1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
4 Copyright (C) 2009-2015 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
27 /* Workaround for GMP 5.1.3 bug, see PR56019. */
33 #include <isl/union_map.h>
37 /* Since ISL-0.13, the extern is in val_gmp.h. */
38 #if !defined(HAVE_ISL_SCHED_CONSTRAINTS_COMPUTE_SCHEDULE) && defined(__cplusplus)
41 #include <isl/val_gmp.h>
42 #if !defined(HAVE_ISL_SCHED_CONSTRAINTS_COMPUTE_SCHEDULE) && defined(__cplusplus)
47 #include "coretypes.h"
52 #include "fold-const.h"
53 #include "gimple-iterator.h"
54 #include "tree-ssa-loop.h"
57 #include "tree-data-ref.h"
58 #include "graphite-poly.h"
61 /* XXX isl rewrite following comment */
62 /* Builds a linear expression, of dimension DIM, representing PDR's
65 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
67 For an array A[10][20] with two subscript locations s0 and s1, the
68 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
69 corresponds to a memory stride of 20.
71 OFFSET is a number of dimensions to prepend before the
72 subscript dimensions: s_0, s_1, ..., s_n.
74 Thus, the final linear expression has the following format:
75 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
76 where the expression itself is:
77 c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
79 static isl_constraint
*
80 build_linearized_memory_access (isl_map
*map
, poly_dr_p pdr
)
83 isl_local_space
*ls
= isl_local_space_from_space (isl_map_get_space (map
));
84 unsigned offset
, nsubs
;
88 isl_val
*size
, *subsize
, *size1
;
90 res
= isl_equality_alloc (ls
);
91 ctx
= isl_local_space_get_ctx (ls
);
92 size
= isl_val_int_from_ui (ctx
, 1);
94 nsubs
= isl_set_dim (pdr
->extent
, isl_dim_set
);
95 /* -1 for the already included L dimension. */
96 offset
= isl_map_dim (map
, isl_dim_out
) - 1 - nsubs
;
97 res
= isl_constraint_set_coefficient_si (res
, isl_dim_out
, offset
+ nsubs
, -1);
98 /* Go through all subscripts from last to first. First dimension
99 is the alias set, ignore it. */
100 for (i
= nsubs
- 1; i
>= 1; i
--)
105 size1
= isl_val_copy (size
);
106 res
= isl_constraint_set_coefficient_val (res
, isl_dim_out
, offset
+ i
, size
);
107 dc
= isl_set_get_space (pdr
->extent
);
108 aff
= isl_aff_zero_on_domain (isl_local_space_from_space (dc
));
109 aff
= isl_aff_set_coefficient_si (aff
, isl_dim_in
, i
, 1);
110 subsize
= isl_set_max_val (pdr
->extent
, aff
);
112 size
= isl_val_mul (size1
, subsize
);
120 /* Set STRIDE to the stride of PDR in memory by advancing by one in
121 the loop at DEPTH. */
124 pdr_stride_in_loop (mpz_t stride
, graphite_dim_t depth
, poly_dr_p pdr
)
126 poly_bb_p pbb
= PDR_PBB (pdr
);
131 isl_constraint
*lma
, *c
;
133 graphite_dim_t time_depth
;
136 /* XXX isl rewrite following comments. */
137 /* Builds a partial difference equations and inserts them
138 into pointset powerset polyhedron P. Polyhedron is assumed
139 to have the format: T|I|T'|I'|G|S|S'|l1|l2.
141 TIME_DEPTH is the time dimension w.r.t. which we are
143 OFFSET represents the number of dimensions between
144 columns t_{time_depth} and t'_{time_depth}.
145 DIM_SCTR is the number of scattering dimensions. It is
146 essentially the dimensionality of the T vector.
148 The following equations are inserted into the polyhedron P:
151 | t_{time_depth-1} = t'_{time_depth-1}
152 | t_{time_depth} = t'_{time_depth} + 1
153 | t_{time_depth+1} = t'_{time_depth + 1}
155 | t_{dim_sctr} = t'_{dim_sctr}. */
157 /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
158 This is the core part of this alogrithm, since this
159 constraint asks for the memory access stride (difference)
160 between two consecutive points in time dimensions. */
165 | t_{time_depth-1} = t'_{time_depth-1}
166 | t_{time_depth+1} = t'_{time_depth+1}
168 | t_{dim_sctr} = t'_{dim_sctr}
170 This means that all the time dimensions are equal except for
171 time_depth, where the constraint is t_{depth} = t'_{depth} + 1
172 step. More to this: we should be careful not to add equalities
173 to the 'coupled' dimensions, which happens when the one dimension
174 is stripmined dimension, and the other dimension corresponds
175 to the point loop inside stripmined dimension. */
177 /* pdr->accesses: [P1..nb_param,I1..nb_domain]->[a,S1..nb_subscript]
178 ??? [P] not used for PDRs?
