2009-08-22 Steven K. kargl <kargl@gcc.gnu.org>
[official-gcc.git] / gcc / rtlanal.c
blobaebcfa66904266e9ebab7f2ed882ca1cbd38bd98
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "real.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "df.h"
40 #include "tree.h"
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int rtx_referenced_p_1 (rtx *, void *);
47 static int computed_jump_p_1 (const_rtx);
48 static void parms_set (rtx, const_rtx, void *);
50 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
51 const_rtx, enum machine_mode,
52 unsigned HOST_WIDE_INT);
53 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
54 const_rtx, enum machine_mode,
55 unsigned HOST_WIDE_INT);
56 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
57 enum machine_mode,
58 unsigned int);
59 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
60 enum machine_mode, unsigned int);
62 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
63 -1 if a code has no such operand. */
64 static int non_rtx_starting_operands[NUM_RTX_CODE];
66 /* Bit flags that specify the machine subtype we are compiling for.
67 Bits are tested using macros TARGET_... defined in the tm.h file
68 and set by `-m...' switches. Must be defined in rtlanal.c. */
70 int target_flags;
72 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
73 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
74 SIGN_EXTEND then while narrowing we also have to enforce the
75 representation and sign-extend the value to mode DESTINATION_REP.
77 If the value is already sign-extended to DESTINATION_REP mode we
78 can just switch to DESTINATION mode on it. For each pair of
79 integral modes SOURCE and DESTINATION, when truncating from SOURCE
80 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
81 contains the number of high-order bits in SOURCE that have to be
82 copies of the sign-bit so that we can do this mode-switch to
83 DESTINATION. */
85 static unsigned int
86 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
88 /* Return 1 if the value of X is unstable
89 (would be different at a different point in the program).
90 The frame pointer, arg pointer, etc. are considered stable
91 (within one function) and so is anything marked `unchanging'. */
93 int
94 rtx_unstable_p (const_rtx x)
96 const RTX_CODE code = GET_CODE (x);
97 int i;
98 const char *fmt;
100 switch (code)
102 case MEM:
103 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
105 case CONST:
106 case CONST_INT:
107 case CONST_DOUBLE:
108 case CONST_FIXED:
109 case CONST_VECTOR:
110 case SYMBOL_REF:
111 case LABEL_REF:
112 return 0;
114 case REG:
115 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
116 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
117 /* The arg pointer varies if it is not a fixed register. */
118 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
119 return 0;
120 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
121 /* ??? When call-clobbered, the value is stable modulo the restore
122 that must happen after a call. This currently screws up local-alloc
123 into believing that the restore is not needed. */
124 if (x == pic_offset_table_rtx)
125 return 0;
126 #endif
127 return 1;
129 case ASM_OPERANDS:
130 if (MEM_VOLATILE_P (x))
131 return 1;
133 /* Fall through. */
135 default:
136 break;
139 fmt = GET_RTX_FORMAT (code);
140 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
141 if (fmt[i] == 'e')
143 if (rtx_unstable_p (XEXP (x, i)))
144 return 1;
146 else if (fmt[i] == 'E')
148 int j;
149 for (j = 0; j < XVECLEN (x, i); j++)
150 if (rtx_unstable_p (XVECEXP (x, i, j)))
151 return 1;
154 return 0;
157 /* Return 1 if X has a value that can vary even between two
158 executions of the program. 0 means X can be compared reliably
159 against certain constants or near-constants.
160 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
161 zero, we are slightly more conservative.
162 The frame pointer and the arg pointer are considered constant. */
164 bool
165 rtx_varies_p (const_rtx x, bool for_alias)
167 RTX_CODE code;
168 int i;
169 const char *fmt;
171 if (!x)
172 return 0;
174 code = GET_CODE (x);
175 switch (code)
177 case MEM:
178 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
180 case CONST:
181 case CONST_INT:
182 case CONST_DOUBLE:
183 case CONST_FIXED:
184 case CONST_VECTOR:
185 case SYMBOL_REF:
186 case LABEL_REF:
187 return 0;
189 case REG:
190 /* Note that we have to test for the actual rtx used for the frame
191 and arg pointers and not just the register number in case we have
192 eliminated the frame and/or arg pointer and are using it
193 for pseudos. */
194 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
195 /* The arg pointer varies if it is not a fixed register. */
196 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
197 return 0;
198 if (x == pic_offset_table_rtx
199 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
200 /* ??? When call-clobbered, the value is stable modulo the restore
201 that must happen after a call. This currently screws up
202 local-alloc into believing that the restore is not needed, so we
203 must return 0 only if we are called from alias analysis. */
204 && for_alias
205 #endif
207 return 0;
208 return 1;
210 case LO_SUM:
211 /* The operand 0 of a LO_SUM is considered constant
212 (in fact it is related specifically to operand 1)
213 during alias analysis. */
214 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
215 || rtx_varies_p (XEXP (x, 1), for_alias);
217 case ASM_OPERANDS:
218 if (MEM_VOLATILE_P (x))
219 return 1;
221 /* Fall through. */
223 default:
224 break;
227 fmt = GET_RTX_FORMAT (code);
228 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
229 if (fmt[i] == 'e')
231 if (rtx_varies_p (XEXP (x, i), for_alias))
232 return 1;
234 else if (fmt[i] == 'E')
236 int j;
237 for (j = 0; j < XVECLEN (x, i); j++)
238 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
239 return 1;
242 return 0;
245 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
246 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
247 whether nonzero is returned for unaligned memory accesses on strict
248 alignment machines. */
250 static int
251 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
252 enum machine_mode mode, bool unaligned_mems)
254 enum rtx_code code = GET_CODE (x);
256 if (STRICT_ALIGNMENT
257 && unaligned_mems
258 && GET_MODE_SIZE (mode) != 0)
260 HOST_WIDE_INT actual_offset = offset;
261 #ifdef SPARC_STACK_BOUNDARY_HACK
262 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
263 the real alignment of %sp. However, when it does this, the
264 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
265 if (SPARC_STACK_BOUNDARY_HACK
266 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
267 actual_offset -= STACK_POINTER_OFFSET;
268 #endif
270 if (actual_offset % GET_MODE_SIZE (mode) != 0)
271 return 1;
274 switch (code)
276 case SYMBOL_REF:
277 if (SYMBOL_REF_WEAK (x))
278 return 1;
279 if (!CONSTANT_POOL_ADDRESS_P (x))
281 tree decl;
282 HOST_WIDE_INT decl_size;
284 if (offset < 0)
285 return 1;
286 if (size == 0)
287 size = GET_MODE_SIZE (mode);
288 if (size == 0)
289 return offset != 0;
291 /* If the size of the access or of the symbol is unknown,
292 assume the worst. */
293 decl = SYMBOL_REF_DECL (x);
295 /* Else check that the access is in bounds. TODO: restructure
296 expr_size/lhd_expr_size/int_expr_size and just use the latter. */
297 if (!decl)
298 decl_size = -1;
299 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
300 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
301 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
302 : -1);
303 else if (TREE_CODE (decl) == STRING_CST)
304 decl_size = TREE_STRING_LENGTH (decl);
305 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
306 decl_size = int_size_in_bytes (TREE_TYPE (decl));
307 else
308 decl_size = -1;
310 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
313 return 0;
315 case LABEL_REF:
316 return 0;
318 case REG:
319 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
320 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
321 || x == stack_pointer_rtx
322 /* The arg pointer varies if it is not a fixed register. */
323 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
324 return 0;
325 /* All of the virtual frame registers are stack references. */
326 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
327 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
328 return 0;
329 return 1;
331 case CONST:
332 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
333 mode, unaligned_mems);
335 case PLUS:
336 /* An address is assumed not to trap if:
337 - it is the pic register plus a constant. */
338 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
339 return 0;
341 /* - or it is an address that can't trap plus a constant integer,
342 with the proper remainder modulo the mode size if we are
343 considering unaligned memory references. */
344 if (CONST_INT_P (XEXP (x, 1))
345 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
346 size, mode, unaligned_mems))
347 return 0;
349 return 1;
351 case LO_SUM:
352 case PRE_MODIFY:
353 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
354 mode, unaligned_mems);
356 case PRE_DEC:
357 case PRE_INC:
358 case POST_DEC:
359 case POST_INC:
360 case POST_MODIFY:
361 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
362 mode, unaligned_mems);
364 default:
365 break;
368 /* If it isn't one of the case above, it can cause a trap. */
369 return 1;
372 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
375 rtx_addr_can_trap_p (const_rtx x)
377 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
380 /* Return true if X is an address that is known to not be zero. */
382 bool
383 nonzero_address_p (const_rtx x)
385 const enum rtx_code code = GET_CODE (x);
387 switch (code)
389 case SYMBOL_REF:
390 return !SYMBOL_REF_WEAK (x);
392 case LABEL_REF:
393 return true;
395 case REG:
396 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
397 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
398 || x == stack_pointer_rtx
399 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
400 return true;
401 /* All of the virtual frame registers are stack references. */
402 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
403 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
404 return true;
405 return false;
407 case CONST:
408 return nonzero_address_p (XEXP (x, 0));
410 case PLUS:
411 if (CONST_INT_P (XEXP (x, 1)))
412 return nonzero_address_p (XEXP (x, 0));
413 /* Handle PIC references. */
414 else if (XEXP (x, 0) == pic_offset_table_rtx
415 && CONSTANT_P (XEXP (x, 1)))
416 return true;
417 return false;
419 case PRE_MODIFY:
420 /* Similar to the above; allow positive offsets. Further, since
421 auto-inc is only allowed in memories, the register must be a
422 pointer. */
423 if (CONST_INT_P (XEXP (x, 1))
424 && INTVAL (XEXP (x, 1)) > 0)
425 return true;
426 return nonzero_address_p (XEXP (x, 0));
428 case PRE_INC:
429 /* Similarly. Further, the offset is always positive. */
430 return true;
432 case PRE_DEC:
433 case POST_DEC:
434 case POST_INC:
435 case POST_MODIFY:
436 return nonzero_address_p (XEXP (x, 0));
438 case LO_SUM:
439 return nonzero_address_p (XEXP (x, 1));
441 default:
442 break;
445 /* If it isn't one of the case above, might be zero. */
446 return false;
449 /* Return 1 if X refers to a memory location whose address
450 cannot be compared reliably with constant addresses,
451 or if X refers to a BLKmode memory object.
452 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
453 zero, we are slightly more conservative. */
455 bool
456 rtx_addr_varies_p (const_rtx x, bool for_alias)
458 enum rtx_code code;
459 int i;
460 const char *fmt;
462 if (x == 0)
463 return 0;
465 code = GET_CODE (x);
466 if (code == MEM)
467 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
469 fmt = GET_RTX_FORMAT (code);
470 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
471 if (fmt[i] == 'e')
473 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
474 return 1;
476 else if (fmt[i] == 'E')
478 int j;
479 for (j = 0; j < XVECLEN (x, i); j++)
480 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
481 return 1;
483 return 0;
486 /* Return the value of the integer term in X, if one is apparent;
487 otherwise return 0.
488 Only obvious integer terms are detected.
489 This is used in cse.c with the `related_value' field. */
491 HOST_WIDE_INT
492 get_integer_term (const_rtx x)
494 if (GET_CODE (x) == CONST)
495 x = XEXP (x, 0);
497 if (GET_CODE (x) == MINUS
498 && CONST_INT_P (XEXP (x, 1)))
499 return - INTVAL (XEXP (x, 1));
500 if (GET_CODE (x) == PLUS
501 && CONST_INT_P (XEXP (x, 1)))
502 return INTVAL (XEXP (x, 1));
503 return 0;
506 /* If X is a constant, return the value sans apparent integer term;
507 otherwise return 0.
508 Only obvious integer terms are detected. */
511 get_related_value (const_rtx x)
513 if (GET_CODE (x) != CONST)
514 return 0;
515 x = XEXP (x, 0);
516 if (GET_CODE (x) == PLUS
517 && CONST_INT_P (XEXP (x, 1)))
518 return XEXP (x, 0);
519 else if (GET_CODE (x) == MINUS
520 && CONST_INT_P (XEXP (x, 1)))
521 return XEXP (x, 0);
522 return 0;
525 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
526 to somewhere in the same object or object_block as SYMBOL. */
528 bool
529 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
531 tree decl;
533 if (GET_CODE (symbol) != SYMBOL_REF)
534 return false;
536 if (offset == 0)
537 return true;
539 if (offset > 0)
541 if (CONSTANT_POOL_ADDRESS_P (symbol)
542 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
543 return true;
545 decl = SYMBOL_REF_DECL (symbol);
546 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
547 return true;
550 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
551 && SYMBOL_REF_BLOCK (symbol)
552 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
553 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
554 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
555 return true;
557 return false;
560 /* Split X into a base and a constant offset, storing them in *BASE_OUT
561 and *OFFSET_OUT respectively. */
563 void
564 split_const (rtx x, rtx *base_out, rtx *offset_out)
566 if (GET_CODE (x) == CONST)
568 x = XEXP (x, 0);
569 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
571 *base_out = XEXP (x, 0);
572 *offset_out = XEXP (x, 1);
573 return;
576 *base_out = x;
577 *offset_out = const0_rtx;
580 /* Return the number of places FIND appears within X. If COUNT_DEST is
581 zero, we do not count occurrences inside the destination of a SET. */
584 count_occurrences (const_rtx x, const_rtx find, int count_dest)
586 int i, j;
587 enum rtx_code code;
588 const char *format_ptr;
589 int count;
591 if (x == find)
592 return 1;
594 code = GET_CODE (x);
596 switch (code)
598 case REG:
599 case CONST_INT:
600 case CONST_DOUBLE:
601 case CONST_FIXED:
602 case CONST_VECTOR:
603 case SYMBOL_REF:
604 case CODE_LABEL:
605 case PC:
606 case CC0:
607 return 0;
609 case EXPR_LIST:
610 count = count_occurrences (XEXP (x, 0), find, count_dest);
611 if (XEXP (x, 1))
612 count += count_occurrences (XEXP (x, 1), find, count_dest);
613 return count;
615 case MEM:
616 if (MEM_P (find) && rtx_equal_p (x, find))
617 return 1;
618 break;
620 case SET:
621 if (SET_DEST (x) == find && ! count_dest)
622 return count_occurrences (SET_SRC (x), find, count_dest);
623 break;
625 default:
626 break;
629 format_ptr = GET_RTX_FORMAT (code);
630 count = 0;
632 for (i = 0; i < GET_RTX_LENGTH (code); i++)
634 switch (*format_ptr++)
636 case 'e':
637 count += count_occurrences (XEXP (x, i), find, count_dest);
638 break;
640 case 'E':
641 for (j = 0; j < XVECLEN (x, i); j++)
642 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
643 break;
646 return count;
650 /* Nonzero if register REG appears somewhere within IN.
