* tree-ssa-loop-ivopts.c (set_autoinc_for_original_candidates):
[official-gcc.git] / gcc / sel-sched-ir.h
blob486159dd262f98213829afb479af699d6867e0e4
1 /* Instruction scheduling pass. This file contains definitions used
2 internally in the scheduler.
3 Copyright (C) 2006-2013 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_SEL_SCHED_IR_H
22 #define GCC_SEL_SCHED_IR_H
24 /* For state_t. */
25 #include "insn-attr.h"
26 #include "regset.h"
27 #include "basic-block.h"
28 /* For reg_note. */
29 #include "rtl.h"
30 #include "ggc.h"
31 #include "bitmap.h"
32 #include "sched-int.h"
33 #include "cfgloop.h"
35 /* tc_t is a short for target context. This is a state of the target
36 backend. */
37 typedef void *tc_t;
39 /* List data types used for av sets, fences, paths, and boundaries. */
41 /* Forward declarations for types that are part of some list nodes. */
42 struct _list_node;
44 /* List backend. */
45 typedef struct _list_node *_list_t;
46 #define _LIST_NEXT(L) ((L)->next)
48 /* Instruction data that is part of vinsn type. */
49 struct idata_def;
50 typedef struct idata_def *idata_t;
52 /* A virtual instruction, i.e. an instruction as seen by the scheduler. */
53 struct vinsn_def;
54 typedef struct vinsn_def *vinsn_t;
56 /* RTX list.
57 This type is the backend for ilist. */
58 typedef _list_t _xlist_t;
59 #define _XLIST_X(L) ((L)->u.x)
60 #define _XLIST_NEXT(L) (_LIST_NEXT (L))
62 /* Instruction. */
63 typedef rtx insn_t;
65 /* List of insns. */
66 typedef _xlist_t ilist_t;
67 #define ILIST_INSN(L) (_XLIST_X (L))
68 #define ILIST_NEXT(L) (_XLIST_NEXT (L))
70 /* This lists possible transformations that done locally, i.e. in
71 moveup_expr. */
72 enum local_trans_type
74 TRANS_SUBSTITUTION,
75 TRANS_SPECULATION
78 /* This struct is used to record the history of expression's
79 transformations. */
80 struct expr_history_def_1
82 /* UID of the insn. */
83 unsigned uid;
85 /* How the expression looked like. */
86 vinsn_t old_expr_vinsn;
88 /* How the expression looks after the transformation. */
89 vinsn_t new_expr_vinsn;
91 /* And its speculative status. */
92 ds_t spec_ds;
94 /* Type of the transformation. */
95 enum local_trans_type type;
98 typedef struct expr_history_def_1 expr_history_def;
101 /* Expression information. */
102 struct _expr
104 /* Insn description. */
105 vinsn_t vinsn;
107 /* SPEC is the degree of speculativeness.
108 FIXME: now spec is increased when an rhs is moved through a
109 conditional, thus showing only control speculativeness. In the
110 future we'd like to count data spec separately to allow a better
111 control on scheduling. */
112 int spec;
114 /* Degree of speculativeness measured as probability of executing
115 instruction's original basic block given relative to
116 the current scheduling point. */
117 int usefulness;
119 /* A priority of this expression. */
120 int priority;
122 /* A priority adjustment of this expression. */
123 int priority_adj;
125 /* Number of times the insn was scheduled. */
126 int sched_times;
128 /* A basic block index this was originated from. Zero when there is
129 more than one originator. */
130 int orig_bb_index;
132 /* Instruction should be of SPEC_DONE_DS type in order to be moved to this
133 point. */
134 ds_t spec_done_ds;
136 /* SPEC_TO_CHECK_DS hold speculation types that should be checked
137 (used only during move_op ()). */
138 ds_t spec_to_check_ds;
140 /* Cycle on which original insn was scheduled. Zero when it has not yet
141 been scheduled or more than one originator. */
142 int orig_sched_cycle;
144 /* This vector contains the history of insn's transformations. */
145 vec<expr_history_def> history_of_changes;
147 /* True (1) when original target (register or memory) of this instruction
148 is available for scheduling, false otherwise. -1 means we're not sure;
149 please run find_used_regs to clarify. */
150 signed char target_available;
152 /* True when this expression needs a speculation check to be scheduled.
153 This is used during find_used_regs. */
154 BOOL_BITFIELD needs_spec_check_p : 1;
156 /* True when the expression was substituted. Used for statistical
157 purposes. */
158 BOOL_BITFIELD was_substituted : 1;
160 /* True when the expression was renamed. */
161 BOOL_BITFIELD was_renamed : 1;
163 /* True when expression can't be moved. */
164 BOOL_BITFIELD cant_move : 1;
167 typedef struct _expr expr_def;
168 typedef expr_def *expr_t;
170 #define EXPR_VINSN(EXPR) ((EXPR)->vinsn)
171 #define EXPR_INSN_RTX(EXPR) (VINSN_INSN_RTX (EXPR_VINSN (EXPR)))
172 #define EXPR_PATTERN(EXPR) (VINSN_PATTERN (EXPR_VINSN (EXPR)))
173 #define EXPR_LHS(EXPR) (VINSN_LHS (EXPR_VINSN (EXPR)))
174 #define EXPR_RHS(EXPR) (VINSN_RHS (EXPR_VINSN (EXPR)))
175 #define EXPR_TYPE(EXPR) (VINSN_TYPE (EXPR_VINSN (EXPR)))
176 #define EXPR_SEPARABLE_P(EXPR) (VINSN_SEPARABLE_P (EXPR_VINSN (EXPR)))
178 #define EXPR_SPEC(EXPR) ((EXPR)->spec)
179 #define EXPR_USEFULNESS(EXPR) ((EXPR)->usefulness)
180 #define EXPR_PRIORITY(EXPR) ((EXPR)->priority)
181 #define EXPR_PRIORITY_ADJ(EXPR) ((EXPR)->priority_adj)
182 #define EXPR_SCHED_TIMES(EXPR) ((EXPR)->sched_times)
183 #define EXPR_ORIG_BB_INDEX(EXPR) ((EXPR)->orig_bb_index)
184 #define EXPR_ORIG_SCHED_CYCLE(EXPR) ((EXPR)->orig_sched_cycle)
185 #define EXPR_SPEC_DONE_DS(EXPR) ((EXPR)->spec_done_ds)
186 #define EXPR_SPEC_TO_CHECK_DS(EXPR) ((EXPR)->spec_to_check_ds)
187 #define EXPR_HISTORY_OF_CHANGES(EXPR) ((EXPR)->history_of_changes)
188 #define EXPR_TARGET_AVAILABLE(EXPR) ((EXPR)->target_available)
189 #define EXPR_NEEDS_SPEC_CHECK_P(EXPR) ((EXPR)->needs_spec_check_p)
190 #define EXPR_WAS_SUBSTITUTED(EXPR) ((EXPR)->was_substituted)
191 #define EXPR_WAS_RENAMED(EXPR) ((EXPR)->was_renamed)
192 #define EXPR_CANT_MOVE(EXPR) ((EXPR)->cant_move)
194 /* Insn definition for list of original insns in find_used_regs. */
195 struct _def
197 insn_t orig_insn;
199 /* FIXME: Get rid of CROSSES_CALL in each def, since if we're moving up
200 rhs from two different places, but only one of the code motion paths
201 crosses a call, we can't use any of the call_used_regs, no matter which
202 path or whether all paths crosses a call. Thus we should move CROSSES_CALL
203 to static params. */
204 bool crosses_call;
206 typedef struct _def *def_t;
209 /* Availability sets are sets of expressions we're scheduling. */
210 typedef _list_t av_set_t;
211 #define _AV_SET_EXPR(L) (&(L)->u.expr)
212 #define _AV_SET_NEXT(L) (_LIST_NEXT (L))
215 /* Boundary of the current fence group. */
216 struct _bnd
218 /* The actual boundary instruction. */
219 insn_t to;
221 /* Its path to the fence. */
222 ilist_t ptr;
224 /* Availability set at the boundary. */
225 av_set_t av;
227 /* This set moved to the fence. */
228 av_set_t av1;
230 /* Deps context at this boundary. As long as we have one boundary per fence,
231 this is just a pointer to the same deps context as in the corresponding
232 fence. */
233 deps_t dc;
235 typedef struct _bnd *bnd_t;
236 #define BND_TO(B) ((B)->to)
238 /* PTR stands not for pointer as you might think, but as a Path To Root of the
239 current instruction group from boundary B. */
240 #define BND_PTR(B) ((B)->ptr)
241 #define BND_AV(B) ((B)->av)
242 #define BND_AV1(B) ((B)->av1)
243 #define BND_DC(B) ((B)->dc)
245 /* List of boundaries. */
246 typedef _list_t blist_t;
247 #define BLIST_BND(L) (&(L)->u.bnd)
248 #define BLIST_NEXT(L) (_LIST_NEXT (L))
251 /* Fence information. A fence represents current scheduling point and also
252 blocks code motion through it when pipelining. */
253 struct _fence
255 /* Insn before which we gather an instruction group.*/
256 insn_t insn;
258 /* Modeled state of the processor pipeline. */
259 state_t state;
261 /* Current cycle that is being scheduled on this fence. */
262 int cycle;
264 /* Number of insns that were scheduled on the current cycle.
