1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Debug
; use Debug
;
28 with Einfo
; use Einfo
;
29 with Elists
; use Elists
;
30 with Errout
; use Errout
;
31 with Exp_Disp
; use Exp_Disp
;
32 with Exp_Tss
; use Exp_Tss
;
33 with Exp_Util
; use Exp_Util
;
34 with Freeze
; use Freeze
;
35 with Ghost
; use Ghost
;
36 with Impunit
; use Impunit
;
38 with Lib
.Load
; use Lib
.Load
;
39 with Lib
.Xref
; use Lib
.Xref
;
40 with Namet
; use Namet
;
41 with Namet
.Sp
; use Namet
.Sp
;
42 with Nlists
; use Nlists
;
43 with Nmake
; use Nmake
;
45 with Output
; use Output
;
46 with Restrict
; use Restrict
;
47 with Rident
; use Rident
;
48 with Rtsfind
; use Rtsfind
;
50 with Sem_Aux
; use Sem_Aux
;
51 with Sem_Cat
; use Sem_Cat
;
52 with Sem_Ch3
; use Sem_Ch3
;
53 with Sem_Ch4
; use Sem_Ch4
;
54 with Sem_Ch6
; use Sem_Ch6
;
55 with Sem_Ch12
; use Sem_Ch12
;
56 with Sem_Ch13
; use Sem_Ch13
;
57 with Sem_Dim
; use Sem_Dim
;
58 with Sem_Disp
; use Sem_Disp
;
59 with Sem_Dist
; use Sem_Dist
;
60 with Sem_Elab
; use Sem_Elab
;
61 with Sem_Eval
; use Sem_Eval
;
62 with Sem_Prag
; use Sem_Prag
;
63 with Sem_Res
; use Sem_Res
;
64 with Sem_Util
; use Sem_Util
;
65 with Sem_Type
; use Sem_Type
;
66 with Stand
; use Stand
;
67 with Sinfo
; use Sinfo
;
68 with Sinfo
.CN
; use Sinfo
.CN
;
69 with Snames
; use Snames
;
72 with Tbuild
; use Tbuild
;
73 with Uintp
; use Uintp
;
75 package body Sem_Ch8
is
77 ------------------------------------
78 -- Visibility and Name Resolution --
79 ------------------------------------
81 -- This package handles name resolution and the collection of possible
82 -- interpretations for overloaded names, prior to overload resolution.
84 -- Name resolution is the process that establishes a mapping between source
85 -- identifiers and the entities they denote at each point in the program.
86 -- Each entity is represented by a defining occurrence. Each identifier
87 -- that denotes an entity points to the corresponding defining occurrence.
88 -- This is the entity of the applied occurrence. Each occurrence holds
89 -- an index into the names table, where source identifiers are stored.
91 -- Each entry in the names table for an identifier or designator uses the
92 -- Info pointer to hold a link to the currently visible entity that has
93 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
94 -- in package Sem_Util). The visibility is initialized at the beginning of
95 -- semantic processing to make entities in package Standard immediately
96 -- visible. The visibility table is used in a more subtle way when
97 -- compiling subunits (see below).
99 -- Entities that have the same name (i.e. homonyms) are chained. In the
100 -- case of overloaded entities, this chain holds all the possible meanings
101 -- of a given identifier. The process of overload resolution uses type
102 -- information to select from this chain the unique meaning of a given
105 -- Entities are also chained in their scope, through the Next_Entity link.
106 -- As a consequence, the name space is organized as a sparse matrix, where
107 -- each row corresponds to a scope, and each column to a source identifier.
108 -- Open scopes, that is to say scopes currently being compiled, have their
109 -- corresponding rows of entities in order, innermost scope first.
111 -- The scopes of packages that are mentioned in context clauses appear in
112 -- no particular order, interspersed among open scopes. This is because
113 -- in the course of analyzing the context of a compilation, a package
114 -- declaration is first an open scope, and subsequently an element of the
115 -- context. If subunits or child units are present, a parent unit may
116 -- appear under various guises at various times in the compilation.
118 -- When the compilation of the innermost scope is complete, the entities
119 -- defined therein are no longer visible. If the scope is not a package
120 -- declaration, these entities are never visible subsequently, and can be
121 -- removed from visibility chains. If the scope is a package declaration,
122 -- its visible declarations may still be accessible. Therefore the entities
123 -- defined in such a scope are left on the visibility chains, and only
124 -- their visibility (immediately visibility or potential use-visibility)
127 -- The ordering of homonyms on their chain does not necessarily follow
128 -- the order of their corresponding scopes on the scope stack. For
129 -- example, if package P and the enclosing scope both contain entities
130 -- named E, then when compiling the package body the chain for E will
131 -- hold the global entity first, and the local one (corresponding to
132 -- the current inner scope) next. As a result, name resolution routines
133 -- do not assume any relative ordering of the homonym chains, either
134 -- for scope nesting or to order of appearance of context clauses.
136 -- When compiling a child unit, entities in the parent scope are always
137 -- immediately visible. When compiling the body of a child unit, private
138 -- entities in the parent must also be made immediately visible. There
139 -- are separate routines to make the visible and private declarations
140 -- visible at various times (see package Sem_Ch7).
142 -- +--------+ +-----+
143 -- | In use |-------->| EU1 |-------------------------->
144 -- +--------+ +-----+
146 -- +--------+ +-----+ +-----+
147 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
148 -- +--------+ +-----+ +-----+
150 -- +---------+ | +-----+
151 -- | with'ed |------------------------------>| EW2 |--->
152 -- +---------+ | +-----+
154 -- +--------+ +-----+ +-----+
155 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
156 -- +--------+ +-----+ +-----+
158 -- +--------+ +-----+ +-----+
159 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
160 -- +--------+ +-----+ +-----+
164 -- | | with'ed |----------------------------------------->
168 -- (innermost first) | |
169 -- +----------------------------+
170 -- Names table => | Id1 | | | | Id2 |
171 -- +----------------------------+
173 -- Name resolution must deal with several syntactic forms: simple names,
174 -- qualified names, indexed names, and various forms of calls.
176 -- Each identifier points to an entry in the names table. The resolution
177 -- of a simple name consists in traversing the homonym chain, starting
178 -- from the names table. If an entry is immediately visible, it is the one
179 -- designated by the identifier. If only potentially use-visible entities
180 -- are on the chain, we must verify that they do not hide each other. If
181 -- the entity we find is overloadable, we collect all other overloadable
182 -- entities on the chain as long as they are not hidden.
184 -- To resolve expanded names, we must find the entity at the intersection
185 -- of the entity chain for the scope (the prefix) and the homonym chain
186 -- for the selector. In general, homonym chains will be much shorter than
187 -- entity chains, so it is preferable to start from the names table as
188 -- well. If the entity found is overloadable, we must collect all other
189 -- interpretations that are defined in the scope denoted by the prefix.
191 -- For records, protected types, and tasks, their local entities are
192 -- removed from visibility chains on exit from the corresponding scope.
193 -- From the outside, these entities are always accessed by selected
194 -- notation, and the entity chain for the record type, protected type,
195 -- etc. is traversed sequentially in order to find the designated entity.
197 -- The discriminants of a type and the operations of a protected type or
198 -- task are unchained on exit from the first view of the type, (such as
199 -- a private or incomplete type declaration, or a protected type speci-
200 -- fication) and re-chained when compiling the second view.
202 -- In the case of operators, we do not make operators on derived types
203 -- explicit. As a result, the notation P."+" may denote either a user-
204 -- defined function with name "+", or else an implicit declaration of the
205 -- operator "+" in package P. The resolution of expanded names always
206 -- tries to resolve an operator name as such an implicitly defined entity,
207 -- in addition to looking for explicit declarations.
209 -- All forms of names that denote entities (simple names, expanded names,
210 -- character literals in some cases) have a Entity attribute, which
211 -- identifies the entity denoted by the name.
213 ---------------------
214 -- The Scope Stack --
215 ---------------------
217 -- The Scope stack keeps track of the scopes currently been compiled.
218 -- Every entity that contains declarations (including records) is placed
219 -- on the scope stack while it is being processed, and removed at the end.
220 -- Whenever a non-package scope is exited, the entities defined therein
221 -- are removed from the visibility table, so that entities in outer scopes
222 -- become visible (see previous description). On entry to Sem, the scope
223 -- stack only contains the package Standard. As usual, subunits complicate
224 -- this picture ever so slightly.
226 -- The Rtsfind mechanism can force a call to Semantics while another
227 -- compilation is in progress. The unit retrieved by Rtsfind must be
228 -- compiled in its own context, and has no access to the visibility of
229 -- the unit currently being compiled. The procedures Save_Scope_Stack and
230 -- Restore_Scope_Stack make entities in current open scopes invisible
231 -- before compiling the retrieved unit, and restore the compilation
232 -- environment afterwards.
234 ------------------------
235 -- Compiling subunits --
236 ------------------------
238 -- Subunits must be compiled in the environment of the corresponding stub,
239 -- that is to say with the same visibility into the parent (and its
240 -- context) that is available at the point of the stub declaration, but
241 -- with the additional visibility provided by the context clause of the
242 -- subunit itself. As a result, compilation of a subunit forces compilation
243 -- of the parent (see description in lib-). At the point of the stub
244 -- declaration, Analyze is called recursively to compile the proper body of
245 -- the subunit, but without reinitializing the names table, nor the scope
246 -- stack (i.e. standard is not pushed on the stack). In this fashion the
247 -- context of the subunit is added to the context of the parent, and the
248 -- subunit is compiled in the correct environment. Note that in the course
249 -- of processing the context of a subunit, Standard will appear twice on
250 -- the scope stack: once for the parent of the subunit, and once for the
251 -- unit in the context clause being compiled. However, the two sets of
252 -- entities are not linked by homonym chains, so that the compilation of
253 -- any context unit happens in a fresh visibility environment.
255 -------------------------------
256 -- Processing of USE Clauses --
257 -------------------------------
259 -- Every defining occurrence has a flag indicating if it is potentially use
260 -- visible. Resolution of simple names examines this flag. The processing
261 -- of use clauses consists in setting this flag on all visible entities
262 -- defined in the corresponding package. On exit from the scope of the use
263 -- clause, the corresponding flag must be reset. However, a package may
264 -- appear in several nested use clauses (pathological but legal, alas)
265 -- which forces us to use a slightly more involved scheme:
267 -- a) The defining occurrence for a package holds a flag -In_Use- to
268 -- indicate that it is currently in the scope of a use clause. If a
269 -- redundant use clause is encountered, then the corresponding occurrence
270 -- of the package name is flagged -Redundant_Use-.
272 -- b) On exit from a scope, the use clauses in its declarative part are
273 -- scanned. The visibility flag is reset in all entities declared in
274 -- package named in a use clause, as long as the package is not flagged
275 -- as being in a redundant use clause (in which case the outer use
276 -- clause is still in effect, and the direct visibility of its entities
277 -- must be retained).
279 -- Note that entities are not removed from their homonym chains on exit
280 -- from the package specification. A subsequent use clause does not need
281 -- to rechain the visible entities, but only to establish their direct
284 -----------------------------------
285 -- Handling private declarations --
286 -----------------------------------
288 -- The principle that each entity has a single defining occurrence clashes
289 -- with the presence of two separate definitions for private types: the
290 -- first is the private type declaration, and second is the full type
291 -- declaration. It is important that all references to the type point to
292 -- the same defining occurrence, namely the first one. To enforce the two
293 -- separate views of the entity, the corresponding information is swapped
294 -- between the two declarations. Outside of the package, the defining
295 -- occurrence only contains the private declaration information, while in
296 -- the private part and the body of the package the defining occurrence
297 -- contains the full declaration. To simplify the swap, the defining
298 -- occurrence that currently holds the private declaration points to the
299 -- full declaration. During semantic processing the defining occurrence
300 -- also points to a list of private dependents, that is to say access types
301 -- or composite types whose designated types or component types are
302 -- subtypes or derived types of the private type in question. After the
303 -- full declaration has been seen, the private dependents are updated to
304 -- indicate that they have full definitions.
306 ------------------------------------
307 -- Handling of Undefined Messages --
308 ------------------------------------
310 -- In normal mode, only the first use of an undefined identifier generates
311 -- a message. The table Urefs is used to record error messages that have
312 -- been issued so that second and subsequent ones do not generate further
313 -- messages. However, the second reference causes text to be added to the
314 -- original undefined message noting "(more references follow)". The
315 -- full error list option (-gnatf) forces messages to be generated for
316 -- every reference and disconnects the use of this table.
318 type Uref_Entry
is record
320 -- Node for identifier for which original message was posted. The
321 -- Chars field of this identifier is used to detect later references
322 -- to the same identifier.
325 -- Records error message Id of original undefined message. Reset to
326 -- No_Error_Msg after the second occurrence, where it is used to add
327 -- text to the original message as described above.
330 -- Set if the message is not visible rather than undefined
333 -- Records location of error message. Used to make sure that we do
334 -- not consider a, b : undefined as two separate instances, which
335 -- would otherwise happen, since the parser converts this sequence
336 -- to a : undefined; b : undefined.
340 package Urefs
is new Table
.Table
(
341 Table_Component_Type
=> Uref_Entry
,
342 Table_Index_Type
=> Nat
,
343 Table_Low_Bound
=> 1,
345 Table_Increment
=> 100,
346 Table_Name
=> "Urefs");
348 Candidate_Renaming
: Entity_Id
;
349 -- Holds a candidate interpretation that appears in a subprogram renaming
350 -- declaration and does not match the given specification, but matches at
351 -- least on the first formal. Allows better error message when given
352 -- specification omits defaulted parameters, a common error.
354 -----------------------
355 -- Local Subprograms --
356 -----------------------
358 procedure Analyze_Generic_Renaming
361 -- Common processing for all three kinds of generic renaming declarations.
362 -- Enter new name and indicate that it renames the generic unit.
364 procedure Analyze_Renamed_Character
368 -- Renamed entity is given by a character literal, which must belong
369 -- to the return type of the new entity. Is_Body indicates whether the
370 -- declaration is a renaming_as_body. If the original declaration has
371 -- already been frozen (because of an intervening body, e.g.) the body of
372 -- the function must be built now. The same applies to the following
373 -- various renaming procedures.
375 procedure Analyze_Renamed_Dereference
379 -- Renamed entity is given by an explicit dereference. Prefix must be a
380 -- conformant access_to_subprogram type.
382 procedure Analyze_Renamed_Entry
386 -- If the renamed entity in a subprogram renaming is an entry or protected
387 -- subprogram, build a body for the new entity whose only statement is a
388 -- call to the renamed entity.
390 procedure Analyze_Renamed_Family_Member
394 -- Used when the renamed entity is an indexed component. The prefix must
395 -- denote an entry family.
397 procedure Analyze_Renamed_Primitive_Operation
401 -- If the renamed entity in a subprogram renaming is a primitive operation
402 -- or a class-wide operation in prefix form, save the target object,
403 -- which must be added to the list of actuals in any subsequent call.
404 -- The renaming operation is intrinsic because the compiler must in
405 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
407 procedure Attribute_Renaming
(N
: Node_Id
);
408 -- Analyze renaming of attribute as subprogram. The renaming declaration N
409 -- is rewritten as a subprogram body that returns the attribute reference
410 -- applied to the formals of the function.
412 procedure Set_Entity_Or_Discriminal
(N
: Node_Id
; E
: Entity_Id
);
413 -- Set Entity, with style check if need be. For a discriminant reference,
414 -- replace by the corresponding discriminal, i.e. the parameter of the
415 -- initialization procedure that corresponds to the discriminant.
417 procedure Check_Frozen_Renaming
(N
: Node_Id
; Subp
: Entity_Id
);
418 -- A renaming_as_body may occur after the entity of the original decla-
419 -- ration has been frozen. In that case, the body of the new entity must
420 -- be built now, because the usual mechanism of building the renamed
421 -- body at the point of freezing will not work. Subp is the subprogram
422 -- for which N provides the Renaming_As_Body.
424 procedure Check_In_Previous_With_Clause
427 -- N is a use_package clause and Nam the package name, or N is a use_type
428 -- clause and Nam is the prefix of the type name. In either case, verify
429 -- that the package is visible at that point in the context: either it
430 -- appears in a previous with_clause, or because it is a fully qualified
431 -- name and the root ancestor appears in a previous with_clause.
433 procedure Check_Library_Unit_Renaming
(N
: Node_Id
; Old_E
: Entity_Id
);
434 -- Verify that the entity in a renaming declaration that is a library unit
435 -- is itself a library unit and not a nested unit or subunit. Also check
436 -- that if the renaming is a child unit of a generic parent, then the
437 -- renamed unit must also be a child unit of that parent. Finally, verify
438 -- that a renamed generic unit is not an implicit child declared within
439 -- an instance of the parent.
441 procedure Chain_Use_Clause
(N
: Node_Id
);
442 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
443 -- the proper scope table entry. This is usually the current scope, but it
444 -- will be an inner scope when installing the use clauses of the private
445 -- declarations of a parent unit prior to compiling the private part of a
446 -- child unit. This chain is traversed when installing/removing use clauses
447 -- when compiling a subunit or instantiating a generic body on the fly,
448 -- when it is necessary to save and restore full environments.
450 function Enclosing_Instance
return Entity_Id
;
451 -- In an instance nested within another one, several semantic checks are
452 -- unnecessary because the legality of the nested instance has been checked
453 -- in the enclosing generic unit. This applies in particular to legality
454 -- checks on actuals for formal subprograms of the inner instance, which
455 -- are checked as subprogram renamings, and may be complicated by confusion
456 -- in private/full views. This function returns the instance enclosing the
457 -- current one if there is such, else it returns Empty.
459 -- If the renaming determines the entity for the default of a formal
460 -- subprogram nested within another instance, choose the innermost
461 -- candidate. This is because if the formal has a box, and we are within
462 -- an enclosing instance where some candidate interpretations are local
463 -- to this enclosing instance, we know that the default was properly
464 -- resolved when analyzing the generic, so we prefer the local
465 -- candidates to those that are external. This is not always the case
466 -- but is a reasonable heuristic on the use of nested generics. The
467 -- proper solution requires a full renaming model.
469 function Entity_Of_Unit
(U
: Node_Id
) return Entity_Id
;
470 -- Return the appropriate entity for determining which unit has a deeper
471 -- scope: the defining entity for U, unless U is a package instance, in
472 -- which case we retrieve the entity of the instance spec.
474 procedure Find_Expanded_Name
(N
: Node_Id
);
475 -- The input is a selected component known to be an expanded name. Verify
476 -- legality of selector given the scope denoted by prefix, and change node
477 -- N into a expanded name with a properly set Entity field.
479 function Find_Most_Prev
(Use_Clause
: Node_Id
) return Node_Id
;
480 -- Find the most previous use clause (that is, the first one to appear in
481 -- the source) by traversing the previous clause chain that exists in both
482 -- N_Use_Package_Clause nodes and N_Use_Type_Clause nodes.
483 -- ??? a better subprogram name is in order
485 function Find_Renamed_Entity
489 Is_Actual
: Boolean := False) return Entity_Id
;
490 -- Find the renamed entity that corresponds to the given parameter profile
491 -- in a subprogram renaming declaration. The renamed entity may be an
492 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
493 -- indicates that the renaming is the one generated for an actual subpro-
494 -- gram in an instance, for which special visibility checks apply.
496 function Has_Implicit_Character_Literal
(N
: Node_Id
) return Boolean;
497 -- Find a type derived from Character or Wide_Character in the prefix of N.
498 -- Used to resolved qualified names whose selector is a character literal.
500 function Has_Private_With
(E
: Entity_Id
) return Boolean;
501 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
502 -- private with on E.
504 function Has_Implicit_Operator
(N
: Node_Id
) return Boolean;
505 -- N is an expanded name whose selector is an operator name (e.g. P."+").
506 -- declarative part contains an implicit declaration of an operator if it
507 -- has a declaration of a type to which one of the predefined operators
508 -- apply. The existence of this routine is an implementation artifact. A
509 -- more straightforward but more space-consuming choice would be to make
510 -- all inherited operators explicit in the symbol table.
512 procedure Inherit_Renamed_Profile
(New_S
: Entity_Id
; Old_S
: Entity_Id
);
513 -- A subprogram defined by a renaming declaration inherits the parameter
514 -- profile of the renamed entity. The subtypes given in the subprogram
515 -- specification are discarded and replaced with those of the renamed
516 -- subprogram, which are then used to recheck the default values.
518 function Is_Appropriate_For_Entry_Prefix
(T
: Entity_Id
) return Boolean;
519 -- True if it is of a task type, a protected type, or else an access to one
522 function Is_Appropriate_For_Record
(T
: Entity_Id
) return Boolean;
523 -- Prefix is appropriate for record if it is of a record type, or an access
526 function Most_Descendant_Use_Clause
527 (Clause1
: Entity_Id
;
528 Clause2
: Entity_Id
) return Entity_Id
;
529 -- Determine which use clause parameter is the most descendant in terms of
531 -- ??? a better subprogram name is in order
533 procedure Premature_Usage
(N
: Node_Id
);
534 -- Diagnose usage of an entity before it is visible
536 procedure Use_One_Package
538 Pack_Name
: Entity_Id
:= Empty
;
539 Force
: Boolean := False);
540 -- Make visible entities declared in package P potentially use-visible
541 -- in the current context. Also used in the analysis of subunits, when
542 -- re-installing use clauses of parent units. N is the use_clause that
543 -- names P (and possibly other packages).
545 procedure Use_One_Type
547 Installed
: Boolean := False;
548 Force
: Boolean := False);
549 -- Id is the subtype mark from a use_type_clause. This procedure makes
550 -- the primitive operators of the type potentially use-visible. The
551 -- boolean flag Installed indicates that the clause is being reinstalled
552 -- after previous analysis, and primitive operations are already chained
553 -- on the Used_Operations list of the clause.
555 procedure Write_Info
;
556 -- Write debugging information on entities declared in current scope
558 --------------------------------
559 -- Analyze_Exception_Renaming --
560 --------------------------------
562 -- The language only allows a single identifier, but the tree holds an
563 -- identifier list. The parser has already issued an error message if
564 -- there is more than one element in the list.
566 procedure Analyze_Exception_Renaming
(N
: Node_Id
) is
567 Id
: constant Entity_Id
:= Defining_Entity
(N
);
568 Nam
: constant Node_Id
:= Name
(N
);
571 Check_SPARK_05_Restriction
("exception renaming is not allowed", N
);
576 Set_Ekind
(Id
, E_Exception
);
577 Set_Etype
(Id
, Standard_Exception_Type
);
578 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
580 if Is_Entity_Name
(Nam
)
581 and then Present
(Entity
(Nam
))
582 and then Ekind
(Entity
(Nam
)) = E_Exception
584 if Present
(Renamed_Object
(Entity
(Nam
))) then
585 Set_Renamed_Object
(Id
, Renamed_Object
(Entity
(Nam
)));
587 Set_Renamed_Object
(Id
, Entity
(Nam
));
590 -- The exception renaming declaration may become Ghost if it renames
593 Mark_Ghost_Renaming
(N
, Entity
(Nam
));
595 Error_Msg_N
("invalid exception name in renaming", Nam
);
598 -- Implementation-defined aspect specifications can appear in a renaming
599 -- declaration, but not language-defined ones. The call to procedure
600 -- Analyze_Aspect_Specifications will take care of this error check.
602 if Has_Aspects
(N
) then
603 Analyze_Aspect_Specifications
(N
, Id
);
605 end Analyze_Exception_Renaming
;
607 ---------------------------
608 -- Analyze_Expanded_Name --
609 ---------------------------
611 procedure Analyze_Expanded_Name
(N
: Node_Id
) is
613 -- If the entity pointer is already set, this is an internal node, or a
614 -- node that is analyzed more than once, after a tree modification. In
615 -- such a case there is no resolution to perform, just set the type. In
616 -- either case, start by analyzing the prefix.
618 Analyze
(Prefix
(N
));
620 if Present
(Entity
(N
)) then
621 if Is_Type
(Entity
(N
)) then
622 Set_Etype
(N
, Entity
(N
));
624 Set_Etype
(N
, Etype
(Entity
(N
)));
628 Find_Expanded_Name
(N
);
631 -- In either case, propagate dimension of entity to expanded name
633 Analyze_Dimension
(N
);
634 end Analyze_Expanded_Name
;
636 ---------------------------------------
637 -- Analyze_Generic_Function_Renaming --
638 ---------------------------------------
640 procedure Analyze_Generic_Function_Renaming
(N
: Node_Id
) is
642 Analyze_Generic_Renaming
(N
, E_Generic_Function
);
643 end Analyze_Generic_Function_Renaming
;
645 --------------------------------------
646 -- Analyze_Generic_Package_Renaming --
647 --------------------------------------
649 procedure Analyze_Generic_Package_Renaming
(N
: Node_Id
) is
651 -- Test for the Text_IO special unit case here, since we may be renaming
652 -- one of the subpackages of Text_IO, then join common routine.
654 Check_Text_IO_Special_Unit
(Name
(N
));
656 Analyze_Generic_Renaming
(N
, E_Generic_Package
);
657 end Analyze_Generic_Package_Renaming
;
659 ----------------------------------------
660 -- Analyze_Generic_Procedure_Renaming --
661 ----------------------------------------
663 procedure Analyze_Generic_Procedure_Renaming
(N
: Node_Id
) is
665 Analyze_Generic_Renaming
(N
, E_Generic_Procedure
);
666 end Analyze_Generic_Procedure_Renaming
;
668 ------------------------------
669 -- Analyze_Generic_Renaming --
670 ------------------------------
672 procedure Analyze_Generic_Renaming
676 New_P
: constant Entity_Id
:= Defining_Entity
(N
);
677 Inst
: Boolean := False;
681 if Name
(N
) = Error
then
685 Check_SPARK_05_Restriction
("generic renaming is not allowed", N
);
687 Generate_Definition
(New_P
);
689 if Current_Scope
/= Standard_Standard
then
690 Set_Is_Pure
(New_P
, Is_Pure
(Current_Scope
));
693 if Nkind
(Name
(N
)) = N_Selected_Component
then
694 Check_Generic_Child_Unit
(Name
(N
), Inst
);
699 if not Is_Entity_Name
(Name
(N
)) then
700 Error_Msg_N
("expect entity name in renaming declaration", Name
(N
));
703 Old_P
:= Entity
(Name
(N
));
707 Set_Ekind
(New_P
, K
);
709 if Etype
(Old_P
) = Any_Type
then
712 elsif Ekind
(Old_P
) /= K
then
713 Error_Msg_N
("invalid generic unit name", Name
(N
));
716 if Present
(Renamed_Object
(Old_P
)) then
717 Set_Renamed_Object
(New_P
, Renamed_Object
(Old_P
));
719 Set_Renamed_Object
(New_P
, Old_P
);
722 -- The generic renaming declaration may become Ghost if it renames a
725 Mark_Ghost_Renaming
(N
, Old_P
);
727 Set_Is_Pure
(New_P
, Is_Pure
(Old_P
));
728 Set_Is_Preelaborated
(New_P
, Is_Preelaborated
(Old_P
));
730 Set_Etype
(New_P
, Etype
(Old_P
));
731 Set_Has_Completion
(New_P
);
733 if In_Open_Scopes
(Old_P
) then
734 Error_Msg_N
("within its scope, generic denotes its instance", N
);
737 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
738 -- renamings and subsequent instantiations of Unchecked_Conversion.
740 if Ekind_In
(Old_P
, E_Generic_Function
, E_Generic_Procedure
) then
741 Set_Is_Intrinsic_Subprogram
742 (New_P
, Is_Intrinsic_Subprogram
(Old_P
));
745 Check_Library_Unit_Renaming
(N
, Old_P
);
748 -- Implementation-defined aspect specifications can appear in a renaming
749 -- declaration, but not language-defined ones. The call to procedure
750 -- Analyze_Aspect_Specifications will take care of this error check.
752 if Has_Aspects
(N
) then
753 Analyze_Aspect_Specifications
(N
, New_P
);
755 end Analyze_Generic_Renaming
;
757 -----------------------------
758 -- Analyze_Object_Renaming --
759 -----------------------------
761 procedure Analyze_Object_Renaming
(N
: Node_Id
) is
762 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
763 Loc
: constant Source_Ptr
:= Sloc
(N
);
764 Nam
: constant Node_Id
:= Name
(N
);
769 procedure Check_Constrained_Object
;
770 -- If the nominal type is unconstrained but the renamed object is
771 -- constrained, as can happen with renaming an explicit dereference or
772 -- a function return, build a constrained subtype from the object. If
773 -- the renaming is for a formal in an accept statement, the analysis
774 -- has already established its actual subtype. This is only relevant
775 -- if the renamed object is an explicit dereference.
777 ------------------------------
778 -- Check_Constrained_Object --
779 ------------------------------
781 procedure Check_Constrained_Object
is
782 Typ
: constant Entity_Id
:= Etype
(Nam
);
786 if Nkind_In
(Nam
, N_Function_Call
, N_Explicit_Dereference
)
787 and then Is_Composite_Type
(Etype
(Nam
))
788 and then not Is_Constrained
(Etype
(Nam
))
789 and then not Has_Unknown_Discriminants
(Etype
(Nam
))
790 and then Expander_Active
792 -- If Actual_Subtype is already set, nothing to do
794 if Ekind_In
(Id
, E_Variable
, E_Constant
)
795 and then Present
(Actual_Subtype
(Id
))
799 -- A renaming of an unchecked union has no actual subtype
801 elsif Is_Unchecked_Union
(Typ
) then
804 -- If a record is limited its size is invariant. This is the case
805 -- in particular with record types with an access discirminant
806 -- that are used in iterators. This is an optimization, but it
807 -- also prevents typing anomalies when the prefix is further
808 -- expanded. Limited types with discriminants are included.
810 elsif Is_Limited_Record
(Typ
)
812 (Ekind
(Typ
) = E_Limited_Private_Type
813 and then Has_Discriminants
(Typ
)
814 and then Is_Access_Type
(Etype
(First_Discriminant
(Typ
))))
819 Subt
:= Make_Temporary
(Loc
, 'T');
820 Remove_Side_Effects
(Nam
);
822 Make_Subtype_Declaration
(Loc
,
823 Defining_Identifier
=> Subt
,
824 Subtype_Indication
=>
825 Make_Subtype_From_Expr
(Nam
, Typ
)));
826 Rewrite
(Subtype_Mark
(N
), New_Occurrence_Of
(Subt
, Loc
));
827 Set_Etype
(Nam
, Subt
);
829 -- Freeze subtype at once, to prevent order of elaboration
830 -- issues in the backend. The renamed object exists, so its
831 -- type is already frozen in any case.
833 Freeze_Before
(N
, Subt
);
836 end Check_Constrained_Object
;
838 -- Start of processing for Analyze_Object_Renaming
845 Check_SPARK_05_Restriction
("object renaming is not allowed", N
);
847 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
850 -- The renaming of a component that depends on a discriminant requires
851 -- an actual subtype, because in subsequent use of the object Gigi will
852 -- be unable to locate the actual bounds. This explicit step is required
853 -- when the renaming is generated in removing side effects of an
854 -- already-analyzed expression.
856 if Nkind
(Nam
) = N_Selected_Component
and then Analyzed
(Nam
) then
858 -- The object renaming declaration may become Ghost if it renames a
861 if Is_Entity_Name
(Nam
) then
862 Mark_Ghost_Renaming
(N
, Entity
(Nam
));
866 Dec
:= Build_Actual_Subtype_Of_Component
(Etype
(Nam
), Nam
);
868 if Present
(Dec
) then
869 Insert_Action
(N
, Dec
);
870 T
:= Defining_Identifier
(Dec
);
874 -- Complete analysis of the subtype mark in any case, for ASIS use
876 if Present
(Subtype_Mark
(N
)) then
877 Find_Type
(Subtype_Mark
(N
));
880 elsif Present
(Subtype_Mark
(N
)) then
881 Find_Type
(Subtype_Mark
(N
));
882 T
:= Entity
(Subtype_Mark
(N
));
885 -- The object renaming declaration may become Ghost if it renames a
888 if Is_Entity_Name
(Nam
) then
889 Mark_Ghost_Renaming
(N
, Entity
(Nam
));
892 -- Reject renamings of conversions unless the type is tagged, or
893 -- the conversion is implicit (which can occur for cases of anonymous
894 -- access types in Ada 2012).
896 if Nkind
(Nam
) = N_Type_Conversion
897 and then Comes_From_Source
(Nam
)
898 and then not Is_Tagged_Type
(T
)
901 ("renaming of conversion only allowed for tagged types", Nam
);
906 -- If the renamed object is a function call of a limited type,
907 -- the expansion of the renaming is complicated by the presence
908 -- of various temporaries and subtypes that capture constraints
909 -- of the renamed object. Rewrite node as an object declaration,
910 -- whose expansion is simpler. Given that the object is limited
911 -- there is no copy involved and no performance hit.
913 if Nkind
(Nam
) = N_Function_Call
914 and then Is_Limited_View
(Etype
(Nam
))
915 and then not Is_Constrained
(Etype
(Nam
))
916 and then Comes_From_Source
(N
)
919 Set_Ekind
(Id
, E_Constant
);
921 Make_Object_Declaration
(Loc
,
922 Defining_Identifier
=> Id
,
923 Constant_Present
=> True,
924 Object_Definition
=> New_Occurrence_Of
(Etype
(Nam
), Loc
),
925 Expression
=> Relocate_Node
(Nam
)));
929 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
930 -- when renaming declaration has a named access type. The Ada 2012
931 -- coverage rules allow an anonymous access type in the context of
932 -- an expected named general access type, but the renaming rules
933 -- require the types to be the same. (An exception is when the type
934 -- of the renaming is also an anonymous access type, which can only
935 -- happen due to a renaming created by the expander.)
937 if Nkind
(Nam
) = N_Type_Conversion
938 and then not Comes_From_Source
(Nam
)
939 and then Ekind
(Etype
(Expression
(Nam
))) = E_Anonymous_Access_Type
940 and then Ekind
(T
) /= E_Anonymous_Access_Type
942 Wrong_Type
(Expression
(Nam
), T
); -- Should we give better error???
945 -- Check that a class-wide object is not being renamed as an object
946 -- of a specific type. The test for access types is needed to exclude
947 -- cases where the renamed object is a dynamically tagged access
948 -- result, such as occurs in certain expansions.
950 if Is_Tagged_Type
(T
) then
951 Check_Dynamically_Tagged_Expression
957 -- Ada 2005 (AI-230/AI-254): Access renaming
959 else pragma Assert
(Present
(Access_Definition
(N
)));
963 N
=> Access_Definition
(N
));
967 -- The object renaming declaration may become Ghost if it renames a
970 if Is_Entity_Name
(Nam
) then
971 Mark_Ghost_Renaming
(N
, Entity
(Nam
));
974 -- Ada 2005 AI05-105: if the declaration has an anonymous access
975 -- type, the renamed object must also have an anonymous type, and
976 -- this is a name resolution rule. This was implicit in the last part
977 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
980 if not Is_Overloaded
(Nam
) then
981 if Ekind
(Etype
(Nam
)) /= Ekind
(T
) then
983 ("expect anonymous access type in object renaming", N
);
990 Typ
: Entity_Id
:= Empty
;
991 Seen
: Boolean := False;
994 Get_First_Interp
(Nam
, I
, It
);
995 while Present
(It
.Typ
) loop
997 -- Renaming is ambiguous if more than one candidate
998 -- interpretation is type-conformant with the context.
1000 if Ekind
(It
.Typ
) = Ekind
(T
) then
1001 if Ekind
(T
) = E_Anonymous_Access_Subprogram_Type
1004 (Designated_Type
(T
), Designated_Type
(It
.Typ
))
1010 ("ambiguous expression in renaming", Nam
);
1013 elsif Ekind
(T
) = E_Anonymous_Access_Type
1015 Covers
(Designated_Type
(T
), Designated_Type
(It
.Typ
))
1021 ("ambiguous expression in renaming", Nam
);
1025 if Covers
(T
, It
.Typ
) then
1027 Set_Etype
(Nam
, Typ
);
1028 Set_Is_Overloaded
(Nam
, False);
1032 Get_Next_Interp
(I
, It
);
1039 -- Do not perform the legality checks below when the resolution of
1040 -- the renaming name failed because the associated type is Any_Type.
1042 if Etype
(Nam
) = Any_Type
then
1045 -- Ada 2005 (AI-231): In the case where the type is defined by an
1046 -- access_definition, the renamed entity shall be of an access-to-
1047 -- constant type if and only if the access_definition defines an
1048 -- access-to-constant type. ARM 8.5.1(4)
1050 elsif Constant_Present
(Access_Definition
(N
))
1051 and then not Is_Access_Constant
(Etype
(Nam
))
1054 ("(Ada 2005): the renamed object is not access-to-constant "
1055 & "(RM 8.5.1(6))", N
);
1057 elsif not Constant_Present
(Access_Definition
(N
))
1058 and then Is_Access_Constant
(Etype
(Nam
))
1061 ("(Ada 2005): the renamed object is not access-to-variable "
1062 & "(RM 8.5.1(6))", N
);
1065 if Is_Access_Subprogram_Type
(Etype
(Nam
)) then
1066 Check_Subtype_Conformant
1067 (Designated_Type
(T
), Designated_Type
(Etype
(Nam
)));
1069 elsif not Subtypes_Statically_Match
1070 (Designated_Type
(T
),
1071 Available_View
(Designated_Type
(Etype
(Nam
))))
1074 ("subtype of renamed object does not statically match", N
);
1078 -- Special processing for renaming function return object. Some errors
1079 -- and warnings are produced only for calls that come from source.
1081 if Nkind
(Nam
) = N_Function_Call
then
1084 -- Usage is illegal in Ada 83, but renamings are also introduced
1085 -- during expansion, and error does not apply to those.
1088 if Comes_From_Source
(N
) then
1090 ("(Ada 83) cannot rename function return object", Nam
);
1093 -- In Ada 95, warn for odd case of renaming parameterless function
1094 -- call if this is not a limited type (where this is useful).
