1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
36 #include "coretypes.h"
41 #include "gimple-expr.h"
46 #include "stringpool.h"
52 #include "rtl-error.h"
54 #include "fold-const.h"
55 #include "stor-layout.h"
62 #include "optabs-tree.h"
64 #include "langhooks.h"
65 #include "common/common-target.h"
67 #include "tree-pass.h"
71 #include "cfgcleanup.h"
72 #include "cfgexpand.h"
73 #include "shrink-wrap.h"
76 #include "tree-chkp.h"
80 #include "stringpool.h"
83 /* So we can assign to cfun in this file. */
86 #ifndef STACK_ALIGNMENT_NEEDED
87 #define STACK_ALIGNMENT_NEEDED 1
90 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
92 /* Round a value to the lowest integer less than it that is a multiple of
93 the required alignment. Avoid using division in case the value is
94 negative. Assume the alignment is a power of two. */
95 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
97 /* Similar, but round to the next highest integer that meets the
99 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
101 /* Nonzero once virtual register instantiation has been done.
102 assign_stack_local uses frame_pointer_rtx when this is nonzero.
103 calls.c:emit_library_call_value_1 uses it to set up
104 post-instantiation libcalls. */
105 int virtuals_instantiated
;
107 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
108 static GTY(()) int funcdef_no
;
110 /* These variables hold pointers to functions to create and destroy
111 target specific, per-function data structures. */
112 struct machine_function
* (*init_machine_status
) (void);
114 /* The currently compiled function. */
115 struct function
*cfun
= 0;
117 /* These hashes record the prologue and epilogue insns. */
119 struct insn_cache_hasher
: ggc_cache_ptr_hash
<rtx_def
>
121 static hashval_t
hash (rtx x
) { return htab_hash_pointer (x
); }
122 static bool equal (rtx a
, rtx b
) { return a
== b
; }
126 hash_table
<insn_cache_hasher
> *prologue_insn_hash
;
128 hash_table
<insn_cache_hasher
> *epilogue_insn_hash
;
131 hash_table
<used_type_hasher
> *types_used_by_vars_hash
= NULL
;
132 vec
<tree
, va_gc
> *types_used_by_cur_var_decl
;
134 /* Forward declarations. */
136 static struct temp_slot
*find_temp_slot_from_address (rtx
);
137 static void pad_to_arg_alignment (struct args_size
*, int, struct args_size
*);
138 static void pad_below (struct args_size
*, machine_mode
, tree
);
139 static void reorder_blocks_1 (rtx_insn
*, tree
, vec
<tree
> *);
140 static int all_blocks (tree
, tree
*);
141 static tree
*get_block_vector (tree
, int *);
142 extern tree
debug_find_var_in_block_tree (tree
, tree
);
143 /* We always define `record_insns' even if it's not used so that we
144 can always export `prologue_epilogue_contains'. */
145 static void record_insns (rtx_insn
*, rtx
, hash_table
<insn_cache_hasher
> **)
147 static bool contains (const rtx_insn
*, hash_table
<insn_cache_hasher
> *);
148 static void prepare_function_start (void);
149 static void do_clobber_return_reg (rtx
, void *);
150 static void do_use_return_reg (rtx
, void *);
153 /* Stack of nested functions. */
154 /* Keep track of the cfun stack. */
156 static vec
<function
*> function_context_stack
;
158 /* Save the current context for compilation of a nested function.
159 This is called from language-specific code. */
162 push_function_context (void)
165 allocate_struct_function (NULL
, false);
167 function_context_stack
.safe_push (cfun
);
171 /* Restore the last saved context, at the end of a nested function.
