1 /* Operations with very long integers.
2 Copyright (C) 2012-2017 Free Software Foundation, Inc.
3 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
29 #define HOST_BITS_PER_HALF_WIDE_INT 32
30 #if HOST_BITS_PER_HALF_WIDE_INT == HOST_BITS_PER_LONG
31 # define HOST_HALF_WIDE_INT long
32 #elif HOST_BITS_PER_HALF_WIDE_INT == HOST_BITS_PER_INT
33 # define HOST_HALF_WIDE_INT int
35 #error Please add support for HOST_HALF_WIDE_INT
38 #define W_TYPE_SIZE HOST_BITS_PER_WIDE_INT
39 /* Do not include longlong.h when compiler is clang-based. See PR61146. */
40 #if GCC_VERSION >= 3000 && (W_TYPE_SIZE == 32 || defined (__SIZEOF_INT128__)) && !defined(__clang__)
41 typedef unsigned HOST_HALF_WIDE_INT UHWtype
;
42 typedef unsigned HOST_WIDE_INT UWtype
;
43 typedef unsigned int UQItype
__attribute__ ((mode (QI
)));
44 typedef unsigned int USItype
__attribute__ ((mode (SI
)));
45 typedef unsigned int UDItype
__attribute__ ((mode (DI
)));
47 typedef unsigned int UDWtype
__attribute__ ((mode (DI
)));
49 typedef unsigned int UDWtype
__attribute__ ((mode (TI
)));
54 static const HOST_WIDE_INT zeros
[WIDE_INT_MAX_ELTS
] = {};
60 /* Quantities to deal with values that hold half of a wide int. Used
61 in multiply and divide. */
62 #define HALF_INT_MASK ((HOST_WIDE_INT_1 << HOST_BITS_PER_HALF_WIDE_INT) - 1)
64 #define BLOCK_OF(TARGET) ((TARGET) / HOST_BITS_PER_WIDE_INT)
65 #define BLOCKS_NEEDED(PREC) \
66 (PREC ? (((PREC) + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT) : 1)
67 #define SIGN_MASK(X) ((HOST_WIDE_INT) (X) < 0 ? -1 : 0)
69 /* Return the value a VAL[I] if I < LEN, otherwise, return 0 or -1
70 based on the top existing bit of VAL. */
72 static unsigned HOST_WIDE_INT
73 safe_uhwi (const HOST_WIDE_INT
*val
, unsigned int len
, unsigned int i
)
75 return i
< len
? val
[i
] : val
[len
- 1] < 0 ? HOST_WIDE_INT_M1
: 0;
78 /* Convert the integer in VAL to canonical form, returning its new length.
79 LEN is the number of blocks currently in VAL and PRECISION is the number
80 of bits in the integer it represents.
82 This function only changes the representation, not the value. */
84 canonize (HOST_WIDE_INT
*val
, unsigned int len
, unsigned int precision
)
86 unsigned int blocks_needed
= BLOCKS_NEEDED (precision
);
90 if (len
> blocks_needed
)
97 if (len
* HOST_BITS_PER_WIDE_INT
> precision
)
98 val
[len
- 1] = top
= sext_hwi (top
, precision
% HOST_BITS_PER_WIDE_INT
);
99 if (top
!= 0 && top
!= (HOST_WIDE_INT
)-1)
102 /* At this point we know that the top is either 0 or -1. Find the
103 first block that is not a copy of this. */
104 for (i
= len
- 2; i
>= 0; i
--)
106 HOST_WIDE_INT x
= val
[i
];
109 if (SIGN_MASK (x
) == top
)
112 /* We need an extra block because the top bit block i does
113 not match the extension. */
118 /* The number is 0 or -1. */
122 /* VAL[0] is the unsigned result of an operation. Canonize it by adding
123 another 0 block if needed, and return number of blocks needed. */
125 static inline unsigned int
126 canonize_uhwi (HOST_WIDE_INT
*val
, unsigned int precision
)
128 if (val
[0] < 0 && precision
> HOST_BITS_PER_WIDE_INT
)
137 * Conversion routines in and out of wide_int.
140 /* Copy XLEN elements from XVAL to VAL. If NEED_CANON, canonize the
141 result for an integer with precision PRECISION. Return the length
142 of VAL (after any canonization. */
144 wi::from_array (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*xval
,
145 unsigned int xlen
, unsigned int precision
, bool need_canon
)
147 for (unsigned i
= 0; i
< xlen
; i
++)
149 return need_canon
? canonize (val
, xlen
, precision
) : xlen
;
152 /* Construct a wide int from a buffer of length LEN. BUFFER will be
153 read according to byte endianness and word endianness of the target.
154 Only the lower BUFFER_LEN bytes of the result are set; the remaining
155 high bytes are cleared. */
157 wi::from_buffer (const unsigned char *buffer
, unsigned int buffer_len
)
159 unsigned int precision
= buffer_len
* BITS_PER_UNIT
;
160 wide_int result
= wide_int::create (precision
);
161 unsigned int words
= buffer_len
/ UNITS_PER_WORD
;
163 /* We have to clear all the bits ourself, as we merely or in values
165 unsigned int len
= BLOCKS_NEEDED (precision
);
166 HOST_WIDE_INT
*val
= result
.write_val ();
167 for (unsigned int i
= 0; i
< len
; ++i
)
170 for (unsigned int byte
= 0; byte
< buffer_len
; byte
++)
174 unsigned int bitpos
= byte
* BITS_PER_UNIT
;
175 unsigned HOST_WIDE_INT value
;
177 if (buffer_len
> UNITS_PER_WORD
)
179 unsigned int word
= byte
/ UNITS_PER_WORD
;
181 if (WORDS_BIG_ENDIAN
)
182 word
= (words
- 1) - word
;
184 offset
= word
* UNITS_PER_WORD
;
186 if (BYTES_BIG_ENDIAN
)
187 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
189 offset
+= byte
% UNITS_PER_WORD
;
192 offset
= BYTES_BIG_ENDIAN
? (buffer_len
- 1) - byte
: byte
;
194 value
= (unsigned HOST_WIDE_INT
) buffer
[offset
];
196 index
= bitpos
/ HOST_BITS_PER_WIDE_INT
;
197 val
[index
] |= value
<< (bitpos
% HOST_BITS_PER_WIDE_INT
);
200 result
.set_len (canonize (val
, len
, precision
));
205 /* Sets RESULT from X, the sign is taken according to SGN. */
207 wi::to_mpz (const wide_int_ref
&x
, mpz_t result
, signop sgn
)
209 int len
= x
.get_len ();
210 const HOST_WIDE_INT
*v
= x
.get_val ();
211 int excess
= len
* HOST_BITS_PER_WIDE_INT
- x
.get_precision ();
213 if (wi::neg_p (x
, sgn
))
215 /* We use ones complement to avoid -x80..0 edge case that -
217 HOST_WIDE_INT
*t
= XALLOCAVEC (HOST_WIDE_INT
, len
);
218 for (int i
= 0; i
< len
; i
++)
221 t
[len
- 1] = (unsigned HOST_WIDE_INT
) t
[len
- 1] << excess
>> excess
;
222 mpz_import (result
, len
, -1, sizeof (HOST_WIDE_INT
), 0, 0, t
);
223 mpz_com (result
, result
);
227 HOST_WIDE_INT
*t
= XALLOCAVEC (HOST_WIDE_INT
, len
);
228 for (int i
= 0; i
< len
- 1; i
++)
230 t
[len
- 1] = (unsigned HOST_WIDE_INT
) v
[len
- 1] << excess
>> excess
;
231 mpz_import (result
, len
, -1, sizeof (HOST_WIDE_INT
), 0, 0, t
);
234 mpz_import (result
, len
, -1, sizeof (HOST_WIDE_INT
), 0, 0, v
);
237 /* Returns X converted to TYPE. If WRAP is true, then out-of-range
238 values of VAL will be wrapped; otherwise, they will be set to the
239 appropriate minimum or maximum TYPE bound. */
241 wi::from_mpz (const_tree type
, mpz_t x
, bool wrap
)
244 unsigned int prec
= TYPE_PRECISION (type
);
245 wide_int res
= wide_int::create (prec
);
253 get_type_static_bounds (type
, min
, max
);
255 if (mpz_cmp (x
, min
) < 0)
257 else if (mpz_cmp (x
, max
) > 0)
264 /* Determine the number of unsigned HOST_WIDE_INTs that are required
265 for representing the absolute value. The code to calculate count is
266 extracted from the GMP manual, section "Integer Import and Export":
267 http://gmplib.org/manual/Integer-Import-and-Export.html */
268 numb
= CHAR_BIT
* sizeof (HOST_WIDE_INT
);
269 count
= (mpz_sizeinbase (x
, 2) + numb
- 1) / numb
;
270 HOST_WIDE_INT
*val
= res
.write_val ();
271 /* Read the absolute value.