1097 if Warn_On_Object_Renames_Function
1098 and then No
(Parameter_Associations
(Nam
))
1099 and then not Is_Limited_Type
(Etype
(Nam
))
1100 and then Comes_From_Source
(Nam
)
1103 ("renaming function result object is suspicious?R?", Nam
);
1105 ("\function & will be called only once?R?", Nam
,
1106 Entity
(Name
(Nam
)));
1107 Error_Msg_N
-- CODEFIX
1108 ("\suggest using an initialized constant object "
1109 & "instead?R?", Nam
);
1114 Check_Constrained_Object
;
1116 -- An object renaming requires an exact match of the type. Class-wide
1117 -- matching is not allowed.
1119 if Is_Class_Wide_Type
(T
)
1120 and then Base_Type
(Etype
(Nam
)) /= Base_Type
(T
)
1122 Wrong_Type
(Nam
, T
);
1127 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1129 if Nkind
(Nam
) = N_Explicit_Dereference
1130 and then Ekind
(Etype
(T2
)) = E_Incomplete_Type
1132 Error_Msg_NE
("invalid use of incomplete type&", Id
, T2
);
1135 elsif Ekind
(Etype
(T
)) = E_Incomplete_Type
then
1136 Error_Msg_NE
("invalid use of incomplete type&", Id
, T
);
1140 -- Ada 2005 (AI-327)
1142 if Ada_Version
>= Ada_2005
1143 and then Nkind
(Nam
) = N_Attribute_Reference
1144 and then Attribute_Name
(Nam
) = Name_Priority
1148 elsif Ada_Version
>= Ada_2005
and then Nkind
(Nam
) in N_Has_Entity
then
1151 Nam_Ent
: Entity_Id
;
1154 if Nkind
(Nam
) = N_Attribute_Reference
then
1155 Nam_Ent
:= Entity
(Prefix
(Nam
));
1157 Nam_Ent
:= Entity
(Nam
);
1160 Nam_Decl
:= Parent
(Nam_Ent
);
1162 if Has_Null_Exclusion
(N
)
1163 and then not Has_Null_Exclusion
(Nam_Decl
)
1165 -- Ada 2005 (AI-423): If the object name denotes a generic
1166 -- formal object of a generic unit G, and the object renaming
1167 -- declaration occurs within the body of G or within the body
1168 -- of a generic unit declared within the declarative region
1169 -- of G, then the declaration of the formal object of G must
1170 -- have a null exclusion or a null-excluding subtype.
1172 if Is_Formal_Object
(Nam_Ent
)
1173 and then In_Generic_Scope
(Id
)
1175 if not Can_Never_Be_Null
(Etype
(Nam_Ent
)) then
1177 ("renamed formal does not exclude `NULL` "
1178 & "(RM 8.5.1(4.6/2))", N
);
1180 elsif In_Package_Body
(Scope
(Id
)) then
1182 ("formal object does not have a null exclusion"
1183 & "(RM 8.5.1(4.6/2))", N
);
1186 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1187 -- shall exclude null.
1189 elsif not Can_Never_Be_Null
(Etype
(Nam_Ent
)) then
1191 ("renamed object does not exclude `NULL` "
1192 & "(RM 8.5.1(4.6/2))", N
);
1194 -- An instance is illegal if it contains a renaming that
1195 -- excludes null, and the actual does not. The renaming
1196 -- declaration has already indicated that the declaration
1197 -- of the renamed actual in the instance will raise
1198 -- constraint_error.
1200 elsif Nkind
(Nam_Decl
) = N_Object_Declaration
1201 and then In_Instance
1203 Present
(Corresponding_Generic_Association
(Nam_Decl
))
1204 and then Nkind
(Expression
(Nam_Decl
)) =
1205 N_Raise_Constraint_Error
1208 ("renamed actual does not exclude `NULL` "
1209 & "(RM 8.5.1(4.6/2))", N
);
1211 -- Finally, if there is a null exclusion, the subtype mark
1212 -- must not be null-excluding.
1214 elsif No
(Access_Definition
(N
))
1215 and then Can_Never_Be_Null
(T
)
1218 ("`NOT NULL` not allowed (& already excludes null)",
1223 elsif Can_Never_Be_Null
(T
)
1224 and then not Can_Never_Be_Null
(Etype
(Nam_Ent
))
1227 ("renamed object does not exclude `NULL` "
1228 & "(RM 8.5.1(4.6/2))", N
);
1230 elsif Has_Null_Exclusion
(N
)
1231 and then No
(Access_Definition
(N
))
1232 and then Can_Never_Be_Null
(T
)
1235 ("`NOT NULL` not allowed (& already excludes null)", N
, T
);
1240 -- Set the Ekind of the entity, unless it has been set already, as is
1241 -- the case for the iteration object over a container with no variable
1242 -- indexing. In that case it's been marked as a constant, and we do not
1243 -- want to change it to a variable.
1245 if Ekind
(Id
) /= E_Constant
then
1246 Set_Ekind
(Id
, E_Variable
);
1249 -- Initialize the object size and alignment. Note that we used to call
1250 -- Init_Size_Align here, but that's wrong for objects which have only
1251 -- an Esize, not an RM_Size field.
1253 Init_Object_Size_Align
(Id
);
1255 if T
= Any_Type
or else Etype
(Nam
) = Any_Type
then
1258 -- Verify that the renamed entity is an object or a function call. It
1259 -- may have been rewritten in several ways.
1261 elsif Is_Object_Reference
(Nam
) then
1262 if Comes_From_Source
(N
) then
1263 if Is_Dependent_Component_Of_Mutable_Object
(Nam
) then
1265 ("illegal renaming of discriminant-dependent component", Nam
);
1268 -- If the renaming comes from source and the renamed object is a
1269 -- dereference, then mark the prefix as needing debug information,
1270 -- since it might have been rewritten hence internally generated
1271 -- and Debug_Renaming_Declaration will link the renaming to it.
1273 if Nkind
(Nam
) = N_Explicit_Dereference
1274 and then Is_Entity_Name
(Prefix
(Nam
))
1276 Set_Debug_Info_Needed
(Entity
(Prefix
(Nam
)));
1280 -- A static function call may have been folded into a literal
1282 elsif Nkind
(Original_Node
(Nam
)) = N_Function_Call
1284 -- When expansion is disabled, attribute reference is not rewritten
1285 -- as function call. Otherwise it may be rewritten as a conversion,
1286 -- so check original node.
1288 or else (Nkind
(Original_Node
(Nam
)) = N_Attribute_Reference
1289 and then Is_Function_Attribute_Name
1290 (Attribute_Name
(Original_Node
(Nam
))))
1292 -- Weird but legal, equivalent to renaming a function call. Illegal
1293 -- if the literal is the result of constant-folding an attribute
1294 -- reference that is not a function.
1296 or else (Is_Entity_Name
(Nam
)
1297 and then Ekind
(Entity
(Nam
)) = E_Enumeration_Literal
1299 Nkind
(Original_Node
(Nam
)) /= N_Attribute_Reference
)
1301 or else (Nkind
(Nam
) = N_Type_Conversion
1302 and then Is_Tagged_Type
(Entity
(Subtype_Mark
(Nam
))))
1306 elsif Nkind
(Nam
) = N_Type_Conversion
then
1308 ("renaming of conversion only allowed for tagged types", Nam
);
1310 -- Ada 2005 (AI-327)
1312 elsif Ada_Version
>= Ada_2005
1313 and then Nkind
(Nam
) = N_Attribute_Reference
1314 and then Attribute_Name
(Nam
) = Name_Priority
1318 -- Allow internally generated x'Ref resulting in N_Reference node
1320 elsif Nkind
(Nam
) = N_Reference
then
1324 Error_Msg_N
("expect object name in renaming", Nam
);
1329 if not Is_Variable
(Nam
) then
1330 Set_Ekind
(Id
, E_Constant
);
1331 Set_Never_Set_In_Source
(Id
, True);
1332 Set_Is_True_Constant
(Id
, True);
1335 -- The entity of the renaming declaration needs to reflect whether the
1336 -- renamed object is volatile. Is_Volatile is set if the renamed object
1337 -- is volatile in the RM legality sense.
1339 Set_Is_Volatile
(Id
, Is_Volatile_Object
(Nam
));
1341 -- Also copy settings of Atomic/Independent/Volatile_Full_Access
1343 if Is_Entity_Name
(Nam
) then
1344 Set_Is_Atomic
(Id
, Is_Atomic
(Entity
(Nam
)));
1345 Set_Is_Independent
(Id
, Is_Independent
(Entity
(Nam
)));
1346 Set_Is_Volatile_Full_Access
(Id
,
1347 Is_Volatile_Full_Access
(Entity
(Nam
)));
1350 -- Treat as volatile if we just set the Volatile flag
1354 -- Or if we are renaming an entity which was marked this way
1356 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1358 or else (Is_Entity_Name
(Nam
)
1359 and then Treat_As_Volatile
(Entity
(Nam
)))
1361 Set_Treat_As_Volatile
(Id
, True);
1364 -- Now make the link to the renamed object
1366 Set_Renamed_Object
(Id
, Nam
);
1368 -- Implementation-defined aspect specifications can appear in a renaming
1369 -- declaration, but not language-defined ones. The call to procedure
1370 -- Analyze_Aspect_Specifications will take care of this error check.
1372 if Has_Aspects
(N
) then
1373 Analyze_Aspect_Specifications
(N
, Id
);
1376 -- Deal with dimensions
1378 Analyze_Dimension
(N
);
1379 end Analyze_Object_Renaming
;
1381 ------------------------------
1382 -- Analyze_Package_Renaming --
1383 ------------------------------
1385 procedure Analyze_Package_Renaming
(N
: Node_Id
) is
1386 New_P
: constant Entity_Id
:= Defining_Entity
(N
);
1391 if Name
(N
) = Error
then
1395 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1397 Check_Text_IO_Special_Unit
(Name
(N
));
1399 if Current_Scope
/= Standard_Standard
then
1400 Set_Is_Pure
(New_P
, Is_Pure
(Current_Scope
));
1406 if Is_Entity_Name
(Name
(N
)) then
1407 Old_P
:= Entity
(Name
(N
));
1412 if Etype
(Old_P
) = Any_Type
then
1413 Error_Msg_N
("expect package name in renaming", Name
(N
));
1415 elsif Ekind
(Old_P
) /= E_Package
1416 and then not (Ekind
(Old_P
) = E_Generic_Package
1417 and then In_Open_Scopes
(Old_P
))
1419 if Ekind
(Old_P
) = E_Generic_Package
then
1421 ("generic package cannot be renamed as a package", Name
(N
));
1423 Error_Msg_Sloc
:= Sloc
(Old_P
);
1425 ("expect package name in renaming, found& declared#",
1429 -- Set basic attributes to minimize cascaded errors
1431 Set_Ekind
(New_P
, E_Package
);
1432 Set_Etype
(New_P
, Standard_Void_Type
);
1434 -- Here for OK package renaming
1437 -- Entities in the old package are accessible through the renaming
1438 -- entity. The simplest implementation is to have both packages share
1441 Set_Ekind
(New_P
, E_Package
);
1442 Set_Etype
(New_P
, Standard_Void_Type
);
1444 if Present
(Renamed_Object
(Old_P
)) then
1445 Set_Renamed_Object
(New_P
, Renamed_Object
(Old_P
));
1447 Set_Renamed_Object
(New_P
, Old_P
);
1450 -- The package renaming declaration may become Ghost if it renames a
1453 Mark_Ghost_Renaming
(N
, Old_P
);
1455 Set_Has_Completion
(New_P
);
1456 Set_First_Entity
(New_P
, First_Entity
(Old_P
));
1457 Set_Last_Entity
(New_P
, Last_Entity
(Old_P
));
1458 Set_First_Private_Entity
(New_P
, First_Private_Entity
(Old_P
));
1459 Check_Library_Unit_Renaming
(N
, Old_P
);
1460 Generate_Reference
(Old_P
, Name
(N
));
1462 -- If the renaming is in the visible part of a package, then we set
1463 -- Renamed_In_Spec for the renamed package, to prevent giving
1464 -- warnings about no entities referenced. Such a warning would be
1465 -- overenthusiastic, since clients can see entities in the renamed
1466 -- package via the visible package renaming.
1469 Ent
: constant Entity_Id
:= Cunit_Entity
(Current_Sem_Unit
);
1471 if Ekind
(Ent
) = E_Package
1472 and then not In_Private_Part
(Ent
)
1473 and then In_Extended_Main_Source_Unit
(N
)
1474 and then Ekind
(Old_P
) = E_Package
1476 Set_Renamed_In_Spec
(Old_P
);
1480 -- If this is the renaming declaration of a package instantiation
1481 -- within itself, it is the declaration that ends the list of actuals
1482 -- for the instantiation. At this point, the subtypes that rename
1483 -- the actuals are flagged as generic, to avoid spurious ambiguities
1484 -- if the actuals for two distinct formals happen to coincide. If
1485 -- the actual is a private type, the subtype has a private completion
1486 -- that is flagged in the same fashion.
1488 -- Resolution is identical to what is was in the original generic.
1489 -- On exit from the generic instance, these are turned into regular
1490 -- subtypes again, so they are compatible with types in their class.
1492 if not Is_Generic_Instance
(Old_P
) then
1495 Spec
:= Specification
(Unit_Declaration_Node
(Old_P
));
1498 if Nkind
(Spec
) = N_Package_Specification
1499 and then Present
(Generic_Parent
(Spec
))
1500 and then Old_P
= Current_Scope
1501 and then Chars
(New_P
) = Chars
(Generic_Parent
(Spec
))
1507 E
:= First_Entity
(Old_P
);
1508 while Present
(E
) and then E
/= New_P
loop
1510 and then Nkind
(Parent
(E
)) = N_Subtype_Declaration
1512 Set_Is_Generic_Actual_Type
(E
);
1514 if Is_Private_Type
(E
)
1515 and then Present
(Full_View
(E
))
1517 Set_Is_Generic_Actual_Type
(Full_View
(E
));
1527 -- Implementation-defined aspect specifications can appear in a renaming
1528 -- declaration, but not language-defined ones. The call to procedure
1529 -- Analyze_Aspect_Specifications will take care of this error check.
1531 if Has_Aspects
(N
) then
1532 Analyze_Aspect_Specifications
(N
, New_P
);
1534 end Analyze_Package_Renaming
;
1536 -------------------------------
1537 -- Analyze_Renamed_Character --
1538 -------------------------------
1540 procedure Analyze_Renamed_Character
1545 C
: constant Node_Id
:= Name
(N
);
1548 if Ekind
(New_S
) = E_Function
then
1549 Resolve
(C
, Etype
(New_S
));
1552 Check_Frozen_Renaming
(N
, New_S
);
1556 Error_Msg_N
("character literal can only be renamed as function", N
);
1558 end Analyze_Renamed_Character
;
1560 ---------------------------------
1561 -- Analyze_Renamed_Dereference --
1562 ---------------------------------
1564 procedure Analyze_Renamed_Dereference
1569 Nam
: constant Node_Id
:= Name
(N
);
1570 P
: constant Node_Id
:= Prefix
(Nam
);
1576 if not Is_Overloaded
(P
) then
1577 if Ekind
(Etype
(Nam
)) /= E_Subprogram_Type
1578 or else not Type_Conformant
(Etype
(Nam
), New_S
)
1580 Error_Msg_N
("designated type does not match specification", P
);
1589 Get_First_Interp
(Nam
, Ind
, It
);
1591 while Present
(It
.Nam
) loop
1593 if Ekind
(It
.Nam
) = E_Subprogram_Type
1594 and then Type_Conformant
(It
.Nam
, New_S
)
1596 if Typ
/= Any_Id
then
1597 Error_Msg_N
("ambiguous renaming", P
);
1604 Get_Next_Interp
(Ind
, It
);
1607 if Typ
= Any_Type
then
1608 Error_Msg_N
("designated type does not match specification", P
);
1613 Check_Frozen_Renaming
(N
, New_S
);
1617 end Analyze_Renamed_Dereference
;
1619 ---------------------------
1620 -- Analyze_Renamed_Entry --
1621 ---------------------------
1623 procedure Analyze_Renamed_Entry
1628 Nam
: constant Node_Id
:= Name
(N
);
1629 Sel
: constant Node_Id
:= Selector_Name
(Nam
);
1630 Is_Actual
: constant Boolean := Present
(Corresponding_Formal_Spec
(N
));
1634 if Entity
(Sel
) = Any_Id
then
1636 -- Selector is undefined on prefix. Error emitted already
1638 Set_Has_Completion
(New_S
);
1642 -- Otherwise find renamed entity and build body of New_S as a call to it
1644 Old_S
:= Find_Renamed_Entity
(N
, Selector_Name
(Nam
), New_S
);
1646 if Old_S
= Any_Id
then
1647 Error_Msg_N
(" no subprogram or entry matches specification", N
);
1650 Check_Subtype_Conformant
(New_S
, Old_S
, N
);
1651 Generate_Reference
(New_S
, Defining_Entity
(N
), 'b');
1652 Style
.Check_Identifier
(Defining_Entity
(N
), New_S
);
1655 -- Only mode conformance required for a renaming_as_declaration
1657 Check_Mode_Conformant
(New_S
, Old_S
, N
);
1660 Inherit_Renamed_Profile
(New_S
, Old_S
);
1662 -- The prefix can be an arbitrary expression that yields a task or
1663 -- protected object, so it must be resolved.
1665 Resolve
(Prefix
(Nam
), Scope
(Old_S
));
1668 Set_Convention
(New_S
, Convention
(Old_S
));
1669 Set_Has_Completion
(New_S
, Inside_A_Generic
);
1671 -- AI05-0225: If the renamed entity is a procedure or entry of a
1672 -- protected object, the target object must be a variable.
1674 if Ekind
(Scope
(Old_S
)) in Protected_Kind
1675 and then Ekind
(New_S
) = E_Procedure
1676 and then not Is_Variable
(Prefix
(Nam
))
1680 ("target object of protected operation used as actual for "
1681 & "formal procedure must be a variable", Nam
);
1684 ("target object of protected operation renamed as procedure, "
1685 & "must be a variable", Nam
);
1690 Check_Frozen_Renaming
(N
, New_S
);
1692 end Analyze_Renamed_Entry
;
1694 -----------------------------------
1695 -- Analyze_Renamed_Family_Member --
1696 -----------------------------------
1698 procedure Analyze_Renamed_Family_Member
1703 Nam
: constant Node_Id
:= Name
(N
);
1704 P
: constant Node_Id
:= Prefix
(Nam
);
1708 if (Is_Entity_Name
(P
) and then Ekind
(Entity
(P
)) = E_Entry_Family
)
1709 or else (Nkind
(P
) = N_Selected_Component
1710 and then Ekind
(Entity
(Selector_Name
(P
))) = E_Entry_Family
)
1712 if Is_Entity_Name
(P
) then
1713 Old_S
:= Entity
(P
);
1715 Old_S
:= Entity
(Selector_Name
(P
));
1718 if not Entity_Matches_Spec
(Old_S
, New_S
) then
1719 Error_Msg_N
("entry family does not match specification", N
);
1722 Check_Subtype_Conformant
(New_S
, Old_S
, N
);
1723 Generate_Reference
(New_S
, Defining_Entity
(N
), 'b');
1724 Style
.Check_Identifier
(Defining_Entity
(N
), New_S
);
1728 Error_Msg_N
("no entry family matches specification", N
);
1731 Set_Has_Completion
(New_S
, Inside_A_Generic
);
1734 Check_Frozen_Renaming
(N
, New_S
);
1736 end Analyze_Renamed_Family_Member
;
1738 -----------------------------------------
1739 -- Analyze_Renamed_Primitive_Operation --
1740 -----------------------------------------
1742 procedure Analyze_Renamed_Primitive_Operation
1751 Ctyp
: Conformance_Type
) return Boolean;
1752 -- Verify that the signatures of the renamed entity and the new entity
1753 -- match. The first formal of the renamed entity is skipped because it
1754 -- is the target object in any subsequent call.
1762 Ctyp
: Conformance_Type
) return Boolean
1768 if Ekind
(Subp
) /= Ekind
(New_S
) then
1772 Old_F
:= Next_Formal
(First_Formal
(Subp
));
1773 New_F
:= First_Formal
(New_S
);
1774 while Present
(Old_F
) and then Present
(New_F
) loop
1775 if not Conforming_Types
(Etype
(Old_F
), Etype
(New_F
), Ctyp
) then
1779 if Ctyp
>= Mode_Conformant
1780 and then Ekind
(Old_F
) /= Ekind
(New_F
)
1785 Next_Formal
(New_F
);
1786 Next_Formal
(Old_F
);
1792 -- Start of processing for Analyze_Renamed_Primitive_Operation
1795 if not Is_Overloaded
(Selector_Name
(Name
(N
))) then
1796 Old_S
:= Entity
(Selector_Name
(Name
(N
)));
1798 if not Conforms
(Old_S
, Type_Conformant
) then
1803 -- Find the operation that matches the given signature
1811 Get_First_Interp
(Selector_Name
(Name
(N
)), Ind
, It
);
1813 while Present
(It
.Nam
) loop
1814 if Conforms
(It
.Nam
, Type_Conformant
) then
1818 Get_Next_Interp
(Ind
, It
);
1823 if Old_S
= Any_Id
then
1824 Error_Msg_N
(" no subprogram or entry matches specification", N
);
1828 if not Conforms
(Old_S
, Subtype_Conformant
) then
1829 Error_Msg_N
("subtype conformance error in renaming", N
);
1832 Generate_Reference
(New_S
, Defining_Entity
(N
), 'b');
1833 Style
.Check_Identifier
(Defining_Entity
(N
), New_S
);
1836 -- Only mode conformance required for a renaming_as_declaration
1838 if not Conforms
(Old_S
, Mode_Conformant
) then
1839 Error_Msg_N
("mode conformance error in renaming", N
);
1842 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1843 -- view of a subprogram is intrinsic, because the compiler has
1844 -- to generate a wrapper for any call to it. If the name in a
1845 -- subprogram renaming is a prefixed view, the entity is thus
1846 -- intrinsic, and 'Access cannot be applied to it.
1848 Set_Convention
(New_S
, Convention_Intrinsic
);
1851 -- Inherit_Renamed_Profile (New_S, Old_S);
1853 -- The prefix can be an arbitrary expression that yields an
1854 -- object, so it must be resolved.
1856 Resolve
(Prefix
(Name
(N
)));
1858 end Analyze_Renamed_Primitive_Operation
;
1860 ---------------------------------
1861 -- Analyze_Subprogram_Renaming --
1862 ---------------------------------
1864 procedure Analyze_Subprogram_Renaming
(N
: Node_Id
) is
1865 Formal_Spec
: constant Entity_Id
:= Corresponding_Formal_Spec
(N
);
1866 Is_Actual
: constant Boolean := Present
(Formal_Spec
);
1867 Nam
: constant Node_Id
:= Name
(N
);
1868 Save_AV
: constant Ada_Version_Type
:= Ada_Version
;
1869 Save_AVP
: constant Node_Id
:= Ada_Version_Pragma
;
1870 Save_AV_Exp
: constant Ada_Version_Type
:= Ada_Version_Explicit
;
1871 Spec
: constant Node_Id
:= Specification
(N
);
1873 Old_S
: Entity_Id
:= Empty
;
1874 Rename_Spec
: Entity_Id
;
1876 procedure Build_Class_Wide_Wrapper
1877 (Ren_Id
: out Entity_Id
;
1878 Wrap_Id
: out Entity_Id
);
1879 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1880 -- type with unknown discriminants and a generic primitive operation of
1881 -- the said type with a box require special processing when the actual
1882 -- is a class-wide type:
1885 -- type Formal_Typ (<>) is private;
1886 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1887 -- package Gen is ...
1889 -- package Inst is new Gen (Actual_Typ'Class);
1891 -- In this case the general renaming mechanism used in the prologue of
1892 -- an instance no longer applies:
1894 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1896 -- The above is replaced the following wrapper/renaming combination:
1898 -- procedure Wrapper (Param : Formal_Typ) is -- wrapper
1900 -- Prim_Op (Param); -- primitive
1903 -- procedure Prim_Op (Param : Formal_Typ) renames Wrapper;
1905 -- This transformation applies only if there is no explicit visible
1906 -- class-wide operation at the point of the instantiation. Ren_Id is
1907 -- the entity of the renaming declaration. When the transformation
1908 -- applies, Wrap_Id is the entity of the generated class-wide wrapper
1909 -- (or Any_Id). Otherwise, Wrap_Id is the entity of the class-wide
1912 procedure Check_Null_Exclusion
1915 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1916 -- following AI rules:
1918 -- If Ren is a renaming of a formal subprogram and one of its
1919 -- parameters has a null exclusion, then the corresponding formal
1920 -- in Sub must also have one. Otherwise the subtype of the Sub's
1921 -- formal parameter must exclude null.
1923 -- If Ren is a renaming of a formal function and its return
1924 -- profile has a null exclusion, then Sub's return profile must
1925 -- have one. Otherwise the subtype of Sub's return profile must
1928 procedure Check_SPARK_Primitive_Operation
(Subp_Id
: Entity_Id
);
1929 -- Ensure that a SPARK renaming denoted by its entity Subp_Id does not
1930 -- declare a primitive operation of a tagged type (SPARK RM 6.1.1(3)).
1932 procedure Freeze_Actual_Profile
;
1933 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1934 -- types: a callable entity freezes its profile, unless it has an
1935 -- incomplete untagged formal (RM 13.14(10.2/3)).
1937 function Has_Class_Wide_Actual
return Boolean;
1938 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1939 -- defaulted formal subprogram where the actual for the controlling
1940 -- formal type is class-wide.
1942 function Original_Subprogram
(Subp
: Entity_Id
) return Entity_Id
;
1943 -- Find renamed entity when the declaration is a renaming_as_body and
1944 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1945 -- rule that a renaming_as_body is illegal if the declaration occurs
1946 -- before the subprogram it completes is frozen, and renaming indirectly
1947 -- renames the subprogram itself.(Defect Report 8652/0027).
1949 ------------------------------
1950 -- Build_Class_Wide_Wrapper --
1951 ------------------------------
1953 procedure Build_Class_Wide_Wrapper
1954 (Ren_Id
: out Entity_Id
;
1955 Wrap_Id
: out Entity_Id
)
1957 Loc
: constant Source_Ptr
:= Sloc
(N
);
1960 (Subp_Id
: Entity_Id
;
1961 Params
: List_Id
) return Node_Id
;
1962 -- Create a dispatching call to invoke routine Subp_Id with actuals
1963 -- built from the parameter specifications of list Params.
1965 function Build_Expr_Fun_Call
1966 (Subp_Id
: Entity_Id
;
1967 Params
: List_Id
) return Node_Id
;
1968 -- Create a dispatching call to invoke function Subp_Id with actuals
1969 -- built from the parameter specifications of list Params. Return
1970 -- directly the call, so that it can be used inside an expression
1971 -- function. This is a specificity of the GNATprove mode.
1973 function Build_Spec
(Subp_Id
: Entity_Id
) return Node_Id
;
1974 -- Create a subprogram specification based on the subprogram profile
1977 function Find_Primitive
(Typ
: Entity_Id
) return Entity_Id
;
1978 -- Find a primitive subprogram of type Typ which matches the profile
1979 -- of the renaming declaration.
1981 procedure Interpretation_Error
(Subp_Id
: Entity_Id
);
1982 -- Emit a continuation error message suggesting subprogram Subp_Id as
1983 -- a possible interpretation.
1985 function Is_Intrinsic_Equality
(Subp_Id
: Entity_Id
) return Boolean;
1986 -- Determine whether subprogram Subp_Id denotes the intrinsic "="
1989 function Is_Suitable_Candidate
(Subp_Id
: Entity_Id
) return Boolean;
1990 -- Determine whether subprogram Subp_Id is a suitable candidate for
1991 -- the role of a wrapped subprogram.
1998 (Subp_Id
: Entity_Id
;
1999 Params
: List_Id
) return Node_Id
2001 Actuals
: constant List_Id
:= New_List
;
2002 Call_Ref
: constant Node_Id
:= New_Occurrence_Of
(Subp_Id
, Loc
);
2006 -- Build the actual parameters of the call
2008 Formal
:= First
(Params
);
2009 while Present
(Formal
) loop
2011 Make_Identifier
(Loc
, Chars
(Defining_Identifier
(Formal
))));
2016 -- return Subp_Id (Actuals);
2018 if Ekind_In
(Subp_Id
, E_Function
, E_Operator
) then
2020 Make_Simple_Return_Statement
(Loc
,
2022 Make_Function_Call
(Loc
,
2024 Parameter_Associations
=> Actuals
));
2027 -- Subp_Id (Actuals);
2031 Make_Procedure_Call_Statement
(Loc
,
2033 Parameter_Associations
=> Actuals
);
2037 -------------------------
2038 -- Build_Expr_Fun_Call --
2039 -------------------------
2041 function Build_Expr_Fun_Call
2042 (Subp_Id
: Entity_Id
;
2043 Params
: List_Id
) return Node_Id
2045 Actuals
: constant List_Id
:= New_List
;
2046 Call_Ref
: constant Node_Id
:= New_Occurrence_Of
(Subp_Id
, Loc
);
2050 pragma Assert
(Ekind_In
(Subp_Id
, E_Function
, E_Operator
));
2052 -- Build the actual parameters of the call
2054 Formal
:= First
(Params
);
2055 while Present
(Formal
) loop
2057 Make_Identifier
(Loc
, Chars
(Defining_Identifier
(Formal
))));
2062 -- Subp_Id (Actuals);
2065 Make_Function_Call
(Loc
,
2067 Parameter_Associations
=> Actuals
);
2068 end Build_Expr_Fun_Call
;
2074 function Build_Spec
(Subp_Id
: Entity_Id
) return Node_Id
is
2075 Params
: constant List_Id
:= Copy_Parameter_List
(Subp_Id
);
2076 Spec_Id
: constant Entity_Id
:=
2077 Make_Defining_Identifier
(Loc
,
2078 Chars
=> New_External_Name
(Chars
(Subp_Id
), 'R'));
2081 if Ekind
(Formal_Spec
) = E_Procedure
then
2083 Make_Procedure_Specification
(Loc
,
2084 Defining_Unit_Name
=> Spec_Id
,
2085 Parameter_Specifications
=> Params
);
2088 Make_Function_Specification
(Loc
,
2089 Defining_Unit_Name
=> Spec_Id
,
2090 Parameter_Specifications
=> Params
,
2091 Result_Definition
=>
2092 New_Copy_Tree
(Result_Definition
(Spec
)));
2096 --------------------
2097 -- Find_Primitive --
2098 --------------------
2100 function Find_Primitive
(Typ
: Entity_Id
) return Entity_Id
is
2101 procedure Replace_Parameter_Types
(Spec
: Node_Id
);
2102 -- Given a specification Spec, replace all class-wide parameter
2103 -- types with reference to type Typ.
2105 -----------------------------
2106 -- Replace_Parameter_Types --
2107 -----------------------------
2109 procedure Replace_Parameter_Types
(Spec
: Node_Id
) is
2111 Formal_Id
: Entity_Id
;
2112 Formal_Typ
: Node_Id
;
2115 Formal
:= First
(Parameter_Specifications
(Spec
));
2116 while Present
(Formal
) loop
2117 Formal_Id
:= Defining_Identifier
(Formal
);
2118 Formal_Typ
:= Parameter_Type
(Formal
);
2120 -- Create a new entity for each class-wide formal to prevent
2121 -- aliasing with the original renaming. Replace the type of
2122 -- such a parameter with the candidate type.
2124 if Nkind
(Formal_Typ
) = N_Identifier
2125 and then Is_Class_Wide_Type
(Etype
(Formal_Typ
))
2127 Set_Defining_Identifier
(Formal
,
2128 Make_Defining_Identifier
(Loc
, Chars
(Formal_Id
)));
2130 Set_Parameter_Type
(Formal
, New_Occurrence_Of
(Typ
, Loc
));
2135 end Replace_Parameter_Types
;
2139 Alt_Ren
: constant Node_Id
:= New_Copy_Tree
(N
);
2140 Alt_Nam
: constant Node_Id
:= Name
(Alt_Ren
);
2141 Alt_Spec
: constant Node_Id
:= Specification
(Alt_Ren
);
2142 Subp_Id
: Entity_Id
;
2144 -- Start of processing for Find_Primitive
2147 -- Each attempt to find a suitable primitive of a particular type
2148 -- operates on its own copy of the original renaming. As a result
2149 -- the original renaming is kept decoration and side-effect free.
2151 -- Inherit the overloaded status of the renamed subprogram name
2153 if Is_Overloaded
(Nam
) then
2154 Set_Is_Overloaded
(Alt_Nam
);
2155 Save_Interps
(Nam
, Alt_Nam
);
2158 -- The copied renaming is hidden from visibility to prevent the
2159 -- pollution of the enclosing context.
2161 Set_Defining_Unit_Name
(Alt_Spec
, Make_Temporary
(Loc
, 'R'));
2163 -- The types of all class-wide parameters must be changed to the
2166 Replace_Parameter_Types
(Alt_Spec
);
2168 -- Try to find a suitable primitive which matches the altered
2169 -- profile of the renaming specification.
2174 Nam
=> Name
(Alt_Ren
),
2175 New_S
=> Analyze_Subprogram_Specification
(Alt_Spec
),
2176 Is_Actual
=> Is_Actual
);
2178 -- Do not return Any_Id if the resolion of the altered profile
2179 -- failed as this complicates further checks on the caller side,
2180 -- return Empty instead.
2182 if Subp_Id
= Any_Id
then
2189 --------------------------
2190 -- Interpretation_Error --
2191 --------------------------
2193 procedure Interpretation_Error
(Subp_Id
: Entity_Id
) is
2195 Error_Msg_Sloc
:= Sloc
(Subp_Id
);
2197 if Is_Internal
(Subp_Id
) then
2199 ("\\possible interpretation: predefined & #",
2203 ("\\possible interpretation: & defined #", Spec
, Formal_Spec
);
2205 end Interpretation_Error
;
2207 ---------------------------
2208 -- Is_Intrinsic_Equality --
2209 ---------------------------
2211 function Is_Intrinsic_Equality
(Subp_Id
: Entity_Id
) return Boolean is
2214 Ekind
(Subp_Id
) = E_Operator
2215 and then Chars
(Subp_Id
) = Name_Op_Eq
2216 and then Is_Intrinsic_Subprogram
(Subp_Id
);
2217 end Is_Intrinsic_Equality
;
2219 ---------------------------
2220 -- Is_Suitable_Candidate --
2221 ---------------------------
2223 function Is_Suitable_Candidate
(Subp_Id
: Entity_Id
) return Boolean is
2225 if No
(Subp_Id
) then
2228 -- An intrinsic subprogram is never a good candidate. This is an
2229 -- indication of a missing primitive, either defined directly or
2230 -- inherited from a parent tagged type.
2232 elsif Is_Intrinsic_Subprogram
(Subp_Id
) then
2238 end Is_Suitable_Candidate
;
2242 Actual_Typ
: Entity_Id
:= Empty
;
2243 -- The actual class-wide type for Formal_Typ
2245 CW_Prim_OK
: Boolean;
2246 CW_Prim_Op
: Entity_Id
;
2247 -- The class-wide subprogram (if available) which corresponds to the
2248 -- renamed generic formal subprogram.
2250 Formal_Typ
: Entity_Id
:= Empty
;
2251 -- The generic formal type with unknown discriminants
2253 Root_Prim_OK
: Boolean;
2254 Root_Prim_Op
: Entity_Id
;
2255 -- The root type primitive (if available) which corresponds to the
2256 -- renamed generic formal subprogram.
2258 Root_Typ
: Entity_Id
:= Empty
;
2259 -- The root type of Actual_Typ
2261 Body_Decl
: Node_Id
;
2263 Prim_Op
: Entity_Id
;
2264 Spec_Decl
: Node_Id
;
2267 -- Start of processing for Build_Class_Wide_Wrapper
2270 -- Analyze the specification of the renaming in case the generation
2271 -- of the class-wide wrapper fails.
2273 Ren_Id
:= Analyze_Subprogram_Specification
(Spec
);
2276 -- Do not attempt to build a wrapper if the renaming is in error
2278 if Error_Posted
(Nam
) then
2282 -- Analyze the renamed name, but do not resolve it. The resolution is
2283 -- completed once a suitable subprogram is found.
2287 -- When the renamed name denotes the intrinsic operator equals, the
2288 -- name must be treated as overloaded. This allows for a potential
2289 -- match against the root type's predefined equality function.
2291 if Is_Intrinsic_Equality
(Entity
(Nam
)) then
2292 Set_Is_Overloaded
(Nam
);
2293 Collect_Interps
(Nam
);
2296 -- Step 1: Find the generic formal type with unknown discriminants
2297 -- and its corresponding class-wide actual type from the renamed
2298 -- generic formal subprogram.
2300 Formal
:= First_Formal
(Formal_Spec
);
2301 while Present
(Formal
) loop
2302 if Has_Unknown_Discriminants
(Etype
(Formal
))
2303 and then not Is_Class_Wide_Type
(Etype
(Formal
))
2304 and then Is_Class_Wide_Type
(Get_Instance_Of
(Etype
(Formal
)))
2306 Formal_Typ
:= Etype
(Formal
);
2307 Actual_Typ
:= Get_Instance_Of
(Formal_Typ
);
2308 Root_Typ
:= Etype
(Actual_Typ
);
2312 Next_Formal
(Formal
);
2315 -- The specification of the generic formal subprogram should always
2316 -- contain a formal type with unknown discriminants whose actual is
2317 -- a class-wide type, otherwise this indicates a failure in routine
2318 -- Has_Class_Wide_Actual.
2320 pragma Assert
(Present
(Formal_Typ
));
2322 -- Step 2: Find the proper class-wide subprogram or primitive which
2323 -- corresponds to the renamed generic formal subprogram.
2325 CW_Prim_Op
:= Find_Primitive
(Actual_Typ
);
2326 CW_Prim_OK
:= Is_Suitable_Candidate
(CW_Prim_Op
);
2327 Root_Prim_Op
:= Find_Primitive
(Root_Typ
);
2328 Root_Prim_OK
:= Is_Suitable_Candidate
(Root_Prim_Op
);
2330 -- The class-wide actual type has two subprograms which correspond to
2331 -- the renamed generic formal subprogram:
2333 -- with procedure Prim_Op (Param : Formal_Typ);
2335 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2336 -- procedure Prim_Op (Param : Actual_Typ'Class);
2338 -- Even though the declaration of the two subprograms is legal, a
2339 -- call to either one is ambiguous and therefore illegal.
