PR libgomp/25884
[official-gcc.git] / gcc / regclass.c
blob6839f67f0704acecd5f067cad89aa4fc866a0723
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 /* This file contains two passes of the compiler: reg_scan and reg_class.
25 It also defines some tables of information about the hardware registers
26 and a function init_reg_sets to initialize the tables. */
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "hard-reg-set.h"
33 #include "rtl.h"
34 #include "expr.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "basic-block.h"
38 #include "regs.h"
39 #include "function.h"
40 #include "insn-config.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "output.h"
46 #include "ggc.h"
47 #include "timevar.h"
48 #include "hashtab.h"
49 #include "target.h"
51 static void init_reg_sets_1 (void);
52 static void init_reg_autoinc (void);
54 /* If we have auto-increment or auto-decrement and we can have secondary
55 reloads, we are not allowed to use classes requiring secondary
56 reloads for pseudos auto-incremented since reload can't handle it. */
57 /* We leave it to target hooks to decide if we have secondary reloads, so
58 assume that we might have them. */
59 #if defined(AUTO_INC_DEC) /* */
60 #define FORBIDDEN_INC_DEC_CLASSES
61 #endif
63 /* Register tables used by many passes. */
65 /* Indexed by hard register number, contains 1 for registers
66 that are fixed use (stack pointer, pc, frame pointer, etc.).
67 These are the registers that cannot be used to allocate
68 a pseudo reg for general use. */
70 char fixed_regs[FIRST_PSEUDO_REGISTER];
72 /* Same info as a HARD_REG_SET. */
74 HARD_REG_SET fixed_reg_set;
76 /* Data for initializing the above. */
78 static const char initial_fixed_regs[] = FIXED_REGISTERS;
80 /* Indexed by hard register number, contains 1 for registers
81 that are fixed use or are clobbered by function calls.
82 These are the registers that cannot be used to allocate
83 a pseudo reg whose life crosses calls unless we are able
84 to save/restore them across the calls. */
86 char call_used_regs[FIRST_PSEUDO_REGISTER];
88 /* Same info as a HARD_REG_SET. */
90 HARD_REG_SET call_used_reg_set;
92 /* HARD_REG_SET of registers we want to avoid caller saving. */
93 HARD_REG_SET losing_caller_save_reg_set;
95 /* Data for initializing the above. */
97 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
99 /* This is much like call_used_regs, except it doesn't have to
100 be a superset of FIXED_REGISTERS. This vector indicates
101 what is really call clobbered, and is used when defining
102 regs_invalidated_by_call. */
104 #ifdef CALL_REALLY_USED_REGISTERS
105 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
106 #endif
108 #ifdef CALL_REALLY_USED_REGISTERS
109 #define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
110 #else
111 #define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
112 #endif
115 /* Indexed by hard register number, contains 1 for registers that are
116 fixed use or call used registers that cannot hold quantities across
117 calls even if we are willing to save and restore them. call fixed
118 registers are a subset of call used registers. */
120 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
122 /* The same info as a HARD_REG_SET. */
124 HARD_REG_SET call_fixed_reg_set;
126 /* Number of non-fixed registers. */
128 int n_non_fixed_regs;
130 /* Indexed by hard register number, contains 1 for registers
131 that are being used for global register decls.
132 These must be exempt from ordinary flow analysis
133 and are also considered fixed. */
135 char global_regs[FIRST_PSEUDO_REGISTER];
137 /* Contains 1 for registers that are set or clobbered by calls. */
138 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
139 for someone's bright idea to have call_used_regs strictly include
140 fixed_regs. Which leaves us guessing as to the set of fixed_regs
141 that are actually preserved. We know for sure that those associated
142 with the local stack frame are safe, but scant others. */
144 HARD_REG_SET regs_invalidated_by_call;
146 /* Table of register numbers in the order in which to try to use them. */
147 #ifdef REG_ALLOC_ORDER
148 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
150 /* The inverse of reg_alloc_order. */
151 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
152 #endif
154 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
156 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
158 /* The same information, but as an array of unsigned ints. We copy from
159 these unsigned ints to the table above. We do this so the tm.h files
160 do not have to be aware of the wordsize for machines with <= 64 regs.
161 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
163 #define N_REG_INTS \
164 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
166 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
167 = REG_CLASS_CONTENTS;
169 /* For each reg class, number of regs it contains. */
171 unsigned int reg_class_size[N_REG_CLASSES];
173 /* For each reg class, table listing all the containing classes. */
175 static enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
177 /* For each reg class, table listing all the classes contained in it. */
179 static enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
181 /* For each pair of reg classes,
182 a largest reg class contained in their union. */
184 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
186 /* For each pair of reg classes,
187 the smallest reg class containing their union. */
189 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
191 /* Array containing all of the register names. */
193 const char * reg_names[] = REGISTER_NAMES;
195 /* Array containing all of the register class names. */
197 const char * reg_class_names[] = REG_CLASS_NAMES;
199 /* For each hard register, the widest mode object that it can contain.
200 This will be a MODE_INT mode if the register can hold integers. Otherwise
201 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
202 register. */
204 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
206 /* 1 if there is a register of given mode. */
208 bool have_regs_of_mode [MAX_MACHINE_MODE];
210 /* 1 if class does contain register of given mode. */
212 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
214 /* Maximum cost of moving from a register in one class to a register in
215 another class. Based on REGISTER_MOVE_COST. */
217 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
219 /* Similar, but here we don't have to move if the first index is a subset
220 of the second so in that case the cost is zero. */
222 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
224 /* Similar, but here we don't have to move if the first index is a superset
225 of the second so in that case the cost is zero. */
227 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
229 #ifdef FORBIDDEN_INC_DEC_CLASSES
231 /* These are the classes that regs which are auto-incremented or decremented
232 cannot be put in. */
234 static int forbidden_inc_dec_class[N_REG_CLASSES];
236 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
237 context. */
239 static char *in_inc_dec;
241 #endif /* FORBIDDEN_INC_DEC_CLASSES */
243 /* Sample MEM values for use by memory_move_secondary_cost. */
245 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
247 /* Linked list of reg_info structures allocated for reg_n_info array.
248 Grouping all of the allocated structures together in one lump
249 means only one call to bzero to clear them, rather than n smaller
250 calls. */
251 struct reg_info_data {
252 struct reg_info_data *next; /* next set of reg_info structures */
253 size_t min_index; /* minimum index # */
254 size_t max_index; /* maximum index # */
255 char used_p; /* nonzero if this has been used previously */
256 reg_info data[1]; /* beginning of the reg_info data */
259 static struct reg_info_data *reg_info_head;
261 /* No more global register variables may be declared; true once
262 regclass has been initialized. */
264 static int no_global_reg_vars = 0;
266 /* Specify number of hard registers given machine mode occupy. */
267 unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
269 /* Function called only once to initialize the above data on reg usage.
270 Once this is done, various switches may override. */
272 void
273 init_reg_sets (void)
275 int i, j;
277 /* First copy the register information from the initial int form into
278 the regsets. */
280 for (i = 0; i < N_REG_CLASSES; i++)
282 CLEAR_HARD_REG_SET (reg_class_contents[i]);
284 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
285 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
286 if (int_reg_class_contents[i][j / 32]
287 & ((unsigned) 1 << (j % 32)))
288 SET_HARD_REG_BIT (reg_class_contents[i], j);
291 /* Sanity check: make sure the target macros FIXED_REGISTERS and
292 CALL_USED_REGISTERS had the right number of initializers. */
293 gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
294 gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
296 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
297 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
298 memset (global_regs, 0, sizeof global_regs);
300 #ifdef REG_ALLOC_ORDER
301 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
302 inv_reg_alloc_order[reg_alloc_order[i]] = i;
303 #endif
306 /* After switches have been processed, which perhaps alter
307 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
309 static void
310 init_reg_sets_1 (void)
312 unsigned int i, j;
313 unsigned int /* enum machine_mode */ m;
315 /* This macro allows the fixed or call-used registers
316 and the register classes to depend on target flags. */
318 #ifdef CONDITIONAL_REGISTER_USAGE
319 CONDITIONAL_REGISTER_USAGE;
320 #endif
322 /* Compute number of hard regs in each class. */
324 memset (reg_class_size, 0, sizeof reg_class_size);
325 for (i = 0; i < N_REG_CLASSES; i++)
326 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
327 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
328 reg_class_size[i]++;
330 /* Initialize the table of subunions.
331 reg_class_subunion[I][J] gets the largest-numbered reg-class
332 that is contained in the union of classes I and J. */
334 for (i = 0; i < N_REG_CLASSES; i++)
336 for (j = 0; j < N_REG_CLASSES; j++)
338 HARD_REG_SET c;
339 int k;
341 COPY_HARD_REG_SET (c, reg_class_contents[i]);
342 IOR_HARD_REG_SET (c, reg_class_contents[j]);
343 for (k = 0; k < N_REG_CLASSES; k++)
345 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
346 subclass1);
347 continue;
349 subclass1:
350 /* Keep the largest subclass. */ /* SPEE 900308 */
351 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
352 reg_class_contents[(int) reg_class_subunion[i][j]],
353 subclass2);
354 reg_class_subunion[i][j] = (enum reg_class) k;
355 subclass2:
361 /* Initialize the table of superunions.