265 This information has to be local to a fence. */
266 int cycle_issued_insns;
268 /* At the end of fill_insns () this field holds the list of the instructions
269 that are inner boundaries of the scheduled parallel group. */
270 ilist_t bnds;
272 /* Deps context at this fence. It is used to model dependencies at the
273 fence so that insn ticks can be properly evaluated. */
274 deps_t dc;
276 /* Target context at this fence. Used to save and load any local target
277 scheduling information when changing fences. */
278 tc_t tc;
280 /* A vector of insns that are scheduled but not yet completed. */
281 vec<rtx, va_gc> *executing_insns;
283 /* A vector indexed by UIDs that caches the earliest cycle on which
284 an insn can be scheduled on this fence. */
285 int *ready_ticks;
287 /* Its size. */
288 int ready_ticks_size;
290 /* Insn, which has been scheduled last on this fence. */
291 rtx last_scheduled_insn;
293 /* The last value of can_issue_more variable on this fence. */
294 int issue_more;
296 /* If non-NULL force the next scheduled insn to be SCHED_NEXT. */
297 rtx sched_next;
299 /* True if fill_insns processed this fence. */
300 BOOL_BITFIELD processed_p : 1;
302 /* True if fill_insns actually scheduled something on this fence. */
303 BOOL_BITFIELD scheduled_p : 1;
305 /* True when the next insn scheduled here would start a cycle. */
306 BOOL_BITFIELD starts_cycle_p : 1;
308 /* True when the next insn scheduled here would be scheduled after a stall. */
309 BOOL_BITFIELD after_stall_p : 1;
311 typedef struct _fence *fence_t;
313 #define FENCE_INSN(F) ((F)->insn)
314 #define FENCE_STATE(F) ((F)->state)
315 #define FENCE_BNDS(F) ((F)->bnds)
316 #define FENCE_PROCESSED_P(F) ((F)->processed_p)
317 #define FENCE_SCHEDULED_P(F) ((F)->scheduled_p)
318 #define FENCE_ISSUED_INSNS(F) ((F)->cycle_issued_insns)
319 #define FENCE_CYCLE(F) ((F)->cycle)
320 #define FENCE_STARTS_CYCLE_P(F) ((F)->starts_cycle_p)
321 #define FENCE_AFTER_STALL_P(F) ((F)->after_stall_p)
322 #define FENCE_DC(F) ((F)->dc)
323 #define FENCE_TC(F) ((F)->tc)
324 #define FENCE_LAST_SCHEDULED_INSN(F) ((F)->last_scheduled_insn)
325 #define FENCE_ISSUE_MORE(F) ((F)->issue_more)
326 #define FENCE_EXECUTING_INSNS(F) ((F)->executing_insns)
327 #define FENCE_READY_TICKS(F) ((F)->ready_ticks)
328 #define FENCE_READY_TICKS_SIZE(F) ((F)->ready_ticks_size)
329 #define FENCE_SCHED_NEXT(F) ((F)->sched_next)
331 /* List of fences. */
332 typedef _list_t flist_t;
333 #define FLIST_FENCE(L) (&(L)->u.fence)
334 #define FLIST_NEXT(L) (_LIST_NEXT (L))
336 /* List of fences with pointer to the tail node. */
337 struct flist_tail_def
339 flist_t head;
340 flist_t *tailp;
343 typedef struct flist_tail_def *flist_tail_t;
344 #define FLIST_TAIL_HEAD(L) ((L)->head)
345 #define FLIST_TAIL_TAILP(L) ((L)->tailp)
347 /* List node information. A list node can be any of the types above. */
348 struct _list_node
350 _list_t next;
352 union
354 rtx x;
355 struct _bnd bnd;
356 expr_def expr;
357 struct _fence fence;
358 struct _def def;
359 void *data;
360 } u;
364 /* _list_t functions.