2341 if CW_Prim_OK
and Root_Prim_OK
then
2343 -- A user-defined primitive has precedence over a predefined one
2345 if Is_Internal
(CW_Prim_Op
)
2346 and then not Is_Internal
(Root_Prim_Op
)
2348 Prim_Op
:= Root_Prim_Op
;
2350 elsif Is_Internal
(Root_Prim_Op
)
2351 and then not Is_Internal
(CW_Prim_Op
)
2353 Prim_Op
:= CW_Prim_Op
;
2355 elsif CW_Prim_Op
= Root_Prim_Op
then
2356 Prim_Op
:= Root_Prim_Op
;
2358 -- Otherwise both candidate subprograms are user-defined and
2363 ("ambiguous actual for generic subprogram &",
2365 Interpretation_Error
(Root_Prim_Op
);
2366 Interpretation_Error
(CW_Prim_Op
);
2370 elsif CW_Prim_OK
and not Root_Prim_OK
then
2371 Prim_Op
:= CW_Prim_Op
;
2373 elsif not CW_Prim_OK
and Root_Prim_OK
then
2374 Prim_Op
:= Root_Prim_Op
;
2376 -- An intrinsic equality may act as a suitable candidate in the case
2377 -- of a null type extension where the parent's equality is hidden. A
2378 -- call to an intrinsic equality is expanded as dispatching.
2380 elsif Present
(Root_Prim_Op
)
2381 and then Is_Intrinsic_Equality
(Root_Prim_Op
)
2383 Prim_Op
:= Root_Prim_Op
;
2385 -- Otherwise there are no candidate subprograms. Let the caller
2386 -- diagnose the error.
2392 -- At this point resolution has taken place and the name is no longer
2393 -- overloaded. Mark the primitive as referenced.
2395 Set_Is_Overloaded
(Name
(N
), False);
2396 Set_Referenced
(Prim_Op
);
2398 -- Do not generate a wrapper when the only candidate is a class-wide
2399 -- subprogram. Instead modify the renaming to directly map the actual
2400 -- to the generic formal.
2402 if CW_Prim_OK
and then Prim_Op
= CW_Prim_Op
then
2404 Rewrite
(Nam
, New_Occurrence_Of
(Prim_Op
, Loc
));
2408 -- Step 3: Create the declaration and the body of the wrapper, insert
2409 -- all the pieces into the tree.
2411 -- In GNATprove mode, create a function wrapper in the form of an
2412 -- expression function, so that an implicit postcondition relating
2413 -- the result of calling the wrapper function and the result of the
2414 -- dispatching call to the wrapped function is known during proof.
2417 and then Ekind_In
(Ren_Id
, E_Function
, E_Operator
)
2419 New_Spec
:= Build_Spec
(Ren_Id
);
2421 Make_Expression_Function
(Loc
,
2422 Specification
=> New_Spec
,
2425 (Subp_Id
=> Prim_Op
,
2426 Params
=> Parameter_Specifications
(New_Spec
)));
2428 Wrap_Id
:= Defining_Entity
(Body_Decl
);
2430 -- Otherwise, create separate spec and body for the subprogram
2434 Make_Subprogram_Declaration
(Loc
,
2435 Specification
=> Build_Spec
(Ren_Id
));
2436 Insert_Before_And_Analyze
(N
, Spec_Decl
);
2438 Wrap_Id
:= Defining_Entity
(Spec_Decl
);
2441 Make_Subprogram_Body
(Loc
,
2442 Specification
=> Build_Spec
(Ren_Id
),
2443 Declarations
=> New_List
,
2444 Handled_Statement_Sequence
=>
2445 Make_Handled_Sequence_Of_Statements
(Loc
,
2446 Statements
=> New_List
(
2448 (Subp_Id
=> Prim_Op
,
2450 Parameter_Specifications
2451 (Specification
(Spec_Decl
))))));
2453 Set_Corresponding_Body
(Spec_Decl
, Defining_Entity
(Body_Decl
));
2456 -- If the operator carries an Eliminated pragma, indicate that the
2457 -- wrapper is also to be eliminated, to prevent spurious error when
2458 -- using gnatelim on programs that include box-initialization of
2459 -- equality operators.
2461 Set_Is_Eliminated
(Wrap_Id
, Is_Eliminated
(Prim_Op
));
2463 -- In GNATprove mode, insert the body in the tree for analysis
2465 if GNATprove_Mode
then
2466 Insert_Before_And_Analyze
(N
, Body_Decl
);
2469 -- The generated body does not freeze and must be analyzed when the
2470 -- class-wide wrapper is frozen. The body is only needed if expansion
2473 if Expander_Active
then
2474 Append_Freeze_Action
(Wrap_Id
, Body_Decl
);
2477 -- Step 4: The subprogram renaming aliases the wrapper
2479 Rewrite
(Nam
, New_Occurrence_Of
(Wrap_Id
, Loc
));
2480 end Build_Class_Wide_Wrapper
;
2482 --------------------------
2483 -- Check_Null_Exclusion --
2484 --------------------------
2486 procedure Check_Null_Exclusion
2490 Ren_Formal
: Entity_Id
;
2491 Sub_Formal
: Entity_Id
;
2496 Ren_Formal
:= First_Formal
(Ren
);
2497 Sub_Formal
:= First_Formal
(Sub
);
2498 while Present
(Ren_Formal
) and then Present
(Sub_Formal
) loop
2499 if Has_Null_Exclusion
(Parent
(Ren_Formal
))
2501 not (Has_Null_Exclusion
(Parent
(Sub_Formal
))
2502 or else Can_Never_Be_Null
(Etype
(Sub_Formal
)))
2505 ("`NOT NULL` required for parameter &",
2506 Parent
(Sub_Formal
), Sub_Formal
);
2509 Next_Formal
(Ren_Formal
);
2510 Next_Formal
(Sub_Formal
);
2513 -- Return profile check
2515 if Nkind
(Parent
(Ren
)) = N_Function_Specification
2516 and then Nkind
(Parent
(Sub
)) = N_Function_Specification
2517 and then Has_Null_Exclusion
(Parent
(Ren
))
2518 and then not (Has_Null_Exclusion
(Parent
(Sub
))
2519 or else Can_Never_Be_Null
(Etype
(Sub
)))
2522 ("return must specify `NOT NULL`",
2523 Result_Definition
(Parent
(Sub
)));
2525 end Check_Null_Exclusion
;
2527 -------------------------------------
2528 -- Check_SPARK_Primitive_Operation --
2529 -------------------------------------
2531 procedure Check_SPARK_Primitive_Operation
(Subp_Id
: Entity_Id
) is
2532 Prag
: constant Node_Id
:= SPARK_Pragma
(Subp_Id
);
2536 -- Nothing to do when the subprogram is not subject to SPARK_Mode On
2537 -- because this check applies to SPARK code only.
2539 if not (Present
(Prag
)
2540 and then Get_SPARK_Mode_From_Annotation
(Prag
) = On
)
2544 -- Nothing to do when the subprogram is not a primitive operation
2546 elsif not Is_Primitive
(Subp_Id
) then
2550 Typ
:= Find_Dispatching_Type
(Subp_Id
);
2552 -- Nothing to do when the subprogram is a primitive operation of an
2559 -- At this point a renaming declaration introduces a new primitive
2560 -- operation for a tagged type.
2562 Error_Msg_Node_2
:= Typ
;
2564 ("subprogram renaming & cannot declare primitive for type & "
2565 & "(SPARK RM 6.1.1(3))", N
, Subp_Id
);
2566 end Check_SPARK_Primitive_Operation
;
2568 ---------------------------
2569 -- Freeze_Actual_Profile --
2570 ---------------------------
2572 procedure Freeze_Actual_Profile
is
2574 Has_Untagged_Inc
: Boolean;
2575 Instantiation_Node
: constant Node_Id
:= Parent
(N
);
2578 if Ada_Version
>= Ada_2012
then
2579 F
:= First_Formal
(Formal_Spec
);
2580 Has_Untagged_Inc
:= False;
2581 while Present
(F
) loop
2582 if Ekind
(Etype
(F
)) = E_Incomplete_Type
2583 and then not Is_Tagged_Type
(Etype
(F
))
2585 Has_Untagged_Inc
:= True;
2589 F
:= Next_Formal
(F
);
2592 if Ekind
(Formal_Spec
) = E_Function
2593 and then not Is_Tagged_Type
(Etype
(Formal_Spec
))
2595 Has_Untagged_Inc
:= True;
2598 if not Has_Untagged_Inc
then
2599 F
:= First_Formal
(Old_S
);
2600 while Present
(F
) loop
2601 Freeze_Before
(Instantiation_Node
, Etype
(F
));
2603 if Is_Incomplete_Or_Private_Type
(Etype
(F
))
2604 and then No
(Underlying_Type
(Etype
(F
)))
2606 -- Exclude generic types, or types derived from them.
2607 -- They will be frozen in the enclosing instance.
2609 if Is_Generic_Type
(Etype
(F
))
2610 or else Is_Generic_Type
(Root_Type
(Etype
(F
)))
2614 -- A limited view of a type declared elsewhere needs no
2615 -- freezing actions.
2617 elsif From_Limited_With
(Etype
(F
)) then
2622 ("type& must be frozen before this point",
2623 Instantiation_Node
, Etype
(F
));
2627 F
:= Next_Formal
(F
);
2631 end Freeze_Actual_Profile
;
2633 ---------------------------
2634 -- Has_Class_Wide_Actual --
2635 ---------------------------
2637 function Has_Class_Wide_Actual
return Boolean is
2639 Formal_Typ
: Entity_Id
;
2643 Formal
:= First_Formal
(Formal_Spec
);
2644 while Present
(Formal
) loop
2645 Formal_Typ
:= Etype
(Formal
);
2647 if Has_Unknown_Discriminants
(Formal_Typ
)
2648 and then not Is_Class_Wide_Type
(Formal_Typ
)
2649 and then Is_Class_Wide_Type
(Get_Instance_Of
(Formal_Typ
))
2654 Next_Formal
(Formal
);
2659 end Has_Class_Wide_Actual
;
2661 -------------------------
2662 -- Original_Subprogram --
2663 -------------------------
2665 function Original_Subprogram
(Subp
: Entity_Id
) return Entity_Id
is
2666 Orig_Decl
: Node_Id
;
2667 Orig_Subp
: Entity_Id
;
2670 -- First case: renamed entity is itself a renaming
2672 if Present
(Alias
(Subp
)) then
2673 return Alias
(Subp
);
2675 elsif Nkind
(Unit_Declaration_Node
(Subp
)) = N_Subprogram_Declaration
2676 and then Present
(Corresponding_Body
(Unit_Declaration_Node
(Subp
)))
2678 -- Check if renamed entity is a renaming_as_body
2681 Unit_Declaration_Node
2682 (Corresponding_Body
(Unit_Declaration_Node
(Subp
)));
2684 if Nkind
(Orig_Decl
) = N_Subprogram_Renaming_Declaration
then
2685 Orig_Subp
:= Entity
(Name
(Orig_Decl
));
2687 if Orig_Subp
= Rename_Spec
then
2689 -- Circularity detected
2694 return (Original_Subprogram
(Orig_Subp
));
2702 end Original_Subprogram
;
2706 CW_Actual
: constant Boolean := Has_Class_Wide_Actual
;
2707 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2708 -- defaulted formal subprogram when the actual for a related formal
2709 -- type is class-wide.
2711 Inst_Node
: Node_Id
:= Empty
;
2714 -- Start of processing for Analyze_Subprogram_Renaming
2717 -- We must test for the attribute renaming case before the Analyze
2718 -- call because otherwise Sem_Attr will complain that the attribute
2719 -- is missing an argument when it is analyzed.
2721 if Nkind
(Nam
) = N_Attribute_Reference
then
2723 -- In the case of an abstract formal subprogram association, rewrite
2724 -- an actual given by a stream attribute as the name of the
2725 -- corresponding stream primitive of the type.
2727 -- In a generic context the stream operations are not generated, and
2728 -- this must be treated as a normal attribute reference, to be
2729 -- expanded in subsequent instantiations.
2732 and then Is_Abstract_Subprogram
(Formal_Spec
)
2733 and then Expander_Active
2736 Prefix_Type
: constant Entity_Id
:= Entity
(Prefix
(Nam
));
2737 Stream_Prim
: Entity_Id
;
2740 -- The class-wide forms of the stream attributes are not
2741 -- primitive dispatching operations (even though they
2742 -- internally dispatch to a stream attribute).
2744 if Is_Class_Wide_Type
(Prefix_Type
) then
2746 ("attribute must be a primitive dispatching operation",
2751 -- Retrieve the primitive subprogram associated with the
2752 -- attribute. This can only be a stream attribute, since those
2753 -- are the only ones that are dispatching (and the actual for
2754 -- an abstract formal subprogram must be dispatching
2757 case Attribute_Name
(Nam
) is
2760 Find_Optional_Prim_Op
(Prefix_Type
, TSS_Stream_Input
);
2764 Find_Optional_Prim_Op
(Prefix_Type
, TSS_Stream_Output
);
2768 Find_Optional_Prim_Op
(Prefix_Type
, TSS_Stream_Read
);
2772 Find_Optional_Prim_Op
(Prefix_Type
, TSS_Stream_Write
);
2776 ("attribute must be a primitive dispatching operation",
2781 -- If no operation was found, and the type is limited, the user
2782 -- should have defined one.
2784 if No
(Stream_Prim
) then
2785 if Is_Limited_Type
(Prefix_Type
) then
2787 ("stream operation not defined for type&",
2791 -- Otherwise, compiler should have generated default
2794 raise Program_Error
;
2798 -- Rewrite the attribute into the name of its corresponding
2799 -- primitive dispatching subprogram. We can then proceed with
2800 -- the usual processing for subprogram renamings.
2803 Prim_Name
: constant Node_Id
:=
2804 Make_Identifier
(Sloc
(Nam
),
2805 Chars
=> Chars
(Stream_Prim
));
2807 Set_Entity
(Prim_Name
, Stream_Prim
);
2808 Rewrite
(Nam
, Prim_Name
);
2813 -- Normal processing for a renaming of an attribute
2816 Attribute_Renaming
(N
);
2821 -- Check whether this declaration corresponds to the instantiation of a
2822 -- formal subprogram.
2824 -- If this is an instantiation, the corresponding actual is frozen and
2825 -- error messages can be made more precise. If this is a default
2826 -- subprogram, the entity is already established in the generic, and is
2827 -- not retrieved by visibility. If it is a default with a box, the
2828 -- candidate interpretations, if any, have been collected when building
2829 -- the renaming declaration. If overloaded, the proper interpretation is
2830 -- determined in Find_Renamed_Entity. If the entity is an operator,
2831 -- Find_Renamed_Entity applies additional visibility checks.
2834 Inst_Node
:= Unit_Declaration_Node
(Formal_Spec
);
2836 -- Check whether the renaming is for a defaulted actual subprogram
2837 -- with a class-wide actual.
2839 -- The class-wide wrapper is not needed in GNATprove_Mode and there
2840 -- is an external axiomatization on the package.
2843 and then Box_Present
(Inst_Node
)
2847 Present
(Containing_Package_With_Ext_Axioms
(Formal_Spec
)))
2849 Build_Class_Wide_Wrapper
(New_S
, Old_S
);
2851 elsif Is_Entity_Name
(Nam
)
2852 and then Present
(Entity
(Nam
))
2853 and then not Comes_From_Source
(Nam
)
2854 and then not Is_Overloaded
(Nam
)
2856 Old_S
:= Entity
(Nam
);
2858 -- The subprogram renaming declaration may become Ghost if it
2859 -- renames a Ghost entity.
2861 Mark_Ghost_Renaming
(N
, Old_S
);
2863 New_S
:= Analyze_Subprogram_Specification
(Spec
);
2867 if Ekind
(Old_S
) = E_Operator
then
2871 if Box_Present
(Inst_Node
) then
2872 Old_S
:= Find_Renamed_Entity
(N
, Name
(N
), New_S
, Is_Actual
);
2874 -- If there is an immediately visible homonym of the operator
2875 -- and the declaration has a default, this is worth a warning
2876 -- because the user probably did not intend to get the pre-
2877 -- defined operator, visible in the generic declaration. To
2878 -- find if there is an intended candidate, analyze the renaming
2879 -- again in the current context.
2881 elsif Scope
(Old_S
) = Standard_Standard
2882 and then Present
(Default_Name
(Inst_Node
))
2885 Decl
: constant Node_Id
:= New_Copy_Tree
(N
);
2889 Set_Entity
(Name
(Decl
), Empty
);
2890 Analyze
(Name
(Decl
));
2892 Find_Renamed_Entity
(Decl
, Name
(Decl
), New_S
, True);
2895 and then In_Open_Scopes
(Scope
(Hidden
))
2896 and then Is_Immediately_Visible
(Hidden
)
2897 and then Comes_From_Source
(Hidden
)
2898 and then Hidden
/= Old_S
2900 Error_Msg_Sloc
:= Sloc
(Hidden
);
2902 ("default subprogram is resolved in the generic "
2903 & "declaration (RM 12.6(17))??", N
);
2904 Error_Msg_NE
("\and will not use & #??", N
, Hidden
);
2913 -- The subprogram renaming declaration may become Ghost if it
2914 -- renames a Ghost entity.
2916 if Is_Entity_Name
(Nam
) then
2917 Mark_Ghost_Renaming
(N
, Entity
(Nam
));
2920 New_S
:= Analyze_Subprogram_Specification
(Spec
);
2924 -- Renamed entity must be analyzed first, to avoid being hidden by
2925 -- new name (which might be the same in a generic instance).
2929 -- The subprogram renaming declaration may become Ghost if it renames
2932 if Is_Entity_Name
(Nam
) then
2933 Mark_Ghost_Renaming
(N
, Entity
(Nam
));
2936 -- The renaming defines a new overloaded entity, which is analyzed
2937 -- like a subprogram declaration.
2939 New_S
:= Analyze_Subprogram_Specification
(Spec
);
2942 if Current_Scope
/= Standard_Standard
then
2943 Set_Is_Pure
(New_S
, Is_Pure
(Current_Scope
));
2946 -- Set SPARK mode from current context
2948 Set_SPARK_Pragma
(New_S
, SPARK_Mode_Pragma
);
2949 Set_SPARK_Pragma_Inherited
(New_S
);
2951 Rename_Spec
:= Find_Corresponding_Spec
(N
);
2953 -- Case of Renaming_As_Body
2955 if Present
(Rename_Spec
) then
2956 Check_Previous_Null_Procedure
(N
, Rename_Spec
);
2958 -- Renaming declaration is the completion of the declaration of
2959 -- Rename_Spec. We build an actual body for it at the freezing point.
2961 Set_Corresponding_Spec
(N
, Rename_Spec
);
2963 -- Deal with special case of stream functions of abstract types
2966 if Nkind
(Unit_Declaration_Node
(Rename_Spec
)) =
2967 N_Abstract_Subprogram_Declaration
2969 -- Input stream functions are abstract if the object type is
2970 -- abstract. Similarly, all default stream functions for an
2971 -- interface type are abstract. However, these subprograms may
2972 -- receive explicit declarations in representation clauses, making
2973 -- the attribute subprograms usable as defaults in subsequent
2975 -- In this case we rewrite the declaration to make the subprogram
2976 -- non-abstract. We remove the previous declaration, and insert
2977 -- the new one at the point of the renaming, to prevent premature
2978 -- access to unfrozen types. The new declaration reuses the
2979 -- specification of the previous one, and must not be analyzed.
2982 (Is_Primitive
(Entity
(Nam
))
2984 Is_Abstract_Type
(Find_Dispatching_Type
(Entity
(Nam
))));
2986 Old_Decl
: constant Node_Id
:=
2987 Unit_Declaration_Node
(Rename_Spec
);
2988 New_Decl
: constant Node_Id
:=
2989 Make_Subprogram_Declaration
(Sloc
(N
),
2991 Relocate_Node
(Specification
(Old_Decl
)));
2994 Insert_After
(N
, New_Decl
);
2995 Set_Is_Abstract_Subprogram
(Rename_Spec
, False);
2996 Set_Analyzed
(New_Decl
);
3000 Set_Corresponding_Body
(Unit_Declaration_Node
(Rename_Spec
), New_S
);
3002 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
3003 Error_Msg_N
("(Ada 83) renaming cannot serve as a body", N
);
3006 Set_Convention
(New_S
, Convention
(Rename_Spec
));
3007 Check_Fully_Conformant
(New_S
, Rename_Spec
);
3008 Set_Public_Status
(New_S
);
3010 if No_Return
(Rename_Spec
)
3011 and then not No_Return
(Entity
(Nam
))
3013 Error_Msg_N
("renaming completes a No_Return procedure", N
);
3015 ("\renamed procedure must be nonreturning (RM 6.5.1 (7/2))", N
);
3018 -- The specification does not introduce new formals, but only
3019 -- repeats the formals of the original subprogram declaration.
3020 -- For cross-reference purposes, and for refactoring tools, we
3021 -- treat the formals of the renaming declaration as body formals.
3023 Reference_Body_Formals
(Rename_Spec
, New_S
);
3025 -- Indicate that the entity in the declaration functions like the
3026 -- corresponding body, and is not a new entity. The body will be
3027 -- constructed later at the freeze point, so indicate that the
3028 -- completion has not been seen yet.
3030 Set_Ekind
(New_S
, E_Subprogram_Body
);
3031 New_S
:= Rename_Spec
;
3032 Set_Has_Completion
(Rename_Spec
, False);
3034 -- Ada 2005: check overriding indicator
3036 if Present
(Overridden_Operation
(Rename_Spec
)) then
3037 if Must_Not_Override
(Specification
(N
)) then
3039 ("subprogram& overrides inherited operation",
3043 and then not Must_Override
(Specification
(N
))
3045 Style
.Missing_Overriding
(N
, Rename_Spec
);
3048 elsif Must_Override
(Specification
(N
)) then
3049 Error_Msg_NE
("subprogram& is not overriding", N
, Rename_Spec
);
3052 -- Normal subprogram renaming (not renaming as body)
3055 Generate_Definition
(New_S
);
3056 New_Overloaded_Entity
(New_S
);
3058 if not (Is_Entity_Name
(Nam
)
3059 and then Is_Intrinsic_Subprogram
(Entity
(Nam
)))
3061 Check_Delayed_Subprogram
(New_S
);
3064 -- Verify that a SPARK renaming does not declare a primitive
3065 -- operation of a tagged type.
3067 Check_SPARK_Primitive_Operation
(New_S
);
3070 -- There is no need for elaboration checks on the new entity, which may
3071 -- be called before the next freezing point where the body will appear.
3072 -- Elaboration checks refer to the real entity, not the one created by
3073 -- the renaming declaration.
3075 Set_Kill_Elaboration_Checks
(New_S
, True);
3077 -- If we had a previous error, indicate a completely is present to stop
3078 -- junk cascaded messages, but don't take any further action.
3080 if Etype
(Nam
) = Any_Type
then
3081 Set_Has_Completion
(New_S
);
3084 -- Case where name has the form of a selected component
3086 elsif Nkind
(Nam
) = N_Selected_Component
then
3088 -- A name which has the form A.B can designate an entry of task A, a
3089 -- protected operation of protected object A, or finally a primitive
3090 -- operation of object A. In the later case, A is an object of some
3091 -- tagged type, or an access type that denotes one such. To further
3092 -- distinguish these cases, note that the scope of a task entry or
3093 -- protected operation is type of the prefix.
3095 -- The prefix could be an overloaded function call that returns both
3096 -- kinds of operations. This overloading pathology is left to the
3097 -- dedicated reader ???
3100 T
: constant Entity_Id
:= Etype
(Prefix
(Nam
));
3108 and then Is_Tagged_Type
(Designated_Type
(T
))))
3109 and then Scope
(Entity
(Selector_Name
(Nam
))) /= T
3111 Analyze_Renamed_Primitive_Operation
3112 (N
, New_S
, Present
(Rename_Spec
));
3116 -- Renamed entity is an entry or protected operation. For those
3117 -- cases an explicit body is built (at the point of freezing of
3118 -- this entity) that contains a call to the renamed entity.
3120 -- This is not allowed for renaming as body if the renamed
3121 -- spec is already frozen (see RM 8.5.4(5) for details).
3123 if Present
(Rename_Spec
) and then Is_Frozen
(Rename_Spec
) then
3125 ("renaming-as-body cannot rename entry as subprogram", N
);
3127 ("\since & is already frozen (RM 8.5.4(5))",
3130 Analyze_Renamed_Entry
(N
, New_S
, Present
(Rename_Spec
));
3137 -- Case where name is an explicit dereference X.all
3139 elsif Nkind
(Nam
) = N_Explicit_Dereference
then
3141 -- Renamed entity is designated by access_to_subprogram expression.
3142 -- Must build body to encapsulate call, as in the entry case.
3144 Analyze_Renamed_Dereference
(N
, New_S
, Present
(Rename_Spec
));
3147 -- Indexed component
3149 elsif Nkind
(Nam
) = N_Indexed_Component
then
3150 Analyze_Renamed_Family_Member
(N
, New_S
, Present
(Rename_Spec
));
3153 -- Character literal
3155 elsif Nkind
(Nam
) = N_Character_Literal
then
3156 Analyze_Renamed_Character
(N
, New_S
, Present
(Rename_Spec
));
3159 -- Only remaining case is where we have a non-entity name, or a renaming
3160 -- of some other non-overloadable entity.
3162 elsif not Is_Entity_Name
(Nam
)
3163 or else not Is_Overloadable
(Entity
(Nam
))
3165 -- Do not mention the renaming if it comes from an instance
3167 if not Is_Actual
then
3168 Error_Msg_N
("expect valid subprogram name in renaming", N
);
3170 Error_Msg_NE
("no visible subprogram for formal&", N
, Nam
);
3176 -- Find the renamed entity that matches the given specification. Disable
3177 -- Ada_83 because there is no requirement of full conformance between
3178 -- renamed entity and new entity, even though the same circuit is used.
3180 -- This is a bit of an odd case, which introduces a really irregular use
3181 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
3184 Ada_Version
:= Ada_Version_Type
'Max (Ada_Version
, Ada_95
);
3185 Ada_Version_Pragma
:= Empty
;
3186 Ada_Version_Explicit
:= Ada_Version
;
3189 Old_S
:= Find_Renamed_Entity
(N
, Name
(N
), New_S
, Is_Actual
);
3191 -- The visible operation may be an inherited abstract operation that
3192 -- was overridden in the private part, in which case a call will
3193 -- dispatch to the overriding operation. Use the overriding one in
3194 -- the renaming declaration, to prevent spurious errors below.
3196 if Is_Overloadable
(Old_S
)
3197 and then Is_Abstract_Subprogram
(Old_S
)
3198 and then No
(DTC_Entity
(Old_S
))
3199 and then Present
(Alias
(Old_S
))
3200 and then not Is_Abstract_Subprogram
(Alias
(Old_S
))
3201 and then Present
(Overridden_Operation
(Alias
(Old_S
)))
3203 Old_S
:= Alias
(Old_S
);
3206 -- When the renamed subprogram is overloaded and used as an actual
3207 -- of a generic, its entity is set to the first available homonym.
3208 -- We must first disambiguate the name, then set the proper entity.
3210 if Is_Actual
and then Is_Overloaded
(Nam
) then
3211 Set_Entity
(Nam
, Old_S
);
3215 -- Most common case: subprogram renames subprogram. No body is generated
3216 -- in this case, so we must indicate the declaration is complete as is.
3217 -- and inherit various attributes of the renamed subprogram.
3219 if No
(Rename_Spec
) then
3220 Set_Has_Completion
(New_S
);
3221 Set_Is_Imported
(New_S
, Is_Imported
(Entity
(Nam
)));
3222 Set_Is_Pure
(New_S
, Is_Pure
(Entity
(Nam
)));
3223 Set_Is_Preelaborated
(New_S
, Is_Preelaborated
(Entity
(Nam
)));
3225 -- Ada 2005 (AI-423): Check the consistency of null exclusions
3226 -- between a subprogram and its correct renaming.
3228 -- Note: the Any_Id check is a guard that prevents compiler crashes
3229 -- when performing a null exclusion check between a renaming and a
3230 -- renamed subprogram that has been found to be illegal.
3232 if Ada_Version
>= Ada_2005
and then Entity
(Nam
) /= Any_Id
then
3233 Check_Null_Exclusion
3235 Sub
=> Entity
(Nam
));
3238 -- Enforce the Ada 2005 rule that the renamed entity cannot require
3239 -- overriding. The flag Requires_Overriding is set very selectively
3240 -- and misses some other illegal cases. The additional conditions
3241 -- checked below are sufficient but not necessary ???
3243 -- The rule does not apply to the renaming generated for an actual
3244 -- subprogram in an instance.
3249 -- Guard against previous errors, and omit renamings of predefined
3252 elsif not Ekind_In
(Old_S
, E_Function
, E_Procedure
) then
3255 elsif Requires_Overriding
(Old_S
)
3257 (Is_Abstract_Subprogram
(Old_S
)
3258 and then Present
(Find_Dispatching_Type
(Old_S
))
3259 and then not Is_Abstract_Type
(Find_Dispatching_Type
(Old_S
)))
3262 ("renamed entity cannot be subprogram that requires overriding "
3263 & "(RM 8.5.4 (5.1))", N
);
3267 Prev
: constant Entity_Id
:= Overridden_Operation
(New_S
);
3271 (Has_Non_Trivial_Precondition
(Prev
)
3272 or else Has_Non_Trivial_Precondition
(Old_S
))
3275 ("conflicting inherited classwide preconditions in renaming "
3276 & "of& (RM 6.1.1 (17)", N
, Old_S
);
3281 if Old_S
/= Any_Id
then
3282 if Is_Actual
and then From_Default
(N
) then
3284 -- This is an implicit reference to the default actual
3286 Generate_Reference
(Old_S
, Nam
, Typ
=> 'i', Force
=> True);
3289 Generate_Reference
(Old_S
, Nam
);
3292 Check_Internal_Protected_Use
(N
, Old_S
);
3294 -- For a renaming-as-body, require subtype conformance, but if the
3295 -- declaration being completed has not been frozen, then inherit the
3296 -- convention of the renamed subprogram prior to checking conformance
3297 -- (unless the renaming has an explicit convention established; the
3298 -- rule stated in the RM doesn't seem to address this ???).
3300 if Present
(Rename_Spec
) then
3301 Generate_Reference
(Rename_Spec
, Defining_Entity
(Spec
), 'b');
3302 Style
.Check_Identifier
(Defining_Entity
(Spec
), Rename_Spec
);
3304 if not Is_Frozen
(Rename_Spec
) then
3305 if not Has_Convention_Pragma
(Rename_Spec
) then
3306 Set_Convention
(New_S
, Convention
(Old_S
));
3309 if Ekind
(Old_S
) /= E_Operator
then
3310 Check_Mode_Conformant
(New_S
, Old_S
, Spec
);
3313 if Original_Subprogram
(Old_S
) = Rename_Spec
then
3314 Error_Msg_N
("unfrozen subprogram cannot rename itself ", N
);
3317 Check_Subtype_Conformant
(New_S
, Old_S
, Spec
);
3320 Check_Frozen_Renaming
(N
, Rename_Spec
);
3322 -- Check explicitly that renamed entity is not intrinsic, because
3323 -- in a generic the renamed body is not built. In this case,
3324 -- the renaming_as_body is a completion.
3326 if Inside_A_Generic
then
3327 if Is_Frozen
(Rename_Spec
)
3328 and then Is_Intrinsic_Subprogram
(Old_S
)
3331 ("subprogram in renaming_as_body cannot be intrinsic",
3335 Set_Has_Completion
(Rename_Spec
);
3338 elsif Ekind
(Old_S
) /= E_Operator
then
3340 -- If this a defaulted subprogram for a class-wide actual there is
3341 -- no check for mode conformance, given that the signatures don't
3342 -- match (the source mentions T but the actual mentions T'Class).
3346 elsif not Is_Actual
or else No
(Enclosing_Instance
) then
3347 Check_Mode_Conformant
(New_S
, Old_S
);
3350 if Is_Actual
and then Error_Posted
(New_S
) then
3351 Error_Msg_NE
("invalid actual subprogram: & #!", N
, Old_S
);
3355 if No
(Rename_Spec
) then
3357 -- The parameter profile of the new entity is that of the renamed
3358 -- entity: the subtypes given in the specification are irrelevant.
3360 Inherit_Renamed_Profile
(New_S
, Old_S
);
3362 -- A call to the subprogram is transformed into a call to the
3363 -- renamed entity. This is transitive if the renamed entity is
3364 -- itself a renaming.
3366 if Present
(Alias
(Old_S
)) then
3367 Set_Alias
(New_S
, Alias
(Old_S
));
3369 Set_Alias
(New_S
, Old_S
);
3372 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3373 -- renaming as body, since the entity in this case is not an
3374 -- intrinsic (it calls an intrinsic, but we have a real body for
3375 -- this call, and it is in this body that the required intrinsic
3376 -- processing will take place).
3378 -- Also, if this is a renaming of inequality, the renamed operator
3379 -- is intrinsic, but what matters is the corresponding equality
3380 -- operator, which may be user-defined.
3382 Set_Is_Intrinsic_Subprogram
3384 Is_Intrinsic_Subprogram
(Old_S
)
3386 (Chars
(Old_S
) /= Name_Op_Ne
3387 or else Ekind
(Old_S
) = E_Operator
3388 or else Is_Intrinsic_Subprogram
3389 (Corresponding_Equality
(Old_S
))));
3391 if Ekind
(Alias
(New_S
)) = E_Operator
then
3392 Set_Has_Delayed_Freeze
(New_S
, False);
3395 -- If the renaming corresponds to an association for an abstract
3396 -- formal subprogram, then various attributes must be set to
3397 -- indicate that the renaming is an abstract dispatching operation
3398 -- with a controlling type.
3400 if Is_Actual
and then Is_Abstract_Subprogram
(Formal_Spec
) then
3402 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3403 -- see it as corresponding to a generic association for a
3404 -- formal abstract subprogram
3406 Set_Is_Abstract_Subprogram
(New_S
);
3409 New_S_Ctrl_Type
: constant Entity_Id
:=
3410 Find_Dispatching_Type
(New_S
);
3411 Old_S_Ctrl_Type
: constant Entity_Id
:=
3412 Find_Dispatching_Type
(Old_S
);
3416 -- The actual must match the (instance of the) formal,
3417 -- and must be a controlling type.
3419 if Old_S_Ctrl_Type
/= New_S_Ctrl_Type
3420 or else No
(New_S_Ctrl_Type
)
3423 ("actual must be dispatching subprogram for type&",
3424 Nam
, New_S_Ctrl_Type
);
3427 Set_Is_Dispatching_Operation
(New_S
);
3428 Check_Controlling_Formals
(New_S_Ctrl_Type
, New_S
);
3430 -- If the actual in the formal subprogram is itself a
3431 -- formal abstract subprogram association, there's no
3432 -- dispatch table component or position to inherit.
3434 if Present
(DTC_Entity
(Old_S
)) then
3435 Set_DTC_Entity
(New_S
, DTC_Entity
(Old_S
));
3436 Set_DT_Position_Value
(New_S
, DT_Position
(Old_S
));
3446 -- The following is illegal, because F hides whatever other F may
3448 -- function F (...) renames F;
3451 or else (Nkind
(Nam
) /= N_Expanded_Name
3452 and then Chars
(Old_S
) = Chars
(New_S
))
3454 Error_Msg_N
("subprogram cannot rename itself", N
);
3456 -- This is illegal even if we use a selector:
3457 -- function F (...) renames Pkg.F;
3458 -- because F is still hidden.
3460 elsif Nkind
(Nam
) = N_Expanded_Name
3461 and then Entity
(Prefix
(Nam
)) = Current_Scope
3462 and then Chars
(Selector_Name
(Nam
)) = Chars
(New_S
)
3464 -- This is an error, but we overlook the error and accept the
3465 -- renaming if the special Overriding_Renamings mode is in effect.
3467 if not Overriding_Renamings
then
3469 ("implicit operation& is not visible (RM 8.3 (15))",
3474 Set_Convention
(New_S
, Convention
(Old_S
));
3476 if Is_Abstract_Subprogram
(Old_S
) then
3477 if Present
(Rename_Spec
) then
3479 ("a renaming-as-body cannot rename an abstract subprogram",
3481 Set_Has_Completion
(Rename_Spec
);
3483 Set_Is_Abstract_Subprogram
(New_S
);
3487 Check_Library_Unit_Renaming
(N
, Old_S
);
3489 -- Pathological case: procedure renames entry in the scope of its
3490 -- task. Entry is given by simple name, but body must be built for
3491 -- procedure. Of course if called it will deadlock.
3493 if Ekind
(Old_S
) = E_Entry
then
3494 Set_Has_Completion
(New_S
, False);
3495 Set_Alias
(New_S
, Empty
);
3498 -- Do not freeze the renaming nor the renamed entity when the context
3499 -- is an enclosing generic. Freezing is an expansion activity, and in
3500 -- addition the renamed entity may depend on the generic formals of
3501 -- the enclosing generic.
3503 if Is_Actual
and not Inside_A_Generic
then
3504 Freeze_Before
(N
, Old_S
);
3505 Freeze_Actual_Profile
;
3506 Set_Has_Delayed_Freeze
(New_S
, False);
3507 Freeze_Before
(N
, New_S
);
3509 -- An abstract subprogram is only allowed as an actual in the case
3510 -- where the formal subprogram is also abstract.
3512 if (Ekind
(Old_S
) = E_Procedure
or else Ekind
(Old_S
) = E_Function
)
3513 and then Is_Abstract_Subprogram
(Old_S
)
3514 and then not Is_Abstract_Subprogram
(Formal_Spec
)
3517 ("abstract subprogram not allowed as generic actual", Nam
);
3522 -- A common error is to assume that implicit operators for types are
3523 -- defined in Standard, or in the scope of a subtype. In those cases
3524 -- where the renamed entity is given with an expanded name, it is
3525 -- worth mentioning that operators for the type are not declared in
3526 -- the scope given by the prefix.