362 reg_class_superunion[I][J] gets the smallest-numbered reg-class
363 containing the union of classes I and J. */
365 for (i = 0; i < N_REG_CLASSES; i++)
367 for (j = 0; j < N_REG_CLASSES; j++)
369 HARD_REG_SET c;
370 int k;
372 COPY_HARD_REG_SET (c, reg_class_contents[i]);
373 IOR_HARD_REG_SET (c, reg_class_contents[j]);
374 for (k = 0; k < N_REG_CLASSES; k++)
375 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
377 superclass:
378 reg_class_superunion[i][j] = (enum reg_class) k;
382 /* Initialize the tables of subclasses and superclasses of each reg class.
383 First clear the whole table, then add the elements as they are found. */
385 for (i = 0; i < N_REG_CLASSES; i++)
387 for (j = 0; j < N_REG_CLASSES; j++)
389 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
390 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
394 for (i = 0; i < N_REG_CLASSES; i++)
396 if (i == (int) NO_REGS)
397 continue;
399 for (j = i + 1; j < N_REG_CLASSES; j++)
401 enum reg_class *p;
403 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
404 subclass);
405 continue;
406 subclass:
407 /* Reg class I is a subclass of J.
408 Add J to the table of superclasses of I. */
409 p = &reg_class_superclasses[i][0];
410 while (*p != LIM_REG_CLASSES) p++;
411 *p = (enum reg_class) j;
412 /* Add I to the table of superclasses of J. */
413 p = &reg_class_subclasses[j][0];
414 while (*p != LIM_REG_CLASSES) p++;
415 *p = (enum reg_class) i;
419 /* Initialize "constant" tables. */
421 CLEAR_HARD_REG_SET (fixed_reg_set);
422 CLEAR_HARD_REG_SET (call_used_reg_set);
423 CLEAR_HARD_REG_SET (call_fixed_reg_set);
424 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
426 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
428 n_non_fixed_regs = 0;
430 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
432 /* call_used_regs must include fixed_regs. */
433 gcc_assert (!fixed_regs[i] || call_used_regs[i]);
434 #ifdef CALL_REALLY_USED_REGISTERS
435 /* call_used_regs must include call_really_used_regs. */
436 gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
437 #endif
439 if (fixed_regs[i])
440 SET_HARD_REG_BIT (fixed_reg_set, i);
441 else
442 n_non_fixed_regs++;
444 if (call_used_regs[i])
445 SET_HARD_REG_BIT (call_used_reg_set, i);
446 if (call_fixed_regs[i])
447 SET_HARD_REG_BIT (call_fixed_reg_set, i);
448 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
449 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
451 /* There are a couple of fixed registers that we know are safe to
452 exclude from being clobbered by calls:
454 The frame pointer is always preserved across calls. The arg pointer
455 is if it is fixed. The stack pointer usually is, unless
456 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
457 If we are generating PIC code, the PIC offset table register is
458 preserved across calls, though the target can override that. */
460 if (i == STACK_POINTER_REGNUM)
462 else if (global_regs[i])
463 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
464 else if (i == FRAME_POINTER_REGNUM)
466 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
467 else if (i == HARD_FRAME_POINTER_REGNUM)
469 #endif
470 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
471 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
473 #endif
474 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
475 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
477 #endif
478 else if (CALL_REALLY_USED_REGNO_P (i))
479 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
482 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
483 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
484 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
485 for (i = 0; i < N_REG_CLASSES; i++)
486 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
487 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
488 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
489 && HARD_REGNO_MODE_OK (j, m))
491 contains_reg_of_mode [i][m] = 1;
492 have_regs_of_mode [m] = 1;
493 break;
496 /* Initialize the move cost table. Find every subset of each class
497 and take the maximum cost of moving any subset to any other. */
499 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
500 if (have_regs_of_mode [m])
502 for (i = 0; i < N_REG_CLASSES; i++)
503 if (contains_reg_of_mode [i][m])
504 for (j = 0; j < N_REG_CLASSES; j++)
506 int cost;
507 enum reg_class *p1, *p2;
509 if (!contains_reg_of_mode [j][m])
511 move_cost[m][i][j] = 65536;
512 may_move_in_cost[m][i][j] = 65536;
513 may_move_out_cost[m][i][j] = 65536;
515 else
517 cost = REGISTER_MOVE_COST (m, i, j);
519 for (p2 = &reg_class_subclasses[j][0];
520 *p2 != LIM_REG_CLASSES;
521 p2++)
522 if (*p2 != i && contains_reg_of_mode [*p2][m])
523 cost = MAX (cost, move_cost [m][i][*p2]);
525 for (p1 = &reg_class_subclasses[i][0];
526 *p1 != LIM_REG_CLASSES;
527 p1++)
528 if (*p1 != j && contains_reg_of_mode [*p1][m])
529 cost = MAX (cost, move_cost [m][*p1][j]);
531 move_cost[m][i][j] = cost;
533 if (reg_class_subset_p (i, j))
534 may_move_in_cost[m][i][j] = 0;
535 else
536 may_move_in_cost[m][i][j] = cost;
538 if (reg_class_subset_p (j, i))
539 may_move_out_cost[m][i][j] = 0;
540 else
541 may_move_out_cost[m][i][j] = cost;
544 else
545 for (j = 0; j < N_REG_CLASSES; j++)
547 move_cost[m][i][j] = 65536;
548 may_move_in_cost[m][i][j] = 65536;
549 may_move_out_cost[m][i][j] = 65536;
554 /* Compute the table of register modes.
555 These values are used to record death information for individual registers
556 (as opposed to a multi-register mode). */
558 void
559 init_reg_modes_once (void)
561 int i, j;
563 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
564 for (j = 0; j < MAX_MACHINE_MODE; j++)
565 hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
567 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
569 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
571 /* If we couldn't find a valid mode, just use the previous mode.
572 ??? One situation in which we need to do this is on the mips where
573 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
574 to use DF mode for the even registers and VOIDmode for the odd
575 (for the cpu models where the odd ones are inaccessible). */
576 if (reg_raw_mode[i] == VOIDmode)
577 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
581 /* Finish initializing the register sets and
582 initialize the register modes. */
584 void
585 init_regs (void)
587 /* This finishes what was started by init_reg_sets, but couldn't be done
588 until after register usage was specified. */
589 init_reg_sets_1 ();
591 init_reg_autoinc ();
594 /* Initialize some fake stack-frame MEM references for use in
595 memory_move_secondary_cost. */
597 void
598 init_fake_stack_mems (void)
601 int i;
603 for (i = 0; i < MAX_MACHINE_MODE; i++)
604 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
609 /* Compute extra cost of moving registers to/from memory due to reloads.
610 Only needed if secondary reloads are required for memory moves. */
613 memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
615 enum reg_class altclass;
616 int partial_cost = 0;
617 /* We need a memory reference to feed to SECONDARY... macros. */
618 /* mem may be unused even if the SECONDARY_ macros are defined. */
619 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
622 altclass = secondary_reload_class (in ? 1 : 0, class, mode, mem);
624 if (altclass == NO_REGS)
625 return 0;
627 if (in)
628 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
629 else
630 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
632 if (class == altclass)
633 /* This isn't simply a copy-to-temporary situation. Can't guess
634 what it is, so MEMORY_MOVE_COST really ought not to be calling
635 here in that case.
637 I'm tempted to put in an assert here, but returning this will
638 probably only give poor estimates, which is what we would've
639 had before this code anyways. */
640 return partial_cost;
642 /* Check if the secondary reload register will also need a
643 secondary reload. */
644 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
647 /* Return a machine mode that is legitimate for hard reg REGNO and large
648 enough to save nregs. If we can't find one, return VOIDmode.
649 If CALL_SAVED is true, only consider modes that are call saved. */
651 enum machine_mode
652 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
653 unsigned int nregs, bool call_saved)
655 unsigned int /* enum machine_mode */ m;
656 enum machine_mode found_mode = VOIDmode, mode;
658 /* We first look for the largest integer mode that can be validly
659 held in REGNO. If none, we look for the largest floating-point mode.
660 If we still didn't find a valid mode, try CCmode. */
662 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
663 mode != VOIDmode;
664 mode = GET_MODE_WIDER_MODE (mode))
665 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
666 && HARD_REGNO_MODE_OK (regno, mode)
667 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
668 found_mode = mode;
670 if (found_mode != VOIDmode)
671 return found_mode;
673 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
674 mode != VOIDmode;
675 mode = GET_MODE_WIDER_MODE (mode))
676 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
677 && HARD_REGNO_MODE_OK (regno, mode)
678 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
679 found_mode = mode;
681 if (found_mode != VOIDmode)
682 return found_mode;
684 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
685 mode != VOIDmode;
686 mode = GET_MODE_WIDER_MODE (mode))
687 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
688 && HARD_REGNO_MODE_OK (regno, mode)
689 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
690 found_mode = mode;
692 if (found_mode != VOIDmode)
693 return found_mode;
695 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
696 mode != VOIDmode;
697 mode = GET_MODE_WIDER_MODE (mode))
698 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
699 && HARD_REGNO_MODE_OK (regno, mode)
700 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
701 found_mode = mode;
703 if (found_mode != VOIDmode)
704 return found_mode;
706 /* Iterate over all of the CCmodes. */
707 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
709 mode = (enum machine_mode) m;
710 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
711 && HARD_REGNO_MODE_OK (regno, mode)
712 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
713 return mode;
716 /* We can't find a mode valid for this register. */
717 return VOIDmode;
720 /* Specify the usage characteristics of the register named NAME.