273 Write directly to the wide_int storage if possible, otherwise leave
274 GMP to allocate the memory for us. It might be slightly more efficient
275 to use mpz_tdiv_r_2exp for the latter case, but the situation is
276 pathological and it seems safer to operate on the original mpz value
278 void *valres
= mpz_export (count
<= WIDE_INT_MAX_ELTS
? val
: 0,
279 &count
, -1, sizeof (HOST_WIDE_INT
), 0, 0, x
);
285 count
= MIN (count
, BLOCKS_NEEDED (prec
));
288 memcpy (val
, valres
, count
* sizeof (HOST_WIDE_INT
));
291 /* Zero-extend the absolute value to PREC bits. */
292 if (count
< BLOCKS_NEEDED (prec
) && val
[count
- 1] < 0)
295 count
= canonize (val
, count
, prec
);
305 * Largest and smallest values in a mode.
308 /* Return the largest SGNed number that is representable in PRECISION bits.
310 TODO: There is still code from the double_int era that trys to
311 make up for the fact that double int's could not represent the
312 min and max values of all types. This code should be removed
313 because the min and max values can always be represented in
314 wide_ints and int-csts. */
316 wi::max_value (unsigned int precision
, signop sgn
)
318 gcc_checking_assert (precision
!= 0);
320 /* The unsigned max is just all ones. */
321 return shwi (-1, precision
);
323 /* The signed max is all ones except the top bit. This must be
324 explicitly represented. */
325 return mask (precision
- 1, false, precision
);
328 /* Return the largest SGNed number that is representable in PRECISION bits. */
330 wi::min_value (unsigned int precision
, signop sgn
)
332 gcc_checking_assert (precision
!= 0);
334 return uhwi (0, precision
);
336 /* The signed min is all zeros except the top bit. This must be
337 explicitly represented. */
338 return wi::set_bit_in_zero (precision
- 1, precision
);
345 /* Convert the number represented by XVAL, XLEN and XPRECISION, which has
346 signedness SGN, to an integer that has PRECISION bits. Store the blocks
347 in VAL and return the number of blocks used.
349 This function can handle both extension (PRECISION > XPRECISION)
350 and truncation (PRECISION < XPRECISION). */
352 wi::force_to_size (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*xval
,
353 unsigned int xlen
, unsigned int xprecision
,
354 unsigned int precision
, signop sgn
)
356 unsigned int blocks_needed
= BLOCKS_NEEDED (precision
);
357 unsigned int len
= blocks_needed
< xlen
? blocks_needed
: xlen
;
358 for (unsigned i
= 0; i
< len
; i
++)
361 if (precision
> xprecision
)
363 unsigned int small_xprecision
= xprecision
% HOST_BITS_PER_WIDE_INT
;
368 if (small_xprecision
&& len
== BLOCKS_NEEDED (xprecision
))
369 val
[len
- 1] = zext_hwi (val
[len
- 1], small_xprecision
);
370 else if (val
[len
- 1] < 0)
372 while (len
< BLOCKS_NEEDED (xprecision
))
374 if (small_xprecision
)
375 val
[len
- 1] = zext_hwi (val
[len
- 1], small_xprecision
);
382 if (small_xprecision
&& len
== BLOCKS_NEEDED (xprecision
))
383 val
[len
- 1] = sext_hwi (val
[len
- 1], small_xprecision
);
386 len
= canonize (val
, len
, precision
);
391 /* This function hides the fact that we cannot rely on the bits beyond
392 the precision. This issue comes up in the relational comparisions
393 where we do allow comparisons of values of different precisions. */
394 static inline HOST_WIDE_INT
395 selt (const HOST_WIDE_INT
*a
, unsigned int len
,
396 unsigned int blocks_needed
, unsigned int small_prec
,
397 unsigned int index
, signop sgn
)
402 else if (index
< blocks_needed
|| sgn
== SIGNED
)
403 /* Signed or within the precision. */
404 val
= SIGN_MASK (a
[len
- 1]);
406 /* Unsigned extension beyond the precision. */
409 if (small_prec
&& index
== blocks_needed
- 1)
410 return (sgn
== SIGNED
411 ? sext_hwi (val
, small_prec
)
412 : zext_hwi (val
, small_prec
));
417 /* Find the highest bit represented in a wide int. This will in
418 general have the same value as the sign bit. */
419 static inline HOST_WIDE_INT
420 top_bit_of (const HOST_WIDE_INT
*a
, unsigned int len
, unsigned int prec
)
422 int excess
= len
* HOST_BITS_PER_WIDE_INT
- prec
;
423 unsigned HOST_WIDE_INT val
= a
[len
- 1];
426 return val
>> (HOST_BITS_PER_WIDE_INT
- 1);
430 * Comparisons, note that only equality is an operator. The other
431 * comparisons cannot be operators since they are inherently signed or
432 * unsigned and C++ has no such operators.
435 /* Return true if OP0 == OP1. */
437 wi::eq_p_large (const HOST_WIDE_INT
*op0
, unsigned int op0len
,
438 const HOST_WIDE_INT
*op1
, unsigned int op1len
,
442 unsigned int small_prec
= prec
& (HOST_BITS_PER_WIDE_INT
- 1);
444 if (op0len
!= op1len
)
447 if (op0len
== BLOCKS_NEEDED (prec
) && small_prec
)
449 /* It does not matter if we zext or sext here, we just have to
450 do both the same way. */
451 if (zext_hwi (op0
[l0
], small_prec
) != zext_hwi (op1
[l0
], small_prec
))
457 if (op0
[l0
] != op1
[l0
])
465 /* Return true if OP0 < OP1 using signed comparisons. */
467 wi::lts_p_large (const HOST_WIDE_INT
*op0
, unsigned int op0len
,
468 unsigned int precision
,
469 const HOST_WIDE_INT
*op1
, unsigned int op1len
)
471 HOST_WIDE_INT s0
, s1
;
472 unsigned HOST_WIDE_INT u0
, u1
;
473 unsigned int blocks_needed
= BLOCKS_NEEDED (precision
);
474 unsigned int small_prec
= precision
& (HOST_BITS_PER_WIDE_INT
- 1);
475 int l
= MAX (op0len
- 1, op1len
- 1);
477 /* Only the top block is compared as signed. The rest are unsigned
479 s0
= selt (op0
, op0len
, blocks_needed
, small_prec
, l
, SIGNED
);
480 s1
= selt (op1
, op1len
, blocks_needed
, small_prec
, l
, SIGNED
);
489 u0
= selt (op0
, op0len
, blocks_needed
, small_prec
, l
, SIGNED
);
490 u1
= selt (op1
, op1len
, blocks_needed
, small_prec
, l
, SIGNED
);
502 /* Returns -1 if OP0 < OP1, 0 if OP0 == OP1 and 1 if OP0 > OP1 using
505 wi::cmps_large (const HOST_WIDE_INT
*op0
, unsigned int op0len
,
506 unsigned int precision
,
507 const HOST_WIDE_INT
*op1
, unsigned int op1len
)
509 HOST_WIDE_INT s0
, s1
;
510 unsigned HOST_WIDE_INT u0
, u1
;
511 unsigned int blocks_needed
= BLOCKS_NEEDED (precision
);
512 unsigned int small_prec
= precision
& (HOST_BITS_PER_WIDE_INT
- 1);
513 int l
= MAX (op0len
- 1, op1len
- 1);
515 /* Only the top block is compared as signed. The rest are unsigned
517 s0
= selt (op0
, op0len
, blocks_needed
, small_prec
, l
, SIGNED
);
518 s1
= selt (op1
, op1len
, blocks_needed
, small_prec
, l
, SIGNED
);
527 u0
= selt (op0
, op0len
, blocks_needed
, small_prec
, l
, SIGNED
);
528 u1
= selt (op1
, op1len
, blocks_needed
, small_prec
, l
, SIGNED
);
540 /* Return true if OP0 < OP1 using unsigned comparisons. */
542 wi::ltu_p_large (const HOST_WIDE_INT
*op0
, unsigned int op0len
,
543 unsigned int precision
,
544 const HOST_WIDE_INT
*op1
, unsigned int op1len
)
546 unsigned HOST_WIDE_INT x0
;
547 unsigned HOST_WIDE_INT x1
;
548 unsigned int blocks_needed
= BLOCKS_NEEDED (precision
);
549 unsigned int small_prec
= precision