651 Also works if REG is not a register; in this case it checks
652 for a subexpression of IN that is Lisp "equal" to REG. */
655 reg_mentioned_p (const_rtx reg, const_rtx in)
657 const char *fmt;
658 int i;
659 enum rtx_code code;
661 if (in == 0)
662 return 0;
664 if (reg == in)
665 return 1;
667 if (GET_CODE (in) == LABEL_REF)
668 return reg == XEXP (in, 0);
670 code = GET_CODE (in);
672 switch (code)
674 /* Compare registers by number. */
675 case REG:
676 return REG_P (reg) && REGNO (in) == REGNO (reg);
678 /* These codes have no constituent expressions
679 and are unique. */
680 case SCRATCH:
681 case CC0:
682 case PC:
683 return 0;
685 case CONST_INT:
686 case CONST_VECTOR:
687 case CONST_DOUBLE:
688 case CONST_FIXED:
689 /* These are kept unique for a given value. */
690 return 0;
692 default:
693 break;
696 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
697 return 1;
699 fmt = GET_RTX_FORMAT (code);
701 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
703 if (fmt[i] == 'E')
705 int j;
706 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
707 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
708 return 1;
710 else if (fmt[i] == 'e'
711 && reg_mentioned_p (reg, XEXP (in, i)))
712 return 1;
714 return 0;
717 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
718 no CODE_LABEL insn. */
721 no_labels_between_p (const_rtx beg, const_rtx end)
723 rtx p;
724 if (beg == end)
725 return 0;
726 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
727 if (LABEL_P (p))
728 return 0;
729 return 1;
732 /* Nonzero if register REG is used in an insn between
733 FROM_INSN and TO_INSN (exclusive of those two). */
736 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
738 rtx insn;
740 if (from_insn == to_insn)
741 return 0;
743 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
744 if (INSN_P (insn)
745 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
746 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
747 return 1;
748 return 0;
751 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
752 is entirely replaced by a new value and the only use is as a SET_DEST,
753 we do not consider it a reference. */
756 reg_referenced_p (const_rtx x, const_rtx body)
758 int i;
760 switch (GET_CODE (body))
762 case SET:
763 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
764 return 1;
766 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
767 of a REG that occupies all of the REG, the insn references X if
768 it is mentioned in the destination. */
769 if (GET_CODE (SET_DEST (body)) != CC0
770 && GET_CODE (SET_DEST (body)) != PC
771 && !REG_P (SET_DEST (body))
772 && ! (GET_CODE (SET_DEST (body)) == SUBREG
773 && REG_P (SUBREG_REG (SET_DEST (body)))
774 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
775 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
776 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
777 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
778 && reg_overlap_mentioned_p (x, SET_DEST (body)))
779 return 1;
780 return 0;
782 case ASM_OPERANDS:
783 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
784 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
785 return 1;
786 return 0;
788 case CALL:
789 case USE:
790 case IF_THEN_ELSE:
791 return reg_overlap_mentioned_p (x, body);
793 case TRAP_IF:
794 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
796 case PREFETCH:
797 return reg_overlap_mentioned_p (x, XEXP (body, 0));
799 case UNSPEC:
800 case UNSPEC_VOLATILE:
801 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
802 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
803 return 1;
804 return 0;
806 case PARALLEL:
807 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
808 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
809 return 1;
810 return 0;
812 case CLOBBER:
813 if (MEM_P (XEXP (body, 0)))
814 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
815 return 1;
816 return 0;
818 case COND_EXEC:
819 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
820 return 1;
821 return reg_referenced_p (x, COND_EXEC_CODE (body));
823 default:
824 return 0;
828 /* Nonzero if register REG is set or clobbered in an insn between
829 FROM_INSN and TO_INSN (exclusive of those two). */
832 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
834 const_rtx insn;
836 if (from_insn == to_insn)
837 return 0;
839 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
840 if (INSN_P (insn) && reg_set_p (reg, insn))
841 return 1;
842 return 0;
845 /* Internals of reg_set_between_p. */
847 reg_set_p (const_rtx reg, const_rtx insn)
849 /* We can be passed an insn or part of one. If we are passed an insn,
850 check if a side-effect of the insn clobbers REG. */
851 if (INSN_P (insn)
852 && (FIND_REG_INC_NOTE (insn, reg)
853 || (CALL_P (insn)
854 && ((REG_P (reg)
855 && REGNO (reg) < FIRST_PSEUDO_REGISTER
856 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
857 GET_MODE (reg), REGNO (reg)))
858 || MEM_P (reg)
859 || find_reg_fusage (insn, CLOBBER, reg)))))
860 return 1;
862 return set_of (reg, insn) != NULL_RTX;
865 /* Similar to reg_set_between_p, but check all registers in X. Return 0
866 only if none of them are modified between START and END. Return 1 if
867 X contains a MEM; this routine does use memory aliasing. */
870 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
872 const enum rtx_code code = GET_CODE (x);
873 const char *fmt;
874 int i, j;
875 rtx insn;
877 if (start == end)
878 return 0;
880 switch (code)
882 case CONST_INT:
883 case CONST_DOUBLE:
884 case CONST_FIXED:
885 case CONST_VECTOR:
886 case CONST:
887 case SYMBOL_REF:
888 case LABEL_REF:
889 return 0;
891 case PC:
892 case CC0:
893 return 1;
895 case MEM:
896 if (modified_between_p (XEXP (x, 0), start, end))
897 return 1;
898 if (MEM_READONLY_P (x))
899 return 0;
900 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
901 if (memory_modified_in_insn_p (x, insn))
902 return 1;
903 return 0;
904 break;
906 case REG:
907 return reg_set_between_p (x, start, end);
909 default:
910 break;
913 fmt = GET_RTX_FORMAT (code);
914 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
916 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
917 return 1;
919 else if (fmt[i] == 'E')
920 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
921 if (modified_between_p (XVECEXP (x, i, j), start, end))
922 return 1;
925 return 0;
928 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
929 of them are modified in INSN. Return 1 if X contains a MEM; this routine
930 does use memory aliasing. */
933 modified_in_p (const_rtx x, const_rtx insn)
935 const enum rtx_code code = GET_CODE (x);
936 const char *fmt;
937 int i, j;
939 switch (code)
941 case CONST_INT:
942 case CONST_DOUBLE:
943 case CONST_FIXED:
944 case CONST_VECTOR:
945 case CONST:
946 case SYMBOL_REF:
947 case LABEL_REF:
948 return 0;
950 case PC:
951 case CC0:
952 return 1;
954 case MEM:
955 if (modified_in_p (XEXP (x, 0), insn))
956 return 1;
957 if (MEM_READONLY_P (x))
958 return 0;
959 if (memory_modified_in_insn_p (x, insn))
960 return 1;
961 return 0;
962 break;
964 case REG:
965 return reg_set_p (x, insn);
967 default:
968 break;
971 fmt = GET_RTX_FORMAT (code);
972 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
974 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
975 return 1;
977 else if (fmt[i] == 'E')
978 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
979 if (modified_in_p (XVECEXP (x, i, j), insn))
980 return 1;
983 return 0;
986 /* Helper function for set_of. */
987 struct set_of_data
989 const_rtx found;
990 const_rtx pat;
993 static void
994 set_of_1 (rtx x, const_rtx pat, void *data1)
996 struct set_of_data *const data = (struct set_of_data *) (data1);
997 if (rtx_equal_p (x, data->pat)
998 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
999 data->found = pat;
1002 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1003 (either directly or via STRICT_LOW_PART and similar modifiers). */
1004 const_rtx
1005 set_of (const_rtx pat, const_rtx insn)
1007 struct set_of_data data;
1008 data.found = NULL_RTX;
1009 data.pat = pat;
1010 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1011 return data.found;
1014 /* Given an INSN, return a SET expression if this insn has only a single SET.
1015 It may also have CLOBBERs, USEs, or SET whose output
1016 will not be used, which we ignore. */
1019 single_set_2 (const_rtx insn, const_rtx pat)
1021 rtx set = NULL;
1022 int set_verified = 1;
1023 int i;
1025 if (GET_CODE (pat) == PARALLEL)
1027 for (i = 0; i < XVECLEN (pat, 0); i++)
1029 rtx sub = XVECEXP (pat, 0, i);
1030 switch (GET_CODE (sub))
1032 case USE:
1033 case CLOBBER:
1034 break;
1036 case SET:
1037 /* We can consider insns having multiple sets, where all
1038 but one are dead as single set insns. In common case
1039 only single set is present in the pattern so we want
1040 to avoid checking for REG_UNUSED notes unless necessary.
1042 When we reach set first time, we just expect this is
1043 the single set we are looking for and only when more
1044 sets are found in the insn, we check them. */
1045 if (!set_verified)
1047 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1048 && !side_effects_p (set))
1049 set = NULL;
1050 else
1051 set_verified = 1;
1053 if (!set)
1054 set = sub, set_verified = 0;
1055 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1056 || side_effects_p (sub))
1057 return NULL_RTX;
1058 break;
1060 default:
1061 return NULL_RTX;
1065 return set;
1068 /* Given an INSN, return nonzero if it has more than one SET, else return
1069 zero. */
1072 multiple_sets (const_rtx insn)
1074 int found;
1075 int i;
1077 /* INSN must be an insn. */
1078 if (! INSN_P (insn))
1079 return 0;
1081 /* Only a PARALLEL can have multiple SETs. */
1082 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1084 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1085 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1087 /* If we have already found a SET, then return now. */
1088 if (found)
1089 return 1;
1090 else
1091 found = 1;
1095 /* Either zero or one SET. */
1096 return 0;
1099 /* Return nonzero if the destination of SET equals the source
1100 and there are no side effects. */
1103 set_noop_p (const_rtx set)
1105 rtx src = SET_SRC (set);
1106 rtx dst = SET_DEST (set);
1108 if (dst == pc_rtx && src == pc_rtx)
1109 return 1;
1111 if (MEM_P (dst) && MEM_P (src))
1112 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1114 if (GET_CODE (dst) == ZERO_EXTRACT)
1115 return rtx_equal_p (XEXP (dst, 0), src)
1116 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1117 && !side_effects_p (src);
1119 if (GET_CODE (dst) == STRICT_LOW_PART)
1120 dst = XEXP (dst, 0);
1122 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1124 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1125 return 0;
1126 src = SUBREG_REG (src);
1127 dst = SUBREG_REG (dst);
1130 return (REG_P (src) && REG_P (dst)
1131 && REGNO (src) == REGNO (dst));
1134 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1135 value to itself. */
1138 noop_move_p (const_rtx insn)
1140 rtx pat = PATTERN (insn);
1142 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1143 return 1;
1145 /* Insns carrying these notes are useful later on. */
1146 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1147 return 0;
1149 if (GET_CODE (pat) == SET && set_noop_p (pat))
1150 return 1;
1152 if (GET_CODE (pat) == PARALLEL)
1154 int i;
1155 /* If nothing but SETs of registers to themselves,
1156 this insn can also be deleted. */
1157 for (i = 0; i < XVECLEN (pat, 0); i++)
1159 rtx tem = XVECEXP (pat, 0, i);
1161 if (GET_CODE (tem) == USE
1162 || GET_CODE (tem) == CLOBBER)
1163 continue;
1165 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1166 return 0;
1169 return 1;
1171 return 0;
1175 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1176 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1177 If the object was modified, if we hit a partial assignment to X, or hit a
1178 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1179 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1180 be the src. */
1183 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1185 rtx p;
1187 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1188 p = PREV_INSN (p))
1189 if (INSN_P (p))
1191 rtx set = single_set (p);
1192 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1194 if (set && rtx_equal_p (x, SET_DEST (set)))
1196 rtx src = SET_SRC (set);
1198 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1199 src = XEXP (note, 0);
1201 if ((valid_to == NULL_RTX
1202 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1203 /* Reject hard registers because we don't usually want
1204 to use them; we'd rather use a pseudo. */
1205 && (! (REG_P (src)
1206 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1208 *pinsn = p;
1209 return src;
1213 /* If set in non-simple way, we don't have a value. */
1214 if (reg_set_p (x, p))
1215 break;
1218 return x;
1221 /* Return nonzero if register in range [REGNO, ENDREGNO)
1222 appears either explicitly or implicitly in X
1223 other than being stored into.
1225 References contained within the substructure at LOC do not count.
1226 LOC may be zero, meaning don't ignore anything. */
1229 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1230 rtx *loc)
1232 int i;
1233 unsigned int x_regno;
1234 RTX_CODE code;
1235 const char *fmt;
1237 repeat:
1238 /* The contents of a REG_NONNEG note is always zero, so we must come here
1239 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1240 if (x == 0)
1241 return 0;
1243 code = GET_CODE (x);
1245 switch (code)
1247 case REG:
1248 x_regno = REGNO (x);
1250 /* If we modifying the stack, frame, or argument pointer, it will
1251 clobber a virtual register. In fact, we could be more precise,
1252 but it isn't worth it. */
1253 if ((x_regno == STACK_POINTER_REGNUM
1254 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1255 || x_regno == ARG_POINTER_REGNUM
1256 #endif
1257 || x_regno == FRAME_POINTER_REGNUM)
1258 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1259 return 1;
1261 return endregno > x_regno && regno < END_REGNO (x);
1263 case SUBREG:
1264 /* If this is a SUBREG of a hard reg, we can see exactly which
1265 registers are being modified. Otherwise, handle normally. */
1266 if (REG_P (SUBREG_REG (x))
1267 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1269 unsigned int inner_regno = subreg_regno (x);
1270 unsigned int inner_endregno
1271 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1272 ? subreg_nregs (x) : 1);
1274 return endregno > inner_regno && regno < inner_endregno;
1276 break;
1278 case CLOBBER:
1279 case SET:
1280 if (&SET_DEST (x) != loc
1281 /* Note setting a SUBREG counts as referring to the REG it is in for
1282 a pseudo but not for hard registers since we can
1283 treat each word individually. */
1284 && ((GET_CODE (SET_DEST (x)) == SUBREG
1285 && loc != &SUBREG_REG (SET_DEST (x))
1286 && REG_P (SUBREG_REG (SET_DEST (x)))
1287 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1288 && refers_to_regno_p (regno, endregno,
1289 SUBREG_REG (SET_DEST (x)), loc))
1290 || (!REG_P (SET_DEST (x))
1291 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1292 return 1;
1294 if (code == CLOBBER || loc == &SET_SRC (x))
1295 return 0;
1296 x = SET_SRC (x);
1297 goto repeat;
1299 default:
1300 break;
1303 /* X does not match, so try its subexpressions. */
1305 fmt = GET_RTX_FORMAT (code);
1306 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1308 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1310 if (i == 0)
1312 x = XEXP (x, 0);
1313 goto repeat;
1315 else
1316 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1317 return 1;
1319 else if (fmt[i] == 'E')
1321 int j;
1322 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1323 if (loc != &XVECEXP (x, i, j)
1324 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1325 return 1;
1328 return 0;
1331 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1332 we check if any register number in X conflicts with the relevant register
1333 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1334 contains a MEM (we don't bother checking for memory addresses that can't
1335 conflict because we expect this to be a rare case. */
1338 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1340 unsigned int regno, endregno;
1342 /* If either argument is a constant, then modifying X can not
1343 affect IN. Here we look at IN, we can profitably combine
1344 CONSTANT_P (x) with the switch statement below. */
1345 if (CONSTANT_P (in))
1346 return 0;
1348 recurse:
1349 switch (GET_CODE (x))
1351 case STRICT_LOW_PART:
1352 case ZERO_EXTRACT:
1353 case SIGN_EXTRACT:
1354 /* Overly conservative. */
1355 x = XEXP (x, 0);
1356 goto recurse;
1358 case SUBREG:
1359 regno = REGNO (SUBREG_REG (x));
1360 if (regno < FIRST_PSEUDO_REGISTER)
1361 regno = subreg_regno (x);
1362 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1363 ? subreg_nregs (x) : 1);
1364 goto do_reg;
1366 case REG:
1367 regno = REGNO (x);
1368 endregno = END_REGNO (x);
1369 do_reg:
1370 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1372 case MEM:
1374 const char *fmt;
1375 int i;
1377 if (MEM_P (in))
1378 return 1;
1380 fmt = GET_RTX_FORMAT (GET_CODE (in));
1381 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1382 if (fmt[i] == 'e')
1384 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1385 return 1;
1387 else if (fmt[i] == 'E')
1389 int j;
1390 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1391 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1392 return 1;
1395 return 0;
1398 case SCRATCH:
1399 case PC:
1400 case CC0:
1401 return reg_mentioned_p (x, in);
1403 case PARALLEL:
1405 int i;
1407 /* If any register in here refers to it we return true. */
1408 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1409 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1410 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1411 return 1;
1412 return 0;
1415 default:
1416 gcc_assert (CONSTANT_P (x));
1417 return 0;
1421 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1422 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1423 ignored by note_stores, but passed to FUN.
1425 FUN receives three arguments:
1426 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1427 2. the SET or CLOBBER rtx that does the store,
1428 3. the pointer DATA provided to note_stores.
