[AArch64 costs 18/18] Dump a message if we are unable to cost an insn.
[official-gcc.git] / gcc / explow.c
blobbc97c964e6136ab4bd5e17c9894aba36f2ec4454
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "stor-layout.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "except.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "libfuncs.h"
36 #include "hard-reg-set.h"
37 #include "insn-config.h"
38 #include "ggc.h"
39 #include "recog.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "common/common-target.h"
43 #include "output.h"
45 static rtx break_out_memory_refs (rtx);
48 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
50 HOST_WIDE_INT
51 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
53 int width = GET_MODE_PRECISION (mode);
55 /* You want to truncate to a _what_? */
56 gcc_assert (SCALAR_INT_MODE_P (mode));
58 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
59 if (mode == BImode)
60 return c & 1 ? STORE_FLAG_VALUE : 0;
62 /* Sign-extend for the requested mode. */
64 if (width < HOST_BITS_PER_WIDE_INT)
66 HOST_WIDE_INT sign = 1;
67 sign <<= width - 1;
68 c &= (sign << 1) - 1;
69 c ^= sign;
70 c -= sign;
73 return c;
76 /* Return an rtx for the sum of X and the integer C, given that X has
77 mode MODE. */
79 rtx
80 plus_constant (enum machine_mode mode, rtx x, HOST_WIDE_INT c)
82 RTX_CODE code;
83 rtx y;
84 rtx tem;
85 int all_constant = 0;
87 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
89 if (c == 0)
90 return x;
92 restart:
94 code = GET_CODE (x);
95 y = x;
97 switch (code)
99 CASE_CONST_SCALAR_INT:
100 return immed_wide_int_const (wi::add (std::make_pair (x, mode), c),
101 mode);
102 case MEM:
103 /* If this is a reference to the constant pool, try replacing it with
104 a reference to a new constant. If the resulting address isn't
105 valid, don't return it because we have no way to validize it. */
106 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
107 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
109 tem = plus_constant (mode, get_pool_constant (XEXP (x, 0)), c);
110 tem = force_const_mem (GET_MODE (x), tem);
111 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
112 return tem;
114 break;
116 case CONST:
117 /* If adding to something entirely constant, set a flag
118 so that we can add a CONST around the result. */
119 x = XEXP (x, 0);
120 all_constant = 1;
121 goto restart;
123 case SYMBOL_REF:
124 case LABEL_REF:
125 all_constant = 1;
126 break;
128 case PLUS:
129 /* The interesting case is adding the integer to a sum. Look
130 for constant term in the sum and combine with C. For an
131 integer constant term or a constant term that is not an
132 explicit integer, we combine or group them together anyway.
134 We may not immediately return from the recursive call here, lest
135 all_constant gets lost. */
137 if (CONSTANT_P (XEXP (x, 1)))
139 x = gen_rtx_PLUS (mode, XEXP (x, 0),
140 plus_constant (mode, XEXP (x, 1), c));
141 c = 0;
143 else if (find_constant_term_loc (&y))
145 /* We need to be careful since X may be shared and we can't
146 modify it in place. */
147 rtx copy = copy_rtx (x);
148 rtx *const_loc = find_constant_term_loc (&copy);
150 *const_loc = plus_constant (mode, *const_loc, c);
151 x = copy;
152 c = 0;
154 break;
156 default:
157 break;
160 if (c != 0)
161 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
163 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
164 return x;
165 else if (all_constant)
166 return gen_rtx_CONST (mode, x);
167 else
168 return x;
171 /* If X is a sum, return a new sum like X but lacking any constant terms.
172 Add all the removed constant terms into *CONSTPTR.
173 X itself is not altered. The result != X if and only if
174 it is not isomorphic to X. */
177 eliminate_constant_term (rtx x, rtx *constptr)
179 rtx x0, x1;
180 rtx tem;
182 if (GET_CODE (x) != PLUS)
183 return x;
185 /* First handle constants appearing at this level explicitly. */
186 if (CONST_INT_P (XEXP (x, 1))
187 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
188 XEXP (x, 1)))
189 && CONST_INT_P (tem))
191 *constptr = tem;
192 return eliminate_constant_term (XEXP (x, 0), constptr);
195 tem = const0_rtx;
196 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
197 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
198 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
199 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
200 *constptr, tem))
201 && CONST_INT_P (tem))
203 *constptr = tem;
204 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
207 return x;
210 /* Returns a tree for the size of EXP in bytes. */
212 static tree
213 tree_expr_size (const_tree exp)
215 if (DECL_P (exp)
216 && DECL_SIZE_UNIT (exp) != 0)
217 return DECL_SIZE_UNIT (exp);
218 else
219 return size_in_bytes (TREE_TYPE (exp));
222 /* Return an rtx for the size in bytes of the value of EXP. */
225 expr_size (tree exp)
227 tree size;
229 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
230 size = TREE_OPERAND (exp, 1);
231 else
233 size = tree_expr_size (exp);
234 gcc_assert (size);
235 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
238 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
241 /* Return a wide integer for the size in bytes of the value of EXP, or -1
242 if the size can vary or is larger than an integer. */
244 HOST_WIDE_INT
245 int_expr_size (tree exp)
247 tree size;
249 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
250 size = TREE_OPERAND (exp, 1);
251 else
253 size = tree_expr_size (exp);
254 gcc_assert (size);
257 if (size == 0 || !tree_fits_shwi_p (size))
258 return -1;
260 return tree_to_shwi (size);
263 /* Return a copy of X in which all memory references
264 and all constants that involve symbol refs
265 have been replaced with new temporary registers.
266 Also emit code to load the memory locations and constants
267 into those registers.
269 If X contains no such constants or memory references,
270 X itself (not a copy) is returned.
272 If a constant is found in the address that is not a legitimate constant
273 in an insn, it is left alone in the hope that it might be valid in the
274 address.