& (HOST_BITS_PER_WIDE_INT
- 1);
550 int l
= MAX (op0len
- 1, op1len
- 1);
554 x0
= selt (op0
, op0len
, blocks_needed
, small_prec
, l
, UNSIGNED
);
555 x1
= selt (op1
, op1len
, blocks_needed
, small_prec
, l
, UNSIGNED
);
566 /* Returns -1 if OP0 < OP1, 0 if OP0 == OP1 and 1 if OP0 > OP1 using
567 unsigned compares. */
569 wi::cmpu_large (const HOST_WIDE_INT
*op0
, unsigned int op0len
,
570 unsigned int precision
,
571 const HOST_WIDE_INT
*op1
, unsigned int op1len
)
573 unsigned HOST_WIDE_INT x0
;
574 unsigned HOST_WIDE_INT x1
;
575 unsigned int blocks_needed
= BLOCKS_NEEDED (precision
);
576 unsigned int small_prec
= precision
& (HOST_BITS_PER_WIDE_INT
- 1);
577 int l
= MAX (op0len
- 1, op1len
- 1);
581 x0
= selt (op0
, op0len
, blocks_needed
, small_prec
, l
, UNSIGNED
);
582 x1
= selt (op1
, op1len
, blocks_needed
, small_prec
, l
, UNSIGNED
);
597 /* Sign-extend the number represented by XVAL and XLEN into VAL,
598 starting at OFFSET. Return the number of blocks in VAL. Both XVAL
599 and VAL have PRECISION bits. */
601 wi::sext_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*xval
,
602 unsigned int xlen
, unsigned int precision
, unsigned int offset
)
604 unsigned int len
= offset
/ HOST_BITS_PER_WIDE_INT
;
605 /* Extending beyond the precision is a no-op. If we have only stored
606 OFFSET bits or fewer, the rest are already signs. */
607 if (offset
>= precision
|| len
>= xlen
)
609 for (unsigned i
= 0; i
< xlen
; ++i
)
613 unsigned int suboffset
= offset
% HOST_BITS_PER_WIDE_INT
;
614 for (unsigned int i
= 0; i
< len
; i
++)
618 val
[len
] = sext_hwi (xval
[len
], suboffset
);
621 return canonize (val
, len
, precision
);
624 /* Zero-extend the number represented by XVAL and XLEN into VAL,
625 starting at OFFSET. Return the number of blocks in VAL. Both XVAL
626 and VAL have PRECISION bits. */
628 wi::zext_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*xval
,
629 unsigned int xlen
, unsigned int precision
, unsigned int offset
)
631 unsigned int len
= offset
/ HOST_BITS_PER_WIDE_INT
;
632 /* Extending beyond the precision is a no-op. If we have only stored
633 OFFSET bits or fewer, and the upper stored bit is zero, then there
635 if (offset
>= precision
|| (len
>= xlen
&& xval
[xlen
- 1] >= 0))
637 for (unsigned i
= 0; i
< xlen
; ++i
)
641 unsigned int suboffset
= offset
% HOST_BITS_PER_WIDE_INT
;
642 for (unsigned int i
= 0; i
< len
; i
++)
643 val
[i
] = i
< xlen
? xval
[i
] : -1;
645 val
[len
] = zext_hwi (len
< xlen
? xval
[len
] : -1, suboffset
);
648 return canonize (val
, len
+ 1, precision
);
652 * Masking, inserting, shifting, rotating.
655 /* Insert WIDTH bits from Y into X starting at START. */
657 wi::insert (const wide_int
&x
, const wide_int
&y
, unsigned int start
,
664 unsigned int precision
= x
.get_precision ();
665 if (start
>= precision
)
668 gcc_checking_assert (precision
>= width
);
670 if (start
+ width
>= precision
)
671 width
= precision
- start
;
673 mask
= wi::shifted_mask (start
, width
, false, precision
);
674 tmp
= wi::lshift (wide_int::from (y
, precision
, UNSIGNED
), start
);
677 tmp
= wi::bit_and_not (x
, mask
);
678 result
= result
| tmp
;
683 /* Copy the number represented by XVAL and XLEN into VAL, setting bit BIT.
684 Return the number of blocks in VAL. Both XVAL and VAL have PRECISION
687 wi::set_bit_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*xval
,
688 unsigned int xlen
, unsigned int precision
, unsigned int bit
)
690 unsigned int block
= bit
/ HOST_BITS_PER_WIDE_INT
;
691 unsigned int subbit
= bit
% HOST_BITS_PER_WIDE_INT
;
693 if (block
+ 1 >= xlen
)
695 /* The operation either affects the last current block or needs
697 unsigned int len
= block
+ 1;
698 for (unsigned int i
= 0; i
< len
; i
++)
699 val
[i
] = safe_uhwi (xval
, xlen
, i
);
700 val
[block
] |= HOST_WIDE_INT_1U
<< subbit
;
702 /* If the bit we just set is at the msb of the block, make sure
703 that any higher bits are zeros. */
704 if (bit
+ 1 < precision
&& subbit
== HOST_BITS_PER_WIDE_INT
- 1)
710 for (unsigned int i
= 0; i
< xlen
; i
++)
712 val
[block
] |= HOST_WIDE_INT_1U
<< subbit
;
713 return canonize (val
, xlen
, precision
);
719 wide_int_storage::bswap () const
721 wide_int result
= wide_int::create (precision
);
723 unsigned int len
= BLOCKS_NEEDED (precision
);
724 unsigned int xlen
= get_len ();
725 const HOST_WIDE_INT
*xval
= get_val ();
726 HOST_WIDE_INT
*val
= result
.write_val ();
728 /* This is not a well defined operation if the precision is not a
730 gcc_assert ((precision
& 0x7) == 0);
732 for (i
= 0; i
< len
; i
++)
735 /* Only swap the bytes that are not the padding. */
736 for (s
= 0; s
< precision
; s
+= 8)
738 unsigned int d
= precision
- s
- 8;
739 unsigned HOST_WIDE_INT byte
;
741 unsigned int block
= s
/ HOST_BITS_PER_WIDE_INT
;
742 unsigned int offset
= s
& (HOST_BITS_PER_WIDE_INT
- 1);
744 byte
= (safe_uhwi (xval
, xlen
, block
) >> offset
) & 0xff;
746 block
= d
/ HOST_BITS_PER_WIDE_INT
;
747 offset
= d
& (HOST_BITS_PER_WIDE_INT
- 1);
749 val
[block
] |= byte
<< offset
;
752 result
.set_len (canonize (val
, len
, precision
));
756 /* Fill VAL with a mask where the lower WIDTH bits are ones and the bits
757 above that up to PREC are zeros. The result is inverted if NEGATE
758 is true. Return the number of blocks in VAL. */
760 wi::mask (HOST_WIDE_INT
*val
, unsigned int width
, bool negate
,
765 val
[0] = negate
? 0 : -1;
770 val
[0] = negate
? -1 : 0;
775 while (i
< width
/ HOST_BITS_PER_WIDE_INT
)
776 val
[i
++] = negate
? 0 : -1;
778 unsigned int shift
= width
& (HOST_BITS_PER_WIDE_INT
- 1);
781 HOST_WIDE_INT last
= (HOST_WIDE_INT_1U
<< shift
) - 1;
782 val
[i
++] = negate
? ~last
: last
;
785 val
[i
++] = negate
? -1 : 0;
790 /* Fill VAL with a mask where the lower START bits are zeros, the next WIDTH
791 bits are ones, and the bits above that up to PREC are zeros. The result
792 is inverted if NEGATE is true. Return the number of blocks in VAL. */
794 wi::shifted_mask (HOST_WIDE_INT
*val
, unsigned int start
, unsigned int width
,
795 bool negate
, unsigned int prec
)
797 if (start
>= prec
|| width
== 0)
799 val
[0] = negate
? -1 : 0;
803 if (width
> prec
- start
)
804 width
= prec
- start
;
805 unsigned int end
= start
+ width
;
808 while (i
< start
/ HOST_BITS_PER_WIDE_INT
)
809 val
[i
++] = negate
? -1 : 0;
811 unsigned int shift
= start
& (HOST_BITS_PER_WIDE_INT
- 1);
814 HOST_WIDE_INT block
= (HOST_WIDE_INT_1U
<< shift
) - 1;
816 if (shift
< HOST_BITS_PER_WIDE_INT
)
819 block
= (HOST_WIDE_INT_1U
<< shift
) - block
- 1;
820 val
[i
++] = negate
? ~block
: block
;
825 val
[i
++] = negate
? block
: ~block
;
828 while (i
< end
/ HOST_BITS_PER_WIDE_INT
)
830 val
[i
++] = negate
? 0 : -1;
832 shift
= end
& (HOST_BITS_PER_WIDE_INT
- 1);
836 HOST_WIDE_INT block
= (HOST_WIDE_INT_1U
<< shift
) - 1;
837 val
[i
++] = negate
? ~block
: block
;
840 val
[i
++] = negate
? -1 : 0;
846 * logical operations.