172 This function is called from language-specific code. */
175 pop_function_context (void)
177 struct function
*p
= function_context_stack
.pop ();
179 current_function_decl
= p
->decl
;
181 /* Reset variables that have known state during rtx generation. */
182 virtuals_instantiated
= 0;
183 generating_concat_p
= 1;
186 /* Clear out all parts of the state in F that can safely be discarded
187 after the function has been parsed, but not compiled, to let
188 garbage collection reclaim the memory. */
191 free_after_parsing (struct function
*f
)
196 /* Clear out all parts of the state in F that can safely be discarded
197 after the function has been compiled, to let garbage collection
198 reclaim the memory. */
201 free_after_compilation (struct function
*f
)
203 prologue_insn_hash
= NULL
;
204 epilogue_insn_hash
= NULL
;
206 free (crtl
->emit
.regno_pointer_align
);
208 memset (crtl
, 0, sizeof (struct rtl_data
));
212 f
->curr_properties
&= ~PROP_cfg
;
214 regno_reg_rtx
= NULL
;
217 /* Return size needed for stack frame based on slots so far allocated.
218 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
219 the caller may have to do that. */
222 get_frame_size (void)
224 if (FRAME_GROWS_DOWNWARD
)
225 return -frame_offset
;
230 /* Issue an error message and return TRUE if frame OFFSET overflows in
231 the signed target pointer arithmetics for function FUNC. Otherwise
235 frame_offset_overflow (HOST_WIDE_INT offset
, tree func
)
237 unsigned HOST_WIDE_INT size
= FRAME_GROWS_DOWNWARD
? -offset
: offset
;
239 if (size
> (HOST_WIDE_INT_1U
<< (GET_MODE_BITSIZE (Pmode
) - 1))
240 /* Leave room for the fixed part of the frame. */
241 - 64 * UNITS_PER_WORD
)
243 error_at (DECL_SOURCE_LOCATION (func
),
244 "total size of local objects too large");
251 /* Return the minimum spill slot alignment for a register of mode MODE. */
254 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED
)
256 return STACK_SLOT_ALIGNMENT (NULL_TREE
, mode
, GET_MODE_ALIGNMENT (mode
));
259 /* Return stack slot alignment in bits for TYPE and MODE. */
262 get_stack_local_alignment (tree type
, machine_mode mode
)
264 unsigned int alignment
;
267 alignment
= BIGGEST_ALIGNMENT
;
269 alignment
= GET_MODE_ALIGNMENT (mode
);
271 /* Allow the frond-end to (possibly) increase the alignment of this
274 type
= lang_hooks
.types
.type_for_mode (mode
, 0);
276 return STACK_SLOT_ALIGNMENT (type
, mode
, alignment
);
279 /* Determine whether it is possible to fit a stack slot of size SIZE and
280 alignment ALIGNMENT into an area in the stack frame that starts at
281 frame offset START and has a length of LENGTH. If so, store the frame
282 offset to be used for the stack slot in *POFFSET and return true;
283 return false otherwise. This function will extend the frame size when
284 given a start/length pair that lies at the end of the frame. */
287 try_fit_stack_local (HOST_WIDE_INT start
, HOST_WIDE_INT length
,
288 HOST_WIDE_INT size
, unsigned int alignment
,
289 HOST_WIDE_INT
*poffset
)
291 HOST_WIDE_INT this_frame_offset
;
292 int frame_off
, frame_alignment
, frame_phase
;
294 /* Calculate how many bytes the start of local variables is off from
296 frame_alignment
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
297 frame_off
= STARTING_FRAME_OFFSET
% frame_alignment
;
298 frame_phase
= frame_off
? frame_alignment
- frame_off
: 0;
300 /* Round the frame offset to the specified alignment. */
302 /* We must be careful here, since FRAME_OFFSET might be negative and
303 division with a negative dividend isn't as well defined as we might
304 like. So we instead assume that ALIGNMENT is a power of two and
305 use logical operations which are unambiguous. */
306 if (FRAME_GROWS_DOWNWARD
)
308 = (FLOOR_ROUND (start
+ length
- size
- frame_phase
,
309 (unsigned HOST_WIDE_INT
) alignment
)
313 = (CEIL_ROUND (start
- frame_phase
,
314 (unsigned HOST_WIDE_INT
) alignment
)
317 /* See if it fits. If this space is at the edge of the frame,
318 consider extending the frame to make it fit. Our caller relies on
319 this when allocating a new slot. */
320 if (frame_offset
== start
&& this_frame_offset
< frame_offset
)
321 frame_offset
= this_frame_offset
;
322 else if (this_frame_offset
< start
)
324 else if (start
+ length
== frame_offset
325 && this_frame_offset
+ size
> start
+ length
)
326 frame_offset
= this_frame_offset
+ size
;
327 else if (this_frame_offset
+ size
> start
+ length
)
330 *poffset
= this_frame_offset
;
334 /* Create a new frame_space structure describing free space in the stack
335 frame beginning at START and ending at END, and chain it into the
336 function's frame_space_list. */
339 add_frame_space (HOST_WIDE_INT start
, HOST_WIDE_INT end
)
341 struct frame_space
*space
= ggc_alloc
<frame_space
> ();
342 space
->next
= crtl
->frame_space_list
;
343 crtl
->frame_space_list
= space
;
344 space
->start
= start
;
345 space
->length
= end
- start
;
348 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
349 with machine mode MODE.