276 X may contain no arithmetic except addition, subtraction and multiplication.
277 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
279 static rtx
280 break_out_memory_refs (rtx x)
282 if (MEM_P (x)
283 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
284 && GET_MODE (x) != VOIDmode))
285 x = force_reg (GET_MODE (x), x);
286 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
287 || GET_CODE (x) == MULT)
289 rtx op0 = break_out_memory_refs (XEXP (x, 0));
290 rtx op1 = break_out_memory_refs (XEXP (x, 1));
292 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
293 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
296 return x;
299 /* Given X, a memory address in address space AS' pointer mode, convert it to
300 an address in the address space's address mode, or vice versa (TO_MODE says
301 which way). We take advantage of the fact that pointers are not allowed to
302 overflow by commuting arithmetic operations over conversions so that address
303 arithmetic insns can be used. */
306 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
307 rtx x, addr_space_t as ATTRIBUTE_UNUSED)
309 #ifndef POINTERS_EXTEND_UNSIGNED
310 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
311 return x;
312 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
313 enum machine_mode pointer_mode, address_mode, from_mode;
314 rtx temp;
315 enum rtx_code code;
317 /* If X already has the right mode, just return it. */
318 if (GET_MODE (x) == to_mode)
319 return x;
321 pointer_mode = targetm.addr_space.pointer_mode (as);
322 address_mode = targetm.addr_space.address_mode (as);
323 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
325 /* Here we handle some special cases. If none of them apply, fall through
326 to the default case. */
327 switch (GET_CODE (x))
329 CASE_CONST_SCALAR_INT:
330 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
331 code = TRUNCATE;
332 else if (POINTERS_EXTEND_UNSIGNED < 0)
333 break;
334 else if (POINTERS_EXTEND_UNSIGNED > 0)
335 code = ZERO_EXTEND;
336 else
337 code = SIGN_EXTEND;
338 temp = simplify_unary_operation (code, to_mode, x, from_mode);
339 if (temp)
340 return temp;
341 break;
343 case SUBREG:
344 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
345 && GET_MODE (SUBREG_REG (x)) == to_mode)
346 return SUBREG_REG (x);
347 break;
349 case LABEL_REF:
350 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
351 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
352 return temp;
353 break;
355 case SYMBOL_REF:
356 temp = shallow_copy_rtx (x);
357 PUT_MODE (temp, to_mode);
358 return temp;
359 break;
361 case CONST:
362 return gen_rtx_CONST (to_mode,
363 convert_memory_address_addr_space
364 (to_mode, XEXP (x, 0), as));
365 break;
367 case PLUS:
368 case MULT:
369 /* FIXME: For addition, we used to permute the conversion and
370 addition operation only if one operand is a constant and
371 converting the constant does not change it or if one operand
372 is a constant and we are using a ptr_extend instruction
373 (POINTERS_EXTEND_UNSIGNED < 0) even if the resulting address
374 may overflow/underflow. We relax the condition to include
375 zero-extend (POINTERS_EXTEND_UNSIGNED > 0) since the other
376 parts of the compiler depend on it. See PR 49721.
378 We can always safely permute them if we are making the address
379 narrower. */
380 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
381 || (GET_CODE (x) == PLUS
382 && CONST_INT_P (XEXP (x, 1))
383 && (POINTERS_EXTEND_UNSIGNED != 0
384 || XEXP (x, 1) == convert_memory_address_addr_space
385 (to_mode, XEXP (x, 1), as))))
386 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
387 convert_memory_address_addr_space
388 (to_mode, XEXP (x, 0), as),
389 XEXP (x, 1));
390 break;
392 default:
393 break;
396 return convert_modes (to_mode, from_mode,
397 x, POINTERS_EXTEND_UNSIGNED);
398 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
401 /* Return something equivalent to X but valid as a memory address for something
402 of mode MODE in the named address space AS. When X is not itself valid,
403 this works by copying X or subexpressions of it into registers. */
406 memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
408 rtx oldx = x;
409 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
411 x = convert_memory_address_addr_space (address_mode, x, as);
413 /* By passing constant addresses through registers
414 we get a chance to cse them. */
415 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
416 x = force_reg (address_mode, x);
418 /* We get better cse by rejecting indirect addressing at this stage.
419 Let the combiner create indirect addresses where appropriate.
420 For now, generate the code so that the subexpressions useful to share
421 are visible. But not if cse won't be done! */
422 else
424 if (! cse_not_expected && !REG_P (x))
425 x = break_out_memory_refs (x);
427 /* At this point, any valid address is accepted. */
428 if (memory_address_addr_space_p (mode, x, as))
429 goto done;
431 /* If it was valid before but breaking out memory refs invalidated it,
432 use it the old way. */
433 if (memory_address_addr_space_p (mode, oldx, as))
435 x = oldx;
436 goto done;
439 /* Perform machine-dependent transformations on X
440 in certain cases. This is not necessary since the code
441 below can handle all possible cases, but machine-dependent
442 transformations can make better code. */
444 rtx orig_x = x;
445 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
446 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
447 goto done;
450 /* PLUS and MULT can appear in special ways
451 as the result of attempts to make an address usable for indexing.
452 Usually they are dealt with by calling force_operand, below.
453 But a sum containing constant terms is special
454 if removing them makes the sum a valid address:
455 then we generate that address in a register
456 and index off of it. We do this because it often makes
457 shorter code, and because the addresses thus generated
458 in registers often become common subexpressions. */
459 if (GET_CODE (x) == PLUS)
461 rtx constant_term = const0_rtx;
462 rtx y = eliminate_constant_term (x, &constant_term);
463 if (constant_term == const0_rtx
464 || ! memory_address_addr_space_p (mode, y, as))
465 x = force_operand (x, NULL_RTX);
466 else
468 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
469 if (! memory_address_addr_space_p (mode, y, as))
470 x = force_operand (x, NULL_RTX);
471 else
472 x = y;
476 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
477 x = force_operand (x, NULL_RTX);
479 /* If we have a register that's an invalid address,
480 it must be a hard reg of the wrong class. Copy it to a pseudo. */
481 else if (REG_P (x))
482 x = copy_to_reg (x);
484 /* Last resort: copy the value to a register, since
485 the register is a valid address. */
486 else
487 x = force_reg (address_mode, x);
490 done:
492 gcc_assert (memory_address_addr_space_p (mode, x, as));
493 /* If we didn't change the address, we are done. Otherwise, mark
494 a reg as a pointer if we have REG or REG + CONST_INT. */
495 if (oldx == x)
496 return x;
497 else if (REG_P (x))
498 mark_reg_pointer (x, BITS_PER_UNIT);
499 else if (GET_CODE (x) == PLUS
500 && REG_P (XEXP (x, 0))
501 && CONST_INT_P (XEXP (x, 1)))
502 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
504 /* OLDX may have been the address on a temporary. Update the address
505 to indicate that X is now used. */
506 update_temp_slot_address (oldx, x);
508 return x;
511 /* Convert a mem ref into one with a valid memory address.