849 /* Set VAL to OP0 & OP1. Return the number of blocks used. */
851 wi::and_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*op0
,
852 unsigned int op0len
, const HOST_WIDE_INT
*op1
,
853 unsigned int op1len
, unsigned int prec
)
857 bool need_canon
= true;
859 unsigned int len
= MAX (op0len
, op1len
);
862 HOST_WIDE_INT op1mask
= -top_bit_of (op1
, op1len
, prec
);
880 HOST_WIDE_INT op0mask
= -top_bit_of (op0
, op0len
, prec
);
896 val
[l0
] = op0
[l0
] & op1
[l0
];
901 len
= canonize (val
, len
, prec
);
906 /* Set VAL to OP0 & ~OP1. Return the number of blocks used. */
908 wi::and_not_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*op0
,
909 unsigned int op0len
, const HOST_WIDE_INT
*op1
,
910 unsigned int op1len
, unsigned int prec
)
915 bool need_canon
= true;
917 unsigned int len
= MAX (op0len
, op1len
);
920 HOST_WIDE_INT op1mask
= -top_bit_of (op1
, op1len
, prec
);
938 HOST_WIDE_INT op0mask
= -top_bit_of (op0
, op0len
, prec
);
954 val
[l0
] = op0
[l0
] & ~op1
[l0
];
959 len
= canonize (val
, len
, prec
);
964 /* Set VAL to OP0 | OP1. Return the number of blocks used. */
966 wi::or_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*op0
,
967 unsigned int op0len
, const HOST_WIDE_INT
*op1
,
968 unsigned int op1len
, unsigned int prec
)
973 bool need_canon
= true;
975 unsigned int len
= MAX (op0len
, op1len
);
978 HOST_WIDE_INT op1mask
= -top_bit_of (op1
, op1len
, prec
);
996 HOST_WIDE_INT op0mask
= -top_bit_of (op0
, op0len
, prec
);
1012 val
[l0
] = op0
[l0
] | op1
[l0
];
1017 len
= canonize (val
, len
, prec
);
1022 /* Set VAL to OP0 | ~OP1. Return the number of blocks used. */
1024 wi::or_not_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*op0
,
1025 unsigned int op0len
, const HOST_WIDE_INT
*op1
,
1026 unsigned int op1len
, unsigned int prec
)
1029 int l0
= op0len
- 1;
1030 int l1
= op1len
- 1;
1031 bool need_canon
= true;
1033 unsigned int len
= MAX (op0len
, op1len
);
1036 HOST_WIDE_INT op1mask
= -top_bit_of (op1
, op1len
, prec
);
1054 HOST_WIDE_INT op0mask
= -top_bit_of (op0
, op0len
, prec
);
1070 val
[l0
] = op0
[l0
] | ~op1
[l0
];
1075 len
= canonize (val
, len
, prec
);
1080 /* Set VAL to OP0 ^ OP1. Return the number of blocks used. */
1082 wi::xor_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*op0
,
1083 unsigned int op0len
, const HOST_WIDE_INT
*op1
,
1084 unsigned int op1len
, unsigned int prec
)
1087 int l0
= op0len
- 1;
1088 int l1
= op1len
- 1;
1090 unsigned int len
= MAX (op0len
, op1len
);
1093 HOST_WIDE_INT op1mask
= -top_bit_of (op1
, op1len
, prec
);
1096 val
[l0
] = op0
[l0
] ^ op1mask
;
1103 HOST_WIDE_INT op0mask
= -top_bit_of (op0
, op0len
, prec
);
1106 val
[l1
] = op0mask
^ op1
[l1
];
1113 val
[l0
] = op0
[l0
] ^ op1
[l0
];
1117 return canonize (val
, len
, prec
);
1124 /* Set VAL to OP0 + OP1. If OVERFLOW is nonnull, record in *OVERFLOW
1125 whether the result overflows when OP0 and OP1 are treated as having
1126 signedness SGN. Return the number of blocks in VAL. */
1128 wi::add_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*op0
,
1129 unsigned int op0len
, const HOST_WIDE_INT
*op1
,
1130 unsigned int op1len
, unsigned int prec
,
1131 signop sgn
, bool *overflow
)
1133 unsigned HOST_WIDE_INT o0
= 0;
1134 unsigned HOST_WIDE_INT o1
= 0;
1135 unsigned HOST_WIDE_INT x
= 0;
1136 unsigned HOST_WIDE_INT carry
= 0;
1137 unsigned HOST_WIDE_INT old_carry
= 0;
1138 unsigned HOST_WIDE_INT mask0
, mask1
;
1141 unsigned int len
= MAX (op0len
, op1len
);
1142 mask0
= -top_bit_of (op0
, op0len
, prec
);
1143 mask1
= -top_bit_of (op1
, op1len
, prec
);
1144 /* Add all of the explicitly defined elements. */
1146 for (i
= 0; i
< len
; i
++)
1148 o0
= i
< op0len
? (unsigned HOST_WIDE_INT
) op0
[i
] : mask0
;
1149 o1
= i
< op1len
? (unsigned HOST_WIDE_INT
) op1
[i
] : mask1
;
1150 x
= o0
+ o1
+ carry
;
1153 carry
= carry
== 0 ? x
< o0
: x
<= o0
;
1156 if (len
* HOST_BITS_PER_WIDE_INT
< prec
)
1158 val
[len
] = mask0
+ mask1
+ carry
;
1165 unsigned int shift
= -prec
% HOST_BITS_PER_WIDE_INT
;
1168 unsigned HOST_WIDE_INT x
= (val
[len
- 1] ^ o0
) & (val
[len
- 1] ^ o1
);
1169 *overflow
= (HOST_WIDE_INT
) (x
<< shift
) < 0;
1173 /* Put the MSB of X and O0 and in the top of the HWI. */
1177 *overflow
= (x
<= o0
);
1179 *overflow
= (x
< o0
);
1183 return canonize (val
, len
, prec
);
1186 /* Subroutines of the multiplication and division operations. Unpack
1187 the first IN_LEN HOST_WIDE_INTs in INPUT into 2 * IN_LEN
1188 HOST_HALF_WIDE_INTs of RESULT. The rest of RESULT is filled by
1189 uncompressing the top bit of INPUT[IN_LEN - 1]. */
1191 wi_unpack (unsigned HOST_HALF_WIDE_INT
*result
, const HOST_WIDE_INT
*input
,
1192 unsigned int in_len
, unsigned int out_len
,
1193 unsigned int prec
, signop sgn
)
1197 unsigned int small_prec
= prec
& (HOST_BITS_PER_WIDE_INT
- 1);
1198 unsigned int blocks_needed
= BLOCKS_NEEDED (prec
);
1203 mask
= -top_bit_of ((const HOST_WIDE_INT
*) input
, in_len
, prec
);
1204 mask
&= HALF_INT_MASK
;
1209 for (i
= 0; i
< blocks_needed
- 1; i
++)
1211 HOST_WIDE_INT x
= safe_uhwi (input
, in_len
, i
);
1213 result
[j
++] = x
>> HOST_BITS_PER_HALF_WIDE_INT
;
1216 HOST_WIDE_INT x
= safe_uhwi (input
, in_len
, i
);
1220 x
= sext_hwi (x
, small_prec
);
1222 x
= zext_hwi (x
, small_prec
);
1225 result
[j
++] = x
>> HOST_BITS_PER_HALF_WIDE_INT
;
1227 /* Smear the sign bit. */
1232 /* The inverse of wi_unpack. IN_LEN is the number of input
1233 blocks and PRECISION is the precision of the result. Return the
1234 number of blocks in the canonicalized result. */
1236 wi_pack (HOST_WIDE_INT
*result
,
1237 const unsigned HOST_HALF_WIDE_INT
*input
,
1238 unsigned int in_len
, unsigned int precision
)
1242 unsigned int blocks_needed
= BLOCKS_NEEDED (precision
);
1244 while (i
+ 1 < in_len
)
1246 result
[j
++] = ((unsigned HOST_WIDE_INT
) input
[i
]
1247 | ((unsigned HOST_WIDE_INT
) input
[i
+ 1]
1248 << HOST_BITS_PER_HALF_WIDE_INT
));
1252 /* Handle the case where in_len is odd. For this we zero extend. */
1254 result
[j
++] = (unsigned HOST_WIDE_INT
) input
[i
];
1255 else if (j
< blocks_needed
)
1257 return canonize (result
, j
, precision
);
1260 /* Multiply Op1 by Op2. If HIGH is set, only the upper half of the
1263 If HIGH is not set, throw away the upper half after the check is
1264 made to see if it overflows. Unfortunately there is no better way
1265 to check for overflow than to do this. If OVERFLOW is nonnull,
1266 record in *OVERFLOW whether the result overflowed. SGN controls
1267 the signedness and is used to check overflow or if HIGH is set. */
1269 wi::mul_internal (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*op1val
,
1270 unsigned int op1len
, const HOST_WIDE_INT
*op2val
,
1271 unsigned int op2len
, unsigned int prec
, signop sgn
,
1272 bool *overflow
, bool high
)
1274 unsigned HOST_WIDE_INT o0
, o1
, k
, t
;
1277 unsigned int blocks_needed
= BLOCKS_NEEDED (prec
);
1278 unsigned int half_blocks_needed
= blocks_needed
* 2;
1279 /* The sizes here are scaled to support a 2x largest mode by 2x
1280 largest mode yielding a 4x largest mode result. This is what is
1283 unsigned HOST_HALF_WIDE_INT
1284 u
[4 * MAX_BITSIZE_MODE_ANY_INT
/ HOST_BITS_PER_HALF_WIDE_INT
];
1285 unsigned HOST_HALF_WIDE_INT
1286 v
[4 * MAX_BITSIZE_MODE_ANY_INT
/ HOST_BITS_PER_HALF_WIDE_INT
];
1287 /* The '2' in 'R' is because we are internally doing a full
1289 unsigned HOST_HALF_WIDE_INT
1290 r
[2 * 4 * MAX_BITSIZE_MODE_ANY_INT
/ HOST_BITS_PER_HALF_WIDE_INT
];
1291 HOST_WIDE_INT mask
= ((HOST_WIDE_INT
)1 << HOST_BITS_PER_HALF_WIDE_INT
) - 1;
1293 /* If the top level routine did not really pass in an overflow, then
1294 just make sure that we never attempt to set it. */
1295 bool needs_overflow
= (overflow
!= 0);
1299 wide_int_ref op1
= wi::storage_ref (op1val
, op1len
, prec
);
1300 wide_int_ref op2
= wi::storage_ref (op2val
, op2len
, prec
);
1302 /* This is a surprisingly common case, so do it first. */
1303 if (op1
== 0 || op2
== 0)
1310 if (sgn
== UNSIGNED
)
1312 /* If the inputs are single HWIs and the output has room for at
1313 least two HWIs, we can use umul_ppmm directly. */
1314 if (prec
>= HOST_BITS_PER_WIDE_INT
* 2
1315 && wi::fits_uhwi_p (op1
)
1316 && wi::fits_uhwi_p (op2
))
1318 /* This case never overflows. */
1324 umul_ppmm (val
[1], val
[0], op1
.ulow (), op2
.ulow ());
1325 if (val
[1] < 0 && prec
> HOST_BITS_PER_WIDE_INT
* 2)
1330 return 1 + (val
[1] != 0 || val
[0] < 0);
1332 /* Likewise if the output is a full single HWI, except that the
1333 upper HWI of the result is only used for determining overflow.
