Daily bump.
[official-gcc.git] / gcc / loop.c
blob4045cedb47a74acb1ddbcf9e1300986edec17a66
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
37 #include "config.h"
38 #include "system.h"
39 #include "rtl.h"
40 #include "tm_p.h"
41 #include "obstack.h"
42 #include "function.h"
43 #include "expr.h"
44 #include "hard-reg-set.h"
45 #include "basic-block.h"
46 #include "insn-config.h"
47 #include "regs.h"
48 #include "recog.h"
49 #include "flags.h"
50 #include "real.h"
51 #include "loop.h"
52 #include "cselib.h"
53 #include "except.h"
54 #include "toplev.h"
55 #include "predict.h"
56 #include "insn-flags.h"
57 #include "optabs.h"
59 /* Not really meaningful values, but at least something. */
60 #ifndef SIMULTANEOUS_PREFETCHES
61 #define SIMULTANEOUS_PREFETCHES 3
62 #endif
63 #ifndef PREFETCH_BLOCK
64 #define PREFETCH_BLOCK 32
65 #endif
66 #ifndef HAVE_prefetch
67 #define HAVE_prefetch 0
68 #define CODE_FOR_prefetch 0
69 #define gen_prefetch(a,b,c) (abort(), NULL_RTX)
70 #endif
72 /* Give up the prefetch optimizations once we exceed a given threshhold.
73 It is unlikely that we would be able to optimize something in a loop
74 with so many detected prefetches. */
75 #define MAX_PREFETCHES 100
76 /* The number of prefetch blocks that are beneficial to fetch at once before
77 a loop with a known (and low) iteration count. */
78 #define PREFETCH_BLOCKS_BEFORE_LOOP_MAX 6
79 /* For very tiny loops it is not worthwhile to prefetch even before the loop,
80 since it is likely that the data are already in the cache. */
81 #define PREFETCH_BLOCKS_BEFORE_LOOP_MIN 2
82 /* The minimal number of prefetch blocks that a loop must consume to make
83 the emitting of prefetch instruction in the body of loop worthwhile. */
84 #define PREFETCH_BLOCKS_IN_LOOP_MIN 6
86 /* Parameterize some prefetch heuristics so they can be turned on and off
87 easily for performance testing on new architecures. These can be
88 defined in target-dependent files. */
90 /* Prefetch is worthwhile only when loads/stores are dense. */
91 #ifndef PREFETCH_ONLY_DENSE_MEM
92 #define PREFETCH_ONLY_DENSE_MEM 1
93 #endif
95 /* Define what we mean by "dense" loads and stores; This value divided by 256
96 is the minimum percentage of memory references that worth prefetching. */
97 #ifndef PREFETCH_DENSE_MEM
98 #define PREFETCH_DENSE_MEM 220
99 #endif
101 /* Do not prefetch for a loop whose iteration count is known to be low. */
102 #ifndef PREFETCH_NO_LOW_LOOPCNT
103 #define PREFETCH_NO_LOW_LOOPCNT 1
104 #endif
106 /* Define what we mean by a "low" iteration count. */
107 #ifndef PREFETCH_LOW_LOOPCNT
108 #define PREFETCH_LOW_LOOPCNT 32
109 #endif
111 /* Do not prefetch for a loop that contains a function call; such a loop is
112 probably not an internal loop. */
113 #ifndef PREFETCH_NO_CALL
114 #define PREFETCH_NO_CALL 1
115 #endif
117 /* Do not prefetch accesses with an extreme stride. */
118 #ifndef PREFETCH_NO_EXTREME_STRIDE
119 #define PREFETCH_NO_EXTREME_STRIDE 1
120 #endif
122 /* Define what we mean by an "extreme" stride. */
123 #ifndef PREFETCH_EXTREME_STRIDE
124 #define PREFETCH_EXTREME_STRIDE 4096
125 #endif
127 /* Do not handle reversed order prefetches (negative stride). */
128 #ifndef PREFETCH_NO_REVERSE_ORDER
129 #define PREFETCH_NO_REVERSE_ORDER 1
130 #endif
132 /* Prefetch even if the GIV is not always executed. */
133 #ifndef PREFETCH_NOT_ALWAYS
134 #define PREFETCH_NOT_ALWAYS 0
135 #endif
137 /* If the loop requires more prefetches than the target can process in
138 parallel then don't prefetch anything in that loop. */
139 #ifndef PREFETCH_LIMIT_TO_SIMULTANEOUS
140 #define PREFETCH_LIMIT_TO_SIMULTANEOUS 1
141 #endif
143 #define LOOP_REG_LIFETIME(LOOP, REGNO) \
144 ((REGNO_LAST_LUID (REGNO) - REGNO_FIRST_LUID (REGNO)))
146 #define LOOP_REG_GLOBAL_P(LOOP, REGNO) \
147 ((REGNO_LAST_LUID (REGNO) > INSN_LUID ((LOOP)->end) \
148 || REGNO_FIRST_LUID (REGNO) < INSN_LUID ((LOOP)->start)))
150 #define LOOP_REGNO_NREGS(REGNO, SET_DEST) \
151 ((REGNO) < FIRST_PSEUDO_REGISTER \
152 ? HARD_REGNO_NREGS ((REGNO), GET_MODE (SET_DEST)) : 1)
155 /* Vector mapping INSN_UIDs to luids.
156 The luids are like uids but increase monotonically always.
157 We use them to see whether a jump comes from outside a given loop. */
159 int *uid_luid;
161 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
162 number the insn is contained in. */
164 struct loop **uid_loop;
166 /* 1 + largest uid of any insn. */
168 int max_uid_for_loop;
170 /* 1 + luid of last insn. */
172 static int max_luid;
174 /* Number of loops detected in current function. Used as index to the
175 next few tables. */
177 static int max_loop_num;
179 /* Bound on pseudo register number before loop optimization.
180 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
181 unsigned int max_reg_before_loop;
183 /* The value to pass to the next call of reg_scan_update. */
184 static int loop_max_reg;
186 #define obstack_chunk_alloc xmalloc
187 #define obstack_chunk_free free
189 /* During the analysis of a loop, a chain of `struct movable's
190 is made to record all the movable insns found.
191 Then the entire chain can be scanned to decide which to move. */
193 struct movable
195 rtx insn; /* A movable insn */
196 rtx set_src; /* The expression this reg is set from. */
197 rtx set_dest; /* The destination of this SET. */
198 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
199 of any registers used within the LIBCALL. */
200 int consec; /* Number of consecutive following insns
201 that must be moved with this one. */
202 unsigned int regno; /* The register it sets */
203 short lifetime; /* lifetime of that register;
204 may be adjusted when matching movables
205 that load the same value are found. */
206 short savings; /* Number of insns we can move for this reg,
207 including other movables that force this
208 or match this one. */
209 unsigned int cond : 1; /* 1 if only conditionally movable */
210 unsigned int force : 1; /* 1 means MUST move this insn */
211 unsigned int global : 1; /* 1 means reg is live outside this loop */
212 /* If PARTIAL is 1, GLOBAL means something different:
213 that the reg is live outside the range from where it is set
214 to the following label. */
215 unsigned int done : 1; /* 1 inhibits further processing of this */
217 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
218 In particular, moving it does not make it
219 invariant. */
220 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
221 load SRC, rather than copying INSN. */
222 unsigned int move_insn_first:1;/* Same as above, if this is necessary for the
223 first insn of a consecutive sets group. */
224 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
225 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
226 that we should avoid changing when clearing
227 the rest of the reg. */
228 struct movable *match; /* First entry for same value */
229 struct movable *forces; /* An insn that must be moved if this is */
230 struct movable *next;
234 FILE *loop_dump_stream;
236 /* Forward declarations. */
238 static void invalidate_loops_containing_label PARAMS ((rtx));
239 static void find_and_verify_loops PARAMS ((rtx, struct loops *));
240 static void mark_loop_jump PARAMS ((rtx, struct loop *));
241 static void prescan_loop PARAMS ((struct loop *));
242 static int reg_in_basic_block_p PARAMS ((rtx, rtx));
243 static int consec_sets_invariant_p PARAMS ((const struct loop *,
244 rtx, int, rtx));
245 static int labels_in_range_p PARAMS ((rtx, int));
246 static void count_one_set PARAMS ((struct loop_regs *, rtx, rtx, rtx *));
247 static void note_addr_stored PARAMS ((rtx, rtx, void *));
248 static void note_set_pseudo_multiple_uses PARAMS ((rtx, rtx, void *));
249 static int loop_reg_used_before_p PARAMS ((const struct loop *, rtx, rtx));
250 static void scan_loop PARAMS ((struct loop*, int));
251 #if 0
252 static void replace_call_address PARAMS ((rtx, rtx, rtx));
253 #endif
254 static rtx skip_consec_insns PARAMS ((rtx, int));
255 static int libcall_benefit PARAMS ((rtx));
256 static void ignore_some_movables PARAMS ((struct loop_movables *));
257 static void force_movables PARAMS ((struct loop_movables *));
258 static void combine_movables PARAMS ((struct loop_movables *,
259 struct loop_regs *));
260 static int num_unmoved_movables PARAMS ((const struct loop *));
261 static int regs_match_p PARAMS ((rtx, rtx, struct loop_movables *));
262 static int rtx_equal_for_loop_p PARAMS ((rtx, rtx, struct loop_movables *,
263 struct loop_regs *));
264 static void add_label_notes PARAMS ((rtx, rtx));
265 static void move_movables PARAMS ((struct loop *loop, struct loop_movables *,
266 int, int));
267 static void loop_movables_add PARAMS((struct loop_movables *,
268 struct movable *));
269 static void loop_movables_free PARAMS((struct loop_movables *));
270 static int count_nonfixed_reads PARAMS ((const struct loop *, rtx));
271 static void loop_bivs_find PARAMS((struct loop *));
272 static void loop_bivs_init_find PARAMS((struct loop *));
273 static void loop_bivs_check PARAMS((struct loop *));
274 static void loop_givs_find PARAMS((struct loop *));
275 static void loop_givs_check PARAMS((struct loop *));
276 static int loop_biv_eliminable_p PARAMS((struct loop *, struct iv_class *,
277 int, int));
278 static int loop_giv_reduce_benefit PARAMS((struct loop *, struct iv_class *,
279 struct induction *, rtx));
280 static void loop_givs_dead_check PARAMS((struct loop *, struct iv_class *));
281 static void loop_givs_reduce PARAMS((struct loop *, struct iv_class *));
282 static void loop_givs_rescan PARAMS((struct loop *, struct iv_class *,
283 rtx *));
284 static void loop_ivs_free PARAMS((struct loop *));
285 static void strength_reduce PARAMS ((struct loop *, int));
286 static void find_single_use_in_loop PARAMS ((struct loop_regs *, rtx, rtx));
287 static int valid_initial_value_p PARAMS ((rtx, rtx, int, rtx));
288 static void find_mem_givs PARAMS ((const struct loop *, rtx, rtx, int, int));
289 static void record_biv PARAMS ((struct loop *, struct induction *,
290 rtx, rtx, rtx, rtx, rtx *,
291 int, int));
292 static void check_final_value PARAMS ((const struct loop *,
293 struct induction *));
294 static void loop_ivs_dump PARAMS((const struct loop *, FILE *, int));
295 static void loop_iv_class_dump PARAMS((const struct iv_class *, FILE *, int));
296 static void loop_biv_dump PARAMS((const struct induction *, FILE *, int));
297 static void loop_giv_dump PARAMS((const struct induction *, FILE *, int));
298 static void record_giv PARAMS ((const struct loop *, struct induction *,
299 rtx, rtx, rtx, rtx, rtx, rtx, int,
300 enum g_types, int, int, rtx *));
301 static void update_giv_derive PARAMS ((const struct loop *, rtx));
302 static void check_ext_dependent_givs PARAMS ((struct iv_class *,
303 struct loop_info *));
304 static int basic_induction_var PARAMS ((const struct loop *, rtx,
305 enum machine_mode, rtx, rtx,
306 rtx *, rtx *, rtx **));
307 static rtx simplify_giv_expr PARAMS ((const struct loop *, rtx, rtx *, int *));
308 static int general_induction_var PARAMS ((const struct loop *loop, rtx, rtx *,
309 rtx *, rtx *, rtx *, int, int *,
310 enum machine_mode));
311 static int consec_sets_giv PARAMS ((const struct loop *, int, rtx,
312 rtx, rtx, rtx *, rtx *, rtx *, rtx *));
313 static int check_dbra_loop PARAMS ((struct loop *, int));
314 static rtx express_from_1 PARAMS ((rtx, rtx, rtx));
315 static rtx combine_givs_p PARAMS ((struct induction *, struct induction *));
316 static int cmp_combine_givs_stats PARAMS ((const PTR, const PTR));
317 static void combine_givs PARAMS ((struct loop_regs *, struct iv_class *));
318 static int product_cheap_p PARAMS ((rtx, rtx));
319 static int maybe_eliminate_biv PARAMS ((const struct loop *, struct iv_class *,
320 int, int, int));
321 static int maybe_eliminate_biv_1 PARAMS ((const struct loop *, rtx, rtx,
322 struct iv_class *, int,
323 basic_block, rtx));
324 static int last_use_this_basic_block PARAMS ((rtx, rtx));
325 static void record_initial PARAMS ((rtx, rtx, void *));
326 static void update_reg_last_use PARAMS ((rtx, rtx));
327 static rtx next_insn_in_loop PARAMS ((const struct loop *, rtx));
328 static void loop_regs_scan PARAMS ((const struct loop *, int));
329 static int count_insns_in_loop PARAMS ((const struct loop *));
330 static void load_mems PARAMS ((const struct loop *));
331 static int insert_loop_mem PARAMS ((rtx *, void *));
332 static int replace_loop_mem PARAMS ((rtx *, void *));
333 static void replace_loop_mems PARAMS ((rtx, rtx, rtx));
334 static int replace_loop_reg PARAMS ((rtx *, void *));
335 static void replace_loop_regs PARAMS ((rtx insn, rtx, rtx));
336 static void note_reg_stored PARAMS ((rtx, rtx, void *));
337 static void try_copy_prop PARAMS ((const struct loop *, rtx, unsigned int));
338 static void try_swap_copy_prop PARAMS ((const struct loop *, rtx,
339 unsigned int));
340 static int replace_label PARAMS ((rtx *, void *));
341 static rtx check_insn_for_givs PARAMS((struct loop *, rtx, int, int));
342 static rtx check_insn_for_bivs PARAMS((struct loop *, rtx, int, int));
343 static rtx gen_add_mult PARAMS ((rtx, rtx, rtx, rtx));
344 static void loop_regs_update PARAMS ((const struct loop *, rtx));
345 static int iv_add_mult_cost PARAMS ((rtx, rtx, rtx, rtx));
347 static rtx loop_insn_emit_after PARAMS((const struct loop *, basic_block,
348 rtx, rtx));
349 static rtx loop_call_insn_emit_before PARAMS((const struct loop *,
350 basic_block, rtx, rtx));
351 static rtx loop_call_insn_hoist PARAMS((const struct loop *, rtx));
352 static rtx loop_insn_sink_or_swim PARAMS((const struct loop *, rtx));
354 static void loop_dump_aux PARAMS ((const struct loop *, FILE *, int));
355 static void loop_delete_insns PARAMS ((rtx, rtx));
356 static HOST_WIDE_INT remove_constant_addition PARAMS ((rtx *));
357 void debug_ivs PARAMS ((const struct loop *));
358 void debug_iv_class PARAMS ((const struct iv_class *));
359 void debug_biv PARAMS ((const struct induction *));
360 void debug_giv PARAMS ((const struct induction *));
361 void debug_loop PARAMS ((const struct loop *));
362 void debug_loops PARAMS ((const struct loops *));
364 typedef struct rtx_pair
366 rtx r1;
367 rtx r2;
368 } rtx_pair;
370 typedef struct loop_replace_args
372 rtx match;
373 rtx replacement;
374 rtx insn;
375 } loop_replace_args;
377 /* Nonzero iff INSN is between START and END, inclusive. */
378 #define INSN_IN_RANGE_P(INSN, START, END) \
379 (INSN_UID (INSN) < max_uid_for_loop \
380 && INSN_LUID (INSN) >= INSN_LUID (START) \
381 && INSN_LUID (INSN) <= INSN_LUID (END))
383 /* Indirect_jump_in_function is computed once per function. */
384 static int indirect_jump_in_function;
385 static int indirect_jump_in_function_p PARAMS ((rtx));
387 static int compute_luids PARAMS ((rtx, rtx, int));
389 static int biv_elimination_giv_has_0_offset PARAMS ((struct induction *,
390 struct induction *,
391 rtx));
393 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
394 copy the value of the strength reduced giv to its original register. */
395 static int copy_cost;
397 /* Cost of using a register, to normalize the benefits of a giv. */
398 static int reg_address_cost;
400 void
401 init_loop ()
403 rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
405 reg_address_cost = address_cost (reg, SImode);
407 copy_cost = COSTS_N_INSNS (1);
410 /* Compute the mapping from uids to luids.
411 LUIDs are numbers assigned to insns, like uids,
412 except that luids increase monotonically through the code.
413 Start at insn START and stop just before END. Assign LUIDs
414 starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
415 static int
416 compute_luids (start, end, prev_luid)
417 rtx start, end;
418 int prev_luid;
420 int i;
421 rtx insn;
423 for (insn = start, i = prev_luid; insn != end; insn = NEXT_INSN (insn))
425 if (INSN_UID (insn) >= max_uid_for_loop)
426 continue;
427 /* Don't assign luids to line-number NOTEs, so that the distance in
428 luids between two insns is not affected by -g. */
429 if (GET_CODE (insn) != NOTE
430 || NOTE_LINE_NUMBER (insn) <= 0)
431 uid_luid[INSN_UID (insn)] = ++i;
432 else
433 /* Give a line number note the same luid as preceding insn. */
434 uid_luid[INSN_UID (insn)] = i;
436 return i + 1;
439 /* Entry point of this file. Perform loop optimization
440 on the current function. F is the first insn of the function
441 and DUMPFILE is a stream for output of a trace of actions taken
442 (or 0 if none should be output). */
444 void
445 loop_optimize (f, dumpfile, flags)
446 /* f is the first instruction of a chain of insns for one function */
447 rtx f;
448 FILE *dumpfile;
449 int flags;
451 rtx insn;
452 int i;
453 struct loops loops_data;
454 struct loops *loops = &loops_data;
455 struct loop_info *loops_info;
457 loop_dump_stream = dumpfile;
459 init_recog_no_volatile ();
461 max_reg_before_loop = max_reg_num ();
462 loop_max_reg = max_reg_before_loop;
464 regs_may_share = 0;
466 /* Count the number of loops. */
468 max_loop_num = 0;
469 for (insn = f; insn; insn = NEXT_INSN (insn))
471 if (GET_CODE (insn) == NOTE
472 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
473 max_loop_num++;
476 /* Don't waste time if no loops. */
477 if (max_loop_num == 0)
478 return;
480 loops->num = max_loop_num;
482 /* Get size to use for tables indexed by uids.
483 Leave some space for labels allocated by find_and_verify_loops. */
484 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
486 uid_luid = (int *) xcalloc (max_uid_for_loop, sizeof (int));
487 uid_loop = (struct loop **) xcalloc (max_uid_for_loop,
488 sizeof (struct loop *));
490 /* Allocate storage for array of loops. */
491 loops->array = (struct loop *)
492 xcalloc (loops->num, sizeof (struct loop));
494 /* Find and process each loop.
495 First, find them, and record them in order of their beginnings. */
496 find_and_verify_loops (f, loops);
498 /* Allocate and initialize auxiliary loop information. */
499 loops_info = xcalloc (loops->num, sizeof (struct loop_info));
500 for (i = 0; i < loops->num; i++)
501 loops->array[i].aux = loops_info + i;
503 /* Now find all register lifetimes. This must be done after
504 find_and_verify_loops, because it might reorder the insns in the
505 function. */
506 reg_scan (f, max_reg_before_loop, 1);
508 /* This must occur after reg_scan so that registers created by gcse
509 will have entries in the register tables.
511 We could have added a call to reg_scan after gcse_main in toplev.c,
512 but moving this call to init_alias_analysis is more efficient. */
513 init_alias_analysis ();
515 /* See if we went too far. Note that get_max_uid already returns
516 one more that the maximum uid of all insn. */
517 if (get_max_uid () > max_uid_for_loop)
518 abort ();
519 /* Now reset it to the actual size we need. See above. */
520 max_uid_for_loop = get_max_uid ();
522 /* find_and_verify_loops has already called compute_luids, but it
523 might have rearranged code afterwards, so we need to recompute
524 the luids now. */
525 max_luid = compute_luids (f, NULL_RTX, 0);
527 /* Don't leave gaps in uid_luid for insns that have been
528 deleted. It is possible that the first or last insn
529 using some register has been deleted by cross-jumping.
530 Make sure that uid_luid for that former insn's uid
531 points to the general area where that insn used to be. */
532 for (i = 0; i < max_uid_for_loop; i++)
534 uid_luid[0] = uid_luid[i];
535 if (uid_luid[0] != 0)
536 break;
538 for (i = 0; i < max_uid_for_loop; i++)
539 if (uid_luid[i] == 0)
540 uid_luid[i] = uid_luid[i - 1];
542 /* Determine if the function has indirect jump. On some systems
543 this prevents low overhead loop instructions from being used. */
544 indirect_jump_in_function = indirect_jump_in_function_p (f);
546 /* Now scan the loops, last ones first, since this means inner ones are done
547 before outer ones. */
548 for (i = max_loop_num - 1; i >= 0; i--)
550 struct loop *loop = &loops->array[i];
552 if (! loop->invalid && loop->end)
553 scan_loop (loop, flags);
556 /* If there were lexical blocks inside the loop, they have been
557 replicated. We will now have more than one NOTE_INSN_BLOCK_BEG
558 and NOTE_INSN_BLOCK_END for each such block. We must duplicate
559 the BLOCKs as well. */
560 if (write_symbols != NO_DEBUG)
561 reorder_blocks ();
563 end_alias_analysis ();
565 /* Clean up. */
566 free (uid_luid);
567 free (uid_loop);
568 free (loops_info);
569 free (loops->array);
572 /* Returns the next insn, in execution order, after INSN. START and
573 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
574 respectively. LOOP->TOP, if non-NULL, is the top of the loop in the
575 insn-stream; it is used with loops that are entered near the
576 bottom. */
578 static rtx
579 next_insn_in_loop (loop, insn)
580 const struct loop *loop;
581 rtx insn;
583 insn = NEXT_INSN (insn);
585 if (insn == loop->end)
587 if (loop->top)
588 /* Go to the top of the loop, and continue there. */
589 insn = loop->top;
590 else
591 /* We're done. */
592 insn = NULL_RTX;
595 if (insn == loop->scan_start)
596 /* We're done. */
597 insn = NULL_RTX;
599 return insn;
602 /* Optimize one loop described by LOOP. */
604 /* ??? Could also move memory writes out of loops if the destination address
605 is invariant, the source is invariant, the memory write is not volatile,
606 and if we can prove that no read inside the loop can read this address
607 before the write occurs. If there is a read of this address after the
608 write, then we can also mark the memory read as invariant. */
610 static void
611 scan_loop (loop, flags)
612 struct loop *loop;
613 int flags;
615 struct loop_info *loop_info = LOOP_INFO (loop);
616 struct loop_regs *regs = LOOP_REGS (loop);
617 int i;
618 rtx loop_start = loop->start;
619 rtx loop_end = loop->end;
620 rtx p;
621 /* 1 if we are scanning insns that could be executed zero times. */
622 int maybe_never = 0;
623 /* 1 if we are scanning insns that might never be executed
624 due to a subroutine call which might exit before they are reached. */
625 int call_passed = 0;
626 /* Jump insn that enters the loop, or 0 if control drops in. */
627 rtx loop_entry_jump = 0;
628 /* Number of insns in the loop. */
629 int insn_count;
630 int tem;
631 rtx temp, update_start, update_end;
632 /* The SET from an insn, if it is the only SET in the insn. */
633 rtx set, set1;
634 /* Chain describing insns movable in current loop. */
635 struct loop_movables *movables = LOOP_MOVABLES (loop);
636 /* Ratio of extra register life span we can justify
637 for saving an instruction. More if loop doesn't call subroutines
638 since in that case saving an insn makes more difference
639 and more registers are available. */
640 int threshold;
641 /* Nonzero if we are scanning instructions in a sub-loop. */
642 int loop_depth = 0;
644 loop->top = 0;
646 movables->head = 0;
647 movables->last = 0;
649 /* Determine whether this loop starts with a jump down to a test at
650 the end. This will occur for a small number of loops with a test
651 that is too complex to duplicate in front of the loop.
653 We search for the first insn or label in the loop, skipping NOTEs.
654 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
655 (because we might have a loop executed only once that contains a
656 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
657 (in case we have a degenerate loop).
659 Note that if we mistakenly think that a loop is entered at the top
660 when, in fact, it is entered at the exit test, the only effect will be
661 slightly poorer optimization. Making the opposite error can generate
662 incorrect code. Since very few loops now start with a jump to the
663 exit test, the code here to detect that case is very conservative. */
665 for (p = NEXT_INSN (loop_start);
666 p != loop_end
667 && GET_CODE (p) != CODE_LABEL && ! INSN_P (p)
668 && (GET_CODE (p) != NOTE
669 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
670 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
671 p = NEXT_INSN (p))
674 loop->scan_start = p;
676 /* If loop end is the end of the current function, then emit a
677 NOTE_INSN_DELETED after loop_end and set loop->sink to the dummy
678 note insn. This is the position we use when sinking insns out of
679 the loop. */
680 if (NEXT_INSN (loop->end) != 0)
681 loop->sink = NEXT_INSN (loop->end);
682 else
683 loop->sink = emit_note_after (NOTE_INSN_DELETED, loop->end);
685 /* Set up variables describing this loop. */
686 prescan_loop (loop);
687 threshold = (loop_info->has_call ? 1 : 2) * (1 + n_non_fixed_regs);
689 /* If loop has a jump before the first label,
690 the true entry is the target of that jump.
691 Start scan from there.
692 But record in LOOP->TOP the place where the end-test jumps
693 back to so we can scan that after the end of the loop. */
694 if (GET_CODE (p) == JUMP_INSN)
696 loop_entry_jump = p;
698 /* Loop entry must be unconditional jump (and not a RETURN) */
699 if (any_uncondjump_p (p)
700 && JUMP_LABEL (p) != 0
701 /* Check to see whether the jump actually
702 jumps out of the loop (meaning it's no loop).
703 This case can happen for things like
704 do {..} while (0). If this label was generated previously
705 by loop, we can't tell anything about it and have to reject
706 the loop. */
707 && INSN_IN_RANGE_P (JUMP_LABEL (p), loop_start, loop_end))
709 loop->top = next_label (loop->scan_start);
710 loop->scan_start = JUMP_LABEL (p);
714 /* If LOOP->SCAN_START was an insn created by loop, we don't know its luid
715 as required by loop_reg_used_before_p. So skip such loops. (This
716 test may never be true, but it's best to play it safe.)
718 Also, skip loops where we do not start scanning at a label. This
719 test also rejects loops starting with a JUMP_INSN that failed the
720 test above. */
722 if (INSN_UID (loop->scan_start) >= max_uid_for_loop
723 || GET_CODE (loop->scan_start) != CODE_LABEL)
725 if (loop_dump_stream)
726 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
727 INSN_UID (loop_start), INSN_UID (loop_end));
728 return;
731 /* Allocate extra space for REGs that might be created by load_mems.
732 We allocate a little extra slop as well, in the hopes that we
733 won't have to reallocate the regs array. */
734 loop_regs_scan (loop, loop_info->mems_idx + 16);
735 insn_count = count_insns_in_loop (loop);
737 if (loop_dump_stream)
739 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
740 INSN_UID (loop_start), INSN_UID (loop_end), insn_count);
741 if (loop->cont)
742 fprintf (loop_dump_stream, "Continue at insn %d.\n",
743 INSN_UID (loop->cont));
746 /* Scan through the loop finding insns that are safe to move.
747 Set REGS->ARRAY[I].SET_IN_LOOP negative for the reg I being set, so that
748 this reg will be considered invariant for subsequent insns.
749 We consider whether subsequent insns use the reg
750 in deciding whether it is worth actually moving.
752 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
753 and therefore it is possible that the insns we are scanning
754 would never be executed. At such times, we must make sure
755 that it is safe to execute the insn once instead of zero times.
756 When MAYBE_NEVER is 0, all insns will be executed at least once
757 so that is not a problem. */
759 for (p = next_insn_in_loop (loop, loop->scan_start);
760 p != NULL_RTX;
761 p = next_insn_in_loop (loop, p))
763 if (GET_CODE (p) == INSN
764 && (set = single_set (p))
765 && GET_CODE (SET_DEST (set)) == REG
766 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
767 && SET_DEST (set) != pic_offset_table_rtx
768 #endif
769 && ! regs->array[REGNO (SET_DEST (set))].may_not_optimize)
771 int tem1 = 0;
772 int tem2 = 0;
773 int move_insn = 0;
774 rtx src = SET_SRC (set);
775 rtx dependencies = 0;
777 /* Figure out what to use as a source of this insn. If a REG_EQUIV
778 note is given or if a REG_EQUAL note with a constant operand is
779 specified, use it as the source and mark that we should move
780 this insn by calling emit_move_insn rather that duplicating the
781 insn.
783 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
784 is present. */
785 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
786 if (temp)
787 src = XEXP (temp, 0), move_insn = 1;
788 else
790 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
791 if (temp && CONSTANT_P (XEXP (temp, 0)))
792 src = XEXP (temp, 0), move_insn = 1;
793 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
795 src = XEXP (temp, 0);
796 /* A libcall block can use regs that don't appear in
797 the equivalent expression. To move the libcall,
798 we must move those regs too. */
799 dependencies = libcall_other_reg (p, src);
803 /* For parallels, add any possible uses to the depencies, as we can't move
804 the insn without resolving them first. */
805 if (GET_CODE (PATTERN (p)) == PARALLEL)
807 for (i = 0; i < XVECLEN (PATTERN (p), 0); i++)
809 rtx x = XVECEXP (PATTERN (p), 0, i);
810 if (GET_CODE (x) == USE)
811 dependencies = gen_rtx_EXPR_LIST (VOIDmode, XEXP (x, 0), dependencies);
815 /* Don't try to optimize a register that was made
816 by loop-optimization for an inner loop.
817 We don't know its life-span, so we can't compute the benefit. */
818 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
820 else if (/* The register is used in basic blocks other
821 than the one where it is set (meaning that
822 something after this point in the loop might
823 depend on its value before the set). */
824 ! reg_in_basic_block_p (p, SET_DEST (set))
825 /* And the set is not guaranteed to be executed once
826 the loop starts, or the value before the set is
827 needed before the set occurs...
829 ??? Note we have quadratic behaviour here, mitigated
830 by the fact that the previous test will often fail for
831 large loops. Rather than re-scanning the entire loop
832 each time for register usage, we should build tables
833 of the register usage and use them here instead. */
834 && (maybe_never
835 || loop_reg_used_before_p (loop, set, p)))
836 /* It is unsafe to move the set.
838 This code used to consider it OK to move a set of a variable
839 which was not created by the user and not used in an exit test.
840 That behavior is incorrect and was removed. */
842 else if ((tem = loop_invariant_p (loop, src))
843 && (dependencies == 0
844 || (tem2 = loop_invariant_p (loop, dependencies)) != 0)
845 && (regs->array[REGNO (SET_DEST (set))].set_in_loop == 1
846 || (tem1
847 = consec_sets_invariant_p
848 (loop, SET_DEST (set),
849 regs->array[REGNO (SET_DEST (set))].set_in_loop,
850 p)))
851 /* If the insn can cause a trap (such as divide by zero),
852 can't move it unless it's guaranteed to be executed
853 once loop is entered. Even a function call might
854 prevent the trap insn from being reached
855 (since it might exit!) */
856 && ! ((maybe_never || call_passed)
857 && may_trap_p (src)))
859 struct movable *m;
860 int regno = REGNO (SET_DEST (set));
862 /* A potential lossage is where we have a case where two insns
863 can be combined as long as they are both in the loop, but
864 we move one of them outside the loop. For large loops,
865 this can lose. The most common case of this is the address
866 of a function being called.
868 Therefore, if this register is marked as being used exactly
869 once if we are in a loop with calls (a "large loop"), see if
870 we can replace the usage of this register with the source
871 of this SET. If we can, delete this insn.
873 Don't do this if P has a REG_RETVAL note or if we have
874 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
876 if (loop_info->has_call
877 && regs->array[regno].single_usage != 0
878 && regs->array[regno].single_usage != const0_rtx
879 && REGNO_FIRST_UID (regno) == INSN_UID (p)
880 && (REGNO_LAST_UID (regno)
881 == INSN_UID (regs->array[regno].single_usage))
882 && regs->array[regno].set_in_loop == 1
883 && GET_CODE (SET_SRC (set)) != ASM_OPERANDS
884 && ! side_effects_p (SET_SRC (set))
885 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
886 && (! SMALL_REGISTER_CLASSES
887 || (! (GET_CODE (SET_SRC (set)) == REG
888 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)))
889 /* This test is not redundant; SET_SRC (set) might be
890 a call-clobbered register and the life of REGNO
891 might span a call. */
892 && ! modified_between_p (SET_SRC (set), p,
893 regs->array[regno].single_usage)
894 && no_labels_between_p (p, regs->array[regno].single_usage)
895 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
896 regs->array[regno].single_usage))
898 /* Replace any usage in a REG_EQUAL note. Must copy the
899 new source, so that we don't get rtx sharing between the
900 SET_SOURCE and REG_NOTES of insn p. */
901 REG_NOTES (regs->array[regno].single_usage)
902 = replace_rtx (REG_NOTES (regs->array[regno].single_usage),
903 SET_DEST (set), copy_rtx (SET_SRC (set)));
905 delete_insn (p);
906 for (i = 0; i < LOOP_REGNO_NREGS (regno, SET_DEST (set)); i++)
907 regs->array[regno+i].set_in_loop = 0;
908 continue;
911 m = (struct movable *) xmalloc (sizeof (struct movable));
912 m->next = 0;
913 m->insn = p;
914 m->set_src = src;
915 m->dependencies = dependencies;
916 m->set_dest = SET_DEST (set);
917 m->force = 0;
918 m->consec = regs->array[REGNO (SET_DEST (set))].set_in_loop - 1;
919 m->done = 0;
920 m->forces = 0;
921 m->partial = 0;
922 m->move_insn = move_insn;
923 m->move_insn_first = 0;
924 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
925 m->savemode = VOIDmode;
926 m->regno = regno;
927 /* Set M->cond if either loop_invariant_p
928 or consec_sets_invariant_p returned 2
929 (only conditionally invariant). */
930 m->cond = ((tem | tem1 | tem2) > 1);
931 m->global = LOOP_REG_GLOBAL_P (loop, regno);
932 m->match = 0;
933 m->lifetime = LOOP_REG_LIFETIME (loop, regno);
934 m->savings = regs->array[regno].n_times_set;
935 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
936 m->savings += libcall_benefit (p);
937 for (i = 0; i < LOOP_REGNO_NREGS (regno, SET_DEST (set)); i++)
938 regs->array[regno+i].set_in_loop = move_insn ? -2 : -1;
939 /* Add M to the end of the chain MOVABLES. */
940 loop_movables_add (movables, m);
942 if (m->consec > 0)
944 /* It is possible for the first instruction to have a
945 REG_EQUAL note but a non-invariant SET_SRC, so we must
946 remember the status of the first instruction in case
947 the last instruction doesn't have a REG_EQUAL note. */
948 m->move_insn_first = m->move_insn;
950 /* Skip this insn, not checking REG_LIBCALL notes. */
951 p = next_nonnote_insn (p);
952 /* Skip the consecutive insns, if there are any. */
953 p = skip_consec_insns (p, m->consec);
954 /* Back up to the last insn of the consecutive group. */
955 p = prev_nonnote_insn (p);
957 /* We must now reset m->move_insn, m->is_equiv, and possibly
958 m->set_src to correspond to the effects of all the
959 insns. */
960 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
961 if (temp)
962 m->set_src = XEXP (temp, 0), m->move_insn = 1;
963 else
965 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
966 if (temp && CONSTANT_P (XEXP (temp, 0)))
967 m->set_src = XEXP (temp, 0), m->move_insn = 1;
968 else
969 m->move_insn = 0;
972 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
975 /* If this register is always set within a STRICT_LOW_PART
976 or set to zero, then its high bytes are constant.
977 So clear them outside the loop and within the loop
978 just load the low bytes.
979 We must check that the machine has an instruction to do so.
980 Also, if the value loaded into the register
981 depends on the same register, this cannot be done. */
982 else if (SET_SRC (set) == const0_rtx
983 && GET_CODE (NEXT_INSN (p)) == INSN
984 && (set1 = single_set (NEXT_INSN (p)))
985 && GET_CODE (set1) == SET
986 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
987 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
988 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
989 == SET_DEST (set))
990 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
992 int regno = REGNO (SET_DEST (set));
993 if (regs->array[regno].set_in_loop == 2)
995 struct movable *m;
996 m = (struct movable *) xmalloc (sizeof (struct movable));
997 m->next = 0;
998 m->insn = p;
999 m->set_dest = SET_DEST (set);
1000 m->dependencies = 0;
1001 m->force = 0;
1002 m->consec = 0;
1003 m->done = 0;
1004 m->forces = 0;
1005 m->move_insn = 0;
1006 m->move_insn_first = 0;
1007 m->partial = 1;
1008 /* If the insn may not be executed on some cycles,
1009 we can't clear the whole reg; clear just high part.
1010 Not even if the reg is used only within this loop.
1011 Consider this:
1012 while (1)
1013 while (s != t) {
1014 if (foo ()) x = *s;
1015 use (x);
1017 Clearing x before the inner loop could clobber a value
1018 being saved from the last time around the outer loop.
1019 However, if the reg is not used outside this loop
1020 and all uses of the register are in the same
1021 basic block as the store, there is no problem.
1023 If this insn was made by loop, we don't know its
1024 INSN_LUID and hence must make a conservative
1025 assumption. */
1026 m->global = (INSN_UID (p) >= max_uid_for_loop
1027 || LOOP_REG_GLOBAL_P (loop, regno)
1028 || (labels_in_range_p
1029 (p, REGNO_FIRST_LUID (regno))));
1030 if (maybe_never && m->global)
1031 m->savemode = GET_MODE (SET_SRC (set1));
1032 else
1033 m->savemode = VOIDmode;
1034 m->regno = regno;
1035 m->cond = 0;
1036 m->match = 0;
1037 m->lifetime = LOOP_REG_LIFETIME (loop, regno);
1038 m->savings = 1;
1039 for (i = 0; i < LOOP_REGNO_NREGS (regno, SET_DEST (set)); i++)
1040 regs->array[regno+i].set_in_loop = -1;
1041 /* Add M to the end of the chain MOVABLES. */
1042 loop_movables_add (movables, m);
1046 /* Past a call insn, we get to insns which might not be executed
1047 because the call might exit. This matters for insns that trap.
1048 Constant and pure call insns always return, so they don't count. */
1049 else if (GET_CODE (p) == CALL_INSN && ! CONST_OR_PURE_CALL_P (p))
1050 call_passed = 1;
1051 /* Past a label or a jump, we get to insns for which we
1052 can't count on whether or how many times they will be
1053 executed during each iteration. Therefore, we can
1054 only move out sets of trivial variables
1055 (those not used after the loop). */
1056 /* Similar code appears twice in strength_reduce. */
1057 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1058 /* If we enter the loop in the middle, and scan around to the
1059 beginning, don't set maybe_never for that. This must be an
1060 unconditional jump, otherwise the code at the top of the
1061 loop might never be executed. Unconditional jumps are
1062 followed by a barrier then the loop_end. */
1063 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop->top
1064 && NEXT_INSN (NEXT_INSN (p)) == loop_end
1065 && any_uncondjump_p (p)))
1066 maybe_never = 1;
1067 else if (GET_CODE (p) == NOTE)
1069 /* At the virtual top of a converted loop, insns are again known to
1070 be executed: logically, the loop begins here even though the exit
1071 code has been duplicated. */
1072 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1073 maybe_never = call_passed = 0;
1074 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1075 loop_depth++;
1076 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1077 loop_depth--;
1081 /* If one movable subsumes another, ignore that other. */
1083 ignore_some_movables (movables);
1085 /* For each movable insn, see if the reg that it loads
1086 leads when it dies right into another conditionally movable insn.
1087 If so, record that the second insn "forces" the first one,
1088 since the second can be moved only if the first is. */
1090 force_movables (movables);
1092 /* See if there are multiple movable insns that load the same value.
1093 If there are, make all but the first point at the first one
1094 through the `match' field, and add the priorities of them
1095 all together as the priority of the first. */
1097 combine_movables (movables, regs);
1099 /* Now consider each movable insn to decide whether it is worth moving.
1100 Store 0 in regs->array[I].set_in_loop for each reg I that is moved.
1102 Generally this increases code size, so do not move moveables when
1103 optimizing for code size. */
1105 if (! optimize_size)
1107 move_movables (loop, movables, threshold, insn_count);
1109 /* Recalculate regs->array if move_movables has created new
1110 registers. */
1111 if (max_reg_num () > regs->num)
1113 loop_regs_scan (loop, 0);
1114 for (update_start = loop_start;
1115 PREV_INSN (update_start)
1116 && GET_CODE (PREV_INSN (update_start)) != CODE_LABEL;
1117 update_start = PREV_INSN (update_start))
1119 update_end = NEXT_INSN (loop_end);
1121 reg_scan_update (update_start, update_end, loop_max_reg);
1122 loop_max_reg = max_reg_num ();
1126 /* Now candidates that still are negative are those not moved.
1127 Change regs->array[I].set_in_loop to indicate that those are not actually
1128 invariant. */
1129 for (i = 0; i < regs->num; i++)
1130 if (regs->array[i].set_in_loop < 0)
1131 regs->array[i].set_in_loop = regs->array[i].n_times_set;
1133 /* Now that we've moved some things out of the loop, we might be able to
1134 hoist even more memory references. */
1135 load_mems (loop);
1137 /* Recalculate regs->array if load_mems has created new registers. */
1138 if (max_reg_num () > regs->num)
1139 loop_regs_scan (loop, 0);
1141 for (update_start = loop_start;
1142 PREV_INSN (update_start)
1143 && GET_CODE (PREV_INSN (update_start)) != CODE_LABEL;
1144 update_start = PREV_INSN (update_start))
1146 update_end = NEXT_INSN (loop_end);
1148 reg_scan_update (update_start, update_end, loop_max_reg);
1149 loop_max_reg = max_reg_num ();
1151 if (flag_strength_reduce)
1153 if (update_end && GET_CODE (update_end) == CODE_LABEL)
1154 /* Ensure our label doesn't go away. */
1155 LABEL_NUSES (update_end)++;
1157 strength_reduce (loop, flags);
1159 reg_scan_update (update_start, update_end, loop_max_reg);
1160 loop_max_reg = max_reg_num ();
1162 if (update_end && GET_CODE (update_end) == CODE_LABEL
1163 && --LABEL_NUSES (update_end) == 0)
1164 delete_related_insns (update_end);
1168 /* The movable information is required for strength reduction. */
1169 loop_movables_free (movables);
1171 free (regs->array);
1172 regs->array = 0;
1173 regs->num = 0;
1176 /* Add elements to *OUTPUT to record all the pseudo-regs
1177 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1179 void
1180 record_excess_regs (in_this, not_in_this, output)
1181 rtx in_this, not_in_this;
1182 rtx *output;
1184 enum rtx_code code;
1185 const char *fmt;
1186 int i;
1188 code = GET_CODE (in_this);
1190 switch (code)
1192 case PC:
1193 case CC0:
1194 case CONST_INT:
1195 case CONST_DOUBLE:
1196 case CONST:
1197 case SYMBOL_REF:
1198 case LABEL_REF:
1199 return;
1201 case REG:
1202 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1203 && ! reg_mentioned_p (in_this, not_in_this))
1204 *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
1205 return;
1207 default:
1208 break;
1211 fmt = GET_RTX_FORMAT (code);
1212 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1214 int j;
1216 switch (fmt[i])
1218 case 'E':
1219 for (j = 0; j < XVECLEN (in_this, i); j++)
1220 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1221 break;
1223 case 'e':
1224 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1225 break;
1230 /* Check what regs are referred to in the libcall block ending with INSN,
1231 aside from those mentioned in the equivalent value.