512 Pass through anything else unchanged. */
515 validize_mem (rtx ref)
517 if (!MEM_P (ref))
518 return ref;
519 ref = use_anchored_address (ref);
520 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
521 MEM_ADDR_SPACE (ref)))
522 return ref;
524 /* Don't alter REF itself, since that is probably a stack slot. */
525 return replace_equiv_address (ref, XEXP (ref, 0));
528 /* If X is a memory reference to a member of an object block, try rewriting
529 it to use an anchor instead. Return the new memory reference on success
530 and the old one on failure. */
533 use_anchored_address (rtx x)
535 rtx base;
536 HOST_WIDE_INT offset;
537 enum machine_mode mode;
539 if (!flag_section_anchors)
540 return x;
542 if (!MEM_P (x))
543 return x;
545 /* Split the address into a base and offset. */
546 base = XEXP (x, 0);
547 offset = 0;
548 if (GET_CODE (base) == CONST
549 && GET_CODE (XEXP (base, 0)) == PLUS
550 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
552 offset += INTVAL (XEXP (XEXP (base, 0), 1));
553 base = XEXP (XEXP (base, 0), 0);
556 /* Check whether BASE is suitable for anchors. */
557 if (GET_CODE (base) != SYMBOL_REF
558 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
559 || SYMBOL_REF_ANCHOR_P (base)
560 || SYMBOL_REF_BLOCK (base) == NULL
561 || !targetm.use_anchors_for_symbol_p (base))
562 return x;
564 /* Decide where BASE is going to be. */
565 place_block_symbol (base);
567 /* Get the anchor we need to use. */
568 offset += SYMBOL_REF_BLOCK_OFFSET (base);
569 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
570 SYMBOL_REF_TLS_MODEL (base));
572 /* Work out the offset from the anchor. */
573 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
575 /* If we're going to run a CSE pass, force the anchor into a register.
576 We will then be able to reuse registers for several accesses, if the
577 target costs say that that's worthwhile. */
578 mode = GET_MODE (base);
579 if (!cse_not_expected)
580 base = force_reg (mode, base);
582 return replace_equiv_address (x, plus_constant (mode, base, offset));
585 /* Copy the value or contents of X to a new temp reg and return that reg. */
588 copy_to_reg (rtx x)
590 rtx temp = gen_reg_rtx (GET_MODE (x));
592 /* If not an operand, must be an address with PLUS and MULT so
593 do the computation. */
594 if (! general_operand (x, VOIDmode))
595 x = force_operand (x, temp);
597 if (x != temp)
598 emit_move_insn (temp, x);
600 return temp;
603 /* Like copy_to_reg but always give the new register mode Pmode
604 in case X is a constant. */
607 copy_addr_to_reg (rtx x)
609 return copy_to_mode_reg (Pmode, x);
612 /* Like copy_to_reg but always give the new register mode MODE
613 in case X is a constant. */
616 copy_to_mode_reg (enum machine_mode mode, rtx x)
618 rtx temp = gen_reg_rtx (mode);
620 /* If not an operand, must be an address with PLUS and MULT so
621 do the computation. */
622 if (! general_operand (x, VOIDmode))
623 x = force_operand (x, temp);
625 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
626 if (x != temp)
627 emit_move_insn (temp, x);
628 return temp;
631 /* Load X into a register if it is not already one.
632 Use mode MODE for the register.
633 X should be valid for mode MODE, but it may be a constant which
634 is valid for all integer modes; that's why caller must specify MODE.
636 The caller must not alter the value in the register we return,
637 since we mark it as a "constant" register. */
640 force_reg (enum machine_mode mode, rtx x)
642 rtx temp, insn, set;
644 if (REG_P (x))
645 return x;
647 if (general_operand (x, mode))
649 temp = gen_reg_rtx (mode);
650 insn = emit_move_insn (temp, x);
652 else
654 temp = force_operand (x, NULL_RTX);
655 if (REG_P (temp))
656 insn = get_last_insn ();
657 else
659 rtx temp2 = gen_reg_rtx (mode);
660 insn = emit_move_insn (temp2, temp);
661 temp = temp2;
665 /* Let optimizers know that TEMP's value never changes
666 and that X can be substituted for it. Don't get confused
667 if INSN set something else (such as a SUBREG of TEMP). */
668 if (CONSTANT_P (x)
669 && (set = single_set (insn)) != 0
670 && SET_DEST (set) == temp
671 && ! rtx_equal_p (x, SET_SRC (set)))
672 set_unique_reg_note (insn, REG_EQUAL, x);
674 /* Let optimizers know that TEMP is a pointer, and if so, the
675 known alignment of that pointer. */
677 unsigned align = 0;
678 if (GET_CODE (x) == SYMBOL_REF)
680 align = BITS_PER_UNIT;
681 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
682 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
684 else if (GET_CODE (x) == LABEL_REF)
685 align = BITS_PER_UNIT;
686 else if (GET_CODE (x) == CONST
687 && GET_CODE (XEXP (x, 0)) == PLUS
688 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
689 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
691 rtx s = XEXP (XEXP (x, 0), 0);
692 rtx c = XEXP (XEXP (x, 0), 1);
693 unsigned sa, ca;
695 sa = BITS_PER_UNIT;
696 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
697 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
699 if (INTVAL (c) == 0)
700 align = sa;
701 else
703 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
704 align = MIN (sa, ca);
708 if (align || (MEM_P (x) && MEM_POINTER (x)))
709 mark_reg_pointer (temp, align);
712 return temp;
715 /* If X is a memory ref, copy its contents to a new temp reg and return
716 that reg. Otherwise, return X. */
719 force_not_mem (rtx x)
721 rtx temp;
723 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
724 return x;
726 temp = gen_reg_rtx (GET_MODE (x));
728 if (MEM_POINTER (x))
729 REG_POINTER (temp) = 1;
731 emit_move_insn (temp, x);
732 return temp;
735 /* Copy X to TARGET (if it's nonzero and a reg)
736 or to a new temp reg and return that reg.
737 MODE is the mode to use for X in case it is a constant. */
740 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
742 rtx temp;
744 if (target && REG_P (target))
745 temp = target;
746 else
747 temp = gen_reg_rtx (mode);
749 emit_move_insn (temp, x);
750 return temp;
753 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
754 PUNSIGNEDP points to the signedness of the type and may be adjusted
755 to show what signedness to use on extension operations.
757 FOR_RETURN is nonzero if the caller is promoting the return value
758 of FNDECL, else it is for promoting args. */
760 enum machine_mode
761 promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
762 const_tree funtype, int for_return)
764 /* Called without a type node for a libcall. */
765 if (type == NULL_TREE)
767 if (INTEGRAL_MODE_P (mode))
768 return targetm.calls.promote_function_mode (NULL_TREE, mode,
769 punsignedp, funtype,
770 for_return);
771 else
772 return mode;
775 switch (TREE_CODE (type))
777 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
778 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
779 case POINTER_TYPE: case REFERENCE_TYPE:
780 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
781 for_return);
783 default:
784 return mode;
787 /* Return the mode to use to store a scalar of TYPE and MODE.