1430 If the item being stored in or clobbered is a SUBREG of a hard register,
1431 the SUBREG will be passed. */
1433 void
1434 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1436 int i;
1438 if (GET_CODE (x) == COND_EXEC)
1439 x = COND_EXEC_CODE (x);
1441 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1443 rtx dest = SET_DEST (x);
1445 while ((GET_CODE (dest) == SUBREG
1446 && (!REG_P (SUBREG_REG (dest))
1447 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1448 || GET_CODE (dest) == ZERO_EXTRACT
1449 || GET_CODE (dest) == STRICT_LOW_PART)
1450 dest = XEXP (dest, 0);
1452 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1453 each of whose first operand is a register. */
1454 if (GET_CODE (dest) == PARALLEL)
1456 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1457 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1458 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1460 else
1461 (*fun) (dest, x, data);
1464 else if (GET_CODE (x) == PARALLEL)
1465 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1466 note_stores (XVECEXP (x, 0, i), fun, data);
1469 /* Like notes_stores, but call FUN for each expression that is being
1470 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1471 FUN for each expression, not any interior subexpressions. FUN receives a
1472 pointer to the expression and the DATA passed to this function.
1474 Note that this is not quite the same test as that done in reg_referenced_p
1475 since that considers something as being referenced if it is being
1476 partially set, while we do not. */
1478 void
1479 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1481 rtx body = *pbody;
1482 int i;
1484 switch (GET_CODE (body))
1486 case COND_EXEC:
1487 (*fun) (&COND_EXEC_TEST (body), data);
1488 note_uses (&COND_EXEC_CODE (body), fun, data);
1489 return;
1491 case PARALLEL:
1492 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1493 note_uses (&XVECEXP (body, 0, i), fun, data);
1494 return;
1496 case SEQUENCE:
1497 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1498 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1499 return;
1501 case USE:
1502 (*fun) (&XEXP (body, 0), data);
1503 return;
1505 case ASM_OPERANDS:
1506 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1507 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1508 return;
1510 case TRAP_IF:
1511 (*fun) (&TRAP_CONDITION (body), data);
1512 return;
1514 case PREFETCH:
1515 (*fun) (&XEXP (body, 0), data);
1516 return;
1518 case UNSPEC:
1519 case UNSPEC_VOLATILE:
1520 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1521 (*fun) (&XVECEXP (body, 0, i), data);
1522 return;
1524 case CLOBBER:
1525 if (MEM_P (XEXP (body, 0)))
1526 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1527 return;
1529 case SET:
1531 rtx dest = SET_DEST (body);
1533 /* For sets we replace everything in source plus registers in memory
1534 expression in store and operands of a ZERO_EXTRACT. */
1535 (*fun) (&SET_SRC (body), data);
1537 if (GET_CODE (dest) == ZERO_EXTRACT)
1539 (*fun) (&XEXP (dest, 1), data);
1540 (*fun) (&XEXP (dest, 2), data);
1543 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1544 dest = XEXP (dest, 0);
1546 if (MEM_P (dest))
1547 (*fun) (&XEXP (dest, 0), data);
1549 return;
1551 default:
1552 /* All the other possibilities never store. */
1553 (*fun) (pbody, data);
1554 return;
1558 /* Return nonzero if X's old contents don't survive after INSN.
1559 This will be true if X is (cc0) or if X is a register and
1560 X dies in INSN or because INSN entirely sets X.
1562 "Entirely set" means set directly and not through a SUBREG, or
1563 ZERO_EXTRACT, so no trace of the old contents remains.
1564 Likewise, REG_INC does not count.
1566 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1567 but for this use that makes no difference, since regs don't overlap
1568 during their lifetimes. Therefore, this function may be used
1569 at any time after deaths have been computed.
1571 If REG is a hard reg that occupies multiple machine registers, this
1572 function will only return 1 if each of those registers will be replaced
1573 by INSN. */
1576 dead_or_set_p (const_rtx insn, const_rtx x)
1578 unsigned int regno, end_regno;
1579 unsigned int i;
1581 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1582 if (GET_CODE (x) == CC0)
1583 return 1;
1585 gcc_assert (REG_P (x));
1587 regno = REGNO (x);
1588 end_regno = END_REGNO (x);
1589 for (i = regno; i < end_regno; i++)
1590 if (! dead_or_set_regno_p (insn, i))
1591 return 0;
1593 return 1;
1596 /* Return TRUE iff DEST is a register or subreg of a register and
1597 doesn't change the number of words of the inner register, and any
1598 part of the register is TEST_REGNO. */
1600 static bool
1601 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1603 unsigned int regno, endregno;
1605 if (GET_CODE (dest) == SUBREG
1606 && (((GET_MODE_SIZE (GET_MODE (dest))
1607 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1608 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1609 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1610 dest = SUBREG_REG (dest);
1612 if (!REG_P (dest))
1613 return false;
1615 regno = REGNO (dest);
1616 endregno = END_REGNO (dest);
1617 return (test_regno >= regno && test_regno < endregno);
1620 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1621 any member matches the covers_regno_no_parallel_p criteria. */
1623 static bool
1624 covers_regno_p (const_rtx dest, unsigned int test_regno)
1626 if (GET_CODE (dest) == PARALLEL)
1628 /* Some targets place small structures in registers for return
1629 values of functions, and those registers are wrapped in
1630 PARALLELs that we may see as the destination of a SET. */
1631 int i;
1633 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1635 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1636 if (inner != NULL_RTX
1637 && covers_regno_no_parallel_p (inner, test_regno))
1638 return true;
1641 return false;
1643 else
1644 return covers_regno_no_parallel_p (dest, test_regno);
1647 /* Utility function for dead_or_set_p to check an individual register. */
1650 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1652 const_rtx pattern;
1654 /* See if there is a death note for something that includes TEST_REGNO. */
1655 if (find_regno_note (insn, REG_DEAD, test_regno))
1656 return 1;
1658 if (CALL_P (insn)
1659 && find_regno_fusage (insn, CLOBBER, test_regno))
1660 return 1;
1662 pattern = PATTERN (insn);
1664 if (GET_CODE (pattern) == COND_EXEC)
1665 pattern = COND_EXEC_CODE (pattern);
1667 if (GET_CODE (pattern) == SET)
1668 return covers_regno_p (SET_DEST (pattern), test_regno);
1669 else if (GET_CODE (pattern) == PARALLEL)
1671 int i;
1673 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1675 rtx body = XVECEXP (pattern, 0, i);
1677 if (GET_CODE (body) == COND_EXEC)
1678 body = COND_EXEC_CODE (body);
1680 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1681 && covers_regno_p (SET_DEST (body), test_regno))
1682 return 1;
1686 return 0;
1689 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1690 If DATUM is nonzero, look for one whose datum is DATUM. */
1693 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1695 rtx link;
1697 gcc_assert (insn);
1699 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1700 if (! INSN_P (insn))
1701 return 0;
1702 if (datum == 0)
1704 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1705 if (REG_NOTE_KIND (link) == kind)
1706 return link;
1707 return 0;
1710 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1711 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1712 return link;
1713 return 0;
1716 /* Return the reg-note of kind KIND in insn INSN which applies to register
1717 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1718 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1719 it might be the case that the note overlaps REGNO. */
1722 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1724 rtx link;
1726 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1727 if (! INSN_P (insn))
1728 return 0;
1730 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1731 if (REG_NOTE_KIND (link) == kind
1732 /* Verify that it is a register, so that scratch and MEM won't cause a
1733 problem here. */
1734 && REG_P (XEXP (link, 0))
1735 && REGNO (XEXP (link, 0)) <= regno
1736 && END_REGNO (XEXP (link, 0)) > regno)
1737 return link;
1738 return 0;
1741 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1742 has such a note. */
1745 find_reg_equal_equiv_note (const_rtx insn)
1747 rtx link;
1749 if (!INSN_P (insn))
1750 return 0;
1752 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1753 if (REG_NOTE_KIND (link) == REG_EQUAL
1754 || REG_NOTE_KIND (link) == REG_EQUIV)
1756 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1757 insns that have multiple sets. Checking single_set to
1758 make sure of this is not the proper check, as explained
1759 in the comment in set_unique_reg_note.
1761 This should be changed into an assert. */
1762 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1763 return 0;
1764 return link;
1766 return NULL;
1769 /* Check whether INSN is a single_set whose source is known to be
1770 equivalent to a constant. Return that constant if so, otherwise
1771 return null. */
1774 find_constant_src (const_rtx insn)
1776 rtx note, set, x;
1778 set = single_set (insn);
1779 if (set)
1781 x = avoid_constant_pool_reference (SET_SRC (set));
1782 if (CONSTANT_P (x))
1783 return x;
1786 note = find_reg_equal_equiv_note (insn);
1787 if (note && CONSTANT_P (XEXP (note, 0)))
1788 return XEXP (note, 0);
1790 return NULL_RTX;
1793 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1794 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1797 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1799 /* If it's not a CALL_INSN, it can't possibly have a
1800 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1801 if (!CALL_P (insn))
1802 return 0;
1804 gcc_assert (datum);
1806 if (!REG_P (datum))
1808 rtx link;
1810 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1811 link;
1812 link = XEXP (link, 1))
1813 if (GET_CODE (XEXP (link, 0)) == code
1814 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1815 return 1;
1817 else
1819 unsigned int regno = REGNO (datum);
1821 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1822 to pseudo registers, so don't bother checking. */
1824 if (regno < FIRST_PSEUDO_REGISTER)
1826 unsigned int end_regno = END_HARD_REGNO (datum);
1827 unsigned int i;
1829 for (i = regno; i < end_regno; i++)
1830 if (find_regno_fusage (insn, code, i))
1831 return 1;
1835 return 0;
1838 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1839 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1842 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1844 rtx link;
1846 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1847 to pseudo registers, so don't bother checking. */
1849 if (regno >= FIRST_PSEUDO_REGISTER
1850 || !CALL_P (insn) )
1851 return 0;
1853 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1855 rtx op, reg;
1857 if (GET_CODE (op = XEXP (link, 0)) == code
1858 && REG_P (reg = XEXP (op, 0))
1859 && REGNO (reg) <= regno
1860 && END_HARD_REGNO (reg) > regno)
1861 return 1;
1864 return 0;
1868 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1869 stored as the pointer to the next register note. */
1872 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1874 rtx note;
1876 switch (kind)
1878 case REG_CC_SETTER:
1879 case REG_CC_USER:
1880 case REG_LABEL_TARGET:
1881 case REG_LABEL_OPERAND:
1882 /* These types of register notes use an INSN_LIST rather than an
1883 EXPR_LIST, so that copying is done right and dumps look
1884 better. */
1885 note = alloc_INSN_LIST (datum, list);
1886 PUT_REG_NOTE_KIND (note, kind);
1887 break;
1889 default:
1890 note = alloc_EXPR_LIST (kind, datum, list);
1891 break;
1894 return note;
1897 /* Add register note with kind KIND and datum DATUM to INSN. */
1899 void
1900 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1902 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1905 /* Remove register note NOTE from the REG_NOTES of INSN. */
1907 void
1908 remove_note (rtx insn, const_rtx note)
1910 rtx link;
1912 if (note == NULL_RTX)
1913 return;
1915 if (REG_NOTES (insn) == note)
1916 REG_NOTES (insn) = XEXP (note, 1);
1917 else
1918 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1919 if (XEXP (link, 1) == note)
1921 XEXP (link, 1) = XEXP (note, 1);
1922 break;
1925 switch (REG_NOTE_KIND (note))
1927 case REG_EQUAL:
1928 case REG_EQUIV:
1929 df_notes_rescan (insn);
1930 break;
1931 default:
1932 break;
1936 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1938 void
1939 remove_reg_equal_equiv_notes (rtx insn)
1941 rtx *loc;
1943 loc = &REG_NOTES (insn);
1944 while (*loc)
1946 enum reg_note kind = REG_NOTE_KIND (*loc);
1947 if (kind == REG_EQUAL || kind == REG_EQUIV)
1948 *loc = XEXP (*loc, 1);
1949 else
1950 loc = &XEXP (*loc, 1);
1954 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1955 return 1 if it is found. A simple equality test is used to determine if
1956 NODE matches. */
1959 in_expr_list_p (const_rtx listp, const_rtx node)
1961 const_rtx x;
1963 for (x = listp; x; x = XEXP (x, 1))
1964 if (node == XEXP (x, 0))
1965 return 1;
1967 return 0;
1970 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1971 remove that entry from the list if it is found.
1973 A simple equality test is used to determine if NODE matches. */
1975 void
1976 remove_node_from_expr_list (const_rtx node, rtx *listp)
1978 rtx temp = *listp;
1979 rtx prev = NULL_RTX;
1981 while (temp)
1983 if (node == XEXP (temp, 0))
1985 /* Splice the node out of the list. */
1986 if (prev)
1987 XEXP (prev, 1) = XEXP (temp, 1);
1988 else
1989 *listp = XEXP (temp, 1);
1991 return;
1994 prev = temp;
1995 temp = XEXP (temp, 1);
1999 /* Nonzero if X contains any volatile instructions. These are instructions
2000 which may cause unpredictable machine state instructions, and thus no
2001 instructions should be moved or combined across them. This includes
2002 only volatile asms and UNSPEC_VOLATILE instructions. */
2005 volatile_insn_p (const_rtx x)
2007 const RTX_CODE code = GET_CODE (x);
2008 switch (code)
2010 case LABEL_REF:
2011 case SYMBOL_REF:
2012 case CONST_INT:
2013 case CONST:
2014 case CONST_DOUBLE:
2015 case CONST_FIXED:
2016 case CONST_VECTOR:
2017 case CC0:
2018 case PC:
2019 case REG:
2020 case SCRATCH:
2021 case CLOBBER:
2022 case ADDR_VEC:
2023 case ADDR_DIFF_VEC:
2024 case CALL:
2025 case MEM:
2026 return 0;
2028 case UNSPEC_VOLATILE:
2029 /* case TRAP_IF: This isn't clear yet. */
2030 return 1;
2032 case ASM_INPUT:
2033 case ASM_OPERANDS:
2034 if (MEM_VOLATILE_P (x))
2035 return 1;
2037 default:
2038 break;
2041 /* Recursively scan the operands of this expression. */
2044 const char *const fmt = GET_RTX_FORMAT (code);
2045 int i;
2047 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2049 if (fmt[i] == 'e')
2051 if (volatile_insn_p (XEXP (x, i)))
2052 return 1;
2054 else if (fmt[i] == 'E')
2056 int j;
2057 for (j = 0; j < XVECLEN (x, i); j++)
2058 if (volatile_insn_p (XVECEXP (x, i, j)))
2059 return 1;
2063 return 0;
2066 /* Nonzero if X contains any volatile memory references
2067 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2070 volatile_refs_p (const_rtx x)
2072 const RTX_CODE code = GET_CODE (x);
2073 switch (code)
2075 case LABEL_REF:
2076 case SYMBOL_REF:
2077 case CONST_INT:
2078 case CONST:
2079 case CONST_DOUBLE:
2080 case CONST_FIXED:
2081 case CONST_VECTOR:
2082 case CC0:
2083 case PC:
2084 case REG:
2085 case SCRATCH:
2086 case CLOBBER:
2087 case ADDR_VEC:
2088 case ADDR_DIFF_VEC:
2089 return 0;
2091 case UNSPEC_VOLATILE:
2092 return 1;
2094 case MEM:
2095 case ASM_INPUT:
2096 case ASM_OPERANDS:
2097 if (MEM_VOLATILE_P (x))
2098 return 1;
2100 default:
2101 break;
2104 /* Recursively scan the operands of this expression. */
2107 const char *const fmt = GET_RTX_FORMAT (code);
2108 int i;
2110 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2112 if (fmt[i] == 'e')
2114 if (volatile_refs_p (XEXP (x, i)))
2115 return 1;
2117 else if (fmt[i] == 'E')
2119 int j;
2120 for (j = 0; j < XVECLEN (x, i); j++)
2121 if (volatile_refs_p (XVECEXP (x, i, j)))
2122 return 1;
2126 return 0;
2129 /* Similar to above, except that it also rejects register pre- and post-
2130 incrementing. */
2133 side_effects_p (const_rtx x)
2135 const RTX_CODE code = GET_CODE (x);
2136 switch (code)
2138 case LABEL_REF:
2139 case SYMBOL_REF:
2140 case CONST_INT:
2141 case CONST:
2142 case CONST_DOUBLE:
2143 case CONST_FIXED:
2144 case CONST_VECTOR:
2145 case CC0:
2146 case PC:
2147 case REG:
2148 case SCRATCH:
2149 case ADDR_VEC:
2150 case ADDR_DIFF_VEC:
2151 return 0;
2153 case CLOBBER:
2154 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2155 when some combination can't be done. If we see one, don't think
2156 that we can simplify the expression. */
2157 return (GET_MODE (x) != VOIDmode);
2159 case PRE_INC:
2160 case PRE_DEC:
2161 case POST_INC:
2162 case POST_DEC:
2163 case PRE_MODIFY:
2164 case POST_MODIFY:
2165 case CALL:
2166 case UNSPEC_VOLATILE:
2167 /* case TRAP_IF: This isn't clear yet. */
2168 return 1;
2170 case MEM:
2171 case ASM_INPUT:
2172 case ASM_OPERANDS:
2173 if (MEM_VOLATILE_P (x))
2174 return 1;
2176 default:
2177 break;
2180 /* Recursively scan the operands of this expression. */
2183 const char *fmt = GET_RTX_FORMAT (code);
2184 int i;
2186 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2188 if (fmt[i] == 'e')
2190 if (side_effects_p (XEXP (x, i)))
2191 return 1;
2193 else if (fmt[i] == 'E')
2195 int j;
2196 for (j = 0; j < XVECLEN (x, i); j++)
2197 if (side_effects_p (XVECEXP (x, i, j)))
2198 return 1;
2202 return 0;
2205 /* Return nonzero if evaluating rtx X might cause a trap.