1232 If there are none, return 0.
1233 If there are one or more, return an EXPR_LIST containing all of them. */
1236 libcall_other_reg (insn, equiv)
1237 rtx insn, equiv;
1239 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1240 rtx p = XEXP (note, 0);
1241 rtx output = 0;
1243 /* First, find all the regs used in the libcall block
1244 that are not mentioned as inputs to the result. */
1246 while (p != insn)
1248 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1249 || GET_CODE (p) == CALL_INSN)
1250 record_excess_regs (PATTERN (p), equiv, &output);
1251 p = NEXT_INSN (p);
1254 return output;
1257 /* Return 1 if all uses of REG
1258 are between INSN and the end of the basic block. */
1260 static int
1261 reg_in_basic_block_p (insn, reg)
1262 rtx insn, reg;
1264 int regno = REGNO (reg);
1265 rtx p;
1267 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1268 return 0;
1270 /* Search this basic block for the already recorded last use of the reg. */
1271 for (p = insn; p; p = NEXT_INSN (p))
1273 switch (GET_CODE (p))
1275 case NOTE:
1276 break;
1278 case INSN:
1279 case CALL_INSN:
1280 /* Ordinary insn: if this is the last use, we win. */
1281 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1282 return 1;
1283 break;
1285 case JUMP_INSN:
1286 /* Jump insn: if this is the last use, we win. */
1287 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1288 return 1;
1289 /* Otherwise, it's the end of the basic block, so we lose. */
1290 return 0;
1292 case CODE_LABEL:
1293 case BARRIER:
1294 /* It's the end of the basic block, so we lose. */
1295 return 0;
1297 default:
1298 break;
1302 /* The "last use" that was recorded can't be found after the first
1303 use. This can happen when the last use was deleted while
1304 processing an inner loop, this inner loop was then completely
1305 unrolled, and the outer loop is always exited after the inner loop,
1306 so that everything after the first use becomes a single basic block. */
1307 return 1;
1310 /* Compute the benefit of eliminating the insns in the block whose
1311 last insn is LAST. This may be a group of insns used to compute a
1312 value directly or can contain a library call. */
1314 static int
1315 libcall_benefit (last)
1316 rtx last;
1318 rtx insn;
1319 int benefit = 0;
1321 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1322 insn != last; insn = NEXT_INSN (insn))
1324 if (GET_CODE (insn) == CALL_INSN)
1325 benefit += 10; /* Assume at least this many insns in a library
1326 routine. */
1327 else if (GET_CODE (insn) == INSN
1328 && GET_CODE (PATTERN (insn)) != USE
1329 && GET_CODE (PATTERN (insn)) != CLOBBER)
1330 benefit++;
1333 return benefit;
1336 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1338 static rtx
1339 skip_consec_insns (insn, count)
1340 rtx insn;
1341 int count;
1343 for (; count > 0; count--)
1345 rtx temp;
1347 /* If first insn of libcall sequence, skip to end. */
1348 /* Do this at start of loop, since INSN is guaranteed to
1349 be an insn here. */
1350 if (GET_CODE (insn) != NOTE
1351 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1352 insn = XEXP (temp, 0);
1355 insn = NEXT_INSN (insn);
1356 while (GET_CODE (insn) == NOTE);
1359 return insn;
1362 /* Ignore any movable whose insn falls within a libcall
1363 which is part of another movable.
1364 We make use of the fact that the movable for the libcall value
1365 was made later and so appears later on the chain. */
1367 static void
1368 ignore_some_movables (movables)
1369 struct loop_movables *movables;
1371 struct movable *m, *m1;
1373 for (m = movables->head; m; m = m->next)
1375 /* Is this a movable for the value of a libcall? */
1376 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1377 if (note)
1379 rtx insn;
1380 /* Check for earlier movables inside that range,
1381 and mark them invalid. We cannot use LUIDs here because
1382 insns created by loop.c for prior loops don't have LUIDs.
1383 Rather than reject all such insns from movables, we just
1384 explicitly check each insn in the libcall (since invariant
1385 libcalls aren't that common). */
1386 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1387 for (m1 = movables->head; m1 != m; m1 = m1->next)
1388 if (m1->insn == insn)
1389 m1->done = 1;
1394 /* For each movable insn, see if the reg that it loads
1395 leads when it dies right into another conditionally movable insn.
1396 If so, record that the second insn "forces" the first one,
1397 since the second can be moved only if the first is. */
1399 static void
1400 force_movables (movables)
1401 struct loop_movables *movables;
1403 struct movable *m, *m1;
1405 for (m1 = movables->head; m1; m1 = m1->next)
1406 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1407 if (!m1->partial && !m1->done)
1409 int regno = m1->regno;
1410 for (m = m1->next; m; m = m->next)
1411 /* ??? Could this be a bug? What if CSE caused the
1412 register of M1 to be used after this insn?
1413 Since CSE does not update regno_last_uid,
1414 this insn M->insn might not be where it dies.
1415 But very likely this doesn't matter; what matters is
1416 that M's reg is computed from M1's reg. */
1417 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1418 && !m->done)
1419 break;
1420 if (m != 0 && m->set_src == m1->set_dest
1421 /* If m->consec, m->set_src isn't valid. */
1422 && m->consec == 0)
1423 m = 0;
1425 /* Increase the priority of the moving the first insn
1426 since it permits the second to be moved as well. */
1427 if (m != 0)
1429 m->forces = m1;
1430 m1->lifetime += m->lifetime;
1431 m1->savings += m->savings;
1436 /* Find invariant expressions that are equal and can be combined into
1437 one register. */
1439 static void
1440 combine_movables (movables, regs)
1441 struct loop_movables *movables;
1442 struct loop_regs *regs;
1444 struct movable *m;
1445 char *matched_regs = (char *) xmalloc (regs->num);
1446 enum machine_mode mode;
1448 /* Regs that are set more than once are not allowed to match
1449 or be matched. I'm no longer sure why not. */
1450 /* Perhaps testing m->consec_sets would be more appropriate here? */
1452 for (m = movables->head; m; m = m->next)
1453 if (m->match == 0 && regs->array[m->regno].n_times_set == 1
1454 && !m->partial)
1456 struct movable *m1;
1457 int regno = m->regno;
1459 memset (matched_regs, 0, regs->num);
1460 matched_regs[regno] = 1;
1462 /* We want later insns to match the first one. Don't make the first
1463 one match any later ones. So start this loop at m->next. */
1464 for (m1 = m->next; m1; m1 = m1->next)
1465 /* ??? HACK! move_movables does not verify that the replacement
1466 is valid, which can have disasterous effects with hard regs
1467 and match_dup. Turn combination off for now. */
1468 if (0 && m != m1 && m1->match == 0
1469 && regs->array[m1->regno].n_times_set == 1
1470 /* A reg used outside the loop mustn't be eliminated. */
1471 && !m1->global
1472 /* A reg used for zero-extending mustn't be eliminated. */
1473 && !m1->partial
1474 && (matched_regs[m1->regno]
1477 /* Can combine regs with different modes loaded from the
1478 same constant only if the modes are the same or
1479 if both are integer modes with M wider or the same
1480 width as M1. The check for integer is redundant, but
1481 safe, since the only case of differing destination
1482 modes with equal sources is when both sources are
1483 VOIDmode, i.e., CONST_INT. */
1484 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1485 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1486 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1487 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1488 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1489 /* See if the source of M1 says it matches M. */
1490 && ((GET_CODE (m1->set_src) == REG
1491 && matched_regs[REGNO (m1->set_src)])
1492 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1493 movables, regs))))
1494 && ((m->dependencies == m1->dependencies)
1495 || rtx_equal_p (m->dependencies, m1->dependencies)))
1497 m->lifetime += m1->lifetime;
1498 m->savings += m1->savings;
1499 m1->done = 1;
1500 m1->match = m;
1501 matched_regs[m1->regno] = 1;
1505 /* Now combine the regs used for zero-extension.
1506 This can be done for those not marked `global'
1507 provided their lives don't overlap. */
1509 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1510 mode = GET_MODE_WIDER_MODE (mode))
1512 struct movable *m0 = 0;
1514 /* Combine all the registers for extension from mode MODE.
1515 Don't combine any that are used outside this loop. */
1516 for (m = movables->head; m; m = m->next)
1517 if (m->partial && ! m->global
1518 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1520 struct movable *m1;
1522 int first = REGNO_FIRST_LUID (m->regno);
1523 int last = REGNO_LAST_LUID (m->regno);
1525 if (m0 == 0)
1527 /* First one: don't check for overlap, just record it. */
1528 m0 = m;
1529 continue;
1532 /* Make sure they extend to the same mode.
1533 (Almost always true.) */
1534 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1535 continue;
1537 /* We already have one: check for overlap with those
1538 already combined together. */
1539 for (m1 = movables->head; m1 != m; m1 = m1->next)
1540 if (m1 == m0 || (m1->partial && m1->match == m0))
1541 if (! (REGNO_FIRST_LUID (m1->regno) > last
1542 || REGNO_LAST_LUID (m1->regno) < first))
1543 goto overlap;
1545 /* No overlap: we can combine this with the others. */
1546 m0->lifetime += m->lifetime;
1547 m0->savings += m->savings;
1548 m->done = 1;
1549 m->match = m0;
1551 overlap:
1556 /* Clean up. */
1557 free (matched_regs);
1560 /* Returns the number of movable instructions in LOOP that were not
1561 moved outside the loop. */
1563 static int
1564 num_unmoved_movables (loop)
1565 const struct loop *loop;
1567 int num = 0;
1568 struct movable *m;
1570 for (m = LOOP_MOVABLES (loop)->head; m; m = m->next)
1571 if (!m->done)
1572 ++num;
1574 return num;
1578 /* Return 1 if regs X and Y will become the same if moved. */
1580 static int
1581 regs_match_p (x, y, movables)
1582 rtx x, y;
1583 struct loop_movables *movables;
1585 unsigned int xn = REGNO (x);
1586 unsigned int yn = REGNO (y);
1587 struct movable *mx, *my;
1589 for (mx = movables->head; mx; mx = mx->next)
1590 if (mx->regno == xn)
1591 break;
1593 for (my = movables->head; my; my = my->next)
1594 if (my->regno == yn)
1595 break;
1597 return (mx && my
1598 && ((mx->match == my->match && mx->match != 0)
1599 || mx->match == my
1600 || mx == my->match));
1603 /* Return 1 if X and Y are identical-looking rtx's.
1604 This is the Lisp function EQUAL for rtx arguments.
1606 If two registers are matching movables or a movable register and an
1607 equivalent constant, consider them equal. */
1609 static int
1610 rtx_equal_for_loop_p (x, y, movables, regs)
1611 rtx x, y;
1612 struct loop_movables *movables;
1613 struct loop_regs *regs;
1615 int i;
1616 int j;
1617 struct movable *m;
1618 enum rtx_code code;
1619 const char *fmt;
1621 if (x == y)
1622 return 1;
1623 if (x == 0 || y == 0)
1624 return 0;
1626 code = GET_CODE (x);
1628 /* If we have a register and a constant, they may sometimes be
1629 equal. */
1630 if (GET_CODE (x) == REG && regs->array[REGNO (x)].set_in_loop == -2
1631 && CONSTANT_P (y))
1633 for (m = movables->head; m; m = m->next)
1634 if (m->move_insn && m->regno == REGNO (x)
1635 && rtx_equal_p (m->set_src, y))
1636 return 1;
1638 else if (GET_CODE (y) == REG && regs->array[REGNO (y)].set_in_loop == -2
1639 && CONSTANT_P (x))
1641 for (m = movables->head; m; m = m->next)
1642 if (m->move_insn && m->regno == REGNO (y)
1643 && rtx_equal_p (m->set_src, x))
1644 return 1;
1647 /* Otherwise, rtx's of different codes cannot be equal. */
1648 if (code != GET_CODE (y))
1649 return 0;
1651 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1652 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1654 if (GET_MODE (x) != GET_MODE (y))
1655 return 0;
1657 /* These three types of rtx's can be compared nonrecursively. */
1658 if (code == REG)
1659 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1661 if (code == LABEL_REF)
1662 return XEXP (x, 0) == XEXP (y, 0);
1663 if (code == SYMBOL_REF)
1664 return XSTR (x, 0) == XSTR (y, 0);
1666 /* Compare the elements. If any pair of corresponding elements
1667 fail to match, return 0 for the whole things. */
1669 fmt = GET_RTX_FORMAT (code);
1670 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1672 switch (fmt[i])
1674 case 'w':
1675 if (XWINT (x, i) != XWINT (y, i))
1676 return 0;
1677 break;
1679 case 'i':
1680 if (XINT (x, i) != XINT (y, i))
1681 return 0;
1682 break;
1684 case 'E':
1685 /* Two vectors must have the same length. */
1686 if (XVECLEN (x, i) != XVECLEN (y, i))
1687 return 0;
1689 /* And the corresponding elements must match. */
1690 for (j = 0; j < XVECLEN (x, i); j++)
1691 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
1692 movables, regs) == 0)
1693 return 0;
1694 break;
1696 case 'e':
1697 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables, regs)
1698 == 0)
1699 return 0;
1700 break;
1702 case 's':
1703 if (strcmp (XSTR (x, i), XSTR (y, i)))
1704 return 0;
1705 break;
1707 case 'u':
1708 /* These are just backpointers, so they don't matter. */
1709 break;
1711 case '0':
1712 break;
1714 /* It is believed that rtx's at this level will never
1715 contain anything but integers and other rtx's,
1716 except for within LABEL_REFs and SYMBOL_REFs. */
1717 default:
1718 abort ();
1721 return 1;
1724 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1725 insns in INSNS which use the reference. LABEL_NUSES for CODE_LABEL
1726 references is incremented once for each added note. */
1728 static void
1729 add_label_notes (x, insns)
1730 rtx x;
1731 rtx insns;
1733 enum rtx_code code = GET_CODE (x);
1734 int i, j;
1735 const char *fmt;
1736 rtx insn;
1738 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1740 /* This code used to ignore labels that referred to dispatch tables to
1741 avoid flow generating (slighly) worse code.
1743 We no longer ignore such label references (see LABEL_REF handling in
1744 mark_jump_label for additional information). */
1745 for (insn = insns; insn; insn = NEXT_INSN (insn))
1746 if (reg_mentioned_p (XEXP (x, 0), insn))
1748 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
1749 REG_NOTES (insn));
1750 if (LABEL_P (XEXP (x, 0)))
1751 LABEL_NUSES (XEXP (x, 0))++;
1755 fmt = GET_RTX_FORMAT (code);
1756 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1758 if (fmt[i] == 'e')
1759 add_label_notes (XEXP (x, i), insns);
1760 else if (fmt[i] == 'E')
1761 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1762 add_label_notes (XVECEXP (x, i, j), insns);
1766 /* Scan MOVABLES, and move the insns that deserve to be moved.
1767 If two matching movables are combined, replace one reg with the
1768 other throughout. */
1770 static void
1771 move_movables (loop, movables, threshold, insn_count)
1772 struct loop *loop;
1773 struct loop_movables *movables;
1774 int threshold;
1775 int insn_count;
1777 struct loop_regs *regs = LOOP_REGS (loop);
1778 int nregs = regs->num;
1779 rtx new_start = 0;
1780 struct movable *m;
1781 rtx p;
1782 rtx loop_start = loop->start;
1783 rtx loop_end = loop->end;
1784 /* Map of pseudo-register replacements to handle combining
1785 when we move several insns that load the same value
1786 into different pseudo-registers. */
1787 rtx *reg_map = (rtx *) xcalloc (nregs, sizeof (rtx));
1788 char *already_moved = (char *) xcalloc (nregs, sizeof (char));
1790 for (m = movables->head; m; m = m->next)
1792 /* Describe this movable insn. */
1794 if (loop_dump_stream)
1796 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1797 INSN_UID (m->insn), m->regno, m->lifetime);
1798 if (m->consec > 0)
1799 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1800 if (m->cond)
1801 fprintf (loop_dump_stream, "cond ");
1802 if (m->force)
1803 fprintf (loop_dump_stream, "force ");
1804 if (m->global)
1805 fprintf (loop_dump_stream, "global ");
1806 if (m->done)
1807 fprintf (loop_dump_stream, "done ");
1808 if (m->move_insn)
1809 fprintf (loop_dump_stream, "move-insn ");
1810 if (m->match)
1811 fprintf (loop_dump_stream, "matches %d ",
1812 INSN_UID (m->match->insn));
1813 if (m->forces)
1814 fprintf (loop_dump_stream, "forces %d ",
1815 INSN_UID (m->forces->insn));
1818 /* Ignore the insn if it's already done (it matched something else).
1819 Otherwise, see if it is now safe to move. */
1821 if (!m->done
1822 && (! m->cond
1823 || (1 == loop_invariant_p (loop, m->set_src)
1824 && (m->dependencies == 0
1825 || 1 == loop_invariant_p (loop, m->dependencies))
1826 && (m->consec == 0
1827 || 1 == consec_sets_invariant_p (loop, m->set_dest,
1828 m->consec + 1,
1829 m->insn))))
1830 && (! m->forces || m->forces->done))
1832 int regno;
1833 rtx p;
1834 int savings = m->savings;
1836 /* We have an insn that is safe to move.
1837 Compute its desirability. */
1839 p = m->insn;
1840 regno = m->regno;
1842 if (loop_dump_stream)
1843 fprintf (loop_dump_stream, "savings %d ", savings);
1845 if (regs->array[regno].moved_once && loop_dump_stream)
1846 fprintf (loop_dump_stream, "halved since already moved ");
1848 /* An insn MUST be moved if we already moved something else
1849 which is safe only if this one is moved too: that is,
1850 if already_moved[REGNO] is nonzero. */
1852 /* An insn is desirable to move if the new lifetime of the
1853 register is no more than THRESHOLD times the old lifetime.
1854 If it's not desirable, it means the loop is so big
1855 that moving won't speed things up much,
1856 and it is liable to make register usage worse. */
1858 /* It is also desirable to move if it can be moved at no
1859 extra cost because something else was already moved. */
1861 if (already_moved[regno]
1862 || flag_move_all_movables
1863 || (threshold * savings * m->lifetime) >=
1864 (regs->array[regno].moved_once ? insn_count * 2 : insn_count)
1865 || (m->forces && m->forces->done
1866 && regs->array[m->forces->regno].n_times_set == 1))
1868 int count;
1869 struct movable *m1;
1870 rtx first = NULL_RTX;
1872 /* Now move the insns that set the reg. */
1874 if (m->partial && m->match)
1876 rtx newpat, i1;
1877 rtx r1, r2;
1878 /* Find the end of this chain of matching regs.
1879 Thus, we load each reg in the chain from that one reg.
1880 And that reg is loaded with 0 directly,
1881 since it has ->match == 0. */
1882 for (m1 = m; m1->match; m1 = m1->match);
1883 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1884 SET_DEST (PATTERN (m1->insn)));
1885 i1 = loop_insn_hoist (loop, newpat);
1887 /* Mark the moved, invariant reg as being allowed to
1888 share a hard reg with the other matching invariant. */
1889 REG_NOTES (i1) = REG_NOTES (m->insn);
1890 r1 = SET_DEST (PATTERN (m->insn));
1891 r2 = SET_DEST (PATTERN (m1->insn));
1892 regs_may_share
1893 = gen_rtx_EXPR_LIST (VOIDmode, r1,
1894 gen_rtx_EXPR_LIST (VOIDmode, r2,
1895 regs_may_share));
1896 delete_insn (m->insn);
1898 if (new_start == 0)
1899 new_start = i1;
1901 if (loop_dump_stream)
1902 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1904 /* If we are to re-generate the item being moved with a
1905 new move insn, first delete what we have and then emit
1906 the move insn before the loop. */
1907 else if (m->move_insn)
1909 rtx i1, temp, seq;
1911 for (count = m->consec; count >= 0; count--)
1913 /* If this is the first insn of a library call sequence,
1914 skip to the end. */
1915 if (GET_CODE (p) != NOTE
1916 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1917 p = XEXP (temp, 0);
1919 /* If this is the last insn of a libcall sequence, then
1920 delete every insn in the sequence except the last.
1921 The last insn is handled in the normal manner. */
1922 if (GET_CODE (p) != NOTE
1923 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1925 temp = XEXP (temp, 0);
1926 while (temp != p)
1927 temp = delete_insn (temp);
1930 temp = p;
1931 p = delete_insn (p);
1933 /* simplify_giv_expr expects that it can walk the insns
1934 at m->insn forwards and see this old sequence we are
1935 tossing here. delete_insn does preserve the next
1936 pointers, but when we skip over a NOTE we must fix
1937 it up. Otherwise that code walks into the non-deleted
1938 insn stream. */
1939 while (p && GET_CODE (p) == NOTE)
1940 p = NEXT_INSN (temp) = NEXT_INSN (p);
1943 start_sequence ();
1944 emit_move_insn (m->set_dest, m->set_src);
1945 temp = get_insns ();
1946 seq = gen_sequence ();
1947 end_sequence ();
1949 add_label_notes (m->set_src, temp);
1951 i1 = loop_insn_hoist (loop, seq);
1952 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1953 set_unique_reg_note (i1,
1954 m->is_equiv ? REG_EQUIV : REG_EQUAL,
1955 m->set_src);
1957 if (loop_dump_stream)
1958 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1960 /* The more regs we move, the less we like moving them. */
1961 threshold -= 3;
1963 else
1965 for (count = m->consec; count >= 0; count--)
1967 rtx i1, temp;
1969 /* If first insn of libcall sequence, skip to end. */
1970 /* Do this at start of loop, since p is guaranteed to
1971 be an insn here. */
1972 if (GET_CODE (p) != NOTE
1973 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1974 p = XEXP (temp, 0);
1976 /* If last insn of libcall sequence, move all
1977 insns except the last before the loop. The last
1978 insn is handled in the normal manner. */
1979 if (GET_CODE (p) != NOTE
1980 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1982 rtx fn_address = 0;
1983 rtx fn_reg = 0;
1984 rtx fn_address_insn = 0;
1986 first = 0;
1987 for (temp = XEXP (temp, 0); temp != p;
1988 temp = NEXT_INSN (temp))
1990 rtx body;
1991 rtx n;
1992 rtx next;
1994 if (GET_CODE (temp) == NOTE)
1995 continue;
1997 body = PATTERN (temp);
1999 /* Find the next insn after TEMP,
2000 not counting USE or NOTE insns. */
2001 for (next = NEXT_INSN (temp); next != p;
2002 next = NEXT_INSN (next))
2003 if (! (GET_CODE (next) == INSN
2004 && GET_CODE (PATTERN (next)) == USE)
2005 && GET_CODE (next) != NOTE)
2006 break;
2008 /* If that is the call, this may be the insn
2009 that loads the function address.
2011 Extract the function address from the insn
2012 that loads it into a register.
2013 If this insn was cse'd, we get incorrect code.
2015 So emit a new move insn that copies the
2016 function address into the register that the
2017 call insn will use. flow.c will delete any
2018 redundant stores that we have created. */
2019 if (GET_CODE (next) == CALL_INSN
2020 && GET_CODE (body) == SET
2021 && GET_CODE (SET_DEST (body)) == REG
2022 && (n = find_reg_note (temp, REG_EQUAL,
2023 NULL_RTX)))
2025 fn_reg = SET_SRC (body);
2026 if (GET_CODE (fn_reg) != REG)
2027 fn_reg = SET_DEST (body);
2028 fn_address = XEXP (n, 0);
2029 fn_address_insn = temp;
2031 /* We have the call insn.
2032 If it uses the register we suspect it might,
2033 load it with the correct address directly. */
2034 if (GET_CODE (temp) == CALL_INSN
2035 && fn_address != 0
2036 && reg_referenced_p (fn_reg, body))
2037 loop_insn_emit_after (loop, 0, fn_address_insn,
2038 gen_move_insn
2039 (fn_reg, fn_address));
2041 if (GET_CODE (temp) == CALL_INSN)
2043 i1 = loop_call_insn_hoist (loop, body);
2044 /* Because the USAGE information potentially
2045 contains objects other than hard registers
2046 we need to copy it. */
2047 if (CALL_INSN_FUNCTION_USAGE (temp))
2048 CALL_INSN_FUNCTION_USAGE (i1)
2049 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
2051 else
2052 i1 = loop_insn_hoist (loop, body);
2053 if (first == 0)
2054 first = i1;
2055 if (temp == fn_address_insn)
2056 fn_address_insn = i1;
2057 REG_NOTES (i1) = REG_NOTES (temp);
2058 REG_NOTES (temp) = NULL;
2059 delete_insn (temp);
2061 if (new_start == 0)
2062 new_start = first;
2064 if (m->savemode != VOIDmode)
2066 /* P sets REG to zero; but we should clear only
2067 the bits that are not covered by the mode
2068 m->savemode. */
2069 rtx reg = m->set_dest;
2070 rtx sequence;
2071 rtx tem;
2073 start_sequence ();
2074 tem = expand_simple_binop
2075 (GET_MODE (reg), AND, reg,
2076 GEN_INT ((((HOST_WIDE_INT) 1
2077 << GET_MODE_BITSIZE (m->savemode)))
2078 - 1),
2079 reg, 1, OPTAB_LIB_WIDEN);
2080 if (tem == 0)
2081 abort ();
2082 if (tem != reg)
2083 emit_move_insn (reg, tem);
2084 sequence = gen_sequence ();
2085 end_sequence ();
2086 i1 = loop_insn_hoist (loop, sequence);
2088 else if (GET_CODE (p) == CALL_INSN)
2090 i1 = loop_call_insn_hoist (loop, PATTERN (p));
2091 /* Because the USAGE information potentially
2092 contains objects other than hard registers
2093 we need to copy it. */
2094 if (CALL_INSN_FUNCTION_USAGE (p))
2095 CALL_INSN_FUNCTION_USAGE (i1)
2096 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
2098 else if (count == m->consec && m->move_insn_first)
2100 rtx seq;
2101 /* The SET_SRC might not be invariant, so we must
2102 use the REG_EQUAL note. */
2103 start_sequence ();
2104 emit_move_insn (m->set_dest, m->set_src);
2105 temp = get_insns ();
2106 seq = gen_sequence ();
2107 end_sequence ();
2109 add_label_notes (m->set_src, temp);
2111 i1 = loop_insn_hoist (loop, seq);
2112 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
2113 set_unique_reg_note (i1, m->is_equiv ? REG_EQUIV
2114 : REG_EQUAL, m->set_src);
2116 else
2117 i1 = loop_insn_hoist (loop, PATTERN (p));
2119 if (REG_NOTES (i1) == 0)
2121 REG_NOTES (i1) = REG_NOTES (p);
2122 REG_NOTES (p) = NULL;
2124 /* If there is a REG_EQUAL note present whose value
2125 is not loop invariant, then delete it, since it
2126 may cause problems with later optimization passes.
2127 It is possible for cse to create such notes
2128 like this as a result of record_jump_cond. */
2130 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
2131 && ! loop_invariant_p (loop, XEXP (temp, 0)))
2132 remove_note (i1, temp);
2135 if (new_start == 0)
2136 new_start = i1;
2138 if (loop_dump_stream)
2139 fprintf (loop_dump_stream, " moved to %d",
2140 INSN_UID (i1));
2142 /* If library call, now fix the REG_NOTES that contain
2143 insn pointers, namely REG_LIBCALL on FIRST
2144 and REG_RETVAL on I1. */
2145 if ((temp = find_reg_note (i1, REG_RETVAL, NULL_RTX)))
2147 XEXP (temp, 0) = first;
2148 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
2149 XEXP (temp, 0) = i1;
2152 temp = p;
2153 delete_insn (p);
2154 p = NEXT_INSN (p);
2156 /* simplify_giv_expr expects that it can walk the insns
2157 at m->insn forwards and see this old sequence we are
2158 tossing here. delete_insn does preserve the next
2159 pointers, but when we skip over a NOTE we must fix
2160 it up. Otherwise that code walks into the non-deleted
2161 insn stream. */
2162 while (p && GET_CODE (p) == NOTE)
2163 p = NEXT_INSN (temp) = NEXT_INSN (p);
2166 /* The more regs we move, the less we like moving them. */
2167 threshold -= 3;
2170 /* Any other movable that loads the same register
2171 MUST be moved. */
2172 already_moved[regno] = 1;
2174 /* This reg has been moved out of one loop. */
2175 regs->array[regno].moved_once = 1;
2177 /* The reg set here is now invariant. */
2178 if (! m->partial)
2180 int i;
2181 for (i = 0; i < LOOP_REGNO_NREGS (regno, m->set_dest); i++)
2182 regs->array[regno+i].set_in_loop = 0;
2185 m->done = 1;
2187 /* Change the length-of-life info for the register
2188 to say it lives at least the full length of this loop.
2189 This will help guide optimizations in outer loops. */
2191 if (REGNO_FIRST_LUID (regno) > INSN_LUID (loop_start))
2192 /* This is the old insn before all the moved insns.
2193 We can't use the moved insn because it is out of range
2194 in uid_luid. Only the old insns have luids. */
2195 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2196 if (REGNO_LAST_LUID (regno) < INSN_LUID (loop_end))
2197 REGNO_LAST_UID (regno) = INSN_UID (loop_end);
2199 /* Combine with this moved insn any other matching movables. */
2201 if (! m->partial)
2202 for (m1 = movables->head; m1; m1 = m1->next)
2203 if (m1->match == m)
2205 rtx temp;
2207 /* Schedule the reg loaded by M1
2208 for replacement so that shares the reg of M.
2209 If the modes differ (only possible in restricted
2210 circumstances, make a SUBREG.
2212 Note this assumes that the target dependent files
2213 treat REG and SUBREG equally, including within
2214 GO_IF_LEGITIMATE_ADDRESS and in all the
2215 predicates since we never verify that replacing the
2216 original register with a SUBREG results in a
2217 recognizable insn. */
2218 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2219 reg_map[m1->regno] = m->set_dest;
2220 else
2221 reg_map[m1->regno]
2222 = gen_lowpart_common (GET_MODE (m1->set_dest),
2223 m->set_dest);
2225 /* Get rid of the matching insn
2226 and prevent further processing of it. */
2227 m1->done = 1;
2229 /* if library call, delete all insns. */
2230 if ((temp = find_reg_note (m1->insn, REG_RETVAL,
2231 NULL_RTX)))
2232 delete_insn_chain (XEXP (temp, 0), m1->insn);
2233 else
2234 delete_insn (m1->insn);
2236 /* Any other movable that loads the same register
2237 MUST be moved. */
2238 already_moved[m1->regno] = 1;
2240 /* The reg merged here is now invariant,
2241 if the reg it matches is invariant. */
2242 if (! m->partial)
2244 int i;
2245 for (i = 0;
2246 i < LOOP_REGNO_NREGS (regno, m1->set_dest);
2247 i++)
2248 regs->array[m1->regno+i].set_in_loop = 0;
2252 else if (loop_dump_stream)
2253 fprintf (loop_dump_stream, "not desirable");
2255 else if (loop_dump_stream && !m->match)
2256 fprintf (loop_dump_stream, "not safe");
2258 if (loop_dump_stream)
2259 fprintf (loop_dump_stream, "\n");
2262 if (new_start == 0)
2263 new_start = loop_start;
2265 /* Go through all the instructions in the loop, making
2266 all the register substitutions scheduled in REG_MAP. */
2267 for (p = new_start; p != loop_end; p = NEXT_INSN (p))
2268 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2269 || GET_CODE (p) == CALL_INSN)
2271 replace_regs (PATTERN (p), reg_map, nregs, 0);
2272 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2273 INSN_CODE (p) = -1;
2276 /* Clean up. */
2277 free (reg_map);
2278 free (already_moved);
2282 static void
2283 loop_movables_add (movables, m)
2284 struct loop_movables *movables;
2285 struct movable *m;
2287 if (movables->head == 0)
2288 movables->head = m;
2289 else
2290 movables->last->next = m;
2291 movables->last = m;
2295 static void
2296 loop_movables_free (movables)
2297 struct loop_movables *movables;
2299 struct movable *m;
2300 struct movable *m_next;
2302 for (m = movables->head; m; m = m_next)
2304 m_next = m->next;
2305 free (m);
2309 #if 0
2310 /* Scan X and replace the address of any MEM in it with ADDR.
2311 REG is the address that MEM should have before the replacement. */
2313 static void
2314 replace_call_address (x, reg, addr)
2315 rtx x, reg, addr;
2317 enum rtx_code code;
2318 int i;
2319 const char *fmt;
2321 if (x == 0)
2322 return;
2323 code = GET_CODE (x);
2324 switch (code)
2326 case PC:
2327 case CC0:
2328 case CONST_INT:
2329 case CONST_DOUBLE:
2330 case CONST:
2331 case SYMBOL_REF:
2332 case LABEL_REF:
2333 case REG:
2334 return;
2336 case SET:
2337 /* Short cut for very common case. */
2338 replace_call_address (XEXP (x, 1), reg, addr);
2339 return;
2341 case CALL:
2342 /* Short cut for very common case. */
2343 replace_call_address (XEXP (x, 0), reg, addr);
2344 return;
2346 case MEM:
2347 /* If this MEM uses a reg other than the one we expected,
2348 something is wrong. */
2349 if (XEXP (x, 0) != reg)
2350 abort ();
2351 XEXP (x, 0) = addr;
2352 return;
2354 default:
2355 break;
2358 fmt = GET_RTX_FORMAT (code);
2359 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2361 if (fmt[i] == 'e')
2362 replace_call_address (XEXP (x, i), reg, addr);
2363 else if (fmt[i] == 'E')
2365 int j;
2366 for (j = 0; j < XVECLEN (x, i); j++)
2367 replace_call_address (XVECEXP (x, i, j), reg, addr);
2371 #endif
2373 /* Return the number of memory refs to addresses that vary
2374 in the rtx X. */
2376 static int
2377 count_nonfixed_reads (loop, x)
2378 const struct loop *loop;
2379 rtx x;
2381 enum rtx_code code;
2382 int i;
2383 const char *fmt;
2384 int value;
2386 if (x == 0)
2387 return 0;
2389 code = GET_CODE (x);
2390 switch (code)
2392 case PC:
2393 case CC0:
2394 case CONST_INT:
2395 case CONST_DOUBLE:
2396 case CONST:
2397 case SYMBOL_REF:
2398 case LABEL_REF:
2399 case REG:
2400 return 0;
2402 case MEM:
2403 return ((loop_invariant_p (loop, XEXP (x, 0)) != 1)
2404 + count_nonfixed_reads (loop, XEXP (x, 0)));
2406 default:
2407 break;
2410 value = 0;
2411 fmt = GET_RTX_FORMAT (code);
2412 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2414 if (fmt[i] == 'e')
2415 value += count_nonfixed_reads (loop, XEXP (x, i));
2416 if (fmt[i] == 'E')
2418 int j;
2419 for (j = 0; j < XVECLEN (x, i); j++)
2420 value += count_nonfixed_reads (loop, XVECEXP (x, i, j));
2423 return value;
2426 /* Scan a loop setting the elements `cont', `vtop', `loops_enclosed',
2427 `has_call', `has_nonconst_call', `has_volatile', `has_tablejump',
2428 `unknown_address_altered', `unknown_constant_address_altered', and
2429 `num_mem_sets' in LOOP. Also, fill in the array `mems' and the
2430 list `store_mems' in LOOP. */
2432 static void
2433 prescan_loop (loop)
2434 struct loop *loop;
2436 int level = 1;
2437 rtx insn;
2438 struct loop_info *loop_info = LOOP_INFO (loop);
2439 rtx start = loop->start;
2440 rtx end = loop->end;
2441 /* The label after END. Jumping here is just like falling off the
2442 end of the loop. We use next_nonnote_insn instead of next_label
2443 as a hedge against the (pathological) case where some actual insn
2444 might end up between the two. */
2445 rtx exit_target = next_nonnote_insn (end);
2447 loop_info->has_indirect_jump = indirect_jump_in_function;
2448 loop_info->pre_header_has_call = 0;
2449 loop_info->has_call = 0;
2450 loop_info->has_nonconst_call = 0;
2451 loop_info->has_volatile = 0;
2452 loop_info->has_tablejump = 0;
2453 loop_info->has_multiple_exit_targets = 0;
2454 loop->level = 1;
2456 loop_info->unknown_address_altered = 0;
2457 loop_info->unknown_constant_address_altered = 0;
2458 loop_info->store_mems = NULL_RTX;
2459 loop_info->first_loop_store_insn = NULL_RTX;
2460 loop_info->mems_idx = 0;
2461 loop_info->num_mem_sets = 0;
2464 for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
2465 insn = PREV_INSN (insn))
2467 if (GET_CODE (insn) == CALL_INSN)
2469 loop_info->pre_header_has_call = 1;
2470 break;
2474 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2475 insn = NEXT_INSN (insn))
2477 switch (GET_CODE (insn))
2479 case NOTE:
2480 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2482 ++level;
2483 /* Count number of loops contained in this one. */
2484 loop->level++;
2486 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2487 --level;
2488 break;
2490 case CALL_INSN:
2491 if (! CONST_OR_PURE_CALL_P (insn))
2493 loop_info->unknown_address_altered = 1;
2494 loop_info->has_nonconst_call = 1;
2496 else if (pure_call_p (insn))
2497 loop_info->has_nonconst_call = 1;
2498 loop_info->has_call = 1;
2499 if (can_throw_internal (insn))
2500 loop_info->has_multiple_exit_targets = 1;
2501 break;
2503 case JUMP_INSN:
2504 if (! loop_info->has_multiple_exit_targets)
2506 rtx set = pc_set (insn);
2508 if (set)
2510 rtx src = SET_SRC (set);
2511 rtx label1, label2;
2513 if (GET_CODE (src) == IF_THEN_ELSE)
2515 label1 = XEXP (src, 1);
2516 label2 = XEXP (src, 2);
2518 else
2520 label1 = src;
2521 label2 = NULL_RTX;
2526 if (label1 && label1 != pc_rtx)
2528 if (GET_CODE (label1) != LABEL_REF)
2530 /* Something tricky. */
2531 loop_info->has_multiple_exit_targets = 1;
2532 break;
2534 else if (XEXP (label1, 0) != exit_target
2535 && LABEL_OUTSIDE_LOOP_P (label1))
2537 /* A jump outside the current loop. */
2538 loop_info->has_multiple_exit_targets = 1;
2539 break;
2543 label1 = label2;
2544 label2 = NULL_RTX;
2546 while (label1);
2548 else
2550 /* A return, or something tricky. */
2551 loop_info->has_multiple_exit_targets = 1;
2554 /* FALLTHRU */
2556 case INSN:
2557 if (volatile_refs_p (PATTERN (insn)))
2558 loop_info->has_volatile = 1;
2560 if (GET_CODE (insn) == JUMP_INSN
2561 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2562 || GET_CODE (PATTERN (insn)) == ADDR_VEC))
2563 loop_info->has_tablejump = 1;
2565 note_stores (PATTERN (insn), note_addr_stored, loop_info);
2566 if (! loop_info->first_loop_store_insn && loop_info->store_mems)
2567 loop_info->first_loop_store_insn = insn;
2569 if (flag_non_call_exceptions && can_throw_internal (insn))
2570 loop_info->has_multiple_exit_targets = 1;
2571 break;
2573 default:
2574 break;
2578 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
2579 if (/* An exception thrown by a called function might land us
2580 anywhere. */
2581 ! loop_info->has_nonconst_call
2582 /* We don't want loads for MEMs moved to a location before the
2583 one at which their stack memory becomes allocated. (Note
2584 that this is not a problem for malloc, etc., since those
2585 require actual function calls. */
2586 && ! current_function_calls_alloca
2587 /* There are ways to leave the loop other than falling off the
2588 end. */
2589 && ! loop_info->has_multiple_exit_targets)
2590 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2591 insn = NEXT_INSN (insn))
2592 for_each_rtx (&insn, insert_loop_mem, loop_info);
2594 /* BLKmode MEMs are added to LOOP_STORE_MEM as necessary so
2595 that loop_invariant_p and load_mems can use true_dependence
2596 to determine what is really clobbered. */
2597 if (loop_info->unknown_address_altered)
2599 rtx mem = gen_rtx_MEM (BLKmode, const0_rtx);
2601 loop_info->store_mems
2602 = gen_rtx_EXPR_LIST (VOIDmode, mem, loop_info->store_mems);
2604 if (loop_info->unknown_constant_address_altered)
2606 rtx mem = gen_rtx_MEM (BLKmode, const0_rtx);
2608 RTX_UNCHANGING_P (mem) = 1;
2609 loop_info->store_mems
2610 = gen_rtx_EXPR_LIST (VOIDmode, mem, loop_info->store_mems);
2614 /* Invalidate all loops containing LABEL. */
2616 static void
2617 invalidate_loops_containing_label (label)
2618 rtx label;
2620 struct loop *loop;
2621 for (loop = uid_loop[INSN_UID (label)]; loop; loop = loop->outer)
2622 loop->invalid = 1;
2625 /* Scan the function looking for loops. Record the start and end of each loop.
2626 Also mark as invalid loops any loops that contain a setjmp or are branched
2627 to from outside the loop. */
2629 static void
2630 find_and_verify_loops (f, loops)
2631 rtx f;
2632 struct loops *loops;
2634 rtx insn;
2635 rtx label;
2636 int num_loops;
2637 struct loop *current_loop;
2638 struct loop *next_loop;
2639 struct loop *loop;
2641 num_loops = loops->num;
2643 compute_luids (f, NULL_RTX, 0);
2645 /* If there are jumps to undefined labels,
2646 treat them as jumps out of any/all loops.
2647 This also avoids writing past end of tables when there are no loops. */
2648 uid_loop[0] = NULL;
2650 /* Find boundaries of loops, mark which loops are contained within
2651 loops, and invalidate loops that have setjmp. */
2653 num_loops = 0;
2654 current_loop = NULL;
2655 for (insn = f; insn; insn = NEXT_INSN (insn))
2657 if (GET_CODE (insn) == NOTE)
2658 switch (NOTE_LINE_NUMBER (insn))
2660 case NOTE_INSN_LOOP_BEG:
2661 next_loop = loops->array + num_loops;
2662 next_loop->num = num_loops;
2663 num_loops++;
2664 next_loop->start = insn;
2665 next_loop->outer = current_loop;
2666 current_loop = next_loop;
2667 break;
2669 case NOTE_INSN_LOOP_CONT:
2670 current_loop->cont = insn;
2671 break;
2673 case NOTE_INSN_LOOP_VTOP:
2674 current_loop->vtop = insn;
2675 break;
2677 case NOTE_INSN_LOOP_END:
2678 if (! current_loop)
2679 abort ();
2681 current_loop->end = insn;
2682 current_loop = current_loop->outer;
2683 break;
2685 default:
2686 break;
2689 if (GET_CODE (insn) == CALL_INSN
2690 && find_reg_note (insn, REG_SETJMP, NULL))
2692 /* In this case, we must invalidate our current loop and any
2693 enclosing loop. */
2694 for (loop = current_loop; loop; loop = loop->outer)
2696 loop->invalid = 1;
2697 if (loop_dump_stream)
2698 fprintf (loop_dump_stream,
2699 "\nLoop at %d ignored due to setjmp.\n",
2700 INSN_UID (loop->start));
2704 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2705 enclosing loop, but this doesn't matter. */
2706 uid_loop[INSN_UID (insn)] = current_loop;
2709 /* Any loop containing a label used in an initializer must be invalidated,
2710 because it can be jumped into from anywhere. */
2711 for (label = forced_labels; label; label = XEXP (label, 1))
2712 invalidate_loops_containing_label (XEXP (label, 0));
2714 /* Any loop containing a label used for an exception handler must be
2715 invalidated, because it can be jumped into from anywhere. */
2716 for_each_eh_label (invalidate_loops_containing_label);
2718 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2719 loop that it is not contained within, that loop is marked invalid.