788 PUNSIGNEDP points to the signedness of the type and may be adjusted
789 to show what signedness to use on extension operations. */
791 enum machine_mode
792 promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
793 int *punsignedp ATTRIBUTE_UNUSED)
795 #ifdef PROMOTE_MODE
796 enum tree_code code;
797 int unsignedp;
798 #endif
800 /* For libcalls this is invoked without TYPE from the backends
801 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
802 case. */
803 if (type == NULL_TREE)
804 return mode;
806 /* FIXME: this is the same logic that was there until GCC 4.4, but we
807 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
808 is not defined. The affected targets are M32C, S390, SPARC. */
809 #ifdef PROMOTE_MODE
810 code = TREE_CODE (type);
811 unsignedp = *punsignedp;
813 switch (code)
815 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
816 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
817 PROMOTE_MODE (mode, unsignedp, type);
818 *punsignedp = unsignedp;
819 return mode;
820 break;
822 #ifdef POINTERS_EXTEND_UNSIGNED
823 case REFERENCE_TYPE:
824 case POINTER_TYPE:
825 *punsignedp = POINTERS_EXTEND_UNSIGNED;
826 return targetm.addr_space.address_mode
827 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
828 break;
829 #endif
831 default:
832 return mode;
834 #else
835 return mode;
836 #endif
840 /* Use one of promote_mode or promote_function_mode to find the promoted
841 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
842 of DECL after promotion. */
844 enum machine_mode
845 promote_decl_mode (const_tree decl, int *punsignedp)
847 tree type = TREE_TYPE (decl);
848 int unsignedp = TYPE_UNSIGNED (type);
849 enum machine_mode mode = DECL_MODE (decl);
850 enum machine_mode pmode;
852 if (TREE_CODE (decl) == RESULT_DECL
853 || TREE_CODE (decl) == PARM_DECL)
854 pmode = promote_function_mode (type, mode, &unsignedp,
855 TREE_TYPE (current_function_decl), 2);
856 else
857 pmode = promote_mode (type, mode, &unsignedp);
859 if (punsignedp)
860 *punsignedp = unsignedp;
861 return pmode;
865 /* Controls the behaviour of {anti_,}adjust_stack. */
866 static bool suppress_reg_args_size;
868 /* A helper for adjust_stack and anti_adjust_stack. */
870 static void
871 adjust_stack_1 (rtx adjust, bool anti_p)
873 rtx temp, insn;
875 #ifndef STACK_GROWS_DOWNWARD
876 /* Hereafter anti_p means subtract_p. */
877 anti_p = !anti_p;
878 #endif
880 temp = expand_binop (Pmode,
881 anti_p ? sub_optab : add_optab,
882 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
883 OPTAB_LIB_WIDEN);
885 if (temp != stack_pointer_rtx)
886 insn = emit_move_insn (stack_pointer_rtx, temp);
887 else
889 insn = get_last_insn ();
890 temp = single_set (insn);
891 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
894 if (!suppress_reg_args_size)
895 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
898 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
899 This pops when ADJUST is positive. ADJUST need not be constant. */
901 void
902 adjust_stack (rtx adjust)
904 if (adjust == const0_rtx)
905 return;
907 /* We expect all variable sized adjustments to be multiple of
908 PREFERRED_STACK_BOUNDARY. */
909 if (CONST_INT_P (adjust))
910 stack_pointer_delta -= INTVAL (adjust);
912 adjust_stack_1 (adjust, false);
915 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
916 This pushes when ADJUST is positive. ADJUST need not be constant. */
918 void
919 anti_adjust_stack (rtx adjust)
921 if (adjust == const0_rtx)
922 return;
924 /* We expect all variable sized adjustments to be multiple of
925 PREFERRED_STACK_BOUNDARY. */
926 if (CONST_INT_P (adjust))
927 stack_pointer_delta += INTVAL (adjust);
929 adjust_stack_1 (adjust, true);
932 /* Round the size of a block to be pushed up to the boundary required
933 by this machine. SIZE is the desired size, which need not be constant. */
935 static rtx
936 round_push (rtx size)
938 rtx align_rtx, alignm1_rtx;
940 if (!SUPPORTS_STACK_ALIGNMENT
941 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
943 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
945 if (align == 1)
946 return size;
948 if (CONST_INT_P (size))
950 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
952 if (INTVAL (size) != new_size)
953 size = GEN_INT (new_size);
954 return size;
957 align_rtx = GEN_INT (align);
958 alignm1_rtx = GEN_INT (align - 1);
960 else
962 /* If crtl->preferred_stack_boundary might still grow, use
963 virtual_preferred_stack_boundary_rtx instead. This will be
964 substituted by the right value in vregs pass and optimized
965 during combine. */
966 align_rtx = virtual_preferred_stack_boundary_rtx;
967 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
968 NULL_RTX);
971 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
972 but we know it can't. So add ourselves and then do
973 TRUNC_DIV_EXPR. */
974 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
975 NULL_RTX, 1, OPTAB_LIB_WIDEN);
976 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
977 NULL_RTX, 1);
978 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
980 return size;
983 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
984 to a previously-created save area. If no save area has been allocated,
985 this function will allocate one. If a save area is specified, it
986 must be of the proper mode. */
988 void
989 emit_stack_save (enum save_level save_level, rtx *psave)
991 rtx sa = *psave;
992 /* The default is that we use a move insn and save in a Pmode object. */
993 rtx (*fcn) (rtx, rtx) = gen_move_insn;
994 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
996 /* See if this machine has anything special to do for this kind of save. */
997 switch (save_level)
999 #ifdef HAVE_save_stack_block
1000 case SAVE_BLOCK:
1001 if (HAVE_save_stack_block)
1002 fcn = gen_save_stack_block;
1003 break;
1004 #endif
1005 #ifdef HAVE_save_stack_function
1006 case SAVE_FUNCTION:
1007 if (HAVE_save_stack_function)
1008 fcn = gen_save_stack_function;
1009 break;
1010 #endif
1011 #ifdef HAVE_save_stack_nonlocal
1012 case SAVE_NONLOCAL:
1013 if (HAVE_save_stack_nonlocal)
1014 fcn = gen_save_stack_nonlocal;
1015 break;
1016 #endif
1017 default:
1018 break;
1021 /* If there is no save area and we have to allocate one, do so. Otherwise
1022 verify the save area is the proper mode. */
1024 if (sa == 0)
1026 if (mode != VOIDmode)
1028 if (save_level == SAVE_NONLOCAL)
1029 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1030 else
1031 *psave = sa = gen_reg_rtx (mode);
1035 do_pending_stack_adjust ();
1036 if (sa != 0)
1037 sa = validize_mem (sa);
1038 emit_insn (fcn (sa, stack_pointer_rtx));
1041 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1042 area made by emit_stack_save. If it is zero, we have nothing to do. */
1044 void
1045 emit_stack_restore (enum save_level save_level, rtx sa)
1047 /* The default is that we use a move insn. */
1048 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1050 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1051 STACK_POINTER and HARD_FRAME_POINTER.