351 ALIGN controls the amount of alignment for the address of the slot:
352 0 means according to MODE,
353 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
354 -2 means use BITS_PER_UNIT,
355 positive specifies alignment boundary in bits.
357 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
358 alignment and ASLK_RECORD_PAD bit set if we should remember
359 extra space we allocated for alignment purposes. When we are
360 called from assign_stack_temp_for_type, it is not set so we don't
361 track the same stack slot in two independent lists.
363 We do not round to stack_boundary here. */
366 assign_stack_local_1 (machine_mode mode
, HOST_WIDE_INT size
,
370 int bigend_correction
= 0;
371 HOST_WIDE_INT slot_offset
= 0, old_frame_offset
;
372 unsigned int alignment
, alignment_in_bits
;
376 alignment
= get_stack_local_alignment (NULL
, mode
);
377 alignment
/= BITS_PER_UNIT
;
379 else if (align
== -1)
381 alignment
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
382 size
= CEIL_ROUND (size
, alignment
);
384 else if (align
== -2)
385 alignment
= 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
387 alignment
= align
/ BITS_PER_UNIT
;
389 alignment_in_bits
= alignment
* BITS_PER_UNIT
;
391 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
392 if (alignment_in_bits
> MAX_SUPPORTED_STACK_ALIGNMENT
)
394 alignment_in_bits
= MAX_SUPPORTED_STACK_ALIGNMENT
;
395 alignment
= alignment_in_bits
/ BITS_PER_UNIT
;
398 if (SUPPORTS_STACK_ALIGNMENT
)
400 if (crtl
->stack_alignment_estimated
< alignment_in_bits
)
402 if (!crtl
->stack_realign_processed
)
403 crtl
->stack_alignment_estimated
= alignment_in_bits
;
406 /* If stack is realigned and stack alignment value
407 hasn't been finalized, it is OK not to increase
408 stack_alignment_estimated. The bigger alignment
409 requirement is recorded in stack_alignment_needed
411 gcc_assert (!crtl
->stack_realign_finalized
);
412 if (!crtl
->stack_realign_needed
)
414 /* It is OK to reduce the alignment as long as the
415 requested size is 0 or the estimated stack
416 alignment >= mode alignment. */
417 gcc_assert ((kind
& ASLK_REDUCE_ALIGN
)
419 || (crtl
->stack_alignment_estimated
420 >= GET_MODE_ALIGNMENT (mode
)));
421 alignment_in_bits
= crtl
->stack_alignment_estimated
;
422 alignment
= alignment_in_bits
/ BITS_PER_UNIT
;
428 if (crtl
->stack_alignment_needed
< alignment_in_bits
)
429 crtl
->stack_alignment_needed
= alignment_in_bits
;
430 if (crtl
->max_used_stack_slot_alignment
< alignment_in_bits
)
431 crtl
->max_used_stack_slot_alignment
= alignment_in_bits
;
433 if (mode
!= BLKmode
|| size
!= 0)
435 if (kind
& ASLK_RECORD_PAD
)
437 struct frame_space
**psp
;
439 for (psp
= &crtl
->frame_space_list
; *psp
; psp
= &(*psp
)->next
)
441 struct frame_space
*space
= *psp
;
442 if (!try_fit_stack_local (space
->start
, space
->length
, size
,
443 alignment
, &slot_offset
))
446 if (slot_offset
> space
->start
)
447 add_frame_space (space
->start
, slot_offset
);
448 if (slot_offset
+ size
< space
->start
+ space
->length
)
449 add_frame_space (slot_offset
+ size
,
450 space
->start
+ space
->length
);
455 else if (!STACK_ALIGNMENT_NEEDED
)
457 slot_offset