3528 if Nkind
(Nam
) = N_Expanded_Name
3529 and then Nkind
(Selector_Name
(Nam
)) = N_Operator_Symbol
3530 and then Scope
(Entity
(Nam
)) = Standard_Standard
3533 T
: constant Entity_Id
:=
3534 Base_Type
(Etype
(First_Formal
(New_S
)));
3536 Error_Msg_Node_2
:= Prefix
(Nam
);
3538 ("operator for type& is not declared in&", Prefix
(Nam
), T
);
3543 ("no visible subprogram matches the specification for&",
3547 if Present
(Candidate_Renaming
) then
3554 F1
:= First_Formal
(Candidate_Renaming
);
3555 F2
:= First_Formal
(New_S
);
3556 T1
:= First_Subtype
(Etype
(F1
));
3557 while Present
(F1
) and then Present
(F2
) loop
3562 if Present
(F1
) and then Present
(Default_Value
(F1
)) then
3563 if Present
(Next_Formal
(F1
)) then
3565 ("\missing specification for & and other formals with "
3566 & "defaults", Spec
, F1
);
3568 Error_Msg_NE
("\missing specification for &", Spec
, F1
);
3572 if Nkind
(Nam
) = N_Operator_Symbol
3573 and then From_Default
(N
)
3575 Error_Msg_Node_2
:= T1
;
3577 ("default & on & is not directly visible", Nam
, Nam
);
3583 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3584 -- controlling access parameters are known non-null for the renamed
3585 -- subprogram. Test also applies to a subprogram instantiation that
3586 -- is dispatching. Test is skipped if some previous error was detected
3587 -- that set Old_S to Any_Id.
3589 if Ada_Version
>= Ada_2005
3590 and then Old_S
/= Any_Id
3591 and then not Is_Dispatching_Operation
(Old_S
)
3592 and then Is_Dispatching_Operation
(New_S
)
3599 Old_F
:= First_Formal
(Old_S
);
3600 New_F
:= First_Formal
(New_S
);
3601 while Present
(Old_F
) loop
3602 if Ekind
(Etype
(Old_F
)) = E_Anonymous_Access_Type
3603 and then Is_Controlling_Formal
(New_F
)
3604 and then not Can_Never_Be_Null
(Old_F
)
3606 Error_Msg_N
("access parameter is controlling,", New_F
);
3608 ("\corresponding parameter of& must be explicitly null "
3609 & "excluding", New_F
, Old_S
);
3612 Next_Formal
(Old_F
);
3613 Next_Formal
(New_F
);
3618 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3619 -- is to warn if an operator is being renamed as a different operator.
3620 -- If the operator is predefined, examine the kind of the entity, not
3621 -- the abbreviated declaration in Standard.
3623 if Comes_From_Source
(N
)
3624 and then Present
(Old_S
)
3625 and then (Nkind
(Old_S
) = N_Defining_Operator_Symbol
3626 or else Ekind
(Old_S
) = E_Operator
)
3627 and then Nkind
(New_S
) = N_Defining_Operator_Symbol
3628 and then Chars
(Old_S
) /= Chars
(New_S
)
3631 ("& is being renamed as a different operator??", N
, Old_S
);
3634 -- Check for renaming of obsolescent subprogram
3636 Check_Obsolescent_2005_Entity
(Entity
(Nam
), Nam
);
3638 -- Another warning or some utility: if the new subprogram as the same
3639 -- name as the old one, the old one is not hidden by an outer homograph,
3640 -- the new one is not a public symbol, and the old one is otherwise
3641 -- directly visible, the renaming is superfluous.
3643 if Chars
(Old_S
) = Chars
(New_S
)
3644 and then Comes_From_Source
(N
)
3645 and then Scope
(Old_S
) /= Standard_Standard
3646 and then Warn_On_Redundant_Constructs
3647 and then (Is_Immediately_Visible
(Old_S
)
3648 or else Is_Potentially_Use_Visible
(Old_S
))
3649 and then Is_Overloadable
(Current_Scope
)
3650 and then Chars
(Current_Scope
) /= Chars
(Old_S
)
3653 ("redundant renaming, entity is directly visible?r?", Name
(N
));
3656 -- Implementation-defined aspect specifications can appear in a renaming
3657 -- declaration, but not language-defined ones. The call to procedure
3658 -- Analyze_Aspect_Specifications will take care of this error check.
3660 if Has_Aspects
(N
) then
3661 Analyze_Aspect_Specifications
(N
, New_S
);
3664 Ada_Version
:= Save_AV
;
3665 Ada_Version_Pragma
:= Save_AVP
;
3666 Ada_Version_Explicit
:= Save_AV_Exp
;
3668 -- In GNATprove mode, the renamings of actual subprograms are replaced
3669 -- with wrapper functions that make it easier to propagate axioms to the
3670 -- points of call within an instance. Wrappers are generated if formal
3671 -- subprogram is subject to axiomatization.
3673 -- The types in the wrapper profiles are obtained from (instances of)
3674 -- the types of the formal subprogram.
3677 and then GNATprove_Mode
3678 and then Present
(Containing_Package_With_Ext_Axioms
(Formal_Spec
))
3679 and then not Inside_A_Generic
3681 if Ekind
(Old_S
) = E_Function
then
3682 Rewrite
(N
, Build_Function_Wrapper
(Formal_Spec
, Old_S
));
3685 elsif Ekind
(Old_S
) = E_Operator
then
3686 Rewrite
(N
, Build_Operator_Wrapper
(Formal_Spec
, Old_S
));
3691 -- Check if we are looking at an Ada 2012 defaulted formal subprogram
3692 -- and mark any use_package_clauses that affect the visibility of the
3693 -- implicit generic actual.
3695 if Is_Generic_Actual_Subprogram
(New_S
)
3696 and then (Is_Intrinsic_Subprogram
(New_S
) or else From_Default
(N
))
3698 Mark_Use_Clauses
(New_S
);
3700 -- Handle overloaded subprograms
3702 if Present
(Alias
(New_S
)) then
3703 Mark_Use_Clauses
(Alias
(New_S
));
3706 end Analyze_Subprogram_Renaming
;
3708 -------------------------
3709 -- Analyze_Use_Package --
3710 -------------------------
3712 -- Resolve the package names in the use clause, and make all the visible
3713 -- entities defined in the package potentially use-visible. If the package
3714 -- is already in use from a previous use clause, its visible entities are
3715 -- already use-visible. In that case, mark the occurrence as a redundant
3716 -- use. If the package is an open scope, i.e. if the use clause occurs
3717 -- within the package itself, ignore it.
3719 procedure Analyze_Use_Package
(N
: Node_Id
; Chain
: Boolean := True) is
3720 procedure Analyze_Package_Name
(Clause
: Node_Id
);
3721 -- Perform analysis on a package name from a use_package_clause
3723 procedure Analyze_Package_Name_List
(Head_Clause
: Node_Id
);
3724 -- Similar to Analyze_Package_Name but iterates over all the names
3727 --------------------------
3728 -- Analyze_Package_Name --
3729 --------------------------
3731 procedure Analyze_Package_Name
(Clause
: Node_Id
) is
3732 Pack
: constant Node_Id
:= Name
(Clause
);
3736 pragma Assert
(Nkind
(Clause
) = N_Use_Package_Clause
);
3739 -- Verify that the package standard is not directly named in a
3740 -- use_package_clause.
3742 if Nkind
(Parent
(Clause
)) = N_Compilation_Unit
3743 and then Nkind
(Pack
) = N_Expanded_Name
3745 Pref
:= Prefix
(Pack
);
3747 while Nkind
(Pref
) = N_Expanded_Name
loop
3748 Pref
:= Prefix
(Pref
);
3751 if Entity
(Pref
) = Standard_Standard
then
3753 ("predefined package Standard cannot appear in a context "
3757 end Analyze_Package_Name
;
3759 -------------------------------
3760 -- Analyze_Package_Name_List --
3761 -------------------------------
3763 procedure Analyze_Package_Name_List
(Head_Clause
: Node_Id
) is
3767 -- Due to the way source use clauses are split during parsing we are
3768 -- forced to simply iterate through all entities in scope until the
3769 -- clause representing the last name in the list is found.
3771 Curr
:= Head_Clause
;
3772 while Present
(Curr
) loop
3773 Analyze_Package_Name
(Curr
);
3775 -- Stop iterating over the names in the use clause when we are at
3778 exit when not More_Ids
(Curr
) and then Prev_Ids
(Curr
);
3781 end Analyze_Package_Name_List
;
3785 Ghost_Id
: Entity_Id
:= Empty
;
3786 Living_Id
: Entity_Id
:= Empty
;
3789 -- Start of processing for Analyze_Use_Package
3792 Check_SPARK_05_Restriction
("use clause is not allowed", N
);
3794 Set_Hidden_By_Use_Clause
(N
, No_Elist
);
3796 -- Use clause not allowed in a spec of a predefined package declaration
3797 -- except that packages whose file name starts a-n are OK (these are
3798 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3800 if Is_Predefined_Unit
(Current_Sem_Unit
)
3801 and then Get_Name_String
3802 (Unit_File_Name
(Current_Sem_Unit
)) (1 .. 3) /= "a-n"
3803 and then Nkind
(Unit
(Cunit
(Current_Sem_Unit
))) =
3804 N_Package_Declaration
3806 Error_Msg_N
("use clause not allowed in predefined spec", N
);
3809 -- Loop through all package names from the original use clause in
3810 -- order to analyze referenced packages. A use_package_clause with only
3811 -- one name does not have More_Ids or Prev_Ids set, while a clause with
3812 -- More_Ids only starts the chain produced by the parser.
3814 if not More_Ids
(N
) and then not Prev_Ids
(N
) then
3815 Analyze_Package_Name
(N
);
3817 elsif More_Ids
(N
) and then not Prev_Ids
(N
) then
3818 Analyze_Package_Name_List
(N
);
3821 if not Is_Entity_Name
(Name
(N
)) then
3822 Error_Msg_N
("& is not a package", Name
(N
));
3828 Chain_Use_Clause
(N
);
3831 Pack
:= Entity
(Name
(N
));
3833 -- There are many cases where scopes are manipulated during analysis, so
3834 -- check that Pack's current use clause has not already been chained
3835 -- before setting its previous use clause.
3837 if Ekind
(Pack
) = E_Package
3838 and then Present
(Current_Use_Clause
(Pack
))
3839 and then Current_Use_Clause
(Pack
) /= N
3840 and then No
(Prev_Use_Clause
(N
))
3841 and then Prev_Use_Clause
(Current_Use_Clause
(Pack
)) /= N
3843 Set_Prev_Use_Clause
(N
, Current_Use_Clause
(Pack
));
3846 -- Mark all entities as potentially use visible.
3848 if Ekind
(Pack
) /= E_Package
and then Etype
(Pack
) /= Any_Type
then
3849 if Ekind
(Pack
) = E_Generic_Package
then
3850 Error_Msg_N
-- CODEFIX
3851 ("a generic package is not allowed in a use clause", Name
(N
));
3853 elsif Ekind_In
(Pack
, E_Generic_Function
, E_Generic_Package
)
3855 Error_Msg_N
-- CODEFIX
3856 ("a generic subprogram is not allowed in a use clause",
3859 elsif Ekind_In
(Pack
, E_Function
, E_Procedure
, E_Operator
) then
3860 Error_Msg_N
-- CODEFIX
3861 ("a subprogram is not allowed in a use clause", Name
(N
));
3864 Error_Msg_N
("& is not allowed in a use clause", Name
(N
));
3868 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3869 Check_In_Previous_With_Clause
(N
, Name
(N
));
3872 Use_One_Package
(N
, Name
(N
));
3874 -- Capture the first Ghost package and the first living package
3876 if Is_Entity_Name
(Name
(N
)) then
3877 Pack
:= Entity
(Name
(N
));
3879 if Is_Ghost_Entity
(Pack
) then
3880 if No
(Ghost_Id
) then
3884 elsif No
(Living_Id
) then
3889 end Analyze_Use_Package
;
3891 ----------------------
3892 -- Analyze_Use_Type --
3893 ----------------------
3895 procedure Analyze_Use_Type
(N
: Node_Id
; Chain
: Boolean := True) is
3900 Set_Hidden_By_Use_Clause
(N
, No_Elist
);
3902 -- Chain clause to list of use clauses in current scope when flagged
3905 Chain_Use_Clause
(N
);
3908 -- Obtain the base type of the type denoted within the use_type_clause's
3911 Id
:= Subtype_Mark
(N
);
3913 E
:= Base_Type
(Entity
(Id
));
3915 -- There are many cases where a use_type_clause may be reanalyzed due to
3916 -- manipulation of the scope stack so we much guard against those cases
3917 -- here, otherwise, we must add the new use_type_clause to the previous
3918 -- use_type_clause chain in order to mark redundant use_type_clauses as
3919 -- used. When the redundant use-type clauses appear in a parent unit and
3920 -- a child unit we must prevent a circularity in the chain that would
3921 -- otherwise result from the separate steps of analysis and installation
3922 -- of the parent context.
3924 if Present
(Current_Use_Clause
(E
))
3925 and then Current_Use_Clause
(E
) /= N
3926 and then Prev_Use_Clause
(Current_Use_Clause
(E
)) /= N
3927 and then No
(Prev_Use_Clause
(N
))
3929 Set_Prev_Use_Clause
(N
, Current_Use_Clause
(E
));
3932 -- If the Used_Operations list is already initialized, the clause has
3933 -- been analyzed previously, and it is being reinstalled, for example
3934 -- when the clause appears in a package spec and we are compiling the
3935 -- corresponding package body. In that case, make the entities on the
3936 -- existing list use_visible, and mark the corresponding types In_Use.
3938 if Present
(Used_Operations
(N
)) then
3943 Use_One_Type
(Subtype_Mark
(N
), Installed
=> True);
3945 Elmt
:= First_Elmt
(Used_Operations
(N
));
3946 while Present
(Elmt
) loop
3947 Set_Is_Potentially_Use_Visible
(Node
(Elmt
));
3955 -- Otherwise, create new list and attach to it the operations that are
3956 -- made use-visible by the clause.
3958 Set_Used_Operations
(N
, New_Elmt_List
);
3961 if E
/= Any_Type
then
3964 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3965 if Nkind
(Id
) = N_Identifier
then
3966 Error_Msg_N
("type is not directly visible", Id
);
3968 elsif Is_Child_Unit
(Scope
(E
))
3969 and then Scope
(E
) /= System_Aux_Id
3971 Check_In_Previous_With_Clause
(N
, Prefix
(Id
));
3976 -- If the use_type_clause appears in a compilation unit context,
3977 -- check whether it comes from a unit that may appear in a
3978 -- limited_with_clause, for a better error message.
3980 if Nkind
(Parent
(N
)) = N_Compilation_Unit
3981 and then Nkind
(Id
) /= N_Identifier
3987 function Mentioned
(Nam
: Node_Id
) return Boolean;
3988 -- Check whether the prefix of expanded name for the type
3989 -- appears in the prefix of some limited_with_clause.
3995 function Mentioned
(Nam
: Node_Id
) return Boolean is
3997 return Nkind
(Name
(Item
)) = N_Selected_Component
3998 and then Chars
(Prefix
(Name
(Item
))) = Chars
(Nam
);
4002 Pref
:= Prefix
(Id
);
4003 Item
:= First
(Context_Items
(Parent
(N
)));
4004 while Present
(Item
) and then Item
/= N
loop
4005 if Nkind
(Item
) = N_With_Clause
4006 and then Limited_Present
(Item
)
4007 and then Mentioned
(Pref
)
4010 (Get_Msg_Id
, "premature usage of incomplete type");
4019 Mark_Ghost_Clause
(N
);
4020 end Analyze_Use_Type
;
4022 ------------------------
4023 -- Attribute_Renaming --
4024 ------------------------
4026 procedure Attribute_Renaming
(N
: Node_Id
) is
4027 Loc
: constant Source_Ptr
:= Sloc
(N
);
4028 Nam
: constant Node_Id
:= Name
(N
);
4029 Spec
: constant Node_Id
:= Specification
(N
);
4030 New_S
: constant Entity_Id
:= Defining_Unit_Name
(Spec
);
4031 Aname
: constant Name_Id
:= Attribute_Name
(Nam
);
4033 Form_Num
: Nat
:= 0;
4034 Expr_List
: List_Id
:= No_List
;
4036 Attr_Node
: Node_Id
;
4037 Body_Node
: Node_Id
;
4038 Param_Spec
: Node_Id
;
4041 Generate_Definition
(New_S
);
4043 -- This procedure is called in the context of subprogram renaming, and
4044 -- thus the attribute must be one that is a subprogram. All of those
4045 -- have at least one formal parameter, with the exceptions of the GNAT
4046 -- attribute 'Img, which GNAT treats as renameable.
4048 if not Is_Non_Empty_List
(Parameter_Specifications
(Spec
)) then
4049 if Aname
/= Name_Img
then
4051 ("subprogram renaming an attribute must have formals", N
);
4056 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
4057 while Present
(Param_Spec
) loop
4058 Form_Num
:= Form_Num
+ 1;
4060 if Nkind
(Parameter_Type
(Param_Spec
)) /= N_Access_Definition
then
4061 Find_Type
(Parameter_Type
(Param_Spec
));
4063 -- The profile of the new entity denotes the base type (s) of
4064 -- the types given in the specification. For access parameters
4065 -- there are no subtypes involved.
4067 Rewrite
(Parameter_Type
(Param_Spec
),
4069 (Base_Type
(Entity
(Parameter_Type
(Param_Spec
))), Loc
));
4072 if No
(Expr_List
) then
4073 Expr_List
:= New_List
;
4076 Append_To
(Expr_List
,
4077 Make_Identifier
(Loc
,
4078 Chars
=> Chars
(Defining_Identifier
(Param_Spec
))));
4080 -- The expressions in the attribute reference are not freeze
4081 -- points. Neither is the attribute as a whole, see below.
4083 Set_Must_Not_Freeze
(Last
(Expr_List
));
4088 -- Immediate error if too many formals. Other mismatches in number or
4089 -- types of parameters are detected when we analyze the body of the
4090 -- subprogram that we construct.
4092 if Form_Num
> 2 then
4093 Error_Msg_N
("too many formals for attribute", N
);
4095 -- Error if the attribute reference has expressions that look like
4096 -- formal parameters.
4098 elsif Present
(Expressions
(Nam
)) then
4099 Error_Msg_N
("illegal expressions in attribute reference", Nam
);
4102 Nam_In
(Aname
, Name_Compose
, Name_Exponent
, Name_Leading_Part
,
4103 Name_Pos
, Name_Round
, Name_Scaling
,
4106 if Nkind
(N
) = N_Subprogram_Renaming_Declaration
4107 and then Present
(Corresponding_Formal_Spec
(N
))
4110 ("generic actual cannot be attribute involving universal type",
4114 ("attribute involving a universal type cannot be renamed",
4119 -- Rewrite attribute node to have a list of expressions corresponding to
4120 -- the subprogram formals. A renaming declaration is not a freeze point,
4121 -- and the analysis of the attribute reference should not freeze the
4122 -- type of the prefix. We use the original node in the renaming so that
4123 -- its source location is preserved, and checks on stream attributes are
4124 -- properly applied.
4126 Attr_Node
:= Relocate_Node
(Nam
);
4127 Set_Expressions
(Attr_Node
, Expr_List
);
4129 Set_Must_Not_Freeze
(Attr_Node
);
4130 Set_Must_Not_Freeze
(Prefix
(Nam
));
4132 -- Case of renaming a function
4134 if Nkind
(Spec
) = N_Function_Specification
then
4135 if Is_Procedure_Attribute_Name
(Aname
) then
4136 Error_Msg_N
("attribute can only be renamed as procedure", Nam
);
4140 Find_Type
(Result_Definition
(Spec
));
4141 Rewrite
(Result_Definition
(Spec
),
4143 (Base_Type
(Entity
(Result_Definition
(Spec
))), Loc
));
4146 Make_Subprogram_Body
(Loc
,
4147 Specification
=> Spec
,
4148 Declarations
=> New_List
,
4149 Handled_Statement_Sequence
=>
4150 Make_Handled_Sequence_Of_Statements
(Loc
,
4151 Statements
=> New_List
(
4152 Make_Simple_Return_Statement
(Loc
,
4153 Expression
=> Attr_Node
))));
4155 -- Case of renaming a procedure
4158 if not Is_Procedure_Attribute_Name
(Aname
) then
4159 Error_Msg_N
("attribute can only be renamed as function", Nam
);
4164 Make_Subprogram_Body
(Loc
,
4165 Specification
=> Spec
,
4166 Declarations
=> New_List
,
4167 Handled_Statement_Sequence
=>
4168 Make_Handled_Sequence_Of_Statements
(Loc
,
4169 Statements
=> New_List
(Attr_Node
)));
4172 -- Signal the ABE mechanism that the generated subprogram body has not
4173 -- ABE ramifications.
4175 Set_Was_Attribute_Reference
(Body_Node
);
4177 -- In case of tagged types we add the body of the generated function to
4178 -- the freezing actions of the type (because in the general case such
4179 -- type is still not frozen). We exclude from this processing generic
4180 -- formal subprograms found in instantiations.
4182 -- We must exclude restricted run-time libraries because
4183 -- entity AST_Handler is defined in package System.Aux_Dec which is not
4184 -- available in those platforms. Note that we cannot use the function
4185 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
4186 -- the ZFP run-time library is not defined as a profile, and we do not
4187 -- want to deal with AST_Handler in ZFP mode.
4189 if not Configurable_Run_Time_Mode
4190 and then not Present
(Corresponding_Formal_Spec
(N
))
4191 and then Etype
(Nam
) /= RTE
(RE_AST_Handler
)
4194 P
: constant Node_Id
:= Prefix
(Nam
);
4197 -- The prefix of 'Img is an object that is evaluated for each call
4198 -- of the function that renames it.
4200 if Aname
= Name_Img
then
4201 Preanalyze_And_Resolve
(P
);
4203 -- For all other attribute renamings, the prefix is a subtype
4209 -- If the target type is not yet frozen, add the body to the
4210 -- actions to be elaborated at freeze time.
4212 if Is_Tagged_Type
(Etype
(P
))
4213 and then In_Open_Scopes
(Scope
(Etype
(P
)))
4215 Ensure_Freeze_Node
(Etype
(P
));
4216 Append_Freeze_Action
(Etype
(P
), Body_Node
);
4218 Rewrite
(N
, Body_Node
);
4220 Set_Etype
(New_S
, Base_Type
(Etype
(New_S
)));
4224 -- Generic formal subprograms or AST_Handler renaming
4227 Rewrite
(N
, Body_Node
);
4229 Set_Etype
(New_S
, Base_Type
(Etype
(New_S
)));
4232 if Is_Compilation_Unit
(New_S
) then
4234 ("a library unit can only rename another library unit", N
);
4237 -- We suppress elaboration warnings for the resulting entity, since
4238 -- clearly they are not needed, and more particularly, in the case
4239 -- of a generic formal subprogram, the resulting entity can appear
4240 -- after the instantiation itself, and thus look like a bogus case
4241 -- of access before elaboration.
4243 if Legacy_Elaboration_Checks
then
4244 Set_Suppress_Elaboration_Warnings
(New_S
);
4246 end Attribute_Renaming
;
4248 ----------------------
4249 -- Chain_Use_Clause --
4250 ----------------------
4252 procedure Chain_Use_Clause
(N
: Node_Id
) is
4253 Level
: Int
:= Scope_Stack
.Last
;
4259 if not Is_Compilation_Unit
(Current_Scope
)
4260 or else not Is_Child_Unit
(Current_Scope
)
4264 -- Common case for compilation unit
4266 elsif Defining_Entity
(N
=> Parent
(N
),
4267 Empty_On_Errors
=> True) = Current_Scope
4272 -- If declaration appears in some other scope, it must be in some
4273 -- parent unit when compiling a child.
4275 Pack
:= Defining_Entity
(Parent
(N
), Empty_On_Errors
=> True);
4277 if not In_Open_Scopes
(Pack
) then
4280 -- If the use clause appears in an ancestor and we are in the
4281 -- private part of the immediate parent, the use clauses are
4282 -- already installed.
4284 elsif Pack
/= Scope
(Current_Scope
)
4285 and then In_Private_Part
(Scope
(Current_Scope
))
4290 -- Find entry for parent unit in scope stack
4292 while Scope_Stack
.Table
(Level
).Entity
/= Pack
loop
4298 Set_Next_Use_Clause
(N
,
4299 Scope_Stack
.Table
(Level
).First_Use_Clause
);
4300 Scope_Stack
.Table
(Level
).First_Use_Clause
:= N
;
4301 end Chain_Use_Clause
;
4303 ---------------------------
4304 -- Check_Frozen_Renaming --
4305 ---------------------------
4307 procedure Check_Frozen_Renaming
(N
: Node_Id
; Subp
: Entity_Id
) is
4312 if Is_Frozen
(Subp
) and then not Has_Completion
(Subp
) then
4315 (Parent
(Declaration_Node
(Subp
)), Defining_Entity
(N
));
4317 if Is_Entity_Name
(Name
(N
)) then
4318 Old_S
:= Entity
(Name
(N
));
4320 if not Is_Frozen
(Old_S
)
4321 and then Operating_Mode
/= Check_Semantics
4323 Append_Freeze_Action
(Old_S
, B_Node
);
4325 Insert_After
(N
, B_Node
);
4329 if Is_Intrinsic_Subprogram
(Old_S
)
4330 and then not In_Instance
4331 and then not Relaxed_RM_Semantics
4334 ("subprogram used in renaming_as_body cannot be intrinsic",
4339 Insert_After
(N
, B_Node
);
4343 end Check_Frozen_Renaming
;
4345 -------------------------------
4346 -- Set_Entity_Or_Discriminal --
4347 -------------------------------
4349 procedure Set_Entity_Or_Discriminal
(N
: Node_Id
; E
: Entity_Id
) is
4353 -- If the entity is not a discriminant, or else expansion is disabled,
4354 -- simply set the entity.
4356 if not In_Spec_Expression
4357 or else Ekind
(E
) /= E_Discriminant
4358 or else Inside_A_Generic
4360 Set_Entity_With_Checks
(N
, E
);
4362 -- The replacement of a discriminant by the corresponding discriminal
4363 -- is not done for a task discriminant that appears in a default
4364 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
4365 -- for details on their handling.
4367 elsif Is_Concurrent_Type
(Scope
(E
)) then
4370 and then not Nkind_In
(P
, N_Parameter_Specification
,
4371 N_Component_Declaration
)
4377 and then Nkind
(P
) = N_Parameter_Specification
4382 Set_Entity
(N
, Discriminal
(E
));
4385 -- Otherwise, this is a discriminant in a context in which
4386 -- it is a reference to the corresponding parameter of the
4387 -- init proc for the enclosing type.
4390 Set_Entity
(N
, Discriminal
(E
));
4392 end Set_Entity_Or_Discriminal
;
4394 -----------------------------------
4395 -- Check_In_Previous_With_Clause --
4396 -----------------------------------
4398 procedure Check_In_Previous_With_Clause
4402 Pack
: constant Entity_Id
:= Entity
(Original_Node
(Nam
));
4407 Item
:= First
(Context_Items
(Parent
(N
)));
4408 while Present
(Item
) and then Item
/= N
loop
4409 if Nkind
(Item
) = N_With_Clause
4411 -- Protect the frontend against previous critical errors
4413 and then Nkind
(Name
(Item
)) /= N_Selected_Component
4414 and then Entity
(Name
(Item
)) = Pack
4418 -- Find root library unit in with_clause
4420 while Nkind
(Par
) = N_Expanded_Name
loop
4421 Par
:= Prefix
(Par
);
4424 if Is_Child_Unit
(Entity
(Original_Node
(Par
))) then
4425 Error_Msg_NE
("& is not directly visible", Par
, Entity
(Par
));
4434 -- On exit, package is not mentioned in a previous with_clause.
4435 -- Check if its prefix is.
4437 if Nkind
(Nam
) = N_Expanded_Name
then
4438 Check_In_Previous_With_Clause
(N
, Prefix
(Nam
));
4440 elsif Pack
/= Any_Id
then
4441 Error_Msg_NE
("& is not visible", Nam
, Pack
);
4443 end Check_In_Previous_With_Clause
;
4445 ---------------------------------
4446 -- Check_Library_Unit_Renaming --
4447 ---------------------------------
4449 procedure Check_Library_Unit_Renaming
(N
: Node_Id
; Old_E
: Entity_Id
) is
4453 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
4456 -- Check for library unit. Note that we used to check for the scope
4457 -- being Standard here, but that was wrong for Standard itself.
4459 elsif not Is_Compilation_Unit
(Old_E
)
4460 and then not Is_Child_Unit
(Old_E
)
4462 Error_Msg_N
("renamed unit must be a library unit", Name
(N
));
4464 -- Entities defined in Standard (operators and boolean literals) cannot
4465 -- be renamed as library units.
4467 elsif Scope
(Old_E
) = Standard_Standard
4468 and then Sloc
(Old_E
) = Standard_Location
4470 Error_Msg_N
("renamed unit must be a library unit", Name
(N
));
4472 elsif Present
(Parent_Spec
(N
))
4473 and then Nkind
(Unit
(Parent_Spec
(N
))) = N_Generic_Package_Declaration
4474 and then not Is_Child_Unit
(Old_E
)
4477 ("renamed unit must be a child unit of generic parent", Name
(N
));
4479 elsif Nkind
(N
) in N_Generic_Renaming_Declaration
4480 and then Nkind
(Name
(N
)) = N_Expanded_Name
4481 and then Is_Generic_Instance
(Entity
(Prefix
(Name
(N
))))
4482 and then Is_Generic_Unit
(Old_E
)
4485 ("renamed generic unit must be a library unit", Name
(N
));
4487 elsif Is_Package_Or_Generic_Package
(Old_E
) then
4489 -- Inherit categorization flags
4491 New_E
:= Defining_Entity
(N
);
4492 Set_Is_Pure
(New_E
, Is_Pure
(Old_E
));
4493 Set_Is_Preelaborated
(New_E
, Is_Preelaborated
(Old_E
));
4494 Set_Is_Remote_Call_Interface
(New_E
,
4495 Is_Remote_Call_Interface
(Old_E
));
4496 Set_Is_Remote_Types
(New_E
, Is_Remote_Types
(Old_E
));
4497 Set_Is_Shared_Passive
(New_E
, Is_Shared_Passive
(Old_E
));
4499 end Check_Library_Unit_Renaming
;
4501 ------------------------
4502 -- Enclosing_Instance --
4503 ------------------------
4505 function Enclosing_Instance
return Entity_Id
is
4509 if not Is_Generic_Instance
(Current_Scope
) then
4513 S
:= Scope
(Current_Scope
);
4514 while S
/= Standard_Standard
loop
4515 if Is_Generic_Instance
(S
) then
4523 end Enclosing_Instance
;
4529 procedure End_Scope
is
4535 Id
:= First_Entity
(Current_Scope
);
4536 while Present
(Id
) loop
4537 -- An entity in the current scope is not necessarily the first one
4538 -- on its homonym chain. Find its predecessor if any,
4539 -- If it is an internal entity, it will not be in the visibility
4540 -- chain altogether, and there is nothing to unchain.
4542 if Id
/= Current_Entity
(Id
) then
4543 Prev
:= Current_Entity
(Id
);
4544 while Present
(Prev
)
4545 and then Present
(Homonym
(Prev
))
4546 and then Homonym
(Prev
) /= Id
4548 Prev
:= Homonym
(Prev
);
4551 -- Skip to end of loop if Id is not in the visibility chain
4553 if No
(Prev
) or else Homonym
(Prev
) /= Id
then
4561 Set_Is_Immediately_Visible
(Id
, False);
4563 Outer
:= Homonym
(Id
);
4564 while Present
(Outer
) and then Scope
(Outer
) = Current_Scope
loop
4565 Outer
:= Homonym
(Outer
);
4568 -- Reset homonym link of other entities, but do not modify link
4569 -- between entities in current scope, so that the back-end can have
4570 -- a proper count of local overloadings.
4573 Set_Name_Entity_Id
(Chars
(Id
), Outer
);
4575 elsif Scope
(Prev
) /= Scope
(Id
) then
4576 Set_Homonym
(Prev
, Outer
);
4583 -- If the scope generated freeze actions, place them before the
4584 -- current declaration and analyze them. Type declarations and
4585 -- the bodies of initialization procedures can generate such nodes.
4586 -- We follow the parent chain until we reach a list node, which is
4587 -- the enclosing list of declarations. If the list appears within
4588 -- a protected definition, move freeze nodes outside the protected
4592 (Scope_Stack
.Table
(Scope_Stack
.Last
).Pending_Freeze_Actions
)
4596 L
: constant List_Id
:= Scope_Stack
.Table
4597 (Scope_Stack
.Last
).Pending_Freeze_Actions
;
4600 if Is_Itype
(Current_Scope
) then
4601 Decl
:= Associated_Node_For_Itype
(Current_Scope
);
4603 Decl
:= Parent
(Current_Scope
);
4608 while not (Is_List_Member
(Decl
))
4609 or else Nkind_In
(Parent
(Decl
), N_Protected_Definition
,
4612 Decl
:= Parent
(Decl
);
4615 Insert_List_Before_And_Analyze
(Decl
, L
);
4623 ---------------------
4624 -- End_Use_Clauses --
4625 ---------------------
4627 procedure End_Use_Clauses
(Clause
: Node_Id
) is
4631 -- Remove use_type_clauses first, because they affect the visibility of
4632 -- operators in subsequent used packages.
4635 while Present
(U
) loop
4636 if Nkind
(U
) = N_Use_Type_Clause
then
4640 Next_Use_Clause
(U
);
4644 while Present
(U
) loop
4645 if Nkind
(U
) = N_Use_Package_Clause
then
4646 End_Use_Package
(U
);
4649 Next_Use_Clause
(U
);
4651 end End_Use_Clauses
;
4653 ---------------------
4654 -- End_Use_Package --
4655 ---------------------
4657 procedure End_Use_Package
(N
: Node_Id
) is
4659 Pack_Name
: Node_Id
;
4663 function Is_Primitive_Operator_In_Use
4665 F
: Entity_Id
) return Boolean;
4666 -- Check whether Op is a primitive operator of a use-visible type
4668 ----------------------------------
4669 -- Is_Primitive_Operator_In_Use --
4670 ----------------------------------
4672 function Is_Primitive_Operator_In_Use
4674 F
: Entity_Id
) return Boolean
4676 T
: constant Entity_Id
:= Base_Type
(Etype
(F
));
4678 return In_Use
(T
) and then Scope
(T
) = Scope
(Op
);
4679 end Is_Primitive_Operator_In_Use
;
4681 -- Start of processing for End_Use_Package
4684 Pack_Name
:= Name
(N
);
4686 -- Test that Pack_Name actually denotes a package before processing
4688 if Is_Entity_Name
(Pack_Name
)
4689 and then Ekind
(Entity
(Pack_Name
)) = E_Package
4691 Pack
:= Entity
(Pack_Name
);
4693 if In_Open_Scopes
(Pack
) then
4696 elsif not Redundant_Use
(Pack_Name
) then
4697 Set_In_Use
(Pack
, False);
4698 Set_Current_Use_Clause
(Pack
, Empty
);
4700 Id
:= First_Entity
(Pack
);
4701 while Present
(Id
) loop
4703 -- Preserve use-visibility of operators that are primitive
4704 -- operators of a type that is use-visible through an active
4707 if Nkind
(Id
) = N_Defining_Operator_Symbol
4709 (Is_Primitive_Operator_In_Use
(Id
, First_Formal
(Id
))
4711 (Present
(Next_Formal
(First_Formal
(Id
)))
4713 Is_Primitive_Operator_In_Use
4714 (Id
, Next_Formal
(First_Formal
(Id
)))))
4718 Set_Is_Potentially_Use_Visible
(Id
, False);
4721 if Is_Private_Type
(Id
)
4722 and then Present
(Full_View
(Id
))
4724 Set_Is_Potentially_Use_Visible
(Full_View
(Id
), False);
4730 if Present
(Renamed_Object
(Pack
)) then
4731 Set_In_Use
(Renamed_Object
(Pack
), False);
4732 Set_Current_Use_Clause
(Renamed_Object
(Pack
), Empty
);
4735 if Chars
(Pack
) = Name_System
4736 and then Scope
(Pack
) = Standard_Standard
4737 and then Present_System_Aux
4739 Id
:= First_Entity
(System_Aux_Id
);
4740 while Present
(Id
) loop
4741 Set_Is_Potentially_Use_Visible
(Id
, False);
4743 if Is_Private_Type
(Id
)
4744 and then Present
(Full_View
(Id
))
4746 Set_Is_Potentially_Use_Visible
(Full_View
(Id
), False);
4752 Set_In_Use
(System_Aux_Id
, False);
4755 Set_Redundant_Use
(Pack_Name
, False);
4759 if Present
(Hidden_By_Use_Clause
(N
)) then
4760 Elmt
:= First_Elmt
(Hidden_By_Use_Clause
(N
));
4761 while Present
(Elmt
) loop
4763 E
: constant Entity_Id
:= Node
(Elmt
);
4766 -- Reset either Use_Visibility or Direct_Visibility, depending
4767 -- on how the entity was hidden by the use clause.
4769 if In_Use
(Scope
(E
))
4770 and then Used_As_Generic_Actual
(Scope
(E
))
4772 Set_Is_Potentially_Use_Visible
(Node
(Elmt
));
4774 Set_Is_Immediately_Visible
(Node
(Elmt
));
4781 Set_Hidden_By_Use_Clause
(N
, No_Elist
);
4783 end End_Use_Package
;
4789 procedure End_Use_Type
(N
: Node_Id
) is
4794 -- Start of processing for End_Use_Type
4797 Id
:= Subtype_Mark
(N
);
4799 -- A call to Rtsfind may occur while analyzing a use_type_clause, in
4800 -- which case the type marks are not resolved yet, so guard against that
4803 if Is_Entity_Name
(Id
) and then Present
(Entity
(Id
)) then
4806 if T
= Any_Type
or else From_Limited_With
(T
) then
4809 -- Note that the use_type_clause may mention a subtype of the type
4810 -- whose primitive operations have been made visible. Here as
4811 -- elsewhere, it is the base type that matters for visibility.
