1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
24 #include "rtl-error.h"
26 #include "hard-reg-set.h"
30 #include "dominance.h"
33 #include "basic-block.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
42 #include "sched-int.h"
45 #include "langhooks.h"
46 #include "rtlhooks-def.h"
51 #ifdef INSN_SCHEDULING
52 #include "sel-sched-ir.h"
53 #include "sel-sched-dump.h"
54 #include "sel-sched.h"
57 /* Implementation of selective scheduling approach.
58 The below implementation follows the original approach with the following
61 o the scheduler works after register allocation (but can be also tuned
63 o some instructions are not copied or register renamed;
64 o conditional jumps are not moved with code duplication;
65 o several jumps in one parallel group are not supported;
66 o when pipelining outer loops, code motion through inner loops
68 o control and data speculation are supported;
69 o some improvements for better compile time/performance were made.
74 A vinsn, or virtual insn, is an insn with additional data characterizing
75 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
76 Vinsns also act as smart pointers to save memory by reusing them in
77 different expressions. A vinsn is described by vinsn_t type.
79 An expression is a vinsn with additional data characterizing its properties
80 at some point in the control flow graph. The data may be its usefulness,
81 priority, speculative status, whether it was renamed/subsituted, etc.
82 An expression is described by expr_t type.
84 Availability set (av_set) is a set of expressions at a given control flow
85 point. It is represented as av_set_t. The expressions in av sets are kept
86 sorted in the terms of expr_greater_p function. It allows to truncate
87 the set while leaving the best expressions.
89 A fence is a point through which code motion is prohibited. On each step,
90 we gather a parallel group of insns at a fence. It is possible to have
91 multiple fences. A fence is represented via fence_t.
93 A boundary is the border between the fence group and the rest of the code.
94 Currently, we never have more than one boundary per fence, as we finalize
95 the fence group when a jump is scheduled. A boundary is represented
101 The scheduler finds regions to schedule, schedules each one, and finalizes.
102 The regions are formed starting from innermost loops, so that when the inner
103 loop is pipelined, its prologue can be scheduled together with yet unprocessed
104 outer loop. The rest of acyclic regions are found using extend_rgns:
105 the blocks that are not yet allocated to any regions are traversed in top-down
106 order, and a block is added to a region to which all its predecessors belong;
107 otherwise, the block starts its own region.
109 The main scheduling loop (sel_sched_region_2) consists of just
110 scheduling on each fence and updating fences. For each fence,
111 we fill a parallel group of insns (fill_insns) until some insns can be added.
112 First, we compute available exprs (av-set) at the boundary of the current
113 group. Second, we choose the best expression from it. If the stall is
114 required to schedule any of the expressions, we advance the current cycle
115 appropriately. So, the final group does not exactly correspond to a VLIW
116 word. Third, we move the chosen expression to the boundary (move_op)
117 and update the intermediate av sets and liveness sets. We quit fill_insns
118 when either no insns left for scheduling or we have scheduled enough insns
119 so we feel like advancing a scheduling point.
121 Computing available expressions
122 ===============================
124 The computation (compute_av_set) is a bottom-up traversal. At each insn,
125 we're moving the union of its successors' sets through it via
126 moveup_expr_set. The dependent expressions are removed. Local
127 transformations (substitution, speculation) are applied to move more
128 exprs. Then the expr corresponding to the current insn is added.
129 The result is saved on each basic block header.
131 When traversing the CFG, we're moving down for no more than max_ws insns.
132 Also, we do not move down to ineligible successors (is_ineligible_successor),
133 which include moving along a back-edge, moving to already scheduled code,
134 and moving to another fence. The first two restrictions are lifted during
135 pipelining, which allows us to move insns along a back-edge. We always have
136 an acyclic region for scheduling because we forbid motion through fences.
138 Choosing the best expression
139 ============================
141 We sort the final availability set via sel_rank_for_schedule, then we remove
142 expressions which are not yet ready (tick_check_p) or which dest registers
143 cannot be used. For some of them, we choose another register via
144 find_best_reg. To do this, we run find_used_regs to calculate the set of
145 registers which cannot be used. The find_used_regs function performs
146 a traversal of code motion paths for an expr. We consider for renaming
147 only registers which are from the same regclass as the original one and
148 using which does not interfere with any live ranges. Finally, we convert
149 the resulting set to the ready list format and use max_issue and reorder*
150 hooks similarly to the Haifa scheduler.
152 Scheduling the best expression
153 ==============================
155 We run the move_op routine to perform the same type of code motion paths
156 traversal as in find_used_regs. (These are working via the same driver,
157 code_motion_path_driver.) When moving down the CFG, we look for original
158 instruction that gave birth to a chosen expression. We undo
159 the transformations performed on an expression via the history saved in it.
160 When found, we remove the instruction or leave a reg-reg copy/speculation
161 check if needed. On a way up, we insert bookkeeping copies at each join
162 point. If a copy is not needed, it will be removed later during this
163 traversal. We update the saved av sets and liveness sets on the way up, too.
165 Finalizing the schedule
166 =======================
168 When pipelining, we reschedule the blocks from which insns were pipelined
169 to get a tighter schedule. On Itanium, we also perform bundling via
170 the same routine from ia64.c.
172 Dependence analysis changes
173 ===========================
175 We augmented the sched-deps.c with hooks that get called when a particular
176 dependence is found in a particular part of an insn. Using these hooks, we
177 can do several actions such as: determine whether an insn can be moved through
178 another (has_dependence_p, moveup_expr); find out whether an insn can be
179 scheduled on the current cycle (tick_check_p); find out registers that
180 are set/used/clobbered by an insn and find out all the strange stuff that
181 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
182 init_global_and_expr_for_insn).
184 Initialization changes
185 ======================
187 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
188 reused in all of the schedulers. We have split up the initialization of data
189 of such parts into different functions prefixed with scheduler type and
190 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
191 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
192 The same splitting is done with current_sched_info structure:
193 dependence-related parts are in sched_deps_info, common part is in
194 common_sched_info, and haifa/sel/etc part is in current_sched_info.
199 As we now have multiple-point scheduling, this would not work with backends
200 which save some of the scheduler state to use it in the target hooks.
201 For this purpose, we introduce a concept of target contexts, which
202 encapsulate such information. The backend should implement simple routines
203 of allocating/freeing/setting such a context. The scheduler calls these
204 as target hooks and handles the target context as an opaque pointer (similar
205 to the DFA state type, state_t).
210 As the correct data dependence graph is not supported during scheduling (which
211 is to be changed in mid-term), we cache as much of the dependence analysis
212 results as possible to avoid reanalyzing. This includes: bitmap caches on
213 each insn in stream of the region saying yes/no for a query with a pair of
214 UIDs; hashtables with the previously done transformations on each insn in
215 stream; a vector keeping a history of transformations on each expr.
217 Also, we try to minimize the dependence context used on each fence to check
218 whether the given expression is ready for scheduling by removing from it
219 insns that are definitely completed the execution. The results of
220 tick_check_p checks are also cached in a vector on each fence.
222 We keep a valid liveness set on each insn in a region to avoid the high
223 cost of recomputation on large basic blocks.
225 Finally, we try to minimize the number of needed updates to the availability
226 sets. The updates happen in two cases: when fill_insns terminates,
227 we advance all fences and increase the stage number to show that the region
228 has changed and the sets are to be recomputed; and when the next iteration
229 of a loop in fill_insns happens (but this one reuses the saved av sets
230 on bb headers.) Thus, we try to break the fill_insns loop only when
231 "significant" number of insns from the current scheduling window was
232 scheduled. This should be made a target param.
235 TODO: correctly support the data dependence graph at all stages and get rid
236 of all caches. This should speed up the scheduler.
237 TODO: implement moving cond jumps with bookkeeping copies on both targets.
238 TODO: tune the scheduler before RA so it does not create too much pseudos.
242 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
243 selective scheduling and software pipelining.
244 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
246 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
247 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
248 for GCC. In Proceedings of GCC Developers' Summit 2006.
250 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
251 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
252 http://rogue.colorado.edu/EPIC7/.
256 /* True when pipelining is enabled. */
259 /* True if bookkeeping is enabled. */
262 /* Maximum number of insns that are eligible for renaming. */
263 int max_insns_to_rename
;
266 /* Definitions of local types and macros. */
268 /* Represents possible outcomes of moving an expression through an insn. */
269 enum MOVEUP_EXPR_CODE
271 /* The expression is not changed. */
274 /* Not changed, but requires a new destination register. */
277 /* Cannot be moved. */
280 /* Changed (substituted or speculated). */
284 /* The container to be passed into rtx search & replace functions. */
285 struct rtx_search_arg
287 /* What we are searching for. */
290 /* The occurrence counter. */
294 typedef struct rtx_search_arg
*rtx_search_arg_p
;
296 /* This struct contains precomputed hard reg sets that are needed when
297 computing registers available for renaming. */
298 struct hard_regs_data
300 /* For every mode, this stores registers available for use with
302 HARD_REG_SET regs_for_mode
[NUM_MACHINE_MODES
];
304 /* True when regs_for_mode[mode] is initialized. */
305 bool regs_for_mode_ok
[NUM_MACHINE_MODES
];
307 /* For every register, it has regs that are ok to rename into it.
308 The register in question is always set. If not, this means
309 that the whole set is not computed yet. */
310 HARD_REG_SET regs_for_rename
[FIRST_PSEUDO_REGISTER
];
312 /* For every mode, this stores registers not available due to
314 HARD_REG_SET regs_for_call_clobbered
[NUM_MACHINE_MODES
];
316 /* All registers that are used or call used. */
317 HARD_REG_SET regs_ever_used
;
320 /* Stack registers. */
321 HARD_REG_SET stack_regs
;
325 /* Holds the results of computation of available for renaming and
326 unavailable hard registers. */
329 /* These are unavailable due to calls crossing, globalness, etc. */
330 HARD_REG_SET unavailable_hard_regs
;
332 /* These are *available* for renaming. */
333 HARD_REG_SET available_for_renaming
;
335 /* Whether this code motion path crosses a call. */
339 /* A global structure that contains the needed information about harg
341 static struct hard_regs_data sel_hrd
;
344 /* This structure holds local data used in code_motion_path_driver hooks on
345 the same or adjacent levels of recursion. Here we keep those parameters
346 that are not used in code_motion_path_driver routine itself, but only in
347 its hooks. Moreover, all parameters that can be modified in hooks are
348 in this structure, so all other parameters passed explicitly to hooks are
350 struct cmpd_local_params
352 /* Local params used in move_op_* functions. */
354 /* Edges for bookkeeping generation. */
357 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
358 expr_t c_expr_merged
, c_expr_local
;
360 /* Local params used in fur_* functions. */
361 /* Copy of the ORIGINAL_INSN list, stores the original insns already
362 found before entering the current level of code_motion_path_driver. */
363 def_list_t old_original_insns
;
365 /* Local params used in move_op_* functions. */
366 /* True when we have removed last insn in the block which was
367 also a boundary. Do not update anything or create bookkeeping copies. */
368 BOOL_BITFIELD removed_last_insn
: 1;
371 /* Stores the static parameters for move_op_* calls. */
372 struct moveop_static_params
374 /* Destination register. */
377 /* Current C_EXPR. */
380 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
381 they are to be removed. */
384 #ifdef ENABLE_CHECKING
385 /* This is initialized to the insn on which the driver stopped its traversal. */
389 /* True if we scheduled an insn with different register. */
393 /* Stores the static parameters for fur_* calls. */
394 struct fur_static_params
396 /* Set of registers unavailable on the code motion path. */
399 /* Pointer to the list of original insns definitions. */
400 def_list_t
*original_insns
;
402 /* True if a code motion path contains a CALL insn. */
406 typedef struct fur_static_params
*fur_static_params_p
;
407 typedef struct cmpd_local_params
*cmpd_local_params_p
;
408 typedef struct moveop_static_params
*moveop_static_params_p
;
410 /* Set of hooks and parameters that determine behaviour specific to
411 move_op or find_used_regs functions. */
412 struct code_motion_path_driver_info_def
414 /* Called on enter to the basic block. */
415 int (*on_enter
) (insn_t
, cmpd_local_params_p
, void *, bool);
417 /* Called when original expr is found. */
418 void (*orig_expr_found
) (insn_t
, expr_t
, cmpd_local_params_p
, void *);
420 /* Called while descending current basic block if current insn is not
421 the original EXPR we're searching for. */
422 bool (*orig_expr_not_found
) (insn_t
, av_set_t
, void *);
424 /* Function to merge C_EXPRes from different successors. */
425 void (*merge_succs
) (insn_t
, insn_t
, int, cmpd_local_params_p
, void *);
427 /* Function to finalize merge from different successors and possibly
428 deallocate temporary data structures used for merging. */
429 void (*after_merge_succs
) (cmpd_local_params_p
, void *);
431 /* Called on the backward stage of recursion to do moveup_expr.
432 Used only with move_op_*. */
433 void (*ascend
) (insn_t
, void *);
435 /* Called on the ascending pass, before returning from the current basic
436 block or from the whole traversal. */
437 void (*at_first_insn
) (insn_t
, cmpd_local_params_p
, void *);
439 /* When processing successors in move_op we need only descend into
440 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
443 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
444 const char *routine_name
;
447 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
449 struct code_motion_path_driver_info_def
*code_motion_path_driver_info
;
451 /* Set of hooks for performing move_op and find_used_regs routines with
452 code_motion_path_driver. */
453 extern struct code_motion_path_driver_info_def move_op_hooks
, fur_hooks
;
455 /* True if/when we want to emulate Haifa scheduler in the common code.
456 This is used in sched_rgn_local_init and in various places in
458 int sched_emulate_haifa_p
;
460 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
461 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
462 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
463 scheduling window. */
466 /* Current fences. */
469 /* True when separable insns should be scheduled as RHSes. */
470 static bool enable_schedule_as_rhs_p
;
472 /* Used in verify_target_availability to assert that target reg is reported
473 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
474 we haven't scheduled anything on the previous fence.
475 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
476 have more conservative value than the one returned by the
477 find_used_regs, thus we shouldn't assert that these values are equal. */
478 static bool scheduled_something_on_previous_fence
;
480 /* All newly emitted insns will have their uids greater than this value. */
481 static int first_emitted_uid
;
483 /* Set of basic blocks that are forced to start new ebbs. This is a subset
484 of all the ebb heads. */
485 static bitmap_head _forced_ebb_heads
;
486 bitmap_head
*forced_ebb_heads
= &_forced_ebb_heads
;
488 /* Blocks that need to be rescheduled after pipelining. */
489 bitmap blocks_to_reschedule
= NULL
;
491 /* True when the first lv set should be ignored when updating liveness. */
492 static bool ignore_first
= false;
494 /* Number of insns max_issue has initialized data structures for. */
495 static int max_issue_size
= 0;
497 /* Whether we can issue more instructions. */
498 static int can_issue_more
;
500 /* Maximum software lookahead window size, reduced when rescheduling after
504 /* Number of insns scheduled in current region. */
505 static int num_insns_scheduled
;
507 /* A vector of expressions is used to be able to sort them. */
508 static vec
<expr_t
> vec_av_set
= vNULL
;
510 /* A vector of vinsns is used to hold temporary lists of vinsns. */
511 typedef vec
<vinsn_t
> vinsn_vec_t
;
513 /* This vector has the exprs which may still present in av_sets, but actually
514 can't be moved up due to bookkeeping created during code motion to another
515 fence. See comment near the call to update_and_record_unavailable_insns
516 for the detailed explanations. */
517 static vinsn_vec_t vec_bookkeeping_blocked_vinsns
= vinsn_vec_t ();
519 /* This vector has vinsns which are scheduled with renaming on the first fence
520 and then seen on the second. For expressions with such vinsns, target
521 availability information may be wrong. */
522 static vinsn_vec_t vec_target_unavailable_vinsns
= vinsn_vec_t ();
524 /* Vector to store temporary nops inserted in move_op to prevent removal
526 static vec
<insn_t
> vec_temp_moveop_nops
= vNULL
;
528 /* These bitmaps record original instructions scheduled on the current
529 iteration and bookkeeping copies created by them. */
530 static bitmap current_originators
= NULL
;
531 static bitmap current_copies
= NULL
;
533 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
534 visit them afterwards. */
535 static bitmap code_motion_visited_blocks
= NULL
;
537 /* Variables to accumulate different statistics. */
539 /* The number of bookkeeping copies created. */
540 static int stat_bookkeeping_copies
;
542 /* The number of insns that required bookkeeiping for their scheduling. */
543 static int stat_insns_needed_bookkeeping
;
545 /* The number of insns that got renamed. */
546 static int stat_renamed_scheduled
;
548 /* The number of substitutions made during scheduling. */
549 static int stat_substitutions_total
;
552 /* Forward declarations of static functions. */
553 static bool rtx_ok_for_substitution_p (rtx
, rtx
);
554 static int sel_rank_for_schedule (const void *, const void *);
555 static av_set_t
find_sequential_best_exprs (bnd_t
, expr_t
, bool);
556 static basic_block
find_block_for_bookkeeping (edge e1
, edge e2
, bool lax
);
558 static rtx
get_dest_from_orig_ops (av_set_t
);
559 static basic_block
generate_bookkeeping_insn (expr_t
, edge
, edge
);
560 static bool find_used_regs (insn_t
, av_set_t
, regset
, struct reg_rename
*,
562 static bool move_op (insn_t
, av_set_t
, expr_t
, rtx
, expr_t
, bool*);
563 static int code_motion_path_driver (insn_t
, av_set_t
, ilist_t
,
564 cmpd_local_params_p
, void *);
565 static void sel_sched_region_1 (void);
566 static void sel_sched_region_2 (int);
567 static av_set_t
compute_av_set_inside_bb (insn_t
, ilist_t
, int, bool);
569 static void debug_state (state_t
);
572 /* Functions that work with fences. */
574 /* Advance one cycle on FENCE. */
576 advance_one_cycle (fence_t fence
)
582 advance_state (FENCE_STATE (fence
));
583 cycle
= ++FENCE_CYCLE (fence
);
584 FENCE_ISSUED_INSNS (fence
) = 0;
585 FENCE_STARTS_CYCLE_P (fence
) = 1;
586 can_issue_more
= issue_rate
;
587 FENCE_ISSUE_MORE (fence
) = can_issue_more
;
589 for (i
= 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence
), i
, &insn
); )
591 if (INSN_READY_CYCLE (insn
) < cycle
)
593 remove_from_deps (FENCE_DC (fence
), insn
);
594 FENCE_EXECUTING_INSNS (fence
)->unordered_remove (i
);
599 if (sched_verbose
>= 2)
601 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence
));
602 debug_state (FENCE_STATE (fence
));
606 /* Returns true when SUCC in a fallthru bb of INSN, possibly
607 skipping empty basic blocks. */
609 in_fallthru_bb_p (rtx_insn
*insn
, rtx succ
)
611 basic_block bb
= BLOCK_FOR_INSN (insn
);
614 if (bb
== BLOCK_FOR_INSN (succ
))
617 e
= find_fallthru_edge_from (bb
);
623 while (sel_bb_empty_p (bb
))
626 return bb
== BLOCK_FOR_INSN (succ
);
629 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
630 When a successor will continue a ebb, transfer all parameters of a fence
631 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
632 of scheduling helping to distinguish between the old and the new code. */
634 extract_new_fences_from (flist_t old_fences
, flist_tail_t new_fences
,
637 bool was_here_p
= false;
642 fence_t fence
= FLIST_FENCE (old_fences
);
645 /* Get the only element of FENCE_BNDS (fence). */
646 FOR_EACH_INSN (insn
, ii
, FENCE_BNDS (fence
))
648 gcc_assert (!was_here_p
);
651 gcc_assert (was_here_p
&& insn
!= NULL_RTX
);
653 /* When in the "middle" of the block, just move this fence
655 bb
= BLOCK_FOR_INSN (insn
);
656 if (! sel_bb_end_p (insn
)
657 || (single_succ_p (bb
)
658 && single_pred_p (single_succ (bb
))))
662 succ
= (sel_bb_end_p (insn
)
663 ? sel_bb_head (single_succ (bb
))
666 if (INSN_SEQNO (succ
) > 0
667 && INSN_SEQNO (succ
) <= orig_max_seqno
668 && INSN_SCHED_TIMES (succ
) <= 0)
670 FENCE_INSN (fence
) = succ
;
671 move_fence_to_fences (old_fences
, new_fences
);
673 if (sched_verbose
>= 1)
674 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
675 INSN_UID (insn
), INSN_UID (succ
), BLOCK_NUM (succ
));
680 /* Otherwise copy fence's structures to (possibly) multiple successors. */
681 FOR_EACH_SUCC_1 (succ
, si
, insn
, SUCCS_NORMAL
| SUCCS_SKIP_TO_LOOP_EXITS
)
683 int seqno
= INSN_SEQNO (succ
);
685 if (0 < seqno
&& seqno
<= orig_max_seqno
686 && (pipelining_p
|| INSN_SCHED_TIMES (succ
) <= 0))
688 bool b
= (in_same_ebb_p (insn
, succ
)
689 || in_fallthru_bb_p (insn
, succ
));
691 if (sched_verbose
>= 1)
692 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
693 INSN_UID (insn
), INSN_UID (succ
),
694 BLOCK_NUM (succ
), b
? "continue" : "reset");
697 add_dirty_fence_to_fences (new_fences
, succ
, fence
);
700 /* Mark block of the SUCC as head of the new ebb. */
701 bitmap_set_bit (forced_ebb_heads
, BLOCK_NUM (succ
));
702 add_clean_fence_to_fences (new_fences
, succ
, fence
);
709 /* Functions to support substitution. */
711 /* Returns whether INSN with dependence status DS is eligible for
712 substitution, i.e. it's a copy operation x := y, and RHS that is
713 moved up through this insn should be substituted. */
715 can_substitute_through_p (insn_t insn
, ds_t ds
)
717 /* We can substitute only true dependencies. */
718 if ((ds
& DEP_OUTPUT
)
721 || ! INSN_LHS (insn
))
724 /* Now we just need to make sure the INSN_RHS consists of only one
726 if (REG_P (INSN_LHS (insn
))
727 && REG_P (INSN_RHS (insn
)))
732 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
733 source (if INSN is eligible for substitution). Returns TRUE if
734 substitution was actually performed, FALSE otherwise. Substitution might
735 be not performed because it's either EXPR' vinsn doesn't contain INSN's
736 destination or the resulting insn is invalid for the target machine.
737 When UNDO is true, perform unsubstitution instead (the difference is in
738 the part of rtx on which validate_replace_rtx is called). */
740 substitute_reg_in_expr (expr_t expr
, insn_t insn
, bool undo
)
744 vinsn_t
*vi
= &EXPR_VINSN (expr
);
745 bool has_rhs
= VINSN_RHS (*vi
) != NULL
;
748 /* Do not try to replace in SET_DEST. Although we'll choose new
749 register for the RHS, we don't want to change RHS' original reg.
750 If the insn is not SET, we may still be able to substitute something
751 in it, and if we're here (don't have deps), it doesn't write INSN's
755 : &PATTERN (VINSN_INSN_RTX (*vi
)));
756 old
= undo
? INSN_RHS (insn
) : INSN_LHS (insn
);
758 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
759 if (rtx_ok_for_substitution_p (old
, *where
))
764 /* We should copy these rtxes before substitution. */
765 new_rtx
= copy_rtx (undo
? INSN_LHS (insn
) : INSN_RHS (insn
));
766 new_insn
= create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi
));
768 /* Where we'll replace.
769 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
770 used instead of SET_SRC. */
771 where_replace
= (has_rhs
772 ? &SET_SRC (PATTERN (new_insn
))
773 : &PATTERN (new_insn
));
776 = validate_replace_rtx_part_nosimplify (old
, new_rtx
, where_replace
,
779 /* ??? Actually, constrain_operands result depends upon choice of
780 destination register. E.g. if we allow single register to be an rhs,
781 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
782 in invalid insn dx=dx, so we'll loose this rhs here.
783 Just can't come up with significant testcase for this, so just
784 leaving it for now. */
787 change_vinsn_in_expr (expr
,
788 create_vinsn_from_insn_rtx (new_insn
, false));
790 /* Do not allow clobbering the address register of speculative
792 if ((EXPR_SPEC_DONE_DS (expr
) & SPECULATIVE
)
793 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr
)),
794 expr_dest_reg (expr
)))
795 EXPR_TARGET_AVAILABLE (expr
) = false;
806 /* Return the number of places WHAT appears within WHERE.
807 Bail out when we found a reference occupying several hard registers. */
809 count_occurrences_equiv (const_rtx what
, const_rtx where
)
812 subrtx_iterator::array_type array
;
813 FOR_EACH_SUBRTX (iter
, array
, where
, NONCONST
)
816 if (REG_P (x
) && REGNO (x
) == REGNO (what
))
818 /* Bail out if mode is different or more than one register is
820 if (GET_MODE (x
) != GET_MODE (what
) || REG_NREGS (x
) > 1)
824 else if (GET_CODE (x
) == SUBREG
825 && (!REG_P (SUBREG_REG (x
))
826 || REGNO (SUBREG_REG (x
)) == REGNO (what
)))
827 /* ??? Do not support substituting regs inside subregs. In that case,
828 simplify_subreg will be called by validate_replace_rtx, and
829 unsubstitution will fail later. */
835 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
837 rtx_ok_for_substitution_p (rtx what
, rtx where
)
839 return (count_occurrences_equiv (what
, where
) > 0);
843 /* Functions to support register renaming. */
845 /* Substitute VI's set source with REGNO. Returns newly created pattern
846 that has REGNO as its source. */
848 create_insn_rtx_with_rhs (vinsn_t vi
, rtx rhs_rtx
)
854 lhs_rtx
= copy_rtx (VINSN_LHS (vi
));
856 pattern
= gen_rtx_SET (lhs_rtx
, rhs_rtx
);
857 insn_rtx
= create_insn_rtx_from_pattern (pattern
, NULL_RTX
);
862 /* Returns whether INSN's src can be replaced with register number
863 NEW_SRC_REG. E.g. the following insn is valid for i386:
865 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
866 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
867 (reg:SI 0 ax [orig:770 c1 ] [770]))
868 (const_int 288 [0x120])) [0 str S1 A8])
869 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
872 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
873 because of operand constraints:
875 (define_insn "*movqi_1"
876 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
877 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
880 So do constrain_operands here, before choosing NEW_SRC_REG as best
884 replace_src_with_reg_ok_p (insn_t insn
, rtx new_src_reg
)
886 vinsn_t vi
= INSN_VINSN (insn
);
891 gcc_assert (VINSN_SEPARABLE_P (vi
));
893 get_dest_and_mode (insn
, &dst_loc
, &mode
);
894 gcc_assert (mode
== GET_MODE (new_src_reg
));
896 if (REG_P (dst_loc
) && REGNO (new_src_reg
) == REGNO (dst_loc
))
899 /* See whether SET_SRC can be replaced with this register. */
900 validate_change (insn
, &SET_SRC (PATTERN (insn
)), new_src_reg
, 1);
901 res
= verify_changes (0);
907 /* Returns whether INSN still be valid after replacing it's DEST with
910 replace_dest_with_reg_ok_p (insn_t insn
, rtx new_reg
)
912 vinsn_t vi
= INSN_VINSN (insn
);
915 /* We should deal here only with separable insns. */
916 gcc_assert (VINSN_SEPARABLE_P (vi
));
917 gcc_assert (GET_MODE (VINSN_LHS (vi
)) == GET_MODE (new_reg
));
919 /* See whether SET_DEST can be replaced with this register. */
920 validate_change (insn
, &SET_DEST (PATTERN (insn
)), new_reg
, 1);
921 res
= verify_changes (0);
927 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
929 create_insn_rtx_with_lhs (vinsn_t vi
, rtx lhs_rtx
)
935 rhs_rtx
= copy_rtx (VINSN_RHS (vi
));
937 pattern
= gen_rtx_SET (lhs_rtx
, rhs_rtx
);
938 insn_rtx
= create_insn_rtx_from_pattern (pattern
, NULL_RTX
);
943 /* Substitute lhs in the given expression EXPR for the register with number
944 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
946 replace_dest_with_reg_in_expr (expr_t expr
, rtx new_reg
)
951 insn_rtx
= create_insn_rtx_with_lhs (EXPR_VINSN (expr
), new_reg
);
952 vinsn
= create_vinsn_from_insn_rtx (insn_rtx
, false);
954 change_vinsn_in_expr (expr
, vinsn
);
955 EXPR_WAS_RENAMED (expr
) = 1;
956 EXPR_TARGET_AVAILABLE (expr
) = 1;
959 /* Returns whether VI writes either one of the USED_REGS registers or,
960 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
962 vinsn_writes_one_of_regs_p (vinsn_t vi
, regset used_regs
,
963 HARD_REG_SET unavailable_hard_regs
)
966 reg_set_iterator rsi
;
968 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi
), 0, regno
, rsi
)
970 if (REGNO_REG_SET_P (used_regs
, regno
))
972 if (HARD_REGISTER_NUM_P (regno
)
973 && TEST_HARD_REG_BIT (unavailable_hard_regs
, regno
))
977 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi
), 0, regno
, rsi
)
979 if (REGNO_REG_SET_P (used_regs
, regno
))
981 if (HARD_REGISTER_NUM_P (regno
)
982 && TEST_HARD_REG_BIT (unavailable_hard_regs
, regno
))
989 /* Returns register class of the output register in INSN.
990 Returns NO_REGS for call insns because some targets have constraints on
991 destination register of a call insn.