365 All of _*list_* functions are used through accessor macros, thus
366 we can't move them in sel-sched-ir.c. */
367 extern alloc_pool sched_lists_pool;
369 static inline _list_t
370 _list_alloc (void)
372 return (_list_t) pool_alloc (sched_lists_pool);
375 static inline void
376 _list_add (_list_t *lp)
378 _list_t l = _list_alloc ();
380 _LIST_NEXT (l) = *lp;
381 *lp = l;
384 static inline void
385 _list_remove_nofree (_list_t *lp)
387 _list_t n = *lp;
389 *lp = _LIST_NEXT (n);
392 static inline void
393 _list_remove (_list_t *lp)
395 _list_t n = *lp;
397 *lp = _LIST_NEXT (n);
398 pool_free (sched_lists_pool, n);
401 static inline void
402 _list_clear (_list_t *l)
404 while (*l)
405 _list_remove (l);
409 /* List iterator backend. */
410 typedef struct
412 /* The list we're iterating. */
413 _list_t *lp;
415 /* True when this iterator supprts removing. */
416 bool can_remove_p;
418 /* True when we've actually removed something. */
419 bool removed_p;
420 } _list_iterator;
422 static inline void
423 _list_iter_start (_list_iterator *ip, _list_t *lp, bool can_remove_p)
425 ip->lp = lp;
426 ip->can_remove_p = can_remove_p;
427 ip->removed_p = false;
430 static inline void
431 _list_iter_next (_list_iterator *ip)
433 if (!ip->removed_p)
434 ip->lp = &_LIST_NEXT (*ip->lp);
435 else
436 ip->removed_p = false;
439 static inline void
440 _list_iter_remove (_list_iterator *ip)
442 gcc_assert (!ip->removed_p && ip->can_remove_p);
443 _list_remove (ip->lp);
444 ip->removed_p = true;
447 static inline void
448 _list_iter_remove_nofree (_list_iterator *ip)
450 gcc_assert (!ip->removed_p && ip->can_remove_p);
451 _list_remove_nofree (ip->lp);
452 ip->removed_p = true;
455 /* General macros to traverse a list. FOR_EACH_* interfaces are
456 implemented using these. */
457 #define _FOR_EACH(TYPE, ELEM, I, L) \
458 for (_list_iter_start (&(I), &(L), false); \
459 _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
460 _list_iter_next (&(I)))
462 #define _FOR_EACH_1(TYPE, ELEM, I, LP) \
463 for (_list_iter_start (&(I), (LP), true); \
464 _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
465 _list_iter_next (&(I)))
468 /* _xlist_t functions. */
470 static inline void
471 _xlist_add (_xlist_t *lp, rtx x)
473 _list_add (lp);
474 _XLIST_X (*lp) = x;
477 #define _xlist_remove(LP) (_list_remove (LP))
478 #define _xlist_clear(LP) (_list_clear (LP))
480 static inline bool
481 _xlist_is_in_p (_xlist_t l, rtx x)
483 while (l)
485 if (_XLIST_X (l) == x)
486 return true;
487 l = _XLIST_NEXT (l);
490 return false;
493 /* Used through _FOR_EACH. */
494 static inline bool
495 _list_iter_cond_x (_xlist_t l, rtx *xp)
497 if (l)
499 *xp = _XLIST_X (l);
500 return true;
503 return false;
506 #define _xlist_iter_remove(IP) (_list_iter_remove (IP))
508 typedef _list_iterator _xlist_iterator;
509 #define _FOR_EACH_X(X, I, L) _FOR_EACH (x, (X), (I), (L))
510 #define _FOR_EACH_X_1(X, I, LP) _FOR_EACH_1 (x, (X), (I), (LP))
513 /* ilist_t functions. Instruction lists are simply RTX lists. */
515 #define ilist_add(LP, INSN) (_xlist_add ((LP), (INSN)))
516 #define ilist_remove(LP) (_xlist_remove (LP))
517 #define ilist_clear(LP) (_xlist_clear (LP))
518 #define ilist_is_in_p(L, INSN) (_xlist_is_in_p ((L), (INSN)))
519 #define ilist_iter_remove(IP) (_xlist_iter_remove (IP))
521 typedef _xlist_iterator ilist_iterator;
522 #define FOR_EACH_INSN(INSN, I, L) _FOR_EACH_X (INSN, I, L)
523 #define FOR_EACH_INSN_1(INSN, I, LP) _FOR_EACH_X_1 (INSN, I, LP)
526 /* Av set iterators. */
527 typedef _list_iterator av_set_iterator;
528 #define FOR_EACH_EXPR(EXPR, I, AV) _FOR_EACH (expr, (EXPR), (I), (AV))
529 #define FOR_EACH_EXPR_1(EXPR, I, AV) _FOR_EACH_1 (expr, (EXPR), (I), (AV))
531 inline bool
532 _list_iter_cond_expr (av_set_t av, expr_t *exprp)
534 if (av)
536 *exprp = _AV_SET_EXPR (av);
537 return true;
540 return false;
544 /* Def list iterators. */
545 typedef _list_t def_list_t;
546 typedef _list_iterator def_list_iterator;
548 #define DEF_LIST_NEXT(L) (_LIST_NEXT (L))
549 #define DEF_LIST_DEF(L) (&(L)->u.def)
551 #define FOR_EACH_DEF(DEF, I, DEF_LIST) _FOR_EACH (def, (DEF), (I), (DEF_LIST))
553 static inline bool
554 _list_iter_cond_def (def_list_t def_list, def_t *def)
556 if (def_list)
558 *def = DEF_LIST_DEF (def_list);
559 return true;
562 return false;
566 /* InstructionData. Contains information about insn pattern. */
567 struct idata_def
569 /* Type of the insn.
570 o CALL_INSN - Call insn
571 o JUMP_INSN - Jump insn
572 o INSN - INSN that cannot be cloned
573 o USE - INSN that can be cloned
574 o SET - INSN that can be cloned and separable into lhs and rhs
575 o PC - simplejump. Insns that simply redirect control flow should not
576 have any dependencies. Sched-deps.c, though, might consider them as
577 producers or consumers of certain registers. To avoid that we handle
578 dependency for simple jumps ourselves. */
579 int type;
581 /* If insn is a SET, this is its left hand side. */
582 rtx lhs;
584 /* If insn is a SET, this is its right hand side. */
585 rtx rhs;
587 /* Registers that are set/used by this insn. This info is now gathered
588 via sched-deps.c. The downside of this is that we also use live info
589 from flow that is accumulated in the basic blocks. These two infos
590 can be slightly inconsistent, hence in the beginning we make a pass
591 through CFG and calculating the conservative solution for the info in
592 basic blocks. When this scheduler will be switched to use dataflow,
593 this can be unified as df gives us both per basic block and per
594 instruction info. Actually, we don't do that pass and just hope
595 for the best. */
596 regset reg_sets;
598 regset reg_clobbers;
600 regset reg_uses;
603 #define IDATA_TYPE(ID) ((ID)->type)
604 #define IDATA_LHS(ID) ((ID)->lhs)
605 #define IDATA_RHS(ID) ((ID)->rhs)
606 #define IDATA_REG_SETS(ID) ((ID)->reg_sets)
607 #define IDATA_REG_USES(ID) ((ID)->reg_uses)
608 #define IDATA_REG_CLOBBERS(ID) ((ID)->reg_clobbers)
610 /* Type to represent all needed info to emit an insn.
611 This is a virtual equivalent of the insn.
612 Every insn in the stream has an associated vinsn. This is used
613 to reduce memory consumption basing on the fact that many insns
614 don't change through the scheduler.
616 vinsn can be either normal or unique.
617 * Normal vinsn is the one, that can be cloned multiple times and typically
618 corresponds to normal instruction.