2720 If any INSN or CALL_INSN uses a label's address, then the loop containing
2721 that label is marked invalid, because it could be jumped into from
2722 anywhere.
2724 Also look for blocks of code ending in an unconditional branch that
2725 exits the loop. If such a block is surrounded by a conditional
2726 branch around the block, move the block elsewhere (see below) and
2727 invert the jump to point to the code block. This may eliminate a
2728 label in our loop and will simplify processing by both us and a
2729 possible second cse pass. */
2731 for (insn = f; insn; insn = NEXT_INSN (insn))
2732 if (INSN_P (insn))
2734 struct loop *this_loop = uid_loop[INSN_UID (insn)];
2736 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2738 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2739 if (note)
2740 invalidate_loops_containing_label (XEXP (note, 0));
2743 if (GET_CODE (insn) != JUMP_INSN)
2744 continue;
2746 mark_loop_jump (PATTERN (insn), this_loop);
2748 /* See if this is an unconditional branch outside the loop. */
2749 if (this_loop
2750 && (GET_CODE (PATTERN (insn)) == RETURN
2751 || (any_uncondjump_p (insn)
2752 && onlyjump_p (insn)
2753 && (uid_loop[INSN_UID (JUMP_LABEL (insn))]
2754 != this_loop)))
2755 && get_max_uid () < max_uid_for_loop)
2757 rtx p;
2758 rtx our_next = next_real_insn (insn);
2759 rtx last_insn_to_move = NEXT_INSN (insn);
2760 struct loop *dest_loop;
2761 struct loop *outer_loop = NULL;
2763 /* Go backwards until we reach the start of the loop, a label,
2764 or a JUMP_INSN. */
2765 for (p = PREV_INSN (insn);
2766 GET_CODE (p) != CODE_LABEL
2767 && ! (GET_CODE (p) == NOTE
2768 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2769 && GET_CODE (p) != JUMP_INSN;
2770 p = PREV_INSN (p))
2773 /* Check for the case where we have a jump to an inner nested
2774 loop, and do not perform the optimization in that case. */
2776 if (JUMP_LABEL (insn))
2778 dest_loop = uid_loop[INSN_UID (JUMP_LABEL (insn))];
2779 if (dest_loop)
2781 for (outer_loop = dest_loop; outer_loop;
2782 outer_loop = outer_loop->outer)
2783 if (outer_loop == this_loop)
2784 break;
2788 /* Make sure that the target of P is within the current loop. */
2790 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2791 && uid_loop[INSN_UID (JUMP_LABEL (p))] != this_loop)
2792 outer_loop = this_loop;
2794 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2795 we have a block of code to try to move.
2797 We look backward and then forward from the target of INSN
2798 to find a BARRIER at the same loop depth as the target.
2799 If we find such a BARRIER, we make a new label for the start
2800 of the block, invert the jump in P and point it to that label,
2801 and move the block of code to the spot we found. */
2803 if (! outer_loop
2804 && GET_CODE (p) == JUMP_INSN
2805 && JUMP_LABEL (p) != 0
2806 /* Just ignore jumps to labels that were never emitted.
2807 These always indicate compilation errors. */
2808 && INSN_UID (JUMP_LABEL (p)) != 0
2809 && any_condjump_p (p) && onlyjump_p (p)
2810 && next_real_insn (JUMP_LABEL (p)) == our_next
2811 /* If it's not safe to move the sequence, then we
2812 mustn't try. */
2813 && insns_safe_to_move_p (p, NEXT_INSN (insn),
2814 &last_insn_to_move))
2816 rtx target
2817 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2818 struct loop *target_loop = uid_loop[INSN_UID (target)];
2819 rtx loc, loc2;
2820 rtx tmp;
2822 /* Search for possible garbage past the conditional jumps
2823 and look for the last barrier. */
2824 for (tmp = last_insn_to_move;
2825 tmp && GET_CODE (tmp) != CODE_LABEL; tmp = NEXT_INSN (tmp))
2826 if (GET_CODE (tmp) == BARRIER)
2827 last_insn_to_move = tmp;
2829 for (loc = target; loc; loc = PREV_INSN (loc))
2830 if (GET_CODE (loc) == BARRIER
2831 /* Don't move things inside a tablejump. */
2832 && ((loc2 = next_nonnote_insn (loc)) == 0
2833 || GET_CODE (loc2) != CODE_LABEL
2834 || (loc2 = next_nonnote_insn (loc2)) == 0
2835 || GET_CODE (loc2) != JUMP_INSN
2836 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2837 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2838 && uid_loop[INSN_UID (loc)] == target_loop)
2839 break;
2841 if (loc == 0)
2842 for (loc = target; loc; loc = NEXT_INSN (loc))
2843 if (GET_CODE (loc) == BARRIER
2844 /* Don't move things inside a tablejump. */
2845 && ((loc2 = next_nonnote_insn (loc)) == 0
2846 || GET_CODE (loc2) != CODE_LABEL
2847 || (loc2 = next_nonnote_insn (loc2)) == 0
2848 || GET_CODE (loc2) != JUMP_INSN
2849 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2850 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2851 && uid_loop[INSN_UID (loc)] == target_loop)
2852 break;
2854 if (loc)
2856 rtx cond_label = JUMP_LABEL (p);
2857 rtx new_label = get_label_after (p);
2859 /* Ensure our label doesn't go away. */
2860 LABEL_NUSES (cond_label)++;
2862 /* Verify that uid_loop is large enough and that
2863 we can invert P. */
2864 if (invert_jump (p, new_label, 1))
2866 rtx q, r;
2868 /* If no suitable BARRIER was found, create a suitable
2869 one before TARGET. Since TARGET is a fall through
2870 path, we'll need to insert an jump around our block
2871 and add a BARRIER before TARGET.
2873 This creates an extra unconditional jump outside
2874 the loop. However, the benefits of removing rarely
2875 executed instructions from inside the loop usually
2876 outweighs the cost of the extra unconditional jump
2877 outside the loop. */
2878 if (loc == 0)
2880 rtx temp;
2882 temp = gen_jump (JUMP_LABEL (insn));
2883 temp = emit_jump_insn_before (temp, target);
2884 JUMP_LABEL (temp) = JUMP_LABEL (insn);
2885 LABEL_NUSES (JUMP_LABEL (insn))++;
2886 loc = emit_barrier_before (target);
2889 /* Include the BARRIER after INSN and copy the
2890 block after LOC. */
2891 if (squeeze_notes (&new_label, &last_insn_to_move))
2892 abort ();
2893 reorder_insns (new_label, last_insn_to_move, loc);
2895 /* All those insns are now in TARGET_LOOP. */
2896 for (q = new_label;
2897 q != NEXT_INSN (last_insn_to_move);
2898 q = NEXT_INSN (q))
2899 uid_loop[INSN_UID (q)] = target_loop;
2901 /* The label jumped to by INSN is no longer a loop
2902 exit. Unless INSN does not have a label (e.g.,
2903 it is a RETURN insn), search loop->exit_labels
2904 to find its label_ref, and remove it. Also turn
2905 off LABEL_OUTSIDE_LOOP_P bit. */
2906 if (JUMP_LABEL (insn))
2908 for (q = 0, r = this_loop->exit_labels;
2910 q = r, r = LABEL_NEXTREF (r))
2911 if (XEXP (r, 0) == JUMP_LABEL (insn))
2913 LABEL_OUTSIDE_LOOP_P (r) = 0;
2914 if (q)
2915 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2916 else
2917 this_loop->exit_labels = LABEL_NEXTREF (r);
2918 break;
2921 for (loop = this_loop; loop && loop != target_loop;
2922 loop = loop->outer)
2923 loop->exit_count--;
2925 /* If we didn't find it, then something is
2926 wrong. */
2927 if (! r)
2928 abort ();
2931 /* P is now a jump outside the loop, so it must be put
2932 in loop->exit_labels, and marked as such.
2933 The easiest way to do this is to just call
2934 mark_loop_jump again for P. */
2935 mark_loop_jump (PATTERN (p), this_loop);
2937 /* If INSN now jumps to the insn after it,
2938 delete INSN. */
2939 if (JUMP_LABEL (insn) != 0
2940 && (next_real_insn (JUMP_LABEL (insn))
2941 == next_real_insn (insn)))
2942 delete_related_insns (insn);
2945 /* Continue the loop after where the conditional
2946 branch used to jump, since the only branch insn
2947 in the block (if it still remains) is an inter-loop
2948 branch and hence needs no processing. */
2949 insn = NEXT_INSN (cond_label);
2951 if (--LABEL_NUSES (cond_label) == 0)
2952 delete_related_insns (cond_label);
2954 /* This loop will be continued with NEXT_INSN (insn). */
2955 insn = PREV_INSN (insn);
2962 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2963 loops it is contained in, mark the target loop invalid.
2965 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2967 static void
2968 mark_loop_jump (x, loop)
2969 rtx x;
2970 struct loop *loop;
2972 struct loop *dest_loop;
2973 struct loop *outer_loop;
2974 int i;
2976 switch (GET_CODE (x))
2978 case PC:
2979 case USE:
2980 case CLOBBER:
2981 case REG:
2982 case MEM:
2983 case CONST_INT:
2984 case CONST_DOUBLE:
2985 case RETURN:
2986 return;
2988 case CONST:
2989 /* There could be a label reference in here. */
2990 mark_loop_jump (XEXP (x, 0), loop);
2991 return;
2993 case PLUS:
2994 case MINUS:
2995 case MULT:
2996 mark_loop_jump (XEXP (x, 0), loop);
2997 mark_loop_jump (XEXP (x, 1), loop);
2998 return;
3000 case LO_SUM:
3001 /* This may refer to a LABEL_REF or SYMBOL_REF. */
3002 mark_loop_jump (XEXP (x, 1), loop);
3003 return;
3005 case SIGN_EXTEND:
3006 case ZERO_EXTEND:
3007 mark_loop_jump (XEXP (x, 0), loop);
3008 return;
3010 case LABEL_REF:
3011 dest_loop = uid_loop[INSN_UID (XEXP (x, 0))];
3013 /* Link together all labels that branch outside the loop. This
3014 is used by final_[bg]iv_value and the loop unrolling code. Also
3015 mark this LABEL_REF so we know that this branch should predict
3016 false. */
3018 /* A check to make sure the label is not in an inner nested loop,
3019 since this does not count as a loop exit. */
3020 if (dest_loop)
3022 for (outer_loop = dest_loop; outer_loop;
3023 outer_loop = outer_loop->outer)
3024 if (outer_loop == loop)
3025 break;
3027 else
3028 outer_loop = NULL;
3030 if (loop && ! outer_loop)
3032 LABEL_OUTSIDE_LOOP_P (x) = 1;
3033 LABEL_NEXTREF (x) = loop->exit_labels;
3034 loop->exit_labels = x;
3036 for (outer_loop = loop;
3037 outer_loop && outer_loop != dest_loop;
3038 outer_loop = outer_loop->outer)
3039 outer_loop->exit_count++;
3042 /* If this is inside a loop, but not in the current loop or one enclosed
3043 by it, it invalidates at least one loop. */
3045 if (! dest_loop)
3046 return;
3048 /* We must invalidate every nested loop containing the target of this
3049 label, except those that also contain the jump insn. */
3051 for (; dest_loop; dest_loop = dest_loop->outer)
3053 /* Stop when we reach a loop that also contains the jump insn. */
3054 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
3055 if (dest_loop == outer_loop)
3056 return;
3058 /* If we get here, we know we need to invalidate a loop. */
3059 if (loop_dump_stream && ! dest_loop->invalid)
3060 fprintf (loop_dump_stream,
3061 "\nLoop at %d ignored due to multiple entry points.\n",
3062 INSN_UID (dest_loop->start));
3064 dest_loop->invalid = 1;
3066 return;
3068 case SET:
3069 /* If this is not setting pc, ignore. */
3070 if (SET_DEST (x) == pc_rtx)
3071 mark_loop_jump (SET_SRC (x), loop);
3072 return;
3074 case IF_THEN_ELSE:
3075 mark_loop_jump (XEXP (x, 1), loop);
3076 mark_loop_jump (XEXP (x, 2), loop);
3077 return;
3079 case PARALLEL:
3080 case ADDR_VEC:
3081 for (i = 0; i < XVECLEN (x, 0); i++)
3082 mark_loop_jump (XVECEXP (x, 0, i), loop);
3083 return;
3085 case ADDR_DIFF_VEC:
3086 for (i = 0; i < XVECLEN (x, 1); i++)
3087 mark_loop_jump (XVECEXP (x, 1, i), loop);
3088 return;
3090 default:
3091 /* Strictly speaking this is not a jump into the loop, only a possible
3092 jump out of the loop. However, we have no way to link the destination
3093 of this jump onto the list of exit labels. To be safe we mark this
3094 loop and any containing loops as invalid. */
3095 if (loop)
3097 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
3099 if (loop_dump_stream && ! outer_loop->invalid)
3100 fprintf (loop_dump_stream,
3101 "\nLoop at %d ignored due to unknown exit jump.\n",
3102 INSN_UID (outer_loop->start));
3103 outer_loop->invalid = 1;
3106 return;
3110 /* Return nonzero if there is a label in the range from
3111 insn INSN to and including the insn whose luid is END
3112 INSN must have an assigned luid (i.e., it must not have
3113 been previously created by loop.c). */
3115 static int
3116 labels_in_range_p (insn, end)
3117 rtx insn;
3118 int end;
3120 while (insn && INSN_LUID (insn) <= end)
3122 if (GET_CODE (insn) == CODE_LABEL)
3123 return 1;
3124 insn = NEXT_INSN (insn);
3127 return 0;
3130 /* Record that a memory reference X is being set. */
3132 static void
3133 note_addr_stored (x, y, data)
3134 rtx x;
3135 rtx y ATTRIBUTE_UNUSED;
3136 void *data ATTRIBUTE_UNUSED;
3138 struct loop_info *loop_info = data;
3140 if (x == 0 || GET_CODE (x) != MEM)
3141 return;
3143 /* Count number of memory writes.
3144 This affects heuristics in strength_reduce. */
3145 loop_info->num_mem_sets++;
3147 /* BLKmode MEM means all memory is clobbered. */
3148 if (GET_MODE (x) == BLKmode)
3150 if (RTX_UNCHANGING_P (x))
3151 loop_info->unknown_constant_address_altered = 1;
3152 else
3153 loop_info->unknown_address_altered = 1;
3155 return;
3158 loop_info->store_mems = gen_rtx_EXPR_LIST (VOIDmode, x,
3159 loop_info->store_mems);
3162 /* X is a value modified by an INSN that references a biv inside a loop
3163 exit test (ie, X is somehow related to the value of the biv). If X
3164 is a pseudo that is used more than once, then the biv is (effectively)
3165 used more than once. DATA is a pointer to a loop_regs structure. */
3167 static void
3168 note_set_pseudo_multiple_uses (x, y, data)
3169 rtx x;
3170 rtx y ATTRIBUTE_UNUSED;
3171 void *data;
3173 struct loop_regs *regs = (struct loop_regs *) data;
3175 if (x == 0)
3176 return;
3178 while (GET_CODE (x) == STRICT_LOW_PART
3179 || GET_CODE (x) == SIGN_EXTRACT
3180 || GET_CODE (x) == ZERO_EXTRACT
3181 || GET_CODE (x) == SUBREG)
3182 x = XEXP (x, 0);
3184 if (GET_CODE (x) != REG || REGNO (x) < FIRST_PSEUDO_REGISTER)
3185 return;
3187 /* If we do not have usage information, or if we know the register
3188 is used more than once, note that fact for check_dbra_loop. */
3189 if (REGNO (x) >= max_reg_before_loop
3190 || ! regs->array[REGNO (x)].single_usage
3191 || regs->array[REGNO (x)].single_usage == const0_rtx)
3192 regs->multiple_uses = 1;
3195 /* Return nonzero if the rtx X is invariant over the current loop.
3197 The value is 2 if we refer to something only conditionally invariant.
3199 A memory ref is invariant if it is not volatile and does not conflict
3200 with anything stored in `loop_info->store_mems'. */
3203 loop_invariant_p (loop, x)
3204 const struct loop *loop;
3205 rtx x;
3207 struct loop_info *loop_info = LOOP_INFO (loop);
3208 struct loop_regs *regs = LOOP_REGS (loop);
3209 int i;
3210 enum rtx_code code;
3211 const char *fmt;
3212 int conditional = 0;
3213 rtx mem_list_entry;
3215 if (x == 0)
3216 return 1;
3217 code = GET_CODE (x);
3218 switch (code)
3220 case CONST_INT:
3221 case CONST_DOUBLE:
3222 case SYMBOL_REF:
3223 case CONST:
3224 return 1;
3226 case LABEL_REF:
3227 /* A LABEL_REF is normally invariant, however, if we are unrolling
3228 loops, and this label is inside the loop, then it isn't invariant.
3229 This is because each unrolled copy of the loop body will have
3230 a copy of this label. If this was invariant, then an insn loading
3231 the address of this label into a register might get moved outside
3232 the loop, and then each loop body would end up using the same label.
3234 We don't know the loop bounds here though, so just fail for all
3235 labels. */
3236 if (flag_unroll_loops)
3237 return 0;
3238 else
3239 return 1;
3241 case PC:
3242 case CC0:
3243 case UNSPEC_VOLATILE:
3244 return 0;
3246 case REG:
3247 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
3248 since the reg might be set by initialization within the loop. */
3250 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3251 || x == arg_pointer_rtx || x == pic_offset_table_rtx)
3252 && ! current_function_has_nonlocal_goto)
3253 return 1;
3255 if (LOOP_INFO (loop)->has_call
3256 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
3257 return 0;
3259 if (regs->array[REGNO (x)].set_in_loop < 0)
3260 return 2;
3262 return regs->array[REGNO (x)].set_in_loop == 0;
3264 case MEM:
3265 /* Volatile memory references must be rejected. Do this before
3266 checking for read-only items, so that volatile read-only items
3267 will be rejected also. */
3268 if (MEM_VOLATILE_P (x))
3269 return 0;
3271 /* See if there is any dependence between a store and this load. */
3272 mem_list_entry = loop_info->store_mems;
3273 while (mem_list_entry)
3275 if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
3276 x, rtx_varies_p))
3277 return 0;
3279 mem_list_entry = XEXP (mem_list_entry, 1);
3282 /* It's not invalidated by a store in memory
3283 but we must still verify the address is invariant. */
3284 break;
3286 case ASM_OPERANDS:
3287 /* Don't mess with insns declared volatile. */
3288 if (MEM_VOLATILE_P (x))
3289 return 0;
3290 break;
3292 default:
3293 break;
3296 fmt = GET_RTX_FORMAT (code);
3297 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3299 if (fmt[i] == 'e')
3301 int tem = loop_invariant_p (loop, XEXP (x, i));
3302 if (tem == 0)
3303 return 0;
3304 if (tem == 2)
3305 conditional = 1;
3307 else if (fmt[i] == 'E')
3309 int j;
3310 for (j = 0; j < XVECLEN (x, i); j++)
3312 int tem = loop_invariant_p (loop, XVECEXP (x, i, j));
3313 if (tem == 0)
3314 return 0;
3315 if (tem == 2)
3316 conditional = 1;
3322 return 1 + conditional;
3325 /* Return nonzero if all the insns in the loop that set REG
3326 are INSN and the immediately following insns,
3327 and if each of those insns sets REG in an invariant way
3328 (not counting uses of REG in them).
3330 The value is 2 if some of these insns are only conditionally invariant.
3332 We assume that INSN itself is the first set of REG
3333 and that its source is invariant. */
3335 static int
3336 consec_sets_invariant_p (loop, reg, n_sets, insn)
3337 const struct loop *loop;
3338 int n_sets;
3339 rtx reg, insn;
3341 struct loop_regs *regs = LOOP_REGS (loop);
3342 rtx p = insn;
3343 unsigned int regno = REGNO (reg);
3344 rtx temp;
3345 /* Number of sets we have to insist on finding after INSN. */
3346 int count = n_sets - 1;
3347 int old = regs->array[regno].set_in_loop;
3348 int value = 0;
3349 int this;
3351 /* If N_SETS hit the limit, we can't rely on its value. */
3352 if (n_sets == 127)
3353 return 0;
3355 regs->array[regno].set_in_loop = 0;
3357 while (count > 0)
3359 enum rtx_code code;
3360 rtx set;
3362 p = NEXT_INSN (p);
3363 code = GET_CODE (p);
3365 /* If library call, skip to end of it. */
3366 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3367 p = XEXP (temp, 0);
3369 this = 0;
3370 if (code == INSN
3371 && (set = single_set (p))
3372 && GET_CODE (SET_DEST (set)) == REG
3373 && REGNO (SET_DEST (set)) == regno)
3375 this = loop_invariant_p (loop, SET_SRC (set));
3376 if (this != 0)
3377 value |= this;
3378 else if ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX)))
3380 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3381 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3382 notes are OK. */
3383 this = (CONSTANT_P (XEXP (temp, 0))
3384 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3385 && loop_invariant_p (loop, XEXP (temp, 0))));
3386 if (this != 0)
3387 value |= this;
3390 if (this != 0)
3391 count--;
3392 else if (code != NOTE)
3394 regs->array[regno].set_in_loop = old;
3395 return 0;
3399 regs->array[regno].set_in_loop = old;
3400 /* If loop_invariant_p ever returned 2, we return 2. */
3401 return 1 + (value & 2);
3404 #if 0
3405 /* I don't think this condition is sufficient to allow INSN
3406 to be moved, so we no longer test it. */
3408 /* Return 1 if all insns in the basic block of INSN and following INSN
3409 that set REG are invariant according to TABLE. */
3411 static int
3412 all_sets_invariant_p (reg, insn, table)
3413 rtx reg, insn;
3414 short *table;
3416 rtx p = insn;
3417 int regno = REGNO (reg);
3419 while (1)
3421 enum rtx_code code;
3422 p = NEXT_INSN (p);
3423 code = GET_CODE (p);
3424 if (code == CODE_LABEL || code == JUMP_INSN)
3425 return 1;
3426 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3427 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3428 && REGNO (SET_DEST (PATTERN (p))) == regno)
3430 if (! loop_invariant_p (loop, SET_SRC (PATTERN (p)), table))
3431 return 0;
3435 #endif /* 0 */
3437 /* Look at all uses (not sets) of registers in X. For each, if it is
3438 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3439 a different insn, set USAGE[REGNO] to const0_rtx. */
3441 static void
3442 find_single_use_in_loop (regs, insn, x)
3443 struct loop_regs *regs;
3444 rtx insn;
3445 rtx x;
3447 enum rtx_code code = GET_CODE (x);
3448 const char *fmt = GET_RTX_FORMAT (code);
3449 int i, j;
3451 if (code == REG)
3452 regs->array[REGNO (x)].single_usage
3453 = (regs->array[REGNO (x)].single_usage != 0
3454 && regs->array[REGNO (x)].single_usage != insn)
3455 ? const0_rtx : insn;
3457 else if (code == SET)
3459 /* Don't count SET_DEST if it is a REG; otherwise count things
3460 in SET_DEST because if a register is partially modified, it won't
3461 show up as a potential movable so we don't care how USAGE is set
3462 for it. */
3463 if (GET_CODE (SET_DEST (x)) != REG)
3464 find_single_use_in_loop (regs, insn, SET_DEST (x));
3465 find_single_use_in_loop (regs, insn, SET_SRC (x));
3467 else
3468 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3470 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3471 find_single_use_in_loop (regs, insn, XEXP (x, i));
3472 else if (fmt[i] == 'E')
3473 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3474 find_single_use_in_loop (regs, insn, XVECEXP (x, i, j));
3478 /* Count and record any set in X which is contained in INSN. Update
3479 REGS->array[I].MAY_NOT_OPTIMIZE and LAST_SET for any register I set
3480 in X. */
3482 static void
3483 count_one_set (regs, insn, x, last_set)
3484 struct loop_regs *regs;
3485 rtx insn, x;
3486 rtx *last_set;
3488 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3489 /* Don't move a reg that has an explicit clobber.
3490 It's not worth the pain to try to do it correctly. */
3491 regs->array[REGNO (XEXP (x, 0))].may_not_optimize = 1;
3493 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3495 rtx dest = SET_DEST (x);
3496 while (GET_CODE (dest) == SUBREG
3497 || GET_CODE (dest) == ZERO_EXTRACT
3498 || GET_CODE (dest) == SIGN_EXTRACT
3499 || GET_CODE (dest) == STRICT_LOW_PART)
3500 dest = XEXP (dest, 0);
3501 if (GET_CODE (dest) == REG)
3503 int i;
3504 int regno = REGNO (dest);
3505 for (i = 0; i < LOOP_REGNO_NREGS (regno, dest); i++)
3507 /* If this is the first setting of this reg
3508 in current basic block, and it was set before,
3509 it must be set in two basic blocks, so it cannot
3510 be moved out of the loop. */
3511 if (regs->array[regno].set_in_loop > 0
3512 && last_set == 0)
3513 regs->array[regno+i].may_not_optimize = 1;
3514 /* If this is not first setting in current basic block,
3515 see if reg was used in between previous one and this.
3516 If so, neither one can be moved. */
3517 if (last_set[regno] != 0
3518 && reg_used_between_p (dest, last_set[regno], insn))
3519 regs->array[regno+i].may_not_optimize = 1;
3520 if (regs->array[regno+i].set_in_loop < 127)
3521 ++regs->array[regno+i].set_in_loop;
3522 last_set[regno+i] = insn;
3528 /* Given a loop that is bounded by LOOP->START and LOOP->END and that
3529 is entered at LOOP->SCAN_START, return 1 if the register set in SET
3530 contained in insn INSN is used by any insn that precedes INSN in
3531 cyclic order starting from the loop entry point.
3533 We don't want to use INSN_LUID here because if we restrict INSN to those
3534 that have a valid INSN_LUID, it means we cannot move an invariant out
3535 from an inner loop past two loops. */
3537 static int
3538 loop_reg_used_before_p (loop, set, insn)
3539 const struct loop *loop;
3540 rtx set, insn;
3542 rtx reg = SET_DEST (set);
3543 rtx p;
3545 /* Scan forward checking for register usage. If we hit INSN, we
3546 are done. Otherwise, if we hit LOOP->END, wrap around to LOOP->START. */
3547 for (p = loop->scan_start; p != insn; p = NEXT_INSN (p))
3549 if (INSN_P (p) && reg_overlap_mentioned_p (reg, PATTERN (p)))
3550 return 1;
3552 if (p == loop->end)
3553 p = loop->start;
3556 return 0;
3560 /* Information we collect about arrays that we might want to prefetch. */
3561 struct prefetch_info
3563 struct iv_class *class; /* Class this prefetch is based on. */
3564 struct induction *giv; /* GIV this prefetch is based on. */
3565 rtx base_address; /* Start prefetching from this address plus
3566 index. */
3567 HOST_WIDE_INT index;
3568 HOST_WIDE_INT stride; /* Prefetch stride in bytes in each
3569 iteration. */
3570 unsigned int bytes_accesed; /* Sum of sizes of all acceses to this
3571 prefetch area in one iteration. */
3572 unsigned int total_bytes; /* Total bytes loop will access in this block.
3573 This is set only for loops with known
3574 iteration counts and is 0xffffffff
3575 otherwise. */
3576 unsigned int write : 1; /* 1 for read/write prefetches. */
3577 unsigned int prefetch_in_loop : 1;
3578 /* 1 for those chosen for prefetching. */
3579 unsigned int prefetch_before_loop : 1;
3580 /* 1 for those chosen for prefetching. */
3583 /* Data used by check_store function. */
3584 struct check_store_data
3586 rtx mem_address;
3587 int mem_write;
3590 static void check_store PARAMS ((rtx, rtx, void *));
3591 static void emit_prefetch_instructions PARAMS ((struct loop *));
3592 static int rtx_equal_for_prefetch_p PARAMS ((rtx, rtx));
3594 /* Set mem_write when mem_address is found. Used as callback to
3595 note_stores. */
3596 static void
3597 check_store (x, pat, data)
3598 rtx x, pat ATTRIBUTE_UNUSED;
3599 void *data;
3601 struct check_store_data *d = (struct check_store_data *) data;
3603 if ((GET_CODE (x) == MEM) && rtx_equal_p (d->mem_address, XEXP (x, 0)))
3604 d->mem_write = 1;
3607 /* Like rtx_equal_p, but attempts to swap commutative operands. This is
3608 important to get some addresses combined. Later more sophisticated
3609 transformations can be added when necesary.
3611 ??? Same trick with swapping operand is done at several other places.
3612 It can be nice to develop some common way to handle this. */
3614 static int
3615 rtx_equal_for_prefetch_p (x, y)
3616 rtx x, y;
3618 int i;
3619 int j;
3620 enum rtx_code code = GET_CODE (x);
3621 const char *fmt;
3623 if (x == y)
3624 return 1;
3625 if (code != GET_CODE (y))
3626 return 0;
3628 code = GET_CODE (x);
3630 if (GET_RTX_CLASS (code) == 'c')
3632 return ((rtx_equal_for_prefetch_p (XEXP (x, 0), XEXP (y, 0))
3633 && rtx_equal_for_prefetch_p (XEXP (x, 1), XEXP (y, 1)))
3634 || (rtx_equal_for_prefetch_p (XEXP (x, 0), XEXP (y, 1))
3635 && rtx_equal_for_prefetch_p (XEXP (x, 1), XEXP (y, 0))));
3637 /* Compare the elements. If any pair of corresponding elements fails to
3638 match, return 0 for the whole thing. */
3640 fmt = GET_RTX_FORMAT (code);
3641 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3643 switch (fmt[i])
3645 case 'w':
3646 if (XWINT (x, i) != XWINT (y, i))
3647 return 0;
3648 break;
3650 case 'i':
3651 if (XINT (x, i) != XINT (y, i))
3652 return 0;
3653 break;
3655 case 'E':
3656 /* Two vectors must have the same length. */
3657 if (XVECLEN (x, i) != XVECLEN (y, i))
3658 return 0;
3660 /* And the corresponding elements must match. */
3661 for (j = 0; j < XVECLEN (x, i); j++)
3662 if (rtx_equal_for_prefetch_p (XVECEXP (x, i, j),
3663 XVECEXP (y, i, j)) == 0)
3664 return 0;
3665 break;
3667 case 'e':
3668 if (rtx_equal_for_prefetch_p (XEXP (x, i), XEXP (y, i)) == 0)
3669 return 0;
3670 break;
3672 case 's':
3673 if (strcmp (XSTR (x, i), XSTR (y, i)))
3674 return 0;
3675 break;
3677 case 'u':
3678 /* These are just backpointers, so they don't matter. */
3679 break;
3681 case '0':
3682 break;
3684 /* It is believed that rtx's at this level will never
3685 contain anything but integers and other rtx's,
3686 except for within LABEL_REFs and SYMBOL_REFs. */
3687 default:
3688 abort ();
3691 return 1;
3694 /* Remove constant addition value from the expression X (when present)
3695 and return it. */
3697 static HOST_WIDE_INT
3698 remove_constant_addition (x)
3699 rtx *x;
3701 HOST_WIDE_INT addval = 0;
3702 rtx exp = *x;
3704 /* Avoid clobbering a shared CONST expression. */
3705 if (GET_CODE (exp) == CONST)
3707 if (GET_CODE (XEXP (exp, 0)) == PLUS
3708 && GET_CODE (XEXP (XEXP (exp, 0), 0)) == SYMBOL_REF
3709 && GET_CODE (XEXP (XEXP (exp, 0), 1)) == CONST_INT)
3711 *x = XEXP (XEXP (exp, 0), 0);
3712 return INTVAL (XEXP (XEXP (exp, 0), 1));
3714 return 0;
3717 if (GET_CODE (exp) == CONST_INT)
3719 addval = INTVAL (exp);
3720 *x = const0_rtx;
3723 /* For plus expression recurse on ourself. */
3724 else if (GET_CODE (exp) == PLUS)
3726 addval += remove_constant_addition (&XEXP (exp, 0));
3727 addval += remove_constant_addition (&XEXP (exp, 1));
3729 /* In case our parameter was constant, remove extra zero from the
3730 expression. */
3731 if (XEXP (exp, 0) == const0_rtx)
3732 *x = XEXP (exp, 1);
3733 else if (XEXP (exp, 1) == const0_rtx)
3734 *x = XEXP (exp, 0);
3737 return addval;
3740 /* Attempt to identify accesses to arrays that are most likely to cause cache
3741 misses, and emit prefetch instructions a few prefetch blocks forward.
3743 To detect the arrays we use the GIV information that was collected by the
3744 strength reduction pass.
3746 The prefetch instructions are generated after the GIV information is done
3747 and before the strength reduction process. The new GIVs are injected into
3748 the strength reduction tables, so the prefetch addresses are optimized as
3749 well.
3751 GIVs are split into base address, stride, and constant addition values.
3752 GIVs with the same address, stride and close addition values are combined
3753 into a single prefetch. Also writes to GIVs are detected, so that prefetch
3754 for write instructions can be used for the block we write to, on machines
3755 that support write prefetches.
3757 Several heuristics are used to determine when to prefetch. They are
3758 controlled by defined symbols that can be overridden for each target. */
3760 static void
3761 emit_prefetch_instructions (loop)
3762 struct loop *loop;
3764 int num_prefetches = 0;
3765 int num_real_prefetches = 0;
3766 int num_real_write_prefetches = 0;
3767 int ahead;
3768 int i;
3769 struct iv_class *bl;
3770 struct induction *iv;
3771 struct prefetch_info info[MAX_PREFETCHES];
3772 struct loop_ivs *ivs = LOOP_IVS (loop);
3774 if (!HAVE_prefetch)
3775 return;
3777 /* Consider only loops w/o calls. When a call is done, the loop is probably
3778 slow enough to read the memory. */
3779 if (PREFETCH_NO_CALL && LOOP_INFO (loop)->has_call)
3781 if (loop_dump_stream)
3782 fprintf (loop_dump_stream, "Prefetch: ignoring loop - has call.\n");
3784 return;
3787 if (PREFETCH_NO_LOW_LOOPCNT
3788 && LOOP_INFO (loop)->n_iterations
3789 && LOOP_INFO (loop)->n_iterations <= PREFETCH_LOW_LOOPCNT)
3791 if (loop_dump_stream)
3792 fprintf (loop_dump_stream,
3793 "Prefetch: ignoring loop - not enought iterations.\n");
3794 return;
3797 /* Search all induction variables and pick those interesting for the prefetch
3798 machinery. */
3799 for (bl = ivs->list; bl; bl = bl->next)
3801 struct induction *biv = bl->biv, *biv1;
3802 int basestride = 0;
3804 biv1 = biv;
3806 /* Expect all BIVs to be executed in each iteration. This makes our
3807 analysis more conservative. */
3808 while (biv1)
3810 /* Discard non-constant additions that we can't handle well yet, and
3811 BIVs that are executed multiple times; such BIVs ought to be
3812 handled in the nested loop. We accept not_every_iteration BIVs,
3813 since these only result in larger strides and make our
3814 heuristics more conservative.
3815 ??? What does the last sentence mean? */
3816 if (GET_CODE (biv->add_val) != CONST_INT)
3818 if (loop_dump_stream)
3820 fprintf (loop_dump_stream,
3821 "Prefetch: biv %i ignored: non-constant addition at insn %i:",
3822 REGNO (biv->src_reg), INSN_UID (biv->insn));
3823 print_rtl (loop_dump_stream, biv->add_val);
3824 fprintf (loop_dump_stream, "\n");
3826 break;
3829 if (biv->maybe_multiple)
3831 if (loop_dump_stream)
3833 fprintf (loop_dump_stream,
3834 "Prefetch: biv %i ignored: maybe_multiple at insn %i:",
3835 REGNO (biv->src_reg), INSN_UID (biv->insn));
3836 print_rtl (loop_dump_stream, biv->add_val);
3837 fprintf (loop_dump_stream, "\n");
3839 break;
3842 basestride += INTVAL (biv1->add_val);
3843 biv1 = biv1->next_iv;
3846 if (biv1 || !basestride)
3847 continue;
3849 for (iv = bl->giv; iv; iv = iv->next_iv)
3851 rtx address;
3852 rtx temp;
3853 HOST_WIDE_INT index = 0;
3854 int add = 1;
3855 HOST_WIDE_INT stride;
3856 struct check_store_data d;
3857 int size = GET_MODE_SIZE (GET_MODE (iv));
3859 /* There are several reasons why an induction variable is not
3860 interesting to us. */
3861 if (iv->giv_type != DEST_ADDR
3862 /* We are interested only in constant stride memory references
3863 in order to be able to compute density easily. */
3864 || GET_CODE (iv->mult_val) != CONST_INT
3865 /* Don't handle reversed order prefetches, since they are usually
3866 ineffective. Later we may be able to reverse such BIVs. */
3867 || (PREFETCH_NO_REVERSE_ORDER
3868 && (stride = INTVAL (iv->mult_val) * basestride) < 0)
3869 /* Prefetching of accesses with such an extreme stride is probably
3870 not worthwhile, either. */
3871 || (PREFETCH_NO_EXTREME_STRIDE
3872 && stride > PREFETCH_EXTREME_STRIDE)
3873 /* Ignore GIVs with varying add values; we can't predict the
3874 value for the next iteration. */
3875 || !loop_invariant_p (loop, iv->add_val)
3876 /* Ignore GIVs in the nested loops; they ought to have been
3877 handled already. */
3878 || iv->maybe_multiple)
3880 if (loop_dump_stream)
3881 fprintf (loop_dump_stream, "Prefetch: Ignoring giv at %i\n",
3882 INSN_UID (iv->insn));
3883 continue;
3886 /* Determine the pointer to the basic array we are examining. It is
3887 the sum of the BIV's initial value and the GIV's add_val. */
3888 index = 0;
3890 address = copy_rtx (iv->add_val);
3891 temp = copy_rtx (bl->initial_value);
3893 address = simplify_gen_binary (PLUS, Pmode, temp, address);
3894 index = remove_constant_addition (&address);
3896 index += size;
3897 d.mem_write = 0;
3898 d.mem_address = *iv->location;
3900 /* When the GIV is not always executed, we might be better off by
3901 not dirtying the cache pages. */
3902 if (PREFETCH_NOT_ALWAYS || iv->always_executed)
3903 note_stores (PATTERN (iv->insn), check_store, &d);
3905 /* Attempt to find another prefetch to the same array and see if we
3906 can merge this one. */
3907 for (i = 0; i < num_prefetches; i++)
3908 if (rtx_equal_for_prefetch_p (address, info[i].base_address)
3909 && stride == info[i].stride)
3911 /* In case both access same array (same location
3912 just with small difference in constant indexes), merge
3913 the prefetches. Just do the later and the earlier will
3914 get prefetched from previous iteration.
3915 4096 is artificial threshold. It should not be too small,
3916 but also not bigger than small portion of memory usually
3917 traversed by single loop. */
3918 if (index >= info[i].index && index - info[i].index < 4096)
3920 info[i].write |= d.mem_write;
3921 info[i].bytes_accesed += size;
3922 info[i].index = index;
3923 info[i].giv = iv;
3924 info[i].class = bl;
3925 info[num_prefetches].base_address = address;
3926 add = 0;
3927 break;
3930 if (index < info[i].index && info[i].index - index < 4096)
3932 info[i].write |= d.mem_write;
3933 info[i].bytes_accesed += size;
3934 add = 0;
3935 break;
3939 /* Merging failed. */
3940 if (add)
3942 info[num_prefetches].giv = iv;
3943 info[num_prefetches].class = bl;
3944 info[num_prefetches].index = index;
3945 info[num_prefetches].stride = stride;
3946 info[num_prefetches].base_address = address;
3947 info[num_prefetches].write = d.mem_write;
3948 info[num_prefetches].bytes_accesed = size;
3949 num_prefetches++;
3950 if (num_prefetches >= MAX_PREFETCHES)
3952 if (loop_dump_stream)
3953 fprintf (loop_dump_stream,
3954 "Maximal number of prefetches exceeded.\n");
3955 return;
3961 for (i = 0; i < num_prefetches; i++)
3963 /* Attempt to calculate the number of bytes fetched by the loop.
