141 match_asm_constraints_1 (insn, p_sets, noutputs);
6145 return TODO_df_finish;
6148 struct rtl_opt_pass pass_match_asm_constraints =
6151 RTL_PASS,
6152 "asmcons", /* name */
6153 NULL, /* gate */
6154 rest_of_match_asm_constraints, /* execute */
6155 NULL, /* sub */
6156 NULL, /* next */
6157 0, /* static_pass_number */
6158 TV_NONE, /* tv_id */
6159 0, /* properties_required */
6160 0, /* properties_provided */
6161 0, /* properties_destroyed */
6162 0, /* todo_flags_start */
6163 0 /* todo_flags_finish */
6168 #include "gt-function.h"