620 * Unique vinsn derivates from CALL, ASM, JUMP (for a while) and other
621 unusual stuff. Such a vinsn is described by its INSN field, which is a
622 reference to the original instruction. */
623 struct vinsn_def
625 /* Associated insn. */
626 rtx insn_rtx;
628 /* Its description. */
629 struct idata_def id;
631 /* Hash of vinsn. It is computed either from pattern or from rhs using
632 hash_rtx. It is not placed in ID for faster compares. */
633 unsigned hash;
635 /* Hash of the insn_rtx pattern. */
636 unsigned hash_rtx;
638 /* Smart pointer counter. */
639 int count;
641 /* Cached cost of the vinsn. To access it please use vinsn_cost (). */
642 int cost;
644 /* Mark insns that may trap so we don't move them through jumps. */
645 bool may_trap_p;
648 #define VINSN_INSN_RTX(VI) ((VI)->insn_rtx)
649 #define VINSN_PATTERN(VI) (PATTERN (VINSN_INSN_RTX (VI)))
651 #define VINSN_ID(VI) (&((VI)->id))
652 #define VINSN_HASH(VI) ((VI)->hash)
653 #define VINSN_HASH_RTX(VI) ((VI)->hash_rtx)
654 #define VINSN_TYPE(VI) (IDATA_TYPE (VINSN_ID (VI)))
655 #define VINSN_SEPARABLE_P(VI) (VINSN_TYPE (VI) == SET)
656 #define VINSN_CLONABLE_P(VI) (VINSN_SEPARABLE_P (VI) || VINSN_TYPE (VI) == USE)
657 #define VINSN_UNIQUE_P(VI) (!VINSN_CLONABLE_P (VI))
658 #define VINSN_LHS(VI) (IDATA_LHS (VINSN_ID (VI)))
659 #define VINSN_RHS(VI) (IDATA_RHS (VINSN_ID (VI)))
660 #define VINSN_REG_SETS(VI) (IDATA_REG_SETS (VINSN_ID (VI)))
661 #define VINSN_REG_USES(VI) (IDATA_REG_USES (VINSN_ID (VI)))
662 #define VINSN_REG_CLOBBERS(VI) (IDATA_REG_CLOBBERS (VINSN_ID (VI)))
663 #define VINSN_COUNT(VI) ((VI)->count)
664 #define VINSN_MAY_TRAP_P(VI) ((VI)->may_trap_p)
667 /* An entry of the hashtable describing transformations happened when
668 moving up through an insn. */
669 struct transformed_insns
671 /* Previous vinsn. Used to find the proper element. */
672 vinsn_t vinsn_old;
674 /* A new vinsn. */
675 vinsn_t vinsn_new;
677 /* Speculative status. */
678 ds_t ds;
680 /* Type of transformation happened. */
681 enum local_trans_type type;
683 /* Whether a conflict on the target register happened. */
684 BOOL_BITFIELD was_target_conflict : 1;
686 /* Whether a check was needed. */
687 BOOL_BITFIELD needs_check : 1;
690 /* Indexed by INSN_LUID, the collection of all data associated with
691 a single instruction that is in the stream. */
692 struct _sel_insn_data
694 /* The expression that contains vinsn for this insn and some
695 flow-sensitive data like priority. */
696 expr_def expr;
698 /* If (WS_LEVEL == GLOBAL_LEVEL) then AV is empty. */
699 int ws_level;
701 /* A number that helps in defining a traversing order for a region. */
702 int seqno;
704 /* A liveness data computed above this insn. */
705 regset live;
707 /* An INSN_UID bit is set when deps analysis result is already known. */
708 bitmap analyzed_deps;
710 /* An INSN_UID bit is set when a hard dep was found, not set when
711 no dependence is found. This is meaningful only when the analyzed_deps
712 bitmap has its bit set. */
713 bitmap found_deps;
715 /* An INSN_UID bit is set when this is a bookkeeping insn generated from
716 a parent with this uid. If a parent is a bookkeeping copy, all its
717 originators are transitively included in this set. */
718 bitmap originators;
720 /* A hashtable caching the result of insn transformations through this one. */
721 htab_t transformed_insns;
723 /* A context incapsulating this insn. */
724 struct deps_desc deps_context;
726 /* This field is initialized at the beginning of scheduling and is used
727 to handle sched group instructions. If it is non-null, then it points
728 to the instruction, which should be forced to schedule next. Such
729 instructions are unique. */
730 insn_t sched_next;
732 /* Cycle at which insn was scheduled. It is greater than zero if insn was
733 scheduled. This is used for bundling. */
734 int sched_cycle;
736 /* Cycle at which insn's data will be fully ready. */
737 int ready_cycle;
739 /* Speculations that are being checked by this insn. */
740 ds_t spec_checked_ds;
742 /* Whether the live set valid or not. */
743 BOOL_BITFIELD live_valid_p : 1;
744 /* Insn is an ASM. */
745 BOOL_BITFIELD asm_p : 1;
747 /* True when an insn is scheduled after we've determined that a stall is
748 required.
749 This is used when emulating the Haifa scheduler for bundling. */
750 BOOL_BITFIELD after_stall_p : 1;
753 typedef struct _sel_insn_data sel_insn_data_def;
754 typedef sel_insn_data_def *sel_insn_data_t;
756 extern vec<sel_insn_data_def> s_i_d;
758 /* Accessor macros for s_i_d. */
759 #define SID(INSN) (&s_i_d[INSN_LUID (INSN)])
760 #define SID_BY_UID(UID) (&s_i_d[LUID_BY_UID (UID)])
762 extern sel_insn_data_def insn_sid (insn_t);
764 #define INSN_ASM_P(INSN) (SID (INSN)->asm_p)
765 #define INSN_SCHED_NEXT(INSN) (SID (INSN)->sched_next)
766 #define INSN_ANALYZED_DEPS(INSN) (SID (INSN)->analyzed_deps)
767 #define INSN_FOUND_DEPS(INSN) (SID (INSN)->found_deps)
768 #define INSN_DEPS_CONTEXT(INSN) (SID (INSN)->deps_context)
769 #define INSN_ORIGINATORS(INSN) (SID (INSN)->originators)
770 #define INSN_ORIGINATORS_BY_UID(UID) (SID_BY_UID (UID)->originators)
771 #define INSN_TRANSFORMED_INSNS(INSN) (SID (INSN)->transformed_insns)
773 #define INSN_EXPR(INSN) (&SID (INSN)->expr)
774 #define INSN_LIVE(INSN) (SID (INSN)->live)
775 #define INSN_LIVE_VALID_P(INSN) (SID (INSN)->live_valid_p)
776 #define INSN_VINSN(INSN) (EXPR_VINSN (INSN_EXPR (INSN)))
777 #define INSN_TYPE(INSN) (VINSN_TYPE (INSN_VINSN (INSN)))
778 #define INSN_SIMPLEJUMP_P(INSN) (INSN_TYPE (INSN) == PC)
779 #define INSN_LHS(INSN) (VINSN_LHS (INSN_VINSN (INSN)))
780 #define INSN_RHS(INSN) (VINSN_RHS (INSN_VINSN (INSN)))
781 #define INSN_REG_SETS(INSN) (VINSN_REG_SETS (INSN_VINSN (INSN)))
782 #define INSN_REG_CLOBBERS(INSN) (VINSN_REG_CLOBBERS (INSN_VINSN (INSN)))
783 #define INSN_REG_USES(INSN) (VINSN_REG_USES (INSN_VINSN (INSN)))
784 #define INSN_SCHED_TIMES(INSN) (EXPR_SCHED_TIMES (INSN_EXPR (INSN)))
785 #define INSN_SEQNO(INSN) (SID (INSN)->seqno)
786 #define INSN_AFTER_STALL_P(INSN) (SID (INSN)->after_stall_p)
787 #define INSN_SCHED_CYCLE(INSN) (SID (INSN)->sched_cycle)
788 #define INSN_READY_CYCLE(INSN) (SID (INSN)->ready_cycle)
789 #define INSN_SPEC_CHECKED_DS(INSN) (SID (INSN)->spec_checked_ds)
791 /* A global level shows whether an insn is valid or not. */
792 extern int global_level;
794 #define INSN_WS_LEVEL(INSN) (SID (INSN)->ws_level)
796 extern av_set_t get_av_set (insn_t);
797 extern int get_av_level (insn_t);
799 #define AV_SET(INSN) (get_av_set (INSN))
800 #define AV_LEVEL(INSN) (get_av_level (INSN))
801 #define AV_SET_VALID_P(INSN) (AV_LEVEL (INSN) == global_level)
803 /* A list of fences currently in the works. */
804 extern flist_t fences;
806 /* A NOP pattern used as a placeholder for real insns. */
807 extern rtx nop_pattern;
809 /* An insn that 'contained' in EXIT block. */
810 extern rtx exit_insn;
812 /* Provide a separate luid for the insn. */
813 #define INSN_INIT_TODO_LUID (1)
815 /* Initialize s_s_i_d. */
816 #define INSN_INIT_TODO_SSID (2)
818 /* Initialize data for simplejump. */
819 #define INSN_INIT_TODO_SIMPLEJUMP (4)
821 /* Return true if INSN is a local NOP. The nop is local in the sense that
822 it was emitted by the scheduler as a temporary insn and will soon be
823 deleted. These nops are identified by their pattern. */
824 #define INSN_NOP_P(INSN) (PATTERN (INSN) == nop_pattern)
826 /* Return true if INSN is linked into instruction stream.
