1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
27 #include "diagnostic-core.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
41 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
43 /* Forward declarations */
44 static void set_of_1 (rtx
, const_rtx
, void *);
45 static bool covers_regno_p (const_rtx
, unsigned int);
46 static bool covers_regno_no_parallel_p (const_rtx
, unsigned int);
47 static int rtx_referenced_p_1 (rtx
*, void *);
48 static int computed_jump_p_1 (const_rtx
);
49 static void parms_set (rtx
, const_rtx
, void *);
51 static unsigned HOST_WIDE_INT
cached_nonzero_bits (const_rtx
, enum machine_mode
,
52 const_rtx
, enum machine_mode
,
53 unsigned HOST_WIDE_INT
);
54 static unsigned HOST_WIDE_INT
nonzero_bits1 (const_rtx
, enum machine_mode
,
55 const_rtx
, enum machine_mode
,
56 unsigned HOST_WIDE_INT
);
57 static unsigned int cached_num_sign_bit_copies (const_rtx
, enum machine_mode
, const_rtx
,
60 static unsigned int num_sign_bit_copies1 (const_rtx
, enum machine_mode
, const_rtx
,
61 enum machine_mode
, unsigned int);
63 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
64 -1 if a code has no such operand. */
65 static int non_rtx_starting_operands
[NUM_RTX_CODE
];
67 /* Bit flags that specify the machine subtype we are compiling for.
68 Bits are tested using macros TARGET_... defined in the tm.h file
69 and set by `-m...' switches. Must be defined in rtlanal.c. */
73 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
74 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
75 SIGN_EXTEND then while narrowing we also have to enforce the
76 representation and sign-extend the value to mode DESTINATION_REP.
78 If the value is already sign-extended to DESTINATION_REP mode we
79 can just switch to DESTINATION mode on it. For each pair of
80 integral modes SOURCE and DESTINATION, when truncating from SOURCE
81 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
82 contains the number of high-order bits in SOURCE that have to be
83 copies of the sign-bit so that we can do this mode-switch to
87 num_sign_bit_copies_in_rep
[MAX_MODE_INT
+ 1][MAX_MODE_INT
+ 1];
89 /* Return 1 if the value of X is unstable
90 (would be different at a different point in the program).
91 The frame pointer, arg pointer, etc. are considered stable
92 (within one function) and so is anything marked `unchanging'. */
95 rtx_unstable_p (const_rtx x
)
97 const RTX_CODE code
= GET_CODE (x
);
104 return !MEM_READONLY_P (x
) || rtx_unstable_p (XEXP (x
, 0));
116 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
117 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
118 /* The arg pointer varies if it is not a fixed register. */
119 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
121 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
122 /* ??? When call-clobbered, the value is stable modulo the restore
123 that must happen after a call. This currently screws up local-alloc
124 into believing that the restore is not needed. */
125 if (x
== pic_offset_table_rtx
)
131 if (MEM_VOLATILE_P (x
))
140 fmt
= GET_RTX_FORMAT (code
);
141 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
144 if (rtx_unstable_p (XEXP (x
, i
)))
147 else if (fmt
[i
] == 'E')
150 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
151 if (rtx_unstable_p (XVECEXP (x
, i
, j
)))
158 /* Return 1 if X has a value that can vary even between two
159 executions of the program. 0 means X can be compared reliably
160 against certain constants or near-constants.
161 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
162 zero, we are slightly more conservative.
163 The frame pointer and the arg pointer are considered constant. */
166 rtx_varies_p (const_rtx x
, bool for_alias
)
179 return !MEM_READONLY_P (x
) || rtx_varies_p (XEXP (x
, 0), for_alias
);
191 /* Note that we have to test for the actual rtx used for the frame
192 and arg pointers and not just the register number in case we have
193 eliminated the frame and/or arg pointer and are using it
195 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
196 /* The arg pointer varies if it is not a fixed register. */
197 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
199 if (x
== pic_offset_table_rtx
200 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
201 /* ??? When call-clobbered, the value is stable modulo the restore
202 that must happen after a call. This currently screws up
203 local-alloc into believing that the restore is not needed, so we
204 must return 0 only if we are called from alias analysis. */
212 /* The operand 0 of a LO_SUM is considered constant
213 (in fact it is related specifically to operand 1)
214 during alias analysis. */
215 return (! for_alias
&& rtx_varies_p (XEXP (x
, 0), for_alias
))
216 || rtx_varies_p (XEXP (x
, 1), for_alias
);
219 if (MEM_VOLATILE_P (x
))
228 fmt
= GET_RTX_FORMAT (code
);
229 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
232 if (rtx_varies_p (XEXP (x
, i
), for_alias
))
235 else if (fmt
[i
] == 'E')
238 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
239 if (rtx_varies_p (XVECEXP (x
, i
, j
), for_alias
))
246 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
247 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
248 whether nonzero is returned for unaligned memory accesses on strict
249 alignment machines. */
252 rtx_addr_can_trap_p_1 (const_rtx x
, HOST_WIDE_INT offset
, HOST_WIDE_INT size
,
253 enum machine_mode mode
, bool unaligned_mems
)
255 enum rtx_code code
= GET_CODE (x
);
259 && GET_MODE_SIZE (mode
) != 0)
261 HOST_WIDE_INT actual_offset
= offset
;
262 #ifdef SPARC_STACK_BOUNDARY_HACK
263 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
264 the real alignment of %sp. However, when it does this, the
265 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
266 if (SPARC_STACK_BOUNDARY_HACK
267 && (x
== stack_pointer_rtx
|| x
== hard_frame_pointer_rtx
))
268 actual_offset
-= STACK_POINTER_OFFSET
;
271 if (actual_offset
% GET_MODE_SIZE (mode
) != 0)
278 if (SYMBOL_REF_WEAK (x
))
280 if (!CONSTANT_POOL_ADDRESS_P (x
))
283 HOST_WIDE_INT decl_size
;
288 size
= GET_MODE_SIZE (mode
);
292 /* If the size of the access or of the symbol is unknown,
294 decl
= SYMBOL_REF_DECL (x
);
296 /* Else check that the access is in bounds. TODO: restructure
297 expr_size/tree_expr_size/int_expr_size and just use the latter. */
300 else if (DECL_P (decl
) && DECL_SIZE_UNIT (decl
))
301 decl_size
= (host_integerp (DECL_SIZE_UNIT (decl
), 0)
302 ? tree_low_cst (DECL_SIZE_UNIT (decl
), 0)
304 else if (TREE_CODE (decl
) == STRING_CST
)
305 decl_size
= TREE_STRING_LENGTH (decl
);
306 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl
)))
307 decl_size
= int_size_in_bytes (TREE_TYPE (decl
));
311 return (decl_size
<= 0 ? offset
!= 0 : offset
+ size
> decl_size
);
320 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
321 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
322 || x
== stack_pointer_rtx
323 /* The arg pointer varies if it is not a fixed register. */
324 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
326 /* All of the virtual frame registers are stack references. */
327 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
328 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
333 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
334 mode
, unaligned_mems
);
337 /* An address is assumed not to trap if:
338 - it is the pic register plus a constant. */
339 if (XEXP (x
, 0) == pic_offset_table_rtx
&& CONSTANT_P (XEXP (x
, 1)))
342 /* - or it is an address that can't trap plus a constant integer,
343 with the proper remainder modulo the mode size if we are
344 considering unaligned memory references. */
345 if (CONST_INT_P (XEXP (x
, 1))
346 && !rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
+ INTVAL (XEXP (x
, 1)),
347 size
, mode
, unaligned_mems
))
354 return rtx_addr_can_trap_p_1 (XEXP (x
, 1), offset
, size
,
355 mode
, unaligned_mems
);
362 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
363 mode
, unaligned_mems
);
369 /* If it isn't one of the case above, it can cause a trap. */
373 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
376 rtx_addr_can_trap_p (const_rtx x
)
378 return rtx_addr_can_trap_p_1 (x
, 0, 0, VOIDmode
, false);
381 /* Return true if X is an address that is known to not be zero. */
384 nonzero_address_p (const_rtx x
)
386 const enum rtx_code code
= GET_CODE (x
);
391 return !SYMBOL_REF_WEAK (x
);
397 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
398 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
399 || x
== stack_pointer_rtx
400 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
402 /* All of the virtual frame registers are stack references. */
403 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
404 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
409 return nonzero_address_p (XEXP (x
, 0));
412 if (CONST_INT_P (XEXP (x
, 1)))
413 return nonzero_address_p (XEXP (x
, 0));
414 /* Handle PIC references. */
415 else if (XEXP (x
, 0) == pic_offset_table_rtx
416 && CONSTANT_P (XEXP (x
, 1)))
421 /* Similar to the above; allow positive offsets. Further, since
422 auto-inc is only allowed in memories, the register must be a
424 if (CONST_INT_P (XEXP (x
, 1))
425 && INTVAL (XEXP (x
, 1)) > 0)
427 return nonzero_address_p (XEXP (x
, 0));
430 /* Similarly. Further, the offset is always positive. */
437 return nonzero_address_p (XEXP (x
, 0));
440 return nonzero_address_p (XEXP (x
, 1));
446 /* If it isn't one of the case above, might be zero. */
450 /* Return 1 if X refers to a memory location whose address
451 cannot be compared reliably with constant addresses,
452 or if X refers to a BLKmode memory object.
453 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
454 zero, we are slightly more conservative. */
457 rtx_addr_varies_p (const_rtx x
, bool for_alias
)
468 return GET_MODE (x
) == BLKmode
|| rtx_varies_p (XEXP (x
, 0), for_alias
);
470 fmt
= GET_RTX_FORMAT (code
);
471 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
474 if (rtx_addr_varies_p (XEXP (x
, i
), for_alias
))
477 else if (fmt
[i
] == 'E')
480 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
481 if (rtx_addr_varies_p (XVECEXP (x
, i
, j
), for_alias
))
487 /* Return the value of the integer term in X, if one is apparent;
489 Only obvious integer terms are detected.
490 This is used in cse.c with the `related_value' field. */
493 get_integer_term (const_rtx x
)
495 if (GET_CODE (x
) == CONST
)
498 if (GET_CODE (x
) == MINUS
499 && CONST_INT_P (XEXP (x
, 1)))
500 return - INTVAL (XEXP (x
, 1));
501 if (GET_CODE (x
) == PLUS
502 && CONST_INT_P (XEXP (x
, 1)))
503 return INTVAL (XEXP (x
, 1));
507 /* If X is a constant, return the value sans apparent integer term;
509 Only obvious integer terms are detected. */
512 get_related_value (const_rtx x
)
514 if (GET_CODE (x
) != CONST
)
517 if (GET_CODE (x
) == PLUS
518 && CONST_INT_P (XEXP (x
, 1)))
520 else if (GET_CODE (x
) == MINUS
521 && CONST_INT_P (XEXP (x
, 1)))
526 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
527 to somewhere in the same object or object_block as SYMBOL. */
530 offset_within_block_p (const_rtx symbol
, HOST_WIDE_INT offset
)
534 if (GET_CODE (symbol
) != SYMBOL_REF
)
542 if (CONSTANT_POOL_ADDRESS_P (symbol
)
543 && offset
< (int) GET_MODE_SIZE (get_pool_mode (symbol
)))
546 decl
= SYMBOL_REF_DECL (symbol
);
547 if (decl
&& offset
< int_size_in_bytes (TREE_TYPE (decl
)))
551 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol
)
552 && SYMBOL_REF_BLOCK (symbol
)
553 && SYMBOL_REF_BLOCK_OFFSET (symbol
) >= 0
554 && ((unsigned HOST_WIDE_INT
) offset
+ SYMBOL_REF_BLOCK_OFFSET (symbol
)
555 < (unsigned HOST_WIDE_INT
) SYMBOL_REF_BLOCK (symbol
)->size
))
561 /* Split X into a base and a constant offset, storing them in *BASE_OUT
562 and *OFFSET_OUT respectively. */
565 split_const (rtx x
, rtx
*base_out
, rtx
*offset_out
)
567 if (GET_CODE (x
) == CONST
)
570 if (GET_CODE (x
) == PLUS
&& CONST_INT_P (XEXP (x
, 1)))
572 *base_out
= XEXP (x
, 0);
573 *offset_out
= XEXP (x
, 1);
578 *offset_out
= const0_rtx
;
581 /* Return the number of places FIND appears within X. If COUNT_DEST is
582 zero, we do not count occurrences inside the destination of a SET. */
585 count_occurrences (const_rtx x
, const_rtx find
, int count_dest
)
589 const char *format_ptr
;
611 count
= count_occurrences (XEXP (x
, 0), find
, count_dest
);
613 count
+= count_occurrences (XEXP (x
, 1), find
, count_dest
);
617 if (MEM_P (find
) && rtx_equal_p (x
, find
))
622 if (SET_DEST (x
) == find
&& ! count_dest
)
623 return count_occurrences (SET_SRC (x
), find
, count_dest
);
630 format_ptr
= GET_RTX_FORMAT (code
);
633 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
635 switch (*format_ptr
++)
638 count
+= count_occurrences (XEXP (x
, i
), find
, count_dest
);
642 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
643 count
+= count_occurrences (XVECEXP (x
, i
, j
), find
, count_dest
);
651 /* Nonzero if register REG appears somewhere within IN.