721 It should be a fixed register if FIXED and a
722 call-used register if CALL_USED. */
724 void
725 fix_register (const char *name, int fixed, int call_used)
727 int i;
729 /* Decode the name and update the primary form of
730 the register info. */
732 if ((i = decode_reg_name (name)) >= 0)
734 if ((i == STACK_POINTER_REGNUM
735 #ifdef HARD_FRAME_POINTER_REGNUM
736 || i == HARD_FRAME_POINTER_REGNUM
737 #else
738 || i == FRAME_POINTER_REGNUM
739 #endif
741 && (fixed == 0 || call_used == 0))
743 static const char * const what_option[2][2] = {
744 { "call-saved", "call-used" },
745 { "no-such-option", "fixed" }};
747 error ("can't use '%s' as a %s register", name,
748 what_option[fixed][call_used]);
750 else
752 fixed_regs[i] = fixed;
753 call_used_regs[i] = call_used;
754 #ifdef CALL_REALLY_USED_REGISTERS
755 if (fixed == 0)
756 call_really_used_regs[i] = call_used;
757 #endif
760 else
762 warning (0, "unknown register name: %s", name);
766 /* Mark register number I as global. */
768 void
769 globalize_reg (int i)
771 if (fixed_regs[i] == 0 && no_global_reg_vars)
772 error ("global register variable follows a function definition");
774 if (global_regs[i])
776 warning (0, "register used for two global register variables");
777 return;
780 if (call_used_regs[i] && ! fixed_regs[i])
781 warning (0, "call-clobbered register used for global register variable");
783 global_regs[i] = 1;
785 /* If we're globalizing the frame pointer, we need to set the
786 appropriate regs_invalidated_by_call bit, even if it's already
787 set in fixed_regs. */
788 if (i != STACK_POINTER_REGNUM)
789 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
791 /* If already fixed, nothing else to do. */
792 if (fixed_regs[i])
793 return;
795 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
796 #ifdef CALL_REALLY_USED_REGISTERS
797 call_really_used_regs[i] = 1;
798 #endif
799 n_non_fixed_regs--;
801 SET_HARD_REG_BIT (fixed_reg_set, i);
802 SET_HARD_REG_BIT (call_used_reg_set, i);
803 SET_HARD_REG_BIT (call_fixed_reg_set, i);
806 /* Now the data and code for the `regclass' pass, which happens
807 just before local-alloc. */
809 /* The `costs' struct records the cost of using a hard register of each class
810 and of using memory for each pseudo. We use this data to set up
811 register class preferences. */
813 struct costs
815 int cost[N_REG_CLASSES];
816 int mem_cost;
819 /* Structure used to record preferences of given pseudo. */
820 struct reg_pref
822 /* (enum reg_class) prefclass is the preferred class. */
823 char prefclass;
825 /* altclass is a register class that we should use for allocating
826 pseudo if no register in the preferred class is available.
827 If no register in this class is available, memory is preferred.
829 It might appear to be more general to have a bitmask of classes here,
830 but since it is recommended that there be a class corresponding to the
831 union of most major pair of classes, that generality is not required. */
832 char altclass;
835 /* Record the cost of each class for each pseudo. */
837 static struct costs *costs;
839 /* Initialized once, and used to initialize cost values for each insn. */
841 static struct costs init_cost;
843 /* Record preferences of each pseudo.
844 This is available after `regclass' is run. */
846 static struct reg_pref *reg_pref;
848 /* Allocated buffers for reg_pref. */
850 static struct reg_pref *reg_pref_buffer;
852 /* Frequency of executions of current insn. */
854 static int frequency;
856 static rtx scan_one_insn (rtx, int);
857 static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
858 static void dump_regclass (FILE *);
859 static void record_reg_classes (int, int, rtx *, enum machine_mode *,
860 const char **, rtx, struct costs *,
861 struct reg_pref *);
862 static int copy_cost (rtx, enum machine_mode, enum reg_class, int,
863 secondary_reload_info *);
864 static void record_address_regs (rtx, enum reg_class, int);
865 #ifdef FORBIDDEN_INC_DEC_CLASSES
866 static int auto_inc_dec_reg_p (rtx, enum machine_mode);
867 #endif
868 static void reg_scan_mark_refs (rtx, rtx, int, unsigned int);
870 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
871 This function is sometimes called before the info has been computed.
872 When that happens, just return GENERAL_REGS, which is innocuous. */
874 enum reg_class
875 reg_preferred_class (int regno)
877 if (reg_pref == 0)
878 return GENERAL_REGS;
879 return (enum reg_class) reg_pref[regno].prefclass;
882 enum reg_class
883 reg_alternate_class (int regno)
885 if (reg_pref == 0)
886 return ALL_REGS;
888 return (enum reg_class) reg_pref[regno].altclass;
891 /* Initialize some global data for this pass. */
893 void
894 regclass_init (void)
896 int i;
898 init_cost.mem_cost = 10000;
899 for (i = 0; i < N_REG_CLASSES; i++)
900 init_cost.cost[i] = 10000;
902 /* This prevents dump_flow_info from losing if called
903 before regclass is run. */
904 reg_pref = NULL;
906 /* No more global register variables may be declared. */
907 no_global_reg_vars = 1;
910 /* Dump register costs. */
911 static void
912 dump_regclass (FILE *dump)
914 int i;
915 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
917 int /* enum reg_class */ class;
918 if (REG_N_REFS (i))
920 fprintf (dump, " Register %i costs:", i);
921 for (class = 0; class < (int) N_REG_CLASSES; class++)
922 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
923 #ifdef FORBIDDEN_INC_DEC_CLASSES
924 && (!in_inc_dec[i]
925 || !forbidden_inc_dec_class[(enum reg_class) class])
926 #endif
927 #ifdef CANNOT_CHANGE_MODE_CLASS
928 && ! invalid_mode_change_p (i, (enum reg_class) class,
929 PSEUDO_REGNO_MODE (i))
930 #endif
932 fprintf (dump, " %s:%i", reg_class_names[class],
933 costs[i].cost[(enum reg_class) class]);
934 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
940 /* Calculate the costs of insn operands. */
942 static void
943 record_operand_costs (rtx insn, struct costs *op_costs,
944 struct reg_pref *reg_pref)
946 const char *constraints[MAX_RECOG_OPERANDS];
947 enum machine_mode modes[MAX_RECOG_OPERANDS];
948 int i;
950 for (i = 0; i < recog_data.n_operands; i++)
952 constraints[i] = recog_data.constraints[i];
953 modes[i] = recog_data.operand_mode[i];
956 /* If we get here, we are set up to record the costs of all the
957 operands for this insn. Start by initializing the costs.
958 Then handle any address registers. Finally record the desired
959 classes for any pseudos, doing it twice if some pair of
960 operands are commutative. */
962 for (i = 0; i < recog_data.n_operands; i++)
964 op_costs[i] = init_cost;
966 if (GET_CODE (recog_data.operand[i]) == SUBREG)
967 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
969 if (MEM_P (recog_data.operand[i]))
970 record_address_regs (XEXP (recog_data.operand[i], 0),
971 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
972 else if (constraints[i][0] == 'p'
973 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
974 record_address_regs (recog_data.operand[i],
975 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
978 /* Check for commutative in a separate loop so everything will
979 have been initialized. We must do this even if one operand
980 is a constant--see addsi3 in m68k.md. */
982 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
983 if (constraints[i][0] == '%')
985 const char *xconstraints[MAX_RECOG_OPERANDS];
986 int j;
988 /* Handle commutative operands by swapping the constraints.
989 We assume the modes are the same. */
991 for (j = 0; j < recog_data.n_operands; j++)
992 xconstraints[j] = constraints[j];
994 xconstraints[i] = constraints[i+1];
995 xconstraints[i+1] = constraints[i];
996 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
997 recog_data.operand, modes,
998 xconstraints, insn, op_costs, reg_pref);
1001 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1002 recog_data.operand, modes,
1003 constraints, insn, op_costs, reg_pref);
1006 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1007 time it would save code to put a certain register in a certain class.
1008 PASS, when nonzero, inhibits some optimizations which need only be done
1009 once.
1010 Return the last insn processed, so that the scan can be continued from
1011 there. */
1013 static rtx
1014 scan_one_insn (rtx insn, int pass)
1016 enum rtx_code pat_code;
1017 rtx set, note;
1018 int i, j;
1019 struct costs op_costs[MAX_RECOG_OPERANDS];
1021 if (!INSN_P (insn))
1022 return insn;
1024 pat_code = GET_CODE (PATTERN (insn));
1025 if (pat_code == USE
1026 || pat_code == CLOBBER
1027 || pat_code == ASM_INPUT
1028 || pat_code == ADDR_VEC
1029 || pat_code == ADDR_DIFF_VEC)
1030 return insn;
1032 set = single_set (insn);
1033 extract_insn (insn);
1035 /* If this insn loads a parameter from its stack slot, then
1036 it represents a savings, rather than a cost, if the
1037 parameter is stored in memory. Record this fact. */
1039 if (set != 0 && REG_P (SET_DEST (set))
1040 && MEM_P (SET_SRC (set))
1041 && (note = find_reg_note (insn, REG_EQUIV,
1042 NULL_RTX)) != 0
1043 && MEM_P (XEXP (note, 0)))
1045 costs[REGNO (SET_DEST (set))].mem_cost
1046 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1047 GENERAL_REGS, 1)
1048 * frequency);
1049 record_address_regs (XEXP (SET_SRC (set), 0),
1050 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1051 return insn;
1054 /* Improve handling of two-address insns such as
1055 (set X (ashift CONST Y)) where CONST must be made to
1056 match X. Change it into two insns: (set X CONST)
1057 (set X (ashift X Y)). If we left this for reloading, it
1058 would probably get three insns because X and Y might go
1059 in the same place. This prevents X and Y from receiving
1060 the same hard reg.