1052 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1053 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1054 aligned variables, which is reflected in ix86_can_eliminate.
1055 We normally still have the realigned STACK_POINTER that we can use.
1056 But if there is a stack restore still present at reload, it can trigger
1057 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1058 FRAME_POINTER into a hard reg.
1059 To prevent this situation, we force need_drap if we emit a stack
1060 restore. */
1061 if (SUPPORTS_STACK_ALIGNMENT)
1062 crtl->need_drap = true;
1064 /* See if this machine has anything special to do for this kind of save. */
1065 switch (save_level)
1067 #ifdef HAVE_restore_stack_block
1068 case SAVE_BLOCK:
1069 if (HAVE_restore_stack_block)
1070 fcn = gen_restore_stack_block;
1071 break;
1072 #endif
1073 #ifdef HAVE_restore_stack_function
1074 case SAVE_FUNCTION:
1075 if (HAVE_restore_stack_function)
1076 fcn = gen_restore_stack_function;
1077 break;
1078 #endif
1079 #ifdef HAVE_restore_stack_nonlocal
1080 case SAVE_NONLOCAL:
1081 if (HAVE_restore_stack_nonlocal)
1082 fcn = gen_restore_stack_nonlocal;
1083 break;
1084 #endif
1085 default:
1086 break;
1089 if (sa != 0)
1091 sa = validize_mem (sa);
1092 /* These clobbers prevent the scheduler from moving
1093 references to variable arrays below the code
1094 that deletes (pops) the arrays. */
1095 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1096 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1099 discard_pending_stack_adjust ();
1101 emit_insn (fcn (stack_pointer_rtx, sa));
1104 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1105 function. This function should be called whenever we allocate or
1106 deallocate dynamic stack space. */
1108 void
1109 update_nonlocal_goto_save_area (void)
1111 tree t_save;
1112 rtx r_save;
1114 /* The nonlocal_goto_save_area object is an array of N pointers. The
1115 first one is used for the frame pointer save; the rest are sized by
1116 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1117 of the stack save area slots. */
1118 t_save = build4 (ARRAY_REF,
1119 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1120 cfun->nonlocal_goto_save_area,
1121 integer_one_node, NULL_TREE, NULL_TREE);
1122 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1124 emit_stack_save (SAVE_NONLOCAL, &r_save);
1127 /* Return an rtx representing the address of an area of memory dynamically
1128 pushed on the stack.
1130 Any required stack pointer alignment is preserved.
1132 SIZE is an rtx representing the size of the area.
1134 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1135 parameter may be zero. If so, a proper value will be extracted
1136 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1138 REQUIRED_ALIGN is the alignment (in bits) required for the region
1139 of memory.
1141 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1142 stack space allocated by the generated code cannot be added with itself
1143 in the course of the execution of the function. It is always safe to
1144 pass FALSE here and the following criterion is sufficient in order to
1145 pass TRUE: every path in the CFG that starts at the allocation point and
1146 loops to it executes the associated deallocation code. */
1149 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1150 unsigned required_align, bool cannot_accumulate)
1152 HOST_WIDE_INT stack_usage_size = -1;
1153 rtx final_label, final_target, target;
1154 unsigned extra_align = 0;
1155 bool must_align;
1157 /* If we're asking for zero bytes, it doesn't matter what we point
1158 to since we can't dereference it. But return a reasonable
1159 address anyway. */
1160 if (size == const0_rtx)
1161 return virtual_stack_dynamic_rtx;
1163 /* Otherwise, show we're calling alloca or equivalent. */
1164 cfun->calls_alloca = 1;
1166 /* If stack usage info is requested, look into the size we are passed.
1167 We need to do so this early to avoid the obfuscation that may be
1168 introduced later by the various alignment operations. */
1169 if (flag_stack_usage_info)
1171 if (CONST_INT_P (size))
1172 stack_usage_size = INTVAL (size);
1173 else if (REG_P (size))
1175 /* Look into the last emitted insn and see if we can deduce
1176 something for the register. */
1177 rtx insn, set, note;
1178 insn = get_last_insn ();
1179 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1181 if (CONST_INT_P (SET_SRC (set)))
1182 stack_usage_size = INTVAL (SET_SRC (set));
1183 else if ((note = find_reg_equal_equiv_note (insn))
1184 && CONST_INT_P (XEXP (note, 0)))
1185 stack_usage_size = INTVAL (XEXP (note, 0));
1189 /* If the size is not constant, we can't say anything. */
1190 if (stack_usage_size == -1)
1192 current_function_has_unbounded_dynamic_stack_size = 1;
1193 stack_usage_size = 0;
1197 /* Ensure the size is in the proper mode. */
1198 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1199 size = convert_to_mode (Pmode, size, 1);
1201 /* Adjust SIZE_ALIGN, if needed. */
1202 if (CONST_INT_P (size))
1204 unsigned HOST_WIDE_INT lsb;
1206 lsb = INTVAL (size);
1207 lsb &= -lsb;
1209 /* Watch out for overflow truncating to "unsigned". */
1210 if (lsb > UINT_MAX / BITS_PER_UNIT)
1211 size_align = 1u << (HOST_BITS_PER_INT - 1);
1212 else
1213 size_align = (unsigned)lsb * BITS_PER_UNIT;
1215 else if (size_align < BITS_PER_UNIT)
1216 size_align = BITS_PER_UNIT;
1218 /* We can't attempt to minimize alignment necessary, because we don't
1219 know the final value of preferred_stack_boundary yet while executing
1220 this code. */
1221 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1222 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1224 /* We will need to ensure that the address we return is aligned to
1225 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1226 always know its final value at this point in the compilation (it
1227 might depend on the size of the outgoing parameter lists, for
1228 example), so we must align the value to be returned in that case.