3964 Avoid overflow. */
3965 if (LOOP_INFO (loop)->n_iterations
3966 && ((unsigned HOST_WIDE_INT) (0xffffffff / info[i].stride)
3967 >= LOOP_INFO (loop)->n_iterations))
3968 info[i].total_bytes = info[i].stride * LOOP_INFO (loop)->n_iterations;
3969 else
3970 info[i].total_bytes = 0xffffffff;
3972 /* Prefetch is worthwhile only when the loads/stores are dense. */
3973 if (PREFETCH_ONLY_DENSE_MEM
3974 && info[i].bytes_accesed * 256 / info[i].stride > PREFETCH_DENSE_MEM
3975 && (info[i].total_bytes / PREFETCH_BLOCK
3976 >= PREFETCH_BLOCKS_BEFORE_LOOP_MIN))
3978 info[i].prefetch_before_loop = 1;
3979 info[i].prefetch_in_loop
3980 = (info[i].total_bytes / PREFETCH_BLOCK
3981 > PREFETCH_BLOCKS_BEFORE_LOOP_MAX);
3983 else
3984 info[i].prefetch_in_loop = 0, info[i].prefetch_before_loop = 0;
3986 if (info[i].prefetch_in_loop)
3988 num_real_prefetches += ((info[i].stride + PREFETCH_BLOCK - 1)
3989 / PREFETCH_BLOCK);
3990 if (info[i].write)
3991 num_real_write_prefetches
3992 += (info[i].stride + PREFETCH_BLOCK - 1) / PREFETCH_BLOCK;
3996 if (loop_dump_stream)
3998 for (i = 0; i < num_prefetches; i++)
4000 fprintf (loop_dump_stream, "Prefetch insn %i address: ",
4001 INSN_UID (info[i].giv->insn));
4002 print_rtl (loop_dump_stream, info[i].base_address);
4003 fprintf (loop_dump_stream, " Index: ");
4004 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, info[i].index);
4005 fprintf (loop_dump_stream, " stride: ");
4006 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, info[i].stride);
4007 fprintf (loop_dump_stream,
4008 " density: %i%% total_bytes: %u%sin loop: %s before: %s\n",
4009 (int) (info[i].bytes_accesed * 100 / info[i].stride),
4010 info[i].total_bytes,
4011 info[i].write ? " read/write " : " read only ",
4012 info[i].prefetch_in_loop ? "yes" : "no",
4013 info[i].prefetch_before_loop ? "yes" : "no");
4016 fprintf (loop_dump_stream, "Real prefetches needed: %i (write: %i)\n",
4017 num_real_prefetches, num_real_write_prefetches);
4020 if (!num_real_prefetches)
4021 return;
4023 ahead = SIMULTANEOUS_PREFETCHES / num_real_prefetches;
4025 if (!ahead)
4026 return;
4028 for (i = 0; i < num_prefetches; i++)
4030 if (info[i].prefetch_in_loop)
4032 int y;
4034 for (y = 0; y < ((info[i].stride + PREFETCH_BLOCK - 1)
4035 / PREFETCH_BLOCK); y++)
4037 rtx loc = copy_rtx (*info[i].giv->location);
4038 rtx insn;
4039 int bytes_ahead = PREFETCH_BLOCK * (ahead + y);
4040 rtx before_insn = info[i].giv->insn;
4041 rtx prev_insn = PREV_INSN (info[i].giv->insn);
4042 rtx seq;
4044 /* We can save some effort by offsetting the address on
4045 architectures with offsettable memory references. */
4046 if (offsettable_address_p (0, VOIDmode, loc))
4047 loc = plus_constant (loc, bytes_ahead);
4048 else
4050 rtx reg = gen_reg_rtx (Pmode);
4051 loop_iv_add_mult_emit_before (loop, loc, const1_rtx,
4052 GEN_INT (bytes_ahead), reg,
4053 0, before_insn);
4054 loc = reg;
4057 start_sequence ();
4058 /* Make sure the address operand is valid for prefetch. */
4059 if (! (*insn_data[(int)CODE_FOR_prefetch].operand[0].predicate)
4060 (loc,
4061 insn_data[(int)CODE_FOR_prefetch].operand[0].mode))
4062 loc = force_reg (Pmode, loc);
4063 emit_insn (gen_prefetch (loc, GEN_INT (info[i].write),
4064 GEN_INT (3)));
4065 seq = gen_sequence ();
4066 end_sequence ();
4067 emit_insn_before (seq, before_insn);
4069 /* Check all insns emitted and record the new GIV
4070 information. */
4071 insn = NEXT_INSN (prev_insn);
4072 while (insn != before_insn)
4074 insn = check_insn_for_givs (loop, insn,
4075 info[i].giv->always_executed,
4076 info[i].giv->maybe_multiple);
4077 insn = NEXT_INSN (insn);
4082 if (info[i].prefetch_before_loop)
4084 int y;
4086 /* Emit INSNs before the loop to fetch the first cache lines. */
4087 for (y = 0;
4088 (!info[i].prefetch_in_loop || y < ahead)
4089 && y * PREFETCH_BLOCK < (int) info[i].total_bytes; y ++)
4091 rtx reg = gen_reg_rtx (Pmode);
4092 rtx loop_start = loop->start;
4093 rtx add_val = simplify_gen_binary (PLUS, Pmode,
4094 info[i].giv->add_val,
4095 GEN_INT (y * PREFETCH_BLOCK));
4097 loop_iv_add_mult_emit_before (loop, info[i].class->initial_value,
4098 info[i].giv->mult_val,
4099 add_val, reg, 0, loop_start);
4100 emit_insn_before (gen_prefetch (reg, GEN_INT (info[i].write),
4101 GEN_INT (3)),
4102 loop_start);
4107 return;
4110 /* A "basic induction variable" or biv is a pseudo reg that is set
4111 (within this loop) only by incrementing or decrementing it. */
4112 /* A "general induction variable" or giv is a pseudo reg whose
4113 value is a linear function of a biv. */
4115 /* Bivs are recognized by `basic_induction_var';
4116 Givs by `general_induction_var'. */
4118 /* Communication with routines called via `note_stores'. */
4120 static rtx note_insn;
4122 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
4124 static rtx addr_placeholder;
4126 /* ??? Unfinished optimizations, and possible future optimizations,
4127 for the strength reduction code. */
4129 /* ??? The interaction of biv elimination, and recognition of 'constant'
4130 bivs, may cause problems. */
4132 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
4133 performance problems.
4135 Perhaps don't eliminate things that can be combined with an addressing
4136 mode. Find all givs that have the same biv, mult_val, and add_val;
4137 then for each giv, check to see if its only use dies in a following
4138 memory address. If so, generate a new memory address and check to see
4139 if it is valid. If it is valid, then store the modified memory address,
4140 otherwise, mark the giv as not done so that it will get its own iv. */
4142 /* ??? Could try to optimize branches when it is known that a biv is always
4143 positive. */
4145 /* ??? When replace a biv in a compare insn, we should replace with closest
4146 giv so that an optimized branch can still be recognized by the combiner,
4147 e.g. the VAX acb insn. */
4149 /* ??? Many of the checks involving uid_luid could be simplified if regscan
4150 was rerun in loop_optimize whenever a register was added or moved.
4151 Also, some of the optimizations could be a little less conservative. */
4153 /* Scan the loop body and call FNCALL for each insn. In the addition to the
4154 LOOP and INSN parameters pass MAYBE_MULTIPLE and NOT_EVERY_ITERATION to the
4155 callback.
4157 NOT_EVERY_ITERATION if current insn is not executed at least once for every
4158 loop iteration except for the last one.
4160 MAYBE_MULTIPLE is 1 if current insn may be executed more than once for every
4161 loop iteration.
4163 void
4164 for_each_insn_in_loop (loop, fncall)
4165 struct loop *loop;
4166 loop_insn_callback fncall;
4168 /* This is 1 if current insn is not executed at least once for every loop
4169 iteration. */
4170 int not_every_iteration = 0;
4171 int maybe_multiple = 0;
4172 int past_loop_latch = 0;
4173 int loop_depth = 0;
4174 rtx p;
4176 /* If loop_scan_start points to the loop exit test, we have to be wary of
4177 subversive use of gotos inside expression statements. */
4178 if (prev_nonnote_insn (loop->scan_start) != prev_nonnote_insn (loop->start))
4179 maybe_multiple = back_branch_in_range_p (loop, loop->scan_start);
4181 /* Scan through loop to find all possible bivs. */
4183 for (p = next_insn_in_loop (loop, loop->scan_start);
4184 p != NULL_RTX;
4185 p = next_insn_in_loop (loop, p))
4187 p = fncall (loop, p, not_every_iteration, maybe_multiple);
4189 /* Past CODE_LABEL, we get to insns that may be executed multiple
4190 times. The only way we can be sure that they can't is if every
4191 jump insn between here and the end of the loop either
4192 returns, exits the loop, is a jump to a location that is still
4193 behind the label, or is a jump to the loop start. */
4195 if (GET_CODE (p) == CODE_LABEL)
4197 rtx insn = p;
4199 maybe_multiple = 0;
4201 while (1)
4203 insn = NEXT_INSN (insn);
4204 if (insn == loop->scan_start)
4205 break;
4206 if (insn == loop->end)
4208 if (loop->top != 0)
4209 insn = loop->top;
4210 else
4211 break;
4212 if (insn == loop->scan_start)
4213 break;
4216 if (GET_CODE (insn) == JUMP_INSN
4217 && GET_CODE (PATTERN (insn)) != RETURN
4218 && (!any_condjump_p (insn)
4219 || (JUMP_LABEL (insn) != 0
4220 && JUMP_LABEL (insn) != loop->scan_start
4221 && !loop_insn_first_p (p, JUMP_LABEL (insn)))))
4223 maybe_multiple = 1;
4224 break;
4229 /* Past a jump, we get to insns for which we can't count
4230 on whether they will be executed during each iteration. */
4231 /* This code appears twice in strength_reduce. There is also similar
4232 code in scan_loop. */
4233 if (GET_CODE (p) == JUMP_INSN
4234 /* If we enter the loop in the middle, and scan around to the
4235 beginning, don't set not_every_iteration for that.
4236 This can be any kind of jump, since we want to know if insns
4237 will be executed if the loop is executed. */
4238 && !(JUMP_LABEL (p) == loop->top
4239 && ((NEXT_INSN (NEXT_INSN (p)) == loop->end
4240 && any_uncondjump_p (p))
4241 || (NEXT_INSN (p) == loop->end && any_condjump_p (p)))))
4243 rtx label = 0;
4245 /* If this is a jump outside the loop, then it also doesn't
4246 matter. Check to see if the target of this branch is on the
4247 loop->exits_labels list. */
4249 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
4250 if (XEXP (label, 0) == JUMP_LABEL (p))
4251 break;
4253 if (!label)
4254 not_every_iteration = 1;
4257 else if (GET_CODE (p) == NOTE)
4259 /* At the virtual top of a converted loop, insns are again known to
4260 be executed each iteration: logically, the loop begins here
4261 even though the exit code has been duplicated.
4263 Insns are also again known to be executed each iteration at
4264 the LOOP_CONT note. */
4265 if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
4266 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
4267 && loop_depth == 0)
4268 not_every_iteration = 0;
4269 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
4270 loop_depth++;
4271 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
4272 loop_depth--;
4275 /* Note if we pass a loop latch. If we do, then we can not clear
4276 NOT_EVERY_ITERATION below when we pass the last CODE_LABEL in
4277 a loop since a jump before the last CODE_LABEL may have started
4278 a new loop iteration.
4280 Note that LOOP_TOP is only set for rotated loops and we need
4281 this check for all loops, so compare against the CODE_LABEL
4282 which immediately follows LOOP_START. */
4283 if (GET_CODE (p) == JUMP_INSN
4284 && JUMP_LABEL (p) == NEXT_INSN (loop->start))
4285 past_loop_latch = 1;
4287 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
4288 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
4289 or not an insn is known to be executed each iteration of the
4290 loop, whether or not any iterations are known to occur.
4292 Therefore, if we have just passed a label and have no more labels
4293 between here and the test insn of the loop, and we have not passed
4294 a jump to the top of the loop, then we know these insns will be
4295 executed each iteration. */
4297 if (not_every_iteration
4298 && !past_loop_latch
4299 && GET_CODE (p) == CODE_LABEL
4300 && no_labels_between_p (p, loop->end)
4301 && loop_insn_first_p (p, loop->cont))
4302 not_every_iteration = 0;
4306 static void
4307 loop_bivs_find (loop)
4308 struct loop *loop;
4310 struct loop_regs *regs = LOOP_REGS (loop);
4311 struct loop_ivs *ivs = LOOP_IVS (loop);
4312 /* Temporary list pointers for traversing ivs->list. */
4313 struct iv_class *bl, **backbl;
4315 ivs->list = 0;
4317 for_each_insn_in_loop (loop, check_insn_for_bivs);
4319 /* Scan ivs->list to remove all regs that proved not to be bivs.
4320 Make a sanity check against regs->n_times_set. */
4321 for (backbl = &ivs->list, bl = *backbl; bl; bl = bl->next)
4323 if (REG_IV_TYPE (ivs, bl->regno) != BASIC_INDUCT
4324 /* Above happens if register modified by subreg, etc. */
4325 /* Make sure it is not recognized as a basic induction var: */
4326 || regs->array[bl->regno].n_times_set != bl->biv_count
4327 /* If never incremented, it is invariant that we decided not to
4328 move. So leave it alone. */
4329 || ! bl->incremented)
4331 if (loop_dump_stream)
4332 fprintf (loop_dump_stream, "Biv %d: discarded, %s\n",
4333 bl->regno,
4334 (REG_IV_TYPE (ivs, bl->regno) != BASIC_INDUCT
4335 ? "not induction variable"
4336 : (! bl->incremented ? "never incremented"
4337 : "count error")));
4339 REG_IV_TYPE (ivs, bl->regno) = NOT_BASIC_INDUCT;
4340 *backbl = bl->next;
4342 else
4344 backbl = &bl->next;
4346 if (loop_dump_stream)
4347 fprintf (loop_dump_stream, "Biv %d: verified\n", bl->regno);
4353 /* Determine how BIVS are initialised by looking through pre-header
4354 extended basic block. */
4355 static void
4356 loop_bivs_init_find (loop)
4357 struct loop *loop;
4359 struct loop_ivs *ivs = LOOP_IVS (loop);
4360 /* Temporary list pointers for traversing ivs->list. */
4361 struct iv_class *bl;
4362 int call_seen;
4363 rtx p;
4365 /* Find initial value for each biv by searching backwards from loop_start,
4366 halting at first label. Also record any test condition. */
4368 call_seen = 0;
4369 for (p = loop->start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
4371 rtx test;
4373 note_insn = p;
4375 if (GET_CODE (p) == CALL_INSN)
4376 call_seen = 1;
4378 if (INSN_P (p))
4379 note_stores (PATTERN (p), record_initial, ivs);
4381 /* Record any test of a biv that branches around the loop if no store
4382 between it and the start of loop. We only care about tests with
4383 constants and registers and only certain of those. */
4384 if (GET_CODE (p) == JUMP_INSN
4385 && JUMP_LABEL (p) != 0
4386 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop->end)
4387 && (test = get_condition_for_loop (loop, p)) != 0
4388 && GET_CODE (XEXP (test, 0)) == REG
4389 && REGNO (XEXP (test, 0)) < max_reg_before_loop
4390 && (bl = REG_IV_CLASS (ivs, REGNO (XEXP (test, 0)))) != 0
4391 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop->start)
4392 && bl->init_insn == 0)
4394 /* If an NE test, we have an initial value! */
4395 if (GET_CODE (test) == NE)
4397 bl->init_insn = p;
4398 bl->init_set = gen_rtx_SET (VOIDmode,
4399 XEXP (test, 0), XEXP (test, 1));
4401 else
4402 bl->initial_test = test;
4408 /* Look at the each biv and see if we can say anything better about its
4409 initial value from any initializing insns set up above. (This is done
4410 in two passes to avoid missing SETs in a PARALLEL.) */
4411 static void
4412 loop_bivs_check (loop)
4413 struct loop *loop;
4415 struct loop_ivs *ivs = LOOP_IVS (loop);
4416 /* Temporary list pointers for traversing ivs->list. */
4417 struct iv_class *bl;
4418 struct iv_class **backbl;
4420 for (backbl = &ivs->list; (bl = *backbl); backbl = &bl->next)
4422 rtx src;
4423 rtx note;
4425 if (! bl->init_insn)
4426 continue;
4428 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
4429 is a constant, use the value of that. */
4430 if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
4431 && CONSTANT_P (XEXP (note, 0)))
4432 || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
4433 && CONSTANT_P (XEXP (note, 0))))
4434 src = XEXP (note, 0);
4435 else
4436 src = SET_SRC (bl->init_set);
4438 if (loop_dump_stream)
4439 fprintf (loop_dump_stream,
4440 "Biv %d: initialized at insn %d: initial value ",
4441 bl->regno, INSN_UID (bl->init_insn));
4443 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
4444 || GET_MODE (src) == VOIDmode)
4445 && valid_initial_value_p (src, bl->init_insn,
4446 LOOP_INFO (loop)->pre_header_has_call,
4447 loop->start))
4449 bl->initial_value = src;
4451 if (loop_dump_stream)
4453 print_simple_rtl (loop_dump_stream, src);
4454 fputc ('\n', loop_dump_stream);
4457 /* If we can't make it a giv,
4458 let biv keep initial value of "itself". */
4459 else if (loop_dump_stream)
4460 fprintf (loop_dump_stream, "is complex\n");
4465 /* Search the loop for general induction variables. */
4467 static void
4468 loop_givs_find (loop)
4469 struct loop* loop;
4471 for_each_insn_in_loop (loop, check_insn_for_givs);
4475 /* For each giv for which we still don't know whether or not it is
4476 replaceable, check to see if it is replaceable because its final value
4477 can be calculated. */
4479 static void
4480 loop_givs_check (loop)
4481 struct loop *loop;
4483 struct loop_ivs *ivs = LOOP_IVS (loop);
4484 struct iv_class *bl;
4486 for (bl = ivs->list; bl; bl = bl->next)
4488 struct induction *v;
4490 for (v = bl->giv; v; v = v->next_iv)
4491 if (! v->replaceable && ! v->not_replaceable)
4492 check_final_value (loop, v);
4497 /* Return non-zero if it is possible to eliminate the biv BL provided
4498 all givs are reduced. This is possible if either the reg is not
4499 used outside the loop, or we can compute what its final value will
4500 be. */
4502 static int
4503 loop_biv_eliminable_p (loop, bl, threshold, insn_count)
4504 struct loop *loop;
4505 struct iv_class *bl;
4506 int threshold;
4507 int insn_count;
4509 /* For architectures with a decrement_and_branch_until_zero insn,
4510 don't do this if we put a REG_NONNEG note on the endtest for this
4511 biv. */
4513 #ifdef HAVE_decrement_and_branch_until_zero
4514 if (bl->nonneg)
4516 if (loop_dump_stream)
4517 fprintf (loop_dump_stream,
4518 "Cannot eliminate nonneg biv %d.\n", bl->regno);
4519 return 0;
4521 #endif
4523 /* Check that biv is used outside loop or if it has a final value.
4524 Compare against bl->init_insn rather than loop->start. We aren't
4525 concerned with any uses of the biv between init_insn and
4526 loop->start since these won't be affected by the value of the biv
4527 elsewhere in the function, so long as init_insn doesn't use the
4528 biv itself. */
4530 if ((REGNO_LAST_LUID (bl->regno) < INSN_LUID (loop->end)
4531 && bl->init_insn
4532 && INSN_UID (bl->init_insn) < max_uid_for_loop
4533 && REGNO_FIRST_LUID (bl->regno) >= INSN_LUID (bl->init_insn)
4534 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
4535 || (bl->final_value = final_biv_value (loop, bl)))
4536 return maybe_eliminate_biv (loop, bl, 0, threshold, insn_count);
4538 if (loop_dump_stream)
4540 fprintf (loop_dump_stream,
4541 "Cannot eliminate biv %d.\n",
4542 bl->regno);
4543 fprintf (loop_dump_stream,
4544 "First use: insn %d, last use: insn %d.\n",
4545 REGNO_FIRST_UID (bl->regno),
4546 REGNO_LAST_UID (bl->regno));
4548 return 0;
4552 /* Reduce each giv of BL that we have decided to reduce. */
4554 static void
4555 loop_givs_reduce (loop, bl)
4556 struct loop *loop;
4557 struct iv_class *bl;
4559 struct induction *v;
4561 for (v = bl->giv; v; v = v->next_iv)
4563 struct induction *tv;
4564 if (! v->ignore && v->same == 0)
4566 int auto_inc_opt = 0;
4568 /* If the code for derived givs immediately below has already
4569 allocated a new_reg, we must keep it. */
4570 if (! v->new_reg)
4571 v->new_reg = gen_reg_rtx (v->mode);
4573 #ifdef AUTO_INC_DEC
4574 /* If the target has auto-increment addressing modes, and
4575 this is an address giv, then try to put the increment
4576 immediately after its use, so that flow can create an
4577 auto-increment addressing mode. */
4578 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4579 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4580 /* We don't handle reversed biv's because bl->biv->insn
4581 does not have a valid INSN_LUID. */
4582 && ! bl->reversed
4583 && v->always_executed && ! v->maybe_multiple
4584 && INSN_UID (v->insn) < max_uid_for_loop)
4586 /* If other giv's have been combined with this one, then
4587 this will work only if all uses of the other giv's occur
4588 before this giv's insn. This is difficult to check.
4590 We simplify this by looking for the common case where
4591 there is one DEST_REG giv, and this giv's insn is the
4592 last use of the dest_reg of that DEST_REG giv. If the
4593 increment occurs after the address giv, then we can
4594 perform the optimization. (Otherwise, the increment
4595 would have to go before other_giv, and we would not be
4596 able to combine it with the address giv to get an
4597 auto-inc address.) */
4598 if (v->combined_with)
4600 struct induction *other_giv = 0;
4602 for (tv = bl->giv; tv; tv = tv->next_iv)
4603 if (tv->same == v)
4605 if (other_giv)
4606 break;
4607 else
4608 other_giv = tv;
4610 if (! tv && other_giv
4611 && REGNO (other_giv->dest_reg) < max_reg_before_loop
4612 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4613 == INSN_UID (v->insn))
4614 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4615 auto_inc_opt = 1;
4617 /* Check for case where increment is before the address
4618 giv. Do this test in "loop order". */
4619 else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
4620 && (INSN_LUID (v->insn) < INSN_LUID (loop->scan_start)
4621 || (INSN_LUID (bl->biv->insn)
4622 > INSN_LUID (loop->scan_start))))
4623 || (INSN_LUID (v->insn) < INSN_LUID (loop->scan_start)
4624 && (INSN_LUID (loop->scan_start)
4625 < INSN_LUID (bl->biv->insn))))
4626 auto_inc_opt = -1;
4627 else
4628 auto_inc_opt = 1;
4630 #ifdef HAVE_cc0
4632 rtx prev;
4634 /* We can't put an insn immediately after one setting
4635 cc0, or immediately before one using cc0. */
4636 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4637 || (auto_inc_opt == -1
4638 && (prev = prev_nonnote_insn (v->insn)) != 0
4639 && INSN_P (prev)
4640 && sets_cc0_p (PATTERN (prev))))
4641 auto_inc_opt = 0;
4643 #endif
4645 if (auto_inc_opt)
4646 v->auto_inc_opt = 1;
4648 #endif
4650 /* For each place where the biv is incremented, add an insn
4651 to increment the new, reduced reg for the giv. */
4652 for (tv = bl->biv; tv; tv = tv->next_iv)
4654 rtx insert_before;
4656 if (! auto_inc_opt)
4657 insert_before = tv->insn;
4658 else if (auto_inc_opt == 1)
4659 insert_before = NEXT_INSN (v->insn);
4660 else
4661 insert_before = v->insn;
4663 if (tv->mult_val == const1_rtx)
4664 loop_iv_add_mult_emit_before (loop, tv->add_val, v->mult_val,
4665 v->new_reg, v->new_reg,
4666 0, insert_before);
4667 else /* tv->mult_val == const0_rtx */
4668 /* A multiply is acceptable here
4669 since this is presumed to be seldom executed. */
4670 loop_iv_add_mult_emit_before (loop, tv->add_val, v->mult_val,
4671 v->add_val, v->new_reg,
4672 0, insert_before);
4675 /* Add code at loop start to initialize giv's reduced reg. */
4677 loop_iv_add_mult_hoist (loop,
4678 extend_value_for_giv (v, bl->initial_value),
4679 v->mult_val, v->add_val, v->new_reg);
4685 /* Check for givs whose first use is their definition and whose
4686 last use is the definition of another giv. If so, it is likely
4687 dead and should not be used to derive another giv nor to
4688 eliminate a biv. */
4690 static void
4691 loop_givs_dead_check (loop, bl)
4692 struct loop *loop ATTRIBUTE_UNUSED;
4693 struct iv_class *bl;
4695 struct induction *v;
4697 for (v = bl->giv; v; v = v->next_iv)
4699 if (v->ignore
4700 || (v->same && v->same->ignore))
4701 continue;
4703 if (v->giv_type == DEST_REG
4704 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4706 struct induction *v1;
4708 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4709 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4710 v->maybe_dead = 1;
4716 static void
4717 loop_givs_rescan (loop, bl, reg_map)
4718 struct loop *loop;
4719 struct iv_class *bl;
4720 rtx *reg_map;
4722 struct induction *v;
4724 for (v = bl->giv; v; v = v->next_iv)
4726 if (v->same && v->same->ignore)
4727 v->ignore = 1;
4729 if (v->ignore)
4730 continue;
4732 /* Update expression if this was combined, in case other giv was
4733 replaced. */
4734 if (v->same)
4735 v->new_reg = replace_rtx (v->new_reg,
4736 v->same->dest_reg, v->same->new_reg);
4738 /* See if this register is known to be a pointer to something. If
4739 so, see if we can find the alignment. First see if there is a
4740 destination register that is a pointer. If so, this shares the
4741 alignment too. Next see if we can deduce anything from the
4742 computational information. If not, and this is a DEST_ADDR
4743 giv, at least we know that it's a pointer, though we don't know
4744 the alignment. */
4745 if (GET_CODE (v->new_reg) == REG
4746 && v->giv_type == DEST_REG
4747 && REG_POINTER (v->dest_reg))
4748 mark_reg_pointer (v->new_reg,
4749 REGNO_POINTER_ALIGN (REGNO (v->dest_reg)));
4750 else if (GET_CODE (v->new_reg) == REG
4751 && REG_POINTER (v->src_reg))
4753 unsigned int align = REGNO_POINTER_ALIGN (REGNO (v->src_reg));
4755 if (align == 0
4756 || GET_CODE (v->add_val) != CONST_INT
4757 || INTVAL (v->add_val) % (align / BITS_PER_UNIT) != 0)
4758 align = 0;
4760 mark_reg_pointer (v->new_reg, align);
4762 else if (GET_CODE (v->new_reg) == REG
4763 && GET_CODE (v->add_val) == REG
4764 && REG_POINTER (v->add_val))
4766 unsigned int align = REGNO_POINTER_ALIGN (REGNO (v->add_val));
4768 if (align == 0 || GET_CODE (v->mult_val) != CONST_INT
4769 || INTVAL (v->mult_val) % (align / BITS_PER_UNIT) != 0)
4770 align = 0;
4772 mark_reg_pointer (v->new_reg, align);
4774 else if (GET_CODE (v->new_reg) == REG && v->giv_type == DEST_ADDR)
4775 mark_reg_pointer (v->new_reg, 0);
4777 if (v->giv_type == DEST_ADDR)
4778 /* Store reduced reg as the address in the memref where we found
4779 this giv. */
4780 validate_change (v->insn, v->location, v->new_reg, 0);
4781 else if (v->replaceable)
4783 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4785 else
4787 /* Not replaceable; emit an insn to set the original giv reg from
4788 the reduced giv, same as above. */
4789 loop_insn_emit_after (loop, 0, v->insn,
4790 gen_move_insn (v->dest_reg, v->new_reg));
4793 /* When a loop is reversed, givs which depend on the reversed
4794 biv, and which are live outside the loop, must be set to their
4795 correct final value. This insn is only needed if the giv is
4796 not replaceable. The correct final value is the same as the
4797 value that the giv starts the reversed loop with. */
4798 if (bl->reversed && ! v->replaceable)
4799 loop_iv_add_mult_sink (loop,
4800 extend_value_for_giv (v, bl->initial_value),
4801 v->mult_val, v->add_val, v->dest_reg);
4802 else if (v->final_value)
4803 loop_insn_sink_or_swim (loop,
4804 gen_move_insn (v->dest_reg, v->final_value));
4806 if (loop_dump_stream)
4808 fprintf (loop_dump_stream, "giv at %d reduced to ",
4809 INSN_UID (v->insn));
4810 print_simple_rtl (loop_dump_stream, v->new_reg);
4811 fprintf (loop_dump_stream, "\n");
4817 static int
4818 loop_giv_reduce_benefit (loop, bl, v, test_reg)
4819 struct loop *loop ATTRIBUTE_UNUSED;
4820 struct iv_class *bl;
4821 struct induction *v;
4822 rtx test_reg;
4824 int add_cost;
4825 int benefit;
4827 benefit = v->benefit;
4828 PUT_MODE (test_reg, v->mode);
4829 add_cost = iv_add_mult_cost (bl->biv->add_val, v->mult_val,
4830 test_reg, test_reg);
4832 /* Reduce benefit if not replaceable, since we will insert a
4833 move-insn to replace the insn that calculates this giv. Don't do
4834 this unless the giv is a user variable, since it will often be
4835 marked non-replaceable because of the duplication of the exit
4836 code outside the loop. In such a case, the copies we insert are
4837 dead and will be deleted. So they don't have a cost. Similar
4838 situations exist. */
4839 /* ??? The new final_[bg]iv_value code does a much better job of
4840 finding replaceable giv's, and hence this code may no longer be
4841 necessary. */
4842 if (! v->replaceable && ! bl->eliminable
4843 && REG_USERVAR_P (v->dest_reg))
4844 benefit -= copy_cost;
4846 /* Decrease the benefit to count the add-insns that we will insert
4847 to increment the reduced reg for the giv. ??? This can
4848 overestimate the run-time cost of the additional insns, e.g. if
4849 there are multiple basic blocks that increment the biv, but only
4850 one of these blocks is executed during each iteration. There is
4851 no good way to detect cases like this with the current structure
4852 of the loop optimizer. This code is more accurate for
4853 determining code size than run-time benefits. */
4854 benefit -= add_cost * bl->biv_count;
4856 /* Decide whether to strength-reduce this giv or to leave the code
4857 unchanged (recompute it from the biv each time it is used). This
4858 decision can be made independently for each giv. */
4860 #ifdef AUTO_INC_DEC
4861 /* Attempt to guess whether autoincrement will handle some of the
4862 new add insns; if so, increase BENEFIT (undo the subtraction of
4863 add_cost that was done above). */
4864 if (v->giv_type == DEST_ADDR
4865 /* Increasing the benefit is risky, since this is only a guess.
4866 Avoid increasing register pressure in cases where there would
4867 be no other benefit from reducing this giv. */
4868 && benefit > 0
4869 && GET_CODE (v->mult_val) == CONST_INT)
4871 int size = GET_MODE_SIZE (GET_MODE (v->mem));
4873 if (HAVE_POST_INCREMENT
4874 && INTVAL (v->mult_val) == size)
4875 benefit += add_cost * bl->biv_count;
4876 else if (HAVE_PRE_INCREMENT
4877 && INTVAL (v->mult_val) == size)
4878 benefit += add_cost * bl->biv_count;
4879 else if (HAVE_POST_DECREMENT
4880 && -INTVAL (v->mult_val) == size)
4881 benefit += add_cost * bl->biv_count;
4882 else if (HAVE_PRE_DECREMENT
4883 && -INTVAL (v->mult_val) == size)
4884 benefit += add_cost * bl->biv_count;
4886 #endif
4888 return benefit;
4892 /* Free IV structures for LOOP. */
4894 static void
4895 loop_ivs_free (loop)
4896 struct loop *loop;
4898 struct loop_ivs *ivs = LOOP_IVS (loop);
4899 struct iv_class *iv = ivs->list;
4901 free (ivs->regs);
4903 while (iv)
4905 struct iv_class *next = iv->next;
4906 struct induction *induction;
4907 struct induction *next_induction;
4909 for (induction = iv->biv; induction; induction = next_induction)
4911 next_induction = induction->next_iv;
4912 free (induction);
4914 for (induction = iv->giv; induction; induction = next_induction)
4916 next_induction = induction->next_iv;
4917 free (induction);
4920 free (iv);
4921 iv = next;
4926 /* Perform strength reduction and induction variable elimination.
4928 Pseudo registers created during this function will be beyond the
4929 last valid index in several tables including
4930 REGS->ARRAY[I].N_TIMES_SET and REGNO_LAST_UID. This does not cause a
4931 problem here, because the added registers cannot be givs outside of
4932 their loop, and hence will never be reconsidered. But scan_loop
4933 must check regnos to make sure they are in bounds. */
4935 static void
4936 strength_reduce (loop, flags)
4937 struct loop *loop;
4938 int flags;
4940 struct loop_info *loop_info = LOOP_INFO (loop);
4941 struct loop_regs *regs = LOOP_REGS (loop);
4942 struct loop_ivs *ivs = LOOP_IVS (loop);
4943 rtx p;
4944 /* Temporary list pointer for traversing ivs->list. */
4945 struct iv_class *bl;
4946 /* Ratio of extra register life span we can justify
4947 for saving an instruction. More if loop doesn't call subroutines
4948 since in that case saving an insn makes more difference
4949 and more registers are available. */
4950 /* ??? could set this to last value of threshold in move_movables */
4951 int threshold = (loop_info->has_call ? 1 : 2) * (3 + n_non_fixed_regs);
4952 /* Map of pseudo-register replacements. */
4953 rtx *reg_map = NULL;
4954 int reg_map_size;
4955 int unrolled_insn_copies = 0;
4956 rtx test_reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
4957 int insn_count = count_insns_in_loop (loop);
4959 addr_placeholder = gen_reg_rtx (Pmode);
4961 ivs->n_regs = max_reg_before_loop;
4962 ivs->regs = (struct iv *) xcalloc (ivs->n_regs, sizeof (struct iv));
4964 /* Find all BIVs in loop. */
4965 loop_bivs_find (loop);
4967 /* Exit if there are no bivs. */
4968 if (! ivs->list)
4970 /* Can still unroll the loop anyways, but indicate that there is no
4971 strength reduction info available. */
4972 if (flags & LOOP_UNROLL)
4973 unroll_loop (loop, insn_count, 0);
4975 loop_ivs_free (loop);
4976 return;
4979 /* Determine how BIVS are initialised by looking through pre-header
4980 extended basic block. */
4981 loop_bivs_init_find (loop);
4983 /* Look at the each biv and see if we can say anything better about its
4984 initial value from any initializing insns set up above. */
4985 loop_bivs_check (loop);
4987 /* Search the loop for general induction variables. */
4988 loop_givs_find (loop);
4990 /* Try to calculate and save the number of loop iterations. This is
4991 set to zero if the actual number can not be calculated. This must
4992 be called after all giv's have been identified, since otherwise it may
4993 fail if the iteration variable is a giv. */
4994 loop_iterations (loop);
4996 #ifdef HAVE_prefetch
4997 if (flags & LOOP_PREFETCH)
4998 emit_prefetch_instructions (loop);
4999 #endif
5001 /* Now for each giv for which we still don't know whether or not it is
5002 replaceable, check to see if it is replaceable because its final value
5003 can be calculated. This must be done after loop_iterations is called,
5004 so that final_giv_value will work correctly. */
5005 loop_givs_check (loop);
5007 /* Try to prove that the loop counter variable (if any) is always
5008 nonnegative; if so, record that fact with a REG_NONNEG note
5009 so that "decrement and branch until zero" insn can be used. */
5010 check_dbra_loop (loop, insn_count);
5012 /* Create reg_map to hold substitutions for replaceable giv regs.
5013 Some givs might have been made from biv increments, so look at
5014 ivs->reg_iv_type for a suitable size. */
5015 reg_map_size = ivs->n_regs;
5016 reg_map = (rtx *) xcalloc (reg_map_size, sizeof (rtx));
5018 /* Examine each iv class for feasibility of strength reduction/induction
5019 variable elimination. */
5021 for (bl = ivs->list; bl; bl = bl->next)
5023 struct induction *v;
5024 int benefit;
5026 /* Test whether it will be possible to eliminate this biv
5027 provided all givs are reduced. */
5028 bl->eliminable = loop_biv_eliminable_p (loop, bl, threshold, insn_count);
5030 /* This will be true at the end, if all givs which depend on this
5031 biv have been strength reduced.
5032 We can't (currently) eliminate the biv unless this is so. */
5033 bl->all_reduced = 1;
5035 /* Check each extension dependent giv in this class to see if its
5036 root biv is safe from wrapping in the interior mode. */
5037 check_ext_dependent_givs (bl, loop_info);
5039 /* Combine all giv's for this iv_class. */
5040 combine_givs (regs, bl);
5042 for (v = bl->giv; v; v = v->next_iv)
5044 struct induction *tv;
5046 if (v->ignore || v->same)
5047 continue;
5049 benefit = loop_giv_reduce_benefit (loop, bl, v, test_reg);
5051 /* If an insn is not to be strength reduced, then set its ignore
5052 flag, and clear bl->all_reduced. */
5054 /* A giv that depends on a reversed biv must be reduced if it is
5055 used after the loop exit, otherwise, it would have the wrong
5056 value after the loop exit. To make it simple, just reduce all
5057 of such giv's whether or not we know they are used after the loop
5058 exit. */
5060 if (! flag_reduce_all_givs
5061 && v->lifetime * threshold * benefit < insn_count
5062 && ! bl->reversed)
5064 if (loop_dump_stream)
5065 fprintf (loop_dump_stream,
5066 "giv of insn %d not worth while, %d vs %d.\n",
5067 INSN_UID (v->insn),
5068 v->lifetime * threshold * benefit, insn_count);
5069 v->ignore = 1;
5070 bl->all_reduced = 0;
5072 else
5074 /* Check that we can increment the reduced giv without a
5075 multiply insn. If not, reject it. */
5077 for (tv = bl->biv; tv; tv = tv->next_iv)
5078 if (tv->mult_val == const1_rtx
5079 && ! product_cheap_p (tv->add_val, v->mult_val))
5081 if (loop_dump_stream)
5082 fprintf (loop_dump_stream,
5083 "giv of insn %d: would need a multiply.\n",
5084 INSN_UID (v->insn));
5085 v->ignore = 1;
5086 bl->all_reduced = 0;
5087 break;
5092 /* Check for givs whose first use is their definition and whose
5093 last use is the definition of another giv. If so, it is likely
5094 dead and should not be used to derive another giv nor to
5095 eliminate a biv. */
5096 loop_givs_dead_check (loop, bl);
5098 /* Reduce each giv that we decided to reduce. */
5099 loop_givs_reduce (loop, bl);
5101 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
5102 as not reduced.
5104 For each giv register that can be reduced now: if replaceable,
5105 substitute reduced reg wherever the old giv occurs;
5106 else add new move insn "giv_reg = reduced_reg". */
5107 loop_givs_rescan (loop, bl, reg_map);
5109 /* All the givs based on the biv bl have been reduced if they
5110 merit it. */
5112 /* For each giv not marked as maybe dead that has been combined with a
5113 second giv, clear any "maybe dead" mark on that second giv.
5114 v->new_reg will either be or refer to the register of the giv it
5115 combined with.
5117 Doing this clearing avoids problems in biv elimination where
5118 a giv's new_reg is a complex value that can't be put in the
5119 insn but the giv combined with (with a reg as new_reg) is
5120 marked maybe_dead. Since the register will be used in either
5121 case, we'd prefer it be used from the simpler giv. */
5123 for (v = bl->giv; v; v = v->next_iv)
5124 if (! v->maybe_dead && v->same)
5125 v->same->maybe_dead = 0;
5127 /* Try to eliminate the biv, if it is a candidate.
5128 This won't work if ! bl->all_reduced,
5129 since the givs we planned to use might not have been reduced.
5131 We have to be careful that we didn't initially think we could
5132 eliminate this biv because of a giv that we now think may be
5133 dead and shouldn't be used as a biv replacement.
5135 Also, there is the possibility that we may have a giv that looks
5136 like it can be used to eliminate a biv, but the resulting insn
5137 isn't valid. This can happen, for example, on the 88k, where a
5138 JUMP_INSN can compare a register only with zero. Attempts to
5139 replace it with a compare with a constant will fail.
5141 Note that in cases where this call fails, we may have replaced some
5142 of the occurrences of the biv with a giv, but no harm was done in
5143 doing so in the rare cases where it can occur. */
5145 if (bl->all_reduced == 1 && bl->eliminable
5146 && maybe_eliminate_biv (loop, bl, 1, threshold, insn_count))
5148 /* ?? If we created a new test to bypass the loop entirely,
5149 or otherwise drop straight in, based on this test, then
5150 we might want to rewrite it also. This way some later
5151 pass has more hope of removing the initialization of this
5152 biv entirely. */
5154 /* If final_value != 0, then the biv may be used after loop end
5155 and we must emit an insn to set it just in case.
5157 Reversed bivs already have an insn after the loop setting their
5158 value, so we don't need another one. We can't calculate the
5159 proper final value for such a biv here anyways. */
5160 if (bl->final_value && ! bl->reversed)
5161 loop_insn_sink_or_swim (loop, gen_move_insn
5162 (bl->biv->dest_reg, bl->final_value));
5164 if (loop_dump_stream)
5165 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
5166 bl->regno);
5168 /* See above note wrt final_value. But since we couldn't eliminate
5169 the biv, we must set the value after the loop instead of before. */
5170 else if (bl->final_value && ! bl->reversed)
5171 loop_insn_sink (loop, gen_move_insn (bl->biv->dest_reg,
5172 bl->final_value));
5175 /* Go through all the instructions in the loop, making all the
5176 register substitutions scheduled in REG_MAP. */
5178 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
5179 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5180 || GET_CODE (p) == CALL_INSN)
5182 replace_regs (PATTERN (p), reg_map, reg_map_size, 0);
5183 replace_regs (REG_NOTES (p), reg_map, reg_map_size, 0);
5184 INSN_CODE (p) = -1;
5187 if (loop_info->n_iterations > 0)
5189 /* When we completely unroll a loop we will likely not need the increment
5190 of the loop BIV and we will not need the conditional branch at the
5191 end of the loop. */
5192 unrolled_insn_copies = insn_count - 2;
5194 #ifdef HAVE_cc0
5195 /* When we completely unroll a loop on a HAVE_cc0 machine we will not
5196 need the comparison before the conditional branch at the end of the
5197 loop. */
5198 unrolled_insn_copies -= 1;
5199 #endif
5201 /* We'll need one copy for each loop iteration. */
5202 unrolled_insn_copies *= loop_info->n_iterations;
5204 /* A little slop to account for the ability to remove initialization
5205 code, better CSE, and other secondary benefits of completely
5206 unrolling some loops. */
5207 unrolled_insn_copies -= 1;
5209 /* Clamp the value. */
5210 if (unrolled_insn_copies < 0)
5211 unrolled_insn_copies = 0;
5214 /* Unroll loops from within strength reduction so that we can use the
5215 induction variable information that strength_reduce has already
5216 collected. Always unroll loops that would be as small or smaller
5217 unrolled than when rolled. */
5218 if ((flags & LOOP_UNROLL)
5219 || (!(flags & LOOP_FIRST_PASS)
5220 && loop_info->n_iterations > 0
5221 && unrolled_insn_copies <= insn_count))
5222 unroll_loop (loop, insn_count, 1);
5224 #ifdef HAVE_doloop_end
5225 if (HAVE_doloop_end && (flags & LOOP_BCT) && flag_branch_on_count_reg)
5226 doloop_optimize (loop);
5227 #endif /* HAVE_doloop_end */
5229 /* In case number of iterations is known, drop branch prediction note
5230 in the branch. Do that only in second loop pass, as loop unrolling
5231 may change the number of iterations performed. */
5232 if ((flags & LOOP_BCT)
5233 && loop_info->n_iterations / loop_info->unroll_number > 1)
5235 int n = loop_info->n_iterations / loop_info->unroll_number;
5236 predict_insn (PREV_INSN (loop->end),
5237 PRED_LOOP_ITERATIONS,
5238 REG_BR_PROB_BASE - REG_BR_PROB_BASE / n);
5241 if (loop_dump_stream)
5242 fprintf (loop_dump_stream, "\n");
5244 loop_ivs_free (loop);
5245 if (reg_map)
5246 free (reg_map);
5249 /*Record all basic induction variables calculated in the insn. */
5250 static rtx
5251 check_insn_for_bivs (loop, p, not_every_iteration, maybe_multiple)
5252 struct loop *loop;
5253 rtx p;
5254 int not_every_iteration;
5255 int maybe_multiple;
5257 struct loop_ivs *ivs = LOOP_IVS (loop);
5258 rtx set;
5259 rtx dest_reg;
5260 rtx inc_val;
5261 rtx mult_val;
5262 rtx *location;
5264 if (GET_CODE (p) == INSN
5265 && (set = single_set (p))
5266 && GET_CODE (SET_DEST (set)) == REG)
5268 dest_reg = SET_DEST (set);
5269 if (REGNO (dest_reg) < max_reg_before_loop
5270 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
5271 && REG_IV_TYPE (ivs, REGNO (dest_reg)) != NOT_BASIC_INDUCT)
5273 if (basic_induction_var (loop, SET_SRC (set),
5274 GET_MODE (SET_SRC (set)),
5275 dest_reg, p, &inc_val, &mult_val,
5276 &location))
5278 /* It is a possible basic induction variable.