1062 We can only do this if the modes of operands 0 and 1
1063 (which might not be the same) are tieable and we only need
1064 do this during our first pass. */
1066 if (pass == 0 && optimize
1067 && recog_data.n_operands >= 3
1068 && recog_data.constraints[1][0] == '0'
1069 && recog_data.constraints[1][1] == 0
1070 && CONSTANT_P (recog_data.operand[1])
1071 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1072 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1073 && REG_P (recog_data.operand[0])
1074 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1075 recog_data.operand_mode[1]))
1077 rtx previnsn = prev_real_insn (insn);
1078 rtx dest
1079 = gen_lowpart (recog_data.operand_mode[1],
1080 recog_data.operand[0]);
1081 rtx newinsn
1082 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1084 /* If this insn was the start of a basic block,
1085 include the new insn in that block.
1086 We need not check for code_label here;
1087 while a basic block can start with a code_label,
1088 INSN could not be at the beginning of that block. */
1089 if (previnsn == 0 || JUMP_P (previnsn))
1091 basic_block b;
1092 FOR_EACH_BB (b)
1093 if (insn == BB_HEAD (b))
1094 BB_HEAD (b) = newinsn;
1097 /* This makes one more setting of new insns's dest. */
1098 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1099 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1100 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1102 *recog_data.operand_loc[1] = recog_data.operand[0];
1103 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1104 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1105 for (i = recog_data.n_dups - 1; i >= 0; i--)
1106 if (recog_data.dup_num[i] == 1)
1108 *recog_data.dup_loc[i] = recog_data.operand[0];
1109 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1110 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1113 return PREV_INSN (newinsn);
1116 record_operand_costs (insn, op_costs, reg_pref);
1118 /* Now add the cost for each operand to the total costs for
1119 its register. */
1121 for (i = 0; i < recog_data.n_operands; i++)
1122 if (REG_P (recog_data.operand[i])
1123 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1125 int regno = REGNO (recog_data.operand[i]);
1126 struct costs *p = &costs[regno], *q = &op_costs[i];
1128 p->mem_cost += q->mem_cost * frequency;
1129 for (j = 0; j < N_REG_CLASSES; j++)
1130 p->cost[j] += q->cost[j] * frequency;
1133 return insn;
1136 /* Initialize information about which register classes can be used for
1137 pseudos that are auto-incremented or auto-decremented. */
1139 static void
1140 init_reg_autoinc (void)
1142 #ifdef FORBIDDEN_INC_DEC_CLASSES
1143 int i;
1145 for (i = 0; i < N_REG_CLASSES; i++)
1147 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1148 enum machine_mode m;
1149 int j;
1151 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1152 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1154 REGNO (r) = j;
1156 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1157 m = (enum machine_mode) ((int) m + 1))
1158 if (HARD_REGNO_MODE_OK (j, m))
1160 enum reg_class base_class = MODE_BASE_REG_CLASS (VOIDmode);
1162 PUT_MODE (r, m);
1164 /* If a register is not directly suitable for an
1165 auto-increment or decrement addressing mode and
1166 requires secondary reloads, disallow its class from
1167 being used in such addresses. */
1169 if ((secondary_reload_class (1, base_class, m, r)
1170 || secondary_reload_class (1, base_class, m, r))
1171 && ! auto_inc_dec_reg_p (r, m))
1172 forbidden_inc_dec_class[i] = 1;
1176 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1179 /* This is a pass of the compiler that scans all instructions
1180 and calculates the preferred class for each pseudo-register.
1181 This information can be accessed later by calling `reg_preferred_class'.
1182 This pass comes just before local register allocation. */
1184 void
1185 regclass (rtx f, int nregs, FILE *dump)
1187 rtx insn;
1188 int i;
1189 int pass;
1191 init_recog ();
1193 costs = xmalloc (nregs * sizeof (struct costs));
1195 #ifdef FORBIDDEN_INC_DEC_CLASSES
1197 in_inc_dec = xmalloc (nregs);
1199 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1201 /* Normally we scan the insns once and determine the best class to use for
1202 each register. However, if -fexpensive_optimizations are on, we do so
1203 twice, the second time using the tentative best classes to guide the
1204 selection. */
1206 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1208 basic_block bb;
1210 if (dump)
1211 fprintf (dump, "\n\nPass %i\n\n",pass);
1212 /* Zero out our accumulation of the cost of each class for each reg. */
1214 memset (costs, 0, nregs * sizeof (struct costs));
1216 #ifdef FORBIDDEN_INC_DEC_CLASSES
1217 memset (in_inc_dec, 0, nregs);
1218 #endif
1220 /* Scan the instructions and record each time it would
1221 save code to put a certain register in a certain class. */
1223 if (!optimize)
1225 frequency = REG_FREQ_MAX;
1226 for (insn = f; insn; insn = NEXT_INSN (insn))
1227 insn = scan_one_insn (insn, pass);
1229 else
1230 FOR_EACH_BB (bb)
1232 /* Show that an insn inside a loop is likely to be executed three
1233 times more than insns outside a loop. This is much more
1234 aggressive than the assumptions made elsewhere and is being
1235 tried as an experiment. */
1236 frequency = REG_FREQ_FROM_BB (bb);
1237 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1239 insn = scan_one_insn (insn, pass);
1240 if (insn == BB_END (bb))
1241 break;
1245 /* Now for each register look at how desirable each class is
1246 and find which class is preferred. Store that in
1247 `prefclass'. Record in `altclass' the largest register
1248 class any of whose registers is better than memory. */
1250 if (pass == 0)
1251 reg_pref = reg_pref_buffer;
1253 if (dump)
1255 dump_regclass (dump);
1256 fprintf (dump,"\n");
1258 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1260 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1261 enum reg_class best = ALL_REGS, alt = NO_REGS;
1262 /* This is an enum reg_class, but we call it an int
1263 to save lots of casts. */
1264 int class;
1265 struct costs *p = &costs[i];
1267 /* In non-optimizing compilation REG_N_REFS is not initialized
1268 yet. */
1269 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1270 continue;
1272 for (class = (int) ALL_REGS - 1; class > 0; class--)
1274 /* Ignore classes that are too small for this operand or
1275 invalid for an operand that was auto-incremented. */
1276 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1277 #ifdef FORBIDDEN_INC_DEC_CLASSES
1278 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1279 #endif
1280 #ifdef CANNOT_CHANGE_MODE_CLASS
1281 || invalid_mode_change_p (i, (enum reg_class) class,
1282 PSEUDO_REGNO_MODE (i))
1283 #endif
1286 else if (p->cost[class] < best_cost)
1288 best_cost = p->cost[class];
1289 best = (enum reg_class) class;
1291 else if (p->cost[class] == best_cost)
1292 best = reg_class_subunion[(int) best][class];
1295 /* Record the alternate register class; i.e., a class for which
1296 every register in it is better than using memory. If adding a
1297 class would make a smaller class (i.e., no union of just those
1298 classes exists), skip that class. The major unions of classes
1299 should be provided as a register class. Don't do this if we
1300 will be doing it again later. */
1302 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1303 for (class = 0; class < N_REG_CLASSES; class++)
1304 if (p->cost[class] < p->mem_cost
1305 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1306 > reg_class_size[(int) alt])
1307 #ifdef FORBIDDEN_INC_DEC_CLASSES
1308 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1309 #endif
1310 #ifdef CANNOT_CHANGE_MODE_CLASS
1311 && ! invalid_mode_change_p (i, (enum reg_class) class,
1312 PSEUDO_REGNO_MODE (i))
1313 #endif
1315 alt = reg_class_subunion[(int) alt][class];
1317 /* If we don't add any classes, nothing to try. */
1318 if (alt == best)
1319 alt = NO_REGS;
1321 if (dump
1322 && (reg_pref[i].prefclass != (int) best
1323 || reg_pref[i].altclass != (int) alt))
1325 fprintf (dump, " Register %i", i);
1326 if (alt == ALL_REGS || best == ALL_REGS)
1327 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1328 else if (alt == NO_REGS)
1329 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1330 else
1331 fprintf (dump, " pref %s, else %s\n",
1332 reg_class_names[(int) best],
1333 reg_class_names[(int) alt]);
1336 /* We cast to (int) because (char) hits bugs in some compilers. */
1337 reg_pref[i].prefclass = (int) best;
1338 reg_pref[i].altclass = (int) alt;
1342 #ifdef FORBIDDEN_INC_DEC_CLASSES
1343 free (in_inc_dec);
1344 #endif
1345 free (costs);
1348 /* Record the cost of using memory or registers of various classes for
1349 the operands in INSN.