652 Also works if REG is not a register; in this case it checks
653 for a subexpression of IN that is Lisp "equal" to REG. */
656 reg_mentioned_p (const_rtx reg
, const_rtx in
)
668 if (GET_CODE (in
) == LABEL_REF
)
669 return reg
== XEXP (in
, 0);
671 code
= GET_CODE (in
);
675 /* Compare registers by number. */
677 return REG_P (reg
) && REGNO (in
) == REGNO (reg
);
679 /* These codes have no constituent expressions
690 /* These are kept unique for a given value. */
697 if (GET_CODE (reg
) == code
&& rtx_equal_p (reg
, in
))
700 fmt
= GET_RTX_FORMAT (code
);
702 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
707 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
708 if (reg_mentioned_p (reg
, XVECEXP (in
, i
, j
)))
711 else if (fmt
[i
] == 'e'
712 && reg_mentioned_p (reg
, XEXP (in
, i
)))
718 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
719 no CODE_LABEL insn. */
722 no_labels_between_p (const_rtx beg
, const_rtx end
)
727 for (p
= NEXT_INSN (beg
); p
!= end
; p
= NEXT_INSN (p
))
733 /* Nonzero if register REG is used in an insn between
734 FROM_INSN and TO_INSN (exclusive of those two). */
737 reg_used_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
741 if (from_insn
== to_insn
)
744 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
745 if (NONDEBUG_INSN_P (insn
)
746 && (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
747 || (CALL_P (insn
) && find_reg_fusage (insn
, USE
, reg
))))
752 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
753 is entirely replaced by a new value and the only use is as a SET_DEST,
754 we do not consider it a reference. */
757 reg_referenced_p (const_rtx x
, const_rtx body
)
761 switch (GET_CODE (body
))
764 if (reg_overlap_mentioned_p (x
, SET_SRC (body
)))
767 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
768 of a REG that occupies all of the REG, the insn references X if
769 it is mentioned in the destination. */
770 if (GET_CODE (SET_DEST (body
)) != CC0
771 && GET_CODE (SET_DEST (body
)) != PC
772 && !REG_P (SET_DEST (body
))
773 && ! (GET_CODE (SET_DEST (body
)) == SUBREG
774 && REG_P (SUBREG_REG (SET_DEST (body
)))
775 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body
))))
776 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
777 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body
)))
778 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
779 && reg_overlap_mentioned_p (x
, SET_DEST (body
)))
784 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
785 if (reg_overlap_mentioned_p (x
, ASM_OPERANDS_INPUT (body
, i
)))
792 return reg_overlap_mentioned_p (x
, body
);
795 return reg_overlap_mentioned_p (x
, TRAP_CONDITION (body
));
798 return reg_overlap_mentioned_p (x
, XEXP (body
, 0));
801 case UNSPEC_VOLATILE
:
802 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
803 if (reg_overlap_mentioned_p (x
, XVECEXP (body
, 0, i
)))
808 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
809 if (reg_referenced_p (x
, XVECEXP (body
, 0, i
)))
814 if (MEM_P (XEXP (body
, 0)))
815 if (reg_overlap_mentioned_p (x
, XEXP (XEXP (body
, 0), 0)))
820 if (reg_overlap_mentioned_p (x
, COND_EXEC_TEST (body
)))
822 return reg_referenced_p (x
, COND_EXEC_CODE (body
));
829 /* Nonzero if register REG is set or clobbered in an insn between
830 FROM_INSN and TO_INSN (exclusive of those two). */
833 reg_set_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
837 if (from_insn
== to_insn
)
840 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
841 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
846 /* Internals of reg_set_between_p. */
848 reg_set_p (const_rtx reg
, const_rtx insn
)
850 /* We can be passed an insn or part of one. If we are passed an insn,
851 check if a side-effect of the insn clobbers REG. */
853 && (FIND_REG_INC_NOTE (insn
, reg
)
856 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
857 && overlaps_hard_reg_set_p (regs_invalidated_by_call
,
858 GET_MODE (reg
), REGNO (reg
)))
860 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
863 return set_of (reg
, insn
) != NULL_RTX
;
866 /* Similar to reg_set_between_p, but check all registers in X. Return 0
867 only if none of them are modified between START and END. Return 1 if
868 X contains a MEM; this routine does use memory aliasing. */
871 modified_between_p (const_rtx x
, const_rtx start
, const_rtx end
)
873 const enum rtx_code code
= GET_CODE (x
);
897 if (modified_between_p (XEXP (x
, 0), start
, end
))
899 if (MEM_READONLY_P (x
))
901 for (insn
= NEXT_INSN (start
); insn
!= end
; insn
= NEXT_INSN (insn
))
902 if (memory_modified_in_insn_p (x
, insn
))
908 return reg_set_between_p (x
, start
, end
);
914 fmt
= GET_RTX_FORMAT (code
);
915 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
917 if (fmt
[i
] == 'e' && modified_between_p (XEXP (x
, i
), start
, end
))
920 else if (fmt
[i
] == 'E')
921 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
922 if (modified_between_p (XVECEXP (x
, i
, j
), start
, end
))
929 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
930 of them are modified in INSN. Return 1 if X contains a MEM; this routine
931 does use memory aliasing. */
934 modified_in_p (const_rtx x
, const_rtx insn
)
936 const enum rtx_code code
= GET_CODE (x
);
956 if (modified_in_p (XEXP (x
, 0), insn
))
958 if (MEM_READONLY_P (x
))
960 if (memory_modified_in_insn_p (x
, insn
))
966 return reg_set_p (x
, insn
);
972 fmt
= GET_RTX_FORMAT (code
);
973 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
975 if (fmt
[i
] == 'e' && modified_in_p (XEXP (x
, i
), insn
))
978 else if (fmt
[i
] == 'E')
979 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
980 if (modified_in_p (XVECEXP (x
, i
, j
), insn
))
987 /* Helper function for set_of. */
995 set_of_1 (rtx x
, const_rtx pat
, void *data1
)
997 struct set_of_data
*const data
= (struct set_of_data
*) (data1
);
998 if (rtx_equal_p (x
, data
->pat
)
999 || (!MEM_P (x
) && reg_overlap_mentioned_p (data
->pat
, x
)))
1003 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1004 (either directly or via STRICT_LOW_PART and similar modifiers). */
1006 set_of (const_rtx pat
, const_rtx insn
)
1008 struct set_of_data data
;
1009 data
.found
= NULL_RTX
;
1011 note_stores (INSN_P (insn
) ? PATTERN (insn
) : insn
, set_of_1
, &data
);
1015 /* Given an INSN, return a SET expression if this insn has only a single SET.
1016 It may also have CLOBBERs, USEs, or SET whose output
1017 will not be used, which we ignore. */
1020 single_set_2 (const_rtx insn
, const_rtx pat
)
1023 int set_verified
= 1;
1026 if (GET_CODE (pat
) == PARALLEL
)
1028 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1030 rtx sub
= XVECEXP (pat
, 0, i
);
1031 switch (GET_CODE (sub
))
1038 /* We can consider insns having multiple sets, where all
1039 but one are dead as single set insns. In common case
1040 only single set is present in the pattern so we want
1041 to avoid checking for REG_UNUSED notes unless necessary.
1043 When we reach set first time, we just expect this is
1044 the single set we are looking for and only when more
1045 sets are found in the insn, we check them. */
1048 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (set
))
1049 && !side_effects_p (set
))
1055 set
= sub
, set_verified
= 0;
1056 else if (!find_reg_note (insn
, REG_UNUSED
, SET_DEST (sub
))
1057 || side_effects_p (sub
))
1069 /* Given an INSN, return nonzero if it has more than one SET, else return
1073 multiple_sets (const_rtx insn
)
1078 /* INSN must be an insn. */
1079 if (! INSN_P (insn
))
1082 /* Only a PARALLEL can have multiple SETs. */
1083 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1085 for (i
= 0, found
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1086 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1088 /* If we have already found a SET, then return now. */
1096 /* Either zero or one SET. */
1100 /* Return nonzero if the destination of SET equals the source
1101 and there are no side effects. */
1104 set_noop_p (const_rtx set
)
1106 rtx src
= SET_SRC (set
);
1107 rtx dst
= SET_DEST (set
);
1109 if (dst
== pc_rtx
&& src
== pc_rtx
)
1112 if (MEM_P (dst
) && MEM_P (src
))
1113 return rtx_equal_p (dst
, src
) && !side_effects_p (dst
);
1115 if (GET_CODE (dst
) == ZERO_EXTRACT
)
1116 return rtx_equal_p (XEXP (dst
, 0), src
)
1117 && ! BYTES_BIG_ENDIAN
&& XEXP (dst
, 2) == const0_rtx
1118 && !side_effects_p (src
);
1120 if (GET_CODE (dst
) == STRICT_LOW_PART
)
1121 dst
= XEXP (dst
, 0);
1123 if (GET_CODE (src
) == SUBREG
&& GET_CODE (dst
) == SUBREG
)
1125 if (SUBREG_BYTE (src
) != SUBREG_BYTE (dst
))
1127 src
= SUBREG_REG (src
);
1128 dst
= SUBREG_REG (dst
);
1131 return (REG_P (src
) && REG_P (dst
)
1132 && REGNO (src
) == REGNO (dst
));
1135 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1139 noop_move_p (const_rtx insn
)
1141 rtx pat
= PATTERN (insn
);
1143 if (INSN_CODE (insn
) == NOOP_MOVE_INSN_CODE
)
1146 /* Insns carrying these notes are useful later on. */
1147 if (find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1150 if (GET_CODE (pat
) == SET
&& set_noop_p (pat
))
1153 if (GET_CODE (pat
) == PARALLEL
)
1156 /* If nothing but SETs of registers to themselves,
1157 this insn can also be deleted. */
1158 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1160 rtx tem
= XVECEXP (pat
, 0, i
);
1162 if (GET_CODE (tem
) == USE
1163 || GET_CODE (tem
) == CLOBBER
)
1166 if (GET_CODE (tem
) != SET
|| ! set_noop_p (tem
))
1176 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1177 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1178 If the object was modified, if we hit a partial assignment to X, or hit a
1179 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1180 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1184 find_last_value (rtx x
, rtx
*pinsn
, rtx valid_to
, int allow_hwreg
)
1188 for (p
= PREV_INSN (*pinsn
); p
&& !LABEL_P (p
);
1192 rtx set
= single_set (p
);
1193 rtx note
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
1195 if (set
&& rtx_equal_p (x
, SET_DEST (set
)))
1197 rtx src
= SET_SRC (set
);
1199 if (note
&& GET_CODE (XEXP (note
, 0)) != EXPR_LIST
)
1200 src
= XEXP (note
, 0);
1202 if ((valid_to
== NULL_RTX
1203 || ! modified_between_p (src
, PREV_INSN (p
), valid_to
))
1204 /* Reject hard registers because we don't usually want
1205 to use them; we'd rather use a pseudo. */
1207 && REGNO (src
) < FIRST_PSEUDO_REGISTER
) || allow_hwreg
))
1214 /* If set in non-simple way, we don't have a value. */
1215 if (reg_set_p (x
, p
))
1222 /* Return nonzero if register in range [REGNO, ENDREGNO)
1223 appears either explicitly or implicitly in X
1224 other than being stored into.
1226 References contained within the substructure at LOC do not count.
1227 LOC may be zero, meaning don't ignore anything. */
1230 refers_to_regno_p (unsigned int regno
, unsigned int endregno
, const_rtx x
,
1234 unsigned int x_regno
;
1239 /* The contents of a REG_NONNEG note is always zero, so we must come here
1240 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1244 code
= GET_CODE (x
);
1249 x_regno
= REGNO (x
);
1251 /* If we modifying the stack, frame, or argument pointer, it will
1252 clobber a virtual register. In fact, we could be more precise,
1253 but it isn't worth it. */
1254 if ((x_regno
== STACK_POINTER_REGNUM
1255 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1256 || x_regno
== ARG_POINTER_REGNUM
1258 || x_regno
== FRAME_POINTER_REGNUM
)
1259 && regno
>= FIRST_VIRTUAL_REGISTER
&& regno
<= LAST_VIRTUAL_REGISTER
)
1262 return endregno
> x_regno
&& regno
< END_REGNO (x
);
1265 /* If this is a SUBREG of a hard reg, we can see exactly which
1266 registers are being modified. Otherwise, handle normally. */
1267 if (REG_P (SUBREG_REG (x
))
1268 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
1270 unsigned int inner_regno
= subreg_regno (x
);
1271 unsigned int inner_endregno
1272 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
1273 ? subreg_nregs (x
) : 1);
1275 return endregno
> inner_regno
&& regno
< inner_endregno
;
1281 if (&SET_DEST (x
) != loc
1282 /* Note setting a SUBREG counts as referring to the REG it is in for
1283 a pseudo but not for hard registers since we can
1284 treat each word individually. */
1285 && ((GET_CODE (SET_DEST (x
)) == SUBREG
1286 && loc
!= &SUBREG_REG (SET_DEST (x
))
1287 && REG_P (SUBREG_REG (SET_DEST (x
)))
1288 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
1289 && refers_to_regno_p (regno
, endregno
,
1290 SUBREG_REG (SET_DEST (x
)), loc
))
1291 || (!REG_P (SET_DEST (x
))
1292 && refers_to_regno_p (regno
, endregno
, SET_DEST (x
), loc
))))
1295 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
1304 /* X does not match, so try its subexpressions. */
1306 fmt
= GET_RTX_FORMAT (code
);
1307 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1309 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
1317 if (refers_to_regno_p (regno
, endregno
, XEXP (x
, i
), loc
))
1320 else if (fmt
[i
] == 'E')
1323 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1324 if (loc
!= &XVECEXP (x
, i
, j
)
1325 && refers_to_regno_p (regno
, endregno
, XVECEXP (x
, i
, j
), loc
))
1332 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1333 we check if any register number in X conflicts with the relevant register
1334 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1335 contains a MEM (we don't bother checking for memory addresses that can't
1336 conflict because we expect this to be a rare case. */
1339 reg_overlap_mentioned_p (const_rtx x
, const_rtx in
)
1341 unsigned int regno
, endregno
;
1343 /* If either argument is a constant, then modifying X can not
1344 affect IN. Here we look at IN, we can profitably combine
1345 CONSTANT_P (x) with the switch statement below. */
1346 if (CONSTANT_P (in
))
1350 switch (GET_CODE (x
))
1352 case STRICT_LOW_PART
:
1355 /* Overly conservative. */
1360 regno
= REGNO (SUBREG_REG (x
));
1361 if (regno
< FIRST_PSEUDO_REGISTER
)
1362 regno
= subreg_regno (x
);
1363 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
1364 ? subreg_nregs (x
) : 1);
1369 endregno
= END_REGNO (x
);
1371 return refers_to_regno_p (regno
, endregno
, in
, (rtx
*) 0);
1381 fmt
= GET_RTX_FORMAT (GET_CODE (in
));
1382 for (i
= GET_RTX_LENGTH (GET_CODE (in
)) - 1; i
>= 0; i
--)
1385 if (reg_overlap_mentioned_p (x
, XEXP (in
, i
)))
1388 else if (fmt
[i
] == 'E')
1391 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; --j
)
1392 if (reg_overlap_mentioned_p (x
, XVECEXP (in
, i
, j
)))
1402 return reg_mentioned_p (x
, in
);
1408 /* If any register in here refers to it we return true. */
1409 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1410 if (XEXP (XVECEXP (x
, 0, i
), 0) != 0
1411 && reg_overlap_mentioned_p (XEXP (XVECEXP (x
, 0, i
), 0), in
))
1417 gcc_assert (CONSTANT_P (x
));
1422 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1423 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1424 ignored by note_stores, but passed to FUN.
1426 FUN receives three arguments:
1427 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1428 2. the SET or CLOBBER rtx that does the store,
1429 3. the pointer DATA provided to note_stores.
1431 If the item being stored in or clobbered is a SUBREG of a hard register,
1432 the SUBREG will be passed. */
1435 note_stores (const_rtx x
, void (*fun
) (rtx
, const_rtx
, void *), void *data
)
1439 if (GET_CODE (x
) == COND_EXEC
)
1440 x
= COND_EXEC_CODE (x
);
1442 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
1444 rtx dest
= SET_DEST (x
);
1446 while ((GET_CODE (dest
) == SUBREG
1447 && (!REG_P (SUBREG_REG (dest
))
1448 || REGNO (SUBREG_REG (dest
)) >= FIRST_PSEUDO_REGISTER
))
1449 || GET_CODE (dest
) == ZERO_EXTRACT
1450 || GET_CODE (dest
) == STRICT_LOW_PART
)
1451 dest
= XEXP (dest
, 0);
1453 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1454 each of whose first operand is a register. */
1455 if (GET_CODE (dest
) == PARALLEL
)
1457 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1458 if (XEXP (XVECEXP (dest
, 0, i
), 0) != 0)
1459 (*fun
) (XEXP (XVECEXP (dest
, 0, i
), 0), x
, data
);
1462 (*fun
) (dest
, x
, data
);
1465 else if (GET_CODE (x
) == PARALLEL
)
1466 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1467 note_stores (XVECEXP (x
, 0, i
), fun
, data
);
1470 /* Like notes_stores, but call FUN for each expression that is being
1471 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1472 FUN for each expression, not any interior subexpressions. FUN receives a
1473 pointer to the expression and the DATA passed to this function.