993 Code adopted from regrename.c::build_def_use. */
994 static enum reg_class
995 get_reg_class (rtx_insn
*insn
)
999 extract_constrain_insn (insn
);
1000 preprocess_constraints (insn
);
1001 n_ops
= recog_data
.n_operands
;
1003 const operand_alternative
*op_alt
= which_op_alt ();
1004 if (asm_noperands (PATTERN (insn
)) > 0)
1006 for (i
= 0; i
< n_ops
; i
++)
1007 if (recog_data
.operand_type
[i
] == OP_OUT
)
1009 rtx
*loc
= recog_data
.operand_loc
[i
];
1011 enum reg_class cl
= alternative_class (op_alt
, i
);
1014 && REGNO (op
) == ORIGINAL_REGNO (op
))
1020 else if (!CALL_P (insn
))
1022 for (i
= 0; i
< n_ops
+ recog_data
.n_dups
; i
++)
1024 int opn
= i
< n_ops
? i
: recog_data
.dup_num
[i
- n_ops
];
1025 enum reg_class cl
= alternative_class (op_alt
, opn
);
1027 if (recog_data
.operand_type
[opn
] == OP_OUT
||
1028 recog_data
.operand_type
[opn
] == OP_INOUT
)
1034 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1035 may result in returning NO_REGS, cause flags is written implicitly through
1036 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1040 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1042 init_hard_regno_rename (int regno
)
1046 SET_HARD_REG_BIT (sel_hrd
.regs_for_rename
[regno
], regno
);
1048 for (cur_reg
= 0; cur_reg
< FIRST_PSEUDO_REGISTER
; cur_reg
++)
1050 /* We are not interested in renaming in other regs. */
1051 if (!TEST_HARD_REG_BIT (sel_hrd
.regs_ever_used
, cur_reg
))
1054 if (HARD_REGNO_RENAME_OK (regno
, cur_reg
))
1055 SET_HARD_REG_BIT (sel_hrd
.regs_for_rename
[regno
], cur_reg
);
1059 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1062 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED
, int to ATTRIBUTE_UNUSED
)
1064 /* Check whether this is all calculated. */
1065 if (TEST_HARD_REG_BIT (sel_hrd
.regs_for_rename
[from
], from
))
1066 return TEST_HARD_REG_BIT (sel_hrd
.regs_for_rename
[from
], to
);
1068 init_hard_regno_rename (from
);
1070 return TEST_HARD_REG_BIT (sel_hrd
.regs_for_rename
[from
], to
);
1073 /* Calculate set of registers that are capable of holding MODE. */
1075 init_regs_for_mode (machine_mode mode
)
1079 CLEAR_HARD_REG_SET (sel_hrd
.regs_for_mode
[mode
]);
1080 CLEAR_HARD_REG_SET (sel_hrd
.regs_for_call_clobbered
[mode
]);
1082 for (cur_reg
= 0; cur_reg
< FIRST_PSEUDO_REGISTER
; cur_reg
++)
1087 /* See whether it accepts all modes that occur in
1089 if (! HARD_REGNO_MODE_OK (cur_reg
, mode
))
1092 nregs
= hard_regno_nregs
[cur_reg
][mode
];
1094 for (i
= nregs
- 1; i
>= 0; --i
)
1095 if (fixed_regs
[cur_reg
+ i
]
1096 || global_regs
[cur_reg
+ i
]
1097 /* Can't use regs which aren't saved by
1099 || !TEST_HARD_REG_BIT (sel_hrd
.regs_ever_used
, cur_reg
+ i
)
1100 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1101 it affects aliasing globally and invalidates all AV sets. */
1102 || get_reg_base_value (cur_reg
+ i
)
1103 #ifdef LEAF_REGISTERS
1104 /* We can't use a non-leaf register if we're in a
1107 && !LEAF_REGISTERS
[cur_reg
+ i
])
1115 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg
, mode
))
1116 SET_HARD_REG_BIT (sel_hrd
.regs_for_call_clobbered
[mode
],
1119 /* If the CUR_REG passed all the checks above,
1121 SET_HARD_REG_BIT (sel_hrd
.regs_for_mode
[mode
], cur_reg
);
1124 sel_hrd
.regs_for_mode_ok
[mode
] = true;
1127 /* Init all register sets gathered in HRD. */
1129 init_hard_regs_data (void)
1134 CLEAR_HARD_REG_SET (sel_hrd
.regs_ever_used
);
1135 for (cur_reg
= 0; cur_reg
< FIRST_PSEUDO_REGISTER
; cur_reg
++)
1136 if (df_regs_ever_live_p (cur_reg
) || call_used_regs
[cur_reg
])
1137 SET_HARD_REG_BIT (sel_hrd
.regs_ever_used
, cur_reg
);
1139 /* Initialize registers that are valid based on mode when this is
1141 for (cur_mode
= 0; cur_mode
< NUM_MACHINE_MODES
; cur_mode
++)
1142 sel_hrd
.regs_for_mode_ok
[cur_mode
] = false;
1144 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1145 for (cur_reg
= 0; cur_reg
< FIRST_PSEUDO_REGISTER
; cur_reg
++)
1146 CLEAR_HARD_REG_SET (sel_hrd
.regs_for_rename
[cur_reg
]);
1149 CLEAR_HARD_REG_SET (sel_hrd
.stack_regs
);
1151 for (cur_reg
= FIRST_STACK_REG
; cur_reg
<= LAST_STACK_REG
; cur_reg
++)
1152 SET_HARD_REG_BIT (sel_hrd
.stack_regs
, cur_reg
);
1156 /* Mark hardware regs in REG_RENAME_P that are not suitable
1157 for renaming rhs in INSN due to hardware restrictions (register class,
1158 modes compatibility etc). This doesn't affect original insn's dest reg,
1159 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1160 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1161 Registers that are in used_regs are always marked in
1162 unavailable_hard_regs as well. */
1165 mark_unavailable_hard_regs (def_t def
, struct reg_rename
*reg_rename_p
,
1166 regset used_regs ATTRIBUTE_UNUSED
)
1169 enum reg_class cl
= NO_REGS
;
1171 unsigned cur_reg
, regno
;
1172 hard_reg_set_iterator hrsi
;
1174 gcc_assert (GET_CODE (PATTERN (def
->orig_insn
)) == SET
);
1175 gcc_assert (reg_rename_p
);
1177 orig_dest
= SET_DEST (PATTERN (def
->orig_insn
));
1179 /* We have decided not to rename 'mem = something;' insns, as 'something'
1180 is usually a register. */
1181 if (!REG_P (orig_dest
))
1184 regno
= REGNO (orig_dest
);
1186 /* If before reload, don't try to work with pseudos. */
1187 if (!reload_completed
&& !HARD_REGISTER_NUM_P (regno
))
1190 if (reload_completed
)
1191 cl
= get_reg_class (def
->orig_insn
);
1193 /* Stop if the original register is one of the fixed_regs, global_regs or
1194 frame pointer, or we could not discover its class. */
1195 if (fixed_regs
[regno
]
1196 || global_regs
[regno
]
1197 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1198 || (frame_pointer_needed
&& regno
== HARD_FRAME_POINTER_REGNUM
)
1200 || (frame_pointer_needed
&& regno
== FRAME_POINTER_REGNUM
)
1202 || (reload_completed
&& cl
== NO_REGS
))
1204 SET_HARD_REG_SET (reg_rename_p
->unavailable_hard_regs
);
1206 /* Give a chance for original register, if it isn't in used_regs. */
1207 if (!def
->crosses_call
)
1208 CLEAR_HARD_REG_BIT (reg_rename_p
->unavailable_hard_regs
, regno
);
1213 /* If something allocated on stack in this function, mark frame pointer
1214 register unavailable, considering also modes.
1215 FIXME: it is enough to do this once per all original defs. */
1216 if (frame_pointer_needed
)
1218 add_to_hard_reg_set (®_rename_p
->unavailable_hard_regs
,
1219 Pmode
, FRAME_POINTER_REGNUM
);
1221 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
)
1222 add_to_hard_reg_set (®_rename_p
->unavailable_hard_regs
,
1223 Pmode
, HARD_FRAME_POINTER_REGNUM
);
1227 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1228 is equivalent to as if all stack regs were in this set.
1229 I.e. no stack register can be renamed, and even if it's an original
1230 register here we make sure it won't be lifted over it's previous def
1231 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1232 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1233 if (IN_RANGE (REGNO (orig_dest
), FIRST_STACK_REG
, LAST_STACK_REG
)
1234 && REGNO_REG_SET_P (used_regs
, FIRST_STACK_REG
))
1235 IOR_HARD_REG_SET (reg_rename_p
->unavailable_hard_regs
,
1236 sel_hrd
.stack_regs
);
1239 /* If there's a call on this path, make regs from call_used_reg_set
1241 if (def
->crosses_call
)
1242 IOR_HARD_REG_SET (reg_rename_p
->unavailable_hard_regs
,
1245 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1246 but not register classes. */
1247 if (!reload_completed
)
1250 /* Leave regs as 'available' only from the current
1252 COPY_HARD_REG_SET (reg_rename_p
->available_for_renaming
,
1253 reg_class_contents
[cl
]);
1255 mode
= GET_MODE (orig_dest
);
1257 /* Leave only registers available for this mode. */
1258 if (!sel_hrd
.regs_for_mode_ok
[mode
])
1259 init_regs_for_mode (mode
);
1260 AND_HARD_REG_SET (reg_rename_p
->available_for_renaming
,
1261 sel_hrd
.regs_for_mode
[mode
]);
1263 /* Exclude registers that are partially call clobbered. */
1264 if (def
->crosses_call
1265 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno
, mode
))
1266 AND_COMPL_HARD_REG_SET (reg_rename_p
->available_for_renaming
,
1267 sel_hrd
.regs_for_call_clobbered
[mode
]);
1269 /* Leave only those that are ok to rename. */
1270 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p
->available_for_renaming
,
1276 nregs
= hard_regno_nregs
[cur_reg
][mode
];
1277 gcc_assert (nregs
> 0);
1279 for (i
= nregs
- 1; i
>= 0; --i
)
1280 if (! sel_hard_regno_rename_ok (regno
+ i
, cur_reg
+ i
))
1284 CLEAR_HARD_REG_BIT (reg_rename_p
->available_for_renaming
,
1288 AND_COMPL_HARD_REG_SET (reg_rename_p
->available_for_renaming
,
1289 reg_rename_p
->unavailable_hard_regs
);
1291 /* Regno is always ok from the renaming part of view, but it really
1292 could be in *unavailable_hard_regs already, so set it here instead
1294 SET_HARD_REG_BIT (reg_rename_p
->available_for_renaming
, regno
);
1297 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1298 best register more recently than REG2. */
1299 static int reg_rename_tick
[FIRST_PSEUDO_REGISTER
];
1301 /* Indicates the number of times renaming happened before the current one. */
1302 static int reg_rename_this_tick
;
1304 /* Choose the register among free, that is suitable for storing
1307 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1308 originally appears. There could be multiple original operations
1309 for single rhs since we moving it up and merging along different
1312 Some code is adapted from regrename.c (regrename_optimize).
1313 If original register is available, function returns it.
1314 Otherwise it performs the checks, so the new register should
1315 comply with the following:
1316 - it should not violate any live ranges (such registers are in
1317 REG_RENAME_P->available_for_renaming set);
1318 - it should not be in the HARD_REGS_USED regset;
1319 - it should be in the class compatible with original uses;
1320 - it should not be clobbered through reference with different mode;
1321 - if we're in the leaf function, then the new register should
1322 not be in the LEAF_REGISTERS;
1325 If several registers meet the conditions, the register with smallest
1326 tick is returned to achieve more even register allocation.
1328 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1330 If no register satisfies the above conditions, NULL_RTX is returned. */
1332 choose_best_reg_1 (HARD_REG_SET hard_regs_used
,
1333 struct reg_rename
*reg_rename_p
,
1334 def_list_t original_insns
, bool *is_orig_reg_p_ptr
)
1338 machine_mode mode
= VOIDmode
;
1339 unsigned regno
, i
, n
;
1340 hard_reg_set_iterator hrsi
;
1341 def_list_iterator di
;
1344 /* If original register is available, return it. */
1345 *is_orig_reg_p_ptr
= true;
1347 FOR_EACH_DEF (def
, di
, original_insns
)
1349 rtx orig_dest
= SET_DEST (PATTERN (def
->orig_insn
));
1351 gcc_assert (REG_P (orig_dest
));
1353 /* Check that all original operations have the same mode.
1354 This is done for the next loop; if we'd return from this
1355 loop, we'd check only part of them, but in this case
1356 it doesn't matter. */
1357 if (mode
== VOIDmode
)
1358 mode
= GET_MODE (orig_dest
);
1359 gcc_assert (mode
== GET_MODE (orig_dest
));
1361 regno
= REGNO (orig_dest
);
1362 for (i
= 0, n
= hard_regno_nregs
[regno
][mode
]; i
< n
; i
++)
1363 if (TEST_HARD_REG_BIT (hard_regs_used
, regno
+ i
))
1366 /* All hard registers are available. */
1369 gcc_assert (mode
!= VOIDmode
);
1371 /* Hard registers should not be shared. */
1372 return gen_rtx_REG (mode
, regno
);
1376 *is_orig_reg_p_ptr
= false;
1379 /* Among all available regs choose the register that was
1380 allocated earliest. */
1381 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p
->available_for_renaming
,
1383 if (! TEST_HARD_REG_BIT (hard_regs_used
, cur_reg
))
1385 /* Check that all hard regs for mode are available. */
1386 for (i
= 1, n
= hard_regno_nregs
[cur_reg
][mode
]; i
< n
; i
++)
1387 if (TEST_HARD_REG_BIT (hard_regs_used
, cur_reg
+ i
)
1388 || !TEST_HARD_REG_BIT (reg_rename_p
->available_for_renaming
,
1395 /* All hard registers are available. */
1396 if (best_new_reg
< 0
1397 || reg_rename_tick
[cur_reg
] < reg_rename_tick
[best_new_reg
])
1399 best_new_reg
= cur_reg
;
1401 /* Return immediately when we know there's no better reg. */
1402 if (! reg_rename_tick
[best_new_reg
])
1407 if (best_new_reg
>= 0)
1409 /* Use the check from the above loop. */
1410 gcc_assert (mode
!= VOIDmode
);
1411 return gen_rtx_REG (mode
, best_new_reg
);
1417 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1418 assumptions about available registers in the function. */
1420 choose_best_reg (HARD_REG_SET hard_regs_used
, struct reg_rename
*reg_rename_p
,
1421 def_list_t original_insns
, bool *is_orig_reg_p_ptr
)
1423 rtx best_reg
= choose_best_reg_1 (hard_regs_used
, reg_rename_p
,
1424 original_insns
, is_orig_reg_p_ptr
);
1426 /* FIXME loop over hard_regno_nregs here. */
1427 gcc_assert (best_reg
== NULL_RTX
1428 || TEST_HARD_REG_BIT (sel_hrd
.regs_ever_used
, REGNO (best_reg
)));
1433 /* Choose the pseudo register for storing rhs value. As this is supposed
1434 to work before reload, we return either the original register or make
1435 the new one. The parameters are the same that in choose_nest_reg_1
1436 functions, except that USED_REGS may contain pseudos.
1437 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1439 TODO: take into account register pressure while doing this. Up to this
1440 moment, this function would never return NULL for pseudos, but we should
1441 not rely on this. */
1443 choose_best_pseudo_reg (regset used_regs
,
1444 struct reg_rename
*reg_rename_p
,
1445 def_list_t original_insns
, bool *is_orig_reg_p_ptr
)
1447 def_list_iterator i
;
1449 machine_mode mode
= VOIDmode
;
1450 bool bad_hard_regs
= false;
1452 /* We should not use this after reload. */
1453 gcc_assert (!reload_completed
);
1455 /* If original register is available, return it. */
1456 *is_orig_reg_p_ptr
= true;
1458 FOR_EACH_DEF (def
, i
, original_insns
)
1460 rtx dest
= SET_DEST (PATTERN (def
->orig_insn
));
1463 gcc_assert (REG_P (dest
));
1465 /* Check that all original operations have the same mode. */
1466 if (mode
== VOIDmode
)
1467 mode
= GET_MODE (dest
);
1469 gcc_assert (mode
== GET_MODE (dest
));
1470 orig_regno
= REGNO (dest
);
1472 if (!REGNO_REG_SET_P (used_regs
, orig_regno
))
1474 if (orig_regno
< FIRST_PSEUDO_REGISTER
)
1476 gcc_assert (df_regs_ever_live_p (orig_regno
));
1478 /* For hard registers, we have to check hardware imposed
1479 limitations (frame/stack registers, calls crossed). */
1480 if (!TEST_HARD_REG_BIT (reg_rename_p
->unavailable_hard_regs
,
1483 /* Don't let register cross a call if it doesn't already
1484 cross one. This condition is written in accordance with
1485 that in sched-deps.c sched_analyze_reg(). */
1486 if (!reg_rename_p
->crosses_call
1487 || REG_N_CALLS_CROSSED (orig_regno
) > 0)
1488 return gen_rtx_REG (mode
, orig_regno
);
1491 bad_hard_regs
= true;
1498 *is_orig_reg_p_ptr
= false;
1500 /* We had some original hard registers that couldn't be used.
1501 Those were likely special. Don't try to create a pseudo. */
1505 /* We haven't found a register from original operations. Get a new one.
1506 FIXME: control register pressure somehow. */
1508 rtx new_reg
= gen_reg_rtx (mode
);
1510 gcc_assert (mode
!= VOIDmode
);
1512 max_regno
= max_reg_num ();
1513 maybe_extend_reg_info_p ();
1514 REG_N_CALLS_CROSSED (REGNO (new_reg
)) = reg_rename_p
->crosses_call
? 1 : 0;
1520 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1521 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1523 verify_target_availability (expr_t expr
, regset used_regs
,
1524 struct reg_rename
*reg_rename_p
)
1526 unsigned n
, i
, regno
;
1528 bool target_available
, live_available
, hard_available
;
1530 if (!REG_P (EXPR_LHS (expr
)) || EXPR_TARGET_AVAILABLE (expr
) < 0)
1533 regno
= expr_dest_regno (expr
);
1534 mode
= GET_MODE (EXPR_LHS (expr
));
1535 target_available
= EXPR_TARGET_AVAILABLE (expr
) == 1;
1536 n
= HARD_REGISTER_NUM_P (regno
) ? hard_regno_nregs
[regno
][mode
] : 1;
1538 live_available
= hard_available
= true;
1539 for (i
= 0; i
< n
; i
++)
1541 if (bitmap_bit_p (used_regs
, regno
+ i
))
1542 live_available
= false;
1543 if (TEST_HARD_REG_BIT (reg_rename_p
->unavailable_hard_regs
, regno
+ i
))
1544 hard_available
= false;
1547 /* When target is not available, it may be due to hard register
1548 restrictions, e.g. crosses calls, so we check hard_available too. */
1549 if (target_available
)
1550 gcc_assert (live_available
);
1552 /* Check only if we haven't scheduled something on the previous fence,
1553 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1554 and having more than one fence, we may end having targ_un in a block
1555 in which successors target register is actually available.
1557 The last condition handles the case when a dependence from a call insn
1558 was created in sched-deps.c for insns with destination registers that
1559 never crossed a call before, but do cross one after our code motion.
1561 FIXME: in the latter case, we just uselessly called find_used_regs,
1562 because we can't move this expression with any other register
1564 gcc_assert (scheduled_something_on_previous_fence
|| !live_available
1566 || (!reload_completed
&& reg_rename_p
->crosses_call
1567 && REG_N_CALLS_CROSSED (regno
) == 0));
1570 /* Collect unavailable registers due to liveness for EXPR from BNDS
1571 into USED_REGS. Save additional information about available
1572 registers and unavailable due to hardware restriction registers
1573 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1576 collect_unavailable_regs_from_bnds (expr_t expr
, blist_t bnds
, regset used_regs
,
1577 struct reg_rename
*reg_rename_p
,
1578 def_list_t
*original_insns
)
1580 for (; bnds
; bnds
= BLIST_NEXT (bnds
))
1583 av_set_t orig_ops
= NULL
;
1584 bnd_t bnd
= BLIST_BND (bnds
);
1586 /* If the chosen best expr doesn't belong to current boundary,
1588 if (!av_set_is_in_p (BND_AV1 (bnd
), EXPR_VINSN (expr
)))
1591 /* Put in ORIG_OPS all exprs from this boundary that became
1593 orig_ops
= find_sequential_best_exprs (bnd
, expr
, false);
1595 /* Compute used regs and OR it into the USED_REGS. */
1596 res
= find_used_regs (BND_TO (bnd
), orig_ops
, used_regs
,
1597 reg_rename_p
, original_insns
);
1599 /* FIXME: the assert is true until we'd have several boundaries. */
1601 av_set_clear (&orig_ops
);
1605 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1606 If BEST_REG is valid, replace LHS of EXPR with it. */
1608 try_replace_dest_reg (ilist_t orig_insns
, rtx best_reg
, expr_t expr
)
1610 /* Try whether we'll be able to generate the insn
1611 'dest := best_reg' at the place of the original operation. */
1612 for (; orig_insns
; orig_insns
= ILIST_NEXT (orig_insns
))
1614 insn_t orig_insn
= DEF_LIST_DEF (orig_insns
)->orig_insn
;
1616 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn
)));
1618 if (REGNO (best_reg
) != REGNO (INSN_LHS (orig_insn
))
1619 && (! replace_src_with_reg_ok_p (orig_insn
, best_reg
)
1620 || ! replace_dest_with_reg_ok_p (orig_insn
, best_reg
)))
1624 /* Make sure that EXPR has the right destination
1626 if (expr_dest_regno (expr
) != REGNO (best_reg
))
1627 replace_dest_with_reg_in_expr (expr
, best_reg
);
1629 EXPR_TARGET_AVAILABLE (expr
) = 1;
1634 /* Select and assign best register to EXPR searching from BNDS.
1635 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1636 Return FALSE if no register can be chosen, which could happen when:
1637 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1638 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1639 that are used on the moving path. */
1641 find_best_reg_for_expr (expr_t expr
, blist_t bnds
, bool *is_orig_reg_p
)
1643 static struct reg_rename reg_rename_data
;
1646 def_list_t original_insns
= NULL
;
1649 *is_orig_reg_p
= false;
1651 /* Don't bother to do anything if this insn doesn't set any registers. */
1652 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr
)))
1653 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr
))))
1656 used_regs
= get_clear_regset_from_pool ();
1657 CLEAR_HARD_REG_SET (reg_rename_data
.unavailable_hard_regs
);
1659 collect_unavailable_regs_from_bnds (expr
, bnds
, used_regs
, ®_rename_data
,
1662 #ifdef ENABLE_CHECKING
1663 /* If after reload, make sure we're working with hard regs here. */
1664 if (reload_completed
)
1666 reg_set_iterator rsi
;
1669 EXECUTE_IF_SET_IN_REG_SET (used_regs
, FIRST_PSEUDO_REGISTER
, i
, rsi
)
1674 if (EXPR_SEPARABLE_P (expr
))
1676 rtx best_reg
= NULL_RTX
;
1677 /* Check that we have computed availability of a target register
1679 verify_target_availability (expr
, used_regs
, ®_rename_data
);
1681 /* Turn everything in hard regs after reload. */
1682 if (reload_completed
)
1684 HARD_REG_SET hard_regs_used
;
1685 REG_SET_TO_HARD_REG_SET (hard_regs_used
, used_regs
);
1687 /* Join hard registers unavailable due to register class
1688 restrictions and live range intersection. */
1689 IOR_HARD_REG_SET (hard_regs_used
,
1690 reg_rename_data
.unavailable_hard_regs
);
1692 best_reg
= choose_best_reg (hard_regs_used
, ®_rename_data
,
1693 original_insns
, is_orig_reg_p
);
1696 best_reg
= choose_best_pseudo_reg (used_regs
, ®_rename_data
,
1697 original_insns
, is_orig_reg_p
);
1701 else if (*is_orig_reg_p
)
1703 /* In case of unification BEST_REG may be different from EXPR's LHS
1704 when EXPR's LHS is unavailable, and there is another LHS among
1706 reg_ok
= try_replace_dest_reg (original_insns
, best_reg
, expr
);
1710 /* Forbid renaming of low-cost insns. */
1711 if (sel_vinsn_cost (EXPR_VINSN (expr
)) < 2)
1714 reg_ok
= try_replace_dest_reg (original_insns
, best_reg
, expr
);
1719 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1720 any of the HARD_REGS_USED set. */
1721 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr
), used_regs
,
1722 reg_rename_data
.unavailable_hard_regs
))
1725 gcc_assert (EXPR_TARGET_AVAILABLE (expr
) <= 0);
1730 gcc_assert (EXPR_TARGET_AVAILABLE (expr
) != 0);
1734 ilist_clear (&original_insns
);
1735 return_regset_to_pool (used_regs
);
1741 /* Return true if dependence described by DS can be overcomed. */
1743 can_speculate_dep_p (ds_t ds
)
1745 if (spec_info
== NULL
)
1748 /* Leave only speculative data. */
1755 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1756 that we can overcome. */
1757 ds_t spec_mask
= spec_info
->mask
;
1759 if ((ds
& spec_mask
) != ds
)
1763 if (ds_weak (ds
) < spec_info
->data_weakness_cutoff
)
1769 /* Get a speculation check instruction.
1770 C_EXPR is a speculative expression,
1771 CHECK_DS describes speculations that should be checked,
1772 ORIG_INSN is the original non-speculative insn in the stream. */
1774 create_speculation_check (expr_t c_expr
, ds_t check_ds
, insn_t orig_insn
)
1779 basic_block recovery_block
;
1782 /* Create a recovery block if target is going to emit branchy check, or if
1783 ORIG_INSN was speculative already. */
1784 if (targetm
.sched
.needs_block_p (check_ds
)
1785 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn
)) != 0)
1787 recovery_block
= sel_create_recovery_block (orig_insn
);
1788 label
= BB_HEAD (recovery_block
);
1792 recovery_block
= NULL
;
1796 /* Get pattern of the check. */
1797 check_pattern
= targetm
.sched
.gen_spec_check (EXPR_INSN_RTX (c_expr
), label
,
1800 gcc_assert (check_pattern
!= NULL
);
1803 insn_rtx
= create_insn_rtx_from_pattern (check_pattern
, label
);
1805 insn
= sel_gen_insn_from_rtx_after (insn_rtx
, INSN_EXPR (orig_insn
),
1806 INSN_SEQNO (orig_insn
), orig_insn
);
1808 /* Make check to be non-speculative. */
1809 EXPR_SPEC_DONE_DS (INSN_EXPR (insn
)) = 0;
1810 INSN_SPEC_CHECKED_DS (insn
) = check_ds
;
1812 /* Decrease priority of check by difference of load/check instruction
1814 EXPR_PRIORITY (INSN_EXPR (insn
)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn
))
1815 - sel_vinsn_cost (INSN_VINSN (insn
)));
1817 /* Emit copy of original insn (though with replaced target register,
1818 if needed) to the recovery block. */
1819 if (recovery_block
!= NULL
)
1823 twin_rtx
= copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr
)));
1824 twin_rtx
= create_insn_rtx_from_pattern (twin_rtx
, NULL_RTX
);
1825 sel_gen_recovery_insn_from_rtx_after (twin_rtx
,
1826 INSN_EXPR (orig_insn
),
1828 bb_note (recovery_block
));
1831 /* If we've generated a data speculation check, make sure
1832 that all the bookkeeping instruction we'll create during
1833 this move_op () will allocate an ALAT entry so that the
1835 In case of control speculation we must convert C_EXPR to control
1836 speculative mode, because failing to do so will bring us an exception
1837 thrown by the non-control-speculative load. */
1838 check_ds
= ds_get_max_dep_weak (check_ds
);
1839 speculate_expr (c_expr
, check_ds
);
1844 /* True when INSN is a "regN = regN" copy. */
1846 identical_copy_p (rtx_insn
*insn
)
1850 pat
= PATTERN (insn
);
1852 if (GET_CODE (pat
) != SET
)
1855 lhs
= SET_DEST (pat
);
1859 rhs
= SET_SRC (pat
);
1863 return REGNO (lhs
) == REGNO (rhs
);
1866 /* Undo all transformations on *AV_PTR that were done when
1867 moving through INSN. */
1869 undo_transformations (av_set_t
*av_ptr
, rtx_insn
*insn
)
1871 av_set_iterator av_iter
;
1873 av_set_t new_set
= NULL
;
1875 /* First, kill any EXPR that uses registers set by an insn. This is
1876 required for correctness. */
1877 FOR_EACH_EXPR_1 (expr
, av_iter
, av_ptr
)
1878 if (!sched_insns_conditions_mutex_p (insn
, EXPR_INSN_RTX (expr
))
1879 && bitmap_intersect_p (INSN_REG_SETS (insn
),
1880 VINSN_REG_USES (EXPR_VINSN (expr
)))
1881 /* When an insn looks like 'r1 = r1', we could substitute through
1882 it, but the above condition will still hold. This happened with
1883 gcc.c-torture/execute/961125-1.c. */
1884 && !identical_copy_p (insn
))
1886 if (sched_verbose
>= 6)
1887 sel_print ("Expr %d removed due to use/set conflict\n",
1888 INSN_UID (EXPR_INSN_RTX (expr
)));
1889 av_set_iter_remove (&av_iter
);
1892 /* Undo transformations looking at the history vector. */
1893 FOR_EACH_EXPR (expr
, av_iter
, *av_ptr
)
1895 int index
= find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr
),
1896 insn
, EXPR_VINSN (expr
), true);
1900 expr_history_def
*phist
;
1902 phist
= &EXPR_HISTORY_OF_CHANGES (expr
)[index
];
1904 switch (phist
->type
)
1906 case TRANS_SPECULATION
:
1908 ds_t old_ds
, new_ds
;
1910 /* Compute the difference between old and new speculative
1911 statuses: that's what we need to check.