2206 FLAGS controls how to consider MEMs. A nonzero means the context
2207 of the access may have changed from the original, such that the
2208 address may have become invalid. */
2211 may_trap_p_1 (const_rtx x, unsigned flags)
2213 int i;
2214 enum rtx_code code;
2215 const char *fmt;
2217 /* We make no distinction currently, but this function is part of
2218 the internal target-hooks ABI so we keep the parameter as
2219 "unsigned flags". */
2220 bool code_changed = flags != 0;
2222 if (x == 0)
2223 return 0;
2224 code = GET_CODE (x);
2225 switch (code)
2227 /* Handle these cases quickly. */
2228 case CONST_INT:
2229 case CONST_DOUBLE:
2230 case CONST_FIXED:
2231 case CONST_VECTOR:
2232 case SYMBOL_REF:
2233 case LABEL_REF:
2234 case CONST:
2235 case PC:
2236 case CC0:
2237 case REG:
2238 case SCRATCH:
2239 return 0;
2241 case UNSPEC:
2242 case UNSPEC_VOLATILE:
2243 return targetm.unspec_may_trap_p (x, flags);
2245 case ASM_INPUT:
2246 case TRAP_IF:
2247 return 1;
2249 case ASM_OPERANDS:
2250 return MEM_VOLATILE_P (x);
2252 /* Memory ref can trap unless it's a static var or a stack slot. */
2253 case MEM:
2254 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2255 reference; moving it out of context such as when moving code
2256 when optimizing, might cause its address to become invalid. */
2257 code_changed
2258 || !MEM_NOTRAP_P (x))
2260 HOST_WIDE_INT size = MEM_SIZE (x) ? INTVAL (MEM_SIZE (x)) : 0;
2261 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2262 GET_MODE (x), code_changed);
2265 return 0;
2267 /* Division by a non-constant might trap. */
2268 case DIV:
2269 case MOD:
2270 case UDIV:
2271 case UMOD:
2272 if (HONOR_SNANS (GET_MODE (x)))
2273 return 1;
2274 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2275 return flag_trapping_math;
2276 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2277 return 1;
2278 break;
2280 case EXPR_LIST:
2281 /* An EXPR_LIST is used to represent a function call. This
2282 certainly may trap. */
2283 return 1;
2285 case GE:
2286 case GT:
2287 case LE:
2288 case LT:
2289 case LTGT:
2290 case COMPARE:
2291 /* Some floating point comparisons may trap. */
2292 if (!flag_trapping_math)
2293 break;
2294 /* ??? There is no machine independent way to check for tests that trap
2295 when COMPARE is used, though many targets do make this distinction.
2296 For instance, sparc uses CCFPE for compares which generate exceptions
2297 and CCFP for compares which do not generate exceptions. */
2298 if (HONOR_NANS (GET_MODE (x)))
2299 return 1;
2300 /* But often the compare has some CC mode, so check operand
2301 modes as well. */
2302 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2303 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2304 return 1;
2305 break;
2307 case EQ:
2308 case NE:
2309 if (HONOR_SNANS (GET_MODE (x)))
2310 return 1;
2311 /* Often comparison is CC mode, so check operand modes. */
2312 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2313 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2314 return 1;
2315 break;
2317 case FIX:
2318 /* Conversion of floating point might trap. */
2319 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2320 return 1;
2321 break;
2323 case NEG:
2324 case ABS:
2325 case SUBREG:
2326 /* These operations don't trap even with floating point. */
2327 break;
2329 default:
2330 /* Any floating arithmetic may trap. */
2331 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2332 && flag_trapping_math)
2333 return 1;
2336 fmt = GET_RTX_FORMAT (code);
2337 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2339 if (fmt[i] == 'e')
2341 if (may_trap_p_1 (XEXP (x, i), flags))
2342 return 1;
2344 else if (fmt[i] == 'E')
2346 int j;
2347 for (j = 0; j < XVECLEN (x, i); j++)
2348 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2349 return 1;
2352 return 0;
2355 /* Return nonzero if evaluating rtx X might cause a trap. */
2358 may_trap_p (const_rtx x)
2360 return may_trap_p_1 (x, 0);
2363 /* Same as above, but additionally return nonzero if evaluating rtx X might
2364 cause a fault. We define a fault for the purpose of this function as a
2365 erroneous execution condition that cannot be encountered during the normal
2366 execution of a valid program; the typical example is an unaligned memory
2367 access on a strict alignment machine. The compiler guarantees that it
2368 doesn't generate code that will fault from a valid program, but this
2369 guarantee doesn't mean anything for individual instructions. Consider
2370 the following example:
2372 struct S { int d; union { char *cp; int *ip; }; };
2374 int foo(struct S *s)
2376 if (s->d == 1)
2377 return *s->ip;
2378 else
2379 return *s->cp;
2382 on a strict alignment machine. In a valid program, foo will never be
2383 invoked on a structure for which d is equal to 1 and the underlying
2384 unique field of the union not aligned on a 4-byte boundary, but the
2385 expression *s->ip might cause a fault if considered individually.
2387 At the RTL level, potentially problematic expressions will almost always
2388 verify may_trap_p; for example, the above dereference can be emitted as
2389 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2390 However, suppose that foo is inlined in a caller that causes s->cp to
2391 point to a local character variable and guarantees that s->d is not set
2392 to 1; foo may have been effectively translated into pseudo-RTL as:
2394 if ((reg:SI) == 1)
2395 (set (reg:SI) (mem:SI (%fp - 7)))
2396 else
2397 (set (reg:QI) (mem:QI (%fp - 7)))
2399 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2400 memory reference to a stack slot, but it will certainly cause a fault
2401 on a strict alignment machine. */
2404 may_trap_or_fault_p (const_rtx x)
2406 return may_trap_p_1 (x, 1);
2409 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2410 i.e., an inequality. */
2413 inequality_comparisons_p (const_rtx x)
2415 const char *fmt;
2416 int len, i;
2417 const enum rtx_code code = GET_CODE (x);
2419 switch (code)
2421 case REG:
2422 case SCRATCH:
2423 case PC:
2424 case CC0:
2425 case CONST_INT:
2426 case CONST_DOUBLE:
2427 case CONST_FIXED:
2428 case CONST_VECTOR:
2429 case CONST:
2430 case LABEL_REF:
2431 case SYMBOL_REF:
2432 return 0;
2434 case LT:
2435 case LTU:
2436 case GT:
2437 case GTU:
2438 case LE:
2439 case LEU:
2440 case GE:
2441 case GEU:
2442 return 1;
2444 default:
2445 break;
2448 len = GET_RTX_LENGTH (code);
2449 fmt = GET_RTX_FORMAT (code);
2451 for (i = 0; i < len; i++)
2453 if (fmt[i] == 'e')
2455 if (inequality_comparisons_p (XEXP (x, i)))
2456 return 1;
2458 else if (fmt[i] == 'E')
2460 int j;
2461 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2462 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2463 return 1;
2467 return 0;
2470 /* Replace any occurrence of FROM in X with TO. The function does
2471 not enter into CONST_DOUBLE for the replace.
2473 Note that copying is not done so X must not be shared unless all copies
2474 are to be modified. */
2477 replace_rtx (rtx x, rtx from, rtx to)
2479 int i, j;
2480 const char *fmt;
2482 /* The following prevents loops occurrence when we change MEM in
2483 CONST_DOUBLE onto the same CONST_DOUBLE. */
2484 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2485 return x;
2487 if (x == from)
2488 return to;
2490 /* Allow this function to make replacements in EXPR_LISTs. */
2491 if (x == 0)
2492 return 0;
2494 if (GET_CODE (x) == SUBREG)
2496 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2498 if (CONST_INT_P (new_rtx))
2500 x = simplify_subreg (GET_MODE (x), new_rtx,
2501 GET_MODE (SUBREG_REG (x)),
2502 SUBREG_BYTE (x));
2503 gcc_assert (x);
2505 else
2506 SUBREG_REG (x) = new_rtx;
2508 return x;
2510 else if (GET_CODE (x) == ZERO_EXTEND)
2512 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2514 if (CONST_INT_P (new_rtx))
2516 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2517 new_rtx, GET_MODE (XEXP (x, 0)));
2518 gcc_assert (x);
2520 else
2521 XEXP (x, 0) = new_rtx;
2523 return x;
2526 fmt = GET_RTX_FORMAT (GET_CODE (x));
2527 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2529 if (fmt[i] == 'e')
2530 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2531 else if (fmt[i] == 'E')
2532 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2533 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2536 return x;
2539 /* Replace occurrences of the old label in *X with the new one.
2540 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2543 replace_label (rtx *x, void *data)
2545 rtx l = *x;
2546 rtx old_label = ((replace_label_data *) data)->r1;
2547 rtx new_label = ((replace_label_data *) data)->r2;
2548 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2550 if (l == NULL_RTX)
2551 return 0;
2553 if (GET_CODE (l) == SYMBOL_REF
2554 && CONSTANT_POOL_ADDRESS_P (l))
2556 rtx c = get_pool_constant (l);
2557 if (rtx_referenced_p (old_label, c))
2559 rtx new_c, new_l;
2560 replace_label_data *d = (replace_label_data *) data;
2562 /* Create a copy of constant C; replace the label inside
2563 but do not update LABEL_NUSES because uses in constant pool
2564 are not counted. */
2565 new_c = copy_rtx (c);
2566 d->update_label_nuses = false;
2567 for_each_rtx (&new_c, replace_label, data);
2568 d->update_label_nuses = update_label_nuses;
2570 /* Add the new constant NEW_C to constant pool and replace
2571 the old reference to constant by new reference. */
2572 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2573 *x = replace_rtx (l, l, new_l);
2575 return 0;
2578 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2579 field. This is not handled by for_each_rtx because it doesn't
2580 handle unprinted ('0') fields. */
2581 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2582 JUMP_LABEL (l) = new_label;
2584 if ((GET_CODE (l) == LABEL_REF
2585 || GET_CODE (l) == INSN_LIST)
2586 && XEXP (l, 0) == old_label)
2588 XEXP (l, 0) = new_label;
2589 if (update_label_nuses)
2591 ++LABEL_NUSES (new_label);
2592 --LABEL_NUSES (old_label);
2594 return 0;
2597 return 0;
2600 /* When *BODY is equal to X or X is directly referenced by *BODY
2601 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2602 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2604 static int
2605 rtx_referenced_p_1 (rtx *body, void *x)
2607 rtx y = (rtx) x;
2609 if (*body == NULL_RTX)
2610 return y == NULL_RTX;
2612 /* Return true if a label_ref *BODY refers to label Y. */
2613 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2614 return XEXP (*body, 0) == y;
2616 /* If *BODY is a reference to pool constant traverse the constant. */
2617 if (GET_CODE (*body) == SYMBOL_REF
2618 && CONSTANT_POOL_ADDRESS_P (*body))
2619 return rtx_referenced_p (y, get_pool_constant (*body));
2621 /* By default, compare the RTL expressions. */
2622 return rtx_equal_p (*body, y);
2625 /* Return true if X is referenced in BODY. */
2628 rtx_referenced_p (rtx x, rtx body)
2630 return for_each_rtx (&body, rtx_referenced_p_1, x);
2633 /* If INSN is a tablejump return true and store the label (before jump table) to
2634 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2636 bool
2637 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2639 rtx label, table;
2641 if (JUMP_P (insn)
2642 && (label = JUMP_LABEL (insn)) != NULL_RTX
2643 && (table = next_active_insn (label)) != NULL_RTX
2644 && JUMP_TABLE_DATA_P (table))
2646 if (labelp)
2647 *labelp = label;
2648 if (tablep)
2649 *tablep = table;
2650 return true;
2652 return false;
2655 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2656 constant that is not in the constant pool and not in the condition
2657 of an IF_THEN_ELSE. */
2659 static int
2660 computed_jump_p_1 (const_rtx x)
2662 const enum rtx_code code = GET_CODE (x);
2663 int i, j;
2664 const char *fmt;
2666 switch (code)
2668 case LABEL_REF:
2669 case PC:
2670 return 0;
2672 case CONST:
2673 case CONST_INT:
2674 case CONST_DOUBLE:
2675 case CONST_FIXED:
2676 case CONST_VECTOR:
2677 case SYMBOL_REF:
2678 case REG:
2679 return 1;
2681 case MEM:
2682 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2683 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2685 case IF_THEN_ELSE:
2686 return (computed_jump_p_1 (XEXP (x, 1))
2687 || computed_jump_p_1 (XEXP (x, 2)));
2689 default:
2690 break;
2693 fmt = GET_RTX_FORMAT (code);
2694 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2696 if (fmt[i] == 'e'
2697 && computed_jump_p_1 (XEXP (x, i)))
2698 return 1;
2700 else if (fmt[i] == 'E')
2701 for (j = 0; j < XVECLEN (x, i); j++)
2702 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2703 return 1;
2706 return 0;
2709 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2711 Tablejumps and casesi insns are not considered indirect jumps;
2712 we can recognize them by a (use (label_ref)). */
2715 computed_jump_p (const_rtx insn)
2717 int i;
2718 if (JUMP_P (insn))
2720 rtx pat = PATTERN (insn);
2722 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2723 if (JUMP_LABEL (insn) != NULL)
2724 return 0;
2726 if (GET_CODE (pat) == PARALLEL)
2728 int len = XVECLEN (pat, 0);
2729 int has_use_labelref = 0;
2731 for (i = len - 1; i >= 0; i--)
2732 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2733 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2734 == LABEL_REF))
2735 has_use_labelref = 1;
2737 if (! has_use_labelref)
2738 for (i = len - 1; i >= 0; i--)
2739 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2740 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2741 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2742 return 1;
2744 else if (GET_CODE (pat) == SET
2745 && SET_DEST (pat) == pc_rtx
2746 && computed_jump_p_1 (SET_SRC (pat)))
2747 return 1;
2749 return 0;
2752 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2753 calls. Processes the subexpressions of EXP and passes them to F. */
2754 static int
2755 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2757 int result, i, j;
2758 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2759 rtx *x;
2761 for (; format[n] != '\0'; n++)
2763 switch (format[n])
2765 case 'e':
2766 /* Call F on X. */
2767 x = &XEXP (exp, n);
2768 result = (*f) (x, data);
2769 if (result == -1)
2770 /* Do not traverse sub-expressions. */
2771 continue;
2772 else if (result != 0)
2773 /* Stop the traversal. */
2774 return result;
2776 if (*x == NULL_RTX)
2777 /* There are no sub-expressions. */
2778 continue;
2780 i = non_rtx_starting_operands[GET_CODE (*x)];
2781 if (i >= 0)
2783 result = for_each_rtx_1 (*x, i, f, data);
2784 if (result != 0)
2785 return result;
2787 break;
2789 case 'V':
2790 case 'E':
2791 if (XVEC (exp, n) == 0)
2792 continue;
2793 for (j = 0; j < XVECLEN (exp, n); ++j)
2795 /* Call F on X. */
2796 x = &XVECEXP (exp, n, j);
2797 result = (*f) (x, data);
2798 if (result == -1)
2799 /* Do not traverse sub-expressions. */
2800 continue;
2801 else if (result != 0)
2802 /* Stop the traversal. */
2803 return result;
2805 if (*x == NULL_RTX)
2806 /* There are no sub-expressions. */
2807 continue;
2809 i = non_rtx_starting_operands[GET_CODE (*x)];
2810 if (i >= 0)
2812 result = for_each_rtx_1 (*x, i, f, data);
2813 if (result != 0)
2814 return result;
2817 break;
2819 default:
2820 /* Nothing to do. */
2821 break;
2825 return 0;
2828 /* Traverse X via depth-first search, calling F for each
2829 sub-expression (including X itself). F is also passed the DATA.