1351 N_ALTS is the number of alternatives.
1353 N_OPS is the number of operands.
1355 OPS is an array of the operands.
1357 MODES are the modes of the operands, in case any are VOIDmode.
1359 CONSTRAINTS are the constraints to use for the operands. This array
1360 is modified by this procedure.
1362 This procedure works alternative by alternative. For each alternative
1363 we assume that we will be able to allocate all pseudos to their ideal
1364 register class and calculate the cost of using that alternative. Then
1365 we compute for each operand that is a pseudo-register, the cost of
1366 having the pseudo allocated to each register class and using it in that
1367 alternative. To this cost is added the cost of the alternative.
1369 The cost of each class for this insn is its lowest cost among all the
1370 alternatives. */
1372 static void
1373 record_reg_classes (int n_alts, int n_ops, rtx *ops,
1374 enum machine_mode *modes, const char **constraints,
1375 rtx insn, struct costs *op_costs,
1376 struct reg_pref *reg_pref)
1378 int alt;
1379 int i, j;
1380 rtx set;
1382 /* Process each alternative, each time minimizing an operand's cost with
1383 the cost for each operand in that alternative. */
1385 for (alt = 0; alt < n_alts; alt++)
1387 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1388 int alt_fail = 0;
1389 int alt_cost = 0;
1390 enum reg_class classes[MAX_RECOG_OPERANDS];
1391 int allows_mem[MAX_RECOG_OPERANDS];
1392 int class;
1394 for (i = 0; i < n_ops; i++)
1396 const char *p = constraints[i];
1397 rtx op = ops[i];
1398 enum machine_mode mode = modes[i];
1399 int allows_addr = 0;
1400 int win = 0;
1401 unsigned char c;
1403 /* Initially show we know nothing about the register class. */
1404 classes[i] = NO_REGS;
1405 allows_mem[i] = 0;
1407 /* If this operand has no constraints at all, we can conclude
1408 nothing about it since anything is valid. */
1410 if (*p == 0)
1412 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1413 memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
1415 continue;
1418 /* If this alternative is only relevant when this operand
1419 matches a previous operand, we do different things depending
1420 on whether this operand is a pseudo-reg or not. We must process
1421 any modifiers for the operand before we can make this test. */
1423 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1424 p++;
1426 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1428 /* Copy class and whether memory is allowed from the matching
1429 alternative. Then perform any needed cost computations
1430 and/or adjustments. */
1431 j = p[0] - '0';
1432 classes[i] = classes[j];
1433 allows_mem[i] = allows_mem[j];
1435 if (!REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1437 /* If this matches the other operand, we have no added
1438 cost and we win. */
1439 if (rtx_equal_p (ops[j], op))
1440 win = 1;
1442 /* If we can put the other operand into a register, add to
1443 the cost of this alternative the cost to copy this
1444 operand to the register used for the other operand. */
1446 else if (classes[j] != NO_REGS)
1448 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
1449 win = 1;
1452 else if (!REG_P (ops[j])
1453 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1455 /* This op is a pseudo but the one it matches is not. */
1457 /* If we can't put the other operand into a register, this
1458 alternative can't be used. */
1460 if (classes[j] == NO_REGS)
1461 alt_fail = 1;
1463 /* Otherwise, add to the cost of this alternative the cost
1464 to copy the other operand to the register used for this
1465 operand. */
1467 else
1468 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
1470 else
1472 /* The costs of this operand are not the same as the other
1473 operand since move costs are not symmetric. Moreover,
1474 if we cannot tie them, this alternative needs to do a
1475 copy, which is one instruction. */
1477 struct costs *pp = &this_op_costs[i];
1479 for (class = 0; class < N_REG_CLASSES; class++)
1480 pp->cost[class]
1481 = ((recog_data.operand_type[i] != OP_OUT
1482 ? may_move_in_cost[mode][class][(int) classes[i]]
1483 : 0)
1484 + (recog_data.operand_type[i] != OP_IN
1485 ? may_move_out_cost[mode][(int) classes[i]][class]
1486 : 0));
1488 /* If the alternative actually allows memory, make things
1489 a bit cheaper since we won't need an extra insn to
1490 load it. */
1492 pp->mem_cost
1493 = ((recog_data.operand_type[i] != OP_IN
1494 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1495 : 0)
1496 + (recog_data.operand_type[i] != OP_OUT
1497 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1498 : 0) - allows_mem[i]);
1500 /* If we have assigned a class to this register in our
1501 first pass, add a cost to this alternative corresponding
1502 to what we would add if this register were not in the
1503 appropriate class. */
1505 if (reg_pref)
1506 alt_cost
1507 += (may_move_in_cost[mode]
1508 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1509 [(int) classes[i]]);
1511 if (REGNO (ops[i]) != REGNO (ops[j])
1512 && ! find_reg_note (insn, REG_DEAD, op))
1513 alt_cost += 2;
1515 /* This is in place of ordinary cost computation
1516 for this operand, so skip to the end of the
1517 alternative (should be just one character). */
1518 while (*p && *p++ != ',')
1521 constraints[i] = p;
1522 continue;
1526 /* Scan all the constraint letters. See if the operand matches
1527 any of the constraints. Collect the valid register classes
1528 and see if this operand accepts memory. */
1530 while ((c = *p))
1532 switch (c)
1534 case ',':
1535 break;
1536 case '*':
1537 /* Ignore the next letter for this pass. */
1538 c = *++p;
1539 break;
1541 case '?':
1542 alt_cost += 2;
1543 case '!': case '#': case '&':
1544 case '0': case '1': case '2': case '3': case '4':
1545 case '5': case '6': case '7': case '8': case '9':
1546 break;
1548 case 'p':
1549 allows_addr = 1;
1550 win = address_operand (op, GET_MODE (op));
1551 /* We know this operand is an address, so we want it to be
1552 allocated to a register that can be the base of an
1553 address, i.e. BASE_REG_CLASS. */
1554 classes[i]
1555 = reg_class_subunion[(int) classes[i]]
1556 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1557 break;
1559 case 'm': case 'o': case 'V':
1560 /* It doesn't seem worth distinguishing between offsettable
1561 and non-offsettable addresses here. */
1562 allows_mem[i] = 1;
1563 if (MEM_P (op))
1564 win = 1;
1565 break;
1567 case '<':
1568 if (MEM_P (op)
1569 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1570 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1571 win = 1;
1572 break;
1574 case '>':
1575 if (MEM_P (op)
1576 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1577 || GET_CODE (XEXP (op, 0)) == POST_INC))
1578 win = 1;
1579 break;
1581 case 'E':
1582 case 'F':
1583 if (GET_CODE (op) == CONST_DOUBLE
1584 || (GET_CODE (op) == CONST_VECTOR
1585 && (GET_MODE_CLASS (GET_MODE (op))
1586 == MODE_VECTOR_FLOAT)))
1587 win = 1;
1588 break;
1590 case 'G':
1591 case 'H':
1592 if (GET_CODE (op) == CONST_DOUBLE
1593 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1594 win = 1;
1595 break;
1597 case 's':
1598 if (GET_CODE (op) == CONST_INT
1599 || (GET_CODE (op) == CONST_DOUBLE
1600 && GET_MODE (op) == VOIDmode))
1601 break;
1602 case 'i':
1603 if (CONSTANT_P (op)
1604 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1605 win = 1;
1606 break;
1608 case 'n':
1609 if (GET_CODE (op) == CONST_INT
1610 || (GET_CODE (op) == CONST_DOUBLE
1611 && GET_MODE (op) == VOIDmode))
1612 win = 1;
1613 break;
1615 case 'I':
1616 case 'J':
1617 case 'K':
1618 case 'L':
1619 case 'M':
1620 case 'N':
1621 case 'O':
1622 case 'P':
1623 if (GET_CODE (op) == CONST_INT
1624 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1625 win = 1;
1626 break;
1628 case 'X':
1629 win = 1;
1630 break;
1632 case 'g':
1633 if (MEM_P (op)
1634 || (CONSTANT_P (op)
1635 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
1636 win = 1;
1637 allows_mem[i] = 1;
1638 case 'r':
1639 classes[i]
1640 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1641 break;
1643 default:
1644 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1645 classes[i]
1646 = reg_class_subunion[(int) classes[i]]
1647 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1648 #ifdef EXTRA_CONSTRAINT_STR
1649 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1650 win = 1;
1652 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1654 /* Every MEM can be reloaded to fit. */
1655 allows_mem[i] = 1;
1656 if (MEM_P (op))
1657 win = 1;
1659 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1661 /* Every address can be reloaded to fit. */
1662 allows_addr = 1;
1663 if (address_operand (op, GET_MODE (op)))
1664 win = 1;
1665 /* We know this operand is an address, so we want it to
1666 be allocated to a register that can be the base of an
1667 address, i.e. BASE_REG_CLASS. */
1668 classes[i]
1669 = reg_class_subunion[(int) classes[i]]
1670 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1672 #endif
1673 break;
1675 p += CONSTRAINT_LEN (c, p);
1676 if (c == ',')
1677 break;
1680 constraints[i] = p;
1682 /* How we account for this operand now depends on whether it is a
1683 pseudo register or not. If it is, we first check if any
1684 register classes are valid. If not, we ignore this alternative,
1685 since we want to assume that all pseudos get allocated for
1686 register preferencing. If some register class is valid, compute
1687 the costs of moving the pseudo into that class. */
1689 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1691 if (classes[i] == NO_REGS)
1693 /* We must always fail if the operand is a REG, but
1694 we did not find a suitable class.