1334 (We handle this case inline when overflow isn't needed.) */
1335 else if (prec
== HOST_BITS_PER_WIDE_INT
)
1337 unsigned HOST_WIDE_INT upper
;
1338 umul_ppmm (upper
, val
[0], op1
.ulow (), op2
.ulow ());
1340 *overflow
= (upper
!= 0);
1348 /* Handle multiplications by 1. */
1353 val
[0] = wi::neg_p (op2
, sgn
) ? -1 : 0;
1356 for (i
= 0; i
< op2len
; i
++)
1364 val
[0] = wi::neg_p (op1
, sgn
) ? -1 : 0;
1367 for (i
= 0; i
< op1len
; i
++)
1372 /* If we need to check for overflow, we can only do half wide
1373 multiplies quickly because we need to look at the top bits to
1374 check for the overflow. */
1375 if ((high
|| needs_overflow
)
1376 && (prec
<= HOST_BITS_PER_HALF_WIDE_INT
))
1378 unsigned HOST_WIDE_INT r
;
1382 o0
= op1
.to_shwi ();
1383 o1
= op2
.to_shwi ();
1387 o0
= op1
.to_uhwi ();
1388 o1
= op2
.to_uhwi ();
1396 if ((HOST_WIDE_INT
) r
!= sext_hwi (r
, prec
))
1401 if ((r
>> prec
) != 0)
1405 val
[0] = high
? r
>> prec
: r
;
1409 /* We do unsigned mul and then correct it. */
1410 wi_unpack (u
, op1val
, op1len
, half_blocks_needed
, prec
, SIGNED
);
1411 wi_unpack (v
, op2val
, op2len
, half_blocks_needed
, prec
, SIGNED
);
1413 /* The 2 is for a full mult. */
1414 memset (r
, 0, half_blocks_needed
* 2
1415 * HOST_BITS_PER_HALF_WIDE_INT
/ CHAR_BIT
);
1417 for (j
= 0; j
< half_blocks_needed
; j
++)
1420 for (i
= 0; i
< half_blocks_needed
; i
++)
1422 t
= ((unsigned HOST_WIDE_INT
)u
[i
] * (unsigned HOST_WIDE_INT
)v
[j
]
1424 r
[i
+ j
] = t
& HALF_INT_MASK
;
1425 k
= t
>> HOST_BITS_PER_HALF_WIDE_INT
;
1427 r
[j
+ half_blocks_needed
] = k
;
1430 /* We did unsigned math above. For signed we must adjust the
1431 product (assuming we need to see that). */
1432 if (sgn
== SIGNED
&& (high
|| needs_overflow
))
1434 unsigned HOST_WIDE_INT b
;
1435 if (wi::neg_p (op1
))
1438 for (i
= 0; i
< half_blocks_needed
; i
++)
1440 t
= (unsigned HOST_WIDE_INT
)r
[i
+ half_blocks_needed
]
1441 - (unsigned HOST_WIDE_INT
)v
[i
] - b
;
1442 r
[i
+ half_blocks_needed
] = t
& HALF_INT_MASK
;
1443 b
= t
>> (HOST_BITS_PER_WIDE_INT
- 1);
1446 if (wi::neg_p (op2
))
1449 for (i
= 0; i
< half_blocks_needed
; i
++)
1451 t
= (unsigned HOST_WIDE_INT
)r
[i
+ half_blocks_needed
]
1452 - (unsigned HOST_WIDE_INT
)u
[i
] - b
;
1453 r
[i
+ half_blocks_needed
] = t
& HALF_INT_MASK
;
1454 b
= t
>> (HOST_BITS_PER_WIDE_INT
- 1);
1463 /* For unsigned, overflow is true if any of the top bits are set.
1464 For signed, overflow is true if any of the top bits are not equal
1466 if (sgn
== UNSIGNED
)
1470 top
= r
[(half_blocks_needed
) - 1];
1471 top
= SIGN_MASK (top
<< (HOST_BITS_PER_WIDE_INT
/ 2));
1475 for (i
= half_blocks_needed
; i
< half_blocks_needed
* 2; i
++)
1476 if (((HOST_WIDE_INT
)(r
[i
] & mask
)) != top
)
1480 int r_offset
= high
? half_blocks_needed
: 0;
1481 return wi_pack (val
, &r
[r_offset
], half_blocks_needed
, prec
);
1484 /* Compute the population count of X. */
1486 wi::popcount (const wide_int_ref
&x
)
1491 /* The high order block is special if it is the last block and the
1492 precision is not an even multiple of HOST_BITS_PER_WIDE_INT. We
1493 have to clear out any ones above the precision before doing
1494 popcount on this block. */
1495 count
= x
.precision
- x
.len
* HOST_BITS_PER_WIDE_INT
;
1496 unsigned int stop
= x
.len
;
1499 count
= popcount_hwi (x
.uhigh () << -count
);
1504 if (x
.sign_mask () >= 0)
1508 for (i
= 0; i
< stop
; ++i
)
1509 count
+= popcount_hwi (x
.val
[i
]);
1514 /* Set VAL to OP0 - OP1. If OVERFLOW is nonnull, record in *OVERFLOW
1515 whether the result overflows when OP0 and OP1 are treated as having
1516 signedness SGN. Return the number of blocks in VAL. */
1518 wi::sub_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*op0
,
1519 unsigned int op0len
, const HOST_WIDE_INT
*op1
,
1520 unsigned int op1len
, unsigned int prec
,
1521 signop sgn
, bool *overflow
)
1523 unsigned HOST_WIDE_INT o0
= 0;
1524 unsigned HOST_WIDE_INT o1
= 0;
1525 unsigned HOST_WIDE_INT x
= 0;
1526 /* We implement subtraction as an in place negate and add. Negation
1527 is just inversion and add 1, so we can do the add of 1 by just
1528 starting the borrow in of the first element at 1. */
1529 unsigned HOST_WIDE_INT borrow
= 0;
1530 unsigned HOST_WIDE_INT old_borrow
= 0;
1532 unsigned HOST_WIDE_INT mask0
, mask1
;
1535 unsigned int len
= MAX (op0len
, op1len
);
1536 mask0
= -top_bit_of (op0
, op0len
, prec
);
1537 mask1
= -top_bit_of (op1
, op1len
, prec
);
1539 /* Subtract all of the explicitly defined elements. */
1540 for (i
= 0; i
< len
; i
++)
1542 o0
= i
< op0len
? (unsigned HOST_WIDE_INT
)op0
[i
] : mask0
;
1543 o1
= i
< op1len
? (unsigned HOST_WIDE_INT
)op1
[i
] : mask1
;
1544 x
= o0
- o1
- borrow
;
1546 old_borrow
= borrow
;
1547 borrow
= borrow
== 0 ? o0
< o1
: o0
<= o1
;
1550 if (len
* HOST_BITS_PER_WIDE_INT
< prec
)
1552 val
[len
] = mask0
- mask1
- borrow
;
1559 unsigned int shift
= -prec
% HOST_BITS_PER_WIDE_INT
;
1562 unsigned HOST_WIDE_INT x
= (o0
^ o1
) & (val
[len
- 1] ^ o0
);
1563 *overflow
= (HOST_WIDE_INT
) (x
<< shift
) < 0;
1567 /* Put the MSB of X and O0 and in the top of the HWI. */
1571 *overflow
= (x
>= o0
);
1573 *overflow
= (x
> o0
);
1577 return canonize (val
, len
, prec