5279 Create and initialize an induction structure for it. */
5281 struct induction *v
5282 = (struct induction *) xmalloc (sizeof (struct induction));
5284 record_biv (loop, v, p, dest_reg, inc_val, mult_val, location,
5285 not_every_iteration, maybe_multiple);
5286 REG_IV_TYPE (ivs, REGNO (dest_reg)) = BASIC_INDUCT;
5288 else if (REGNO (dest_reg) < ivs->n_regs)
5289 REG_IV_TYPE (ivs, REGNO (dest_reg)) = NOT_BASIC_INDUCT;
5292 return p;
5295 /* Record all givs calculated in the insn.
5296 A register is a giv if: it is only set once, it is a function of a
5297 biv and a constant (or invariant), and it is not a biv. */
5298 static rtx
5299 check_insn_for_givs (loop, p, not_every_iteration, maybe_multiple)
5300 struct loop *loop;
5301 rtx p;
5302 int not_every_iteration;
5303 int maybe_multiple;
5305 struct loop_regs *regs = LOOP_REGS (loop);
5307 rtx set;
5308 /* Look for a general induction variable in a register. */
5309 if (GET_CODE (p) == INSN
5310 && (set = single_set (p))
5311 && GET_CODE (SET_DEST (set)) == REG
5312 && ! regs->array[REGNO (SET_DEST (set))].may_not_optimize)
5314 rtx src_reg;
5315 rtx dest_reg;
5316 rtx add_val;
5317 rtx mult_val;
5318 rtx ext_val;
5319 int benefit;
5320 rtx regnote = 0;
5321 rtx last_consec_insn;
5323 dest_reg = SET_DEST (set);
5324 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
5325 return p;
5327 if (/* SET_SRC is a giv. */
5328 (general_induction_var (loop, SET_SRC (set), &src_reg, &add_val,
5329 &mult_val, &ext_val, 0, &benefit, VOIDmode)
5330 /* Equivalent expression is a giv. */
5331 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
5332 && general_induction_var (loop, XEXP (regnote, 0), &src_reg,
5333 &add_val, &mult_val, &ext_val, 0,
5334 &benefit, VOIDmode)))
5335 /* Don't try to handle any regs made by loop optimization.
5336 We have nothing on them in regno_first_uid, etc. */
5337 && REGNO (dest_reg) < max_reg_before_loop
5338 /* Don't recognize a BASIC_INDUCT_VAR here. */
5339 && dest_reg != src_reg
5340 /* This must be the only place where the register is set. */
5341 && (regs->array[REGNO (dest_reg)].n_times_set == 1
5342 /* or all sets must be consecutive and make a giv. */
5343 || (benefit = consec_sets_giv (loop, benefit, p,
5344 src_reg, dest_reg,
5345 &add_val, &mult_val, &ext_val,
5346 &last_consec_insn))))
5348 struct induction *v
5349 = (struct induction *) xmalloc (sizeof (struct induction));
5351 /* If this is a library call, increase benefit. */
5352 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5353 benefit += libcall_benefit (p);
5355 /* Skip the consecutive insns, if there are any. */
5356 if (regs->array[REGNO (dest_reg)].n_times_set != 1)
5357 p = last_consec_insn;
5359 record_giv (loop, v, p, src_reg, dest_reg, mult_val, add_val,
5360 ext_val, benefit, DEST_REG, not_every_iteration,
5361 maybe_multiple, (rtx*) 0);
5366 #ifndef DONT_REDUCE_ADDR
5367 /* Look for givs which are memory addresses. */
5368 /* This resulted in worse code on a VAX 8600. I wonder if it
5369 still does. */
5370 if (GET_CODE (p) == INSN)
5371 find_mem_givs (loop, PATTERN (p), p, not_every_iteration,
5372 maybe_multiple);
5373 #endif
5375 /* Update the status of whether giv can derive other givs. This can
5376 change when we pass a label or an insn that updates a biv. */
5377 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5378 || GET_CODE (p) == CODE_LABEL)
5379 update_giv_derive (loop, p);
5380 return p;
5383 /* Return 1 if X is a valid source for an initial value (or as value being
5384 compared against in an initial test).
5386 X must be either a register or constant and must not be clobbered between
5387 the current insn and the start of the loop.
5389 INSN is the insn containing X. */
5391 static int
5392 valid_initial_value_p (x, insn, call_seen, loop_start)
5393 rtx x;
5394 rtx insn;
5395 int call_seen;
5396 rtx loop_start;
5398 if (CONSTANT_P (x))
5399 return 1;
5401 /* Only consider pseudos we know about initialized in insns whose luids
5402 we know. */
5403 if (GET_CODE (x) != REG
5404 || REGNO (x) >= max_reg_before_loop)
5405 return 0;
5407 /* Don't use call-clobbered registers across a call which clobbers it. On
5408 some machines, don't use any hard registers at all. */
5409 if (REGNO (x) < FIRST_PSEUDO_REGISTER
5410 && (SMALL_REGISTER_CLASSES
5411 || (call_used_regs[REGNO (x)] && call_seen)))
5412 return 0;
5414 /* Don't use registers that have been clobbered before the start of the
5415 loop. */
5416 if (reg_set_between_p (x, insn, loop_start))
5417 return 0;
5419 return 1;
5422 /* Scan X for memory refs and check each memory address
5423 as a possible giv. INSN is the insn whose pattern X comes from.
5424 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
5425 every loop iteration. MAYBE_MULTIPLE is 1 if the insn might be executed
5426 more thanonce in each loop iteration. */
5428 static void
5429 find_mem_givs (loop, x, insn, not_every_iteration, maybe_multiple)
5430 const struct loop *loop;
5431 rtx x;
5432 rtx insn;
5433 int not_every_iteration, maybe_multiple;
5435 int i, j;
5436 enum rtx_code code;
5437 const char *fmt;
5439 if (x == 0)
5440 return;
5442 code = GET_CODE (x);
5443 switch (code)
5445 case REG:
5446 case CONST_INT:
5447 case CONST:
5448 case CONST_DOUBLE:
5449 case SYMBOL_REF:
5450 case LABEL_REF:
5451 case PC:
5452 case CC0:
5453 case ADDR_VEC:
5454 case ADDR_DIFF_VEC:
5455 case USE:
5456 case CLOBBER:
5457 return;
5459 case MEM:
5461 rtx src_reg;
5462 rtx add_val;
5463 rtx mult_val;
5464 rtx ext_val;
5465 int benefit;
5467 /* This code used to disable creating GIVs with mult_val == 1 and
5468 add_val == 0. However, this leads to lost optimizations when
5469 it comes time to combine a set of related DEST_ADDR GIVs, since
5470 this one would not be seen. */
5472 if (general_induction_var (loop, XEXP (x, 0), &src_reg, &add_val,
5473 &mult_val, &ext_val, 1, &benefit,
5474 GET_MODE (x)))
5476 /* Found one; record it. */
5477 struct induction *v
5478 = (struct induction *) xmalloc (sizeof (struct induction));
5480 record_giv (loop, v, insn, src_reg, addr_placeholder, mult_val,
5481 add_val, ext_val, benefit, DEST_ADDR,
5482 not_every_iteration, maybe_multiple, &XEXP (x, 0));
5484 v->mem = x;
5487 return;
5489 default:
5490 break;
5493 /* Recursively scan the subexpressions for other mem refs. */
5495 fmt = GET_RTX_FORMAT (code);
5496 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5497 if (fmt[i] == 'e')
5498 find_mem_givs (loop, XEXP (x, i), insn, not_every_iteration,
5499 maybe_multiple);
5500 else if (fmt[i] == 'E')
5501 for (j = 0; j < XVECLEN (x, i); j++)
5502 find_mem_givs (loop, XVECEXP (x, i, j), insn, not_every_iteration,
5503 maybe_multiple);
5506 /* Fill in the data about one biv update.
5507 V is the `struct induction' in which we record the biv. (It is
5508 allocated by the caller, with alloca.)
5509 INSN is the insn that sets it.
5510 DEST_REG is the biv's reg.
5512 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
5513 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
5514 being set to INC_VAL.
5516 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
5517 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
5518 can be executed more than once per iteration. If MAYBE_MULTIPLE
5519 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
5520 executed exactly once per iteration. */
5522 static void
5523 record_biv (loop, v, insn, dest_reg, inc_val, mult_val, location,
5524 not_every_iteration, maybe_multiple)
5525 struct loop *loop;
5526 struct induction *v;
5527 rtx insn;
5528 rtx dest_reg;
5529 rtx inc_val;
5530 rtx mult_val;
5531 rtx *location;
5532 int not_every_iteration;
5533 int maybe_multiple;
5535 struct loop_ivs *ivs = LOOP_IVS (loop);
5536 struct iv_class *bl;
5538 v->insn = insn;
5539 v->src_reg = dest_reg;
5540 v->dest_reg = dest_reg;
5541 v->mult_val = mult_val;
5542 v->add_val = inc_val;
5543 v->ext_dependent = NULL_RTX;
5544 v->location = location;
5545 v->mode = GET_MODE (dest_reg);
5546 v->always_computable = ! not_every_iteration;
5547 v->always_executed = ! not_every_iteration;
5548 v->maybe_multiple = maybe_multiple;
5550 /* Add this to the reg's iv_class, creating a class
5551 if this is the first incrementation of the reg. */
5553 bl = REG_IV_CLASS (ivs, REGNO (dest_reg));
5554 if (bl == 0)
5556 /* Create and initialize new iv_class. */
5558 bl = (struct iv_class *) xmalloc (sizeof (struct iv_class));
5560 bl->regno = REGNO (dest_reg);
5561 bl->biv = 0;
5562 bl->giv = 0;
5563 bl->biv_count = 0;
5564 bl->giv_count = 0;
5566 /* Set initial value to the reg itself. */
5567 bl->initial_value = dest_reg;
5568 bl->final_value = 0;
5569 /* We haven't seen the initializing insn yet */
5570 bl->init_insn = 0;
5571 bl->init_set = 0;
5572 bl->initial_test = 0;
5573 bl->incremented = 0;
5574 bl->eliminable = 0;
5575 bl->nonneg = 0;
5576 bl->reversed = 0;
5577 bl->total_benefit = 0;
5579 /* Add this class to ivs->list. */
5580 bl->next = ivs->list;
5581 ivs->list = bl;
5583 /* Put it in the array of biv register classes. */
5584 REG_IV_CLASS (ivs, REGNO (dest_reg)) = bl;
5587 /* Update IV_CLASS entry for this biv. */
5588 v->next_iv = bl->biv;
5589 bl->biv = v;
5590 bl->biv_count++;
5591 if (mult_val == const1_rtx)
5592 bl->incremented = 1;
5594 if (loop_dump_stream)
5595 loop_biv_dump (v, loop_dump_stream, 0);
5598 /* Fill in the data about one giv.
5599 V is the `struct induction' in which we record the giv. (It is
5600 allocated by the caller, with alloca.)
5601 INSN is the insn that sets it.
5602 BENEFIT estimates the savings from deleting this insn.
5603 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
5604 into a register or is used as a memory address.
5606 SRC_REG is the biv reg which the giv is computed from.
5607 DEST_REG is the giv's reg (if the giv is stored in a reg).
5608 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
5609 LOCATION points to the place where this giv's value appears in INSN. */
5611 static void
5612 record_giv (loop, v, insn, src_reg, dest_reg, mult_val, add_val, ext_val,
5613 benefit, type, not_every_iteration, maybe_multiple, location)
5614 const struct loop *loop;
5615 struct induction *v;
5616 rtx insn;
5617 rtx src_reg;
5618 rtx dest_reg;
5619 rtx mult_val, add_val, ext_val;
5620 int benefit;
5621 enum g_types type;
5622 int not_every_iteration, maybe_multiple;
5623 rtx *location;
5625 struct loop_ivs *ivs = LOOP_IVS (loop);
5626 struct induction *b;
5627 struct iv_class *bl;
5628 rtx set = single_set (insn);
5629 rtx temp;
5631 /* Attempt to prove constantness of the values. Don't let simplity_rtx
5632 undo the MULT canonicalization that we performed earlier. */
5633 temp = simplify_rtx (add_val);
5634 if (temp
5635 && ! (GET_CODE (add_val) == MULT
5636 && GET_CODE (temp) == ASHIFT))
5637 add_val = temp;
5639 v->insn = insn;
5640 v->src_reg = src_reg;
5641 v->giv_type = type;
5642 v->dest_reg = dest_reg;
5643 v->mult_val = mult_val;
5644 v->add_val = add_val;
5645 v->ext_dependent = ext_val;
5646 v->benefit = benefit;
5647 v->location = location;
5648 v->cant_derive = 0;
5649 v->combined_with = 0;
5650 v->maybe_multiple = maybe_multiple;
5651 v->maybe_dead = 0;
5652 v->derive_adjustment = 0;
5653 v->same = 0;
5654 v->ignore = 0;
5655 v->new_reg = 0;
5656 v->final_value = 0;
5657 v->same_insn = 0;
5658 v->auto_inc_opt = 0;
5659 v->unrolled = 0;
5660 v->shared = 0;
5662 /* The v->always_computable field is used in update_giv_derive, to
5663 determine whether a giv can be used to derive another giv. For a
5664 DEST_REG giv, INSN computes a new value for the giv, so its value
5665 isn't computable if INSN insn't executed every iteration.
5666 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
5667 it does not compute a new value. Hence the value is always computable
5668 regardless of whether INSN is executed each iteration. */
5670 if (type == DEST_ADDR)
5671 v->always_computable = 1;
5672 else
5673 v->always_computable = ! not_every_iteration;
5675 v->always_executed = ! not_every_iteration;
5677 if (type == DEST_ADDR)
5679 v->mode = GET_MODE (*location);
5680 v->lifetime = 1;
5682 else /* type == DEST_REG */
5684 v->mode = GET_MODE (SET_DEST (set));
5686 v->lifetime = LOOP_REG_LIFETIME (loop, REGNO (dest_reg));
5688 /* If the lifetime is zero, it means that this register is
5689 really a dead store. So mark this as a giv that can be
5690 ignored. This will not prevent the biv from being eliminated. */
5691 if (v->lifetime == 0)
5692 v->ignore = 1;
5694 REG_IV_TYPE (ivs, REGNO (dest_reg)) = GENERAL_INDUCT;
5695 REG_IV_INFO (ivs, REGNO (dest_reg)) = v;
5698 /* Add the giv to the class of givs computed from one biv. */
5700 bl = REG_IV_CLASS (ivs, REGNO (src_reg));
5701 if (bl)
5703 v->next_iv = bl->giv;
5704 bl->giv = v;
5705 /* Don't count DEST_ADDR. This is supposed to count the number of
5706 insns that calculate givs. */
5707 if (type == DEST_REG)
5708 bl->giv_count++;
5709 bl->total_benefit += benefit;
5711 else
5712 /* Fatal error, biv missing for this giv? */
5713 abort ();
5715 if (type == DEST_ADDR)
5716 v->replaceable = 1;
5717 else
5719 /* The giv can be replaced outright by the reduced register only if all
5720 of the following conditions are true:
5721 - the insn that sets the giv is always executed on any iteration
5722 on which the giv is used at all
5723 (there are two ways to deduce this:
5724 either the insn is executed on every iteration,
5725 or all uses follow that insn in the same basic block),
5726 - the giv is not used outside the loop
5727 - no assignments to the biv occur during the giv's lifetime. */
5729 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
5730 /* Previous line always fails if INSN was moved by loop opt. */
5731 && REGNO_LAST_LUID (REGNO (dest_reg))
5732 < INSN_LUID (loop->end)
5733 && (! not_every_iteration
5734 || last_use_this_basic_block (dest_reg, insn)))
5736 /* Now check that there are no assignments to the biv within the
5737 giv's lifetime. This requires two separate checks. */
5739 /* Check each biv update, and fail if any are between the first
5740 and last use of the giv.
5742 If this loop contains an inner loop that was unrolled, then
5743 the insn modifying the biv may have been emitted by the loop
5744 unrolling code, and hence does not have a valid luid. Just
5745 mark the biv as not replaceable in this case. It is not very
5746 useful as a biv, because it is used in two different loops.
5747 It is very unlikely that we would be able to optimize the giv
5748 using this biv anyways. */
5750 v->replaceable = 1;
5751 for (b = bl->biv; b; b = b->next_iv)
5753 if (INSN_UID (b->insn) >= max_uid_for_loop
5754 || ((INSN_LUID (b->insn)
5755 >= REGNO_FIRST_LUID (REGNO (dest_reg)))
5756 && (INSN_LUID (b->insn)
5757 <= REGNO_LAST_LUID (REGNO (dest_reg)))))
5759 v->replaceable = 0;
5760 v->not_replaceable = 1;
5761 break;
5765 /* If there are any backwards branches that go from after the
5766 biv update to before it, then this giv is not replaceable. */
5767 if (v->replaceable)
5768 for (b = bl->biv; b; b = b->next_iv)
5769 if (back_branch_in_range_p (loop, b->insn))
5771 v->replaceable = 0;
5772 v->not_replaceable = 1;
5773 break;
5776 else
5778 /* May still be replaceable, we don't have enough info here to
5779 decide. */
5780 v->replaceable = 0;
5781 v->not_replaceable = 0;
5785 /* Record whether the add_val contains a const_int, for later use by
5786 combine_givs. */
5788 rtx tem = add_val;
5790 v->no_const_addval = 1;
5791 if (tem == const0_rtx)
5793 else if (CONSTANT_P (add_val))
5794 v->no_const_addval = 0;
5795 if (GET_CODE (tem) == PLUS)
5797 while (1)
5799 if (GET_CODE (XEXP (tem, 0)) == PLUS)
5800 tem = XEXP (tem, 0);
5801 else if (GET_CODE (XEXP (tem, 1)) == PLUS)
5802 tem = XEXP (tem, 1);
5803 else
5804 break;
5806 if (CONSTANT_P (XEXP (tem, 1)))
5807 v->no_const_addval = 0;
5811 if (loop_dump_stream)
5812 loop_giv_dump (v, loop_dump_stream, 0);
5815 /* All this does is determine whether a giv can be made replaceable because
5816 its final value can be calculated. This code can not be part of record_giv
5817 above, because final_giv_value requires that the number of loop iterations
5818 be known, and that can not be accurately calculated until after all givs
5819 have been identified. */
5821 static void
5822 check_final_value (loop, v)
5823 const struct loop *loop;
5824 struct induction *v;
5826 struct loop_ivs *ivs = LOOP_IVS (loop);
5827 struct iv_class *bl;
5828 rtx final_value = 0;
5830 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
5832 /* DEST_ADDR givs will never reach here, because they are always marked
5833 replaceable above in record_giv. */
5835 /* The giv can be replaced outright by the reduced register only if all
5836 of the following conditions are true:
5837 - the insn that sets the giv is always executed on any iteration
5838 on which the giv is used at all
5839 (there are two ways to deduce this:
5840 either the insn is executed on every iteration,
5841 or all uses follow that insn in the same basic block),
5842 - its final value can be calculated (this condition is different
5843 than the one above in record_giv)
5844 - it's not used before the it's set
5845 - no assignments to the biv occur during the giv's lifetime. */
5847 #if 0
5848 /* This is only called now when replaceable is known to be false. */
5849 /* Clear replaceable, so that it won't confuse final_giv_value. */
5850 v->replaceable = 0;
5851 #endif
5853 if ((final_value = final_giv_value (loop, v))
5854 && (v->always_executed || last_use_this_basic_block (v->dest_reg, v->insn)))
5856 int biv_increment_seen = 0, before_giv_insn = 0;
5857 rtx p = v->insn;
5858 rtx last_giv_use;
5860 v->replaceable = 1;
5862 /* When trying to determine whether or not a biv increment occurs
5863 during the lifetime of the giv, we can ignore uses of the variable
5864 outside the loop because final_value is true. Hence we can not
5865 use regno_last_uid and regno_first_uid as above in record_giv. */
5867 /* Search the loop to determine whether any assignments to the
5868 biv occur during the giv's lifetime. Start with the insn
5869 that sets the giv, and search around the loop until we come
5870 back to that insn again.
5872 Also fail if there is a jump within the giv's lifetime that jumps
5873 to somewhere outside the lifetime but still within the loop. This
5874 catches spaghetti code where the execution order is not linear, and
5875 hence the above test fails. Here we assume that the giv lifetime
5876 does not extend from one iteration of the loop to the next, so as
5877 to make the test easier. Since the lifetime isn't known yet,
5878 this requires two loops. See also record_giv above. */
5880 last_giv_use = v->insn;
5882 while (1)
5884 p = NEXT_INSN (p);
5885 if (p == loop->end)
5887 before_giv_insn = 1;
5888 p = NEXT_INSN (loop->start);
5890 if (p == v->insn)
5891 break;
5893 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5894 || GET_CODE (p) == CALL_INSN)
5896 /* It is possible for the BIV increment to use the GIV if we
5897 have a cycle. Thus we must be sure to check each insn for
5898 both BIV and GIV uses, and we must check for BIV uses
5899 first. */
5901 if (! biv_increment_seen
5902 && reg_set_p (v->src_reg, PATTERN (p)))
5903 biv_increment_seen = 1;
5905 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5907 if (biv_increment_seen || before_giv_insn)
5909 v->replaceable = 0;
5910 v->not_replaceable = 1;
5911 break;
5913 last_giv_use = p;
5918 /* Now that the lifetime of the giv is known, check for branches
5919 from within the lifetime to outside the lifetime if it is still
5920 replaceable. */
5922 if (v->replaceable)
5924 p = v->insn;
5925 while (1)
5927 p = NEXT_INSN (p);
5928 if (p == loop->end)
5929 p = NEXT_INSN (loop->start);
5930 if (p == last_giv_use)
5931 break;
5933 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
5934 && LABEL_NAME (JUMP_LABEL (p))
5935 && ((loop_insn_first_p (JUMP_LABEL (p), v->insn)
5936 && loop_insn_first_p (loop->start, JUMP_LABEL (p)))
5937 || (loop_insn_first_p (last_giv_use, JUMP_LABEL (p))
5938 && loop_insn_first_p (JUMP_LABEL (p), loop->end))))
5940 v->replaceable = 0;
5941 v->not_replaceable = 1;
5943 if (loop_dump_stream)
5944 fprintf (loop_dump_stream,
5945 "Found branch outside giv lifetime.\n");
5947 break;
5952 /* If it is replaceable, then save the final value. */
5953 if (v->replaceable)
5954 v->final_value = final_value;
5957 if (loop_dump_stream && v->replaceable)
5958 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
5959 INSN_UID (v->insn), REGNO (v->dest_reg));
5962 /* Update the status of whether a giv can derive other givs.
5964 We need to do something special if there is or may be an update to the biv
5965 between the time the giv is defined and the time it is used to derive
5966 another giv.
5968 In addition, a giv that is only conditionally set is not allowed to
5969 derive another giv once a label has been passed.
5971 The cases we look at are when a label or an update to a biv is passed. */
5973 static void
5974 update_giv_derive (loop, p)
5975 const struct loop *loop;
5976 rtx p;
5978 struct loop_ivs *ivs = LOOP_IVS (loop);
5979 struct iv_class *bl;
5980 struct induction *biv, *giv;
5981 rtx tem;
5982 int dummy;
5984 /* Search all IV classes, then all bivs, and finally all givs.
5986 There are three cases we are concerned with. First we have the situation
5987 of a giv that is only updated conditionally. In that case, it may not
5988 derive any givs after a label is passed.
5990 The second case is when a biv update occurs, or may occur, after the
5991 definition of a giv. For certain biv updates (see below) that are
5992 known to occur between the giv definition and use, we can adjust the
5993 giv definition. For others, or when the biv update is conditional,
5994 we must prevent the giv from deriving any other givs. There are two
5995 sub-cases within this case.
5997 If this is a label, we are concerned with any biv update that is done
5998 conditionally, since it may be done after the giv is defined followed by
5999 a branch here (actually, we need to pass both a jump and a label, but
6000 this extra tracking doesn't seem worth it).
6002 If this is a jump, we are concerned about any biv update that may be
6003 executed multiple times. We are actually only concerned about
6004 backward jumps, but it is probably not worth performing the test
6005 on the jump again here.
6007 If this is a biv update, we must adjust the giv status to show that a
6008 subsequent biv update was performed. If this adjustment cannot be done,
6009 the giv cannot derive further givs. */
6011 for (bl = ivs->list; bl; bl = bl->next)
6012 for (biv = bl->biv; biv; biv = biv->next_iv)
6013 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
6014 || biv->insn == p)
6016 for (giv = bl->giv; giv; giv = giv->next_iv)
6018 /* If cant_derive is already true, there is no point in
6019 checking all of these conditions again. */
6020 if (giv->cant_derive)
6021 continue;
6023 /* If this giv is conditionally set and we have passed a label,
6024 it cannot derive anything. */
6025 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
6026 giv->cant_derive = 1;
6028 /* Skip givs that have mult_val == 0, since
6029 they are really invariants. Also skip those that are
6030 replaceable, since we know their lifetime doesn't contain
6031 any biv update. */
6032 else if (giv->mult_val == const0_rtx || giv->replaceable)
6033 continue;
6035 /* The only way we can allow this giv to derive another
6036 is if this is a biv increment and we can form the product
6037 of biv->add_val and giv->mult_val. In this case, we will
6038 be able to compute a compensation. */
6039 else if (biv->insn == p)
6041 rtx ext_val_dummy;
6043 tem = 0;
6044 if (biv->mult_val == const1_rtx)
6045 tem = simplify_giv_expr (loop,
6046 gen_rtx_MULT (giv->mode,
6047 biv->add_val,
6048 giv->mult_val),
6049 &ext_val_dummy, &dummy);
6051 if (tem && giv->derive_adjustment)
6052 tem = simplify_giv_expr
6053 (loop,
6054 gen_rtx_PLUS (giv->mode, tem, giv->derive_adjustment),
6055 &ext_val_dummy, &dummy);
6057 if (tem)
6058 giv->derive_adjustment = tem;
6059 else
6060 giv->cant_derive = 1;
6062 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
6063 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
6064 giv->cant_derive = 1;
6069 /* Check whether an insn is an increment legitimate for a basic induction var.
6070 X is the source of insn P, or a part of it.
6071 MODE is the mode in which X should be interpreted.
6073 DEST_REG is the putative biv, also the destination of the insn.
6074 We accept patterns of these forms:
6075 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
6076 REG = INVARIANT + REG
6078 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
6079 store the additive term into *INC_VAL, and store the place where
6080 we found the additive term into *LOCATION.
6082 If X is an assignment of an invariant into DEST_REG, we set
6083 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
6085 We also want to detect a BIV when it corresponds to a variable
6086 whose mode was promoted via PROMOTED_MODE. In that case, an increment
6087 of the variable may be a PLUS that adds a SUBREG of that variable to
6088 an invariant and then sign- or zero-extends the result of the PLUS
6089 into the variable.
6091 Most GIVs in such cases will be in the promoted mode, since that is the
6092 probably the natural computation mode (and almost certainly the mode
6093 used for addresses) on the machine. So we view the pseudo-reg containing
6094 the variable as the BIV, as if it were simply incremented.
6096 Note that treating the entire pseudo as a BIV will result in making
6097 simple increments to any GIVs based on it. However, if the variable
6098 overflows in its declared mode but not its promoted mode, the result will
6099 be incorrect. This is acceptable if the variable is signed, since
6100 overflows in such cases are undefined, but not if it is unsigned, since
6101 those overflows are defined. So we only check for SIGN_EXTEND and
6102 not ZERO_EXTEND.
6104 If we cannot find a biv, we return 0. */
6106 static int
6107 basic_induction_var (loop, x, mode, dest_reg, p, inc_val, mult_val, location)
6108 const struct loop *loop;
6109 rtx x;
6110 enum machine_mode mode;
6111 rtx dest_reg;
6112 rtx p;
6113 rtx *inc_val;
6114 rtx *mult_val;
6115 rtx **location;
6117 enum rtx_code code;
6118 rtx *argp, arg;
6119 rtx insn, set = 0;
6121 code = GET_CODE (x);
6122 *location = NULL;
6123 switch (code)
6125 case PLUS:
6126 if (rtx_equal_p (XEXP (x, 0), dest_reg)
6127 || (GET_CODE (XEXP (x, 0)) == SUBREG
6128 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
6129 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
6131 argp = &XEXP (x, 1);
6133 else if (rtx_equal_p (XEXP (x, 1), dest_reg)
6134 || (GET_CODE (XEXP (x, 1)) == SUBREG
6135 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
6136 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
6138 argp = &XEXP (x, 0);
6140 else
6141 return 0;
6143 arg = *argp;
6144 if (loop_invariant_p (loop, arg) != 1)
6145 return 0;
6147 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
6148 *mult_val = const1_rtx;
6149 *location = argp;
6150 return 1;
6152 case SUBREG:
6153 /* If what's inside the SUBREG is a BIV, then the SUBREG. This will
6154 handle addition of promoted variables.
6155 ??? The comment at the start of this function is wrong: promoted
6156 variable increments don't look like it says they do. */
6157 return basic_induction_var (loop, SUBREG_REG (x),
6158 GET_MODE (SUBREG_REG (x)),
6159 dest_reg, p, inc_val, mult_val, location);
6161 case REG:
6162 /* If this register is assigned in a previous insn, look at its
6163 source, but don't go outside the loop or past a label. */
6165 /* If this sets a register to itself, we would repeat any previous
6166 biv increment if we applied this strategy blindly. */
6167 if (rtx_equal_p (dest_reg, x))
6168 return 0;
6170 insn = p;
6171 while (1)
6173 rtx dest;
6176 insn = PREV_INSN (insn);
6178 while (insn && GET_CODE (insn) == NOTE
6179 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
6181 if (!insn)
6182 break;
6183 set = single_set (insn);
6184 if (set == 0)
6185 break;
6186 dest = SET_DEST (set);
6187 if (dest == x
6188 || (GET_CODE (dest) == SUBREG
6189 && (GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD)
6190 && (GET_MODE_CLASS (GET_MODE (dest)) == MODE_INT)
6191 && SUBREG_REG (dest) == x))
6192 return basic_induction_var (loop, SET_SRC (set),
6193 (GET_MODE (SET_SRC (set)) == VOIDmode
6194 ? GET_MODE (x)
6195 : GET_MODE (SET_SRC (set))),
6196 dest_reg, insn,
6197 inc_val, mult_val, location);
6199 while (GET_CODE (dest) == SIGN_EXTRACT
6200 || GET_CODE (dest) == ZERO_EXTRACT
6201 || GET_CODE (dest) == SUBREG
6202 || GET_CODE (dest) == STRICT_LOW_PART)
6203 dest = XEXP (dest, 0);
6204 if (dest == x)
6205 break;
6207 /* Fall through. */
6209 /* Can accept constant setting of biv only when inside inner most loop.
6210 Otherwise, a biv of an inner loop may be incorrectly recognized
6211 as a biv of the outer loop,
6212 causing code to be moved INTO the inner loop. */
6213 case MEM:
6214 if (loop_invariant_p (loop, x) != 1)
6215 return 0;
6216 case CONST_INT:
6217 case SYMBOL_REF:
6218 case CONST:
6219 /* convert_modes aborts if we try to convert to or from CCmode, so just
6220 exclude that case. It is very unlikely that a condition code value
6221 would be a useful iterator anyways. convert_modes aborts if we try to
6222 convert a float mode to non-float or vice versa too. */
6223 if (loop->level == 1
6224 && GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (dest_reg))
6225 && GET_MODE_CLASS (mode) != MODE_CC)
6227 /* Possible bug here? Perhaps we don't know the mode of X. */
6228 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
6229 *mult_val = const0_rtx;
6230 return 1;
6232 else
6233 return 0;
6235 case SIGN_EXTEND:
6236 return basic_induction_var (loop, XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6237 dest_reg, p, inc_val, mult_val, location);
6239 case ASHIFTRT:
6240 /* Similar, since this can be a sign extension. */
6241 for (insn = PREV_INSN (p);
6242 (insn && GET_CODE (insn) == NOTE
6243 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
6244 insn = PREV_INSN (insn))
6247 if (insn)
6248 set = single_set (insn);
6250 if (! rtx_equal_p (dest_reg, XEXP (x, 0))
6251 && set && SET_DEST (set) == XEXP (x, 0)
6252 && GET_CODE (XEXP (x, 1)) == CONST_INT
6253 && INTVAL (XEXP (x, 1)) >= 0
6254 && GET_CODE (SET_SRC (set)) == ASHIFT
6255 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
6256 return basic_induction_var (loop, XEXP (SET_SRC (set), 0),
6257 GET_MODE (XEXP (x, 0)),
6258 dest_reg, insn, inc_val, mult_val,
6259 location);
6260 return 0;
6262 default:
6263 return 0;
6267 /* A general induction variable (giv) is any quantity that is a linear
6268 function of a basic induction variable,
6269 i.e. giv = biv * mult_val + add_val.
6270 The coefficients can be any loop invariant quantity.
6271 A giv need not be computed directly from the biv;
6272 it can be computed by way of other givs. */
6274 /* Determine whether X computes a giv.
6275 If it does, return a nonzero value
6276 which is the benefit from eliminating the computation of X;
6277 set *SRC_REG to the register of the biv that it is computed from;
6278 set *ADD_VAL and *MULT_VAL to the coefficients,
6279 such that the value of X is biv * mult + add; */
6281 static int
6282 general_induction_var (loop, x, src_reg, add_val, mult_val, ext_val,
6283 is_addr, pbenefit, addr_mode)
6284 const struct loop *loop;
6285 rtx x;
6286 rtx *src_reg;
6287 rtx *add_val;
6288 rtx *mult_val;
6289 rtx *ext_val;
6290 int is_addr;
6291 int *pbenefit;
6292 enum machine_mode addr_mode;
6294 struct loop_ivs *ivs = LOOP_IVS (loop);
6295 rtx orig_x = x;
6297 /* If this is an invariant, forget it, it isn't a giv. */
6298 if (loop_invariant_p (loop, x) == 1)
6299 return 0;
6301 *pbenefit = 0;
6302 *ext_val = NULL_RTX;
6303 x = simplify_giv_expr (loop, x, ext_val, pbenefit);
6304 if (x == 0)
6305 return 0;
6307 switch (GET_CODE (x))
6309 case USE:
6310 case CONST_INT:
6311 /* Since this is now an invariant and wasn't before, it must be a giv
6312 with MULT_VAL == 0. It doesn't matter which BIV we associate this
6313 with. */
6314 *src_reg = ivs->list->biv->dest_reg;
6315 *mult_val = const0_rtx;
6316 *add_val = x;
6317 break;
6319 case REG:
6320 /* This is equivalent to a BIV. */
6321 *src_reg = x;
6322 *mult_val = const1_rtx;
6323 *add_val = const0_rtx;
6324 break;
6326 case PLUS:
6327 /* Either (plus (biv) (invar)) or
6328 (plus (mult (biv) (invar_1)) (invar_2)). */
6329 if (GET_CODE (XEXP (x, 0)) == MULT)
6331 *src_reg = XEXP (XEXP (x, 0), 0);
6332 *mult_val = XEXP (XEXP (x, 0), 1);
6334 else
6336 *src_reg = XEXP (x, 0);
6337 *mult_val = const1_rtx;
6339 *add_val = XEXP (x, 1);
6340 break;
6342 case MULT:
6343 /* ADD_VAL is zero. */
6344 *src_reg = XEXP (x, 0);
6345 *mult_val = XEXP (x, 1);
6346 *add_val = const0_rtx;
6347 break;
6349 default:
6350 abort ();
6353 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
6354 unless they are CONST_INT). */
6355 if (GET_CODE (*add_val) == USE)
6356 *add_val = XEXP (*add_val, 0);
6357 if (GET_CODE (*mult_val) == USE)
6358 *mult_val = XEXP (*mult_val, 0);
6360 if (is_addr)
6361 *pbenefit += address_cost (orig_x, addr_mode) - reg_address_cost;
6362 else
6363 *pbenefit += rtx_cost (orig_x, SET);
6365 /* Always return true if this is a giv so it will be detected as such,
6366 even if the benefit is zero or negative. This allows elimination
6367 of bivs that might otherwise not be eliminated. */
6368 return 1;
6371 /* Given an expression, X, try to form it as a linear function of a biv.
6372 We will canonicalize it to be of the form
6373 (plus (mult (BIV) (invar_1))
6374 (invar_2))
6375 with possible degeneracies.
6377 The invariant expressions must each be of a form that can be used as a
6378 machine operand. We surround then with a USE rtx (a hack, but localized
6379 and certainly unambiguous!) if not a CONST_INT for simplicity in this
6380 routine; it is the caller's responsibility to strip them.
6382 If no such canonicalization is possible (i.e., two biv's are used or an
6383 expression that is neither invariant nor a biv or giv), this routine
6384 returns 0.
6386 For a non-zero return, the result will have a code of CONST_INT, USE,
6387 REG (for a BIV), PLUS, or MULT. No other codes will occur.
6389 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
6391 static rtx sge_plus PARAMS ((enum machine_mode, rtx, rtx));
6392 static rtx sge_plus_constant PARAMS ((rtx, rtx));
6394 static rtx
6395 simplify_giv_expr (loop, x, ext_val, benefit)
6396 const struct loop *loop;
6397 rtx x;
6398 rtx *ext_val;
6399 int *benefit;
6401 struct loop_ivs *ivs = LOOP_IVS (loop);
6402 struct loop_regs *regs = LOOP_REGS (loop);
6403 enum machine_mode mode = GET_MODE (x);
6404 rtx arg0, arg1;
6405 rtx tem;
6407 /* If this is not an integer mode, or if we cannot do arithmetic in this
6408 mode, this can't be a giv. */
6409 if (mode != VOIDmode
6410 && (GET_MODE_CLASS (mode) != MODE_INT
6411 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
6412 return NULL_RTX;
6414 switch (GET_CODE (x))
6416 case PLUS:
6417 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
6418 arg1 = simplify_giv_expr (loop, XEXP (x, 1), ext_val, benefit);
6419 if (arg0 == 0 || arg1 == 0)
6420 return NULL_RTX;
6422 /* Put constant last, CONST_INT last if both constant. */
6423 if ((GET_CODE (arg0) == USE
6424 || GET_CODE (arg0) == CONST_INT)
6425 && ! ((GET_CODE (arg0) == USE
6426 && GET_CODE (arg1) == USE)
6427 || GET_CODE (arg1) == CONST_INT))
6428 tem = arg0, arg0 = arg1, arg1 = tem;
6430 /* Handle addition of zero, then addition of an invariant. */
6431 if (arg1 == const0_rtx)
6432 return arg0;
6433 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
6434 switch (GET_CODE (arg0))
6436 case CONST_INT:
6437 case USE:
6438 /* Adding two invariants must result in an invariant, so enclose
6439 addition operation inside a USE and return it. */
6440 if (GET_CODE (arg0) == USE)
6441 arg0 = XEXP (arg0, 0);
6442 if (GET_CODE (arg1) == USE)
6443 arg1 = XEXP (arg1, 0);
6445 if (GET_CODE (arg0) == CONST_INT)
6446 tem = arg0, arg0 = arg1, arg1 = tem;
6447 if (GET_CODE (arg1) == CONST_INT)
6448 tem = sge_plus_constant (arg0, arg1);
6449 else
6450 tem = sge_plus (mode, arg0, arg1);
6452 if (GET_CODE (tem) != CONST_INT)
6453 tem = gen_rtx_USE (mode, tem);
6454 return tem;
6456 case REG:
6457 case MULT:
6458 /* biv + invar or mult + invar. Return sum. */
6459 return gen_rtx_PLUS (mode, arg0, arg1);
6461 case PLUS:
6462 /* (a + invar_1) + invar_2. Associate. */
6463 return
6464 simplify_giv_expr (loop,
6465 gen_rtx_PLUS (mode,
6466 XEXP (arg0, 0),
6467 gen_rtx_PLUS (mode,
6468 XEXP (arg0, 1),
6469 arg1)),
6470 ext_val, benefit);
6472 default:
6473 abort ();
6476 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
6477 MULT to reduce cases. */
6478 if (GET_CODE (arg0) == REG)
6479 arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
6480 if (GET_CODE (arg1) == REG)
6481 arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
6483 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
6484 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
6485 Recurse to associate the second PLUS. */
6486 if (GET_CODE (arg1) == MULT)
6487 tem = arg0, arg0 = arg1, arg1 = tem;
6489 if (GET_CODE (arg1) == PLUS)
6490 return
6491 simplify_giv_expr (loop,
6492 gen_rtx_PLUS (mode,
6493 gen_rtx_PLUS (mode, arg0,
6494 XEXP (arg1, 0)),
6495 XEXP (arg1, 1)),
6496 ext_val, benefit);
6498 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
6499 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
6500 return NULL_RTX;
6502 if (!rtx_equal_p (arg0, arg1))
6503 return NULL_RTX;
6505 return simplify_giv_expr (loop,
6506 gen_rtx_MULT (mode,
6507 XEXP (arg0, 0),
6508 gen_rtx_PLUS (mode,
6509 XEXP (arg0, 1),
6510 XEXP (arg1, 1))),
6511 ext_val, benefit);
6513 case MINUS:
6514 /* Handle "a - b" as "a + b * (-1)". */
6515 return simplify_giv_expr (loop,
6516 gen_rtx_PLUS (mode,
6517 XEXP (x, 0),
6518 gen_rtx_MULT (mode,
6519 XEXP (x, 1),
6520 constm1_rtx)),
6521 ext_val, benefit);
6523 case MULT:
6524 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
6525 arg1 = simplify_giv_expr (loop, XEXP (x, 1), ext_val, benefit);
6526 if (arg0 == 0 || arg1 == 0)
6527 return NULL_RTX;
6529 /* Put constant last, CONST_INT last if both constant. */
6530 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
6531 && GET_CODE (arg1) != CONST_INT)
6532 tem = arg0, arg0 = arg1, arg1 = tem;
6534 /* If second argument is not now constant, not giv. */
6535 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
6536 return NULL_RTX;
6538 /* Handle multiply by 0 or 1. */
6539 if (arg1 == const0_rtx)
6540 return const0_rtx;
6542 else if (arg1 == const1_rtx)
6543 return arg0;
6545 switch (GET_CODE (arg0))
6547 case REG:
6548 /* biv * invar. Done. */
6549 return gen_rtx_MULT (mode, arg0, arg1);
6551 case CONST_INT:
6552 /* Product of two constants. */
6553 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
6555 case USE:
6556 /* invar * invar is a giv, but attempt to simplify it somehow. */
6557 if (GET_CODE (arg1) != CONST_INT)
6558 return NULL_RTX;
6560 arg0 = XEXP (arg0, 0);
6561 if (GET_CODE (arg0) == MULT)
6563 /* (invar_0 * invar_1) * invar_2. Associate. */
6564 return simplify_giv_expr (loop,
6565 gen_rtx_MULT (mode,
6566 XEXP (arg0, 0),
6567 gen_rtx_MULT (mode,
6568 XEXP (arg0,
6570 arg1)),
6571 ext_val, benefit);
6573 /* Porpagate the MULT expressions to the intermost nodes. */
6574 else if (GET_CODE (arg0) == PLUS)
6576 /* (invar_0 + invar_1) * invar_2. Distribute. */
6577 return simplify_giv_expr (loop,
6578 gen_rtx_PLUS (mode,
6579 gen_rtx_MULT (mode,
6580 XEXP (arg0,
6582 arg1),
6583 gen_rtx_MULT (mode,
6584 XEXP (arg0,
6586 arg1)),
6587 ext_val, benefit);
6589 return gen_rtx_USE (mode, gen_rtx_MULT (mode, arg0, arg1));
6591 case MULT:
6592 /* (a * invar_1) * invar_2. Associate. */
6593 return simplify_giv_expr (loop,
6594 gen_rtx_MULT (mode,
6595 XEXP (arg0, 0),
6596 gen_rtx_MULT (mode,
6597 XEXP (arg0, 1),
6598 arg1)),
6599 ext_val, benefit);
6601 case PLUS:
6602 /* (a + invar_1) * invar_2. Distribute. */
6603 return simplify_giv_expr (loop,
6604 gen_rtx_PLUS (mode,
6605 gen_rtx_MULT (mode,
6606 XEXP (arg0, 0),
6607 arg1),
6608 gen_rtx_MULT (mode,
6609 XEXP (arg0, 1),
6610 arg1)),
6611 ext_val, benefit);
6613 default:
6614 abort ();
6617 case ASHIFT:
6618 /* Shift by constant is multiply by power of two. */
6619 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6620 return 0;
6622 return
6623 simplify_giv_expr (loop,
6624 gen_rtx_MULT (mode,
6625 XEXP (x, 0),
6626 GEN_INT ((HOST_WIDE_INT) 1
6627 << INTVAL (XEXP (x, 1)))),
6628 ext_val, benefit);
6630 case NEG:
6631 /* "-a" is "a * (-1)" */
6632 return simplify_giv_expr (loop,
6633 gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
6634 ext_val, benefit);
6636 case NOT:
6637 /* "~a" is "-a - 1". Silly, but easy. */
6638 return simplify_giv_expr (loop,
6639 gen_rtx_MINUS (mode,
6640 gen_rtx_NEG (mode, XEXP (x, 0)),
6641 const1_rtx),
6642 ext_val, benefit);
6644 case USE:
6645 /* Already in proper form for invariant. */
6646 return x;
6648 case SIGN_EXTEND:
6649 case ZERO_EXTEND:
6650 case TRUNCATE:
6651 /* Conditionally recognize extensions of simple IVs. After we've
6652 computed loop traversal counts and verified the range of the
6653 source IV, we'll reevaluate this as a GIV. */
6654 if (*ext_val == NULL_RTX)
6656 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
6657 if (arg0 && *ext_val == NULL_RTX && GET_CODE (arg0) == REG)
6659 *ext_val = gen_rtx_fmt_e (GET_CODE (x), mode, arg0);
6660 return arg0;
6663 goto do_default;
6665 case REG:
6666 /* If this is a new register, we can't deal with it. */
6667 if (REGNO (x) >= max_reg_before_loop)
6668 return 0;
6670 /* Check for biv or giv. */
6671 switch (REG_IV_TYPE (ivs, REGNO (x)))
6673 case BASIC_INDUCT:
6674 return x;
6675 case GENERAL_INDUCT:
6677 struct induction *v = REG_IV_INFO (ivs, REGNO (x));
6679 /* Form expression from giv and add benefit. Ensure this giv
6680 can derive another and subtract any needed adjustment if so. */
6682 /* Increasing the benefit here is risky. The only case in which it
6683 is arguably correct is if this is the only use of V. In other
6684 cases, this will artificially inflate the benefit of the current
6685 giv, and lead to suboptimal code. Thus, it is disabled, since
6686 potentially not reducing an only marginally beneficial giv is
6687 less harmful than reducing many givs that are not really
6688 beneficial. */
6690 rtx single_use = regs->array[REGNO (x)].single_usage;
6691 if (single_use && single_use != const0_rtx)
6692 *benefit += v->benefit;
6695 if (v->cant_derive)
6696 return 0;
6698 tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
6699 v->src_reg, v->mult_val),
6700 v->add_val);
6702 if (v->derive_adjustment)
6703 tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
6704 arg0 = simplify_giv_expr (loop, tem, ext_val, benefit);
6705 if (*ext_val)
6707 if (!v->ext_dependent)
6708 return arg0;
6710 else
6712 *ext_val = v->ext_dependent;
6713 return arg0;
6715 return 0;
6718 default:
6719 do_default:
6720 /* If it isn't an induction variable, and it is invariant, we
6721 may be able to simplify things further by looking through
6722 the bits we just moved outside the loop. */
6723 if (loop_invariant_p (loop, x) == 1)
6725 struct movable *m;
6726 struct loop_movables *movables = LOOP_MOVABLES (loop);
6728 for (m = movables->head; m; m = m->next)
6729 if (rtx_equal_p (x, m->set_dest))
6731 /* Ok, we found a match. Substitute and simplify. */
6733 /* If we match another movable, we must use that, as
6734 this one is going away. */
6735 if (m->match)
6736 return simplify_giv_expr (loop, m->match->set_dest,
6737 ext_val, benefit);
6739 /* If consec is non-zero, this is a member of a group of
6740 instructions that were moved together. We handle this
6741 case only to the point of seeking to the last insn and
6742 looking for a REG_EQUAL. Fail if we don't find one. */
6743 if (m->consec != 0)
6745 int i = m->consec;
6746 tem = m->insn;
6749 tem = NEXT_INSN (tem);
6751 while (--i > 0);
6753 tem = find_reg_note (tem, REG_EQUAL, NULL_RTX);
6754 if (tem)
6755 tem = XEXP (tem, 0);
6757 else
6759 tem = single_set (m->insn);
6760 if (tem)
6761 tem = SET_SRC (tem);
6764 if (tem)
6766 /* What we are most interested in is pointer
6767 arithmetic on invariants -- only take
6768 patterns we may be able to do something with. */
6769 if (GET_CODE (tem) == PLUS
6770 || GET_CODE (tem) == MULT
6771 || GET_CODE (tem) == ASHIFT
6772 || GET_CODE (tem) == CONST_INT
6773 || GET_CODE (tem) == SYMBOL_REF)
6775 tem = simplify_giv_expr (loop, tem, ext_val,
6776 benefit);
6777 if (tem)
6778 return tem;
6780 else if (GET_CODE (tem) == CONST
6781 && GET_CODE (XEXP (tem, 0)) == PLUS
6782 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == SYMBOL_REF
6783 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)
6785 tem = simplify_giv_expr (loop, XEXP (tem, 0),
6786 ext_val, benefit);
6787 if (tem)
6788 return tem;
6791 break;
6794 break;
6797 /* Fall through to general case. */
6798 default:
6799 /* If invariant, return as USE (unless CONST_INT).