4813 elsif In_Open_Scopes
(Scope
(Base_Type
(T
))) then
4816 elsif not Redundant_Use
(Id
) then
4817 Set_In_Use
(T
, False);
4818 Set_In_Use
(Base_Type
(T
), False);
4819 Set_Current_Use_Clause
(T
, Empty
);
4820 Set_Current_Use_Clause
(Base_Type
(T
), Empty
);
4824 if Is_Empty_Elmt_List
(Used_Operations
(N
)) then
4828 Elmt
:= First_Elmt
(Used_Operations
(N
));
4829 while Present
(Elmt
) loop
4830 Set_Is_Potentially_Use_Visible
(Node
(Elmt
), False);
4836 --------------------
4837 -- Entity_Of_Unit --
4838 --------------------
4840 function Entity_Of_Unit
(U
: Node_Id
) return Entity_Id
is
4842 if Nkind
(U
) = N_Package_Instantiation
and then Analyzed
(U
) then
4843 return Defining_Entity
(Instance_Spec
(U
));
4845 return Defining_Entity
(U
);
4849 ----------------------
4850 -- Find_Direct_Name --
4851 ----------------------
4853 procedure Find_Direct_Name
(N
: Node_Id
) is
4858 Homonyms
: Entity_Id
;
4859 -- Saves start of homonym chain
4861 Inst
: Entity_Id
:= Empty
;
4862 -- Enclosing instance, if any
4864 Nvis_Entity
: Boolean;
4865 -- Set True to indicate that there is at least one entity on the homonym
4866 -- chain which, while not visible, is visible enough from the user point
4867 -- of view to warrant an error message of "not visible" rather than
4870 Nvis_Is_Private_Subprg
: Boolean := False;
4871 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4872 -- effect concerning library subprograms has been detected. Used to
4873 -- generate the precise error message.
4875 function From_Actual_Package
(E
: Entity_Id
) return Boolean;
4876 -- Returns true if the entity is an actual for a package that is itself
4877 -- an actual for a formal package of the current instance. Such an
4878 -- entity requires special handling because it may be use-visible but
4879 -- hides directly visible entities defined outside the instance, because
4880 -- the corresponding formal did so in the generic.
4882 function Is_Actual_Parameter
return Boolean;
4883 -- This function checks if the node N is an identifier that is an actual
4884 -- parameter of a procedure call. If so it returns True, otherwise it
4885 -- return False. The reason for this check is that at this stage we do
4886 -- not know what procedure is being called if the procedure might be
4887 -- overloaded, so it is premature to go setting referenced flags or
4888 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4889 -- for that processing
4891 function Known_But_Invisible
(E
: Entity_Id
) return Boolean;
4892 -- This function determines whether a reference to the entity E, which
4893 -- is not visible, can reasonably be considered to be known to the
4894 -- writer of the reference. This is a heuristic test, used only for
4895 -- the purposes of figuring out whether we prefer to complain that an
4896 -- entity is undefined or invisible (and identify the declaration of
4897 -- the invisible entity in the latter case). The point here is that we
4898 -- don't want to complain that something is invisible and then point to
4899 -- something entirely mysterious to the writer.
4901 procedure Nvis_Messages
;
4902 -- Called if there are no visible entries for N, but there is at least
4903 -- one non-directly visible, or hidden declaration. This procedure
4904 -- outputs an appropriate set of error messages.
4906 procedure Undefined
(Nvis
: Boolean);
4907 -- This function is called if the current node has no corresponding
4908 -- visible entity or entities. The value set in Msg indicates whether
4909 -- an error message was generated (multiple error messages for the
4910 -- same variable are generally suppressed, see body for details).
4911 -- Msg is True if an error message was generated, False if not. This
4912 -- value is used by the caller to determine whether or not to output
4913 -- additional messages where appropriate. The parameter is set False
4914 -- to get the message "X is undefined", and True to get the message
4915 -- "X is not visible".
4917 -------------------------
4918 -- From_Actual_Package --
4919 -------------------------
4921 function From_Actual_Package
(E
: Entity_Id
) return Boolean is
4922 Scop
: constant Entity_Id
:= Scope
(E
);
4923 -- Declared scope of candidate entity
4925 function Declared_In_Actual
(Pack
: Entity_Id
) return Boolean;
4926 -- Recursive function that does the work and examines actuals of
4927 -- actual packages of current instance.
4929 ------------------------
4930 -- Declared_In_Actual --
4931 ------------------------
4933 function Declared_In_Actual
(Pack
: Entity_Id
) return Boolean is
4937 if No
(Associated_Formal_Package
(Pack
)) then
4941 Act
:= First_Entity
(Pack
);
4942 while Present
(Act
) loop
4943 if Renamed_Object
(Pack
) = Scop
then
4946 -- Check for end of list of actuals
4948 elsif Ekind
(Act
) = E_Package
4949 and then Renamed_Object
(Act
) = Pack
4953 elsif Ekind
(Act
) = E_Package
4954 and then Declared_In_Actual
(Act
)
4964 end Declared_In_Actual
;
4970 -- Start of processing for From_Actual_Package
4973 if not In_Instance
then
4977 Inst
:= Current_Scope
;
4978 while Present
(Inst
)
4979 and then Ekind
(Inst
) /= E_Package
4980 and then not Is_Generic_Instance
(Inst
)
4982 Inst
:= Scope
(Inst
);
4989 Act
:= First_Entity
(Inst
);
4990 while Present
(Act
) loop
4991 if Ekind
(Act
) = E_Package
4992 and then Declared_In_Actual
(Act
)
5002 end From_Actual_Package
;
5004 -------------------------
5005 -- Is_Actual_Parameter --
5006 -------------------------
5008 function Is_Actual_Parameter
return Boolean is
5011 Nkind
(N
) = N_Identifier
5013 (Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
5015 (Nkind
(Parent
(N
)) = N_Parameter_Association
5016 and then N
= Explicit_Actual_Parameter
(Parent
(N
))
5017 and then Nkind
(Parent
(Parent
(N
))) =
5018 N_Procedure_Call_Statement
));
5019 end Is_Actual_Parameter
;
5021 -------------------------
5022 -- Known_But_Invisible --
5023 -------------------------
5025 function Known_But_Invisible
(E
: Entity_Id
) return Boolean is
5026 Fname
: File_Name_Type
;
5029 -- Entities in Standard are always considered to be known
5031 if Sloc
(E
) <= Standard_Location
then
5034 -- An entity that does not come from source is always considered
5035 -- to be unknown, since it is an artifact of code expansion.
5037 elsif not Comes_From_Source
(E
) then
5040 -- In gnat internal mode, we consider all entities known. The
5041 -- historical reason behind this discrepancy is not known??? But the
5042 -- only effect is to modify the error message given, so it is not
5043 -- critical. Since it only affects the exact wording of error
5044 -- messages in illegal programs, we do not mention this as an
5045 -- effect of -gnatg, since it is not a language modification.
5047 elsif GNAT_Mode
then
5051 -- Here we have an entity that is not from package Standard, and
5052 -- which comes from Source. See if it comes from an internal file.
5054 Fname
:= Unit_File_Name
(Get_Source_Unit
(E
));
5056 -- Case of from internal file
5058 if In_Internal_Unit
(E
) then
5060 -- Private part entities in internal files are never considered
5061 -- to be known to the writer of normal application code.
5063 if Is_Hidden
(E
) then
5067 -- Entities from System packages other than System and
5068 -- System.Storage_Elements are not considered to be known.
5069 -- System.Auxxxx files are also considered known to the user.
5071 -- Should refine this at some point to generally distinguish
5072 -- between known and unknown internal files ???
5074 Get_Name_String
(Fname
);
5079 Name_Buffer
(1 .. 2) /= "s-"
5081 Name_Buffer
(3 .. 8) = "stoele"
5083 Name_Buffer
(3 .. 5) = "aux";
5085 -- If not an internal file, then entity is definitely known, even if
5086 -- it is in a private part (the message generated will note that it
5087 -- is in a private part).
5092 end Known_But_Invisible
;
5098 procedure Nvis_Messages
is
5099 Comp_Unit
: Node_Id
;
5101 Found
: Boolean := False;
5102 Hidden
: Boolean := False;
5106 -- Ada 2005 (AI-262): Generate a precise error concerning the
5107 -- Beaujolais effect that was previously detected
5109 if Nvis_Is_Private_Subprg
then
5111 pragma Assert
(Nkind
(E2
) = N_Defining_Identifier
5112 and then Ekind
(E2
) = E_Function
5113 and then Scope
(E2
) = Standard_Standard
5114 and then Has_Private_With
(E2
));
5116 -- Find the sloc corresponding to the private with'ed unit
5118 Comp_Unit
:= Cunit
(Current_Sem_Unit
);
5119 Error_Msg_Sloc
:= No_Location
;
5121 Item
:= First
(Context_Items
(Comp_Unit
));
5122 while Present
(Item
) loop
5123 if Nkind
(Item
) = N_With_Clause
5124 and then Private_Present
(Item
)
5125 and then Entity
(Name
(Item
)) = E2
5127 Error_Msg_Sloc
:= Sloc
(Item
);
5134 pragma Assert
(Error_Msg_Sloc
/= No_Location
);
5136 Error_Msg_N
("(Ada 2005): hidden by private with clause #", N
);
5140 Undefined
(Nvis
=> True);
5144 -- First loop does hidden declarations
5147 while Present
(Ent
) loop
5148 if Is_Potentially_Use_Visible
(Ent
) then
5150 Error_Msg_N
-- CODEFIX
5151 ("multiple use clauses cause hiding!", N
);
5155 Error_Msg_Sloc
:= Sloc
(Ent
);
5156 Error_Msg_N
-- CODEFIX
5157 ("hidden declaration#!", N
);
5160 Ent
:= Homonym
(Ent
);
5163 -- If we found hidden declarations, then that's enough, don't
5164 -- bother looking for non-visible declarations as well.
5170 -- Second loop does non-directly visible declarations
5173 while Present
(Ent
) loop
5174 if not Is_Potentially_Use_Visible
(Ent
) then
5176 -- Do not bother the user with unknown entities
5178 if not Known_But_Invisible
(Ent
) then
5182 Error_Msg_Sloc
:= Sloc
(Ent
);
5184 -- Output message noting that there is a non-visible
5185 -- declaration, distinguishing the private part case.
5187 if Is_Hidden
(Ent
) then
5188 Error_Msg_N
("non-visible (private) declaration#!", N
);
5190 -- If the entity is declared in a generic package, it
5191 -- cannot be visible, so there is no point in adding it
5192 -- to the list of candidates if another homograph from a
5193 -- non-generic package has been seen.
5195 elsif Ekind
(Scope
(Ent
)) = E_Generic_Package
5201 Error_Msg_N
-- CODEFIX
5202 ("non-visible declaration#!", N
);
5204 if Ekind
(Scope
(Ent
)) /= E_Generic_Package
then
5208 if Is_Compilation_Unit
(Ent
)
5210 Nkind
(Parent
(Parent
(N
))) = N_Use_Package_Clause
5212 Error_Msg_Qual_Level
:= 99;
5213 Error_Msg_NE
-- CODEFIX
5214 ("\\missing `WITH &;`", N
, Ent
);
5215 Error_Msg_Qual_Level
:= 0;
5218 if Ekind
(Ent
) = E_Discriminant
5219 and then Present
(Corresponding_Discriminant
(Ent
))
5220 and then Scope
(Corresponding_Discriminant
(Ent
)) =
5224 ("inherited discriminant not allowed here" &
5225 " (RM 3.8 (12), 3.8.1 (6))!", N
);
5229 -- Set entity and its containing package as referenced. We
5230 -- can't be sure of this, but this seems a better choice
5231 -- to avoid unused entity messages.
5233 if Comes_From_Source
(Ent
) then
5234 Set_Referenced
(Ent
);
5235 Set_Referenced
(Cunit_Entity
(Get_Source_Unit
(Ent
)));
5240 Ent
:= Homonym
(Ent
);
5249 procedure Undefined
(Nvis
: Boolean) is
5250 Emsg
: Error_Msg_Id
;
5253 -- We should never find an undefined internal name. If we do, then
5254 -- see if we have previous errors. If so, ignore on the grounds that
5255 -- it is probably a cascaded message (e.g. a block label from a badly
5256 -- formed block). If no previous errors, then we have a real internal
5257 -- error of some kind so raise an exception.
5259 if Is_Internal_Name
(Chars
(N
)) then
5260 if Total_Errors_Detected
/= 0 then
5263 raise Program_Error
;
5267 -- A very specialized error check, if the undefined variable is
5268 -- a case tag, and the case type is an enumeration type, check
5269 -- for a possible misspelling, and if so, modify the identifier
5271 -- Named aggregate should also be handled similarly ???
5273 if Nkind
(N
) = N_Identifier
5274 and then Nkind
(Parent
(N
)) = N_Case_Statement_Alternative
5277 Case_Stm
: constant Node_Id
:= Parent
(Parent
(N
));
5278 Case_Typ
: constant Entity_Id
:= Etype
(Expression
(Case_Stm
));
5283 if Is_Enumeration_Type
(Case_Typ
)
5284 and then not Is_Standard_Character_Type
(Case_Typ
)
5286 Lit
:= First_Literal
(Case_Typ
);
5287 Get_Name_String
(Chars
(Lit
));
5289 if Chars
(Lit
) /= Chars
(N
)
5290 and then Is_Bad_Spelling_Of
(Chars
(N
), Chars
(Lit
))
5292 Error_Msg_Node_2
:= Lit
;
5293 Error_Msg_N
-- CODEFIX
5294 ("& is undefined, assume misspelling of &", N
);
5295 Rewrite
(N
, New_Occurrence_Of
(Lit
, Sloc
(N
)));
5299 Lit
:= Next_Literal
(Lit
);
5304 -- Normal processing
5306 Set_Entity
(N
, Any_Id
);
5307 Set_Etype
(N
, Any_Type
);
5309 -- We use the table Urefs to keep track of entities for which we
5310 -- have issued errors for undefined references. Multiple errors
5311 -- for a single name are normally suppressed, however we modify
5312 -- the error message to alert the programmer to this effect.
5314 for J
in Urefs
.First
.. Urefs
.Last
loop
5315 if Chars
(N
) = Chars
(Urefs
.Table
(J
).Node
) then
5316 if Urefs
.Table
(J
).Err
/= No_Error_Msg
5317 and then Sloc
(N
) /= Urefs
.Table
(J
).Loc
5319 Error_Msg_Node_1
:= Urefs
.Table
(J
).Node
;
5321 if Urefs
.Table
(J
).Nvis
then
5322 Change_Error_Text
(Urefs
.Table
(J
).Err
,
5323 "& is not visible (more references follow)");
5325 Change_Error_Text
(Urefs
.Table
(J
).Err
,
5326 "& is undefined (more references follow)");
5329 Urefs
.Table
(J
).Err
:= No_Error_Msg
;
5332 -- Although we will set Msg False, and thus suppress the
5333 -- message, we also set Error_Posted True, to avoid any
5334 -- cascaded messages resulting from the undefined reference.
5337 Set_Error_Posted
(N
, True);
5342 -- If entry not found, this is first undefined occurrence
5345 Error_Msg_N
("& is not visible!", N
);
5349 Error_Msg_N
("& is undefined!", N
);
5352 -- A very bizarre special check, if the undefined identifier
5353 -- is put or put_line, then add a special error message (since
5354 -- this is a very common error for beginners to make).
5356 if Nam_In
(Chars
(N
), Name_Put
, Name_Put_Line
) then
5357 Error_Msg_N
-- CODEFIX
5358 ("\\possible missing `WITH Ada.Text_'I'O; " &
5359 "USE Ada.Text_'I'O`!", N
);
5361 -- Another special check if N is the prefix of a selected
5362 -- component which is a known unit, add message complaining
5363 -- about missing with for this unit.
5365 elsif Nkind
(Parent
(N
)) = N_Selected_Component
5366 and then N
= Prefix
(Parent
(N
))
5367 and then Is_Known_Unit
(Parent
(N
))
5369 Error_Msg_Node_2
:= Selector_Name
(Parent
(N
));
5370 Error_Msg_N
-- CODEFIX
5371 ("\\missing `WITH &.&;`", Prefix
(Parent
(N
)));
5374 -- Now check for possible misspellings
5378 Ematch
: Entity_Id
:= Empty
;
5380 Last_Name_Id
: constant Name_Id
:=
5381 Name_Id
(Nat
(First_Name_Id
) +
5382 Name_Entries_Count
- 1);
5385 for Nam
in First_Name_Id
.. Last_Name_Id
loop
5386 E
:= Get_Name_Entity_Id
(Nam
);
5389 and then (Is_Immediately_Visible
(E
)
5391 Is_Potentially_Use_Visible
(E
))
5393 if Is_Bad_Spelling_Of
(Chars
(N
), Nam
) then
5400 if Present
(Ematch
) then
5401 Error_Msg_NE
-- CODEFIX
5402 ("\possible misspelling of&", N
, Ematch
);
5407 -- Make entry in undefined references table unless the full errors
5408 -- switch is set, in which case by refraining from generating the
5409 -- table entry, we guarantee that we get an error message for every
5410 -- undefined reference. The entry is not added if we are ignoring
5413 if not All_Errors_Mode
and then Ignore_Errors_Enable
= 0 then
5426 Nested_Inst
: Entity_Id
:= Empty
;
5427 -- The entity of a nested instance which appears within Inst (if any)
5429 -- Start of processing for Find_Direct_Name
5432 -- If the entity pointer is already set, this is an internal node, or
5433 -- a node that is analyzed more than once, after a tree modification.
5434 -- In such a case there is no resolution to perform, just set the type.
5436 if Present
(Entity
(N
)) then
5437 if Is_Type
(Entity
(N
)) then
5438 Set_Etype
(N
, Entity
(N
));
5442 Entyp
: constant Entity_Id
:= Etype
(Entity
(N
));
5445 -- One special case here. If the Etype field is already set,
5446 -- and references the packed array type corresponding to the
5447 -- etype of the referenced entity, then leave it alone. This
5448 -- happens for trees generated from Exp_Pakd, where expressions
5449 -- can be deliberately "mis-typed" to the packed array type.
5451 if Is_Array_Type
(Entyp
)
5452 and then Is_Packed
(Entyp
)
5453 and then Present
(Etype
(N
))
5454 and then Etype
(N
) = Packed_Array_Impl_Type
(Entyp
)
5458 -- If not that special case, then just reset the Etype
5461 Set_Etype
(N
, Etype
(Entity
(N
)));
5466 -- Although the marking of use clauses happens at the end of
5467 -- Find_Direct_Name, a certain case where a generic actual satisfies
5468 -- a use clause must be checked here due to how the generic machinery
5469 -- handles the analysis of said actuals.
5472 and then Nkind
(Parent
(N
)) = N_Generic_Association
5474 Mark_Use_Clauses
(Entity
(N
));
5480 -- Preserve relevant elaboration-related attributes of the context which
5481 -- are no longer available or very expensive to recompute once analysis,
5482 -- resolution, and expansion are over.
5484 if Nkind
(N
) = N_Identifier
then
5485 Mark_Elaboration_Attributes
5490 -- Here if Entity pointer was not set, we need full visibility analysis
5491 -- First we generate debugging output if the debug E flag is set.
5493 if Debug_Flag_E
then
5494 Write_Str
("Looking for ");
5495 Write_Name
(Chars
(N
));
5499 Homonyms
:= Current_Entity
(N
);
5500 Nvis_Entity
:= False;
5503 while Present
(E
) loop
5505 -- If entity is immediately visible or potentially use visible, then
5506 -- process the entity and we are done.
5508 if Is_Immediately_Visible
(E
) then
5509 goto Immediately_Visible_Entity
;
5511 elsif Is_Potentially_Use_Visible
(E
) then
5512 goto Potentially_Use_Visible_Entity
;
5514 -- Note if a known but invisible entity encountered
5516 elsif Known_But_Invisible
(E
) then
5517 Nvis_Entity
:= True;
5520 -- Move to next entity in chain and continue search
5525 -- If no entries on homonym chain that were potentially visible,
5526 -- and no entities reasonably considered as non-visible, then
5527 -- we have a plain undefined reference, with no additional
5528 -- explanation required.
5530 if not Nvis_Entity
then
5531 Undefined
(Nvis
=> False);
5533 -- Otherwise there is at least one entry on the homonym chain that
5534 -- is reasonably considered as being known and non-visible.
5542 -- Processing for a potentially use visible entry found. We must search
5543 -- the rest of the homonym chain for two reasons. First, if there is a
5544 -- directly visible entry, then none of the potentially use-visible
5545 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5546 -- for the case of multiple potentially use-visible entries hiding one
5547 -- another and as a result being non-directly visible (RM 8.4(11)).
5549 <<Potentially_Use_Visible_Entity
>> declare
5550 Only_One_Visible
: Boolean := True;
5551 All_Overloadable
: Boolean := Is_Overloadable
(E
);
5555 while Present
(E2
) loop
5556 if Is_Immediately_Visible
(E2
) then
5558 -- If the use-visible entity comes from the actual for a
5559 -- formal package, it hides a directly visible entity from
5560 -- outside the instance.
5562 if From_Actual_Package
(E
)
5563 and then Scope_Depth
(E2
) < Scope_Depth
(Inst
)
5568 goto Immediately_Visible_Entity
;
5571 elsif Is_Potentially_Use_Visible
(E2
) then
5572 Only_One_Visible
:= False;
5573 All_Overloadable
:= All_Overloadable
and Is_Overloadable
(E2
);
5575 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5576 -- that can occur in private_with clauses. Example:
5579 -- private with B; package A is
5580 -- package C is function B return Integer;
5582 -- V1 : Integer := B;
5583 -- private function B return Integer;
5584 -- V2 : Integer := B;
5587 -- V1 resolves to A.B, but V2 resolves to library unit B
5589 elsif Ekind
(E2
) = E_Function
5590 and then Scope
(E2
) = Standard_Standard
5591 and then Has_Private_With
(E2
)
5593 Only_One_Visible
:= False;
5594 All_Overloadable
:= False;
5595 Nvis_Is_Private_Subprg
:= True;
5602 -- On falling through this loop, we have checked that there are no
5603 -- immediately visible entities. Only_One_Visible is set if exactly
5604 -- one potentially use visible entity exists. All_Overloadable is
5605 -- set if all the potentially use visible entities are overloadable.
5606 -- The condition for legality is that either there is one potentially
5607 -- use visible entity, or if there is more than one, then all of them
5608 -- are overloadable.
5610 if Only_One_Visible
or All_Overloadable
then
5613 -- If there is more than one potentially use-visible entity and at
5614 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5615 -- Note that E points to the first such entity on the homonym list.
5618 -- If one of the entities is declared in an actual package, it
5619 -- was visible in the generic, and takes precedence over other
5620 -- entities that are potentially use-visible. The same applies
5621 -- if the entity is declared in a local instantiation of the
5622 -- current instance.
5626 -- Find the current instance
5628 Inst
:= Current_Scope
;
5629 while Present
(Inst
) and then Inst
/= Standard_Standard
loop
5630 if Is_Generic_Instance
(Inst
) then
5634 Inst
:= Scope
(Inst
);
5637 -- Reexamine the candidate entities, giving priority to those
5638 -- that were visible within the generic.
5641 while Present
(E2
) loop
5642 Nested_Inst
:= Nearest_Enclosing_Instance
(E2
);
5644 -- The entity is declared within an actual package, or in a
5645 -- nested instance. The ">=" accounts for the case where the
5646 -- current instance and the nested instance are the same.
5648 if From_Actual_Package
(E2
)
5649 or else (Present
(Nested_Inst
)
5650 and then Scope_Depth
(Nested_Inst
) >=
5663 elsif Is_Predefined_Unit
(Current_Sem_Unit
) then
5664 -- A use clause in the body of a system file creates conflict
5665 -- with some entity in a user scope, while rtsfind is active.
5666 -- Keep only the entity coming from another predefined unit.
5669 while Present
(E2
) loop
5670 if In_Predefined_Unit
(E2
) then
5678 -- Entity must exist because predefined unit is correct
5680 raise Program_Error
;
5689 -- Come here with E set to the first immediately visible entity on
5690 -- the homonym chain. This is the one we want unless there is another
5691 -- immediately visible entity further on in the chain for an inner
5692 -- scope (RM 8.3(8)).
5694 <<Immediately_Visible_Entity
>> declare
5699 -- Find scope level of initial entity. When compiling through
5700 -- Rtsfind, the previous context is not completely invisible, and
5701 -- an outer entity may appear on the chain, whose scope is below
5702 -- the entry for Standard that delimits the current scope stack.
5703 -- Indicate that the level for this spurious entry is outside of
5704 -- the current scope stack.
5706 Level
:= Scope_Stack
.Last
;
5708 Scop
:= Scope_Stack
.Table
(Level
).Entity
;
5709 exit when Scop
= Scope
(E
);
5711 exit when Scop
= Standard_Standard
;
5714 -- Now search remainder of homonym chain for more inner entry
5715 -- If the entity is Standard itself, it has no scope, and we
5716 -- compare it with the stack entry directly.
5719 while Present
(E2
) loop
5720 if Is_Immediately_Visible
(E2
) then
5722 -- If a generic package contains a local declaration that
5723 -- has the same name as the generic, there may be a visibility
5724 -- conflict in an instance, where the local declaration must
5725 -- also hide the name of the corresponding package renaming.
5726 -- We check explicitly for a package declared by a renaming,
5727 -- whose renamed entity is an instance that is on the scope
5728 -- stack, and that contains a homonym in the same scope. Once
5729 -- we have found it, we know that the package renaming is not
5730 -- immediately visible, and that the identifier denotes the
5731 -- other entity (and its homonyms if overloaded).
5733 if Scope
(E
) = Scope
(E2
)
5734 and then Ekind
(E
) = E_Package
5735 and then Present
(Renamed_Object
(E
))
5736 and then Is_Generic_Instance
(Renamed_Object
(E
))
5737 and then In_Open_Scopes
(Renamed_Object
(E
))
5738 and then Comes_From_Source
(N
)
5740 Set_Is_Immediately_Visible
(E
, False);
5744 for J
in Level
+ 1 .. Scope_Stack
.Last
loop
5745 if Scope_Stack
.Table
(J
).Entity
= Scope
(E2
)
5746 or else Scope_Stack
.Table
(J
).Entity
= E2
5759 -- At the end of that loop, E is the innermost immediately
5760 -- visible entity, so we are all set.
5763 -- Come here with entity found, and stored in E
5767 -- Check violation of No_Wide_Characters restriction
5769 Check_Wide_Character_Restriction
(E
, N
);
5771 -- When distribution features are available (Get_PCS_Name /=
5772 -- Name_No_DSA), a remote access-to-subprogram type is converted
5773 -- into a record type holding whatever information is needed to
5774 -- perform a remote call on an RCI subprogram. In that case we
5775 -- rewrite any occurrence of the RAS type into the equivalent record
5776 -- type here. 'Access attribute references and RAS dereferences are
5777 -- then implemented using specific TSSs. However when distribution is
5778 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5779 -- generation of these TSSs, and we must keep the RAS type in its
5780 -- original access-to-subprogram form (since all calls through a
5781 -- value of such type will be local anyway in the absence of a PCS).
5783 if Comes_From_Source
(N
)
5784 and then Is_Remote_Access_To_Subprogram_Type
(E
)
5785 and then Ekind
(E
) = E_Access_Subprogram_Type
5786 and then Expander_Active
5787 and then Get_PCS_Name
/= Name_No_DSA
5789 Rewrite
(N
, New_Occurrence_Of
(Equivalent_Type
(E
), Sloc
(N
)));
5793 -- Set the entity. Note that the reason we call Set_Entity for the
5794 -- overloadable case, as opposed to Set_Entity_With_Checks is
5795 -- that in the overloaded case, the initial call can set the wrong
5796 -- homonym. The call that sets the right homonym is in Sem_Res and
5797 -- that call does use Set_Entity_With_Checks, so we don't miss
5800 if Is_Overloadable
(E
) then
5803 Set_Entity_With_Checks
(N
, E
);
5809 Set_Etype
(N
, Get_Full_View
(Etype
(E
)));
5812 if Debug_Flag_E
then
5813 Write_Str
(" found ");
5814 Write_Entity_Info
(E
, " ");
5817 -- If the Ekind of the entity is Void, it means that all homonyms
5818 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5819 -- test is skipped if the current scope is a record and the name is
5820 -- a pragma argument expression (case of Atomic and Volatile pragmas
5821 -- and possibly other similar pragmas added later, which are allowed
5822 -- to reference components in the current record).
5824 if Ekind
(E
) = E_Void
5826 (not Is_Record_Type
(Current_Scope
)
5827 or else Nkind
(Parent
(N
)) /= N_Pragma_Argument_Association
)
5829 Premature_Usage
(N
);
5831 -- If the entity is overloadable, collect all interpretations of the
5832 -- name for subsequent overload resolution. We optimize a bit here to
5833 -- do this only if we have an overloadable entity that is not on its
5834 -- own on the homonym chain.
5836 elsif Is_Overloadable
(E
)
5837 and then (Present
(Homonym
(E
)) or else Current_Entity
(N
) /= E
)
5839 Collect_Interps
(N
);
5841 -- If no homonyms were visible, the entity is unambiguous
5843 if not Is_Overloaded
(N
) then
5844 if not Is_Actual_Parameter
then
5845 Generate_Reference
(E
, N
);
5849 -- Case of non-overloadable entity, set the entity providing that
5850 -- we do not have the case of a discriminant reference within a
5851 -- default expression. Such references are replaced with the
5852 -- corresponding discriminal, which is the formal corresponding to
5853 -- to the discriminant in the initialization procedure.
5856 -- Entity is unambiguous, indicate that it is referenced here
5858 -- For a renaming of an object, always generate simple reference,
5859 -- we don't try to keep track of assignments in this case, except
5860 -- in SPARK mode where renamings are traversed for generating
5861 -- local effects of subprograms.
5864 and then Present
(Renamed_Object
(E
))
5865 and then not GNATprove_Mode
5867 Generate_Reference
(E
, N
);
5869 -- If the renamed entity is a private protected component,
5870 -- reference the original component as well. This needs to be
5871 -- done because the private renamings are installed before any
5872 -- analysis has occurred. Reference to a private component will
5873 -- resolve to the renaming and the original component will be
5874 -- left unreferenced, hence the following.
5876 if Is_Prival
(E
) then
5877 Generate_Reference
(Prival_Link
(E
), N
);
5880 -- One odd case is that we do not want to set the Referenced flag
5881 -- if the entity is a label, and the identifier is the label in
5882 -- the source, since this is not a reference from the point of
5883 -- view of the user.
5885 elsif Nkind
(Parent
(N
)) = N_Label
then
5887 R
: constant Boolean := Referenced
(E
);
5890 -- Generate reference unless this is an actual parameter
5891 -- (see comment below)
5893 if Is_Actual_Parameter
then
5894 Generate_Reference
(E
, N
);
5895 Set_Referenced
(E
, R
);
5899 -- Normal case, not a label: generate reference
5902 if not Is_Actual_Parameter
then
5904 -- Package or generic package is always a simple reference
5906 if Ekind_In
(E
, E_Package
, E_Generic_Package
) then
5907 Generate_Reference
(E
, N
, 'r');
5909 -- Else see if we have a left hand side
5914 Generate_Reference
(E
, N
, 'm');
5917 Generate_Reference
(E
, N
, 'r');
5919 -- If we don't know now, generate reference later
5922 Deferred_References
.Append
((E
, N
));
5928 Set_Entity_Or_Discriminal
(N
, E
);
5930 -- The name may designate a generalized reference, in which case
5931 -- the dereference interpretation will be included. Context is
5932 -- one in which a name is legal.
5934 if Ada_Version
>= Ada_2012
5936 (Nkind
(Parent
(N
)) in N_Subexpr
5937 or else Nkind_In
(Parent
(N
), N_Assignment_Statement
,
5938 N_Object_Declaration
,
5939 N_Parameter_Association
))
5941 Check_Implicit_Dereference
(N
, Etype
(E
));
5946 -- Mark relevant use-type and use-package clauses as effective if the
5947 -- node in question is not overloaded and therefore does not require
5950 -- Note: Generic actual subprograms do not follow the normal resolution
5951 -- path, so ignore the fact that they are overloaded and mark them
5954 if Nkind
(N
) not in N_Subexpr
or else not Is_Overloaded
(N
) then
5955 Mark_Use_Clauses
(N
);
5958 -- Come here with entity set
5961 Check_Restriction_No_Use_Of_Entity
(N
);
5963 -- Annotate the tree by creating a variable reference marker in case the
5964 -- original variable reference is folded or optimized away. The variable
5965 -- reference marker is automatically saved for later examination by the
5966 -- ABE Processing phase. Variable references which act as actuals in a
5967 -- call require special processing and are left to Resolve_Actuals. The
5968 -- reference is a write when it appears on the left hand side of an
5971 if Needs_Variable_Reference_Marker
5976 Is_Assignment_LHS
: constant Boolean := Is_LHS
(N
) = Yes
;
5979 Build_Variable_Reference_Marker
5981 Read
=> not Is_Assignment_LHS
,
5982 Write
=> Is_Assignment_LHS
);
5985 end Find_Direct_Name
;
5987 ------------------------
5988 -- Find_Expanded_Name --
5989 ------------------------
5991 -- This routine searches the homonym chain of the entity until it finds
5992 -- an entity declared in the scope denoted by the prefix. If the entity
5993 -- is private, it may nevertheless be immediately visible, if we are in
5994 -- the scope of its declaration.
5996 procedure Find_Expanded_Name
(N
: Node_Id
) is
5997 function In_Abstract_View_Pragma
(Nod
: Node_Id
) return Boolean;
5998 -- Determine whether expanded name Nod appears within a pragma which is
5999 -- a suitable context for an abstract view of a state or variable. The
6000 -- following pragmas fall in this category:
6007 -- In addition, pragma Abstract_State is also considered suitable even
6008 -- though it is an illegal context for an abstract view as this allows
6009 -- for proper resolution of abstract views of variables. This illegal
6010 -- context is later flagged in the analysis of indicator Part_Of.
6012 -----------------------------
6013 -- In_Abstract_View_Pragma --
6014 -----------------------------
6016 function In_Abstract_View_Pragma
(Nod
: Node_Id
) return Boolean is
6020 -- Climb the parent chain looking for a pragma
6023 while Present
(Par
) loop
6024 if Nkind
(Par
) = N_Pragma
then
6025 if Nam_In
(Pragma_Name_Unmapped
(Par
),
6026 Name_Abstract_State
,
6030 Name_Refined_Depends
,
6031 Name_Refined_Global
)
6035 -- Otherwise the pragma is not a legal context for an abstract
6042 -- Prevent the search from going too far
6044 elsif Is_Body_Or_Package_Declaration
(Par
) then
6048 Par
:= Parent
(Par
);
6052 end In_Abstract_View_Pragma
;
6056 Selector
: constant Node_Id
:= Selector_Name
(N
);
6058 Candidate
: Entity_Id
:= Empty
;
6062 -- Start of processing for Find_Expanded_Name
6065 P_Name
:= Entity
(Prefix
(N
));
6067 -- If the prefix is a renamed package, look for the entity in the
6068 -- original package.
6070 if Ekind
(P_Name
) = E_Package
6071 and then Present
(Renamed_Object
(P_Name
))
6073 P_Name
:= Renamed_Object
(P_Name
);
6075 -- Rewrite node with entity field pointing to renamed object
6077 Rewrite
(Prefix
(N
), New_Copy
(Prefix
(N
)));
6078 Set_Entity
(Prefix
(N
), P_Name
);
6080 -- If the prefix is an object of a concurrent type, look for
6081 -- the entity in the associated task or protected type.
6083 elsif Is_Concurrent_Type
(Etype
(P_Name
)) then
6084 P_Name
:= Etype
(P_Name
);
6087 Id
:= Current_Entity
(Selector
);
6090 Is_New_Candidate
: Boolean;
6093 while Present
(Id
) loop
6094 if Scope
(Id
) = P_Name
then
6096 Is_New_Candidate
:= True;
6098 -- Handle abstract views of states and variables. These are
6099 -- acceptable candidates only when the reference to the view
6100 -- appears in certain pragmas.
6102 if Ekind
(Id
) = E_Abstract_State
6103 and then From_Limited_With
(Id
)
6104 and then Present
(Non_Limited_View
(Id
))
6106 if In_Abstract_View_Pragma
(N
) then
6107 Candidate
:= Non_Limited_View
(Id
);
6108 Is_New_Candidate
:= True;
6110 -- Hide the candidate because it is not used in a proper
6115 Is_New_Candidate
:= False;
6119 -- Ada 2005 (AI-217): Handle shadow entities associated with
6120 -- types declared in limited-withed nested packages. We don't need
6121 -- to handle E_Incomplete_Subtype entities because the entities
6122 -- in the limited view are always E_Incomplete_Type and
6123 -- E_Class_Wide_Type entities (see Build_Limited_Views).
6125 -- Regarding the expression used to evaluate the scope, it
6126 -- is important to note that the limited view also has shadow
6127 -- entities associated nested packages. For this reason the
6128 -- correct scope of the entity is the scope of the real entity.
6129 -- The non-limited view may itself be incomplete, in which case
6130 -- get the full view if available.
6132 elsif Ekind_In
(Id
, E_Incomplete_Type
, E_Class_Wide_Type
)
6133 and then From_Limited_With
(Id
)
6134 and then Present
(Non_Limited_View
(Id
))
6135 and then Scope
(Non_Limited_View
(Id
)) = P_Name
6137 Candidate
:= Get_Full_View
(Non_Limited_View
(Id
));
6138 Is_New_Candidate
:= True;
6140 -- An unusual case arises with a fully qualified name for an
6141 -- entity local to a generic child unit package, within an
6142 -- instantiation of that package. The name of the unit now
6143 -- denotes the renaming created within the instance. This is
6144 -- only relevant in an instance body, see below.