1912 Earlier we used to assert that the status will really
1913 change. This no longer works because only the probability
1914 bits in the status may have changed during compute_av_set,
1915 and in the case of merging different probabilities of the
1916 same speculative status along different paths we do not
1917 record this in the history vector. */
1918 old_ds
= phist
->spec_ds
;
1919 new_ds
= EXPR_SPEC_DONE_DS (expr
);
1921 old_ds
&= SPECULATIVE
;
1922 new_ds
&= SPECULATIVE
;
1925 EXPR_SPEC_TO_CHECK_DS (expr
) |= new_ds
;
1928 case TRANS_SUBSTITUTION
:
1930 expr_def _tmp_expr
, *tmp_expr
= &_tmp_expr
;
1934 new_vi
= phist
->old_expr_vinsn
;
1936 gcc_assert (VINSN_SEPARABLE_P (new_vi
)
1937 == EXPR_SEPARABLE_P (expr
));
1938 copy_expr (tmp_expr
, expr
);
1940 if (vinsn_equal_p (phist
->new_expr_vinsn
,
1941 EXPR_VINSN (tmp_expr
)))
1942 change_vinsn_in_expr (tmp_expr
, new_vi
);
1944 /* This happens when we're unsubstituting on a bookkeeping
1945 copy, which was in turn substituted. The history is wrong
1946 in this case. Do it the hard way. */
1947 add
= substitute_reg_in_expr (tmp_expr
, insn
, true);
1949 av_set_add (&new_set
, tmp_expr
);
1950 clear_expr (tmp_expr
);
1960 av_set_union_and_clear (av_ptr
, &new_set
, NULL
);
1964 /* Moveup_* helpers for code motion and computing av sets. */
1966 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1967 The difference from the below function is that only substitution is
1969 static enum MOVEUP_EXPR_CODE
1970 moveup_expr_inside_insn_group (expr_t expr
, insn_t through_insn
)
1972 vinsn_t vi
= EXPR_VINSN (expr
);
1976 /* Do this only inside insn group. */
1977 gcc_assert (INSN_SCHED_CYCLE (through_insn
) > 0);
1979 full_ds
= has_dependence_p (expr
, through_insn
, &has_dep_p
);
1981 return MOVEUP_EXPR_SAME
;
1983 /* Substitution is the possible choice in this case. */
1984 if (has_dep_p
[DEPS_IN_RHS
])
1986 /* Can't substitute UNIQUE VINSNs. */
1987 gcc_assert (!VINSN_UNIQUE_P (vi
));
1989 if (can_substitute_through_p (through_insn
,
1990 has_dep_p
[DEPS_IN_RHS
])
1991 && substitute_reg_in_expr (expr
, through_insn
, false))
1993 EXPR_WAS_SUBSTITUTED (expr
) = true;
1994 return MOVEUP_EXPR_CHANGED
;
1997 /* Don't care about this, as even true dependencies may be allowed
1998 in an insn group. */
1999 return MOVEUP_EXPR_SAME
;
2002 /* This can catch output dependencies in COND_EXECs. */
2003 if (has_dep_p
[DEPS_IN_INSN
])
2004 return MOVEUP_EXPR_NULL
;
2006 /* This is either an output or an anti dependence, which usually have
2007 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2009 gcc_assert (has_dep_p
[DEPS_IN_LHS
]);
2010 return MOVEUP_EXPR_AS_RHS
;
2013 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2014 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2015 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2016 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2017 && !sel_insn_is_speculation_check (through_insn))
2019 /* True when a conflict on a target register was found during moveup_expr. */
2020 static bool was_target_conflict
= false;
2022 /* Return true when moving a debug INSN across THROUGH_INSN will
2023 create a bookkeeping block. We don't want to create such blocks,
2024 for they would cause codegen differences between compilations with
2025 and without debug info. */
2028 moving_insn_creates_bookkeeping_block_p (insn_t insn
,
2029 insn_t through_insn
)
2031 basic_block bbi
, bbt
;
2033 edge_iterator ei1
, ei2
;
2035 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn
))
2037 if (sched_verbose
>= 9)
2038 sel_print ("no bookkeeping required: ");
2042 bbi
= BLOCK_FOR_INSN (insn
);
2044 if (EDGE_COUNT (bbi
->preds
) == 1)
2046 if (sched_verbose
>= 9)
2047 sel_print ("only one pred edge: ");
2051 bbt
= BLOCK_FOR_INSN (through_insn
);
2053 FOR_EACH_EDGE (e1
, ei1
, bbt
->succs
)
2055 FOR_EACH_EDGE (e2
, ei2
, bbi
->preds
)
2057 if (find_block_for_bookkeeping (e1
, e2
, TRUE
))
2059 if (sched_verbose
>= 9)
2060 sel_print ("found existing block: ");
2066 if (sched_verbose
>= 9)
2067 sel_print ("would create bookkeeping block: ");
2072 /* Return true when the conflict with newly created implicit clobbers
2073 between EXPR and THROUGH_INSN is found because of renaming. */
2075 implicit_clobber_conflict_p (insn_t through_insn
, expr_t expr
)
2080 hard_reg_set_iterator hrsi
;
2084 /* Make a new pseudo register. */
2085 reg
= gen_reg_rtx (GET_MODE (EXPR_LHS (expr
)));
2086 max_regno
= max_reg_num ();
2087 maybe_extend_reg_info_p ();
2089 /* Validate a change and bail out early. */
2090 insn
= EXPR_INSN_RTX (expr
);
2091 validate_change (insn
, &SET_DEST (PATTERN (insn
)), reg
, true);
2092 valid
= verify_changes (0);
2096 if (sched_verbose
>= 6)
2097 sel_print ("implicit clobbers failed validation, ");
2101 /* Make a new insn with it. */
2102 rhs
= copy_rtx (VINSN_RHS (EXPR_VINSN (expr
)));
2103 pat
= gen_rtx_SET (reg
, rhs
);
2105 insn
= emit_insn (pat
);
2108 /* Calculate implicit clobbers. */
2109 extract_insn (insn
);
2110 preprocess_constraints (insn
);
2111 ira_implicitly_set_insn_hard_regs (&temp
);
2112 AND_COMPL_HARD_REG_SET (temp
, ira_no_alloc_regs
);
2114 /* If any implicit clobber registers intersect with regular ones in
2115 through_insn, we have a dependency and thus bail out. */
2116 EXECUTE_IF_SET_IN_HARD_REG_SET (temp
, 0, regno
, hrsi
)
2118 vinsn_t vi
= INSN_VINSN (through_insn
);
2119 if (bitmap_bit_p (VINSN_REG_SETS (vi
), regno
)
2120 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi
), regno
)
2121 || bitmap_bit_p (VINSN_REG_USES (vi
), regno
))
2128 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2129 performing necessary transformations. Record the type of transformation
2130 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2131 permit all dependencies except true ones, and try to remove those
2132 too via forward substitution. All cases when a non-eliminable
2133 non-zero cost dependency exists inside an insn group will be fixed
2134 in tick_check_p instead. */
2135 static enum MOVEUP_EXPR_CODE
2136 moveup_expr (expr_t expr
, insn_t through_insn
, bool inside_insn_group
,
2137 enum local_trans_type
*ptrans_type
)
2139 vinsn_t vi
= EXPR_VINSN (expr
);
2140 insn_t insn
= VINSN_INSN_RTX (vi
);
2141 bool was_changed
= false;
2142 bool as_rhs
= false;
2146 /* ??? We use dependencies of non-debug insns on debug insns to
2147 indicate that the debug insns need to be reset if the non-debug
2148 insn is pulled ahead of it. It's hard to figure out how to
2149 introduce such a notion in sel-sched, but it already fails to
2150 support debug insns in other ways, so we just go ahead and
2151 let the deug insns go corrupt for now. */
2152 if (DEBUG_INSN_P (through_insn
) && !DEBUG_INSN_P (insn
))
2153 return MOVEUP_EXPR_SAME
;
2155 /* When inside_insn_group, delegate to the helper. */
2156 if (inside_insn_group
)
2157 return moveup_expr_inside_insn_group (expr
, through_insn
);
2159 /* Deal with unique insns and control dependencies. */
2160 if (VINSN_UNIQUE_P (vi
))
2162 /* We can move jumps without side-effects or jumps that are
2163 mutually exclusive with instruction THROUGH_INSN (all in cases
2164 dependencies allow to do so and jump is not speculative). */
2165 if (control_flow_insn_p (insn
))
2167 basic_block fallthru_bb
;
2169 /* Do not move checks and do not move jumps through other
2171 if (control_flow_insn_p (through_insn
)
2172 || sel_insn_is_speculation_check (insn
))
2173 return MOVEUP_EXPR_NULL
;
2175 /* Don't move jumps through CFG joins. */
2176 if (bookkeeping_can_be_created_if_moved_through_p (through_insn
))
2177 return MOVEUP_EXPR_NULL
;
2179 /* The jump should have a clear fallthru block, and
2180 this block should be in the current region. */
2181 if ((fallthru_bb
= fallthru_bb_of_jump (insn
)) == NULL
2182 || ! in_current_region_p (fallthru_bb
))
2183 return MOVEUP_EXPR_NULL
;
2185 /* And it should be mutually exclusive with through_insn. */
2186 if (! sched_insns_conditions_mutex_p (insn
, through_insn
)
2187 && ! DEBUG_INSN_P (through_insn
))
2188 return MOVEUP_EXPR_NULL
;
2191 /* Don't move what we can't move. */
2192 if (EXPR_CANT_MOVE (expr
)
2193 && BLOCK_FOR_INSN (through_insn
) != BLOCK_FOR_INSN (insn
))
2194 return MOVEUP_EXPR_NULL
;
2196 /* Don't move SCHED_GROUP instruction through anything.
2197 If we don't force this, then it will be possible to start
2198 scheduling a sched_group before all its dependencies are
2200 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2201 as late as possible through rank_for_schedule. */
2202 if (SCHED_GROUP_P (insn
))
2203 return MOVEUP_EXPR_NULL
;
2206 gcc_assert (!control_flow_insn_p (insn
));
2208 /* Don't move debug insns if this would require bookkeeping. */
2209 if (DEBUG_INSN_P (insn
)
2210 && BLOCK_FOR_INSN (through_insn
) != BLOCK_FOR_INSN (insn
)
2211 && moving_insn_creates_bookkeeping_block_p (insn
, through_insn
))
2212 return MOVEUP_EXPR_NULL
;
2214 /* Deal with data dependencies. */
2215 was_target_conflict
= false;
2216 full_ds
= has_dependence_p (expr
, through_insn
, &has_dep_p
);
2219 if (!CANT_MOVE_TRAPPING (expr
, through_insn
))
2220 return MOVEUP_EXPR_SAME
;
2224 /* We can move UNIQUE insn up only as a whole and unchanged,
2225 so it shouldn't have any dependencies. */
2226 if (VINSN_UNIQUE_P (vi
))
2227 return MOVEUP_EXPR_NULL
;
2230 if (full_ds
!= 0 && can_speculate_dep_p (full_ds
))
2234 res
= speculate_expr (expr
, full_ds
);
2237 /* Speculation was successful. */
2239 was_changed
= (res
> 0);
2241 was_target_conflict
= true;
2243 *ptrans_type
= TRANS_SPECULATION
;
2244 sel_clear_has_dependence ();
2248 if (has_dep_p
[DEPS_IN_INSN
])
2249 /* We have some dependency that cannot be discarded. */
2250 return MOVEUP_EXPR_NULL
;
2252 if (has_dep_p
[DEPS_IN_LHS
])
2254 /* Only separable insns can be moved up with the new register.
2255 Anyways, we should mark that the original register is
2257 if (!enable_schedule_as_rhs_p
|| !EXPR_SEPARABLE_P (expr
))
2258 return MOVEUP_EXPR_NULL
;
2260 /* When renaming a hard register to a pseudo before reload, extra
2261 dependencies can occur from the implicit clobbers of the insn.
2262 Filter out such cases here. */
2263 if (!reload_completed
&& REG_P (EXPR_LHS (expr
))
2264 && HARD_REGISTER_P (EXPR_LHS (expr
))
2265 && implicit_clobber_conflict_p (through_insn
, expr
))
2267 if (sched_verbose
>= 6)
2268 sel_print ("implicit clobbers conflict detected, ");
2269 return MOVEUP_EXPR_NULL
;
2271 EXPR_TARGET_AVAILABLE (expr
) = false;
2272 was_target_conflict
= true;
2276 /* At this point we have either separable insns, that will be lifted
2277 up only as RHSes, or non-separable insns with no dependency in lhs.
2278 If dependency is in RHS, then try to perform substitution and move up
2285 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2286 moved above y=x assignment as z=x*2.
2288 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2289 side can be moved because of the output dependency. The operation was
2290 cropped to its rhs above. */
2291 if (has_dep_p
[DEPS_IN_RHS
])
2293 ds_t
*rhs_dsp
= &has_dep_p
[DEPS_IN_RHS
];
2295 /* Can't substitute UNIQUE VINSNs. */
2296 gcc_assert (!VINSN_UNIQUE_P (vi
));
2298 if (can_speculate_dep_p (*rhs_dsp
))
2302 res
= speculate_expr (expr
, *rhs_dsp
);
2305 /* Speculation was successful. */
2307 was_changed
= (res
> 0);
2309 was_target_conflict
= true;
2311 *ptrans_type
= TRANS_SPECULATION
;
2314 return MOVEUP_EXPR_NULL
;
2316 else if (can_substitute_through_p (through_insn
,
2318 && substitute_reg_in_expr (expr
, through_insn
, false))
2320 /* ??? We cannot perform substitution AND speculation on the same
2322 gcc_assert (!was_changed
);
2325 *ptrans_type
= TRANS_SUBSTITUTION
;
2326 EXPR_WAS_SUBSTITUTED (expr
) = true;
2329 return MOVEUP_EXPR_NULL
;
2332 /* Don't move trapping insns through jumps.
2333 This check should be at the end to give a chance to control speculation
2334 to perform its duties. */
2335 if (CANT_MOVE_TRAPPING (expr
, through_insn
))
2336 return MOVEUP_EXPR_NULL
;
2339 ? MOVEUP_EXPR_CHANGED
2341 ? MOVEUP_EXPR_AS_RHS
2342 : MOVEUP_EXPR_SAME
));
2345 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2346 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2347 that can exist within a parallel group. Write to RES the resulting
2348 code for moveup_expr. */
2350 try_bitmap_cache (expr_t expr
, insn_t insn
,
2351 bool inside_insn_group
,
2352 enum MOVEUP_EXPR_CODE
*res
)
2354 int expr_uid
= INSN_UID (EXPR_INSN_RTX (expr
));
2356 /* First check whether we've analyzed this situation already. */
2357 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn
), expr_uid
))
2359 if (bitmap_bit_p (INSN_FOUND_DEPS (insn
), expr_uid
))
2361 if (sched_verbose
>= 6)
2362 sel_print ("removed (cached)\n");
2363 *res
= MOVEUP_EXPR_NULL
;
2368 if (sched_verbose
>= 6)
2369 sel_print ("unchanged (cached)\n");
2370 *res
= MOVEUP_EXPR_SAME
;
2374 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn
), expr_uid
))
2376 if (inside_insn_group
)
2378 if (sched_verbose
>= 6)
2379 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2380 *res
= MOVEUP_EXPR_SAME
;
2385 EXPR_TARGET_AVAILABLE (expr
) = false;
2387 /* This is the only case when propagation result can change over time,
2388 as we can dynamically switch off scheduling as RHS. In this case,
2389 just check the flag to reach the correct decision. */
2390 if (enable_schedule_as_rhs_p
)
2392 if (sched_verbose
>= 6)
2393 sel_print ("unchanged (as RHS, cached)\n");
2394 *res
= MOVEUP_EXPR_AS_RHS
;
2399 if (sched_verbose
>= 6)
2400 sel_print ("removed (cached as RHS, but renaming"
2401 " is now disabled)\n");
2402 *res
= MOVEUP_EXPR_NULL
;
2410 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2411 if successful. Write to RES the resulting code for moveup_expr. */
2413 try_transformation_cache (expr_t expr
, insn_t insn
,
2414 enum MOVEUP_EXPR_CODE
*res
)
2416 struct transformed_insns
*pti
2417 = (struct transformed_insns
*)
2418 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn
),
2420 VINSN_HASH_RTX (EXPR_VINSN (expr
)));
2423 /* This EXPR was already moved through this insn and was
2424 changed as a result. Fetch the proper data from
2426 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr
),
2427 INSN_UID (insn
), pti
->type
,
2428 pti
->vinsn_old
, pti
->vinsn_new
,
2429 EXPR_SPEC_DONE_DS (expr
));
2431 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti
->vinsn_new
)))
2432 pti
->vinsn_new
= vinsn_copy (pti
->vinsn_new
, true);
2433 change_vinsn_in_expr (expr
, pti
->vinsn_new
);
2434 if (pti
->was_target_conflict
)
2435 EXPR_TARGET_AVAILABLE (expr
) = false;
2436 if (pti
->type
== TRANS_SPECULATION
)
2438 EXPR_SPEC_DONE_DS (expr
) = pti
->ds
;
2439 EXPR_NEEDS_SPEC_CHECK_P (expr
) |= pti
->needs_check
;
2442 if (sched_verbose
>= 6)
2444 sel_print ("changed (cached): ");
2449 *res
= MOVEUP_EXPR_CHANGED
;
2456 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2458 update_bitmap_cache (expr_t expr
, insn_t insn
, bool inside_insn_group
,
2459 enum MOVEUP_EXPR_CODE res
)
2461 int expr_uid
= INSN_UID (EXPR_INSN_RTX (expr
));
2463 /* Do not cache result of propagating jumps through an insn group,
2464 as it is always true, which is not useful outside the group. */
2465 if (inside_insn_group
)
2468 if (res
== MOVEUP_EXPR_NULL
)
2470 bitmap_set_bit (INSN_ANALYZED_DEPS (insn
), expr_uid
);
2471 bitmap_set_bit (INSN_FOUND_DEPS (insn
), expr_uid
);
2473 else if (res
== MOVEUP_EXPR_SAME
)
2475 bitmap_set_bit (INSN_ANALYZED_DEPS (insn
), expr_uid
);
2476 bitmap_clear_bit (INSN_FOUND_DEPS (insn
), expr_uid
);
2478 else if (res
== MOVEUP_EXPR_AS_RHS
)
2480 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn
), expr_uid
);
2481 bitmap_set_bit (INSN_FOUND_DEPS (insn
), expr_uid
);
2487 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2488 and transformation type TRANS_TYPE. */
2490 update_transformation_cache (expr_t expr
, insn_t insn
,
2491 bool inside_insn_group
,
2492 enum local_trans_type trans_type
,
2493 vinsn_t expr_old_vinsn
)
2495 struct transformed_insns
*pti
;
2497 if (inside_insn_group
)
2500 pti
= XNEW (struct transformed_insns
);
2501 pti
->vinsn_old
= expr_old_vinsn
;
2502 pti
->vinsn_new
= EXPR_VINSN (expr
);
2503 pti
->type
= trans_type
;
2504 pti
->was_target_conflict
= was_target_conflict
;
2505 pti
->ds
= EXPR_SPEC_DONE_DS (expr
);
2506 pti
->needs_check
= EXPR_NEEDS_SPEC_CHECK_P (expr
);
2507 vinsn_attach (pti
->vinsn_old
);
2508 vinsn_attach (pti
->vinsn_new
);
2509 *((struct transformed_insns
**)
2510 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn
),
2511 pti
, VINSN_HASH_RTX (expr_old_vinsn
),
2515 /* Same as moveup_expr, but first looks up the result of
2516 transformation in caches. */
2517 static enum MOVEUP_EXPR_CODE
2518 moveup_expr_cached (expr_t expr
, insn_t insn
, bool inside_insn_group
)
2520 enum MOVEUP_EXPR_CODE res
;
2521 bool got_answer
= false;
2523 if (sched_verbose
>= 6)
2525 sel_print ("Moving ");
2527 sel_print (" through %d: ", INSN_UID (insn
));
2530 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr
))
2531 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr
)))
2532 == EXPR_INSN_RTX (expr
)))
2533 /* Don't use cached information for debug insns that are heads of
2535 else if (try_bitmap_cache (expr
, insn
, inside_insn_group
, &res
))
2536 /* When inside insn group, we do not want remove stores conflicting
2537 with previosly issued loads. */
2538 got_answer
= ! inside_insn_group
|| res
!= MOVEUP_EXPR_NULL
;
2539 else if (try_transformation_cache (expr
, insn
, &res
))
2544 /* Invoke moveup_expr and record the results. */
2545 vinsn_t expr_old_vinsn
= EXPR_VINSN (expr
);
2546 ds_t expr_old_spec_ds
= EXPR_SPEC_DONE_DS (expr
);
2547 int expr_uid
= INSN_UID (VINSN_INSN_RTX (expr_old_vinsn
));
2548 bool unique_p
= VINSN_UNIQUE_P (expr_old_vinsn
);
2549 enum local_trans_type trans_type
= TRANS_SUBSTITUTION
;
2551 /* ??? Invent something better than this. We can't allow old_vinsn
2552 to go, we need it for the history vector. */
2553 vinsn_attach (expr_old_vinsn
);
2555 res
= moveup_expr (expr
, insn
, inside_insn_group
,
2559 case MOVEUP_EXPR_NULL
:
2560 update_bitmap_cache (expr
, insn
, inside_insn_group
, res
);
2561 if (sched_verbose
>= 6)
2562 sel_print ("removed\n");
2565 case MOVEUP_EXPR_SAME
:
2566 update_bitmap_cache (expr
, insn
, inside_insn_group
, res
);
2567 if (sched_verbose
>= 6)
2568 sel_print ("unchanged\n");
2571 case MOVEUP_EXPR_AS_RHS
:
2572 gcc_assert (!unique_p
|| inside_insn_group
);
2573 update_bitmap_cache (expr
, insn
, inside_insn_group
, res
);
2574 if (sched_verbose
>= 6)
2575 sel_print ("unchanged (as RHS)\n");
2578 case MOVEUP_EXPR_CHANGED
:
2579 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr
)) != expr_uid
2580 || EXPR_SPEC_DONE_DS (expr
) != expr_old_spec_ds
);
2581 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr
),
2582 INSN_UID (insn
), trans_type
,
2583 expr_old_vinsn
, EXPR_VINSN (expr
),
2585 update_transformation_cache (expr
, insn
, inside_insn_group
,
2586 trans_type
, expr_old_vinsn
);
2587 if (sched_verbose
>= 6)
2589 sel_print ("changed: ");
2598 vinsn_detach (expr_old_vinsn
);
2604 /* Moves an av set AVP up through INSN, performing necessary
2607 moveup_set_expr (av_set_t
*avp
, insn_t insn
, bool inside_insn_group
)
2612 FOR_EACH_EXPR_1 (expr
, i
, avp
)
2615 switch (moveup_expr_cached (expr
, insn
, inside_insn_group
))
2617 case MOVEUP_EXPR_SAME
:
2618 case MOVEUP_EXPR_AS_RHS
:
2621 case MOVEUP_EXPR_NULL
:
2622 av_set_iter_remove (&i
);
2625 case MOVEUP_EXPR_CHANGED
:
2626 expr
= merge_with_other_exprs (avp
, &i
, expr
);
2635 /* Moves AVP set along PATH. */
2637 moveup_set_inside_insn_group (av_set_t
*avp
, ilist_t path
)
2641 if (sched_verbose
>= 6)
2642 sel_print ("Moving expressions up in the insn group...\n");
2645 last_cycle
= INSN_SCHED_CYCLE (ILIST_INSN (path
));
2647 && INSN_SCHED_CYCLE (ILIST_INSN (path
)) == last_cycle
)
2649 moveup_set_expr (avp
, ILIST_INSN (path
), true);
2650 path
= ILIST_NEXT (path
);
2654 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2656 equal_after_moveup_path_p (expr_t expr
, ilist_t path
, expr_t expr_vliw
)
2658 expr_def _tmp
, *tmp
= &_tmp
;
2662 copy_expr_onside (tmp
, expr
);
2663 last_cycle
= path
? INSN_SCHED_CYCLE (ILIST_INSN (path
)) : 0;
2666 && INSN_SCHED_CYCLE (ILIST_INSN (path
)) == last_cycle
)
2668 res
= (moveup_expr_cached (tmp
, ILIST_INSN (path
), true)
2669 != MOVEUP_EXPR_NULL
);
2670 path
= ILIST_NEXT (path
);
2675 vinsn_t tmp_vinsn
= EXPR_VINSN (tmp
);
2676 vinsn_t expr_vliw_vinsn
= EXPR_VINSN (expr_vliw
);
2678 if (tmp_vinsn
!= expr_vliw_vinsn
)
2679 res
= vinsn_equal_p (tmp_vinsn
, expr_vliw_vinsn
);
2687 /* Functions that compute av and lv sets. */
2689 /* Returns true if INSN is not a downward continuation of the given path P in
2690 the current stage. */
2692 is_ineligible_successor (insn_t insn
, ilist_t p
)
2696 /* Check if insn is not deleted. */
2697 if (PREV_INSN (insn
) && NEXT_INSN (PREV_INSN (insn
)) != insn
)
2699 else if (NEXT_INSN (insn
) && PREV_INSN (NEXT_INSN (insn
)) != insn
)
2702 /* If it's the first insn visited, then the successor is ok. */
2706 prev_insn
= ILIST_INSN (p
);
2708 if (/* a backward edge. */
2709 INSN_SEQNO (insn
) < INSN_SEQNO (prev_insn
)
2710 /* is already visited. */
2711 || (INSN_SEQNO (insn
) == INSN_SEQNO (prev_insn
)
2712 && (ilist_is_in_p (p
, insn
)
2713 /* We can reach another fence here and still seqno of insn
2714 would be equal to seqno of prev_insn. This is possible
2715 when prev_insn is a previously created bookkeeping copy.
2716 In that case it'd get a seqno of insn. Thus, check here
2717 whether insn is in current fence too. */
2718 || IN_CURRENT_FENCE_P (insn
)))
2719 /* Was already scheduled on this round. */
2720 || (INSN_SEQNO (insn
) > INSN_SEQNO (prev_insn
)
2721 && IN_CURRENT_FENCE_P (insn
))
2722 /* An insn from another fence could also be
2723 scheduled earlier even if this insn is not in
2724 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2726 && INSN_SCHED_TIMES (insn
) > 0))
2732 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2733 of handling multiple successors and properly merging its av_sets. P is
2734 the current path traversed. WS is the size of lookahead window.
2735 Return the av set computed. */
2737 compute_av_set_at_bb_end (insn_t insn
, ilist_t p
, int ws
)
2739 struct succs_info
*sinfo
;
2740 av_set_t expr_in_all_succ_branches
= NULL
;
2742 insn_t succ
, zero_succ
= NULL
;
2743 av_set_t av1
= NULL
;
2745 gcc_assert (sel_bb_end_p (insn
));
2747 /* Find different kind of successors needed for correct computing of
2748 SPEC and TARGET_AVAILABLE attributes. */
2749 sinfo
= compute_succs_info (insn
, SUCCS_NORMAL
);
2752 if (sched_verbose
>= 6)
2754 sel_print ("successors of bb end (%d): ", INSN_UID (insn
));
2755 dump_insn_vector (sinfo
->succs_ok
);
2757 if (sinfo
->succs_ok_n
!= sinfo
->all_succs_n
)
2758 sel_print ("real successors num: %d\n", sinfo
->all_succs_n
);
2761 /* Add insn to the tail of current path. */
2762 ilist_add (&p
, insn
);
2764 FOR_EACH_VEC_ELT (sinfo
->succs_ok
, is
, succ
)
2768 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2769 succ_set
= compute_av_set_inside_bb (succ
, p
, ws
, true);
2771 av_set_split_usefulness (succ_set
,
2772 sinfo
->probs_ok
[is
],
2775 if (sinfo
->all_succs_n
> 1)
2777 /* Find EXPR'es that came from *all* successors and save them
2778 into expr_in_all_succ_branches. This set will be used later
2779 for calculating speculation attributes of EXPR'es. */
2782 expr_in_all_succ_branches
= av_set_copy (succ_set
);
2784 /* Remember the first successor for later. */
2792 FOR_EACH_EXPR_1 (expr
, i
, &expr_in_all_succ_branches
)
2793 if (!av_set_is_in_p (succ_set
, EXPR_VINSN (expr
)))
2794 av_set_iter_remove (&i
);
2798 /* Union the av_sets. Check liveness restrictions on target registers
2799 in special case of two successors. */
2800 if (sinfo
->succs_ok_n
== 2 && is
== 1)
2802 basic_block bb0
= BLOCK_FOR_INSN (zero_succ
);
2803 basic_block bb1
= BLOCK_FOR_INSN (succ
);
2805 gcc_assert (BB_LV_SET_VALID_P (bb0
) && BB_LV_SET_VALID_P (bb1
));
2806 av_set_union_and_live (&av1
, &succ_set
,
2812 av_set_union_and_clear (&av1
, &succ_set
, insn
);
2815 /* Check liveness restrictions via hard way when there are more than
2817 if (sinfo
->succs_ok_n
> 2)
2818 FOR_EACH_VEC_ELT (sinfo
->succs_ok
, is
, succ
)
2820 basic_block succ_bb
= BLOCK_FOR_INSN (succ
);
2822 gcc_assert (BB_LV_SET_VALID_P (succ_bb
));
2823 mark_unavailable_targets (av1
, BB_AV_SET (succ_bb
),
2824 BB_LV_SET (succ_bb
));
2827 /* Finally, check liveness restrictions on paths leaving the region. */
2828 if (sinfo
->all_succs_n
> sinfo
->succs_ok_n
)
2829 FOR_EACH_VEC_ELT (sinfo
->succs_other
, is
, succ
)
2830 mark_unavailable_targets
2831 (av1
, NULL
, BB_LV_SET (BLOCK_FOR_INSN (succ
)));
2833 if (sinfo
->all_succs_n
> 1)
2838 /* Increase the spec attribute of all EXPR'es that didn't come
2839 from all successors. */
2840 FOR_EACH_EXPR (expr
, i
, av1
)
2841 if (!av_set_is_in_p (expr_in_all_succ_branches
, EXPR_VINSN (expr
)))
2844 av_set_clear (&expr_in_all_succ_branches
);
2846 /* Do not move conditional branches through other
2847 conditional branches. So, remove all conditional
2848 branches from av_set if current operator is a conditional
2850 av_set_substract_cond_branches (&av1
);
2854 free_succs_info (sinfo
);
2856 if (sched_verbose
>= 6)
2858 sel_print ("av_succs (%d): ", INSN_UID (insn
));
2866 /* This function computes av_set for the FIRST_INSN by dragging valid
2867 av_set through all basic block insns either from the end of basic block
2868 (computed using compute_av_set_at_bb_end) or from the insn on which
2869 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2870 below the basic block and handling conditional branches.