);
1585 /* Compute B_QUOTIENT and B_REMAINDER from B_DIVIDEND/B_DIVISOR. The
1586 algorithm is a small modification of the algorithm in Hacker's
1587 Delight by Warren, which itself is a small modification of Knuth's
1588 algorithm. M is the number of significant elements of U however
1589 there needs to be at least one extra element of B_DIVIDEND
1590 allocated, N is the number of elements of B_DIVISOR. */
1592 divmod_internal_2 (unsigned HOST_HALF_WIDE_INT
*b_quotient
,
1593 unsigned HOST_HALF_WIDE_INT
*b_remainder
,
1594 unsigned HOST_HALF_WIDE_INT
*b_dividend
,
1595 unsigned HOST_HALF_WIDE_INT
*b_divisor
,
1598 /* The "digits" are a HOST_HALF_WIDE_INT which the size of half of a
1599 HOST_WIDE_INT and stored in the lower bits of each word. This
1600 algorithm should work properly on both 32 and 64 bit
1602 unsigned HOST_WIDE_INT b
1603 = (unsigned HOST_WIDE_INT
)1 << HOST_BITS_PER_HALF_WIDE_INT
;
1604 unsigned HOST_WIDE_INT qhat
; /* Estimate of quotient digit. */
1605 unsigned HOST_WIDE_INT rhat
; /* A remainder. */
1606 unsigned HOST_WIDE_INT p
; /* Product of two digits. */
1610 /* Single digit divisor. */
1614 for (j
= m
- 1; j
>= 0; j
--)
1616 b_quotient
[j
] = (k
* b
+ b_dividend
[j
])/b_divisor
[0];
1617 k
= ((k
* b
+ b_dividend
[j
])
1618 - ((unsigned HOST_WIDE_INT
)b_quotient
[j
]
1619 * (unsigned HOST_WIDE_INT
)b_divisor
[0]));
1625 s
= clz_hwi (b_divisor
[n
-1]) - HOST_BITS_PER_HALF_WIDE_INT
; /* CHECK clz */
1629 /* Normalize B_DIVIDEND and B_DIVISOR. Unlike the published
1630 algorithm, we can overwrite b_dividend and b_divisor, so we do
1632 for (i
= n
- 1; i
> 0; i
--)
1633 b_divisor
[i
] = (b_divisor
[i
] << s
)
1634 | (b_divisor
[i
-1] >> (HOST_BITS_PER_HALF_WIDE_INT
- s
));
1635 b_divisor
[0] = b_divisor
[0] << s
;
1637 b_dividend
[m
] = b_dividend
[m
-1] >> (HOST_BITS_PER_HALF_WIDE_INT
- s
);
1638 for (i
= m
- 1; i
> 0; i
--)
1639 b_dividend
[i
] = (b_dividend
[i
] << s
)
1640 | (b_dividend
[i
-1] >> (HOST_BITS_PER_HALF_WIDE_INT
- s
));
1641 b_dividend
[0] = b_dividend
[0] << s
;
1645 for (j
= m
- n
; j
>= 0; j
--)
1647 qhat
= (b_dividend
[j
+n
] * b
+ b_dividend
[j
+n
-1]) / b_divisor
[n
-1];
1648 rhat
= (b_dividend
[j
+n
] * b
+ b_dividend
[j
+n
-1]) - qhat
* b_divisor
[n
-1];
1650 if (qhat
>= b
|| qhat
* b_divisor
[n
-2] > b
* rhat
+ b_dividend
[j
+n
-2])
1653 rhat
+= b_divisor
[n
-1];
1658 /* Multiply and subtract. */
1660 for (i
= 0; i
< n
; i
++)
1662 p
= qhat
* b_divisor
[i
];
1663 t
= b_dividend
[i
+j
] - k
- (p
& HALF_INT_MASK
);
1664 b_dividend
[i
+ j
] = t
;
1665 k
= ((p
>> HOST_BITS_PER_HALF_WIDE_INT
)
1666 - (t
>> HOST_BITS_PER_HALF_WIDE_INT
));
1668 t
= b_dividend
[j
+n
] - k
;
1669 b_dividend
[j
+n
] = t
;
1671 b_quotient
[j
] = qhat
;
1676 for (i
= 0; i
< n
; i
++)
1678 t
= (HOST_WIDE_INT
)b_dividend
[i
+j
] + b_divisor
[i
] + k
;
1679 b_dividend
[i
+j
] = t
;
1680 k
= t
>> HOST_BITS_PER_HALF_WIDE_INT
;
1682 b_dividend
[j
+n
] += k
;
1686 for (i
= 0; i
< n
; i
++)
1687 b_remainder
[i
] = (b_dividend
[i
] >> s
)
1688 | (b_dividend
[i
+1] << (HOST_BITS_PER_HALF_WIDE_INT
- s
));
1690 for (i
= 0; i
< n
; i
++)
1691 b_remainder
[i
] = b_dividend
[i
];
1695 /* Divide DIVIDEND by DIVISOR, which have signedness SGN, and truncate
1696 the result. If QUOTIENT is nonnull, store the value of the quotient
1697 there and return the number of blocks in it. The return value is
1698 not defined otherwise. If REMAINDER is nonnull, store the value
1699 of the remainder there and store the number of blocks in
1700 *REMAINDER_LEN. If OFLOW is not null, store in *OFLOW whether
1701 the division overflowed. */
1703 wi::divmod_internal (HOST_WIDE_INT
*quotient
, unsigned int *remainder_len
,
1704 HOST_WIDE_INT
*remainder
,
1705 const HOST_WIDE_INT
*dividend_val
,
1706 unsigned int dividend_len
, unsigned int dividend_prec
,
1707 const HOST_WIDE_INT
*divisor_val
, unsigned int divisor_len
,
1708 unsigned int divisor_prec
, signop sgn
,
1711 unsigned int dividend_blocks_needed
= 2 * BLOCKS_NEEDED (dividend_prec
);
1712 unsigned int divisor_blocks_needed
= 2 * BLOCKS_NEEDED (divisor_prec
);
1713 unsigned HOST_HALF_WIDE_INT
1714 b_quotient
[4 * MAX_BITSIZE_MODE_ANY_INT
/ HOST_BITS_PER_HALF_WIDE_INT
];
1715 unsigned HOST_HALF_WIDE_INT
1716 b_remainder
[4 * MAX_BITSIZE_MODE_ANY_INT
/ HOST_BITS_PER_HALF_WIDE_INT
];
1717 unsigned HOST_HALF_WIDE_INT
1718 b_dividend
[(4 * MAX_BITSIZE_MODE_ANY_INT
/ HOST_BITS_PER_HALF_WIDE_INT
) + 1];
1719 unsigned HOST_HALF_WIDE_INT
1720 b_divisor
[4 * MAX_BITSIZE_MODE_ANY_INT
/ HOST_BITS_PER_HALF_WIDE_INT
];
1722 bool dividend_neg
= false;
1723 bool divisor_neg
= false;
1724 bool overflow
= false;
1725 wide_int neg_dividend
, neg_divisor
;
1727 wide_int_ref dividend
= wi::storage_ref (dividend_val
, dividend_len
,
1729 wide_int_ref divisor
= wi::storage_ref (divisor_val
, divisor_len
,
1734 /* The smallest signed number / -1 causes overflow. The dividend_len
1735 check is for speed rather than correctness. */
1737 && dividend_len
== BLOCKS_NEEDED (dividend_prec
)
1739 && wi::only_sign_bit_p (dividend
))
1742 /* Handle the overflow cases. Viewed as unsigned value, the quotient of
1743 (signed min / -1) has the same representation as the orignal dividend.