1229 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1230 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1231 We must also do an alignment operation on the returned value if
1232 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1234 If we have to align, we must leave space in SIZE for the hole
1235 that might result from the alignment operation. */
1237 must_align = (crtl->preferred_stack_boundary < required_align);
1238 if (must_align)
1240 if (required_align > PREFERRED_STACK_BOUNDARY)
1241 extra_align = PREFERRED_STACK_BOUNDARY;
1242 else if (required_align > STACK_BOUNDARY)
1243 extra_align = STACK_BOUNDARY;
1244 else
1245 extra_align = BITS_PER_UNIT;
1248 /* ??? STACK_POINTER_OFFSET is always defined now. */
1249 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1250 must_align = true;
1251 extra_align = BITS_PER_UNIT;
1252 #endif
1254 if (must_align)
1256 unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1258 size = plus_constant (Pmode, size, extra);
1259 size = force_operand (size, NULL_RTX);
1261 if (flag_stack_usage_info)
1262 stack_usage_size += extra;
1264 if (extra && size_align > extra_align)
1265 size_align = extra_align;
1268 /* Round the size to a multiple of the required stack alignment.
1269 Since the stack if presumed to be rounded before this allocation,
1270 this will maintain the required alignment.
1272 If the stack grows downward, we could save an insn by subtracting
1273 SIZE from the stack pointer and then aligning the stack pointer.
1274 The problem with this is that the stack pointer may be unaligned
1275 between the execution of the subtraction and alignment insns and
1276 some machines do not allow this. Even on those that do, some
1277 signal handlers malfunction if a signal should occur between those
1278 insns. Since this is an extremely rare event, we have no reliable
1279 way of knowing which systems have this problem. So we avoid even
1280 momentarily mis-aligning the stack. */
1281 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1283 size = round_push (size);
1285 if (flag_stack_usage_info)
1287 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1288 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1292 target = gen_reg_rtx (Pmode);
1294 /* The size is supposed to be fully adjusted at this point so record it
1295 if stack usage info is requested. */
1296 if (flag_stack_usage_info)
1298 current_function_dynamic_stack_size += stack_usage_size;
1300 /* ??? This is gross but the only safe stance in the absence
1301 of stack usage oriented flow analysis. */
1302 if (!cannot_accumulate)
1303 current_function_has_unbounded_dynamic_stack_size = 1;
1306 final_label = NULL_RTX;
1307 final_target = NULL_RTX;
1309 /* If we are splitting the stack, we need to ask the backend whether
1310 there is enough room on the current stack. If there isn't, or if
1311 the backend doesn't know how to tell is, then we need to call a
1312 function to allocate memory in some other way. This memory will
1313 be released when we release the current stack segment. The
1314 effect is that stack allocation becomes less efficient, but at
1315 least it doesn't cause a stack overflow. */
1316 if (flag_split_stack)
1318 rtx available_label, ask, space, func;
1320 available_label = NULL_RTX;
1322 #ifdef HAVE_split_stack_space_check
1323 if (HAVE_split_stack_space_check)
1325 available_label = gen_label_rtx ();
1327 /* This instruction will branch to AVAILABLE_LABEL if there
1328 are SIZE bytes available on the stack. */
1329 emit_insn (gen_split_stack_space_check (size, available_label));
1331 #endif
1333 /* The __morestack_allocate_stack_space function will allocate
1334 memory using malloc. If the alignment of the memory returned
1335 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1336 make sure we allocate enough space. */
1337 if (MALLOC_ABI_ALIGNMENT >= required_align)
1338 ask = size;
1339 else
1341 ask = expand_binop (Pmode, add_optab, size,
1342 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1343 Pmode),
1344 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1345 must_align = true;
1348 func = init_one_libfunc ("__morestack_allocate_stack_space");
1350 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1351 1, ask, Pmode);
1353 if (available_label == NULL_RTX)
1354 return space;
1356 final_target = gen_reg_rtx (Pmode);
1358 emit_move_insn (final_target, space);
1360 final_label = gen_label_rtx ();
1361 emit_jump (final_label);
1363 emit_label (available_label);
1366 do_pending_stack_adjust ();
1368 /* We ought to be called always on the toplevel and stack ought to be aligned
1369 properly. */
1370 gcc_assert (!(stack_pointer_delta
1371 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1373 /* If needed, check that we have the required amount of stack. Take into
1374 account what has already been checked. */
1375 if (STACK_CHECK_MOVING_SP)
1377 else if (flag_stack_check == GENERIC_STACK_CHECK)
1378 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1379 size);
1380 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1381 probe_stack_range (STACK_CHECK_PROTECT, size);
1383 /* Don't let anti_adjust_stack emit notes. */
1384 suppress_reg_args_size = true;
1386 /* Perform the required allocation from the stack. Some systems do
1387 this differently than simply incrementing/decrementing from the
1388 stack pointer, such as acquiring the space by calling malloc(). */
1389 #ifdef HAVE_allocate_stack
1390 if (HAVE_allocate_stack)
1392 struct expand_operand ops[2];
1393 /* We don't have to check against the predicate for operand 0 since
1394 TARGET is known to be a pseudo of the proper mode, which must
1395 be valid for the operand. */
1396 create_fixed_operand (&ops[0], target);
1397 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1398 expand_insn (CODE_FOR_allocate_stack, 2, ops);
1400 else
1401 #endif
1403 int saved_stack_pointer_delta;
1405 #ifndef STACK_GROWS_DOWNWARD
1406 emit_move_insn (target, virtual_stack_dynamic_rtx);
1407 #endif
1409 /* Check stack bounds if necessary. */
1410 if (crtl->limit_stack)
1412 rtx available;
1413 rtx space_available = gen_label_rtx ();
1414 #ifdef STACK_GROWS_DOWNWARD
1415 available = expand_binop (Pmode, sub_optab,
1416 stack_pointer_rtx, stack_limit_rtx,
1417 NULL_RTX, 1, OPTAB_WIDEN);
1418 #else
1419 available = expand_binop (Pmode, sub_optab,
1420 stack_limit_rtx, stack_pointer_rtx,
1421 NULL_RTX, 1, OPTAB_WIDEN);
1422 #endif
1423 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1424 space_available);
1425 #ifdef HAVE_trap
1426 if (HAVE_trap)
1427 emit_insn (gen_trap ());
1428 else
1429 #endif
1430 error ("stack limits not supported on this target");
1431 emit_barrier ();
1432 emit_label (space_available);
1435 saved_stack_pointer_delta = stack_pointer_delta;
1437 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1438 anti_adjust_stack_and_probe (size, false);
1439 else
1440 anti_adjust_stack (size);
1442 /* Even if size is constant, don't modify stack_pointer_delta.