6800 Otherwise, not giv. */
6801 if (GET_CODE (x) == USE)
6802 x = XEXP (x, 0);
6804 if (loop_invariant_p (loop, x) == 1)
6806 if (GET_CODE (x) == CONST_INT)
6807 return x;
6808 if (GET_CODE (x) == CONST
6809 && GET_CODE (XEXP (x, 0)) == PLUS
6810 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
6811 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
6812 x = XEXP (x, 0);
6813 return gen_rtx_USE (mode, x);
6815 else
6816 return 0;
6820 /* This routine folds invariants such that there is only ever one
6821 CONST_INT in the summation. It is only used by simplify_giv_expr. */
6823 static rtx
6824 sge_plus_constant (x, c)
6825 rtx x, c;
6827 if (GET_CODE (x) == CONST_INT)
6828 return GEN_INT (INTVAL (x) + INTVAL (c));
6829 else if (GET_CODE (x) != PLUS)
6830 return gen_rtx_PLUS (GET_MODE (x), x, c);
6831 else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6833 return gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
6834 GEN_INT (INTVAL (XEXP (x, 1)) + INTVAL (c)));
6836 else if (GET_CODE (XEXP (x, 0)) == PLUS
6837 || GET_CODE (XEXP (x, 1)) != PLUS)
6839 return gen_rtx_PLUS (GET_MODE (x),
6840 sge_plus_constant (XEXP (x, 0), c), XEXP (x, 1));
6842 else
6844 return gen_rtx_PLUS (GET_MODE (x),
6845 sge_plus_constant (XEXP (x, 1), c), XEXP (x, 0));
6849 static rtx
6850 sge_plus (mode, x, y)
6851 enum machine_mode mode;
6852 rtx x, y;
6854 while (GET_CODE (y) == PLUS)
6856 rtx a = XEXP (y, 0);
6857 if (GET_CODE (a) == CONST_INT)
6858 x = sge_plus_constant (x, a);
6859 else
6860 x = gen_rtx_PLUS (mode, x, a);
6861 y = XEXP (y, 1);
6863 if (GET_CODE (y) == CONST_INT)
6864 x = sge_plus_constant (x, y);
6865 else
6866 x = gen_rtx_PLUS (mode, x, y);
6867 return x;
6870 /* Help detect a giv that is calculated by several consecutive insns;
6871 for example,
6872 giv = biv * M
6873 giv = giv + A
6874 The caller has already identified the first insn P as having a giv as dest;
6875 we check that all other insns that set the same register follow
6876 immediately after P, that they alter nothing else,
6877 and that the result of the last is still a giv.
6879 The value is 0 if the reg set in P is not really a giv.
6880 Otherwise, the value is the amount gained by eliminating
6881 all the consecutive insns that compute the value.
6883 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
6884 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
6886 The coefficients of the ultimate giv value are stored in
6887 *MULT_VAL and *ADD_VAL. */
6889 static int
6890 consec_sets_giv (loop, first_benefit, p, src_reg, dest_reg,
6891 add_val, mult_val, ext_val, last_consec_insn)
6892 const struct loop *loop;
6893 int first_benefit;
6894 rtx p;
6895 rtx src_reg;
6896 rtx dest_reg;
6897 rtx *add_val;
6898 rtx *mult_val;
6899 rtx *ext_val;
6900 rtx *last_consec_insn;
6902 struct loop_ivs *ivs = LOOP_IVS (loop);
6903 struct loop_regs *regs = LOOP_REGS (loop);
6904 int count;
6905 enum rtx_code code;
6906 int benefit;
6907 rtx temp;
6908 rtx set;
6910 /* Indicate that this is a giv so that we can update the value produced in
6911 each insn of the multi-insn sequence.
6913 This induction structure will be used only by the call to
6914 general_induction_var below, so we can allocate it on our stack.
6915 If this is a giv, our caller will replace the induct var entry with
6916 a new induction structure. */
6917 struct induction *v;
6919 if (REG_IV_TYPE (ivs, REGNO (dest_reg)) != UNKNOWN_INDUCT)
6920 return 0;
6922 v = (struct induction *) alloca (sizeof (struct induction));
6923 v->src_reg = src_reg;
6924 v->mult_val = *mult_val;
6925 v->add_val = *add_val;
6926 v->benefit = first_benefit;
6927 v->cant_derive = 0;
6928 v->derive_adjustment = 0;
6929 v->ext_dependent = NULL_RTX;
6931 REG_IV_TYPE (ivs, REGNO (dest_reg)) = GENERAL_INDUCT;
6932 REG_IV_INFO (ivs, REGNO (dest_reg)) = v;
6934 count = regs->array[REGNO (dest_reg)].n_times_set - 1;
6936 while (count > 0)
6938 p = NEXT_INSN (p);
6939 code = GET_CODE (p);
6941 /* If libcall, skip to end of call sequence. */
6942 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
6943 p = XEXP (temp, 0);
6945 if (code == INSN
6946 && (set = single_set (p))
6947 && GET_CODE (SET_DEST (set)) == REG
6948 && SET_DEST (set) == dest_reg
6949 && (general_induction_var (loop, SET_SRC (set), &src_reg,
6950 add_val, mult_val, ext_val, 0,
6951 &benefit, VOIDmode)
6952 /* Giv created by equivalent expression. */
6953 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
6954 && general_induction_var (loop, XEXP (temp, 0), &src_reg,
6955 add_val, mult_val, ext_val, 0,
6956 &benefit, VOIDmode)))
6957 && src_reg == v->src_reg)
6959 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
6960 benefit += libcall_benefit (p);
6962 count--;
6963 v->mult_val = *mult_val;
6964 v->add_val = *add_val;
6965 v->benefit += benefit;
6967 else if (code != NOTE)
6969 /* Allow insns that set something other than this giv to a
6970 constant. Such insns are needed on machines which cannot
6971 include long constants and should not disqualify a giv. */
6972 if (code == INSN
6973 && (set = single_set (p))
6974 && SET_DEST (set) != dest_reg
6975 && CONSTANT_P (SET_SRC (set)))
6976 continue;
6978 REG_IV_TYPE (ivs, REGNO (dest_reg)) = UNKNOWN_INDUCT;
6979 return 0;
6983 REG_IV_TYPE (ivs, REGNO (dest_reg)) = UNKNOWN_INDUCT;
6984 *last_consec_insn = p;
6985 return v->benefit;
6988 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6989 represented by G1. If no such expression can be found, or it is clear that
6990 it cannot possibly be a valid address, 0 is returned.
6992 To perform the computation, we note that
6993 G1 = x * v + a and
6994 G2 = y * v + b
6995 where `v' is the biv.
6997 So G2 = (y/b) * G1 + (b - a*y/x).
6999 Note that MULT = y/x.
7001 Update: A and B are now allowed to be additive expressions such that
7002 B contains all variables in A. That is, computing B-A will not require
7003 subtracting variables. */
7005 static rtx
7006 express_from_1 (a, b, mult)
7007 rtx a, b, mult;
7009 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
7011 if (mult == const0_rtx)
7012 return b;
7014 /* If MULT is not 1, we cannot handle A with non-constants, since we
7015 would then be required to subtract multiples of the registers in A.
7016 This is theoretically possible, and may even apply to some Fortran
7017 constructs, but it is a lot of work and we do not attempt it here. */
7019 if (mult != const1_rtx && GET_CODE (a) != CONST_INT)
7020 return NULL_RTX;
7022 /* In general these structures are sorted top to bottom (down the PLUS
7023 chain), but not left to right across the PLUS. If B is a higher
7024 order giv than A, we can strip one level and recurse. If A is higher
7025 order, we'll eventually bail out, but won't know that until the end.
7026 If they are the same, we'll strip one level around this loop. */
7028 while (GET_CODE (a) == PLUS && GET_CODE (b) == PLUS)
7030 rtx ra, rb, oa, ob, tmp;
7032 ra = XEXP (a, 0), oa = XEXP (a, 1);
7033 if (GET_CODE (ra) == PLUS)
7034 tmp = ra, ra = oa, oa = tmp;
7036 rb = XEXP (b, 0), ob = XEXP (b, 1);
7037 if (GET_CODE (rb) == PLUS)
7038 tmp = rb, rb = ob, ob = tmp;
7040 if (rtx_equal_p (ra, rb))
7041 /* We matched: remove one reg completely. */
7042 a = oa, b = ob;
7043 else if (GET_CODE (ob) != PLUS && rtx_equal_p (ra, ob))
7044 /* An alternate match. */
7045 a = oa, b = rb;
7046 else if (GET_CODE (oa) != PLUS && rtx_equal_p (oa, rb))
7047 /* An alternate match. */
7048 a = ra, b = ob;
7049 else
7051 /* Indicates an extra register in B. Strip one level from B and
7052 recurse, hoping B was the higher order expression. */
7053 ob = express_from_1 (a, ob, mult);
7054 if (ob == NULL_RTX)
7055 return NULL_RTX;
7056 return gen_rtx_PLUS (GET_MODE (b), rb, ob);
7060 /* Here we are at the last level of A, go through the cases hoping to
7061 get rid of everything but a constant. */
7063 if (GET_CODE (a) == PLUS)
7065 rtx ra, oa;
7067 ra = XEXP (a, 0), oa = XEXP (a, 1);
7068 if (rtx_equal_p (oa, b))
7069 oa = ra;
7070 else if (!rtx_equal_p (ra, b))
7071 return NULL_RTX;
7073 if (GET_CODE (oa) != CONST_INT)
7074 return NULL_RTX;
7076 return GEN_INT (-INTVAL (oa) * INTVAL (mult));
7078 else if (GET_CODE (a) == CONST_INT)
7080 return plus_constant (b, -INTVAL (a) * INTVAL (mult));
7082 else if (CONSTANT_P (a))
7084 enum machine_mode mode_a = GET_MODE (a);
7085 enum machine_mode mode_b = GET_MODE (b);
7086 enum machine_mode mode = mode_b == VOIDmode ? mode_a : mode_b;
7087 return simplify_gen_binary (MINUS, mode, b, a);
7089 else if (GET_CODE (b) == PLUS)
7091 if (rtx_equal_p (a, XEXP (b, 0)))
7092 return XEXP (b, 1);
7093 else if (rtx_equal_p (a, XEXP (b, 1)))
7094 return XEXP (b, 0);
7095 else
7096 return NULL_RTX;
7098 else if (rtx_equal_p (a, b))
7099 return const0_rtx;
7101 return NULL_RTX;
7105 express_from (g1, g2)
7106 struct induction *g1, *g2;
7108 rtx mult, add;
7110 /* The value that G1 will be multiplied by must be a constant integer. Also,
7111 the only chance we have of getting a valid address is if b*c/a (see above
7112 for notation) is also an integer. */
7113 if (GET_CODE (g1->mult_val) == CONST_INT
7114 && GET_CODE (g2->mult_val) == CONST_INT)
7116 if (g1->mult_val == const0_rtx
7117 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
7118 return NULL_RTX;
7119 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
7121 else if (rtx_equal_p (g1->mult_val, g2->mult_val))
7122 mult = const1_rtx;
7123 else
7125 /* ??? Find out if the one is a multiple of the other? */
7126 return NULL_RTX;
7129 add = express_from_1 (g1->add_val, g2->add_val, mult);
7130 if (add == NULL_RTX)
7132 /* Failed. If we've got a multiplication factor between G1 and G2,
7133 scale G1's addend and try again. */
7134 if (INTVAL (mult) > 1)
7136 rtx g1_add_val = g1->add_val;
7137 if (GET_CODE (g1_add_val) == MULT
7138 && GET_CODE (XEXP (g1_add_val, 1)) == CONST_INT)
7140 HOST_WIDE_INT m;
7141 m = INTVAL (mult) * INTVAL (XEXP (g1_add_val, 1));
7142 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val),
7143 XEXP (g1_add_val, 0), GEN_INT (m));
7145 else
7147 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val), g1_add_val,
7148 mult);
7151 add = express_from_1 (g1_add_val, g2->add_val, const1_rtx);
7154 if (add == NULL_RTX)
7155 return NULL_RTX;
7157 /* Form simplified final result. */
7158 if (mult == const0_rtx)
7159 return add;
7160 else if (mult == const1_rtx)
7161 mult = g1->dest_reg;
7162 else
7163 mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
7165 if (add == const0_rtx)
7166 return mult;
7167 else
7169 if (GET_CODE (add) == PLUS
7170 && CONSTANT_P (XEXP (add, 1)))
7172 rtx tem = XEXP (add, 1);
7173 mult = gen_rtx_PLUS (g2->mode, mult, XEXP (add, 0));
7174 add = tem;
7177 return gen_rtx_PLUS (g2->mode, mult, add);
7181 /* Return an rtx, if any, that expresses giv G2 as a function of the register
7182 represented by G1. This indicates that G2 should be combined with G1 and
7183 that G2 can use (either directly or via an address expression) a register
7184 used to represent G1. */
7186 static rtx
7187 combine_givs_p (g1, g2)
7188 struct induction *g1, *g2;
7190 rtx comb, ret;
7192 /* With the introduction of ext dependent givs, we must care for modes.
7193 G2 must not use a wider mode than G1. */
7194 if (GET_MODE_SIZE (g1->mode) < GET_MODE_SIZE (g2->mode))
7195 return NULL_RTX;
7197 ret = comb = express_from (g1, g2);
7198 if (comb == NULL_RTX)
7199 return NULL_RTX;
7200 if (g1->mode != g2->mode)
7201 ret = gen_lowpart (g2->mode, comb);
7203 /* If these givs are identical, they can be combined. We use the results
7204 of express_from because the addends are not in a canonical form, so
7205 rtx_equal_p is a weaker test. */
7206 /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
7207 combination to be the other way round. */
7208 if (comb == g1->dest_reg
7209 && (g1->giv_type == DEST_REG || g2->giv_type == DEST_ADDR))
7211 return ret;
7214 /* If G2 can be expressed as a function of G1 and that function is valid
7215 as an address and no more expensive than using a register for G2,
7216 the expression of G2 in terms of G1 can be used. */
7217 if (ret != NULL_RTX
7218 && g2->giv_type == DEST_ADDR
7219 && memory_address_p (GET_MODE (g2->mem), ret)
7220 /* ??? Looses, especially with -fforce-addr, where *g2->location
7221 will always be a register, and so anything more complicated
7222 gets discarded. */
7223 #if 0
7224 #ifdef ADDRESS_COST
7225 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location)
7226 #else
7227 && rtx_cost (tem, MEM) <= rtx_cost (*g2->location, MEM)
7228 #endif
7229 #endif
7232 return ret;
7235 return NULL_RTX;
7238 /* Check each extension dependent giv in this class to see if its
7239 root biv is safe from wrapping in the interior mode, which would
7240 make the giv illegal. */
7242 static void
7243 check_ext_dependent_givs (bl, loop_info)
7244 struct iv_class *bl;
7245 struct loop_info *loop_info;
7247 int ze_ok = 0, se_ok = 0, info_ok = 0;
7248 enum machine_mode biv_mode = GET_MODE (bl->biv->src_reg);
7249 HOST_WIDE_INT start_val;
7250 unsigned HOST_WIDE_INT u_end_val = 0;
7251 unsigned HOST_WIDE_INT u_start_val = 0;
7252 rtx incr = pc_rtx;
7253 struct induction *v;
7255 /* Make sure the iteration data is available. We must have
7256 constants in order to be certain of no overflow. */
7257 /* ??? An unknown iteration count with an increment of +-1
7258 combined with friendly exit tests of against an invariant
7259 value is also ameanable to optimization. Not implemented. */
7260 if (loop_info->n_iterations > 0
7261 && bl->initial_value
7262 && GET_CODE (bl->initial_value) == CONST_INT
7263 && (incr = biv_total_increment (bl))
7264 && GET_CODE (incr) == CONST_INT
7265 /* Make sure the host can represent the arithmetic. */
7266 && HOST_BITS_PER_WIDE_INT >= GET_MODE_BITSIZE (biv_mode))
7268 unsigned HOST_WIDE_INT abs_incr, total_incr;
7269 HOST_WIDE_INT s_end_val;
7270 int neg_incr;
7272 info_ok = 1;
7273 start_val = INTVAL (bl->initial_value);
7274 u_start_val = start_val;
7276 neg_incr = 0, abs_incr = INTVAL (incr);
7277 if (INTVAL (incr) < 0)
7278 neg_incr = 1, abs_incr = -abs_incr;
7279 total_incr = abs_incr * loop_info->n_iterations;
7281 /* Check for host arithmatic overflow. */
7282 if (total_incr / loop_info->n_iterations == abs_incr)
7284 unsigned HOST_WIDE_INT u_max;
7285 HOST_WIDE_INT s_max;
7287 u_end_val = start_val + (neg_incr ? -total_incr : total_incr);
7288 s_end_val = u_end_val;
7289 u_max = GET_MODE_MASK (biv_mode);
7290 s_max = u_max >> 1;
7292 /* Check zero extension of biv ok. */
7293 if (start_val >= 0
7294 /* Check for host arithmatic overflow. */
7295 && (neg_incr
7296 ? u_end_val < u_start_val
7297 : u_end_val > u_start_val)
7298 /* Check for target arithmetic overflow. */
7299 && (neg_incr
7300 ? 1 /* taken care of with host overflow */
7301 : u_end_val <= u_max))
7303 ze_ok = 1;
7306 /* Check sign extension of biv ok. */
7307 /* ??? While it is true that overflow with signed and pointer
7308 arithmetic is undefined, I fear too many programmers don't
7309 keep this fact in mind -- myself included on occasion.
7310 So leave alone with the signed overflow optimizations. */
7311 if (start_val >= -s_max - 1
7312 /* Check for host arithmatic overflow. */
7313 && (neg_incr
7314 ? s_end_val < start_val
7315 : s_end_val > start_val)
7316 /* Check for target arithmetic overflow. */
7317 && (neg_incr
7318 ? s_end_val >= -s_max - 1
7319 : s_end_val <= s_max))
7321 se_ok = 1;
7326 /* Invalidate givs that fail the tests. */
7327 for (v = bl->giv; v; v = v->next_iv)
7328 if (v->ext_dependent)
7330 enum rtx_code code = GET_CODE (v->ext_dependent);
7331 int ok = 0;
7333 switch (code)
7335 case SIGN_EXTEND:
7336 ok = se_ok;
7337 break;
7338 case ZERO_EXTEND:
7339 ok = ze_ok;
7340 break;
7342 case TRUNCATE:
7343 /* We don't know whether this value is being used as either
7344 signed or unsigned, so to safely truncate we must satisfy
7345 both. The initial check here verifies the BIV itself;
7346 once that is successful we may check its range wrt the
7347 derived GIV. */
7348 if (se_ok && ze_ok)
7350 enum machine_mode outer_mode = GET_MODE (v->ext_dependent);
7351 unsigned HOST_WIDE_INT max = GET_MODE_MASK (outer_mode) >> 1;
7353 /* We know from the above that both endpoints are nonnegative,
7354 and that there is no wrapping. Verify that both endpoints
7355 are within the (signed) range of the outer mode. */
7356 if (u_start_val <= max && u_end_val <= max)
7357 ok = 1;
7359 break;
7361 default:
7362 abort ();
7365 if (ok)
7367 if (loop_dump_stream)
7369 fprintf (loop_dump_stream,
7370 "Verified ext dependent giv at %d of reg %d\n",
7371 INSN_UID (v->insn), bl->regno);
7374 else
7376 if (loop_dump_stream)
7378 const char *why;
7380 if (info_ok)
7381 why = "biv iteration values overflowed";
7382 else
7384 if (incr == pc_rtx)
7385 incr = biv_total_increment (bl);
7386 if (incr == const1_rtx)
7387 why = "biv iteration info incomplete; incr by 1";
7388 else
7389 why = "biv iteration info incomplete";
7392 fprintf (loop_dump_stream,
7393 "Failed ext dependent giv at %d, %s\n",
7394 INSN_UID (v->insn), why);
7396 v->ignore = 1;
7397 bl->all_reduced = 0;
7402 /* Generate a version of VALUE in a mode appropriate for initializing V. */
7405 extend_value_for_giv (v, value)
7406 struct induction *v;
7407 rtx value;
7409 rtx ext_dep = v->ext_dependent;
7411 if (! ext_dep)
7412 return value;
7414 /* Recall that check_ext_dependent_givs verified that the known bounds
7415 of a biv did not overflow or wrap with respect to the extension for
7416 the giv. Therefore, constants need no additional adjustment. */
7417 if (CONSTANT_P (value) && GET_MODE (value) == VOIDmode)
7418 return value;
7420 /* Otherwise, we must adjust the value to compensate for the
7421 differing modes of the biv and the giv. */
7422 return gen_rtx_fmt_e (GET_CODE (ext_dep), GET_MODE (ext_dep), value);
7425 struct combine_givs_stats
7427 int giv_number;
7428 int total_benefit;
7431 static int
7432 cmp_combine_givs_stats (xp, yp)
7433 const PTR xp;
7434 const PTR yp;
7436 const struct combine_givs_stats * const x =
7437 (const struct combine_givs_stats *) xp;
7438 const struct combine_givs_stats * const y =
7439 (const struct combine_givs_stats *) yp;
7440 int d;
7441 d = y->total_benefit - x->total_benefit;
7442 /* Stabilize the sort. */
7443 if (!d)
7444 d = x->giv_number - y->giv_number;
7445 return d;
7448 /* Check all pairs of givs for iv_class BL and see if any can be combined with
7449 any other. If so, point SAME to the giv combined with and set NEW_REG to
7450 be an expression (in terms of the other giv's DEST_REG) equivalent to the
7451 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
7453 static void
7454 combine_givs (regs, bl)
7455 struct loop_regs *regs;
7456 struct iv_class *bl;
7458 /* Additional benefit to add for being combined multiple times. */
7459 const int extra_benefit = 3;
7461 struct induction *g1, *g2, **giv_array;
7462 int i, j, k, giv_count;
7463 struct combine_givs_stats *stats;
7464 rtx *can_combine;
7466 /* Count givs, because bl->giv_count is incorrect here. */
7467 giv_count = 0;
7468 for (g1 = bl->giv; g1; g1 = g1->next_iv)
7469 if (!g1->ignore)
7470 giv_count++;
7472 giv_array
7473 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
7474 i = 0;
7475 for (g1 = bl->giv; g1; g1 = g1->next_iv)
7476 if (!g1->ignore)
7477 giv_array[i++] = g1;
7479 stats = (struct combine_givs_stats *) xcalloc (giv_count, sizeof (*stats));
7480 can_combine = (rtx *) xcalloc (giv_count, giv_count * sizeof (rtx));
7482 for (i = 0; i < giv_count; i++)
7484 int this_benefit;
7485 rtx single_use;
7487 g1 = giv_array[i];
7488 stats[i].giv_number = i;
7490 /* If a DEST_REG GIV is used only once, do not allow it to combine
7491 with anything, for in doing so we will gain nothing that cannot
7492 be had by simply letting the GIV with which we would have combined
7493 to be reduced on its own. The losage shows up in particular with
7494 DEST_ADDR targets on hosts with reg+reg addressing, though it can
7495 be seen elsewhere as well. */
7496 if (g1->giv_type == DEST_REG
7497 && (single_use = regs->array[REGNO (g1->dest_reg)].single_usage)
7498 && single_use != const0_rtx)
7499 continue;
7501 this_benefit = g1->benefit;
7502 /* Add an additional weight for zero addends. */
7503 if (g1->no_const_addval)
7504 this_benefit += 1;
7506 for (j = 0; j < giv_count; j++)
7508 rtx this_combine;
7510 g2 = giv_array[j];
7511 if (g1 != g2
7512 && (this_combine = combine_givs_p (g1, g2)) != NULL_RTX)
7514 can_combine[i * giv_count + j] = this_combine;
7515 this_benefit += g2->benefit + extra_benefit;
7518 stats[i].total_benefit = this_benefit;
7521 /* Iterate, combining until we can't. */
7522 restart:
7523 qsort (stats, giv_count, sizeof (*stats), cmp_combine_givs_stats);
7525 if (loop_dump_stream)
7527 fprintf (loop_dump_stream, "Sorted combine statistics:\n");
7528 for (k = 0; k < giv_count; k++)
7530 g1 = giv_array[stats[k].giv_number];
7531 if (!g1->combined_with && !g1->same)
7532 fprintf (loop_dump_stream, " {%d, %d}",
7533 INSN_UID (giv_array[stats[k].giv_number]->insn),
7534 stats[k].total_benefit);
7536 putc ('\n', loop_dump_stream);
7539 for (k = 0; k < giv_count; k++)
7541 int g1_add_benefit = 0;
7543 i = stats[k].giv_number;
7544 g1 = giv_array[i];
7546 /* If it has already been combined, skip. */
7547 if (g1->combined_with || g1->same)
7548 continue;
7550 for (j = 0; j < giv_count; j++)
7552 g2 = giv_array[j];
7553 if (g1 != g2 && can_combine[i * giv_count + j]
7554 /* If it has already been combined, skip. */
7555 && ! g2->same && ! g2->combined_with)
7557 int l;
7559 g2->new_reg = can_combine[i * giv_count + j];
7560 g2->same = g1;
7561 /* For destination, we now may replace by mem expression instead
7562 of register. This changes the costs considerably, so add the
7563 compensation. */
7564 if (g2->giv_type == DEST_ADDR)
7565 g2->benefit = (g2->benefit + reg_address_cost
7566 - address_cost (g2->new_reg,
7567 GET_MODE (g2->mem)));
7568 g1->combined_with++;
7569 g1->lifetime += g2->lifetime;
7571 g1_add_benefit += g2->benefit;
7573 /* ??? The new final_[bg]iv_value code does a much better job
7574 of finding replaceable giv's, and hence this code may no
7575 longer be necessary. */
7576 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
7577 g1_add_benefit -= copy_cost;
7579 /* To help optimize the next set of combinations, remove
7580 this giv from the benefits of other potential mates. */
7581 for (l = 0; l < giv_count; ++l)
7583 int m = stats[l].giv_number;
7584 if (can_combine[m * giv_count + j])
7585 stats[l].total_benefit -= g2->benefit + extra_benefit;
7588 if (loop_dump_stream)
7589 fprintf (loop_dump_stream,
7590 "giv at %d combined with giv at %d; new benefit %d + %d, lifetime %d\n",
7591 INSN_UID (g2->insn), INSN_UID (g1->insn),
7592 g1->benefit, g1_add_benefit, g1->lifetime);
7596 /* To help optimize the next set of combinations, remove
7597 this giv from the benefits of other potential mates. */
7598 if (g1->combined_with)
7600 for (j = 0; j < giv_count; ++j)
7602 int m = stats[j].giv_number;
7603 if (can_combine[m * giv_count + i])
7604 stats[j].total_benefit -= g1->benefit + extra_benefit;
7607 g1->benefit += g1_add_benefit;
7609 /* We've finished with this giv, and everything it touched.
7610 Restart the combination so that proper weights for the
7611 rest of the givs are properly taken into account. */
7612 /* ??? Ideally we would compact the arrays at this point, so
7613 as to not cover old ground. But sanely compacting
7614 can_combine is tricky. */
7615 goto restart;
7619 /* Clean up. */
7620 free (stats);
7621 free (can_combine);
7624 /* Generate sequence for REG = B * M + A. */
7626 static rtx
7627 gen_add_mult (b, m, a, reg)
7628 rtx b; /* initial value of basic induction variable */
7629 rtx m; /* multiplicative constant */
7630 rtx a; /* additive constant */
7631 rtx reg; /* destination register */
7633 rtx seq;
7634 rtx result;
7636 start_sequence ();
7637 /* Use unsigned arithmetic. */
7638 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 1);
7639 if (reg != result)
7640 emit_move_insn (reg, result);
7641 seq = gen_sequence ();
7642 end_sequence ();
7644 return seq;
7648 /* Update registers created in insn sequence SEQ. */
7650 static void
7651 loop_regs_update (loop, seq)
7652 const struct loop *loop ATTRIBUTE_UNUSED;
7653 rtx seq;
7655 /* Update register info for alias analysis. */
7657 if (GET_CODE (seq) == SEQUENCE)
7659 int i;
7660 for (i = 0; i < XVECLEN (seq, 0); ++i)
7662 rtx set = single_set (XVECEXP (seq, 0, i));
7663 if (set && GET_CODE (SET_DEST (set)) == REG)
7664 record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
7667 else
7669 if (GET_CODE (seq) == SET
7670 && GET_CODE (SET_DEST (seq)) == REG)
7671 record_base_value (REGNO (SET_DEST (seq)), SET_SRC (seq), 0);
7676 /* EMIT code before BEFORE_BB/BEFORE_INSN to set REG = B * M + A. */
7678 void
7679 loop_iv_add_mult_emit_before (loop, b, m, a, reg, before_bb, before_insn)
7680 const struct loop *loop;
7681 rtx b; /* initial value of basic induction variable */
7682 rtx m; /* multiplicative constant */
7683 rtx a; /* additive constant */
7684 rtx reg; /* destination register */
7685 basic_block before_bb;
7686 rtx before_insn;
7688 rtx seq;
7690 if (! before_insn)
7692 loop_iv_add_mult_hoist (loop, b, m, a, reg);
7693 return;
7696 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7697 seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
7699 /* Increase the lifetime of any invariants moved further in code. */
7700 update_reg_last_use (a, before_insn);
7701 update_reg_last_use (b, before_insn);
7702 update_reg_last_use (m, before_insn);
7704 loop_insn_emit_before (loop, before_bb, before_insn, seq);
7706 /* It is possible that the expansion created lots of new registers.
7707 Iterate over the sequence we just created and record them all. */
7708 loop_regs_update (loop, seq);
7712 /* Emit insns in loop pre-header to set REG = B * M + A. */
7714 void
7715 loop_iv_add_mult_sink (loop, b, m, a, reg)
7716 const struct loop *loop;
7717 rtx b; /* initial value of basic induction variable */
7718 rtx m; /* multiplicative constant */
7719 rtx a; /* additive constant */
7720 rtx reg; /* destination register */
7722 rtx seq;
7724 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7725 seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
7727 /* Increase the lifetime of any invariants moved further in code.
7728 ???? Is this really necessary? */
7729 update_reg_last_use (a, loop->sink);
7730 update_reg_last_use (b, loop->sink);
7731 update_reg_last_use (m, loop->sink);
7733 loop_insn_sink (loop, seq);
7735 /* It is possible that the expansion created lots of new registers.
7736 Iterate over the sequence we just created and record them all. */
7737 loop_regs_update (loop, seq);
7741 /* Emit insns after loop to set REG = B * M + A. */
7743 void
7744 loop_iv_add_mult_hoist (loop, b, m, a, reg)
7745 const struct loop *loop;
7746 rtx b; /* initial value of basic induction variable */
7747 rtx m; /* multiplicative constant */
7748 rtx a; /* additive constant */
7749 rtx reg; /* destination register */
7751 rtx seq;
7753 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7754 seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
7756 loop_insn_hoist (loop, seq);
7758 /* It is possible that the expansion created lots of new registers.
7759 Iterate over the sequence we just created and record them all. */
7760 loop_regs_update (loop, seq);
7765 /* Similar to gen_add_mult, but compute cost rather than generating
7766 sequence. */
7768 static int
7769 iv_add_mult_cost (b, m, a, reg)
7770 rtx b; /* initial value of basic induction variable */
7771 rtx m; /* multiplicative constant */
7772 rtx a; /* additive constant */
7773 rtx reg; /* destination register */
7775 int cost = 0;
7776 rtx last, result;
7778 start_sequence ();
7779 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 1);
7780 if (reg != result)
7781 emit_move_insn (reg, result);
7782 last = get_last_insn ();
7783 while (last)
7785 rtx t = single_set (last);
7786 if (t)
7787 cost += rtx_cost (SET_SRC (t), SET);
7788 last = PREV_INSN (last);
7790 end_sequence ();
7791 return cost;
7794 /* Test whether A * B can be computed without
7795 an actual multiply insn. Value is 1 if so. */
7797 static int
7798 product_cheap_p (a, b)
7799 rtx a;
7800 rtx b;
7802 int i;
7803 rtx tmp;
7804 int win = 1;
7806 /* If only one is constant, make it B. */
7807 if (GET_CODE (a) == CONST_INT)
7808 tmp = a, a = b, b = tmp;
7810 /* If first constant, both constant, so don't need multiply. */
7811 if (GET_CODE (a) == CONST_INT)
7812 return 1;
7814 /* If second not constant, neither is constant, so would need multiply. */
7815 if (GET_CODE (b) != CONST_INT)
7816 return 0;
7818 /* One operand is constant, so might not need multiply insn. Generate the
7819 code for the multiply and see if a call or multiply, or long sequence
7820 of insns is generated. */
7822 start_sequence ();
7823 expand_mult (GET_MODE (a), a, b, NULL_RTX, 1);
7824 tmp = gen_sequence ();
7825 end_sequence ();
7827 if (GET_CODE (tmp) == SEQUENCE)
7829 if (XVEC (tmp, 0) == 0)
7830 win = 1;
7831 else if (XVECLEN (tmp, 0) > 3)
7832 win = 0;
7833 else
7834 for (i = 0; i < XVECLEN (tmp, 0); i++)
7836 rtx insn = XVECEXP (tmp, 0, i);
7838 if (GET_CODE (insn) != INSN
7839 || (GET_CODE (PATTERN (insn)) == SET
7840 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
7841 || (GET_CODE (PATTERN (insn)) == PARALLEL
7842 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
7843 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
7845 win = 0;
7846 break;
7850 else if (GET_CODE (tmp) == SET
7851 && GET_CODE (SET_SRC (tmp)) == MULT)
7852 win = 0;
7853 else if (GET_CODE (tmp) == PARALLEL
7854 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
7855 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
7856 win = 0;
7858 return win;
7861 /* Check to see if loop can be terminated by a "decrement and branch until
7862 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
7863 Also try reversing an increment loop to a decrement loop
7864 to see if the optimization can be performed.
7865 Value is nonzero if optimization was performed. */
7867 /* This is useful even if the architecture doesn't have such an insn,
7868 because it might change a loops which increments from 0 to n to a loop
7869 which decrements from n to 0. A loop that decrements to zero is usually
7870 faster than one that increments from zero. */
7872 /* ??? This could be rewritten to use some of the loop unrolling procedures,
7873 such as approx_final_value, biv_total_increment, loop_iterations, and
7874 final_[bg]iv_value. */
7876 static int
7877 check_dbra_loop (loop, insn_count)
7878 struct loop *loop;
7879 int insn_count;
7881 struct loop_info *loop_info = LOOP_INFO (loop);
7882 struct loop_regs *regs = LOOP_REGS (loop);
7883 struct loop_ivs *ivs = LOOP_IVS (loop);
7884 struct iv_class *bl;
7885 rtx reg;
7886 rtx jump_label;
7887 rtx final_value;
7888 rtx start_value;
7889 rtx new_add_val;
7890 rtx comparison;
7891 rtx before_comparison;
7892 rtx p;
7893 rtx jump;
7894 rtx first_compare;
7895 int compare_and_branch;
7896 rtx loop_start = loop->start;
7897 rtx loop_end = loop->end;
7899 /* If last insn is a conditional branch, and the insn before tests a
7900 register value, try to optimize it. Otherwise, we can't do anything. */
7902 jump = PREV_INSN (loop_end);
7903 comparison = get_condition_for_loop (loop, jump);
7904 if (comparison == 0)
7905 return 0;
7906 if (!onlyjump_p (jump))
7907 return 0;
7909 /* Try to compute whether the compare/branch at the loop end is one or
7910 two instructions. */
7911 get_condition (jump, &first_compare);
7912 if (first_compare == jump)
7913 compare_and_branch = 1;
7914 else if (first_compare == prev_nonnote_insn (jump))
7915 compare_and_branch = 2;
7916 else
7917 return 0;
7920 /* If more than one condition is present to control the loop, then
7921 do not proceed, as this function does not know how to rewrite
7922 loop tests with more than one condition.
7924 Look backwards from the first insn in the last comparison
7925 sequence and see if we've got another comparison sequence. */
7927 rtx jump1;
7928 if ((jump1 = prev_nonnote_insn (first_compare)) != loop->cont)
7929 if (GET_CODE (jump1) == JUMP_INSN)
7930 return 0;
7933 /* Check all of the bivs to see if the compare uses one of them.
7934 Skip biv's set more than once because we can't guarantee that
7935 it will be zero on the last iteration. Also skip if the biv is
7936 used between its update and the test insn. */
7938 for (bl = ivs->list; bl; bl = bl->next)
7940 if (bl->biv_count == 1
7941 && ! bl->biv->maybe_multiple
7942 && bl->biv->dest_reg == XEXP (comparison, 0)
7943 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
7944 first_compare))
7945 break;
7948 if (! bl)
7949 return 0;
7951 /* Look for the case where the basic induction variable is always
7952 nonnegative, and equals zero on the last iteration.
