d: Fix ICE: in verify_gimple_in_seq on powerpc-darwin9 [PR112270]
[official-gcc.git] / gcc / poly-int.h
blob828714ee9104529723b84ecb896f09efeb944540
1 /* Polynomial integer classes.
2 Copyright (C) 2014-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file provides a representation of sizes and offsets whose exact
21 values depend on certain runtime properties. The motivating example
22 is the Arm SVE ISA, in which the number of vector elements is only
23 known at runtime. See doc/poly-int.texi for more details.
25 Tests for poly-int.h are located in testsuite/gcc.dg/plugin,
26 since they are too expensive (in terms of binary size) to be
27 included as selftests. */
29 #ifndef HAVE_POLY_INT_H
30 #define HAVE_POLY_INT_H
32 template<unsigned int N, typename T> class poly_int;
34 /* poly_coeff_traiits<T> describes the properties of a poly_int
35 coefficient type T:
37 - poly_coeff_traits<T1>::rank is less than poly_coeff_traits<T2>::rank
38 if T1 can promote to T2. For C-like types the rank is:
40 (2 * number of bytes) + (unsigned ? 1 : 0)
42 wide_ints don't have a normal rank and so use a value of INT_MAX.
43 Any fixed-width integer should be promoted to wide_int if possible
44 and lead to an error otherwise.
46 - poly_coeff_traits<T>::int_type is the type to which an integer
47 literal should be cast before comparing it with T.
49 - poly_coeff_traits<T>::precision is the number of bits that T can hold.
51 - poly_coeff_traits<T>::signedness is:
52 0 if T is unsigned
53 1 if T is signed
54 -1 if T has no inherent sign (as for wide_int).
56 - poly_coeff_traits<T>::max_value, if defined, is the maximum value of T.
58 - poly_coeff_traits<T>::result is a type that can hold results of
59 operations on T. This is different from T itself in cases where T
60 is the result of an accessor like wi::to_offset.
62 - poly_coeff_traits<T>::init_cast<Arg>::type is the type to which
63 an argument of type Arg should be casted before being used to
64 initialize a coefficient of type T. */
65 template<typename T, wi::precision_type = wi::int_traits<T>::precision_type>
66 struct poly_coeff_traits;
68 template<typename T>
69 struct poly_coeff_traits<T, wi::FLEXIBLE_PRECISION>
71 typedef T result;
72 typedef T int_type;
73 static const int signedness = (T (0) >= T (-1));
74 static const int precision = sizeof (T) * CHAR_BIT;
75 static const T max_value = (signedness
76 ? ((T (1) << (precision - 2))
77 + ((T (1) << (precision - 2)) - 1))
78 : T (-1));
79 static const int rank = sizeof (T) * 2 + !signedness;
81 template<typename Arg>
82 struct init_cast { using type = T; };
85 template<typename T>
86 struct poly_coeff_traits<T, wi::VAR_PRECISION>
88 typedef T result;
89 typedef int int_type;
90 static const int signedness = -1;
91 static const int precision = WIDE_INT_MAX_PRECISION;
92 static const int rank = INT_MAX;
94 template<typename Arg>
95 struct init_cast { using type = const Arg &; };
98 template<typename T>
99 struct poly_coeff_traits<T, wi::INL_CONST_PRECISION>
101 typedef WI_UNARY_RESULT (T) result;
102 typedef int int_type;
103 /* These types are always signed. */
104 static const int signedness = 1;
105 static const int precision = wi::int_traits<T>::precision;
106 static const int rank = precision * 2 / CHAR_BIT;
108 template<typename Arg>
109 struct init_cast { using type = const Arg &; };
112 template<typename T>
113 struct poly_coeff_traits<T, wi::CONST_PRECISION>
115 typedef WI_UNARY_RESULT (T) result;
116 typedef int int_type;
117 /* These types are always signed. */
118 static const int signedness = 1;
119 static const int precision = wi::int_traits<T>::precision;
120 static const int rank = precision * 2 / CHAR_BIT;
122 template<typename Arg>
123 struct init_cast { using type = const Arg &; };
126 /* Information about a pair of coefficient types. */
127 template<typename T1, typename T2>
128 struct poly_coeff_pair_traits
130 /* True if T1 can represent all the values of T2.
132 Either:
134 - T1 should be a type with the same signedness as T2 and no less
135 precision. This allows things like int16_t -> int16_t and
136 uint32_t -> uint64_t.
138 - T1 should be signed, T2 should be unsigned, and T1 should be
139 wider than T2. This allows things like uint16_t -> int32_t.
141 This rules out cases in which T1 has less precision than T2 or where
142 the conversion would reinterpret the top bit. E.g. int16_t -> uint32_t
143 can be dangerous and should have an explicit cast if deliberate. */
144 static const bool lossless_p = (poly_coeff_traits<T1>::signedness
145 == poly_coeff_traits<T2>::signedness
146 ? (poly_coeff_traits<T1>::precision
147 >= poly_coeff_traits<T2>::precision)
148 : (poly_coeff_traits<T1>::signedness == 1
149 && poly_coeff_traits<T2>::signedness == 0
150 && (poly_coeff_traits<T1>::precision
151 > poly_coeff_traits<T2>::precision)));
153 /* 0 if T1 op T2 should promote to HOST_WIDE_INT,
154 1 if T1 op T2 should promote to unsigned HOST_WIDE_INT,
155 2 if T1 op T2 should use wide-int rules. */
156 #define RANK(X) poly_coeff_traits<X>::rank
157 static const int result_kind
158 = ((RANK (T1) <= RANK (HOST_WIDE_INT)
159 && RANK (T2) <= RANK (HOST_WIDE_INT))
161 : (RANK (T1) <= RANK (unsigned HOST_WIDE_INT)
162 && RANK (T2) <= RANK (unsigned HOST_WIDE_INT))
163 ? 1 : 2);
164 #undef RANK
167 /* SFINAE class that makes T3 available as "type" if T2 can represent all the
168 values in T1. */
169 template<typename T1, typename T2, typename T3,
170 bool lossless_p = poly_coeff_pair_traits<T1, T2>::lossless_p>
171 struct if_lossless;
172 template<typename T1, typename T2, typename T3>
173 struct if_lossless<T1, T2, T3, true>
175 typedef T3 type;
178 /* poly_int_traits<T> describes an integer type T that might be polynomial
179 or non-polynomial:
181 - poly_int_traits<T>::is_poly is true if T is a poly_int-based type
182 and false otherwise.
184 - poly_int_traits<T>::num_coeffs gives the number of coefficients in T
185 if T is a poly_int and 1 otherwise.
187 - poly_int_traits<T>::coeff_type gives the coefficent type of T if T
188 is a poly_int and T itself otherwise
190 - poly_int_traits<T>::int_type is a shorthand for
191 typename poly_coeff_traits<coeff_type>::int_type. */
192 template<typename T>
193 struct poly_int_traits
195 static const bool is_poly = false;
196 static const unsigned int num_coeffs = 1;
197 typedef T coeff_type;
198 typedef typename poly_coeff_traits<T>::int_type int_type;
200 template<unsigned int N, typename C>
201 struct poly_int_traits<poly_int<N, C> >
203 static const bool is_poly = true;
204 static const unsigned int num_coeffs = N;
205 typedef C coeff_type;
206 typedef typename poly_coeff_traits<C>::int_type int_type;
209 /* SFINAE class that makes T2 available as "type" if T1 is a non-polynomial
210 type. */
211 template<typename T1, typename T2 = T1,
212 bool is_poly = poly_int_traits<T1>::is_poly>
213 struct if_nonpoly {};
214 template<typename T1, typename T2>
215 struct if_nonpoly<T1, T2, false>
217 typedef T2 type;
220 /* SFINAE class that makes T3 available as "type" if both T1 and T2 are
221 non-polynomial types. */
222 template<typename T1, typename T2, typename T3,
223 bool is_poly1 = poly_int_traits<T1>::is_poly,
224 bool is_poly2 = poly_int_traits<T2>::is_poly>
225 struct if_nonpoly2 {};
226 template<typename T1, typename T2, typename T3>
227 struct if_nonpoly2<T1, T2, T3, false, false>
229 typedef T3 type;
232 /* SFINAE class that makes T2 available as "type" if T1 is a polynomial
233 type. */
234 template<typename T1, typename T2 = T1,
235 bool is_poly = poly_int_traits<T1>::is_poly>
236 struct if_poly {};
237 template<typename T1, typename T2>
238 struct if_poly<T1, T2, true>
240 typedef T2 type;
243 /* poly_result<T1, T2> describes the result of an operation on two
244 types T1 and T2, where at least one of the types is polynomial:
246 - poly_result<T1, T2>::type gives the result type for the operation.
247 The intention is to provide normal C-like rules for integer ranks,
248 except that everything smaller than HOST_WIDE_INT promotes to
249 HOST_WIDE_INT.
251 - poly_result<T1, T2>::cast is the type to which an operand of type
252 T1 should be cast before doing the operation, to ensure that
253 the operation is done at the right precision. Casting to
254 poly_result<T1, T2>::type would also work, but casting to this
255 type is more efficient. */
256 template<typename T1, typename T2 = T1,
257 int result_kind = poly_coeff_pair_traits<T1, T2>::result_kind>
258 struct poly_result;
260 /* Promote pair to HOST_WIDE_INT. */
261 template<typename T1, typename T2>
262 struct poly_result<T1, T2, 0>
264 typedef HOST_WIDE_INT type;
265 /* T1 and T2 are primitive types, so cast values to T before operating
266 on them. */
267 typedef type cast;
270 /* Promote pair to unsigned HOST_WIDE_INT. */
271 template<typename T1, typename T2>
272 struct poly_result<T1, T2, 1>
274 typedef unsigned HOST_WIDE_INT type;
275 /* T1 and T2 are primitive types, so cast values to T before operating
276 on them. */
277 typedef type cast;
280 /* Use normal wide-int rules. */
281 template<typename T1, typename T2>
282 struct poly_result<T1, T2, 2>
284 typedef WI_BINARY_RESULT (T1, T2) type;
285 /* Don't cast values before operating on them; leave the wi:: routines
286 to handle promotion as necessary. */
287 typedef const T1 &cast;
290 /* The coefficient type for the result of a binary operation on two
291 poly_ints, the first of which has coefficients of type C1 and the
292 second of which has coefficients of type C2. */
293 #define POLY_POLY_COEFF(C1, C2) typename poly_result<C1, C2>::type
295 /* Enforce that T2 is non-polynomial and provide the cofficient type of
296 the result of a binary operation in which the first operand is a
297 poly_int with coefficients of type C1 and the second operand is
298 a constant of type T2. */
299 #define POLY_CONST_COEFF(C1, T2) \
300 POLY_POLY_COEFF (C1, typename if_nonpoly<T2>::type)
302 /* Likewise in reverse. */
303 #define CONST_POLY_COEFF(T1, C2) \
304 POLY_POLY_COEFF (typename if_nonpoly<T1>::type, C2)
306 /* The result type for a binary operation on poly_int<N, C1> and
307 poly_int<N, C2>. */
308 #define POLY_POLY_RESULT(N, C1, C2) poly_int<N, POLY_POLY_COEFF (C1, C2)>
310 /* Enforce that T2 is non-polynomial and provide the result type
311 for a binary operation on poly_int<N, C1> and T2. */
312 #define POLY_CONST_RESULT(N, C1, T2) poly_int<N, POLY_CONST_COEFF (C1, T2)>
314 /* Enforce that T1 is non-polynomial and provide the result type
315 for a binary operation on T1 and poly_int<N, C2>. */
316 #define CONST_POLY_RESULT(N, T1, C2) poly_int<N, CONST_POLY_COEFF (T1, C2)>
318 /* Enforce that T1 and T2 are non-polynomial and provide the result type
319 for a binary operation on T1 and T2. */
320 #define CONST_CONST_RESULT(N, T1, T2) \
321 POLY_POLY_COEFF (typename if_nonpoly<T1>::type, \
322 typename if_nonpoly<T2>::type)
324 /* The type to which a coefficient of type C1 should be cast before
325 using it in a binary operation with a coefficient of type C2. */
326 #define POLY_CAST(C1, C2) typename poly_result<C1, C2>::cast
328 /* Provide the coefficient type for the result of T1 op T2, where T1
329 and T2 can be polynomial or non-polynomial. */
330 #define POLY_BINARY_COEFF(T1, T2) \
331 typename poly_result<typename poly_int_traits<T1>::coeff_type, \
332 typename poly_int_traits<T2>::coeff_type>::type
334 /* The type to which an integer constant should be cast before
335 comparing it with T. */
336 #define POLY_INT_TYPE(T) typename poly_int_traits<T>::int_type
338 /* RES is a poly_int result that has coefficients of type C and that
339 is being built up a coefficient at a time. Set coefficient number I
340 to VALUE in the most efficient way possible.