1475 Note that this is not quite the same test as that done in reg_referenced_p
1476 since that considers something as being referenced if it is being
1477 partially set, while we do not. */
1480 note_uses (rtx
*pbody
, void (*fun
) (rtx
*, void *), void *data
)
1485 switch (GET_CODE (body
))
1488 (*fun
) (&COND_EXEC_TEST (body
), data
);
1489 note_uses (&COND_EXEC_CODE (body
), fun
, data
);
1493 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1494 note_uses (&XVECEXP (body
, 0, i
), fun
, data
);
1498 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1499 note_uses (&PATTERN (XVECEXP (body
, 0, i
)), fun
, data
);
1503 (*fun
) (&XEXP (body
, 0), data
);
1507 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1508 (*fun
) (&ASM_OPERANDS_INPUT (body
, i
), data
);
1512 (*fun
) (&TRAP_CONDITION (body
), data
);
1516 (*fun
) (&XEXP (body
, 0), data
);
1520 case UNSPEC_VOLATILE
:
1521 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1522 (*fun
) (&XVECEXP (body
, 0, i
), data
);
1526 if (MEM_P (XEXP (body
, 0)))
1527 (*fun
) (&XEXP (XEXP (body
, 0), 0), data
);
1532 rtx dest
= SET_DEST (body
);
1534 /* For sets we replace everything in source plus registers in memory
1535 expression in store and operands of a ZERO_EXTRACT. */
1536 (*fun
) (&SET_SRC (body
), data
);
1538 if (GET_CODE (dest
) == ZERO_EXTRACT
)
1540 (*fun
) (&XEXP (dest
, 1), data
);
1541 (*fun
) (&XEXP (dest
, 2), data
);
1544 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
)
1545 dest
= XEXP (dest
, 0);
1548 (*fun
) (&XEXP (dest
, 0), data
);
1553 /* All the other possibilities never store. */
1554 (*fun
) (pbody
, data
);
1559 /* Return nonzero if X's old contents don't survive after INSN.
1560 This will be true if X is (cc0) or if X is a register and
1561 X dies in INSN or because INSN entirely sets X.
1563 "Entirely set" means set directly and not through a SUBREG, or
1564 ZERO_EXTRACT, so no trace of the old contents remains.
1565 Likewise, REG_INC does not count.
1567 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1568 but for this use that makes no difference, since regs don't overlap
1569 during their lifetimes. Therefore, this function may be used
1570 at any time after deaths have been computed.
1572 If REG is a hard reg that occupies multiple machine registers, this
1573 function will only return 1 if each of those registers will be replaced
1577 dead_or_set_p (const_rtx insn
, const_rtx x
)
1579 unsigned int regno
, end_regno
;
1582 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1583 if (GET_CODE (x
) == CC0
)
1586 gcc_assert (REG_P (x
));
1589 end_regno
= END_REGNO (x
);
1590 for (i
= regno
; i
< end_regno
; i
++)
1591 if (! dead_or_set_regno_p (insn
, i
))
1597 /* Return TRUE iff DEST is a register or subreg of a register and
1598 doesn't change the number of words of the inner register, and any
1599 part of the register is TEST_REGNO. */
1602 covers_regno_no_parallel_p (const_rtx dest
, unsigned int test_regno
)
1604 unsigned int regno
, endregno
;
1606 if (GET_CODE (dest
) == SUBREG
1607 && (((GET_MODE_SIZE (GET_MODE (dest
))
1608 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
1609 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
1610 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)))
1611 dest
= SUBREG_REG (dest
);
1616 regno
= REGNO (dest
);
1617 endregno
= END_REGNO (dest
);
1618 return (test_regno
>= regno
&& test_regno
< endregno
);
1621 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1622 any member matches the covers_regno_no_parallel_p criteria. */
1625 covers_regno_p (const_rtx dest
, unsigned int test_regno
)
1627 if (GET_CODE (dest
) == PARALLEL
)
1629 /* Some targets place small structures in registers for return
1630 values of functions, and those registers are wrapped in
1631 PARALLELs that we may see as the destination of a SET. */
1634 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1636 rtx inner
= XEXP (XVECEXP (dest
, 0, i
), 0);
1637 if (inner
!= NULL_RTX
1638 && covers_regno_no_parallel_p (inner
, test_regno
))
1645 return covers_regno_no_parallel_p (dest
, test_regno
);
1648 /* Utility function for dead_or_set_p to check an individual register. */
1651 dead_or_set_regno_p (const_rtx insn
, unsigned int test_regno
)
1655 /* See if there is a death note for something that includes TEST_REGNO. */
1656 if (find_regno_note (insn
, REG_DEAD
, test_regno
))
1660 && find_regno_fusage (insn
, CLOBBER
, test_regno
))
1663 pattern
= PATTERN (insn
);
1665 if (GET_CODE (pattern
) == COND_EXEC
)
1666 pattern
= COND_EXEC_CODE (pattern
);
1668 if (GET_CODE (pattern
) == SET
)
1669 return covers_regno_p (SET_DEST (pattern
), test_regno
);
1670 else if (GET_CODE (pattern
) == PARALLEL
)
1674 for (i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
1676 rtx body
= XVECEXP (pattern
, 0, i
);
1678 if (GET_CODE (body
) == COND_EXEC
)
1679 body
= COND_EXEC_CODE (body
);
1681 if ((GET_CODE (body
) == SET
|| GET_CODE (body
) == CLOBBER
)
1682 && covers_regno_p (SET_DEST (body
), test_regno
))
1690 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1691 If DATUM is nonzero, look for one whose datum is DATUM. */
1694 find_reg_note (const_rtx insn
, enum reg_note kind
, const_rtx datum
)
1698 gcc_checking_assert (insn
);
1700 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1701 if (! INSN_P (insn
))
1705 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1706 if (REG_NOTE_KIND (link
) == kind
)
1711 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1712 if (REG_NOTE_KIND (link
) == kind
&& datum
== XEXP (link
, 0))
1717 /* Return the reg-note of kind KIND in insn INSN which applies to register
1718 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1719 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1720 it might be the case that the note overlaps REGNO. */
1723 find_regno_note (const_rtx insn
, enum reg_note kind
, unsigned int regno
)
1727 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1728 if (! INSN_P (insn
))
1731 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1732 if (REG_NOTE_KIND (link
) == kind
1733 /* Verify that it is a register, so that scratch and MEM won't cause a
1735 && REG_P (XEXP (link
, 0))
1736 && REGNO (XEXP (link
, 0)) <= regno
1737 && END_REGNO (XEXP (link
, 0)) > regno
)
1742 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1746 find_reg_equal_equiv_note (const_rtx insn
)
1753 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1754 if (REG_NOTE_KIND (link
) == REG_EQUAL
1755 || REG_NOTE_KIND (link
) == REG_EQUIV
)
1757 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1758 insns that have multiple sets. Checking single_set to
1759 make sure of this is not the proper check, as explained
1760 in the comment in set_unique_reg_note.
1762 This should be changed into an assert. */
1763 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
1770 /* Check whether INSN is a single_set whose source is known to be
1771 equivalent to a constant. Return that constant if so, otherwise
1775 find_constant_src (const_rtx insn
)
1779 set
= single_set (insn
);
1782 x
= avoid_constant_pool_reference (SET_SRC (set
));
1787 note
= find_reg_equal_equiv_note (insn
);
1788 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1789 return XEXP (note
, 0);
1794 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1795 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1798 find_reg_fusage (const_rtx insn
, enum rtx_code code
, const_rtx datum
)
1800 /* If it's not a CALL_INSN, it can't possibly have a
1801 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1811 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
1813 link
= XEXP (link
, 1))
1814 if (GET_CODE (XEXP (link
, 0)) == code
1815 && rtx_equal_p (datum
, XEXP (XEXP (link
, 0), 0)))
1820 unsigned int regno
= REGNO (datum
);
1822 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1823 to pseudo registers, so don't bother checking. */
1825 if (regno
< FIRST_PSEUDO_REGISTER
)
1827 unsigned int end_regno
= END_HARD_REGNO (datum
);
1830 for (i
= regno
; i
< end_regno
; i
++)
1831 if (find_regno_fusage (insn
, code
, i
))
1839 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1840 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1843 find_regno_fusage (const_rtx insn
, enum rtx_code code
, unsigned int regno
)
1847 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1848 to pseudo registers, so don't bother checking. */
1850 if (regno
>= FIRST_PSEUDO_REGISTER
1854 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
1858 if (GET_CODE (op
= XEXP (link
, 0)) == code
1859 && REG_P (reg
= XEXP (op
, 0))
1860 && REGNO (reg
) <= regno
1861 && END_HARD_REGNO (reg
) > regno
)
1869 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1870 stored as the pointer to the next register note. */
1873 alloc_reg_note (enum reg_note kind
, rtx datum
, rtx list
)
1881 case REG_LABEL_TARGET
:
1882 case REG_LABEL_OPERAND
:
1883 /* These types of register notes use an INSN_LIST rather than an
1884 EXPR_LIST, so that copying is done right and dumps look
1886 note
= alloc_INSN_LIST (datum
, list
);
1887 PUT_REG_NOTE_KIND (note
, kind
);
1891 note
= alloc_EXPR_LIST (kind
, datum
, list
);
1898 /* Add register note with kind KIND and datum DATUM to INSN. */
1901 add_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
1903 REG_NOTES (insn
) = alloc_reg_note (kind
, datum
, REG_NOTES (insn
));
1906 /* Remove register note NOTE from the REG_NOTES of INSN. */
1909 remove_note (rtx insn
, const_rtx note
)
1913 if (note
== NULL_RTX
)
1916 if (REG_NOTES (insn
) == note
)
1917 REG_NOTES (insn
) = XEXP (note
, 1);
1919 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1920 if (XEXP (link
, 1) == note
)
1922 XEXP (link
, 1) = XEXP (note
, 1);
1926 switch (REG_NOTE_KIND (note
))
1930 df_notes_rescan (insn
);
1937 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1940 remove_reg_equal_equiv_notes (rtx insn
)
1944 loc
= ®_NOTES (insn
);
1947 enum reg_note kind
= REG_NOTE_KIND (*loc
);
1948 if (kind
== REG_EQUAL
|| kind
== REG_EQUIV
)
1949 *loc
= XEXP (*loc
, 1);
1951 loc
= &XEXP (*loc
, 1);
1955 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1956 return 1 if it is found. A simple equality test is used to determine if
1960 in_expr_list_p (const_rtx listp
, const_rtx node
)
1964 for (x
= listp
; x
; x
= XEXP (x
, 1))
1965 if (node
== XEXP (x
, 0))
1971 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1972 remove that entry from the list if it is found.
1974 A simple equality test is used to determine if NODE matches. */
1977 remove_node_from_expr_list (const_rtx node
, rtx
*listp
)
1980 rtx prev
= NULL_RTX
;
1984 if (node
== XEXP (temp
, 0))
1986 /* Splice the node out of the list. */
1988 XEXP (prev
, 1) = XEXP (temp
, 1);
1990 *listp
= XEXP (temp
, 1);
1996 temp
= XEXP (temp
, 1);
2000 /* Nonzero if X contains any volatile instructions. These are instructions
2001 which may cause unpredictable machine state instructions, and thus no
2002 instructions should be moved or combined across them. This includes
2003 only volatile asms and UNSPEC_VOLATILE instructions. */
2006 volatile_insn_p (const_rtx x
)
2008 const RTX_CODE code
= GET_CODE (x
);
2029 case UNSPEC_VOLATILE
:
2030 /* case TRAP_IF: This isn't clear yet. */
2035 if (MEM_VOLATILE_P (x
))
2042 /* Recursively scan the operands of this expression. */
2045 const char *const fmt
= GET_RTX_FORMAT (code
);
2048 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2052 if (volatile_insn_p (XEXP (x
, i
)))
2055 else if (fmt
[i
] == 'E')
2058 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2059 if (volatile_insn_p (XVECEXP (x
, i
, j
)))
2067 /* Nonzero if X contains any volatile memory references
2068 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2071 volatile_refs_p (const_rtx x
)
2073 const RTX_CODE code
= GET_CODE (x
);
2092 case UNSPEC_VOLATILE
:
2098 if (MEM_VOLATILE_P (x
))
2105 /* Recursively scan the operands of this expression. */
2108 const char *const fmt
= GET_RTX_FORMAT (code
);
2111 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2115 if (volatile_refs_p (XEXP (x
, i
)))
2118 else if (fmt
[i
] == 'E')
2121 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2122 if (volatile_refs_p (XVECEXP (x
, i
, j
)))
2130 /* Similar to above, except that it also rejects register pre- and post-
2134 side_effects_p (const_rtx x
)
2136 const RTX_CODE code
= GET_CODE (x
);
2156 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2157 when some combination can't be done. If we see one, don't think
2158 that we can simplify the expression. */
2159 return (GET_MODE (x
) != VOIDmode
);
2168 case UNSPEC_VOLATILE
:
2169 /* case TRAP_IF: This isn't clear yet. */
2175 if (MEM_VOLATILE_P (x
))
2182 /* Recursively scan the operands of this expression. */
2185 const char *fmt
= GET_RTX_FORMAT (code
);
2188 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2192 if (side_effects_p (XEXP (x
, i
)))
2195 else if (fmt
[i
] == 'E')
2198 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2199 if (side_effects_p (XVECEXP (x
, i
, j
)))
2207 /* Return nonzero if evaluating rtx X might cause a trap.
2208 FLAGS controls how to consider MEMs. A nonzero means the context
2209 of the access may have changed from the original, such that the
2210 address may have become invalid. */
2213 may_trap_p_1 (const_rtx x
, unsigned flags
)
2219 /* We make no distinction currently, but this function is part of
2220 the internal target-hooks ABI so we keep the parameter as
2221 "unsigned flags". */
2222 bool code_changed
= flags
!= 0;
2226 code
= GET_CODE (x
);
2229 /* Handle these cases quickly. */
2244 case UNSPEC_VOLATILE
:
2245 return targetm
.unspec_may_trap_p (x
, flags
);
2252 return MEM_VOLATILE_P (x
);
2254 /* Memory ref can trap unless it's a static var or a stack slot. */
2256 /* Recognize specific pattern of stack checking probes. */
2257 if (flag_stack_check
2258 && MEM_VOLATILE_P (x
)
2259 && XEXP (x
, 0) == stack_pointer_rtx
)
2261 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2262 reference; moving it out of context such as when moving code
2263 when optimizing, might cause its address to become invalid. */
2265 || !MEM_NOTRAP_P (x
))
2267 HOST_WIDE_INT size
= MEM_SIZE (x
) ? INTVAL (MEM_SIZE (x
)) : 0;
2268 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), 0, size
,
2269 GET_MODE (x
), code_changed
);
2274 /* Division by a non-constant might trap. */
2279 if (HONOR_SNANS (GET_MODE (x
)))
2281 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)))
2282 return flag_trapping_math
;
2283 if (!CONSTANT_P (XEXP (x
, 1)) || (XEXP (x
, 1) == const0_rtx
))
2288 /* An EXPR_LIST is used to represent a function call. This
2289 certainly may trap. */
2298 /* Some floating point comparisons may trap. */
2299 if (!flag_trapping_math
)
2301 /* ??? There is no machine independent way to check for tests that trap
2302 when COMPARE is used, though many targets do make this distinction.
