/cp
[official-gcc.git] / gcc / emit-rtl.c
blobed2b30b17ee1f279c9de30034ef46dd13cd88262
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "tree.h"
39 #include "rtl.h"
40 #include "df.h"
41 #include "diagnostic-core.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "varasm.h"
45 #include "cfgrtl.h"
46 #include "tree-eh.h"
47 #include "tm_p.h"
48 #include "flags.h"
49 #include "stringpool.h"
50 #include "insn-config.h"
51 #include "expmed.h"
52 #include "dojump.h"
53 #include "explow.h"
54 #include "calls.h"
55 #include "emit-rtl.h"
56 #include "stmt.h"
57 #include "expr.h"
58 #include "regs.h"
59 #include "recog.h"
60 #include "debug.h"
61 #include "langhooks.h"
62 #include "params.h"
63 #include "target.h"
64 #include "builtins.h"
65 #include "rtl-iter.h"
67 struct target_rtl default_target_rtl;
68 #if SWITCHABLE_TARGET
69 struct target_rtl *this_target_rtl = &default_target_rtl;
70 #endif
72 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
74 /* Commonly used modes. */
76 machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
77 machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
78 machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
79 machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
81 /* Datastructures maintained for currently processed function in RTL form. */
83 struct rtl_data x_rtl;
85 /* Indexed by pseudo register number, gives the rtx for that pseudo.
86 Allocated in parallel with regno_pointer_align.
87 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
88 with length attribute nested in top level structures. */
90 rtx * regno_reg_rtx;
92 /* This is *not* reset after each function. It gives each CODE_LABEL
93 in the entire compilation a unique label number. */
95 static GTY(()) int label_num = 1;
97 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
98 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
99 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
100 is set only for MODE_INT and MODE_VECTOR_INT modes. */
102 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
104 rtx const_true_rtx;
106 REAL_VALUE_TYPE dconst0;
107 REAL_VALUE_TYPE dconst1;
108 REAL_VALUE_TYPE dconst2;
109 REAL_VALUE_TYPE dconstm1;
110 REAL_VALUE_TYPE dconsthalf;
112 /* Record fixed-point constant 0 and 1. */
113 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
114 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
116 /* We make one copy of (const_int C) where C is in
117 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
118 to save space during the compilation and simplify comparisons of
119 integers. */
121 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
123 /* Standard pieces of rtx, to be substituted directly into things. */
124 rtx pc_rtx;
125 rtx ret_rtx;
126 rtx simple_return_rtx;
127 rtx cc0_rtx;
129 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
130 this pointer should normally never be dereferenced), but is required to be
131 distinct from NULL_RTX. Currently used by peephole2 pass. */
132 rtx_insn *invalid_insn_rtx;
134 /* A hash table storing CONST_INTs whose absolute value is greater
135 than MAX_SAVED_CONST_INT. */
137 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
139 typedef HOST_WIDE_INT compare_type;
141 static hashval_t hash (rtx i);
142 static bool equal (rtx i, HOST_WIDE_INT h);
145 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
147 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
149 static hashval_t hash (rtx x);
150 static bool equal (rtx x, rtx y);
153 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
155 /* A hash table storing register attribute structures. */
156 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
158 static hashval_t hash (reg_attrs *x);
159 static bool equal (reg_attrs *a, reg_attrs *b);
162 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
164 /* A hash table storing all CONST_DOUBLEs. */
165 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
167 static hashval_t hash (rtx x);
168 static bool equal (rtx x, rtx y);
171 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
173 /* A hash table storing all CONST_FIXEDs. */
174 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
176 static hashval_t hash (rtx x);
177 static bool equal (rtx x, rtx y);
180 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
182 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
183 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
184 #define first_label_num (crtl->emit.x_first_label_num)
186 static void set_used_decls (tree);
187 static void mark_label_nuses (rtx);
188 #if TARGET_SUPPORTS_WIDE_INT
189 static rtx lookup_const_wide_int (rtx);
190 #endif
191 static rtx lookup_const_double (rtx);
192 static rtx lookup_const_fixed (rtx);
193 static reg_attrs *get_reg_attrs (tree, int);
194 static rtx gen_const_vector (machine_mode, int);
195 static void copy_rtx_if_shared_1 (rtx *orig);
197 /* Probability of the conditional branch currently proceeded by try_split.
198 Set to -1 otherwise. */
199 int split_branch_probability = -1;
201 /* Returns a hash code for X (which is a really a CONST_INT). */
203 hashval_t
204 const_int_hasher::hash (rtx x)
206 return (hashval_t) INTVAL (x);
209 /* Returns nonzero if the value represented by X (which is really a
210 CONST_INT) is the same as that given by Y (which is really a
211 HOST_WIDE_INT *). */
213 bool
214 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
216 return (INTVAL (x) == y);
219 #if TARGET_SUPPORTS_WIDE_INT
220 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
222 hashval_t
223 const_wide_int_hasher::hash (rtx x)
225 int i;
226 unsigned HOST_WIDE_INT hash = 0;
227 const_rtx xr = x;
229 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
230 hash += CONST_WIDE_INT_ELT (xr, i);
232 return (hashval_t) hash;
235 /* Returns nonzero if the value represented by X (which is really a
236 CONST_WIDE_INT) is the same as that given by Y (which is really a
237 CONST_WIDE_INT). */
239 bool
240 const_wide_int_hasher::equal (rtx x, rtx y)
242 int i;
243 const_rtx xr = x;
244 const_rtx yr = y;
245 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
246 return false;
248 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
249 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
250 return false;
252 return true;
254 #endif
256 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
257 hashval_t
258 const_double_hasher::hash (rtx x)
260 const_rtx const value = x;
261 hashval_t h;
263 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
264 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
265 else
267 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
268 /* MODE is used in the comparison, so it should be in the hash. */
269 h ^= GET_MODE (value);
271 return h;
274 /* Returns nonzero if the value represented by X (really a ...)
275 is the same as that represented by Y (really a ...) */
276 bool
277 const_double_hasher::equal (rtx x, rtx y)
279 const_rtx const a = x, b = y;
281 if (GET_MODE (a) != GET_MODE (b))
282 return 0;
283 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
284 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
285 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
286 else
287 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
288 CONST_DOUBLE_REAL_VALUE (b));
291 /* Returns a hash code for X (which is really a CONST_FIXED). */
293 hashval_t
294 const_fixed_hasher::hash (rtx x)
296 const_rtx const value = x;
297 hashval_t h;
299 h = fixed_hash (CONST_FIXED_VALUE (value));
300 /* MODE is used in the comparison, so it should be in the hash. */
301 h ^= GET_MODE (value);
302 return h;
305 /* Returns nonzero if the value represented by X is the same as that
306 represented by Y. */
308 bool
309 const_fixed_hasher::equal (rtx x, rtx y)
311 const_rtx const a = x, b = y;
313 if (GET_MODE (a) != GET_MODE (b))
314 return 0;
315 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
318 /* Return true if the given memory attributes are equal. */
320 bool
321 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
323 if (p == q)
324 return true;
325 if (!p || !q)
326 return false;
327 return (p->alias == q->alias
328 && p->offset_known_p == q->offset_known_p
329 && (!p->offset_known_p || p->offset == q->offset)
330 && p->size_known_p == q->size_known_p
331 && (!p->size_known_p || p->size == q->size)
332 && p->align == q->align
333 && p->addrspace == q->addrspace
334 && (p->expr == q->expr
335 || (p->expr != NULL_TREE && q->expr != NULL_TREE
336 && operand_equal_p (p->expr, q->expr, 0))));
339 /* Set MEM's memory attributes so that they are the same as ATTRS. */
341 static void
342 set_mem_attrs (rtx mem, mem_attrs *attrs)
344 /* If everything is the default, we can just clear the attributes. */
345 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
347 MEM_ATTRS (mem) = 0;
348 return;
351 if (!MEM_ATTRS (mem)
352 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
354 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
355 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
359 /* Returns a hash code for X (which is a really a reg_attrs *). */
361 hashval_t
362 reg_attr_hasher::hash (reg_attrs *x)
364 const reg_attrs *const p = x;
366 return ((p->offset * 1000) ^ (intptr_t) p->decl);
369 /* Returns nonzero if the value represented by X is the same as that given by
370 Y. */
372 bool
373 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
375 const reg_attrs *const p = x;
376 const reg_attrs *const q = y;
378 return (p->decl == q->decl && p->offset == q->offset);
380 /* Allocate a new reg_attrs structure and insert it into the hash table if
381 one identical to it is not already in the table. We are doing this for
382 MEM of mode MODE. */
384 static reg_attrs *
385 get_reg_attrs (tree decl, int offset)
387 reg_attrs attrs;
389 /* If everything is the default, we can just return zero. */
390 if (decl == 0 && offset == 0)
391 return 0;
393 attrs.decl = decl;
394 attrs.offset = offset;
396 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
397 if (*slot == 0)
399 *slot = ggc_alloc<reg_attrs> ();
400 memcpy (*slot, &attrs, sizeof (reg_attrs));
403 return *slot;
407 #if !HAVE_blockage
408 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
409 and to block register equivalences to be seen across this insn. */
412 gen_blockage (void)
414 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
415 MEM_VOLATILE_P (x) = true;
416 return x;
418 #endif
421 /* Set the mode and register number of X to MODE and REGNO. */
423 void
424 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
426 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
427 ? hard_regno_nregs[regno][mode]
428 : 1);
429 PUT_MODE_RAW (x, mode);
430 set_regno_raw (x, regno, nregs);
433 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
434 don't attempt to share with the various global pieces of rtl (such as
435 frame_pointer_rtx). */
438 gen_raw_REG (machine_mode mode, unsigned int regno)
440 rtx x = rtx_alloc_stat (REG MEM_STAT_INFO);
441 set_mode_and_regno (x, mode, regno);
442 REG_ATTRS (x) = NULL;
443 ORIGINAL_REGNO (x) = regno;
444 return x;
447 /* There are some RTL codes that require special attention; the generation
448 functions do the raw handling. If you add to this list, modify
449 special_rtx in gengenrtl.c as well. */
451 rtx_expr_list *
452 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
454 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
455 expr_list));
458 rtx_insn_list *
459 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
461 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
462 insn_list));
465 rtx_insn *
466 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
467 basic_block bb, rtx pattern, int location, int code,
468 rtx reg_notes)
470 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
471 prev_insn, next_insn,
472 bb, pattern, location, code,
473 reg_notes));
477 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
479 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
480 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
482 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
483 if (const_true_rtx && arg == STORE_FLAG_VALUE)
484 return const_true_rtx;
485 #endif
487 /* Look up the CONST_INT in the hash table. */
488 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
489 INSERT);
490 if (*slot == 0)
491 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
493 return *slot;
497 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
499 return GEN_INT (trunc_int_for_mode (c, mode));
502 /* CONST_DOUBLEs might be created from pairs of integers, or from
503 REAL_VALUE_TYPEs. Also, their length is known only at run time,
504 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
506 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
507 hash table. If so, return its counterpart; otherwise add it
508 to the hash table and return it. */
509 static rtx
510 lookup_const_double (rtx real)
512 rtx *slot = const_double_htab->find_slot (real, INSERT);
513 if (*slot == 0)
514 *slot = real;
516 return *slot;
519 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
520 VALUE in mode MODE. */
522 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
524 rtx real = rtx_alloc (CONST_DOUBLE);
525 PUT_MODE (real, mode);
527 real->u.rv = value;
529 return lookup_const_double (real);
532 /* Determine whether FIXED, a CONST_FIXED, already exists in the
533 hash table. If so, return its counterpart; otherwise add it
534 to the hash table and return it. */
536 static rtx
537 lookup_const_fixed (rtx fixed)
539 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
540 if (*slot == 0)
541 *slot = fixed;
543 return *slot;
546 /* Return a CONST_FIXED rtx for a fixed-point value specified by
547 VALUE in mode MODE. */
550 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
552 rtx fixed = rtx_alloc (CONST_FIXED);
553 PUT_MODE (fixed, mode);
555 fixed->u.fv = value;
557 return lookup_const_fixed (fixed);
560 #if TARGET_SUPPORTS_WIDE_INT == 0
561 /* Constructs double_int from rtx CST. */
563 double_int
564 rtx_to_double_int (const_rtx cst)
566 double_int r;
568 if (CONST_INT_P (cst))
569 r = double_int::from_shwi (INTVAL (cst));
570 else if (CONST_DOUBLE_AS_INT_P (cst))
572 r.low = CONST_DOUBLE_LOW (cst);
573 r.high = CONST_DOUBLE_HIGH (cst);
575 else
576 gcc_unreachable ();
578 return r;
580 #endif
582 #if TARGET_SUPPORTS_WIDE_INT
583 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
584 If so, return its counterpart; otherwise add it to the hash table and
585 return it. */
587 static rtx
588 lookup_const_wide_int (rtx wint)
590 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
591 if (*slot == 0)
592 *slot = wint;
594 return *slot;
596 #endif
598 /* Return an rtx constant for V, given that the constant has mode MODE.
599 The returned rtx will be a CONST_INT if V fits, otherwise it will be
600 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
601 (if TARGET_SUPPORTS_WIDE_INT). */
604 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
606 unsigned int len = v.get_len ();
607 unsigned int prec = GET_MODE_PRECISION (mode);
609 /* Allow truncation but not extension since we do not know if the
610 number is signed or unsigned. */
611 gcc_assert (prec <= v.get_precision ());
613 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
614 return gen_int_mode (v.elt (0), mode);
616 #if TARGET_SUPPORTS_WIDE_INT
618 unsigned int i;
619 rtx value;
620 unsigned int blocks_needed
621 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
623 if (len > blocks_needed)
624 len = blocks_needed;
626 value = const_wide_int_alloc (len);
628 /* It is so tempting to just put the mode in here. Must control
629 myself ... */
630 PUT_MODE (value, VOIDmode);
631 CWI_PUT_NUM_ELEM (value, len);
633 for (i = 0; i < len; i++)
634 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
636 return lookup_const_wide_int (value);
638 #else
639 return immed_double_const (v.elt (0), v.elt (1), mode);
640 #endif
643 #if TARGET_SUPPORTS_WIDE_INT == 0
644 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
645 of ints: I0 is the low-order word and I1 is the high-order word.
646 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
647 implied upper bits are copies of the high bit of i1. The value
648 itself is neither signed nor unsigned. Do not use this routine for
649 non-integer modes; convert to REAL_VALUE_TYPE and use
650 CONST_DOUBLE_FROM_REAL_VALUE. */
653 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
655 rtx value;
656 unsigned int i;
658 /* There are the following cases (note that there are no modes with
659 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
661 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
662 gen_int_mode.
663 2) If the value of the integer fits into HOST_WIDE_INT anyway
664 (i.e., i1 consists only from copies of the sign bit, and sign
665 of i0 and i1 are the same), then we return a CONST_INT for i0.
666 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
667 if (mode != VOIDmode)
669 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
670 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
671 /* We can get a 0 for an error mark. */
672 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
673 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
674 || GET_MODE_CLASS (mode) == MODE_POINTER_BOUNDS);
676 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
677 return gen_int_mode (i0, mode);
680 /* If this integer fits in one word, return a CONST_INT. */
681 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
682 return GEN_INT (i0);
684 /* We use VOIDmode for integers. */
685 value = rtx_alloc (CONST_DOUBLE);
686 PUT_MODE (value, VOIDmode);
688 CONST_DOUBLE_LOW (value) = i0;
689 CONST_DOUBLE_HIGH (value) = i1;
691 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
692 XWINT (value, i) = 0;
694 return lookup_const_double (value);
696 #endif
699 gen_rtx_REG (machine_mode mode, unsigned int regno)
701 /* In case the MD file explicitly references the frame pointer, have
702 all such references point to the same frame pointer. This is
703 used during frame pointer elimination to distinguish the explicit
704 references to these registers from pseudos that happened to be
705 assigned to them.
707 If we have eliminated the frame pointer or arg pointer, we will
708 be using it as a normal register, for example as a spill
709 register. In such cases, we might be accessing it in a mode that
710 is not Pmode and therefore cannot use the pre-allocated rtx.
712 Also don't do this when we are making new REGs in reload, since
713 we don't want to get confused with the real pointers. */
715 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
717 if (regno == FRAME_POINTER_REGNUM
718 && (!reload_completed || frame_pointer_needed))
719 return frame_pointer_rtx;
721 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
722 && regno == HARD_FRAME_POINTER_REGNUM
723 && (!reload_completed || frame_pointer_needed))
724 return hard_frame_pointer_rtx;
725 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
726 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
727 && regno == ARG_POINTER_REGNUM)
728 return arg_pointer_rtx;
729 #endif
730 #ifdef RETURN_ADDRESS_POINTER_REGNUM
731 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
732 return return_address_pointer_rtx;
733 #endif
734 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
735 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
736 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
737 return pic_offset_table_rtx;
738 if (regno == STACK_POINTER_REGNUM)
739 return stack_pointer_rtx;
742 #if 0
743 /* If the per-function register table has been set up, try to re-use
744 an existing entry in that table to avoid useless generation of RTL.
746 This code is disabled for now until we can fix the various backends
747 which depend on having non-shared hard registers in some cases. Long
748 term we want to re-enable this code as it can significantly cut down
749 on the amount of useless RTL that gets generated.