342 For primitive C it is better to assign directly, since it avoids
343 any further calls and so is more efficient when the compiler is
344 built at -O0. But for wide-int based C it is better to construct
345 the value in-place. This means that calls out to a wide-int.cc
346 routine can take the address of RES rather than the address of
347 a temporary.
349 The dummy self-comparison against C * is just a way of checking
350 that C gives the right type. */
351 #define POLY_SET_COEFF(C, RES, I, VALUE) \
352 ((void) (&(RES).coeffs[0] == (C *) (void *) &(RES).coeffs[0]), \
353 wi::int_traits<C>::precision_type == wi::FLEXIBLE_PRECISION \
354 ? (void) ((RES).coeffs[I] = VALUE) \
355 : (void) ((RES).coeffs[I].~C (), new (&(RES).coeffs[I]) C (VALUE)))
357 /* poly_int_full and poly_int_hungry are used internally within poly_int
358 for delegated initializers. poly_int_full indicates that a parameter
359 pack has enough elements to initialize every coefficient. poly_int_hungry
360 indicates that at least one extra zero must be added. */
361 struct poly_int_full {};
362 struct poly_int_hungry {};
364 /* poly_int_fullness<B>::type is poly_int_full when B is true and
365 poly_int_hungry when B is false. */
366 template<bool> struct poly_int_fullness;
367 template<> struct poly_int_fullness<false> { using type = poly_int_hungry; };
368 template<> struct poly_int_fullness<true> { using type = poly_int_full; };
370 /* A class containing polynomial integers. The polynomial has N coefficients
371 of type C, and N - 1 indeterminates. */
372 template<unsigned int N, typename C>
373 struct poly_int
375 public:
376 poly_int () = default;
377 poly_int (const poly_int &) = default;
379 template<typename Ca>
380 poly_int (const poly_int<N, Ca> &);
382 template<typename ...Cs>
383 constexpr poly_int (const Cs &...);
385 poly_int &operator = (const poly_int &) = default;
387 template<typename Ca>
388 poly_int &operator = (const poly_int<N, Ca> &);
389 template<typename Ca>
390 typename if_nonpoly<Ca, poly_int>::type &operator = (const Ca &);
392 template<typename Ca>
393 poly_int &operator += (const poly_int<N, Ca> &);
394 template<typename Ca>
395 typename if_nonpoly<Ca, poly_int>::type &operator += (const Ca &);
397 template<typename Ca>
398 poly_int &operator -= (const poly_int<N, Ca> &);
399 template<typename Ca>
400 typename if_nonpoly<Ca, poly_int>::type &operator -= (const Ca &);
402 template<typename Ca>
403 typename if_nonpoly<Ca, poly_int>::type &operator *= (const Ca &);
405 poly_int &operator <<= (unsigned int);
407 bool is_constant () const;
409 template<typename T>
410 typename if_lossless<T, C, bool>::type is_constant (T *) const;
412 C to_constant () const;
414 template<typename Ca>
415 static poly_int<N, C> from (const poly_int<N, Ca> &, unsigned int,
416 signop);
417 template<typename Ca>
418 static poly_int<N, C> from (const poly_int<N, Ca> &, signop);
420 bool to_shwi (poly_int<N, HOST_WIDE_INT> *) const;
421 bool to_uhwi (poly_int<N, unsigned HOST_WIDE_INT> *) const;
422 poly_int<N, HOST_WIDE_INT> force_shwi () const;
423 poly_int<N, unsigned HOST_WIDE_INT> force_uhwi () const;
425 #if POLY_INT_CONVERSION
426 operator C () const;
427 #endif
429 C coeffs[N];
431 private:
432 template<typename ...Cs>
433 constexpr poly_int (poly_int_full, const Cs &...);
435 template<typename C0, typename ...Cs>
436 constexpr poly_int (poly_int_hungry, const C0 &, const Cs &...);
439 template<unsigned int N, typename C>
440 template<typename Ca>
441 inline
442 poly_int<N, C>::poly_int (const poly_int<N, Ca> &a)
444 for (unsigned int i = 0; i < N; i++)
445 POLY_SET_COEFF (C, *this, i, a.coeffs[i]);
448 template<unsigned int N, typename C>
449 template<typename ...Cs>
450 inline constexpr
451 poly_int<N, C>::poly_int (const Cs &... cs)
452 : poly_int (typename poly_int_fullness<sizeof... (Cs) >= N>::type (),
453 cs...) {}
455 /* Initialize with c0, cs..., and some trailing zeros. */
456 template<unsigned int N, typename C>
457 template<typename C0, typename ...Cs>
458 inline constexpr
459 poly_int<N, C>::poly_int (poly_int_hungry, const C0 &c0, const Cs &... cs)
460 : poly_int (c0, cs..., wi::ints_for<C>::zero (c0)) {}
462 /* Initialize with cs... directly, casting where necessary. */
463 template<unsigned int N, typename C>
464 template<typename ...Cs>
465 inline constexpr
466 poly_int<N, C>::poly_int (poly_int_full, const Cs &... cs)
467 : coeffs { (typename poly_coeff_traits<C>::
468 template init_cast<Cs>::type (cs))... } {}
470 template<unsigned int N, typename C>
471 template<typename Ca>
472 inline poly_int<N, C>&
473 poly_int<N, C>::operator = (const poly_int<N, Ca> &a)
475 for (unsigned int i = 0; i < N; i++)
476 POLY_SET_COEFF (C, *this, i, a.coeffs[i]);
477 return *this;
480 template<unsigned int N, typename C>
481 template<typename Ca>
482 inline typename if_nonpoly<Ca, poly_int<N, C> >::type &
483 poly_int<N, C>::operator = (const Ca &a)
485 POLY_SET_COEFF (C, *this, 0, a);
486 if (N >= 2)
487 for (unsigned int i = 1; i < N; i++)
488 POLY_SET_COEFF (C, *this, i, wi::ints_for<C>::zero (this->coeffs[0]));
489 return *this;
492 template<unsigned int N, typename C>
493 template<typename Ca>
494 inline poly_int<N, C>&
495 poly_int<N, C>::operator += (const poly_int<N, Ca> &a)
497 for (unsigned int i = 0; i < N; i++)
498 this->coeffs[i] += a.coeffs[i];
499 return *this;
502 template<unsigned int N, typename C>
503 template<typename Ca>
504 inline typename if_nonpoly<Ca, poly_int<N, C> >::type &
505 poly_int<N, C>::operator += (const Ca &a)
507 this->coeffs[0] += a;
508 return *this;
511 template<unsigned int N, typename C>
512 template<typename Ca>
513 inline poly_int<N, C>&
514 poly_int<N, C>::operator -= (const poly_int<N, Ca> &a)
516 for (unsigned int i = 0; i < N; i++)
517 this->coeffs[i] -= a.coeffs[i];
518 return *this;
521 template<unsigned int N, typename C>
522 template<typename Ca>
523 inline typename if_nonpoly<Ca, poly_int<N, C> >::type &
524 poly_int<N, C>::operator -= (const Ca &a)
526 this->coeffs[0] -= a;
527 return *this;
530 template<unsigned int N, typename C>
531 template<typename Ca>
532 inline typename if_nonpoly<Ca, poly_int<N, C> >::type &
533 poly_int<N, C>::operator *= (const Ca &a)
535 for (unsigned int i = 0; i < N; i++)
536 this->coeffs[i] *= a;
537 return *this;
540 template<unsigned int N, typename C>
541 inline poly_int<N, C>&
542 poly_int<N, C>::operator <<= (unsigned int a)
544 for (unsigned int i = 0; i < N; i++)
545 this->coeffs[i] <<= a;
546 return *this;
549 /* Return true if the polynomial value is a compile-time constant. */
551 template<unsigned int N, typename C>
552 inline bool
553 poly_int<N, C>::is_constant () const
555 if (N >= 2)
556 for (unsigned int i = 1; i < N; i++)
557 if (this->coeffs[i] != 0)
558 return false;
559 return true;
562 /* Return true if the polynomial value is a compile-time constant,
563 storing its value in CONST_VALUE if so. */
565 template<unsigned int N, typename C>
566 template<typename T>
567 inline typename if_lossless<T, C, bool>::type
568 poly_int<N, C>::is_constant (T *const_value) const
570 if (is_constant ())
572 *const_value = this->coeffs[0];
573 return true;
575 return false;
578 /* Return the value of a polynomial that is already known to be a
579 compile-time constant.
581 NOTE: When using this function, please add a comment above the call
582 explaining why we know the value is constant in that context. */
584 template<unsigned int N, typename C>
585 inline C
586 poly_int<N, C>::to_constant () const
588 gcc_checking_assert (is_constant ());
589 return this->coeffs[0];
592 /* Convert X to a wide_int-based polynomial in which each coefficient
593 has BITSIZE bits. If X's coefficients are smaller than BITSIZE,
594 extend them according to SGN. */
596 template<unsigned int N, typename C>
597 template<typename Ca>
598 inline poly_int<N, C>
599 poly_int<N, C>::from (const poly_int<N, Ca> &a, unsigned int bitsize,
600 signop sgn)
602 poly_int<N, C> r;
603 for (unsigned int i = 0; i < N; i++)
604 POLY_SET_COEFF (C, r, i, C::from (a.coeffs[i], bitsize, sgn));
605 return r;
608 /* Convert X to a fixed_wide_int-based polynomial, extending according
609 to SGN. */
611 template<unsigned int N, typename C>
612 template<typename Ca>
613 inline poly_int<N, C>
614 poly_int<N, C>::from (const poly_int<N, Ca> &a, signop sgn)
616 poly_int<N, C> r;
617 for (unsigned int i = 0; i < N; i++)
618 POLY_SET_COEFF (C, r, i, C::from (a.coeffs[i], sgn));
619 return r;
622 /* Return true if the coefficients of this generic_wide_int-based
623 polynomial can be represented as signed HOST_WIDE_INTs without loss
624 of precision. Store the HOST_WIDE_INT representation in *R if so. */
626 template<unsigned int N, typename C>
627 inline bool
628 poly_int<N, C>::to_shwi (poly_int<N, HOST_WIDE_INT> *r) const
630 for (unsigned int i = 0; i < N; i++)
631 if (!wi::fits_shwi_p (this->coeffs[i]))
632 return false;
633 for (unsigned int i = 0; i < N; i++)
634 r->coeffs[i] = this->coeffs[i].to_shwi ();
635 return true;
638 /* Return true if the coefficients of this generic_wide_int-based
639 polynomial can be represented as unsigned HOST_WIDE_INTs without
640 loss of precision. Store the unsigned HOST_WIDE_INT representation
641 in *R if so. */
643 template<unsigned int N, typename C>
644 inline bool
645 poly_int<N, C>::to_uhwi (poly_int<N, unsigned HOST_WIDE_INT> *r) const
647 for (unsigned int i = 0; i < N; i++)
648 if (!wi::fits_uhwi_p (this->coeffs[i]))
649 return false;
650 for (unsigned int i = 0; i < N; i++)
651 r->coeffs[i] = this->coeffs[i].to_uhwi ();
652 return true;
655 /* Force a generic_wide_int-based constant to HOST_WIDE_INT precision,
656 truncating if necessary. */
658 template<unsigned int N, typename C>
659 inline poly_int<N, HOST_WIDE_INT>
660 poly_int<N, C>::force_shwi () const
662 poly_int<N, HOST_WIDE_INT> r;
663 for (unsigned int i = 0; i < N; i++)
664 r.coeffs[i] = this->coeffs[i].to_shwi ();
665 return r;
668 /* Force a generic_wide_int-based constant to unsigned HOST_WIDE_INT precision,
669 truncating if necessary. */
671 template<unsigned int N, typename C>
672 inline poly_int<N, unsigned HOST_WIDE_INT>
673 poly_int<N, C>::force_uhwi () const