179 pdr->extent: [a,S1..nb_subscript]
180 pbb->domain: [P1..nb_param,I1..nb_domain]
181 pbb->transformed: [P1..nb_param,I1..nb_domain]->[T1..Tnb_sctr]
182 [T] includes local vars (currently unused)
184 First we create [P,I] -> [T,a,S]. */
186 map
= isl_map_flat_range_product (isl_map_copy (pbb
->transformed
),
187 isl_map_copy (pdr
->accesses
));
188 /* Add a dimension for L: [P,I] -> [T,a,S,L].*/
189 map
= isl_map_add_dims (map
, isl_dim_out
, 1);
190 /* Build a constraint for "lma[S] - L == 0", effectively calculating
191 L in terms of subscripts. */
192 lma
= build_linearized_memory_access (map
, pdr
);
193 /* And add it to the map, so we now have:
194 [P,I] -> [T,a,S,L] : lma([S]) == L. */
195 map
= isl_map_add_constraint (map
, lma
);
197 /* Then we create [P,I,P',I'] -> [T,a,S,L,T',a',S',L']. */
198 map
= isl_map_flat_product (map
, isl_map_copy (map
));
200 /* Now add the equality T[time_depth] == T'[time_depth]+1. This will
201 force L' to be the linear address at T[time_depth] + 1. */
202 time_depth
= psct_dynamic_dim (pbb
, depth
);
203 /* Length of [a,S] plus [L] ... */
204 offset
= 1 + isl_map_dim (pdr
->accesses
, isl_dim_out
);
206 offset
+= isl_map_dim (pbb
->transformed
, isl_dim_out
);
208 c
= isl_equality_alloc (isl_local_space_from_space (isl_map_get_space (map
)));
209 c
= isl_constraint_set_coefficient_si (c
, isl_dim_out
, time_depth
, 1);
210 c
= isl_constraint_set_coefficient_si (c
, isl_dim_out
,
211 offset
+ time_depth
, -1);
212 c
= isl_constraint_set_constant_si (c
, 1);
213 map
= isl_map_add_constraint (map
, c
);
215 /* Now we equate most of the T/T' elements (making PITaSL nearly
216 the same is (PITaSL)', except for one dimension, namely for 'depth'
217 (an index into [I]), after translating to index into [T]. Take care
218 to not produce an empty map, which indicates we wanted to equate
219 two dimensions that are already coupled via the above time_depth
220 dimension. Happens with strip mining where several scatter dimension
221 are interdependend. */
223 nt
= pbb_nb_scattering_transform (pbb
) + pbb_nb_local_vars (pbb
);
224 for (i
= 0; i
< nt
; i
++)
227 isl_map
*temp
= isl_map_equate (isl_map_copy (map
),
229 isl_dim_out
, offset
+ i
);
230 if (isl_map_is_empty (temp
))
239 /* Now maximize the expression L' - L. */
240 set
= isl_map_range (map
);
241 dc
= isl_set_get_space (set
);
242 aff
= isl_aff_zero_on_domain (isl_local_space_from_space (dc
));
243 aff
= isl_aff_set_coefficient_si (aff
, isl_dim_in
, offset
- 1, -1);
244 aff
= isl_aff_set_coefficient_si (aff
, isl_dim_in
, offset
+ offset
- 1, 1);
245 islstride
= isl_set_max_val (set
, aff
);
246 isl_val_get_num_gmp (islstride
, stride
);
247 isl_val_free (islstride
);
251 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
253 gmp_fprintf (dump_file
, "\nStride in BB_%d, DR_%d, depth %d: %Zd ",
254 pbb_index (pbb
), PDR_ID (pdr
), (int) depth
, stride
);
258 /* Sets STRIDES to the sum of all the strides of the data references
259 accessed in LOOP at DEPTH. */
262 memory_strides_in_loop_1 (lst_p loop
, graphite_dim_t depth
, mpz_t strides
)
272 FOR_EACH_VEC_ELT (LST_SEQ (loop
), j
, l
)
274 memory_strides_in_loop_1 (l
, depth
, strides
);
276 FOR_EACH_VEC_ELT (PBB_DRS (LST_PBB (l
)), i
, pdr
)
278 pdr_stride_in_loop (s
, depth
, pdr
);
279 mpz_set_si (n
, PDR_NB_REFS (pdr
));
281 mpz_add (strides
, strides
, s
);
288 /* Sets STRIDES to the sum of all the strides of the data references
289 accessed in LOOP at DEPTH. */
292 memory_strides_in_loop (lst_p loop
, graphite_dim_t depth
, mpz_t strides
)
294 if (mpz_cmp_si (loop
->memory_strides
, -1) == 0)
296 mpz_set_si (strides
, 0);
297 memory_strides_in_loop_1 (loop
, depth
, strides
);
300 mpz_set (strides
, loop
->memory_strides
);
303 /* Return true when the interchange of loops LOOP1 and LOOP2 is
316 | for (i = 0; i < N; i++)
317 | for (j = 0; j < N; j++)
323 The data access A[j][i] is described like this:
331 | 0 0 0 0 -1 0 100 >= 0
332 | 0 0 0 0 0 -1 100 >= 0
334 The linearized memory access L to A[100][100] is:
339 TODO: the shown format is not valid as it does not show the fact
340 that the iteration domain "i j" is transformed using the scattering.