751 We'll also need to fix some code that runs after reload that wants to
752 set ORIGINAL_REGNO. */
754 if (cfun
755 && cfun->emit
756 && regno_reg_rtx
757 && regno < FIRST_PSEUDO_REGISTER
758 && reg_raw_mode[regno] == mode)
759 return regno_reg_rtx[regno];
760 #endif
762 return gen_raw_REG (mode, regno);
766 gen_rtx_MEM (machine_mode mode, rtx addr)
768 rtx rt = gen_rtx_raw_MEM (mode, addr);
770 /* This field is not cleared by the mere allocation of the rtx, so
771 we clear it here. */
772 MEM_ATTRS (rt) = 0;
774 return rt;
777 /* Generate a memory referring to non-trapping constant memory. */
780 gen_const_mem (machine_mode mode, rtx addr)
782 rtx mem = gen_rtx_MEM (mode, addr);
783 MEM_READONLY_P (mem) = 1;
784 MEM_NOTRAP_P (mem) = 1;
785 return mem;
788 /* Generate a MEM referring to fixed portions of the frame, e.g., register
789 save areas. */
792 gen_frame_mem (machine_mode mode, rtx addr)
794 rtx mem = gen_rtx_MEM (mode, addr);
795 MEM_NOTRAP_P (mem) = 1;
796 set_mem_alias_set (mem, get_frame_alias_set ());
797 return mem;
800 /* Generate a MEM referring to a temporary use of the stack, not part
801 of the fixed stack frame. For example, something which is pushed
802 by a target splitter. */
804 gen_tmp_stack_mem (machine_mode mode, rtx addr)
806 rtx mem = gen_rtx_MEM (mode, addr);
807 MEM_NOTRAP_P (mem) = 1;
808 if (!cfun->calls_alloca)
809 set_mem_alias_set (mem, get_frame_alias_set ());
810 return mem;
813 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
814 this construct would be valid, and false otherwise. */
816 bool
817 validate_subreg (machine_mode omode, machine_mode imode,
818 const_rtx reg, unsigned int offset)
820 unsigned int isize = GET_MODE_SIZE (imode);
821 unsigned int osize = GET_MODE_SIZE (omode);
823 /* All subregs must be aligned. */
824 if (offset % osize != 0)
825 return false;
827 /* The subreg offset cannot be outside the inner object. */
828 if (offset >= isize)
829 return false;
831 /* ??? This should not be here. Temporarily continue to allow word_mode
832 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
833 Generally, backends are doing something sketchy but it'll take time to
834 fix them all. */
835 if (omode == word_mode)
837 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
838 is the culprit here, and not the backends. */
839 else if (osize >= UNITS_PER_WORD && isize >= osize)
841 /* Allow component subregs of complex and vector. Though given the below
842 extraction rules, it's not always clear what that means. */
843 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
844 && GET_MODE_INNER (imode) == omode)
846 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
847 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
848 represent this. It's questionable if this ought to be represented at
849 all -- why can't this all be hidden in post-reload splitters that make
850 arbitrarily mode changes to the registers themselves. */
851 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
853 /* Subregs involving floating point modes are not allowed to
854 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
855 (subreg:SI (reg:DF) 0) isn't. */
856 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
858 if (! (isize == osize
859 /* LRA can use subreg to store a floating point value in
860 an integer mode. Although the floating point and the
861 integer modes need the same number of hard registers,
862 the size of floating point mode can be less than the
863 integer mode. LRA also uses subregs for a register
864 should be used in different mode in on insn. */
865 || lra_in_progress))
866 return false;
869 /* Paradoxical subregs must have offset zero. */
870 if (osize > isize)
871 return offset == 0;
873 /* This is a normal subreg. Verify that the offset is representable. */
875 /* For hard registers, we already have most of these rules collected in
876 subreg_offset_representable_p. */
877 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
879 unsigned int regno = REGNO (reg);
881 #ifdef CANNOT_CHANGE_MODE_CLASS
882 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
883 && GET_MODE_INNER (imode) == omode)
885 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
886 return false;
887 #endif
889 return subreg_offset_representable_p (regno, imode, offset, omode);
892 /* For pseudo registers, we want most of the same checks. Namely:
893 If the register no larger than a word, the subreg must be lowpart.
894 If the register is larger than a word, the subreg must be the lowpart
895 of a subword. A subreg does *not* perform arbitrary bit extraction.
896 Given that we've already checked mode/offset alignment, we only have
897 to check subword subregs here. */
898 if (osize < UNITS_PER_WORD
899 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
901 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
902 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
903 if (offset % UNITS_PER_WORD != low_off)
904 return false;
906 return true;
910 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
912 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
913 return gen_rtx_raw_SUBREG (mode, reg, offset);
916 /* Generate a SUBREG representing the least-significant part of REG if MODE
917 is smaller than mode of REG, otherwise paradoxical SUBREG. */
920 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
922 machine_mode inmode;
924 inmode = GET_MODE (reg);
925 if (inmode == VOIDmode)
926 inmode = mode;
927 return gen_rtx_SUBREG (mode, reg,
928 subreg_lowpart_offset (mode, inmode));
932 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
933 enum var_init_status status)
935 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
936 PAT_VAR_LOCATION_STATUS (x) = status;
937 return x;
941 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
943 rtvec
944 gen_rtvec (int n, ...)
946 int i;
947 rtvec rt_val;
948 va_list p;
950 va_start (p, n);
952 /* Don't allocate an empty rtvec... */
953 if (n == 0)
955 va_end (p);
956 return NULL_RTVEC;
959 rt_val = rtvec_alloc (n);
961 for (i = 0; i < n; i++)
962 rt_val->elem[i] = va_arg (p, rtx);
964 va_end (p);
965 return rt_val;
968 rtvec
969 gen_rtvec_v (int n, rtx *argp)
971 int i;
972 rtvec rt_val;
974 /* Don't allocate an empty rtvec... */
975 if (n == 0)
976 return NULL_RTVEC;
978 rt_val = rtvec_alloc (n);
980 for (i = 0; i < n; i++)
981 rt_val->elem[i] = *argp++;
983 return rt_val;
986 rtvec
987 gen_rtvec_v (int n, rtx_insn **argp)
989 int i;
990 rtvec rt_val;
992 /* Don't allocate an empty rtvec... */
993 if (n == 0)
994 return NULL_RTVEC;
996 rt_val = rtvec_alloc (n);
998 for (i = 0; i < n; i++)
999 rt_val->elem[i] = *argp++;
1001 return rt_val;
1005 /* Return the number of bytes between the start of an OUTER_MODE
1006 in-memory value and the start of an INNER_MODE in-memory value,
1007 given that the former is a lowpart of the latter. It may be a
1008 paradoxical lowpart, in which case the offset will be negative
1009 on big-endian targets. */
1012 byte_lowpart_offset (machine_mode outer_mode,
1013 machine_mode inner_mode)
1015 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
1016 return subreg_lowpart_offset (outer_mode, inner_mode);
1017 else
1018 return -subreg_lowpart_offset (inner_mode, outer_mode);
1021 /* Generate a REG rtx for a new pseudo register of mode MODE.
1022 This pseudo is assigned the next sequential register number. */
1025 gen_reg_rtx (machine_mode mode)
1027 rtx val;
1028 unsigned int align = GET_MODE_ALIGNMENT (mode);
1030 gcc_assert (can_create_pseudo_p ());
1032 /* If a virtual register with bigger mode alignment is generated,
1033 increase stack alignment estimation because it might be spilled
1034 to stack later. */
1035 if (SUPPORTS_STACK_ALIGNMENT
1036 && crtl->stack_alignment_estimated < align
1037 && !crtl->stack_realign_processed)
1039 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1040 if (crtl->stack_alignment_estimated < min_align)
1041 crtl->stack_alignment_estimated = min_align;
1044 if (generating_concat_p
1045 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1046 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1048 /* For complex modes, don't make a single pseudo.
1049 Instead, make a CONCAT of two pseudos.
1050 This allows noncontiguous allocation of the real and imaginary parts,
1051 which makes much better code. Besides, allocating DCmode
1052 pseudos overstrains reload on some machines like the 386. */
1053 rtx realpart, imagpart;
1054 machine_mode partmode = GET_MODE_INNER (mode);
1056 realpart = gen_reg_rtx (partmode);
1057 imagpart = gen_reg_rtx (partmode);
1058 return gen_rtx_CONCAT (mode, realpart, imagpart);
1061 /* Do not call gen_reg_rtx with uninitialized crtl. */
1062 gcc_assert (crtl->emit.regno_pointer_align_length);
1064 /* Make sure regno_pointer_align, and regno_reg_rtx are large
1065 enough to have an element for this pseudo reg number. */
1067 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
1069 int old_size = crtl->emit.regno_pointer_align_length;
1070 char *tmp;
1071 rtx *new1;
1073 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
1074 memset (tmp + old_size, 0, old_size);
1075 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
1077 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
1078 memset (new1 + old_size, 0, old_size * sizeof (rtx));
1079 regno_reg_rtx = new1;
1081 crtl->emit.regno_pointer_align_length = old_size * 2;
1084 val = gen_raw_REG (mode, reg_rtx_no);
1085 regno_reg_rtx[reg_rtx_no++] = val;
1086 return val;
1089 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1091 bool
1092 reg_is_parm_p (rtx reg)
1094 tree decl;
1096 gcc_assert (REG_P (reg));
1097 decl = REG_EXPR (reg);
1098 return (decl && TREE_CODE (decl) == PARM_DECL);
1101 /* Update NEW with the same attributes as REG, but with OFFSET added
1102 to the REG_OFFSET. */
1104 static void
1105 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1107 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1108 REG_OFFSET (reg) + offset);
1111 /* Generate a register with same attributes as REG, but with OFFSET
1112 added to the REG_OFFSET. */
1115 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1116 int offset)
1118 rtx new_rtx = gen_rtx_REG (mode, regno);
1120 update_reg_offset (new_rtx, reg, offset);
1121 return new_rtx;
1124 /* Generate a new pseudo-register with the same attributes as REG, but
1125 with OFFSET added to the REG_OFFSET. */
1128 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1130 rtx new_rtx = gen_reg_rtx (mode);
1132 update_reg_offset (new_rtx, reg, offset);
1133 return new_rtx;
1136 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1137 new register is a (possibly paradoxical) lowpart of the old one. */
1139 void
1140 adjust_reg_mode (rtx reg, machine_mode mode)
1142 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1143 PUT_MODE (reg, mode);
1146 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1147 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1149 void
1150 set_reg_attrs_from_value (rtx reg, rtx x)
1152 int offset;
1153 bool can_be_reg_pointer = true;
1155 /* Don't call mark_reg_pointer for incompatible pointer sign
1156 extension. */
1157 while (GET_CODE (x) == SIGN_EXTEND
1158 || GET_CODE (x) == ZERO_EXTEND
1159 || GET_CODE (x) == TRUNCATE
1160 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1162 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1163 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1164 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1165 can_be_reg_pointer = false;
1166 #endif
1167 x = XEXP (x, 0);
1170 /* Hard registers can be reused for multiple purposes within the same
1171 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1172 on them is wrong. */
1173 if (HARD_REGISTER_P (reg))
1174 return;
1176 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1177 if (MEM_P (x))
1179 if (MEM_OFFSET_KNOWN_P (x))
1180 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1181 MEM_OFFSET (x) + offset);
1182 if (can_be_reg_pointer && MEM_POINTER (x))
1183 mark_reg_pointer (reg, 0);
1185 else if (REG_P (x))
1187 if (REG_ATTRS (x))
1188 update_reg_offset (reg, x, offset);
1189 if (can_be_reg_pointer && REG_POINTER (x))
1190 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1194 /* Generate a REG rtx for a new pseudo register, copying the mode
1195 and attributes from X. */
1198 gen_reg_rtx_and_attrs (rtx x)
1200 rtx reg = gen_reg_rtx (GET_MODE (x));
1201 set_reg_attrs_from_value (reg, x);
1202 return reg;
1205 /* Set the register attributes for registers contained in PARM_RTX.
1206 Use needed values from memory attributes of MEM. */
1208 void
1209 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1211 if (REG_P (parm_rtx))
1212 set_reg_attrs_from_value (parm_rtx, mem);
1213 else if (GET_CODE (parm_rtx) == PARALLEL)
1215 /* Check for a NULL entry in the first slot, used to indicate that the
1216 parameter goes both on the stack and in registers. */
1217 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1218 for (; i < XVECLEN (parm_rtx, 0); i++)
1220 rtx x = XVECEXP (parm_rtx, 0, i);
1221 if (REG_P (XEXP (x, 0)))
1222 REG_ATTRS (XEXP (x, 0))
1223 = get_reg_attrs (MEM_EXPR (mem),
1224 INTVAL (XEXP (x, 1)));
1229 /* Set the REG_ATTRS for registers in value X, given that X represents
1230 decl T. */
1232 void
1233 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1235 if (GET_CODE (x) == SUBREG)
1237 gcc_assert (subreg_lowpart_p (x));
1238 x = SUBREG_REG (x);
1240 if (REG_P (x))
1241 REG_ATTRS (x)
1242 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1243 DECL_MODE (t)));
1244 if (GET_CODE (x) == CONCAT)
1246 if (REG_P (XEXP (x, 0)))
1247 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1248 if (REG_P (XEXP (x, 1)))
1249 REG_ATTRS (XEXP (x, 1))
1250 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1252 if (GET_CODE (x) == PARALLEL)
1254 int i, start;
1256 /* Check for a NULL entry, used to indicate that the parameter goes
1257 both on the stack and in registers. */
1258 if (XEXP (XVECEXP (x, 0, 0), 0))
1259 start = 0;
1260 else
1261 start = 1;
1263 for (i = start; i < XVECLEN (x, 0); i++)
1265 rtx y = XVECEXP (x, 0, i);
1266 if (REG_P (XEXP (y, 0)))
1267 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1272 /* Assign the RTX X to declaration T. */
1274 void
1275 set_decl_rtl (tree t, rtx x)
1277 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1278 if (x)
1279 set_reg_attrs_for_decl_rtl (t, x);
1282 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1283 if the ABI requires the parameter to be passed by reference. */
1285 void
1286 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1288 DECL_INCOMING_RTL (t) = x;
1289 if (x && !by_reference_p)
1290 set_reg_attrs_for_decl_rtl (t, x);
1293 /* Identify REG (which may be a CONCAT) as a user register. */
1295 void
1296 mark_user_reg (rtx reg)
1298 if (GET_CODE (reg) == CONCAT)
1300 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1301 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1303 else
1305 gcc_assert (REG_P (reg));
1306 REG_USERVAR_P (reg) = 1;
1310 /* Identify REG as a probable pointer register and show its alignment
1311 as ALIGN, if nonzero. */
1313 void
1314 mark_reg_pointer (rtx reg, int align)
1316 if (! REG_POINTER (reg))
1318 REG_POINTER (reg) = 1;
1320 if (align)
1321 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1323 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1324 /* We can no-longer be sure just how aligned this pointer is. */
1325 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1328 /* Return 1 plus largest pseudo reg number used in the current function. */
1331 max_reg_num (void)
1333 return reg_rtx_no;
1336 /* Return 1 + the largest label number used so far in the current function. */
1339 max_label_num (void)
1341 return label_num;
1344 /* Return first label number used in this function (if any were used). */
1347 get_first_label_num (void)
1349 return first_label_num;
1352 /* If the rtx for label was created during the expansion of a nested
1353 function, then first_label_num won't include this label number.
1354 Fix this now so that array indices work later. */
1356 void
1357 maybe_set_first_label_num (rtx x)
1359 if (CODE_LABEL_NUMBER (x) < first_label_num)
1360 first_label_num = CODE_LABEL_NUMBER (x);
1363 /* Return a value representing some low-order bits of X, where the number
1364 of low-order bits is given by MODE. Note that no conversion is done
1365 between floating-point and fixed-point values, rather, the bit
1366 representation is returned.
1368 This function handles the cases in common between gen_lowpart, below,
1369 and two variants in cse.c and combine.c. These are the cases that can
1370 be safely handled at all points in the compilation.
1372 If this is not a case we can handle, return 0. */
1375 gen_lowpart_common (machine_mode mode, rtx x)
1377 int msize = GET_MODE_SIZE (mode);
1378 int xsize;
1379 int offset = 0;
1380 machine_mode innermode;
1382 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1383 so we have to make one up. Yuk. */
1384 innermode = GET_MODE (x);
1385 if (CONST_INT_P (x)
1386 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1387 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1388 else if (innermode == VOIDmode)
1389 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1391 xsize = GET_MODE_SIZE (innermode);
1393 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1395 if (innermode == mode)
1396 return x;
1398 /* MODE must occupy no more words than the mode of X. */
1399 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1400 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1401 return 0;
1403 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1404 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1405 return 0;
1407 offset = subreg_lowpart_offset (mode, innermode);
1409 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1410 && (GET_MODE_CLASS (mode) == MODE_INT
1411 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1413 /* If we are getting the low-order part of something that has been
1414 sign- or zero-extended, we can either just use the object being
1415 extended or make a narrower extension. If we want an even smaller
1416 piece than the size of the object being extended, call ourselves
1417 recursively.
1419 This case is used mostly by combine and cse. */
1421 if (GET_MODE (XEXP (x, 0)) == mode)
1422 return XEXP (x, 0);
1423 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1424 return gen_lowpart_common (mode, XEXP (x, 0));
1425 else if (msize < xsize)
1426 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1428 else if (GET_CODE (x) == SUBREG || REG_P (x)
1429 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1430 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1431 return simplify_gen_subreg (mode, x, innermode, offset);
1433 /* Otherwise, we can't do this. */
1434 return 0;
1438 gen_highpart (machine_mode mode, rtx x)
1440 unsigned int msize = GET_MODE_SIZE (mode);
1441 rtx result;
1443 /* This case loses if X is a subreg. To catch bugs early,
1444 complain if an invalid MODE is used even in other cases. */
1445 gcc_assert (msize <= UNITS_PER_WORD
1446 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1448 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1449 subreg_highpart_offset (mode, GET_MODE (x)));
1450 gcc_assert (result);
1452 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1453 the target if we have a MEM. gen_highpart must return a valid operand,
1454 emitting code if necessary to do so. */
1455 if (MEM_P (result))
1457 result = validize_mem (result);
1458 gcc_assert (result);
1461 return result;
1464 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1465 be VOIDmode constant. */
1467 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1469 if (GET_MODE (exp) != VOIDmode)
1471 gcc_assert (GET_MODE (exp) == innermode);
1472 return gen_highpart (outermode, exp);
1474 return simplify_gen_subreg (outermode, exp, innermode,
1475 subreg_highpart_offset (outermode, innermode));
1478 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1480 unsigned int
1481 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
1483 unsigned int offset = 0;
1484 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1486 if (difference > 0)
1488 if (WORDS_BIG_ENDIAN)
1489 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1490 if (BYTES_BIG_ENDIAN)
1491 offset += difference % UNITS_PER_WORD;
1494 return offset;
1497 /* Return offset in bytes to get OUTERMODE high part
1498 of the value in mode INNERMODE stored in memory in target format. */
1499 unsigned int
1500 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
1502 unsigned int offset = 0;
1503 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1505 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1507 if (difference > 0)
1509 if (! WORDS_BIG_ENDIAN)
1510 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1511 if (! BYTES_BIG_ENDIAN)
1512 offset += difference % UNITS_PER_WORD;
1515 return offset;
1518 /* Return 1 iff X, assumed to be a SUBREG,
1519 refers to the least significant part of its containing reg.
1520 If X is not a SUBREG, always return 1 (it is its own low part!). */
1523 subreg_lowpart_p (const_rtx x)
1525 if (GET_CODE (x) != SUBREG)
1526 return 1;
1527 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1528 return 0;
1530 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1531 == SUBREG_BYTE (x));
1534 /* Return true if X is a paradoxical subreg, false otherwise. */
1535 bool
1536 paradoxical_subreg_p (const_rtx x)
1538 if (GET_CODE (x) != SUBREG)
1539 return false;
1540 return (GET_MODE_PRECISION (GET_MODE (x))
1541 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1544 /* Return subword OFFSET of operand OP.
1545 The word number, OFFSET, is interpreted as the word number starting
1546 at the low-order address. OFFSET 0 is the low-order word if not
1547 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1549 If we cannot extract the required word, we return zero. Otherwise,
1550 an rtx corresponding to the requested word will be returned.
1552 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1553 reload has completed, a valid address will always be returned. After
1554 reload, if a valid address cannot be returned, we return zero.
1556 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1557 it is the responsibility of the caller.
1559 MODE is the mode of OP in case it is a CONST_INT.
1561 ??? This is still rather broken for some cases. The problem for the
1562 moment is that all callers of this thing provide no 'goal mode' to
1563 tell us to work with. This exists because all callers were written
1564 in a word based SUBREG world.
1565 Now use of this function can be deprecated by simplify_subreg in most
1566 cases.