1696 Otherwise we may perform an uninitialized read
1697 from this_op_costs after the `continue' statement
1698 below. */
1699 alt_fail = 1;
1701 else
1703 struct costs *pp = &this_op_costs[i];
1705 for (class = 0; class < N_REG_CLASSES; class++)
1706 pp->cost[class]
1707 = ((recog_data.operand_type[i] != OP_OUT
1708 ? may_move_in_cost[mode][class][(int) classes[i]]
1709 : 0)
1710 + (recog_data.operand_type[i] != OP_IN
1711 ? may_move_out_cost[mode][(int) classes[i]][class]
1712 : 0));
1714 /* If the alternative actually allows memory, make things
1715 a bit cheaper since we won't need an extra insn to
1716 load it. */
1718 pp->mem_cost
1719 = ((recog_data.operand_type[i] != OP_IN
1720 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1721 : 0)
1722 + (recog_data.operand_type[i] != OP_OUT
1723 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1724 : 0) - allows_mem[i]);
1726 /* If we have assigned a class to this register in our
1727 first pass, add a cost to this alternative corresponding
1728 to what we would add if this register were not in the
1729 appropriate class. */
1731 if (reg_pref)
1732 alt_cost
1733 += (may_move_in_cost[mode]
1734 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1735 [(int) classes[i]]);
1739 /* Otherwise, if this alternative wins, either because we
1740 have already determined that or if we have a hard register of
1741 the proper class, there is no cost for this alternative. */
1743 else if (win
1744 || (REG_P (op)
1745 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1748 /* If registers are valid, the cost of this alternative includes
1749 copying the object to and/or from a register. */
1751 else if (classes[i] != NO_REGS)
1753 if (recog_data.operand_type[i] != OP_OUT)
1754 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
1756 if (recog_data.operand_type[i] != OP_IN)
1757 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
1760 /* The only other way this alternative can be used is if this is a
1761 constant that could be placed into memory. */
1763 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1764 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1765 else
1766 alt_fail = 1;
1769 if (alt_fail)
1770 continue;
1772 /* Finally, update the costs with the information we've calculated
1773 about this alternative. */
1775 for (i = 0; i < n_ops; i++)
1776 if (REG_P (ops[i])
1777 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1779 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1780 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1782 pp->mem_cost = MIN (pp->mem_cost,
1783 (qq->mem_cost + alt_cost) * scale);
1785 for (class = 0; class < N_REG_CLASSES; class++)
1786 pp->cost[class] = MIN (pp->cost[class],
1787 (qq->cost[class] + alt_cost) * scale);
1791 /* If this insn is a single set copying operand 1 to operand 0
1792 and one operand is a pseudo with the other a hard reg or a pseudo
1793 that prefers a register that is in its own register class then
1794 we may want to adjust the cost of that register class to -1.
1796 Avoid the adjustment if the source does not die to avoid stressing of
1797 register allocator by preferrencing two colliding registers into single
1798 class.
1800 Also avoid the adjustment if a copy between registers of the class
1801 is expensive (ten times the cost of a default copy is considered
1802 arbitrarily expensive). This avoids losing when the preferred class
1803 is very expensive as the source of a copy instruction. */
1805 if ((set = single_set (insn)) != 0
1806 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1807 && REG_P (ops[0]) && REG_P (ops[1])
1808 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1809 for (i = 0; i <= 1; i++)
1810 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1812 unsigned int regno = REGNO (ops[!i]);
1813 enum machine_mode mode = GET_MODE (ops[!i]);
1814 int class;
1815 unsigned int nr;
1817 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1819 enum reg_class pref = reg_pref[regno].prefclass;
1821 if ((reg_class_size[(unsigned char) pref]
1822 == (unsigned) CLASS_MAX_NREGS (pref, mode))
1823 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1824 op_costs[i].cost[(unsigned char) pref] = -1;
1826 else if (regno < FIRST_PSEUDO_REGISTER)
1827 for (class = 0; class < N_REG_CLASSES; class++)
1828 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1829 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1831 if (reg_class_size[class] == 1)
1832 op_costs[i].cost[class] = -1;
1833 else
1835 for (nr = 0; nr < (unsigned) hard_regno_nregs[regno][mode]; nr++)
1837 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1838 regno + nr))
1839 break;
1842 if (nr == (unsigned) hard_regno_nregs[regno][mode])
1843 op_costs[i].cost[class] = -1;
1849 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1850 TO_P is zero) a register of class CLASS in mode MODE.
1852 X must not be a pseudo. */
1854 static int
1855 copy_cost (rtx x, enum machine_mode mode, enum reg_class class, int to_p,
1856 secondary_reload_info *prev_sri)
1858 enum reg_class secondary_class = NO_REGS;
1859 secondary_reload_info sri;
1861 /* If X is a SCRATCH, there is actually nothing to move since we are
1862 assuming optimal allocation. */
1864 if (GET_CODE (x) == SCRATCH)
1865 return 0;
1867 /* Get the class we will actually use for a reload. */
1868 class = PREFERRED_RELOAD_CLASS (x, class);
1870 /* If we need a secondary reload for an intermediate, the
1871 cost is that to load the input into the intermediate register, then
1872 to copy it. */
1874 sri.prev_sri = prev_sri;
1875 sri.extra_cost = 0;
1876 secondary_class = targetm.secondary_reload (to_p, x, class, mode, &sri);
1878 if (secondary_class != NO_REGS)
1879 return (move_cost[mode][(int) secondary_class][(int) class]
1880 + sri.extra_cost
1881 + copy_cost (x, mode, secondary_class, to_p, &sri));
1883 /* For memory, use the memory move cost, for (hard) registers, use the
1884 cost to move between the register classes, and use 2 for everything
1885 else (constants). */
1887 if (MEM_P (x) || class == NO_REGS)
1888 return sri.extra_cost + MEMORY_MOVE_COST (mode, class, to_p);
1890 else if (REG_P (x))
1891 return (sri.extra_cost
1892 + move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class]);
1894 else
1895 /* If this is a constant, we may eventually want to call rtx_cost here. */
1896 return sri.extra_cost + COSTS_N_INSNS (1);
1899 /* Record the pseudo registers we must reload into hard registers
1900 in a subexpression of a memory address, X.
1902 CLASS is the class that the register needs to be in and is either
1903 BASE_REG_CLASS or INDEX_REG_CLASS.
1905 SCALE is twice the amount to multiply the cost by (it is twice so we
1906 can represent half-cost adjustments). */
1908 static void
1909 record_address_regs (rtx x, enum reg_class class, int scale)
1911 enum rtx_code code = GET_CODE (x);
1913 switch (code)
1915 case CONST_INT:
1916 case CONST:
1917 case CC0:
1918 case PC:
1919 case SYMBOL_REF:
1920 case LABEL_REF:
1921 return;
1923 case PLUS:
1924 /* When we have an address that is a sum,
1925 we must determine whether registers are "base" or "index" regs.
1926 If there is a sum of two registers, we must choose one to be
1927 the "base". Luckily, we can use the REG_POINTER to make a good
1928 choice most of the time. We only need to do this on machines
1929 that can have two registers in an address and where the base
1930 and index register classes are different.