2303 For instance, sparc uses CCFPE for compares which generate exceptions
2304 and CCFP for compares which do not generate exceptions. */
2305 if (HONOR_NANS (GET_MODE (x
)))
2307 /* But often the compare has some CC mode, so check operand
2309 if (HONOR_NANS (GET_MODE (XEXP (x
, 0)))
2310 || HONOR_NANS (GET_MODE (XEXP (x
, 1))))
2316 if (HONOR_SNANS (GET_MODE (x
)))
2318 /* Often comparison is CC mode, so check operand modes. */
2319 if (HONOR_SNANS (GET_MODE (XEXP (x
, 0)))
2320 || HONOR_SNANS (GET_MODE (XEXP (x
, 1))))
2325 /* Conversion of floating point might trap. */
2326 if (flag_trapping_math
&& HONOR_NANS (GET_MODE (XEXP (x
, 0))))
2333 /* These operations don't trap even with floating point. */
2337 /* Any floating arithmetic may trap. */
2338 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
))
2339 && flag_trapping_math
)
2343 fmt
= GET_RTX_FORMAT (code
);
2344 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2348 if (may_trap_p_1 (XEXP (x
, i
), flags
))
2351 else if (fmt
[i
] == 'E')
2354 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2355 if (may_trap_p_1 (XVECEXP (x
, i
, j
), flags
))
2362 /* Return nonzero if evaluating rtx X might cause a trap. */
2365 may_trap_p (const_rtx x
)
2367 return may_trap_p_1 (x
, 0);
2370 /* Same as above, but additionally return nonzero if evaluating rtx X might
2371 cause a fault. We define a fault for the purpose of this function as a
2372 erroneous execution condition that cannot be encountered during the normal
2373 execution of a valid program; the typical example is an unaligned memory
2374 access on a strict alignment machine. The compiler guarantees that it
2375 doesn't generate code that will fault from a valid program, but this
2376 guarantee doesn't mean anything for individual instructions. Consider
2377 the following example:
2379 struct S { int d; union { char *cp; int *ip; }; };
2381 int foo(struct S *s)
2389 on a strict alignment machine. In a valid program, foo will never be
2390 invoked on a structure for which d is equal to 1 and the underlying
2391 unique field of the union not aligned on a 4-byte boundary, but the
2392 expression *s->ip might cause a fault if considered individually.
2394 At the RTL level, potentially problematic expressions will almost always
2395 verify may_trap_p; for example, the above dereference can be emitted as
2396 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2397 However, suppose that foo is inlined in a caller that causes s->cp to
2398 point to a local character variable and guarantees that s->d is not set
2399 to 1; foo may have been effectively translated into pseudo-RTL as:
2402 (set (reg:SI) (mem:SI (%fp - 7)))
2404 (set (reg:QI) (mem:QI (%fp - 7)))
2406 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2407 memory reference to a stack slot, but it will certainly cause a fault
2408 on a strict alignment machine. */
2411 may_trap_or_fault_p (const_rtx x
)
2413 return may_trap_p_1 (x
, 1);
2416 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2417 i.e., an inequality. */
2420 inequality_comparisons_p (const_rtx x
)
2424 const enum rtx_code code
= GET_CODE (x
);
2455 len
= GET_RTX_LENGTH (code
);
2456 fmt
= GET_RTX_FORMAT (code
);
2458 for (i
= 0; i
< len
; i
++)
2462 if (inequality_comparisons_p (XEXP (x
, i
)))
2465 else if (fmt
[i
] == 'E')
2468 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2469 if (inequality_comparisons_p (XVECEXP (x
, i
, j
)))
2477 /* Replace any occurrence of FROM in X with TO. The function does
2478 not enter into CONST_DOUBLE for the replace.
2480 Note that copying is not done so X must not be shared unless all copies
2481 are to be modified. */
2484 replace_rtx (rtx x
, rtx from
, rtx to
)
2489 /* The following prevents loops occurrence when we change MEM in
2490 CONST_DOUBLE onto the same CONST_DOUBLE. */
2491 if (x
!= 0 && GET_CODE (x
) == CONST_DOUBLE
)
2497 /* Allow this function to make replacements in EXPR_LISTs. */
2501 if (GET_CODE (x
) == SUBREG
)
2503 rtx new_rtx
= replace_rtx (SUBREG_REG (x
), from
, to
);
2505 if (CONST_INT_P (new_rtx
))
2507 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
2508 GET_MODE (SUBREG_REG (x
)),
2513 SUBREG_REG (x
) = new_rtx
;
2517 else if (GET_CODE (x
) == ZERO_EXTEND
)
2519 rtx new_rtx
= replace_rtx (XEXP (x
, 0), from
, to
);
2521 if (CONST_INT_P (new_rtx
))
2523 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
2524 new_rtx
, GET_MODE (XEXP (x
, 0)));
2528 XEXP (x
, 0) = new_rtx
;
2533 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2534 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2537 XEXP (x
, i
) = replace_rtx (XEXP (x
, i
), from
, to
);
2538 else if (fmt
[i
] == 'E')
2539 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2540 XVECEXP (x
, i
, j
) = replace_rtx (XVECEXP (x
, i
, j
), from
, to
);
2546 /* Replace occurrences of the old label in *X with the new one.
2547 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2550 replace_label (rtx
*x
, void *data
)
2553 rtx old_label
= ((replace_label_data
*) data
)->r1
;
2554 rtx new_label
= ((replace_label_data
*) data
)->r2
;
2555 bool update_label_nuses
= ((replace_label_data
*) data
)->update_label_nuses
;
2560 if (GET_CODE (l
) == SYMBOL_REF
2561 && CONSTANT_POOL_ADDRESS_P (l
))
2563 rtx c
= get_pool_constant (l
);
2564 if (rtx_referenced_p (old_label
, c
))
2567 replace_label_data
*d
= (replace_label_data
*) data
;
2569 /* Create a copy of constant C; replace the label inside
2570 but do not update LABEL_NUSES because uses in constant pool
2572 new_c
= copy_rtx (c
);
2573 d
->update_label_nuses
= false;
2574 for_each_rtx (&new_c
, replace_label
, data
);
2575 d
->update_label_nuses
= update_label_nuses
;
2577 /* Add the new constant NEW_C to constant pool and replace
2578 the old reference to constant by new reference. */
2579 new_l
= XEXP (force_const_mem (get_pool_mode (l
), new_c
), 0);
2580 *x
= replace_rtx (l
, l
, new_l
);
2585 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2586 field. This is not handled by for_each_rtx because it doesn't
2587 handle unprinted ('0') fields. */
2588 if (JUMP_P (l
) && JUMP_LABEL (l
) == old_label
)
2589 JUMP_LABEL (l
) = new_label
;
2591 if ((GET_CODE (l
) == LABEL_REF
2592 || GET_CODE (l
) == INSN_LIST
)
2593 && XEXP (l
, 0) == old_label
)
2595 XEXP (l
, 0) = new_label
;
2596 if (update_label_nuses
)
2598 ++LABEL_NUSES (new_label
);
2599 --LABEL_NUSES (old_label
);
2607 /* When *BODY is equal to X or X is directly referenced by *BODY
2608 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2609 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2612 rtx_referenced_p_1 (rtx
*body
, void *x
)
2616 if (*body
== NULL_RTX
)
2617 return y
== NULL_RTX
;
2619 /* Return true if a label_ref *BODY refers to label Y. */
2620 if (GET_CODE (*body
) == LABEL_REF
&& LABEL_P (y
))
2621 return XEXP (*body
, 0) == y
;
2623 /* If *BODY is a reference to pool constant traverse the constant. */
2624 if (GET_CODE (*body
) == SYMBOL_REF
2625 && CONSTANT_POOL_ADDRESS_P (*body
))
2626 return rtx_referenced_p (y
, get_pool_constant (*body
));
2628 /* By default, compare the RTL expressions. */
2629 return rtx_equal_p (*body
, y
);
2632 /* Return true if X is referenced in BODY. */
2635 rtx_referenced_p (rtx x
, rtx body
)
2637 return for_each_rtx (&body
, rtx_referenced_p_1
, x
);
2640 /* If INSN is a tablejump return true and store the label (before jump table) to
2641 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2644 tablejump_p (const_rtx insn
, rtx
*labelp
, rtx
*tablep
)
2649 && (label
= JUMP_LABEL (insn
)) != NULL_RTX
2650 && (table
= next_active_insn (label
)) != NULL_RTX
2651 && JUMP_TABLE_DATA_P (table
))
2662 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2663 constant that is not in the constant pool and not in the condition
2664 of an IF_THEN_ELSE. */
2667 computed_jump_p_1 (const_rtx x
)
2669 const enum rtx_code code
= GET_CODE (x
);
2689 return ! (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
2690 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)));
2693 return (computed_jump_p_1 (XEXP (x
, 1))
2694 || computed_jump_p_1 (XEXP (x
, 2)));
2700 fmt
= GET_RTX_FORMAT (code
);
2701 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2704 && computed_jump_p_1 (XEXP (x
, i
)))
2707 else if (fmt
[i
] == 'E')
2708 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2709 if (computed_jump_p_1 (XVECEXP (x
, i
, j
)))
2716 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2718 Tablejumps and casesi insns are not considered indirect jumps;
2719 we can recognize them by a (use (label_ref)). */
2722 computed_jump_p (const_rtx insn
)
2727 rtx pat
= PATTERN (insn
);
2729 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2730 if (JUMP_LABEL (insn
) != NULL
)
2733 if (GET_CODE (pat
) == PARALLEL
)
2735 int len
= XVECLEN (pat
, 0);
2736 int has_use_labelref
= 0;
2738 for (i
= len
- 1; i
>= 0; i
--)
2739 if (GET_CODE (XVECEXP (pat
, 0, i
)) == USE
2740 && (GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0))
2742 has_use_labelref
= 1;
2744 if (! has_use_labelref
)
2745 for (i
= len
- 1; i
>= 0; i
--)
2746 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
2747 && SET_DEST (XVECEXP (pat
, 0, i
)) == pc_rtx
2748 && computed_jump_p_1 (SET_SRC (XVECEXP (pat
, 0, i
))))
2751 else if (GET_CODE (pat
) == SET
2752 && SET_DEST (pat
) == pc_rtx
2753 && computed_jump_p_1 (SET_SRC (pat
)))
2759 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2760 calls. Processes the subexpressions of EXP and passes them to F. */
2762 for_each_rtx_1 (rtx exp
, int n
, rtx_function f
, void *data
)
2765 const char *format
= GET_RTX_FORMAT (GET_CODE (exp
));
2768 for (; format
[n
] != '\0'; n
++)
2775 result
= (*f
) (x
, data
);
2777 /* Do not traverse sub-expressions. */
2779 else if (result
!= 0)
2780 /* Stop the traversal. */
2784 /* There are no sub-expressions. */
2787 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2790 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2798 if (XVEC (exp
, n
) == 0)
2800 for (j
= 0; j
< XVECLEN (exp
, n
); ++j
)
2803 x
= &XVECEXP (exp
, n
, j
);
2804 result
= (*f
) (x
, data
);
2806 /* Do not traverse sub-expressions. */
2808 else if (result
!= 0)
2809 /* Stop the traversal. */
2813 /* There are no sub-expressions. */
2816 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2819 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2827 /* Nothing to do. */
2835 /* Traverse X via depth-first search, calling F for each
2836 sub-expression (including X itself). F is also passed the DATA.
2837 If F returns -1, do not traverse sub-expressions, but continue
2838 traversing the rest of the tree. If F ever returns any other
2839 nonzero value, stop the traversal, and return the value returned
2840 by F. Otherwise, return 0. This function does not traverse inside
2841 tree structure that contains RTX_EXPRs, or into sub-expressions
2842 whose format code is `0' since it is not known whether or not those
2843 codes are actually RTL.
2845 This routine is very general, and could (should?) be used to
2846 implement many of the other routines in this file. */
2849 for_each_rtx (rtx
*x
, rtx_function f
, void *data
)
2855 result
= (*f
) (x
, data
);
2857 /* Do not traverse sub-expressions. */
2859 else if (result
!= 0)
2860 /* Stop the traversal. */
2864 /* There are no sub-expressions. */
2867 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2871 return for_each_rtx_1 (*x
, i
, f
, data
);
2875 /* Searches X for any reference to REGNO, returning the rtx of the
2876 reference found if any. Otherwise, returns NULL_RTX. */
2879 regno_use_in (unsigned int regno
, rtx x
)
2885 if (REG_P (x
) && REGNO (x
) == regno
)
2888 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2889 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2893 if ((tem
= regno_use_in (regno
, XEXP (x
, i
))))
2896 else if (fmt
[i
] == 'E')
2897 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2898 if ((tem
= regno_use_in (regno
, XVECEXP (x
, i
, j
))))
2905 /* Return a value indicating whether OP, an operand of a commutative
2906 operation, is preferred as the first or second operand. The higher
2907 the value, the stronger the preference for being the first operand.
2908 We use negative values to indicate a preference for the first operand
2909 and positive values for the second operand. */
2912 commutative_operand_precedence (rtx op
)
2914 enum rtx_code code
= GET_CODE (op
);
2916 /* Constants always come the second operand. Prefer "nice" constants. */
2917 if (code
== CONST_INT
)
2919 if (code
== CONST_DOUBLE
)
2921 if (code
== CONST_FIXED
)
2923 op
= avoid_constant_pool_reference (op
);
2924 code
= GET_CODE (op
);
2926 switch (GET_RTX_CLASS (code
))
2929 if (code
== CONST_INT
)
2931 if (code
== CONST_DOUBLE
)
2933 if (code
== CONST_FIXED
)
2938 /* SUBREGs of objects should come second. */
2939 if (code
== SUBREG
&& OBJECT_P (SUBREG_REG (op
)))
2944 /* Complex expressions should be the first, so decrease priority
2945 of objects. Prefer pointer objects over non pointer objects. */
2946 if ((REG_P (op
) && REG_POINTER (op
))
2947 || (MEM_P (op
) && MEM_POINTER (op
)))
2951 case RTX_COMM_ARITH
:
2952 /* Prefer operands that are themselves commutative to be first.
2953 This helps to make things linear. In particular,
2954 (and (and (reg) (reg)) (not (reg))) is canonical. */
2958 /* If only one operand is a binary expression, it will be the first
2959 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2960 is canonical, although it will usually be further simplified. */
2964 /* Then prefer NEG and NOT. */
2965 if (code
== NEG
|| code
== NOT
)
2973 /* Return 1 iff it is necessary to swap operands of commutative operation
2974 in order to canonicalize expression. */
2977 swap_commutative_operands_p (rtx x
, rtx y
)
2979 return (commutative_operand_precedence (x
)
2980 < commutative_operand_precedence (y
));
2983 /* Return 1 if X is an autoincrement side effect and the register is
2984 not the stack pointer. */
2986 auto_inc_p (const_rtx x
)
2988 switch (GET_CODE (x
))
2996 /* There are no REG_INC notes for SP. */
2997 if (XEXP (x
, 0) != stack_pointer_rtx
)
3005 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3007 loc_mentioned_in_p (rtx
*loc
, const_rtx in
)
3016 code
= GET_CODE (in
);
3017 fmt
= GET_RTX_FORMAT (code
);
3018 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3022 if (loc
== &XEXP (in
, i
) || loc_mentioned_in_p (loc
, XEXP (in
, i
)))
3025 else if (fmt
[i
] == 'E')
3026 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
3027 if (loc
== &XVECEXP (in
, i
, j
)
3028 || loc_mentioned_in_p (loc
, XVECEXP (in
, i
, j
)))
3034 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3035 and SUBREG_BYTE, return the bit offset where the subreg begins
3036 (counting from the least significant bit of the operand). */
3039 subreg_lsb_1 (enum machine_mode outer_mode
,
3040 enum machine_mode inner_mode
,
3041 unsigned int subreg_byte
)
3043 unsigned int bitpos
;
3047 /* A paradoxical subreg begins at bit position 0. */
3048 if (GET_MODE_BITSIZE (outer_mode
) > GET_MODE_BITSIZE (inner_mode
))
3051 if (WORDS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
3052 /* If the subreg crosses a word boundary ensure that
3053 it also begins and ends on a word boundary. */
3054 gcc_assert (!((subreg_byte
% UNITS_PER_WORD
3055 + GET_MODE_SIZE (outer_mode
)) > UNITS_PER_WORD
3056 && (subreg_byte
% UNITS_PER_WORD
3057 || GET_MODE_SIZE (outer_mode
) % UNITS_PER_WORD
)));
3059 if (WORDS_BIG_ENDIAN
)
3060 word
= (GET_MODE_SIZE (inner_mode
)
3061 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) / UNITS_PER_WORD
;
3063 word
= subreg_byte
/ UNITS_PER_WORD
;
3064 bitpos
= word
* BITS_PER_WORD
;
3066 if (BYTES_BIG_ENDIAN
)
3067 byte
= (GET_MODE_SIZE (inner_mode
)
3068 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) % UNITS_PER_WORD
;
3070 byte
= subreg_byte
% UNITS_PER_WORD
;
3071 bitpos
+= byte
* BITS_PER_UNIT
;
3076 /* Given a subreg X, return the bit offset where the subreg begins
3077 (counting from the least significant bit of the reg). */
3080 subreg_lsb (const_rtx x
)
3082 return subreg_lsb_1 (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)),
3086 /* Fill in information about a subreg of a hard register.