1570 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1572 if (mode == VOIDmode)
1573 mode = GET_MODE (op);
1575 gcc_assert (mode != VOIDmode);
1577 /* If OP is narrower than a word, fail. */
1578 if (mode != BLKmode
1579 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1580 return 0;
1582 /* If we want a word outside OP, return zero. */
1583 if (mode != BLKmode
1584 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1585 return const0_rtx;
1587 /* Form a new MEM at the requested address. */
1588 if (MEM_P (op))
1590 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1592 if (! validate_address)
1593 return new_rtx;
1595 else if (reload_completed)
1597 if (! strict_memory_address_addr_space_p (word_mode,
1598 XEXP (new_rtx, 0),
1599 MEM_ADDR_SPACE (op)))
1600 return 0;
1602 else
1603 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1606 /* Rest can be handled by simplify_subreg. */
1607 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1610 /* Similar to `operand_subword', but never return 0. If we can't
1611 extract the required subword, put OP into a register and try again.
1612 The second attempt must succeed. We always validate the address in
1613 this case.
1615 MODE is the mode of OP, in case it is CONST_INT. */
1618 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1620 rtx result = operand_subword (op, offset, 1, mode);
1622 if (result)
1623 return result;
1625 if (mode != BLKmode && mode != VOIDmode)
1627 /* If this is a register which can not be accessed by words, copy it
1628 to a pseudo register. */
1629 if (REG_P (op))
1630 op = copy_to_reg (op);
1631 else
1632 op = force_reg (mode, op);
1635 result = operand_subword (op, offset, 1, mode);
1636 gcc_assert (result);
1638 return result;
1641 /* Returns 1 if both MEM_EXPR can be considered equal
1642 and 0 otherwise. */
1645 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1647 if (expr1 == expr2)
1648 return 1;
1650 if (! expr1 || ! expr2)
1651 return 0;
1653 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1654 return 0;
1656 return operand_equal_p (expr1, expr2, 0);
1659 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1660 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1661 -1 if not known. */
1664 get_mem_align_offset (rtx mem, unsigned int align)
1666 tree expr;
1667 unsigned HOST_WIDE_INT offset;
1669 /* This function can't use
1670 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1671 || (MAX (MEM_ALIGN (mem),
1672 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1673 < align))
1674 return -1;
1675 else
1676 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1677 for two reasons:
1678 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1679 for <variable>. get_inner_reference doesn't handle it and
1680 even if it did, the alignment in that case needs to be determined
1681 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1682 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1683 isn't sufficiently aligned, the object it is in might be. */
1684 gcc_assert (MEM_P (mem));
1685 expr = MEM_EXPR (mem);
1686 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1687 return -1;
1689 offset = MEM_OFFSET (mem);
1690 if (DECL_P (expr))
1692 if (DECL_ALIGN (expr) < align)
1693 return -1;
1695 else if (INDIRECT_REF_P (expr))
1697 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1698 return -1;
1700 else if (TREE_CODE (expr) == COMPONENT_REF)
1702 while (1)
1704 tree inner = TREE_OPERAND (expr, 0);
1705 tree field = TREE_OPERAND (expr, 1);
1706 tree byte_offset = component_ref_field_offset (expr);
1707 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1709 if (!byte_offset
1710 || !tree_fits_uhwi_p (byte_offset)
1711 || !tree_fits_uhwi_p (bit_offset))
1712 return -1;
1714 offset += tree_to_uhwi (byte_offset);
1715 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1717 if (inner == NULL_TREE)
1719 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1720 < (unsigned int) align)
1721 return -1;
1722 break;
1724 else if (DECL_P (inner))
1726 if (DECL_ALIGN (inner) < align)
1727 return -1;
1728 break;
1730 else if (TREE_CODE (inner) != COMPONENT_REF)
1731 return -1;
1732 expr = inner;
1735 else
1736 return -1;
1738 return offset & ((align / BITS_PER_UNIT) - 1);
1741 /* Given REF (a MEM) and T, either the type of X or the expression
1742 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1743 if we are making a new object of this type. BITPOS is nonzero if
1744 there is an offset outstanding on T that will be applied later. */
1746 void
1747 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1748 HOST_WIDE_INT bitpos)
1750 HOST_WIDE_INT apply_bitpos = 0;
1751 tree type;
1752 struct mem_attrs attrs, *defattrs, *refattrs;
1753 addr_space_t as;
1755 /* It can happen that type_for_mode was given a mode for which there
1756 is no language-level type. In which case it returns NULL, which
1757 we can see here. */
1758 if (t == NULL_TREE)
1759 return;
1761 type = TYPE_P (t) ? t : TREE_TYPE (t);
1762 if (type == error_mark_node)
1763 return;
1765 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1766 wrong answer, as it assumes that DECL_RTL already has the right alias
1767 info. Callers should not set DECL_RTL until after the call to
1768 set_mem_attributes. */
1769 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1771 memset (&attrs, 0, sizeof (attrs));
1773 /* Get the alias set from the expression or type (perhaps using a
1774 front-end routine) and use it. */
1775 attrs.alias = get_alias_set (t);
1777 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1778 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1780 /* Default values from pre-existing memory attributes if present. */
1781 refattrs = MEM_ATTRS (ref);
1782 if (refattrs)
1784 /* ??? Can this ever happen? Calling this routine on a MEM that
1785 already carries memory attributes should probably be invalid. */
1786 attrs.expr = refattrs->expr;
1787 attrs.offset_known_p = refattrs->offset_known_p;
1788 attrs.offset = refattrs->offset;
1789 attrs.size_known_p = refattrs->size_known_p;
1790 attrs.size = refattrs->size;
1791 attrs.align = refattrs->align;
1794 /* Otherwise, default values from the mode of the MEM reference. */
1795 else
1797 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1798 gcc_assert (!defattrs->expr);
1799 gcc_assert (!defattrs->offset_known_p);
1801 /* Respect mode size. */
1802 attrs.size_known_p = defattrs->size_known_p;
1803 attrs.size = defattrs->size;
1804 /* ??? Is this really necessary? We probably should always get
1805 the size from the type below. */
1807 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1808 if T is an object, always compute the object alignment below. */
1809 if (TYPE_P (t))
1810 attrs.align = defattrs->align;
1811 else
1812 attrs.align = BITS_PER_UNIT;
1813 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1814 e.g. if the type carries an alignment attribute. Should we be
1815 able to simply always use TYPE_ALIGN? */
1818 /* We can set the alignment from the type if we are making an object,
1819 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1820 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1821 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1823 /* If the size is known, we can set that. */
1824 tree new_size = TYPE_SIZE_UNIT (type);
1826 /* The address-space is that of the type. */
1827 as = TYPE_ADDR_SPACE (type);
1829 /* If T is not a type, we may be able to deduce some more information about
1830 the expression. */
1831 if (! TYPE_P (t))
1833 tree base;
1835 if (TREE_THIS_VOLATILE (t))
1836 MEM_VOLATILE_P (ref) = 1;
1838 /* Now remove any conversions: they don't change what the underlying
1839 object is. Likewise for SAVE_EXPR. */
1840 while (CONVERT_EXPR_P (t)
1841 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1842 || TREE_CODE (t) == SAVE_EXPR)
1843 t = TREE_OPERAND (t, 0);
1845 /* Note whether this expression can trap. */
1846 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1848 base = get_base_address (t);
1849 if (base)
1851 if (DECL_P (base)
1852 && TREE_READONLY (base)
1853 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1854 && !TREE_THIS_VOLATILE (base))
1855 MEM_READONLY_P (ref) = 1;
1857 /* Mark static const strings readonly as well. */
1858 if (TREE_CODE (base) == STRING_CST
1859 && TREE_READONLY (base)
1860 && TREE_STATIC (base))
1861 MEM_READONLY_P (ref) = 1;
1863 /* Address-space information is on the base object. */
1864 if (TREE_CODE (base) == MEM_REF
1865 || TREE_CODE (base) == TARGET_MEM_REF)
1866 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1867 0))));
1868 else
1869 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1872 /* If this expression uses it's parent's alias set, mark it such
1873 that we won't change it. */
1874 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1875 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1877 /* If this is a decl, set the attributes of the MEM from it. */
1878 if (DECL_P (t))
1880 attrs.expr = t;
1881 attrs.offset_known_p = true;
1882 attrs.offset = 0;
1883 apply_bitpos = bitpos;
1884 new_size = DECL_SIZE_UNIT (t);
1887 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1888 else if (CONSTANT_CLASS_P (t))
1891 /* If this is a field reference, record it. */
1892 else if (TREE_CODE (t) == COMPONENT_REF)
1894 attrs.expr = t;
1895 attrs.offset_known_p = true;
1896 attrs.offset = 0;
1897 apply_bitpos = bitpos;
1898 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1899 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1902 /* If this is an array reference, look for an outer field reference. */
1903 else if (TREE_CODE (t) == ARRAY_REF)
1905 tree off_tree = size_zero_node;
1906 /* We can't modify t, because we use it at the end of the
1907 function. */
1908 tree t2 = t;
1912 tree index = TREE_OPERAND (t2, 1);
1913 tree low_bound = array_ref_low_bound (t2);
1914 tree unit_size = array_ref_element_size (t2);
1916 /* We assume all arrays have sizes that are a multiple of a byte.
1917 First subtract the lower bound, if any, in the type of the
1918 index, then convert to sizetype and multiply by the size of
1919 the array element. */
1920 if (! integer_zerop (low_bound))
1921 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1922 index, low_bound);
1924 off_tree = size_binop (PLUS_EXPR,
1925 size_binop (MULT_EXPR,
1926 fold_convert (sizetype,
1927 index),
1928 unit_size),
1929 off_tree);
1930 t2 = TREE_OPERAND (t2, 0);
1932 while (TREE_CODE (t2) == ARRAY_REF);
1934 if (DECL_P (t2)
1935 || TREE_CODE (t2) == COMPONENT_REF)
1937 attrs.expr = t2;
1938 attrs.offset_known_p = false;
1939 if (tree_fits_uhwi_p (off_tree))
1941 attrs.offset_known_p = true;
1942 attrs.offset = tree_to_uhwi (off_tree);
1943 apply_bitpos = bitpos;
1946 /* Else do not record a MEM_EXPR. */
1949 /* If this is an indirect reference, record it. */
1950 else if (TREE_CODE (t) == MEM_REF
1951 || TREE_CODE (t) == TARGET_MEM_REF)
1953 attrs.expr = t;
1954 attrs.offset_known_p = true;
1955 attrs.offset = 0;
1956 apply_bitpos = bitpos;
1959 /* Compute the alignment. */
1960 unsigned int obj_align;
1961 unsigned HOST_WIDE_INT obj_bitpos;
1962 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1963 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1964 if (obj_bitpos != 0)
1965 obj_align = (obj_bitpos & -obj_bitpos);
1966 attrs.align = MAX (attrs.align, obj_align);
1969 if (tree_fits_uhwi_p (new_size))
1971 attrs.size_known_p = true;
1972 attrs.size = tree_to_uhwi (new_size);
1975 /* If we modified OFFSET based on T, then subtract the outstanding
1976 bit position offset. Similarly, increase the size of the accessed
1977 object to contain the negative offset. */
1978 if (apply_bitpos)
1980 gcc_assert (attrs.offset_known_p);
1981 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1982 if (attrs.size_known_p)
1983 attrs.size += apply_bitpos / BITS_PER_UNIT;
1986 /* Now set the attributes we computed above. */
1987 attrs.addrspace = as;
1988 set_mem_attrs (ref, &attrs);
1991 void
1992 set_mem_attributes (rtx ref, tree t, int objectp)
1994 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1997 /* Set the alias set of MEM to SET. */
1999 void
2000 set_mem_alias_set (rtx mem, alias_set_type set)
2002 struct mem_attrs attrs;
2004 /* If the new and old alias sets don't conflict, something is wrong. */
2005 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2006 attrs = *get_mem_attrs (mem);
2007 attrs.alias = set;
2008 set_mem_attrs (mem, &attrs);
2011 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2013 void
2014 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2016 struct mem_attrs attrs;
2018 attrs = *get_mem_attrs (mem);
2019 attrs.addrspace = addrspace;
2020 set_mem_attrs (mem, &attrs);
2023 /* Set the alignment of MEM to ALIGN bits. */
2025 void
2026 set_mem_align (rtx mem, unsigned int align)
2028 struct mem_attrs attrs;
2030 attrs = *get_mem_attrs (mem);
2031 attrs.align = align;
2032 set_mem_attrs (mem, &attrs);
2035 /* Set the expr for MEM to EXPR. */
2037 void
2038 set_mem_expr (rtx mem, tree expr)
2040 struct mem_attrs attrs;
2042 attrs = *get_mem_attrs (mem);
2043 attrs.expr = expr;
2044 set_mem_attrs (mem, &attrs);
2047 /* Set the offset of MEM to OFFSET. */
2049 void
2050 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2052 struct mem_attrs attrs;
2054 attrs = *get_mem_attrs (mem);
2055 attrs.offset_known_p = true;
2056 attrs.offset = offset;
2057 set_mem_attrs (mem, &attrs);
2060 /* Clear the offset of MEM. */
2062 void
2063 clear_mem_offset (rtx mem)
2065 struct mem_attrs attrs;
2067 attrs = *get_mem_attrs (mem);
2068 attrs.offset_known_p = false;
2069 set_mem_attrs (mem, &attrs);
2072 /* Set the size of MEM to SIZE. */
2074 void
2075 set_mem_size (rtx mem, HOST_WIDE_INT size)
2077 struct mem_attrs attrs;
2079 attrs = *get_mem_attrs (mem);
2080 attrs.size_known_p = true;
2081 attrs.size = size;
2082 set_mem_attrs (mem, &attrs);
2085 /* Clear the size of MEM. */
2087 void
2088 clear_mem_size (rtx mem)
2090 struct mem_attrs attrs;
2092 attrs = *get_mem_attrs (mem);
2093 attrs.size_known_p = false;
2094 set_mem_attrs (mem, &attrs);
2097 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2098 and its address changed to ADDR. (VOIDmode means don't change the mode.
2099 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2100 returned memory location is required to be valid. INPLACE is true if any
2101 changes can be made directly to MEMREF or false if MEMREF must be treated
2102 as immutable.
2104 The memory attributes are not changed. */
2106 static rtx
2107 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2108 bool inplace)
2110 addr_space_t as;
2111 rtx new_rtx;
2113 gcc_assert (MEM_P (memref));
2114 as = MEM_ADDR_SPACE (memref);
2115 if (mode == VOIDmode)
2116 mode = GET_MODE (memref);
2117 if (addr == 0)
2118 addr = XEXP (memref, 0);
2119 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2120 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2121 return memref;
2123 /* Don't validate address for LRA. LRA can make the address valid
2124 by itself in most efficient way. */
2125 if (validate && !lra_in_progress)
2127 if (reload_in_progress || reload_completed)
2128 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2129 else
2130 addr = memory_address_addr_space (mode, addr, as);
2133 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2134 return memref;
2136 if (inplace)
2138 XEXP (memref, 0) = addr;
2139 return memref;
2142 new_rtx = gen_rtx_MEM (mode, addr);
2143 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2144 return new_rtx;
2147 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2148 way we are changing MEMREF, so we only preserve the alias set. */
2151 change_address (rtx memref, machine_mode mode, rtx addr)
2153 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2154 machine_mode mmode = GET_MODE (new_rtx);
2155 struct mem_attrs attrs, *defattrs;
2157 attrs = *get_mem_attrs (memref);
2158 defattrs = mode_mem_attrs[(int) mmode];
2159 attrs.expr = NULL_TREE;
2160 attrs.offset_known_p = false;
2161 attrs.size_known_p = defattrs->size_known_p;
2162 attrs.size = defattrs->size;
2163 attrs.align = defattrs->align;
2165 /* If there are no changes, just return the original memory reference. */
2166 if (new_rtx == memref)
2168 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2169 return new_rtx;
2171 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2172 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2175 set_mem_attrs (new_rtx, &attrs);
2176 return new_rtx;
2179 /* Return a memory reference like MEMREF, but with its mode changed
2180 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2181 nonzero, the memory address is forced to be valid.
2182 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2183 and the caller is responsible for adjusting MEMREF base register.
2184 If ADJUST_OBJECT is zero, the underlying object associated with the
2185 memory reference is left unchanged and the caller is responsible for
2186 dealing with it. Otherwise, if the new memory reference is outside
2187 the underlying object, even partially, then the object is dropped.
2188 SIZE, if nonzero, is the size of an access in cases where MODE
2189 has no inherent size. */
2192 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2193 int validate, int adjust_address, int adjust_object,
2194 HOST_WIDE_INT size)
2196 rtx addr = XEXP (memref, 0);
2197 rtx new_rtx;
2198 machine_mode address_mode;
2199 int pbits;
2200 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2201 unsigned HOST_WIDE_INT max_align;
2202 #ifdef POINTERS_EXTEND_UNSIGNED
2203 machine_mode pointer_mode
2204 = targetm.addr_space.pointer_mode (attrs.addrspace);
2205 #endif
2207 /* VOIDmode means no mode change for change_address_1. */
2208 if (mode == VOIDmode)
2209 mode = GET_MODE (memref);
2211 /* Take the size of non-BLKmode accesses from the mode. */
2212 defattrs = mode_mem_attrs[(int) mode];
2213 if (defattrs->size_known_p)
2214 size = defattrs->size;
2216 /* If there are no changes, just return the original memory reference. */
2217 if (mode == GET_MODE (memref) && !offset
2218 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2219 && (!validate || memory_address_addr_space_p (mode, addr,
2220 attrs.addrspace)))
2221 return memref;
2223 /* ??? Prefer to create garbage instead of creating shared rtl.
2224 This may happen even if offset is nonzero -- consider
2225 (plus (plus reg reg) const_int) -- so do this always. */
2226 addr = copy_rtx (addr);
2228 /* Convert a possibly large offset to a signed value within the
2229 range of the target address space. */
2230 address_mode = get_address_mode (memref);
2231 pbits = GET_MODE_BITSIZE (address_mode);
2232 if (HOST_BITS_PER_WIDE_INT > pbits)
2234 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2235 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2236 >> shift);
2239 if (adjust_address)
2241 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2242 object, we can merge it into the LO_SUM. */
2243 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2244 && offset >= 0
2245 && (unsigned HOST_WIDE_INT) offset
2246 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2247 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2248 plus_constant (address_mode,
2249 XEXP (addr, 1), offset));
2250 #ifdef POINTERS_EXTEND_UNSIGNED
2251 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2252 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2253 the fact that pointers are not allowed to overflow. */
2254 else if (POINTERS_EXTEND_UNSIGNED > 0
2255 && GET_CODE (addr) == ZERO_EXTEND
2256 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2257 && trunc_int_for_mode (offset, pointer_mode) == offset)
2258 addr = gen_rtx_ZERO_EXTEND (address_mode,
2259 plus_constant (pointer_mode,
2260 XEXP (addr, 0), offset));
2261 #endif
2262 else
2263 addr = plus_constant (address_mode, addr, offset);
2266 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2268 /* If the address is a REG, change_address_1 rightfully returns memref,
2269 but this would destroy memref's MEM_ATTRS. */
2270 if (new_rtx == memref && offset != 0)
2271 new_rtx = copy_rtx (new_rtx);
2273 /* Conservatively drop the object if we don't know where we start from. */
2274 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2276 attrs.expr = NULL_TREE;
2277 attrs.alias = 0;
2280 /* Compute the new values of the memory attributes due to this adjustment.