675 poly_int<N, unsigned HOST_WIDE_INT> r;
676 for (unsigned int i = 0; i < N; i++)
677 r.coeffs[i] = this->coeffs[i].to_uhwi ();
678 return r;
681 #if POLY_INT_CONVERSION
682 /* Provide a conversion operator to constants. */
684 template<unsigned int N, typename C>
685 inline
686 poly_int<N, C>::operator C () const
688 gcc_checking_assert (this->is_constant ());
689 return this->coeffs[0];
691 #endif
693 /* Return true if every coefficient of A is in the inclusive range [B, C]. */
695 template<typename Ca, typename Cb, typename Cc>
696 inline typename if_nonpoly<Ca, bool>::type
697 coeffs_in_range_p (const Ca &a, const Cb &b, const Cc &c)
699 return a >= b && a <= c;
702 template<unsigned int N, typename Ca, typename Cb, typename Cc>
703 inline typename if_nonpoly<Ca, bool>::type
704 coeffs_in_range_p (const poly_int<N, Ca> &a, const Cb &b, const Cc &c)
706 for (unsigned int i = 0; i < N; i++)
707 if (a.coeffs[i] < b || a.coeffs[i] > c)
708 return false;
709 return true;
712 namespace wi {
713 /* Poly version of wi::shwi, with the same interface. */
715 template<unsigned int N>
716 inline poly_int<N, hwi_with_prec>
717 shwi (const poly_int<N, HOST_WIDE_INT> &a, unsigned int precision)
719 poly_int<N, hwi_with_prec> r;
720 for (unsigned int i = 0; i < N; i++)
721 POLY_SET_COEFF (hwi_with_prec, r, i, wi::shwi (a.coeffs[i], precision));
722 return r;
725 /* Poly version of wi::uhwi, with the same interface. */
727 template<unsigned int N>
728 inline poly_int<N, hwi_with_prec>
729 uhwi (const poly_int<N, unsigned HOST_WIDE_INT> &a, unsigned int precision)
731 poly_int<N, hwi_with_prec> r;
732 for (unsigned int i = 0; i < N; i++)
733 POLY_SET_COEFF (hwi_with_prec, r, i, wi::uhwi (a.coeffs[i], precision));
734 return r;
737 /* Poly version of wi::sext, with the same interface. */
739 template<unsigned int N, typename Ca>
740 inline POLY_POLY_RESULT (N, Ca, Ca)
741 sext (const poly_int<N, Ca> &a, unsigned int precision)
743 typedef POLY_POLY_COEFF (Ca, Ca) C;
744 poly_int<N, C> r;
745 for (unsigned int i = 0; i < N; i++)
746 POLY_SET_COEFF (C, r, i, wi::sext (a.coeffs[i], precision));
747 return r;
750 /* Poly version of wi::zext, with the same interface. */
752 template<unsigned int N, typename Ca>
753 inline POLY_POLY_RESULT (N, Ca, Ca)
754 zext (const poly_int<N, Ca> &a, unsigned int precision)
756 typedef POLY_POLY_COEFF (Ca, Ca) C;
757 poly_int<N, C> r;
758 for (unsigned int i = 0; i < N; i++)
759 POLY_SET_COEFF (C, r, i, wi::zext (a.coeffs[i], precision));
760 return r;
764 template<unsigned int N, typename Ca, typename Cb>
765 inline POLY_POLY_RESULT (N, Ca, Cb)
766 operator + (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b)
768 typedef POLY_CAST (Ca, Cb) NCa;
769 typedef POLY_POLY_COEFF (Ca, Cb) C;
770 poly_int<N, C> r;
771 for (unsigned int i = 0; i < N; i++)
772 POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]) + b.coeffs[i]);
773 return r;
776 template<unsigned int N, typename Ca, typename Cb>
777 inline POLY_CONST_RESULT (N, Ca, Cb)
778 operator + (const poly_int<N, Ca> &a, const Cb &b)
780 typedef POLY_CAST (Ca, Cb) NCa;
781 typedef POLY_CONST_COEFF (Ca, Cb) C;
782 poly_int<N, C> r;
783 POLY_SET_COEFF (C, r, 0, NCa (a.coeffs[0]) + b);
784 if (N >= 2)
785 for (unsigned int i = 1; i < N; i++)
786 POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]));
787 return r;
790 template<unsigned int N, typename Ca, typename Cb>
791 inline CONST_POLY_RESULT (N, Ca, Cb)
792 operator + (const Ca &a, const poly_int<N, Cb> &b)
794 typedef POLY_CAST (Cb, Ca) NCb;
795 typedef CONST_POLY_COEFF (Ca, Cb) C;
796 poly_int<N, C> r;
797 POLY_SET_COEFF (C, r, 0, a + NCb (b.coeffs[0]));
798 if (N >= 2)
799 for (unsigned int i = 1; i < N; i++)
800 POLY_SET_COEFF (C, r, i, NCb (b.coeffs[i]));
801 return r;
804 namespace wi {
805 /* Poly versions of wi::add, with the same interface. */
807 template<unsigned int N, typename Ca, typename Cb>
808 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
809 add (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b)
811 typedef WI_BINARY_RESULT (Ca, Cb) C;
812 poly_int<N, C> r;
813 for (unsigned int i = 0; i < N; i++)
814 POLY_SET_COEFF (C, r, i, wi::add (a.coeffs[i], b.coeffs[i]));
815 return r;
818 template<unsigned int N, typename Ca, typename Cb>
819 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
820 add (const poly_int<N, Ca> &a, const Cb &b)
822 typedef WI_BINARY_RESULT (Ca, Cb) C;
823 poly_int<N, C> r;
824 POLY_SET_COEFF (C, r, 0, wi::add (a.coeffs[0], b));
825 for (unsigned int i = 1; i < N; i++)
826 POLY_SET_COEFF (C, r, i, wi::add (a.coeffs[i],
827 wi::ints_for<Cb>::zero (b)));
828 return r;
831 template<unsigned int N, typename Ca, typename Cb>
832 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
833 add (const Ca &a, const poly_int<N, Cb> &b)
835 typedef WI_BINARY_RESULT (Ca, Cb) C;
836 poly_int<N, C> r;
837 POLY_SET_COEFF (C, r, 0, wi::add (a, b.coeffs[0]));
838 for (unsigned int i = 1; i < N; i++)
839 POLY_SET_COEFF (C, r, i, wi::add (wi::ints_for<Ca>::zero (a),
840 b.coeffs[i]));
841 return r;
844 template<unsigned int N, typename Ca, typename Cb>
845 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
846 add (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b,
847 signop sgn, wi::overflow_type *overflow)
849 typedef WI_BINARY_RESULT (Ca, Cb) C;
850 poly_int<N, C> r;
851 POLY_SET_COEFF (C, r, 0, wi::add (a.coeffs[0], b.coeffs[0], sgn, overflow));
852 for (unsigned int i = 1; i < N; i++)
854 wi::overflow_type suboverflow;
855 POLY_SET_COEFF (C, r, i, wi::add (a.coeffs[i], b.coeffs[i], sgn,
856 &suboverflow));
857 wi::accumulate_overflow (*overflow, suboverflow);
859 return r;
863 template<unsigned int N, typename Ca, typename Cb>
864 inline POLY_POLY_RESULT (N, Ca, Cb)
865 operator - (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b)
867 typedef POLY_CAST (Ca, Cb) NCa;
868 typedef POLY_POLY_COEFF (Ca, Cb) C;
869 poly_int<N, C> r;
870 for (unsigned int i = 0; i < N; i++)
871 POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]) - b.coeffs[i]);
872 return r;
875 template<unsigned int N, typename Ca, typename Cb>
876 inline POLY_CONST_RESULT (N, Ca, Cb)
877 operator - (const poly_int<N, Ca> &a, const Cb &b)
879 typedef POLY_CAST (Ca, Cb) NCa;
880 typedef POLY_CONST_COEFF (Ca, Cb) C;
881 poly_int<N, C> r;
882 POLY_SET_COEFF (C, r, 0, NCa (a.coeffs[0]) - b);
883 if (N >= 2)
884 for (unsigned int i = 1; i < N; i++)
885 POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]));
886 return r;
889 template<unsigned int N, typename Ca, typename Cb>
890 inline CONST_POLY_RESULT (N, Ca, Cb)
891 operator - (const Ca &a, const poly_int<N, Cb> &b)
893 typedef POLY_CAST (Cb, Ca) NCb;
894 typedef CONST_POLY_COEFF (Ca, Cb) C;
895 poly_int<N, C> r;
896 POLY_SET_COEFF (C, r, 0, a - NCb (b.coeffs[0]));
897 if (N >= 2)
898 for (unsigned int i = 1; i < N; i++)
899 POLY_SET_COEFF (C, r, i, -NCb (b.coeffs[i]));
900 return r;
903 namespace wi {
904 /* Poly versions of wi::sub, with the same interface. */
906 template<unsigned int N, typename Ca, typename Cb>
907 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
908 sub (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b)
910 typedef WI_BINARY_RESULT (Ca, Cb) C;
911 poly_int<N, C> r;
912 for (unsigned int i = 0; i < N; i++)
913 POLY_SET_COEFF (C, r, i, wi::sub (a.coeffs[i], b.coeffs[i]));
914 return r;
917 template<unsigned int N, typename Ca, typename Cb>
918 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
919 sub (const poly_int<N, Ca> &a, const Cb &b)
921 typedef WI_BINARY_RESULT (Ca, Cb) C;
922 poly_int<N, C> r;
923 POLY_SET_COEFF (C, r, 0, wi::sub (a.coeffs[0], b));
924 for (unsigned int i = 1; i < N; i++)
925 POLY_SET_COEFF (C, r, i, wi::sub (a.coeffs[i],
926 wi::ints_for<Cb>::zero (b)));
927 return r;
930 template<unsigned int N, typename Ca, typename Cb>
931 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
932 sub (const Ca &a, const poly_int<N, Cb> &b)
934 typedef WI_BINARY_RESULT (Ca, Cb) C;
935 poly_int<N, C> r;
936 POLY_SET_COEFF (C, r, 0, wi::sub (a, b.coeffs[0]));
937 for (unsigned int i = 1; i < N; i++)
938 POLY_SET_COEFF (C, r, i, wi::sub (wi::ints_for<Ca>::zero (a),
939 b.coeffs[i]));
940 return r;
943 template<unsigned int N, typename Ca, typename Cb>
944 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
945 sub (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b,
946 signop sgn, wi::overflow_type *overflow)
948 typedef WI_BINARY_RESULT (Ca, Cb) C;
949 poly_int<N, C> r;
950 POLY_SET_COEFF (C, r, 0, wi::sub (a.coeffs[0], b.coeffs[0], sgn, overflow));
951 for (unsigned int i = 1; i < N; i++)
953 wi::overflow_type suboverflow;
954 POLY_SET_COEFF (C, r, i, wi::sub (a.coeffs[i], b.coeffs[i], sgn,
955 &suboverflow));
956 wi::accumulate_overflow (*overflow, suboverflow);
958 return r;
962 template<unsigned int N, typename Ca>
963 inline POLY_POLY_RESULT (N, Ca, Ca)
964 operator - (const poly_int<N, Ca> &a)
966 typedef POLY_CAST (Ca, Ca) NCa;
967 typedef POLY_POLY_COEFF (Ca, Ca) C;
968 poly_int<N, C> r;
969 for (unsigned int i = 0; i < N; i++)
970 POLY_SET_COEFF (C, r, i, -NCa (a.coeffs[i]));
971 return r;
974 namespace wi {
975 /* Poly version of wi::neg, with the same interface. */
977 template<unsigned int N, typename Ca>
978 inline poly_int<N, WI_UNARY_RESULT (Ca)>
979 neg (const poly_int<N, Ca> &a)
981 typedef WI_UNARY_RESULT (Ca) C;
982 poly_int<N, C> r;
983 for (unsigned int i = 0; i < N; i++)
984 POLY_SET_COEFF (C, r, i, wi::neg (a.coeffs[i]));
985 return r;
988 template<unsigned int N, typename Ca>
989 inline poly_int<N, WI_UNARY_RESULT (Ca)>
990 neg (const poly_int<N, Ca> &a, wi::overflow_type *overflow)
992 typedef WI_UNARY_RESULT (Ca) C;
993 poly_int<N, C> r;
994 POLY_SET_COEFF (C, r, 0, wi::neg (a.coeffs[0], overflow));
995 for (unsigned int i = 1; i < N; i++)
997 wi::overflow_type suboverflow;
998 POLY_SET_COEFF (C, r, i, wi::neg (a.coeffs[i], &suboverflow));
999 wi::accumulate_overflow (*overflow, suboverflow);
1001 return r;
1005 template<unsigned int N, typename Ca>
1006 inline POLY_POLY_RESULT (N, Ca, Ca)
1007 operator ~ (const poly_int<N, Ca> &a)
1009 if (N >= 2)
1010 return -1 - a;
1011 return ~a.coeffs[0];