2871 FIRST_INSN - the basic block head, P - path consisting of the insns
2872 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2873 and bb ends are added to the path), WS - current window size,
2874 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2876 compute_av_set_inside_bb (insn_t first_insn
, ilist_t p
, int ws
,
2881 insn_t bb_end
= sel_bb_end (BLOCK_FOR_INSN (first_insn
));
2882 insn_t after_bb_end
= NEXT_INSN (bb_end
);
2885 basic_block cur_bb
= BLOCK_FOR_INSN (first_insn
);
2887 /* Return NULL if insn is not on the legitimate downward path. */
2888 if (is_ineligible_successor (first_insn
, p
))
2890 if (sched_verbose
>= 6)
2891 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn
));
2896 /* If insn already has valid av(insn) computed, just return it. */
2897 if (AV_SET_VALID_P (first_insn
))
2901 if (sel_bb_head_p (first_insn
))
2902 av_set
= BB_AV_SET (BLOCK_FOR_INSN (first_insn
));
2906 if (sched_verbose
>= 6)
2908 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn
));
2909 dump_av_set (av_set
);
2913 return need_copy_p
? av_set_copy (av_set
) : av_set
;
2916 ilist_add (&p
, first_insn
);
2918 /* As the result after this loop have completed, in LAST_INSN we'll
2919 have the insn which has valid av_set to start backward computation
2920 from: it either will be NULL because on it the window size was exceeded
2921 or other valid av_set as returned by compute_av_set for the last insn
2922 of the basic block. */
2923 for (last_insn
= first_insn
; last_insn
!= after_bb_end
;
2924 last_insn
= NEXT_INSN (last_insn
))
2926 /* We may encounter valid av_set not only on bb_head, but also on
2927 those insns on which previously MAX_WS was exceeded. */
2928 if (AV_SET_VALID_P (last_insn
))
2930 if (sched_verbose
>= 6)
2931 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn
));
2935 /* The special case: the last insn of the BB may be an
2936 ineligible_successor due to its SEQ_NO that was set on
2937 it as a bookkeeping. */
2938 if (last_insn
!= first_insn
2939 && is_ineligible_successor (last_insn
, p
))
2941 if (sched_verbose
>= 6)
2942 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn
));
2946 if (DEBUG_INSN_P (last_insn
))
2949 if (end_ws
> max_ws
)
2951 /* We can reach max lookahead size at bb_header, so clean av_set
2953 INSN_WS_LEVEL (last_insn
) = global_level
;
2955 if (sched_verbose
>= 6)
2956 sel_print ("Insn %d is beyond the software lookahead window size\n",
2957 INSN_UID (last_insn
));
2964 /* Get the valid av_set into AV above the LAST_INSN to start backward
2965 computation from. It either will be empty av_set or av_set computed from
2966 the successors on the last insn of the current bb. */
2967 if (last_insn
!= after_bb_end
)
2971 /* This is needed only to obtain av_sets that are identical to
2972 those computed by the old compute_av_set version. */
2973 if (last_insn
== first_insn
&& !INSN_NOP_P (last_insn
))
2974 av_set_add (&av
, INSN_EXPR (last_insn
));
2977 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2978 av
= compute_av_set_at_bb_end (bb_end
, p
, end_ws
);
2980 /* Compute av_set in AV starting from below the LAST_INSN up to
2981 location above the FIRST_INSN. */
2982 for (cur_insn
= PREV_INSN (last_insn
); cur_insn
!= PREV_INSN (first_insn
);
2983 cur_insn
= PREV_INSN (cur_insn
))
2984 if (!INSN_NOP_P (cur_insn
))
2988 moveup_set_expr (&av
, cur_insn
, false);
2990 /* If the expression for CUR_INSN is already in the set,
2991 replace it by the new one. */
2992 expr
= av_set_lookup (av
, INSN_VINSN (cur_insn
));
2996 copy_expr (expr
, INSN_EXPR (cur_insn
));
2999 av_set_add (&av
, INSN_EXPR (cur_insn
));
3002 /* Clear stale bb_av_set. */
3003 if (sel_bb_head_p (first_insn
))
3005 av_set_clear (&BB_AV_SET (cur_bb
));
3006 BB_AV_SET (cur_bb
) = need_copy_p
? av_set_copy (av
) : av
;
3007 BB_AV_LEVEL (cur_bb
) = global_level
;
3010 if (sched_verbose
>= 6)
3012 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn
));
3021 /* Compute av set before INSN.
3022 INSN - the current operation (actual rtx INSN)
3023 P - the current path, which is list of insns visited so far
3024 WS - software lookahead window size.
3025 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3026 if we want to save computed av_set in s_i_d, we should make a copy of it.
3028 In the resulting set we will have only expressions that don't have delay
3029 stalls and nonsubstitutable dependences. */
3031 compute_av_set (insn_t insn
, ilist_t p
, int ws
, bool unique_p
)
3033 return compute_av_set_inside_bb (insn
, p
, ws
, unique_p
);
3036 /* Propagate a liveness set LV through INSN. */
3038 propagate_lv_set (regset lv
, insn_t insn
)
3040 gcc_assert (INSN_P (insn
));
3042 if (INSN_NOP_P (insn
))
3045 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn
), insn
, lv
);
3048 /* Return livness set at the end of BB. */
3050 compute_live_after_bb (basic_block bb
)
3054 regset lv
= get_clear_regset_from_pool ();
3056 gcc_assert (!ignore_first
);
3058 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3059 if (sel_bb_empty_p (e
->dest
))
3061 if (! BB_LV_SET_VALID_P (e
->dest
))
3064 gcc_assert (BB_LV_SET (e
->dest
) == NULL
);
3065 BB_LV_SET (e
->dest
) = compute_live_after_bb (e
->dest
);
3066 BB_LV_SET_VALID_P (e
->dest
) = true;
3068 IOR_REG_SET (lv
, BB_LV_SET (e
->dest
));
3071 IOR_REG_SET (lv
, compute_live (sel_bb_head (e
->dest
)));
3076 /* Compute the set of all live registers at the point before INSN and save
3077 it at INSN if INSN is bb header. */
3079 compute_live (insn_t insn
)
3081 basic_block bb
= BLOCK_FOR_INSN (insn
);
3085 /* Return the valid set if we're already on it. */
3090 if (sel_bb_head_p (insn
) && BB_LV_SET_VALID_P (bb
))
3091 src
= BB_LV_SET (bb
);
3094 gcc_assert (in_current_region_p (bb
));
3095 if (INSN_LIVE_VALID_P (insn
))
3096 src
= INSN_LIVE (insn
);
3101 lv
= get_regset_from_pool ();
3102 COPY_REG_SET (lv
, src
);
3104 if (sel_bb_head_p (insn
) && ! BB_LV_SET_VALID_P (bb
))
3106 COPY_REG_SET (BB_LV_SET (bb
), lv
);
3107 BB_LV_SET_VALID_P (bb
) = true;
3110 return_regset_to_pool (lv
);
3115 /* We've skipped the wrong lv_set. Don't skip the right one. */
3116 ignore_first
= false;
3117 gcc_assert (in_current_region_p (bb
));
3119 /* Find a valid LV set in this block or below, if needed.
3120 Start searching from the next insn: either ignore_first is true, or
3121 INSN doesn't have a correct live set. */
3122 temp
= NEXT_INSN (insn
);
3123 final
= NEXT_INSN (BB_END (bb
));
3124 while (temp
!= final
&& ! INSN_LIVE_VALID_P (temp
))
3125 temp
= NEXT_INSN (temp
);
3128 lv
= compute_live_after_bb (bb
);
3129 temp
= PREV_INSN (temp
);
3133 lv
= get_regset_from_pool ();
3134 COPY_REG_SET (lv
, INSN_LIVE (temp
));
3137 /* Put correct lv sets on the insns which have bad sets. */
3138 final
= PREV_INSN (insn
);
3139 while (temp
!= final
)
3141 propagate_lv_set (lv
, temp
);
3142 COPY_REG_SET (INSN_LIVE (temp
), lv
);
3143 INSN_LIVE_VALID_P (temp
) = true;
3144 temp
= PREV_INSN (temp
);
3147 /* Also put it in a BB. */
3148 if (sel_bb_head_p (insn
))
3150 basic_block bb
= BLOCK_FOR_INSN (insn
);
3152 COPY_REG_SET (BB_LV_SET (bb
), lv
);
3153 BB_LV_SET_VALID_P (bb
) = true;
3156 /* We return LV to the pool, but will not clear it there. Thus we can
3157 legimatelly use LV till the next use of regset_pool_get (). */
3158 return_regset_to_pool (lv
);
3162 /* Update liveness sets for INSN. */
3164 update_liveness_on_insn (rtx_insn
*insn
)
3166 ignore_first
= true;
3167 compute_live (insn
);
3170 /* Compute liveness below INSN and write it into REGS. */
3172 compute_live_below_insn (rtx_insn
*insn
, regset regs
)
3177 FOR_EACH_SUCC_1 (succ
, si
, insn
, SUCCS_ALL
)
3178 IOR_REG_SET (regs
, compute_live (succ
));
3181 /* Update the data gathered in av and lv sets starting from INSN. */
3183 update_data_sets (rtx_insn
*insn
)
3185 update_liveness_on_insn (insn
);
3186 if (sel_bb_head_p (insn
))
3188 gcc_assert (AV_LEVEL (insn
) != 0);
3189 BB_AV_LEVEL (BLOCK_FOR_INSN (insn
)) = -1;
3190 compute_av_set (insn
, NULL
, 0, 0);
3195 /* Helper for move_op () and find_used_regs ().
3196 Return speculation type for which a check should be created on the place
3197 of INSN. EXPR is one of the original ops we are searching for. */
3199 get_spec_check_type_for_insn (insn_t insn
, expr_t expr
)
3202 ds_t already_checked_ds
= EXPR_SPEC_DONE_DS (INSN_EXPR (insn
));
3204 to_check_ds
= EXPR_SPEC_TO_CHECK_DS (expr
);
3206 if (targetm
.sched
.get_insn_checked_ds
)
3207 already_checked_ds
|= targetm
.sched
.get_insn_checked_ds (insn
);
3209 if (spec_info
!= NULL
3210 && (spec_info
->flags
& SEL_SCHED_SPEC_DONT_CHECK_CONTROL
))
3211 already_checked_ds
|= BEGIN_CONTROL
;
3213 already_checked_ds
= ds_get_speculation_types (already_checked_ds
);
3215 to_check_ds
&= ~already_checked_ds
;
3220 /* Find the set of registers that are unavailable for storing expres
3221 while moving ORIG_OPS up on the path starting from INSN due to
3222 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3224 All the original operations found during the traversal are saved in the
3225 ORIGINAL_INSNS list.
3227 REG_RENAME_P denotes the set of hardware registers that
3228 can not be used with renaming due to the register class restrictions,
3229 mode restrictions and other (the register we'll choose should be
3230 compatible class with the original uses, shouldn't be in call_used_regs,
3231 should be HARD_REGNO_RENAME_OK etc).
3233 Returns TRUE if we've found all original insns, FALSE otherwise.
3235 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3236 to traverse the code motion paths. This helper function finds registers
3237 that are not available for storing expres while moving ORIG_OPS up on the
3238 path starting from INSN. A register considered as used on the moving path,
3239 if one of the following conditions is not satisfied:
3241 (1) a register not set or read on any path from xi to an instance of
3242 the original operation,
3243 (2) not among the live registers of the point immediately following the
3244 first original operation on a given downward path, except for the
3245 original target register of the operation,
3246 (3) not live on the other path of any conditional branch that is passed
3247 by the operation, in case original operations are not present on
3248 both paths of the conditional branch.
3250 All the original operations found during the traversal are saved in the
3251 ORIGINAL_INSNS list.
3253 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3254 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3255 to unavailable hard regs at the point original operation is found. */
3258 find_used_regs (insn_t insn
, av_set_t orig_ops
, regset used_regs
,
3259 struct reg_rename
*reg_rename_p
, def_list_t
*original_insns
)
3261 def_list_iterator i
;
3264 bool needs_spec_check_p
= false;
3266 av_set_iterator expr_iter
;
3267 struct fur_static_params sparams
;
3268 struct cmpd_local_params lparams
;
3270 /* We haven't visited any blocks yet. */
3271 bitmap_clear (code_motion_visited_blocks
);
3273 /* Init parameters for code_motion_path_driver. */
3274 sparams
.crosses_call
= false;
3275 sparams
.original_insns
= original_insns
;
3276 sparams
.used_regs
= used_regs
;
3278 /* Set the appropriate hooks and data. */
3279 code_motion_path_driver_info
= &fur_hooks
;
3281 res
= code_motion_path_driver (insn
, orig_ops
, NULL
, &lparams
, &sparams
);
3283 reg_rename_p
->crosses_call
|= sparams
.crosses_call
;
3285 gcc_assert (res
== 1);
3286 gcc_assert (original_insns
&& *original_insns
);
3288 /* ??? We calculate whether an expression needs a check when computing
3289 av sets. This information is not as precise as it could be due to
3290 merging this bit in merge_expr. We can do better in find_used_regs,
3291 but we want to avoid multiple traversals of the same code motion
3293 FOR_EACH_EXPR (expr
, expr_iter
, orig_ops
)
3294 needs_spec_check_p
|= EXPR_NEEDS_SPEC_CHECK_P (expr
);
3296 /* Mark hardware regs in REG_RENAME_P that are not suitable
3297 for renaming expr in INSN due to hardware restrictions (register class,
3298 modes compatibility etc). */
3299 FOR_EACH_DEF (def
, i
, *original_insns
)
3301 vinsn_t vinsn
= INSN_VINSN (def
->orig_insn
);
3303 if (VINSN_SEPARABLE_P (vinsn
))
3304 mark_unavailable_hard_regs (def
, reg_rename_p
, used_regs
);
3306 /* Do not allow clobbering of ld.[sa] address in case some of the
3307 original operations need a check. */
3308 if (needs_spec_check_p
)
3309 IOR_REG_SET (used_regs
, VINSN_REG_USES (vinsn
));
3316 /* Functions to choose the best insn from available ones. */
3318 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3320 sel_target_adjust_priority (expr_t expr
)
3322 int priority
= EXPR_PRIORITY (expr
);
3325 if (targetm
.sched
.adjust_priority
)
3326 new_priority
= targetm
.sched
.adjust_priority (EXPR_INSN_RTX (expr
), priority
);
3328 new_priority
= priority
;
3330 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3331 EXPR_PRIORITY_ADJ (expr
) = new_priority
- EXPR_PRIORITY (expr
);
3333 gcc_assert (EXPR_PRIORITY_ADJ (expr
) >= 0);
3335 if (sched_verbose
>= 4)
3336 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3337 INSN_UID (EXPR_INSN_RTX (expr
)), EXPR_PRIORITY (expr
),
3338 EXPR_PRIORITY_ADJ (expr
), new_priority
);
3340 return new_priority
;
3343 /* Rank two available exprs for schedule. Never return 0 here. */
3345 sel_rank_for_schedule (const void *x
, const void *y
)
3347 expr_t tmp
= *(const expr_t
*) y
;
3348 expr_t tmp2
= *(const expr_t
*) x
;
3349 insn_t tmp_insn
, tmp2_insn
;
3350 vinsn_t tmp_vinsn
, tmp2_vinsn
;
3353 tmp_vinsn
= EXPR_VINSN (tmp
);
3354 tmp2_vinsn
= EXPR_VINSN (tmp2
);
3355 tmp_insn
= EXPR_INSN_RTX (tmp
);
3356 tmp2_insn
= EXPR_INSN_RTX (tmp2
);
3358 /* Schedule debug insns as early as possible. */
3359 if (DEBUG_INSN_P (tmp_insn
) && !DEBUG_INSN_P (tmp2_insn
))
3361 else if (DEBUG_INSN_P (tmp2_insn
))
3364 /* Prefer SCHED_GROUP_P insns to any others. */
3365 if (SCHED_GROUP_P (tmp_insn
) != SCHED_GROUP_P (tmp2_insn
))
3367 if (VINSN_UNIQUE_P (tmp_vinsn
) && VINSN_UNIQUE_P (tmp2_vinsn
))
3368 return SCHED_GROUP_P (tmp2_insn
) ? 1 : -1;
3370 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3371 cannot be cloned. */
3372 if (VINSN_UNIQUE_P (tmp2_vinsn
))
3377 /* Discourage scheduling of speculative checks. */
3378 val
= (sel_insn_is_speculation_check (tmp_insn
)
3379 - sel_insn_is_speculation_check (tmp2_insn
));
3383 /* Prefer not scheduled insn over scheduled one. */
3384 if (EXPR_SCHED_TIMES (tmp
) > 0 || EXPR_SCHED_TIMES (tmp2
) > 0)
3386 val
= EXPR_SCHED_TIMES (tmp
) - EXPR_SCHED_TIMES (tmp2
);
3391 /* Prefer jump over non-jump instruction. */
3392 if (control_flow_insn_p (tmp_insn
) && !control_flow_insn_p (tmp2_insn
))
3394 else if (control_flow_insn_p (tmp2_insn
) && !control_flow_insn_p (tmp_insn
))
3397 /* Prefer an expr with greater priority. */
3398 if (EXPR_USEFULNESS (tmp
) != 0 && EXPR_USEFULNESS (tmp2
) != 0)
3400 int p2
= EXPR_PRIORITY (tmp2
) + EXPR_PRIORITY_ADJ (tmp2
),
3401 p1
= EXPR_PRIORITY (tmp
) + EXPR_PRIORITY_ADJ (tmp
);
3403 val
= p2
* EXPR_USEFULNESS (tmp2
) - p1
* EXPR_USEFULNESS (tmp
);
3406 val
= EXPR_PRIORITY (tmp2
) - EXPR_PRIORITY (tmp
)
3407 + EXPR_PRIORITY_ADJ (tmp2
) - EXPR_PRIORITY_ADJ (tmp
);
3411 if (spec_info
!= NULL
&& spec_info
->mask
!= 0)
3412 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3418 ds1
= EXPR_SPEC_DONE_DS (tmp
);
3420 dw1
= ds_weak (ds1
);
3424 ds2
= EXPR_SPEC_DONE_DS (tmp2
);
3426 dw2
= ds_weak (ds2
);
3431 if (dw
> (NO_DEP_WEAK
/ 8) || dw
< -(NO_DEP_WEAK
/ 8))
3435 /* Prefer an old insn to a bookkeeping insn. */
3436 if (INSN_UID (tmp_insn
) < first_emitted_uid
3437 && INSN_UID (tmp2_insn
) >= first_emitted_uid
)
3439 if (INSN_UID (tmp_insn
) >= first_emitted_uid
3440 && INSN_UID (tmp2_insn
) < first_emitted_uid
)
3443 /* Prefer an insn with smaller UID, as a last resort.
3444 We can't safely use INSN_LUID as it is defined only for those insns
3445 that are in the stream. */
3446 return INSN_UID (tmp_insn
) - INSN_UID (tmp2_insn
);
3449 /* Filter out expressions from av set pointed to by AV_PTR
3450 that are pipelined too many times. */
3452 process_pipelined_exprs (av_set_t
*av_ptr
)
3457 /* Don't pipeline already pipelined code as that would increase
3458 number of unnecessary register moves. */
3459 FOR_EACH_EXPR_1 (expr
, si
, av_ptr
)
3461 if (EXPR_SCHED_TIMES (expr
)
3462 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES
))
3463 av_set_iter_remove (&si
);
3467 /* Filter speculative insns from AV_PTR if we don't want them. */
3469 process_spec_exprs (av_set_t
*av_ptr
)
3474 if (spec_info
== NULL
)
3477 /* Scan *AV_PTR to find out if we want to consider speculative
3478 instructions for scheduling. */
3479 FOR_EACH_EXPR_1 (expr
, si
, av_ptr
)
3483 ds
= EXPR_SPEC_DONE_DS (expr
);
3485 /* The probability of a success is too low - don't speculate. */
3486 if ((ds
& SPECULATIVE
)
3487 && (ds_weak (ds
) < spec_info
->data_weakness_cutoff
3488 || EXPR_USEFULNESS (expr
) < spec_info
->control_weakness_cutoff
3489 || (pipelining_p
&& false
3491 && (ds
& CONTROL_SPEC
))))
3493 av_set_iter_remove (&si
);
3499 /* Search for any use-like insns in AV_PTR and decide on scheduling
3500 them. Return one when found, and NULL otherwise.
3501 Note that we check here whether a USE could be scheduled to avoid
3502 an infinite loop later. */
3504 process_use_exprs (av_set_t
*av_ptr
)
3508 bool uses_present_p
= false;
3509 bool try_uses_p
= true;
3511 FOR_EACH_EXPR_1 (expr
, si
, av_ptr
)
3513 /* This will also initialize INSN_CODE for later use. */
3514 if (recog_memoized (EXPR_INSN_RTX (expr
)) < 0)
3516 /* If we have a USE in *AV_PTR that was not scheduled yet,
3517 do so because it will do good only. */
3518 if (EXPR_SCHED_TIMES (expr
) <= 0)
3520 if (EXPR_TARGET_AVAILABLE (expr
) == 1)
3523 av_set_iter_remove (&si
);
3527 gcc_assert (pipelining_p
);
3529 uses_present_p
= true;
3538 /* If we don't want to schedule any USEs right now and we have some
3539 in *AV_PTR, remove them, else just return the first one found. */
3542 FOR_EACH_EXPR_1 (expr
, si
, av_ptr
)
3543 if (INSN_CODE (EXPR_INSN_RTX (expr
)) < 0)
3544 av_set_iter_remove (&si
);
3548 FOR_EACH_EXPR_1 (expr
, si
, av_ptr
)
3550 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr
)) < 0);
3552 if (EXPR_TARGET_AVAILABLE (expr
) == 1)
3555 av_set_iter_remove (&si
);
3563 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3564 EXPR's history of changes. */
3566 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec
, expr_t expr
)
3568 vinsn_t vinsn
, expr_vinsn
;
3572 /* Start with checking expr itself and then proceed with all the old forms
3573 of expr taken from its history vector. */
3574 for (i
= 0, expr_vinsn
= EXPR_VINSN (expr
);
3576 expr_vinsn
= (i
< EXPR_HISTORY_OF_CHANGES (expr
).length ()
3577 ? EXPR_HISTORY_OF_CHANGES (expr
)[i
++].old_expr_vinsn
3579 FOR_EACH_VEC_ELT (vinsn_vec
, n
, vinsn
)
3580 if (VINSN_SEPARABLE_P (vinsn
))
3582 if (vinsn_equal_p (vinsn
, expr_vinsn
))
3587 /* For non-separable instructions, the blocking insn can have
3588 another pattern due to substitution, and we can't choose
3589 different register as in the above case. Check all registers
3590 being written instead. */
3591 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn
),
3592 VINSN_REG_SETS (expr_vinsn
)))
3599 #ifdef ENABLE_CHECKING
3600 /* Return true if either of expressions from ORIG_OPS can be blocked
3601 by previously created bookkeeping code. STATIC_PARAMS points to static
3602 parameters of move_op. */
3604 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops
, void *static_params
)
3607 av_set_iterator iter
;
3608 moveop_static_params_p sparams
;
3610 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3611 created while scheduling on another fence. */
3612 FOR_EACH_EXPR (expr
, iter
, orig_ops
)
3613 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns
, expr
))
3616 gcc_assert (code_motion_path_driver_info
== &move_op_hooks
);
3617 sparams
= (moveop_static_params_p
) static_params
;
3619 /* Expressions can be also blocked by bookkeeping created during current
3621 if (bitmap_bit_p (current_copies
, INSN_UID (sparams
->failed_insn
)))
3622 FOR_EACH_EXPR (expr
, iter
, orig_ops
)
3623 if (moveup_expr_cached (expr
, sparams
->failed_insn
, false) != MOVEUP_EXPR_NULL
)
3626 /* Expressions in ORIG_OPS may have wrong destination register due to
3627 renaming. Check with the right register instead. */
3628 if (sparams
->dest
&& REG_P (sparams
->dest
))
3630 rtx reg
= sparams
->dest
;
3631 vinsn_t failed_vinsn
= INSN_VINSN (sparams
->failed_insn
);
3633 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn
), reg
)
3634 || register_unavailable_p (VINSN_REG_USES (failed_vinsn
), reg
)
3635 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn
), reg
))
3643 /* Clear VINSN_VEC and detach vinsns. */
3645 vinsn_vec_clear (vinsn_vec_t
*vinsn_vec
)
3647 unsigned len
= vinsn_vec
->length ();
3653 FOR_EACH_VEC_ELT (*vinsn_vec
, n
, vinsn
)
3654 vinsn_detach (vinsn
);
3655 vinsn_vec
->block_remove (0, len
);
3659 /* Add the vinsn of EXPR to the VINSN_VEC. */
3661 vinsn_vec_add (vinsn_vec_t
*vinsn_vec
, expr_t expr
)
3663 vinsn_attach (EXPR_VINSN (expr
));
3664 vinsn_vec
->safe_push (EXPR_VINSN (expr
));
3667 /* Free the vector representing blocked expressions. */
3669 vinsn_vec_free (vinsn_vec_t
&vinsn_vec
)
3671 vinsn_vec
.release ();
3674 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3676 void sel_add_to_insn_priority (rtx insn
, int amount
)
3678 EXPR_PRIORITY_ADJ (INSN_EXPR (insn
)) += amount
;
3680 if (sched_verbose
>= 2)
3681 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3682 INSN_UID (insn
), amount
, EXPR_PRIORITY (INSN_EXPR (insn
)),
3683 EXPR_PRIORITY_ADJ (INSN_EXPR (insn
)));
3686 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3687 true if there is something to schedule. BNDS and FENCE are current
3688 boundaries and fence, respectively. If we need to stall for some cycles
3689 before an expr from AV would become available, write this number to
3692 fill_vec_av_set (av_set_t av
, blist_t bnds
, fence_t fence
,
3697 int sched_next_worked
= 0, stalled
, n
;
3698 static int av_max_prio
, est_ticks_till_branch
;
3699 int min_need_stall
= -1;
3700 deps_t dc
= BND_DC (BLIST_BND (bnds
));
3702 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3703 already scheduled. */
3707 /* Empty vector from the previous stuff. */
3708 if (vec_av_set
.length () > 0)
3709 vec_av_set
.block_remove (0, vec_av_set
.length ());
3711 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3713 gcc_assert (vec_av_set
.is_empty ());
3714 FOR_EACH_EXPR (expr
, si
, av
)
3716 vec_av_set
.safe_push (expr
);
3718 gcc_assert (EXPR_PRIORITY_ADJ (expr
) == 0 || *pneed_stall
);
3720 /* Adjust priority using target backend hook. */
3721 sel_target_adjust_priority (expr
);
3724 /* Sort the vector. */
3725 vec_av_set
.qsort (sel_rank_for_schedule
);
3727 /* We record maximal priority of insns in av set for current instruction
3729 if (FENCE_STARTS_CYCLE_P (fence
))
3730 av_max_prio
= est_ticks_till_branch
= INT_MIN
;
3732 /* Filter out inappropriate expressions. Loop's direction is reversed to
3733 visit "best" instructions first. We assume that vec::unordered_remove
3734 moves last element in place of one being deleted. */
3735 for (n
= vec_av_set
.length () - 1, stalled
= 0; n
>= 0; n
--)
3737 expr_t expr
= vec_av_set
[n
];
3738 insn_t insn
= EXPR_INSN_RTX (expr
);
3739 signed char target_available
;
3740 bool is_orig_reg_p
= true;
3741 int need_cycles
, new_prio
;
3742 bool fence_insn_p
= INSN_UID (insn
) == INSN_UID (FENCE_INSN (fence
));
3744 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3745 if (FENCE_SCHED_NEXT (fence
) && insn
!= FENCE_SCHED_NEXT (fence
))
3747 vec_av_set
.unordered_remove (n
);
3751 /* Set number of sched_next insns (just in case there
3752 could be several). */
3753 if (FENCE_SCHED_NEXT (fence
))
3754 sched_next_worked
++;
3756 /* Check all liveness requirements and try renaming.
3757 FIXME: try to minimize calls to this. */
3758 target_available
= EXPR_TARGET_AVAILABLE (expr
);
3760 /* If insn was already scheduled on the current fence,
3761 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3762 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns
, expr
)
3764 target_available
= -1;
3766 /* If the availability of the EXPR is invalidated by the insertion of
3767 bookkeeping earlier, make sure that we won't choose this expr for
3768 scheduling if it's not separable, and if it is separable, then
3769 we have to recompute the set of available registers for it. */
3770 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns
, expr
))
3772 vec_av_set
.unordered_remove (n
);
3773 if (sched_verbose
>= 4)
3774 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3779 if (target_available
== true)
3781 /* Do nothing -- we can use an existing register. */
3782 is_orig_reg_p
= EXPR_SEPARABLE_P (expr
);
3784 else if (/* Non-separable instruction will never
3785 get another register. */
3786 (target_available
== false
3787 && !EXPR_SEPARABLE_P (expr
))
3788 /* Don't try to find a register for low-priority expression. */
3789 || (int) vec_av_set
.length () - 1 - n
>= max_insns_to_rename
3790 /* ??? FIXME: Don't try to rename data speculation. */
3791 || (EXPR_SPEC_DONE_DS (expr
) & BEGIN_DATA
)
3792 || ! find_best_reg_for_expr (expr
, bnds
, &is_orig_reg_p
))
3794 vec_av_set
.unordered_remove (n
);
3795 if (sched_verbose
>= 4)
3796 sel_print ("Expr %d has no suitable target register\n",
3799 /* A fence insn should not get here. */
3800 gcc_assert (!fence_insn_p
);
3804 /* At this point a fence insn should always be available. */
3805 gcc_assert (!fence_insn_p
3806 || INSN_UID (FENCE_INSN (fence
)) == INSN_UID (EXPR_INSN_RTX (expr
)));
3808 /* Filter expressions that need to be renamed or speculated when
3809 pipelining, because compensating register copies or speculation
3810 checks are likely to be placed near the beginning of the loop,
3812 if (pipelining_p
&& EXPR_ORIG_SCHED_CYCLE (expr
) > 0
3813 && (!is_orig_reg_p
|| EXPR_SPEC_DONE_DS (expr
) != 0))
3815 /* Estimation of number of cycles until loop branch for
3816 renaming/speculation to be successful. */
3817 int need_n_ticks_till_branch
= sel_vinsn_cost (EXPR_VINSN (expr
));
3819 if ((int) current_loop_nest
->ninsns
< 9)
3821 vec_av_set
.unordered_remove (n
);
3822 if (sched_verbose
>= 4)
3823 sel_print ("Pipelining expr %d will likely cause stall\n",
3828 if ((int) current_loop_nest
->ninsns
- num_insns_scheduled
3829 < need_n_ticks_till_branch
* issue_rate
/ 2
3830 && est_ticks_till_branch
< need_n_ticks_till_branch
)
3832 vec_av_set
.unordered_remove (n
);
3833 if (sched_verbose
>= 4)
3834 sel_print ("Pipelining expr %d will likely cause stall\n",
3840 /* We want to schedule speculation checks as late as possible. Discard
3841 them from av set if there are instructions with higher priority. */
3842 if (sel_insn_is_speculation_check (insn
)
3843 && EXPR_PRIORITY (expr
) < av_max_prio
)
3846 min_need_stall
= min_need_stall
< 0 ? 1 : MIN (min_need_stall
, 1);
3847 vec_av_set
.unordered_remove (n
);
3848 if (sched_verbose
>= 4)
3849 sel_print ("Delaying speculation check %d until its first use\n",
3854 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3855 if (EXPR_ORIG_SCHED_CYCLE (expr
) <= 0)
3856 av_max_prio
= MAX (av_max_prio
, EXPR_PRIORITY (expr
));
3858 /* Don't allow any insns whose data is not yet ready.