= frame_offset
;
461 old_frame_offset
= frame_offset
;
463 if (FRAME_GROWS_DOWNWARD
)
465 frame_offset
-= size
;
466 try_fit_stack_local (frame_offset
, size
, size
, alignment
, &slot_offset
);
468 if (kind
& ASLK_RECORD_PAD
)
470 if (slot_offset
> frame_offset
)
471 add_frame_space (frame_offset
, slot_offset
);
472 if (slot_offset
+ size
< old_frame_offset
)
473 add_frame_space (slot_offset
+ size
, old_frame_offset
);
478 frame_offset
+= size
;
479 try_fit_stack_local (old_frame_offset
, size
, size
, alignment
, &slot_offset
);
481 if (kind
& ASLK_RECORD_PAD
)
483 if (slot_offset
> old_frame_offset
)
484 add_frame_space (old_frame_offset
, slot_offset
);
485 if (slot_offset
+ size
< frame_offset
)
486 add_frame_space (slot_offset
+ size
, frame_offset
);
491 /* On a big-endian machine, if we are allocating more space than we will use,
492 use the least significant bytes of those that are allocated. */
493 if (BYTES_BIG_ENDIAN
&& mode
!= BLKmode
&& GET_MODE_SIZE (mode
) < size
)
494 bigend_correction
= size
- GET_MODE_SIZE (mode
);
496 /* If we have already instantiated virtual registers, return the actual
497 address relative to the frame pointer. */
498 if (virtuals_instantiated
)
499 addr
= plus_constant (Pmode
, frame_pointer_rtx
,
501 (slot_offset
+ bigend_correction
502 + STARTING_FRAME_OFFSET
, Pmode
));
504 addr
= plus_constant (Pmode
, virtual_stack_vars_rtx
,
506 (slot_offset
+ bigend_correction
,
509 x
= gen_rtx_MEM (mode
, addr
);
510 set_mem_align (x
, alignment_in_bits
);
511 MEM_NOTRAP_P (x
) = 1;
513 vec_safe_push (stack_slot_list
, x
);
515 if (frame_offset_overflow (frame_offset
, current_function_decl
))
521 /* Wrap up assign_stack_local_1 with last parameter as false. */
524 assign_stack_local (machine_mode mode
, HOST_WIDE_INT size
, int align
)
526 return assign_stack_local_1 (mode
, size
, align
, ASLK_RECORD_PAD
);
529 /* In order to evaluate some expressions, such as function calls returning
530 structures in memory, we need to temporarily allocate stack locations.
531 We record each allocated temporary in the following structure.
533 Associated with each temporary slot is a nesting level. When we pop up
534 one level, all temporaries associated with the previous level are freed.
535 Normally, all temporaries are freed after the execution of the statement
536 in which they were created. However, if we are inside a ({...}) grouping,
537 the result may be in a temporary and hence must be preserved. If the
538 result could be in a temporary, we preserve it if we can determine which
539 one it is in. If we cannot determine which temporary may contain the
540 result, all temporaries are preserved. A temporary is preserved by
541 pretending it was allocated at the previous nesting level. */
543 struct GTY(()) temp_slot
{
544 /* Points to next temporary slot. */
545 struct temp_slot
*next
;
546 /* Points to previous temporary slot. */
547 struct temp_slot
*prev
;
548 /* The rtx to used to reference the slot. */
550 /* The size, in units, of the slot. */
552 /* The type of the object in the slot, or zero if it doesn't correspond
553 to a type. We use this to determine whether a slot can be reused.