1014 template<unsigned int N, typename Ca, typename Cb>
1015 inline POLY_CONST_RESULT (N, Ca, Cb)
1016 operator * (const poly_int<N, Ca> &a, const Cb &b)
1018 typedef POLY_CAST (Ca, Cb) NCa;
1019 typedef POLY_CONST_COEFF (Ca, Cb) C;
1020 poly_int<N, C> r;
1021 for (unsigned int i = 0; i < N; i++)
1022 POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]) * b);
1023 return r;
1026 template<unsigned int N, typename Ca, typename Cb>
1027 inline CONST_POLY_RESULT (N, Ca, Cb)
1028 operator * (const Ca &a, const poly_int<N, Cb> &b)
1030 typedef POLY_CAST (Ca, Cb) NCa;
1031 typedef CONST_POLY_COEFF (Ca, Cb) C;
1032 poly_int<N, C> r;
1033 for (unsigned int i = 0; i < N; i++)
1034 POLY_SET_COEFF (C, r, i, NCa (a) * b.coeffs[i]);
1035 return r;
1038 namespace wi {
1039 /* Poly versions of wi::mul, with the same interface. */
1041 template<unsigned int N, typename Ca, typename Cb>
1042 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
1043 mul (const poly_int<N, Ca> &a, const Cb &b)
1045 typedef WI_BINARY_RESULT (Ca, Cb) C;
1046 poly_int<N, C> r;
1047 for (unsigned int i = 0; i < N; i++)
1048 POLY_SET_COEFF (C, r, i, wi::mul (a.coeffs[i], b));
1049 return r;
1052 template<unsigned int N, typename Ca, typename Cb>
1053 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
1054 mul (const Ca &a, const poly_int<N, Cb> &b)
1056 typedef WI_BINARY_RESULT (Ca, Cb) C;
1057 poly_int<N, C> r;
1058 for (unsigned int i = 0; i < N; i++)
1059 POLY_SET_COEFF (C, r, i, wi::mul (a, b.coeffs[i]));
1060 return r;
1063 template<unsigned int N, typename Ca, typename Cb>
1064 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)>
1065 mul (const poly_int<N, Ca> &a, const Cb &b,
1066 signop sgn, wi::overflow_type *overflow)
1068 typedef WI_BINARY_RESULT (Ca, Cb) C;
1069 poly_int<N, C> r;
1070 POLY_SET_COEFF (C, r, 0, wi::mul (a.coeffs[0], b, sgn, overflow));
1071 for (unsigned int i = 1; i < N; i++)
1073 wi::overflow_type suboverflow;
1074 POLY_SET_COEFF (C, r, i, wi::mul (a.coeffs[i], b, sgn, &suboverflow));
1075 wi::accumulate_overflow (*overflow, suboverflow);
1077 return r;
1081 template<unsigned int N, typename Ca, typename Cb>
1082 inline POLY_POLY_RESULT (N, Ca, Ca)
1083 operator << (const poly_int<N, Ca> &a, const Cb &b)
1085 typedef POLY_CAST (Ca, Ca) NCa;
1086 typedef POLY_POLY_COEFF (Ca, Ca) C;
1087 poly_int<N, C> r;
1088 for (unsigned int i = 0; i < N; i++)
1089 POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]) << b);
1090 return r;
1093 namespace wi {
1094 /* Poly version of wi::lshift, with the same interface. */
1096 template<unsigned int N, typename Ca, typename Cb>
1097 inline poly_int<N, WI_BINARY_RESULT (Ca, Ca)>
1098 lshift (const poly_int<N, Ca> &a, const Cb &b)
1100 typedef WI_BINARY_RESULT (Ca, Ca) C;
1101 poly_int<N, C> r;
1102 for (unsigned int i = 0; i < N; i++)
1103 POLY_SET_COEFF (C, r, i, wi::lshift (a.coeffs[i], b));
1104 return r;
1108 /* Poly version of sext_hwi, with the same interface. */
1110 template<unsigned int N, typename C>
1111 inline poly_int<N, HOST_WIDE_INT>
1112 sext_hwi (const poly_int<N, C> &a, unsigned int precision)
1114 poly_int<N, HOST_WIDE_INT> r;
1115 for (unsigned int i = 0; i < N; i++)
1116 r.coeffs[i] = sext_hwi (a.coeffs[i], precision);
1117 return r;
1121 /* Return true if a0 + a1 * x might equal b0 + b1 * x for some nonnegative
1122 integer x. */
1124 template<typename Ca, typename Cb>
1125 inline bool
1126 maybe_eq_2 (const Ca &a0, const Ca &a1, const Cb &b0, const Cb &b1)
1128 if (a1 != b1)
1129 /* a0 + a1 * x == b0 + b1 * x
1130 ==> (a1 - b1) * x == b0 - a0
1131 ==> x == (b0 - a0) / (a1 - b1)
1133 We need to test whether that's a valid value of x.
1134 (b0 - a0) and (a1 - b1) must not have opposite signs
1135 and the result must be integral. */
1136 return (a1 < b1
1137 ? b0 <= a0 && (a0 - b0) % (b1 - a1) == 0
1138 : b0 >= a0 && (b0 - a0) % (a1 - b1) == 0);
1139 return a0 == b0;
1142 /* Return true if a0 + a1 * x might equal b for some nonnegative
1143 integer x. */
1145 template<typename Ca, typename Cb>
1146 inline bool
1147 maybe_eq_2 (const Ca &a0, const Ca &a1, const Cb &b)
1149 if (a1 != 0)
1150 /* a0 + a1 * x == b
1151 ==> x == (b - a0) / a1
1153 We need to test whether that's a valid value of x.
1154 (b - a0) and a1 must not have opposite signs and the
1155 result must be integral. */
1156 return (a1 < 0
1157 ? b <= a0 && (a0 - b) % a1 == 0
1158 : b >= a0 && (b - a0) % a1 == 0);
1159 return a0 == b;
1162 /* Return true if A might equal B for some indeterminate values. */
1164 template<unsigned int N, typename Ca, typename Cb>
1165 inline bool
1166 maybe_eq (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b)
1168 STATIC_ASSERT (N <= 2);
1169 if (N == 2)
1170 return maybe_eq_2 (a.coeffs[0], a.coeffs[1], b.coeffs[0], b.coeffs[1]);
1171 return a.coeffs[0] == b.coeffs[0];
1174 template<unsigned int N, typename Ca, typename Cb>
1175 inline typename if_nonpoly<Cb, bool>::type
1176 maybe_eq (const poly_int<N, Ca> &a, const Cb &b)
1178 STATIC_ASSERT (N <= 2);
1179 if (N == 2)
1180 return maybe_eq_2 (a.coeffs[0], a.coeffs[1], b);
1181 return a.coeffs[0] == b;
1184 template<unsigned int N, typename Ca, typename Cb>
1185 inline typename if_nonpoly<Ca, bool>::type
1186 maybe_eq (const Ca &a, const poly_int<N, Cb> &b)
1188 STATIC_ASSERT (N <= 2);
1189 if (N == 2)
1190 return maybe_eq_2 (b.coeffs[0], b.coeffs[1], a);
1191 return a == b.coeffs[0];
1194 template<typename Ca, typename Cb>
1195 inline typename if_nonpoly2<Ca, Cb, bool>::type
1196 maybe_eq (const Ca &a, const Cb &b)
1198 return a == b;
1201 /* Return true if A might not equal B for some indeterminate values. */
1203 template<unsigned int N, typename Ca, typename Cb>
1204 inline bool
1205 maybe_ne (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b)
1207 if (N >= 2)
1208 for (unsigned int i = 1; i < N; i++)
1209 if (a.coeffs[i] != b.coeffs[i])
1210 return true;
1211 return a.coeffs[0] != b.coeffs[0];
1214 template<unsigned int N, typename Ca, typename Cb>
1215 inline typename if_nonpoly<Cb, bool>::type
1216 maybe_ne (const poly_int<N, Ca> &a, const Cb &b)
1218 if (N >= 2)
1219 for (unsigned int i = 1; i < N; i++)
1220 if (a.coeffs[i] != 0)
1221 return true;
1222 return a.coeffs[0] != b;
1225 template<unsigned int N, typename Ca, typename Cb>
1226 inline typename if_nonpoly<Ca, bool>::type
1227 maybe_ne (const Ca &a, const poly_int<N, Cb> &b)
1229 if (N >= 2)
1230 for (unsigned int i = 1; i < N; i++)
1231 if (b.coeffs[i] != 0)
1232 return true;
1233 return a != b.coeffs[0];
1236 template<typename Ca, typename Cb>
1237 inline typename if_nonpoly2<Ca, Cb, bool>::type
1238 maybe_ne (const Ca &a, const Cb &b)
1240 return a != b;
1243 /* Return true if A is known to be equal to B. */
1244 #define known_eq(A, B) (!maybe_ne (A, B))
1246 /* Return true if A is known to be unequal to B. */
1247 #define known_ne(A, B) (!maybe_eq (A, B))
1249 /* Return true if A might be less than or equal to B for some
1250 indeterminate values. */
1252 template<unsigned int N, typename Ca, typename Cb>
1253 inline bool
1254 maybe_le (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b)
1256 if (N >= 2)
1257 for (unsigned int i = 1; i < N; i++)
1258 if (a.coeffs[i] < b.coeffs[i])
1259 return true;
1260 return a.coeffs[0] <= b.coeffs[0];
1263 template<unsigned int N, typename Ca, typename Cb>
1264 inline typename if_nonpoly<Cb, bool>::type
1265 maybe_le (const poly_int<N, Ca> &a, const Cb &b)
1267 if (N >= 2)
1268 for (unsigned int i = 1; i < N; i++)
1269 if (a.coeffs[i] < 0)
1270 return true;
1271 return a.coeffs[0] <= b;
1274 template<unsigned int N, typename Ca, typename Cb>
1275 inline typename if_nonpoly<Ca, bool>::type
1276 maybe_le (const Ca &a, const poly_int<N, Cb> &b)
1278 if (N >= 2)
1279 for (unsigned int i = 1; i < N; i++)
1280 if (b.coeffs[i] > 0)
1281 return true;
1282 return a <= b.coeffs[0];
1285 template<typename Ca, typename Cb>
1286 inline typename if_nonpoly2<Ca, Cb, bool>::type
1287 maybe_le (const Ca &a, const Cb &b)
1289 return a <= b;
1292 /* Return true if A might be less than B for some indeterminate values. */
1294 template<unsigned int N, typename Ca, typename Cb>
1295 inline bool
1296 maybe_lt (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b)
1298 if (N >= 2)
1299 for (unsigned int i = 1; i < N; i++)
1300 if (a.coeffs[i] < b.coeffs[i])
1301 return true;
1302 return a.coeffs[0] < b.coeffs[0];
1305 template<unsigned int N, typename Ca, typename Cb>
1306 inline typename if_nonpoly<Cb, bool>::type
1307 maybe_lt (const poly_int<N, Ca> &a, const Cb &b)
1309 if (N >= 2)
1310 for (unsigned int i = 1; i < N; i++)
1311 if (a.coeffs[i] < 0)
1312 return true;
1313 return a.coeffs[0] < b;
1316 template<unsigned int N, typename Ca, typename Cb>
1317 inline typename if_nonpoly<Ca, bool>::type
1318 maybe_lt (const Ca &a, const poly_int<N, Cb> &b)
1320 if (N >= 2)
1321 for (unsigned int i = 1; i < N; i++)
1322 if (b.coeffs[i] > 0)
1323 return true;
1324 return a < b.coeffs[0];
1327 template<typename Ca, typename Cb>
1328 inline typename if_nonpoly2<Ca, Cb, bool>::type
1329 maybe_lt (const Ca &a, const Cb &b)
1331 return a < b;
1334 /* Return true if A may be greater than or equal to B. */
1335 #define maybe_ge(A, B) maybe_le (B, A)
1337 /* Return true if A may be greater than B. */
1338 #define maybe_gt(A, B) maybe_lt (B, A)
1340 /* Return true if A is known to be less than or equal to B. */
1341 #define known_le(A, B) (!maybe_gt (A, B))
1343 /* Return true if A is known to be less than B. */
1344 #define known_lt(A, B) (!maybe_ge (A, B))
1346 /* Return true if A is known to be greater than B. */
1347 #define known_gt(A, B) (!maybe_le (A, B))
1349 /* Return true if A is known to be greater than or equal to B. */
1350 #define known_ge(A, B) (!maybe_lt (A, B))
1352 /* Return true if A and B are ordered by the partial ordering known_le. */
1354 template<typename T1, typename T2>
1355 inline bool
1356 ordered_p (const T1 &a, const T2 &b)
1358 return ((poly_int_traits<T1>::num_coeffs == 1
1359 && poly_int_traits<T2>::num_coeffs == 1)
1360 || known_le (a, b)
1361 || known_le (b, a));
1364 /* Assert that A and B are known to be ordered and return the minimum
1365 of the two.