3859 Check first whether we've already tried them and failed. */
3860 if (INSN_UID (insn
) < FENCE_READY_TICKS_SIZE (fence
))
3862 need_cycles
= (FENCE_READY_TICKS (fence
)[INSN_UID (insn
)]
3863 - FENCE_CYCLE (fence
));
3864 if (EXPR_ORIG_SCHED_CYCLE (expr
) <= 0)
3865 est_ticks_till_branch
= MAX (est_ticks_till_branch
,
3866 EXPR_PRIORITY (expr
) + need_cycles
);
3868 if (need_cycles
> 0)
3871 min_need_stall
= (min_need_stall
< 0
3873 : MIN (min_need_stall
, need_cycles
));
3874 vec_av_set
.unordered_remove (n
);
3876 if (sched_verbose
>= 4)
3877 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3879 FENCE_READY_TICKS (fence
)[INSN_UID (insn
)]);
3884 /* Now resort to dependence analysis to find whether EXPR might be
3885 stalled due to dependencies from FENCE's context. */
3886 need_cycles
= tick_check_p (expr
, dc
, fence
);
3887 new_prio
= EXPR_PRIORITY (expr
) + EXPR_PRIORITY_ADJ (expr
) + need_cycles
;
3889 if (EXPR_ORIG_SCHED_CYCLE (expr
) <= 0)
3890 est_ticks_till_branch
= MAX (est_ticks_till_branch
,
3893 if (need_cycles
> 0)
3895 if (INSN_UID (insn
) >= FENCE_READY_TICKS_SIZE (fence
))
3897 int new_size
= INSN_UID (insn
) * 3 / 2;
3899 FENCE_READY_TICKS (fence
)
3900 = (int *) xrecalloc (FENCE_READY_TICKS (fence
),
3901 new_size
, FENCE_READY_TICKS_SIZE (fence
),
3904 FENCE_READY_TICKS (fence
)[INSN_UID (insn
)]
3905 = FENCE_CYCLE (fence
) + need_cycles
;
3908 min_need_stall
= (min_need_stall
< 0
3910 : MIN (min_need_stall
, need_cycles
));
3912 vec_av_set
.unordered_remove (n
);
3914 if (sched_verbose
>= 4)
3915 sel_print ("Expr %d is not ready yet until cycle %d\n",
3917 FENCE_READY_TICKS (fence
)[INSN_UID (insn
)]);
3921 if (sched_verbose
>= 4)
3922 sel_print ("Expr %d is ok\n", INSN_UID (insn
));
3926 /* Clear SCHED_NEXT. */
3927 if (FENCE_SCHED_NEXT (fence
))
3929 gcc_assert (sched_next_worked
== 1);
3930 FENCE_SCHED_NEXT (fence
) = NULL
;
3933 /* No need to stall if this variable was not initialized. */
3934 if (min_need_stall
< 0)
3937 if (vec_av_set
.is_empty ())
3939 /* We need to set *pneed_stall here, because later we skip this code
3940 when ready list is empty. */
3941 *pneed_stall
= min_need_stall
;
3945 gcc_assert (min_need_stall
== 0);
3947 /* Sort the vector. */
3948 vec_av_set
.qsort (sel_rank_for_schedule
);
3950 if (sched_verbose
>= 4)
3952 sel_print ("Total ready exprs: %d, stalled: %d\n",
3953 vec_av_set
.length (), stalled
);
3954 sel_print ("Sorted av set (%d): ", vec_av_set
.length ());
3955 FOR_EACH_VEC_ELT (vec_av_set
, n
, expr
)
3964 /* Convert a vectored and sorted av set to the ready list that
3965 the rest of the backend wants to see. */
3967 convert_vec_av_set_to_ready (void)
3972 /* Allocate and fill the ready list from the sorted vector. */
3973 ready
.n_ready
= vec_av_set
.length ();
3974 ready
.first
= ready
.n_ready
- 1;
3976 gcc_assert (ready
.n_ready
> 0);
3978 if (ready
.n_ready
> max_issue_size
)
3980 max_issue_size
= ready
.n_ready
;
3981 sched_extend_ready_list (ready
.n_ready
);
3984 FOR_EACH_VEC_ELT (vec_av_set
, n
, expr
)
3986 vinsn_t vi
= EXPR_VINSN (expr
);
3987 insn_t insn
= VINSN_INSN_RTX (vi
);
3990 ready
.vec
[n
] = insn
;
3994 /* Initialize ready list from *AV_PTR for the max_issue () call.
3995 If any unrecognizable insn found in *AV_PTR, return it (and skip
3996 max_issue). BND and FENCE are current boundary and fence,
3997 respectively. If we need to stall for some cycles before an expr
3998 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4000 fill_ready_list (av_set_t
*av_ptr
, blist_t bnds
, fence_t fence
,
4005 /* We do not support multiple boundaries per fence. */
4006 gcc_assert (BLIST_NEXT (bnds
) == NULL
);
4008 /* Process expressions required special handling, i.e. pipelined,
4009 speculative and recog() < 0 expressions first. */
4010 process_pipelined_exprs (av_ptr
);
4011 process_spec_exprs (av_ptr
);
4013 /* A USE could be scheduled immediately. */
4014 expr
= process_use_exprs (av_ptr
);
4021 /* Turn the av set to a vector for sorting. */
4022 if (! fill_vec_av_set (*av_ptr
, bnds
, fence
, pneed_stall
))
4028 /* Build the final ready list. */
4029 convert_vec_av_set_to_ready ();
4033 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4035 sel_dfa_new_cycle (insn_t insn
, fence_t fence
)
4037 int last_scheduled_cycle
= FENCE_LAST_SCHEDULED_INSN (fence
)
4038 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence
))
4039 : FENCE_CYCLE (fence
) - 1;
4043 if (!targetm
.sched
.dfa_new_cycle
)
4046 memcpy (curr_state
, FENCE_STATE (fence
), dfa_state_size
);
4048 while (!sort_p
&& targetm
.sched
.dfa_new_cycle (sched_dump
, sched_verbose
,
4049 insn
, last_scheduled_cycle
,
4050 FENCE_CYCLE (fence
), &sort_p
))
4052 memcpy (FENCE_STATE (fence
), curr_state
, dfa_state_size
);
4053 advance_one_cycle (fence
);
4054 memcpy (curr_state
, FENCE_STATE (fence
), dfa_state_size
);
4061 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4062 we can issue. FENCE is the current fence. */
4064 invoke_reorder_hooks (fence_t fence
)
4067 bool ran_hook
= false;
4069 /* Call the reorder hook at the beginning of the cycle, and call
4070 the reorder2 hook in the middle of the cycle. */
4071 if (FENCE_ISSUED_INSNS (fence
) == 0)
4073 if (targetm
.sched
.reorder
4074 && !SCHED_GROUP_P (ready_element (&ready
, 0))
4075 && ready
.n_ready
> 1)
4077 /* Don't give reorder the most prioritized insn as it can break
4083 = targetm
.sched
.reorder (sched_dump
, sched_verbose
,
4084 ready_lastpos (&ready
),
4085 &ready
.n_ready
, FENCE_CYCLE (fence
));
4093 /* Initialize can_issue_more for variable_issue. */
4094 issue_more
= issue_rate
;
4096 else if (targetm
.sched
.reorder2
4097 && !SCHED_GROUP_P (ready_element (&ready
, 0)))
4099 if (ready
.n_ready
== 1)
4101 targetm
.sched
.reorder2 (sched_dump
, sched_verbose
,
4102 ready_lastpos (&ready
),
4103 &ready
.n_ready
, FENCE_CYCLE (fence
));
4110 targetm
.sched
.reorder2 (sched_dump
, sched_verbose
,
4112 ? ready_lastpos (&ready
) : NULL
,
4113 &ready
.n_ready
, FENCE_CYCLE (fence
));
4122 issue_more
= FENCE_ISSUE_MORE (fence
);
4124 /* Ensure that ready list and vec_av_set are in line with each other,
4125 i.e. vec_av_set[i] == ready_element (&ready, i). */
4126 if (issue_more
&& ran_hook
)
4129 rtx_insn
**arr
= ready
.vec
;
4130 expr_t
*vec
= vec_av_set
.address ();
4132 for (i
= 0, n
= ready
.n_ready
; i
< n
; i
++)
4133 if (EXPR_INSN_RTX (vec
[i
]) != arr
[i
])
4135 for (j
= i
; j
< n
; j
++)
4136 if (EXPR_INSN_RTX (vec
[j
]) == arr
[i
])
4140 std::swap (vec
[i
], vec
[j
]);
4147 /* Return an EXPR corresponding to INDEX element of ready list, if
4148 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4149 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4150 ready.vec otherwise. */
4151 static inline expr_t
4152 find_expr_for_ready (int index
, bool follow_ready_element
)
4157 real_index
= follow_ready_element
? ready
.first
- index
: index
;
4159 expr
= vec_av_set
[real_index
];
4160 gcc_assert (ready
.vec
[real_index
] == EXPR_INSN_RTX (expr
));
4165 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4166 of such insns found. */
4168 invoke_dfa_lookahead_guard (void)
4172 = targetm
.sched
.first_cycle_multipass_dfa_lookahead_guard
!= NULL
;
4174 if (sched_verbose
>= 2)
4175 sel_print ("ready after reorder: ");
4177 for (i
= 0, n
= 0; i
< ready
.n_ready
; i
++)
4183 /* In this loop insn is Ith element of the ready list given by
4184 ready_element, not Ith element of ready.vec. */
4185 insn
= ready_element (&ready
, i
);
4187 if (! have_hook
|| i
== 0)
4190 r
= targetm
.sched
.first_cycle_multipass_dfa_lookahead_guard (insn
, i
);
4192 gcc_assert (INSN_CODE (insn
) >= 0);
4194 /* Only insns with ready_try = 0 can get here
4195 from fill_ready_list. */
4196 gcc_assert (ready_try
[i
] == 0);
4201 expr
= find_expr_for_ready (i
, true);
4203 if (sched_verbose
>= 2)
4205 dump_vinsn (EXPR_VINSN (expr
));
4206 sel_print (":%d; ", ready_try
[i
]);
4210 if (sched_verbose
>= 2)
4215 /* Calculate the number of privileged insns and return it. */
4217 calculate_privileged_insns (void)
4219 expr_t cur_expr
, min_spec_expr
= NULL
;
4220 int privileged_n
= 0, i
;
4222 for (i
= 0; i
< ready
.n_ready
; i
++)
4227 if (! min_spec_expr
)
4228 min_spec_expr
= find_expr_for_ready (i
, true);
4230 cur_expr
= find_expr_for_ready (i
, true);
4232 if (EXPR_SPEC (cur_expr
) > EXPR_SPEC (min_spec_expr
))
4238 if (i
== ready
.n_ready
)
4241 if (sched_verbose
>= 2)
4242 sel_print ("privileged_n: %d insns with SPEC %d\n",
4243 privileged_n
, privileged_n
? EXPR_SPEC (min_spec_expr
) : -1);
4244 return privileged_n
;
4247 /* Call the rest of the hooks after the choice was made. Return
4248 the number of insns that still can be issued given that the current
4249 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4250 and the insn chosen for scheduling, respectively. */
4252 invoke_aftermath_hooks (fence_t fence
, rtx_insn
*best_insn
, int issue_more
)
4254 gcc_assert (INSN_P (best_insn
));
4256 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4257 sel_dfa_new_cycle (best_insn
, fence
);
4259 if (targetm
.sched
.variable_issue
)
4261 memcpy (curr_state
, FENCE_STATE (fence
), dfa_state_size
);
4263 targetm
.sched
.variable_issue (sched_dump
, sched_verbose
, best_insn
,
4265 memcpy (FENCE_STATE (fence
), curr_state
, dfa_state_size
);
4267 else if (GET_CODE (PATTERN (best_insn
)) != USE
4268 && GET_CODE (PATTERN (best_insn
)) != CLOBBER
)
4274 /* Estimate the cost of issuing INSN on DFA state STATE. */
4276 estimate_insn_cost (rtx_insn
*insn
, state_t state
)
4278 static state_t temp
= NULL
;
4282 temp
= xmalloc (dfa_state_size
);
4284 memcpy (temp
, state
, dfa_state_size
);
4285 cost
= state_transition (temp
, insn
);
4294 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4295 This function properly handles ASMs, USEs etc. */
4297 get_expr_cost (expr_t expr
, fence_t fence
)
4299 rtx_insn
*insn
= EXPR_INSN_RTX (expr
);
4301 if (recog_memoized (insn
) < 0)
4303 if (!FENCE_STARTS_CYCLE_P (fence
)
4304 && INSN_ASM_P (insn
))
4305 /* This is asm insn which is tryed to be issued on the
4306 cycle not first. Issue it on the next cycle. */
4309 /* A USE insn, or something else we don't need to
4310 understand. We can't pass these directly to
4311 state_transition because it will trigger a
4312 fatal error for unrecognizable insns. */
4316 return estimate_insn_cost (insn
, FENCE_STATE (fence
));
4319 /* Find the best insn for scheduling, either via max_issue or just take
4320 the most prioritized available. */
4322 choose_best_insn (fence_t fence
, int privileged_n
, int *index
)
4326 if (dfa_lookahead
> 0)
4328 cycle_issued_insns
= FENCE_ISSUED_INSNS (fence
);
4329 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4330 can_issue
= max_issue (&ready
, privileged_n
,
4331 FENCE_STATE (fence
), true, index
);
4332 if (sched_verbose
>= 2)
4333 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4334 can_issue
, FENCE_ISSUED_INSNS (fence
));
4338 /* We can't use max_issue; just return the first available element. */
4341 for (i
= 0; i
< ready
.n_ready
; i
++)
4343 expr_t expr
= find_expr_for_ready (i
, true);
4345 if (get_expr_cost (expr
, fence
) < 1)
4347 can_issue
= can_issue_more
;
4350 if (sched_verbose
>= 2)
4351 sel_print ("using %dth insn from the ready list\n", i
+ 1);
4357 if (i
== ready
.n_ready
)
4367 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4368 BNDS and FENCE are current boundaries and scheduling fence respectively.
4369 Return the expr found and NULL if nothing can be issued atm.
4370 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4372 find_best_expr (av_set_t
*av_vliw_ptr
, blist_t bnds
, fence_t fence
,
4377 /* Choose the best insn for scheduling via:
4378 1) sorting the ready list based on priority;
4379 2) calling the reorder hook;
4380 3) calling max_issue. */
4381 best
= fill_ready_list (av_vliw_ptr
, bnds
, fence
, pneed_stall
);
4382 if (best
== NULL
&& ready
.n_ready
> 0)
4384 int privileged_n
, index
;
4386 can_issue_more
= invoke_reorder_hooks (fence
);
4387 if (can_issue_more
> 0)
4389 /* Try choosing the best insn until we find one that is could be
4390 scheduled due to liveness restrictions on its destination register.
4391 In the future, we'd like to choose once and then just probe insns
4392 in the order of their priority. */
4393 invoke_dfa_lookahead_guard ();
4394 privileged_n
= calculate_privileged_insns ();
4395 can_issue_more
= choose_best_insn (fence
, privileged_n
, &index
);
4397 best
= find_expr_for_ready (index
, true);
4399 /* We had some available insns, so if we can't issue them,
4401 if (can_issue_more
== 0)
4410 can_issue_more
= invoke_aftermath_hooks (fence
, EXPR_INSN_RTX (best
),
4412 if (targetm
.sched
.variable_issue
4413 && can_issue_more
== 0)
4417 if (sched_verbose
>= 2)
4421 sel_print ("Best expression (vliw form): ");
4423 sel_print ("; cycle %d\n", FENCE_CYCLE (fence
));
4426 sel_print ("No best expr found!\n");
4433 /* Functions that implement the core of the scheduler. */
4436 /* Emit an instruction from EXPR with SEQNO and VINSN after
4439 emit_insn_from_expr_after (expr_t expr
, vinsn_t vinsn
, int seqno
,
4440 insn_t place_to_insert
)
4442 /* This assert fails when we have identical instructions
4443 one of which dominates the other. In this case move_op ()
4444 finds the first instruction and doesn't search for second one.
4445 The solution would be to compute av_set after the first found
4446 insn and, if insn present in that set, continue searching.
4447 For now we workaround this issue in move_op. */
4448 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr
)));
4450 if (EXPR_WAS_RENAMED (expr
))
4452 unsigned regno
= expr_dest_regno (expr
);
4454 if (HARD_REGISTER_NUM_P (regno
))
4456 df_set_regs_ever_live (regno
, true);
4457 reg_rename_tick
[regno
] = ++reg_rename_this_tick
;
4461 return sel_gen_insn_from_expr_after (expr
, vinsn
, seqno
,
4465 /* Return TRUE if BB can hold bookkeeping code. */
4467 block_valid_for_bookkeeping_p (basic_block bb
)
4469 insn_t bb_end
= BB_END (bb
);
4471 if (!in_current_region_p (bb
) || EDGE_COUNT (bb
->succs
) > 1)
4474 if (INSN_P (bb_end
))
4476 if (INSN_SCHED_TIMES (bb_end
) > 0)
4480 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end
));
4485 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4486 into E2->dest, except from E1->src (there may be a sequence of empty basic
4487 blocks between E1->src and E2->dest). Return found block, or NULL if new
4488 one must be created. If LAX holds, don't assume there is a simple path
4489 from E1->src to E2->dest. */
4491 find_block_for_bookkeeping (edge e1
, edge e2
, bool lax
)
4493 basic_block candidate_block
= NULL
;
4496 /* Loop over edges from E1 to E2, inclusive. */
4497 for (e
= e1
; !lax
|| e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
); e
=
4498 EDGE_SUCC (e
->dest
, 0))
4500 if (EDGE_COUNT (e
->dest
->preds
) == 2)
4502 if (candidate_block
== NULL
)
4503 candidate_block
= (EDGE_PRED (e
->dest
, 0) == e
4504 ? EDGE_PRED (e
->dest
, 1)->src
4505 : EDGE_PRED (e
->dest
, 0)->src
);
4507 /* Found additional edge leading to path from e1 to e2
4511 else if (EDGE_COUNT (e
->dest
->preds
) > 2)
4512 /* Several edges leading to path from e1 to e2 from aside. */
4516 return ((!lax
|| candidate_block
)
4517 && block_valid_for_bookkeeping_p (candidate_block
)
4521 if (lax
&& EDGE_COUNT (e
->dest
->succs
) != 1)
4531 /* Create new basic block for bookkeeping code for path(s) incoming into
4532 E2->dest, except from E1->src. Return created block. */
4534 create_block_for_bookkeeping (edge e1
, edge e2
)
4536 basic_block new_bb
, bb
= e2
->dest
;
4538 /* Check that we don't spoil the loop structure. */
4539 if (current_loop_nest
)
4541 basic_block latch
= current_loop_nest
->latch
;
4543 /* We do not split header. */
4544 gcc_assert (e2
->dest
!= current_loop_nest
->header
);
4546 /* We do not redirect the only edge to the latch block. */
4547 gcc_assert (e1
->dest
!= latch
4548 || !single_pred_p (latch
)
4549 || e1
!= single_pred_edge (latch
));
4552 /* Split BB to insert BOOK_INSN there. */
4553 new_bb
= sched_split_block (bb
, NULL
);
4555 /* Move note_list from the upper bb. */
4556 gcc_assert (BB_NOTE_LIST (new_bb
) == NULL_RTX
);
4557 BB_NOTE_LIST (new_bb
) = BB_NOTE_LIST (bb
);
4558 BB_NOTE_LIST (bb
) = NULL
;
4560 gcc_assert (e2
->dest
== bb
);
4562 /* Skip block for bookkeeping copy when leaving E1->src. */
4563 if (e1
->flags
& EDGE_FALLTHRU
)
4564 sel_redirect_edge_and_branch_force (e1
, new_bb
);
4566 sel_redirect_edge_and_branch (e1
, new_bb
);
4568 gcc_assert (e1
->dest
== new_bb
);
4569 gcc_assert (sel_bb_empty_p (bb
));
4571 /* To keep basic block numbers in sync between debug and non-debug
4572 compilations, we have to rotate blocks here. Consider that we
4573 started from (a,b)->d, (c,d)->e, and d contained only debug
4574 insns. It would have been removed before if the debug insns
4575 weren't there, so we'd have split e rather than d. So what we do
4576 now is to swap the block numbers of new_bb and
4577 single_succ(new_bb) == e, so that the insns that were in e before
4578 get the new block number. */
4580 if (MAY_HAVE_DEBUG_INSNS
)
4583 insn_t insn
= sel_bb_head (new_bb
);
4586 if (DEBUG_INSN_P (insn
)
4587 && single_succ_p (new_bb
)
4588 && (succ
= single_succ (new_bb
))
4589 && succ
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
4590 && DEBUG_INSN_P ((last
= sel_bb_end (new_bb
))))
4592 while (insn
!= last
&& (DEBUG_INSN_P (insn
) || NOTE_P (insn
)))
4593 insn
= NEXT_INSN (insn
);
4597 sel_global_bb_info_def gbi
;
4598 sel_region_bb_info_def rbi
;
4600 if (sched_verbose
>= 2)
4601 sel_print ("Swapping block ids %i and %i\n",
4602 new_bb
->index
, succ
->index
);
4604 std::swap (new_bb
->index
, succ
->index
);
4606 SET_BASIC_BLOCK_FOR_FN (cfun
, new_bb
->index
, new_bb
);
4607 SET_BASIC_BLOCK_FOR_FN (cfun
, succ
->index
, succ
);
4609 memcpy (&gbi
, SEL_GLOBAL_BB_INFO (new_bb
), sizeof (gbi
));
4610 memcpy (SEL_GLOBAL_BB_INFO (new_bb
), SEL_GLOBAL_BB_INFO (succ
),
4612 memcpy (SEL_GLOBAL_BB_INFO (succ
), &gbi
, sizeof (gbi
));
4614 memcpy (&rbi
, SEL_REGION_BB_INFO (new_bb
), sizeof (rbi
));
4615 memcpy (SEL_REGION_BB_INFO (new_bb
), SEL_REGION_BB_INFO (succ
),
4617 memcpy (SEL_REGION_BB_INFO (succ
), &rbi
, sizeof (rbi
));
4619 std::swap (BLOCK_TO_BB (new_bb
->index
),
4620 BLOCK_TO_BB (succ
->index
));
4622 std::swap (CONTAINING_RGN (new_bb
->index
),
4623 CONTAINING_RGN (succ
->index
));
4625 for (int i
= 0; i
< current_nr_blocks
; i
++)
4626 if (BB_TO_BLOCK (i
) == succ
->index
)
4627 BB_TO_BLOCK (i
) = new_bb
->index
;
4628 else if (BB_TO_BLOCK (i
) == new_bb
->index
)
4629 BB_TO_BLOCK (i
) = succ
->index
;
4631 FOR_BB_INSNS (new_bb
, insn
)
4633 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn
)) = new_bb
->index
;
4635 FOR_BB_INSNS (succ
, insn
)
4637 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn
)) = succ
->index
;
4639 if (bitmap_clear_bit (code_motion_visited_blocks
, new_bb
->index
))
4640 bitmap_set_bit (code_motion_visited_blocks
, succ
->index
);
4642 gcc_assert (LABEL_P (BB_HEAD (new_bb
))
4643 && LABEL_P (BB_HEAD (succ
)));
4645 if (sched_verbose
>= 4)
4646 sel_print ("Swapping code labels %i and %i\n",
4647 CODE_LABEL_NUMBER (BB_HEAD (new_bb
)),
4648 CODE_LABEL_NUMBER (BB_HEAD (succ
)));
4650 std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb
)),
4651 CODE_LABEL_NUMBER (BB_HEAD (succ
)));
4659 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4660 into E2->dest, except from E1->src. If the returned insn immediately
4661 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4663 find_place_for_bookkeeping (edge e1
, edge e2
, fence_t
*fence_to_rewind
)
4665 insn_t place_to_insert
;
4666 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4667 create new basic block, but insert bookkeeping there. */
4668 basic_block book_block
= find_block_for_bookkeeping (e1
, e2
, FALSE
);
4672 place_to_insert
= BB_END (book_block
);
4674 /* Don't use a block containing only debug insns for
4675 bookkeeping, this causes scheduling differences between debug
4676 and non-debug compilations, for the block would have been
4678 if (DEBUG_INSN_P (place_to_insert
))
4680 rtx_insn
*insn
= sel_bb_head (book_block
);
4682 while (insn
!= place_to_insert
&&
4683 (DEBUG_INSN_P (insn
) || NOTE_P (insn
)))
4684 insn
= NEXT_INSN (insn
);
4686 if (insn
== place_to_insert
)
4693 book_block
= create_block_for_bookkeeping (e1
, e2
);
4694 place_to_insert
= BB_END (book_block
);
4695 if (sched_verbose
>= 9)
4696 sel_print ("New block is %i, split from bookkeeping block %i\n",
4697 EDGE_SUCC (book_block
, 0)->dest
->index
, book_block
->index
);
4701 if (sched_verbose
>= 9)
4702 sel_print ("Pre-existing bookkeeping block is %i\n", book_block
->index
);
4705 *fence_to_rewind
= NULL
;
4706 /* If basic block ends with a jump, insert bookkeeping code right before it.
4707 Notice if we are crossing a fence when taking PREV_INSN. */
4708 if (INSN_P (place_to_insert
) && control_flow_insn_p (place_to_insert
))
4710 *fence_to_rewind
= flist_lookup (fences
, place_to_insert
);
4711 place_to_insert
= PREV_INSN (place_to_insert
);
4714 return place_to_insert
;
4717 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4720 find_seqno_for_bookkeeping (insn_t place_to_insert
, insn_t join_point
)
4724 /* Check if we are about to insert bookkeeping copy before a jump, and use
4725 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4726 rtx_insn
*next
= NEXT_INSN (place_to_insert
);
4729 && BLOCK_FOR_INSN (next
) == BLOCK_FOR_INSN (place_to_insert
))
4731 gcc_assert (INSN_SCHED_TIMES (next
) == 0);
4732 seqno
= INSN_SEQNO (next
);
4734 else if (INSN_SEQNO (join_point
) > 0)
4735 seqno
= INSN_SEQNO (join_point
);
4738 seqno
= get_seqno_by_preds (place_to_insert
);
4740 /* Sometimes the fences can move in such a way that there will be
4741 no instructions with positive seqno around this bookkeeping.
4742 This means that there will be no way to get to it by a regular
4743 fence movement. Never mind because we pick up such pieces for
4744 rescheduling anyways, so any positive value will do for now. */
4747 gcc_assert (pipelining_p
);
4752 gcc_assert (seqno
> 0);
4756 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4757 NEW_SEQNO to it. Return created insn. */
4759 emit_bookkeeping_insn (insn_t place_to_insert
, expr_t c_expr
, int new_seqno
)
4761 rtx_insn
*new_insn_rtx
= create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr
));
4764 = create_vinsn_from_insn_rtx (new_insn_rtx
,
4765 VINSN_UNIQUE_P (EXPR_VINSN (c_expr
)));
4767 insn_t new_insn
= emit_insn_from_expr_after (c_expr
, new_vinsn
, new_seqno
,
4770 INSN_SCHED_TIMES (new_insn
) = 0;
4771 bitmap_set_bit (current_copies
, INSN_UID (new_insn
));
4776 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4777 E2->dest, except from E1->src (there may be a sequence of empty blocks
4778 between E1->src and E2->dest). Return block containing the copy.