827 NB: It is impossible for INSN to have one field null and the other not
828 null: gcc_assert ((PREV_INSN (INSN) == NULL_RTX)
829 == (NEXT_INSN (INSN) == NULL_RTX)) is valid. */
830 #define INSN_IN_STREAM_P(INSN) (PREV_INSN (INSN) && NEXT_INSN (INSN))
832 /* Return true if INSN is in current fence. */
833 #define IN_CURRENT_FENCE_P(INSN) (flist_lookup (fences, INSN) != NULL)
835 /* Marks loop as being considered for pipelining. */
836 #define MARK_LOOP_FOR_PIPELINING(LOOP) ((LOOP)->aux = (void *)(size_t)(1))
837 #define LOOP_MARKED_FOR_PIPELINING_P(LOOP) ((size_t)((LOOP)->aux))
839 /* Saved loop preheader to transfer when scheduling the loop. */
840 #define LOOP_PREHEADER_BLOCKS(LOOP) ((size_t)((LOOP)->aux) == 1 \
841 ? NULL \
842 : ((vec<basic_block> *) (LOOP)->aux))
843 #define SET_LOOP_PREHEADER_BLOCKS(LOOP,BLOCKS) ((LOOP)->aux \
844 = (BLOCKS != NULL \
845 ? BLOCKS \
846 : (LOOP)->aux))
848 extern bitmap blocks_to_reschedule;
851 /* A variable to track which part of rtx we are scanning in
852 sched-deps.c: sched_analyze_insn (). */
853 enum deps_where_def
855 DEPS_IN_INSN,
856 DEPS_IN_LHS,
857 DEPS_IN_RHS,
858 DEPS_IN_NOWHERE
860 typedef enum deps_where_def deps_where_t;
863 /* Per basic block data for the whole CFG. */
864 typedef struct
866 /* For each bb header this field contains a set of live registers.
867 For all other insns this field has a NULL.
868 We also need to know LV sets for the instructions, that are immediately
869 after the border of the region. */
870 regset lv_set;
872 /* Status of LV_SET.
873 true - block has usable LV_SET.
874 false - block's LV_SET should be recomputed. */
875 bool lv_set_valid_p;
876 } sel_global_bb_info_def;
878 typedef sel_global_bb_info_def *sel_global_bb_info_t;
881 /* Per basic block data. This array is indexed by basic block index. */
882 extern vec<sel_global_bb_info_def> sel_global_bb_info;
884 extern void sel_extend_global_bb_info (void);
885 extern void sel_finish_global_bb_info (void);
887 /* Get data for BB. */
888 #define SEL_GLOBAL_BB_INFO(BB) \
889 (&sel_global_bb_info[(BB)->index])
891 /* Access macros. */
892 #define BB_LV_SET(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set)
893 #define BB_LV_SET_VALID_P(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set_valid_p)
895 /* Per basic block data for the region. */
896 typedef struct
898 /* This insn stream is constructed in such a way that it should be
899 traversed by PREV_INSN field - (*not* NEXT_INSN). */
900 rtx note_list;
902 /* Cached availability set at the beginning of a block.
903 See also AV_LEVEL () for conditions when this av_set can be used. */
904 av_set_t av_set;
906 /* If (AV_LEVEL == GLOBAL_LEVEL) then AV is valid. */
907 int av_level;
908 } sel_region_bb_info_def;
910 typedef sel_region_bb_info_def *sel_region_bb_info_t;
913 /* Per basic block data. This array is indexed by basic block index. */
914 extern vec<sel_region_bb_info_def> sel_region_bb_info;
916 /* Get data for BB. */
917 #define SEL_REGION_BB_INFO(BB) (&sel_region_bb_info[(BB)->index])
919 /* Get BB's note_list.
920 A note_list is a list of various notes that was scattered across BB
921 before scheduling, and will be appended at the beginning of BB after
922 scheduling is finished. */
923 #define BB_NOTE_LIST(BB) (SEL_REGION_BB_INFO (BB)->note_list)
925 #define BB_AV_SET(BB) (SEL_REGION_BB_INFO (BB)->av_set)
926 #define BB_AV_LEVEL(BB) (SEL_REGION_BB_INFO (BB)->av_level)
927 #define BB_AV_SET_VALID_P(BB) (BB_AV_LEVEL (BB) == global_level)
929 /* Used in bb_in_ebb_p. */
930 extern bitmap_head *forced_ebb_heads;
932 /* The loop nest being pipelined. */
933 extern struct loop *current_loop_nest;
935 /* Saves pipelined blocks. Bitmap is indexed by bb->index. */
936 extern sbitmap bbs_pipelined;
938 /* Various flags. */
939 extern bool enable_moveup_set_path_p;
940 extern bool pipelining_p;
941 extern bool bookkeeping_p;
942 extern int max_insns_to_rename;
943 extern bool preheader_removed;
945 /* Software lookahead window size.
946 According to the results in Nakatani and Ebcioglu [1993], window size of 16
947 is enough to extract most ILP in integer code. */
948 #define MAX_WS (PARAM_VALUE (PARAM_SELSCHED_MAX_LOOKAHEAD))
950 extern regset sel_all_regs;
953 /* Successor iterator backend. */
954 typedef struct
956 /* True if we're at BB end. */
957 bool bb_end;
959 /* An edge on which we're iterating. */
960 edge e1;
962 /* The previous edge saved after skipping empty blocks. */
963 edge e2;
965 /* Edge iterator used when there are successors in other basic blocks. */
966 edge_iterator ei;
968 /* Successor block we're traversing. */
969 basic_block bb;
971 /* Flags that are passed to the iterator. We return only successors
972 that comply to these flags. */
973 short flags;
975 /* When flags include SUCCS_ALL, this will be set to the exact type
976 of the successor we're traversing now. */
977 short current_flags;
979 /* If skip to loop exits, save here information about loop exits. */
980 int current_exit;
981 vec<edge> loop_exits;
982 } succ_iterator;
984 /* A structure returning all successor's information. */
985 struct succs_info
987 /* Flags that these succcessors were computed with. */
988 short flags;
990 /* Successors that correspond to the flags. */
991 insn_vec_t succs_ok;
993 /* Their probabilities. As of now, we don't need this for other
994 successors. */
995 vec<int> probs_ok;
997 /* Other successors. */
998 insn_vec_t succs_other;
1000 /* Probability of all successors. */
1001 int all_prob;
1003 /* The number of all successors. */
1004 int all_succs_n;
1006 /* The number of good successors. */
1007 int succs_ok_n;
1010 /* Some needed definitions. */
1011 extern basic_block after_recovery;
1013 extern insn_t sel_bb_head (basic_block);
1014 extern insn_t sel_bb_end (basic_block);
1015 extern bool sel_bb_empty_p (basic_block);
1016 extern bool in_current_region_p (basic_block);
1018 /* True when BB is a header of the inner loop. */
1019 static inline bool
1020 inner_loop_header_p (basic_block bb)
1022 struct loop *inner_loop;
1024 if (!current_loop_nest)
1025 return false;
1027 if (bb == EXIT_BLOCK_PTR)
1028 return false;
1030 inner_loop = bb->loop_father;
1031 if (inner_loop == current_loop_nest)
1032 return false;
1034 /* If successor belongs to another loop. */
1035 if (bb == inner_loop->header
1036 && flow_bb_inside_loop_p (current_loop_nest, bb))
1038 /* Could be '=' here because of wrong loop depths. */
1039 gcc_assert (loop_depth (inner_loop) >= loop_depth (current_loop_nest));
1040 return true;
1043 return false;
1046 /* Return exit edges of LOOP, filtering out edges with the same dest bb. */
1047 static inline vec<edge>
1048 get_loop_exit_edges_unique_dests (const struct loop *loop)
1050 vec<edge> edges = vNULL;
1051 struct loop_exit *exit;
1053 gcc_assert (loop->latch != EXIT_BLOCK_PTR
1054 && current_loops->state & LOOPS_HAVE_RECORDED_EXITS);
1056 for (exit = loop->exits->next; exit->e; exit = exit->next)
1058 int i;
1059 edge e;
1060 bool was_dest = false;
1062 for (i = 0; edges.iterate (i, &e); i++)
1063 if (e->dest == exit->e->dest)
1065 was_dest = true;
1066 break;
1069 if (!was_dest)
1070 edges.safe_push (exit->e);
1072 return edges;
1075 static bool
1076 sel_bb_empty_or_nop_p (basic_block bb)
1078 insn_t first = sel_bb_head (bb), last;
1080 if (first == NULL_RTX)
1081 return true;
1083 if (!INSN_NOP_P (first))
1084 return false;
1086 if (bb == EXIT_BLOCK_PTR)
1087 return false;
1089 last = sel_bb_end (bb);
1090 if (first != last)
1091 return false;
1093 return true;
1096 /* Collect all loop exits recursively, skipping empty BBs between them.