1367 NOTE: When using this function, please add a comment above the call
1368 explaining why we know the values are ordered in that context. */
1370 template<unsigned int N, typename Ca, typename Cb>
1371 inline POLY_POLY_RESULT (N, Ca, Cb)
1372 ordered_min (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b)
1374 if (known_le (a, b))
1375 return a;
1376 else
1378 if (N > 1)
1379 gcc_checking_assert (known_le (b, a));
1380 return b;
1384 template<unsigned int N, typename Ca, typename Cb>
1385 inline CONST_POLY_RESULT (N, Ca, Cb)
1386 ordered_min (const Ca &a, const poly_int<N, Cb> &b)
1388 if (known_le (a, b))
1389 return a;
1390 else
1392 if (N > 1)
1393 gcc_checking_assert (known_le (b, a));
1394 return b;
1398 template<unsigned int N, typename Ca, typename Cb>
1399 inline POLY_CONST_RESULT (N, Ca, Cb)
1400 ordered_min (const poly_int<N, Ca> &a, const Cb &b)
1402 if (known_le (a, b))
1403 return a;
1404 else
1406 if (N > 1)
1407 gcc_checking_assert (known_le (b, a));
1408 return b;
1412 /* Assert that A and B are known to be ordered and return the maximum
1413 of the two.
1415 NOTE: When using this function, please add a comment above the call
1416 explaining why we know the values are ordered in that context. */
1418 template<unsigned int N, typename Ca, typename Cb>
1419 inline POLY_POLY_RESULT (N, Ca, Cb)
1420 ordered_max (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b)
1422 if (known_le (a, b))
1423 return b;
1424 else
1426 if (N > 1)
1427 gcc_checking_assert (known_le (b, a));
1428 return a;
1432 template<unsigned int N, typename Ca, typename Cb>
1433 inline CONST_POLY_RESULT (N, Ca, Cb)
1434 ordered_max (const Ca &a, const poly_int<N, Cb> &b)
1436 if (known_le (a, b))
1437 return b;
1438 else
1440 if (N > 1)
1441 gcc_checking_assert (known_le (b, a));
1442 return a;
1446 template<unsigned int N, typename Ca, typename Cb>
1447 inline POLY_CONST_RESULT (N, Ca, Cb)
1448 ordered_max (const poly_int<N, Ca> &a, const Cb &b)
1450 if (known_le (a, b))
1451 return b;
1452 else
1454 if (N > 1)
1455 gcc_checking_assert (known_le (b, a));
1456 return a;
1460 /* Return a constant lower bound on the value of A, which is known
1461 to be nonnegative. */
1463 template<unsigned int N, typename Ca>
1464 inline Ca
1465 constant_lower_bound (const poly_int<N, Ca> &a)
1467 gcc_checking_assert (known_ge (a, POLY_INT_TYPE (Ca) (0)));
1468 return a.coeffs[0];
1471 /* Return the constant lower bound of A, given that it is no less than B. */
1473 template<unsigned int N, typename Ca, typename Cb>
1474 inline POLY_CONST_COEFF (Ca, Cb)
1475 constant_lower_bound_with_limit (const poly_int<N, Ca> &a, const Cb &b)
1477 if (known_ge (a, b))
1478 return a.coeffs[0];
1479 return b;
1482 /* Return the constant upper bound of A, given that it is no greater
1483 than B. */
1485 template<unsigned int N, typename Ca, typename Cb>
1486 inline POLY_CONST_COEFF (Ca, Cb)
1487 constant_upper_bound_with_limit (const poly_int<N, Ca> &a, const Cb &b)
1489 if (known_le (a, b))
1490 return a.coeffs[0];
1491 return b;
1494 /* Return a value that is known to be no greater than A and B. This
1495 will be the greatest lower bound for some indeterminate values but
1496 not necessarily for all. */
1498 template<unsigned int N, typename Ca, typename Cb>
1499 inline POLY_CONST_RESULT (N, Ca, Cb)
1500 lower_bound (const poly_int<N, Ca> &a, const Cb &b)
1502 typedef POLY_CAST (Ca, Cb) NCa;
1503 typedef POLY_CAST (Cb, Ca) NCb;
1504 typedef POLY_INT_TYPE (Cb) ICb;
1505 typedef POLY_CONST_COEFF (Ca, Cb) C;
1507 poly_int<N, C> r;
1508 POLY_SET_COEFF (C, r, 0, MIN (NCa (a.coeffs[0]), NCb (b)));
1509 if (N >= 2)
1510 for (unsigned int i = 1; i < N; i++)
1511 POLY_SET_COEFF (C, r, i, MIN (NCa (a.coeffs[i]), ICb (0)));
1512 return r;
1515 template<unsigned int N, typename Ca, typename Cb>
1516 inline CONST_POLY_RESULT (N, Ca, Cb)
1517 lower_bound (const Ca &a, const poly_int<N, Cb> &b)
1519 return lower_bound (b, a);
1522 template<unsigned int N, typename Ca, typename Cb>
1523 inline POLY_POLY_RESULT (N, Ca, Cb)
1524 lower_bound (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b)
1526 typedef POLY_CAST (Ca, Cb) NCa;
1527 typedef POLY_CAST (Cb, Ca) NCb;
1528 typedef POLY_POLY_COEFF (Ca, Cb) C;
1530 poly_int<N, C> r;
1531 for (unsigned int i = 0; i < N; i++)
1532 POLY_SET_COEFF (C, r, i, MIN (NCa (a.coeffs[i]), NCb (b.coeffs[i])));
1533 return r;
1536 template<typename Ca, typename Cb>
1537 inline CONST_CONST_RESULT (N, Ca, Cb)
1538 lower_bound (const Ca &a, const Cb &b)
1540 return a < b ? a : b;
1543 /* Return a value that is known to be no less than A and B. This will
1544 be the least upper bound for some indeterminate values but not
1545 necessarily for all. */
1547 template<unsigned int N, typename Ca, typename Cb>
1548 inline POLY_CONST_RESULT (N, Ca, Cb)
1549 upper_bound (const poly_int<N, Ca> &a, const Cb &b)
1551 typedef POLY_CAST (Ca, Cb) NCa;
1552 typedef POLY_CAST (Cb, Ca) NCb;
1553 typedef POLY_INT_TYPE (Cb) ICb;
1554 typedef POLY_CONST_COEFF (Ca, Cb) C;
1556 poly_int<N, C> r;
1557 POLY_SET_COEFF (C, r, 0, MAX (NCa (a.coeffs[0]), NCb (b)));
1558 if (N >= 2)
1559 for (unsigned int i = 1; i < N; i++)
1560 POLY_SET_COEFF (C, r, i, MAX (NCa (a.coeffs[i]), ICb (0)));
1561 return r;
1564 template<unsigned int N, typename Ca, typename Cb>
1565 inline CONST_POLY_RESULT (N, Ca, Cb)
1566 upper_bound (const Ca &a, const poly_int<N, Cb> &b)
1568 return upper_bound (b, a);
1571 template<unsigned int N, typename Ca, typename Cb>
1572 inline POLY_POLY_RESULT (N, Ca, Cb)
1573 upper_bound (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b)
1575 typedef POLY_CAST (Ca, Cb) NCa;
1576 typedef POLY_CAST (Cb, Ca) NCb;
1577 typedef POLY_POLY_COEFF (Ca, Cb) C;
1579 poly_int<N, C> r;
1580 for (unsigned int i = 0; i < N; i++)
1581 POLY_SET_COEFF (C, r, i, MAX (NCa (a.coeffs[i]), NCb (b.coeffs[i])));
1582 return r;
1585 /* Return the greatest common divisor of all nonzero coefficients, or zero
1586 if all coefficients are zero. */
1588 template<unsigned int N, typename Ca>
1589 inline POLY_BINARY_COEFF (Ca, Ca)
1590 coeff_gcd (const poly_int<N, Ca> &a)
1592 /* Find the first nonzero coefficient, stopping at 0 whatever happens. */
1593 unsigned int i;
1594 for (i = N - 1; i > 0; --i)
1595 if (a.coeffs[i] != 0)
1596 break;
1597 typedef POLY_BINARY_COEFF (Ca, Ca) C;
1598 C r = a.coeffs[i];
1599 for (unsigned int j = 0; j < i; ++j)
1600 if (a.coeffs[j] != 0)
1601 r = gcd (r, C (a.coeffs[j]));
1602 return r;
1605 /* Return a value that is a multiple of both A and B. This will be the
1606 least common multiple for some indeterminate values but necessarily
1607 for all. */
1609 template<unsigned int N, typename Ca, typename Cb>
1610 POLY_CONST_RESULT (N, Ca, Cb)
1611 common_multiple (const poly_int<N, Ca> &a, Cb b)
1613 POLY_BINARY_COEFF (Ca, Ca) xgcd = coeff_gcd (a);
1614 return a * (least_common_multiple (xgcd, b) / xgcd);
1617 template<unsigned int N, typename Ca, typename Cb>
1618 inline CONST_POLY_RESULT (N, Ca, Cb)
1619 common_multiple (const Ca &a, const poly_int<N, Cb> &b)
1621 return common_multiple (b, a);
1624 /* Return a value that is a multiple of both A and B, asserting that
1625 such a value exists. The result will be the least common multiple
1626 for some indeterminate values but necessarily for all.
1628 NOTE: When using this function, please add a comment above the call
1629 explaining why we know the values have a common multiple (which might
1630 for example be because we know A / B is rational). */
1632 template<unsigned int N, typename Ca, typename Cb>
1633 POLY_POLY_RESULT (N, Ca, Cb)
1634 force_common_multiple (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b)
1636 if (b.is_constant ())
1637 return common_multiple (a, b.coeffs[0]);
1638 if (a.is_constant ())
1639 return common_multiple (a.coeffs[0], b);
1641 typedef POLY_CAST (Ca, Cb) NCa;
1642 typedef POLY_CAST (Cb, Ca) NCb;
1643 typedef POLY_BINARY_COEFF (Ca, Cb) C;
1644 typedef POLY_INT_TYPE (Ca) ICa;
1646 for (unsigned int i = 1; i < N; ++i)
1647 if (a.coeffs[i] != ICa (0))
1649 C lcm = least_common_multiple (NCa (a.coeffs[i]), NCb (b.coeffs[i]));
1650 C amul = lcm / a.coeffs[i];
1651 C bmul = lcm / b.coeffs[i];
1652 for (unsigned int j = 0; j < N; ++j)
1653 gcc_checking_assert (a.coeffs[j] * amul == b.coeffs[j] * bmul);
1654 return a * amul;
1656 gcc_unreachable ();
1659 /* Compare A and B for sorting purposes, returning -1 if A should come
1660 before B, 0 if A and B are identical, and 1 if A should come after B.