4779 All scheduler data is initialized for the newly created insn. */
4781 generate_bookkeeping_insn (expr_t c_expr
, edge e1
, edge e2
)
4783 insn_t join_point
, place_to_insert
, new_insn
;
4785 bool need_to_exchange_data_sets
;
4786 fence_t fence_to_rewind
;
4788 if (sched_verbose
>= 4)
4789 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1
->src
->index
,
4792 join_point
= sel_bb_head (e2
->dest
);
4793 place_to_insert
= find_place_for_bookkeeping (e1
, e2
, &fence_to_rewind
);
4794 new_seqno
= find_seqno_for_bookkeeping (place_to_insert
, join_point
);
4795 need_to_exchange_data_sets
4796 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert
));
4798 new_insn
= emit_bookkeeping_insn (place_to_insert
, c_expr
, new_seqno
);
4800 if (fence_to_rewind
)
4801 FENCE_INSN (fence_to_rewind
) = new_insn
;
4803 /* When inserting bookkeeping insn in new block, av sets should be
4804 following: old basic block (that now holds bookkeeping) data sets are
4805 the same as was before generation of bookkeeping, and new basic block
4806 (that now hold all other insns of old basic block) data sets are
4807 invalid. So exchange data sets for these basic blocks as sel_split_block
4808 mistakenly exchanges them in this case. Cannot do it earlier because
4809 when single instruction is added to new basic block it should hold NULL
4811 if (need_to_exchange_data_sets
)
4812 exchange_data_sets (BLOCK_FOR_INSN (new_insn
),
4813 BLOCK_FOR_INSN (join_point
));
4815 stat_bookkeeping_copies
++;
4816 return BLOCK_FOR_INSN (new_insn
);
4819 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4820 on FENCE, but we are unable to copy them. */
4822 remove_insns_that_need_bookkeeping (fence_t fence
, av_set_t
*av_ptr
)
4827 /* An expression does not need bookkeeping if it is available on all paths
4828 from current block to original block and current block dominates
4829 original block. We check availability on all paths by examining
4830 EXPR_SPEC; this is not equivalent, because it may be positive even
4831 if expr is available on all paths (but if expr is not available on
4832 any path, EXPR_SPEC will be positive). */
4834 FOR_EACH_EXPR_1 (expr
, i
, av_ptr
)
4836 if (!control_flow_insn_p (EXPR_INSN_RTX (expr
))
4837 && (!bookkeeping_p
|| VINSN_UNIQUE_P (EXPR_VINSN (expr
)))
4838 && (EXPR_SPEC (expr
)
4839 || !EXPR_ORIG_BB_INDEX (expr
)
4840 || !dominated_by_p (CDI_DOMINATORS
,
4841 BASIC_BLOCK_FOR_FN (cfun
,
4842 EXPR_ORIG_BB_INDEX (expr
)),
4843 BLOCK_FOR_INSN (FENCE_INSN (fence
)))))
4845 if (sched_verbose
>= 4)
4846 sel_print ("Expr %d removed because it would need bookkeeping, which "
4847 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr
)));
4848 av_set_iter_remove (&i
);
4853 /* Moving conditional jump through some instructions.
4857 ... <- current scheduling point
4858 NOTE BASIC BLOCK: <- bb header
4859 (p8) add r14=r14+0x9;;
4865 We can schedule jump one cycle earlier, than mov, because they cannot be
4866 executed together as their predicates are mutually exclusive.
4868 This is done in this way: first, new fallthrough basic block is created
4869 after jump (it is always can be done, because there already should be a
4870 fallthrough block, where control flow goes in case of predicate being true -
4871 in our example; otherwise there should be a dependence between those
4872 instructions and jump and we cannot schedule jump right now);
4873 next, all instructions between jump and current scheduling point are moved
4874 to this new block. And the result is this:
4877 (!p8) jump L1 <- current scheduling point
4878 NOTE BASIC BLOCK: <- bb header
4879 (p8) add r14=r14+0x9;;
4885 move_cond_jump (rtx_insn
*insn
, bnd_t bnd
)
4888 basic_block block_from
, block_next
, block_new
, block_bnd
, bb
;
4889 rtx_insn
*next
, *prev
, *link
, *head
;
4891 block_from
= BLOCK_FOR_INSN (insn
);
4892 block_bnd
= BLOCK_FOR_INSN (BND_TO (bnd
));
4893 prev
= BND_TO (bnd
);
4895 #ifdef ENABLE_CHECKING
4896 /* Moving of jump should not cross any other jumps or beginnings of new
4897 basic blocks. The only exception is when we move a jump through
4898 mutually exclusive insns along fallthru edges. */
4899 if (block_from
!= block_bnd
)
4902 for (link
= PREV_INSN (insn
); link
!= PREV_INSN (prev
);
4903 link
= PREV_INSN (link
))
4906 gcc_assert (sched_insns_conditions_mutex_p (insn
, link
));
4907 if (BLOCK_FOR_INSN (link
) && BLOCK_FOR_INSN (link
) != bb
)
4909 gcc_assert (single_pred (bb
) == BLOCK_FOR_INSN (link
));
4910 bb
= BLOCK_FOR_INSN (link
);
4916 /* Jump is moved to the boundary. */
4917 next
= PREV_INSN (insn
);
4918 BND_TO (bnd
) = insn
;
4920 ft_edge
= find_fallthru_edge_from (block_from
);
4921 block_next
= ft_edge
->dest
;
4922 /* There must be a fallthrough block (or where should go
4923 control flow in case of false jump predicate otherwise?). */
4924 gcc_assert (block_next
);
4926 /* Create new empty basic block after source block. */
4927 block_new
= sel_split_edge (ft_edge
);
4928 gcc_assert (block_new
->next_bb
== block_next
4929 && block_from
->next_bb
== block_new
);
4931 /* Move all instructions except INSN to BLOCK_NEW. */
4933 head
= BB_HEAD (block_new
);
4934 while (bb
!= block_from
->next_bb
)
4936 rtx_insn
*from
, *to
;
4937 from
= bb
== block_bnd
? prev
: sel_bb_head (bb
);
4938 to
= bb
== block_from
? next
: sel_bb_end (bb
);
4940 /* The jump being moved can be the first insn in the block.
4941 In this case we don't have to move anything in this block. */
4942 if (NEXT_INSN (to
) != from
)
4944 reorder_insns (from
, to
, head
);
4946 for (link
= to
; link
!= head
; link
= PREV_INSN (link
))
4947 EXPR_ORIG_BB_INDEX (INSN_EXPR (link
)) = block_new
->index
;
4951 /* Cleanup possibly empty blocks left. */
4952 block_next
= bb
->next_bb
;
4953 if (bb
!= block_from
)
4954 tidy_control_flow (bb
, false);
4958 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4959 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new
)));
4961 gcc_assert (!sel_bb_empty_p (block_from
)
4962 && !sel_bb_empty_p (block_new
));
4964 /* Update data sets for BLOCK_NEW to represent that INSN and
4965 instructions from the other branch of INSN is no longer
4966 available at BLOCK_NEW. */
4967 BB_AV_LEVEL (block_new
) = global_level
;
4968 gcc_assert (BB_LV_SET (block_new
) == NULL
);
4969 BB_LV_SET (block_new
) = get_clear_regset_from_pool ();
4970 update_data_sets (sel_bb_head (block_new
));
4972 /* INSN is a new basic block header - so prepare its data
4973 structures and update availability and liveness sets. */
4974 update_data_sets (insn
);
4976 if (sched_verbose
>= 4)
4977 sel_print ("Moving jump %d\n", INSN_UID (insn
));
4980 /* Remove nops generated during move_op for preventing removal of empty
4983 remove_temp_moveop_nops (bool full_tidying
)
4988 FOR_EACH_VEC_ELT (vec_temp_moveop_nops
, i
, insn
)
4990 gcc_assert (INSN_NOP_P (insn
));
4991 return_nop_to_pool (insn
, full_tidying
);
4994 /* Empty the vector. */
4995 if (vec_temp_moveop_nops
.length () > 0)
4996 vec_temp_moveop_nops
.block_remove (0, vec_temp_moveop_nops
.length ());
4999 /* Records the maximal UID before moving up an instruction. Used for
5000 distinguishing between bookkeeping copies and original insns. */
5001 static int max_uid_before_move_op
= 0;
5003 /* Remove from AV_VLIW_P all instructions but next when debug counter
5004 tells us so. Next instruction is fetched from BNDS. */
5006 remove_insns_for_debug (blist_t bnds
, av_set_t
*av_vliw_p
)
5008 if (! dbg_cnt (sel_sched_insn_cnt
))
5009 /* Leave only the next insn in av_vliw. */
5011 av_set_iterator av_it
;
5013 bnd_t bnd
= BLIST_BND (bnds
);
5014 insn_t next
= BND_TO (bnd
);
5016 gcc_assert (BLIST_NEXT (bnds
) == NULL
);
5018 FOR_EACH_EXPR_1 (expr
, av_it
, av_vliw_p
)
5019 if (EXPR_INSN_RTX (expr
) != next
)
5020 av_set_iter_remove (&av_it
);
5024 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5025 the computed set to *AV_VLIW_P. */
5027 compute_av_set_on_boundaries (fence_t fence
, blist_t bnds
, av_set_t
*av_vliw_p
)
5029 if (sched_verbose
>= 2)
5031 sel_print ("Boundaries: ");
5036 for (; bnds
; bnds
= BLIST_NEXT (bnds
))
5038 bnd_t bnd
= BLIST_BND (bnds
);
5040 insn_t bnd_to
= BND_TO (bnd
);
5042 /* Rewind BND->TO to the basic block header in case some bookkeeping
5043 instructions were inserted before BND->TO and it needs to be
5045 if (sel_bb_head_p (bnd_to
))
5046 gcc_assert (INSN_SCHED_TIMES (bnd_to
) == 0);
5048 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to
)) == 0)
5050 bnd_to
= PREV_INSN (bnd_to
);
5051 if (sel_bb_head_p (bnd_to
))
5055 if (BND_TO (bnd
) != bnd_to
)
5057 gcc_assert (FENCE_INSN (fence
) == BND_TO (bnd
));
5058 FENCE_INSN (fence
) = bnd_to
;
5059 BND_TO (bnd
) = bnd_to
;
5062 av_set_clear (&BND_AV (bnd
));
5063 BND_AV (bnd
) = compute_av_set (BND_TO (bnd
), NULL
, 0, true);
5065 av_set_clear (&BND_AV1 (bnd
));
5066 BND_AV1 (bnd
) = av_set_copy (BND_AV (bnd
));
5068 moveup_set_inside_insn_group (&BND_AV1 (bnd
), NULL
);
5070 av1_copy
= av_set_copy (BND_AV1 (bnd
));
5071 av_set_union_and_clear (av_vliw_p
, &av1_copy
, NULL
);
5074 if (sched_verbose
>= 2)
5076 sel_print ("Available exprs (vliw form): ");
5077 dump_av_set (*av_vliw_p
);
5082 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5083 expression. When FOR_MOVEOP is true, also replace the register of
5084 expressions found with the register from EXPR_VLIW. */
5086 find_sequential_best_exprs (bnd_t bnd
, expr_t expr_vliw
, bool for_moveop
)
5088 av_set_t expr_seq
= NULL
;
5092 FOR_EACH_EXPR (expr
, i
, BND_AV (bnd
))
5094 if (equal_after_moveup_path_p (expr
, NULL
, expr_vliw
))
5098 /* The sequential expression has the right form to pass
5099 to move_op except when renaming happened. Put the
5100 correct register in EXPR then. */
5101 if (EXPR_SEPARABLE_P (expr
) && REG_P (EXPR_LHS (expr
)))
5103 if (expr_dest_regno (expr
) != expr_dest_regno (expr_vliw
))
5105 replace_dest_with_reg_in_expr (expr
, EXPR_LHS (expr_vliw
));
5106 stat_renamed_scheduled
++;
5108 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5109 This is needed when renaming came up with original
5111 else if (EXPR_TARGET_AVAILABLE (expr
)
5112 != EXPR_TARGET_AVAILABLE (expr_vliw
))
5114 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw
) == 1);
5115 EXPR_TARGET_AVAILABLE (expr
) = 1;
5118 if (EXPR_WAS_SUBSTITUTED (expr
))
5119 stat_substitutions_total
++;
5122 av_set_add (&expr_seq
, expr
);
5124 /* With substitution inside insn group, it is possible
5125 that more than one expression in expr_seq will correspond
5126 to expr_vliw. In this case, choose one as the attempt to
5127 move both leads to miscompiles. */
5132 if (for_moveop
&& sched_verbose
>= 2)
5134 sel_print ("Best expression(s) (sequential form): ");
5135 dump_av_set (expr_seq
);
5143 /* Move nop to previous block. */
5144 static void ATTRIBUTE_UNUSED
5145 move_nop_to_previous_block (insn_t nop
, basic_block prev_bb
)
5147 insn_t prev_insn
, next_insn
;
5149 gcc_assert (sel_bb_head_p (nop
)
5150 && prev_bb
== BLOCK_FOR_INSN (nop
)->prev_bb
);
5151 rtx_note
*note
= bb_note (BLOCK_FOR_INSN (nop
));
5152 prev_insn
= sel_bb_end (prev_bb
);
5153 next_insn
= NEXT_INSN (nop
);
5154 gcc_assert (prev_insn
!= NULL_RTX
5155 && PREV_INSN (note
) == prev_insn
);
5157 SET_NEXT_INSN (prev_insn
) = nop
;
5158 SET_PREV_INSN (nop
) = prev_insn
;
5160 SET_PREV_INSN (note
) = nop
;
5161 SET_NEXT_INSN (note
) = next_insn
;
5163 SET_NEXT_INSN (nop
) = note
;
5164 SET_PREV_INSN (next_insn
) = note
;
5166 BB_END (prev_bb
) = nop
;
5167 BLOCK_FOR_INSN (nop
) = prev_bb
;
5170 /* Prepare a place to insert the chosen expression on BND. */
5172 prepare_place_to_insert (bnd_t bnd
)
5174 insn_t place_to_insert
;
5176 /* Init place_to_insert before calling move_op, as the later
5177 can possibly remove BND_TO (bnd). */
5178 if (/* If this is not the first insn scheduled. */
5181 /* Add it after last scheduled. */
5182 place_to_insert
= ILIST_INSN (BND_PTR (bnd
));
5183 if (DEBUG_INSN_P (place_to_insert
))
5185 ilist_t l
= BND_PTR (bnd
);
5186 while ((l
= ILIST_NEXT (l
)) &&
5187 DEBUG_INSN_P (ILIST_INSN (l
)))
5190 place_to_insert
= NULL
;
5194 place_to_insert
= NULL
;
5196 if (!place_to_insert
)
5198 /* Add it before BND_TO. The difference is in the
5199 basic block, where INSN will be added. */
5200 place_to_insert
= get_nop_from_pool (BND_TO (bnd
));
5201 gcc_assert (BLOCK_FOR_INSN (place_to_insert
)
5202 == BLOCK_FOR_INSN (BND_TO (bnd
)));
5205 return place_to_insert
;
5208 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5209 Return the expression to emit in C_EXPR. */
5211 move_exprs_to_boundary (bnd_t bnd
, expr_t expr_vliw
,
5212 av_set_t expr_seq
, expr_t c_expr
)
5214 bool b
, should_move
;
5217 int n_bookkeeping_copies_before_moveop
;
5219 /* Make a move. This call will remove the original operation,
5220 insert all necessary bookkeeping instructions and update the
5221 data sets. After that all we have to do is add the operation
5222 at before BND_TO (BND). */
5223 n_bookkeeping_copies_before_moveop
= stat_bookkeeping_copies
;
5224 max_uid_before_move_op
= get_max_uid ();
5225 bitmap_clear (current_copies
);
5226 bitmap_clear (current_originators
);
5228 b
= move_op (BND_TO (bnd
), expr_seq
, expr_vliw
,
5229 get_dest_from_orig_ops (expr_seq
), c_expr
, &should_move
);
5231 /* We should be able to find the expression we've chosen for
5235 if (stat_bookkeeping_copies
> n_bookkeeping_copies_before_moveop
)
5236 stat_insns_needed_bookkeeping
++;
5238 EXECUTE_IF_SET_IN_BITMAP (current_copies
, 0, book_uid
, bi
)
5243 /* We allocate these bitmaps lazily. */
5244 if (! INSN_ORIGINATORS_BY_UID (book_uid
))
5245 INSN_ORIGINATORS_BY_UID (book_uid
) = BITMAP_ALLOC (NULL
);
5247 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid
),
5248 current_originators
);
5250 /* Transitively add all originators' originators. */
5251 EXECUTE_IF_SET_IN_BITMAP (current_originators
, 0, uid
, bi
)
5252 if (INSN_ORIGINATORS_BY_UID (uid
))
5253 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid
),
5254 INSN_ORIGINATORS_BY_UID (uid
));
5261 /* Debug a DFA state as an array of bytes. */
5263 debug_state (state_t state
)
5266 unsigned int i
, size
= dfa_state_size
;
5268 sel_print ("state (%u):", size
);
5269 for (i
= 0, p
= (unsigned char *) state
; i
< size
; i
++)
5270 sel_print (" %d", p
[i
]);
5274 /* Advance state on FENCE with INSN. Return true if INSN is
5275 an ASM, and we should advance state once more. */
5277 advance_state_on_fence (fence_t fence
, insn_t insn
)
5281 if (recog_memoized (insn
) >= 0)
5284 state_t temp_state
= alloca (dfa_state_size
);
5286 gcc_assert (!INSN_ASM_P (insn
));
5289 memcpy (temp_state
, FENCE_STATE (fence
), dfa_state_size
);
5290 res
= state_transition (FENCE_STATE (fence
), insn
);
5291 gcc_assert (res
< 0);
5293 if (memcmp (temp_state
, FENCE_STATE (fence
), dfa_state_size
))
5295 FENCE_ISSUED_INSNS (fence
)++;
5297 /* We should never issue more than issue_rate insns. */
5298 if (FENCE_ISSUED_INSNS (fence
) > issue_rate
)
5304 /* This could be an ASM insn which we'd like to schedule
5305 on the next cycle. */
5306 asm_p
= INSN_ASM_P (insn
);
5307 if (!FENCE_STARTS_CYCLE_P (fence
) && asm_p
)
5308 advance_one_cycle (fence
);
5311 if (sched_verbose
>= 2)
5312 debug_state (FENCE_STATE (fence
));
5313 if (!DEBUG_INSN_P (insn
))
5314 FENCE_STARTS_CYCLE_P (fence
) = 0;
5315 FENCE_ISSUE_MORE (fence
) = can_issue_more
;
5319 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5320 is nonzero if we need to stall after issuing INSN. */
5322 update_fence_and_insn (fence_t fence
, insn_t insn
, int need_stall
)
5326 /* First, reflect that something is scheduled on this fence. */
5327 asm_p
= advance_state_on_fence (fence
, insn
);
5328 FENCE_LAST_SCHEDULED_INSN (fence
) = insn
;
5329 vec_safe_push (FENCE_EXECUTING_INSNS (fence
), insn
);
5330 if (SCHED_GROUP_P (insn
))
5332 FENCE_SCHED_NEXT (fence
) = INSN_SCHED_NEXT (insn
);
5333 SCHED_GROUP_P (insn
) = 0;
5336 FENCE_SCHED_NEXT (fence
) = NULL
;
5337 if (INSN_UID (insn
) < FENCE_READY_TICKS_SIZE (fence
))
5338 FENCE_READY_TICKS (fence
) [INSN_UID (insn
)] = 0;
5340 /* Set instruction scheduling info. This will be used in bundling,
5341 pipelining, tick computations etc. */
5342 ++INSN_SCHED_TIMES (insn
);
5343 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn
)) = true;
5344 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn
)) = FENCE_CYCLE (fence
);
5345 INSN_AFTER_STALL_P (insn
) = FENCE_AFTER_STALL_P (fence
);
5346 INSN_SCHED_CYCLE (insn
) = FENCE_CYCLE (fence
);
5348 /* This does not account for adjust_cost hooks, just add the biggest
5349 constant the hook may add to the latency. TODO: make this
5350 a target dependent constant. */
5351 INSN_READY_CYCLE (insn
)
5352 = INSN_SCHED_CYCLE (insn
) + (INSN_CODE (insn
) < 0
5354 : maximal_insn_latency (insn
) + 1);
5356 /* Change these fields last, as they're used above. */
5357 FENCE_AFTER_STALL_P (fence
) = 0;
5358 if (asm_p
|| need_stall
)
5359 advance_one_cycle (fence
);
5361 /* Indicate that we've scheduled something on this fence. */
5362 FENCE_SCHEDULED_P (fence
) = true;
5363 scheduled_something_on_previous_fence
= true;
5365 /* Print debug information when insn's fields are updated. */
5366 if (sched_verbose
>= 2)
5368 sel_print ("Scheduling insn: ");
5369 dump_insn_1 (insn
, 1);
5374 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5375 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5378 update_boundaries (fence_t fence
, bnd_t bnd
, insn_t insn
, blist_t
*bndsp
,
5379 blist_t
*bnds_tailp
)
5384 advance_deps_context (BND_DC (bnd
), insn
);
5385 FOR_EACH_SUCC_1 (succ
, si
, insn
,
5386 SUCCS_NORMAL
| SUCCS_SKIP_TO_LOOP_EXITS
)
5388 ilist_t ptr
= ilist_copy (BND_PTR (bnd
));
5390 ilist_add (&ptr
, insn
);
5392 if (DEBUG_INSN_P (insn
) && sel_bb_end_p (insn
)
5393 && is_ineligible_successor (succ
, ptr
))
5399 if (FENCE_INSN (fence
) == insn
&& !sel_bb_end_p (insn
))
5401 if (sched_verbose
>= 9)
5402 sel_print ("Updating fence insn from %i to %i\n",
5403 INSN_UID (insn
), INSN_UID (succ
));
5404 FENCE_INSN (fence
) = succ
;
5406 blist_add (bnds_tailp
, succ
, ptr
, BND_DC (bnd
));
5407 bnds_tailp
= &BLIST_NEXT (*bnds_tailp
);
5410 blist_remove (bndsp
);
5414 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5416 schedule_expr_on_boundary (bnd_t bnd
, expr_t expr_vliw
, int seqno
)
5419 expr_t c_expr
= XALLOCA (expr_def
);
5420 insn_t place_to_insert
;
5424 expr_seq
= find_sequential_best_exprs (bnd
, expr_vliw
, true);
5426 /* In case of scheduling a jump skipping some other instructions,
5427 prepare CFG. After this, jump is at the boundary and can be
5428 scheduled as usual insn by MOVE_OP. */
5429 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw
)))
5431 insn
= EXPR_INSN_RTX (expr_vliw
);
5433 /* Speculative jumps are not handled. */
5434 if (insn
!= BND_TO (bnd
)
5435 && !sel_insn_is_speculation_check (insn
))
5436 move_cond_jump (insn
, bnd
);
5439 /* Find a place for C_EXPR to schedule. */
5440 place_to_insert
= prepare_place_to_insert (bnd
);
5441 should_move
= move_exprs_to_boundary (bnd
, expr_vliw
, expr_seq
, c_expr
);
5442 clear_expr (c_expr
);
5444 /* Add the instruction. The corner case to care about is when
5445 the expr_seq set has more than one expr, and we chose the one that
5446 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5447 we can't use it. Generate the new vinsn. */
5448 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw
)))
5452 vinsn_new
= vinsn_copy (EXPR_VINSN (expr_vliw
), false);
5453 change_vinsn_in_expr (expr_vliw
, vinsn_new
);
5454 should_move
= false;
5457 insn
= sel_move_insn (expr_vliw
, seqno
, place_to_insert
);
5459 insn
= emit_insn_from_expr_after (expr_vliw
, NULL
, seqno
,
5462 /* Return the nops generated for preserving of data sets back
5464 if (INSN_NOP_P (place_to_insert
))
5465 return_nop_to_pool (place_to_insert
, !DEBUG_INSN_P (insn
));
5466 remove_temp_moveop_nops (!DEBUG_INSN_P (insn
));
5468 av_set_clear (&expr_seq
);
5470 /* Save the expression scheduled so to reset target availability if we'll
5471 meet it later on the same fence. */
5472 if (EXPR_WAS_RENAMED (expr_vliw
))
5473 vinsn_vec_add (&vec_target_unavailable_vinsns
, INSN_EXPR (insn
));
5475 /* Check that the recent movement didn't destroyed loop
5477 gcc_assert (!pipelining_p
5478 || current_loop_nest
== NULL
5479 || loop_latch_edge (current_loop_nest
));
5483 /* Stall for N cycles on FENCE. */
5485 stall_for_cycles (fence_t fence
, int n
)
5489 could_more
= n
> 1 || FENCE_ISSUED_INSNS (fence
) < issue_rate
;
5491 advance_one_cycle (fence
);
5493 FENCE_AFTER_STALL_P (fence
) = 1;
5496 /* Gather a parallel group of insns at FENCE and assign their seqno
5497 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5498 list for later recalculation of seqnos. */
5500 fill_insns (fence_t fence
, int seqno
, ilist_t
**scheduled_insns_tailpp
)
5502 blist_t bnds
= NULL
, *bnds_tailp
;
5503 av_set_t av_vliw
= NULL
;
5504 insn_t insn
= FENCE_INSN (fence
);
5506 if (sched_verbose
>= 2)
5507 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5508 INSN_UID (insn
), FENCE_CYCLE (fence
));
5510 blist_add (&bnds
, insn
, NULL
, FENCE_DC (fence
));
5511 bnds_tailp
= &BLIST_NEXT (bnds
);
5512 set_target_context (FENCE_TC (fence
));
5513 can_issue_more
= FENCE_ISSUE_MORE (fence
);
5514 target_bb
= INSN_BB (insn
);
5516 /* Do while we can add any operation to the current group. */
5519 blist_t
*bnds_tailp1
, *bndsp
;
5521 int need_stall
= false;
5522 int was_stall
= 0, scheduled_insns
= 0;
5523 int max_insns
= pipelining_p
? issue_rate
: 2 * issue_rate
;
5524 int max_stall
= pipelining_p
? 1 : 3;
5525 bool last_insn_was_debug
= false;
5526 bool was_debug_bb_end_p
= false;
5528 compute_av_set_on_boundaries (fence
, bnds
, &av_vliw
);
5529 remove_insns_that_need_bookkeeping (fence
, &av_vliw
);
5530 remove_insns_for_debug (bnds
, &av_vliw
);
5532 /* Return early if we have nothing to schedule. */
5533 if (av_vliw
== NULL
)
5536 /* Choose the best expression and, if needed, destination register
5540 expr_vliw
= find_best_expr (&av_vliw
, bnds
, fence
, &need_stall
);
5541 if (! expr_vliw
&& need_stall
)
5543 /* All expressions required a stall. Do not recompute av sets
5544 as we'll get the same answer (modulo the insns between
5545 the fence and its boundary, which will not be available for
5547 If we are going to stall for too long, break to recompute av
5548 sets and bring more insns for pipelining. */
5550 if (need_stall
<= 3)
5551 stall_for_cycles (fence
, need_stall
);
5554 stall_for_cycles (fence
, 1);
5559 while (! expr_vliw
&& need_stall
);
5561 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5564 av_set_clear (&av_vliw
);
5569 bnds_tailp1
= bnds_tailp
;
5572 /* This code will be executed only once until we'd have several
5573 boundaries per fence. */
5575 bnd_t bnd
= BLIST_BND (*bndsp
);
5577 if (!av_set_is_in_p (BND_AV1 (bnd
), EXPR_VINSN (expr_vliw
)))
5579 bndsp
= &BLIST_NEXT (*bndsp
);
5583 insn
= schedule_expr_on_boundary (bnd
, expr_vliw
, seqno
);
5584 last_insn_was_debug
= DEBUG_INSN_P (insn
);
5585 if (last_insn_was_debug
)
5586 was_debug_bb_end_p
= (insn
== BND_TO (bnd
) && sel_bb_end_p (insn
));
5587 update_fence_and_insn (fence
, insn
, need_stall
);
5588 bnds_tailp
= update_boundaries (fence
, bnd
, insn
, bndsp
, bnds_tailp
);
5590 /* Add insn to the list of scheduled on this cycle instructions. */
5591 ilist_add (*scheduled_insns_tailpp
, insn
);
5592 *scheduled_insns_tailpp
= &ILIST_NEXT (**scheduled_insns_tailpp
);
5594 while (*bndsp
!= *bnds_tailp1
);
5596 av_set_clear (&av_vliw
);
5597 if (!last_insn_was_debug
)
5600 /* We currently support information about candidate blocks only for
5601 one 'target_bb' block. Hence we can't schedule after jump insn,
5602 as this will bring two boundaries and, hence, necessity to handle
5603 information for two or more blocks concurrently. */
5604 if ((last_insn_was_debug
? was_debug_bb_end_p
: sel_bb_end_p (insn
))
5606 && (was_stall
>= max_stall
5607 || scheduled_insns
>= max_insns
)))
5612 gcc_assert (!FENCE_BNDS (fence
));
5614 /* Update boundaries of the FENCE. */
5617 ilist_t ptr
= BND_PTR (BLIST_BND (bnds
));
5621 insn
= ILIST_INSN (ptr
);
5623 if (!ilist_is_in_p (FENCE_BNDS (fence
), insn
))
5624 ilist_add (&FENCE_BNDS (fence
), insn
);
5627 blist_remove (&bnds
);
5630 /* Update target context on the fence. */
5631 reset_target_context (FENCE_TC (fence
), false);
5634 /* All exprs in ORIG_OPS must have the same destination register or memory.