1097 E.g. if BB is a loop header which has several loop exits,
1098 traverse all of them and if any of them turns out to be another loop header
1099 (after skipping empty BBs), add its loop exits to the resulting vector
1100 as well. */
1101 static inline vec<edge>
1102 get_all_loop_exits (basic_block bb)
1104 vec<edge> exits = vNULL;
1106 /* If bb is empty, and we're skipping to loop exits, then
1107 consider bb as a possible gate to the inner loop now. */
1108 while (sel_bb_empty_or_nop_p (bb)
1109 && in_current_region_p (bb)
1110 && EDGE_COUNT (bb->succs) > 0)
1112 bb = single_succ (bb);
1114 /* This empty block could only lead outside the region. */
1115 gcc_assert (! in_current_region_p (bb));
1118 /* And now check whether we should skip over inner loop. */
1119 if (inner_loop_header_p (bb))
1121 struct loop *this_loop;
1122 struct loop *pred_loop = NULL;
1123 int i;
1124 edge e;
1126 for (this_loop = bb->loop_father;
1127 this_loop && this_loop != current_loop_nest;
1128 this_loop = loop_outer (this_loop))
1129 pred_loop = this_loop;
1131 this_loop = pred_loop;
1132 gcc_assert (this_loop != NULL);
1134 exits = get_loop_exit_edges_unique_dests (this_loop);
1136 /* Traverse all loop headers. */
1137 for (i = 0; exits.iterate (i, &e); i++)
1138 if (in_current_region_p (e->dest)
1139 || inner_loop_header_p (e->dest))
1141 vec<edge> next_exits = get_all_loop_exits (e->dest);
1143 if (next_exits.exists ())
1145 int j;
1146 edge ne;
1148 /* Add all loop exits for the current edge into the
1149 resulting vector. */
1150 for (j = 0; next_exits.iterate (j, &ne); j++)
1151 exits.safe_push (ne);
1153 /* Remove the original edge. */
1154 exits.ordered_remove (i);
1156 /* Decrease the loop counter so we won't skip anything. */
1157 i--;
1158 continue;
1163 return exits;
1166 /* Flags to pass to compute_succs_info and FOR_EACH_SUCC.
1167 Any successor will fall into exactly one category. */
1169 /* Include normal successors. */
1170 #define SUCCS_NORMAL (1)
1172 /* Include back-edge successors. */
1173 #define SUCCS_BACK (2)
1175 /* Include successors that are outside of the current region. */
1176 #define SUCCS_OUT (4)
1178 /* When pipelining of the outer loops is enabled, skip innermost loops
1179 to their exits. */
1180 #define SUCCS_SKIP_TO_LOOP_EXITS (8)
1182 /* Include all successors. */
1183 #define SUCCS_ALL (SUCCS_NORMAL | SUCCS_BACK | SUCCS_OUT)
1185 /* We need to return a succ_iterator to avoid 'unitialized' warning
1186 during bootstrap. */
1187 static inline succ_iterator
1188 _succ_iter_start (insn_t *succp, insn_t insn, int flags)
1190 succ_iterator i;
1192 basic_block bb = BLOCK_FOR_INSN (insn);
1194 gcc_assert (INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn));
1196 i.flags = flags;
1198 /* Avoid 'uninitialized' warning. */
1199 *succp = NULL;
1200 i.e1 = NULL;
1201 i.e2 = NULL;
1202 i.bb = bb;
1203 i.current_flags = 0;
1204 i.current_exit = -1;
1205 i.loop_exits.create (0);
1207 if (bb != EXIT_BLOCK_PTR && BB_END (bb) != insn)
1209 i.bb_end = false;
1211 /* Avoid 'uninitialized' warning. */
1212 i.ei.index = 0;
1213 i.ei.container = 0;
1215 else
1217 i.ei = ei_start (bb->succs);
1218 i.bb_end = true;
1221 return i;
1224 static inline bool
1225 _succ_iter_cond (succ_iterator *ip, rtx *succp, rtx insn,
1226 bool check (edge, succ_iterator *))
1228 if (!ip->bb_end)
1230 /* When we're in a middle of a basic block, return
1231 the next insn immediately, but only when SUCCS_NORMAL is set. */
1232 if (*succp != NULL || (ip->flags & SUCCS_NORMAL) == 0)
1233 return false;
1235 *succp = NEXT_INSN (insn);
1236 ip->current_flags = SUCCS_NORMAL;
1237 return true;
1239 else
1241 while (1)
1243 edge e_tmp = NULL;
1245 /* First, try loop exits, if we have them. */
1246 if (ip->loop_exits.exists ())
1250 ip->loop_exits.iterate (ip->current_exit, &e_tmp);
1251 ip->current_exit++;
1253 while (e_tmp && !check (e_tmp, ip));
1255 if (!e_tmp)
1256 ip->loop_exits.release ();
1259 /* If we have found a successor, then great. */
1260 if (e_tmp)
1262 ip->e1 = e_tmp;
1263 break;
1266 /* If not, then try the next edge. */
1267 while (ei_cond (ip->ei, &(ip->e1)))
1269 basic_block bb = ip->e1->dest;
1271 /* Consider bb as a possible loop header. */
1272 if ((ip->flags & SUCCS_SKIP_TO_LOOP_EXITS)
1273 && flag_sel_sched_pipelining_outer_loops
1274 && (!in_current_region_p (bb)
1275 || BLOCK_TO_BB (ip->bb->index)
1276 < BLOCK_TO_BB (bb->index)))
1278 /* Get all loop exits recursively. */
1279 ip->loop_exits = get_all_loop_exits (bb);
1281 if (ip->loop_exits.exists ())
1283 ip->current_exit = 0;
1284 /* Move the iterator now, because we won't do
1285 succ_iter_next until loop exits will end. */
1286 ei_next (&(ip->ei));
1287 break;
1291 /* bb is not a loop header, check as usual. */
1292 if (check (ip->e1, ip))
1293 break;
1295 ei_next (&(ip->ei));
1298 /* If loop_exits are non null, we have found an inner loop;
1299 do one more iteration to fetch an edge from these exits. */
1300 if (ip->loop_exits.exists ())
1301 continue;
1303 /* Otherwise, we've found an edge in a usual way. Break now. */
1304 break;
1307 if (ip->e1)
1309 basic_block bb = ip->e2->dest;
1311 if (bb == EXIT_BLOCK_PTR || bb == after_recovery)
1312 *succp = exit_insn;
1313 else
1315 *succp = sel_bb_head (bb);
1317 gcc_assert (ip->flags != SUCCS_NORMAL
1318 || *succp == NEXT_INSN (bb_note (bb)));
1319 gcc_assert (BLOCK_FOR_INSN (*succp) == bb);
1322 return true;
1324 else
1325 return false;
1329 static inline void
1330 _succ_iter_next (succ_iterator *ip)
1332 gcc_assert (!ip->e2 || ip->e1);
1334 if (ip->bb_end && ip->e1 && !ip->loop_exits.exists ())
1335 ei_next (&(ip->ei));
1338 /* Returns true when E1 is an eligible successor edge, possibly skipping
1339 empty blocks. When E2P is not null, the resulting edge is written there.