1932 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1933 that seems bogus since it should only be set when we are sure
1934 the register is being used as a pointer. */
1937 rtx arg0 = XEXP (x, 0);
1938 rtx arg1 = XEXP (x, 1);
1939 enum rtx_code code0 = GET_CODE (arg0);
1940 enum rtx_code code1 = GET_CODE (arg1);
1942 /* Look inside subregs. */
1943 if (code0 == SUBREG)
1944 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1945 if (code1 == SUBREG)
1946 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1948 /* If this machine only allows one register per address, it must
1949 be in the first operand. */
1951 if (MAX_REGS_PER_ADDRESS == 1)
1952 record_address_regs (arg0, class, scale);
1954 /* If index and base registers are the same on this machine, just
1955 record registers in any non-constant operands. We assume here,
1956 as well as in the tests below, that all addresses are in
1957 canonical form. */
1959 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
1961 record_address_regs (arg0, class, scale);
1962 if (! CONSTANT_P (arg1))
1963 record_address_regs (arg1, class, scale);
1966 /* If the second operand is a constant integer, it doesn't change
1967 what class the first operand must be. */
1969 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1970 record_address_regs (arg0, class, scale);
1972 /* If the second operand is a symbolic constant, the first operand
1973 must be an index register. */
1975 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1976 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1978 /* If both operands are registers but one is already a hard register
1979 of index or reg-base class, give the other the class that the
1980 hard register is not. */
1982 else if (code0 == REG && code1 == REG
1983 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1984 && (REG_MODE_OK_FOR_REG_BASE_P (arg0, VOIDmode)
1985 || REG_OK_FOR_INDEX_P (arg0)))
1986 record_address_regs (arg1,
1987 REG_MODE_OK_FOR_REG_BASE_P (arg0, VOIDmode)
1988 ? INDEX_REG_CLASS
1989 : MODE_BASE_REG_REG_CLASS (VOIDmode),
1990 scale);
1991 else if (code0 == REG && code1 == REG
1992 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1993 && (REG_MODE_OK_FOR_REG_BASE_P (arg1, VOIDmode)
1994 || REG_OK_FOR_INDEX_P (arg1)))
1995 record_address_regs (arg0,
1996 REG_MODE_OK_FOR_REG_BASE_P (arg1, VOIDmode)
1997 ? INDEX_REG_CLASS
1998 : MODE_BASE_REG_REG_CLASS (VOIDmode),
1999 scale);
2001 /* If one operand is known to be a pointer, it must be the base
2002 with the other operand the index. Likewise if the other operand
2003 is a MULT. */
2005 else if ((code0 == REG && REG_POINTER (arg0))
2006 || code1 == MULT)
2008 record_address_regs (arg0, MODE_BASE_REG_REG_CLASS (VOIDmode),
2009 scale);
2010 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2012 else if ((code1 == REG && REG_POINTER (arg1))
2013 || code0 == MULT)
2015 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2016 record_address_regs (arg1, MODE_BASE_REG_REG_CLASS (VOIDmode),
2017 scale);
2020 /* Otherwise, count equal chances that each might be a base
2021 or index register. This case should be rare. */
2023 else
2025 record_address_regs (arg0, MODE_BASE_REG_REG_CLASS (VOIDmode),
2026 scale / 2);
2027 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2028 record_address_regs (arg1, MODE_BASE_REG_REG_CLASS (VOIDmode),
2029 scale / 2);
2030 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2033 break;
2035 /* Double the importance of a pseudo register that is incremented
2036 or decremented, since it would take two extra insns
2037 if it ends up in the wrong place. */
2038 case POST_MODIFY:
2039 case PRE_MODIFY:
2040 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2041 2 * scale);
2042 if (REG_P (XEXP (XEXP (x, 1), 1)))
2043 record_address_regs (XEXP (XEXP (x, 1), 1),
2044 INDEX_REG_CLASS, 2 * scale);
2045 break;
2047 case POST_INC:
2048 case PRE_INC:
2049 case POST_DEC:
2050 case PRE_DEC:
2051 /* Double the importance of a pseudo register that is incremented
2052 or decremented, since it would take two extra insns
2053 if it ends up in the wrong place. If the operand is a pseudo,
2054 show it is being used in an INC_DEC context. */
2056 #ifdef FORBIDDEN_INC_DEC_CLASSES
2057 if (REG_P (XEXP (x, 0))
2058 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2059 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2060 #endif
2062 record_address_regs (XEXP (x, 0), class, 2 * scale);
2063 break;
2065 case REG:
2067 struct costs *pp = &costs[REGNO (x)];
2068 int i;
2070 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2072 for (i = 0; i < N_REG_CLASSES; i++)
2073 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2075 break;
2077 default:
2079 const char *fmt = GET_RTX_FORMAT (code);
2080 int i;
2081 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2082 if (fmt[i] == 'e')
2083 record_address_regs (XEXP (x, i), class, scale);
2088 #ifdef FORBIDDEN_INC_DEC_CLASSES
2090 /* Return 1 if REG is valid as an auto-increment memory reference
2091 to an object of MODE. */
2093 static int
2094 auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
2096 if (HAVE_POST_INCREMENT
2097 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2098 return 1;
2100 if (HAVE_POST_DECREMENT
2101 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2102 return 1;
2104 if (HAVE_PRE_INCREMENT
2105 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2106 return 1;
2108 if (HAVE_PRE_DECREMENT
2109 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2110 return 1;
2112 return 0;
2114 #endif
2116 static short *renumber;
2117 static size_t regno_allocated;
2118 static unsigned int reg_n_max;
2120 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2121 reg_scan and flow_analysis that are indexed by the register number. If
2122 NEW_P is nonzero, initialize all of the registers, otherwise only
2123 initialize the new registers allocated. The same table is kept from
2124 function to function, only reallocating it when we need more room. If
2125 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
2127 void
2128 allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
2130 size_t size_info;
2131 size_t size_renumber;
2132 size_t min = (new_p) ? 0 : reg_n_max;
2133 struct reg_info_data *reg_data;
2135 if (num_regs > regno_allocated)
2137 size_t old_allocated = regno_allocated;
2139 regno_allocated = num_regs + (num_regs / 20); /* Add some slop space. */
2140 size_renumber = regno_allocated * sizeof (short);
2142 if (!reg_n_info)
2144 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2145 renumber = xmalloc (size_renumber);
2146 reg_pref_buffer = xmalloc (regno_allocated
2147 * sizeof (struct reg_pref));
2149 else
2151 VARRAY_GROW (reg_n_info, regno_allocated);
2153 if (new_p) /* If we're zapping everything, no need to realloc. */
2155 free ((char *) renumber);
2156 free ((char *) reg_pref);
2157 renumber = xmalloc (size_renumber);
2158 reg_pref_buffer = xmalloc (regno_allocated
2159 * sizeof (struct reg_pref));
2162 else
2164 renumber = xrealloc (renumber, size_renumber);
2165 reg_pref_buffer = xrealloc (reg_pref_buffer,
2166 regno_allocated
2167 * sizeof (struct reg_pref));
2171 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2172 + sizeof (struct reg_info_data) - sizeof (reg_info);
2173 reg_data = xcalloc (size_info, 1);
2174 reg_data->min_index = old_allocated;
2175 reg_data->max_index = regno_allocated - 1;
2176 reg_data->next = reg_info_head;
2177 reg_info_head = reg_data;
2180 reg_n_max = num_regs;
2181 if (min < num_regs)
2183 /* Loop through each of the segments allocated for the actual
2184 reg_info pages, and set up the pointers, zero the pages, etc. */
2185 for (reg_data = reg_info_head;
2186 reg_data && reg_data->max_index >= min;
2187 reg_data = reg_data->next)
2189 size_t min_index = reg_data->min_index;
2190 size_t max_index = reg_data->max_index;
2191 size_t max = MIN (max_index, num_regs);
2192 size_t local_min = min - min_index;
2193 size_t i;
2195 if (reg_data->min_index > num_regs)
2196 continue;
2198 if (min < min_index)
2199 local_min = 0;
2200 if (!reg_data->used_p) /* page just allocated with calloc */
2201 reg_data->used_p = 1; /* no need to zero */
2202 else
2203 memset (&reg_data->data[local_min], 0,
2204 sizeof (reg_info) * (max - min_index - local_min + 1));
2206 for (i = min_index+local_min; i <= max; i++)
2208 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2209 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2210 renumber[i] = -1;
2211 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2212 reg_pref_buffer[i].altclass = (char) NO_REGS;
2217 /* If {pref,alt}class have already been allocated, update the pointers to
2218 the newly realloced ones. */
2219 if (reg_pref)
2220 reg_pref = reg_pref_buffer;
2222 if (renumber_p)
2223 reg_renumber = renumber;
2226 /* Free up the space allocated by allocate_reg_info. */
2227 void
2228 free_reg_info (void)
2230 if (reg_n_info)
2232 struct reg_info_data *reg_data;
2233 struct reg_info_data *reg_next;
2235 VARRAY_FREE (reg_n_info);
2236 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2238 reg_next = reg_data->next;
2239 free ((char *) reg_data);
2242 free (reg_pref_buffer);
2243 reg_pref_buffer = (struct reg_pref *) 0;
2244 reg_info_head = (struct reg_info_data *) 0;
2245 renumber = (short *) 0;
2247 regno_allocated = 0;
2248 reg_n_max = 0;
2251 /* This is the `regscan' pass of the compiler, run just before cse
2252 and again just before loop.
2254 It finds the first and last use of each pseudo-register
2255 and records them in the vectors regno_first_uid, regno_last_uid
2256 and counts the number of sets in the vector reg_n_sets.
2258 REPEAT is nonzero the second time this is called. */
2260 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2261 Always at least 3, since the combiner could put that many together
2262 and we want this to remain correct for all the remaining passes.
2263 This corresponds to the maximum number of times note_stores will call
2264 a function for any insn. */
2266 int max_parallel;
2268 /* Used as a temporary to record the largest number of registers in
2269 PARALLEL in a SET_DEST. This is added to max_parallel. */
2271 static int max_set_parallel;
2273 void
2274 reg_scan (rtx f, unsigned int nregs)
2276 rtx insn;
2278 timevar_push (TV_REG_SCAN);
2280 allocate_reg_info (nregs, TRUE, FALSE);
2281 max_parallel = 3;
2282 max_set_parallel = 0;
2284 for (insn = f; insn; insn = NEXT_INSN (insn))
2285 if (INSN_P (insn))
2287 rtx pat = PATTERN (insn);
2288 if (GET_CODE (pat) == PARALLEL
2289 && XVECLEN (pat, 0) > max_parallel)
2290 max_parallel = XVECLEN (pat, 0);
2291 reg_scan_mark_refs (pat, insn, 0, 0);
2293 if (REG_NOTES (insn))
2294 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2297 max_parallel += max_set_parallel;
2299 timevar_pop (TV_REG_SCAN);
2302 /* Update 'regscan' information by looking at the insns
2303 from FIRST to LAST. Some new REGs have been created,
2304 and any REG with number greater than OLD_MAX_REGNO is
2305 such a REG. We only update information for those. */
2307 void
2308 reg_scan_update (rtx first, rtx last, unsigned int old_max_regno)
2310 rtx insn;
2312 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2314 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2315 if (INSN_P (insn))
2317 rtx pat = PATTERN (insn);
2318 if (GET_CODE (pat) == PARALLEL
2319 && XVECLEN (pat, 0) > max_parallel)
2320 max_parallel = XVECLEN (pat, 0);
2321 reg_scan_mark_refs (pat, insn, 0, old_max_regno);
2323 if (REG_NOTES (insn))
2324 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2328 /* X is the expression to scan. INSN is the insn it appears in.