1744 We have traditionally made division by zero act as division by one,
1745 so there too we use the original dividend. */
1756 for (unsigned int i
= 0; i
< dividend_len
; ++i
)
1757 quotient
[i
] = dividend_val
[i
];
1758 return dividend_len
;
1764 /* Do it on the host if you can. */
1766 && wi::fits_shwi_p (dividend
)
1767 && wi::fits_shwi_p (divisor
))
1769 HOST_WIDE_INT o0
= dividend
.to_shwi ();
1770 HOST_WIDE_INT o1
= divisor
.to_shwi ();
1772 if (o0
== HOST_WIDE_INT_MIN
&& o1
== -1)
1774 gcc_checking_assert (dividend_prec
> HOST_BITS_PER_WIDE_INT
);
1777 quotient
[0] = HOST_WIDE_INT_MIN
;
1790 quotient
[0] = o0
/ o1
;
1793 remainder
[0] = o0
% o1
;
1801 && wi::fits_uhwi_p (dividend
)
1802 && wi::fits_uhwi_p (divisor
))
1804 unsigned HOST_WIDE_INT o0
= dividend
.to_uhwi ();
1805 unsigned HOST_WIDE_INT o1
= divisor
.to_uhwi ();
1806 unsigned int quotient_len
= 1;
1810 quotient
[0] = o0
/ o1
;
1811 quotient_len
= canonize_uhwi (quotient
, dividend_prec
);
1815 remainder
[0] = o0
% o1
;
1816 *remainder_len
= canonize_uhwi (remainder
, dividend_prec
);
1818 return quotient_len
;
1821 /* Make the divisor and dividend positive and remember what we
1825 if (wi::neg_p (dividend
))
1827 neg_dividend
= -dividend
;
1828 dividend
= neg_dividend
;
1829 dividend_neg
= true;
1831 if (wi::neg_p (divisor
))
1833 neg_divisor
= -divisor
;
1834 divisor
= neg_divisor
;
1839 wi_unpack (b_dividend
, dividend
.get_val (), dividend
.get_len (),
1840 dividend_blocks_needed
, dividend_prec
, sgn
);
1841 wi_unpack (b_divisor
, divisor
.get_val (), divisor
.get_len (),
1842 divisor_blocks_needed
, divisor_prec
, sgn
);
1844 m
= dividend_blocks_needed
;
1846 while (m
> 1 && b_dividend
[m
- 1] == 0)
1849 n
= divisor_blocks_needed
;
1850 while (n
> 1 && b_divisor
[n
- 1] == 0)
1853 memset (b_quotient
, 0, sizeof (b_quotient
));
1855 divmod_internal_2 (b_quotient
, b_remainder
, b_dividend
, b_divisor
, m
, n
);
1857 unsigned int quotient_len
= 0;
1860 quotient_len
= wi_pack (quotient
, b_quotient
, m
, dividend_prec
);
1861 /* The quotient is neg if exactly one of the divisor or dividend is
1863 if (dividend_neg
!= divisor_neg
)
1864 quotient_len
= wi::sub_large (quotient
, zeros
, 1, quotient
,
1865 quotient_len
, dividend_prec
,
1871 *remainder_len
= wi_pack (remainder
, b_remainder
, n
, dividend_prec
);
1872 /* The remainder is always the same sign as the dividend. */
1874 *remainder_len
= wi::sub_large (remainder
, zeros
, 1, remainder
,
1875 *remainder_len
, dividend_prec
,
1879 return quotient_len
;
1883 * Shifting, rotating and extraction.
1886 /* Left shift XVAL by SHIFT and store the result in VAL. Return the
1887 number of blocks in VAL. Both XVAL and VAL have PRECISION bits. */
1889 wi::lshift_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*xval
,
1890 unsigned int xlen
, unsigned int precision
,
1893 /* Split the shift into a whole-block shift and a subblock shift. */
1894 unsigned int skip
= shift
/ HOST_BITS_PER_WIDE_INT
;
1895 unsigned int small_shift
= shift
% HOST_BITS_PER_WIDE_INT
;
1897 /* The whole-block shift fills with zeros. */
1898 unsigned int len
= BLOCKS_NEEDED (precision
);
1899 for (unsigned int i
= 0; i
< skip
; ++i
)
1902 /* It's easier to handle the simple block case specially. */
1903 if (small_shift
== 0)
1904 for (unsigned int i
= skip
; i
< len
; ++i
)
1905 val
[i
] = safe_uhwi (xval
, xlen
, i
- skip
);
1908 /* The first unfilled output block is a left shift of the first
1909 block in XVAL. The other output blocks contain bits from two
1910 consecutive input blocks. */
1911 unsigned HOST_WIDE_INT carry
= 0;
1912 for (unsigned int i
= skip
; i
< len
; ++i
)
1914 unsigned HOST_WIDE_INT x
= safe_uhwi (xval
, xlen
, i
- skip
);
1915 val
[i
] = (x
<< small_shift
) | carry
;
1916 carry
= x
>> (-small_shift
% HOST_BITS_PER_WIDE_INT
);
1919 return canonize (val
, len
, precision
);
1922 /* Right shift XVAL by SHIFT and store the result in VAL. Return the
1923 number of blocks in VAL. The input has XPRECISION bits and the
1924 output has XPRECISION - SHIFT bits. */
1926 rshift_large_common (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*xval
,
1927 unsigned int xlen
, unsigned int xprecision
,
1930 /* Split the shift into a whole-block shift and a subblock shift. */
1931 unsigned int skip
= shift
/ HOST_BITS_PER_WIDE_INT
;
1932 unsigned int small_shift
= shift
% HOST_BITS_PER_WIDE_INT
;
1934 /* Work out how many blocks are needed to store the significant bits
1935 (excluding the upper zeros or signs). */
1936 unsigned int len
= BLOCKS_NEEDED (xprecision
- shift
);
1938 /* It's easier to handle the simple block case specially. */
1939 if (small_shift
== 0)
1940 for (unsigned int i
= 0; i
< len
; ++i
)
1941 val
[i
] = safe_uhwi (xval
, xlen
, i
+ skip
);
1944 /* Each output block but the last is a combination of two input blocks.
1945 The last block is a right shift of the last block in XVAL. */
1946 unsigned HOST_WIDE_INT curr
= safe_uhwi (xval
, xlen
, skip
);
1947 for (unsigned int i
= 0; i
< len
; ++i
)
1949 val
[i
] = curr
>> small_shift
;
1950 curr
= safe_uhwi (xval
, xlen
, i
+ skip
+ 1);
1951 val
[i
] |= curr
<< (-small_shift
% HOST_BITS_PER_WIDE_INT
);
1957 /* Logically right shift XVAL by SHIFT and store the result in VAL.
1958 Return the number of blocks in VAL. XVAL has XPRECISION bits and
1959 VAL has PRECISION bits. */
1961 wi::lrshift_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*xval
,
1962 unsigned int xlen
, unsigned int xprecision
,
1963 unsigned int precision
, unsigned int shift
)
1965 unsigned int len
= rshift_large_common (val
, xval
, xlen
, xprecision
, shift
);
1967 /* The value we just created has precision XPRECISION - SHIFT.
1968 Zero-extend it to wider precisions. */
1969 if (precision
> xprecision
- shift
)
1971 unsigned int small_prec
= (xprecision
- shift
) % HOST_BITS_PER_WIDE_INT
;
1973 val
[len
- 1] = zext_hwi (val
[len
- 1], small_prec
);
1974 else if (val
[len
- 1] < 0)
1976 /* Add a new block with a zero. */
1981 return canonize (val
, len
, precision
);
1984 /* Arithmetically right shift XVAL by SHIFT and store the result in VAL.
1985 Return the number of blocks in VAL. XVAL has XPRECISION bits and
1986 VAL has PRECISION bits. */
1988 wi::arshift_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*xval
,
1989 unsigned int xlen
, unsigned int xprecision
,
1990 unsigned int precision
, unsigned int shift
)
1992 unsigned int len
= rshift_large_common (val
, xval
, xlen
, xprecision
, shift
);
1994 /* The value we just created has precision XPRECISION - SHIFT.
1995 Sign-extend it to wider types. */
1996 if (precision
> xprecision
- shift
)
1998 unsigned int small_prec
= (xprecision
- shift
) % HOST_BITS_PER_WIDE_INT
;
2000 val
[len
- 1] = sext_hwi (val
[len
- 1], small_prec
);
2002 return canonize (val
, len
, precision
);
2005 /* Return the number of leading (upper) zeros in X. */
2007 wi::clz (const wide_int_ref
&x
)
2009 /* Calculate how many bits there above the highest represented block. */
2010 int count
= x
.precision
- x
.len
* HOST_BITS_PER_WIDE_INT
;
2012 unsigned HOST_WIDE_INT high
= x
.uhigh ();
2014 /* The upper -COUNT bits of HIGH are not part of the value.
2016 high
= (high
<< -count
) >> -count
;
2017 else if (x
.sign_mask () < 0)
2018 /* The upper bit is set, so there are no leading zeros. */
2021 /* We don't need to look below HIGH. Either HIGH is nonzero,
2022 or the top bit of the block below is nonzero; clz_hwi is
2023 HOST_BITS_PER_WIDE_INT in the latter case. */
2024 return count
+ clz_hwi (high
);
2027 /* Return the number of redundant sign bits in X. (That is, the number
2028 of bits immediately below the sign bit that have the same value as
2031 wi::clrsb (const wide_int_ref
&x
)
2033 /* Calculate how many bits there above the highest represented block. */
2034 int count
= x
.precision
- x
.len
* HOST_BITS_PER_WIDE_INT
;
2036 unsigned HOST_WIDE_INT high
= x
.uhigh ();
2037 unsigned HOST_WIDE_INT mask
= -1;
2040 /* The upper -COUNT bits of HIGH are not part of the value.
