* lto.c (do_stream_out): Add PART parameter; open dump file.
[official-gcc.git] / libgfortran / m4 / ifunction_logical.m4
blob0568387e343832b80eb63b8180e075b78aa7766e
1 dnl Support macro file for intrinsic functions.
2 dnl Contains the generic sections of the array functions.
3 dnl This file is part of the GNU Fortran Runtime Library (libgfortran)
4 dnl Distributed under the GNU GPL with exception.  See COPYING for details.
5 dnl
6 dnl Pass the implementation for a single section as the parameter to
7 dnl {MASK_}ARRAY_FUNCTION.
8 dnl The variables base, delta, and len describe the input section.
9 dnl For masked section the mask is described by mbase and mdelta.
10 dnl These should not be modified. The result should be stored in *dest.
11 dnl The names count, extent, sstride, dstride, base, dest, rank, dim
12 dnl retarray, array, pdim and mstride should not be used.
13 dnl The variable n is declared as index_type and may be used.
14 dnl Other variable declarations may be placed at the start of the code,
15 dnl The types of the array parameter and the return value are
16 dnl atype_name and rtype_name respectively.
17 dnl Execution should be allowed to continue to the end of the block.
18 dnl You should not return or break from the inner loop of the implementation.
19 dnl Care should also be taken to avoid using the names defined in iparm.m4
20 define(START_ARRAY_FUNCTION,
22 extern void name`'rtype_qual`_'atype_code (rtype * const restrict, 
23         gfc_array_l1 * const restrict, const index_type * const restrict);
24 export_proto(name`'rtype_qual`_'atype_code);
26 void
27 name`'rtype_qual`_'atype_code (rtype * const restrict retarray, 
28         gfc_array_l1 * const restrict array, 
29         const index_type * const restrict pdim)
31   index_type count[GFC_MAX_DIMENSIONS];
32   index_type extent[GFC_MAX_DIMENSIONS];
33   index_type sstride[GFC_MAX_DIMENSIONS];
34   index_type dstride[GFC_MAX_DIMENSIONS];
35   const GFC_LOGICAL_1 * restrict base;
36   rtype_name * restrict dest;
37   index_type rank;
38   index_type n;
39   index_type len;
40   index_type delta;
41   index_type dim;
42   int src_kind;
43   int continue_loop;
45   /* Make dim zero based to avoid confusion.  */
46   dim = (*pdim) - 1;
47   rank = GFC_DESCRIPTOR_RANK (array) - 1;
49   src_kind = GFC_DESCRIPTOR_SIZE (array);
51   len = GFC_DESCRIPTOR_EXTENT(array,dim);
52   if (len < 0)
53     len = 0;
55   delta = GFC_DESCRIPTOR_STRIDE_BYTES(array,dim);
57   for (n = 0; n < dim; n++)
58     {
59       sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n);
60       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
62       if (extent[n] < 0)
63         extent[n] = 0;
64     }
65   for (n = dim; n < rank; n++)
66     {
67       sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n + 1);
68       extent[n] = GFC_DESCRIPTOR_EXTENT(array,n + 1);
70       if (extent[n] < 0)
71         extent[n] = 0;
72     }
74   if (retarray->base_addr == NULL)
75     {
76       size_t alloc_size, str;
78       for (n = 0; n < rank; n++)
79         {
80           if (n == 0)
81             str = 1;
82           else
83             str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
85           GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
87         }
89       retarray->offset = 0;
90       retarray->dtype.rank = rank;
92       alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
94       if (alloc_size == 0)
95         {
96           /* Make sure we have a zero-sized array.  */
97           GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
98           return;
99         }
100       else
101         retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name));
102     }
103   else
104     {
105       if (rank != GFC_DESCRIPTOR_RANK (retarray))
106         runtime_error ("rank of return array incorrect in"
107                        " u_name intrinsic: is %ld, should be %ld",
108                        (long int) GFC_DESCRIPTOR_RANK (retarray),
109                        (long int) rank);
111       if (unlikely (compile_options.bounds_check))
112         {
113           for (n=0; n < rank; n++)
114             {
115               index_type ret_extent;
117               ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
118               if (extent[n] != ret_extent)
119                 runtime_error ("Incorrect extent in return value of"
120                                " u_name intrinsic in dimension %d:"
121                                " is %ld, should be %ld", (int) n + 1,
122                                (long int) ret_extent, (long int) extent[n]);
123             }
124         }
125     }
127   for (n = 0; n < rank; n++)
128     {
129       count[n] = 0;
130       dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
131       if (extent[n] <= 0)
132         return;
133     }
135   base = array->base_addr;
137   if (src_kind == 1 || src_kind == 2 || src_kind == 4 || src_kind == 8
138 #ifdef HAVE_GFC_LOGICAL_16
139       || src_kind == 16
140 #endif
141     )
142     {
143       if (base)
144         base = GFOR_POINTER_TO_L1 (base, src_kind);
145     }
146   else
147     internal_error (NULL, "Funny sized logical array in u_name intrinsic");
149   dest = retarray->base_addr;
151   continue_loop = 1;
152   while (continue_loop)
153     {
154       const GFC_LOGICAL_1 * restrict src;
155       rtype_name result;
156       src = base;
157       {
158 ')dnl
159 define(START_ARRAY_BLOCK,
160 `        if (len <= 0)
161           *dest = '$1`;
162         else
163           {
164             for (n = 0; n < len; n++, src += delta)
165               {
166 ')dnl
167 define(FINISH_ARRAY_FUNCTION,
168     `          }
169             *dest = result;
170           }
171       }
172       /* Advance to the next element.  */
173       count[0]++;
174       base += sstride[0];
175       dest += dstride[0];
176       n = 0;
177       while (count[n] == extent[n])
178         {
179           /* When we get to the end of a dimension, reset it and increment
180              the next dimension.  */
181           count[n] = 0;
182           /* We could precalculate these products, but this is a less
183              frequently used path so probably not worth it.  */
184           base -= sstride[n] * extent[n];
185           dest -= dstride[n] * extent[n];
186           n++;
187           if (n >= rank)
188             {
189               /* Break out of the loop.  */
190               continue_loop = 0;
191               break;
192             }
193           else
194             {
195               count[n]++;
196               base += sstride[n];
197               dest += dstride[n];
198             }
199         }
200     }
201 }')dnl
202 define(ARRAY_FUNCTION,
203 `START_ARRAY_FUNCTION
205 START_ARRAY_BLOCK($1)
207 FINISH_ARRAY_FUNCTION')dnl