5635 Return that destination. */
5637 get_dest_from_orig_ops (av_set_t orig_ops
)
5639 rtx dest
= NULL_RTX
;
5640 av_set_iterator av_it
;
5642 bool first_p
= true;
5644 FOR_EACH_EXPR (expr
, av_it
, orig_ops
)
5646 rtx x
= EXPR_LHS (expr
);
5654 gcc_assert (dest
== x
5655 || (dest
!= NULL_RTX
&& x
!= NULL_RTX
5656 && rtx_equal_p (dest
, x
)));
5662 /* Update data sets for the bookkeeping block and record those expressions
5663 which become no longer available after inserting this bookkeeping. */
5665 update_and_record_unavailable_insns (basic_block book_block
)
5668 av_set_t old_av_set
= NULL
;
5670 rtx_insn
*bb_end
= sel_bb_end (book_block
);
5672 /* First, get correct liveness in the bookkeeping block. The problem is
5673 the range between the bookeeping insn and the end of block. */
5674 update_liveness_on_insn (bb_end
);
5675 if (control_flow_insn_p (bb_end
))
5676 update_liveness_on_insn (PREV_INSN (bb_end
));
5678 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5679 fence above, where we may choose to schedule an insn which is
5680 actually blocked from moving up with the bookkeeping we create here. */
5681 if (AV_SET_VALID_P (sel_bb_head (book_block
)))
5683 old_av_set
= av_set_copy (BB_AV_SET (book_block
));
5684 update_data_sets (sel_bb_head (book_block
));
5686 /* Traverse all the expressions in the old av_set and check whether
5687 CUR_EXPR is in new AV_SET. */
5688 FOR_EACH_EXPR (cur_expr
, i
, old_av_set
)
5690 expr_t new_expr
= av_set_lookup (BB_AV_SET (book_block
),
5691 EXPR_VINSN (cur_expr
));
5694 /* In this case, we can just turn off the E_T_A bit, but we can't
5695 represent this information with the current vector. */
5696 || EXPR_TARGET_AVAILABLE (new_expr
)
5697 != EXPR_TARGET_AVAILABLE (cur_expr
))
5698 /* Unfortunately, the below code could be also fired up on
5699 separable insns, e.g. when moving insns through the new
5700 speculation check as in PR 53701. */
5701 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns
, cur_expr
);
5704 av_set_clear (&old_av_set
);
5708 /* The main effect of this function is that sparams->c_expr is merged
5709 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5710 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5711 lparams->c_expr_merged is copied back to sparams->c_expr after all
5712 successors has been traversed. lparams->c_expr_local is an expr allocated
5713 on stack in the caller function, and is used if there is more than one
5716 SUCC is one of the SUCCS_NORMAL successors of INSN,
5717 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5718 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5720 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED
,
5721 insn_t succ ATTRIBUTE_UNUSED
,
5722 int moveop_drv_call_res
,
5723 cmpd_local_params_p lparams
, void *static_params
)
5725 moveop_static_params_p sparams
= (moveop_static_params_p
) static_params
;
5727 /* Nothing to do, if original expr wasn't found below. */
5728 if (moveop_drv_call_res
!= 1)
5731 /* If this is a first successor. */
5732 if (!lparams
->c_expr_merged
)
5734 lparams
->c_expr_merged
= sparams
->c_expr
;
5735 sparams
->c_expr
= lparams
->c_expr_local
;
5739 /* We must merge all found expressions to get reasonable
5740 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5741 do so then we can first find the expr with epsilon
5742 speculation success probability and only then with the
5743 good probability. As a result the insn will get epsilon
5744 probability and will never be scheduled because of
5745 weakness_cutoff in find_best_expr.
5747 We call merge_expr_data here instead of merge_expr
5748 because due to speculation C_EXPR and X may have the
5749 same insns with different speculation types. And as of
5750 now such insns are considered non-equal.
5752 However, EXPR_SCHED_TIMES is different -- we must get
5753 SCHED_TIMES from a real insn, not a bookkeeping copy.
5754 We force this here. Instead, we may consider merging
5755 SCHED_TIMES to the maximum instead of minimum in the
5757 int old_times
= EXPR_SCHED_TIMES (lparams
->c_expr_merged
);
5759 merge_expr_data (lparams
->c_expr_merged
, sparams
->c_expr
, NULL
);
5760 if (EXPR_SCHED_TIMES (sparams
->c_expr
) == 0)
5761 EXPR_SCHED_TIMES (lparams
->c_expr_merged
) = old_times
;
5763 clear_expr (sparams
->c_expr
);
5767 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5769 SUCC is one of the SUCCS_NORMAL successors of INSN,
5770 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5771 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5772 STATIC_PARAMS contain USED_REGS set. */
5774 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED
, insn_t succ
,
5775 int moveop_drv_call_res
,
5776 cmpd_local_params_p lparams ATTRIBUTE_UNUSED
,
5777 void *static_params
)
5780 fur_static_params_p sparams
= (fur_static_params_p
) static_params
;
5782 /* Here we compute live regsets only for branches that do not lie
5783 on the code motion paths. These branches correspond to value
5784 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5785 for such branches code_motion_path_driver is not called. */
5786 if (moveop_drv_call_res
!= 0)
5789 /* Mark all registers that do not meet the following condition:
5790 (3) not live on the other path of any conditional branch
5791 that is passed by the operation, in case original
5792 operations are not present on both paths of the
5793 conditional branch. */
5794 succ_live
= compute_live (succ
);
5795 IOR_REG_SET (sparams
->used_regs
, succ_live
);
5798 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5801 move_op_after_merge_succs (cmpd_local_params_p lp
, void *sparams
)
5803 moveop_static_params_p sp
= (moveop_static_params_p
) sparams
;
5805 sp
->c_expr
= lp
->c_expr_merged
;
5808 /* Track bookkeeping copies created, insns scheduled, and blocks for
5809 rescheduling when INSN is found by move_op. */
5811 track_scheduled_insns_and_blocks (rtx_insn
*insn
)
5813 /* Even if this insn can be a copy that will be removed during current move_op,
5814 we still need to count it as an originator. */
5815 bitmap_set_bit (current_originators
, INSN_UID (insn
));
5817 if (!bitmap_clear_bit (current_copies
, INSN_UID (insn
)))
5819 /* Note that original block needs to be rescheduled, as we pulled an
5820 instruction out of it. */
5821 if (INSN_SCHED_TIMES (insn
) > 0)
5822 bitmap_set_bit (blocks_to_reschedule
, BLOCK_FOR_INSN (insn
)->index
);
5823 else if (INSN_UID (insn
) < first_emitted_uid
&& !DEBUG_INSN_P (insn
))
5824 num_insns_scheduled
++;
5827 /* For instructions we must immediately remove insn from the
5828 stream, so subsequent update_data_sets () won't include this
5830 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5831 if (INSN_UID (insn
) > max_uid_before_move_op
)
5832 stat_bookkeeping_copies
--;
5835 /* Emit a register-register copy for INSN if needed. Return true if
5836 emitted one. PARAMS is the move_op static parameters. */
5838 maybe_emit_renaming_copy (rtx_insn
*insn
,
5839 moveop_static_params_p params
)
5841 bool insn_emitted
= false;
5844 /* Bail out early when expression can not be renamed at all. */
5845 if (!EXPR_SEPARABLE_P (params
->c_expr
))
5848 cur_reg
= expr_dest_reg (params
->c_expr
);
5849 gcc_assert (cur_reg
&& params
->dest
&& REG_P (params
->dest
));
5851 /* If original operation has expr and the register chosen for
5852 that expr is not original operation's dest reg, substitute
5853 operation's right hand side with the register chosen. */
5854 if (REGNO (params
->dest
) != REGNO (cur_reg
))
5856 insn_t reg_move_insn
, reg_move_insn_rtx
;
5858 reg_move_insn_rtx
= create_insn_rtx_with_rhs (INSN_VINSN (insn
),
5860 reg_move_insn
= sel_gen_insn_from_rtx_after (reg_move_insn_rtx
,
5864 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn
)) = 0;
5865 replace_dest_with_reg_in_expr (params
->c_expr
, params
->dest
);
5867 insn_emitted
= true;
5868 params
->was_renamed
= true;
5871 return insn_emitted
;
5874 /* Emit a speculative check for INSN speculated as EXPR if needed.
5875 Return true if we've emitted one. PARAMS is the move_op static
5878 maybe_emit_speculative_check (rtx_insn
*insn
, expr_t expr
,
5879 moveop_static_params_p params
)
5881 bool insn_emitted
= false;
5885 check_ds
= get_spec_check_type_for_insn (insn
, expr
);
5888 /* A speculation check should be inserted. */
5889 x
= create_speculation_check (params
->c_expr
, check_ds
, insn
);
5890 insn_emitted
= true;
5894 EXPR_SPEC_DONE_DS (INSN_EXPR (insn
)) = 0;
5898 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x
)) == 0
5899 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x
)) == 0);
5900 return insn_emitted
;
5903 /* Handle transformations that leave an insn in place of original
5904 insn such as renaming/speculation. Return true if one of such
5905 transformations actually happened, and we have emitted this insn. */
5907 handle_emitting_transformations (rtx_insn
*insn
, expr_t expr
,
5908 moveop_static_params_p params
)
5910 bool insn_emitted
= false;
5912 insn_emitted
= maybe_emit_renaming_copy (insn
, params
);
5913 insn_emitted
|= maybe_emit_speculative_check (insn
, expr
, params
);
5915 return insn_emitted
;
5918 /* If INSN is the only insn in the basic block (not counting JUMP,
5919 which may be a jump to next insn, and DEBUG_INSNs), we want to
5920 leave a NOP there till the return to fill_insns. */
5923 need_nop_to_preserve_insn_bb (rtx_insn
*insn
)
5925 insn_t bb_head
, bb_end
, bb_next
, in_next
;
5926 basic_block bb
= BLOCK_FOR_INSN (insn
);
5928 bb_head
= sel_bb_head (bb
);
5929 bb_end
= sel_bb_end (bb
);
5931 if (bb_head
== bb_end
)
5934 while (bb_head
!= bb_end
&& DEBUG_INSN_P (bb_head
))
5935 bb_head
= NEXT_INSN (bb_head
);
5937 if (bb_head
== bb_end
)
5940 while (bb_head
!= bb_end
&& DEBUG_INSN_P (bb_end
))
5941 bb_end
= PREV_INSN (bb_end
);
5943 if (bb_head
== bb_end
)
5946 bb_next
= NEXT_INSN (bb_head
);
5947 while (bb_next
!= bb_end
&& DEBUG_INSN_P (bb_next
))
5948 bb_next
= NEXT_INSN (bb_next
);
5950 if (bb_next
== bb_end
&& JUMP_P (bb_end
))
5953 in_next
= NEXT_INSN (insn
);
5954 while (DEBUG_INSN_P (in_next
))
5955 in_next
= NEXT_INSN (in_next
);
5957 if (IN_CURRENT_FENCE_P (in_next
))
5963 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5964 is not removed but reused when INSN is re-emitted. */
5966 remove_insn_from_stream (rtx_insn
*insn
, bool only_disconnect
)
5968 /* If there's only one insn in the BB, make sure that a nop is
5969 inserted into it, so the basic block won't disappear when we'll
5970 delete INSN below with sel_remove_insn. It should also survive
5971 till the return to fill_insns. */
5972 if (need_nop_to_preserve_insn_bb (insn
))
5974 insn_t nop
= get_nop_from_pool (insn
);
5975 gcc_assert (INSN_NOP_P (nop
));
5976 vec_temp_moveop_nops
.safe_push (nop
);
5979 sel_remove_insn (insn
, only_disconnect
, false);
5982 /* This function is called when original expr is found.
5983 INSN - current insn traversed, EXPR - the corresponding expr found.
5984 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5985 is static parameters of move_op. */
5987 move_op_orig_expr_found (insn_t insn
, expr_t expr
,
5988 cmpd_local_params_p lparams ATTRIBUTE_UNUSED
,
5989 void *static_params
)
5991 bool only_disconnect
;
5992 moveop_static_params_p params
= (moveop_static_params_p
) static_params
;
5994 copy_expr_onside (params
->c_expr
, INSN_EXPR (insn
));
5995 track_scheduled_insns_and_blocks (insn
);
5996 handle_emitting_transformations (insn
, expr
, params
);
5997 only_disconnect
= params
->uid
== INSN_UID (insn
);
5999 /* Mark that we've disconnected an insn. */
6000 if (only_disconnect
)
6002 remove_insn_from_stream (insn
, only_disconnect
);
6005 /* The function is called when original expr is found.
6006 INSN - current insn traversed, EXPR - the corresponding expr found,
6007 crosses_call and original_insns in STATIC_PARAMS are updated. */
6009 fur_orig_expr_found (insn_t insn
, expr_t expr ATTRIBUTE_UNUSED
,
6010 cmpd_local_params_p lparams ATTRIBUTE_UNUSED
,
6011 void *static_params
)
6013 fur_static_params_p params
= (fur_static_params_p
) static_params
;
6017 params
->crosses_call
= true;
6019 def_list_add (params
->original_insns
, insn
, params
->crosses_call
);
6021 /* Mark the registers that do not meet the following condition:
6022 (2) not among the live registers of the point
6023 immediately following the first original operation on
6024 a given downward path, except for the original target
6025 register of the operation. */
6026 tmp
= get_clear_regset_from_pool ();
6027 compute_live_below_insn (insn
, tmp
);
6028 AND_COMPL_REG_SET (tmp
, INSN_REG_SETS (insn
));
6029 AND_COMPL_REG_SET (tmp
, INSN_REG_CLOBBERS (insn
));
6030 IOR_REG_SET (params
->used_regs
, tmp
);
6031 return_regset_to_pool (tmp
);
6033 /* (*1) We need to add to USED_REGS registers that are read by
6034 INSN's lhs. This may lead to choosing wrong src register.
6035 E.g. (scheduling const expr enabled):
6037 429: ax=0x0 <- Can't use AX for this expr (0x0)
6044 /* FIXME: see comment above and enable MEM_P
6045 in vinsn_separable_p. */
6046 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn
))
6047 || !MEM_P (INSN_LHS (insn
)));
6050 /* This function is called on the ascending pass, before returning from
6051 current basic block. */
6053 move_op_at_first_insn (insn_t insn
, cmpd_local_params_p lparams
,
6054 void *static_params
)
6056 moveop_static_params_p sparams
= (moveop_static_params_p
) static_params
;
6057 basic_block book_block
= NULL
;
6059 /* When we have removed the boundary insn for scheduling, which also
6060 happened to be the end insn in its bb, we don't need to update sets. */
6061 if (!lparams
->removed_last_insn
6063 && sel_bb_head_p (insn
))
6065 /* We should generate bookkeeping code only if we are not at the
6066 top level of the move_op. */
6067 if (sel_num_cfg_preds_gt_1 (insn
))
6068 book_block
= generate_bookkeeping_insn (sparams
->c_expr
,
6069 lparams
->e1
, lparams
->e2
);
6070 /* Update data sets for the current insn. */
6071 update_data_sets (insn
);
6074 /* If bookkeeping code was inserted, we need to update av sets of basic
6075 block that received bookkeeping. After generation of bookkeeping insn,
6076 bookkeeping block does not contain valid av set because we are not following
6077 the original algorithm in every detail with regards to e.g. renaming
6078 simple reg-reg copies. Consider example:
6080 bookkeeping block scheduling fence
6090 We try to schedule insn "r1 := r3" on the current
6091 scheduling fence. Also, note that av set of bookkeeping block
6092 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6093 been scheduled, the CFG is as follows:
6096 bookkeeping block scheduling fence
6106 Here, insn "r1 := r3" was scheduled at the current scheduling point
6107 and bookkeeping code was generated at the bookeeping block. This
6108 way insn "r1 := r2" is no longer available as a whole instruction
6109 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6110 This situation is handled by calling update_data_sets.
6112 Since update_data_sets is called only on the bookkeeping block, and
6113 it also may have predecessors with av_sets, containing instructions that
6114 are no longer available, we save all such expressions that become
6115 unavailable during data sets update on the bookkeeping block in
6116 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6117 expressions for scheduling. This allows us to avoid recomputation of
6118 av_sets outside the code motion path. */
6121 update_and_record_unavailable_insns (book_block
);
6123 /* If INSN was previously marked for deletion, it's time to do it. */
6124 if (lparams
->removed_last_insn
)
6125 insn
= PREV_INSN (insn
);
6127 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6128 kill a block with a single nop in which the insn should be emitted. */
6130 tidy_control_flow (BLOCK_FOR_INSN (insn
), true);
6133 /* This function is called on the ascending pass, before returning from the
6134 current basic block. */
6136 fur_at_first_insn (insn_t insn
,
6137 cmpd_local_params_p lparams ATTRIBUTE_UNUSED
,
6138 void *static_params ATTRIBUTE_UNUSED
)
6140 gcc_assert (!sel_bb_head_p (insn
) || AV_SET_VALID_P (insn
)
6141 || AV_LEVEL (insn
) == -1);
6144 /* Called on the backward stage of recursion to call moveup_expr for insn
6145 and sparams->c_expr. */
6147 move_op_ascend (insn_t insn
, void *static_params
)
6149 enum MOVEUP_EXPR_CODE res
;
6150 moveop_static_params_p sparams
= (moveop_static_params_p
) static_params
;
6152 if (! INSN_NOP_P (insn
))
6154 res
= moveup_expr_cached (sparams
->c_expr
, insn
, false);
6155 gcc_assert (res
!= MOVEUP_EXPR_NULL
);
6158 /* Update liveness for this insn as it was invalidated. */
6159 update_liveness_on_insn (insn
);
6162 /* This function is called on enter to the basic block.
6163 Returns TRUE if this block already have been visited and
6164 code_motion_path_driver should return 1, FALSE otherwise. */
6166 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED
, cmpd_local_params_p local_params
,
6167 void *static_params
, bool visited_p
)
6169 fur_static_params_p sparams
= (fur_static_params_p
) static_params
;
6173 /* If we have found something below this block, there should be at
6174 least one insn in ORIGINAL_INSNS. */
6175 gcc_assert (*sparams
->original_insns
);
6177 /* Adjust CROSSES_CALL, since we may have come to this block along
6179 DEF_LIST_DEF (*sparams
->original_insns
)->crosses_call
6180 |= sparams
->crosses_call
;
6183 local_params
->old_original_insns
= *sparams
->original_insns
;
6188 /* Same as above but for move_op. */
6190 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED
,
6191 cmpd_local_params_p local_params ATTRIBUTE_UNUSED
,
6192 void *static_params ATTRIBUTE_UNUSED
, bool visited_p
)
6199 /* This function is called while descending current basic block if current
6200 insn is not the original EXPR we're searching for.
6202 Return value: FALSE, if code_motion_path_driver should perform a local
6203 cleanup and return 0 itself;
6204 TRUE, if code_motion_path_driver should continue. */
6206 move_op_orig_expr_not_found (insn_t insn
, av_set_t orig_ops ATTRIBUTE_UNUSED
,
6207 void *static_params
)
6209 moveop_static_params_p sparams
= (moveop_static_params_p
) static_params
;
6211 #ifdef ENABLE_CHECKING
6212 sparams
->failed_insn
= insn
;
6215 /* If we're scheduling separate expr, in order to generate correct code
6216 we need to stop the search at bookkeeping code generated with the
6217 same destination register or memory. */
6218 if (lhs_of_insn_equals_to_dest_p (insn
, sparams
->dest
))
6223 /* This function is called while descending current basic block if current
6224 insn is not the original EXPR we're searching for.
6226 Return value: TRUE (code_motion_path_driver should continue). */
6228 fur_orig_expr_not_found (insn_t insn
, av_set_t orig_ops
, void *static_params
)
6232 av_set_iterator avi
;
6233 fur_static_params_p sparams
= (fur_static_params_p
) static_params
;
6236 sparams
->crosses_call
= true;
6237 else if (DEBUG_INSN_P (insn
))
6240 /* If current insn we are looking at cannot be executed together
6241 with original insn, then we can skip it safely.
6243 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6244 INSN = (!p6) r14 = r14 + 1;
6246 Here we can schedule ORIG_OP with lhs = r14, though only
6247 looking at the set of used and set registers of INSN we must
6248 forbid it. So, add set/used in INSN registers to the
6249 untouchable set only if there is an insn in ORIG_OPS that can
6252 FOR_EACH_EXPR (r
, avi
, orig_ops
)
6253 if (!sched_insns_conditions_mutex_p (insn
, EXPR_INSN_RTX (r
)))
6259 /* Mark all registers that do not meet the following condition:
6260 (1) Not set or read on any path from xi to an instance of the
6261 original operation. */
6264 IOR_REG_SET (sparams
->used_regs
, INSN_REG_SETS (insn
));
6265 IOR_REG_SET (sparams
->used_regs
, INSN_REG_USES (insn
));
6266 IOR_REG_SET (sparams
->used_regs
, INSN_REG_CLOBBERS (insn
));
6272 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6273 struct code_motion_path_driver_info_def move_op_hooks
= {
6275 move_op_orig_expr_found
,
6276 move_op_orig_expr_not_found
,
6277 move_op_merge_succs
,
6278 move_op_after_merge_succs
,
6280 move_op_at_first_insn
,
6285 /* Hooks and data to perform find_used_regs operations
6286 with code_motion_path_driver. */
6287 struct code_motion_path_driver_info_def fur_hooks
= {
6289 fur_orig_expr_found
,
6290 fur_orig_expr_not_found
,
6292 NULL
, /* fur_after_merge_succs */
6293 NULL
, /* fur_ascend */
6299 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6300 code_motion_path_driver is called recursively. Original operation
6301 was found at least on one path that is starting with one of INSN's
6302 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6303 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6304 of either move_op or find_used_regs depending on the caller.
6306 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6307 know for sure at this point. */
6309 code_motion_process_successors (insn_t insn
, av_set_t orig_ops
,
6310 ilist_t path
, void *static_params
)
6313 succ_iterator succ_i
;
6319 struct cmpd_local_params lparams
;
6322 lparams
.c_expr_local
= &_x
;
6323 lparams
.c_expr_merged
= NULL
;
6325 /* We need to process only NORMAL succs for move_op, and collect live
6326 registers from ALL branches (including those leading out of the
6327 region) for find_used_regs.
6329 In move_op, there can be a case when insn's bb number has changed
6330 due to created bookkeeping. This happens very rare, as we need to
6331 move expression from the beginning to the end of the same block.
6332 Rescan successors in this case. */
6335 bb
= BLOCK_FOR_INSN (insn
);
6336 old_index
= bb
->index
;
6337 old_succs
= EDGE_COUNT (bb
->succs
);
6339 FOR_EACH_SUCC_1 (succ
, succ_i
, insn
, code_motion_path_driver_info
->succ_flags
)
6343 lparams
.e1
= succ_i
.e1
;
6344 lparams
.e2
= succ_i
.e2
;
6346 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6348 if (succ_i
.current_flags
== SUCCS_NORMAL
)
6349 b
= code_motion_path_driver (succ
, orig_ops
, path
, &lparams
,
6354 /* Merge c_expres found or unify live register sets from different
6356 code_motion_path_driver_info
->merge_succs (insn
, succ
, b
, &lparams
,
6360 else if (b
== -1 && res
!= 1)
6363 /* We have simplified the control flow below this point. In this case,
6364 the iterator becomes invalid. We need to try again.
6365 If we have removed the insn itself, it could be only an
6366 unconditional jump. Thus, do not rescan but break immediately --
6367 we have already visited the only successor block. */
6368 if (!BLOCK_FOR_INSN (insn
))
6370 if (sched_verbose
>= 6)
6371 sel_print ("Not doing rescan: already visited the only successor"
6372 " of block %d\n", old_index
);
6375 if (BLOCK_FOR_INSN (insn
)->index
!= old_index
6376 || EDGE_COUNT (bb
->succs
) != old_succs
)
6378 if (sched_verbose
>= 6)
6379 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6380 INSN_UID (insn
), BLOCK_FOR_INSN (insn
)->index
);
6381 insn
= sel_bb_end (BLOCK_FOR_INSN (insn
));
6386 #ifdef ENABLE_CHECKING
6387 /* Here, RES==1 if original expr was found at least for one of the
6388 successors. After the loop, RES may happen to have zero value
6389 only if at some point the expr searched is present in av_set, but is
6390 not found below. In most cases, this situation is an error.
6391 The exception is when the original operation is blocked by
6392 bookkeeping generated for another fence or for another path in current
6394 gcc_assert (res
== 1
6396 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops
,
6401 /* Merge data, clean up, etc. */
6402 if (res
!= -1 && code_motion_path_driver_info
->after_merge_succs
)
6403 code_motion_path_driver_info
->after_merge_succs (&lparams
, static_params
);
6409 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6410 is the pointer to the av set with expressions we were looking for,
6411 PATH_P is the pointer to the traversed path. */
6413 code_motion_path_driver_cleanup (av_set_t
*orig_ops_p
, ilist_t
*path_p
)
6415 ilist_remove (path_p
);
6416 av_set_clear (orig_ops_p
);
6419 /* The driver function that implements move_op or find_used_regs
6420 functionality dependent whether code_motion_path_driver_INFO is set to
6421 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6422 of code (CFG traversal etc) that are shared among both functions. INSN
6423 is the insn we're starting the search from, ORIG_OPS are the expressions
6424 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6425 parameters of the driver, and STATIC_PARAMS are static parameters of
6428 Returns whether original instructions were found. Note that top-level
6429 code_motion_path_driver always returns true. */
6431 code_motion_path_driver (insn_t insn
, av_set_t orig_ops
, ilist_t path
,
6432 cmpd_local_params_p local_params_in
,
6433 void *static_params
)
6436 basic_block bb
= BLOCK_FOR_INSN (insn
);
6437 insn_t first_insn
, bb_tail
, before_first
;
6438 bool removed_last_insn
= false;
6440 if (sched_verbose
>= 6)
6442 sel_print ("%s (", code_motion_path_driver_info
->routine_name
);
6445 dump_av_set (orig_ops
);
6449 gcc_assert (orig_ops
);
6451 /* If no original operations exist below this insn, return immediately. */
6452 if (is_ineligible_successor (insn
, path
))
6454 if (sched_verbose
>= 6)
6455 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn
));
6459 /* The block can have invalid av set, in which case it was created earlier
6460 during move_op. Return immediately. */
6461 if (sel_bb_head_p (insn
))
6463 if (! AV_SET_VALID_P (insn
))
6465 if (sched_verbose
>= 6)
6466 sel_print ("Returned from block %d as it had invalid av set\n",
6471 if (bitmap_bit_p (code_motion_visited_blocks
, bb
->index
))
6473 /* We have already found an original operation on this branch, do not
6474 go any further and just return TRUE here. If we don't stop here,
6475 function can have exponential behaviour even on the small code
6476 with many different paths (e.g. with data speculation and
6477 recovery blocks). */
6478 if (sched_verbose
>= 6)
6479 sel_print ("Block %d already visited in this traversal\n", bb
->index
);
6480 if (code_motion_path_driver_info
->on_enter
)
6481 return code_motion_path_driver_info
->on_enter (insn
,
6488 if (code_motion_path_driver_info
->on_enter
)
6489 code_motion_path_driver_info
->on_enter (insn
, local_params_in
,
6490 static_params
, false);
6491 orig_ops
= av_set_copy (orig_ops
);
6493 /* Filter the orig_ops set. */
6494 if (AV_SET_VALID_P (insn
))
6495 av_set_code_motion_filter (&orig_ops
, AV_SET (insn
));
6497 /* If no more original ops, return immediately. */
6500 if (sched_verbose
>= 6)
6501 sel_print ("No intersection with av set of block %d\n", bb
->index
);
6505 /* For non-speculative insns we have to leave only one form of the
6506 original operation, because if we don't, we may end up with
6507 different C_EXPRes and, consequently, with bookkeepings for different
6508 expression forms along the same code motion path. That may lead to
6509 generation of incorrect code. So for each code motion we stick to
6510 the single form of the instruction, except for speculative insns
6511 which we need to keep in different forms with all speculation
6513 av_set_leave_one_nonspec (&orig_ops
);
6515 /* It is not possible that all ORIG_OPS are filtered out. */
6516 gcc_assert (orig_ops
);
6518 /* It is enough to place only heads and tails of visited basic blocks into
6520 ilist_add (&path
, insn
);
6522 bb_tail
= sel_bb_end (bb
);
6524 /* Descend the basic block in search of the original expr; this part
6525 corresponds to the part of the original move_op procedure executed
6526 before the recursive call. */
6529 /* Look at the insn and decide if it could be an ancestor of currently
6530 scheduling operation. If it is so, then the insn "dest = op" could
6531 either be replaced with "dest = reg", because REG now holds the result
6532 of OP, or just removed, if we've scheduled the insn as a whole.
6534 If this insn doesn't contain currently scheduling OP, then proceed
6535 with searching and look at its successors. Operations we're searching
6536 for could have changed when moving up through this insn via
6537 substituting. In this case, perform unsubstitution on them first.
6539 When traversing the DAG below this insn is finished, insert
6540 bookkeeping code, if the insn is a joint point, and remove
6543 expr
= av_set_lookup (orig_ops
, INSN_VINSN (insn
));
6546 insn_t last_insn
= PREV_INSN (insn
);
6548 /* We have found the original operation. */
6549 if (sched_verbose
>= 6)
6550 sel_print ("Found original operation at insn %d\n", INSN_UID (insn
));
6552 code_motion_path_driver_info
->orig_expr_found
6553 (insn
, expr
, local_params_in
, static_params
);
6555 /* Step back, so on the way back we'll start traversing from the
6556 previous insn (or we'll see that it's bb_note and skip that
6558 if (insn
== first_insn
)
6560 first_insn
= NEXT_INSN (last_insn
);
6561 removed_last_insn
= sel_bb_end_p (last_insn
);
6568 /* We haven't found the original expr, continue descending the basic
6570 if (code_motion_path_driver_info
->orig_expr_not_found
6571 (insn
, orig_ops
, static_params
))
6573 /* Av set ops could have been changed when moving through this
6574 insn. To find them below it, we have to un-substitute them. */
6575 undo_transformations (&orig_ops
, insn
);
6579 /* Clean up and return, if the hook tells us to do so. It may
6580 happen if we've encountered the previously created
6582 code_motion_path_driver_cleanup (&orig_ops
, &path
);
6586 gcc_assert (orig_ops
);
6589 /* Stop at insn if we got to the end of BB. */
6590 if (insn
== bb_tail
)
6593 insn
= NEXT_INSN (insn
);
6596 /* Here INSN either points to the insn before the original insn (may be
6597 bb_note, if original insn was a bb_head) or to the bb_end. */
6601 rtx_insn
*last_insn
= PREV_INSN (insn
);
6604 gcc_assert (insn
== sel_bb_end (bb
));
6606 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6607 it's already in PATH then). */
6608 if (insn
!= first_insn
)
6610 ilist_add (&path
, insn
);
6611 added_to_path
= true;
6614 added_to_path
= false;
6616 /* Process_successors should be able to find at least one
6617 successor for which code_motion_path_driver returns TRUE. */
6618 res
= code_motion_process_successors (insn
, orig_ops
,
6619 path
, static_params
);
6621 /* Jump in the end of basic block could have been removed or replaced
6622 during code_motion_process_successors, so recompute insn as the
6624 if (NEXT_INSN (last_insn
) != insn
)
6626 insn
= sel_bb_end (bb
);
6627 first_insn
= sel_bb_head (bb
);
6630 /* Remove bb tail from path. */
6632 ilist_remove (&path
);
6636 /* This is the case when one of the original expr is no longer available
6637 due to bookkeeping created on this branch with the same register.