1661 This is a lexicographical compare of the coefficients in reverse order.
1663 A consequence of this is that all constant sizes come before all
1664 non-constant ones, regardless of magnitude (since a size is never
1665 negative). This is what most callers want. For example, when laying
1666 data out on the stack, it's better to keep all the constant-sized
1667 data together so that it can be accessed as a constant offset from a
1668 single base. */
1670 template<unsigned int N, typename Ca, typename Cb>
1671 inline int
1672 compare_sizes_for_sort (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b)
1674 for (unsigned int i = N; i-- > 0; )
1675 if (a.coeffs[i] != b.coeffs[i])
1676 return a.coeffs[i] < b.coeffs[i] ? -1 : 1;
1677 return 0;
1680 /* Return true if we can calculate VALUE & (ALIGN - 1) at compile time. */
1682 template<unsigned int N, typename Ca, typename Cb>
1683 inline bool
1684 can_align_p (const poly_int<N, Ca> &value, Cb align)
1686 for (unsigned int i = 1; i < N; i++)
1687 if ((value.coeffs[i] & (align - 1)) != 0)
1688 return false;
1689 return true;
1692 /* Return true if we can align VALUE up to the smallest multiple of
1693 ALIGN that is >= VALUE. Store the aligned value in *ALIGNED if so. */
1695 template<unsigned int N, typename Ca, typename Cb>
1696 inline bool
1697 can_align_up (const poly_int<N, Ca> &value, Cb align,
1698 poly_int<N, Ca> *aligned)
1700 if (!can_align_p (value, align))
1701 return false;
1702 *aligned = value + (-value.coeffs[0] & (align - 1));
1703 return true;
1706 /* Return true if we can align VALUE down to the largest multiple of
1707 ALIGN that is <= VALUE. Store the aligned value in *ALIGNED if so. */
1709 template<unsigned int N, typename Ca, typename Cb>
1710 inline bool
1711 can_align_down (const poly_int<N, Ca> &value, Cb align,
1712 poly_int<N, Ca> *aligned)
1714 if (!can_align_p (value, align))
1715 return false;
1716 *aligned = value - (value.coeffs[0] & (align - 1));
1717 return true;
1720 /* Return true if we can align A and B up to the smallest multiples of
1721 ALIGN that are >= A and B respectively, and if doing so gives the
1722 same value. */
1724 template<unsigned int N, typename Ca, typename Cb, typename Cc>
1725 inline bool
1726 known_equal_after_align_up (const poly_int<N, Ca> &a,
1727 const poly_int<N, Cb> &b,
1728 Cc align)
1730 poly_int<N, Ca> aligned_a;
1731 poly_int<N, Cb> aligned_b;
1732 return (can_align_up (a, align, &aligned_a)
1733 && can_align_up (b, align, &aligned_b)
1734 && known_eq (aligned_a, aligned_b));
1737 /* Return true if we can align A and B down to the largest multiples of
1738 ALIGN that are <= A and B respectively, and if doing so gives the
1739 same value. */
1741 template<unsigned int N, typename Ca, typename Cb, typename Cc>
1742 inline bool
1743 known_equal_after_align_down (const poly_int<N, Ca> &a,
1744 const poly_int<N, Cb> &b,
1745 Cc align)
1747 poly_int<N, Ca> aligned_a;
1748 poly_int<N, Cb> aligned_b;
1749 return (can_align_down (a, align, &aligned_a)
1750 && can_align_down (b, align, &aligned_b)
1751 && known_eq (aligned_a, aligned_b));
1754 /* Assert that we can align VALUE to ALIGN at compile time and return
1755 the smallest multiple of ALIGN that is >= VALUE.
1757 NOTE: When using this function, please add a comment above the call
1758 explaining why we know the non-constant coefficients must already
1759 be a multiple of ALIGN. */
1761 template<unsigned int N, typename Ca, typename Cb>
1762 inline poly_int<N, Ca>
1763 force_align_up (const poly_int<N, Ca> &value, Cb align)
1765 gcc_checking_assert (can_align_p (value, align));
1766 return value + (-value.coeffs[0] & (align - 1));
1769 /* Assert that we can align VALUE to ALIGN at compile time and return
1770 the largest multiple of ALIGN that is <= VALUE.
1772 NOTE: When using this function, please add a comment above the call
1773 explaining why we know the non-constant coefficients must already
1774 be a multiple of ALIGN. */
1776 template<unsigned int N, typename Ca, typename Cb>
1777 inline poly_int<N, Ca>
1778 force_align_down (const poly_int<N, Ca> &value, Cb align)
1780 gcc_checking_assert (can_align_p (value, align));
1781 return value - (value.coeffs[0] & (align - 1));
1784 /* Return a value <= VALUE that is a multiple of ALIGN. It will be the
1785 greatest such value for some indeterminate values but not necessarily
1786 for all. */
1788 template<unsigned int N, typename Ca, typename Cb>
1789 inline poly_int<N, Ca>
1790 aligned_lower_bound (const poly_int<N, Ca> &value, Cb align)
1792 poly_int<N, Ca> r;
1793 for (unsigned int i = 0; i < N; i++)
1794 /* This form copes correctly with more type combinations than
1795 value.coeffs[i] & -align would. */
1796 POLY_SET_COEFF (Ca, r, i, (value.coeffs[i]
1797 - (value.coeffs[i] & (align - 1))));
1798 return r;
1801 /* Return a value >= VALUE that is a multiple of ALIGN. It will be the
1802 least such value for some indeterminate values but not necessarily
1803 for all. */
1805 template<unsigned int N, typename Ca, typename Cb>
1806 inline poly_int<N, Ca>
1807 aligned_upper_bound (const poly_int<N, Ca> &value, Cb align)
1809 poly_int<N, Ca> r;
1810 for (unsigned int i = 0; i < N; i++)
1811 POLY_SET_COEFF (Ca, r, i, (value.coeffs[i]
1812 + (-value.coeffs[i] & (align - 1))));
1813 return r;
1816 /* Assert that we can align VALUE to ALIGN at compile time. Align VALUE
1817 down to the largest multiple of ALIGN that is <= VALUE, then divide by
1818 ALIGN.
1820 NOTE: When using this function, please add a comment above the call
1821 explaining why we know the non-constant coefficients must already
1822 be a multiple of ALIGN. */
1824 template<unsigned int N, typename Ca, typename Cb>
1825 inline poly_int<N, Ca>
1826 force_align_down_and_div (const poly_int<N, Ca> &value, Cb align)
1828 gcc_checking_assert (can_align_p (value, align));
1830 poly_int<N, Ca> r;
1831 POLY_SET_COEFF (Ca, r, 0, ((value.coeffs[0]
1832 - (value.coeffs[0] & (align - 1)))
1833 / align));
1834 if (N >= 2)
1835 for (unsigned int i = 1; i < N; i++)
1836 POLY_SET_COEFF (Ca, r, i, value.coeffs[i] / align);
1837 return r;
1840 /* Assert that we can align VALUE to ALIGN at compile time. Align VALUE
1841 up to the smallest multiple of ALIGN that is >= VALUE, then divide by
1842 ALIGN.
1844 NOTE: When using this function, please add a comment above the call
1845 explaining why we know the non-constant coefficients must already
1846 be a multiple of ALIGN. */
1848 template<unsigned int N, typename Ca, typename Cb>
1849 inline poly_int<N, Ca>
1850 force_align_up_and_div (const poly_int<N, Ca> &value, Cb align)
1852 gcc_checking_assert (can_align_p (value, align));
1854 poly_int<N, Ca> r;
1855 POLY_SET_COEFF (Ca, r, 0, ((value.coeffs[0]
1856 + (-value.coeffs[0] & (align - 1)))
1857 / align));
1858 if (N >= 2)
1859 for (unsigned int i = 1; i < N; i++)
1860 POLY_SET_COEFF (Ca, r, i, value.coeffs[i] / align);
1861 return r;
1864 /* Return true if we know at compile time the difference between VALUE
1865 and the equal or preceding multiple of ALIGN. Store the value in
1866 *MISALIGN if so. */
1868 template<unsigned int N, typename Ca, typename Cb, typename Cm>
1869 inline bool
1870 known_misalignment (const poly_int<N, Ca> &value, Cb align, Cm *misalign)
1872 gcc_checking_assert (align != 0);
1873 if (!can_align_p (value, align))
1874 return false;
1875 *misalign = value.coeffs[0] & (align - 1);
1876 return true;
1879 /* Return X & (Y - 1), asserting that this value is known. Please add
1880 an a comment above callers to this function to explain why the condition
1881 is known to hold. */
1883 template<unsigned int N, typename Ca, typename Cb>
1884 inline POLY_BINARY_COEFF (Ca, Ca)
1885 force_get_misalignment (const poly_int<N, Ca> &a, Cb align)
1887 gcc_checking_assert (can_align_p (a, align));
1888 return a.coeffs[0] & (align - 1);
1891 /* Return the maximum alignment that A is known to have. Return 0
1892 if A is known to be zero. */
1894 template<unsigned int N, typename Ca>
1895 inline POLY_BINARY_COEFF (Ca, Ca)
1896 known_alignment (const poly_int<N, Ca> &a)
1898 typedef POLY_BINARY_COEFF (Ca, Ca) C;
1899 C r = a.coeffs[0];
1900 for (unsigned int i = 1; i < N; ++i)
1901 r |= a.coeffs[i];
1902 return r & -r;
1905 /* Return true if we can compute A | B at compile time, storing the
1906 result in RES if so. */
1908 template<unsigned int N, typename Ca, typename Cb, typename Cr>
1909 inline typename if_nonpoly<Cb, bool>::type
1910 can_ior_p (const poly_int<N, Ca> &a, Cb b, Cr *result)
1912 /* Coefficients 1 and above must be a multiple of something greater
1913 than B. */
1914 typedef POLY_INT_TYPE (Ca) int_type;
1915 if (N >= 2)
1916 for (unsigned int i = 1; i < N; i++)
1917 if ((-(a.coeffs[i] & -a.coeffs[i]) & b) != int_type (0))
1918 return false;
1919 *result = a;
1920 result->coeffs[0] |= b;
1921 return true;
1924 /* Return true if A is a constant multiple of B, storing the
1925 multiple in *MULTIPLE if so. */
1927 template<unsigned int N, typename Ca, typename Cb, typename Cm>
1928 inline typename if_nonpoly<Cb, bool>::type
1929 constant_multiple_p (const poly_int<N, Ca> &a, Cb b, Cm *multiple)
1931 typedef POLY_CAST (Ca, Cb) NCa;
1932 typedef POLY_CAST (Cb, Ca) NCb;
1934 /* Do the modulus before the constant check, to catch divide by
1935 zero errors. */
1936 if (NCa (a.coeffs[0]) % NCb (b) != 0 || !a.is_constant ())
1937 return false;
1938 *multiple = NCa (a.coeffs[0]) / NCb (b);
1939 return true;
1942 template<unsigned int N, typename Ca, typename Cb, typename Cm>
1943 inline typename if_nonpoly<Ca, bool>::type
1944 constant_multiple_p (Ca a, const poly_int<N, Cb> &b, Cm *multiple)
1946 typedef POLY_CAST (Ca, Cb) NCa;
1947 typedef POLY_CAST (Cb, Ca) NCb;
1948 typedef POLY_INT_TYPE (Ca) int_type;
1950 /* Do the modulus before the constant check, to catch divide by
1951 zero errors. */
1952 if (NCa (a) % NCb (b.coeffs[0]) != 0
1953 || (a != int_type (0) && !b.is_constant ()))
1954 return false;
1955 *multiple = NCa (a) / NCb (b.coeffs[0]);
1956 return true;
1959 template<unsigned int N, typename Ca, typename Cb, typename Cm>
1960 inline bool
1961 constant_multiple_p (const poly_int<N, Ca> &a,
1962 const poly_int<N, Cb> &b, Cm *multiple)
1964 typedef POLY_CAST (Ca, Cb) NCa;
1965 typedef POLY_CAST (Cb, Ca) NCb;
1966 typedef POLY_INT_TYPE (Ca) ICa;
1967 typedef POLY_INT_TYPE (Cb) ICb;
1968 typedef POLY_BINARY_COEFF (Ca, Cb) C;
1970 if (NCa (a.coeffs[0]) % NCb (b.coeffs[0]) != 0)
1971 return false;
1973 C r = NCa (a.coeffs[0]) / NCb (b.coeffs[0]);
1974 for (unsigned int i = 1; i < N; ++i)
1975 if (b.coeffs[i] == ICb (0)
1976 ? a.coeffs[i] != ICa (0)
1977 : (NCa (a.coeffs[i]) % NCb (b.coeffs[i]) != 0
1978 || NCa (a.coeffs[i]) / NCb (b.coeffs[i]) != r))
1979 return false;
1981 *multiple = r;
1982 return true;
1985 /* Return true if A is a constant multiple of B. */
1987 template<unsigned int N, typename Ca, typename Cb>
1988 inline typename if_nonpoly<Cb, bool>::type
1989 constant_multiple_p (const poly_int<N, Ca> &a, Cb b)
1991 typedef POLY_CAST (Ca, Cb) NCa;
1992 typedef POLY_CAST (Cb, Ca) NCb;
1994 /* Do the modulus before the constant check, to catch divide by