554 It can be reused if objects of the type of the new slot will always
555 conflict with objects of the type of the old slot. */
557 /* The alignment (in bits) of the slot. */
559 /* Nonzero if this temporary is currently in use. */
561 /* Nesting level at which this slot is being used. */
563 /* The offset of the slot from the frame_pointer, including extra space
564 for alignment. This info is for combine_temp_slots. */
565 HOST_WIDE_INT base_offset
;
566 /* The size of the slot, including extra space for alignment. This
567 info is for combine_temp_slots. */
568 HOST_WIDE_INT full_size
;
571 /* Entry for the below hash table. */
572 struct GTY((for_user
)) temp_slot_address_entry
{
575 struct temp_slot
*temp_slot
;
578 struct temp_address_hasher
: ggc_ptr_hash
<temp_slot_address_entry
>
580 static hashval_t
hash (temp_slot_address_entry
*);
581 static bool equal (temp_slot_address_entry
*, temp_slot_address_entry
*);
584 /* A table of addresses that represent a stack slot. The table is a mapping
585 from address RTXen to a temp slot. */
586 static GTY(()) hash_table
<temp_address_hasher
> *temp_slot_address_table
;
587 static size_t n_temp_slots_in_use
;
589 /* Removes temporary slot TEMP from LIST. */
592 cut_slot_from_list (struct temp_slot
*temp
, struct temp_slot
**list
)
595 temp
->next
->prev
= temp
->prev
;
597 temp
->prev
->next
= temp
->next
;
601 temp
->prev
= temp
->next
= NULL
;
604 /* Inserts temporary slot TEMP to LIST. */
607 insert_slot_to_list (struct temp_slot
*temp
, struct temp_slot
**list
)
611 (*list
)->prev
= temp
;
616 /* Returns the list of used temp slots at LEVEL. */
618 static struct temp_slot
**
619 temp_slots_at_level (int level
)
621 if (level
>= (int) vec_safe_length (used_temp_slots
))
622 vec_safe_grow_cleared (used_temp_slots
, level
+ 1);
624 return &(*used_temp_slots
)[level
];
627 /* Returns the maximal temporary slot level. */
630 max_slot_level (void)
632 if (!used_temp_slots
)
635 return used_temp_slots
->length () - 1;
638 /* Moves temporary slot TEMP to LEVEL. */
641 move_slot_to_level (struct temp_slot
*temp
, int level
)
643 cut_slot_from_list (temp
, temp_slots_at_level (temp
->level
));
644 insert_slot_to_list (temp
, temp_slots_at_level (level
));
648 /* Make temporary slot TEMP available. */
651 make_slot_available (struct temp_slot
*temp
)
653 cut_slot_from_list (temp
, temp_slots_at_level (temp
->level
));
654 insert_slot_to_list (temp
, &avail_temp_slots
);
657 n_temp_slots_in_use
--;
660 /* Compute the hash value for an address -> temp slot mapping.