2281 We add the offsets and update the alignment. */
2282 if (attrs.offset_known_p)
2284 attrs.offset += offset;
2286 /* Drop the object if the new left end is not within its bounds. */
2287 if (adjust_object && attrs.offset < 0)
2289 attrs.expr = NULL_TREE;
2290 attrs.alias = 0;
2294 /* Compute the new alignment by taking the MIN of the alignment and the
2295 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2296 if zero. */
2297 if (offset != 0)
2299 max_align = (offset & -offset) * BITS_PER_UNIT;
2300 attrs.align = MIN (attrs.align, max_align);
2303 if (size)
2305 /* Drop the object if the new right end is not within its bounds. */
2306 if (adjust_object && (offset + size) > attrs.size)
2308 attrs.expr = NULL_TREE;
2309 attrs.alias = 0;
2311 attrs.size_known_p = true;
2312 attrs.size = size;
2314 else if (attrs.size_known_p)
2316 gcc_assert (!adjust_object);
2317 attrs.size -= offset;
2318 /* ??? The store_by_pieces machinery generates negative sizes,
2319 so don't assert for that here. */
2322 set_mem_attrs (new_rtx, &attrs);
2324 return new_rtx;
2327 /* Return a memory reference like MEMREF, but with its mode changed
2328 to MODE and its address changed to ADDR, which is assumed to be
2329 MEMREF offset by OFFSET bytes. If VALIDATE is
2330 nonzero, the memory address is forced to be valid. */
2333 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2334 HOST_WIDE_INT offset, int validate)
2336 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2337 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2340 /* Return a memory reference like MEMREF, but whose address is changed by
2341 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2342 known to be in OFFSET (possibly 1). */
2345 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2347 rtx new_rtx, addr = XEXP (memref, 0);
2348 machine_mode address_mode;
2349 struct mem_attrs attrs, *defattrs;
2351 attrs = *get_mem_attrs (memref);
2352 address_mode = get_address_mode (memref);
2353 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2355 /* At this point we don't know _why_ the address is invalid. It
2356 could have secondary memory references, multiplies or anything.
2358 However, if we did go and rearrange things, we can wind up not
2359 being able to recognize the magic around pic_offset_table_rtx.
2360 This stuff is fragile, and is yet another example of why it is
2361 bad to expose PIC machinery too early. */
2362 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2363 attrs.addrspace)
2364 && GET_CODE (addr) == PLUS
2365 && XEXP (addr, 0) == pic_offset_table_rtx)
2367 addr = force_reg (GET_MODE (addr), addr);
2368 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2371 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2372 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2374 /* If there are no changes, just return the original memory reference. */
2375 if (new_rtx == memref)
2376 return new_rtx;
2378 /* Update the alignment to reflect the offset. Reset the offset, which
2379 we don't know. */
2380 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2381 attrs.offset_known_p = false;
2382 attrs.size_known_p = defattrs->size_known_p;
2383 attrs.size = defattrs->size;
2384 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2385 set_mem_attrs (new_rtx, &attrs);
2386 return new_rtx;
2389 /* Return a memory reference like MEMREF, but with its address changed to
2390 ADDR. The caller is asserting that the actual piece of memory pointed
2391 to is the same, just the form of the address is being changed, such as
2392 by putting something into a register. INPLACE is true if any changes
2393 can be made directly to MEMREF or false if MEMREF must be treated as
2394 immutable. */
2397 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2399 /* change_address_1 copies the memory attribute structure without change
2400 and that's exactly what we want here. */
2401 update_temp_slot_address (XEXP (memref, 0), addr);
2402 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2405 /* Likewise, but the reference is not required to be valid. */
2408 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2410 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2413 /* Return a memory reference like MEMREF, but with its mode widened to
2414 MODE and offset by OFFSET. This would be used by targets that e.g.
2415 cannot issue QImode memory operations and have to use SImode memory
2416 operations plus masking logic. */
2419 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2421 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2422 struct mem_attrs attrs;
2423 unsigned int size = GET_MODE_SIZE (mode);
2425 /* If there are no changes, just return the original memory reference. */
2426 if (new_rtx == memref)
2427 return new_rtx;
2429 attrs = *get_mem_attrs (new_rtx);
2431 /* If we don't know what offset we were at within the expression, then
2432 we can't know if we've overstepped the bounds. */
2433 if (! attrs.offset_known_p)
2434 attrs.expr = NULL_TREE;
2436 while (attrs.expr)
2438 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2440 tree field = TREE_OPERAND (attrs.expr, 1);
2441 tree offset = component_ref_field_offset (attrs.expr);
2443 if (! DECL_SIZE_UNIT (field))
2445 attrs.expr = NULL_TREE;
2446 break;
2449 /* Is the field at least as large as the access? If so, ok,
2450 otherwise strip back to the containing structure. */
2451 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2452 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2453 && attrs.offset >= 0)
2454 break;
2456 if (! tree_fits_uhwi_p (offset))
2458 attrs.expr = NULL_TREE;
2459 break;
2462 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2463 attrs.offset += tree_to_uhwi (offset);
2464 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2465 / BITS_PER_UNIT);
2467 /* Similarly for the decl. */
2468 else if (DECL_P (attrs.expr)
2469 && DECL_SIZE_UNIT (attrs.expr)
2470 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2471 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2472 && (! attrs.offset_known_p || attrs.offset >= 0))
2473 break;
2474 else
2476 /* The widened memory access overflows the expression, which means
2477 that it could alias another expression. Zap it. */
2478 attrs.expr = NULL_TREE;
2479 break;
2483 if (! attrs.expr)
2484 attrs.offset_known_p = false;
2486 /* The widened memory may alias other stuff, so zap the alias set. */
2487 /* ??? Maybe use get_alias_set on any remaining expression. */
2488 attrs.alias = 0;
2489 attrs.size_known_p = true;
2490 attrs.size = size;
2491 set_mem_attrs (new_rtx, &attrs);
2492 return new_rtx;
2495 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2496 static GTY(()) tree spill_slot_decl;
2498 tree
2499 get_spill_slot_decl (bool force_build_p)
2501 tree d = spill_slot_decl;
2502 rtx rd;
2503 struct mem_attrs attrs;
2505 if (d || !force_build_p)
2506 return d;
2508 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2509 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2510 DECL_ARTIFICIAL (d) = 1;
2511 DECL_IGNORED_P (d) = 1;
2512 TREE_USED (d) = 1;
2513 spill_slot_decl = d;
2515 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2516 MEM_NOTRAP_P (rd) = 1;
2517 attrs = *mode_mem_attrs[(int) BLKmode];
2518 attrs.alias = new_alias_set ();
2519 attrs.expr = d;
2520 set_mem_attrs (rd, &attrs);
2521 SET_DECL_RTL (d, rd);
2523 return d;
2526 /* Given MEM, a result from assign_stack_local, fill in the memory
2527 attributes as appropriate for a register allocator spill slot.
2528 These slots are not aliasable by other memory. We arrange for
2529 them all to use a single MEM_EXPR, so that the aliasing code can
2530 work properly in the case of shared spill slots. */
2532 void
2533 set_mem_attrs_for_spill (rtx mem)
2535 struct mem_attrs attrs;
2536 rtx addr;
2538 attrs = *get_mem_attrs (mem);
2539 attrs.expr = get_spill_slot_decl (true);
2540 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2541 attrs.addrspace = ADDR_SPACE_GENERIC;
2543 /* We expect the incoming memory to be of the form:
2544 (mem:MODE (plus (reg sfp) (const_int offset)))
2545 with perhaps the plus missing for offset = 0. */
2546 addr = XEXP (mem, 0);
2547 attrs.offset_known_p = true;
2548 attrs.offset = 0;
2549 if (GET_CODE (addr) == PLUS
2550 && CONST_INT_P (XEXP (addr, 1)))
2551 attrs.offset = INTVAL (XEXP (addr, 1));
2553 set_mem_attrs (mem, &attrs);
2554 MEM_NOTRAP_P (mem) = 1;
2557 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2559 rtx_code_label *
2560 gen_label_rtx (void)
2562 return as_a <rtx_code_label *> (
2563 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2564 NULL, label_num++, NULL));
2567 /* For procedure integration. */
2569 /* Install new pointers to the first and last insns in the chain.
2570 Also, set cur_insn_uid to one higher than the last in use.
2571 Used for an inline-procedure after copying the insn chain. */
2573 void
2574 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2576 rtx_insn *insn;
2578 set_first_insn (first);
2579 set_last_insn (last);
2580 cur_insn_uid = 0;
2582 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2584 int debug_count = 0;
2586 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2587 cur_debug_insn_uid = 0;
2589 for (insn = first; insn; insn = NEXT_INSN (insn))
2590 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2591 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2592 else
2594 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2595 if (DEBUG_INSN_P (insn))
2596 debug_count++;
2599 if (debug_count)
2600 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2601 else
2602 cur_debug_insn_uid++;
2604 else
2605 for (insn = first; insn; insn = NEXT_INSN (insn))
2606 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2608 cur_insn_uid++;
2611 /* Go through all the RTL insn bodies and copy any invalid shared
2612 structure. This routine should only be called once. */
2614 static void
2615 unshare_all_rtl_1 (rtx_insn *insn)
2617 /* Unshare just about everything else. */
2618 unshare_all_rtl_in_chain (insn);
2620 /* Make sure the addresses of stack slots found outside the insn chain
2621 (such as, in DECL_RTL of a variable) are not shared
2622 with the insn chain.
2624 This special care is necessary when the stack slot MEM does not
2625 actually appear in the insn chain. If it does appear, its address
2626 is unshared from all else at that point. */
2627 stack_slot_list = safe_as_a <rtx_expr_list *> (
2628 copy_rtx_if_shared (stack_slot_list));
2631 /* Go through all the RTL insn bodies and copy any invalid shared
2632 structure, again. This is a fairly expensive thing to do so it
2633 should be done sparingly. */
2635 void
2636 unshare_all_rtl_again (rtx_insn *insn)
2638 rtx_insn *p;
2639 tree decl;
2641 for (p = insn; p; p = NEXT_INSN (p))
2642 if (INSN_P (p))
2644 reset_used_flags (PATTERN (p));
2645 reset_used_flags (REG_NOTES (p));
2646 if (CALL_P (p))
2647 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2650 /* Make sure that virtual stack slots are not shared. */
2651 set_used_decls (DECL_INITIAL (cfun->decl));
2653 /* Make sure that virtual parameters are not shared. */
2654 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2655 set_used_flags (DECL_RTL (decl));
2657 reset_used_flags (stack_slot_list);
2659 unshare_all_rtl_1 (insn);
2662 unsigned int
2663 unshare_all_rtl (void)
2665 unshare_all_rtl_1 (get_insns ());
2666 return 0;
2670 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2671 Recursively does the same for subexpressions. */
2673 static void
2674 verify_rtx_sharing (rtx orig, rtx insn)
2676 rtx x = orig;
2677 int i;
2678 enum rtx_code code;
2679 const char *format_ptr;
2681 if (x == 0)
2682 return;
2684 code = GET_CODE (x);
2686 /* These types may be freely shared. */
2688 switch (code)
2690 case REG:
2691 case DEBUG_EXPR:
2692 case VALUE:
2693 CASE_CONST_ANY:
2694 case SYMBOL_REF:
2695 case LABEL_REF:
2696 case CODE_LABEL:
2697 case PC:
2698 case CC0:
2699 case RETURN:
2700 case SIMPLE_RETURN:
2701 case SCRATCH:
2702 /* SCRATCH must be shared because they represent distinct values. */
2703 return;
2704 case CLOBBER:
2705 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2706 clobbers or clobbers of hard registers that originated as pseudos.
2707 This is needed to allow safe register renaming. */
2708 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2709 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2710 return;
2711 break;
2713 case CONST:
2714 if (shared_const_p (orig))
2715 return;
2716 break;
2718 case MEM:
2719 /* A MEM is allowed to be shared if its address is constant. */
2720 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2721 || reload_completed || reload_in_progress)
2722 return;
2724 break;
2726 default:
2727 break;
2730 /* This rtx may not be shared. If it has already been seen,
2731 replace it with a copy of itself. */
2732 #ifdef ENABLE_CHECKING
2733 if (RTX_FLAG (x, used))
2735 error ("invalid rtl sharing found in the insn");
2736 debug_rtx (insn);
2737 error ("shared rtx");
2738 debug_rtx (x);
2739 internal_error ("internal consistency failure");
2741 #endif
2742 gcc_assert (!RTX_FLAG (x, used));
2744 RTX_FLAG (x, used) = 1;
2746 /* Now scan the subexpressions recursively. */
2748 format_ptr = GET_RTX_FORMAT (code);
2750 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2752 switch (*format_ptr++)
2754 case 'e':
2755 verify_rtx_sharing (XEXP (x, i), insn);
2756 break;
2758 case 'E':
2759 if (XVEC (x, i) != NULL)
2761 int j;
2762 int len = XVECLEN (x, i);
2764 for (j = 0; j < len; j++)
2766 /* We allow sharing of ASM_OPERANDS inside single
2767 instruction. */
2768 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2769 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2770 == ASM_OPERANDS))
2771 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2772 else
2773 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2776 break;
2779 return;
2782 /* Reset used-flags for INSN. */
2784 static void
2785 reset_insn_used_flags (rtx insn)
2787 gcc_assert (INSN_P (insn));
2788 reset_used_flags (PATTERN (insn));
2789 reset_used_flags (REG_NOTES (insn));
2790 if (CALL_P (insn))
2791 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2794 /* Go through all the RTL insn bodies and clear all the USED bits. */
2796 static void
2797 reset_all_used_flags (void)
2799 rtx_insn *p;
2801 for (p = get_insns (); p; p = NEXT_INSN (p))
2802 if (INSN_P (p))
2804 rtx pat = PATTERN (p);
2805 if (GET_CODE (pat) != SEQUENCE)
2806 reset_insn_used_flags (p);
2807 else
2809 gcc_assert (REG_NOTES (p) == NULL);
2810 for (int i = 0; i < XVECLEN (pat, 0); i++)
2812 rtx insn = XVECEXP (pat, 0, i);
2813 if (INSN_P (insn))
2814 reset_insn_used_flags (insn);
2820 /* Verify sharing in INSN. */
2822 static void
2823 verify_insn_sharing (rtx insn)
2825 gcc_assert (INSN_P (insn));
2826 reset_used_flags (PATTERN (insn));
2827 reset_used_flags (REG_NOTES (insn));
2828 if (CALL_P (insn))
2829 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2832 /* Go through all the RTL insn bodies and check that there is no unexpected
2833 sharing in between the subexpressions. */
2835 DEBUG_FUNCTION void
2836 verify_rtl_sharing (void)
2838 rtx_insn *p;
2840 timevar_push (TV_VERIFY_RTL_SHARING);
2842 reset_all_used_flags ();
2844 for (p = get_insns (); p; p = NEXT_INSN (p))
2845 if (INSN_P (p))
2847 rtx pat = PATTERN (p);
2848 if (GET_CODE (pat) != SEQUENCE)
2849 verify_insn_sharing (p);
2850 else
2851 for (int i = 0; i < XVECLEN (pat, 0); i++)
2853 rtx insn = XVECEXP (pat, 0, i);
2854 if (INSN_P (insn))
2855 verify_insn_sharing (insn);
2859 reset_all_used_flags ();
2861 timevar_pop (TV_VERIFY_RTL_SHARING);
2864 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2865 Assumes the mark bits are cleared at entry. */
2867 void
2868 unshare_all_rtl_in_chain (rtx_insn *insn)
2870 for (; insn; insn = NEXT_INSN (insn))
2871 if (INSN_P (insn))
2873 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2874 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2875 if (CALL_P (insn))
2876 CALL_INSN_FUNCTION_USAGE (insn)
2877 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2881 /* Go through all virtual stack slots of a function and mark them as
2882 shared. We never replace the DECL_RTLs themselves with a copy,
2883 but expressions mentioned into a DECL_RTL cannot be shared with
2884 expressions in the instruction stream.
2886 Note that reload may convert pseudo registers into memories in-place.
2887 Pseudo registers are always shared, but MEMs never are. Thus if we
2888 reset the used flags on MEMs in the instruction stream, we must set
2889 them again on MEMs that appear in DECL_RTLs. */
2891 static void
2892 set_used_decls (tree blk)
2894 tree t;
2896 /* Mark decls. */
2897 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2898 if (DECL_RTL_SET_P (t))
2899 set_used_flags (DECL_RTL (t));
2901 /* Now process sub-blocks. */
2902 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2903 set_used_decls (t);
2906 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2907 Recursively does the same for subexpressions. Uses
2908 copy_rtx_if_shared_1 to reduce stack space. */
2911 copy_rtx_if_shared (rtx orig)
2913 copy_rtx_if_shared_1 (&orig);
2914 return orig;
2917 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2918 use. Recursively does the same for subexpressions. */
2920 static void
2921 copy_rtx_if_shared_1 (rtx *orig1)
2923 rtx x;
2924 int i;
2925 enum rtx_code code;
2926 rtx *last_ptr;
2927 const char *format_ptr;
2928 int copied = 0;
2929 int length;
2931 /* Repeat is used to turn tail-recursion into iteration. */
2932 repeat:
2933 x = *orig1;
2935 if (x == 0)
2936 return;
2938 code = GET_CODE (x);
2940 /* These types may be freely shared. */
2942 switch (code)
2944 case REG:
2945 case DEBUG_EXPR:
2946 case VALUE:
2947 CASE_CONST_ANY:
2948 case SYMBOL_REF:
2949 case LABEL_REF:
2950 case CODE_LABEL:
2951 case PC:
2952 case CC0:
2953 case RETURN:
2954 case SIMPLE_RETURN:
2955 case SCRATCH:
2956 /* SCRATCH must be shared because they represent distinct values. */
2957 return;
2958 case CLOBBER:
2959 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2960 clobbers or clobbers of hard registers that originated as pseudos.
2961 This is needed to allow safe register renaming. */
2962 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2963 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2964 return;
2965 break;
2967 case CONST:
2968 if (shared_const_p (x))
2969 return;
2970 break;
2972 case DEBUG_INSN:
2973 case INSN:
2974 case JUMP_INSN:
2975 case CALL_INSN:
2976 case NOTE:
2977 case BARRIER:
2978 /* The chain of insns is not being copied. */
2979 return;
2981 default:
2982 break;
2985 /* This rtx may not be shared. If it has already been seen,
2986 replace it with a copy of itself. */
2988 if (RTX_FLAG (x, used))
2990 x = shallow_copy_rtx (x);
2991 copied = 1;
2993 RTX_FLAG (x, used) = 1;
2995 /* Now scan the subexpressions recursively.