1443 The constant size alloca should preserve
1444 crtl->preferred_stack_boundary alignment. */
1445 stack_pointer_delta = saved_stack_pointer_delta;
1447 #ifdef STACK_GROWS_DOWNWARD
1448 emit_move_insn (target, virtual_stack_dynamic_rtx);
1449 #endif
1452 suppress_reg_args_size = false;
1454 /* Finish up the split stack handling. */
1455 if (final_label != NULL_RTX)
1457 gcc_assert (flag_split_stack);
1458 emit_move_insn (final_target, target);
1459 emit_label (final_label);
1460 target = final_target;
1463 if (must_align)
1465 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1466 but we know it can't. So add ourselves and then do
1467 TRUNC_DIV_EXPR. */
1468 target = expand_binop (Pmode, add_optab, target,
1469 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1470 Pmode),
1471 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1472 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1473 gen_int_mode (required_align / BITS_PER_UNIT,
1474 Pmode),
1475 NULL_RTX, 1);
1476 target = expand_mult (Pmode, target,
1477 gen_int_mode (required_align / BITS_PER_UNIT,
1478 Pmode),
1479 NULL_RTX, 1);
1482 /* Now that we've committed to a return value, mark its alignment. */
1483 mark_reg_pointer (target, required_align);
1485 /* Record the new stack level for nonlocal gotos. */
1486 if (cfun->nonlocal_goto_save_area != 0)
1487 update_nonlocal_goto_save_area ();
1489 return target;
1492 /* A front end may want to override GCC's stack checking by providing a
1493 run-time routine to call to check the stack, so provide a mechanism for
1494 calling that routine. */
1496 static GTY(()) rtx stack_check_libfunc;
1498 void
1499 set_stack_check_libfunc (const char *libfunc_name)
1501 gcc_assert (stack_check_libfunc == NULL_RTX);
1502 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1505 /* Emit one stack probe at ADDRESS, an address within the stack. */
1507 void
1508 emit_stack_probe (rtx address)
1510 #ifdef HAVE_probe_stack_address
1511 if (HAVE_probe_stack_address)
1512 emit_insn (gen_probe_stack_address (address));
1513 else
1514 #endif
1516 rtx memref = gen_rtx_MEM (word_mode, address);
1518 MEM_VOLATILE_P (memref) = 1;
1520 /* See if we have an insn to probe the stack. */
1521 #ifdef HAVE_probe_stack
1522 if (HAVE_probe_stack)
1523 emit_insn (gen_probe_stack (memref));
1524 else
1525 #endif
1526 emit_move_insn (memref, const0_rtx);
1530 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1531 FIRST is a constant and size is a Pmode RTX. These are offsets from
1532 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1533 or subtract them from the stack pointer. */
1535 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1537 #ifdef STACK_GROWS_DOWNWARD
1538 #define STACK_GROW_OP MINUS
1539 #define STACK_GROW_OPTAB sub_optab
1540 #define STACK_GROW_OFF(off) -(off)
1541 #else
1542 #define STACK_GROW_OP PLUS
1543 #define STACK_GROW_OPTAB add_optab
1544 #define STACK_GROW_OFF(off) (off)
1545 #endif
1547 void
1548 probe_stack_range (HOST_WIDE_INT first, rtx size)
1550 /* First ensure SIZE is Pmode. */
1551 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1552 size = convert_to_mode (Pmode, size, 1);
1554 /* Next see if we have a function to check the stack. */
1555 if (stack_check_libfunc)
1557 rtx addr = memory_address (Pmode,
1558 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1559 stack_pointer_rtx,
1560 plus_constant (Pmode,
1561 size, first)));
1562 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1563 Pmode);
1566 /* Next see if we have an insn to check the stack. */
1567 #ifdef HAVE_check_stack
1568 else if (HAVE_check_stack)
1570 struct expand_operand ops[1];
1571 rtx addr = memory_address (Pmode,
1572 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1573 stack_pointer_rtx,
1574 plus_constant (Pmode,
1575 size, first)));
1576 bool success;
1577 create_input_operand (&ops[0], addr, Pmode);
1578 success = maybe_expand_insn (CODE_FOR_check_stack, 1, ops);
1579 gcc_assert (success);
1581 #endif
1583 /* Otherwise we have to generate explicit probes. If we have a constant
1584 small number of them to generate, that's the easy case. */
1585 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1587 HOST_WIDE_INT isize = INTVAL (size), i;
1588 rtx addr;
1590 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1591 it exceeds SIZE. If only one probe is needed, this will not
1592 generate any code. Then probe at FIRST + SIZE. */
1593 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1595 addr = memory_address (Pmode,
1596 plus_constant (Pmode, stack_pointer_rtx,
1597 STACK_GROW_OFF (first + i)));
1598 emit_stack_probe (addr);
1601 addr = memory_address (Pmode,
1602 plus_constant (Pmode, stack_pointer_rtx,
1603 STACK_GROW_OFF (first + isize)));
1604 emit_stack_probe (addr);
1607 /* In the variable case, do the same as above, but in a loop. Note that we
1608 must be extra careful with variables wrapping around because we might be
1609 at the very top (or the very bottom) of the address space and we have to
1610 be able to handle this case properly; in particular, we use an equality
1611 test for the loop condition. */
1612 else
1614 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1615 rtx loop_lab = gen_label_rtx ();
1616 rtx end_lab = gen_label_rtx ();
1619 /* Step 1: round SIZE to the previous multiple of the interval. */
1621 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1622 rounded_size
1623 = simplify_gen_binary (AND, Pmode, size,
1624 gen_int_mode (-PROBE_INTERVAL, Pmode));
1625 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1628 /* Step 2: compute initial and final value of the loop counter. */
1630 /* TEST_ADDR = SP + FIRST. */
1631 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1632 stack_pointer_rtx,
1633 gen_int_mode (first, Pmode)),
1634 NULL_RTX);
1636 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1637 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1638 test_addr,
1639 rounded_size_op), NULL_RTX);
1642 /* Step 3: the loop
1644 while (TEST_ADDR != LAST_ADDR)
1646 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1647 probe at TEST_ADDR
1650 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1651 until it is equal to ROUNDED_SIZE. */
1653 emit_label (loop_lab);
1655 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1656 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1657 end_lab);
1659 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1660 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1661 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1662 1, OPTAB_WIDEN);
1664 gcc_assert (temp == test_addr);
1666 /* Probe at TEST_ADDR. */
1667 emit_stack_probe (test_addr);
1669 emit_jump (loop_lab);
1671 emit_label (end_lab);
1674 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1675 that SIZE is equal to ROUNDED_SIZE. */
1677 /* TEMP = SIZE - ROUNDED_SIZE. */
1678 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1679 if (temp != const0_rtx)