661 The value is cached on the mapping entry. */
663 temp_slot_address_compute_hash (struct temp_slot_address_entry
*t
)
665 int do_not_record
= 0;
666 return hash_rtx (t
->address
, GET_MODE (t
->address
),
667 &do_not_record
, NULL
, false);
670 /* Return the hash value for an address -> temp slot mapping. */
672 temp_address_hasher::hash (temp_slot_address_entry
*t
)
677 /* Compare two address -> temp slot mapping entries. */
679 temp_address_hasher::equal (temp_slot_address_entry
*t1
,
680 temp_slot_address_entry
*t2
)
682 return exp_equiv_p (t1
->address
, t2
->address
, 0, true);
685 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
687 insert_temp_slot_address (rtx address
, struct temp_slot
*temp_slot
)
689 struct temp_slot_address_entry
*t
= ggc_alloc
<temp_slot_address_entry
> ();
690 t
->address
= address
;
691 t
->temp_slot
= temp_slot
;
692 t
->hash
= temp_slot_address_compute_hash (t
);
693 *temp_slot_address_table
->find_slot_with_hash (t
, t
->hash
, INSERT
) = t
;
696 /* Remove an address -> temp slot mapping entry if the temp slot is
697 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
699 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry
**slot
, void *)
701 const struct temp_slot_address_entry
*t
= *slot
;
702 if (! t
->temp_slot
->in_use
)
703 temp_slot_address_table
->clear_slot (slot
);
707 /* Remove all mappings of addresses to unused temp slots. */
709 remove_unused_temp_slot_addresses (void)
711 /* Use quicker clearing if there aren't any active temp slots. */
712 if (n_temp_slots_in_use
)
713 temp_slot_address_table
->traverse
714 <void *, remove_unused_temp_slot_addresses_1
> (NULL
);
716 temp_slot_address_table
->empty ();
719 /* Find the temp slot corresponding to the object at address X. */
721 static struct temp_slot
*
722 find_temp_slot_from_address (rtx x
)
725 struct temp_slot_address_entry tmp
, *t
;
727 /* First try the easy way:
728 See if X exists in the address -> temp slot mapping. */
730 tmp
.temp_slot
= NULL
;
731 tmp
.hash
= temp_slot_address_compute_hash (&tmp
);
732 t
= temp_slot_address_table
->find_with_hash (&tmp
, tmp
.hash
);
736 /* If we have a sum involving a register, see if it points to a temp
738 if (GET_CODE (x
) == PLUS
&& REG_P (XEXP (x
, 0))
739 && (p
= find_temp_slot_from_address (XEXP (x
, 0))) != 0)
741 else if (GET_CODE (x
) == PLUS
&& REG_P (XEXP (x
, 1))
742 && (p
= find_temp_slot_from_address (XEXP (x
, 1))) != 0)
745 /* Last resort: Address is a virtual stack var address. */
746 if (GET_CODE (x
) == PLUS
747 && XEXP (x
, 0) == virtual_stack_vars_rtx
748 && CONST_INT_P (XEXP (x
, 1)))
751 for (i
= max_slot_level (); i
>= 0; i
--)
752 for (p
= *temp_slots_at_level (i
); p
; p
= p
->next
)
754 if (INTVAL (XEXP (x
, 1)) >= p
->base_offset
755 && INTVAL (XEXP (x
, 1)) < p
->base_offset
+ p
->full_size
)
763 /* Allocate a temporary stack slot and record it for possible later
766 MODE is the machine mode to be given to the returned rtx.
768 SIZE is the size in units of the space required. We do no rounding here
769 since assign_stack_local will do any required rounding.
771 TYPE is the type that will be used for the stack slot. */
774 assign_stack_temp_for_type (machine_mode mode
, HOST_WIDE_INT size
,
778 struct temp_slot
*p
, *best_p
= 0, *selected
= NULL
, **pp
;
781 /* If SIZE is -1 it means that somebody tried to allocate a temporary
782 of a variable size. */
783 gcc_assert (size
!= -1);
785 align
= get_stack_local_alignment (type
, mode
);
787 /* Try to find an available, already-allocated temporary of the proper
788 mode which meets the size and alignment requirements. Choose the
789 smallest one with the closest alignment.