2041 Clear them from both MASK and HIGH. */
2046 /* If the top bit is 1, count the number of leading 1s. If the top
2047 bit is zero, count the number of leading zeros. */
2048 if (high
> mask
/ 2)
2051 /* There are no sign bits below the top block, so we don't need to look
2052 beyond HIGH. Note that clz_hwi is HOST_BITS_PER_WIDE_INT when
2054 return count
+ clz_hwi (high
) - 1;
2057 /* Return the number of trailing (lower) zeros in X. */
2059 wi::ctz (const wide_int_ref
&x
)
2061 if (x
.len
== 1 && x
.ulow () == 0)
2064 /* Having dealt with the zero case, there must be a block with a
2065 nonzero bit. We don't care about the bits above the first 1. */
2067 while (x
.val
[i
] == 0)
2069 return i
* HOST_BITS_PER_WIDE_INT
+ ctz_hwi (x
.val
[i
]);
2072 /* If X is an exact power of 2, return the base-2 logarithm, otherwise
2075 wi::exact_log2 (const wide_int_ref
&x
)
2077 /* Reject cases where there are implicit -1 blocks above HIGH. */
2078 if (x
.len
* HOST_BITS_PER_WIDE_INT
< x
.precision
&& x
.sign_mask () < 0)
2081 /* Set CRUX to the index of the entry that should be nonzero.
2082 If the top block is zero then the next lowest block (if any)
2083 must have the high bit set. */
2084 unsigned int crux
= x
.len
- 1;
2085 if (crux
> 0 && x
.val
[crux
] == 0)
2088 /* Check that all lower blocks are zero. */
2089 for (unsigned int i
= 0; i
< crux
; ++i
)
2093 /* Get a zero-extended form of block CRUX. */
2094 unsigned HOST_WIDE_INT hwi
= x
.val
[crux
];
2095 if ((crux
+ 1) * HOST_BITS_PER_WIDE_INT
> x
.precision
)
2096 hwi
= zext_hwi (hwi
, x
.precision
% HOST_BITS_PER_WIDE_INT
);
2098 /* Now it's down to whether HWI is a power of 2. */
2099 int res
= ::exact_log2 (hwi
);
2101 res
+= crux
* HOST_BITS_PER_WIDE_INT
;
2105 /* Return the base-2 logarithm of X, rounding down. Return -1 if X is 0. */
2107 wi::floor_log2 (const wide_int_ref
&x
)
2109 return x
.precision
- 1 - clz (x
);
2112 /* Return the index of the first (lowest) set bit in X, counting from 1.
2113 Return 0 if X is 0. */
2115 wi::ffs (const wide_int_ref
&x
)
2117 return eq_p (x
, 0) ? 0 : ctz (x
) + 1;
2120 /* Return true if sign-extending X to have precision PRECISION would give
2121 the minimum signed value at that precision. */
2123 wi::only_sign_bit_p (const wide_int_ref
&x
, unsigned int precision
)
2125 return ctz (x
) + 1 == int (precision
);
2128 /* Return true if X represents the minimum signed value. */
2130 wi::only_sign_bit_p (const wide_int_ref
&x
)
2132 return only_sign_bit_p (x
, x
.precision
);
2136 * Private utilities.
2139 void gt_ggc_mx (widest_int
*) { }
2140 void gt_pch_nx (widest_int
*, void (*) (void *, void *), void *) { }
2141 void gt_pch_nx (widest_int
*) { }
2143 template void wide_int::dump () const;
2144 template void generic_wide_int
<wide_int_ref_storage
<false> >::dump () const;
2145 template void generic_wide_int
<wide_int_ref_storage
<true> >::dump () const;
2146 template void offset_int::dump () const;
2147 template void widest_int::dump () const;
2152 namespace selftest
{
2154 /* Selftests for wide ints. We run these multiple times, once per type. */
2156 /* Helper function for building a test value. */
2158 template <class VALUE_TYPE
>
2162 /* Specializations of the fixture for each wide-int type. */
2164 /* Specialization for VALUE_TYPE == wide_int. */
2170 return wi::shwi (i
, 32);
2173 /* Specialization for VALUE_TYPE == offset_int. */
2179 return offset_int (i
);
2182 /* Specialization for VALUE_TYPE == widest_int. */
2188 return widest_int (i
);
2191 /* Verify that print_dec (WI, ..., SGN) gives the expected string
2192 representation (using base 10). */
2195 assert_deceq (const char *expected
, const wide_int_ref
&wi
, signop sgn
)
2197 char buf
[WIDE_INT_PRINT_BUFFER_SIZE
];
2198 print_dec (wi
, buf
, sgn
);
2199 ASSERT_STREQ (expected
, buf
);
2202 /* Likewise for base 16. */
2205 assert_hexeq (const char *expected
, const wide_int_ref
&wi
)
2207 char buf
[WIDE_INT_PRINT_BUFFER_SIZE
];
2208 print_hex (wi
, buf
);
2209 ASSERT_STREQ (expected
, buf
);
2214 /* Verify that print_dec and print_hex work for VALUE_TYPE. */
2216 template <class VALUE_TYPE
>
2220 VALUE_TYPE a
= from_int
<VALUE_TYPE
> (42);
2221 assert_deceq ("42", a
, SIGNED
);
2222 assert_hexeq ("0x2a", a
);
2225 /* Verify that various operations work correctly for VALUE_TYPE,
2226 unary and binary, using both function syntax, and
2227 overloaded-operators. */
2229 template <class VALUE_TYPE
>
2233 VALUE_TYPE a
= from_int
<VALUE_TYPE
> (7);
2234 VALUE_TYPE b
= from_int
<VALUE_TYPE
> (3);
2236 /* Using functions. */
2237 assert_deceq ("-7", wi::neg (a
), SIGNED
);
2238 assert_deceq ("10", wi::add (a
, b
), SIGNED
);
2239 assert_deceq ("4", wi::sub (a
, b
), SIGNED
);
2240 assert_deceq ("-4", wi::sub (b
, a
), SIGNED
);
2241 assert_deceq ("21", wi::mul (a
, b
), SIGNED
);
2243 /* Using operators. */
2244 assert_deceq ("-7", -a
, SIGNED
);
2245 assert_deceq ("10", a
+ b
, SIGNED
);
2246 assert_deceq ("4", a
- b
, SIGNED
);
2247 assert_deceq ("-4", b
- a
, SIGNED
);
2248 assert_deceq ("21", a
* b
, SIGNED
);
2251 /* Verify that various comparisons work correctly for VALUE_TYPE. */
2253 template <class VALUE_TYPE
>
2257 VALUE_TYPE a
= from_int
<VALUE_TYPE
> (7);
2258 VALUE_TYPE b
= from_int
<VALUE_TYPE
> (3);
2261 ASSERT_TRUE (wi::eq_p (a
, a
));
2262 ASSERT_FALSE (wi::eq_p (a
, b
));
2265 ASSERT_TRUE (wi::ne_p (a
, b
));
2266 ASSERT_FALSE (wi::ne_p (a
, a
));
2269 ASSERT_FALSE (wi::lts_p (a
, a
));
2270 ASSERT_FALSE (wi::lts_p (a
, b
));
2271 ASSERT_TRUE (wi::lts_p (b
, a
));
2274 ASSERT_TRUE (wi::les_p (a
, a
));
2275 ASSERT_FALSE (wi::les_p (a
, b
));
2276 ASSERT_TRUE (wi::les_p (b
, a
));
2279 ASSERT_FALSE (wi::gts_p (a
, a
));
2280 ASSERT_TRUE (wi::gts_p (a
, b
));
2281 ASSERT_FALSE (wi::gts_p (b
, a
));
2284 ASSERT_TRUE (wi::ges_p (a
, a
));
2285 ASSERT_TRUE (wi::ges_p (a
, b
));
2286 ASSERT_FALSE (wi::ges_p (b
, a
));
2289 ASSERT_EQ (-1, wi::cmps (b
, a
));
2290 ASSERT_EQ (0, wi::cmps (a
, a
));
2291 ASSERT_EQ (1, wi::cmps (a
, b
));
2294 /* Run all of the selftests, using the given VALUE_TYPE. */
2296 template <class VALUE_TYPE
>
2297 static void run_all_wide_int_tests ()
2299 test_printing
<VALUE_TYPE
> ();
2300 test_ops
<VALUE_TYPE
> ();
2301 test_comparisons
<VALUE_TYPE
> ();
2304 /* Run all of the selftests within this file, for all value types. */
2307 wide_int_cc_tests ()
2309 run_all_wide_int_tests
<wide_int
> ();
2310 run_all_wide_int_tests
<offset_int
> ();
2311 run_all_wide_int_tests
<widest_int
> ();
2314 } // namespace selftest
2315 #endif /* CHECKING_P */