1995 zero errors. */
1996 if (NCa (a.coeffs[0]) % NCb (b) != 0 || !a.is_constant ())
1997 return false;
1998 return true;
2001 template<unsigned int N, typename Ca, typename Cb>
2002 inline typename if_nonpoly<Ca, bool>::type
2003 constant_multiple_p (Ca a, const poly_int<N, Cb> &b)
2005 typedef POLY_CAST (Ca, Cb) NCa;
2006 typedef POLY_CAST (Cb, Ca) NCb;
2007 typedef POLY_INT_TYPE (Ca) int_type;
2009 /* Do the modulus before the constant check, to catch divide by
2010 zero errors. */
2011 if (NCa (a) % NCb (b.coeffs[0]) != 0
2012 || (a != int_type (0) && !b.is_constant ()))
2013 return false;
2014 return true;
2017 template<unsigned int N, typename Ca, typename Cb>
2018 inline bool
2019 constant_multiple_p (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b)
2021 typedef POLY_CAST (Ca, Cb) NCa;
2022 typedef POLY_CAST (Cb, Ca) NCb;
2023 typedef POLY_INT_TYPE (Ca) ICa;
2024 typedef POLY_INT_TYPE (Cb) ICb;
2025 typedef POLY_BINARY_COEFF (Ca, Cb) C;
2027 if (NCa (a.coeffs[0]) % NCb (b.coeffs[0]) != 0)
2028 return false;
2030 C r = NCa (a.coeffs[0]) / NCb (b.coeffs[0]);
2031 for (unsigned int i = 1; i < N; ++i)
2032 if (b.coeffs[i] == ICb (0)
2033 ? a.coeffs[i] != ICa (0)
2034 : (NCa (a.coeffs[i]) % NCb (b.coeffs[i]) != 0
2035 || NCa (a.coeffs[i]) / NCb (b.coeffs[i]) != r))
2036 return false;
2037 return true;
2041 /* Return true if A is a multiple of B. */
2043 template<typename Ca, typename Cb>
2044 inline typename if_nonpoly2<Ca, Cb, bool>::type
2045 multiple_p (Ca a, Cb b)
2047 return a % b == 0;
2050 /* Return true if A is a (polynomial) multiple of B. */
2052 template<unsigned int N, typename Ca, typename Cb>
2053 inline typename if_nonpoly<Cb, bool>::type
2054 multiple_p (const poly_int<N, Ca> &a, Cb b)
2056 for (unsigned int i = 0; i < N; ++i)
2057 if (a.coeffs[i] % b != 0)
2058 return false;
2059 return true;
2062 /* Return true if A is a (constant) multiple of B. */
2064 template<unsigned int N, typename Ca, typename Cb>
2065 inline typename if_nonpoly<Ca, bool>::type
2066 multiple_p (Ca a, const poly_int<N, Cb> &b)
2068 typedef POLY_INT_TYPE (Ca) int_type;
2070 /* Do the modulus before the constant check, to catch divide by
2071 potential zeros. */
2072 return a % b.coeffs[0] == 0 && (a == int_type (0) || b.is_constant ());
2075 /* Return true if A is a (polynomial) multiple of B. This handles cases
2076 where either B is constant or the multiple is constant. */
2078 template<unsigned int N, typename Ca, typename Cb>
2079 inline bool
2080 multiple_p (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b)
2082 if (b.is_constant ())
2083 return multiple_p (a, b.coeffs[0]);
2084 POLY_BINARY_COEFF (Ca, Ca) tmp;
2085 return constant_multiple_p (a, b, &tmp);
2088 /* Return true if A is a (constant) multiple of B, storing the
2089 multiple in *MULTIPLE if so. */
2091 template<typename Ca, typename Cb, typename Cm>
2092 inline typename if_nonpoly2<Ca, Cb, bool>::type
2093 multiple_p (Ca a, Cb b, Cm *multiple)
2095 if (a % b != 0)
2096 return false;
2097 *multiple = a / b;
2098 return true;
2101 /* Return true if A is a (polynomial) multiple of B, storing the
2102 multiple in *MULTIPLE if so. */
2104 template<unsigned int N, typename Ca, typename Cb, typename Cm>
2105 inline typename if_nonpoly<Cb, bool>::type
2106 multiple_p (const poly_int<N, Ca> &a, Cb b, poly_int<N, Cm> *multiple)
2108 if (!multiple_p (a, b))
2109 return false;
2110 for (unsigned int i = 0; i < N; ++i)
2111 multiple->coeffs[i] = a.coeffs[i] / b;
2112 return true;
2115 /* Return true if B is a constant and A is a (constant) multiple of B,
2116 storing the multiple in *MULTIPLE if so. */
2118 template<unsigned int N, typename Ca, typename Cb, typename Cm>
2119 inline typename if_nonpoly<Ca, bool>::type
2120 multiple_p (Ca a, const poly_int<N, Cb> &b, Cm *multiple)
2122 typedef POLY_CAST (Ca, Cb) NCa;
2124 /* Do the modulus before the constant check, to catch divide by
2125 potential zeros. */
2126 if (a % b.coeffs[0] != 0 || (NCa (a) != 0 && !b.is_constant ()))
2127 return false;
2128 *multiple = a / b.coeffs[0];
2129 return true;
2132 /* Return true if A is a (polynomial) multiple of B, storing the
2133 multiple in *MULTIPLE if so. This handles cases where either
2134 B is constant or the multiple is constant. */
2136 template<unsigned int N, typename Ca, typename Cb, typename Cm>
2137 inline bool
2138 multiple_p (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b,
2139 poly_int<N, Cm> *multiple)
2141 if (b.is_constant ())
2142 return multiple_p (a, b.coeffs[0], multiple);
2143 return constant_multiple_p (a, b, multiple);
2146 /* Return A / B, given that A is known to be a multiple of B. */
2148 template<unsigned int N, typename Ca, typename Cb>
2149 inline POLY_CONST_RESULT (N, Ca, Cb)
2150 exact_div (const poly_int<N, Ca> &a, Cb b)
2152 typedef POLY_CONST_COEFF (Ca, Cb) C;
2153 poly_int<N, C> r;
2154 for (unsigned int i = 0; i < N; i++)
2156 gcc_checking_assert (a.coeffs[i] % b == 0);
2157 POLY_SET_COEFF (C, r, i, a.coeffs[i] / b);
2159 return r;
2162 /* Return A / B, given that A is known to be a multiple of B. */
2164 template<unsigned int N, typename Ca, typename Cb>
2165 inline POLY_POLY_RESULT (N, Ca, Cb)
2166 exact_div (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b)
2168 if (b.is_constant ())
2169 return exact_div (a, b.coeffs[0]);
2171 typedef POLY_CAST (Ca, Cb) NCa;
2172 typedef POLY_CAST (Cb, Ca) NCb;
2173 typedef POLY_BINARY_COEFF (Ca, Cb) C;
2174 typedef POLY_INT_TYPE (Cb) int_type;
2176 gcc_checking_assert (a.coeffs[0] % b.coeffs[0] == 0);
2177 C r = NCa (a.coeffs[0]) / NCb (b.coeffs[0]);
2178 for (unsigned int i = 1; i < N; ++i)
2179 gcc_checking_assert (b.coeffs[i] == int_type (0)
2180 ? a.coeffs[i] == int_type (0)
2181 : (a.coeffs[i] % b.coeffs[i] == 0
2182 && NCa (a.coeffs[i]) / NCb (b.coeffs[i]) == r));
2184 return r;
2187 /* Return true if there is some constant Q and polynomial r such that:
2189 (1) a = b * Q + r
2190 (2) |b * Q| <= |a|
2191 (3) |r| < |b|
2193 Store the value Q in *QUOTIENT if so. */
2195 template<unsigned int N, typename Ca, typename Cb, typename Cq>
2196 inline typename if_nonpoly2<Cb, Cq, bool>::type
2197 can_div_trunc_p (const poly_int<N, Ca> &a, Cb b, Cq *quotient)
2199 typedef POLY_CAST (Ca, Cb) NCa;
2200 typedef POLY_CAST (Cb, Ca) NCb;
2202 /* Do the division before the constant check, to catch divide by
2203 zero errors. */
2204 Cq q = NCa (a.coeffs[0]) / NCb (b);
2205 if (!a.is_constant ())
2206 return false;
2207 *quotient = q;
2208 return true;
2211 template<unsigned int N, typename Ca, typename Cb, typename Cq>
2212 inline typename if_nonpoly<Cq, bool>::type
2213 can_div_trunc_p (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b,
2214 Cq *quotient)
2216 /* We can calculate Q from the case in which the indeterminates
2217 are zero. */
2218 typedef POLY_CAST (Ca, Cb) NCa;
2219 typedef POLY_CAST (Cb, Ca) NCb;
2220 typedef POLY_INT_TYPE (Ca) ICa;
2221 typedef POLY_INT_TYPE (Cb) ICb;
2222 typedef POLY_BINARY_COEFF (Ca, Cb) C;
2223 C q = NCa (a.coeffs[0]) / NCb (b.coeffs[0]);
2225 /* Check the other coefficients and record whether the division is exact.
2226 The only difficult case is when it isn't. If we require a and b to
2227 ordered wrt zero, there can be no two coefficients of the same value
2228 that have opposite signs. This means that:
2230 |a| = |a0| + |a1 * x1| + |a2 * x2| + ...
2231 |b| = |b0| + |b1 * x1| + |b2 * x2| + ...
2233 The Q we've just calculated guarantees:
2235 |b0 * Q| <= |a0|
2236 |a0 - b0 * Q| < |b0|
2238 and so:
2240 (2) |b * Q| <= |a|
2242 is satisfied if:
2244 |bi * xi * Q| <= |ai * xi|
2246 for each i in [1, N]. This is trivially true when xi is zero.
2247 When it isn't we need:
2249 (2') |bi * Q| <= |ai|
2251 r is calculated as:
2253 r = r0 + r1 * x1 + r2 * x2 + ...
2254 where ri = ai - bi * Q
2256 Restricting to ordered a and b also guarantees that no two ris
2257 have opposite signs, so we have:
2259 |r| = |r0| + |r1 * x1| + |r2 * x2| + ...
2261 We know from the calculation of Q that |r0| < |b0|, so:
2263 (3) |r| < |b|
2265 is satisfied if:
2267 (3') |ai - bi * Q| <= |bi|
2269 for each i in [1, N]. */
2270 bool rem_p = NCa (a.coeffs[0]) % NCb (b.coeffs[0]) != 0;
2271 for (unsigned int i = 1; i < N; ++i)
2273 if (b.coeffs[i] == ICb (0))
2275 /* For bi == 0 we simply need: (3') |ai| == 0. */
2276 if (a.coeffs[i] != ICa (0))
2277 return false;
2279 else
2281 /* The only unconditional arithmetic that we can do on ai,
2282 bi and Q is ai / bi and ai % bi. (ai == minimum int and
2283 bi == -1 would be UB in the caller.) Anything else runs
2284 the risk of overflow. */
2285 auto qi = NCa (a.coeffs[i]) / NCb (b.coeffs[i]);
2286 auto ri = NCa (a.coeffs[i]) % NCb (b.coeffs[i]);
2287 /* (2') and (3') are satisfied when ai /[trunc] bi == q.
2288 So is the stricter condition |ai - bi * Q| < |bi|. */
2289 if (qi == q)
2290 rem_p |= (ri != 0);
2291 /* The only other case is when:
2293 |bi * Q| + |bi| = |ai| (for (2'))
2294 and |ai - bi * Q| = |bi| (for (3'))
2296 The first is equivalent to |bi|(|Q| + 1) == |ai|.
2297 The second requires ai == bi * (Q + 1) or ai == bi * (Q - 1). */
2298 else if (ri != 0)
2299 return false;
2300 else if (q <= 0 && qi < q && qi + 1 == q)
2302 else if (q >= 0 && qi > q && qi - 1 == q)
2304 else
2305 return false;
2309 /* If the division isn't exact, require both values to be ordered wrt 0,
2310 so that we can guarantee conditions (2) and (3) for all indeterminate
2311 values. */
2312 if (rem_p && (!ordered_p (a, ICa (0)) || !ordered_p (b, ICb (0))))
2313 return false;
2315 *quotient = q;
2316 return true;
2319 /* Likewise, but also store r in *REMAINDER. */
2321 template<unsigned int N, typename Ca, typename Cb, typename Cq, typename Cr>
2322 inline typename if_nonpoly<Cq, bool>::type
2323 can_div_trunc_p (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b,
2324 Cq *quotient, Cr *remainder)
2326 if (!can_div_trunc_p (a, b, quotient))
2327 return false;
2328 *remainder = a - *quotient * b;
2329 return true;
2332 /* Return true if there is some polynomial q and constant R such that:
2334 (1) a = B * q + R
2335 (2) |B * q| <= |a|
2336 (3) |R| < |B|
2338 Store the value q in *QUOTIENT if so. */
2340 template<unsigned int N, typename Ca, typename Cb, typename Cq>
2341 inline typename if_nonpoly<Cb, bool>::type
2342 can_div_trunc_p (const poly_int<N, Ca> &a, Cb b,
2343 poly_int<N, Cq> *quotient)
2345 /* The remainder must be constant. */
2346 for (unsigned int i = 1; i < N; ++i)
2347 if (a.coeffs[i] % b != 0)
2348 return false;
2349 for (unsigned int i = 0; i < N; ++i)
2350 quotient->coeffs[i] = a.coeffs[i] / b;
2351 return true;
2354 /* Likewise, but also store R in *REMAINDER. */
2356 template<unsigned int N, typename Ca, typename Cb, typename Cq, typename Cr>
2357 inline typename if_nonpoly<Cb, bool>::type
2358 can_div_trunc_p (const poly_int<N, Ca> &a, Cb b,
2359 poly_int<N, Cq> *quotient, Cr *remainder)
2361 if (!can_div_trunc_p (a, b, quotient))
2362 return false;
2363 *remainder = a.coeffs[0] % b;
2364 return true;
2367 /* Return true if we can compute A / B at compile time, rounding towards zero.