791 If assign_stack_temp is called outside of the tree->rtl expansion,
792 we cannot reuse the stack slots (that may still refer to
793 VIRTUAL_STACK_VARS_REGNUM). */
794 if (!virtuals_instantiated
)
796 for (p
= avail_temp_slots
; p
; p
= p
->next
)
798 if (p
->align
>= align
&& p
->size
>= size
799 && GET_MODE (p
->slot
) == mode
800 && objects_must_conflict_p (p
->type
, type
)
801 && (best_p
== 0 || best_p
->size
> p
->size
802 || (best_p
->size
== p
->size
&& best_p
->align
> p
->align
)))
804 if (p
->align
== align
&& p
->size
== size
)
807 cut_slot_from_list (selected
, &avail_temp_slots
);
816 /* Make our best, if any, the one to use. */
820 cut_slot_from_list (selected
, &avail_temp_slots
);
822 /* If there are enough aligned bytes left over, make them into a new
823 temp_slot so that the extra bytes don't get wasted. Do this only
824 for BLKmode slots, so that we can be sure of the alignment. */
825 if (GET_MODE (best_p
->slot
) == BLKmode
)
827 int alignment
= best_p
->align
/ BITS_PER_UNIT
;
828 HOST_WIDE_INT rounded_size
= CEIL_ROUND (size
, alignment
);
830 if (best_p
->size
- rounded_size
>= alignment
)
832 p
= ggc_alloc
<temp_slot
> ();
834 p
->size
= best_p
->size
- rounded_size
;
835 p
->base_offset
= best_p
->base_offset
+ rounded_size
;
836 p
->full_size
= best_p
->full_size
- rounded_size
;
837 p
->slot
= adjust_address_nv (best_p
->slot
, BLKmode
, rounded_size
);
838 p
->align
= best_p
->align
;
839 p
->type
= best_p
->type
;
840 insert_slot_to_list (p
, &avail_temp_slots
);
842 vec_safe_push (stack_slot_list
, p
->slot
);
844 best_p
->size
= rounded_size
;
845 best_p
->full_size
= rounded_size
;
850 /* If we still didn't find one, make a new temporary. */
853 HOST_WIDE_INT frame_offset_old
= frame_offset
;
855 p
= ggc_alloc
<temp_slot
> ();
857 /* We are passing an explicit alignment request to assign_stack_local.
858 One side effect of that is assign_stack_local will not round SIZE
859 to ensure the frame offset remains suitably aligned.
861 So for requests which depended on the rounding of SIZE, we go ahead
862 and round it now. We also make sure ALIGNMENT is at least
863 BIGGEST_ALIGNMENT. */
864 gcc_assert (mode
!= BLKmode
|| align
== BIGGEST_ALIGNMENT
);
865 p
->slot
= assign_stack_local_1 (mode
,
875 /* The following slot size computation is necessary because we don't
876 know the actual size of the temporary slot until assign_stack_local
877 has performed all the frame alignment and size rounding for the
878 requested temporary. Note that extra space added for alignment
879 can be either above or below this stack slot depending on which
880 way the frame grows. We include the extra space if and only if it
881 is above this slot. */
882 if (FRAME_GROWS_DOWNWARD
)
883 p
->size
= frame_offset_old
- frame_offset
;
887 /* Now define the fields used by combine_temp_slots. */
888 if (FRAME_GROWS_DOWNWARD
)
890 p
->base_offset
= frame_offset
;
891 p
->full_size
= frame_offset_old
- frame_offset
;
895 p
->base_offset
= frame_offset_old
;
896 p
->full_size
= frame_offset
- frame_offset_old
;
905 p
->level
= temp_slot_level
;
906 n_temp_slots_in_use
++;
908 pp
= temp_slots_at_level (p
->level
);
909 insert_slot_to_list (p
, pp
);
910 insert_temp_slot_address (XEXP (p
->slot
, 0), p
);
912 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
913 slot
= gen_rtx_MEM (mode
, XEXP (p
->slot
, 0));
914 vec_safe_push (stack_slot_list
, slot
);
916 /* If we know the alias set for the memory that will be used, use
917 it. If there's no TYPE, then we don't know anything about the
918 alias set for the memory. */
919 set_mem_alias_set (slot
, type
? get_alias_set (type
) : 0);
920 set_mem_align (slot
, align
);
922 /* If a type is specified, set the relevant flags. */
924 MEM_VOLATILE_P (slot
) = TYPE_VOLATILE (type
);
925 MEM_NOTRAP_P (slot
) = 1;
930 /* Allocate a temporary stack slot and record it for possible later
931 reuse. First two arguments are same as in preceding function. */
934 assign_stack_temp (machine_mode mode
, HOST_WIDE_INT size
)
936 return assign_stack_temp_for_type (mode
, size
, NULL_TREE
);
939 /* Assign a temporary.