342 Next, to measure the impact of iterating once in loop "i", we build
343 a maximization problem: first, we add to DR accesses the dimensions
344 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
345 L1 and L2 are the linearized memory access functions.
347 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
348 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
349 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
350 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
351 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
352 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
353 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
354 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
355 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
357 Then, we generate the polyhedron P2 by interchanging the dimensions
358 (s0, s2), (s1, s3), (L1, L2), (k, i)
360 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
361 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
362 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
363 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
364 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
365 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
366 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
367 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
368 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
370 then we add to P2 the equality k = i + 1:
372 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
374 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
376 Similarly, to determine the impact of one iteration on loop "j", we
377 interchange (k, j), we add "k = j + 1", and we compute D2 the
378 maximal value of the difference.
380 Finally, the profitability test is D1 < D2: if in the outer loop
381 the strides are smaller than in the inner loop, then it is
382 profitable to interchange the loops at DEPTH1 and DEPTH2. */
385 lst_interchange_profitable_p (lst_p nest
, int depth1
, int depth2
)
390 gcc_assert (depth1
< depth2
);
395 memory_strides_in_loop (nest
, depth1
, d1
);
396 memory_strides_in_loop (nest
, depth2
, d2
);
398 res
= mpz_cmp (d1
, d2
) < 0;
406 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
407 scattering and assigns the resulting polyhedron to the transformed
411 pbb_interchange_loop_depths (graphite_dim_t depth1
, graphite_dim_t depth2
,
415 unsigned dim1
= psct_dynamic_dim (pbb
, depth1
);
416 unsigned dim2
= psct_dynamic_dim (pbb
, depth2
);
417 isl_space
*d
= isl_map_get_space (pbb
->transformed
);
418 isl_space
*d1
= isl_space_range (d
);
419 unsigned n
= isl_space_dim (d1
, isl_dim_out
);
420 isl_space
*d2
= isl_space_add_dims (d1
, isl_dim_in
, n
);
421 isl_map
*x
= isl_map_universe (d2
);
423 x
= isl_map_equate (x
, isl_dim_in
, dim1
, isl_dim_out
, dim2
);
424 x
= isl_map_equate (x
, isl_dim_in
, dim2
, isl_dim_out
, dim1
);
426 for (i
= 0; i
< n
; i
++)
427 if (i
!= dim1
&& i
!= dim2
)
428 x
= isl_map_equate (x
, isl_dim_in
, i
, isl_dim_out
, i
);
430 pbb
->transformed
= isl_map_apply_range (pbb
->transformed
, x
);
433 /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
434 the statements below LST. */
437 lst_apply_interchange (lst_p lst
, int depth1
, int depth2
)
442 if (LST_LOOP_P (lst
))
447 FOR_EACH_VEC_ELT (LST_SEQ (lst
), i
, l
)
448 lst_apply_interchange (l
, depth1
, depth2
);
451 pbb_interchange_loop_depths (depth1
, depth2
, LST_PBB (lst
));
454 /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
455 perfect: i.e. there are no sequence of statements. */
458 lst_perfectly_nested_p (lst_p loop1
, lst_p loop2
)
463 if (!LST_LOOP_P (loop1
))
466 return LST_SEQ (loop1
).length () == 1
467 && lst_perfectly_nested_p (LST_SEQ (loop1
)[0], loop2
);
470 /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
471 nest. To continue the naming tradition, this function is called