3087 xregno - A regno of an inner hard subreg_reg (or what will become one).
3088 xmode - The mode of xregno.
3089 offset - The byte offset.
3090 ymode - The mode of a top level SUBREG (or what may become one).
3091 info - Pointer to structure to fill in. */
3093 subreg_get_info (unsigned int xregno
, enum machine_mode xmode
,
3094 unsigned int offset
, enum machine_mode ymode
,
3095 struct subreg_info
*info
)
3097 int nregs_xmode
, nregs_ymode
;
3098 int mode_multiple
, nregs_multiple
;
3099 int offset_adj
, y_offset
, y_offset_adj
;
3100 int regsize_xmode
, regsize_ymode
;
3103 gcc_assert (xregno
< FIRST_PSEUDO_REGISTER
);
3107 /* If there are holes in a non-scalar mode in registers, we expect
3108 that it is made up of its units concatenated together. */
3109 if (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
))
3111 enum machine_mode xmode_unit
;
3113 nregs_xmode
= HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode
);
3114 if (GET_MODE_INNER (xmode
) == VOIDmode
)
3117 xmode_unit
= GET_MODE_INNER (xmode
);
3118 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode_unit
));
3119 gcc_assert (nregs_xmode
3120 == (GET_MODE_NUNITS (xmode
)
3121 * HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode_unit
)));
3122 gcc_assert (hard_regno_nregs
[xregno
][xmode
]
3123 == (hard_regno_nregs
[xregno
][xmode_unit
]
3124 * GET_MODE_NUNITS (xmode
)));
3126 /* You can only ask for a SUBREG of a value with holes in the middle
3127 if you don't cross the holes. (Such a SUBREG should be done by
3128 picking a different register class, or doing it in memory if
3129 necessary.) An example of a value with holes is XCmode on 32-bit
3130 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3131 3 for each part, but in memory it's two 128-bit parts.
3132 Padding is assumed to be at the end (not necessarily the 'high part')
3134 if ((offset
/ GET_MODE_SIZE (xmode_unit
) + 1
3135 < GET_MODE_NUNITS (xmode
))
3136 && (offset
/ GET_MODE_SIZE (xmode_unit
)
3137 != ((offset
+ GET_MODE_SIZE (ymode
) - 1)
3138 / GET_MODE_SIZE (xmode_unit
))))
3140 info
->representable_p
= false;
3145 nregs_xmode
= hard_regno_nregs
[xregno
][xmode
];
3147 nregs_ymode
= hard_regno_nregs
[xregno
][ymode
];
3149 /* Paradoxical subregs are otherwise valid. */
3152 && GET_MODE_SIZE (ymode
) > GET_MODE_SIZE (xmode
))
3154 info
->representable_p
= true;
3155 /* If this is a big endian paradoxical subreg, which uses more
3156 actual hard registers than the original register, we must
3157 return a negative offset so that we find the proper highpart
3159 if (GET_MODE_SIZE (ymode
) > UNITS_PER_WORD
3160 ? WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
3161 info
->offset
= nregs_xmode
- nregs_ymode
;
3164 info
->nregs
= nregs_ymode
;
3168 /* If registers store different numbers of bits in the different
3169 modes, we cannot generally form this subreg. */
3170 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
)
3171 && !HARD_REGNO_NREGS_HAS_PADDING (xregno
, ymode
)
3172 && (GET_MODE_SIZE (xmode
) % nregs_xmode
) == 0
3173 && (GET_MODE_SIZE (ymode
) % nregs_ymode
) == 0)
3175 regsize_xmode
= GET_MODE_SIZE (xmode
) / nregs_xmode
;
3176 regsize_ymode
= GET_MODE_SIZE (ymode
) / nregs_ymode
;
3177 if (!rknown
&& regsize_xmode
> regsize_ymode
&& nregs_ymode
> 1)
3179 info
->representable_p
= false;
3181 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3182 info
->offset
= offset
/ regsize_xmode
;
3185 if (!rknown
&& regsize_ymode
> regsize_xmode
&& nregs_xmode
> 1)
3187 info
->representable_p
= false;
3189 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3190 info
->offset
= offset
/ regsize_xmode
;
3195 /* Lowpart subregs are otherwise valid. */
3196 if (!rknown
&& offset
== subreg_lowpart_offset (ymode
, xmode
))
3198 info
->representable_p
= true;
3201 if (offset
== 0 || nregs_xmode
== nregs_ymode
)
3204 info
->nregs
= nregs_ymode
;
3209 /* This should always pass, otherwise we don't know how to verify
3210 the constraint. These conditions may be relaxed but
3211 subreg_regno_offset would need to be redesigned. */
3212 gcc_assert ((GET_MODE_SIZE (xmode
) % GET_MODE_SIZE (ymode
)) == 0);
3213 gcc_assert ((nregs_xmode
% nregs_ymode
) == 0);
3215 /* The XMODE value can be seen as a vector of NREGS_XMODE
3216 values. The subreg must represent a lowpart of given field.
3217 Compute what field it is. */
3218 offset_adj
= offset
;
3219 offset_adj
-= subreg_lowpart_offset (ymode
,
3220 mode_for_size (GET_MODE_BITSIZE (xmode
)
3224 /* Size of ymode must not be greater than the size of xmode. */
3225 mode_multiple
= GET_MODE_SIZE (xmode
) / GET_MODE_SIZE (ymode
);
3226 gcc_assert (mode_multiple
!= 0);
3228 y_offset
= offset
/ GET_MODE_SIZE (ymode
);
3229 y_offset_adj
= offset_adj
/ GET_MODE_SIZE (ymode
);
3230 nregs_multiple
= nregs_xmode
/ nregs_ymode
;
3232 gcc_assert ((offset_adj
% GET_MODE_SIZE (ymode
)) == 0);
3233 gcc_assert ((mode_multiple
% nregs_multiple
) == 0);
3237 info
->representable_p
= (!(y_offset_adj
% (mode_multiple
/ nregs_multiple
)));
3240 info
->offset
= (y_offset
/ (mode_multiple
/ nregs_multiple
)) * nregs_ymode
;
3241 info
->nregs
= nregs_ymode
;
3244 /* This function returns the regno offset of a subreg expression.
3245 xregno - A regno of an inner hard subreg_reg (or what will become one).
3246 xmode - The mode of xregno.
3247 offset - The byte offset.
3248 ymode - The mode of a top level SUBREG (or what may become one).
3249 RETURN - The regno offset which would be used. */
3251 subreg_regno_offset (unsigned int xregno
, enum machine_mode xmode
,
3252 unsigned int offset
, enum machine_mode ymode
)
3254 struct subreg_info info
;
3255 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3259 /* This function returns true when the offset is representable via
3260 subreg_offset in the given regno.
3261 xregno - A regno of an inner hard subreg_reg (or what will become one).
3262 xmode - The mode of xregno.
3263 offset - The byte offset.
3264 ymode - The mode of a top level SUBREG (or what may become one).
3265 RETURN - Whether the offset is representable. */
3267 subreg_offset_representable_p (unsigned int xregno
, enum machine_mode xmode
,
3268 unsigned int offset
, enum machine_mode ymode
)
3270 struct subreg_info info
;
3271 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3272 return info
.representable_p
;
3275 /* Return the number of a YMODE register to which
3277 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3279 can be simplified. Return -1 if the subreg can't be simplified.
3281 XREGNO is a hard register number. */
3284 simplify_subreg_regno (unsigned int xregno
, enum machine_mode xmode
,
3285 unsigned int offset
, enum machine_mode ymode
)
3287 struct subreg_info info
;
3288 unsigned int yregno
;
3290 #ifdef CANNOT_CHANGE_MODE_CLASS
3291 /* Give the backend a chance to disallow the mode change. */
3292 if (GET_MODE_CLASS (xmode
) != MODE_COMPLEX_INT
3293 && GET_MODE_CLASS (xmode
) != MODE_COMPLEX_FLOAT
3294 && REG_CANNOT_CHANGE_MODE_P (xregno
, xmode
, ymode
))
3298 /* We shouldn't simplify stack-related registers. */
3299 if ((!reload_completed
|| frame_pointer_needed
)
3300 && (xregno
== FRAME_POINTER_REGNUM
3301 || xregno
== HARD_FRAME_POINTER_REGNUM
))
3304 if (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
3305 && xregno
== ARG_POINTER_REGNUM
)
3308 if (xregno
== STACK_POINTER_REGNUM
)
3311 /* Try to get the register offset. */
3312 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3313 if (!info
.representable_p
)
3316 /* Make sure that the offsetted register value is in range. */
3317 yregno
= xregno
+ info
.offset
;
3318 if (!HARD_REGISTER_NUM_P (yregno
))
3321 /* See whether (reg:YMODE YREGNO) is valid.
3323 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3324 This is a kludge to work around how float/complex arguments are passed
3325 on 32-bit SPARC and should be fixed. */
3326 if (!HARD_REGNO_MODE_OK (yregno
, ymode
)
3327 && HARD_REGNO_MODE_OK (xregno
, xmode
))
3330 return (int) yregno
;
3333 /* Return the final regno that a subreg expression refers to. */
3335 subreg_regno (const_rtx x
)
3338 rtx subreg
= SUBREG_REG (x
);
3339 int regno
= REGNO (subreg
);
3341 ret
= regno
+ subreg_regno_offset (regno
,
3349 /* Return the number of registers that a subreg expression refers
3352 subreg_nregs (const_rtx x
)
3354 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x
)), x
);
3357 /* Return the number of registers that a subreg REG with REGNO
3358 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3359 changed so that the regno can be passed in. */
3362 subreg_nregs_with_regno (unsigned int regno
, const_rtx x
)
3364 struct subreg_info info
;
3365 rtx subreg
= SUBREG_REG (x
);
3367 subreg_get_info (regno
, GET_MODE (subreg
), SUBREG_BYTE (x
), GET_MODE (x
),
3373 struct parms_set_data
3379 /* Helper function for noticing stores to parameter registers. */
3381 parms_set (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
3383 struct parms_set_data
*const d
= (struct parms_set_data
*) data
;
3384 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3385 && TEST_HARD_REG_BIT (d
->regs
, REGNO (x
)))
3387 CLEAR_HARD_REG_BIT (d
->regs
, REGNO (x
));
3392 /* Look backward for first parameter to be loaded.
3393 Note that loads of all parameters will not necessarily be
3394 found if CSE has eliminated some of them (e.g., an argument
3395 to the outer function is passed down as a parameter).
3396 Do not skip BOUNDARY. */
3398 find_first_parameter_load (rtx call_insn
, rtx boundary
)
3400 struct parms_set_data parm
;
3401 rtx p
, before
, first_set
;
3403 /* Since different machines initialize their parameter registers
3404 in different orders, assume nothing. Collect the set of all
3405 parameter registers. */
3406 CLEAR_HARD_REG_SET (parm
.regs
);
3408 for (p
= CALL_INSN_FUNCTION_USAGE (call_insn
); p
; p
= XEXP (p
, 1))
3409 if (GET_CODE (XEXP (p
, 0)) == USE
3410 && REG_P (XEXP (XEXP (p
, 0), 0)))
3412 gcc_assert (REGNO (XEXP (XEXP (p
, 0), 0)) < FIRST_PSEUDO_REGISTER
);
3414 /* We only care about registers which can hold function
3416 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p
, 0), 0))))
3419 SET_HARD_REG_BIT (parm
.regs
, REGNO (XEXP (XEXP (p
, 0), 0)));
3423 first_set
= call_insn
;
3425 /* Search backward for the first set of a register in this set. */
3426 while (parm
.nregs
&& before
!= boundary
)
3428 before
= PREV_INSN (before
);
3430 /* It is possible that some loads got CSEed from one call to
3431 another. Stop in that case. */
3432 if (CALL_P (before
))
3435 /* Our caller needs either ensure that we will find all sets
3436 (in case code has not been optimized yet), or take care
3437 for possible labels in a way by setting boundary to preceding
3439 if (LABEL_P (before
))
3441 gcc_assert (before
== boundary
);
3445 if (INSN_P (before
))
3447 int nregs_old
= parm
.nregs
;
3448 note_stores (PATTERN (before
), parms_set
, &parm
);
3449 /* If we found something that did not set a parameter reg,
3450 we're done. Do not keep going, as that might result
3451 in hoisting an insn before the setting of a pseudo
3452 that is used by the hoisted insn. */
3453 if (nregs_old
!= parm
.nregs
)
3462 /* Return true if we should avoid inserting code between INSN and preceding
3463 call instruction. */
3466 keep_with_call_p (const_rtx insn
)
3470 if (INSN_P (insn
) && (set
= single_set (insn
)) != NULL
)
3472 if (REG_P (SET_DEST (set
))
3473 && REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
3474 && fixed_regs
[REGNO (SET_DEST (set
))]
3475 && general_operand (SET_SRC (set
), VOIDmode
))
3477 if (REG_P (SET_SRC (set
))
3478 && targetm
.calls
.function_value_regno_p (REGNO (SET_SRC (set
)))
3479 && REG_P (SET_DEST (set
))
3480 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3482 /* There may be a stack pop just after the call and before the store
3483 of the return register. Search for the actual store when deciding
3484 if we can break or not. */
3485 if (SET_DEST (set
) == stack_pointer_rtx
)
3487 /* This CONST_CAST is okay because next_nonnote_insn just
3488 returns its argument and we assign it to a const_rtx
3490 const_rtx i2
= next_nonnote_insn (CONST_CAST_RTX(insn
));
3491 if (i2
&& keep_with_call_p (i2
))
3498 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3499 to non-complex jumps. That is, direct unconditional, conditional,
3500 and tablejumps, but not computed jumps or returns. It also does
3501 not apply to the fallthru case of a conditional jump. */
3504 label_is_jump_target_p (const_rtx label
, const_rtx jump_insn
)
3506 rtx tmp
= JUMP_LABEL (jump_insn
);
3511 if (tablejump_p (jump_insn
, NULL
, &tmp
))
3513 rtvec vec
= XVEC (PATTERN (tmp
),
3514 GET_CODE (PATTERN (tmp
)) == ADDR_DIFF_VEC
);
3515 int i
, veclen
= GET_NUM_ELEM (vec
);
3517 for (i
= 0; i
< veclen
; ++i
)
3518 if (XEXP (RTVEC_ELT (vec
, i
), 0) == label
)
3522 if (find_reg_note (jump_insn
, REG_LABEL_TARGET
, label
))
3529 /* Return an estimate of the cost of computing rtx X.