1340 FLAGS are used to specify whether back edges and out-of-region edges
1341 should be considered. */
1342 static inline bool
1343 _eligible_successor_edge_p (edge e1, succ_iterator *ip)
1345 edge e2 = e1;
1346 basic_block bb;
1347 int flags = ip->flags;
1348 bool src_outside_rgn = !in_current_region_p (e1->src);
1350 gcc_assert (flags != 0);
1352 if (src_outside_rgn)
1354 /* Any successor of the block that is outside current region is
1355 ineligible, except when we're skipping to loop exits. */
1356 gcc_assert (flags & (SUCCS_OUT | SUCCS_SKIP_TO_LOOP_EXITS));
1358 if (flags & SUCCS_OUT)
1359 return false;
1362 bb = e2->dest;
1364 /* Skip empty blocks, but be careful not to leave the region. */
1365 while (1)
1367 if (!sel_bb_empty_p (bb))
1369 edge ne;
1370 basic_block nbb;
1372 if (!sel_bb_empty_or_nop_p (bb))
1373 break;
1375 ne = EDGE_SUCC (bb, 0);
1376 nbb = ne->dest;
1378 if (!in_current_region_p (nbb)
1379 && !(flags & SUCCS_OUT))
1380 break;
1382 e2 = ne;
1383 bb = nbb;
1384 continue;
1387 if (!in_current_region_p (bb)
1388 && !(flags & SUCCS_OUT))
1389 return false;
1391 if (EDGE_COUNT (bb->succs) == 0)
1392 return false;
1394 e2 = EDGE_SUCC (bb, 0);
1395 bb = e2->dest;
1398 /* Save the second edge for later checks. */
1399 ip->e2 = e2;
1401 if (in_current_region_p (bb))
1403 /* BLOCK_TO_BB sets topological order of the region here.
1404 It is important to use real predecessor here, which is ip->bb,
1405 as we may well have e1->src outside current region,
1406 when skipping to loop exits. */
1407 bool succeeds_in_top_order = (BLOCK_TO_BB (ip->bb->index)
1408 < BLOCK_TO_BB (bb->index));
1410 /* This is true for the all cases except the last one. */
1411 ip->current_flags = SUCCS_NORMAL;
1413 /* We are advancing forward in the region, as usual. */
1414 if (succeeds_in_top_order)
1416 /* We are skipping to loop exits here. */
1417 gcc_assert (!src_outside_rgn
1418 || flag_sel_sched_pipelining_outer_loops);
1419 return !!(flags & SUCCS_NORMAL);
1422 /* This is a back edge. During pipelining we ignore back edges,
1423 but only when it leads to the same loop. It can lead to the header
1424 of the outer loop, which will also be the preheader of
1425 the current loop. */
1426 if (pipelining_p
1427 && e1->src->loop_father == bb->loop_father)
1428 return !!(flags & SUCCS_NORMAL);
1430 /* A back edge should be requested explicitly. */
1431 ip->current_flags = SUCCS_BACK;
1432 return !!(flags & SUCCS_BACK);
1435 ip->current_flags = SUCCS_OUT;
1436 return !!(flags & SUCCS_OUT);
1439 #define FOR_EACH_SUCC_1(SUCC, ITER, INSN, FLAGS) \
1440 for ((ITER) = _succ_iter_start (&(SUCC), (INSN), (FLAGS)); \
1441 _succ_iter_cond (&(ITER), &(SUCC), (INSN), _eligible_successor_edge_p); \
1442 _succ_iter_next (&(ITER)))
1444 #define FOR_EACH_SUCC(SUCC, ITER, INSN) \
1445 FOR_EACH_SUCC_1 (SUCC, ITER, INSN, SUCCS_NORMAL)
1447 /* Return the current edge along which a successor was built. */
1448 #define SUCC_ITER_EDGE(ITER) ((ITER)->e1)
1450 /* Return the next block of BB not running into inconsistencies. */
1451 static inline basic_block
1452 bb_next_bb (basic_block bb)
1454 switch (EDGE_COUNT (bb->succs))
1456 case 0:
1457 return bb->next_bb;
1459 case 1:
1460 return single_succ (bb);
1462 case 2:
1463 return FALLTHRU_EDGE (bb)->dest;
1465 default:
1466 return bb->next_bb;
1469 gcc_unreachable ();
1474 /* Functions that are used in sel-sched.c. */
1476 /* List functions. */
1477 extern ilist_t ilist_copy (ilist_t);
1478 extern ilist_t ilist_invert (ilist_t);
1479 extern void blist_add (blist_t *, insn_t, ilist_t, deps_t);
1480 extern void blist_remove (blist_t *);
1481 extern void flist_tail_init (flist_tail_t);
1483 extern fence_t flist_lookup (flist_t, insn_t);
1484 extern void flist_clear (flist_t *);
1485 extern void def_list_add (def_list_t *, insn_t, bool);
1487 /* Target context functions. */
1488 extern tc_t create_target_context (bool);
1489 extern void set_target_context (tc_t);
1490 extern void reset_target_context (tc_t, bool);
1492 /* Deps context functions. */
1493 extern void advance_deps_context (deps_t, insn_t);
1495 /* Fences functions. */
1496 extern void init_fences (insn_t);
1497 extern void add_clean_fence_to_fences (flist_tail_t, insn_t, fence_t);
1498 extern void add_dirty_fence_to_fences (flist_tail_t, insn_t, fence_t);
1499 extern void move_fence_to_fences (flist_t, flist_tail_t);
1501 /* Pool functions. */
1502 extern regset get_regset_from_pool (void);
1503 extern regset get_clear_regset_from_pool (void);
1504 extern void return_regset_to_pool (regset);
1505 extern void free_regset_pool (void);
1507 extern insn_t get_nop_from_pool (insn_t);
1508 extern void return_nop_to_pool (insn_t, bool);
1509 extern void free_nop_pool (void);
1511 /* Vinsns functions. */
1512 extern bool vinsn_separable_p (vinsn_t);
1513 extern bool vinsn_cond_branch_p (vinsn_t);
1514 extern void recompute_vinsn_lhs_rhs (vinsn_t);
1515 extern int sel_vinsn_cost (vinsn_t);
1516 extern insn_t sel_gen_insn_from_rtx_after (rtx, expr_t, int, insn_t);
1517 extern insn_t sel_gen_recovery_insn_from_rtx_after (rtx, expr_t, int, insn_t);
1518 extern insn_t sel_gen_insn_from_expr_after (expr_t, vinsn_t, int, insn_t);
1519 extern insn_t sel_move_insn (expr_t, int, insn_t);
1520 extern void vinsn_attach (vinsn_t);
1521 extern void vinsn_detach (vinsn_t);
1522 extern vinsn_t vinsn_copy (vinsn_t, bool);