2996 We can store any replaced subexpressions directly into X
2997 since we know X is not shared! Any vectors in X
2998 must be copied if X was copied. */
3000 format_ptr = GET_RTX_FORMAT (code);
3001 length = GET_RTX_LENGTH (code);
3002 last_ptr = NULL;
3004 for (i = 0; i < length; i++)
3006 switch (*format_ptr++)
3008 case 'e':
3009 if (last_ptr)
3010 copy_rtx_if_shared_1 (last_ptr);
3011 last_ptr = &XEXP (x, i);
3012 break;
3014 case 'E':
3015 if (XVEC (x, i) != NULL)
3017 int j;
3018 int len = XVECLEN (x, i);
3020 /* Copy the vector iff I copied the rtx and the length
3021 is nonzero. */
3022 if (copied && len > 0)
3023 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3025 /* Call recursively on all inside the vector. */
3026 for (j = 0; j < len; j++)
3028 if (last_ptr)
3029 copy_rtx_if_shared_1 (last_ptr);
3030 last_ptr = &XVECEXP (x, i, j);
3033 break;
3036 *orig1 = x;
3037 if (last_ptr)
3039 orig1 = last_ptr;
3040 goto repeat;
3042 return;
3045 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3047 static void
3048 mark_used_flags (rtx x, int flag)
3050 int i, j;
3051 enum rtx_code code;
3052 const char *format_ptr;
3053 int length;
3055 /* Repeat is used to turn tail-recursion into iteration. */
3056 repeat:
3057 if (x == 0)
3058 return;
3060 code = GET_CODE (x);
3062 /* These types may be freely shared so we needn't do any resetting
3063 for them. */
3065 switch (code)
3067 case REG:
3068 case DEBUG_EXPR:
3069 case VALUE:
3070 CASE_CONST_ANY:
3071 case SYMBOL_REF:
3072 case CODE_LABEL:
3073 case PC:
3074 case CC0:
3075 case RETURN:
3076 case SIMPLE_RETURN:
3077 return;
3079 case DEBUG_INSN:
3080 case INSN:
3081 case JUMP_INSN:
3082 case CALL_INSN:
3083 case NOTE:
3084 case LABEL_REF:
3085 case BARRIER:
3086 /* The chain of insns is not being copied. */
3087 return;
3089 default:
3090 break;
3093 RTX_FLAG (x, used) = flag;
3095 format_ptr = GET_RTX_FORMAT (code);
3096 length = GET_RTX_LENGTH (code);
3098 for (i = 0; i < length; i++)
3100 switch (*format_ptr++)
3102 case 'e':
3103 if (i == length-1)
3105 x = XEXP (x, i);
3106 goto repeat;
3108 mark_used_flags (XEXP (x, i), flag);
3109 break;
3111 case 'E':
3112 for (j = 0; j < XVECLEN (x, i); j++)
3113 mark_used_flags (XVECEXP (x, i, j), flag);
3114 break;
3119 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3120 to look for shared sub-parts. */
3122 void
3123 reset_used_flags (rtx x)
3125 mark_used_flags (x, 0);
3128 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3129 to look for shared sub-parts. */
3131 void
3132 set_used_flags (rtx x)
3134 mark_used_flags (x, 1);
3137 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3138 Return X or the rtx for the pseudo reg the value of X was copied into.
3139 OTHER must be valid as a SET_DEST. */
3142 make_safe_from (rtx x, rtx other)
3144 while (1)
3145 switch (GET_CODE (other))
3147 case SUBREG:
3148 other = SUBREG_REG (other);
3149 break;
3150 case STRICT_LOW_PART:
3151 case SIGN_EXTEND:
3152 case ZERO_EXTEND:
3153 other = XEXP (other, 0);
3154 break;
3155 default:
3156 goto done;
3158 done:
3159 if ((MEM_P (other)
3160 && ! CONSTANT_P (x)
3161 && !REG_P (x)
3162 && GET_CODE (x) != SUBREG)
3163 || (REG_P (other)
3164 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3165 || reg_mentioned_p (other, x))))
3167 rtx temp = gen_reg_rtx (GET_MODE (x));
3168 emit_move_insn (temp, x);
3169 return temp;
3171 return x;
3174 /* Emission of insns (adding them to the doubly-linked list). */
3176 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3178 rtx_insn *
3179 get_last_insn_anywhere (void)
3181 struct sequence_stack *seq;
3182 for (seq = get_current_sequence (); seq; seq = seq->next)
3183 if (seq->last != 0)
3184 return seq->last;
3185 return 0;
3188 /* Return the first nonnote insn emitted in current sequence or current
3189 function. This routine looks inside SEQUENCEs. */
3191 rtx_insn *
3192 get_first_nonnote_insn (void)
3194 rtx_insn *insn = get_insns ();
3196 if (insn)
3198 if (NOTE_P (insn))
3199 for (insn = next_insn (insn);
3200 insn && NOTE_P (insn);
3201 insn = next_insn (insn))
3202 continue;
3203 else
3205 if (NONJUMP_INSN_P (insn)
3206 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3207 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3211 return insn;
3214 /* Return the last nonnote insn emitted in current sequence or current
3215 function. This routine looks inside SEQUENCEs. */
3217 rtx_insn *
3218 get_last_nonnote_insn (void)
3220 rtx_insn *insn = get_last_insn ();
3222 if (insn)
3224 if (NOTE_P (insn))
3225 for (insn = previous_insn (insn);
3226 insn && NOTE_P (insn);
3227 insn = previous_insn (insn))
3228 continue;
3229 else
3231 if (NONJUMP_INSN_P (insn))
3232 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3233 insn = seq->insn (seq->len () - 1);
3237 return insn;
3240 /* Return the number of actual (non-debug) insns emitted in this
3241 function. */
3244 get_max_insn_count (void)
3246 int n = cur_insn_uid;
3248 /* The table size must be stable across -g, to avoid codegen
3249 differences due to debug insns, and not be affected by
3250 -fmin-insn-uid, to avoid excessive table size and to simplify
3251 debugging of -fcompare-debug failures. */
3252 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3253 n -= cur_debug_insn_uid;
3254 else
3255 n -= MIN_NONDEBUG_INSN_UID;
3257 return n;
3261 /* Return the next insn. If it is a SEQUENCE, return the first insn
3262 of the sequence. */
3264 rtx_insn *
3265 next_insn (rtx_insn *insn)
3267 if (insn)
3269 insn = NEXT_INSN (insn);
3270 if (insn && NONJUMP_INSN_P (insn)
3271 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3272 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3275 return insn;
3278 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3279 of the sequence. */
3281 rtx_insn *
3282 previous_insn (rtx_insn *insn)
3284 if (insn)
3286 insn = PREV_INSN (insn);
3287 if (insn && NONJUMP_INSN_P (insn))
3288 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3289 insn = seq->insn (seq->len () - 1);
3292 return insn;
3295 /* Return the next insn after INSN that is not a NOTE. This routine does not
3296 look inside SEQUENCEs. */
3298 rtx_insn *
3299 next_nonnote_insn (rtx uncast_insn)
3301 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3302 while (insn)
3304 insn = NEXT_INSN (insn);
3305 if (insn == 0 || !NOTE_P (insn))
3306 break;
3309 return insn;
3312 /* Return the next insn after INSN that is not a NOTE, but stop the
3313 search before we enter another basic block. This routine does not
3314 look inside SEQUENCEs. */
3316 rtx_insn *
3317 next_nonnote_insn_bb (rtx_insn *insn)
3319 while (insn)
3321 insn = NEXT_INSN (insn);
3322 if (insn == 0 || !NOTE_P (insn))
3323 break;
3324 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3325 return NULL;
3328 return insn;
3331 /* Return the previous insn before INSN that is not a NOTE. This routine does
3332 not look inside SEQUENCEs. */
3334 rtx_insn *
3335 prev_nonnote_insn (rtx uncast_insn)
3337 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3339 while (insn)
3341 insn = PREV_INSN (insn);
3342 if (insn == 0 || !NOTE_P (insn))
3343 break;
3346 return insn;
3349 /* Return the previous insn before INSN that is not a NOTE, but stop
3350 the search before we enter another basic block. This routine does
3351 not look inside SEQUENCEs. */
3353 rtx_insn *
3354 prev_nonnote_insn_bb (rtx uncast_insn)
3356 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3358 while (insn)
3360 insn = PREV_INSN (insn);
3361 if (insn == 0 || !NOTE_P (insn))
3362 break;
3363 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3364 return NULL;
3367 return insn;
3370 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3371 routine does not look inside SEQUENCEs. */
3373 rtx_insn *
3374 next_nondebug_insn (rtx uncast_insn)
3376 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3378 while (insn)
3380 insn = NEXT_INSN (insn);
3381 if (insn == 0 || !DEBUG_INSN_P (insn))
3382 break;
3385 return insn;
3388 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3389 This routine does not look inside SEQUENCEs. */
3391 rtx_insn *
3392 prev_nondebug_insn (rtx uncast_insn)
3394 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3396 while (insn)
3398 insn = PREV_INSN (insn);
3399 if (insn == 0 || !DEBUG_INSN_P (insn))
3400 break;
3403 return insn;
3406 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3407 This routine does not look inside SEQUENCEs. */
3409 rtx_insn *
3410 next_nonnote_nondebug_insn (rtx uncast_insn)
3412 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3414 while (insn)
3416 insn = NEXT_INSN (insn);
3417 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3418 break;
3421 return insn;
3424 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3425 This routine does not look inside SEQUENCEs. */
3427 rtx_insn *
3428 prev_nonnote_nondebug_insn (rtx uncast_insn)
3430 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3432 while (insn)
3434 insn = PREV_INSN (insn);
3435 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3436 break;
3439 return insn;
3442 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3443 or 0, if there is none. This routine does not look inside
3444 SEQUENCEs. */
3446 rtx_insn *
3447 next_real_insn (rtx uncast_insn)
3449 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3451 while (insn)
3453 insn = NEXT_INSN (insn);
3454 if (insn == 0 || INSN_P (insn))
3455 break;
3458 return insn;
3461 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3462 or 0, if there is none. This routine does not look inside
3463 SEQUENCEs. */
3465 rtx_insn *
3466 prev_real_insn (rtx uncast_insn)
3468 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3470 while (insn)
3472 insn = PREV_INSN (insn);
3473 if (insn == 0 || INSN_P (insn))
3474 break;
3477 return insn;
3480 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3481 This routine does not look inside SEQUENCEs. */
3483 rtx_call_insn *
3484 last_call_insn (void)
3486 rtx_insn *insn;
3488 for (insn = get_last_insn ();
3489 insn && !CALL_P (insn);
3490 insn = PREV_INSN (insn))
3493 return safe_as_a <rtx_call_insn *> (insn);
3496 /* Find the next insn after INSN that really does something. This routine
3497 does not look inside SEQUENCEs. After reload this also skips over
3498 standalone USE and CLOBBER insn. */
3501 active_insn_p (const_rtx insn)
3503 return (CALL_P (insn) || JUMP_P (insn)
3504 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3505 || (NONJUMP_INSN_P (insn)
3506 && (! reload_completed
3507 || (GET_CODE (PATTERN (insn)) != USE
3508 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3511 rtx_insn *
3512 next_active_insn (rtx uncast_insn)
3514 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3516 while (insn)
3518 insn = NEXT_INSN (insn);
3519 if (insn == 0 || active_insn_p (insn))
3520 break;
3523 return insn;
3526 /* Find the last insn before INSN that really does something. This routine
3527 does not look inside SEQUENCEs. After reload this also skips over
3528 standalone USE and CLOBBER insn. */
3530 rtx_insn *
3531 prev_active_insn (rtx uncast_insn)
3533 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3535 while (insn)
3537 insn = PREV_INSN (insn);
3538 if (insn == 0 || active_insn_p (insn))
3539 break;
3542 return insn;
3545 /* Return the next insn that uses CC0 after INSN, which is assumed to
3546 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3547 applied to the result of this function should yield INSN).
3549 Normally, this is simply the next insn. However, if a REG_CC_USER note
3550 is present, it contains the insn that uses CC0.
3552 Return 0 if we can't find the insn. */
3554 rtx_insn *
3555 next_cc0_user (rtx uncast_insn)
3557 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3559 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3561 if (note)
3562 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3564 insn = next_nonnote_insn (insn);
3565 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3566 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3568 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3569 return insn;
3571 return 0;
3574 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3575 note, it is the previous insn. */
3577 rtx_insn *
3578 prev_cc0_setter (rtx_insn *insn)
3580 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3582 if (note)
3583 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3585 insn = prev_nonnote_insn (insn);
3586 gcc_assert (sets_cc0_p (PATTERN (insn)));
3588 return insn;
3591 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3593 static int
3594 find_auto_inc (const_rtx x, const_rtx reg)
3596 subrtx_iterator::array_type array;
3597 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3599 const_rtx x = *iter;
3600 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3601 && rtx_equal_p (reg, XEXP (x, 0)))
3602 return true;
3604 return false;
3607 /* Increment the label uses for all labels present in rtx. */
3609 static void
3610 mark_label_nuses (rtx x)
3612 enum rtx_code code;
3613 int i, j;
3614 const char *fmt;
3616 code = GET_CODE (x);
3617 if (code == LABEL_REF && LABEL_P (LABEL_REF_LABEL (x)))
3618 LABEL_NUSES (LABEL_REF_LABEL (x))++;
3620 fmt = GET_RTX_FORMAT (code);
3621 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3623 if (fmt[i] == 'e')
3624 mark_label_nuses (XEXP (x, i));
3625 else if (fmt[i] == 'E')
3626 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3627 mark_label_nuses (XVECEXP (x, i, j));
3632 /* Try splitting insns that can be split for better scheduling.
3633 PAT is the pattern which might split.
3634 TRIAL is the insn providing PAT.
3635 LAST is nonzero if we should return the last insn of the sequence produced.
3637 If this routine succeeds in splitting, it returns the first or last
3638 replacement insn depending on the value of LAST. Otherwise, it
3639 returns TRIAL. If the insn to be returned can be split, it will be. */
3641 rtx_insn *
3642 try_split (rtx pat, rtx_insn *trial, int last)
3644 rtx_insn *before = PREV_INSN (trial);
3645 rtx_insn *after = NEXT_INSN (trial);
3646 rtx note;
3647 rtx_insn *seq, *tem;
3648 int probability;
3649 rtx_insn *insn_last, *insn;
3650 int njumps = 0;
3651 rtx_insn *call_insn = NULL;
3653 /* We're not good at redistributing frame information. */
3654 if (RTX_FRAME_RELATED_P (trial))
3655 return trial;
3657 if (any_condjump_p (trial)
3658 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3659 split_branch_probability = XINT (note, 0);
3660 probability = split_branch_probability;
3662 seq = split_insns (pat, trial);
3664 split_branch_probability = -1;
3666 if (!seq)
3667 return trial;
3669 /* Avoid infinite loop if any insn of the result matches
3670 the original pattern. */
3671 insn_last = seq;
3672 while (1)
3674 if (INSN_P (insn_last)
3675 && rtx_equal_p (PATTERN (insn_last), pat))
3676 return trial;
3677 if (!NEXT_INSN (insn_last))
3678 break;
3679 insn_last = NEXT_INSN (insn_last);
3682 /* We will be adding the new sequence to the function. The splitters
3683 may have introduced invalid RTL sharing, so unshare the sequence now. */
3684 unshare_all_rtl_in_chain (seq);
3686 /* Mark labels and copy flags. */
3687 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3689 if (JUMP_P (insn))
3691 if (JUMP_P (trial))
3692 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3693 mark_jump_label (PATTERN (insn), insn, 0);
3694 njumps++;
3695 if (probability != -1
3696 && any_condjump_p (insn)
3697 && !find_reg_note (insn, REG_BR_PROB, 0))
3699 /* We can preserve the REG_BR_PROB notes only if exactly
3700 one jump is created, otherwise the machine description
3701 is responsible for this step using
3702 split_branch_probability variable. */
3703 gcc_assert (njumps == 1);
3704 add_int_reg_note (insn, REG_BR_PROB, probability);
3709 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3710 in SEQ and copy any additional information across. */
3711 if (CALL_P (trial))
3713 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3714 if (CALL_P (insn))
3716 rtx_insn *next;
3717 rtx *p;
3719 gcc_assert (call_insn == NULL_RTX);
3720 call_insn = insn;
3722 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3723 target may have explicitly specified. */
3724 p = &CALL_INSN_FUNCTION_USAGE (insn);
3725 while (*p)
3726 p = &XEXP (*p, 1);
3727 *p = CALL_INSN_FUNCTION_USAGE (trial);
3729 /* If the old call was a sibling call, the new one must
3730 be too. */
3731 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3733 /* If the new call is the last instruction in the sequence,
3734 it will effectively replace the old call in-situ. Otherwise
3735 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3736 so that it comes immediately after the new call. */
3737 if (NEXT_INSN (insn))
3738 for (next = NEXT_INSN (trial);
3739 next && NOTE_P (next);
3740 next = NEXT_INSN (next))
3741 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3743 remove_insn (next);
3744 add_insn_after (next, insn, NULL);
3745 break;
3750 /* Copy notes, particularly those related to the CFG. */
3751 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3753 switch (REG_NOTE_KIND (note))
3755 case REG_EH_REGION:
3756 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3757 break;
3759 case REG_NORETURN:
3760 case REG_SETJMP:
3761 case REG_TM:
3762 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3764 if (CALL_P (insn))
3765 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3767 break;
3769 case REG_NON_LOCAL_GOTO:
3770 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3772 if (JUMP_P (insn))
3773 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3775 break;
3777 case REG_INC:
3778 if (!AUTO_INC_DEC)
3779 break;
3781 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3783 rtx reg = XEXP (note, 0);
3784 if (!FIND_REG_INC_NOTE (insn, reg)
3785 && find_auto_inc (PATTERN (insn), reg))
3786 add_reg_note (insn, REG_INC, reg);
3788 break;
3790 case REG_ARGS_SIZE:
3791 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3792 break;
3794 case REG_CALL_DECL:
3795 gcc_assert (call_insn != NULL_RTX);
3796 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3797 break;
3799 default:
3800 break;
3804 /* If there are LABELS inside the split insns increment the
3805 usage count so we don't delete the label. */
3806 if (INSN_P (trial))
3808 insn = insn_last;
3809 while (insn != NULL_RTX)
3811 /* JUMP_P insns have already been "marked" above. */
3812 if (NONJUMP_INSN_P (insn))
3813 mark_label_nuses (PATTERN (insn));
3815 insn = PREV_INSN (insn);
3819 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3821 delete_insn (trial);
3823 /* Recursively call try_split for each new insn created; by the
3824 time control returns here that insn will be fully split, so
3825 set LAST and continue from the insn after the one returned.
3826 We can't use next_active_insn here since AFTER may be a note.
3827 Ignore deleted insns, which can be occur if not optimizing. */
3828 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3829 if (! tem->deleted () && INSN_P (tem))
3830 tem = try_split (PATTERN (tem), tem, 1);
3832 /* Return either the first or the last insn, depending on which was
3833 requested. */
3834 return last
3835 ? (after ? PREV_INSN (after) : get_last_insn ())
3836 : NEXT_INSN (before);
3839 /* Make and return an INSN rtx, initializing all its slots.