2830 If F returns -1, do not traverse sub-expressions, but continue
2831 traversing the rest of the tree. If F ever returns any other
2832 nonzero value, stop the traversal, and return the value returned
2833 by F. Otherwise, return 0. This function does not traverse inside
2834 tree structure that contains RTX_EXPRs, or into sub-expressions
2835 whose format code is `0' since it is not known whether or not those
2836 codes are actually RTL.
2838 This routine is very general, and could (should?) be used to
2839 implement many of the other routines in this file. */
2842 for_each_rtx (rtx *x, rtx_function f, void *data)
2844 int result;
2845 int i;
2847 /* Call F on X. */
2848 result = (*f) (x, data);
2849 if (result == -1)
2850 /* Do not traverse sub-expressions. */
2851 return 0;
2852 else if (result != 0)
2853 /* Stop the traversal. */
2854 return result;
2856 if (*x == NULL_RTX)
2857 /* There are no sub-expressions. */
2858 return 0;
2860 i = non_rtx_starting_operands[GET_CODE (*x)];
2861 if (i < 0)
2862 return 0;
2864 return for_each_rtx_1 (*x, i, f, data);
2868 /* Searches X for any reference to REGNO, returning the rtx of the
2869 reference found if any. Otherwise, returns NULL_RTX. */
2872 regno_use_in (unsigned int regno, rtx x)
2874 const char *fmt;
2875 int i, j;
2876 rtx tem;
2878 if (REG_P (x) && REGNO (x) == regno)
2879 return x;
2881 fmt = GET_RTX_FORMAT (GET_CODE (x));
2882 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2884 if (fmt[i] == 'e')
2886 if ((tem = regno_use_in (regno, XEXP (x, i))))
2887 return tem;
2889 else if (fmt[i] == 'E')
2890 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2891 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2892 return tem;
2895 return NULL_RTX;
2898 /* Return a value indicating whether OP, an operand of a commutative
2899 operation, is preferred as the first or second operand. The higher
2900 the value, the stronger the preference for being the first operand.
2901 We use negative values to indicate a preference for the first operand
2902 and positive values for the second operand. */
2905 commutative_operand_precedence (rtx op)
2907 enum rtx_code code = GET_CODE (op);
2909 /* Constants always come the second operand. Prefer "nice" constants. */
2910 if (code == CONST_INT)
2911 return -8;
2912 if (code == CONST_DOUBLE)
2913 return -7;
2914 if (code == CONST_FIXED)
2915 return -7;
2916 op = avoid_constant_pool_reference (op);
2917 code = GET_CODE (op);
2919 switch (GET_RTX_CLASS (code))
2921 case RTX_CONST_OBJ:
2922 if (code == CONST_INT)
2923 return -6;
2924 if (code == CONST_DOUBLE)
2925 return -5;
2926 if (code == CONST_FIXED)
2927 return -5;
2928 return -4;
2930 case RTX_EXTRA:
2931 /* SUBREGs of objects should come second. */
2932 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2933 return -3;
2934 return 0;
2936 case RTX_OBJ:
2937 /* Complex expressions should be the first, so decrease priority
2938 of objects. Prefer pointer objects over non pointer objects. */
2939 if ((REG_P (op) && REG_POINTER (op))
2940 || (MEM_P (op) && MEM_POINTER (op)))
2941 return -1;
2942 return -2;
2944 case RTX_COMM_ARITH:
2945 /* Prefer operands that are themselves commutative to be first.
2946 This helps to make things linear. In particular,
2947 (and (and (reg) (reg)) (not (reg))) is canonical. */
2948 return 4;
2950 case RTX_BIN_ARITH:
2951 /* If only one operand is a binary expression, it will be the first
2952 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2953 is canonical, although it will usually be further simplified. */
2954 return 2;
2956 case RTX_UNARY:
2957 /* Then prefer NEG and NOT. */
2958 if (code == NEG || code == NOT)
2959 return 1;
2961 default:
2962 return 0;
2966 /* Return 1 iff it is necessary to swap operands of commutative operation
2967 in order to canonicalize expression. */
2969 bool
2970 swap_commutative_operands_p (rtx x, rtx y)
2972 return (commutative_operand_precedence (x)
2973 < commutative_operand_precedence (y));
2976 /* Return 1 if X is an autoincrement side effect and the register is
2977 not the stack pointer. */
2979 auto_inc_p (const_rtx x)
2981 switch (GET_CODE (x))
2983 case PRE_INC:
2984 case POST_INC:
2985 case PRE_DEC:
2986 case POST_DEC:
2987 case PRE_MODIFY:
2988 case POST_MODIFY:
2989 /* There are no REG_INC notes for SP. */
2990 if (XEXP (x, 0) != stack_pointer_rtx)
2991 return 1;
2992 default:
2993 break;
2995 return 0;
2998 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3000 loc_mentioned_in_p (rtx *loc, const_rtx in)
3002 enum rtx_code code;
3003 const char *fmt;
3004 int i, j;
3006 if (!in)
3007 return 0;
3009 code = GET_CODE (in);
3010 fmt = GET_RTX_FORMAT (code);
3011 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3013 if (fmt[i] == 'e')
3015 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3016 return 1;
3018 else if (fmt[i] == 'E')
3019 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3020 if (loc == &XVECEXP (in, i, j)
3021 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3022 return 1;
3024 return 0;
3027 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3028 and SUBREG_BYTE, return the bit offset where the subreg begins
3029 (counting from the least significant bit of the operand). */
3031 unsigned int
3032 subreg_lsb_1 (enum machine_mode outer_mode,
3033 enum machine_mode inner_mode,
3034 unsigned int subreg_byte)
3036 unsigned int bitpos;
3037 unsigned int byte;
3038 unsigned int word;
3040 /* A paradoxical subreg begins at bit position 0. */
3041 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3042 return 0;
3044 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3045 /* If the subreg crosses a word boundary ensure that
3046 it also begins and ends on a word boundary. */
3047 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3048 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3049 && (subreg_byte % UNITS_PER_WORD
3050 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3052 if (WORDS_BIG_ENDIAN)
3053 word = (GET_MODE_SIZE (inner_mode)
3054 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3055 else
3056 word = subreg_byte / UNITS_PER_WORD;
3057 bitpos = word * BITS_PER_WORD;
3059 if (BYTES_BIG_ENDIAN)
3060 byte = (GET_MODE_SIZE (inner_mode)
3061 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3062 else
3063 byte = subreg_byte % UNITS_PER_WORD;
3064 bitpos += byte * BITS_PER_UNIT;
3066 return bitpos;
3069 /* Given a subreg X, return the bit offset where the subreg begins
3070 (counting from the least significant bit of the reg). */
3072 unsigned int
3073 subreg_lsb (const_rtx x)
3075 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3076 SUBREG_BYTE (x));
3079 /* Fill in information about a subreg of a hard register.
3080 xregno - A regno of an inner hard subreg_reg (or what will become one).
3081 xmode - The mode of xregno.
3082 offset - The byte offset.
3083 ymode - The mode of a top level SUBREG (or what may become one).
3084 info - Pointer to structure to fill in. */
3085 void
3086 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3087 unsigned int offset, enum machine_mode ymode,
3088 struct subreg_info *info)
3090 int nregs_xmode, nregs_ymode;
3091 int mode_multiple, nregs_multiple;
3092 int offset_adj, y_offset, y_offset_adj;
3093 int regsize_xmode, regsize_ymode;
3094 bool rknown;
3096 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3098 rknown = false;
3100 /* If there are holes in a non-scalar mode in registers, we expect
3101 that it is made up of its units concatenated together. */
3102 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3104 enum machine_mode xmode_unit;
3106 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3107 if (GET_MODE_INNER (xmode) == VOIDmode)
3108 xmode_unit = xmode;
3109 else
3110 xmode_unit = GET_MODE_INNER (xmode);
3111 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3112 gcc_assert (nregs_xmode
3113 == (GET_MODE_NUNITS (xmode)
3114 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3115 gcc_assert (hard_regno_nregs[xregno][xmode]
3116 == (hard_regno_nregs[xregno][xmode_unit]
3117 * GET_MODE_NUNITS (xmode)));
3119 /* You can only ask for a SUBREG of a value with holes in the middle
3120 if you don't cross the holes. (Such a SUBREG should be done by
3121 picking a different register class, or doing it in memory if
3122 necessary.) An example of a value with holes is XCmode on 32-bit
3123 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3124 3 for each part, but in memory it's two 128-bit parts.
3125 Padding is assumed to be at the end (not necessarily the 'high part')
3126 of each unit. */
3127 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3128 < GET_MODE_NUNITS (xmode))
3129 && (offset / GET_MODE_SIZE (xmode_unit)
3130 != ((offset + GET_MODE_SIZE (ymode) - 1)
3131 / GET_MODE_SIZE (xmode_unit))))
3133 info->representable_p = false;
3134 rknown = true;
3137 else
3138 nregs_xmode = hard_regno_nregs[xregno][xmode];
3140 nregs_ymode = hard_regno_nregs[xregno][ymode];
3142 /* Paradoxical subregs are otherwise valid. */
3143 if (!rknown
3144 && offset == 0
3145 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3147 info->representable_p = true;
3148 /* If this is a big endian paradoxical subreg, which uses more
3149 actual hard registers than the original register, we must
3150 return a negative offset so that we find the proper highpart
3151 of the register. */
3152 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3153 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3154 info->offset = nregs_xmode - nregs_ymode;
3155 else
3156 info->offset = 0;
3157 info->nregs = nregs_ymode;
3158 return;
3161 /* If registers store different numbers of bits in the different
3162 modes, we cannot generally form this subreg. */
3163 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3164 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3165 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3166 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3168 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3169 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3170 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3172 info->representable_p = false;
3173 info->nregs
3174 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3175 info->offset = offset / regsize_xmode;
3176 return;
3178 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3180 info->representable_p = false;
3181 info->nregs
3182 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3183 info->offset = offset / regsize_xmode;
3184 return;
3188 /* Lowpart subregs are otherwise valid. */
3189 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3191 info->representable_p = true;
3192 rknown = true;
3194 if (offset == 0 || nregs_xmode == nregs_ymode)
3196 info->offset = 0;
3197 info->nregs = nregs_ymode;
3198 return;
3202 /* This should always pass, otherwise we don't know how to verify
3203 the constraint. These conditions may be relaxed but
3204 subreg_regno_offset would need to be redesigned. */
3205 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3206 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3208 /* The XMODE value can be seen as a vector of NREGS_XMODE
3209 values. The subreg must represent a lowpart of given field.
3210 Compute what field it is. */
3211 offset_adj = offset;
3212 offset_adj -= subreg_lowpart_offset (ymode,
3213 mode_for_size (GET_MODE_BITSIZE (xmode)
3214 / nregs_xmode,
3215 MODE_INT, 0));
3217 /* Size of ymode must not be greater than the size of xmode. */
3218 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3219 gcc_assert (mode_multiple != 0);
3221 y_offset = offset / GET_MODE_SIZE (ymode);
3222 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3223 nregs_multiple = nregs_xmode / nregs_ymode;
3225 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3226 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3228 if (!rknown)
3230 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3231 rknown = true;
3233 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3234 info->nregs = nregs_ymode;
3237 /* This function returns the regno offset of a subreg expression.
3238 xregno - A regno of an inner hard subreg_reg (or what will become one).
3239 xmode - The mode of xregno.
3240 offset - The byte offset.
3241 ymode - The mode of a top level SUBREG (or what may become one).
3242 RETURN - The regno offset which would be used. */
3243 unsigned int
3244 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3245 unsigned int offset, enum machine_mode ymode)
3247 struct subreg_info info;
3248 subreg_get_info (xregno, xmode, offset, ymode, &info);
3249 return info.offset;
3252 /* This function returns true when the offset is representable via
3253 subreg_offset in the given regno.
3254 xregno - A regno of an inner hard subreg_reg (or what will become one).
3255 xmode - The mode of xregno.
3256 offset - The byte offset.
3257 ymode - The mode of a top level SUBREG (or what may become one).
3258 RETURN - Whether the offset is representable. */
3259 bool
3260 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3261 unsigned int offset, enum machine_mode ymode)
3263 struct subreg_info info;
3264 subreg_get_info (xregno, xmode, offset, ymode, &info);
3265 return info.representable_p;
3268 /* Return the number of a YMODE register to which
3270 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3272 can be simplified. Return -1 if the subreg can't be simplified.
3274 XREGNO is a hard register number. */
3277 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3278 unsigned int offset, enum machine_mode ymode)
3280 struct subreg_info info;
3281 unsigned int yregno;
3283 #ifdef CANNOT_CHANGE_MODE_CLASS
3284 /* Give the backend a chance to disallow the mode change. */
3285 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3286 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3287 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3288 return -1;
3289 #endif
3291 /* We shouldn't simplify stack-related registers. */
3292 if ((!reload_completed || frame_pointer_needed)
3293 && (xregno == FRAME_POINTER_REGNUM
3294 || xregno == HARD_FRAME_POINTER_REGNUM))
3295 return -1;
3297 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3298 && xregno == ARG_POINTER_REGNUM)
3299 return -1;
3301 if (xregno == STACK_POINTER_REGNUM)
3302 return -1;
3304 /* Try to get the register offset. */
3305 subreg_get_info (xregno, xmode, offset, ymode, &info);
3306 if (!info.representable_p)
3307 return -1;
3309 /* Make sure that the offsetted register value is in range. */
3310 yregno = xregno + info.offset;
3311 if (!HARD_REGISTER_NUM_P (yregno))
3312 return -1;
3314 /* See whether (reg:YMODE YREGNO) is valid.