3530 One use is in cse, to decide which expression to keep in the hash table.
3531 Another is in rtl generation, to pick the cheapest way to multiply.
3532 Other uses like the latter are expected in the future.
3534 SPEED parameter specify whether costs optimized for speed or size should
3538 rtx_cost (rtx x
, enum rtx_code outer_code ATTRIBUTE_UNUSED
, bool speed
)
3548 /* Compute the default costs of certain things.
3549 Note that targetm.rtx_costs can override the defaults. */
3551 code
= GET_CODE (x
);
3555 total
= COSTS_N_INSNS (5);
3561 total
= COSTS_N_INSNS (7);
3564 /* Used in combine.c as a marker. */
3568 total
= COSTS_N_INSNS (1);
3578 /* If we can't tie these modes, make this expensive. The larger
3579 the mode, the more expensive it is. */
3580 if (! MODES_TIEABLE_P (GET_MODE (x
), GET_MODE (SUBREG_REG (x
))))
3581 return COSTS_N_INSNS (2
3582 + GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
);
3586 if (targetm
.rtx_costs (x
, code
, outer_code
, &total
, speed
))
3591 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3592 which is already in total. */
3594 fmt
= GET_RTX_FORMAT (code
);
3595 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3597 total
+= rtx_cost (XEXP (x
, i
), code
, speed
);
3598 else if (fmt
[i
] == 'E')
3599 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3600 total
+= rtx_cost (XVECEXP (x
, i
, j
), code
, speed
);
3605 /* Return cost of address expression X.
3606 Expect that X is properly formed address reference.
3608 SPEED parameter specify whether costs optimized for speed or size should
3612 address_cost (rtx x
, enum machine_mode mode
, addr_space_t as
, bool speed
)
3614 /* We may be asked for cost of various unusual addresses, such as operands
3615 of push instruction. It is not worthwhile to complicate writing
3616 of the target hook by such cases. */
3618 if (!memory_address_addr_space_p (mode
, x
, as
))
3621 return targetm
.address_cost (x
, speed
);
3624 /* If the target doesn't override, compute the cost as with arithmetic. */
3627 default_address_cost (rtx x
, bool speed
)
3629 return rtx_cost (x
, MEM
, speed
);
3633 unsigned HOST_WIDE_INT
3634 nonzero_bits (const_rtx x
, enum machine_mode mode
)
3636 return cached_nonzero_bits (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3640 num_sign_bit_copies (const_rtx x
, enum machine_mode mode
)
3642 return cached_num_sign_bit_copies (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3645 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3646 It avoids exponential behavior in nonzero_bits1 when X has
3647 identical subexpressions on the first or the second level. */
3649 static unsigned HOST_WIDE_INT
3650 cached_nonzero_bits (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3651 enum machine_mode known_mode
,
3652 unsigned HOST_WIDE_INT known_ret
)
3654 if (x
== known_x
&& mode
== known_mode
)
3657 /* Try to find identical subexpressions. If found call
3658 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3659 precomputed value for the subexpression as KNOWN_RET. */
3661 if (ARITHMETIC_P (x
))
3663 rtx x0
= XEXP (x
, 0);
3664 rtx x1
= XEXP (x
, 1);
3666 /* Check the first level. */
3668 return nonzero_bits1 (x
, mode
, x0
, mode
,
3669 cached_nonzero_bits (x0
, mode
, known_x
,
3670 known_mode
, known_ret
));
3672 /* Check the second level. */
3673 if (ARITHMETIC_P (x0
)
3674 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
3675 return nonzero_bits1 (x
, mode
, x1
, mode
,
3676 cached_nonzero_bits (x1
, mode
, known_x
,
3677 known_mode
, known_ret
));
3679 if (ARITHMETIC_P (x1
)
3680 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
3681 return nonzero_bits1 (x
, mode
, x0
, mode
,
3682 cached_nonzero_bits (x0
, mode
, known_x
,
3683 known_mode
, known_ret
));
3686 return nonzero_bits1 (x
, mode
, known_x
, known_mode
, known_ret
);
3689 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3690 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3691 is less useful. We can't allow both, because that results in exponential
3692 run time recursion. There is a nullstone testcase that triggered
3693 this. This macro avoids accidental uses of num_sign_bit_copies. */
3694 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3696 /* Given an expression, X, compute which bits in X can be nonzero.
3697 We don't care about bits outside of those defined in MODE.
3699 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3700 an arithmetic operation, we can do better. */
3702 static unsigned HOST_WIDE_INT
3703 nonzero_bits1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3704 enum machine_mode known_mode
,
3705 unsigned HOST_WIDE_INT known_ret
)
3707 unsigned HOST_WIDE_INT nonzero
= GET_MODE_MASK (mode
);
3708 unsigned HOST_WIDE_INT inner_nz
;
3710 unsigned int mode_width
= GET_MODE_BITSIZE (mode
);
3712 /* For floating-point and vector values, assume all bits are needed. */
3713 if (FLOAT_MODE_P (GET_MODE (x
)) || FLOAT_MODE_P (mode
)
3714 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
3717 /* If X is wider than MODE, use its mode instead. */
3718 if (GET_MODE_BITSIZE (GET_MODE (x
)) > mode_width
)
3720 mode
= GET_MODE (x
);
3721 nonzero
= GET_MODE_MASK (mode
);
3722 mode_width
= GET_MODE_BITSIZE (mode
);
3725 if (mode_width
> HOST_BITS_PER_WIDE_INT
)
3726 /* Our only callers in this case look for single bit values. So
3727 just return the mode mask. Those tests will then be false. */
3730 #ifndef WORD_REGISTER_OPERATIONS
3731 /* If MODE is wider than X, but both are a single word for both the host
3732 and target machines, we can compute this from which bits of the
3733 object might be nonzero in its own mode, taking into account the fact
3734 that on many CISC machines, accessing an object in a wider mode
3735 causes the high-order bits to become undefined. So they are
3736 not known to be zero. */
3738 if (GET_MODE (x
) != VOIDmode
&& GET_MODE (x
) != mode
3739 && GET_MODE_BITSIZE (GET_MODE (x
)) <= BITS_PER_WORD
3740 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
3741 && GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (GET_MODE (x
)))
3743 nonzero
&= cached_nonzero_bits (x
, GET_MODE (x
),
3744 known_x
, known_mode
, known_ret
);
3745 nonzero
|= GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
));
3750 code
= GET_CODE (x
);
3754 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3755 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3756 all the bits above ptr_mode are known to be zero. */
3757 /* As we do not know which address space the pointer is refering to,
3758 we can do this only if the target does not support different pointer
3759 or address modes depending on the address space. */
3760 if (target_default_pointer_address_modes_p ()
3761 && POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
3763 nonzero
&= GET_MODE_MASK (ptr_mode
);
3766 /* Include declared information about alignment of pointers. */
3767 /* ??? We don't properly preserve REG_POINTER changes across
3768 pointer-to-integer casts, so we can't trust it except for
3769 things that we know must be pointers. See execute/960116-1.c. */
3770 if ((x
== stack_pointer_rtx
3771 || x
== frame_pointer_rtx
3772 || x
== arg_pointer_rtx
)
3773 && REGNO_POINTER_ALIGN (REGNO (x
)))
3775 unsigned HOST_WIDE_INT alignment
3776 = REGNO_POINTER_ALIGN (REGNO (x
)) / BITS_PER_UNIT
;
3778 #ifdef PUSH_ROUNDING
3779 /* If PUSH_ROUNDING is defined, it is possible for the
3780 stack to be momentarily aligned only to that amount,
3781 so we pick the least alignment. */
3782 if (x
== stack_pointer_rtx
&& PUSH_ARGS
)
3783 alignment
= MIN ((unsigned HOST_WIDE_INT
) PUSH_ROUNDING (1),
3787 nonzero
&= ~(alignment
- 1);
3791 unsigned HOST_WIDE_INT nonzero_for_hook
= nonzero
;
3792 rtx new_rtx
= rtl_hooks
.reg_nonzero_bits (x
, mode
, known_x
,
3793 known_mode
, known_ret
,
3797 nonzero_for_hook
&= cached_nonzero_bits (new_rtx
, mode
, known_x
,
3798 known_mode
, known_ret
);
3800 return nonzero_for_hook
;
3804 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3805 /* If X is negative in MODE, sign-extend the value. */
3806 if (INTVAL (x
) > 0 && mode_width
< BITS_PER_WORD
3807 && 0 != (INTVAL (x
) & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))))
3808 return (INTVAL (x
) | ((HOST_WIDE_INT
) (-1) << mode_width
));
3814 #ifdef LOAD_EXTEND_OP
3815 /* In many, if not most, RISC machines, reading a byte from memory
3816 zeros the rest of the register. Noticing that fact saves a lot
3817 of extra zero-extends. */
3818 if (LOAD_EXTEND_OP (GET_MODE (x
)) == ZERO_EXTEND
)
3819 nonzero
&= GET_MODE_MASK (GET_MODE (x
));
3824 case UNEQ
: case LTGT
:
3825 case GT
: case GTU
: case UNGT
:
3826 case LT
: case LTU
: case UNLT
:
3827 case GE
: case GEU
: case UNGE
:
3828 case LE
: case LEU
: case UNLE
:
3829 case UNORDERED
: case ORDERED
:
3830 /* If this produces an integer result, we know which bits are set.
3831 Code here used to clear bits outside the mode of X, but that is
3833 /* Mind that MODE is the mode the caller wants to look at this
3834 operation in, and not the actual operation mode. We can wind
3835 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3836 that describes the results of a vector compare. */
3837 if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
3838 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
3839 nonzero
= STORE_FLAG_VALUE
;
3844 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3845 and num_sign_bit_copies. */
3846 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
3847 == GET_MODE_BITSIZE (GET_MODE (x
)))
3851 if (GET_MODE_SIZE (GET_MODE (x
)) < mode_width
)
3852 nonzero
|= (GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
)));
3857 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3858 and num_sign_bit_copies. */
3859 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
3860 == GET_MODE_BITSIZE (GET_MODE (x
)))
3866 nonzero
&= (cached_nonzero_bits (XEXP (x
, 0), mode
,
3867 known_x
, known_mode
, known_ret
)
3868 & GET_MODE_MASK (mode
));
3872 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
3873 known_x
, known_mode
, known_ret
);
3874 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
3875 nonzero
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
3879 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3880 Otherwise, show all the bits in the outer mode but not the inner
3882 inner_nz
= cached_nonzero_bits (XEXP (x
, 0), mode
,
3883 known_x
, known_mode
, known_ret
);
3884 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
3886 inner_nz
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
3888 & (((HOST_WIDE_INT
) 1
3889 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - 1))))
3890 inner_nz
|= (GET_MODE_MASK (mode
)
3891 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0))));
3894 nonzero
&= inner_nz
;
3898 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
3899 known_x
, known_mode
, known_ret
)
3900 & cached_nonzero_bits (XEXP (x
, 1), mode
,
3901 known_x
, known_mode
, known_ret
);
3905 case UMIN
: case UMAX
: case SMIN
: case SMAX
:
3907 unsigned HOST_WIDE_INT nonzero0
=
3908 cached_nonzero_bits (XEXP (x
, 0), mode
,
3909 known_x
, known_mode
, known_ret
);
3911 /* Don't call nonzero_bits for the second time if it cannot change
3913 if ((nonzero
& nonzero0
) != nonzero
)
3915 | cached_nonzero_bits (XEXP (x
, 1), mode
,
3916 known_x
, known_mode
, known_ret
);
3920 case PLUS
: case MINUS
:
3922 case DIV
: case UDIV
:
3923 case MOD
: case UMOD
:
3924 /* We can apply the rules of arithmetic to compute the number of
3925 high- and low-order zero bits of these operations. We start by
3926 computing the width (position of the highest-order nonzero bit)
3927 and the number of low-order zero bits for each value. */
3929 unsigned HOST_WIDE_INT nz0
=
3930 cached_nonzero_bits (XEXP (x
, 0), mode
,
3931 known_x
, known_mode
, known_ret
);
3932 unsigned HOST_WIDE_INT nz1
=
3933 cached_nonzero_bits (XEXP (x
, 1), mode
,
3934 known_x
, known_mode
, known_ret
);
3935 int sign_index
= GET_MODE_BITSIZE (GET_MODE (x
)) - 1;
3936 int width0
= floor_log2 (nz0
) + 1;
3937 int width1
= floor_log2 (nz1
) + 1;
3938 int low0
= floor_log2 (nz0
& -nz0
);
3939 int low1
= floor_log2 (nz1
& -nz1
);
3940 HOST_WIDE_INT op0_maybe_minusp
3941 = (nz0
& ((HOST_WIDE_INT
) 1 << sign_index
));
3942 HOST_WIDE_INT op1_maybe_minusp
3943 = (nz1
& ((HOST_WIDE_INT
) 1 << sign_index
));
3944 unsigned int result_width
= mode_width
;
3950 result_width
= MAX (width0
, width1
) + 1;
3951 result_low
= MIN (low0
, low1
);
3954 result_low
= MIN (low0
, low1
);
3957 result_width
= width0
+ width1
;
3958 result_low
= low0
+ low1
;
3963 if (! op0_maybe_minusp
&& ! op1_maybe_minusp
)
3964 result_width
= width0
;
3969 result_width
= width0
;
3974 if (! op0_maybe_minusp
&& ! op1_maybe_minusp
)
3975 result_width
= MIN (width0
, width1
);
3976 result_low
= MIN (low0
, low1
);
3981 result_width
= MIN (width0
, width1
);
3982 result_low
= MIN (low0
, low1
);
3988 if (result_width
< mode_width
)
3989 nonzero
&= ((HOST_WIDE_INT
) 1 << result_width
) - 1;
3992 nonzero
&= ~(((HOST_WIDE_INT
) 1 << result_low
) - 1);
3994 #ifdef POINTERS_EXTEND_UNSIGNED
3995 /* If pointers extend unsigned and this is an addition or subtraction
3996 to a pointer in Pmode, all the bits above ptr_mode are known to be
3998 /* As we do not know which address space the pointer is refering to,
3999 we can do this only if the target does not support different pointer
4000 or address modes depending on the address space. */
4001 if (target_default_pointer_address_modes_p ()
4002 && POINTERS_EXTEND_UNSIGNED
> 0 && GET_MODE (x
) == Pmode
4003 && (code
== PLUS
|| code
== MINUS
)
4004 && REG_P (XEXP (x
, 0)) && REG_POINTER (XEXP (x
, 0)))
4005 nonzero
&= GET_MODE_MASK (ptr_mode
);
4011 if (CONST_INT_P (XEXP (x
, 1))
4012 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
4013 nonzero
&= ((HOST_WIDE_INT
) 1 << INTVAL (XEXP (x
, 1))) - 1;
4017 /* If this is a SUBREG formed for a promoted variable that has
4018 been zero-extended, we know that at least the high-order bits
4019 are zero, though others might be too. */
4021 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_UNSIGNED_P (x
) > 0)
4022 nonzero
= GET_MODE_MASK (GET_MODE (x
))
4023 & cached_nonzero_bits (SUBREG_REG (x
), GET_MODE (x
),
4024 known_x
, known_mode
, known_ret
);
4026 /* If the inner mode is a single word for both the host and target
4027 machines, we can compute this from which bits of the inner
4028 object might be nonzero. */
4029 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) <= BITS_PER_WORD
4030 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
4031 <= HOST_BITS_PER_WIDE_INT
))
4033 nonzero
&= cached_nonzero_bits (SUBREG_REG (x
), mode
,
4034 known_x
, known_mode
, known_ret
);
4036 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4037 /* If this is a typical RISC machine, we only have to worry
4038 about the way loads are extended. */
4039 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
4041 & (((unsigned HOST_WIDE_INT
) 1
4042 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) - 1))))
4044 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) != ZERO_EXTEND
)
4045 || !MEM_P (SUBREG_REG (x
)))
4048 /* On many CISC machines, accessing an object in a wider mode
4049 causes the high-order bits to become undefined. So they are
4050 not known to be zero. */
4051 if (GET_MODE_SIZE (GET_MODE (x
))
4052 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
4053 nonzero
|= (GET_MODE_MASK (GET_MODE (x
))
4054 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
))));
4063 /* The nonzero bits are in two classes: any bits within MODE
4064 that aren't in GET_MODE (x) are always significant. The rest of the
4065 nonzero bits are those that are significant in the operand of
4066 the shift when shifted the appropriate number of bits. This
4067 shows that high-order bits are cleared by the right shift and
4068 low-order bits by left shifts. */
4069 if (CONST_INT_P (XEXP (x
, 1))
4070 && INTVAL (XEXP (x
, 1)) >= 0
4071 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
4072 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (GET_MODE (x
)))
4074 enum machine_mode inner_mode
= GET_MODE (x
);
4075 unsigned int width
= GET_MODE_BITSIZE (inner_mode
);
4076 int count
= INTVAL (XEXP (x
, 1));
4077 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (inner_mode
);
4078 unsigned HOST_WIDE_INT op_nonzero
=
4079 cached_nonzero_bits (XEXP (x