6146 elsif Is_Generic_Instance
(Scope
(Id
))
6147 and then In_Open_Scopes
(Scope
(Id
))
6148 and then In_Instance_Body
6149 and then Ekind
(Scope
(Id
)) = E_Package
6150 and then Ekind
(Id
) = E_Package
6151 and then Renamed_Entity
(Id
) = Scope
(Id
)
6152 and then Is_Immediately_Visible
(P_Name
)
6154 Is_New_Candidate
:= True;
6157 Is_New_Candidate
:= False;
6160 if Is_New_Candidate
then
6162 -- If entity is a child unit, either it is a visible child of
6163 -- the prefix, or we are in the body of a generic prefix, as
6164 -- will happen when a child unit is instantiated in the body
6165 -- of a generic parent. This is because the instance body does
6166 -- not restore the full compilation context, given that all
6167 -- non-local references have been captured.
6169 if Is_Child_Unit
(Id
) or else P_Name
= Standard_Standard
then
6170 exit when Is_Visible_Lib_Unit
(Id
)
6171 or else (Is_Child_Unit
(Id
)
6172 and then In_Open_Scopes
(Scope
(Id
))
6173 and then In_Instance_Body
);
6175 exit when not Is_Hidden
(Id
);
6178 exit when Is_Immediately_Visible
(Id
);
6186 and then Ekind_In
(P_Name
, E_Procedure
, E_Function
)
6187 and then Is_Generic_Instance
(P_Name
)
6189 -- Expanded name denotes entity in (instance of) generic subprogram.
6190 -- The entity may be in the subprogram instance, or may denote one of
6191 -- the formals, which is declared in the enclosing wrapper package.
6193 P_Name
:= Scope
(P_Name
);
6195 Id
:= Current_Entity
(Selector
);
6196 while Present
(Id
) loop
6197 exit when Scope
(Id
) = P_Name
;
6202 if No
(Id
) or else Chars
(Id
) /= Chars
(Selector
) then
6203 Set_Etype
(N
, Any_Type
);
6205 -- If we are looking for an entity defined in System, try to find it
6206 -- in the child package that may have been provided as an extension
6207 -- to System. The Extend_System pragma will have supplied the name of
6208 -- the extension, which may have to be loaded.
6210 if Chars
(P_Name
) = Name_System
6211 and then Scope
(P_Name
) = Standard_Standard
6212 and then Present
(System_Extend_Unit
)
6213 and then Present_System_Aux
(N
)
6215 Set_Entity
(Prefix
(N
), System_Aux_Id
);
6216 Find_Expanded_Name
(N
);
6219 -- There is an implicit instance of the predefined operator in
6220 -- the given scope. The operator entity is defined in Standard.
6221 -- Has_Implicit_Operator makes the node into an Expanded_Name.
6223 elsif Nkind
(Selector
) = N_Operator_Symbol
6224 and then Has_Implicit_Operator
(N
)
6228 -- If there is no literal defined in the scope denoted by the
6229 -- prefix, the literal may belong to (a type derived from)
6230 -- Standard_Character, for which we have no explicit literals.
6232 elsif Nkind
(Selector
) = N_Character_Literal
6233 and then Has_Implicit_Character_Literal
(N
)
6238 -- If the prefix is a single concurrent object, use its name in
6239 -- the error message, rather than that of the anonymous type.
6241 if Is_Concurrent_Type
(P_Name
)
6242 and then Is_Internal_Name
(Chars
(P_Name
))
6244 Error_Msg_Node_2
:= Entity
(Prefix
(N
));
6246 Error_Msg_Node_2
:= P_Name
;
6249 if P_Name
= System_Aux_Id
then
6250 P_Name
:= Scope
(P_Name
);
6251 Set_Entity
(Prefix
(N
), P_Name
);
6254 if Present
(Candidate
) then
6256 -- If we know that the unit is a child unit we can give a more
6257 -- accurate error message.
6259 if Is_Child_Unit
(Candidate
) then
6261 -- If the candidate is a private child unit and we are in
6262 -- the visible part of a public unit, specialize the error
6263 -- message. There might be a private with_clause for it,
6264 -- but it is not currently active.
6266 if Is_Private_Descendant
(Candidate
)
6267 and then Ekind
(Current_Scope
) = E_Package
6268 and then not In_Private_Part
(Current_Scope
)
6269 and then not Is_Private_Descendant
(Current_Scope
)
6272 ("private child unit& is not visible here", Selector
);
6274 -- Normal case where we have a missing with for a child unit
6277 Error_Msg_Qual_Level
:= 99;
6278 Error_Msg_NE
-- CODEFIX
6279 ("missing `WITH &;`", Selector
, Candidate
);
6280 Error_Msg_Qual_Level
:= 0;
6283 -- Here we don't know that this is a child unit
6286 Error_Msg_NE
("& is not a visible entity of&", N
, Selector
);
6290 -- Within the instantiation of a child unit, the prefix may
6291 -- denote the parent instance, but the selector has the name
6292 -- of the original child. That is to say, when A.B appears
6293 -- within an instantiation of generic child unit B, the scope
6294 -- stack includes an instance of A (P_Name) and an instance
6295 -- of B under some other name. We scan the scope to find this
6296 -- child instance, which is the desired entity.
6297 -- Note that the parent may itself be a child instance, if
6298 -- the reference is of the form A.B.C, in which case A.B has
6299 -- already been rewritten with the proper entity.
6301 if In_Open_Scopes
(P_Name
)
6302 and then Is_Generic_Instance
(P_Name
)
6305 Gen_Par
: constant Entity_Id
:=
6306 Generic_Parent
(Specification
6307 (Unit_Declaration_Node
(P_Name
)));
6308 S
: Entity_Id
:= Current_Scope
;
6312 for J
in reverse 0 .. Scope_Stack
.Last
loop
6313 S
:= Scope_Stack
.Table
(J
).Entity
;
6315 exit when S
= Standard_Standard
;
6317 if Ekind_In
(S
, E_Function
,
6322 Generic_Parent
(Specification
6323 (Unit_Declaration_Node
(S
)));
6325 -- Check that P is a generic child of the generic
6326 -- parent of the prefix.
6329 and then Chars
(P
) = Chars
(Selector
)
6330 and then Scope
(P
) = Gen_Par
6341 -- If this is a selection from Ada, System or Interfaces, then
6342 -- we assume a missing with for the corresponding package.
6344 if Is_Known_Unit
(N
)
6345 and then not (Present
(Entity
(Prefix
(N
)))
6346 and then Scope
(Entity
(Prefix
(N
))) /=
6349 if not Error_Posted
(N
) then
6350 Error_Msg_Node_2
:= Selector
;
6351 Error_Msg_N
-- CODEFIX
6352 ("missing `WITH &.&;`", Prefix
(N
));
6355 -- If this is a selection from a dummy package, then suppress
6356 -- the error message, of course the entity is missing if the
6357 -- package is missing.
6359 elsif Sloc
(Error_Msg_Node_2
) = No_Location
then
6362 -- Here we have the case of an undefined component
6365 -- The prefix may hide a homonym in the context that
6366 -- declares the desired entity. This error can use a
6367 -- specialized message.
6369 if In_Open_Scopes
(P_Name
) then
6371 H
: constant Entity_Id
:= Homonym
(P_Name
);
6375 and then Is_Compilation_Unit
(H
)
6377 (Is_Immediately_Visible
(H
)
6378 or else Is_Visible_Lib_Unit
(H
))
6380 Id
:= First_Entity
(H
);
6381 while Present
(Id
) loop
6382 if Chars
(Id
) = Chars
(Selector
) then
6383 Error_Msg_Qual_Level
:= 99;
6384 Error_Msg_Name_1
:= Chars
(Selector
);
6386 ("% not declared in&", N
, P_Name
);
6388 ("\use fully qualified name starting with "
6389 & "Standard to make& visible", N
, H
);
6390 Error_Msg_Qual_Level
:= 0;
6398 -- If not found, standard error message
6400 Error_Msg_NE
("& not declared in&", N
, Selector
);
6406 -- Might be worth specializing the case when the prefix
6407 -- is a limited view.
6408 -- ... not declared in limited view of...
6410 Error_Msg_NE
("& not declared in&", N
, Selector
);
6413 -- Check for misspelling of some entity in prefix
6415 Id
:= First_Entity
(P_Name
);
6416 while Present
(Id
) loop
6417 if Is_Bad_Spelling_Of
(Chars
(Id
), Chars
(Selector
))
6418 and then not Is_Internal_Name
(Chars
(Id
))
6420 Error_Msg_NE
-- CODEFIX
6421 ("possible misspelling of&", Selector
, Id
);
6428 -- Specialize the message if this may be an instantiation
6429 -- of a child unit that was not mentioned in the context.
6431 if Nkind
(Parent
(N
)) = N_Package_Instantiation
6432 and then Is_Generic_Instance
(Entity
(Prefix
(N
)))
6433 and then Is_Compilation_Unit
6434 (Generic_Parent
(Parent
(Entity
(Prefix
(N
)))))
6436 Error_Msg_Node_2
:= Selector
;
6437 Error_Msg_N
-- CODEFIX
6438 ("\missing `WITH &.&;`", Prefix
(N
));
6448 if Comes_From_Source
(N
)
6449 and then Is_Remote_Access_To_Subprogram_Type
(Id
)
6450 and then Ekind
(Id
) = E_Access_Subprogram_Type
6451 and then Present
(Equivalent_Type
(Id
))
6453 -- If we are not actually generating distribution code (i.e. the
6454 -- current PCS is the dummy non-distributed version), then the
6455 -- Equivalent_Type will be missing, and Id should be treated as
6456 -- a regular access-to-subprogram type.
6458 Id
:= Equivalent_Type
(Id
);
6459 Set_Chars
(Selector
, Chars
(Id
));
6462 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
6464 if Ekind
(P_Name
) = E_Package
and then From_Limited_With
(P_Name
) then
6465 if From_Limited_With
(Id
)
6466 or else Is_Type
(Id
)
6467 or else Ekind
(Id
) = E_Package
6472 ("limited withed package can only be used to access incomplete "
6477 if Is_Task_Type
(P_Name
)
6478 and then ((Ekind
(Id
) = E_Entry
6479 and then Nkind
(Parent
(N
)) /= N_Attribute_Reference
)
6481 (Ekind
(Id
) = E_Entry_Family
6483 Nkind
(Parent
(Parent
(N
))) /= N_Attribute_Reference
))
6485 -- If both the task type and the entry are in scope, this may still
6486 -- be the expanded name of an entry formal.
6488 if In_Open_Scopes
(Id
)
6489 and then Nkind
(Parent
(N
)) = N_Selected_Component
6494 -- It is an entry call after all, either to the current task
6495 -- (which will deadlock) or to an enclosing task.
6497 Analyze_Selected_Component
(N
);
6502 Change_Selected_Component_To_Expanded_Name
(N
);
6504 -- Preserve relevant elaboration-related attributes of the context which
6505 -- are no longer available or very expensive to recompute once analysis,
6506 -- resolution, and expansion are over.
6508 Mark_Elaboration_Attributes
6512 -- Set appropriate type
6514 if Is_Type
(Id
) then
6517 Set_Etype
(N
, Get_Full_View
(Etype
(Id
)));
6520 -- Do style check and generate reference, but skip both steps if this
6521 -- entity has homonyms, since we may not have the right homonym set yet.
6522 -- The proper homonym will be set during the resolve phase.
6524 if Has_Homonym
(Id
) then
6528 Set_Entity_Or_Discriminal
(N
, Id
);
6532 Generate_Reference
(Id
, N
, 'm');
6535 Generate_Reference
(Id
, N
, 'r');
6538 Deferred_References
.Append
((Id
, N
));
6542 -- Check for violation of No_Wide_Characters
6544 Check_Wide_Character_Restriction
(Id
, N
);
6546 -- If the Ekind of the entity is Void, it means that all homonyms are
6547 -- hidden from all visibility (RM 8.3(5,14-20)).
6549 if Ekind
(Id
) = E_Void
then
6550 Premature_Usage
(N
);
6552 elsif Is_Overloadable
(Id
) and then Present
(Homonym
(Id
)) then
6554 H
: Entity_Id
:= Homonym
(Id
);
6557 while Present
(H
) loop
6558 if Scope
(H
) = Scope
(Id
)
6559 and then (not Is_Hidden
(H
)
6560 or else Is_Immediately_Visible
(H
))
6562 Collect_Interps
(N
);
6569 -- If an extension of System is present, collect possible explicit
6570 -- overloadings declared in the extension.
6572 if Chars
(P_Name
) = Name_System
6573 and then Scope
(P_Name
) = Standard_Standard
6574 and then Present
(System_Extend_Unit
)
6575 and then Present_System_Aux
(N
)
6577 H
:= Current_Entity
(Id
);
6579 while Present
(H
) loop
6580 if Scope
(H
) = System_Aux_Id
then
6581 Add_One_Interp
(N
, H
, Etype
(H
));
6590 if Nkind
(Selector_Name
(N
)) = N_Operator_Symbol
6591 and then Scope
(Id
) /= Standard_Standard
6593 -- In addition to user-defined operators in the given scope, there
6594 -- may be an implicit instance of the predefined operator. The
6595 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6596 -- and added to the interpretations. Procedure Add_One_Interp will
6597 -- determine which hides which.
6599 if Has_Implicit_Operator
(N
) then
6604 -- If there is a single interpretation for N we can generate a
6605 -- reference to the unique entity found.
6607 if Is_Overloadable
(Id
) and then not Is_Overloaded
(N
) then
6608 Generate_Reference
(Id
, N
);
6611 -- Mark relevant use-type and use-package clauses as effective if the
6612 -- node in question is not overloaded and therefore does not require
6615 if Nkind
(N
) not in N_Subexpr
or else not Is_Overloaded
(N
) then
6616 Mark_Use_Clauses
(N
);
6619 Check_Restriction_No_Use_Of_Entity
(N
);
6621 -- Annotate the tree by creating a variable reference marker in case the
6622 -- original variable reference is folded or optimized away. The variable
6623 -- reference marker is automatically saved for later examination by the
6624 -- ABE Processing phase. Variable references which act as actuals in a
6625 -- call require special processing and are left to Resolve_Actuals. The
6626 -- reference is a write when it appears on the left hand side of an
6629 if Needs_Variable_Reference_Marker
6634 Is_Assignment_LHS
: constant Boolean := Is_LHS
(N
) = Yes
;
6637 Build_Variable_Reference_Marker
6639 Read
=> not Is_Assignment_LHS
,
6640 Write
=> Is_Assignment_LHS
);
6643 end Find_Expanded_Name
;
6645 --------------------
6646 -- Find_Most_Prev --
6647 --------------------
6649 function Find_Most_Prev
(Use_Clause
: Node_Id
) return Node_Id
is
6653 -- Loop through the Prev_Use_Clause chain
6656 while Present
(Prev_Use_Clause
(Curr
)) loop
6657 Curr
:= Prev_Use_Clause
(Curr
);
6663 -------------------------
6664 -- Find_Renamed_Entity --
6665 -------------------------
6667 function Find_Renamed_Entity
6671 Is_Actual
: Boolean := False) return Entity_Id
6674 I1
: Interp_Index
:= 0; -- Suppress junk warnings
6680 function Is_Visible_Operation
(Op
: Entity_Id
) return Boolean;
6681 -- If the renamed entity is an implicit operator, check whether it is
6682 -- visible because its operand type is properly visible. This check
6683 -- applies to explicit renamed entities that appear in the source in a
6684 -- renaming declaration or a formal subprogram instance, but not to
6685 -- default generic actuals with a name.
6687 function Report_Overload
return Entity_Id
;
6688 -- List possible interpretations, and specialize message in the
6689 -- case of a generic actual.
6691 function Within
(Inner
, Outer
: Entity_Id
) return Boolean;
6692 -- Determine whether a candidate subprogram is defined within the
6693 -- enclosing instance. If yes, it has precedence over outer candidates.
6695 --------------------------
6696 -- Is_Visible_Operation --
6697 --------------------------
6699 function Is_Visible_Operation
(Op
: Entity_Id
) return Boolean is
6705 if Ekind
(Op
) /= E_Operator
6706 or else Scope
(Op
) /= Standard_Standard
6707 or else (In_Instance
6708 and then (not Is_Actual
6709 or else Present
(Enclosing_Instance
)))
6714 -- For a fixed point type operator, check the resulting type,
6715 -- because it may be a mixed mode integer * fixed operation.
6717 if Present
(Next_Formal
(First_Formal
(New_S
)))
6718 and then Is_Fixed_Point_Type
(Etype
(New_S
))
6720 Typ
:= Etype
(New_S
);
6722 Typ
:= Etype
(First_Formal
(New_S
));
6725 Btyp
:= Base_Type
(Typ
);
6727 if Nkind
(Nam
) /= N_Expanded_Name
then
6728 return (In_Open_Scopes
(Scope
(Btyp
))
6729 or else Is_Potentially_Use_Visible
(Btyp
)
6730 or else In_Use
(Btyp
)
6731 or else In_Use
(Scope
(Btyp
)));
6734 Scop
:= Entity
(Prefix
(Nam
));
6736 if Ekind
(Scop
) = E_Package
6737 and then Present
(Renamed_Object
(Scop
))
6739 Scop
:= Renamed_Object
(Scop
);
6742 -- Operator is visible if prefix of expanded name denotes
6743 -- scope of type, or else type is defined in System_Aux
6744 -- and the prefix denotes System.
6746 return Scope
(Btyp
) = Scop
6747 or else (Scope
(Btyp
) = System_Aux_Id
6748 and then Scope
(Scope
(Btyp
)) = Scop
);
6751 end Is_Visible_Operation
;
6757 function Within
(Inner
, Outer
: Entity_Id
) return Boolean is
6761 Sc
:= Scope
(Inner
);
6762 while Sc
/= Standard_Standard
loop
6773 ---------------------
6774 -- Report_Overload --
6775 ---------------------
6777 function Report_Overload
return Entity_Id
is
6780 Error_Msg_NE
-- CODEFIX
6781 ("ambiguous actual subprogram&, " &
6782 "possible interpretations:", N
, Nam
);
6784 Error_Msg_N
-- CODEFIX
6785 ("ambiguous subprogram, " &
6786 "possible interpretations:", N
);
6789 List_Interps
(Nam
, N
);
6791 end Report_Overload
;
6793 -- Start of processing for Find_Renamed_Entity
6797 Candidate_Renaming
:= Empty
;
6799 if Is_Overloaded
(Nam
) then
6800 Get_First_Interp
(Nam
, Ind
, It
);
6801 while Present
(It
.Nam
) loop
6802 if Entity_Matches_Spec
(It
.Nam
, New_S
)
6803 and then Is_Visible_Operation
(It
.Nam
)
6805 if Old_S
/= Any_Id
then
6807 -- Note: The call to Disambiguate only happens if a
6808 -- previous interpretation was found, in which case I1
6809 -- has received a value.
6811 It1
:= Disambiguate
(Nam
, I1
, Ind
, Etype
(Old_S
));
6813 if It1
= No_Interp
then
6814 Inst
:= Enclosing_Instance
;
6816 if Present
(Inst
) then
6817 if Within
(It
.Nam
, Inst
) then
6818 if Within
(Old_S
, Inst
) then
6820 -- Choose the innermost subprogram, which would
6821 -- have hidden the outer one in the generic.
6823 if Scope_Depth
(It
.Nam
) <
6832 elsif Within
(Old_S
, Inst
) then
6836 return Report_Overload
;
6839 -- If not within an instance, ambiguity is real
6842 return Report_Overload
;
6856 Present
(First_Formal
(It
.Nam
))
6857 and then Present
(First_Formal
(New_S
))
6858 and then (Base_Type
(Etype
(First_Formal
(It
.Nam
))) =
6859 Base_Type
(Etype
(First_Formal
(New_S
))))
6861 Candidate_Renaming
:= It
.Nam
;
6864 Get_Next_Interp
(Ind
, It
);
6867 Set_Entity
(Nam
, Old_S
);
6869 if Old_S
/= Any_Id
then
6870 Set_Is_Overloaded
(Nam
, False);
6873 -- Non-overloaded case
6877 and then Present
(Enclosing_Instance
)
6878 and then Entity_Matches_Spec
(Entity
(Nam
), New_S
)
6880 Old_S
:= Entity
(Nam
);
6882 elsif Entity_Matches_Spec
(Entity
(Nam
), New_S
) then
6883 Candidate_Renaming
:= New_S
;
6885 if Is_Visible_Operation
(Entity
(Nam
)) then
6886 Old_S
:= Entity
(Nam
);
6889 elsif Present
(First_Formal
(Entity
(Nam
)))
6890 and then Present
(First_Formal
(New_S
))
6891 and then (Base_Type
(Etype
(First_Formal
(Entity
(Nam
)))) =
6892 Base_Type
(Etype
(First_Formal
(New_S
))))
6894 Candidate_Renaming
:= Entity
(Nam
);
6899 end Find_Renamed_Entity
;
6901 -----------------------------
6902 -- Find_Selected_Component --
6903 -----------------------------
6905 procedure Find_Selected_Component
(N
: Node_Id
) is
6906 P
: constant Node_Id
:= Prefix
(N
);
6909 -- Entity denoted by prefix
6916 function Available_Subtype
return Boolean;
6917 -- A small optimization: if the prefix is constrained and the component
6918 -- is an array type we may already have a usable subtype for it, so we
6919 -- can use it rather than generating a new one, because the bounds
6920 -- will be the values of the discriminants and not discriminant refs.
6921 -- This simplifies value tracing in GNATProve. For consistency, both
6922 -- the entity name and the subtype come from the constrained component.
6924 -- This is only used in GNATProve mode: when generating code it may be
6925 -- necessary to create an itype in the scope of use of the selected
6926 -- component, e.g. in the context of a expanded record equality.
6928 function Is_Reference_In_Subunit
return Boolean;
6929 -- In a subunit, the scope depth is not a proper measure of hiding,
6930 -- because the context of the proper body may itself hide entities in
6931 -- parent units. This rare case requires inspecting the tree directly
6932 -- because the proper body is inserted in the main unit and its context
6933 -- is simply added to that of the parent.
6935 -----------------------
6936 -- Available_Subtype --
6937 -----------------------
6939 function Available_Subtype
return Boolean is
6943 if GNATprove_Mode
then
6944 Comp
:= First_Entity
(Etype
(P
));
6945 while Present
(Comp
) loop
6946 if Chars
(Comp
) = Chars
(Selector_Name
(N
)) then
6947 Set_Etype
(N
, Etype
(Comp
));
6948 Set_Entity
(Selector_Name
(N
), Comp
);
6949 Set_Etype
(Selector_Name
(N
), Etype
(Comp
));
6953 Next_Component
(Comp
);
6958 end Available_Subtype
;
6960 -----------------------------
6961 -- Is_Reference_In_Subunit --
6962 -----------------------------
6964 function Is_Reference_In_Subunit
return Boolean is
6966 Comp_Unit
: Node_Id
;
6970 while Present
(Comp_Unit
)
6971 and then Nkind
(Comp_Unit
) /= N_Compilation_Unit
6973 Comp_Unit
:= Parent
(Comp_Unit
);
6976 if No
(Comp_Unit
) or else Nkind
(Unit
(Comp_Unit
)) /= N_Subunit
then
6980 -- Now check whether the package is in the context of the subunit
6982 Clause
:= First
(Context_Items
(Comp_Unit
));
6983 while Present
(Clause
) loop
6984 if Nkind
(Clause
) = N_With_Clause
6985 and then Entity
(Name
(Clause
)) = P_Name
6990 Clause
:= Next
(Clause
);
6994 end Is_Reference_In_Subunit
;
6996 -- Start of processing for Find_Selected_Component
7001 if Nkind
(P
) = N_Error
then
7005 -- Selector name cannot be a character literal or an operator symbol in
7006 -- SPARK, except for the operator symbol in a renaming.
7008 if Restriction_Check_Required
(SPARK_05
) then
7009 if Nkind
(Selector_Name
(N
)) = N_Character_Literal
then
7010 Check_SPARK_05_Restriction
7011 ("character literal cannot be prefixed", N
);
7012 elsif Nkind
(Selector_Name
(N
)) = N_Operator_Symbol
7013 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
7015 Check_SPARK_05_Restriction
7016 ("operator symbol cannot be prefixed", N
);
7020 -- If the selector already has an entity, the node has been constructed
7021 -- in the course of expansion, and is known to be valid. Do not verify
7022 -- that it is defined for the type (it may be a private component used
7023 -- in the expansion of record equality).
7025 if Present
(Entity
(Selector_Name
(N
))) then
7026 if No
(Etype
(N
)) or else Etype
(N
) = Any_Type
then
7028 Sel_Name
: constant Node_Id
:= Selector_Name
(N
);
7029 Selector
: constant Entity_Id
:= Entity
(Sel_Name
);
7033 Set_Etype
(Sel_Name
, Etype
(Selector
));
7035 if not Is_Entity_Name
(P
) then
7039 -- Build an actual subtype except for the first parameter
7040 -- of an init proc, where this actual subtype is by
7041 -- definition incorrect, since the object is uninitialized
7042 -- (and does not even have defined discriminants etc.)
7044 if Is_Entity_Name
(P
)
7045 and then Ekind
(Entity
(P
)) = E_Function
7047 Nam
:= New_Copy
(P
);
7049 if Is_Overloaded
(P
) then
7050 Save_Interps
(P
, Nam
);
7053 Rewrite
(P
, Make_Function_Call
(Sloc
(P
), Name
=> Nam
));
7055 Analyze_Selected_Component
(N
);
7058 elsif Ekind
(Selector
) = E_Component
7059 and then (not Is_Entity_Name
(P
)
7060 or else Chars
(Entity
(P
)) /= Name_uInit
)
7062 -- Check if we already have an available subtype we can use
7064 if Ekind
(Etype
(P
)) = E_Record_Subtype
7065 and then Nkind
(Parent
(Etype
(P
))) = N_Subtype_Declaration
7066 and then Is_Array_Type
(Etype
(Selector
))
7067 and then not Is_Packed
(Etype
(Selector
))
7068 and then Available_Subtype
7072 -- Do not build the subtype when referencing components of
7073 -- dispatch table wrappers. Required to avoid generating
7074 -- elaboration code with HI runtimes.
7076 elsif RTU_Loaded
(Ada_Tags
)
7078 ((RTE_Available
(RE_Dispatch_Table_Wrapper
)
7079 and then Scope
(Selector
) =
7080 RTE
(RE_Dispatch_Table_Wrapper
))
7082 (RTE_Available
(RE_No_Dispatch_Table_Wrapper
)
7083 and then Scope
(Selector
) =
7084 RTE
(RE_No_Dispatch_Table_Wrapper
)))
7089 Build_Actual_Subtype_Of_Component
7090 (Etype
(Selector
), N
);
7097 if No
(C_Etype
) then
7098 C_Etype
:= Etype
(Selector
);
7100 Insert_Action
(N
, C_Etype
);
7101 C_Etype
:= Defining_Identifier
(C_Etype
);
7104 Set_Etype
(N
, C_Etype
);
7107 -- If this is the name of an entry or protected operation, and
7108 -- the prefix is an access type, insert an explicit dereference,
7109 -- so that entry calls are treated uniformly.
7111 if Is_Access_Type
(Etype
(P
))
7112 and then Is_Concurrent_Type
(Designated_Type
(Etype
(P
)))
7115 New_P
: constant Node_Id
:=
7116 Make_Explicit_Dereference
(Sloc
(P
),
7117 Prefix
=> Relocate_Node
(P
));
7120 Set_Etype
(P
, Designated_Type
(Etype
(Prefix
(P
))));
7124 -- If the selected component appears within a default expression
7125 -- and it has an actual subtype, the preanalysis has not yet
7126 -- completed its analysis, because Insert_Actions is disabled in
7127 -- that context. Within the init proc of the enclosing type we
7128 -- must complete this analysis, if an actual subtype was created.
7130 elsif Inside_Init_Proc
then
7132 Typ
: constant Entity_Id
:= Etype
(N
);
7133 Decl
: constant Node_Id
:= Declaration_Node
(Typ
);
7135 if Nkind
(Decl
) = N_Subtype_Declaration
7136 and then not Analyzed
(Decl
)
7137 and then Is_List_Member
(Decl
)
7138 and then No
(Parent
(Decl
))
7141 Insert_Action
(N
, Decl
);
7148 elsif Is_Entity_Name
(P
) then
7149 P_Name
:= Entity
(P
);
7151 -- The prefix may denote an enclosing type which is the completion
7152 -- of an incomplete type declaration.
7154 if Is_Type
(P_Name
) then
7155 Set_Entity
(P
, Get_Full_View
(P_Name
));
7156 Set_Etype
(P
, Entity
(P
));
7157 P_Name
:= Entity
(P
);
7160 P_Type
:= Base_Type
(Etype
(P
));
7162 if Debug_Flag_E
then
7163 Write_Str
("Found prefix type to be ");
7164 Write_Entity_Info
(P_Type
, " "); Write_Eol
;
7167 -- The designated type may be a limited view with no components.
7168 -- Check whether the non-limited view is available, because in some
7169 -- cases this will not be set when installing the context. Rewrite
7170 -- the node by introducing an explicit dereference at once, and
7171 -- setting the type of the rewritten prefix to the non-limited view
7172 -- of the original designated type.
7174 if Is_Access_Type
(P_Type
) then
7176 Desig_Typ
: constant Entity_Id
:=
7177 Directly_Designated_Type
(P_Type
);
7180 if Is_Incomplete_Type
(Desig_Typ
)
7181 and then From_Limited_With
(Desig_Typ
)
7182 and then Present
(Non_Limited_View
(Desig_Typ
))
7185 Make_Explicit_Dereference
(Sloc
(P
),
7186 Prefix
=> Relocate_Node
(P
)));
7188 Set_Etype
(P
, Get_Full_View
(Non_Limited_View
(Desig_Typ
)));
7189 P_Type
:= Etype
(P
);
7194 -- First check for components of a record object (not the
7195 -- result of a call, which is handled below).
7197 if Is_Appropriate_For_Record
(P_Type
)
7198 and then not Is_Overloadable
(P_Name
)
7199 and then not Is_Type
(P_Name
)
7201 -- Selected component of record. Type checking will validate
7202 -- name of selector.
7204 -- ??? Could we rewrite an implicit dereference into an explicit
7207 Analyze_Selected_Component
(N
);
7209 -- Reference to type name in predicate/invariant expression
7211 elsif Is_Appropriate_For_Entry_Prefix
(P_Type
)
7212 and then not In_Open_Scopes
(P_Name
)
7213 and then (not Is_Concurrent_Type
(Etype
(P_Name
))
7214 or else not In_Open_Scopes
(Etype
(P_Name
)))
7216 -- Call to protected operation or entry. Type checking is
7217 -- needed on the prefix.
7219 Analyze_Selected_Component
(N
);
7221 elsif (In_Open_Scopes
(P_Name
)
7222 and then Ekind
(P_Name
) /= E_Void
7223 and then not Is_Overloadable
(P_Name
))
7224 or else (Is_Concurrent_Type
(Etype
(P_Name
))
7225 and then In_Open_Scopes
(Etype
(P_Name
)))
7227 -- Prefix denotes an enclosing loop, block, or task, i.e. an
7228 -- enclosing construct that is not a subprogram or accept.
7230 -- A special case: a protected body may call an operation
7231 -- on an external object of the same type, in which case it
7232 -- is not an expanded name. If the prefix is the type itself,
7233 -- or the context is a single synchronized object it can only
7234 -- be interpreted as an expanded name.
7236 if Is_Concurrent_Type
(Etype
(P_Name
)) then
7238 or else Present
(Anonymous_Object
(Etype
(P_Name
)))
7240 Find_Expanded_Name
(N
);
7243 Analyze_Selected_Component
(N
);
7248 Find_Expanded_Name
(N
);
7251 elsif Ekind
(P_Name
) = E_Package
then
7252 Find_Expanded_Name
(N
);
7254 elsif Is_Overloadable
(P_Name
) then
7256 -- The subprogram may be a renaming (of an enclosing scope) as
7257 -- in the case of the name of the generic within an instantiation.
7259 if Ekind_In
(P_Name
, E_Procedure
, E_Function
)
7260 and then Present
(Alias
(P_Name
))
7261 and then Is_Generic_Instance
(Alias
(P_Name
))
7263 P_Name
:= Alias
(P_Name
);
7266 if Is_Overloaded
(P
) then
7268 -- The prefix must resolve to a unique enclosing construct
7271 Found
: Boolean := False;
7276 Get_First_Interp
(P
, Ind
, It
);
7277 while Present
(It
.Nam
) loop
7278 if In_Open_Scopes
(It
.Nam
) then
7281 "prefix must be unique enclosing scope", N
);
7282 Set_Entity
(N
, Any_Id
);
7283 Set_Etype
(N
, Any_Type
);
7292 Get_Next_Interp
(Ind
, It
);
7297 if In_Open_Scopes
(P_Name
) then
7298 Set_Entity
(P
, P_Name
);
7299 Set_Is_Overloaded
(P
, False);
7300 Find_Expanded_Name
(N
);
7303 -- If no interpretation as an expanded name is possible, it
7304 -- must be a selected component of a record returned by a
7305 -- function call. Reformat prefix as a function call, the rest
7306 -- is done by type resolution.
7308 -- Error if the prefix is procedure or entry, as is P.X
7310 if Ekind
(P_Name
) /= E_Function
7312 (not Is_Overloaded
(P
)
7313 or else Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
)
7315 -- Prefix may mention a package that is hidden by a local
7316 -- declaration: let the user know. Scan the full homonym
7317 -- chain, the candidate package may be anywhere on it.
7319 if Present
(Homonym
(Current_Entity
(P_Name
))) then
7320 P_Name
:= Current_Entity
(P_Name
);
7322 while Present
(P_Name
) loop
7323 exit when Ekind
(P_Name
) = E_Package
;
7324 P_Name
:= Homonym
(P_Name
);
7327 if Present
(P_Name
) then
7328 if not Is_Reference_In_Subunit
then
7329 Error_Msg_Sloc
:= Sloc
(Entity
(Prefix
(N
)));
7331 ("package& is hidden by declaration#", N
, P_Name
);
7334 Set_Entity
(Prefix
(N
), P_Name
);
7335 Find_Expanded_Name
(N
);
7339 P_Name
:= Entity
(Prefix
(N
));
7344 ("invalid prefix in selected component&", N
, P_Name
);
7345 Change_Selected_Component_To_Expanded_Name
(N
);
7346 Set_Entity
(N
, Any_Id
);
7347 Set_Etype
(N
, Any_Type
);
7349 -- Here we have a function call, so do the reformatting
7352 Nam
:= New_Copy
(P
);
7353 Save_Interps
(P
, Nam
);
7355 -- We use Replace here because this is one of those cases
7356 -- where the parser has missclassified the node, and we fix
7357 -- things up and then do the semantic analysis on the fixed
7358 -- up node. Normally we do this using one of the Sinfo.CN
7359 -- routines, but this is too tricky for that.
7361 -- Note that using Rewrite would be wrong, because we would
7362 -- have a tree where the original node is unanalyzed, and
7363 -- this violates the required interface for ASIS.
7366 Make_Function_Call
(Sloc
(P
), Name
=> Nam
));
7368 -- Now analyze the reformatted node
7372 -- If the prefix is illegal after this transformation, there
7373 -- may be visibility errors on the prefix. The safest is to
7374 -- treat the selected component as an error.
7376 if Error_Posted
(P
) then
7377 Set_Etype
(N
, Any_Type
);
7381 Analyze_Selected_Component
(N
);
7386 -- Remaining cases generate various error messages
7389 -- Format node as expanded name, to avoid cascaded errors
7391 -- If the limited_with transformation was applied earlier, restore
7392 -- source for proper error reporting.
7394 if not Comes_From_Source
(P
)
7395 and then Nkind
(P
) = N_Explicit_Dereference
7397 Rewrite
(P
, Prefix
(P
));
7398 P_Type
:= Etype
(P
);
7401 Change_Selected_Component_To_Expanded_Name
(N
);
7402 Set_Entity
(N
, Any_Id
);
7403 Set_Etype
(N
, Any_Type
);
7405 -- Issue error message, but avoid this if error issued already.
7406 -- Use identifier of prefix if one is available.
7408 if P_Name
= Any_Id
then
7411 -- It is not an error if the prefix is the current instance of
7412 -- type name, e.g. the expression of a type aspect, when it is
7413 -- analyzed for ASIS use.
7415 elsif Is_Entity_Name
(P
) and then Is_Current_Instance
(P
) then
7418 elsif Ekind
(P_Name
) = E_Void
then
7419 Premature_Usage
(P
);
7421 elsif Nkind
(P
) /= N_Attribute_Reference
then
7423 -- This may have been meant as a prefixed call to a primitive
7424 -- of an untagged type. If it is a function call check type of
7425 -- its first formal and add explanation.
7428 F
: constant Entity_Id
:=
7429 Current_Entity
(Selector_Name
(N
));
7432 and then Is_Overloadable
(F
)
7433 and then Present
(First_Entity
(F
))
7434 and then not Is_Tagged_Type
(Etype
(First_Entity
(F
)))
7437 ("prefixed call is only allowed for objects of a "
7438 & "tagged type", N
);
7442 Error_Msg_N
("invalid prefix in selected component&", P
);
7444 if Is_Access_Type
(P_Type
)
7445 and then Ekind
(Designated_Type
(P_Type
)) = E_Incomplete_Type
7448 ("\dereference must not be of an incomplete type "
7449 & "(RM 3.10.1)", P
);
7453 Error_Msg_N
("invalid prefix in selected component", P
);
7457 -- Selector name is restricted in SPARK
7459 if Nkind
(N
) = N_Expanded_Name
7460 and then Restriction_Check_Required
(SPARK_05
)
7462 if Is_Subprogram
(P_Name
) then
7463 Check_SPARK_05_Restriction
7464 ("prefix of expanded name cannot be a subprogram", P
);
7465 elsif Ekind
(P_Name
) = E_Loop
then
7466 Check_SPARK_05_Restriction
7467 ("prefix of expanded name cannot be a loop statement", P
);
7472 -- If prefix is not the name of an entity, it must be an expression,
7473 -- whose type is appropriate for a record. This is determined by
7476 Analyze_Selected_Component
(N
);
7479 Analyze_Dimension
(N
);
7480 end Find_Selected_Component
;
7486 procedure Find_Type
(N
: Node_Id
) is
7496 elsif Nkind
(N
) = N_Attribute_Reference
then
7498 -- Class attribute. This is not valid in Ada 83 mode, but we do not
7499 -- need to enforce that at this point, since the declaration of the
7500 -- tagged type in the prefix would have been flagged already.