472 after perfect_nestify. NEST is set to the perfectly nested loop
473 that is created. BEFORE/AFTER are set to the loops distributed
474 before/after the loop NEST. */
477 lst_perfect_nestify (lst_p loop1
, lst_p loop2
, lst_p
*before
,
478 lst_p
*nest
, lst_p
*after
)
480 poly_bb_p first
, last
;
482 gcc_assert (loop1
&& loop2
484 && LST_LOOP_P (loop1
) && LST_LOOP_P (loop2
));
486 first
= LST_PBB (lst_find_first_pbb (loop2
));
487 last
= LST_PBB (lst_find_last_pbb (loop2
));
489 *before
= copy_lst (loop1
);
490 *nest
= copy_lst (loop1
);
491 *after
= copy_lst (loop1
);
493 lst_remove_all_before_including_pbb (*before
, first
, false);
494 lst_remove_all_before_including_pbb (*after
, last
, true);
496 lst_remove_all_before_excluding_pbb (*nest
, first
, true);
497 lst_remove_all_before_excluding_pbb (*nest
, last
, false);
499 if (lst_empty_p (*before
))
504 if (lst_empty_p (*after
))
509 if (lst_empty_p (*nest
))
516 /* Try to interchange LOOP1 with LOOP2 for all the statements of the
517 body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
521 lst_try_interchange_loops (scop_p scop
, lst_p loop1
, lst_p loop2
)
523 int depth1
= lst_depth (loop1
);
524 int depth2
= lst_depth (loop2
);
527 lst_p before
= NULL
, nest
= NULL
, after
= NULL
;
529 if (!lst_perfectly_nested_p (loop1
, loop2
))
530 lst_perfect_nestify (loop1
, loop2
, &before
, &nest
, &after
);
532 if (!lst_interchange_profitable_p (loop2
, depth1
, depth2
))
535 lst_apply_interchange (loop2
, depth1
, depth2
);
537 /* Sync the transformed LST information and the PBB scatterings
538 before using the scatterings in the data dependence analysis. */
539 if (before
|| nest
|| after
)
541 transformed
= lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop
), loop1
,
542 before
, nest
, after
);
543 lst_update_scattering (transformed
);
544 free_lst (transformed
);
547 if (graphite_legal_transform (scop
))
549 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
551 "Loops at depths %d and %d will be interchanged.\n",
554 /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
555 lst_insert_in_sequence (before
, loop1
, true);
556 lst_insert_in_sequence (after
, loop1
, false);
560 lst_replace (loop1
, nest
);
567 /* Undo the transform. */
571 lst_apply_interchange (loop2
, depth2
, depth1
);
575 /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
576 with the loop OUTER in LST_SEQ (OUTER_FATHER). */
579 lst_interchange_select_inner (scop_p scop
, lst_p outer_father
, int outer
,
585 gcc_assert (outer_father
586 && LST_LOOP_P (outer_father
)
587 && LST_LOOP_P (LST_SEQ (outer_father
)[outer
])
589 && LST_LOOP_P (inner_father
));
591 loop1
= LST_SEQ (outer_father
)[outer
];
593 FOR_EACH_VEC_ELT (LST_SEQ (inner_father
), inner
, loop2
)
594 if (LST_LOOP_P (loop2
)
595 && (lst_try_interchange_loops (scop
, loop1
, loop2
)
596 || lst_interchange_select_inner (scop
, outer_father
, outer
, loop2
)))
602 /* Interchanges all the loops of LOOP and the loops of its body that
603 are considered profitable to interchange. Return the number of
604 interchanged loops. OUTER is the index in LST_SEQ (LOOP) that
605 points to the next outer loop to be considered for interchange. */
608 lst_interchange_select_outer (scop_p scop
, lst_p loop
, int outer
)
615 if (!loop
|| !LST_LOOP_P (loop
))
618 father
= LST_LOOP_FATHER (loop
);
621 while (lst_interchange_select_inner (scop
, father
, outer
, loop
))
624 loop
= LST_SEQ (father
)[outer
];
628 if (LST_LOOP_P (loop
))
629 FOR_EACH_VEC_ELT (LST_SEQ (loop
), i
, l
)
631 res
+= lst_interchange_select_outer (scop
, l
, i
);
636 /* Interchanges all the loop depths that are considered profitable for
637 SCOP. Return the number of interchanged loops. */
640 scop_do_interchange (scop_p scop
)
642 int res
= lst_interchange_select_outer
643 (scop
, SCOP_TRANSFORMED_SCHEDULE (scop
), 0);
645 lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop
));
651 #endif /* HAVE_isl */