, 0), mode
,
4080 known_x
, known_mode
, known_ret
);
4081 unsigned HOST_WIDE_INT inner
= op_nonzero
& mode_mask
;
4082 unsigned HOST_WIDE_INT outer
= 0;
4084 if (mode_width
> width
)
4085 outer
= (op_nonzero
& nonzero
& ~mode_mask
);
4087 if (code
== LSHIFTRT
)
4089 else if (code
== ASHIFTRT
)
4093 /* If the sign bit may have been nonzero before the shift, we
4094 need to mark all the places it could have been copied to
4095 by the shift as possibly nonzero. */
4096 if (inner
& ((HOST_WIDE_INT
) 1 << (width
- 1 - count
)))
4097 inner
|= (((HOST_WIDE_INT
) 1 << count
) - 1) << (width
- count
);
4099 else if (code
== ASHIFT
)
4102 inner
= ((inner
<< (count
% width
)
4103 | (inner
>> (width
- (count
% width
)))) & mode_mask
);
4105 nonzero
&= (outer
| inner
);
4111 /* This is at most the number of bits in the mode. */
4112 nonzero
= ((HOST_WIDE_INT
) 2 << (floor_log2 (mode_width
))) - 1;
4116 /* If CLZ has a known value at zero, then the nonzero bits are
4117 that value, plus the number of bits in the mode minus one. */
4118 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4119 nonzero
|= ((HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4125 /* If CTZ has a known value at zero, then the nonzero bits are
4126 that value, plus the number of bits in the mode minus one. */
4127 if (CTZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4128 nonzero
|= ((HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4139 unsigned HOST_WIDE_INT nonzero_true
=
4140 cached_nonzero_bits (XEXP (x
, 1), mode
,
4141 known_x
, known_mode
, known_ret
);
4143 /* Don't call nonzero_bits for the second time if it cannot change
4145 if ((nonzero
& nonzero_true
) != nonzero
)
4146 nonzero
&= nonzero_true
4147 | cached_nonzero_bits (XEXP (x
, 2), mode
,
4148 known_x
, known_mode
, known_ret
);
4159 /* See the macro definition above. */
4160 #undef cached_num_sign_bit_copies
4163 /* The function cached_num_sign_bit_copies is a wrapper around
4164 num_sign_bit_copies1. It avoids exponential behavior in
4165 num_sign_bit_copies1 when X has identical subexpressions on the
4166 first or the second level. */
4169 cached_num_sign_bit_copies (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4170 enum machine_mode known_mode
,
4171 unsigned int known_ret
)
4173 if (x
== known_x
&& mode
== known_mode
)
4176 /* Try to find identical subexpressions. If found call
4177 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4178 the precomputed value for the subexpression as KNOWN_RET. */
4180 if (ARITHMETIC_P (x
))
4182 rtx x0
= XEXP (x
, 0);
4183 rtx x1
= XEXP (x
, 1);
4185 /* Check the first level. */
4188 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4189 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4193 /* Check the second level. */
4194 if (ARITHMETIC_P (x0
)
4195 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
4197 num_sign_bit_copies1 (x
, mode
, x1
, mode
,
4198 cached_num_sign_bit_copies (x1
, mode
, known_x
,
4202 if (ARITHMETIC_P (x1
)
4203 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
4205 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4206 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4211 return num_sign_bit_copies1 (x
, mode
, known_x
, known_mode
, known_ret
);
4214 /* Return the number of bits at the high-order end of X that are known to
4215 be equal to the sign bit. X will be used in mode MODE; if MODE is
4216 VOIDmode, X will be used in its own mode. The returned value will always
4217 be between 1 and the number of bits in MODE. */
4220 num_sign_bit_copies1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4221 enum machine_mode known_mode
,
4222 unsigned int known_ret
)
4224 enum rtx_code code
= GET_CODE (x
);
4225 unsigned int bitwidth
= GET_MODE_BITSIZE (mode
);
4226 int num0
, num1
, result
;
4227 unsigned HOST_WIDE_INT nonzero
;
4229 /* If we weren't given a mode, use the mode of X. If the mode is still
4230 VOIDmode, we don't know anything. Likewise if one of the modes is
4233 if (mode
== VOIDmode
)
4234 mode
= GET_MODE (x
);
4236 if (mode
== VOIDmode
|| FLOAT_MODE_P (mode
) || FLOAT_MODE_P (GET_MODE (x
))
4237 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
4240 /* For a smaller object, just ignore the high bits. */
4241 if (bitwidth
< GET_MODE_BITSIZE (GET_MODE (x
)))
4243 num0
= cached_num_sign_bit_copies (x
, GET_MODE (x
),
4244 known_x
, known_mode
, known_ret
);
4246 num0
- (int) (GET_MODE_BITSIZE (GET_MODE (x
)) - bitwidth
));
4249 if (GET_MODE (x
) != VOIDmode
&& bitwidth
> GET_MODE_BITSIZE (GET_MODE (x
)))
4251 #ifndef WORD_REGISTER_OPERATIONS
4252 /* If this machine does not do all register operations on the entire
4253 register and MODE is wider than the mode of X, we can say nothing
4254 at all about the high-order bits. */
4257 /* Likewise on machines that do, if the mode of the object is smaller
4258 than a word and loads of that size don't sign extend, we can say
4259 nothing about the high order bits. */
4260 if (GET_MODE_BITSIZE (GET_MODE (x
)) < BITS_PER_WORD
4261 #ifdef LOAD_EXTEND_OP
4262 && LOAD_EXTEND_OP (GET_MODE (x
)) != SIGN_EXTEND
4273 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4274 /* If pointers extend signed and this is a pointer in Pmode, say that
4275 all the bits above ptr_mode are known to be sign bit copies. */
4276 /* As we do not know which address space the pointer is refering to,
4277 we can do this only if the target does not support different pointer
4278 or address modes depending on the address space. */
4279 if (target_default_pointer_address_modes_p ()
4280 && ! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
4281 && mode
== Pmode
&& REG_POINTER (x
))
4282 return GET_MODE_BITSIZE (Pmode
) - GET_MODE_BITSIZE (ptr_mode
) + 1;
4286 unsigned int copies_for_hook
= 1, copies
= 1;
4287 rtx new_rtx
= rtl_hooks
.reg_num_sign_bit_copies (x
, mode
, known_x
,
4288 known_mode
, known_ret
,
4292 copies
= cached_num_sign_bit_copies (new_rtx
, mode
, known_x
,
4293 known_mode
, known_ret
);
4295 if (copies
> 1 || copies_for_hook
> 1)
4296 return MAX (copies
, copies_for_hook
);
4298 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4303 #ifdef LOAD_EXTEND_OP
4304 /* Some RISC machines sign-extend all loads of smaller than a word. */
4305 if (LOAD_EXTEND_OP (GET_MODE (x
)) == SIGN_EXTEND
)
4306 return MAX (1, ((int) bitwidth
4307 - (int) GET_MODE_BITSIZE (GET_MODE (x
)) + 1));
4312 /* If the constant is negative, take its 1's complement and remask.
4313 Then see how many zero bits we have. */
4314 nonzero
= INTVAL (x
) & GET_MODE_MASK (mode
);
4315 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4316 && (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4317 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4319 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4322 /* If this is a SUBREG for a promoted object that is sign-extended
4323 and we are looking at it in a wider mode, we know that at least the
4324 high-order bits are known to be sign bit copies. */
4326 if (SUBREG_PROMOTED_VAR_P (x
) && ! SUBREG_PROMOTED_UNSIGNED_P (x
))
4328 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4329 known_x
, known_mode
, known_ret
);
4330 return MAX ((int) bitwidth
4331 - (int) GET_MODE_BITSIZE (GET_MODE (x
)) + 1,
4335 /* For a smaller object, just ignore the high bits. */
4336 if (bitwidth
<= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))))
4338 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), VOIDmode
,
4339 known_x
, known_mode
, known_ret
);
4340 return MAX (1, (num0
4341 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
4345 #ifdef WORD_REGISTER_OPERATIONS
4346 #ifdef LOAD_EXTEND_OP
4347 /* For paradoxical SUBREGs on machines where all register operations
4348 affect the entire register, just look inside. Note that we are
4349 passing MODE to the recursive call, so the number of sign bit copies
4350 will remain relative to that mode, not the inner mode. */
4352 /* This works only if loads sign extend. Otherwise, if we get a
4353 reload for the inner part, it may be loaded from the stack, and
4354 then we lose all sign bit copies that existed before the store
4357 if ((GET_MODE_SIZE (GET_MODE (x
))
4358 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
4359 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
4360 && MEM_P (SUBREG_REG (x
)))
4361 return cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4362 known_x
, known_mode
, known_ret
);
4368 if (CONST_INT_P (XEXP (x
, 1)))
4369 return MAX (1, (int) bitwidth
- INTVAL (XEXP (x
, 1)));
4373 return (bitwidth
- GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
4374 + cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4375 known_x
, known_mode
, known_ret
));
4378 /* For a smaller object, just ignore the high bits. */
4379 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4380 known_x
, known_mode
, known_ret
);
4381 return MAX (1, (num0
- (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
4385 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4386 known_x
, known_mode
, known_ret
);
4388 case ROTATE
: case ROTATERT
:
4389 /* If we are rotating left by a number of bits less than the number
4390 of sign bit copies, we can just subtract that amount from the
4392 if (CONST_INT_P (XEXP (x
, 1))
4393 && INTVAL (XEXP (x
, 1)) >= 0
4394 && INTVAL (XEXP (x
, 1)) < (int) bitwidth
)
4396 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4397 known_x
, known_mode
, known_ret
);
4398 return MAX (1, num0
- (code
== ROTATE
? INTVAL (XEXP (x
, 1))
4399 : (int) bitwidth
- INTVAL (XEXP (x
, 1))));
4404 /* In general, this subtracts one sign bit copy. But if the value
4405 is known to be positive, the number of sign bit copies is the
4406 same as that of the input. Finally, if the input has just one bit
4407 that might be nonzero, all the bits are copies of the sign bit. */
4408 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4409 known_x
, known_mode
, known_ret
);
4410 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4411 return num0
> 1 ? num0
- 1 : 1;
4413 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4418 && (((HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
))
4423 case IOR
: case AND
: case XOR
:
4424 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
4425 /* Logical operations will preserve the number of sign-bit copies.
4426 MIN and MAX operations always return one of the operands. */
4427 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4428 known_x
, known_mode
, known_ret
);
4429 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4430 known_x
, known_mode
, known_ret
);
4432 /* If num1 is clearing some of the top bits then regardless of
4433 the other term, we are guaranteed to have at least that many
4434 high-order zero bits. */
4437 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4438 && CONST_INT_P (XEXP (x
, 1))
4439 && !(INTVAL (XEXP (x
, 1)) & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))))
4442 /* Similarly for IOR when setting high-order bits. */
4445 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4446 && CONST_INT_P (XEXP (x
, 1))
4447 && (INTVAL (XEXP (x
, 1)) & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))))
4450 return MIN (num0
, num1
);
4452 case PLUS
: case MINUS
:
4453 /* For addition and subtraction, we can have a 1-bit carry. However,
4454 if we are subtracting 1 from a positive number, there will not
4455 be such a carry. Furthermore, if the positive number is known to
4456 be 0 or 1, we know the result is either -1 or 0. */
4458 if (code
== PLUS
&& XEXP (x
, 1) == constm1_rtx
4459 && bitwidth
<= HOST_BITS_PER_WIDE_INT
)
4461 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4462 if ((((HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
) == 0)
4463 return (nonzero
== 1 || nonzero
== 0 ? bitwidth
4464 : bitwidth
- floor_log2 (nonzero
) - 1);
4467 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4468 known_x
, known_mode
, known_ret
);
4469 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4470 known_x
, known_mode
, known_ret
);
4471 result
= MAX (1, MIN (num0
, num1
) - 1);
4473 #ifdef POINTERS_EXTEND_UNSIGNED
4474 /* If pointers extend signed and this is an addition or subtraction
4475 to a pointer in Pmode, all the bits above ptr_mode are known to be
4477 /* As we do not know which address space the pointer is refering to,
4478 we can do this only if the target does not support different pointer
4479 or address modes depending on the address space. */
4480 if (target_default_pointer_address_modes_p ()
4481 && ! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
4482 && (code
== PLUS
|| code
== MINUS
)
4483 && REG_P (XEXP (x
, 0)) && REG_POINTER (XEXP (x
, 0)))
4484 result
= MAX ((int) (GET_MODE_BITSIZE (Pmode
)
4485 - GET_MODE_BITSIZE (ptr_mode
) + 1),
4491 /* The number of bits of the product is the sum of the number of
4492 bits of both terms. However, unless one of the terms if known
4493 to be positive, we must allow for an additional bit since negating
4494 a negative number can remove one sign bit copy. */
4496 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4497 known_x
, known_mode
, known_ret
);
4498 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4499 known_x
, known_mode
, known_ret
);
4501 result
= bitwidth
- (bitwidth
- num0
) - (bitwidth
- num1
);
4503 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4504 || (((nonzero_bits (XEXP (x
, 0), mode
)
4505 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4506 && ((nonzero_bits (XEXP (x
, 1), mode
)
4507 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))))
4510 return MAX (1, result
);
4513 /* The result must be <= the first operand. If the first operand
4514 has the high bit set, we know nothing about the number of sign
4516 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4518 else if ((nonzero_bits (XEXP (x
, 0), mode
)
4519 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4522 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4523 known_x
, known_mode
, known_ret
);
4526 /* The result must be <= the second operand. If the second operand
4527 has (or just might have) the high bit set, we know nothing about
4528 the number of sign bit copies. */
4529 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4531 else if ((nonzero_bits (XEXP (x
, 1), mode
)
4532 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4535 return cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4536 known_x
, known_mode
, known_ret
);
4539 /* Similar to unsigned division, except that we have to worry about
4540 the case where the divisor is negative, in which case we have
4542 result
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4543 known_x
, known_mode
, known_ret
);
4545 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4546 || (nonzero_bits (XEXP (x
, 1), mode
)
4547 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4553 result
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4554 known_x
, known_mode
, known_ret
);
4556 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4557 || (nonzero_bits (XEXP (x
, 1), mode
)
4558 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4564 /* Shifts by a constant add to the number of bits equal to the
4566 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4567 known_x
, known_mode
, known_ret
);
4568 if (CONST_INT_P (XEXP (x
, 1))
4569 && INTVAL (XEXP (x
, 1)) > 0
4570 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (GET_MODE (x
)))
4571 num0
= MIN ((int) bitwidth
, num0
+ INTVAL (XEXP (x
, 1)));
4576 /* Left shifts destroy copies. */
4577 if (!CONST_INT_P (XEXP (x
, 1))
4578 || INTVAL (XEXP (x
, 1)) < 0
4579 || INTVAL (XEXP (x
, 1)) >= (int) bitwidth
4580 || INTVAL (XEXP (x
, 1)) >= GET_MODE_BITSIZE (GET_MODE (x
)))
4583 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4584 known_x
, known_mode
, known_ret
);
4585 return MAX (1, num0
- INTVAL (XEXP (x
, 1)));
4588 num0
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4589 known_x
, known_mode
, known_ret
);
4590 num1
= cached_num_sign_bit_copies (XEXP (x
, 2), mode
,
4591 known_x
, known_mode
, known_ret
);
4592 return MIN (num0
, num1
);
4594 case EQ
: case NE
: case GE
: case GT
: case LE
: case LT
:
4595 case UNEQ
: case LTGT
: case UNGE
: case UNGT
: case UNLE
: case UNLT
:
4596 case GEU
: case GTU
: case LEU
: case LTU
:
4597 case UNORDERED
: case ORDERED
:
4598 /* If the constant is negative, take its 1's complement and remask.