7502 if Attribute_Name
(N
) = Name_Class
then
7503 Check_Restriction
(No_Dispatch
, N
);
7504 Find_Type
(Prefix
(N
));
7506 -- Propagate error from bad prefix
7508 if Etype
(Prefix
(N
)) = Any_Type
then
7509 Set_Entity
(N
, Any_Type
);
7510 Set_Etype
(N
, Any_Type
);
7514 T
:= Base_Type
(Entity
(Prefix
(N
)));
7516 -- Case where type is not known to be tagged. Its appearance in
7517 -- the prefix of the 'Class attribute indicates that the full view
7520 if not Is_Tagged_Type
(T
) then
7521 if Ekind
(T
) = E_Incomplete_Type
then
7523 -- It is legal to denote the class type of an incomplete
7524 -- type. The full type will have to be tagged, of course.
7525 -- In Ada 2005 this usage is declared obsolescent, so we
7526 -- warn accordingly. This usage is only legal if the type
7527 -- is completed in the current scope, and not for a limited
7530 if Ada_Version
>= Ada_2005
then
7532 -- Test whether the Available_View of a limited type view
7533 -- is tagged, since the limited view may not be marked as
7534 -- tagged if the type itself has an untagged incomplete
7535 -- type view in its package.
7537 if From_Limited_With
(T
)
7538 and then not Is_Tagged_Type
(Available_View
(T
))
7541 ("prefix of Class attribute must be tagged", N
);
7542 Set_Etype
(N
, Any_Type
);
7543 Set_Entity
(N
, Any_Type
);
7546 -- ??? This test is temporarily disabled (always
7547 -- False) because it causes an unwanted warning on
7548 -- GNAT sources (built with -gnatg, which includes
7549 -- Warn_On_Obsolescent_ Feature). Once this issue
7550 -- is cleared in the sources, it can be enabled.
7552 elsif Warn_On_Obsolescent_Feature
and then False then
7554 ("applying 'Class to an untagged incomplete type"
7555 & " is an obsolescent feature (RM J.11)?r?", N
);
7559 Set_Is_Tagged_Type
(T
);
7560 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
7561 Make_Class_Wide_Type
(T
);
7562 Set_Entity
(N
, Class_Wide_Type
(T
));
7563 Set_Etype
(N
, Class_Wide_Type
(T
));
7565 elsif Ekind
(T
) = E_Private_Type
7566 and then not Is_Generic_Type
(T
)
7567 and then In_Private_Part
(Scope
(T
))
7569 -- The Class attribute can be applied to an untagged private
7570 -- type fulfilled by a tagged type prior to the full type
7571 -- declaration (but only within the parent package's private
7572 -- part). Create the class-wide type now and check that the
7573 -- full type is tagged later during its analysis. Note that
7574 -- we do not mark the private type as tagged, unlike the
7575 -- case of incomplete types, because the type must still
7576 -- appear untagged to outside units.
7578 if No
(Class_Wide_Type
(T
)) then
7579 Make_Class_Wide_Type
(T
);
7582 Set_Entity
(N
, Class_Wide_Type
(T
));
7583 Set_Etype
(N
, Class_Wide_Type
(T
));
7586 -- Should we introduce a type Any_Tagged and use Wrong_Type
7587 -- here, it would be a bit more consistent???
7590 ("tagged type required, found}",
7591 Prefix
(N
), First_Subtype
(T
));
7592 Set_Entity
(N
, Any_Type
);
7596 -- Case of tagged type
7599 if Is_Concurrent_Type
(T
) then
7600 if No
(Corresponding_Record_Type
(Entity
(Prefix
(N
)))) then
7602 -- Previous error. Create a class-wide type for the
7603 -- synchronized type itself, with minimal semantic
7604 -- attributes, to catch other errors in some ACATS tests.
7606 pragma Assert
(Serious_Errors_Detected
/= 0);
7607 Make_Class_Wide_Type
(T
);
7608 C
:= Class_Wide_Type
(T
);
7609 Set_First_Entity
(C
, First_Entity
(T
));
7612 C
:= Class_Wide_Type
7613 (Corresponding_Record_Type
(Entity
(Prefix
(N
))));
7617 C
:= Class_Wide_Type
(Entity
(Prefix
(N
)));
7620 Set_Entity_With_Checks
(N
, C
);
7621 Generate_Reference
(C
, N
);
7625 -- Base attribute, not allowed in Ada 83
7627 elsif Attribute_Name
(N
) = Name_Base
then
7628 Error_Msg_Name_1
:= Name_Base
;
7629 Check_SPARK_05_Restriction
7630 ("attribute% is only allowed as prefix of another attribute", N
);
7632 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
7634 ("(Ada 83) Base attribute not allowed in subtype mark", N
);
7637 Find_Type
(Prefix
(N
));
7638 Typ
:= Entity
(Prefix
(N
));
7640 if Ada_Version
>= Ada_95
7641 and then not Is_Scalar_Type
(Typ
)
7642 and then not Is_Generic_Type
(Typ
)
7645 ("prefix of Base attribute must be scalar type",
7648 elsif Warn_On_Redundant_Constructs
7649 and then Base_Type
(Typ
) = Typ
7651 Error_Msg_NE
-- CODEFIX
7652 ("redundant attribute, & is its own base type?r?", N
, Typ
);
7655 T
:= Base_Type
(Typ
);
7657 -- Rewrite attribute reference with type itself (see similar
7658 -- processing in Analyze_Attribute, case Base). Preserve prefix
7659 -- if present, for other legality checks.
7661 if Nkind
(Prefix
(N
)) = N_Expanded_Name
then
7663 Make_Expanded_Name
(Sloc
(N
),
7665 Prefix
=> New_Copy
(Prefix
(Prefix
(N
))),
7666 Selector_Name
=> New_Occurrence_Of
(T
, Sloc
(N
))));
7669 Rewrite
(N
, New_Occurrence_Of
(T
, Sloc
(N
)));
7676 elsif Attribute_Name
(N
) = Name_Stub_Type
then
7678 -- This is handled in Analyze_Attribute
7682 -- All other attributes are invalid in a subtype mark
7685 Error_Msg_N
("invalid attribute in subtype mark", N
);
7691 if Is_Entity_Name
(N
) then
7692 T_Name
:= Entity
(N
);
7694 Error_Msg_N
("subtype mark required in this context", N
);
7695 Set_Etype
(N
, Any_Type
);
7699 if T_Name
= Any_Id
or else Etype
(N
) = Any_Type
then
7701 -- Undefined id. Make it into a valid type
7703 Set_Entity
(N
, Any_Type
);
7705 elsif not Is_Type
(T_Name
)
7706 and then T_Name
/= Standard_Void_Type
7708 Error_Msg_Sloc
:= Sloc
(T_Name
);
7709 Error_Msg_N
("subtype mark required in this context", N
);
7710 Error_Msg_NE
("\\found & declared#", N
, T_Name
);
7711 Set_Entity
(N
, Any_Type
);
7714 -- If the type is an incomplete type created to handle
7715 -- anonymous access components of a record type, then the
7716 -- incomplete type is the visible entity and subsequent
7717 -- references will point to it. Mark the original full
7718 -- type as referenced, to prevent spurious warnings.
7720 if Is_Incomplete_Type
(T_Name
)
7721 and then Present
(Full_View
(T_Name
))
7722 and then not Comes_From_Source
(T_Name
)
7724 Set_Referenced
(Full_View
(T_Name
));
7727 T_Name
:= Get_Full_View
(T_Name
);
7729 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
7730 -- limited-with clauses
7732 if From_Limited_With
(T_Name
)
7733 and then Ekind
(T_Name
) in Incomplete_Kind
7734 and then Present
(Non_Limited_View
(T_Name
))
7735 and then Is_Interface
(Non_Limited_View
(T_Name
))
7737 T_Name
:= Non_Limited_View
(T_Name
);
7740 if In_Open_Scopes
(T_Name
) then
7741 if Ekind
(Base_Type
(T_Name
)) = E_Task_Type
then
7743 -- In Ada 2005, a task name can be used in an access
7744 -- definition within its own body. It cannot be used
7745 -- in the discriminant part of the task declaration,
7746 -- nor anywhere else in the declaration because entries
7747 -- cannot have access parameters.
7749 if Ada_Version
>= Ada_2005
7750 and then Nkind
(Parent
(N
)) = N_Access_Definition
7752 Set_Entity
(N
, T_Name
);
7753 Set_Etype
(N
, T_Name
);
7755 if Has_Completion
(T_Name
) then
7760 ("task type cannot be used as type mark " &
7761 "within its own declaration", N
);
7766 ("task type cannot be used as type mark " &
7767 "within its own spec or body", N
);
7770 elsif Ekind
(Base_Type
(T_Name
)) = E_Protected_Type
then
7772 -- In Ada 2005, a protected name can be used in an access
7773 -- definition within its own body.
7775 if Ada_Version
>= Ada_2005
7776 and then Nkind
(Parent
(N
)) = N_Access_Definition
7778 Set_Entity
(N
, T_Name
);
7779 Set_Etype
(N
, T_Name
);
7784 ("protected type cannot be used as type mark " &
7785 "within its own spec or body", N
);
7789 Error_Msg_N
("type declaration cannot refer to itself", N
);
7792 Set_Etype
(N
, Any_Type
);
7793 Set_Entity
(N
, Any_Type
);
7794 Set_Error_Posted
(T_Name
);
7798 Set_Entity
(N
, T_Name
);
7799 Set_Etype
(N
, T_Name
);
7803 if Present
(Etype
(N
)) and then Comes_From_Source
(N
) then
7804 if Is_Fixed_Point_Type
(Etype
(N
)) then
7805 Check_Restriction
(No_Fixed_Point
, N
);
7806 elsif Is_Floating_Point_Type
(Etype
(N
)) then
7807 Check_Restriction
(No_Floating_Point
, N
);
7810 -- A Ghost type must appear in a specific context
7812 if Is_Ghost_Entity
(Etype
(N
)) then
7813 Check_Ghost_Context
(Etype
(N
), N
);
7818 ------------------------------------
7819 -- Has_Implicit_Character_Literal --
7820 ------------------------------------
7822 function Has_Implicit_Character_Literal
(N
: Node_Id
) return Boolean is
7824 Found
: Boolean := False;
7825 P
: constant Entity_Id
:= Entity
(Prefix
(N
));
7826 Priv_Id
: Entity_Id
:= Empty
;
7829 if Ekind
(P
) = E_Package
and then not In_Open_Scopes
(P
) then
7830 Priv_Id
:= First_Private_Entity
(P
);
7833 if P
= Standard_Standard
then
7834 Change_Selected_Component_To_Expanded_Name
(N
);
7835 Rewrite
(N
, Selector_Name
(N
));
7837 Set_Etype
(Original_Node
(N
), Standard_Character
);
7841 Id
:= First_Entity
(P
);
7842 while Present
(Id
) and then Id
/= Priv_Id
loop
7843 if Is_Standard_Character_Type
(Id
) and then Is_Base_Type
(Id
) then
7845 -- We replace the node with the literal itself, resolve as a
7846 -- character, and set the type correctly.
7849 Change_Selected_Component_To_Expanded_Name
(N
);
7850 Rewrite
(N
, Selector_Name
(N
));
7853 Set_Etype
(Original_Node
(N
), Id
);
7857 -- More than one type derived from Character in given scope.
7858 -- Collect all possible interpretations.
7860 Add_One_Interp
(N
, Id
, Id
);
7868 end Has_Implicit_Character_Literal
;
7870 ----------------------
7871 -- Has_Private_With --
7872 ----------------------
7874 function Has_Private_With
(E
: Entity_Id
) return Boolean is
7875 Comp_Unit
: constant Node_Id
:= Cunit
(Current_Sem_Unit
);
7879 Item
:= First
(Context_Items
(Comp_Unit
));
7880 while Present
(Item
) loop
7881 if Nkind
(Item
) = N_With_Clause
7882 and then Private_Present
(Item
)
7883 and then Entity
(Name
(Item
)) = E
7892 end Has_Private_With
;
7894 ---------------------------
7895 -- Has_Implicit_Operator --
7896 ---------------------------
7898 function Has_Implicit_Operator
(N
: Node_Id
) return Boolean is
7899 Op_Id
: constant Name_Id
:= Chars
(Selector_Name
(N
));
7900 P
: constant Entity_Id
:= Entity
(Prefix
(N
));
7902 Priv_Id
: Entity_Id
:= Empty
;
7904 procedure Add_Implicit_Operator
7906 Op_Type
: Entity_Id
:= Empty
);
7907 -- Add implicit interpretation to node N, using the type for which a
7908 -- predefined operator exists. If the operator yields a boolean type,
7909 -- the Operand_Type is implicitly referenced by the operator, and a
7910 -- reference to it must be generated.
7912 ---------------------------
7913 -- Add_Implicit_Operator --
7914 ---------------------------
7916 procedure Add_Implicit_Operator
7918 Op_Type
: Entity_Id
:= Empty
)
7920 Predef_Op
: Entity_Id
;
7923 Predef_Op
:= Current_Entity
(Selector_Name
(N
));
7924 while Present
(Predef_Op
)
7925 and then Scope
(Predef_Op
) /= Standard_Standard
7927 Predef_Op
:= Homonym
(Predef_Op
);
7930 if Nkind
(N
) = N_Selected_Component
then
7931 Change_Selected_Component_To_Expanded_Name
(N
);
7934 -- If the context is an unanalyzed function call, determine whether
7935 -- a binary or unary interpretation is required.
7937 if Nkind
(Parent
(N
)) = N_Indexed_Component
then
7939 Is_Binary_Call
: constant Boolean :=
7941 (Next
(First
(Expressions
(Parent
(N
)))));
7942 Is_Binary_Op
: constant Boolean :=
7944 (Predef_Op
) /= Last_Entity
(Predef_Op
);
7945 Predef_Op2
: constant Entity_Id
:= Homonym
(Predef_Op
);
7948 if Is_Binary_Call
then
7949 if Is_Binary_Op
then
7950 Add_One_Interp
(N
, Predef_Op
, T
);
7952 Add_One_Interp
(N
, Predef_Op2
, T
);
7956 if not Is_Binary_Op
then
7957 Add_One_Interp
(N
, Predef_Op
, T
);
7959 Add_One_Interp
(N
, Predef_Op2
, T
);
7965 Add_One_Interp
(N
, Predef_Op
, T
);
7967 -- For operators with unary and binary interpretations, if
7968 -- context is not a call, add both
7970 if Present
(Homonym
(Predef_Op
)) then
7971 Add_One_Interp
(N
, Homonym
(Predef_Op
), T
);
7975 -- The node is a reference to a predefined operator, and
7976 -- an implicit reference to the type of its operands.
7978 if Present
(Op_Type
) then
7979 Generate_Operator_Reference
(N
, Op_Type
);
7981 Generate_Operator_Reference
(N
, T
);
7983 end Add_Implicit_Operator
;
7985 -- Start of processing for Has_Implicit_Operator
7988 if Ekind
(P
) = E_Package
and then not In_Open_Scopes
(P
) then
7989 Priv_Id
:= First_Private_Entity
(P
);
7992 Id
:= First_Entity
(P
);
7996 -- Boolean operators: an implicit declaration exists if the scope
7997 -- contains a declaration for a derived Boolean type, or for an
7998 -- array of Boolean type.
8005 while Id
/= Priv_Id
loop
8006 if Valid_Boolean_Arg
(Id
) and then Is_Base_Type
(Id
) then
8007 Add_Implicit_Operator
(Id
);
8014 -- Equality: look for any non-limited type (result is Boolean)
8019 while Id
/= Priv_Id
loop
8021 and then not Is_Limited_Type
(Id
)
8022 and then Is_Base_Type
(Id
)
8024 Add_Implicit_Operator
(Standard_Boolean
, Id
);
8031 -- Comparison operators: scalar type, or array of scalar
8038 while Id
/= Priv_Id
loop
8039 if (Is_Scalar_Type
(Id
)
8040 or else (Is_Array_Type
(Id
)
8041 and then Is_Scalar_Type
(Component_Type
(Id
))))
8042 and then Is_Base_Type
(Id
)
8044 Add_Implicit_Operator
(Standard_Boolean
, Id
);
8051 -- Arithmetic operators: any numeric type
8062 while Id
/= Priv_Id
loop
8063 if Is_Numeric_Type
(Id
) and then Is_Base_Type
(Id
) then
8064 Add_Implicit_Operator
(Id
);
8071 -- Concatenation: any one-dimensional array type
8073 when Name_Op_Concat
=>
8074 while Id
/= Priv_Id
loop
8075 if Is_Array_Type
(Id
)
8076 and then Number_Dimensions
(Id
) = 1
8077 and then Is_Base_Type
(Id
)
8079 Add_Implicit_Operator
(Id
);
8086 -- What is the others condition here? Should we be using a
8087 -- subtype of Name_Id that would restrict to operators ???
8093 -- If we fall through, then we do not have an implicit operator
8096 end Has_Implicit_Operator
;
8098 -----------------------------------
8099 -- Has_Loop_In_Inner_Open_Scopes --
8100 -----------------------------------
8102 function Has_Loop_In_Inner_Open_Scopes
(S
: Entity_Id
) return Boolean is
8104 -- Several scope stacks are maintained by Scope_Stack. The base of the
8105 -- currently active scope stack is denoted by the Is_Active_Stack_Base
8106 -- flag in the scope stack entry. Note that the scope stacks used to
8107 -- simply be delimited implicitly by the presence of Standard_Standard
8108 -- at their base, but there now are cases where this is not sufficient
8109 -- because Standard_Standard actually may appear in the middle of the
8110 -- active set of scopes.
8112 for J
in reverse 0 .. Scope_Stack
.Last
loop
8114 -- S was reached without seing a loop scope first
8116 if Scope_Stack
.Table
(J
).Entity
= S
then
8119 -- S was not yet reached, so it contains at least one inner loop
8121 elsif Ekind
(Scope_Stack
.Table
(J
).Entity
) = E_Loop
then
8125 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
8126 -- cases where Standard_Standard appears in the middle of the active
8127 -- set of scopes. This affects the declaration and overriding of
8128 -- private inherited operations in instantiations of generic child
8131 pragma Assert
(not Scope_Stack
.Table
(J
).Is_Active_Stack_Base
);
8134 raise Program_Error
; -- unreachable
8135 end Has_Loop_In_Inner_Open_Scopes
;
8137 --------------------
8138 -- In_Open_Scopes --
8139 --------------------
8141 function In_Open_Scopes
(S
: Entity_Id
) return Boolean is
8143 -- Several scope stacks are maintained by Scope_Stack. The base of the
8144 -- currently active scope stack is denoted by the Is_Active_Stack_Base
8145 -- flag in the scope stack entry. Note that the scope stacks used to
8146 -- simply be delimited implicitly by the presence of Standard_Standard
8147 -- at their base, but there now are cases where this is not sufficient
8148 -- because Standard_Standard actually may appear in the middle of the
8149 -- active set of scopes.
8151 for J
in reverse 0 .. Scope_Stack
.Last
loop
8152 if Scope_Stack
.Table
(J
).Entity
= S
then
8156 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
8157 -- cases where Standard_Standard appears in the middle of the active
8158 -- set of scopes. This affects the declaration and overriding of
8159 -- private inherited operations in instantiations of generic child
8162 exit when Scope_Stack
.Table
(J
).Is_Active_Stack_Base
;
8168 -----------------------------
8169 -- Inherit_Renamed_Profile --
8170 -----------------------------
8172 procedure Inherit_Renamed_Profile
(New_S
: Entity_Id
; Old_S
: Entity_Id
) is
8179 if Ekind
(Old_S
) = E_Operator
then
8180 New_F
:= First_Formal
(New_S
);
8182 while Present
(New_F
) loop
8183 Set_Etype
(New_F
, Base_Type
(Etype
(New_F
)));
8184 Next_Formal
(New_F
);
8187 Set_Etype
(New_S
, Base_Type
(Etype
(New_S
)));
8190 New_F
:= First_Formal
(New_S
);
8191 Old_F
:= First_Formal
(Old_S
);
8193 while Present
(New_F
) loop
8194 New_T
:= Etype
(New_F
);
8195 Old_T
:= Etype
(Old_F
);
8197 -- If the new type is a renaming of the old one, as is the case
8198 -- for actuals in instances, retain its name, to simplify later
8201 if Nkind
(Parent
(New_T
)) = N_Subtype_Declaration
8202 and then Is_Entity_Name
(Subtype_Indication
(Parent
(New_T
)))
8203 and then Entity
(Subtype_Indication
(Parent
(New_T
))) = Old_T
8207 Set_Etype
(New_F
, Old_T
);
8210 Next_Formal
(New_F
);
8211 Next_Formal
(Old_F
);
8214 pragma Assert
(No
(Old_F
));
8216 if Ekind_In
(Old_S
, E_Function
, E_Enumeration_Literal
) then
8217 Set_Etype
(New_S
, Etype
(Old_S
));
8220 end Inherit_Renamed_Profile
;
8226 procedure Initialize
is
8231 -------------------------
8232 -- Install_Use_Clauses --
8233 -------------------------
8235 procedure Install_Use_Clauses
8237 Force_Installation
: Boolean := False)
8243 while Present
(U
) loop
8245 -- Case of USE package
8247 if Nkind
(U
) = N_Use_Package_Clause
then
8248 Use_One_Package
(U
, Name
(U
), True);
8253 Use_One_Type
(Subtype_Mark
(U
), Force
=> Force_Installation
);
8257 Next_Use_Clause
(U
);
8259 end Install_Use_Clauses
;
8261 -------------------------------------
8262 -- Is_Appropriate_For_Entry_Prefix --
8263 -------------------------------------
8265 function Is_Appropriate_For_Entry_Prefix
(T
: Entity_Id
) return Boolean is
8266 P_Type
: Entity_Id
:= T
;
8269 if Is_Access_Type
(P_Type
) then
8270 P_Type
:= Designated_Type
(P_Type
);
8273 return Is_Task_Type
(P_Type
) or else Is_Protected_Type
(P_Type
);
8274 end Is_Appropriate_For_Entry_Prefix
;
8276 -------------------------------
8277 -- Is_Appropriate_For_Record --
8278 -------------------------------
8280 function Is_Appropriate_For_Record
(T
: Entity_Id
) return Boolean is
8282 function Has_Components
(T1
: Entity_Id
) return Boolean;
8283 -- Determine if given type has components (i.e. is either a record
8284 -- type or a type that has discriminants).
8286 --------------------
8287 -- Has_Components --
8288 --------------------
8290 function Has_Components
(T1
: Entity_Id
) return Boolean is
8292 return Is_Record_Type
(T1
)
8293 or else (Is_Private_Type
(T1
) and then Has_Discriminants
(T1
))
8294 or else (Is_Task_Type
(T1
) and then Has_Discriminants
(T1
))
8295 or else (Is_Incomplete_Type
(T1
)
8296 and then From_Limited_With
(T1
)
8297 and then Present
(Non_Limited_View
(T1
))
8298 and then Is_Record_Type
8299 (Get_Full_View
(Non_Limited_View
(T1
))));
8302 -- Start of processing for Is_Appropriate_For_Record
8307 and then (Has_Components
(T
)
8308 or else (Is_Access_Type
(T
)
8309 and then Has_Components
(Designated_Type
(T
))));
8310 end Is_Appropriate_For_Record
;
8312 ----------------------
8313 -- Mark_Use_Clauses --
8314 ----------------------
8316 procedure Mark_Use_Clauses
(Id
: Node_Or_Entity_Id
) is
8317 procedure Mark_Parameters
(Call
: Entity_Id
);
8318 -- Perform use_type_clause marking for all parameters in a subprogram
8319 -- or operator call.
8321 procedure Mark_Use_Package
(Pak
: Entity_Id
);
8322 -- Move up the Prev_Use_Clause chain for packages denoted by Pak -
8323 -- marking each clause in the chain as effective in the process.
8325 procedure Mark_Use_Type
(E
: Entity_Id
);
8326 -- Similar to Do_Use_Package_Marking except we move up the
8327 -- Prev_Use_Clause chain for the type denoted by E.
8329 ---------------------
8330 -- Mark_Parameters --
8331 ---------------------
8333 procedure Mark_Parameters
(Call
: Entity_Id
) is
8337 -- Move through all of the formals
8339 Curr
:= First_Formal
(Call
);
8340 while Present
(Curr
) loop
8341 Mark_Use_Type
(Curr
);
8343 Curr
:= Next_Formal
(Curr
);
8346 -- Handle the return type
8348 Mark_Use_Type
(Call
);
8349 end Mark_Parameters
;
8351 ----------------------
8352 -- Mark_Use_Package --
8353 ----------------------
8355 procedure Mark_Use_Package
(Pak
: Entity_Id
) is
8359 -- Ignore cases where the scope of the type is not a package (e.g.
8360 -- Standard_Standard).
8362 if Ekind
(Pak
) /= E_Package
then
8366 Curr
:= Current_Use_Clause
(Pak
);
8367 while Present
(Curr
)
8368 and then not Is_Effective_Use_Clause
(Curr
)
8370 -- We need to mark the previous use clauses as effective, but
8371 -- each use clause may in turn render other use_package_clauses
8372 -- effective. Additionally, it is possible to have a parent
8373 -- package renamed as a child of itself so we must check the
8374 -- prefix entity is not the same as the package we are marking.
8376 if Nkind
(Name
(Curr
)) /= N_Identifier
8377 and then Present
(Prefix
(Name
(Curr
)))
8378 and then Entity
(Prefix
(Name
(Curr
))) /= Pak
8380 Mark_Use_Package
(Entity
(Prefix
(Name
(Curr
))));
8382 -- It is also possible to have a child package without a prefix
8383 -- that relies on a previous use_package_clause.
8385 elsif Nkind
(Name
(Curr
)) = N_Identifier
8386 and then Is_Child_Unit
(Entity
(Name
(Curr
)))
8388 Mark_Use_Package
(Scope
(Entity
(Name
(Curr
))));
8391 -- Mark the use_package_clause as effective and move up the chain
8393 Set_Is_Effective_Use_Clause
(Curr
);
8395 Curr
:= Prev_Use_Clause
(Curr
);
8397 end Mark_Use_Package
;
8403 procedure Mark_Use_Type
(E
: Entity_Id
) is
8408 -- Ignore void types and unresolved string literals and primitives
8410 if Nkind
(E
) = N_String_Literal
8411 or else Nkind
(Etype
(E
)) not in N_Entity
8412 or else not Is_Type
(Etype
(E
))
8417 -- Primitives with class-wide operands might additionally render
8418 -- their base type's use_clauses effective - so do a recursive check
8421 Base
:= Base_Type
(Etype
(E
));
8423 if Ekind
(Base
) = E_Class_Wide_Type
then
8424 Mark_Use_Type
(Base
);
8427 -- The package containing the type or operator function being used
8428 -- may be in use as well, so mark any use_package_clauses for it as
8429 -- effective. There are also additional sanity checks performed here
8430 -- for ignoring previous errors.
8432 Mark_Use_Package
(Scope
(Base
));
8434 if Nkind
(E
) in N_Op
8435 and then Present
(Entity
(E
))
8436 and then Present
(Scope
(Entity
(E
)))
8438 Mark_Use_Package
(Scope
(Entity
(E
)));
8441 Curr
:= Current_Use_Clause
(Base
);
8442 while Present
(Curr
)
8443 and then not Is_Effective_Use_Clause
(Curr
)
8445 -- Current use_type_clause may render other use_package_clauses
8448 if Nkind
(Subtype_Mark
(Curr
)) /= N_Identifier
8449 and then Present
(Prefix
(Subtype_Mark
(Curr
)))
8451 Mark_Use_Package
(Entity
(Prefix
(Subtype_Mark
(Curr
))));
8454 -- Mark the use_type_clause as effective and move up the chain
8456 Set_Is_Effective_Use_Clause
(Curr
);
8458 Curr
:= Prev_Use_Clause
(Curr
);
8462 -- Start of processing for Mark_Use_Clauses
8465 -- Use clauses in and of themselves do not count as a "use" of a
8468 if Nkind_In
(Parent
(Id
), N_Use_Package_Clause
, N_Use_Type_Clause
) then
8474 if Nkind
(Id
) in N_Entity
then
8476 -- Mark the entity's package
8478 if Is_Potentially_Use_Visible
(Id
) then
8479 Mark_Use_Package
(Scope
(Id
));
8482 -- Mark enumeration literals
8484 if Ekind
(Id
) = E_Enumeration_Literal
then
8489 elsif (Ekind
(Id
) in Overloadable_Kind
8490 or else Ekind_In
(Id
, E_Generic_Function
,
8491 E_Generic_Procedure
))
8492 and then (Is_Potentially_Use_Visible
(Id
)
8493 or else Is_Intrinsic_Subprogram
(Id
)
8494 or else (Ekind_In
(Id
, E_Function
, E_Procedure
)
8495 and then Is_Generic_Actual_Subprogram
(Id
)))
8497 Mark_Parameters
(Id
);
8505 if Nkind
(Id
) in N_Op
then
8507 -- At this point the left operand may not be resolved if we are
8508 -- encountering multiple operators next to eachother in an
8511 if Nkind
(Id
) in N_Binary_Op
8512 and then not (Nkind
(Left_Opnd
(Id
)) in N_Op
)
8514 Mark_Use_Type
(Left_Opnd
(Id
));
8517 Mark_Use_Type
(Right_Opnd
(Id
));
8520 -- Mark entity identifiers
8522 elsif Nkind
(Id
) in N_Has_Entity
8523 and then (Is_Potentially_Use_Visible
(Entity
(Id
))
8524 or else (Is_Generic_Instance
(Entity
(Id
))
8525 and then Is_Immediately_Visible
(Entity
(Id
))))
8527 -- Ignore fully qualified names as they do not count as a "use" of
8530 if Nkind_In
(Id
, N_Identifier
, N_Operator_Symbol
)
8531 or else (Present
(Prefix
(Id
))
8532 and then Scope
(Entity
(Id
)) /= Entity
(Prefix
(Id
)))
8534 Mark_Use_Clauses
(Entity
(Id
));
8538 end Mark_Use_Clauses
;
8540 --------------------------------
8541 -- Most_Descendant_Use_Clause --
8542 --------------------------------
8544 function Most_Descendant_Use_Clause
8545 (Clause1
: Entity_Id
;
8546 Clause2
: Entity_Id
) return Entity_Id
8552 if Clause1
= Clause2
then
8556 -- We determine which one is the most descendant by the scope distance
8557 -- to the ultimate parent unit.
8559 Scope1
:= Entity_Of_Unit
(Unit
(Parent
(Clause1
)));
8560 Scope2
:= Entity_Of_Unit
(Unit
(Parent
(Clause2
)));
8561 while Scope1
/= Standard_Standard
8562 and then Scope2
/= Standard_Standard
8564 Scope1
:= Scope
(Scope1
);
8565 Scope2
:= Scope
(Scope2
);
8567 if not Present
(Scope1
) then
8569 elsif not Present
(Scope2
) then
8574 if Scope1
= Standard_Standard
then
8579 end Most_Descendant_Use_Clause
;
8585 procedure Pop_Scope
is
8586 SST
: Scope_Stack_Entry
renames Scope_Stack
.Table
(Scope_Stack
.Last
);
8587 S
: constant Entity_Id
:= SST
.Entity
;
8590 if Debug_Flag_E
then
8594 -- Set Default_Storage_Pool field of the library unit if necessary
8596 if Ekind_In
(S
, E_Package
, E_Generic_Package
)
8598 Nkind
(Parent
(Unit_Declaration_Node
(S
))) = N_Compilation_Unit
8601 Aux
: constant Node_Id
:=
8602 Aux_Decls_Node
(Parent
(Unit_Declaration_Node
(S
)));
8604 if No
(Default_Storage_Pool
(Aux
)) then
8605 Set_Default_Storage_Pool
(Aux
, Default_Pool
);
8610 Scope_Suppress
:= SST
.Save_Scope_Suppress
;
8611 Local_Suppress_Stack_Top
:= SST
.Save_Local_Suppress_Stack_Top
;
8612 Check_Policy_List
:= SST
.Save_Check_Policy_List
;
8613 Default_Pool
:= SST
.Save_Default_Storage_Pool
;
8614 No_Tagged_Streams
:= SST
.Save_No_Tagged_Streams
;
8615 SPARK_Mode
:= SST
.Save_SPARK_Mode
;
8616 SPARK_Mode_Pragma
:= SST
.Save_SPARK_Mode_Pragma
;
8617 Default_SSO
:= SST
.Save_Default_SSO
;
8618 Uneval_Old
:= SST
.Save_Uneval_Old
;
8620 if Debug_Flag_W
then
8621 Write_Str
("<-- exiting scope: ");
8622 Write_Name
(Chars
(Current_Scope
));
8623 Write_Str
(", Depth=");
8624 Write_Int
(Int
(Scope_Stack
.Last
));
8628 End_Use_Clauses
(SST
.First_Use_Clause
);
8630 -- If the actions to be wrapped are still there they will get lost
8631 -- causing incomplete code to be generated. It is better to abort in
8632 -- this case (and we do the abort even with assertions off since the
8633 -- penalty is incorrect code generation).
8635 if SST
.Actions_To_Be_Wrapped
/= Scope_Actions
'(others => No_List) then
8636 raise Program_Error;
8639 -- Free last subprogram name if allocated, and pop scope
8641 Free (SST.Last_Subprogram_Name);
8642 Scope_Stack.Decrement_Last;
8649 procedure Push_Scope (S : Entity_Id) is
8650 E : constant Entity_Id := Scope (S);
8653 if Ekind (S) = E_Void then
8656 -- Set scope depth if not a non-concurrent type, and we have not yet set
8657 -- the scope depth. This means that we have the first occurrence of the
8658 -- scope, and this is where the depth is set.
8660 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
8661 and then not Scope_Depth_Set (S)
8663 if S = Standard_Standard then
8664 Set_Scope_Depth_Value (S, Uint_0);
8666 elsif Is_Child_Unit (S) then
8667 Set_Scope_Depth_Value (S, Uint_1);
8669 elsif not Is_Record_Type (Current_Scope) then
8670 if Ekind (S) = E_Loop then
8671 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
8673 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
8678 Scope_Stack.Increment_Last;
8681 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8685 SST.Save_Scope_Suppress := Scope_Suppress;
8686 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
8687 SST.Save_Check_Policy_List := Check_Policy_List;
8688 SST.Save_Default_Storage_Pool := Default_Pool;
8689 SST.Save_No_Tagged_Streams := No_Tagged_Streams;
8690 SST.Save_SPARK_Mode := SPARK_Mode;
8691 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
8692 SST.Save_Default_SSO := Default_SSO;
8693 SST.Save_Uneval_Old := Uneval_Old;
8695 -- Each new scope pushed onto the scope stack inherits the component
8696 -- alignment of the previous scope. This emulates the "visibility"
8697 -- semantics of pragma Component_Alignment.
8699 if Scope_Stack.Last > Scope_Stack.First then
8700 SST.Component_Alignment_Default :=
8702 (Scope_Stack.Last - 1). Component_Alignment_Default;
8704 -- Otherwise, this is the first scope being pushed on the scope
8705 -- stack. Inherit the component alignment from the configuration
8706 -- form of pragma Component_Alignment (if any).
8709 SST.Component_Alignment_Default :=
8710 Configuration_Component_Alignment;
8713 SST.Last_Subprogram_Name := null;
8714 SST.Is_Transient := False;
8715 SST.Node_To_Be_Wrapped := Empty;
8716 SST.Pending_Freeze_Actions := No_List;
8717 SST.Actions_To_Be_Wrapped := (others => No_List);
8718 SST.First_Use_Clause := Empty;
8719 SST.Is_Active_Stack_Base := False;
8720 SST.Previous_Visibility := False;
8721 SST.Locked_Shared_Objects := No_Elist;
8724 if Debug_Flag_W then
8725 Write_Str ("--> new scope: ");
8726 Write_Name (Chars (Current_Scope));
8727 Write_Str (", Id=");
8728 Write_Int (Int (Current_Scope));
8729 Write_Str (", Depth=");
8730 Write_Int (Int (Scope_Stack.Last));
8734 -- Deal with copying flags from the previous scope to this one. This is
8735 -- not necessary if either scope is standard, or if the new scope is a
8738 if S /= Standard_Standard
8739 and then Scope (S) /= Standard_Standard
8740 and then not Is_Child_Unit (S)
8742 if Nkind (E) not in N_Entity then
8746 -- Copy categorization flags from Scope (S) to S, this is not done
8747 -- when Scope (S) is Standard_Standard since propagation is from
8748 -- library unit entity inwards. Copy other relevant attributes as
8749 -- well (Discard_Names in particular).
8751 -- We only propagate inwards for library level entities,
8752 -- inner level subprograms do not inherit the categorization.
8754 if Is_Library_Level_Entity (S) then
8755 Set_Is_Preelaborated (S, Is_Preelaborated (E));
8756 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
8757 Set_Discard_Names (S, Discard_Names (E));
8758 Set_Suppress_Value_Tracking_On_Call
8759 (S, Suppress_Value_Tracking_On_Call (E));
8760 Set_Categorization_From_Scope (E => S, Scop => E);
8764 if Is_Child_Unit (S)
8765 and then Present (E)
8766 and then Ekind_In (E, E_Package, E_Generic_Package)
8768 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8771 Aux : constant Node_Id :=
8772 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
8774 if Present (Default_Storage_Pool (Aux)) then
8775 Default_Pool := Default_Storage_Pool (Aux);
8781 ---------------------
8782 -- Premature_Usage --
8783 ---------------------
8785 procedure Premature_Usage (N : Node_Id) is
8786 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
8787 E : Entity_Id := Entity (N);
8790 -- Within an instance, the analysis of the actual for a formal object
8791 -- does not see the name of the object itself. This is significant only
8792 -- if the object is an aggregate, where its analysis does not do any
8793 -- name resolution on component associations. (see 4717-008). In such a
8794 -- case, look for the visible homonym on the chain.