3316 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3317 This is a kludge to work around how float/complex arguments are passed
3318 on 32-bit SPARC and should be fixed. */
3319 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3320 && HARD_REGNO_MODE_OK (xregno, xmode))
3321 return -1;
3323 return (int) yregno;
3326 /* Return the final regno that a subreg expression refers to. */
3327 unsigned int
3328 subreg_regno (const_rtx x)
3330 unsigned int ret;
3331 rtx subreg = SUBREG_REG (x);
3332 int regno = REGNO (subreg);
3334 ret = regno + subreg_regno_offset (regno,
3335 GET_MODE (subreg),
3336 SUBREG_BYTE (x),
3337 GET_MODE (x));
3338 return ret;
3342 /* Return the number of registers that a subreg expression refers
3343 to. */
3344 unsigned int
3345 subreg_nregs (const_rtx x)
3347 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3350 /* Return the number of registers that a subreg REG with REGNO
3351 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3352 changed so that the regno can be passed in. */
3354 unsigned int
3355 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3357 struct subreg_info info;
3358 rtx subreg = SUBREG_REG (x);
3360 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3361 &info);
3362 return info.nregs;
3366 struct parms_set_data
3368 int nregs;
3369 HARD_REG_SET regs;
3372 /* Helper function for noticing stores to parameter registers. */
3373 static void
3374 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3376 struct parms_set_data *const d = (struct parms_set_data *) data;
3377 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3378 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3380 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3381 d->nregs--;
3385 /* Look backward for first parameter to be loaded.
3386 Note that loads of all parameters will not necessarily be
3387 found if CSE has eliminated some of them (e.g., an argument
3388 to the outer function is passed down as a parameter).
3389 Do not skip BOUNDARY. */
3391 find_first_parameter_load (rtx call_insn, rtx boundary)
3393 struct parms_set_data parm;
3394 rtx p, before, first_set;
3396 /* Since different machines initialize their parameter registers
3397 in different orders, assume nothing. Collect the set of all
3398 parameter registers. */
3399 CLEAR_HARD_REG_SET (parm.regs);
3400 parm.nregs = 0;
3401 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3402 if (GET_CODE (XEXP (p, 0)) == USE
3403 && REG_P (XEXP (XEXP (p, 0), 0)))
3405 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3407 /* We only care about registers which can hold function
3408 arguments. */
3409 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3410 continue;
3412 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3413 parm.nregs++;
3415 before = call_insn;
3416 first_set = call_insn;
3418 /* Search backward for the first set of a register in this set. */
3419 while (parm.nregs && before != boundary)
3421 before = PREV_INSN (before);
3423 /* It is possible that some loads got CSEed from one call to
3424 another. Stop in that case. */
3425 if (CALL_P (before))
3426 break;
3428 /* Our caller needs either ensure that we will find all sets
3429 (in case code has not been optimized yet), or take care
3430 for possible labels in a way by setting boundary to preceding
3431 CODE_LABEL. */
3432 if (LABEL_P (before))
3434 gcc_assert (before == boundary);
3435 break;
3438 if (INSN_P (before))
3440 int nregs_old = parm.nregs;
3441 note_stores (PATTERN (before), parms_set, &parm);
3442 /* If we found something that did not set a parameter reg,
3443 we're done. Do not keep going, as that might result
3444 in hoisting an insn before the setting of a pseudo
3445 that is used by the hoisted insn. */
3446 if (nregs_old != parm.nregs)
3447 first_set = before;
3448 else
3449 break;
3452 return first_set;
3455 /* Return true if we should avoid inserting code between INSN and preceding
3456 call instruction. */
3458 bool
3459 keep_with_call_p (const_rtx insn)
3461 rtx set;
3463 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3465 if (REG_P (SET_DEST (set))
3466 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3467 && fixed_regs[REGNO (SET_DEST (set))]
3468 && general_operand (SET_SRC (set), VOIDmode))
3469 return true;
3470 if (REG_P (SET_SRC (set))
3471 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3472 && REG_P (SET_DEST (set))
3473 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3474 return true;
3475 /* There may be a stack pop just after the call and before the store
3476 of the return register. Search for the actual store when deciding
3477 if we can break or not. */
3478 if (SET_DEST (set) == stack_pointer_rtx)
3480 /* This CONST_CAST is okay because next_nonnote_insn just
3481 returns its argument and we assign it to a const_rtx
3482 variable. */
3483 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3484 if (i2 && keep_with_call_p (i2))
3485 return true;
3488 return false;
3491 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3492 to non-complex jumps. That is, direct unconditional, conditional,
3493 and tablejumps, but not computed jumps or returns. It also does
3494 not apply to the fallthru case of a conditional jump. */
3496 bool
3497 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3499 rtx tmp = JUMP_LABEL (jump_insn);
3501 if (label == tmp)
3502 return true;
3504 if (tablejump_p (jump_insn, NULL, &tmp))
3506 rtvec vec = XVEC (PATTERN (tmp),
3507 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3508 int i, veclen = GET_NUM_ELEM (vec);
3510 for (i = 0; i < veclen; ++i)
3511 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3512 return true;
3515 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3516 return true;
3518 return false;
3522 /* Return an estimate of the cost of computing rtx X.
3523 One use is in cse, to decide which expression to keep in the hash table.
3524 Another is in rtl generation, to pick the cheapest way to multiply.
3525 Other uses like the latter are expected in the future.
3527 SPEED parameter specify whether costs optimized for speed or size should
3528 be returned. */
3531 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED, bool speed)
3533 int i, j;
3534 enum rtx_code code;
3535 const char *fmt;
3536 int total;
3538 if (x == 0)
3539 return 0;
3541 /* Compute the default costs of certain things.
3542 Note that targetm.rtx_costs can override the defaults. */
3544 code = GET_CODE (x);
3545 switch (code)
3547 case MULT:
3548 total = COSTS_N_INSNS (5);
3549 break;
3550 case DIV:
3551 case UDIV:
3552 case MOD:
3553 case UMOD:
3554 total = COSTS_N_INSNS (7);
3555 break;
3556 case USE:
3557 /* Used in combine.c as a marker. */
3558 total = 0;
3559 break;
3560 default:
3561 total = COSTS_N_INSNS (1);
3564 switch (code)
3566 case REG:
3567 return 0;
3569 case SUBREG:
3570 total = 0;
3571 /* If we can't tie these modes, make this expensive. The larger
3572 the mode, the more expensive it is. */
3573 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3574 return COSTS_N_INSNS (2
3575 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3576 break;
3578 default:
3579 if (targetm.rtx_costs (x, code, outer_code, &total, speed))
3580 return total;
3581 break;
3584 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3585 which is already in total. */
3587 fmt = GET_RTX_FORMAT (code);
3588 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3589 if (fmt[i] == 'e')
3590 total += rtx_cost (XEXP (x, i), code, speed);
3591 else if (fmt[i] == 'E')
3592 for (j = 0; j < XVECLEN (x, i); j++)
3593 total += rtx_cost (XVECEXP (x, i, j), code, speed);
3595 return total;
3598 /* Return cost of address expression X.
3599 Expect that X is properly formed address reference.
3601 SPEED parameter specify whether costs optimized for speed or size should
3602 be returned. */
3605 address_cost (rtx x, enum machine_mode mode, bool speed)
3607 /* We may be asked for cost of various unusual addresses, such as operands
3608 of push instruction. It is not worthwhile to complicate writing
3609 of the target hook by such cases. */
3611 if (!memory_address_p (mode, x))
3612 return 1000;
3614 return targetm.address_cost (x, speed);
3617 /* If the target doesn't override, compute the cost as with arithmetic. */
3620 default_address_cost (rtx x, bool speed)
3622 return rtx_cost (x, MEM, speed);
3626 unsigned HOST_WIDE_INT
3627 nonzero_bits (const_rtx x, enum machine_mode mode)
3629 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3632 unsigned int
3633 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3635 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3638 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3639 It avoids exponential behavior in nonzero_bits1 when X has
3640 identical subexpressions on the first or the second level. */
3642 static unsigned HOST_WIDE_INT
3643 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3644 enum machine_mode known_mode,
3645 unsigned HOST_WIDE_INT known_ret)
3647 if (x == known_x && mode == known_mode)
3648 return known_ret;
3650 /* Try to find identical subexpressions. If found call
3651 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3652 precomputed value for the subexpression as KNOWN_RET. */
3654 if (ARITHMETIC_P (x))
3656 rtx x0 = XEXP (x, 0);
3657 rtx x1 = XEXP (x, 1);
3659 /* Check the first level. */
3660 if (x0 == x1)
3661 return nonzero_bits1 (x, mode, x0, mode,
3662 cached_nonzero_bits (x0, mode, known_x,
3663 known_mode, known_ret));
3665 /* Check the second level. */
3666 if (ARITHMETIC_P (x0)
3667 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3668 return nonzero_bits1 (x, mode, x1, mode,
3669 cached_nonzero_bits (x1, mode, known_x,
3670 known_mode, known_ret));
3672 if (ARITHMETIC_P (x1)
3673 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3674 return nonzero_bits1 (x, mode, x0, mode,
3675 cached_nonzero_bits (x0, mode, known_x,
3676 known_mode, known_ret));
3679 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3682 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3683 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3684 is less useful. We can't allow both, because that results in exponential
3685 run time recursion. There is a nullstone testcase that triggered
3686 this. This macro avoids accidental uses of num_sign_bit_copies. */
3687 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3689 /* Given an expression, X, compute which bits in X can be nonzero.
3690 We don't care about bits outside of those defined in MODE.
3692 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3693 an arithmetic operation, we can do better. */
3695 static unsigned HOST_WIDE_INT
3696 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3697 enum machine_mode known_mode,
3698 unsigned HOST_WIDE_INT known_ret)
3700 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3701 unsigned HOST_WIDE_INT inner_nz;
3702 enum rtx_code code;
3703 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3705 /* For floating-point and vector values, assume all bits are needed. */
3706 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3707 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3708 return nonzero;
3710 /* If X is wider than MODE, use its mode instead. */
3711 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3713 mode = GET_MODE (x);
3714 nonzero = GET_MODE_MASK (mode);
3715 mode_width = GET_MODE_BITSIZE (mode);
3718 if (mode_width > HOST_BITS_PER_WIDE_INT)
3719 /* Our only callers in this case look for single bit values. So
3720 just return the mode mask. Those tests will then be false. */
3721 return nonzero;
3723 #ifndef WORD_REGISTER_OPERATIONS
3724 /* If MODE is wider than X, but both are a single word for both the host
3725 and target machines, we can compute this from which bits of the
3726 object might be nonzero in its own mode, taking into account the fact
3727 that on many CISC machines, accessing an object in a wider mode
3728 causes the high-order bits to become undefined. So they are
3729 not known to be zero. */
3731 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3732 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3733 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3734 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3736 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3737 known_x, known_mode, known_ret);
3738 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3739 return nonzero;
3741 #endif
3743 code = GET_CODE (x);
3744 switch (code)
3746 case REG:
3747 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3748 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3749 all the bits above ptr_mode are known to be zero. */
3750 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3751 && REG_POINTER (x))
3752 nonzero &= GET_MODE_MASK (ptr_mode);
3753 #endif
3755 /* Include declared information about alignment of pointers. */
3756 /* ??? We don't properly preserve REG_POINTER changes across
3757 pointer-to-integer casts, so we can't trust it except for
3758 things that we know must be pointers. See execute/960116-1.c. */
3759 if ((x == stack_pointer_rtx
3760 || x == frame_pointer_rtx
3761 || x == arg_pointer_rtx)
3762 && REGNO_POINTER_ALIGN (REGNO (x)))
3764 unsigned HOST_WIDE_INT alignment
3765 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3767 #ifdef PUSH_ROUNDING
3768 /* If PUSH_ROUNDING is defined, it is possible for the
3769 stack to be momentarily aligned only to that amount,
3770 so we pick the least alignment. */
3771 if (x == stack_pointer_rtx && PUSH_ARGS)
3772 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3773 alignment);
3774 #endif
3776 nonzero &= ~(alignment - 1);
3780 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3781 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3782 known_mode, known_ret,
3783 &nonzero_for_hook);
3785 if (new_rtx)
3786 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
3787 known_mode, known_ret);
3789 return nonzero_for_hook;
3792 case CONST_INT:
3793 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3794 /* If X is negative in MODE, sign-extend the value. */
3795 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3796 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3797 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3798 #endif
3800 return INTVAL (x);
3802 case MEM:
3803 #ifdef LOAD_EXTEND_OP
3804 /* In many, if not most, RISC machines, reading a byte from memory
3805 zeros the rest of the register. Noticing that fact saves a lot
3806 of extra zero-extends. */
3807 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3808 nonzero &= GET_MODE_MASK (GET_MODE (x));
3809 #endif
3810 break;
3812 case EQ: case NE:
3813 case UNEQ: case LTGT:
3814 case GT: case GTU: case UNGT:
3815 case LT: case LTU: case UNLT:
3816 case GE: case GEU: case UNGE:
3817 case LE: case LEU: case UNLE:
3818 case UNORDERED: case ORDERED:
3819 /* If this produces an integer result, we know which bits are set.