3840 Store PATTERN in the pattern slots. */
3842 rtx_insn *
3843 make_insn_raw (rtx pattern)
3845 rtx_insn *insn;
3847 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3849 INSN_UID (insn) = cur_insn_uid++;
3850 PATTERN (insn) = pattern;
3851 INSN_CODE (insn) = -1;
3852 REG_NOTES (insn) = NULL;
3853 INSN_LOCATION (insn) = curr_insn_location ();
3854 BLOCK_FOR_INSN (insn) = NULL;
3856 #ifdef ENABLE_RTL_CHECKING
3857 if (insn
3858 && INSN_P (insn)
3859 && (returnjump_p (insn)
3860 || (GET_CODE (insn) == SET
3861 && SET_DEST (insn) == pc_rtx)))
3863 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3864 debug_rtx (insn);
3866 #endif
3868 return insn;
3871 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3873 static rtx_insn *
3874 make_debug_insn_raw (rtx pattern)
3876 rtx_debug_insn *insn;
3878 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3879 INSN_UID (insn) = cur_debug_insn_uid++;
3880 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3881 INSN_UID (insn) = cur_insn_uid++;
3883 PATTERN (insn) = pattern;
3884 INSN_CODE (insn) = -1;
3885 REG_NOTES (insn) = NULL;
3886 INSN_LOCATION (insn) = curr_insn_location ();
3887 BLOCK_FOR_INSN (insn) = NULL;
3889 return insn;
3892 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3894 static rtx_insn *
3895 make_jump_insn_raw (rtx pattern)
3897 rtx_jump_insn *insn;
3899 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3900 INSN_UID (insn) = cur_insn_uid++;
3902 PATTERN (insn) = pattern;
3903 INSN_CODE (insn) = -1;
3904 REG_NOTES (insn) = NULL;
3905 JUMP_LABEL (insn) = NULL;
3906 INSN_LOCATION (insn) = curr_insn_location ();
3907 BLOCK_FOR_INSN (insn) = NULL;
3909 return insn;
3912 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3914 static rtx_insn *
3915 make_call_insn_raw (rtx pattern)
3917 rtx_call_insn *insn;
3919 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3920 INSN_UID (insn) = cur_insn_uid++;
3922 PATTERN (insn) = pattern;
3923 INSN_CODE (insn) = -1;
3924 REG_NOTES (insn) = NULL;
3925 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3926 INSN_LOCATION (insn) = curr_insn_location ();
3927 BLOCK_FOR_INSN (insn) = NULL;
3929 return insn;
3932 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3934 static rtx_note *
3935 make_note_raw (enum insn_note subtype)
3937 /* Some notes are never created this way at all. These notes are
3938 only created by patching out insns. */
3939 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3940 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3942 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3943 INSN_UID (note) = cur_insn_uid++;
3944 NOTE_KIND (note) = subtype;
3945 BLOCK_FOR_INSN (note) = NULL;
3946 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3947 return note;
3950 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3951 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3952 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3954 static inline void
3955 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3957 SET_PREV_INSN (insn) = prev;
3958 SET_NEXT_INSN (insn) = next;
3959 if (prev != NULL)
3961 SET_NEXT_INSN (prev) = insn;
3962 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3964 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3965 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
3968 if (next != NULL)
3970 SET_PREV_INSN (next) = insn;
3971 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3973 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3974 SET_PREV_INSN (sequence->insn (0)) = insn;
3978 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3980 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3981 SET_PREV_INSN (sequence->insn (0)) = prev;
3982 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3986 /* Add INSN to the end of the doubly-linked list.
3987 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3989 void
3990 add_insn (rtx_insn *insn)
3992 rtx_insn *prev = get_last_insn ();
3993 link_insn_into_chain (insn, prev, NULL);
3994 if (NULL == get_insns ())
3995 set_first_insn (insn);
3996 set_last_insn (insn);
3999 /* Add INSN into the doubly-linked list after insn AFTER. */
4001 static void
4002 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4004 rtx_insn *next = NEXT_INSN (after);
4006 gcc_assert (!optimize || !after->deleted ());
4008 link_insn_into_chain (insn, after, next);
4010 if (next == NULL)
4012 struct sequence_stack *seq;
4014 for (seq = get_current_sequence (); seq; seq = seq->next)
4015 if (after == seq->last)
4017 seq->last = insn;
4018 break;
4023 /* Add INSN into the doubly-linked list before insn BEFORE. */
4025 static void
4026 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4028 rtx_insn *prev = PREV_INSN (before);
4030 gcc_assert (!optimize || !before->deleted ());
4032 link_insn_into_chain (insn, prev, before);
4034 if (prev == NULL)
4036 struct sequence_stack *seq;
4038 for (seq = get_current_sequence (); seq; seq = seq->next)
4039 if (before == seq->first)
4041 seq->first = insn;
4042 break;
4045 gcc_assert (seq);
4049 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4050 If BB is NULL, an attempt is made to infer the bb from before.
4052 This and the next function should be the only functions called
4053 to insert an insn once delay slots have been filled since only
4054 they know how to update a SEQUENCE. */
4056 void
4057 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4059 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4060 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4061 add_insn_after_nobb (insn, after);
4062 if (!BARRIER_P (after)
4063 && !BARRIER_P (insn)
4064 && (bb = BLOCK_FOR_INSN (after)))
4066 set_block_for_insn (insn, bb);
4067 if (INSN_P (insn))
4068 df_insn_rescan (insn);
4069 /* Should not happen as first in the BB is always
4070 either NOTE or LABEL. */
4071 if (BB_END (bb) == after
4072 /* Avoid clobbering of structure when creating new BB. */
4073 && !BARRIER_P (insn)
4074 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4075 BB_END (bb) = insn;
4079 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4080 If BB is NULL, an attempt is made to infer the bb from before.
4082 This and the previous function should be the only functions called
4083 to insert an insn once delay slots have been filled since only
4084 they know how to update a SEQUENCE. */
4086 void
4087 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4089 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4090 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4091 add_insn_before_nobb (insn, before);
4093 if (!bb
4094 && !BARRIER_P (before)
4095 && !BARRIER_P (insn))
4096 bb = BLOCK_FOR_INSN (before);
4098 if (bb)
4100 set_block_for_insn (insn, bb);
4101 if (INSN_P (insn))
4102 df_insn_rescan (insn);
4103 /* Should not happen as first in the BB is always either NOTE or
4104 LABEL. */
4105 gcc_assert (BB_HEAD (bb) != insn
4106 /* Avoid clobbering of structure when creating new BB. */
4107 || BARRIER_P (insn)
4108 || NOTE_INSN_BASIC_BLOCK_P (insn));
4112 /* Replace insn with an deleted instruction note. */
4114 void
4115 set_insn_deleted (rtx insn)
4117 if (INSN_P (insn))
4118 df_insn_delete (as_a <rtx_insn *> (insn));
4119 PUT_CODE (insn, NOTE);
4120 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4124 /* Unlink INSN from the insn chain.
4126 This function knows how to handle sequences.
4128 This function does not invalidate data flow information associated with
4129 INSN (i.e. does not call df_insn_delete). That makes this function
4130 usable for only disconnecting an insn from the chain, and re-emit it
4131 elsewhere later.
4133 To later insert INSN elsewhere in the insn chain via add_insn and
4134 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4135 the caller. Nullifying them here breaks many insn chain walks.
4137 To really delete an insn and related DF information, use delete_insn. */
4139 void
4140 remove_insn (rtx uncast_insn)
4142 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4143 rtx_insn *next = NEXT_INSN (insn);
4144 rtx_insn *prev = PREV_INSN (insn);
4145 basic_block bb;
4147 if (prev)
4149 SET_NEXT_INSN (prev) = next;
4150 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4152 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4153 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4156 else
4158 struct sequence_stack *seq;
4160 for (seq = get_current_sequence (); seq; seq = seq->next)
4161 if (insn == seq->first)
4163 seq->first = next;
4164 break;
4167 gcc_assert (seq);
4170 if (next)
4172 SET_PREV_INSN (next) = prev;
4173 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4175 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4176 SET_PREV_INSN (sequence->insn (0)) = prev;
4179 else
4181 struct sequence_stack *seq;
4183 for (seq = get_current_sequence (); seq; seq = seq->next)
4184 if (insn == seq->last)
4186 seq->last = prev;
4187 break;
4190 gcc_assert (seq);
4193 /* Fix up basic block boundaries, if necessary. */
4194 if (!BARRIER_P (insn)
4195 && (bb = BLOCK_FOR_INSN (insn)))
4197 if (BB_HEAD (bb) == insn)
4199 /* Never ever delete the basic block note without deleting whole
4200 basic block. */
4201 gcc_assert (!NOTE_P (insn));
4202 BB_HEAD (bb) = next;
4204 if (BB_END (bb) == insn)
4205 BB_END (bb) = prev;
4209 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4211 void
4212 add_function_usage_to (rtx call_insn, rtx call_fusage)
4214 gcc_assert (call_insn && CALL_P (call_insn));
4216 /* Put the register usage information on the CALL. If there is already
4217 some usage information, put ours at the end. */
4218 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4220 rtx link;
4222 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4223 link = XEXP (link, 1))
4226 XEXP (link, 1) = call_fusage;
4228 else
4229 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4232 /* Delete all insns made since FROM.
4233 FROM becomes the new last instruction. */
4235 void
4236 delete_insns_since (rtx_insn *from)
4238 if (from == 0)
4239 set_first_insn (0);
4240 else
4241 SET_NEXT_INSN (from) = 0;
4242 set_last_insn (from);
4245 /* This function is deprecated, please use sequences instead.
4247 Move a consecutive bunch of insns to a different place in the chain.
4248 The insns to be moved are those between FROM and TO.
4249 They are moved to a new position after the insn AFTER.
4250 AFTER must not be FROM or TO or any insn in between.
4252 This function does not know about SEQUENCEs and hence should not be
4253 called after delay-slot filling has been done. */
4255 void
4256 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4258 #ifdef ENABLE_CHECKING
4259 rtx_insn *x;
4260 for (x = from; x != to; x = NEXT_INSN (x))
4261 gcc_assert (after != x);
4262 gcc_assert (after != to);
4263 #endif
4265 /* Splice this bunch out of where it is now. */
4266 if (PREV_INSN (from))
4267 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4268 if (NEXT_INSN (to))
4269 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4270 if (get_last_insn () == to)
4271 set_last_insn (PREV_INSN (from));
4272 if (get_insns () == from)
4273 set_first_insn (NEXT_INSN (to));
4275 /* Make the new neighbors point to it and it to them. */
4276 if (NEXT_INSN (after))
4277 SET_PREV_INSN (NEXT_INSN (after)) = to;
4279 SET_NEXT_INSN (to) = NEXT_INSN (after);
4280 SET_PREV_INSN (from) = after;
4281 SET_NEXT_INSN (after) = from;
4282 if (after == get_last_insn ())
4283 set_last_insn (to);
4286 /* Same as function above, but take care to update BB boundaries. */
4287 void
4288 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4290 rtx_insn *prev = PREV_INSN (from);
4291 basic_block bb, bb2;
4293 reorder_insns_nobb (from, to, after);
4295 if (!BARRIER_P (after)
4296 && (bb = BLOCK_FOR_INSN (after)))
4298 rtx_insn *x;
4299 df_set_bb_dirty (bb);
4301 if (!BARRIER_P (from)
4302 && (bb2 = BLOCK_FOR_INSN (from)))
4304 if (BB_END (bb2) == to)
4305 BB_END (bb2) = prev;
4306 df_set_bb_dirty (bb2);
4309 if (BB_END (bb) == after)
4310 BB_END (bb) = to;
4312 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4313 if (!BARRIER_P (x))
4314 df_insn_change_bb (x, bb);
4319 /* Emit insn(s) of given code and pattern
4320 at a specified place within the doubly-linked list.
4322 All of the emit_foo global entry points accept an object
4323 X which is either an insn list or a PATTERN of a single
4324 instruction.
4326 There are thus a few canonical ways to generate code and
4327 emit it at a specific place in the instruction stream. For
4328 example, consider the instruction named SPOT and the fact that
4329 we would like to emit some instructions before SPOT. We might
4330 do it like this:
4332 start_sequence ();
4333 ... emit the new instructions ...
4334 insns_head = get_insns ();
4335 end_sequence ();
4337 emit_insn_before (insns_head, SPOT);
4339 It used to be common to generate SEQUENCE rtl instead, but that
4340 is a relic of the past which no longer occurs. The reason is that
4341 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4342 generated would almost certainly die right after it was created. */
4344 static rtx_insn *
4345 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4346 rtx_insn *(*make_raw) (rtx))
4348 rtx_insn *insn;
4350 gcc_assert (before);
4352 if (x == NULL_RTX)
4353 return safe_as_a <rtx_insn *> (last);
4355 switch (GET_CODE (x))
4357 case DEBUG_INSN:
4358 case INSN:
4359 case JUMP_INSN:
4360 case CALL_INSN:
4361 case CODE_LABEL:
4362 case BARRIER:
4363 case NOTE:
4364 insn = as_a <rtx_insn *> (x);
4365 while (insn)
4367 rtx_insn *next = NEXT_INSN (insn);
4368 add_insn_before (insn, before, bb);
4369 last = insn;
4370 insn = next;
4372 break;
4374 #ifdef ENABLE_RTL_CHECKING
4375 case SEQUENCE:
4376 gcc_unreachable ();
4377 break;
4378 #endif
4380 default:
4381 last = (*make_raw) (x);
4382 add_insn_before (last, before, bb);
4383 break;
4386 return safe_as_a <rtx_insn *> (last);
4389 /* Make X be output before the instruction BEFORE. */
4391 rtx_insn *
4392 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4394 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4397 /* Make an instruction with body X and code JUMP_INSN
4398 and output it before the instruction BEFORE. */
4400 rtx_jump_insn *
4401 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4403 return as_a <rtx_jump_insn *> (
4404 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4405 make_jump_insn_raw));
4408 /* Make an instruction with body X and code CALL_INSN
4409 and output it before the instruction BEFORE. */
4411 rtx_insn *
4412 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4414 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4415 make_call_insn_raw);
4418 /* Make an instruction with body X and code DEBUG_INSN
4419 and output it before the instruction BEFORE. */
4421 rtx_insn *
4422 emit_debug_insn_before_noloc (rtx x, rtx before)
4424 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4425 make_debug_insn_raw);
4428 /* Make an insn of code BARRIER
4429 and output it before the insn BEFORE. */
4431 rtx_barrier *
4432 emit_barrier_before (rtx before)
4434 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4436 INSN_UID (insn) = cur_insn_uid++;
4438 add_insn_before (insn, before, NULL);
4439 return insn;
4442 /* Emit the label LABEL before the insn BEFORE. */
4444 rtx_code_label *
4445 emit_label_before (rtx label, rtx_insn *before)
4447 gcc_checking_assert (INSN_UID (label) == 0);
4448 INSN_UID (label) = cur_insn_uid++;
4449 add_insn_before (label, before, NULL);
4450 return as_a <rtx_code_label *> (label);
4453 /* Helper for emit_insn_after, handles lists of instructions
4454 efficiently. */
4456 static rtx_insn *
4457 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4459 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4460 rtx_insn *last;
4461 rtx_insn *after_after;
4462 if (!bb && !BARRIER_P (after))
4463 bb = BLOCK_FOR_INSN (after);
4465 if (bb)
4467 df_set_bb_dirty (bb);
4468 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4469 if (!BARRIER_P (last))
4471 set_block_for_insn (last, bb);
4472 df_insn_rescan (last);
4474 if (!BARRIER_P (last))
4476 set_block_for_insn (last, bb);
4477 df_insn_rescan (last);
4479 if (BB_END (bb) == after)
4480 BB_END (bb) = last;
4482 else
4483 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4484 continue;
4486 after_after = NEXT_INSN (after);
4488 SET_NEXT_INSN (after) = first;
4489 SET_PREV_INSN (first) = after;
4490 SET_NEXT_INSN (last) = after_after;
4491 if (after_after)
4492 SET_PREV_INSN (after_after) = last;
4494 if (after == get_last_insn ())
4495 set_last_insn (last);
4497 return last;
4500 static rtx_insn *
4501 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4502 rtx_insn *(*make_raw)(rtx))
4504 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4505 rtx_insn *last = after;
4507 gcc_assert (after);
4509 if (x == NULL_RTX)
4510 return last;
4512 switch (GET_CODE (x))
4514 case DEBUG_INSN:
4515 case INSN:
4516 case JUMP_INSN:
4517 case CALL_INSN:
4518 case CODE_LABEL:
4519 case BARRIER:
4520 case NOTE:
4521 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4522 break;
4524 #ifdef ENABLE_RTL_CHECKING
4525 case SEQUENCE:
4526 gcc_unreachable ();
4527 break;
4528 #endif
4530 default:
4531 last = (*make_raw) (x);
4532 add_insn_after (last, after, bb);
4533 break;
4536 return last;
4539 /* Make X be output after the insn AFTER and set the BB of insn. If
4540 BB is NULL, an attempt is made to infer the BB from AFTER. */
4542 rtx_insn *
4543 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4545 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4549 /* Make an insn of code JUMP_INSN with body X
4550 and output it after the insn AFTER. */
4552 rtx_jump_insn *
4553 emit_jump_insn_after_noloc (rtx x, rtx after)
4555 return as_a <rtx_jump_insn *> (
4556 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4559 /* Make an instruction with body X and code CALL_INSN
4560 and output it after the instruction AFTER. */
4562 rtx_insn *
4563 emit_call_insn_after_noloc (rtx x, rtx after)
4565 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4568 /* Make an instruction with body X and code CALL_INSN
4569 and output it after the instruction AFTER. */
4571 rtx_insn *
4572 emit_debug_insn_after_noloc (rtx x, rtx after)
4574 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4577 /* Make an insn of code BARRIER
4578 and output it after the insn AFTER. */
4580 rtx_barrier *
4581 emit_barrier_after (rtx after)
4583 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4585 INSN_UID (insn) = cur_insn_uid++;
4587 add_insn_after (insn, after, NULL);
4588 return insn;
4591 /* Emit the label LABEL after the insn AFTER. */
4593 rtx_insn *
4594 emit_label_after (rtx label, rtx_insn *after)
4596 gcc_checking_assert (INSN_UID (label) == 0);
4597 INSN_UID (label) = cur_insn_uid++;
4598 add_insn_after (label, after, NULL);
4599 return as_a <rtx_insn *> (label);
4602 /* Notes require a bit of special handling: Some notes need to have their
4603 BLOCK_FOR_INSN set, others should never have it set, and some should
4604 have it set or clear depending on the context. */
4606 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4607 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4608 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4610 static bool
4611 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4613 switch (subtype)
4615 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4616 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4617 return true;
4619 /* Notes for var tracking and EH region markers can appear between or
4620 inside basic blocks. If the caller is emitting on the basic block
4621 boundary, do not set BLOCK_FOR_INSN on the new note. */
4622 case NOTE_INSN_VAR_LOCATION:
4623 case NOTE_INSN_CALL_ARG_LOCATION:
4624 case NOTE_INSN_EH_REGION_BEG:
4625 case NOTE_INSN_EH_REGION_END:
4626 return on_bb_boundary_p;
4628 /* Otherwise, BLOCK_FOR_INSN must be set. */
4629 default:
4630 return false;
4634 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4636 rtx_note *
4637 emit_note_after (enum insn_note subtype, rtx_insn *after)
4639 rtx_note *note = make_note_raw (subtype);
4640 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4641 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4643 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4644 add_insn_after_nobb (note, after);
4645 else
4646 add_insn_after (note, after, bb);
4647 return note;
4650 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4652 rtx_note *
4653 emit_note_before (enum insn_note subtype, rtx_insn *before)
4655 rtx_note *note = make_note_raw (subtype);
4656 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4657 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4659 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4660 add_insn_before_nobb (note, before);
4661 else
4662 add_insn_before (note, before, bb);
4663 return note;
4666 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4667 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4669 static rtx_insn *
4670 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4671 rtx_insn *(*make_raw) (rtx))
4673 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4674 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4676 if (pattern == NULL_RTX || !loc)
4677 return last;
4679 after = NEXT_INSN (after);
4680 while (1)
4682 if (active_insn_p (after)
4683 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4684 && !INSN_LOCATION (after))
4685 INSN_LOCATION (after) = loc;
4686 if (after == last)
4687 break;
4688 after = NEXT_INSN (after);
4690 return last;
4693 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4694 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4695 any DEBUG_INSNs. */
4697 static rtx_insn *
4698 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4699 rtx_insn *(*make_raw) (rtx))
4701 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4702 rtx_insn *prev = after;
4704 if (skip_debug_insns)
4705 while (DEBUG_INSN_P (prev))
4706 prev = PREV_INSN (prev);
4708 if (INSN_P (prev))
4709 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4710 make_raw);
4711 else
4712 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4715 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4716 rtx_insn *
4717 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4719 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4722 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4723 rtx_insn *
4724 emit_insn_after (rtx pattern, rtx after)
4726 return emit_pattern_after (pattern, after, true, make_insn_raw);
4729 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4730 rtx_jump_insn *
4731 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4733 return as_a <rtx_jump_insn *> (
4734 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4737 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4738 rtx_jump_insn *
4739 emit_jump_insn_after (rtx pattern, rtx after)
4741 return as_a <rtx_jump_insn *> (
4742 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4745 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4746 rtx_insn *
4747 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4749 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4752 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4753 rtx_insn *
4754 emit_call_insn_after (rtx pattern, rtx after)
4756 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4759 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4760 rtx_insn *
4761 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4763 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4766 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4767 rtx_insn *
4768 emit_debug_insn_after (rtx pattern, rtx after)
4770 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4773 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4774 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4775 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4776 CALL_INSN, etc. */
4778 static rtx_insn *
4779 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4780 rtx_insn *(*make_raw) (rtx))
4782 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4783 rtx_insn *first = PREV_INSN (before);
4784 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4785 insnp ? before : NULL_RTX,
4786 NULL, make_raw);
4788 if (pattern == NULL_RTX || !loc)
4789 return last;
4791 if (!first)
4792 first = get_insns ();
4793 else
4794 first = NEXT_INSN (first);
4795 while (1)
4797 if (active_insn_p (first)
4798 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4799 && !INSN_LOCATION (first))
4800 INSN_LOCATION (first) = loc;
4801 if (first == last)
4802 break;
4803 first = NEXT_INSN (first);
4805 return last;
4808 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4809 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4810 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4811 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4813 static rtx_insn *
4814 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4815 bool insnp, rtx_insn *(*make_raw) (rtx))
4817 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4818 rtx_insn *next = before;
4820 if (skip_debug_insns)
4821 while (DEBUG_INSN_P (next))
4822 next = PREV_INSN (next);
4824 if (INSN_P (next))
4825 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4826 insnp, make_raw);
4827 else
4828 return emit_pattern_before_noloc (pattern, before,
4829 insnp ? before : NULL_RTX,
4830 NULL, make_raw);
4833 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4834 rtx_insn *
4835 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4837 return emit_pattern_before_setloc (pattern, before, loc, true,
4838 make_insn_raw);
4841 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4842 rtx_insn *
4843 emit_insn_before (rtx pattern, rtx before)
4845 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4848 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4849 rtx_jump_insn *
4850 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4852 return as_a <rtx_jump_insn *> (
4853 emit_pattern_before_setloc (pattern, before, loc, false,
4854 make_jump_insn_raw));
4857 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4858 rtx_jump_insn *
4859 emit_jump_insn_before (rtx pattern, rtx before)
4861 return as_a <rtx_jump_insn *> (
4862 emit_pattern_before (pattern, before, true, false,
4863 make_jump_insn_raw));
4866 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4867 rtx_insn *
4868 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4870 return emit_pattern_before_setloc (pattern, before, loc, false,
4871 make_call_insn_raw);
4874 /* Like emit_call_insn_before_noloc,
4875 but set insn_location according to BEFORE. */
4876 rtx_insn *
4877 emit_call_insn_before (rtx pattern, rtx_insn *before)
4879 return emit_pattern_before (pattern, before, true, false,
4880 make_call_insn_raw);
4883 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4884 rtx_insn *
4885 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4887 return emit_pattern_before_setloc (pattern, before, loc, false,
4888 make_debug_insn_raw);
4891 /* Like emit_debug_insn_before_noloc,
4892 but set insn_location according to BEFORE. */
4893 rtx_insn *
4894 emit_debug_insn_before (rtx pattern, rtx_insn *before)
4896 return emit_pattern_before (pattern, before, false, false,
4897 make_debug_insn_raw);