8796 if In_Instance and then Present (Homonym (E)) then
8798 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
8804 Set_Etype (N, Etype (E));
8809 if Kind = N_Component_Declaration then
8811 ("component&! cannot be used before end of record declaration", N);
8813 elsif Kind = N_Parameter_Specification then
8815 ("formal parameter&! cannot be used before end of specification",
8818 elsif Kind = N_Discriminant_Specification then
8820 ("discriminant&! cannot be used before end of discriminant part",
8823 elsif Kind = N_Procedure_Specification
8824 or else Kind = N_Function_Specification
8827 ("subprogram&! cannot be used before end of its declaration",
8830 elsif Kind = N_Full_Type_Declaration then
8832 ("type& cannot be used before end of its declaration!", N);
8836 ("object& cannot be used before end of its declaration!", N);
8838 -- If the premature reference appears as the expression in its own
8839 -- declaration, rewrite it to prevent compiler loops in subsequent
8840 -- uses of this mangled declaration in address clauses.
8842 if Nkind (Parent (N)) = N_Object_Declaration then
8843 Set_Entity (N, Any_Id);
8846 end Premature_Usage;
8848 ------------------------
8849 -- Present_System_Aux --
8850 ------------------------
8852 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8854 Aux_Name : Unit_Name_Type;
8855 Unum : Unit_Number_Type;
8860 function Find_System (C_Unit : Node_Id) return Entity_Id;
8861 -- Scan context clause of compilation unit to find with_clause
8868 function Find_System (C_Unit : Node_Id) return Entity_Id is
8869 With_Clause : Node_Id;
8872 With_Clause := First (Context_Items (C_Unit));
8873 while Present (With_Clause) loop
8874 if (Nkind (With_Clause) = N_With_Clause
8875 and then Chars (Name (With_Clause)) = Name_System)
8876 and then Comes_From_Source (With_Clause)
8887 -- Start of processing for Present_System_Aux
8890 -- The child unit may have been loaded and analyzed already
8892 if Present (System_Aux_Id) then
8895 -- If no previous pragma for System.Aux, nothing to load
8897 elsif No (System_Extend_Unit) then
8900 -- Use the unit name given in the pragma to retrieve the unit.
8901 -- Verify that System itself appears in the context clause of the
8902 -- current compilation. If System is not present, an error will
8903 -- have been reported already.
8906 With_Sys := Find_System (Cunit (Current_Sem_Unit));
8908 The_Unit := Unit (Cunit (Current_Sem_Unit));
8912 (Nkind (The_Unit) = N_Package_Body
8913 or else (Nkind (The_Unit) = N_Subprogram_Body
8914 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
8916 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
8919 if No (With_Sys) and then Present (N) then
8921 -- If we are compiling a subunit, we need to examine its
8922 -- context as well (Current_Sem_Unit is the parent unit);
8924 The_Unit := Parent (N);
8925 while Nkind (The_Unit) /= N_Compilation_Unit loop
8926 The_Unit := Parent (The_Unit);
8929 if Nkind (Unit (The_Unit)) = N_Subunit then
8930 With_Sys := Find_System (The_Unit);
8934 if No (With_Sys) then
8938 Loc := Sloc (With_Sys);
8939 Get_Name_String (Chars (Expression (System_Extend_Unit)));
8940 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
8941 Name_Buffer (1 .. 7) := "system.";
8942 Name_Buffer (Name_Len + 8) := '%';
8943 Name_Buffer (Name_Len + 9) := 's
';
8944 Name_Len := Name_Len + 9;
8945 Aux_Name := Name_Find;
8949 (Load_Name => Aux_Name,
8952 Error_Node => With_Sys);
8954 if Unum /= No_Unit then
8955 Semantics (Cunit (Unum));
8957 Defining_Entity (Specification (Unit (Cunit (Unum))));
8960 Make_With_Clause (Loc,
8962 Make_Expanded_Name (Loc,
8963 Chars => Chars (System_Aux_Id),
8965 New_Occurrence_Of (Scope (System_Aux_Id), Loc),
8966 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
8968 Set_Entity (Name (Withn), System_Aux_Id);
8970 Set_Corresponding_Spec (Withn, System_Aux_Id);
8971 Set_First_Name (Withn);
8972 Set_Implicit_With (Withn);
8973 Set_Library_Unit (Withn, Cunit (Unum));
8975 Insert_After (With_Sys, Withn);
8976 Mark_Rewrite_Insertion (Withn);
8977 Set_Context_Installed (Withn);
8981 -- Here if unit load failed
8984 Error_Msg_Name_1 := Name_System;
8985 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
8987 ("extension package `%.%` does not exist",
8988 Opt.System_Extend_Unit);
8992 end Present_System_Aux;
8994 -------------------------
8995 -- Restore_Scope_Stack --
8996 -------------------------
8998 procedure Restore_Scope_Stack
9000 Handle_Use : Boolean := True)
9002 SS_Last : constant Int := Scope_Stack.Last;
9006 -- Restore visibility of previous scope stack, if any, using the list
9007 -- we saved (we use Remove, since this list will not be used again).
9010 Elmt := Last_Elmt (List);
9011 exit when Elmt = No_Elmt;
9012 Set_Is_Immediately_Visible (Node (Elmt));
9013 Remove_Last_Elmt (List);
9016 -- Restore use clauses
9018 if SS_Last >= Scope_Stack.First
9019 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
9023 (Scope_Stack.Table (SS_Last).First_Use_Clause,
9024 Force_Installation => True);
9026 end Restore_Scope_Stack;
9028 ----------------------
9029 -- Save_Scope_Stack --
9030 ----------------------
9032 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
9033 -- consuming any memory. That is, Save_Scope_Stack took care of removing
9034 -- from immediate visibility entities and Restore_Scope_Stack took care
9035 -- of restoring their visibility analyzing the context of each entity. The
9036 -- problem of such approach is that it was fragile and caused unexpected
9037 -- visibility problems, and indeed one test was found where there was a
9040 -- Furthermore, the following experiment was carried out:
9042 -- - Save_Scope_Stack was modified to store in an Elist1 all those
9043 -- entities whose attribute Is_Immediately_Visible is modified
9044 -- from True to False.
9046 -- - Restore_Scope_Stack was modified to store in another Elist2
9047 -- all the entities whose attribute Is_Immediately_Visible is
9048 -- modified from False to True.
9050 -- - Extra code was added to verify that all the elements of Elist1
9051 -- are found in Elist2
9053 -- This test shows that there may be more occurrences of this problem which
9054 -- have not yet been detected. As a result, we replaced that approach by
9055 -- the current one in which Save_Scope_Stack returns the list of entities
9056 -- whose visibility is changed, and that list is passed to Restore_Scope_
9057 -- Stack to undo that change. This approach is simpler and safer, although
9058 -- it consumes more memory.
9060 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
9061 Result : constant Elist_Id := New_Elmt_List;
9064 SS_Last : constant Int := Scope_Stack.Last;
9066 procedure Remove_From_Visibility (E : Entity_Id);
9067 -- If E is immediately visible then append it to the result and remove
9068 -- it temporarily from visibility.
9070 ----------------------------
9071 -- Remove_From_Visibility --
9072 ----------------------------
9074 procedure Remove_From_Visibility (E : Entity_Id) is
9076 if Is_Immediately_Visible (E) then
9077 Append_Elmt (E, Result);
9078 Set_Is_Immediately_Visible (E, False);
9080 end Remove_From_Visibility;
9082 -- Start of processing for Save_Scope_Stack
9085 if SS_Last >= Scope_Stack.First
9086 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
9089 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
9092 -- If the call is from within a compilation unit, as when called from
9093 -- Rtsfind, make current entries in scope stack invisible while we
9094 -- analyze the new unit.
9096 for J in reverse 0 .. SS_Last loop
9097 exit when Scope_Stack.Table (J).Entity = Standard_Standard
9098 or else No (Scope_Stack.Table (J).Entity);
9100 S := Scope_Stack.Table (J).Entity;
9102 Remove_From_Visibility (S);
9104 E := First_Entity (S);
9105 while Present (E) loop
9106 Remove_From_Visibility (E);
9114 end Save_Scope_Stack;
9120 procedure Set_Use (L : List_Id) is
9126 while Present (Decl) loop
9127 if Nkind (Decl) = N_Use_Package_Clause then
9128 Chain_Use_Clause (Decl);
9129 Use_One_Package (Decl, Name (Decl));
9131 elsif Nkind (Decl) = N_Use_Type_Clause then
9132 Chain_Use_Clause (Decl);
9133 Use_One_Type (Subtype_Mark (Decl));
9142 -----------------------------
9143 -- Update_Use_Clause_Chain --
9144 -----------------------------
9146 procedure Update_Use_Clause_Chain is
9148 procedure Update_Chain_In_Scope (Level : Int);
9149 -- Iterate through one level in the scope stack verifying each use-type
9150 -- clause within said level is used then reset the Current_Use_Clause
9151 -- to a redundant use clause outside of the current ending scope if such
9154 ---------------------------
9155 -- Update_Chain_In_Scope --
9156 ---------------------------
9158 procedure Update_Chain_In_Scope (Level : Int) is
9163 -- Loop through all use clauses within the scope dictated by Level
9165 Curr := Scope_Stack.Table (Level).First_Use_Clause;
9166 while Present (Curr) loop
9168 -- Retrieve the subtype mark or name within the current current
9171 if Nkind (Curr) = N_Use_Type_Clause then
9172 N := Subtype_Mark (Curr);
9177 -- If warnings for unreferenced entities are enabled and the
9178 -- current use clause has not been marked effective.
9180 if Check_Unreferenced
9181 and then Comes_From_Source (Curr)
9182 and then not Is_Effective_Use_Clause (Curr)
9183 and then not In_Instance
9184 and then not In_Inlined_Body
9186 -- We are dealing with a potentially unused use_package_clause
9188 if Nkind (Curr) = N_Use_Package_Clause then
9190 -- Renamings and formal subprograms may cause the associated
9191 -- node to be marked as effective instead of the original.
9193 if not (Present (Associated_Node (N))
9196 (Associated_Node (N)))
9197 and then Is_Effective_Use_Clause
9199 (Associated_Node (N))))
9201 Error_Msg_Node_1 := Entity (N);
9203 ("use clause for package & has no effect?u?",
9207 -- We are dealing with an unused use_type_clause
9210 Error_Msg_Node_1 := Etype (N);
9212 ("use clause for } has no effect?u?", Curr, Etype (N));
9216 -- Verify that we haven't already processed a redundant
9217 -- use_type_clause within the same scope before we move the
9218 -- current use clause up to a previous one for type T.
9220 if Present (Prev_Use_Clause (Curr)) then
9221 Set_Current_Use_Clause (Entity (N), Prev_Use_Clause (Curr));
9224 Curr := Next_Use_Clause (Curr);
9226 end Update_Chain_In_Scope;
9228 -- Start of processing for Update_Use_Clause_Chain
9231 Update_Chain_In_Scope (Scope_Stack.Last);
9233 -- Deal with use clauses within the context area if the current
9234 -- scope is a compilation unit.
9236 if Is_Compilation_Unit (Current_Scope)
9237 and then Sloc (Scope_Stack.Table
9238 (Scope_Stack.Last - 1).Entity) = Standard_Location
9240 Update_Chain_In_Scope (Scope_Stack.Last - 1);
9242 end Update_Use_Clause_Chain;
9244 ---------------------
9245 -- Use_One_Package --
9246 ---------------------
9248 procedure Use_One_Package
9250 Pack_Name : Entity_Id := Empty;
9251 Force : Boolean := False)
9253 procedure Note_Redundant_Use (Clause : Node_Id);
9254 -- Mark the name in a use clause as redundant if the corresponding
9255 -- entity is already use-visible. Emit a warning if the use clause comes
9256 -- from source and the proper warnings are enabled.
9258 ------------------------
9259 -- Note_Redundant_Use --
9260 ------------------------
9262 procedure Note_Redundant_Use (Clause : Node_Id) is
9263 Decl : constant Node_Id := Parent (Clause);
9264 Pack_Name : constant Entity_Id := Entity (Clause);
9266 Cur_Use : Node_Id := Current_Use_Clause (Pack_Name);
9267 Prev_Use : Node_Id := Empty;
9268 Redundant : Node_Id := Empty;
9269 -- The Use_Clause which is actually redundant. In the simplest case
9270 -- it is Pack itself, but when we compile a body we install its
9271 -- context before that of its spec, in which case it is the
9272 -- use_clause in the spec that will appear to be redundant, and we
9273 -- want the warning to be placed on the body. Similar complications
9274 -- appear when the redundancy is between a child unit and one of its
9278 -- Could be renamed...
9280 if No (Cur_Use) then
9281 Cur_Use := Current_Use_Clause (Renamed_Entity (Pack_Name));
9284 Set_Redundant_Use (Clause, True);
9286 if not Comes_From_Source (Clause)
9288 or else not Warn_On_Redundant_Constructs
9293 if not Is_Compilation_Unit (Current_Scope) then
9295 -- If the use_clause is in an inner scope, it is made redundant by
9296 -- some clause in the current context, with one exception: If we
9297 -- are compiling a nested package body, and the use_clause comes
9298 -- from then corresponding spec, the clause is not necessarily
9299 -- fully redundant, so we should not warn. If a warning was
9300 -- warranted, it would have been given when the spec was
9303 if Nkind (Parent (Decl)) = N_Package_Specification then
9305 Package_Spec_Entity : constant Entity_Id :=
9306 Defining_Unit_Name (Parent (Decl));
9308 if In_Package_Body (Package_Spec_Entity) then
9314 Redundant := Clause;
9315 Prev_Use := Cur_Use;
9317 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9319 Cur_Unit : constant Unit_Number_Type :=
9320 Get_Source_Unit (Cur_Use);
9321 New_Unit : constant Unit_Number_Type :=
9322 Get_Source_Unit (Clause);
9327 if Cur_Unit = New_Unit then
9329 -- Redundant clause in same body
9331 Redundant := Clause;
9332 Prev_Use := Cur_Use;
9334 elsif Cur_Unit = Current_Sem_Unit then
9336 -- If the new clause is not in the current unit it has been
9337 -- analyzed first, and it makes the other one redundant.
9338 -- However, if the new clause appears in a subunit, Cur_Unit
9339 -- is still the parent, and in that case the redundant one
9340 -- is the one appearing in the subunit.
9342 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
9343 Redundant := Clause;
9344 Prev_Use := Cur_Use;
9346 -- Most common case: redundant clause in body, original
9347 -- clause in spec. Current scope is spec entity.
9349 elsif Current_Scope = Cunit_Entity (Current_Sem_Unit) then
9350 Redundant := Cur_Use;
9354 -- The new clause may appear in an unrelated unit, when
9355 -- the parents of a generic are being installed prior to
9356 -- instantiation. In this case there must be no warning.
9357 -- We detect this case by checking whether the current
9358 -- top of the stack is related to the current
9361 Scop := Current_Scope;
9362 while Present (Scop)
9363 and then Scop /= Standard_Standard
9365 if Is_Compilation_Unit (Scop)
9366 and then not Is_Child_Unit (Scop)
9370 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
9374 Scop := Scope (Scop);
9377 Redundant := Cur_Use;
9381 elsif New_Unit = Current_Sem_Unit then
9382 Redundant := Clause;
9383 Prev_Use := Cur_Use;
9386 -- Neither is the current unit, so they appear in parent or
9387 -- sibling units. Warning will be emitted elsewhere.
9393 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
9394 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
9396 -- Use_clause is in child unit of current unit, and the child unit
9397 -- appears in the context of the body of the parent, so it has
9398 -- been installed first, even though it is the redundant one.
9399 -- Depending on their placement in the context, the visible or the
9400 -- private parts of the two units, either might appear as
9401 -- redundant, but the message has to be on the current unit.
9403 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
9404 Redundant := Cur_Use;
9407 Redundant := Clause;
9408 Prev_Use := Cur_Use;
9411 -- If the new use clause appears in the private part of a parent
9412 -- unit it may appear to be redundant w.r.t. a use clause in a
9413 -- child unit, but the previous use clause was needed in the
9414 -- visible part of the child, and no warning should be emitted.
9416 if Nkind (Parent (Decl)) = N_Package_Specification
9417 and then List_Containing (Decl) =
9418 Private_Declarations (Parent (Decl))
9421 Par : constant Entity_Id := Defining_Entity (Parent (Decl));
9422 Spec : constant Node_Id :=
9423 Specification (Unit (Cunit (Current_Sem_Unit)));
9426 if Is_Compilation_Unit (Par)
9427 and then Par /= Cunit_Entity (Current_Sem_Unit)
9428 and then Parent (Cur_Use) = Spec
9429 and then List_Containing (Cur_Use) =
9430 Visible_Declarations (Spec)
9437 -- Finally, if the current use clause is in the context then the
9438 -- clause is redundant when it is nested within the unit.
9440 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
9441 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
9442 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
9444 Redundant := Clause;
9445 Prev_Use := Cur_Use;
9449 if Present (Redundant) and then Parent (Redundant) /= Prev_Use then
9451 -- Make sure we are looking at most-descendant use_package_clause
9452 -- by traversing the chain with Find_Most_Prev and then verifying
9453 -- there is no scope manipulation via Most_Descendant_Use_Clause.
9455 if Nkind (Prev_Use) = N_Use_Package_Clause
9457 (Nkind (Parent (Prev_Use)) /= N_Compilation_Unit
9458 or else Most_Descendant_Use_Clause
9459 (Prev_Use, Find_Most_Prev (Prev_Use)) /= Prev_Use)
9461 Prev_Use := Find_Most_Prev (Prev_Use);
9464 Error_Msg_Sloc := Sloc (Prev_Use);
9465 Error_Msg_NE -- CODEFIX
9466 ("& is already use-visible through previous use_clause #??",
9467 Redundant, Pack_Name);
9469 end Note_Redundant_Use;
9473 Current_Instance : Entity_Id := Empty;
9477 Private_With_OK : Boolean := False;
9480 -- Start of processing for Use_One_Package
9483 -- Use_One_Package may have been called recursively to handle an
9484 -- implicit use for a auxiliary system package, so set P accordingly
9485 -- and skip redundancy checks.
9487 if No (Pack_Name) and then Present_System_Aux (N) then
9490 -- Check for redundant use_package_clauses
9493 -- Ignore cases where we are dealing with a non user defined package
9494 -- like Standard_Standard or something other than a valid package.
9496 if not Is_Entity_Name (Pack_Name)
9497 or else No (Entity (Pack_Name))
9498 or else Ekind (Entity (Pack_Name)) /= E_Package
9503 -- When a renaming exists we must check it for redundancy. The
9504 -- original package would have already been seen at this point.
9506 if Present (Renamed_Object (Entity (Pack_Name))) then
9507 P := Renamed_Object (Entity (Pack_Name));
9509 P := Entity (Pack_Name);
9512 -- Check for redundant clauses then set the current use clause for
9513 -- P if were are not "forcing" an installation from a scope
9514 -- reinstallation that is done throughout analysis for various
9518 Note_Redundant_Use (Pack_Name);
9521 Set_Current_Use_Clause (P, N);
9526 -- Warn about detected redundant clauses
9529 and then In_Open_Scopes (P)
9530 and then not Is_Hidden_Open_Scope (P)
9532 if Warn_On_Redundant_Constructs and then P = Current_Scope then
9533 Error_Msg_NE -- CODEFIX
9534 ("& is already use-visible within itself?r?",
9541 -- Set P back to the non-renamed package so that visiblilty of the
9542 -- entities within the package can be properly set below.
9544 P := Entity (Pack_Name);
9548 Set_Current_Use_Clause (P, N);
9550 -- Ada 2005 (AI-50217): Check restriction
9552 if From_Limited_With (P) then
9553 Error_Msg_N ("limited withed package cannot appear in use clause", N);
9556 -- Find enclosing instance, if any
9559 Current_Instance := Current_Scope;
9560 while not Is_Generic_Instance (Current_Instance) loop
9561 Current_Instance := Scope (Current_Instance);
9564 if No (Hidden_By_Use_Clause (N)) then
9565 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
9569 -- If unit is a package renaming, indicate that the renamed package is
9570 -- also in use (the flags on both entities must remain consistent, and a
9571 -- subsequent use of either of them should be recognized as redundant).
9573 if Present (Renamed_Object (P)) then
9574 Set_In_Use (Renamed_Object (P));
9575 Set_Current_Use_Clause (Renamed_Object (P), N);
9576 Real_P := Renamed_Object (P);
9581 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
9582 -- found in the private part of a package specification
9584 if In_Private_Part (Current_Scope)
9585 and then Has_Private_With (P)
9586 and then Is_Child_Unit (Current_Scope)
9587 and then Is_Child_Unit (P)
9588 and then Is_Ancestor_Package (Scope (Current_Scope), P)
9590 Private_With_OK := True;
9593 -- Loop through entities in one package making them potentially
9596 Id := First_Entity (P);
9598 and then (Id /= First_Private_Entity (P)
9599 or else Private_With_OK) -- Ada 2005 (AI-262)
9601 Prev := Current_Entity (Id);
9602 while Present (Prev) loop
9603 if Is_Immediately_Visible (Prev)
9604 and then (not Is_Overloadable (Prev)
9605 or else not Is_Overloadable (Id)
9606 or else (Type_Conformant (Id, Prev)))
9608 if No (Current_Instance) then
9610 -- Potentially use-visible entity remains hidden
9612 goto Next_Usable_Entity;
9614 -- A use clause within an instance hides outer global entities,
9615 -- which are not used to resolve local entities in the
9616 -- instance. Note that the predefined entities in Standard
9617 -- could not have been hidden in the generic by a use clause,
9618 -- and therefore remain visible. Other compilation units whose
9619 -- entities appear in Standard must be hidden in an instance.
9621 -- To determine whether an entity is external to the instance
9622 -- we compare the scope depth of its scope with that of the
9623 -- current instance. However, a generic actual of a subprogram
9624 -- instance is declared in the wrapper package but will not be
9625 -- hidden by a use-visible entity. similarly, an entity that is
9626 -- declared in an enclosing instance will not be hidden by an
9627 -- an entity declared in a generic actual, which can only have
9628 -- been use-visible in the generic and will not have hidden the
9629 -- entity in the generic parent.
9631 -- If Id is called Standard, the predefined package with the
9632 -- same name is in the homonym chain. It has to be ignored
9633 -- because it has no defined scope (being the only entity in
9634 -- the system with this mandated behavior).
9636 elsif not Is_Hidden (Id)
9637 and then Present (Scope (Prev))
9638 and then not Is_Wrapper_Package (Scope (Prev))
9639 and then Scope_Depth (Scope (Prev)) <
9640 Scope_Depth (Current_Instance)
9641 and then (Scope (Prev) /= Standard_Standard
9642 or else Sloc (Prev) > Standard_Location)
9644 if In_Open_Scopes (Scope (Prev))
9645 and then Is_Generic_Instance (Scope (Prev))
9646 and then Present (Associated_Formal_Package (P))
9651 Set_Is_Potentially_Use_Visible (Id);
9652 Set_Is_Immediately_Visible (Prev, False);
9653 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9657 -- A user-defined operator is not use-visible if the predefined
9658 -- operator for the type is immediately visible, which is the case
9659 -- if the type of the operand is in an open scope. This does not
9660 -- apply to user-defined operators that have operands of different
9661 -- types, because the predefined mixed mode operations (multiply
9662 -- and divide) apply to universal types and do not hide anything.
9664 elsif Ekind (Prev) = E_Operator
9665 and then Operator_Matches_Spec (Prev, Id)
9666 and then In_Open_Scopes
9667 (Scope (Base_Type (Etype (First_Formal (Id)))))
9668 and then (No (Next_Formal (First_Formal (Id)))
9669 or else Etype (First_Formal (Id)) =
9670 Etype (Next_Formal (First_Formal (Id)))
9671 or else Chars (Prev) = Name_Op_Expon)
9673 goto Next_Usable_Entity;
9675 -- In an instance, two homonyms may become use_visible through the
9676 -- actuals of distinct formal packages. In the generic, only the
9677 -- current one would have been visible, so make the other one
9680 elsif Present (Current_Instance)
9681 and then Is_Potentially_Use_Visible (Prev)
9682 and then not Is_Overloadable (Prev)
9683 and then Scope (Id) /= Scope (Prev)
9684 and then Used_As_Generic_Actual (Scope (Prev))
9685 and then Used_As_Generic_Actual (Scope (Id))
9686 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
9687 Current_Use_Clause (Scope (Id)))
9689 Set_Is_Potentially_Use_Visible (Prev, False);
9690 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9693 Prev := Homonym (Prev);
9696 -- On exit, we know entity is not hidden, unless it is private
9698 if not Is_Hidden (Id)
9699 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
9701 Set_Is_Potentially_Use_Visible (Id);
9703 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
9704 Set_Is_Potentially_Use_Visible (Full_View (Id));
9708 <<Next_Usable_Entity>>
9712 -- Child units are also made use-visible by a use clause, but they may
9713 -- appear after all visible declarations in the parent entity list.
9715 while Present (Id) loop
9716 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
9717 Set_Is_Potentially_Use_Visible (Id);
9723 if Chars (Real_P) = Name_System
9724 and then Scope (Real_P) = Standard_Standard
9725 and then Present_System_Aux (N)
9727 Use_One_Package (N);
9729 end Use_One_Package;
9735 procedure Use_One_Type
9737 Installed : Boolean := False;
9738 Force : Boolean := False)
9740 function Spec_Reloaded_For_Body return Boolean;
9741 -- Determine whether the compilation unit is a package body and the use
9742 -- type clause is in the spec of the same package. Even though the spec
9743 -- was analyzed first, its context is reloaded when analysing the body.
9745 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
9746 -- AI05-150: if the use_type_clause carries the "all" qualifier,
9747 -- class-wide operations of ancestor types are use-visible if the
9748 -- ancestor type is visible.
9750 ----------------------------
9751 -- Spec_Reloaded_For_Body --
9752 ----------------------------
9754 function Spec_Reloaded_For_Body return Boolean is
9756 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9758 Spec : constant Node_Id :=
9759 Parent (List_Containing (Parent (Id)));
9762 -- Check whether type is declared in a package specification,
9763 -- and current unit is the corresponding package body. The
9764 -- use clauses themselves may be within a nested package.
9767 Nkind (Spec) = N_Package_Specification
9768 and then In_Same_Source_Unit
9769 (Corresponding_Body (Parent (Spec)),
9770 Cunit_Entity (Current_Sem_Unit));
9775 end Spec_Reloaded_For_Body;
9777 -------------------------------
9778 -- Use_Class_Wide_Operations --
9779 -------------------------------
9781 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
9782 function Is_Class_Wide_Operation_Of
9784 T : Entity_Id) return Boolean;
9785 -- Determine whether a subprogram has a class-wide parameter or
9786 -- result that is T'Class.
9788 ---------------------------------
9789 -- Is_Class_Wide_Operation_Of --
9790 ---------------------------------
9792 function Is_Class_Wide_Operation_Of
9794 T : Entity_Id) return Boolean
9799 Formal := First_Formal (Op);
9800 while Present (Formal) loop
9801 if Etype (Formal) = Class_Wide_Type (T) then
9805 Next_Formal (Formal);
9808 if Etype (Op) = Class_Wide_Type (T) then
9813 end Is_Class_Wide_Operation_Of;
9820 -- Start of processing for Use_Class_Wide_Operations
9823 Scop := Scope (Typ);
9824 if not Is_Hidden (Scop) then
9825 Ent := First_Entity (Scop);
9826 while Present (Ent) loop
9827 if Is_Overloadable (Ent)
9828 and then Is_Class_Wide_Operation_Of (Ent, Typ)
9829 and then not Is_Potentially_Use_Visible (Ent)
9831 Set_Is_Potentially_Use_Visible (Ent);
9832 Append_Elmt (Ent, Used_Operations (Parent (Id)));
9839 if Is_Derived_Type (Typ) then
9840 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
9842 end Use_Class_Wide_Operations;
9847 Is_Known_Used : Boolean;
9851 -- Start of processing for Use_One_Type
9854 if Entity (Id) = Any_Type then
9858 -- It is the type determined by the subtype mark (8.4(8)) whose
9859 -- operations become potentially use-visible.
9861 T := Base_Type (Entity (Id));
9863 -- Either the type itself is used, the package where it is declared is
9864 -- in use or the entity is declared in the current package, thus
9869 and then ((Present (Current_Use_Clause (T))
9870 and then All_Present (Current_Use_Clause (T)))
9871 or else not All_Present (Parent (Id))))
9872 or else In_Use (Scope (T))
9873 or else Scope (T) = Current_Scope;
9875 Set_Redundant_Use (Id,
9876 Is_Known_Used or else Is_Potentially_Use_Visible (T));
9878 if Ekind (T) = E_Incomplete_Type then
9879 Error_Msg_N ("premature usage of incomplete type", Id);
9881 elsif In_Open_Scopes (Scope (T)) then
9884 -- A limited view cannot appear in a use_type_clause. However, an access
9885 -- type whose designated type is limited has the flag but is not itself
9886 -- a limited view unless we only have a limited view of its enclosing
9889 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
9891 ("incomplete type from limited view cannot appear in use clause",
9894 -- If the use clause is redundant, Used_Operations will usually be
9895 -- empty, but we need to set it to empty here in one case: If we are
9896 -- instantiating a generic library unit, then we install the ancestors
9897 -- of that unit in the scope stack, which involves reprocessing use
9898 -- clauses in those ancestors. Such a use clause will typically have a
9899 -- nonempty Used_Operations unless it was redundant in the generic unit,
9900 -- even if it is redundant at the place of the instantiation.
9902 elsif Redundant_Use (Id) then
9904 -- We must avoid incorrectly setting the Current_Use_Clause when we
9905 -- are working with a redundant clause that has already been linked
9906 -- in the Prev_Use_Clause chain, otherwise the chain will break.
9908 if Present (Current_Use_Clause (T))
9909 and then Present (Prev_Use_Clause (Current_Use_Clause (T)))
9910 and then Parent (Id) = Prev_Use_Clause (Current_Use_Clause (T))
9914 Set_Current_Use_Clause (T, Parent (Id));
9917 Set_Used_Operations (Parent (Id), New_Elmt_List);
9919 -- If the subtype mark designates a subtype in a different package,
9920 -- we have to check that the parent type is visible, otherwise the
9921 -- use_type_clause is a no-op. Not clear how to do that???
9924 Set_Current_Use_Clause (T, Parent (Id));
9927 -- If T is tagged, primitive operators on class-wide operands are
9930 if Is_Tagged_Type (T) then
9931 Set_In_Use (Class_Wide_Type (T));
9934 -- Iterate over primitive operations of the type. If an operation is
9935 -- already use_visible, it is the result of a previous use_clause,
9936 -- and already appears on the corresponding entity chain. If the
9937 -- clause is being reinstalled, operations are already use-visible.
9943 Op_List := Collect_Primitive_Operations (T);
9944 Elmt := First_Elmt (Op_List);
9945 while Present (Elmt) loop
9946 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
9947 or else Chars (Node (Elmt)) in Any_Operator_Name)
9948 and then not Is_Hidden (Node (Elmt))
9949 and then not Is_Potentially_Use_Visible (Node (Elmt))
9951 Set_Is_Potentially_Use_Visible (Node (Elmt));
9952 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9954 elsif Ada_Version >= Ada_2012
9955 and then All_Present (Parent (Id))
9956 and then not Is_Hidden (Node (Elmt))
9957 and then not Is_Potentially_Use_Visible (Node (Elmt))
9959 Set_Is_Potentially_Use_Visible (Node (Elmt));
9960 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9967 if Ada_Version >= Ada_2012
9968 and then All_Present (Parent (Id))
9969 and then Is_Tagged_Type (T)
9971 Use_Class_Wide_Operations (T);
9975 -- If warning on redundant constructs, check for unnecessary WITH
9978 and then Warn_On_Redundant_Constructs
9979 and then Is_Known_Used
9981 -- with P; with P; use P;
9982 -- package P is package X is package body X is
9983 -- type T ... use P.T;
9985 -- The compilation unit is the body of X. GNAT first compiles the
9986 -- spec of X, then proceeds to the body. At that point P is marked
9987 -- as use visible. The analysis then reinstalls the spec along with
9988 -- its context. The use clause P.T is now recognized as redundant,
9989 -- but in the wrong context. Do not emit a warning in such cases.
9990 -- Do not emit a warning either if we are in an instance, there is
9991 -- no redundancy between an outer use_clause and one that appears
9992 -- within the generic.
9994 and then not Spec_Reloaded_For_Body
9995 and then not In_Instance
9996 and then not In_Inlined_Body
9998 -- The type already has a use clause
10002 -- Case where we know the current use clause for the type
10004 if Present (Current_Use_Clause (T)) then
10005 Use_Clause_Known : declare
10006 Clause1 : constant Node_Id :=
10007 Find_Most_Prev (Current_Use_Clause (T));
10008 Clause2 : constant Node_Id := Parent (Id);
10015 -- Start of processing for Use_Clause_Known
10018 -- If both current use_type_clause and the use_type_clause
10019 -- for the type are at the compilation unit level, one of
10020 -- the units must be an ancestor of the other, and the
10021 -- warning belongs on the descendant.
10023 if Nkind (Parent (Clause1)) = N_Compilation_Unit
10025 Nkind (Parent (Clause2)) = N_Compilation_Unit
10027 -- If the unit is a subprogram body that acts as spec,
10028 -- the context clause is shared with the constructed
10029 -- subprogram spec. Clearly there is no redundancy.
10031 if Clause1 = Clause2 then
10035 Unit1 := Unit (Parent (Clause1));
10036 Unit2 := Unit (Parent (Clause2));
10038 -- If both clauses are on same unit, or one is the body
10039 -- of the other, or one of them is in a subunit, report
10040 -- redundancy on the later one.
10042 if Unit1 = Unit2 or else Nkind (Unit1) = N_Subunit then
10043 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
10044 Error_Msg_NE -- CODEFIX
10045 ("& is already use-visible through previous "
10046 & "use_type_clause #??", Clause1, T);
10049 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
10050 and then Nkind (Unit1) /= Nkind (Unit2)
10051 and then Nkind (Unit1) /= N_Subunit
10053 Error_Msg_Sloc := Sloc (Clause1);
10054 Error_Msg_NE -- CODEFIX
10055 ("& is already use-visible through previous "
10056 & "use_type_clause #??", Current_Use_Clause (T), T);
10060 -- There is a redundant use_type_clause in a child unit.
10061 -- Determine which of the units is more deeply nested.
10062 -- If a unit is a package instance, retrieve the entity
10063 -- and its scope from the instance spec.
10065 Ent1 := Entity_Of_Unit (Unit1);
10066 Ent2 := Entity_Of_Unit (Unit2);
10068 if Scope (Ent2) = Standard_Standard then
10069 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
10072 elsif Scope (Ent1) = Standard_Standard then
10073 Error_Msg_Sloc := Sloc (Id);
10076 -- If both units are child units, we determine which one
10077 -- is the descendant by the scope distance to the
10078 -- ultimate parent unit.
10086 S1 := Scope (Ent1);
10087 S2 := Scope (Ent2);
10089 and then Present (S2)
10090 and then S1 /= Standard_Standard
10091 and then S2 /= Standard_Standard
10097 if S1 = Standard_Standard then
10098 Error_Msg_Sloc := Sloc (Id);
10101 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
10107 if Parent (Id) /= Err_No then
10108 if Most_Descendant_Use_Clause
10109 (Err_No, Parent (Id)) = Parent (Id)
10111 Error_Msg_Sloc := Sloc (Err_No);
10112 Err_No := Parent (Id);
10115 Error_Msg_NE -- CODEFIX
10116 ("& is already use-visible through previous "
10117 & "use_type_clause #??", Err_No, Id);
10120 -- Case where current use_type_clause and use_type_clause
10121 -- for the type are not both at the compilation unit level.
10122 -- In this case we don't have location information.
10125 Error_Msg_NE -- CODEFIX
10126 ("& is already use-visible through previous "
10127 & "use_type_clause??", Id, T);
10129 end Use_Clause_Known;
10131 -- Here if Current_Use_Clause is not set for T, another case where
10132 -- we do not have the location information available.
10135 Error_Msg_NE -- CODEFIX
10136 ("& is already use-visible through previous "
10137 & "use_type_clause??", Id, T);
10140 -- The package where T is declared is already used
10142 elsif In_Use (Scope (T)) then
10144 Sloc (Find_Most_Prev (Current_Use_Clause (Scope (T))));
10145 Error_Msg_NE -- CODEFIX
10146 ("& is already use-visible through package use clause #??",
10149 -- The current scope is the package where T is declared
10152 Error_Msg_Node_2 := Scope (T);
10153 Error_Msg_NE -- CODEFIX
10154 ("& is already use-visible inside package &??", Id, T);
10163 procedure Write_Info is
10164 Id : Entity_Id := First_Entity (Current_Scope);
10167 -- No point in dumping standard entities
10169 if Current_Scope = Standard_Standard then
10173 Write_Str ("========================================================");
10175 Write_Str (" Defined Entities in ");
10176 Write_Name (Chars (Current_Scope));
10178 Write_Str ("========================================================");
10182 Write_Str ("-- none --");
10186 while Present (Id) loop
10187 Write_Entity_Info (Id, " ");
10192 if Scope (Current_Scope) = Standard_Standard then
10194 -- Print information on the current unit itself
10196 Write_Entity_Info (Current_Scope, " ");
10209 for J in reverse 1 .. Scope_Stack.Last loop
10210 S := Scope_Stack.Table (J).Entity;
10211 Write_Int (Int (S));
10212 Write_Str (" === ");
10213 Write_Name (Chars (S));
10222 procedure we (S : Entity_Id) is
10225 E := First_Entity (S);
10226 while Present (E) loop
10227 Write_Int (Int (E));
10228 Write_Str (" === ");
10229 Write_Name (Chars (E));