2368 Store the result in QUOTIENT if so.
2370 This handles cases in which either B is constant or the result is
2371 constant. */
2373 template<unsigned int N, typename Ca, typename Cb, typename Cq>
2374 inline bool
2375 can_div_trunc_p (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b,
2376 poly_int<N, Cq> *quotient)
2378 if (b.is_constant ())
2379 return can_div_trunc_p (a, b.coeffs[0], quotient);
2380 if (!can_div_trunc_p (a, b, &quotient->coeffs[0]))
2381 return false;
2382 for (unsigned int i = 1; i < N; ++i)
2383 quotient->coeffs[i] = 0;
2384 return true;
2387 /* Return true if there is some constant Q and polynomial r such that:
2389 (1) a = b * Q + r
2390 (2) |a| <= |b * Q|
2391 (3) |r| < |b|
2393 Store the value Q in *QUOTIENT if so. */
2395 template<unsigned int N, typename Ca, typename Cb, typename Cq>
2396 inline typename if_nonpoly<Cq, bool>::type
2397 can_div_away_from_zero_p (const poly_int<N, Ca> &a, const poly_int<N, Cb> &b,
2398 Cq *quotient)
2400 if (!can_div_trunc_p (a, b, quotient))
2401 return false;
2402 if (maybe_ne (*quotient * b, a))
2403 *quotient += (*quotient < 0 ? -1 : 1);
2404 return true;
2407 /* Use print_dec to print VALUE to FILE, where SGN is the sign
2408 of the values. */
2410 template<unsigned int N, typename C>
2411 void
2412 print_dec (const poly_int<N, C> &value, FILE *file, signop sgn)
2414 if (value.is_constant ())
2415 print_dec (value.coeffs[0], file, sgn);
2416 else
2418 fprintf (file, "[");
2419 for (unsigned int i = 0; i < N; ++i)
2421 print_dec (value.coeffs[i], file, sgn);
2422 fputc (i == N - 1 ? ']' : ',', file);
2427 /* Likewise without the signop argument, for coefficients that have an
2428 inherent signedness. */
2430 template<unsigned int N, typename C>
2431 void
2432 print_dec (const poly_int<N, C> &value, FILE *file)
2434 STATIC_ASSERT (poly_coeff_traits<C>::signedness >= 0);
2435 print_dec (value, file,
2436 poly_coeff_traits<C>::signedness ? SIGNED : UNSIGNED);
2439 /* Use print_hex to print VALUE to FILE. */
2441 template<unsigned int N, typename C>
2442 void
2443 print_hex (const poly_int<N, C> &value, FILE *file)
2445 if (value.is_constant ())
2446 print_hex (value.coeffs[0], file);
2447 else
2449 fprintf (file, "[");
2450 for (unsigned int i = 0; i < N; ++i)
2452 print_hex (value.coeffs[i], file);
2453 fputc (i == N - 1 ? ']' : ',', file);
2458 /* Helper for calculating the distance between two points P1 and P2,
2459 in cases where known_le (P1, P2). T1 and T2 are the types of the
2460 two positions, in either order. The coefficients of P2 - P1 have
2461 type unsigned HOST_WIDE_INT if the coefficients of both T1 and T2
2462 have C++ primitive type, otherwise P2 - P1 has its usual
2463 wide-int-based type.
2465 The actual subtraction should look something like this:
2467 typedef poly_span_traits<T1, T2> span_traits;
2468 span_traits::cast (P2) - span_traits::cast (P1)
2470 Applying the cast before the subtraction avoids undefined overflow
2471 for signed T1 and T2.
2473 The implementation of the cast tries to avoid unnecessary arithmetic
2474 or copying. */
2475 template<typename T1, typename T2,
2476 typename Res = POLY_BINARY_COEFF (POLY_BINARY_COEFF (T1, T2),
2477 unsigned HOST_WIDE_INT)>
2478 struct poly_span_traits
2480 template<typename T>
2481 static const T &cast (const T &x) { return x; }
2484 template<typename T1, typename T2>
2485 struct poly_span_traits<T1, T2, unsigned HOST_WIDE_INT>
2487 template<typename T>
2488 static typename if_nonpoly<T, unsigned HOST_WIDE_INT>::type
2489 cast (const T &x) { return x; }
2491 template<unsigned int N, typename T>
2492 static poly_int<N, unsigned HOST_WIDE_INT>
2493 cast (const poly_int<N, T> &x) { return x; }
2496 /* Return true if SIZE represents a known size, assuming that all-ones
2497 indicates an unknown size. */
2499 template<typename T>
2500 inline bool
2501 known_size_p (const T &a)
2503 return maybe_ne (a, POLY_INT_TYPE (T) (-1));
2506 /* Return true if range [POS, POS + SIZE) might include VAL.
2507 SIZE can be the special value -1, in which case the range is
2508 open-ended. */
2510 template<typename T1, typename T2, typename T3>
2511 inline bool
2512 maybe_in_range_p (const T1 &val, const T2 &pos, const T3 &size)
2514 typedef poly_span_traits<T1, T2> start_span;
2515 typedef poly_span_traits<T3, T3> size_span;
2516 if (known_lt (val, pos))
2517 return false;
2518 if (!known_size_p (size))
2519 return true;
2520 if ((poly_int_traits<T1>::num_coeffs > 1
2521 || poly_int_traits<T2>::num_coeffs > 1)
2522 && maybe_lt (val, pos))
2523 /* In this case we don't know whether VAL >= POS is true at compile
2524 time, so we can't prove that VAL >= POS + SIZE. */
2525 return true;
2526 return maybe_lt (start_span::cast (val) - start_span::cast (pos),
2527 size_span::cast (size));
2530 /* Return true if range [POS, POS + SIZE) is known to include VAL.
2531 SIZE can be the special value -1, in which case the range is
2532 open-ended. */
2534 template<typename T1, typename T2, typename T3>
2535 inline bool
2536 known_in_range_p (const T1 &val, const T2 &pos, const T3 &size)
2538 typedef poly_span_traits<T1, T2> start_span;
2539 typedef poly_span_traits<T3, T3> size_span;
2540 return (known_size_p (size)
2541 && known_ge (val, pos)
2542 && known_lt (start_span::cast (val) - start_span::cast (pos),
2543 size_span::cast (size)));
2546 /* Return true if the two ranges [POS1, POS1 + SIZE1) and [POS2, POS2 + SIZE2)
2547 might overlap. SIZE1 and/or SIZE2 can be the special value -1, in which
2548 case the range is open-ended. */
2550 template<typename T1, typename T2, typename T3, typename T4>
2551 inline bool
2552 ranges_maybe_overlap_p (const T1 &pos1, const T2 &size1,
2553 const T3 &pos2, const T4 &size2)
2555 if (maybe_in_range_p (pos2, pos1, size1))
2556 return maybe_ne (size2, POLY_INT_TYPE (T4) (0));
2557 if (maybe_in_range_p (pos1, pos2, size2))
2558 return maybe_ne (size1, POLY_INT_TYPE (T2) (0));
2559 return false;
2562 /* Return true if the two ranges [POS1, POS1 + SIZE1) and [POS2, POS2 + SIZE2)
2563 are known to overlap. SIZE1 and/or SIZE2 can be the special value -1,
2564 in which case the range is open-ended. */
2566 template<typename T1, typename T2, typename T3, typename T4>
2567 inline bool
2568 ranges_known_overlap_p (const T1 &pos1, const T2 &size1,
2569 const T3 &pos2, const T4 &size2)
2571 typedef poly_span_traits<T1, T3> start_span;
2572 typedef poly_span_traits<T2, T2> size1_span;
2573 typedef poly_span_traits<T4, T4> size2_span;
2574 /* known_gt (POS1 + SIZE1, POS2) [infinite precision]
2575 --> known_gt (SIZE1, POS2 - POS1) [infinite precision]
2576 --> known_gt (SIZE1, POS2 - lower_bound (POS1, POS2)) [infinite precision]
2577 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ always nonnegative
2578 --> known_gt (SIZE1, span1::cast (POS2 - lower_bound (POS1, POS2))).
2580 Using the saturating subtraction enforces that SIZE1 must be
2581 nonzero, since known_gt (0, x) is false for all nonnegative x.
2582 If POS2.coeff[I] < POS1.coeff[I] for some I > 0, increasing
2583 indeterminate number I makes the unsaturated condition easier to
2584 satisfy, so using a saturated coefficient of zero tests the case in
2585 which the indeterminate is zero (the minimum value). */
2586 return (known_size_p (size1)
2587 && known_size_p (size2)
2588 && known_lt (start_span::cast (pos2)
2589 - start_span::cast (lower_bound (pos1, pos2)),
2590 size1_span::cast (size1))
2591 && known_lt (start_span::cast (pos1)
2592 - start_span::cast (lower_bound (pos1, pos2)),
2593 size2_span::cast (size2)));
2596 /* Return true if range [POS1, POS1 + SIZE1) is known to be a subrange of
2597 [POS2, POS2 + SIZE2). SIZE1 and/or SIZE2 can be the special value -1,
2598 in which case the range is open-ended. */
2600 template<typename T1, typename T2, typename T3, typename T4>
2601 inline bool
2602 known_subrange_p (const T1 &pos1, const T2 &size1,
2603 const T3 &pos2, const T4 &size2)
2605 typedef typename poly_int_traits<T2>::coeff_type C2;
2606 typedef poly_span_traits<T1, T3> start_span;
2607 typedef poly_span_traits<T2, T4> size_span;
2608 return (known_gt (size1, POLY_INT_TYPE (T2) (0))
2609 && (poly_coeff_traits<C2>::signedness > 0
2610 || known_size_p (size1))
2611 && known_size_p (size2)
2612 && known_ge (pos1, pos2)
2613 && known_le (size1, size2)
2614 && known_le (start_span::cast (pos1) - start_span::cast (pos2),
2615 size_span::cast (size2) - size_span::cast (size1)));
2618 /* Return true if the endpoint of the range [POS, POS + SIZE) can be
2619 stored in a T, or if SIZE is the special value -1, which makes the
2620 range open-ended. */
2622 template<typename T>
2623 inline typename if_nonpoly<T, bool>::type
2624 endpoint_representable_p (const T &pos, const T &size)
2626 return (!known_size_p (size)
2627 || pos <= poly_coeff_traits<T>::max_value - size);
2630 template<unsigned int N, typename C>
2631 inline bool
2632 endpoint_representable_p (const poly_int<N, C> &pos,
2633 const poly_int<N, C> &size)
2635 if (known_size_p (size))
2636 for (unsigned int i = 0; i < N; ++i)
2637 if (pos.coeffs[i] > poly_coeff_traits<C>::max_value - size.coeffs[i])
2638 return false;
2639 return true;
2642 template<unsigned int N, typename C>
2643 void
2644 gt_ggc_mx (poly_int<N, C> *)
2648 template<unsigned int N, typename C>
2649 void
2650 gt_pch_nx (poly_int<N, C> *)
2654 template<unsigned int N, typename C>
2655 void
2656 gt_pch_nx (poly_int<N, C> *, gt_pointer_operator, void *)
2660 #undef POLY_SET_COEFF
2661 #undef POLY_INT_TYPE
2662 #undef POLY_BINARY_COEFF
2663 #undef CONST_CONST_RESULT
2664 #undef POLY_CONST_RESULT
2665 #undef CONST_POLY_RESULT
2666 #undef POLY_POLY_RESULT
2667 #undef POLY_CONST_COEFF
2668 #undef CONST_POLY_COEFF
2669 #undef POLY_POLY_COEFF
2671 #endif