4599 Then see how many zero bits we have. */
4600 nonzero
= STORE_FLAG_VALUE
;
4601 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4602 && (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4603 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4605 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4611 /* If we haven't been able to figure it out by one of the above rules,
4612 see if some of the high-order bits are known to be zero. If so,
4613 count those bits and return one less than that amount. If we can't
4614 safely compute the mask for this mode, always return BITWIDTH. */
4616 bitwidth
= GET_MODE_BITSIZE (mode
);
4617 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4620 nonzero
= nonzero_bits (x
, mode
);
4621 return nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))
4622 ? 1 : bitwidth
- floor_log2 (nonzero
) - 1;
4625 /* Calculate the rtx_cost of a single instruction. A return value of
4626 zero indicates an instruction pattern without a known cost. */
4629 insn_rtx_cost (rtx pat
, bool speed
)
4634 /* Extract the single set rtx from the instruction pattern.
4635 We can't use single_set since we only have the pattern. */
4636 if (GET_CODE (pat
) == SET
)
4638 else if (GET_CODE (pat
) == PARALLEL
)
4641 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
4643 rtx x
= XVECEXP (pat
, 0, i
);
4644 if (GET_CODE (x
) == SET
)
4657 cost
= rtx_cost (SET_SRC (set
), SET
, speed
);
4658 return cost
> 0 ? cost
: COSTS_N_INSNS (1);
4661 /* Given an insn INSN and condition COND, return the condition in a
4662 canonical form to simplify testing by callers. Specifically:
4664 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4665 (2) Both operands will be machine operands; (cc0) will have been replaced.
4666 (3) If an operand is a constant, it will be the second operand.
4667 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4668 for GE, GEU, and LEU.
4670 If the condition cannot be understood, or is an inequality floating-point
4671 comparison which needs to be reversed, 0 will be returned.
4673 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4675 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4676 insn used in locating the condition was found. If a replacement test
4677 of the condition is desired, it should be placed in front of that
4678 insn and we will be sure that the inputs are still valid.
4680 If WANT_REG is nonzero, we wish the condition to be relative to that
4681 register, if possible. Therefore, do not canonicalize the condition
4682 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4683 to be a compare to a CC mode register.
4685 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4689 canonicalize_condition (rtx insn
, rtx cond
, int reverse
, rtx
*earliest
,
4690 rtx want_reg
, int allow_cc_mode
, int valid_at_insn_p
)
4697 int reverse_code
= 0;
4698 enum machine_mode mode
;
4699 basic_block bb
= BLOCK_FOR_INSN (insn
);
4701 code
= GET_CODE (cond
);
4702 mode
= GET_MODE (cond
);
4703 op0
= XEXP (cond
, 0);
4704 op1
= XEXP (cond
, 1);
4707 code
= reversed_comparison_code (cond
, insn
);
4708 if (code
== UNKNOWN
)
4714 /* If we are comparing a register with zero, see if the register is set
4715 in the previous insn to a COMPARE or a comparison operation. Perform
4716 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4719 while ((GET_RTX_CLASS (code
) == RTX_COMPARE
4720 || GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
)
4721 && op1
== CONST0_RTX (GET_MODE (op0
))
4724 /* Set nonzero when we find something of interest. */
4728 /* If comparison with cc0, import actual comparison from compare
4732 if ((prev
= prev_nonnote_insn (prev
)) == 0
4733 || !NONJUMP_INSN_P (prev
)
4734 || (set
= single_set (prev
)) == 0
4735 || SET_DEST (set
) != cc0_rtx
)
4738 op0
= SET_SRC (set
);
4739 op1
= CONST0_RTX (GET_MODE (op0
));
4745 /* If this is a COMPARE, pick up the two things being compared. */
4746 if (GET_CODE (op0
) == COMPARE
)
4748 op1
= XEXP (op0
, 1);
4749 op0
= XEXP (op0
, 0);
4752 else if (!REG_P (op0
))
4755 /* Go back to the previous insn. Stop if it is not an INSN. We also
4756 stop if it isn't a single set or if it has a REG_INC note because
4757 we don't want to bother dealing with it. */
4760 prev
= prev_nonnote_insn (prev
);
4761 while (prev
&& DEBUG_INSN_P (prev
));
4764 || !NONJUMP_INSN_P (prev
)
4765 || FIND_REG_INC_NOTE (prev
, NULL_RTX
)
4766 /* In cfglayout mode, there do not have to be labels at the
4767 beginning of a block, or jumps at the end, so the previous
4768 conditions would not stop us when we reach bb boundary. */
4769 || BLOCK_FOR_INSN (prev
) != bb
)
4772 set
= set_of (op0
, prev
);
4775 && (GET_CODE (set
) != SET
4776 || !rtx_equal_p (SET_DEST (set
), op0
)))
4779 /* If this is setting OP0, get what it sets it to if it looks
4783 enum machine_mode inner_mode
= GET_MODE (SET_DEST (set
));
4784 #ifdef FLOAT_STORE_FLAG_VALUE
4785 REAL_VALUE_TYPE fsfv
;
4788 /* ??? We may not combine comparisons done in a CCmode with
4789 comparisons not done in a CCmode. This is to aid targets
4790 like Alpha that have an IEEE compliant EQ instruction, and
4791 a non-IEEE compliant BEQ instruction. The use of CCmode is
4792 actually artificial, simply to prevent the combination, but
4793 should not affect other platforms.
4795 However, we must allow VOIDmode comparisons to match either
4796 CCmode or non-CCmode comparison, because some ports have
4797 modeless comparisons inside branch patterns.
4799 ??? This mode check should perhaps look more like the mode check
4800 in simplify_comparison in combine. */
4802 if ((GET_CODE (SET_SRC (set
)) == COMPARE
4805 && GET_MODE_CLASS (inner_mode
) == MODE_INT
4806 && (GET_MODE_BITSIZE (inner_mode
)
4807 <= HOST_BITS_PER_WIDE_INT
)
4808 && (STORE_FLAG_VALUE
4809 & ((HOST_WIDE_INT
) 1
4810 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
4811 #ifdef FLOAT_STORE_FLAG_VALUE
4813 && SCALAR_FLOAT_MODE_P (inner_mode
)
4814 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
4815 REAL_VALUE_NEGATIVE (fsfv
)))
4818 && COMPARISON_P (SET_SRC (set
))))
4819 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
4820 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
4821 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
4823 else if (((code
== EQ
4825 && (GET_MODE_BITSIZE (inner_mode
)
4826 <= HOST_BITS_PER_WIDE_INT
)
4827 && GET_MODE_CLASS (inner_mode
) == MODE_INT
4828 && (STORE_FLAG_VALUE
4829 & ((HOST_WIDE_INT
) 1
4830 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
4831 #ifdef FLOAT_STORE_FLAG_VALUE
4833 && SCALAR_FLOAT_MODE_P (inner_mode
)
4834 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
4835 REAL_VALUE_NEGATIVE (fsfv
)))
4838 && COMPARISON_P (SET_SRC (set
))
4839 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
4840 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
4841 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
4851 else if (reg_set_p (op0
, prev
))
4852 /* If this sets OP0, but not directly, we have to give up. */
4857 /* If the caller is expecting the condition to be valid at INSN,
4858 make sure X doesn't change before INSN. */
4859 if (valid_at_insn_p
)
4860 if (modified_in_p (x
, prev
) || modified_between_p (x
, prev
, insn
))
4862 if (COMPARISON_P (x
))
4863 code
= GET_CODE (x
);
4866 code
= reversed_comparison_code (x
, prev
);
4867 if (code
== UNKNOWN
)
4872 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
4878 /* If constant is first, put it last. */
4879 if (CONSTANT_P (op0
))
4880 code
= swap_condition (code
), tem
= op0
, op0
= op1
, op1
= tem
;
4882 /* If OP0 is the result of a comparison, we weren't able to find what
4883 was really being compared, so fail. */
4885 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
4888 /* Canonicalize any ordered comparison with integers involving equality
4889 if we can do computations in the relevant mode and we do not
4892 if (GET_MODE_CLASS (GET_MODE (op0
)) != MODE_CC
4893 && CONST_INT_P (op1
)
4894 && GET_MODE (op0
) != VOIDmode
4895 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
)
4897 HOST_WIDE_INT const_val
= INTVAL (op1
);
4898 unsigned HOST_WIDE_INT uconst_val
= const_val
;
4899 unsigned HOST_WIDE_INT max_val
4900 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (GET_MODE (op0
));
4905 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
4906 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
4909 /* When cross-compiling, const_val might be sign-extended from
4910 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4912 if ((HOST_WIDE_INT
) (const_val
& max_val
)
4913 != (((HOST_WIDE_INT
) 1
4914 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
4915 code
= GT
, op1
= gen_int_mode (const_val
- 1, GET_MODE (op0
));
4919 if (uconst_val
< max_val
)
4920 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, GET_MODE (op0
));
4924 if (uconst_val
!= 0)
4925 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, GET_MODE (op0
));
4933 /* Never return CC0; return zero instead. */
4937 return gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
4940 /* Given a jump insn JUMP, return the condition that will cause it to branch
4941 to its JUMP_LABEL. If the condition cannot be understood, or is an
4942 inequality floating-point comparison which needs to be reversed, 0 will
4945 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4946 insn used in locating the condition was found. If a replacement test
4947 of the condition is desired, it should be placed in front of that
4948 insn and we will be sure that the inputs are still valid. If EARLIEST
4949 is null, the returned condition will be valid at INSN.
4951 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4952 compare CC mode register.
4954 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4957 get_condition (rtx jump
, rtx
*earliest
, int allow_cc_mode
, int valid_at_insn_p
)
4963 /* If this is not a standard conditional jump, we can't parse it. */
4965 || ! any_condjump_p (jump
))
4967 set
= pc_set (jump
);
4969 cond
= XEXP (SET_SRC (set
), 0);
4971 /* If this branches to JUMP_LABEL when the condition is false, reverse
4974 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
4975 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
);
4977 return canonicalize_condition (jump
, cond
, reverse
, earliest
, NULL_RTX
,
4978 allow_cc_mode
, valid_at_insn_p
);
4981 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4982 TARGET_MODE_REP_EXTENDED.
4984 Note that we assume that the property of
4985 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4986 narrower than mode B. I.e., if A is a mode narrower than B then in
4987 order to be able to operate on it in mode B, mode A needs to
4988 satisfy the requirements set by the representation of mode B. */
4991 init_num_sign_bit_copies_in_rep (void)
4993 enum machine_mode mode
, in_mode
;
4995 for (in_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); in_mode
!= VOIDmode
;
4996 in_mode
= GET_MODE_WIDER_MODE (mode
))
4997 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= in_mode
;
4998 mode
= GET_MODE_WIDER_MODE (mode
))
5000 enum machine_mode i
;
5002 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5003 extends to the next widest mode. */
5004 gcc_assert (targetm
.mode_rep_extended (mode
, in_mode
) == UNKNOWN
5005 || GET_MODE_WIDER_MODE (mode
) == in_mode
);
5007 /* We are in in_mode. Count how many bits outside of mode
5008 have to be copies of the sign-bit. */
5009 for (i
= mode
; i
!= in_mode
; i
= GET_MODE_WIDER_MODE (i
))
5011 enum machine_mode wider
= GET_MODE_WIDER_MODE (i
);
5013 if (targetm
.mode_rep_extended (i
, wider
) == SIGN_EXTEND
5014 /* We can only check sign-bit copies starting from the
5015 top-bit. In order to be able to check the bits we
5016 have already seen we pretend that subsequent bits
5017 have to be sign-bit copies too. */
5018 || num_sign_bit_copies_in_rep
[in_mode
][mode
])
5019 num_sign_bit_copies_in_rep
[in_mode
][mode
]
5020 += GET_MODE_BITSIZE (wider
) - GET_MODE_BITSIZE (i
);
5025 /* Suppose that truncation from the machine mode of X to MODE is not a
5026 no-op. See if there is anything special about X so that we can
5027 assume it already contains a truncated value of MODE. */
5030 truncated_to_mode (enum machine_mode mode
, const_rtx x
)
5032 /* This register has already been used in MODE without explicit
5034 if (REG_P (x
) && rtl_hooks
.reg_truncated_to_mode (mode
, x
))
5037 /* See if we already satisfy the requirements of MODE. If yes we
5038 can just switch to MODE. */
5039 if (num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
]
5040 && (num_sign_bit_copies (x
, GET_MODE (x
))
5041 >= num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
] + 1))
5047 /* Initialize non_rtx_starting_operands, which is used to speed up
5053 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
5055 const char *format
= GET_RTX_FORMAT (i
);
5056 const char *first
= strpbrk (format
, "eEV");
5057 non_rtx_starting_operands
[i
] = first
? first
- format
: -1;
5060 init_num_sign_bit_copies_in_rep ();
5063 /* Check whether this is a constant pool constant. */
5065 constant_pool_constant_p (rtx x
)
5067 x
= avoid_constant_pool_reference (x
);
5068 return GET_CODE (x
) == CONST_DOUBLE
;
5071 /* If M is a bitmask that selects a field of low-order bits within an item but
5072 not the entire word, return the length of the field. Return -1 otherwise.
5073 M is used in machine mode MODE. */
5076 low_bitmask_len (enum machine_mode mode
, unsigned HOST_WIDE_INT m
)
5078 if (mode
!= VOIDmode
)
5080 if (GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
5082 m
&= GET_MODE_MASK (mode
);
5085 return exact_log2 (m
+ 1);