2329 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2330 We should only record information for REGs with numbers
2331 greater than or equal to MIN_REGNO. */
2333 static void
2334 reg_scan_mark_refs (rtx x, rtx insn, int note_flag, unsigned int min_regno)
2336 enum rtx_code code;
2337 rtx dest;
2338 rtx note;
2340 if (!x)
2341 return;
2342 code = GET_CODE (x);
2343 switch (code)
2345 case CONST:
2346 case CONST_INT:
2347 case CONST_DOUBLE:
2348 case CONST_VECTOR:
2349 case CC0:
2350 case PC:
2351 case SYMBOL_REF:
2352 case LABEL_REF:
2353 case ADDR_VEC:
2354 case ADDR_DIFF_VEC:
2355 return;
2357 case REG:
2359 unsigned int regno = REGNO (x);
2361 if (regno >= min_regno)
2363 if (!note_flag)
2364 REGNO_LAST_UID (regno) = INSN_UID (insn);
2365 if (REGNO_FIRST_UID (regno) == 0)
2366 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2367 /* If we are called by reg_scan_update() (indicated by min_regno
2368 being set), we also need to update the reference count. */
2369 if (min_regno)
2370 REG_N_REFS (regno)++;
2373 break;
2375 case EXPR_LIST:
2376 if (XEXP (x, 0))
2377 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2378 if (XEXP (x, 1))
2379 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2380 break;
2382 case INSN_LIST:
2383 if (XEXP (x, 1))
2384 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2385 break;
2387 case CLOBBER:
2389 rtx reg = XEXP (x, 0);
2390 if (REG_P (reg)
2391 && REGNO (reg) >= min_regno)
2393 REG_N_SETS (REGNO (reg))++;
2394 REG_N_REFS (REGNO (reg))++;
2396 else if (MEM_P (reg))
2397 reg_scan_mark_refs (XEXP (reg, 0), insn, note_flag, min_regno);
2399 break;
2401 case SET:
2402 /* Count a set of the destination if it is a register. */
2403 for (dest = SET_DEST (x);
2404 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2405 || GET_CODE (dest) == ZERO_EXTEND;
2406 dest = XEXP (dest, 0))
2409 /* For a PARALLEL, record the number of things (less the usual one for a
2410 SET) that are set. */
2411 if (GET_CODE (dest) == PARALLEL)
2412 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2414 if (REG_P (dest)
2415 && REGNO (dest) >= min_regno)
2417 REG_N_SETS (REGNO (dest))++;
2418 REG_N_REFS (REGNO (dest))++;
2421 /* If this is setting a pseudo from another pseudo or the sum of a
2422 pseudo and a constant integer and the other pseudo is known to be
2423 a pointer, set the destination to be a pointer as well.
2425 Likewise if it is setting the destination from an address or from a
2426 value equivalent to an address or to the sum of an address and
2427 something else.
2429 But don't do any of this if the pseudo corresponds to a user
2430 variable since it should have already been set as a pointer based
2431 on the type. */
2433 if (REG_P (SET_DEST (x))
2434 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2435 && REGNO (SET_DEST (x)) >= min_regno
2436 /* If the destination pseudo is set more than once, then other
2437 sets might not be to a pointer value (consider access to a
2438 union in two threads of control in the presence of global
2439 optimizations). So only set REG_POINTER on the destination
2440 pseudo if this is the only set of that pseudo. */
2441 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2442 && ! REG_USERVAR_P (SET_DEST (x))
2443 && ! REG_POINTER (SET_DEST (x))
2444 && ((REG_P (SET_SRC (x))
2445 && REG_POINTER (SET_SRC (x)))
2446 || ((GET_CODE (SET_SRC (x)) == PLUS
2447 || GET_CODE (SET_SRC (x)) == LO_SUM)
2448 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2449 && REG_P (XEXP (SET_SRC (x), 0))
2450 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2451 || GET_CODE (SET_SRC (x)) == CONST
2452 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2453 || GET_CODE (SET_SRC (x)) == LABEL_REF
2454 || (GET_CODE (SET_SRC (x)) == HIGH
2455 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2456 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2457 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2458 || ((GET_CODE (SET_SRC (x)) == PLUS
2459 || GET_CODE (SET_SRC (x)) == LO_SUM)
2460 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2461 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2462 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2463 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2464 && (GET_CODE (XEXP (note, 0)) == CONST
2465 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2466 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2467 REG_POINTER (SET_DEST (x)) = 1;
2469 /* If this is setting a register from a register or from a simple
2470 conversion of a register, propagate REG_EXPR. */
2471 if (REG_P (dest))
2473 rtx src = SET_SRC (x);
2475 while (GET_CODE (src) == SIGN_EXTEND
2476 || GET_CODE (src) == ZERO_EXTEND
2477 || GET_CODE (src) == TRUNCATE
2478 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2479 src = XEXP (src, 0);
2481 if (!REG_ATTRS (dest) && REG_P (src))
2482 REG_ATTRS (dest) = REG_ATTRS (src);
2483 if (!REG_ATTRS (dest) && MEM_P (src))
2484 set_reg_attrs_from_mem (dest, src);
2487 /* ... fall through ... */
2489 default:
2491 const char *fmt = GET_RTX_FORMAT (code);
2492 int i;
2493 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2495 if (fmt[i] == 'e')
2496 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2497 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2499 int j;
2500 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2501 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2508 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2509 is also in C2. */
2512 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
2514 if (c1 == c2) return 1;
2516 if (c2 == ALL_REGS)
2517 win:
2518 return 1;
2519 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2520 reg_class_contents[(int) c2],
2521 win);
2522 return 0;
2525 /* Return nonzero if there is a register that is in both C1 and C2. */
2528 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
2530 HARD_REG_SET c;
2532 if (c1 == c2) return 1;
2534 if (c1 == ALL_REGS || c2 == ALL_REGS)
2535 return 1;
2537 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2538 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2540 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2541 return 1;
2543 lose:
2544 return 0;
2547 #ifdef CANNOT_CHANGE_MODE_CLASS
2549 struct subregs_of_mode_node
2551 unsigned int block;
2552 unsigned char modes[MAX_MACHINE_MODE];
2555 static htab_t subregs_of_mode;
2557 static hashval_t
2558 som_hash (const void *x)
2560 const struct subregs_of_mode_node *a = x;
2561 return a->block;
2564 static int
2565 som_eq (const void *x, const void *y)
2567 const struct subregs_of_mode_node *a = x;
2568 const struct subregs_of_mode_node *b = y;
2569 return a->block == b->block;
2572 void
2573 init_subregs_of_mode (void)
2575 if (subregs_of_mode)
2576 htab_empty (subregs_of_mode);
2577 else
2578 subregs_of_mode = htab_create (100, som_hash, som_eq, free);
2581 void
2582 record_subregs_of_mode (rtx subreg)
2584 struct subregs_of_mode_node dummy, *node;
2585 enum machine_mode mode;
2586 unsigned int regno;
2587 void **slot;
2589 if (!REG_P (SUBREG_REG (subreg)))
2590 return;
2592 regno = REGNO (SUBREG_REG (subreg));
2593 mode = GET_MODE (subreg);
2595 if (regno < FIRST_PSEUDO_REGISTER)
2596 return;
2598 dummy.block = regno & -8;
2599 slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
2600 dummy.block, INSERT);
2601 node = *slot;
2602 if (node == NULL)
2604 node = xcalloc (1, sizeof (*node));
2605 node->block = regno & -8;
2606 *slot = node;
2609 node->modes[mode] |= 1 << (regno & 7);
2612 /* Set bits in *USED which correspond to registers which can't change
2613 their mode from FROM to any mode in which REGNO was encountered. */
2615 void
2616 cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2617 unsigned int regno)
2619 struct subregs_of_mode_node dummy, *node;
2620 enum machine_mode to;
2621 unsigned char mask;
2622 unsigned int i;
2624 dummy.block = regno & -8;
2625 node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2626 if (node == NULL)
2627 return;
2629 mask = 1 << (regno & 7);
2630 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2631 if (node->modes[to] & mask)
2632 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2633 if (!TEST_HARD_REG_BIT (*used, i)
2634 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2635 SET_HARD_REG_BIT (*used, i);
2638 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2639 mode. */
2641 bool
2642 invalid_mode_change_p (unsigned int regno, enum reg_class class,
2643 enum machine_mode from)
2645 struct subregs_of_mode_node dummy, *node;
2646 enum machine_mode to;
2647 unsigned char mask;
2649 dummy.block = regno & -8;
2650 node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2651 if (node == NULL)
2652 return false;
2654 mask = 1 << (regno & 7);
2655 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2656 if (node->modes[to] & mask)
2657 if (CANNOT_CHANGE_MODE_CLASS (from, to, class))
2658 return true;
2660 return false;
2662 #endif /* CANNOT_CHANGE_MODE_CLASS */
2664 #include "gt-regclass.h"