7953 In this case, add a reg_note REG_NONNEG, which allows the
7954 m68k DBRA instruction to be used. */
7956 if (((GET_CODE (comparison) == GT
7957 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
7958 && INTVAL (XEXP (comparison, 1)) == -1)
7959 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
7960 && GET_CODE (bl->biv->add_val) == CONST_INT
7961 && INTVAL (bl->biv->add_val) < 0)
7963 /* Initial value must be greater than 0,
7964 init_val % -dec_value == 0 to ensure that it equals zero on
7965 the last iteration */
7967 if (GET_CODE (bl->initial_value) == CONST_INT
7968 && INTVAL (bl->initial_value) > 0
7969 && (INTVAL (bl->initial_value)
7970 % (-INTVAL (bl->biv->add_val))) == 0)
7972 /* register always nonnegative, add REG_NOTE to branch */
7973 if (! find_reg_note (jump, REG_NONNEG, NULL_RTX))
7974 REG_NOTES (jump)
7975 = gen_rtx_EXPR_LIST (REG_NONNEG, bl->biv->dest_reg,
7976 REG_NOTES (jump));
7977 bl->nonneg = 1;
7979 return 1;
7982 /* If the decrement is 1 and the value was tested as >= 0 before
7983 the loop, then we can safely optimize. */
7984 for (p = loop_start; p; p = PREV_INSN (p))
7986 if (GET_CODE (p) == CODE_LABEL)
7987 break;
7988 if (GET_CODE (p) != JUMP_INSN)
7989 continue;
7991 before_comparison = get_condition_for_loop (loop, p);
7992 if (before_comparison
7993 && XEXP (before_comparison, 0) == bl->biv->dest_reg
7994 && GET_CODE (before_comparison) == LT
7995 && XEXP (before_comparison, 1) == const0_rtx
7996 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
7997 && INTVAL (bl->biv->add_val) == -1)
7999 if (! find_reg_note (jump, REG_NONNEG, NULL_RTX))
8000 REG_NOTES (jump)
8001 = gen_rtx_EXPR_LIST (REG_NONNEG, bl->biv->dest_reg,
8002 REG_NOTES (jump));
8003 bl->nonneg = 1;
8005 return 1;
8009 else if (GET_CODE (bl->biv->add_val) == CONST_INT
8010 && INTVAL (bl->biv->add_val) > 0)
8012 /* Try to change inc to dec, so can apply above optimization. */
8013 /* Can do this if:
8014 all registers modified are induction variables or invariant,
8015 all memory references have non-overlapping addresses
8016 (obviously true if only one write)
8017 allow 2 insns for the compare/jump at the end of the loop. */
8018 /* Also, we must avoid any instructions which use both the reversed
8019 biv and another biv. Such instructions will fail if the loop is
8020 reversed. We meet this condition by requiring that either
8021 no_use_except_counting is true, or else that there is only
8022 one biv. */
8023 int num_nonfixed_reads = 0;
8024 /* 1 if the iteration var is used only to count iterations. */
8025 int no_use_except_counting = 0;
8026 /* 1 if the loop has no memory store, or it has a single memory store
8027 which is reversible. */
8028 int reversible_mem_store = 1;
8030 if (bl->giv_count == 0
8031 && !loop->exit_count
8032 && !loop_info->has_multiple_exit_targets)
8034 rtx bivreg = regno_reg_rtx[bl->regno];
8035 struct iv_class *blt;
8037 /* If there are no givs for this biv, and the only exit is the
8038 fall through at the end of the loop, then
8039 see if perhaps there are no uses except to count. */
8040 no_use_except_counting = 1;
8041 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8042 if (INSN_P (p))
8044 rtx set = single_set (p);
8046 if (set && GET_CODE (SET_DEST (set)) == REG
8047 && REGNO (SET_DEST (set)) == bl->regno)
8048 /* An insn that sets the biv is okay. */
8050 else if ((p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
8051 || p == prev_nonnote_insn (loop_end))
8052 && reg_mentioned_p (bivreg, PATTERN (p)))
8054 /* If either of these insns uses the biv and sets a pseudo
8055 that has more than one usage, then the biv has uses
8056 other than counting since it's used to derive a value
8057 that is used more than one time. */
8058 note_stores (PATTERN (p), note_set_pseudo_multiple_uses,
8059 regs);
8060 if (regs->multiple_uses)
8062 no_use_except_counting = 0;
8063 break;
8066 else if (reg_mentioned_p (bivreg, PATTERN (p)))
8068 no_use_except_counting = 0;
8069 break;
8073 /* A biv has uses besides counting if it is used to set
8074 another biv. */
8075 for (blt = ivs->list; blt; blt = blt->next)
8076 if (blt->init_set
8077 && reg_mentioned_p (bivreg, SET_SRC (blt->init_set)))
8079 no_use_except_counting = 0;
8080 break;
8084 if (no_use_except_counting)
8085 /* No need to worry about MEMs. */
8087 else if (loop_info->num_mem_sets <= 1)
8089 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8090 if (INSN_P (p))
8091 num_nonfixed_reads += count_nonfixed_reads (loop, PATTERN (p));
8093 /* If the loop has a single store, and the destination address is
8094 invariant, then we can't reverse the loop, because this address
8095 might then have the wrong value at loop exit.
8096 This would work if the source was invariant also, however, in that
8097 case, the insn should have been moved out of the loop. */
8099 if (loop_info->num_mem_sets == 1)
8101 struct induction *v;
8103 /* If we could prove that each of the memory locations
8104 written to was different, then we could reverse the
8105 store -- but we don't presently have any way of
8106 knowing that. */
8107 reversible_mem_store = 0;
8109 /* If the store depends on a register that is set after the
8110 store, it depends on the initial value, and is thus not
8111 reversible. */
8112 for (v = bl->giv; reversible_mem_store && v; v = v->next_iv)
8114 if (v->giv_type == DEST_REG
8115 && reg_mentioned_p (v->dest_reg,
8116 PATTERN (loop_info->first_loop_store_insn))
8117 && loop_insn_first_p (loop_info->first_loop_store_insn,
8118 v->insn))
8119 reversible_mem_store = 0;
8123 else
8124 return 0;
8126 /* This code only acts for innermost loops. Also it simplifies
8127 the memory address check by only reversing loops with
8128 zero or one memory access.
8129 Two memory accesses could involve parts of the same array,
8130 and that can't be reversed.
8131 If the biv is used only for counting, than we don't need to worry
8132 about all these things. */
8134 if ((num_nonfixed_reads <= 1
8135 && ! loop_info->has_nonconst_call
8136 && ! loop_info->has_volatile
8137 && reversible_mem_store
8138 && (bl->giv_count + bl->biv_count + loop_info->num_mem_sets
8139 + num_unmoved_movables (loop) + compare_and_branch == insn_count)
8140 && (bl == ivs->list && bl->next == 0))
8141 || no_use_except_counting)
8143 rtx tem;
8145 /* Loop can be reversed. */
8146 if (loop_dump_stream)
8147 fprintf (loop_dump_stream, "Can reverse loop\n");
8149 /* Now check other conditions:
8151 The increment must be a constant, as must the initial value,
8152 and the comparison code must be LT.
8154 This test can probably be improved since +/- 1 in the constant
8155 can be obtained by changing LT to LE and vice versa; this is
8156 confusing. */
8158 if (comparison
8159 /* for constants, LE gets turned into LT */
8160 && (GET_CODE (comparison) == LT
8161 || (GET_CODE (comparison) == LE
8162 && no_use_except_counting)))
8164 HOST_WIDE_INT add_val, add_adjust, comparison_val = 0;
8165 rtx initial_value, comparison_value;
8166 int nonneg = 0;
8167 enum rtx_code cmp_code;
8168 int comparison_const_width;
8169 unsigned HOST_WIDE_INT comparison_sign_mask;
8171 add_val = INTVAL (bl->biv->add_val);
8172 comparison_value = XEXP (comparison, 1);
8173 if (GET_MODE (comparison_value) == VOIDmode)
8174 comparison_const_width
8175 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison, 0)));
8176 else
8177 comparison_const_width
8178 = GET_MODE_BITSIZE (GET_MODE (comparison_value));
8179 if (comparison_const_width > HOST_BITS_PER_WIDE_INT)
8180 comparison_const_width = HOST_BITS_PER_WIDE_INT;
8181 comparison_sign_mask
8182 = (unsigned HOST_WIDE_INT) 1 << (comparison_const_width - 1);
8184 /* If the comparison value is not a loop invariant, then we
8185 can not reverse this loop.
8187 ??? If the insns which initialize the comparison value as
8188 a whole compute an invariant result, then we could move
8189 them out of the loop and proceed with loop reversal. */
8190 if (! loop_invariant_p (loop, comparison_value))
8191 return 0;
8193 if (GET_CODE (comparison_value) == CONST_INT)
8194 comparison_val = INTVAL (comparison_value);
8195 initial_value = bl->initial_value;
8197 /* Normalize the initial value if it is an integer and
8198 has no other use except as a counter. This will allow
8199 a few more loops to be reversed. */
8200 if (no_use_except_counting
8201 && GET_CODE (comparison_value) == CONST_INT
8202 && GET_CODE (initial_value) == CONST_INT)
8204 comparison_val = comparison_val - INTVAL (bl->initial_value);
8205 /* The code below requires comparison_val to be a multiple
8206 of add_val in order to do the loop reversal, so
8207 round up comparison_val to a multiple of add_val.
8208 Since comparison_value is constant, we know that the
8209 current comparison code is LT. */
8210 comparison_val = comparison_val + add_val - 1;
8211 comparison_val
8212 -= (unsigned HOST_WIDE_INT) comparison_val % add_val;
8213 /* We postpone overflow checks for COMPARISON_VAL here;
8214 even if there is an overflow, we might still be able to
8215 reverse the loop, if converting the loop exit test to
8216 NE is possible. */
8217 initial_value = const0_rtx;
8220 /* First check if we can do a vanilla loop reversal. */
8221 if (initial_value == const0_rtx
8222 /* If we have a decrement_and_branch_on_count,
8223 prefer the NE test, since this will allow that
8224 instruction to be generated. Note that we must
8225 use a vanilla loop reversal if the biv is used to
8226 calculate a giv or has a non-counting use. */
8227 #if ! defined (HAVE_decrement_and_branch_until_zero) \
8228 && defined (HAVE_decrement_and_branch_on_count)
8229 && (! (add_val == 1 && loop->vtop
8230 && (bl->biv_count == 0
8231 || no_use_except_counting)))
8232 #endif
8233 && GET_CODE (comparison_value) == CONST_INT
8234 /* Now do postponed overflow checks on COMPARISON_VAL. */
8235 && ! (((comparison_val - add_val) ^ INTVAL (comparison_value))
8236 & comparison_sign_mask))
8238 /* Register will always be nonnegative, with value
8239 0 on last iteration */
8240 add_adjust = add_val;
8241 nonneg = 1;
8242 cmp_code = GE;
8244 else if (add_val == 1 && loop->vtop
8245 && (bl->biv_count == 0
8246 || no_use_except_counting))
8248 add_adjust = 0;
8249 cmp_code = NE;
8251 else
8252 return 0;
8254 if (GET_CODE (comparison) == LE)
8255 add_adjust -= add_val;
8257 /* If the initial value is not zero, or if the comparison
8258 value is not an exact multiple of the increment, then we
8259 can not reverse this loop. */
8260 if (initial_value == const0_rtx
8261 && GET_CODE (comparison_value) == CONST_INT)
8263 if (((unsigned HOST_WIDE_INT) comparison_val % add_val) != 0)
8264 return 0;
8266 else
8268 if (! no_use_except_counting || add_val != 1)
8269 return 0;
8272 final_value = comparison_value;
8274 /* Reset these in case we normalized the initial value
8275 and comparison value above. */
8276 if (GET_CODE (comparison_value) == CONST_INT
8277 && GET_CODE (initial_value) == CONST_INT)
8279 comparison_value = GEN_INT (comparison_val);
8280 final_value
8281 = GEN_INT (comparison_val + INTVAL (bl->initial_value));
8283 bl->initial_value = initial_value;
8285 /* Save some info needed to produce the new insns. */
8286 reg = bl->biv->dest_reg;
8287 jump_label = condjump_label (PREV_INSN (loop_end));
8288 new_add_val = GEN_INT (-INTVAL (bl->biv->add_val));
8290 /* Set start_value; if this is not a CONST_INT, we need
8291 to generate a SUB.
8292 Initialize biv to start_value before loop start.
8293 The old initializing insn will be deleted as a
8294 dead store by flow.c. */
8295 if (initial_value == const0_rtx
8296 && GET_CODE (comparison_value) == CONST_INT)
8298 start_value = GEN_INT (comparison_val - add_adjust);
8299 loop_insn_hoist (loop, gen_move_insn (reg, start_value));
8301 else if (GET_CODE (initial_value) == CONST_INT)
8303 enum machine_mode mode = GET_MODE (reg);
8304 rtx offset = GEN_INT (-INTVAL (initial_value) - add_adjust);
8305 rtx add_insn = gen_add3_insn (reg, comparison_value, offset);
8307 if (add_insn == 0)
8308 return 0;
8310 start_value
8311 = gen_rtx_PLUS (mode, comparison_value, offset);
8312 loop_insn_hoist (loop, add_insn);
8313 if (GET_CODE (comparison) == LE)
8314 final_value = gen_rtx_PLUS (mode, comparison_value,
8315 GEN_INT (add_val));
8317 else if (! add_adjust)
8319 enum machine_mode mode = GET_MODE (reg);
8320 rtx sub_insn = gen_sub3_insn (reg, comparison_value,
8321 initial_value);
8323 if (sub_insn == 0)
8324 return 0;
8325 start_value
8326 = gen_rtx_MINUS (mode, comparison_value, initial_value);
8327 loop_insn_hoist (loop, sub_insn);
8329 else
8330 /* We could handle the other cases too, but it'll be
8331 better to have a testcase first. */
8332 return 0;
8334 /* We may not have a single insn which can increment a reg, so
8335 create a sequence to hold all the insns from expand_inc. */
8336 start_sequence ();
8337 expand_inc (reg, new_add_val);
8338 tem = gen_sequence ();
8339 end_sequence ();
8341 p = loop_insn_emit_before (loop, 0, bl->biv->insn, tem);
8342 delete_insn (bl->biv->insn);
8344 /* Update biv info to reflect its new status. */
8345 bl->biv->insn = p;
8346 bl->initial_value = start_value;
8347 bl->biv->add_val = new_add_val;
8349 /* Update loop info. */
8350 loop_info->initial_value = reg;
8351 loop_info->initial_equiv_value = reg;
8352 loop_info->final_value = const0_rtx;
8353 loop_info->final_equiv_value = const0_rtx;
8354 loop_info->comparison_value = const0_rtx;
8355 loop_info->comparison_code = cmp_code;
8356 loop_info->increment = new_add_val;
8358 /* Inc LABEL_NUSES so that delete_insn will
8359 not delete the label. */
8360 LABEL_NUSES (XEXP (jump_label, 0))++;
8362 /* Emit an insn after the end of the loop to set the biv's
8363 proper exit value if it is used anywhere outside the loop. */
8364 if ((REGNO_LAST_UID (bl->regno) != INSN_UID (first_compare))
8365 || ! bl->init_insn
8366 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
8367 loop_insn_sink (loop, gen_move_insn (reg, final_value));
8369 /* Delete compare/branch at end of loop. */
8370 delete_related_insns (PREV_INSN (loop_end));
8371 if (compare_and_branch == 2)
8372 delete_related_insns (first_compare);
8374 /* Add new compare/branch insn at end of loop. */
8375 start_sequence ();
8376 emit_cmp_and_jump_insns (reg, const0_rtx, cmp_code, NULL_RTX,
8377 GET_MODE (reg), 0,
8378 XEXP (jump_label, 0));
8379 tem = gen_sequence ();
8380 end_sequence ();
8381 emit_jump_insn_before (tem, loop_end);
8383 for (tem = PREV_INSN (loop_end);
8384 tem && GET_CODE (tem) != JUMP_INSN;
8385 tem = PREV_INSN (tem))
8388 if (tem)
8389 JUMP_LABEL (tem) = XEXP (jump_label, 0);
8391 if (nonneg)
8393 if (tem)
8395 /* Increment of LABEL_NUSES done above. */
8396 /* Register is now always nonnegative,
8397 so add REG_NONNEG note to the branch. */
8398 REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, reg,
8399 REG_NOTES (tem));
8401 bl->nonneg = 1;
8404 /* No insn may reference both the reversed and another biv or it
8405 will fail (see comment near the top of the loop reversal
8406 code).
8407 Earlier on, we have verified that the biv has no use except
8408 counting, or it is the only biv in this function.
8409 However, the code that computes no_use_except_counting does
8410 not verify reg notes. It's possible to have an insn that
8411 references another biv, and has a REG_EQUAL note with an
8412 expression based on the reversed biv. To avoid this case,
8413 remove all REG_EQUAL notes based on the reversed biv
8414 here. */
8415 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8416 if (INSN_P (p))
8418 rtx *pnote;
8419 rtx set = single_set (p);
8420 /* If this is a set of a GIV based on the reversed biv, any
8421 REG_EQUAL notes should still be correct. */
8422 if (! set
8423 || GET_CODE (SET_DEST (set)) != REG
8424 || (size_t) REGNO (SET_DEST (set)) >= ivs->n_regs
8425 || REG_IV_TYPE (ivs, REGNO (SET_DEST (set))) != GENERAL_INDUCT
8426 || REG_IV_INFO (ivs, REGNO (SET_DEST (set)))->src_reg != bl->biv->src_reg)
8427 for (pnote = &REG_NOTES (p); *pnote;)
8429 if (REG_NOTE_KIND (*pnote) == REG_EQUAL
8430 && reg_mentioned_p (regno_reg_rtx[bl->regno],
8431 XEXP (*pnote, 0)))
8432 *pnote = XEXP (*pnote, 1);
8433 else
8434 pnote = &XEXP (*pnote, 1);
8438 /* Mark that this biv has been reversed. Each giv which depends
8439 on this biv, and which is also live past the end of the loop
8440 will have to be fixed up. */
8442 bl->reversed = 1;
8444 if (loop_dump_stream)
8446 fprintf (loop_dump_stream, "Reversed loop");
8447 if (bl->nonneg)
8448 fprintf (loop_dump_stream, " and added reg_nonneg\n");
8449 else
8450 fprintf (loop_dump_stream, "\n");
8453 return 1;
8458 return 0;
8461 /* Verify whether the biv BL appears to be eliminable,
8462 based on the insns in the loop that refer to it.
8464 If ELIMINATE_P is non-zero, actually do the elimination.
8466 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
8467 determine whether invariant insns should be placed inside or at the
8468 start of the loop. */
8470 static int
8471 maybe_eliminate_biv (loop, bl, eliminate_p, threshold, insn_count)
8472 const struct loop *loop;
8473 struct iv_class *bl;
8474 int eliminate_p;
8475 int threshold, insn_count;
8477 struct loop_ivs *ivs = LOOP_IVS (loop);
8478 rtx reg = bl->biv->dest_reg;
8479 rtx p;
8481 /* Scan all insns in the loop, stopping if we find one that uses the
8482 biv in a way that we cannot eliminate. */
8484 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
8486 enum rtx_code code = GET_CODE (p);
8487 basic_block where_bb = 0;
8488 rtx where_insn = threshold >= insn_count ? 0 : p;
8490 /* If this is a libcall that sets a giv, skip ahead to its end. */
8491 if (GET_RTX_CLASS (code) == 'i')
8493 rtx note = find_reg_note (p, REG_LIBCALL, NULL_RTX);
8495 if (note)
8497 rtx last = XEXP (note, 0);
8498 rtx set = single_set (last);
8500 if (set && GET_CODE (SET_DEST (set)) == REG)
8502 unsigned int regno = REGNO (SET_DEST (set));
8504 if (regno < ivs->n_regs
8505 && REG_IV_TYPE (ivs, regno) == GENERAL_INDUCT
8506 && REG_IV_INFO (ivs, regno)->src_reg == bl->biv->src_reg)
8507 p = last;
8511 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
8512 && reg_mentioned_p (reg, PATTERN (p))
8513 && ! maybe_eliminate_biv_1 (loop, PATTERN (p), p, bl,
8514 eliminate_p, where_bb, where_insn))
8516 if (loop_dump_stream)
8517 fprintf (loop_dump_stream,
8518 "Cannot eliminate biv %d: biv used in insn %d.\n",
8519 bl->regno, INSN_UID (p));
8520 break;
8524 if (p == loop->end)
8526 if (loop_dump_stream)
8527 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
8528 bl->regno, eliminate_p ? "was" : "can be");
8529 return 1;
8532 return 0;
8535 /* INSN and REFERENCE are instructions in the same insn chain.
8536 Return non-zero if INSN is first. */
8539 loop_insn_first_p (insn, reference)
8540 rtx insn, reference;
8542 rtx p, q;
8544 for (p = insn, q = reference;;)
8546 /* Start with test for not first so that INSN == REFERENCE yields not
8547 first. */
8548 if (q == insn || ! p)
8549 return 0;
8550 if (p == reference || ! q)
8551 return 1;
8553 /* Either of P or Q might be a NOTE. Notes have the same LUID as the
8554 previous insn, hence the <= comparison below does not work if
8555 P is a note. */
8556 if (INSN_UID (p) < max_uid_for_loop
8557 && INSN_UID (q) < max_uid_for_loop
8558 && GET_CODE (p) != NOTE)
8559 return INSN_LUID (p) <= INSN_LUID (q);
8561 if (INSN_UID (p) >= max_uid_for_loop
8562 || GET_CODE (p) == NOTE)
8563 p = NEXT_INSN (p);
8564 if (INSN_UID (q) >= max_uid_for_loop)
8565 q = NEXT_INSN (q);
8569 /* We are trying to eliminate BIV in INSN using GIV. Return non-zero if
8570 the offset that we have to take into account due to auto-increment /
8571 div derivation is zero. */
8572 static int
8573 biv_elimination_giv_has_0_offset (biv, giv, insn)
8574 struct induction *biv, *giv;
8575 rtx insn;
8577 /* If the giv V had the auto-inc address optimization applied
8578 to it, and INSN occurs between the giv insn and the biv
8579 insn, then we'd have to adjust the value used here.
8580 This is rare, so we don't bother to make this possible. */
8581 if (giv->auto_inc_opt
8582 && ((loop_insn_first_p (giv->insn, insn)
8583 && loop_insn_first_p (insn, biv->insn))
8584 || (loop_insn_first_p (biv->insn, insn)
8585 && loop_insn_first_p (insn, giv->insn))))
8586 return 0;
8588 return 1;
8591 /* If BL appears in X (part of the pattern of INSN), see if we can
8592 eliminate its use. If so, return 1. If not, return 0.
8594 If BIV does not appear in X, return 1.
8596 If ELIMINATE_P is non-zero, actually do the elimination.
8597 WHERE_INSN/WHERE_BB indicate where extra insns should be added.
8598 Depending on how many items have been moved out of the loop, it
8599 will either be before INSN (when WHERE_INSN is non-zero) or at the
8600 start of the loop (when WHERE_INSN is zero). */
8602 static int
8603 maybe_eliminate_biv_1 (loop, x, insn, bl, eliminate_p, where_bb, where_insn)
8604 const struct loop *loop;
8605 rtx x, insn;
8606 struct iv_class *bl;
8607 int eliminate_p;
8608 basic_block where_bb;
8609 rtx where_insn;
8611 enum rtx_code code = GET_CODE (x);
8612 rtx reg = bl->biv->dest_reg;
8613 enum machine_mode mode = GET_MODE (reg);
8614 struct induction *v;
8615 rtx arg, tem;
8616 #ifdef HAVE_cc0
8617 rtx new;
8618 #endif
8619 int arg_operand;
8620 const char *fmt;
8621 int i, j;
8623 switch (code)
8625 case REG:
8626 /* If we haven't already been able to do something with this BIV,
8627 we can't eliminate it. */
8628 if (x == reg)
8629 return 0;
8630 return 1;
8632 case SET:
8633 /* If this sets the BIV, it is not a problem. */
8634 if (SET_DEST (x) == reg)
8635 return 1;
8637 /* If this is an insn that defines a giv, it is also ok because
8638 it will go away when the giv is reduced. */
8639 for (v = bl->giv; v; v = v->next_iv)
8640 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
8641 return 1;
8643 #ifdef HAVE_cc0
8644 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
8646 /* Can replace with any giv that was reduced and
8647 that has (MULT_VAL != 0) and (ADD_VAL == 0).
8648 Require a constant for MULT_VAL, so we know it's nonzero.
8649 ??? We disable this optimization to avoid potential
8650 overflows. */
8652 for (v = bl->giv; v; v = v->next_iv)
8653 if (GET_CODE (v->mult_val) == CONST_INT && v->mult_val != const0_rtx
8654 && v->add_val == const0_rtx
8655 && ! v->ignore && ! v->maybe_dead && v->always_computable
8656 && v->mode == mode
8657 && 0)
8659 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8660 continue;
8662 if (! eliminate_p)
8663 return 1;
8665 /* If the giv has the opposite direction of change,
8666 then reverse the comparison. */
8667 if (INTVAL (v->mult_val) < 0)
8668 new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
8669 const0_rtx, v->new_reg);
8670 else
8671 new = v->new_reg;
8673 /* We can probably test that giv's reduced reg. */
8674 if (validate_change (insn, &SET_SRC (x), new, 0))
8675 return 1;
8678 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
8679 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
8680 Require a constant for MULT_VAL, so we know it's nonzero.
8681 ??? Do this only if ADD_VAL is a pointer to avoid a potential
8682 overflow problem. */
8684 for (v = bl->giv; v; v = v->next_iv)
8685 if (GET_CODE (v->mult_val) == CONST_INT
8686 && v->mult_val != const0_rtx
8687 && ! v->ignore && ! v->maybe_dead && v->always_computable
8688 && v->mode == mode
8689 && (GET_CODE (v->add_val) == SYMBOL_REF
8690 || GET_CODE (v->add_val) == LABEL_REF
8691 || GET_CODE (v->add_val) == CONST
8692 || (GET_CODE (v->add_val) == REG
8693 && REG_POINTER (v->add_val))))
8695 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8696 continue;
8698 if (! eliminate_p)
8699 return 1;
8701 /* If the giv has the opposite direction of change,
8702 then reverse the comparison. */
8703 if (INTVAL (v->mult_val) < 0)
8704 new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
8705 v->new_reg);
8706 else
8707 new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
8708 copy_rtx (v->add_val));
8710 /* Replace biv with the giv's reduced register. */
8711 update_reg_last_use (v->add_val, insn);
8712 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8713 return 1;
8715 /* Insn doesn't support that constant or invariant. Copy it
8716 into a register (it will be a loop invariant.) */
8717 tem = gen_reg_rtx (GET_MODE (v->new_reg));
8719 loop_insn_emit_before (loop, 0, where_insn,
8720 gen_move_insn (tem,
8721 copy_rtx (v->add_val)));
8723 /* Substitute the new register for its invariant value in
8724 the compare expression. */
8725 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
8726 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8727 return 1;
8730 #endif
8731 break;
8733 case COMPARE:
8734 case EQ: case NE:
8735 case GT: case GE: case GTU: case GEU:
8736 case LT: case LE: case LTU: case LEU:
8737 /* See if either argument is the biv. */
8738 if (XEXP (x, 0) == reg)
8739 arg = XEXP (x, 1), arg_operand = 1;
8740 else if (XEXP (x, 1) == reg)
8741 arg = XEXP (x, 0), arg_operand = 0;
8742 else
8743 break;
8745 if (CONSTANT_P (arg))
8747 /* First try to replace with any giv that has constant positive
8748 mult_val and constant add_val. We might be able to support
8749 negative mult_val, but it seems complex to do it in general. */
8751 for (v = bl->giv; v; v = v->next_iv)
8752 if (GET_CODE (v->mult_val) == CONST_INT
8753 && INTVAL (v->mult_val) > 0
8754 && (GET_CODE (v->add_val) == SYMBOL_REF
8755 || GET_CODE (v->add_val) == LABEL_REF
8756 || GET_CODE (v->add_val) == CONST
8757 || (GET_CODE (v->add_val) == REG
8758 && REG_POINTER (v->add_val)))
8759 && ! v->ignore && ! v->maybe_dead && v->always_computable
8760 && v->mode == mode)
8762 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8763 continue;
8765 if (! eliminate_p)
8766 return 1;
8768 /* Replace biv with the giv's reduced reg. */
8769 validate_change (insn, &XEXP (x, 1 - arg_operand), v->new_reg, 1);
8771 /* If all constants are actually constant integers and
8772 the derived constant can be directly placed in the COMPARE,
8773 do so. */
8774 if (GET_CODE (arg) == CONST_INT
8775 && GET_CODE (v->mult_val) == CONST_INT
8776 && GET_CODE (v->add_val) == CONST_INT)
8778 validate_change (insn, &XEXP (x, arg_operand),
8779 GEN_INT (INTVAL (arg)
8780 * INTVAL (v->mult_val)
8781 + INTVAL (v->add_val)), 1);
8783 else
8785 /* Otherwise, load it into a register. */
8786 tem = gen_reg_rtx (mode);
8787 loop_iv_add_mult_emit_before (loop, arg,
8788 v->mult_val, v->add_val,
8789 tem, where_bb, where_insn);
8790 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8792 if (apply_change_group ())
8793 return 1;
8796 /* Look for giv with positive constant mult_val and nonconst add_val.
8797 Insert insns to calculate new compare value.
8798 ??? Turn this off due to possible overflow. */
8800 for (v = bl->giv; v; v = v->next_iv)
8801 if (GET_CODE (v->mult_val) == CONST_INT
8802 && INTVAL (v->mult_val) > 0
8803 && ! v->ignore && ! v->maybe_dead && v->always_computable
8804 && v->mode == mode
8805 && 0)
8807 rtx tem;
8809 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8810 continue;
8812 if (! eliminate_p)
8813 return 1;
8815 tem = gen_reg_rtx (mode);
8817 /* Replace biv with giv's reduced register. */
8818 validate_change (insn, &XEXP (x, 1 - arg_operand),
8819 v->new_reg, 1);
8821 /* Compute value to compare against. */
8822 loop_iv_add_mult_emit_before (loop, arg,
8823 v->mult_val, v->add_val,
8824 tem, where_bb, where_insn);
8825 /* Use it in this insn. */
8826 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8827 if (apply_change_group ())
8828 return 1;
8831 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
8833 if (loop_invariant_p (loop, arg) == 1)
8835 /* Look for giv with constant positive mult_val and nonconst
8836 add_val. Insert insns to compute new compare value.
8837 ??? Turn this off due to possible overflow. */
8839 for (v = bl->giv; v; v = v->next_iv)
8840 if (GET_CODE (v->mult_val) == CONST_INT && INTVAL (v->mult_val) > 0
8841 && ! v->ignore && ! v->maybe_dead && v->always_computable
8842 && v->mode == mode
8843 && 0)
8845 rtx tem;
8847 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8848 continue;
8850 if (! eliminate_p)
8851 return 1;
8853 tem = gen_reg_rtx (mode);
8855 /* Replace biv with giv's reduced register. */
8856 validate_change (insn, &XEXP (x, 1 - arg_operand),
8857 v->new_reg, 1);
8859 /* Compute value to compare against. */
8860 loop_iv_add_mult_emit_before (loop, arg,
8861 v->mult_val, v->add_val,
8862 tem, where_bb, where_insn);
8863 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8864 if (apply_change_group ())
8865 return 1;
8869 /* This code has problems. Basically, you can't know when
8870 seeing if we will eliminate BL, whether a particular giv
8871 of ARG will be reduced. If it isn't going to be reduced,
8872 we can't eliminate BL. We can try forcing it to be reduced,
8873 but that can generate poor code.
8875 The problem is that the benefit of reducing TV, below should
8876 be increased if BL can actually be eliminated, but this means
8877 we might have to do a topological sort of the order in which
8878 we try to process biv. It doesn't seem worthwhile to do
8879 this sort of thing now. */
8881 #if 0
8882 /* Otherwise the reg compared with had better be a biv. */
8883 if (GET_CODE (arg) != REG
8884 || REG_IV_TYPE (ivs, REGNO (arg)) != BASIC_INDUCT)
8885 return 0;
8887 /* Look for a pair of givs, one for each biv,
8888 with identical coefficients. */
8889 for (v = bl->giv; v; v = v->next_iv)
8891 struct induction *tv;
8893 if (v->ignore || v->maybe_dead || v->mode != mode)
8894 continue;
8896 for (tv = REG_IV_CLASS (ivs, REGNO (arg))->giv; tv;
8897 tv = tv->next_iv)
8898 if (! tv->ignore && ! tv->maybe_dead
8899 && rtx_equal_p (tv->mult_val, v->mult_val)
8900 && rtx_equal_p (tv->add_val, v->add_val)
8901 && tv->mode == mode)
8903 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8904 continue;
8906 if (! eliminate_p)
8907 return 1;
8909 /* Replace biv with its giv's reduced reg. */
8910 XEXP (x, 1 - arg_operand) = v->new_reg;
8911 /* Replace other operand with the other giv's
8912 reduced reg. */
8913 XEXP (x, arg_operand) = tv->new_reg;
8914 return 1;
8917 #endif
8920 /* If we get here, the biv can't be eliminated. */
8921 return 0;
8923 case MEM:
8924 /* If this address is a DEST_ADDR giv, it doesn't matter if the
8925 biv is used in it, since it will be replaced. */
8926 for (v = bl->giv; v; v = v->next_iv)
8927 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
8928 return 1;
8929 break;
8931 default:
8932 break;
8935 /* See if any subexpression fails elimination. */
8936 fmt = GET_RTX_FORMAT (code);
8937 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8939 switch (fmt[i])
8941 case 'e':
8942 if (! maybe_eliminate_biv_1 (loop, XEXP (x, i), insn, bl,
8943 eliminate_p, where_bb, where_insn))
8944 return 0;
8945 break;
8947 case 'E':
8948 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8949 if (! maybe_eliminate_biv_1 (loop, XVECEXP (x, i, j), insn, bl,
8950 eliminate_p, where_bb, where_insn))
8951 return 0;
8952 break;
8956 return 1;
8959 /* Return nonzero if the last use of REG
8960 is in an insn following INSN in the same basic block. */
8962 static int
8963 last_use_this_basic_block (reg, insn)
8964 rtx reg;
8965 rtx insn;
8967 rtx n;
8968 for (n = insn;
8969 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
8970 n = NEXT_INSN (n))
8972 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
8973 return 1;
8975 return 0;
8978 /* Called via `note_stores' to record the initial value of a biv. Here we
8979 just record the location of the set and process it later. */
8981 static void
8982 record_initial (dest, set, data)
8983 rtx dest;
8984 rtx set;
8985 void *data ATTRIBUTE_UNUSED;
8987 struct loop_ivs *ivs = (struct loop_ivs *) data;
8988 struct iv_class *bl;
8990 if (GET_CODE (dest) != REG
8991 || REGNO (dest) >= ivs->n_regs
8992 || REG_IV_TYPE (ivs, REGNO (dest)) != BASIC_INDUCT)
8993 return;
8995 bl = REG_IV_CLASS (ivs, REGNO (dest));
8997 /* If this is the first set found, record it. */
8998 if (bl->init_insn == 0)
9000 bl->init_insn = note_insn;
9001 bl->init_set = set;
9005 /* If any of the registers in X are "old" and currently have a last use earlier
9006 than INSN, update them to have a last use of INSN. Their actual last use
9007 will be the previous insn but it will not have a valid uid_luid so we can't
9008 use it. X must be a source expression only. */
9010 static void
9011 update_reg_last_use (x, insn)
9012 rtx x;
9013 rtx insn;
9015 /* Check for the case where INSN does not have a valid luid. In this case,
9016 there is no need to modify the regno_last_uid, as this can only happen
9017 when code is inserted after the loop_end to set a pseudo's final value,
9018 and hence this insn will never be the last use of x.
9019 ???? This comment is not correct. See for example loop_givs_reduce.
9020 This may insert an insn before another new insn. */
9021 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
9022 && INSN_UID (insn) < max_uid_for_loop
9023 && REGNO_LAST_LUID (REGNO (x)) < INSN_LUID (insn))
9025 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
9027 else
9029 int i, j;
9030 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
9031 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
9033 if (fmt[i] == 'e')
9034 update_reg_last_use (XEXP (x, i), insn);
9035 else if (fmt[i] == 'E')
9036 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9037 update_reg_last_use (XVECEXP (x, i, j), insn);
9042 /* Given an insn INSN and condition COND, return the condition in a
9043 canonical form to simplify testing by callers. Specifically:
9045 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
9046 (2) Both operands will be machine operands; (cc0) will have been replaced.
9047 (3) If an operand is a constant, it will be the second operand.
9048 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
9049 for GE, GEU, and LEU.
9051 If the condition cannot be understood, or is an inequality floating-point
9052 comparison which needs to be reversed, 0 will be returned.
9054 If REVERSE is non-zero, then reverse the condition prior to canonizing it.
9056 If EARLIEST is non-zero, it is a pointer to a place where the earliest
9057 insn used in locating the condition was found. If a replacement test
9058 of the condition is desired, it should be placed in front of that
9059 insn and we will be sure that the inputs are still valid.
9061 If WANT_REG is non-zero, we wish the condition to be relative to that
9062 register, if possible. Therefore, do not canonicalize the condition
9063 further. */
9066 canonicalize_condition (insn, cond, reverse, earliest, want_reg)
9067 rtx insn;
9068 rtx cond;
9069 int reverse;
9070 rtx *earliest;
9071 rtx want_reg;
9073 enum rtx_code code;
9074 rtx prev = insn;
9075 rtx set;
9076 rtx tem;
9077 rtx op0, op1;
9078 int reverse_code = 0;
9079 enum machine_mode mode;
9081 code = GET_CODE (cond);
9082 mode = GET_MODE (cond);
9083 op0 = XEXP (cond, 0);
9084 op1 = XEXP (cond, 1);
9086 if (reverse)
9087 code = reversed_comparison_code (cond, insn);
9088 if (code == UNKNOWN)
9089 return 0;
9091 if (earliest)
9092 *earliest = insn;
9094 /* If we are comparing a register with zero, see if the register is set
9095 in the previous insn to a COMPARE or a comparison operation. Perform
9096 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
9097 in cse.c */
9099 while (GET_RTX_CLASS (code) == '<'
9100 && op1 == CONST0_RTX (GET_MODE (op0))
9101 && op0 != want_reg)
9103 /* Set non-zero when we find something of interest. */
9104 rtx x = 0;
9106 #ifdef HAVE_cc0
9107 /* If comparison with cc0, import actual comparison from compare
9108 insn. */
9109 if (op0 == cc0_rtx)
9111 if ((prev = prev_nonnote_insn (prev)) == 0
9112 || GET_CODE (prev) != INSN
9113 || (set = single_set (prev)) == 0
9114 || SET_DEST (set) != cc0_rtx)
9115 return 0;
9117 op0 = SET_SRC (set);
9118 op1 = CONST0_RTX (GET_MODE (op0));
9119 if (earliest)
9120 *earliest = prev;
9122 #endif
9124 /* If this is a COMPARE, pick up the two things being compared. */
9125 if (GET_CODE (op0) == COMPARE)
9127 op1 = XEXP (op0, 1);
9128 op0 = XEXP (op0, 0);
9129 continue;
9131 else if (GET_CODE (op0) != REG)
9132 break;
9134 /* Go back to the previous insn. Stop if it is not an INSN. We also
9135 stop if it isn't a single set or if it has a REG_INC note because
9136 we don't want to bother dealing with it. */
9138 if ((prev = prev_nonnote_insn (prev)) == 0
9139 || GET_CODE (prev) != INSN
9140 || FIND_REG_INC_NOTE (prev, NULL_RTX))
9141 break;
9143 set = set_of (op0, prev);
9145 if (set
9146 && (GET_CODE (set) != SET
9147 || !rtx_equal_p (SET_DEST (set), op0)))
9148 break;
9150 /* If this is setting OP0, get what it sets it to if it looks
9151 relevant. */
9152 if (set)
9154 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
9156 /* ??? We may not combine comparisons done in a CCmode with
9157 comparisons not done in a CCmode. This is to aid targets
9158 like Alpha that have an IEEE compliant EQ instruction, and
9159 a non-IEEE compliant BEQ instruction. The use of CCmode is
9160 actually artificial, simply to prevent the combination, but
9161 should not affect other platforms.
9163 However, we must allow VOIDmode comparisons to match either
9164 CCmode or non-CCmode comparison, because some ports have
9165 modeless comparisons inside branch patterns.
9167 ??? This mode check should perhaps look more like the mode check
9168 in simplify_comparison in combine. */
9170 if ((GET_CODE (SET_SRC (set)) == COMPARE
9171 || (((code == NE
9172 || (code == LT
9173 && GET_MODE_CLASS (inner_mode) == MODE_INT
9174 && (GET_MODE_BITSIZE (inner_mode)
9175 <= HOST_BITS_PER_WIDE_INT)
9176 && (STORE_FLAG_VALUE
9177 & ((HOST_WIDE_INT) 1
9178 << (GET_MODE_BITSIZE (inner_mode) - 1))))
9179 #ifdef FLOAT_STORE_FLAG_VALUE
9180 || (code == LT
9181 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
9182 && (REAL_VALUE_NEGATIVE
9183 (FLOAT_STORE_FLAG_VALUE (inner_mode))))
9184 #endif
9186 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'))
9187 && (((GET_MODE_CLASS (mode) == MODE_CC)
9188 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
9189 || mode == VOIDmode || inner_mode == VOIDmode))
9190 x = SET_SRC (set);
9191 else if (((code == EQ
9192 || (code == GE
9193 && (GET_MODE_BITSIZE (inner_mode)
9194 <= HOST_BITS_PER_WIDE_INT)
9195 && GET_MODE_CLASS (inner_mode) == MODE_INT
9196 && (STORE_FLAG_VALUE
9197 & ((HOST_WIDE_INT) 1
9198 << (GET_MODE_BITSIZE (inner_mode) - 1))))
9199 #ifdef FLOAT_STORE_FLAG_VALUE
9200 || (code == GE
9201 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
9202 && (REAL_VALUE_NEGATIVE
9203 (FLOAT_STORE_FLAG_VALUE (inner_mode))))
9204 #endif
9206 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'
9207 && (((GET_MODE_CLASS (mode) == MODE_CC)
9208 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
9209 || mode == VOIDmode || inner_mode == VOIDmode))
9212 reverse_code = 1;
9213 x = SET_SRC (set);
9215 else
9216 break;
9219 else if (reg_set_p (op0, prev))
9220 /* If this sets OP0, but not directly, we have to give up. */
9221 break;
9223 if (x)
9225 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9226 code = GET_CODE (x);
9227 if (reverse_code)
9229 code = reversed_comparison_code (x, prev);
9230 if (code == UNKNOWN)
9231 return 0;
9232 reverse_code = 0;
9235 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
9236 if (earliest)
9237 *earliest = prev;
9241 /* If constant is first, put it last. */
9242 if (CONSTANT_P (op0))
9243 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
9245 /* If OP0 is the result of a comparison, we weren't able to find what
9246 was really being compared, so fail. */
9247 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
9248 return 0;
9250 /* Canonicalize any ordered comparison with integers involving equality
9251 if we can do computations in the relevant mode and we do not
9252 overflow. */
9254 if (GET_CODE (op1) == CONST_INT
9255 && GET_MODE (op0) != VOIDmode
9256 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
9258 HOST_WIDE_INT const_val = INTVAL (op1);
9259 unsigned HOST_WIDE_INT uconst_val = const_val;
9260 unsigned HOST_WIDE_INT max_val
9261 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
9263 switch (code)
9265 case LE:
9266 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
9267 code = LT, op1 = GEN_INT (const_val + 1);
9268 break;
9270 /* When cross-compiling, const_val might be sign-extended from
9271 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
9272 case GE:
9273 if ((HOST_WIDE_INT) (const_val & max_val)
9274 != (((HOST_WIDE_INT) 1
9275 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
9276 code = GT, op1 = GEN_INT (const_val - 1);
9277 break;
9279 case LEU:
9280 if (uconst_val < max_val)
9281 code = LTU, op1 = GEN_INT (uconst_val + 1);
9282 break;
9284 case GEU:
9285 if (uconst_val != 0)
9286 code = GTU, op1 = GEN_INT (uconst_val - 1);
9287 break;
9289 default:
9290 break;
9294 #ifdef HAVE_cc0
9295 /* Never return CC0; return zero instead. */
9296 if (op0 == cc0_rtx)
9297 return 0;
9298 #endif
9300 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
9303 /* Given a jump insn JUMP, return the condition that will cause it to branch
9304 to its JUMP_LABEL. If the condition cannot be understood, or is an
9305 inequality floating-point comparison which needs to be reversed, 0 will
9306 be returned.