1681 rtx addr;
1683 if (CONST_INT_P (temp))
1685 /* Use [base + disp} addressing mode if supported. */
1686 HOST_WIDE_INT offset = INTVAL (temp);
1687 addr = memory_address (Pmode,
1688 plus_constant (Pmode, last_addr,
1689 STACK_GROW_OFF (offset)));
1691 else
1693 /* Manual CSE if the difference is not known at compile-time. */
1694 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1695 addr = memory_address (Pmode,
1696 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1697 last_addr, temp));
1700 emit_stack_probe (addr);
1704 /* Make sure nothing is scheduled before we are done. */
1705 emit_insn (gen_blockage ());
1708 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1709 while probing it. This pushes when SIZE is positive. SIZE need not
1710 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1711 by plus SIZE at the end. */
1713 void
1714 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1716 /* We skip the probe for the first interval + a small dope of 4 words and
1717 probe that many bytes past the specified size to maintain a protection
1718 area at the botton of the stack. */
1719 const int dope = 4 * UNITS_PER_WORD;
1721 /* First ensure SIZE is Pmode. */
1722 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1723 size = convert_to_mode (Pmode, size, 1);
1725 /* If we have a constant small number of probes to generate, that's the
1726 easy case. */
1727 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1729 HOST_WIDE_INT isize = INTVAL (size), i;
1730 bool first_probe = true;
1732 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1733 values of N from 1 until it exceeds SIZE. If only one probe is
1734 needed, this will not generate any code. Then adjust and probe
1735 to PROBE_INTERVAL + SIZE. */
1736 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1738 if (first_probe)
1740 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1741 first_probe = false;
1743 else
1744 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1745 emit_stack_probe (stack_pointer_rtx);
1748 if (first_probe)
1749 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1750 else
1751 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1752 emit_stack_probe (stack_pointer_rtx);
1755 /* In the variable case, do the same as above, but in a loop. Note that we
1756 must be extra careful with variables wrapping around because we might be
1757 at the very top (or the very bottom) of the address space and we have to
1758 be able to handle this case properly; in particular, we use an equality
1759 test for the loop condition. */
1760 else
1762 rtx rounded_size, rounded_size_op, last_addr, temp;
1763 rtx loop_lab = gen_label_rtx ();
1764 rtx end_lab = gen_label_rtx ();
1767 /* Step 1: round SIZE to the previous multiple of the interval. */
1769 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1770 rounded_size
1771 = simplify_gen_binary (AND, Pmode, size,
1772 gen_int_mode (-PROBE_INTERVAL, Pmode));
1773 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1776 /* Step 2: compute initial and final value of the loop counter. */
1778 /* SP = SP_0 + PROBE_INTERVAL. */
1779 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1781 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1782 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1783 stack_pointer_rtx,
1784 rounded_size_op), NULL_RTX);
1787 /* Step 3: the loop
1789 while (SP != LAST_ADDR)
1791 SP = SP + PROBE_INTERVAL
1792 probe at SP
1795 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1796 values of N from 1 until it is equal to ROUNDED_SIZE. */
1798 emit_label (loop_lab);
1800 /* Jump to END_LAB if SP == LAST_ADDR. */
1801 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1802 Pmode, 1, end_lab);
1804 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1805 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1806 emit_stack_probe (stack_pointer_rtx);
1808 emit_jump (loop_lab);
1810 emit_label (end_lab);
1813 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1814 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1816 /* TEMP = SIZE - ROUNDED_SIZE. */
1817 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1818 if (temp != const0_rtx)
1820 /* Manual CSE if the difference is not known at compile-time. */
1821 if (GET_CODE (temp) != CONST_INT)
1822 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1823 anti_adjust_stack (temp);
1824 emit_stack_probe (stack_pointer_rtx);
1828 /* Adjust back and account for the additional first interval. */
1829 if (adjust_back)
1830 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1831 else
1832 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1835 /* Return an rtx representing the register or memory location
1836 in which a scalar value of data type VALTYPE
1837 was returned by a function call to function FUNC.
1838 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1839 function is known, otherwise 0.
1840 OUTGOING is 1 if on a machine with register windows this function
1841 should return the register in which the function will put its result
1842 and 0 otherwise. */
1845 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1846 int outgoing ATTRIBUTE_UNUSED)
1848 rtx val;
1850 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1852 if (REG_P (val)
1853 && GET_MODE (val) == BLKmode)
1855 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1856 enum machine_mode tmpmode;
1858 /* int_size_in_bytes can return -1. We don't need a check here
1859 since the value of bytes will then be large enough that no
1860 mode will match anyway. */
1862 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1863 tmpmode != VOIDmode;
1864 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1866 /* Have we found a large enough mode? */
1867 if (GET_MODE_SIZE (tmpmode) >= bytes)
1868 break;
1871 /* No suitable mode found. */
1872 gcc_assert (tmpmode != VOIDmode);
1874 PUT_MODE (val, tmpmode);
1876 return val;
1879 /* Return an rtx representing the register or memory location
1880 in which a scalar value of mode MODE was returned by a library call. */
1883 hard_libcall_value (enum machine_mode mode, rtx fun)
1885 return targetm.calls.libcall_value (mode, fun);
1888 /* Look up the tree code for a given rtx code
1889 to provide the arithmetic operation for REAL_ARITHMETIC.
1890 The function returns an int because the caller may not know
1891 what `enum tree_code' means. */
1894 rtx_to_tree_code (enum rtx_code code)
1896 enum tree_code tcode;
1898 switch (code)
1900 case PLUS:
1901 tcode = PLUS_EXPR;
1902 break;
1903 case MINUS:
1904 tcode = MINUS_EXPR;
1905 break;
1906 case MULT:
1907 tcode = MULT_EXPR;
1908 break;
1909 case DIV:
1910 tcode = RDIV_EXPR;
1911 break;
1912 case SMIN:
1913 tcode = MIN_EXPR;
1914 break;
1915 case SMAX:
1916 tcode = MAX_EXPR;
1917 break;
1918 default:
1919 tcode = LAST_AND_UNUSED_TREE_CODE;
1920 break;
1922 return ((int) tcode);
1925 #include "gt-explow.h"