3820 Code here used to clear bits outside the mode of X, but that is
3821 now done above. */
3822 /* Mind that MODE is the mode the caller wants to look at this
3823 operation in, and not the actual operation mode. We can wind
3824 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3825 that describes the results of a vector compare. */
3826 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3827 && mode_width <= HOST_BITS_PER_WIDE_INT)
3828 nonzero = STORE_FLAG_VALUE;
3829 break;
3831 case NEG:
3832 #if 0
3833 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3834 and num_sign_bit_copies. */
3835 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3836 == GET_MODE_BITSIZE (GET_MODE (x)))
3837 nonzero = 1;
3838 #endif
3840 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3841 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3842 break;
3844 case ABS:
3845 #if 0
3846 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3847 and num_sign_bit_copies. */
3848 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3849 == GET_MODE_BITSIZE (GET_MODE (x)))
3850 nonzero = 1;
3851 #endif
3852 break;
3854 case TRUNCATE:
3855 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3856 known_x, known_mode, known_ret)
3857 & GET_MODE_MASK (mode));
3858 break;
3860 case ZERO_EXTEND:
3861 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3862 known_x, known_mode, known_ret);
3863 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3864 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3865 break;
3867 case SIGN_EXTEND:
3868 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3869 Otherwise, show all the bits in the outer mode but not the inner
3870 may be nonzero. */
3871 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3872 known_x, known_mode, known_ret);
3873 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3875 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3876 if (inner_nz
3877 & (((HOST_WIDE_INT) 1
3878 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3879 inner_nz |= (GET_MODE_MASK (mode)
3880 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3883 nonzero &= inner_nz;
3884 break;
3886 case AND:
3887 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3888 known_x, known_mode, known_ret)
3889 & cached_nonzero_bits (XEXP (x, 1), mode,
3890 known_x, known_mode, known_ret);
3891 break;
3893 case XOR: case IOR:
3894 case UMIN: case UMAX: case SMIN: case SMAX:
3896 unsigned HOST_WIDE_INT nonzero0 =
3897 cached_nonzero_bits (XEXP (x, 0), mode,
3898 known_x, known_mode, known_ret);
3900 /* Don't call nonzero_bits for the second time if it cannot change
3901 anything. */
3902 if ((nonzero & nonzero0) != nonzero)
3903 nonzero &= nonzero0
3904 | cached_nonzero_bits (XEXP (x, 1), mode,
3905 known_x, known_mode, known_ret);
3907 break;
3909 case PLUS: case MINUS:
3910 case MULT:
3911 case DIV: case UDIV:
3912 case MOD: case UMOD:
3913 /* We can apply the rules of arithmetic to compute the number of
3914 high- and low-order zero bits of these operations. We start by
3915 computing the width (position of the highest-order nonzero bit)
3916 and the number of low-order zero bits for each value. */
3918 unsigned HOST_WIDE_INT nz0 =
3919 cached_nonzero_bits (XEXP (x, 0), mode,
3920 known_x, known_mode, known_ret);
3921 unsigned HOST_WIDE_INT nz1 =
3922 cached_nonzero_bits (XEXP (x, 1), mode,
3923 known_x, known_mode, known_ret);
3924 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3925 int width0 = floor_log2 (nz0) + 1;
3926 int width1 = floor_log2 (nz1) + 1;
3927 int low0 = floor_log2 (nz0 & -nz0);
3928 int low1 = floor_log2 (nz1 & -nz1);
3929 HOST_WIDE_INT op0_maybe_minusp
3930 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3931 HOST_WIDE_INT op1_maybe_minusp
3932 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3933 unsigned int result_width = mode_width;
3934 int result_low = 0;
3936 switch (code)
3938 case PLUS:
3939 result_width = MAX (width0, width1) + 1;
3940 result_low = MIN (low0, low1);
3941 break;
3942 case MINUS:
3943 result_low = MIN (low0, low1);
3944 break;
3945 case MULT:
3946 result_width = width0 + width1;
3947 result_low = low0 + low1;
3948 break;
3949 case DIV:
3950 if (width1 == 0)
3951 break;
3952 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3953 result_width = width0;
3954 break;
3955 case UDIV:
3956 if (width1 == 0)
3957 break;
3958 result_width = width0;
3959 break;
3960 case MOD:
3961 if (width1 == 0)
3962 break;
3963 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3964 result_width = MIN (width0, width1);
3965 result_low = MIN (low0, low1);
3966 break;
3967 case UMOD:
3968 if (width1 == 0)
3969 break;
3970 result_width = MIN (width0, width1);
3971 result_low = MIN (low0, low1);
3972 break;
3973 default:
3974 gcc_unreachable ();
3977 if (result_width < mode_width)
3978 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3980 if (result_low > 0)
3981 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3983 #ifdef POINTERS_EXTEND_UNSIGNED
3984 /* If pointers extend unsigned and this is an addition or subtraction
3985 to a pointer in Pmode, all the bits above ptr_mode are known to be
3986 zero. */
3987 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3988 && (code == PLUS || code == MINUS)
3989 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3990 nonzero &= GET_MODE_MASK (ptr_mode);
3991 #endif
3993 break;
3995 case ZERO_EXTRACT:
3996 if (CONST_INT_P (XEXP (x, 1))
3997 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3998 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3999 break;
4001 case SUBREG:
4002 /* If this is a SUBREG formed for a promoted variable that has
4003 been zero-extended, we know that at least the high-order bits
4004 are zero, though others might be too. */
4006 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4007 nonzero = GET_MODE_MASK (GET_MODE (x))
4008 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4009 known_x, known_mode, known_ret);
4011 /* If the inner mode is a single word for both the host and target
4012 machines, we can compute this from which bits of the inner
4013 object might be nonzero. */
4014 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
4015 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4016 <= HOST_BITS_PER_WIDE_INT))
4018 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4019 known_x, known_mode, known_ret);
4021 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4022 /* If this is a typical RISC machine, we only have to worry
4023 about the way loads are extended. */
4024 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4025 ? (((nonzero
4026 & (((unsigned HOST_WIDE_INT) 1
4027 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
4028 != 0))
4029 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
4030 || !MEM_P (SUBREG_REG (x)))
4031 #endif
4033 /* On many CISC machines, accessing an object in a wider mode
4034 causes the high-order bits to become undefined. So they are
4035 not known to be zero. */
4036 if (GET_MODE_SIZE (GET_MODE (x))
4037 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4038 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4039 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
4042 break;
4044 case ASHIFTRT:
4045 case LSHIFTRT:
4046 case ASHIFT:
4047 case ROTATE:
4048 /* The nonzero bits are in two classes: any bits within MODE
4049 that aren't in GET_MODE (x) are always significant. The rest of the
4050 nonzero bits are those that are significant in the operand of
4051 the shift when shifted the appropriate number of bits. This
4052 shows that high-order bits are cleared by the right shift and
4053 low-order bits by left shifts. */
4054 if (CONST_INT_P (XEXP (x, 1))
4055 && INTVAL (XEXP (x, 1)) >= 0
4056 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4057 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4059 enum machine_mode inner_mode = GET_MODE (x);
4060 unsigned int width = GET_MODE_BITSIZE (inner_mode);
4061 int count = INTVAL (XEXP (x, 1));
4062 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4063 unsigned HOST_WIDE_INT op_nonzero =
4064 cached_nonzero_bits (XEXP (x, 0), mode,
4065 known_x, known_mode, known_ret);
4066 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4067 unsigned HOST_WIDE_INT outer = 0;
4069 if (mode_width > width)
4070 outer = (op_nonzero & nonzero & ~mode_mask);
4072 if (code == LSHIFTRT)
4073 inner >>= count;
4074 else if (code == ASHIFTRT)
4076 inner >>= count;
4078 /* If the sign bit may have been nonzero before the shift, we
4079 need to mark all the places it could have been copied to
4080 by the shift as possibly nonzero. */
4081 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
4082 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
4084 else if (code == ASHIFT)
4085 inner <<= count;
4086 else
4087 inner = ((inner << (count % width)
4088 | (inner >> (width - (count % width)))) & mode_mask);
4090 nonzero &= (outer | inner);
4092 break;
4094 case FFS:
4095 case POPCOUNT:
4096 /* This is at most the number of bits in the mode. */
4097 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4098 break;
4100 case CLZ:
4101 /* If CLZ has a known value at zero, then the nonzero bits are
4102 that value, plus the number of bits in the mode minus one. */
4103 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4104 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4105 else
4106 nonzero = -1;
4107 break;
4109 case CTZ:
4110 /* If CTZ has a known value at zero, then the nonzero bits are
4111 that value, plus the number of bits in the mode minus one. */
4112 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4113 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4114 else
4115 nonzero = -1;
4116 break;
4118 case PARITY:
4119 nonzero = 1;
4120 break;
4122 case IF_THEN_ELSE:
4124 unsigned HOST_WIDE_INT nonzero_true =
4125 cached_nonzero_bits (XEXP (x, 1), mode,
4126 known_x, known_mode, known_ret);
4128 /* Don't call nonzero_bits for the second time if it cannot change
4129 anything. */
4130 if ((nonzero & nonzero_true) != nonzero)
4131 nonzero &= nonzero_true
4132 | cached_nonzero_bits (XEXP (x, 2), mode,
4133 known_x, known_mode, known_ret);
4135 break;
4137 default:
4138 break;
4141 return nonzero;
4144 /* See the macro definition above. */
4145 #undef cached_num_sign_bit_copies
4148 /* The function cached_num_sign_bit_copies is a wrapper around
4149 num_sign_bit_copies1. It avoids exponential behavior in
4150 num_sign_bit_copies1 when X has identical subexpressions on the
4151 first or the second level. */
4153 static unsigned int
4154 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4155 enum machine_mode known_mode,
4156 unsigned int known_ret)
4158 if (x == known_x && mode == known_mode)
4159 return known_ret;
4161 /* Try to find identical subexpressions. If found call
4162 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4163 the precomputed value for the subexpression as KNOWN_RET. */
4165 if (ARITHMETIC_P (x))
4167 rtx x0 = XEXP (x, 0);
4168 rtx x1 = XEXP (x, 1);
4170 /* Check the first level. */
4171 if (x0 == x1)
4172 return
4173 num_sign_bit_copies1 (x, mode, x0, mode,
4174 cached_num_sign_bit_copies (x0, mode, known_x,
4175 known_mode,
4176 known_ret));
4178 /* Check the second level. */
4179 if (ARITHMETIC_P (x0)
4180 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4181 return
4182 num_sign_bit_copies1 (x, mode, x1, mode,
4183 cached_num_sign_bit_copies (x1, mode, known_x,
4184 known_mode,
4185 known_ret));
4187 if (ARITHMETIC_P (x1)
4188 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4189 return
4190 num_sign_bit_copies1 (x, mode, x0, mode,
4191 cached_num_sign_bit_copies (x0, mode, known_x,
4192 known_mode,
4193 known_ret));
4196 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4199 /* Return the number of bits at the high-order end of X that are known to
4200 be equal to the sign bit. X will be used in mode MODE; if MODE is
4201 VOIDmode, X will be used in its own mode. The returned value will always
4202 be between 1 and the number of bits in MODE. */
4204 static unsigned int
4205 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4206 enum machine_mode known_mode,
4207 unsigned int known_ret)
4209 enum rtx_code code = GET_CODE (x);
4210 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4211 int num0, num1, result;
4212 unsigned HOST_WIDE_INT nonzero;
4214 /* If we weren't given a mode, use the mode of X. If the mode is still
4215 VOIDmode, we don't know anything. Likewise if one of the modes is
4216 floating-point. */
4218 if (mode == VOIDmode)
4219 mode = GET_MODE (x);
4221 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4222 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4223 return 1;
4225 /* For a smaller object, just ignore the high bits. */
4226 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4228 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4229 known_x, known_mode, known_ret);
4230 return MAX (1,
4231 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4234 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4236 #ifndef WORD_REGISTER_OPERATIONS
4237 /* If this machine does not do all register operations on the entire
4238 register and MODE is wider than the mode of X, we can say nothing
4239 at all about the high-order bits. */
4240 return 1;
4241 #else
4242 /* Likewise on machines that do, if the mode of the object is smaller
4243 than a word and loads of that size don't sign extend, we can say
4244 nothing about the high order bits. */
4245 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4246 #ifdef LOAD_EXTEND_OP
4247 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4248 #endif
4250 return 1;
4251 #endif
4254 switch (code)
4256 case REG:
4258 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4259 /* If pointers extend signed and this is a pointer in Pmode, say that
4260 all the bits above ptr_mode are known to be sign bit copies. */
4261 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4262 && REG_POINTER (x))
4263 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4264 #endif
4267 unsigned int copies_for_hook = 1, copies = 1;
4268 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4269 known_mode, known_ret,
4270 &copies_for_hook);
4272 if (new_rtx)
4273 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4274 known_mode, known_ret);
4276 if (copies > 1 || copies_for_hook > 1)
4277 return MAX (copies, copies_for_hook);
4279 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4281 break;
4283 case MEM:
4284 #ifdef LOAD_EXTEND_OP
4285 /* Some RISC machines sign-extend all loads of smaller than a word. */
4286 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4287 return MAX (1, ((int) bitwidth
4288 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4289 #endif
4290 break;
4292 case CONST_INT:
4293 /* If the constant is negative, take its 1's complement and remask.
4294 Then see how many zero bits we have. */
4295 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4296 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4297 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4298 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4300 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4302 case SUBREG:
4303 /* If this is a SUBREG for a promoted object that is sign-extended
4304 and we are looking at it in a wider mode, we know that at least the
4305 high-order bits are known to be sign bit copies. */
4307 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4309 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4310 known_x, known_mode, known_ret);
4311 return MAX ((int) bitwidth
4312 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4313 num0);
4316 /* For a smaller object, just ignore the high bits. */
4317 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4319 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4320 known_x, known_mode, known_ret);
4321 return MAX (1, (num0
4322 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4323 - bitwidth)));
4326 #ifdef WORD_REGISTER_OPERATIONS
4327 #ifdef LOAD_EXTEND_OP
4328 /* For paradoxical SUBREGs on machines where all register operations
4329 affect the entire register, just look inside. Note that we are
4330 passing MODE to the recursive call, so the number of sign bit copies
4331 will remain relative to that mode, not the inner mode. */
4333 /* This works only if loads sign extend. Otherwise, if we get a
4334 reload for the inner part, it may be loaded from the stack, and
4335 then we lose all sign bit copies that existed before the store
4336 to the stack. */
4338 if ((GET_MODE_SIZE (GET_MODE (x))
4339 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4340 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4341 && MEM_P (SUBREG_REG (x)))
4342 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4343 known_x, known_mode, known_ret);
4344 #endif
4345 #endif
4346 break;
4348 case SIGN_EXTRACT:
4349 if (CONST_INT_P (XEXP (x, 1)))
4350 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4351 break;
4353 case SIGN_EXTEND:
4354 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4355 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4356 known_x, known_mode, known_ret));
4358 case TRUNCATE:
4359 /* For a smaller object, just ignore the high bits. */
4360 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4361 known_x, known_mode, known_ret);
4362 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4363 - bitwidth)));
4365 case NOT:
4366 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4367 known_x, known_mode, known_ret);
4369 case ROTATE: case ROTATERT:
4370 /* If we are rotating left by a number of bits less than the number
4371 of sign bit copies, we can just subtract that amount from the
4372 number. */
4373 if (CONST_INT_P (XEXP (x, 1))
4374 && INTVAL (XEXP (x, 1)) >= 0
4375 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4377 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4378 known_x, known_mode, known_ret);
4379 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4380 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4382 break;
4384 case NEG:
4385 /* In general, this subtracts one sign bit copy. But if the value
4386 is known to be positive, the number of sign bit copies is the
4387 same as that of the input. Finally, if the input has just one bit
4388 that might be nonzero, all the bits are copies of the sign bit. */
4389 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4390 known_x, known_mode, known_ret);
4391 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4392 return num0 > 1 ? num0 - 1 : 1;
4394 nonzero = nonzero_bits (XEXP (x, 0), mode);
4395 if (nonzero == 1)
4396 return bitwidth;
4398 if (num0 > 1
4399 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4400 num0--;
4402 return num0;
4404 case IOR: case AND: case XOR:
4405 case SMIN: case SMAX: case UMIN: case UMAX:
4406 /* Logical operations will preserve the number of sign-bit copies.
4407 MIN and MAX operations always return one of the operands. */
4408 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4409 known_x, known_mode, known_ret);
4410 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4411 known_x, known_mode, known_ret);
4413 /* If num1 is clearing some of the top bits then regardless of
4414 the other term, we are guaranteed to have at least that many
4415 high-order zero bits. */
4416 if (code == AND
4417 && num1 > 1
4418 && bitwidth <= HOST_BITS_PER_WIDE_INT
4419 && CONST_INT_P (XEXP (x, 1))
4420 && !(INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4421 return num1;
4423 /* Similarly for IOR when setting high-order bits. */
4424 if (code == IOR
4425 && num1 > 1
4426 && bitwidth <= HOST_BITS_PER_WIDE_INT
4427 && CONST_INT_P (XEXP (x, 1))
4428 && (INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4429 return num1;
4431 return MIN (num0, num1);
4433 case PLUS: case MINUS:
4434 /* For addition and subtraction, we can have a 1-bit carry. However,
4435 if we are subtracting 1 from a positive number, there will not
4436 be such a carry. Furthermore, if the positive number is known to
4437 be 0 or 1, we know the result is either -1 or 0. */
4439 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4440 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4442 nonzero = nonzero_bits (XEXP (x, 0), mode);
4443 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4444 return (nonzero == 1 || nonzero == 0 ? bitwidth
4445 : bitwidth - floor_log2 (nonzero) - 1);
4448 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4449 known_x, known_mode, known_ret);
4450 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4451 known_x, known_mode, known_ret);
4452 result = MAX (1, MIN (num0, num1) - 1);
4454 #ifdef POINTERS_EXTEND_UNSIGNED
4455 /* If pointers extend signed and this is an addition or subtraction
4456 to a pointer in Pmode, all the bits above ptr_mode are known to be
4457 sign bit copies. */
4458 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4459 && (code == PLUS || code == MINUS)
4460 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4461 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4462 - GET_MODE_BITSIZE (ptr_mode) + 1),
4463 result);
4464 #endif
4465 return result;
4467 case MULT:
4468 /* The number of bits of the product is the sum of the number of
4469 bits of both terms. However, unless one of the terms if known
4470 to be positive, we must allow for an additional bit since negating
4471 a negative number can remove one sign bit copy. */
4473 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4474 known_x, known_mode, known_ret);
4475 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4476 known_x, known_mode, known_ret);
4478 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4479 if (result > 0
4480 && (bitwidth > HOST_BITS_PER_WIDE_INT
4481 || (((nonzero_bits (XEXP (x, 0), mode)
4482 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4483 && ((nonzero_bits (XEXP (x, 1), mode)
4484 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4485 result--;
4487 return MAX (1, result);
4489 case UDIV:
4490 /* The result must be <= the first operand. If the first operand
4491 has the high bit set, we know nothing about the number of sign
4492 bit copies. */
4493 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4494 return 1;
4495 else if ((nonzero_bits (XEXP (x, 0), mode)
4496 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4497 return 1;
4498 else
4499 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4500 known_x, known_mode, known_ret);
4502 case UMOD:
4503 /* The result must be <= the second operand. */
4504 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4505 known_x, known_mode, known_ret);
4507 case DIV:
4508 /* Similar to unsigned division, except that we have to worry about
4509 the case where the divisor is negative, in which case we have
4510 to add 1. */
4511 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4512 known_x, known_mode, known_ret);
4513 if (result > 1
4514 && (bitwidth > HOST_BITS_PER_WIDE_INT
4515 || (nonzero_bits (XEXP (x, 1), mode)
4516 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4517 result--;
4519 return result;
4521 case MOD:
4522 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4523 known_x, known_mode, known_ret);
4524 if (result > 1
4525 && (bitwidth > HOST_BITS_PER_WIDE_INT
4526 || (nonzero_bits (XEXP (x, 1), mode)
4527 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4528 result--;
4530 return result;
4532 case ASHIFTRT:
4533 /* Shifts by a constant add to the number of bits equal to the
4534 sign bit. */
4535 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4536 known_x, known_mode, known_ret);
4537 if (CONST_INT_P (XEXP (x, 1))
4538 && INTVAL (XEXP (x, 1)) > 0
4539 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4540 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4542 return num0;
4544 case ASHIFT:
4545 /* Left shifts destroy copies. */
4546 if (!CONST_INT_P (XEXP (x, 1))
4547 || INTVAL (XEXP (x, 1)) < 0
4548 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4549 || INTVAL (XEXP (x, 1)) >= GET_MODE_BITSIZE (GET_MODE (x)))
4550 return 1;
4552 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4553 known_x, known_mode, known_ret);
4554 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4556 case IF_THEN_ELSE:
4557 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4558 known_x, known_mode, known_ret);
4559 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4560 known_x, known_mode, known_ret);
4561 return MIN (num0, num1);
4563 case EQ: case NE: case GE: case GT: case LE: case LT:
4564 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4565 case GEU: case GTU: case LEU: case LTU:
4566 case UNORDERED: case ORDERED:
4567 /* If the constant is negative, take its 1's complement and remask.