4900 /* Take X and emit it at the end of the doubly-linked
4901 INSN list.
4903 Returns the last insn emitted. */
4905 rtx_insn *
4906 emit_insn (rtx x)
4908 rtx_insn *last = get_last_insn ();
4909 rtx_insn *insn;
4911 if (x == NULL_RTX)
4912 return last;
4914 switch (GET_CODE (x))
4916 case DEBUG_INSN:
4917 case INSN:
4918 case JUMP_INSN:
4919 case CALL_INSN:
4920 case CODE_LABEL:
4921 case BARRIER:
4922 case NOTE:
4923 insn = as_a <rtx_insn *> (x);
4924 while (insn)
4926 rtx_insn *next = NEXT_INSN (insn);
4927 add_insn (insn);
4928 last = insn;
4929 insn = next;
4931 break;
4933 #ifdef ENABLE_RTL_CHECKING
4934 case JUMP_TABLE_DATA:
4935 case SEQUENCE:
4936 gcc_unreachable ();
4937 break;
4938 #endif
4940 default:
4941 last = make_insn_raw (x);
4942 add_insn (last);
4943 break;
4946 return last;
4949 /* Make an insn of code DEBUG_INSN with pattern X
4950 and add it to the end of the doubly-linked list. */
4952 rtx_insn *
4953 emit_debug_insn (rtx x)
4955 rtx_insn *last = get_last_insn ();
4956 rtx_insn *insn;
4958 if (x == NULL_RTX)
4959 return last;
4961 switch (GET_CODE (x))
4963 case DEBUG_INSN:
4964 case INSN:
4965 case JUMP_INSN:
4966 case CALL_INSN:
4967 case CODE_LABEL:
4968 case BARRIER:
4969 case NOTE:
4970 insn = as_a <rtx_insn *> (x);
4971 while (insn)
4973 rtx_insn *next = NEXT_INSN (insn);
4974 add_insn (insn);
4975 last = insn;
4976 insn = next;
4978 break;
4980 #ifdef ENABLE_RTL_CHECKING
4981 case JUMP_TABLE_DATA:
4982 case SEQUENCE:
4983 gcc_unreachable ();
4984 break;
4985 #endif
4987 default:
4988 last = make_debug_insn_raw (x);
4989 add_insn (last);
4990 break;
4993 return last;
4996 /* Make an insn of code JUMP_INSN with pattern X
4997 and add it to the end of the doubly-linked list. */
4999 rtx_insn *
5000 emit_jump_insn (rtx x)
5002 rtx_insn *last = NULL;
5003 rtx_insn *insn;
5005 switch (GET_CODE (x))
5007 case DEBUG_INSN:
5008 case INSN:
5009 case JUMP_INSN:
5010 case CALL_INSN:
5011 case CODE_LABEL:
5012 case BARRIER:
5013 case NOTE:
5014 insn = as_a <rtx_insn *> (x);
5015 while (insn)
5017 rtx_insn *next = NEXT_INSN (insn);
5018 add_insn (insn);
5019 last = insn;
5020 insn = next;
5022 break;
5024 #ifdef ENABLE_RTL_CHECKING
5025 case JUMP_TABLE_DATA:
5026 case SEQUENCE:
5027 gcc_unreachable ();
5028 break;
5029 #endif
5031 default:
5032 last = make_jump_insn_raw (x);
5033 add_insn (last);
5034 break;
5037 return last;
5040 /* Make an insn of code CALL_INSN with pattern X
5041 and add it to the end of the doubly-linked list. */
5043 rtx_insn *
5044 emit_call_insn (rtx x)
5046 rtx_insn *insn;
5048 switch (GET_CODE (x))
5050 case DEBUG_INSN:
5051 case INSN:
5052 case JUMP_INSN:
5053 case CALL_INSN:
5054 case CODE_LABEL:
5055 case BARRIER:
5056 case NOTE:
5057 insn = emit_insn (x);
5058 break;
5060 #ifdef ENABLE_RTL_CHECKING
5061 case SEQUENCE:
5062 case JUMP_TABLE_DATA:
5063 gcc_unreachable ();
5064 break;
5065 #endif
5067 default:
5068 insn = make_call_insn_raw (x);
5069 add_insn (insn);
5070 break;
5073 return insn;
5076 /* Add the label LABEL to the end of the doubly-linked list. */
5078 rtx_code_label *
5079 emit_label (rtx uncast_label)
5081 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5083 gcc_checking_assert (INSN_UID (label) == 0);
5084 INSN_UID (label) = cur_insn_uid++;
5085 add_insn (label);
5086 return label;
5089 /* Make an insn of code JUMP_TABLE_DATA
5090 and add it to the end of the doubly-linked list. */
5092 rtx_jump_table_data *
5093 emit_jump_table_data (rtx table)
5095 rtx_jump_table_data *jump_table_data =
5096 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5097 INSN_UID (jump_table_data) = cur_insn_uid++;
5098 PATTERN (jump_table_data) = table;
5099 BLOCK_FOR_INSN (jump_table_data) = NULL;
5100 add_insn (jump_table_data);
5101 return jump_table_data;
5104 /* Make an insn of code BARRIER
5105 and add it to the end of the doubly-linked list. */
5107 rtx_barrier *
5108 emit_barrier (void)
5110 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5111 INSN_UID (barrier) = cur_insn_uid++;
5112 add_insn (barrier);
5113 return barrier;
5116 /* Emit a copy of note ORIG. */
5118 rtx_note *
5119 emit_note_copy (rtx_note *orig)
5121 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5122 rtx_note *note = make_note_raw (kind);
5123 NOTE_DATA (note) = NOTE_DATA (orig);
5124 add_insn (note);
5125 return note;
5128 /* Make an insn of code NOTE or type NOTE_NO
5129 and add it to the end of the doubly-linked list. */
5131 rtx_note *
5132 emit_note (enum insn_note kind)
5134 rtx_note *note = make_note_raw (kind);
5135 add_insn (note);
5136 return note;
5139 /* Emit a clobber of lvalue X. */
5141 rtx_insn *
5142 emit_clobber (rtx x)
5144 /* CONCATs should not appear in the insn stream. */
5145 if (GET_CODE (x) == CONCAT)
5147 emit_clobber (XEXP (x, 0));
5148 return emit_clobber (XEXP (x, 1));
5150 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5153 /* Return a sequence of insns to clobber lvalue X. */
5155 rtx_insn *
5156 gen_clobber (rtx x)
5158 rtx_insn *seq;
5160 start_sequence ();
5161 emit_clobber (x);
5162 seq = get_insns ();
5163 end_sequence ();
5164 return seq;
5167 /* Emit a use of rvalue X. */
5169 rtx_insn *
5170 emit_use (rtx x)
5172 /* CONCATs should not appear in the insn stream. */
5173 if (GET_CODE (x) == CONCAT)
5175 emit_use (XEXP (x, 0));
5176 return emit_use (XEXP (x, 1));
5178 return emit_insn (gen_rtx_USE (VOIDmode, x));
5181 /* Return a sequence of insns to use rvalue X. */
5183 rtx_insn *
5184 gen_use (rtx x)
5186 rtx_insn *seq;
5188 start_sequence ();
5189 emit_use (x);
5190 seq = get_insns ();
5191 end_sequence ();
5192 return seq;
5195 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5196 Return the set in INSN that such notes describe, or NULL if the notes
5197 have no meaning for INSN. */
5200 set_for_reg_notes (rtx insn)
5202 rtx pat, reg;
5204 if (!INSN_P (insn))
5205 return NULL_RTX;
5207 pat = PATTERN (insn);
5208 if (GET_CODE (pat) == PARALLEL)
5210 /* We do not use single_set because that ignores SETs of unused
5211 registers. REG_EQUAL and REG_EQUIV notes really do require the
5212 PARALLEL to have a single SET. */
5213 if (multiple_sets (insn))
5214 return NULL_RTX;
5215 pat = XVECEXP (pat, 0, 0);
5218 if (GET_CODE (pat) != SET)
5219 return NULL_RTX;
5221 reg = SET_DEST (pat);
5223 /* Notes apply to the contents of a STRICT_LOW_PART. */
5224 if (GET_CODE (reg) == STRICT_LOW_PART
5225 || GET_CODE (reg) == ZERO_EXTRACT)
5226 reg = XEXP (reg, 0);
5228 /* Check that we have a register. */
5229 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5230 return NULL_RTX;
5232 return pat;
5235 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5236 note of this type already exists, remove it first. */
5239 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5241 rtx note = find_reg_note (insn, kind, NULL_RTX);
5243 switch (kind)
5245 case REG_EQUAL:
5246 case REG_EQUIV:
5247 if (!set_for_reg_notes (insn))
5248 return NULL_RTX;
5250 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5251 It serves no useful purpose and breaks eliminate_regs. */
5252 if (GET_CODE (datum) == ASM_OPERANDS)
5253 return NULL_RTX;
5255 /* Notes with side effects are dangerous. Even if the side-effect
5256 initially mirrors one in PATTERN (INSN), later optimizations
5257 might alter the way that the final register value is calculated
5258 and so move or alter the side-effect in some way. The note would
5259 then no longer be a valid substitution for SET_SRC. */
5260 if (side_effects_p (datum))
5261 return NULL_RTX;
5262 break;
5264 default:
5265 break;
5268 if (note)
5269 XEXP (note, 0) = datum;
5270 else
5272 add_reg_note (insn, kind, datum);
5273 note = REG_NOTES (insn);
5276 switch (kind)
5278 case REG_EQUAL:
5279 case REG_EQUIV:
5280 df_notes_rescan (as_a <rtx_insn *> (insn));
5281 break;
5282 default:
5283 break;
5286 return note;
5289 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5291 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5293 rtx set = set_for_reg_notes (insn);
5295 if (set && SET_DEST (set) == dst)
5296 return set_unique_reg_note (insn, kind, datum);
5297 return NULL_RTX;
5300 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5301 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5302 is true.
5304 If X is a label, it is simply added into the insn chain. */
5306 rtx_insn *
5307 emit (rtx x, bool allow_barrier_p)
5309 enum rtx_code code = classify_insn (x);
5311 switch (code)
5313 case CODE_LABEL:
5314 return emit_label (x);
5315 case INSN:
5316 return emit_insn (x);
5317 case JUMP_INSN:
5319 rtx_insn *insn = emit_jump_insn (x);
5320 if (allow_barrier_p
5321 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5322 return emit_barrier ();
5323 return insn;
5325 case CALL_INSN:
5326 return emit_call_insn (x);
5327 case DEBUG_INSN:
5328 return emit_debug_insn (x);
5329 default:
5330 gcc_unreachable ();
5334 /* Space for free sequence stack entries. */
5335 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5337 /* Begin emitting insns to a sequence. If this sequence will contain
5338 something that might cause the compiler to pop arguments to function
5339 calls (because those pops have previously been deferred; see
5340 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5341 before calling this function. That will ensure that the deferred
5342 pops are not accidentally emitted in the middle of this sequence. */
5344 void
5345 start_sequence (void)
5347 struct sequence_stack *tem;
5349 if (free_sequence_stack != NULL)
5351 tem = free_sequence_stack;
5352 free_sequence_stack = tem->next;
5354 else
5355 tem = ggc_alloc<sequence_stack> ();
5357 tem->next = get_current_sequence ()->next;
5358 tem->first = get_insns ();
5359 tem->last = get_last_insn ();
5360 get_current_sequence ()->next = tem;
5362 set_first_insn (0);
5363 set_last_insn (0);
5366 /* Set up the insn chain starting with FIRST as the current sequence,
5367 saving the previously current one. See the documentation for
5368 start_sequence for more information about how to use this function. */
5370 void
5371 push_to_sequence (rtx_insn *first)
5373 rtx_insn *last;
5375 start_sequence ();
5377 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5380 set_first_insn (first);
5381 set_last_insn (last);
5384 /* Like push_to_sequence, but take the last insn as an argument to avoid
5385 looping through the list. */
5387 void
5388 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5390 start_sequence ();
5392 set_first_insn (first);
5393 set_last_insn (last);
5396 /* Set up the outer-level insn chain
5397 as the current sequence, saving the previously current one. */
5399 void
5400 push_topmost_sequence (void)
5402 struct sequence_stack *top;
5404 start_sequence ();
5406 top = get_topmost_sequence ();
5407 set_first_insn (top->first);
5408 set_last_insn (top->last);
5411 /* After emitting to the outer-level insn chain, update the outer-level
5412 insn chain, and restore the previous saved state. */
5414 void
5415 pop_topmost_sequence (void)
5417 struct sequence_stack *top;
5419 top = get_topmost_sequence ();
5420 top->first = get_insns ();
5421 top->last = get_last_insn ();
5423 end_sequence ();
5426 /* After emitting to a sequence, restore previous saved state.
5428 To get the contents of the sequence just made, you must call
5429 `get_insns' *before* calling here.
5431 If the compiler might have deferred popping arguments while
5432 generating this sequence, and this sequence will not be immediately
5433 inserted into the instruction stream, use do_pending_stack_adjust
5434 before calling get_insns. That will ensure that the deferred
5435 pops are inserted into this sequence, and not into some random
5436 location in the instruction stream. See INHIBIT_DEFER_POP for more
5437 information about deferred popping of arguments. */
5439 void
5440 end_sequence (void)
5442 struct sequence_stack *tem = get_current_sequence ()->next;
5444 set_first_insn (tem->first);
5445 set_last_insn (tem->last);
5446 get_current_sequence ()->next = tem->next;
5448 memset (tem, 0, sizeof (*tem));
5449 tem->next = free_sequence_stack;
5450 free_sequence_stack = tem;
5453 /* Return 1 if currently emitting into a sequence. */
5456 in_sequence_p (void)
5458 return get_current_sequence ()->next != 0;
5461 /* Put the various virtual registers into REGNO_REG_RTX. */
5463 static void
5464 init_virtual_regs (void)
5466 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5467 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5468 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5469 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5470 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5471 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5472 = virtual_preferred_stack_boundary_rtx;
5476 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5477 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5478 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5479 static int copy_insn_n_scratches;
5481 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5482 copied an ASM_OPERANDS.
5483 In that case, it is the original input-operand vector. */
5484 static rtvec orig_asm_operands_vector;
5486 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5487 copied an ASM_OPERANDS.
5488 In that case, it is the copied input-operand vector. */
5489 static rtvec copy_asm_operands_vector;
5491 /* Likewise for the constraints vector. */
5492 static rtvec orig_asm_constraints_vector;
5493 static rtvec copy_asm_constraints_vector;
5495 /* Recursively create a new copy of an rtx for copy_insn.