9308 If EARLIEST is non-zero, it is a pointer to a place where the earliest
9309 insn used in locating the condition was found. If a replacement test
9310 of the condition is desired, it should be placed in front of that
9311 insn and we will be sure that the inputs are still valid. */
9314 get_condition (jump, earliest)
9315 rtx jump;
9316 rtx *earliest;
9318 rtx cond;
9319 int reverse;
9320 rtx set;
9322 /* If this is not a standard conditional jump, we can't parse it. */
9323 if (GET_CODE (jump) != JUMP_INSN
9324 || ! any_condjump_p (jump))
9325 return 0;
9326 set = pc_set (jump);
9328 cond = XEXP (SET_SRC (set), 0);
9330 /* If this branches to JUMP_LABEL when the condition is false, reverse
9331 the condition. */
9332 reverse
9333 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
9334 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
9336 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX);
9339 /* Similar to above routine, except that we also put an invariant last
9340 unless both operands are invariants. */
9343 get_condition_for_loop (loop, x)
9344 const struct loop *loop;
9345 rtx x;
9347 rtx comparison = get_condition (x, (rtx*) 0);
9349 if (comparison == 0
9350 || ! loop_invariant_p (loop, XEXP (comparison, 0))
9351 || loop_invariant_p (loop, XEXP (comparison, 1)))
9352 return comparison;
9354 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
9355 XEXP (comparison, 1), XEXP (comparison, 0));
9358 /* Scan the function and determine whether it has indirect (computed) jumps.
9360 This is taken mostly from flow.c; similar code exists elsewhere
9361 in the compiler. It may be useful to put this into rtlanal.c. */
9362 static int
9363 indirect_jump_in_function_p (start)
9364 rtx start;
9366 rtx insn;
9368 for (insn = start; insn; insn = NEXT_INSN (insn))
9369 if (computed_jump_p (insn))
9370 return 1;
9372 return 0;
9375 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
9376 documentation for LOOP_MEMS for the definition of `appropriate'.
9377 This function is called from prescan_loop via for_each_rtx. */
9379 static int
9380 insert_loop_mem (mem, data)
9381 rtx *mem;
9382 void *data ATTRIBUTE_UNUSED;
9384 struct loop_info *loop_info = data;
9385 int i;
9386 rtx m = *mem;
9388 if (m == NULL_RTX)
9389 return 0;
9391 switch (GET_CODE (m))
9393 case MEM:
9394 break;
9396 case CLOBBER:
9397 /* We're not interested in MEMs that are only clobbered. */
9398 return -1;
9400 case CONST_DOUBLE:
9401 /* We're not interested in the MEM associated with a
9402 CONST_DOUBLE, so there's no need to traverse into this. */
9403 return -1;
9405 case EXPR_LIST:
9406 /* We're not interested in any MEMs that only appear in notes. */
9407 return -1;
9409 default:
9410 /* This is not a MEM. */
9411 return 0;
9414 /* See if we've already seen this MEM. */
9415 for (i = 0; i < loop_info->mems_idx; ++i)
9416 if (rtx_equal_p (m, loop_info->mems[i].mem))
9418 if (GET_MODE (m) != GET_MODE (loop_info->mems[i].mem))
9419 /* The modes of the two memory accesses are different. If
9420 this happens, something tricky is going on, and we just
9421 don't optimize accesses to this MEM. */
9422 loop_info->mems[i].optimize = 0;
9424 return 0;
9427 /* Resize the array, if necessary. */
9428 if (loop_info->mems_idx == loop_info->mems_allocated)
9430 if (loop_info->mems_allocated != 0)
9431 loop_info->mems_allocated *= 2;
9432 else
9433 loop_info->mems_allocated = 32;
9435 loop_info->mems = (loop_mem_info *)
9436 xrealloc (loop_info->mems,
9437 loop_info->mems_allocated * sizeof (loop_mem_info));
9440 /* Actually insert the MEM. */
9441 loop_info->mems[loop_info->mems_idx].mem = m;
9442 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
9443 because we can't put it in a register. We still store it in the
9444 table, though, so that if we see the same address later, but in a
9445 non-BLK mode, we'll not think we can optimize it at that point. */
9446 loop_info->mems[loop_info->mems_idx].optimize = (GET_MODE (m) != BLKmode);
9447 loop_info->mems[loop_info->mems_idx].reg = NULL_RTX;
9448 ++loop_info->mems_idx;
9450 return 0;
9454 /* Allocate REGS->ARRAY or reallocate it if it is too small.
9456 Increment REGS->ARRAY[I].SET_IN_LOOP at the index I of each
9457 register that is modified by an insn between FROM and TO. If the
9458 value of an element of REGS->array[I].SET_IN_LOOP becomes 127 or
9459 more, stop incrementing it, to avoid overflow.
9461 Store in REGS->ARRAY[I].SINGLE_USAGE the single insn in which
9462 register I is used, if it is only used once. Otherwise, it is set
9463 to 0 (for no uses) or const0_rtx for more than one use. This
9464 parameter may be zero, in which case this processing is not done.
9466 Set REGS->ARRAY[I].MAY_NOT_OPTIMIZE nonzero if we should not
9467 optimize register I. */
9469 static void
9470 loop_regs_scan (loop, extra_size)
9471 const struct loop *loop;
9472 int extra_size;
9474 struct loop_regs *regs = LOOP_REGS (loop);
9475 int old_nregs;
9476 /* last_set[n] is nonzero iff reg n has been set in the current
9477 basic block. In that case, it is the insn that last set reg n. */
9478 rtx *last_set;
9479 rtx insn;
9480 int i;
9482 old_nregs = regs->num;
9483 regs->num = max_reg_num ();
9485 /* Grow the regs array if not allocated or too small. */
9486 if (regs->num >= regs->size)
9488 regs->size = regs->num + extra_size;
9490 regs->array = (struct loop_reg *)
9491 xrealloc (regs->array, regs->size * sizeof (*regs->array));
9493 /* Zero the new elements. */
9494 memset (regs->array + old_nregs, 0,
9495 (regs->size - old_nregs) * sizeof (*regs->array));
9498 /* Clear previously scanned fields but do not clear n_times_set. */
9499 for (i = 0; i < old_nregs; i++)
9501 regs->array[i].set_in_loop = 0;
9502 regs->array[i].may_not_optimize = 0;
9503 regs->array[i].single_usage = NULL_RTX;
9506 last_set = (rtx *) xcalloc (regs->num, sizeof (rtx));
9508 /* Scan the loop, recording register usage. */
9509 for (insn = loop->top ? loop->top : loop->start; insn != loop->end;
9510 insn = NEXT_INSN (insn))
9512 if (INSN_P (insn))
9514 /* Record registers that have exactly one use. */
9515 find_single_use_in_loop (regs, insn, PATTERN (insn));
9517 /* Include uses in REG_EQUAL notes. */
9518 if (REG_NOTES (insn))
9519 find_single_use_in_loop (regs, insn, REG_NOTES (insn));
9521 if (GET_CODE (PATTERN (insn)) == SET
9522 || GET_CODE (PATTERN (insn)) == CLOBBER)
9523 count_one_set (regs, insn, PATTERN (insn), last_set);
9524 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
9526 int i;
9527 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
9528 count_one_set (regs, insn, XVECEXP (PATTERN (insn), 0, i),
9529 last_set);
9533 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
9534 memset (last_set, 0, regs->num * sizeof (rtx));
9537 /* Invalidate all hard registers clobbered by calls. With one exception:
9538 a call-clobbered PIC register is still function-invariant for our
9539 purposes, since we can hoist any PIC calculations out of the loop.
9540 Thus the call to rtx_varies_p. */
9541 if (LOOP_INFO (loop)->has_call)
9542 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
9543 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
9544 && rtx_varies_p (gen_rtx_REG (Pmode, i), /*for_alias=*/1))
9546 regs->array[i].may_not_optimize = 1;
9547 regs->array[i].set_in_loop = 1;
9550 #ifdef AVOID_CCMODE_COPIES
9551 /* Don't try to move insns which set CC registers if we should not
9552 create CCmode register copies. */
9553 for (i = regs->num - 1; i >= FIRST_PSEUDO_REGISTER; i--)
9554 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
9555 regs->array[i].may_not_optimize = 1;
9556 #endif
9558 /* Set regs->array[I].n_times_set for the new registers. */
9559 for (i = old_nregs; i < regs->num; i++)
9560 regs->array[i].n_times_set = regs->array[i].set_in_loop;
9562 free (last_set);
9565 /* Returns the number of real INSNs in the LOOP. */
9567 static int
9568 count_insns_in_loop (loop)
9569 const struct loop *loop;
9571 int count = 0;
9572 rtx insn;
9574 for (insn = loop->top ? loop->top : loop->start; insn != loop->end;
9575 insn = NEXT_INSN (insn))
9576 if (INSN_P (insn))
9577 ++count;
9579 return count;
9582 /* Move MEMs into registers for the duration of the loop. */
9584 static void
9585 load_mems (loop)
9586 const struct loop *loop;
9588 struct loop_info *loop_info = LOOP_INFO (loop);
9589 struct loop_regs *regs = LOOP_REGS (loop);
9590 int maybe_never = 0;
9591 int i;
9592 rtx p, prev_ebb_head;
9593 rtx label = NULL_RTX;
9594 rtx end_label;
9595 /* Nonzero if the next instruction may never be executed. */
9596 int next_maybe_never = 0;
9597 unsigned int last_max_reg = max_reg_num ();
9599 if (loop_info->mems_idx == 0)
9600 return;
9602 /* We cannot use next_label here because it skips over normal insns. */
9603 end_label = next_nonnote_insn (loop->end);
9604 if (end_label && GET_CODE (end_label) != CODE_LABEL)
9605 end_label = NULL_RTX;
9607 /* Check to see if it's possible that some instructions in the loop are
9608 never executed. Also check if there is a goto out of the loop other
9609 than right after the end of the loop. */
9610 for (p = next_insn_in_loop (loop, loop->scan_start);
9611 p != NULL_RTX;
9612 p = next_insn_in_loop (loop, p))
9614 if (GET_CODE (p) == CODE_LABEL)
9615 maybe_never = 1;
9616 else if (GET_CODE (p) == JUMP_INSN
9617 /* If we enter the loop in the middle, and scan
9618 around to the beginning, don't set maybe_never
9619 for that. This must be an unconditional jump,
9620 otherwise the code at the top of the loop might
9621 never be executed. Unconditional jumps are
9622 followed a by barrier then loop end. */
9623 && ! (GET_CODE (p) == JUMP_INSN
9624 && JUMP_LABEL (p) == loop->top
9625 && NEXT_INSN (NEXT_INSN (p)) == loop->end
9626 && any_uncondjump_p (p)))
9628 /* If this is a jump outside of the loop but not right
9629 after the end of the loop, we would have to emit new fixup
9630 sequences for each such label. */
9631 if (/* If we can't tell where control might go when this
9632 JUMP_INSN is executed, we must be conservative. */
9633 !JUMP_LABEL (p)
9634 || (JUMP_LABEL (p) != end_label
9635 && (INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop
9636 || INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop->start)
9637 || INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop->end))))
9638 return;
9640 if (!any_condjump_p (p))
9641 /* Something complicated. */
9642 maybe_never = 1;
9643 else
9644 /* If there are any more instructions in the loop, they
9645 might not be reached. */
9646 next_maybe_never = 1;
9648 else if (next_maybe_never)
9649 maybe_never = 1;
9652 /* Find start of the extended basic block that enters the loop. */
9653 for (p = loop->start;
9654 PREV_INSN (p) && GET_CODE (p) != CODE_LABEL;
9655 p = PREV_INSN (p))
9657 prev_ebb_head = p;
9659 cselib_init ();
9661 /* Build table of mems that get set to constant values before the
9662 loop. */
9663 for (; p != loop->start; p = NEXT_INSN (p))
9664 cselib_process_insn (p);
9666 /* Actually move the MEMs. */
9667 for (i = 0; i < loop_info->mems_idx; ++i)
9669 regset_head load_copies;
9670 regset_head store_copies;
9671 int written = 0;
9672 rtx reg;
9673 rtx mem = loop_info->mems[i].mem;
9674 rtx mem_list_entry;
9676 if (MEM_VOLATILE_P (mem)
9677 || loop_invariant_p (loop, XEXP (mem, 0)) != 1)
9678 /* There's no telling whether or not MEM is modified. */
9679 loop_info->mems[i].optimize = 0;
9681 /* Go through the MEMs written to in the loop to see if this
9682 one is aliased by one of them. */
9683 mem_list_entry = loop_info->store_mems;
9684 while (mem_list_entry)
9686 if (rtx_equal_p (mem, XEXP (mem_list_entry, 0)))
9687 written = 1;
9688 else if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
9689 mem, rtx_varies_p))
9691 /* MEM is indeed aliased by this store. */
9692 loop_info->mems[i].optimize = 0;
9693 break;
9695 mem_list_entry = XEXP (mem_list_entry, 1);
9698 if (flag_float_store && written
9699 && GET_MODE_CLASS (GET_MODE (mem)) == MODE_FLOAT)
9700 loop_info->mems[i].optimize = 0;
9702 /* If this MEM is written to, we must be sure that there
9703 are no reads from another MEM that aliases this one. */
9704 if (loop_info->mems[i].optimize && written)
9706 int j;
9708 for (j = 0; j < loop_info->mems_idx; ++j)
9710 if (j == i)
9711 continue;
9712 else if (true_dependence (mem,
9713 VOIDmode,
9714 loop_info->mems[j].mem,
9715 rtx_varies_p))
9717 /* It's not safe to hoist loop_info->mems[i] out of
9718 the loop because writes to it might not be
9719 seen by reads from loop_info->mems[j]. */
9720 loop_info->mems[i].optimize = 0;
9721 break;
9726 if (maybe_never && may_trap_p (mem))
9727 /* We can't access the MEM outside the loop; it might
9728 cause a trap that wouldn't have happened otherwise. */
9729 loop_info->mems[i].optimize = 0;
9731 if (!loop_info->mems[i].optimize)
9732 /* We thought we were going to lift this MEM out of the
9733 loop, but later discovered that we could not. */
9734 continue;
9736 INIT_REG_SET (&load_copies);
9737 INIT_REG_SET (&store_copies);
9739 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
9740 order to keep scan_loop from moving stores to this MEM
9741 out of the loop just because this REG is neither a
9742 user-variable nor used in the loop test. */
9743 reg = gen_reg_rtx (GET_MODE (mem));
9744 REG_USERVAR_P (reg) = 1;
9745 loop_info->mems[i].reg = reg;
9747 /* Now, replace all references to the MEM with the
9748 corresponding pseudos. */
9749 maybe_never = 0;
9750 for (p = next_insn_in_loop (loop, loop->scan_start);
9751 p != NULL_RTX;
9752 p = next_insn_in_loop (loop, p))
9754 if (INSN_P (p))
9756 rtx set;
9758 set = single_set (p);
9760 /* See if this copies the mem into a register that isn't
9761 modified afterwards. We'll try to do copy propagation
9762 a little further on. */
9763 if (set
9764 /* @@@ This test is _way_ too conservative. */
9765 && ! maybe_never
9766 && GET_CODE (SET_DEST (set)) == REG
9767 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
9768 && REGNO (SET_DEST (set)) < last_max_reg
9769 && regs->array[REGNO (SET_DEST (set))].n_times_set == 1
9770 && rtx_equal_p (SET_SRC (set), mem))
9771 SET_REGNO_REG_SET (&load_copies, REGNO (SET_DEST (set)));
9773 /* See if this copies the mem from a register that isn't
9774 modified afterwards. We'll try to remove the
9775 redundant copy later on by doing a little register
9776 renaming and copy propagation. This will help
9777 to untangle things for the BIV detection code. */
9778 if (set
9779 && ! maybe_never
9780 && GET_CODE (SET_SRC (set)) == REG
9781 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER
9782 && REGNO (SET_SRC (set)) < last_max_reg
9783 && regs->array[REGNO (SET_SRC (set))].n_times_set == 1
9784 && rtx_equal_p (SET_DEST (set), mem))
9785 SET_REGNO_REG_SET (&store_copies, REGNO (SET_SRC (set)));
9787 /* Replace the memory reference with the shadow register. */
9788 replace_loop_mems (p, loop_info->mems[i].mem,
9789 loop_info->mems[i].reg);
9792 if (GET_CODE (p) == CODE_LABEL
9793 || GET_CODE (p) == JUMP_INSN)
9794 maybe_never = 1;
9797 if (! apply_change_group ())
9798 /* We couldn't replace all occurrences of the MEM. */
9799 loop_info->mems[i].optimize = 0;
9800 else
9802 /* Load the memory immediately before LOOP->START, which is
9803 the NOTE_LOOP_BEG. */
9804 cselib_val *e = cselib_lookup (mem, VOIDmode, 0);
9805 rtx set;
9806 rtx best = mem;
9807 int j;
9808 struct elt_loc_list *const_equiv = 0;
9810 if (e)
9812 struct elt_loc_list *equiv;
9813 struct elt_loc_list *best_equiv = 0;
9814 for (equiv = e->locs; equiv; equiv = equiv->next)
9816 if (CONSTANT_P (equiv->loc))
9817 const_equiv = equiv;
9818 else if (GET_CODE (equiv->loc) == REG
9819 /* Extending hard register lifetimes causes crash
9820 on SRC targets. Doing so on non-SRC is
9821 probably also not good idea, since we most
9822 probably have pseudoregister equivalence as
9823 well. */
9824 && REGNO (equiv->loc) >= FIRST_PSEUDO_REGISTER)
9825 best_equiv = equiv;
9827 /* Use the constant equivalence if that is cheap enough. */
9828 if (! best_equiv)
9829 best_equiv = const_equiv;
9830 else if (const_equiv
9831 && (rtx_cost (const_equiv->loc, SET)
9832 <= rtx_cost (best_equiv->loc, SET)))
9834 best_equiv = const_equiv;
9835 const_equiv = 0;
9838 /* If best_equiv is nonzero, we know that MEM is set to a
9839 constant or register before the loop. We will use this
9840 knowledge to initialize the shadow register with that
9841 constant or reg rather than by loading from MEM. */
9842 if (best_equiv)
9843 best = copy_rtx (best_equiv->loc);
9846 set = gen_move_insn (reg, best);
9847 set = loop_insn_hoist (loop, set);
9848 if (REG_P (best))
9850 for (p = prev_ebb_head; p != loop->start; p = NEXT_INSN (p))
9851 if (REGNO_LAST_UID (REGNO (best)) == INSN_UID (p))
9853 REGNO_LAST_UID (REGNO (best)) = INSN_UID (set);
9854 break;
9858 if (const_equiv)
9859 set_unique_reg_note (set, REG_EQUAL, copy_rtx (const_equiv->loc));
9861 if (written)
9863 if (label == NULL_RTX)
9865 label = gen_label_rtx ();
9866 emit_label_after (label, loop->end);
9869 /* Store the memory immediately after END, which is
9870 the NOTE_LOOP_END. */
9871 set = gen_move_insn (copy_rtx (mem), reg);
9872 loop_insn_emit_after (loop, 0, label, set);
9875 if (loop_dump_stream)
9877 fprintf (loop_dump_stream, "Hoisted regno %d %s from ",
9878 REGNO (reg), (written ? "r/w" : "r/o"));
9879 print_rtl (loop_dump_stream, mem);
9880 fputc ('\n', loop_dump_stream);
9883 /* Attempt a bit of copy propagation. This helps untangle the
9884 data flow, and enables {basic,general}_induction_var to find
9885 more bivs/givs. */
9886 EXECUTE_IF_SET_IN_REG_SET
9887 (&load_copies, FIRST_PSEUDO_REGISTER, j,
9889 try_copy_prop (loop, reg, j);
9891 CLEAR_REG_SET (&load_copies);
9893 EXECUTE_IF_SET_IN_REG_SET
9894 (&store_copies, FIRST_PSEUDO_REGISTER, j,
9896 try_swap_copy_prop (loop, reg, j);
9898 CLEAR_REG_SET (&store_copies);
9902 if (label != NULL_RTX && end_label != NULL_RTX)
9904 /* Now, we need to replace all references to the previous exit
9905 label with the new one. */
9906 rtx_pair rr;
9907 rr.r1 = end_label;
9908 rr.r2 = label;
9910 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
9912 for_each_rtx (&p, replace_label, &rr);
9914 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
9915 field. This is not handled by for_each_rtx because it doesn't
9916 handle unprinted ('0') fields. We need to update JUMP_LABEL
9917 because the immediately following unroll pass will use it.
9918 replace_label would not work anyways, because that only handles
9919 LABEL_REFs. */
9920 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == end_label)
9921 JUMP_LABEL (p) = label;
9925 cselib_finish ();
9928 /* For communication between note_reg_stored and its caller. */
9929 struct note_reg_stored_arg
9931 int set_seen;
9932 rtx reg;
9935 /* Called via note_stores, record in SET_SEEN whether X, which is written,
9936 is equal to ARG. */
9937 static void
9938 note_reg_stored (x, setter, arg)
9939 rtx x, setter ATTRIBUTE_UNUSED;
9940 void *arg;
9942 struct note_reg_stored_arg *t = (struct note_reg_stored_arg *) arg;
9943 if (t->reg == x)
9944 t->set_seen = 1;
9947 /* Try to replace every occurrence of pseudo REGNO with REPLACEMENT.
9948 There must be exactly one insn that sets this pseudo; it will be
9949 deleted if all replacements succeed and we can prove that the register
9950 is not used after the loop. */
9952 static void
9953 try_copy_prop (loop, replacement, regno)
9954 const struct loop *loop;
9955 rtx replacement;
9956 unsigned int regno;
9958 /* This is the reg that we are copying from. */
9959 rtx reg_rtx = regno_reg_rtx[regno];
9960 rtx init_insn = 0;
9961 rtx insn;
9962 /* These help keep track of whether we replaced all uses of the reg. */
9963 int replaced_last = 0;
9964 int store_is_first = 0;
9966 for (insn = next_insn_in_loop (loop, loop->scan_start);
9967 insn != NULL_RTX;
9968 insn = next_insn_in_loop (loop, insn))
9970 rtx set;
9972 /* Only substitute within one extended basic block from the initializing
9973 insn. */
9974 if (GET_CODE (insn) == CODE_LABEL && init_insn)
9975 break;
9977 if (! INSN_P (insn))
9978 continue;
9980 /* Is this the initializing insn? */
9981 set = single_set (insn);
9982 if (set
9983 && GET_CODE (SET_DEST (set)) == REG
9984 && REGNO (SET_DEST (set)) == regno)
9986 if (init_insn)
9987 abort ();
9989 init_insn = insn;
9990 if (REGNO_FIRST_UID (regno) == INSN_UID (insn))
9991 store_is_first = 1;
9994 /* Only substitute after seeing the initializing insn. */
9995 if (init_insn && insn != init_insn)
9997 struct note_reg_stored_arg arg;
9999 replace_loop_regs (insn, reg_rtx, replacement);
10000 if (REGNO_LAST_UID (regno) == INSN_UID (insn))
10001 replaced_last = 1;
10003 /* Stop replacing when REPLACEMENT is modified. */
10004 arg.reg = replacement;
10005 arg.set_seen = 0;
10006 note_stores (PATTERN (insn), note_reg_stored, &arg);
10007 if (arg.set_seen)
10009 rtx note = find_reg_note (insn, REG_EQUAL, NULL);
10011 /* It is possible that we've turned previously valid REG_EQUAL to
10012 invalid, as we change the REGNO to REPLACEMENT and unlike REGNO,
10013 REPLACEMENT is modified, we get different meaning. */
10014 if (note && reg_mentioned_p (replacement, XEXP (note, 0)))
10015 remove_note (insn, note);
10016 break;
10020 if (! init_insn)
10021 abort ();
10022 if (apply_change_group ())
10024 if (loop_dump_stream)
10025 fprintf (loop_dump_stream, " Replaced reg %d", regno);
10026 if (store_is_first && replaced_last)
10028 rtx first;
10029 rtx retval_note;
10031 /* Assume we're just deleting INIT_INSN. */
10032 first = init_insn;
10033 /* Look for REG_RETVAL note. If we're deleting the end of
10034 the libcall sequence, the whole sequence can go. */
10035 retval_note = find_reg_note (init_insn, REG_RETVAL, NULL_RTX);
10036 /* If we found a REG_RETVAL note, find the first instruction
10037 in the sequence. */
10038 if (retval_note)
10039 first = XEXP (retval_note, 0);
10041 /* Delete the instructions. */
10042 loop_delete_insns (first, init_insn);
10044 if (loop_dump_stream)
10045 fprintf (loop_dump_stream, ".\n");
10049 /* Replace all the instructions from FIRST up to and including LAST
10050 with NOTE_INSN_DELETED notes. */
10052 static void
10053 loop_delete_insns (first, last)
10054 rtx first;
10055 rtx last;
10057 while (1)
10059 if (loop_dump_stream)
10060 fprintf (loop_dump_stream, ", deleting init_insn (%d)",
10061 INSN_UID (first));
10062 delete_insn (first);
10064 /* If this was the LAST instructions we're supposed to delete,
10065 we're done. */
10066 if (first == last)
10067 break;
10069 first = NEXT_INSN (first);
10073 /* Try to replace occurrences of pseudo REGNO with REPLACEMENT within
10074 loop LOOP if the order of the sets of these registers can be
10075 swapped. There must be exactly one insn within the loop that sets
10076 this pseudo followed immediately by a move insn that sets
10077 REPLACEMENT with REGNO. */
10078 static void
10079 try_swap_copy_prop (loop, replacement, regno)
10080 const struct loop *loop;
10081 rtx replacement;
10082 unsigned int regno;
10084 rtx insn;
10085 rtx set = NULL_RTX;
10086 unsigned int new_regno;
10088 new_regno = REGNO (replacement);
10090 for (insn = next_insn_in_loop (loop, loop->scan_start);
10091 insn != NULL_RTX;
10092 insn = next_insn_in_loop (loop, insn))
10094 /* Search for the insn that copies REGNO to NEW_REGNO? */
10095 if (INSN_P (insn)
10096 && (set = single_set (insn))
10097 && GET_CODE (SET_DEST (set)) == REG
10098 && REGNO (SET_DEST (set)) == new_regno
10099 && GET_CODE (SET_SRC (set)) == REG
10100 && REGNO (SET_SRC (set)) == regno)
10101 break;
10104 if (insn != NULL_RTX)
10106 rtx prev_insn;
10107 rtx prev_set;
10109 /* Some DEF-USE info would come in handy here to make this
10110 function more general. For now, just check the previous insn
10111 which is the most likely candidate for setting REGNO. */
10113 prev_insn = PREV_INSN (insn);
10115 if (INSN_P (insn)
10116 && (prev_set = single_set (prev_insn))
10117 && GET_CODE (SET_DEST (prev_set)) == REG
10118 && REGNO (SET_DEST (prev_set)) == regno)
10120 /* We have:
10121 (set (reg regno) (expr))
10122 (set (reg new_regno) (reg regno))
10124 so try converting this to:
10125 (set (reg new_regno) (expr))
10126 (set (reg regno) (reg new_regno))
10128 The former construct is often generated when a global
10129 variable used for an induction variable is shadowed by a
10130 register (NEW_REGNO). The latter construct improves the
10131 chances of GIV replacement and BIV elimination. */
10133 validate_change (prev_insn, &SET_DEST (prev_set),
10134 replacement, 1);
10135 validate_change (insn, &SET_DEST (set),
10136 SET_SRC (set), 1);
10137 validate_change (insn, &SET_SRC (set),
10138 replacement, 1);
10140 if (apply_change_group ())
10142 if (loop_dump_stream)
10143 fprintf (loop_dump_stream,
10144 " Swapped set of reg %d at %d with reg %d at %d.\n",
10145 regno, INSN_UID (insn),
10146 new_regno, INSN_UID (prev_insn));
10148 /* Update first use of REGNO. */
10149 if (REGNO_FIRST_UID (regno) == INSN_UID (prev_insn))
10150 REGNO_FIRST_UID (regno) = INSN_UID (insn);
10152 /* Now perform copy propagation to hopefully
10153 remove all uses of REGNO within the loop. */
10154 try_copy_prop (loop, replacement, regno);
10160 /* Replace MEM with its associated pseudo register. This function is
10161 called from load_mems via for_each_rtx. DATA is actually a pointer
10162 to a structure describing the instruction currently being scanned
10163 and the MEM we are currently replacing. */
10165 static int
10166 replace_loop_mem (mem, data)
10167 rtx *mem;
10168 void *data;
10170 loop_replace_args *args = (loop_replace_args *) data;
10171 rtx m = *mem;
10173 if (m == NULL_RTX)
10174 return 0;
10176 switch (GET_CODE (m))
10178 case MEM:
10179 break;
10181 case CONST_DOUBLE:
10182 /* We're not interested in the MEM associated with a
10183 CONST_DOUBLE, so there's no need to traverse into one. */
10184 return -1;
10186 default:
10187 /* This is not a MEM. */
10188 return 0;
10191 if (!rtx_equal_p (args->match, m))
10192 /* This is not the MEM we are currently replacing. */
10193 return 0;
10195 /* Actually replace the MEM. */
10196 validate_change (args->insn, mem, args->replacement, 1);
10198 return 0;
10201 static void
10202 replace_loop_mems (insn, mem, reg)
10203 rtx insn;
10204 rtx mem;
10205 rtx reg;
10207 loop_replace_args args;
10209 args.insn = insn;
10210 args.match = mem;
10211 args.replacement = reg;
10213 for_each_rtx (&insn, replace_loop_mem, &args);
10216 /* Replace one register with another. Called through for_each_rtx; PX points
10217 to the rtx being scanned. DATA is actually a pointer to
10218 a structure of arguments. */
10220 static int
10221 replace_loop_reg (px, data)
10222 rtx *px;
10223 void *data;
10225 rtx x = *px;
10226 loop_replace_args *args = (loop_replace_args *) data;
10228 if (x == NULL_RTX)
10229 return 0;
10231 if (x == args->match)
10232 validate_change (args->insn, px, args->replacement, 1);
10234 return 0;
10237 static void
10238 replace_loop_regs (insn, reg, replacement)
10239 rtx insn;
10240 rtx reg;
10241 rtx replacement;
10243 loop_replace_args args;
10245 args.insn = insn;
10246 args.match = reg;
10247 args.replacement = replacement;
10249 for_each_rtx (&insn, replace_loop_reg, &args);
10252 /* Replace occurrences of the old exit label for the loop with the new
10253 one. DATA is an rtx_pair containing the old and new labels,
10254 respectively. */
10256 static int
10257 replace_label (x, data)
10258 rtx *x;
10259 void *data;
10261 rtx l = *x;
10262 rtx old_label = ((rtx_pair *) data)->r1;
10263 rtx new_label = ((rtx_pair *) data)->r2;
10265 if (l == NULL_RTX)
10266 return 0;
10268 if (GET_CODE (l) != LABEL_REF)
10269 return 0;
10271 if (XEXP (l, 0) != old_label)
10272 return 0;
10274 XEXP (l, 0) = new_label;
10275 ++LABEL_NUSES (new_label);
10276 --LABEL_NUSES (old_label);
10278 return 0;
10281 /* Emit insn for PATTERN after WHERE_INSN in basic block WHERE_BB
10282 (ignored in the interim). */
10284 static rtx
10285 loop_insn_emit_after (loop, where_bb, where_insn, pattern)
10286 const struct loop *loop ATTRIBUTE_UNUSED;
10287 basic_block where_bb ATTRIBUTE_UNUSED;
10288 rtx where_insn;
10289 rtx pattern;
10291 return emit_insn_after (pattern, where_insn);
10295 /* If WHERE_INSN is non-zero emit insn for PATTERN before WHERE_INSN
10296 in basic block WHERE_BB (ignored in the interim) within the loop
10297 otherwise hoist PATTERN into the loop pre-header. */
10300 loop_insn_emit_before (loop, where_bb, where_insn, pattern)
10301 const struct loop *loop;
10302 basic_block where_bb ATTRIBUTE_UNUSED;
10303 rtx where_insn;
10304 rtx pattern;
10306 if (! where_insn)
10307 return loop_insn_hoist (loop, pattern);
10308 return emit_insn_before (pattern, where_insn);
10312 /* Emit call insn for PATTERN before WHERE_INSN in basic block
10313 WHERE_BB (ignored in the interim) within the loop. */
10315 static rtx
10316 loop_call_insn_emit_before (loop, where_bb, where_insn, pattern)
10317 const struct loop *loop ATTRIBUTE_UNUSED;
10318 basic_block where_bb ATTRIBUTE_UNUSED;
10319 rtx where_insn;
10320 rtx pattern;
10322 return emit_call_insn_before (pattern, where_insn);
10326 /* Hoist insn for PATTERN into the loop pre-header. */
10329 loop_insn_hoist (loop, pattern)
10330 const struct loop *loop;
10331 rtx pattern;
10333 return loop_insn_emit_before (loop, 0, loop->start, pattern);
10337 /* Hoist call insn for PATTERN into the loop pre-header. */
10339 static rtx
10340 loop_call_insn_hoist (loop, pattern)
10341 const struct loop *loop;
10342 rtx pattern;
10344 return loop_call_insn_emit_before (loop, 0, loop->start, pattern);
10348 /* Sink insn for PATTERN after the loop end. */
10351 loop_insn_sink (loop, pattern)
10352 const struct loop *loop;
10353 rtx pattern;
10355 return loop_insn_emit_before (loop, 0, loop->sink, pattern);
10359 /* If the loop has multiple exits, emit insn for PATTERN before the
10360 loop to ensure that it will always be executed no matter how the
10361 loop exits. Otherwise, emit the insn for PATTERN after the loop,
10362 since this is slightly more efficient. */
10364 static rtx
10365 loop_insn_sink_or_swim (loop, pattern)
10366 const struct loop *loop;
10367 rtx pattern;
10369 if (loop->exit_count)
10370 return loop_insn_hoist (loop, pattern);
10371 else
10372 return loop_insn_sink (loop, pattern);
10375 static void
10376 loop_ivs_dump (loop, file, verbose)
10377 const struct loop *loop;
10378 FILE *file;
10379 int verbose;
10381 struct iv_class *bl;
10382 int iv_num = 0;
10384 if (! loop || ! file)
10385 return;
10387 for (bl = LOOP_IVS (loop)->list; bl; bl = bl->next)
10388 iv_num++;
10390 fprintf (file, "Loop %d: %d IV classes\n", loop->num, iv_num);
10392 for (bl = LOOP_IVS (loop)->list; bl; bl = bl->next)
10394 loop_iv_class_dump (bl, file, verbose);
10395 fputc ('\n', file);
10400 static void
10401 loop_iv_class_dump (bl, file, verbose)
10402 const struct iv_class *bl;
10403 FILE *file;
10404 int verbose ATTRIBUTE_UNUSED;
10406 struct induction *v;
10407 rtx incr;
10408 int i;
10410 if (! bl || ! file)
10411 return;
10413 fprintf (file, "IV class for reg %d, benefit %d\n",
10414 bl->regno, bl->total_benefit);
10416 fprintf (file, " Init insn %d", INSN_UID (bl->init_insn));
10417 if (bl->initial_value)
10419 fprintf (file, ", init val: ");
10420 print_simple_rtl (file, bl->initial_value);
10422 if (bl->initial_test)
10424 fprintf (file, ", init test: ");
10425 print_simple_rtl (file, bl->initial_test);
10427 fputc ('\n', file);
10429 if (bl->final_value)
10431 fprintf (file, " Final val: ");
10432 print_simple_rtl (file, bl->final_value);
10433 fputc ('\n', file);
10436 if ((incr = biv_total_increment (bl)))
10438 fprintf (file, " Total increment: ");
10439 print_simple_rtl (file, incr);
10440 fputc ('\n', file);
10443 /* List the increments. */
10444 for (i = 0, v = bl->biv; v; v = v->next_iv, i++)
10446 fprintf (file, " Inc%d: insn %d, incr: ", i, INSN_UID (v->insn));
10447 print_simple_rtl (file, v->add_val);
10448 fputc ('\n', file);
10451 /* List the givs. */
10452 for (i = 0, v = bl->giv; v; v = v->next_iv, i++)
10454 fprintf (file, " Giv%d: insn %d, benefit %d, ",
10455 i, INSN_UID (v->insn), v->benefit);
10456 if (v->giv_type == DEST_ADDR)
10457 print_simple_rtl (file, v->mem);
10458 else
10459 print_simple_rtl (file, single_set (v->insn));
10460 fputc ('\n', file);
10465 static void
10466 loop_biv_dump (v, file, verbose)
10467 const struct induction *v;
10468 FILE *file;
10469 int verbose;
10471 if (! v || ! file)
10472 return;
10474 fprintf (file,
10475 "Biv %d: insn %d",
10476 REGNO (v->dest_reg), INSN_UID (v->insn));
10477 fprintf (file, " const ");
10478 print_simple_rtl (file, v->add_val);
10480 if (verbose && v->final_value)
10482 fputc ('\n', file);
10483 fprintf (file, " final ");
10484 print_simple_rtl (file, v->final_value);
10487 fputc ('\n', file);
10491 static void
10492 loop_giv_dump (v, file, verbose)
10493 const struct induction *v;
10494 FILE *file;
10495 int verbose;
10497 if (! v || ! file)
10498 return;
10500 if (v->giv_type == DEST_REG)
10501 fprintf (file, "Giv %d: insn %d",
10502 REGNO (v->dest_reg), INSN_UID (v->insn));
10503 else
10504 fprintf (file, "Dest address: insn %d",
10505 INSN_UID (v->insn));
10507 fprintf (file, " src reg %d benefit %d",
10508 REGNO (v->src_reg), v->benefit);
10509 fprintf (file, " lifetime %d",
10510 v->lifetime);
10512 if (v->replaceable)
10513 fprintf (file, " replaceable");
10515 if (v->no_const_addval)
10516 fprintf (file, " ncav");
10518 if (v->ext_dependent)
10520 switch (GET_CODE (v->ext_dependent))
10522 case SIGN_EXTEND:
10523 fprintf (file, " ext se");
10524 break;
10525 case ZERO_EXTEND:
10526 fprintf (file, " ext ze");
10527 break;
10528 case TRUNCATE:
10529 fprintf (file, " ext tr");
10530 break;
10531 default:
10532 abort ();
10536 fputc ('\n', file);
10537 fprintf (file, " mult ");
10538 print_simple_rtl (file, v->mult_val);
10540 fputc ('\n', file);
10541 fprintf (file, " add ");
10542 print_simple_rtl (file, v->add_val);
10544 if (verbose && v->final_value)
10546 fputc ('\n', file);
10547 fprintf (file, " final ");
10548 print_simple_rtl (file, v->final_value);
10551 fputc ('\n', file);
10555 void
10556 debug_ivs (loop)
10557 const struct loop *loop;
10559 loop_ivs_dump (loop, stderr, 1);
10563 void
10564 debug_iv_class (bl)
10565 const struct iv_class *bl;
10567 loop_iv_class_dump (bl, stderr, 1);
10571 void
10572 debug_biv (v)
10573 const struct induction *v;
10575 loop_biv_dump (v, stderr, 1);
10579 void
10580 debug_giv (v)
10581 const struct induction *v;
10583 loop_giv_dump (v, stderr, 1);
10587 #define LOOP_BLOCK_NUM_1(INSN) \
10588 ((INSN) ? (BLOCK_FOR_INSN (INSN) ? BLOCK_NUM (INSN) : - 1) : -1)
10590 /* The notes do not have an assigned block, so look at the next insn. */
10591 #define LOOP_BLOCK_NUM(INSN) \
10592 ((INSN) ? (GET_CODE (INSN) == NOTE \
10593 ? LOOP_BLOCK_NUM_1 (next_nonnote_insn (INSN)) \
10594 : LOOP_BLOCK_NUM_1 (INSN)) \
10595 : -1)
10597 #define LOOP_INSN_UID(INSN) ((INSN) ? INSN_UID (INSN) : -1)
10599 static void
10600 loop_dump_aux (loop, file, verbose)
10601 const struct loop *loop;
10602 FILE *file;
10603 int verbose ATTRIBUTE_UNUSED;
10605 rtx label;
10607 if (! loop || ! file)
10608 return;
10610 /* Print diagnostics to compare our concept of a loop with
10611 what the loop notes say. */
10612 if (! PREV_INSN (loop->first->head)
10613 || GET_CODE (PREV_INSN (loop->first->head)) != NOTE
10614 || NOTE_LINE_NUMBER (PREV_INSN (loop->first->head))
10615 != NOTE_INSN_LOOP_BEG)
10616 fprintf (file, ";; No NOTE_INSN_LOOP_BEG at %d\n",
10617 INSN_UID (PREV_INSN (loop->first->head)));
10618 if (! NEXT_INSN (loop->last->end)
10619 || GET_CODE (NEXT_INSN (loop->last->end)) != NOTE
10620 || NOTE_LINE_NUMBER (NEXT_INSN (loop->last->end))
10621 != NOTE_INSN_LOOP_END)
10622 fprintf (file, ";; No NOTE_INSN_LOOP_END at %d\n",
10623 INSN_UID (NEXT_INSN (loop->last->end)));
10625 if (loop->start)
10627 fprintf (file,
10628 ";; start %d (%d), cont dom %d (%d), cont %d (%d), vtop %d (%d), end %d (%d)\n",
10629 LOOP_BLOCK_NUM (loop->start),
10630 LOOP_INSN_UID (loop->start),
10631 LOOP_BLOCK_NUM (loop->cont),
10632 LOOP_INSN_UID (loop->cont),
10633 LOOP_BLOCK_NUM (loop->cont),
10634 LOOP_INSN_UID (loop->cont),
10635 LOOP_BLOCK_NUM (loop->vtop),
10636 LOOP_INSN_UID (loop->vtop),
10637 LOOP_BLOCK_NUM (loop->end),
10638 LOOP_INSN_UID (loop->end));
10639 fprintf (file, ";; top %d (%d), scan start %d (%d)\n",
10640 LOOP_BLOCK_NUM (loop->top),
10641 LOOP_INSN_UID (loop->top),
10642 LOOP_BLOCK_NUM (loop->scan_start),
10643 LOOP_INSN_UID (loop->scan_start));
10644 fprintf (file, ";; exit_count %d", loop->exit_count);
10645 if (loop->exit_count)
10647 fputs (", labels:", file);
10648 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
10650 fprintf (file, " %d ",
10651 LOOP_INSN_UID (XEXP (label, 0)));
10654 fputs ("\n", file);
10656 /* This can happen when a marked loop appears as two nested loops,
10657 say from while (a || b) {}. The inner loop won't match
10658 the loop markers but the outer one will. */
10659 if (LOOP_BLOCK_NUM (loop->cont) != loop->latch->index)
10660 fprintf (file, ";; NOTE_INSN_LOOP_CONT not in loop latch\n");
10664 /* Call this function from the debugger to dump LOOP. */
10666 void
10667 debug_loop (loop)
10668 const struct loop *loop;
10670 flow_loop_dump (loop, stderr, loop_dump_aux, 1);
10673 /* Call this function from the debugger to dump LOOPS. */
10675 void
10676 debug_loops (loops)
10677 const struct loops *loops;
10679 flow_loops_dump (loops, stderr, loop_dump_aux, 1);