4568 Then see how many zero bits we have. */
4569 nonzero = STORE_FLAG_VALUE;
4570 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4571 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4572 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4574 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4576 default:
4577 break;
4580 /* If we haven't been able to figure it out by one of the above rules,
4581 see if some of the high-order bits are known to be zero. If so,
4582 count those bits and return one less than that amount. If we can't
4583 safely compute the mask for this mode, always return BITWIDTH. */
4585 bitwidth = GET_MODE_BITSIZE (mode);
4586 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4587 return 1;
4589 nonzero = nonzero_bits (x, mode);
4590 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4591 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4594 /* Calculate the rtx_cost of a single instruction. A return value of
4595 zero indicates an instruction pattern without a known cost. */
4598 insn_rtx_cost (rtx pat, bool speed)
4600 int i, cost;
4601 rtx set;
4603 /* Extract the single set rtx from the instruction pattern.
4604 We can't use single_set since we only have the pattern. */
4605 if (GET_CODE (pat) == SET)
4606 set = pat;
4607 else if (GET_CODE (pat) == PARALLEL)
4609 set = NULL_RTX;
4610 for (i = 0; i < XVECLEN (pat, 0); i++)
4612 rtx x = XVECEXP (pat, 0, i);
4613 if (GET_CODE (x) == SET)
4615 if (set)
4616 return 0;
4617 set = x;
4620 if (!set)
4621 return 0;
4623 else
4624 return 0;
4626 cost = rtx_cost (SET_SRC (set), SET, speed);
4627 return cost > 0 ? cost : COSTS_N_INSNS (1);
4630 /* Given an insn INSN and condition COND, return the condition in a
4631 canonical form to simplify testing by callers. Specifically:
4633 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4634 (2) Both operands will be machine operands; (cc0) will have been replaced.
4635 (3) If an operand is a constant, it will be the second operand.
4636 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4637 for GE, GEU, and LEU.
4639 If the condition cannot be understood, or is an inequality floating-point
4640 comparison which needs to be reversed, 0 will be returned.
4642 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4644 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4645 insn used in locating the condition was found. If a replacement test
4646 of the condition is desired, it should be placed in front of that
4647 insn and we will be sure that the inputs are still valid.
4649 If WANT_REG is nonzero, we wish the condition to be relative to that
4650 register, if possible. Therefore, do not canonicalize the condition
4651 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4652 to be a compare to a CC mode register.
4654 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4655 and at INSN. */
4658 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4659 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4661 enum rtx_code code;
4662 rtx prev = insn;
4663 const_rtx set;
4664 rtx tem;
4665 rtx op0, op1;
4666 int reverse_code = 0;
4667 enum machine_mode mode;
4668 basic_block bb = BLOCK_FOR_INSN (insn);
4670 code = GET_CODE (cond);
4671 mode = GET_MODE (cond);
4672 op0 = XEXP (cond, 0);
4673 op1 = XEXP (cond, 1);
4675 if (reverse)
4676 code = reversed_comparison_code (cond, insn);
4677 if (code == UNKNOWN)
4678 return 0;
4680 if (earliest)
4681 *earliest = insn;
4683 /* If we are comparing a register with zero, see if the register is set
4684 in the previous insn to a COMPARE or a comparison operation. Perform
4685 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4686 in cse.c */
4688 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4689 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4690 && op1 == CONST0_RTX (GET_MODE (op0))
4691 && op0 != want_reg)
4693 /* Set nonzero when we find something of interest. */
4694 rtx x = 0;
4696 #ifdef HAVE_cc0
4697 /* If comparison with cc0, import actual comparison from compare
4698 insn. */
4699 if (op0 == cc0_rtx)
4701 if ((prev = prev_nonnote_insn (prev)) == 0
4702 || !NONJUMP_INSN_P (prev)
4703 || (set = single_set (prev)) == 0
4704 || SET_DEST (set) != cc0_rtx)
4705 return 0;
4707 op0 = SET_SRC (set);
4708 op1 = CONST0_RTX (GET_MODE (op0));
4709 if (earliest)
4710 *earliest = prev;
4712 #endif
4714 /* If this is a COMPARE, pick up the two things being compared. */
4715 if (GET_CODE (op0) == COMPARE)
4717 op1 = XEXP (op0, 1);
4718 op0 = XEXP (op0, 0);
4719 continue;
4721 else if (!REG_P (op0))
4722 break;
4724 /* Go back to the previous insn. Stop if it is not an INSN. We also
4725 stop if it isn't a single set or if it has a REG_INC note because
4726 we don't want to bother dealing with it. */
4728 if ((prev = prev_nonnote_insn (prev)) == 0
4729 || !NONJUMP_INSN_P (prev)
4730 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4731 /* In cfglayout mode, there do not have to be labels at the
4732 beginning of a block, or jumps at the end, so the previous
4733 conditions would not stop us when we reach bb boundary. */
4734 || BLOCK_FOR_INSN (prev) != bb)
4735 break;
4737 set = set_of (op0, prev);
4739 if (set
4740 && (GET_CODE (set) != SET
4741 || !rtx_equal_p (SET_DEST (set), op0)))
4742 break;
4744 /* If this is setting OP0, get what it sets it to if it looks
4745 relevant. */
4746 if (set)
4748 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4749 #ifdef FLOAT_STORE_FLAG_VALUE
4750 REAL_VALUE_TYPE fsfv;
4751 #endif
4753 /* ??? We may not combine comparisons done in a CCmode with
4754 comparisons not done in a CCmode. This is to aid targets
4755 like Alpha that have an IEEE compliant EQ instruction, and
4756 a non-IEEE compliant BEQ instruction. The use of CCmode is
4757 actually artificial, simply to prevent the combination, but
4758 should not affect other platforms.
4760 However, we must allow VOIDmode comparisons to match either
4761 CCmode or non-CCmode comparison, because some ports have
4762 modeless comparisons inside branch patterns.
4764 ??? This mode check should perhaps look more like the mode check
4765 in simplify_comparison in combine. */
4767 if ((GET_CODE (SET_SRC (set)) == COMPARE
4768 || (((code == NE
4769 || (code == LT
4770 && GET_MODE_CLASS (inner_mode) == MODE_INT
4771 && (GET_MODE_BITSIZE (inner_mode)
4772 <= HOST_BITS_PER_WIDE_INT)
4773 && (STORE_FLAG_VALUE
4774 & ((HOST_WIDE_INT) 1
4775 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4776 #ifdef FLOAT_STORE_FLAG_VALUE
4777 || (code == LT
4778 && SCALAR_FLOAT_MODE_P (inner_mode)
4779 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4780 REAL_VALUE_NEGATIVE (fsfv)))
4781 #endif
4783 && COMPARISON_P (SET_SRC (set))))
4784 && (((GET_MODE_CLASS (mode) == MODE_CC)
4785 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4786 || mode == VOIDmode || inner_mode == VOIDmode))
4787 x = SET_SRC (set);
4788 else if (((code == EQ
4789 || (code == GE
4790 && (GET_MODE_BITSIZE (inner_mode)
4791 <= HOST_BITS_PER_WIDE_INT)
4792 && GET_MODE_CLASS (inner_mode) == MODE_INT
4793 && (STORE_FLAG_VALUE
4794 & ((HOST_WIDE_INT) 1
4795 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4796 #ifdef FLOAT_STORE_FLAG_VALUE
4797 || (code == GE
4798 && SCALAR_FLOAT_MODE_P (inner_mode)
4799 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4800 REAL_VALUE_NEGATIVE (fsfv)))
4801 #endif
4803 && COMPARISON_P (SET_SRC (set))
4804 && (((GET_MODE_CLASS (mode) == MODE_CC)
4805 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4806 || mode == VOIDmode || inner_mode == VOIDmode))
4809 reverse_code = 1;
4810 x = SET_SRC (set);
4812 else
4813 break;
4816 else if (reg_set_p (op0, prev))
4817 /* If this sets OP0, but not directly, we have to give up. */
4818 break;
4820 if (x)
4822 /* If the caller is expecting the condition to be valid at INSN,
4823 make sure X doesn't change before INSN. */
4824 if (valid_at_insn_p)
4825 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4826 break;
4827 if (COMPARISON_P (x))
4828 code = GET_CODE (x);
4829 if (reverse_code)
4831 code = reversed_comparison_code (x, prev);
4832 if (code == UNKNOWN)
4833 return 0;
4834 reverse_code = 0;
4837 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4838 if (earliest)
4839 *earliest = prev;
4843 /* If constant is first, put it last. */
4844 if (CONSTANT_P (op0))
4845 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4847 /* If OP0 is the result of a comparison, we weren't able to find what
4848 was really being compared, so fail. */
4849 if (!allow_cc_mode
4850 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4851 return 0;
4853 /* Canonicalize any ordered comparison with integers involving equality
4854 if we can do computations in the relevant mode and we do not
4855 overflow. */
4857 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4858 && CONST_INT_P (op1)
4859 && GET_MODE (op0) != VOIDmode
4860 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4862 HOST_WIDE_INT const_val = INTVAL (op1);
4863 unsigned HOST_WIDE_INT uconst_val = const_val;
4864 unsigned HOST_WIDE_INT max_val
4865 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4867 switch (code)
4869 case LE:
4870 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4871 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4872 break;
4874 /* When cross-compiling, const_val might be sign-extended from
4875 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4876 case GE:
4877 if ((HOST_WIDE_INT) (const_val & max_val)
4878 != (((HOST_WIDE_INT) 1
4879 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4880 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4881 break;
4883 case LEU:
4884 if (uconst_val < max_val)
4885 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4886 break;
4888 case GEU:
4889 if (uconst_val != 0)
4890 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4891 break;
4893 default:
4894 break;
4898 /* Never return CC0; return zero instead. */
4899 if (CC0_P (op0))
4900 return 0;
4902 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4905 /* Given a jump insn JUMP, return the condition that will cause it to branch
4906 to its JUMP_LABEL. If the condition cannot be understood, or is an
4907 inequality floating-point comparison which needs to be reversed, 0 will
4908 be returned.
4910 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4911 insn used in locating the condition was found. If a replacement test
4912 of the condition is desired, it should be placed in front of that
4913 insn and we will be sure that the inputs are still valid. If EARLIEST
4914 is null, the returned condition will be valid at INSN.
4916 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4917 compare CC mode register.
4919 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4922 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4924 rtx cond;
4925 int reverse;
4926 rtx set;
4928 /* If this is not a standard conditional jump, we can't parse it. */
4929 if (!JUMP_P (jump)
4930 || ! any_condjump_p (jump))
4931 return 0;
4932 set = pc_set (jump);
4934 cond = XEXP (SET_SRC (set), 0);
4936 /* If this branches to JUMP_LABEL when the condition is false, reverse
4937 the condition. */
4938 reverse
4939 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4940 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4942 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4943 allow_cc_mode, valid_at_insn_p);
4946 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4947 TARGET_MODE_REP_EXTENDED.
4949 Note that we assume that the property of
4950 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4951 narrower than mode B. I.e., if A is a mode narrower than B then in
4952 order to be able to operate on it in mode B, mode A needs to
4953 satisfy the requirements set by the representation of mode B. */
4955 static void
4956 init_num_sign_bit_copies_in_rep (void)
4958 enum machine_mode mode, in_mode;
4960 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4961 in_mode = GET_MODE_WIDER_MODE (mode))
4962 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4963 mode = GET_MODE_WIDER_MODE (mode))
4965 enum machine_mode i;
4967 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4968 extends to the next widest mode. */
4969 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4970 || GET_MODE_WIDER_MODE (mode) == in_mode);
4972 /* We are in in_mode. Count how many bits outside of mode
4973 have to be copies of the sign-bit. */
4974 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4976 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4978 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4979 /* We can only check sign-bit copies starting from the
4980 top-bit. In order to be able to check the bits we
4981 have already seen we pretend that subsequent bits
4982 have to be sign-bit copies too. */
4983 || num_sign_bit_copies_in_rep [in_mode][mode])
4984 num_sign_bit_copies_in_rep [in_mode][mode]
4985 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4990 /* Suppose that truncation from the machine mode of X to MODE is not a
4991 no-op. See if there is anything special about X so that we can
4992 assume it already contains a truncated value of MODE. */
4994 bool
4995 truncated_to_mode (enum machine_mode mode, const_rtx x)
4997 /* This register has already been used in MODE without explicit
4998 truncation. */
4999 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5000 return true;
5002 /* See if we already satisfy the requirements of MODE. If yes we
5003 can just switch to MODE. */
5004 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5005 && (num_sign_bit_copies (x, GET_MODE (x))
5006 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5007 return true;
5009 return false;
5012 /* Initialize non_rtx_starting_operands, which is used to speed up
5013 for_each_rtx. */
5014 void
5015 init_rtlanal (void)
5017 int i;
5018 for (i = 0; i < NUM_RTX_CODE; i++)
5020 const char *format = GET_RTX_FORMAT (i);
5021 const char *first = strpbrk (format, "eEV");
5022 non_rtx_starting_operands[i] = first ? first - format : -1;
5025 init_num_sign_bit_copies_in_rep ();
5028 /* Check whether this is a constant pool constant. */
5029 bool
5030 constant_pool_constant_p (rtx x)
5032 x = avoid_constant_pool_reference (x);
5033 return GET_CODE (x) == CONST_DOUBLE;
5036 /* If M is a bitmask that selects a field of low-order bits within an item but
5037 not the entire word, return the length of the field. Return -1 otherwise.
5038 M is used in machine mode MODE. */
5041 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5043 if (mode != VOIDmode)
5045 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
5046 return -1;
5047 m &= GET_MODE_MASK (mode);
5050 return exact_log2 (m + 1);