5496 This function differs from copy_rtx in that it handles SCRATCHes and
5497 ASM_OPERANDs properly.
5498 Normally, this function is not used directly; use copy_insn as front end.
5499 However, you could first copy an insn pattern with copy_insn and then use
5500 this function afterwards to properly copy any REG_NOTEs containing
5501 SCRATCHes. */
5504 copy_insn_1 (rtx orig)
5506 rtx copy;
5507 int i, j;
5508 RTX_CODE code;
5509 const char *format_ptr;
5511 if (orig == NULL)
5512 return NULL;
5514 code = GET_CODE (orig);
5516 switch (code)
5518 case REG:
5519 case DEBUG_EXPR:
5520 CASE_CONST_ANY:
5521 case SYMBOL_REF:
5522 case CODE_LABEL:
5523 case PC:
5524 case CC0:
5525 case RETURN:
5526 case SIMPLE_RETURN:
5527 return orig;
5528 case CLOBBER:
5529 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5530 clobbers or clobbers of hard registers that originated as pseudos.
5531 This is needed to allow safe register renaming. */
5532 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5533 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5534 return orig;
5535 break;
5537 case SCRATCH:
5538 for (i = 0; i < copy_insn_n_scratches; i++)
5539 if (copy_insn_scratch_in[i] == orig)
5540 return copy_insn_scratch_out[i];
5541 break;
5543 case CONST:
5544 if (shared_const_p (orig))
5545 return orig;
5546 break;
5548 /* A MEM with a constant address is not sharable. The problem is that
5549 the constant address may need to be reloaded. If the mem is shared,
5550 then reloading one copy of this mem will cause all copies to appear
5551 to have been reloaded. */
5553 default:
5554 break;
5557 /* Copy the various flags, fields, and other information. We assume
5558 that all fields need copying, and then clear the fields that should
5559 not be copied. That is the sensible default behavior, and forces
5560 us to explicitly document why we are *not* copying a flag. */
5561 copy = shallow_copy_rtx (orig);
5563 /* We do not copy the USED flag, which is used as a mark bit during
5564 walks over the RTL. */
5565 RTX_FLAG (copy, used) = 0;
5567 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5568 if (INSN_P (orig))
5570 RTX_FLAG (copy, jump) = 0;
5571 RTX_FLAG (copy, call) = 0;
5572 RTX_FLAG (copy, frame_related) = 0;
5575 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5577 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5578 switch (*format_ptr++)
5580 case 'e':
5581 if (XEXP (orig, i) != NULL)
5582 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5583 break;
5585 case 'E':
5586 case 'V':
5587 if (XVEC (orig, i) == orig_asm_constraints_vector)
5588 XVEC (copy, i) = copy_asm_constraints_vector;
5589 else if (XVEC (orig, i) == orig_asm_operands_vector)
5590 XVEC (copy, i) = copy_asm_operands_vector;
5591 else if (XVEC (orig, i) != NULL)
5593 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5594 for (j = 0; j < XVECLEN (copy, i); j++)
5595 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5597 break;
5599 case 't':
5600 case 'w':
5601 case 'i':
5602 case 's':
5603 case 'S':
5604 case 'u':
5605 case '0':
5606 /* These are left unchanged. */
5607 break;
5609 default:
5610 gcc_unreachable ();
5613 if (code == SCRATCH)
5615 i = copy_insn_n_scratches++;
5616 gcc_assert (i < MAX_RECOG_OPERANDS);
5617 copy_insn_scratch_in[i] = orig;
5618 copy_insn_scratch_out[i] = copy;
5620 else if (code == ASM_OPERANDS)
5622 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5623 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5624 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5625 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5628 return copy;
5631 /* Create a new copy of an rtx.
5632 This function differs from copy_rtx in that it handles SCRATCHes and
5633 ASM_OPERANDs properly.
5634 INSN doesn't really have to be a full INSN; it could be just the
5635 pattern. */
5637 copy_insn (rtx insn)
5639 copy_insn_n_scratches = 0;
5640 orig_asm_operands_vector = 0;
5641 orig_asm_constraints_vector = 0;
5642 copy_asm_operands_vector = 0;
5643 copy_asm_constraints_vector = 0;
5644 return copy_insn_1 (insn);
5647 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5648 on that assumption that INSN itself remains in its original place. */
5650 rtx_insn *
5651 copy_delay_slot_insn (rtx_insn *insn)
5653 /* Copy INSN with its rtx_code, all its notes, location etc. */
5654 insn = as_a <rtx_insn *> (copy_rtx (insn));
5655 INSN_UID (insn) = cur_insn_uid++;
5656 return insn;
5659 /* Initialize data structures and variables in this file
5660 before generating rtl for each function. */
5662 void
5663 init_emit (void)
5665 set_first_insn (NULL);
5666 set_last_insn (NULL);
5667 if (MIN_NONDEBUG_INSN_UID)
5668 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5669 else
5670 cur_insn_uid = 1;
5671 cur_debug_insn_uid = 1;
5672 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5673 first_label_num = label_num;
5674 get_current_sequence ()->next = NULL;
5676 /* Init the tables that describe all the pseudo regs. */
5678 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5680 crtl->emit.regno_pointer_align
5681 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5683 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5685 /* Put copies of all the hard registers into regno_reg_rtx. */
5686 memcpy (regno_reg_rtx,
5687 initial_regno_reg_rtx,
5688 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5690 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5691 init_virtual_regs ();
5693 /* Indicate that the virtual registers and stack locations are
5694 all pointers. */
5695 REG_POINTER (stack_pointer_rtx) = 1;
5696 REG_POINTER (frame_pointer_rtx) = 1;
5697 REG_POINTER (hard_frame_pointer_rtx) = 1;
5698 REG_POINTER (arg_pointer_rtx) = 1;
5700 REG_POINTER (virtual_incoming_args_rtx) = 1;
5701 REG_POINTER (virtual_stack_vars_rtx) = 1;
5702 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5703 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5704 REG_POINTER (virtual_cfa_rtx) = 1;
5706 #ifdef STACK_BOUNDARY
5707 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5708 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5709 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5710 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5712 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5713 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5714 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5715 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5716 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5717 #endif
5719 #ifdef INIT_EXPANDERS
5720 INIT_EXPANDERS;
5721 #endif
5724 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5726 static rtx
5727 gen_const_vector (machine_mode mode, int constant)
5729 rtx tem;
5730 rtvec v;
5731 int units, i;
5732 machine_mode inner;
5734 units = GET_MODE_NUNITS (mode);
5735 inner = GET_MODE_INNER (mode);
5737 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5739 v = rtvec_alloc (units);
5741 /* We need to call this function after we set the scalar const_tiny_rtx
5742 entries. */
5743 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5745 for (i = 0; i < units; ++i)
5746 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5748 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5749 return tem;
5752 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5753 all elements are zero, and the one vector when all elements are one. */
5755 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5757 machine_mode inner = GET_MODE_INNER (mode);
5758 int nunits = GET_MODE_NUNITS (mode);
5759 rtx x;
5760 int i;
5762 /* Check to see if all of the elements have the same value. */
5763 x = RTVEC_ELT (v, nunits - 1);
5764 for (i = nunits - 2; i >= 0; i--)
5765 if (RTVEC_ELT (v, i) != x)
5766 break;
5768 /* If the values are all the same, check to see if we can use one of the
5769 standard constant vectors. */
5770 if (i == -1)
5772 if (x == CONST0_RTX (inner))
5773 return CONST0_RTX (mode);
5774 else if (x == CONST1_RTX (inner))
5775 return CONST1_RTX (mode);
5776 else if (x == CONSTM1_RTX (inner))
5777 return CONSTM1_RTX (mode);
5780 return gen_rtx_raw_CONST_VECTOR (mode, v);
5783 /* Initialise global register information required by all functions. */
5785 void
5786 init_emit_regs (void)
5788 int i;
5789 machine_mode mode;
5790 mem_attrs *attrs;
5792 /* Reset register attributes */
5793 reg_attrs_htab->empty ();
5795 /* We need reg_raw_mode, so initialize the modes now. */
5796 init_reg_modes_target ();
5798 /* Assign register numbers to the globally defined register rtx. */
5799 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5800 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5801 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5802 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5803 virtual_incoming_args_rtx =
5804 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5805 virtual_stack_vars_rtx =
5806 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5807 virtual_stack_dynamic_rtx =
5808 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5809 virtual_outgoing_args_rtx =
5810 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5811 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5812 virtual_preferred_stack_boundary_rtx =
5813 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5815 /* Initialize RTL for commonly used hard registers. These are
5816 copied into regno_reg_rtx as we begin to compile each function. */
5817 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5818 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5820 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5821 return_address_pointer_rtx
5822 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5823 #endif
5825 pic_offset_table_rtx = NULL_RTX;
5826 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5827 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5829 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5831 mode = (machine_mode) i;
5832 attrs = ggc_cleared_alloc<mem_attrs> ();
5833 attrs->align = BITS_PER_UNIT;
5834 attrs->addrspace = ADDR_SPACE_GENERIC;
5835 if (mode != BLKmode)
5837 attrs->size_known_p = true;
5838 attrs->size = GET_MODE_SIZE (mode);
5839 if (STRICT_ALIGNMENT)
5840 attrs->align = GET_MODE_ALIGNMENT (mode);
5842 mode_mem_attrs[i] = attrs;
5846 /* Initialize global machine_mode variables. */
5848 void
5849 init_derived_machine_modes (void)
5851 byte_mode = VOIDmode;
5852 word_mode = VOIDmode;
5854 for (machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5855 mode != VOIDmode;
5856 mode = GET_MODE_WIDER_MODE (mode))
5858 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5859 && byte_mode == VOIDmode)
5860 byte_mode = mode;
5862 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5863 && word_mode == VOIDmode)
5864 word_mode = mode;
5867 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5870 /* Create some permanent unique rtl objects shared between all functions. */
5872 void
5873 init_emit_once (void)
5875 int i;
5876 machine_mode mode;
5877 machine_mode double_mode;
5879 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5880 CONST_FIXED, and memory attribute hash tables. */
5881 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5883 #if TARGET_SUPPORTS_WIDE_INT
5884 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5885 #endif
5886 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5888 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5890 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5892 #ifdef INIT_EXPANDERS
5893 /* This is to initialize {init|mark|free}_machine_status before the first
5894 call to push_function_context_to. This is needed by the Chill front
5895 end which calls push_function_context_to before the first call to
5896 init_function_start. */
5897 INIT_EXPANDERS;
5898 #endif
5900 /* Create the unique rtx's for certain rtx codes and operand values. */
5902 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5903 tries to use these variables. */
5904 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5905 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5906 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5908 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5909 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5910 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5911 else
5912 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5914 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5916 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5917 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5918 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5920 dconstm1 = dconst1;
5921 dconstm1.sign = 1;
5923 dconsthalf = dconst1;
5924 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5926 for (i = 0; i < 3; i++)
5928 const REAL_VALUE_TYPE *const r =
5929 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5931 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5932 mode != VOIDmode;
5933 mode = GET_MODE_WIDER_MODE (mode))
5934 const_tiny_rtx[i][(int) mode] =
5935 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5937 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5938 mode != VOIDmode;
5939 mode = GET_MODE_WIDER_MODE (mode))
5940 const_tiny_rtx[i][(int) mode] =
5941 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5943 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5945 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5946 mode != VOIDmode;
5947 mode = GET_MODE_WIDER_MODE (mode))
5948 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5950 for (mode = MIN_MODE_PARTIAL_INT;
5951 mode <= MAX_MODE_PARTIAL_INT;
5952 mode = (machine_mode)((int)(mode) + 1))
5953 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5956 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5958 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5959 mode != VOIDmode;
5960 mode = GET_MODE_WIDER_MODE (mode))
5961 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5963 for (mode = MIN_MODE_PARTIAL_INT;
5964 mode <= MAX_MODE_PARTIAL_INT;
5965 mode = (machine_mode)((int)(mode) + 1))
5966 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5968 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5969 mode != VOIDmode;
5970 mode = GET_MODE_WIDER_MODE (mode))
5972 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5973 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5976 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5977 mode != VOIDmode;
5978 mode = GET_MODE_WIDER_MODE (mode))
5980 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5981 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5984 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5985 mode != VOIDmode;
5986 mode = GET_MODE_WIDER_MODE (mode))
5988 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5989 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5990 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5993 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5994 mode != VOIDmode;
5995 mode = GET_MODE_WIDER_MODE (mode))
5997 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5998 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6001 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
6002 mode != VOIDmode;
6003 mode = GET_MODE_WIDER_MODE (mode))
6005 FCONST0 (mode).data.high = 0;
6006 FCONST0 (mode).data.low = 0;
6007 FCONST0 (mode).mode = mode;
6008 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6009 FCONST0 (mode), mode);
6012 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
6013 mode != VOIDmode;
6014 mode = GET_MODE_WIDER_MODE (mode))
6016 FCONST0 (mode).data.high = 0;
6017 FCONST0 (mode).data.low = 0;
6018 FCONST0 (mode).mode = mode;
6019 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6020 FCONST0 (mode), mode);
6023 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
6024 mode != VOIDmode;
6025 mode = GET_MODE_WIDER_MODE (mode))
6027 FCONST0 (mode).data.high = 0;
6028 FCONST0 (mode).data.low = 0;
6029 FCONST0 (mode).mode = mode;
6030 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6031 FCONST0 (mode), mode);
6033 /* We store the value 1. */
6034 FCONST1 (mode).data.high = 0;
6035 FCONST1 (mode).data.low = 0;
6036 FCONST1 (mode).mode = mode;
6037 FCONST1 (mode).data
6038 = double_int_one.lshift (GET_MODE_FBIT (mode),
6039 HOST_BITS_PER_DOUBLE_INT,
6040 SIGNED_FIXED_POINT_MODE_P (mode));
6041 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6042 FCONST1 (mode), mode);
6045 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6046 mode != VOIDmode;
6047 mode = GET_MODE_WIDER_MODE (mode))
6049 FCONST0 (mode).data.high = 0;
6050 FCONST0 (mode).data.low = 0;
6051 FCONST0 (mode).mode = mode;
6052 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6053 FCONST0 (mode), mode);
6055 /* We store the value 1. */
6056 FCONST1 (mode).data.high = 0;
6057 FCONST1 (mode).data.low = 0;
6058 FCONST1 (mode).mode = mode;
6059 FCONST1 (mode).data
6060 = double_int_one.lshift (GET_MODE_FBIT (mode),
6061 HOST_BITS_PER_DOUBLE_INT,
6062 SIGNED_FIXED_POINT_MODE_P (mode));
6063 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6064 FCONST1 (mode), mode);
6067 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6068 mode != VOIDmode;
6069 mode = GET_MODE_WIDER_MODE (mode))
6071 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6074 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6075 mode != VOIDmode;
6076 mode = GET_MODE_WIDER_MODE (mode))
6078 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6081 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6082 mode != VOIDmode;
6083 mode = GET_MODE_WIDER_MODE (mode))
6085 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6086 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6089 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6090 mode != VOIDmode;
6091 mode = GET_MODE_WIDER_MODE (mode))
6093 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6094 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6097 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6098 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6099 const_tiny_rtx[0][i] = const0_rtx;
6101 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6102 if (STORE_FLAG_VALUE == 1)
6103 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6105 for (mode = GET_CLASS_NARROWEST_MODE (MODE_POINTER_BOUNDS);
6106 mode != VOIDmode;
6107 mode = GET_MODE_WIDER_MODE (mode))
6109 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6110 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6113 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6114 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6115 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6116 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6117 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6118 /*prev_insn=*/NULL,
6119 /*next_insn=*/NULL,
6120 /*bb=*/NULL,
6121 /*pattern=*/NULL_RTX,
6122 /*location=*/-1,
6123 CODE_FOR_nothing,
6124 /*reg_notes=*/NULL_RTX);
6127 /* Produce exact duplicate of insn INSN after AFTER.
6128 Care updating of libcall regions if present. */
6130 rtx_insn *
6131 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6133 rtx_insn *new_rtx;
6134 rtx link;
6136 switch (GET_CODE (insn))
6138 case INSN:
6139 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6140 break;
6142 case JUMP_INSN:
6143 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6144 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6145 break;
6147 case DEBUG_INSN:
6148 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6149 break;
6151 case CALL_INSN:
6152 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6153 if (CALL_INSN_FUNCTION_USAGE (insn))
6154 CALL_INSN_FUNCTION_USAGE (new_rtx)
6155 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6156 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6157 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6158 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6159 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6160 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6161 break;
6163 default:
6164 gcc_unreachable ();
6167 /* Update LABEL_NUSES. */
6168 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6170 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6172 /* If the old insn is frame related, then so is the new one. This is
6173 primarily needed for IA-64 unwind info which marks epilogue insns,
6174 which may be duplicated by the basic block reordering code. */
6175 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6177 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6178 will make them. REG_LABEL_TARGETs are created there too, but are
6179 supposed to be sticky, so we copy them. */
6180 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6181 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6183 if (GET_CODE (link) == EXPR_LIST)
6184 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6185 copy_insn_1 (XEXP (link, 0)));
6186 else
6187 add_shallow_copy_of_reg_note (new_rtx, link);
6190 INSN_CODE (new_rtx) = INSN_CODE (insn);
6191 return new_rtx;
6194 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6196 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6198 if (hard_reg_clobbers[mode][regno])
6199 return hard_reg_clobbers[mode][regno];
6200 else
6201 return (hard_reg_clobbers[mode][regno] =
6202 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6205 location_t prologue_location;
6206 location_t epilogue_location;
6208 /* Hold current location information and last location information, so the
6209 datastructures are built lazily only when some instructions in given
6210 place are needed. */
6211 static location_t curr_location;
6213 /* Allocate insn location datastructure. */
6214 void
6215 insn_locations_init (void)
6217 prologue_location = epilogue_location = 0;
6218 curr_location = UNKNOWN_LOCATION;
6221 /* At the end of emit stage, clear current location. */
6222 void
6223 insn_locations_finalize (void)
6225 epilogue_location = curr_location;
6226 curr_location = UNKNOWN_LOCATION;
6229 /* Set current location. */
6230 void
6231 set_curr_insn_location (location_t location)
6233 curr_location = location;
6236 /* Get current location. */
6237 location_t
6238 curr_insn_location (void)
6240 return curr_location;
6243 /* Return lexical scope block insn belongs to. */
6244 tree
6245 insn_scope (const rtx_insn *insn)
6247 return LOCATION_BLOCK (INSN_LOCATION (insn));
6250 /* Return line number of the statement that produced this insn. */
6252 insn_line (const rtx_insn *insn)
6254 return LOCATION_LINE (INSN_LOCATION (insn));
6257 /* Return source file of the statement that produced this insn. */
6258 const char *
6259 insn_file (const rtx_insn *insn)
6261 return LOCATION_FILE (INSN_LOCATION (insn));
6264 /* Return expanded location of the statement that produced this insn. */
6265 expanded_location
6266 insn_location (const rtx_insn *insn)
6268 return expand_location (INSN_LOCATION (insn));
6271 /* Return true if memory model MODEL requires a pre-operation (release-style)
6272 barrier or a post-operation (acquire-style) barrier. While not universal,
6273 this function matches behavior of several targets. */
6275 bool
6276 need_atomic_barrier_p (enum memmodel model, bool pre)
6278 switch (model & MEMMODEL_BASE_MASK)
6280 case MEMMODEL_RELAXED:
6281 case MEMMODEL_CONSUME:
6282 return false;
6283 case MEMMODEL_RELEASE:
6284 return pre;
6285 case MEMMODEL_ACQUIRE:
6286 return !pre;
6287 case MEMMODEL_ACQ_REL:
6288 case MEMMODEL_SEQ_CST:
6289 return true;
6290 default:
6291 gcc_unreachable ();
6295 #include "gt-emit-rtl.h"