1523 extern bool vinsn_equal_p (vinsn_t, vinsn_t);
1525 /* EXPR functions. */
1526 extern void copy_expr (expr_t, expr_t);
1527 extern void copy_expr_onside (expr_t, expr_t);
1528 extern void merge_expr_data (expr_t, expr_t, insn_t);
1529 extern void merge_expr (expr_t, expr_t, insn_t);
1530 extern void clear_expr (expr_t);
1531 extern unsigned expr_dest_regno (expr_t);
1532 extern rtx expr_dest_reg (expr_t);
1533 extern int find_in_history_vect (vec<expr_history_def> ,
1534 rtx, vinsn_t, bool);
1535 extern void insert_in_history_vect (vec<expr_history_def> *,
1536 unsigned, enum local_trans_type,
1537 vinsn_t, vinsn_t, ds_t);
1538 extern void mark_unavailable_targets (av_set_t, av_set_t, regset);
1539 extern int speculate_expr (expr_t, ds_t);
1541 /* Av set functions. */
1542 extern void av_set_add (av_set_t *, expr_t);
1543 extern void av_set_iter_remove (av_set_iterator *);
1544 extern expr_t av_set_lookup (av_set_t, vinsn_t);
1545 extern expr_t merge_with_other_exprs (av_set_t *, av_set_iterator *, expr_t);
1546 extern bool av_set_is_in_p (av_set_t, vinsn_t);
1547 extern av_set_t av_set_copy (av_set_t);
1548 extern void av_set_union_and_clear (av_set_t *, av_set_t *, insn_t);
1549 extern void av_set_union_and_live (av_set_t *, av_set_t *, regset, regset, insn_t);
1550 extern void av_set_clear (av_set_t *);
1551 extern void av_set_leave_one_nonspec (av_set_t *);
1552 extern expr_t av_set_element (av_set_t, int);
1553 extern void av_set_substract_cond_branches (av_set_t *);
1554 extern void av_set_split_usefulness (av_set_t, int, int);
1555 extern void av_set_code_motion_filter (av_set_t *, av_set_t);
1557 extern void sel_save_haifa_priorities (void);
1559 extern void sel_init_global_and_expr (bb_vec_t);
1560 extern void sel_finish_global_and_expr (void);
1562 extern regset compute_live (insn_t);
1563 extern bool register_unavailable_p (regset, rtx);
1565 /* Dependence analysis functions. */
1566 extern void sel_clear_has_dependence (void);
1567 extern ds_t has_dependence_p (expr_t, insn_t, ds_t **);
1569 extern int tick_check_p (expr_t, deps_t, fence_t);
1571 /* Functions to work with insns. */
1572 extern bool lhs_of_insn_equals_to_dest_p (insn_t, rtx);
1573 extern bool insn_eligible_for_subst_p (insn_t);
1574 extern void get_dest_and_mode (rtx, rtx *, enum machine_mode *);
1576 extern bool bookkeeping_can_be_created_if_moved_through_p (insn_t);
1577 extern bool sel_remove_insn (insn_t, bool, bool);
1578 extern bool bb_header_p (insn_t);
1579 extern void sel_init_invalid_data_sets (insn_t);
1580 extern bool insn_at_boundary_p (insn_t);
1582 /* Basic block and CFG functions. */
1584 extern insn_t sel_bb_head (basic_block);
1585 extern bool sel_bb_head_p (insn_t);
1586 extern insn_t sel_bb_end (basic_block);
1587 extern bool sel_bb_end_p (insn_t);
1588 extern bool sel_bb_empty_p (basic_block);
1590 extern bool in_current_region_p (basic_block);
1591 extern basic_block fallthru_bb_of_jump (rtx);
1593 extern void sel_init_bbs (bb_vec_t);
1594 extern void sel_finish_bbs (void);
1596 extern struct succs_info * compute_succs_info (insn_t, short);
1597 extern void free_succs_info (struct succs_info *);
1598 extern bool sel_insn_has_single_succ_p (insn_t, int);
1599 extern bool sel_num_cfg_preds_gt_1 (insn_t);
1600 extern int get_seqno_by_preds (rtx);
1602 extern bool bb_ends_ebb_p (basic_block);
1603 extern bool in_same_ebb_p (insn_t, insn_t);
1605 extern bool tidy_control_flow (basic_block, bool);
1606 extern void free_bb_note_pool (void);
1608 extern void purge_empty_blocks (void);
1609 extern basic_block sel_split_edge (edge);
1610 extern basic_block sel_create_recovery_block (insn_t);
1611 extern bool sel_redirect_edge_and_branch (edge, basic_block);
1612 extern void sel_redirect_edge_and_branch_force (edge, basic_block);
1613 extern void sel_init_pipelining (void);
1614 extern void sel_finish_pipelining (void);
1615 extern void sel_sched_region (int);
1616 extern loop_p get_loop_nest_for_rgn (unsigned int);
1617 extern bool considered_for_pipelining_p (struct loop *);
1618 extern void make_region_from_loop_preheader (vec<basic_block> *&);
1619 extern void sel_add_loop_preheaders (bb_vec_t *);
1620 extern bool sel_is_loop_preheader_p (basic_block);
1621 extern void clear_outdated_rtx_info (basic_block);
1622 extern void free_data_sets (basic_block);
1623 extern void exchange_data_sets (basic_block, basic_block);
1624 extern void copy_data_sets (basic_block, basic_block);
1626 extern void sel_register_cfg_hooks (void);
1627 extern void sel_unregister_cfg_hooks (void);
1629 /* Expression transformation routines. */
1630 extern rtx create_insn_rtx_from_pattern (rtx, rtx);
1631 extern vinsn_t create_vinsn_from_insn_rtx (rtx, bool);
1632 extern rtx create_copy_of_insn_rtx (rtx);
1633 extern void change_vinsn_in_expr (expr_t, vinsn_t);
1635 /* Various initialization functions. */
1636 extern void init_lv_sets (void);
1637 extern void free_lv_sets (void);
1638 extern void setup_nop_and_exit_insns (void);
1639 extern void free_nop_and_exit_insns (void);
1640 extern void free_data_for_scheduled_insn (insn_t);
1641 extern void setup_nop_vinsn (void);
1642 extern void free_nop_vinsn (void);
1643 extern void sel_set_sched_flags (void);
1644 extern void sel_setup_sched_infos (void);
1645 extern void alloc_sched_pools (void);
1646 extern void free_sched_pools (void);
1648 #endif /* GCC_SEL_SCHED_IR_H */