6638 In the original algorithm, which doesn't have update_data_sets call
6639 on a bookkeeping block, it would simply result in returning
6640 FALSE when we've encountered a previously generated bookkeeping
6641 insn in moveop_orig_expr_not_found. */
6642 code_motion_path_driver_cleanup (&orig_ops
, &path
);
6647 /* Don't need it any more. */
6648 av_set_clear (&orig_ops
);
6650 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6651 the beginning of the basic block. */
6652 before_first
= PREV_INSN (first_insn
);
6653 while (insn
!= before_first
)
6655 if (code_motion_path_driver_info
->ascend
)
6656 code_motion_path_driver_info
->ascend (insn
, static_params
);
6658 insn
= PREV_INSN (insn
);
6661 /* Now we're at the bb head. */
6663 ilist_remove (&path
);
6664 local_params_in
->removed_last_insn
= removed_last_insn
;
6665 code_motion_path_driver_info
->at_first_insn (insn
, local_params_in
, static_params
);
6667 /* This should be the very last operation as at bb head we could change
6668 the numbering by creating bookkeeping blocks. */
6669 if (removed_last_insn
)
6670 insn
= PREV_INSN (insn
);
6672 /* If we have simplified the control flow and removed the first jump insn,
6673 there's no point in marking this block in the visited blocks bitmap. */
6674 if (BLOCK_FOR_INSN (insn
))
6675 bitmap_set_bit (code_motion_visited_blocks
, BLOCK_FOR_INSN (insn
)->index
);
6679 /* Move up the operations from ORIG_OPS set traversing the dag starting
6680 from INSN. PATH represents the edges traversed so far.
6681 DEST is the register chosen for scheduling the current expr. Insert
6682 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6683 C_EXPR is how it looks like at the given cfg point.
6684 Set *SHOULD_MOVE to indicate whether we have only disconnected
6685 one of the insns found.
6687 Returns whether original instructions were found, which is asserted
6688 to be true in the caller. */
6690 move_op (insn_t insn
, av_set_t orig_ops
, expr_t expr_vliw
,
6691 rtx dest
, expr_t c_expr
, bool *should_move
)
6693 struct moveop_static_params sparams
;
6694 struct cmpd_local_params lparams
;
6697 /* Init params for code_motion_path_driver. */
6698 sparams
.dest
= dest
;
6699 sparams
.c_expr
= c_expr
;
6700 sparams
.uid
= INSN_UID (EXPR_INSN_RTX (expr_vliw
));
6701 #ifdef ENABLE_CHECKING
6702 sparams
.failed_insn
= NULL
;
6704 sparams
.was_renamed
= false;
6707 /* We haven't visited any blocks yet. */
6708 bitmap_clear (code_motion_visited_blocks
);
6710 /* Set appropriate hooks and data. */
6711 code_motion_path_driver_info
= &move_op_hooks
;
6712 res
= code_motion_path_driver (insn
, orig_ops
, NULL
, &lparams
, &sparams
);
6714 gcc_assert (res
!= -1);
6716 if (sparams
.was_renamed
)
6717 EXPR_WAS_RENAMED (expr_vliw
) = true;
6719 *should_move
= (sparams
.uid
== -1);
6725 /* Functions that work with regions. */
6727 /* Current number of seqno used in init_seqno and init_seqno_1. */
6728 static int cur_seqno
;
6730 /* A helper for init_seqno. Traverse the region starting from BB and
6731 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6732 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6734 init_seqno_1 (basic_block bb
, sbitmap visited_bbs
, bitmap blocks_to_reschedule
)
6736 int bbi
= BLOCK_TO_BB (bb
->index
);
6741 rtx_note
*note
= bb_note (bb
);
6742 bitmap_set_bit (visited_bbs
, bbi
);
6743 if (blocks_to_reschedule
)
6744 bitmap_clear_bit (blocks_to_reschedule
, bb
->index
);
6746 FOR_EACH_SUCC_1 (succ_insn
, si
, BB_END (bb
),
6747 SUCCS_NORMAL
| SUCCS_SKIP_TO_LOOP_EXITS
)
6749 basic_block succ
= BLOCK_FOR_INSN (succ_insn
);
6750 int succ_bbi
= BLOCK_TO_BB (succ
->index
);
6752 gcc_assert (in_current_region_p (succ
));
6754 if (!bitmap_bit_p (visited_bbs
, succ_bbi
))
6756 gcc_assert (succ_bbi
> bbi
);
6758 init_seqno_1 (succ
, visited_bbs
, blocks_to_reschedule
);
6760 else if (blocks_to_reschedule
)
6761 bitmap_set_bit (forced_ebb_heads
, succ
->index
);
6764 for (insn
= BB_END (bb
); insn
!= note
; insn
= PREV_INSN (insn
))
6765 INSN_SEQNO (insn
) = cur_seqno
--;
6768 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6769 blocks on which we're rescheduling when pipelining, FROM is the block where
6770 traversing region begins (it may not be the head of the region when
6771 pipelining, but the head of the loop instead).
6773 Returns the maximal seqno found. */
6775 init_seqno (bitmap blocks_to_reschedule
, basic_block from
)
6777 sbitmap visited_bbs
;
6781 visited_bbs
= sbitmap_alloc (current_nr_blocks
);
6783 if (blocks_to_reschedule
)
6785 bitmap_ones (visited_bbs
);
6786 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule
, 0, bbi
, bi
)
6788 gcc_assert (BLOCK_TO_BB (bbi
) < current_nr_blocks
);
6789 bitmap_clear_bit (visited_bbs
, BLOCK_TO_BB (bbi
));
6794 bitmap_clear (visited_bbs
);
6795 from
= EBB_FIRST_BB (0);
6798 cur_seqno
= sched_max_luid
- 1;
6799 init_seqno_1 (from
, visited_bbs
, blocks_to_reschedule
);
6801 /* cur_seqno may be positive if the number of instructions is less than
6802 sched_max_luid - 1 (when rescheduling or if some instructions have been
6803 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6804 gcc_assert (cur_seqno
>= 0);
6806 sbitmap_free (visited_bbs
);
6807 return sched_max_luid
- 1;
6810 /* Initialize scheduling parameters for current region. */
6812 sel_setup_region_sched_flags (void)
6814 enable_schedule_as_rhs_p
= 1;
6816 pipelining_p
= (bookkeeping_p
6817 && (flag_sel_sched_pipelining
!= 0)
6818 && current_loop_nest
!= NULL
6819 && loop_has_exit_edges (current_loop_nest
));
6820 max_insns_to_rename
= PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME
);
6824 /* Return true if all basic blocks of current region are empty. */
6826 current_region_empty_p (void)
6829 for (i
= 0; i
< current_nr_blocks
; i
++)
6830 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun
, BB_TO_BLOCK (i
))))
6836 /* Prepare and verify loop nest for pipelining. */
6838 setup_current_loop_nest (int rgn
, bb_vec_t
*bbs
)
6840 current_loop_nest
= get_loop_nest_for_rgn (rgn
);
6842 if (!current_loop_nest
)
6845 /* If this loop has any saved loop preheaders from nested loops,
6846 add these basic blocks to the current region. */
6847 sel_add_loop_preheaders (bbs
);
6849 /* Check that we're starting with a valid information. */
6850 gcc_assert (loop_latch_edge (current_loop_nest
));
6851 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest
));
6854 /* Compute instruction priorities for current region. */
6856 sel_compute_priorities (int rgn
)
6858 sched_rgn_compute_dependencies (rgn
);
6860 /* Compute insn priorities in haifa style. Then free haifa style
6861 dependencies that we've calculated for this. */
6862 compute_priorities ();
6864 if (sched_verbose
>= 5)
6865 debug_rgn_dependencies (0);
6870 /* Init scheduling data for RGN. Returns true when this region should not
6873 sel_region_init (int rgn
)
6878 rgn_setup_region (rgn
);
6880 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6881 do region initialization here so the region can be bundled correctly,
6882 but we'll skip the scheduling in sel_sched_region (). */
6883 if (current_region_empty_p ())
6886 bbs
.create (current_nr_blocks
);
6888 for (i
= 0; i
< current_nr_blocks
; i
++)
6889 bbs
.quick_push (BASIC_BLOCK_FOR_FN (cfun
, BB_TO_BLOCK (i
)));
6893 if (flag_sel_sched_pipelining
)
6894 setup_current_loop_nest (rgn
, &bbs
);
6896 sel_setup_region_sched_flags ();
6898 /* Initialize luids and dependence analysis which both sel-sched and haifa
6900 sched_init_luids (bbs
);
6901 sched_deps_init (false);
6903 /* Initialize haifa data. */
6904 rgn_setup_sched_infos ();
6905 sel_set_sched_flags ();
6906 haifa_init_h_i_d (bbs
);
6908 sel_compute_priorities (rgn
);
6909 init_deps_global ();
6911 /* Main initialization. */
6912 sel_setup_sched_infos ();
6913 sel_init_global_and_expr (bbs
);
6917 blocks_to_reschedule
= BITMAP_ALLOC (NULL
);
6919 /* Init correct liveness sets on each instruction of a single-block loop.
6920 This is the only situation when we can't update liveness when calling
6921 compute_live for the first insn of the loop. */
6922 if (current_loop_nest
)
6925 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun
, BB_TO_BLOCK (0)))
6929 if (current_nr_blocks
== header
+ 1)
6930 update_liveness_on_insn
6931 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun
, BB_TO_BLOCK (header
))));
6934 /* Set hooks so that no newly generated insn will go out unnoticed. */
6935 sel_register_cfg_hooks ();
6937 /* !!! We call target.sched.init () for the whole region, but we invoke
6938 targetm.sched.finish () for every ebb. */
6939 if (targetm
.sched
.init
)
6940 /* None of the arguments are actually used in any target. */
6941 targetm
.sched
.init (sched_dump
, sched_verbose
, -1);
6943 first_emitted_uid
= get_max_uid () + 1;
6944 preheader_removed
= false;
6946 /* Reset register allocation ticks array. */
6947 memset (reg_rename_tick
, 0, sizeof reg_rename_tick
);
6948 reg_rename_this_tick
= 0;
6950 bitmap_initialize (forced_ebb_heads
, 0);
6951 bitmap_clear (forced_ebb_heads
);
6954 current_copies
= BITMAP_ALLOC (NULL
);
6955 current_originators
= BITMAP_ALLOC (NULL
);
6956 code_motion_visited_blocks
= BITMAP_ALLOC (NULL
);
6961 /* Simplify insns after the scheduling. */
6963 simplify_changed_insns (void)
6967 for (i
= 0; i
< current_nr_blocks
; i
++)
6969 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, BB_TO_BLOCK (i
));
6972 FOR_BB_INSNS (bb
, insn
)
6975 expr_t expr
= INSN_EXPR (insn
);
6977 if (EXPR_WAS_SUBSTITUTED (expr
))
6978 validate_simplify_insn (insn
);
6983 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6984 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6985 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6987 find_ebb_boundaries (basic_block bb
, bitmap scheduled_blocks
)
6989 rtx_insn
*head
, *tail
;
6990 basic_block bb1
= bb
;
6991 if (sched_verbose
>= 2)
6992 sel_print ("Finishing schedule in bbs: ");
6996 bitmap_set_bit (scheduled_blocks
, BLOCK_TO_BB (bb1
->index
));
6998 if (sched_verbose
>= 2)
6999 sel_print ("%d; ", bb1
->index
);
7001 while (!bb_ends_ebb_p (bb1
) && (bb1
= bb_next_bb (bb1
)));
7003 if (sched_verbose
>= 2)
7006 get_ebb_head_tail (bb
, bb1
, &head
, &tail
);
7008 current_sched_info
->head
= head
;
7009 current_sched_info
->tail
= tail
;
7010 current_sched_info
->prev_head
= PREV_INSN (head
);
7011 current_sched_info
->next_tail
= NEXT_INSN (tail
);
7014 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7016 reset_sched_cycles_in_current_ebb (void)
7019 int haifa_last_clock
= -1;
7020 int haifa_clock
= 0;
7021 int issued_insns
= 0;
7024 if (targetm
.sched
.init
)
7026 /* None of the arguments are actually used in any target.
7027 NB: We should have md_reset () hook for cases like this. */
7028 targetm
.sched
.init (sched_dump
, sched_verbose
, -1);
7031 state_reset (curr_state
);
7032 advance_state (curr_state
);
7034 for (insn
= current_sched_info
->head
;
7035 insn
!= current_sched_info
->next_tail
;
7036 insn
= NEXT_INSN (insn
))
7038 int cost
, haifa_cost
;
7040 bool asm_p
, real_insn
, after_stall
, all_issued
;
7047 real_insn
= recog_memoized (insn
) >= 0;
7048 clock
= INSN_SCHED_CYCLE (insn
);
7050 cost
= clock
- last_clock
;
7052 /* Initialize HAIFA_COST. */
7055 asm_p
= INSN_ASM_P (insn
);
7058 /* This is asm insn which *had* to be scheduled first
7062 /* This is a use/clobber insn. It should not change
7067 haifa_cost
= estimate_insn_cost (insn
, curr_state
);
7069 /* Stall for whatever cycles we've stalled before. */
7071 if (INSN_AFTER_STALL_P (insn
) && cost
> haifa_cost
)
7076 all_issued
= issued_insns
== issue_rate
;
7077 if (haifa_cost
== 0 && all_issued
)
7083 while (haifa_cost
--)
7085 advance_state (curr_state
);
7089 if (sched_verbose
>= 2)
7091 sel_print ("advance_state (state_transition)\n");
7092 debug_state (curr_state
);
7095 /* The DFA may report that e.g. insn requires 2 cycles to be
7096 issued, but on the next cycle it says that insn is ready
7097 to go. Check this here. */
7101 && estimate_insn_cost (insn
, curr_state
) == 0)
7104 /* When the data dependency stall is longer than the DFA stall,
7105 and when we have issued exactly issue_rate insns and stalled,
7106 it could be that after this longer stall the insn will again
7107 become unavailable to the DFA restrictions. Looks strange
7108 but happens e.g. on x86-64. So recheck DFA on the last
7110 if ((after_stall
|| all_issued
)
7113 haifa_cost
= estimate_insn_cost (insn
, curr_state
);
7117 if (sched_verbose
>= 2)
7118 sel_print ("haifa clock: %d\n", haifa_clock
);
7121 gcc_assert (haifa_cost
== 0);
7123 if (sched_verbose
>= 2)
7124 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn
), haifa_cost
);
7126 if (targetm
.sched
.dfa_new_cycle
)
7127 while (targetm
.sched
.dfa_new_cycle (sched_dump
, sched_verbose
, insn
,
7128 haifa_last_clock
, haifa_clock
,
7131 advance_state (curr_state
);
7134 if (sched_verbose
>= 2)
7136 sel_print ("advance_state (dfa_new_cycle)\n");
7137 debug_state (curr_state
);
7138 sel_print ("haifa clock: %d\n", haifa_clock
+ 1);
7144 static state_t temp
= NULL
;
7147 temp
= xmalloc (dfa_state_size
);
7148 memcpy (temp
, curr_state
, dfa_state_size
);
7150 cost
= state_transition (curr_state
, insn
);
7151 if (memcmp (temp
, curr_state
, dfa_state_size
))
7154 if (sched_verbose
>= 2)
7156 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn
),
7158 debug_state (curr_state
);
7160 gcc_assert (cost
< 0);
7163 if (targetm
.sched
.variable_issue
)
7164 targetm
.sched
.variable_issue (sched_dump
, sched_verbose
, insn
, 0);
7166 INSN_SCHED_CYCLE (insn
) = haifa_clock
;
7169 haifa_last_clock
= haifa_clock
;
7173 /* Put TImode markers on insns starting a new issue group. */
7177 int last_clock
= -1;
7180 for (insn
= current_sched_info
->head
; insn
!= current_sched_info
->next_tail
;
7181 insn
= NEXT_INSN (insn
))
7188 clock
= INSN_SCHED_CYCLE (insn
);
7189 cost
= (last_clock
== -1) ? 1 : clock
- last_clock
;
7191 gcc_assert (cost
>= 0);
7194 && GET_CODE (PATTERN (insn
)) != USE
7195 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
7197 if (reload_completed
&& cost
> 0)
7198 PUT_MODE (insn
, TImode
);
7203 if (sched_verbose
>= 2)
7204 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn
), cost
);
7208 /* Perform MD_FINISH on EBBs comprising current region. When
7209 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7210 to produce correct sched cycles on insns. */
7212 sel_region_target_finish (bool reset_sched_cycles_p
)
7215 bitmap scheduled_blocks
= BITMAP_ALLOC (NULL
);
7217 for (i
= 0; i
< current_nr_blocks
; i
++)
7219 if (bitmap_bit_p (scheduled_blocks
, i
))
7222 /* While pipelining outer loops, skip bundling for loop
7223 preheaders. Those will be rescheduled in the outer loop. */
7224 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i
)))
7227 find_ebb_boundaries (EBB_FIRST_BB (i
), scheduled_blocks
);
7229 if (no_real_insns_p (current_sched_info
->head
, current_sched_info
->tail
))
7232 if (reset_sched_cycles_p
)
7233 reset_sched_cycles_in_current_ebb ();
7235 if (targetm
.sched
.init
)
7236 targetm
.sched
.init (sched_dump
, sched_verbose
, -1);
7240 if (targetm
.sched
.finish
)
7242 targetm
.sched
.finish (sched_dump
, sched_verbose
);
7244 /* Extend luids so that insns generated by the target will
7246 sched_extend_luids ();
7250 BITMAP_FREE (scheduled_blocks
);
7253 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7254 is true, make an additional pass emulating scheduler to get correct insn
7255 cycles for md_finish calls. */
7257 sel_region_finish (bool reset_sched_cycles_p
)
7259 simplify_changed_insns ();
7260 sched_finish_ready_list ();
7263 /* Free the vectors. */
7264 vec_av_set
.release ();
7265 BITMAP_FREE (current_copies
);
7266 BITMAP_FREE (current_originators
);
7267 BITMAP_FREE (code_motion_visited_blocks
);
7268 vinsn_vec_free (vec_bookkeeping_blocked_vinsns
);
7269 vinsn_vec_free (vec_target_unavailable_vinsns
);
7271 /* If LV_SET of the region head should be updated, do it now because
7272 there will be no other chance. */
7277 FOR_EACH_SUCC_1 (insn
, si
, bb_note (EBB_FIRST_BB (0)),
7278 SUCCS_NORMAL
| SUCCS_SKIP_TO_LOOP_EXITS
)
7280 basic_block bb
= BLOCK_FOR_INSN (insn
);
7282 if (!BB_LV_SET_VALID_P (bb
))
7283 compute_live (insn
);
7287 /* Emulate the Haifa scheduler for bundling. */
7288 if (reload_completed
)
7289 sel_region_target_finish (reset_sched_cycles_p
);
7291 sel_finish_global_and_expr ();
7293 bitmap_clear (forced_ebb_heads
);
7297 finish_deps_global ();
7298 sched_finish_luids ();
7302 BITMAP_FREE (blocks_to_reschedule
);
7304 sel_unregister_cfg_hooks ();
7310 /* Functions that implement the scheduler driver. */
7312 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7313 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7314 of insns scheduled -- these would be postprocessed later. */
7316 schedule_on_fences (flist_t fences
, int max_seqno
,
7317 ilist_t
**scheduled_insns_tailpp
)
7319 flist_t old_fences
= fences
;
7321 if (sched_verbose
>= 1)
7323 sel_print ("\nScheduling on fences: ");
7324 dump_flist (fences
);
7328 scheduled_something_on_previous_fence
= false;
7329 for (; fences
; fences
= FLIST_NEXT (fences
))
7331 fence_t fence
= NULL
;
7334 bool first_p
= true;
7336 /* Choose the next fence group to schedule.
7337 The fact that insn can be scheduled only once
7338 on the cycle is guaranteed by two properties:
7339 1. seqnos of parallel groups decrease with each iteration.
7340 2. If is_ineligible_successor () sees the larger seqno, it
7341 checks if candidate insn is_in_current_fence_p (). */
7342 for (fences2
= old_fences
; fences2
; fences2
= FLIST_NEXT (fences2
))
7344 fence_t f
= FLIST_FENCE (fences2
);
7346 if (!FENCE_PROCESSED_P (f
))
7348 int i
= INSN_SEQNO (FENCE_INSN (f
));
7350 if (first_p
|| i
> seqno
)
7357 /* ??? Seqnos of different groups should be different. */
7358 gcc_assert (1 || i
!= seqno
);
7364 /* As FENCE is nonnull, SEQNO is initialized. */
7365 seqno
-= max_seqno
+ 1;
7366 fill_insns (fence
, seqno
, scheduled_insns_tailpp
);
7367 FENCE_PROCESSED_P (fence
) = true;
7370 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7371 don't need to keep bookkeeping-invalidated and target-unavailable
7373 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns
);
7374 vinsn_vec_clear (&vec_target_unavailable_vinsns
);
7377 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7379 find_min_max_seqno (flist_t fences
, int *min_seqno
, int *max_seqno
)
7381 *min_seqno
= *max_seqno
= INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences
)));
7383 /* The first element is already processed. */
7384 while ((fences
= FLIST_NEXT (fences
)))
7386 int seqno
= INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences
)));
7388 if (*min_seqno
> seqno
)
7390 else if (*max_seqno
< seqno
)
7395 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7397 calculate_new_fences (flist_t fences
, int orig_max_seqno
, int *ptime
)
7399 flist_t old_fences
= fences
;
7400 struct flist_tail_def _new_fences
, *new_fences
= &_new_fences
;
7403 flist_tail_init (new_fences
);
7404 for (; fences
; fences
= FLIST_NEXT (fences
))
7406 fence_t fence
= FLIST_FENCE (fences
);
7409 if (!FENCE_BNDS (fence
))
7411 /* This fence doesn't have any successors. */
7412 if (!FENCE_SCHEDULED_P (fence
))
7414 /* Nothing was scheduled on this fence. */
7417 insn
= FENCE_INSN (fence
);
7418 seqno
= INSN_SEQNO (insn
);
7419 gcc_assert (seqno
> 0 && seqno
<= orig_max_seqno
);
7421 if (sched_verbose
>= 1)
7422 sel_print ("Fence %d[%d] has not changed\n",
7425 move_fence_to_fences (fences
, new_fences
);
7429 extract_new_fences_from (fences
, new_fences
, orig_max_seqno
);
7430 max_time
= MAX (max_time
, FENCE_CYCLE (fence
));
7433 flist_clear (&old_fences
);
7435 return FLIST_TAIL_HEAD (new_fences
);
7438 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7439 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7440 the highest seqno used in a region. Return the updated highest seqno. */
7442 update_seqnos_and_stage (int min_seqno
, int max_seqno
,
7443 int highest_seqno_in_use
,
7444 ilist_t
*pscheduled_insns
)
7450 /* Actually, new_hs is the seqno of the instruction, that was
7451 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7452 if (*pscheduled_insns
)
7454 new_hs
= (INSN_SEQNO (ILIST_INSN (*pscheduled_insns
))
7455 + highest_seqno_in_use
+ max_seqno
- min_seqno
+ 2);
7456 gcc_assert (new_hs
> highest_seqno_in_use
);
7459 new_hs
= highest_seqno_in_use
;
7461 FOR_EACH_INSN (insn
, ii
, *pscheduled_insns
)
7463 gcc_assert (INSN_SEQNO (insn
) < 0);
7464 INSN_SEQNO (insn
) += highest_seqno_in_use
+ max_seqno
- min_seqno
+ 2;
7465 gcc_assert (INSN_SEQNO (insn
) <= new_hs
);
7467 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7468 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7469 require > 1GB of memory e.g. on limit-fnargs.c. */
7471 free_data_for_scheduled_insn (insn
);
7474 ilist_clear (pscheduled_insns
);
7480 /* The main driver for scheduling a region. This function is responsible
7481 for correct propagation of fences (i.e. scheduling points) and creating
7482 a group of parallel insns at each of them. It also supports
7483 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7486 sel_sched_region_2 (int orig_max_seqno
)
7488 int highest_seqno_in_use
= orig_max_seqno
;
7491 stat_bookkeeping_copies
= 0;
7492 stat_insns_needed_bookkeeping
= 0;
7493 stat_renamed_scheduled
= 0;
7494 stat_substitutions_total
= 0;
7495 num_insns_scheduled
= 0;
7499 int min_seqno
, max_seqno
;
7500 ilist_t scheduled_insns
= NULL
;
7501 ilist_t
*scheduled_insns_tailp
= &scheduled_insns
;
7503 find_min_max_seqno (fences
, &min_seqno
, &max_seqno
);
7504 schedule_on_fences (fences
, max_seqno
, &scheduled_insns_tailp
);
7505 fences
= calculate_new_fences (fences
, orig_max_seqno
, &max_time
);
7506 highest_seqno_in_use
= update_seqnos_and_stage (min_seqno
, max_seqno
,
7507 highest_seqno_in_use
,
7511 if (sched_verbose
>= 1)
7513 sel_print ("Total scheduling time: %d cycles\n", max_time
);
7514 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7515 "bookkeeping, %d insns renamed, %d insns substituted\n",
7516 stat_bookkeeping_copies
,
7517 stat_insns_needed_bookkeeping
,
7518 stat_renamed_scheduled
,
7519 stat_substitutions_total
);
7523 /* Schedule a region. When pipelining, search for possibly never scheduled
7524 bookkeeping code and schedule it. Reschedule pipelined code without
7525 pipelining after. */
7527 sel_sched_region_1 (void)
7531 /* Remove empty blocks that might be in the region from the beginning. */
7532 purge_empty_blocks ();
7534 orig_max_seqno
= init_seqno (NULL
, NULL
);
7535 gcc_assert (orig_max_seqno
>= 1);
7537 /* When pipelining outer loops, create fences on the loop header,
7540 if (current_loop_nest
)
7541 init_fences (BB_END (EBB_FIRST_BB (0)));
7543 init_fences (bb_note (EBB_FIRST_BB (0)));
7546 sel_sched_region_2 (orig_max_seqno
);
7548 gcc_assert (fences
== NULL
);
7554 struct flist_tail_def _new_fences
;
7555 flist_tail_t new_fences
= &_new_fences
;
7558 pipelining_p
= false;
7559 max_ws
= MIN (max_ws
, issue_rate
* 3 / 2);
7560 bookkeeping_p
= false;
7561 enable_schedule_as_rhs_p
= false;
7563 /* Schedule newly created code, that has not been scheduled yet. */
7570 for (i
= 0; i
< current_nr_blocks
; i
++)
7572 basic_block bb
= EBB_FIRST_BB (i
);
7574 if (bitmap_bit_p (blocks_to_reschedule
, bb
->index
))
7576 if (! bb_ends_ebb_p (bb
))
7577 bitmap_set_bit (blocks_to_reschedule
, bb_next_bb (bb
)->index
);
7578 if (sel_bb_empty_p (bb
))
7580 bitmap_clear_bit (blocks_to_reschedule
, bb
->index
);
7583 clear_outdated_rtx_info (bb
);
7584 if (sel_insn_is_speculation_check (BB_END (bb
))
7585 && JUMP_P (BB_END (bb
)))
7586 bitmap_set_bit (blocks_to_reschedule
,
7587 BRANCH_EDGE (bb
)->dest
->index
);
7589 else if (! sel_bb_empty_p (bb
)
7590 && INSN_SCHED_TIMES (sel_bb_head (bb
)) <= 0)
7591 bitmap_set_bit (blocks_to_reschedule
, bb
->index
);
7594 for (i
= 0; i
< current_nr_blocks
; i
++)
7596 bb
= EBB_FIRST_BB (i
);
7598 /* While pipelining outer loops, skip bundling for loop
7599 preheaders. Those will be rescheduled in the outer
7601 if (sel_is_loop_preheader_p (bb
))
7603 clear_outdated_rtx_info (bb
);
7607 if (bitmap_bit_p (blocks_to_reschedule
, bb
->index
))
7609 flist_tail_init (new_fences
);
7611 orig_max_seqno
= init_seqno (blocks_to_reschedule
, bb
);
7613 /* Mark BB as head of the new ebb. */
7614 bitmap_set_bit (forced_ebb_heads
, bb
->index
);
7616 gcc_assert (fences
== NULL
);
7618 init_fences (bb_note (bb
));
7620 sel_sched_region_2 (orig_max_seqno
);
7630 /* Schedule the RGN region. */
7632 sel_sched_region (int rgn
)
7635 bool reset_sched_cycles_p
;
7637 if (sel_region_init (rgn
))
7640 if (sched_verbose
>= 1)
7641 sel_print ("Scheduling region %d\n", rgn
);
7643 schedule_p
= (!sched_is_disabled_for_current_region_p ()
7644 && dbg_cnt (sel_sched_region_cnt
));
7645 reset_sched_cycles_p
= pipelining_p
;
7647 sel_sched_region_1 ();
7649 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7650 reset_sched_cycles_p
= true;
7652 sel_region_finish (reset_sched_cycles_p
);
7655 /* Perform global init for the scheduler. */
7657 sel_global_init (void)
7659 calculate_dominance_info (CDI_DOMINATORS
);
7660 alloc_sched_pools ();
7662 /* Setup the infos for sched_init. */
7663 sel_setup_sched_infos ();
7664 setup_sched_dump ();
7666 sched_rgn_init (false);
7670 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7672 can_issue_more
= issue_rate
;
7674 sched_extend_target ();
7675 sched_deps_init (true);
7676 setup_nop_and_exit_insns ();
7677 sel_extend_global_bb_info ();
7679 init_hard_regs_data ();
7682 /* Free the global data of the scheduler. */
7684 sel_global_finish (void)
7686 free_bb_note_pool ();
7688 sel_finish_global_bb_info ();
7690 free_regset_pool ();
7691 free_nop_and_exit_insns ();
7693 sched_rgn_finish ();
7694 sched_deps_finish ();
7698 sel_finish_pipelining ();
7700 free_sched_pools ();
7701 free_dominance_info (CDI_DOMINATORS
);
7704 /* Return true when we need to skip selective scheduling. Used for debugging. */
7706 maybe_skip_selective_scheduling (void)
7708 return ! dbg_cnt (sel_sched_cnt
);
7711 /* The entry point. */
7713 run_selective_scheduling (void)
7717 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
7722 for (rgn
= 0; rgn
< nr_regions
; rgn
++)
7723 sel_sched_region (rgn
);
7725 sel_global_finish ();