940 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
941 and so that should be used in error messages. In either case, we
942 allocate of the given type.
943 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
944 it is 0 if a register is OK.
945 DONT_PROMOTE is 1 if we should not promote values in register
949 assign_temp (tree type_or_decl
, int memory_required
,
950 int dont_promote ATTRIBUTE_UNUSED
)
958 if (DECL_P (type_or_decl
))
959 decl
= type_or_decl
, type
= TREE_TYPE (decl
);
961 decl
= NULL
, type
= type_or_decl
;
963 mode
= TYPE_MODE (type
);
965 unsignedp
= TYPE_UNSIGNED (type
);
968 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
969 end. See also create_tmp_var for the gimplification-time check. */
970 gcc_assert (!TREE_ADDRESSABLE (type
) && COMPLETE_TYPE_P (type
));
972 if (mode
== BLKmode
|| memory_required
)
974 HOST_WIDE_INT size
= int_size_in_bytes (type
);
977 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
978 problems with allocating the stack space. */
982 /* Unfortunately, we don't yet know how to allocate variable-sized
983 temporaries. However, sometimes we can find a fixed upper limit on
984 the size, so try that instead. */
986 size
= max_int_size_in_bytes (type
);
988 /* The size of the temporary may be too large to fit into an integer. */
989 /* ??? Not sure this should happen except for user silliness, so limit
990 this to things that aren't compiler-generated temporaries. The
991 rest of the time we'll die in assign_stack_temp_for_type. */
992 if (decl
&& size
== -1
993 && TREE_CODE (TYPE_SIZE_UNIT (type
)) == INTEGER_CST
)
995 error ("size of variable %q+D is too large", decl
);
999 tmp
= assign_stack_temp_for_type (mode
, size
, type
);
1005 mode
= promote_mode (type
, mode
, &unsignedp
);
1008 return gen_reg_rtx (mode
);
1011 /* Combine temporary stack slots which are adjacent on the stack.
1013 This allows for better use of already allocated stack space. This is only
1014 done for BLKmode slots because we can be sure that we won't have alignment
1015 problems in this case. */
1018 combine_temp_slots (void)
1020 struct temp_slot
*p
, *q
, *next
, *next_q
;
1023 /* We can't combine slots, because the information about which slot
1024 is in which alias set will be lost. */
1025 if (flag_strict_aliasing
)
1028 /* If there are a lot of temp slots, don't do anything unless
1029 high levels of optimization. */
1030 if (! flag_expensive_optimizations
)
1031 for (p
= avail_temp_slots
, num_slots
= 0; p
; p
= p
->next
, num_slots
++)
1032 if (num_slots
> 100 || (num_slots
> 10 && optimize
== 0))
1035 for (p
= avail_temp_slots
; p
; p
= next
)
1041 if (GET_MODE (p
->slot
) != BLKmode
)
1044 for (q
= p
->next
; q
; q
= next_q
)
1050 if (GET_MODE (q
->slot
) != BLKmode
)
1053 if (p
->base_offset
+ p
->full_size
== q
->base_offset
)
1055 /* Q comes after P; combine Q into P. */
1057 p
->full_size
+= q
->full_size
;
1060 else if (q
->base_offset
+ q
->full_size
== p
->base_offset
)
1062 /* P comes after Q; combine P into Q. */
1064 q
->full_size
+= p
->full_size
;
1069 cut_slot_from_list (q
, &avail_temp_slots
);
1072 /* Either delete P or advance past it. */
1074 cut_slot_from_list (p
, &avail_temp_slots
);
1078 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1079 slot that previously was known by OLD_RTX. */
1082 update_temp_slot_address (rtx old_rtx
, rtx new_rtx
)
1084 struct temp_slot
*p
;
1086 if (rtx_equal_p (old_rtx
, new_rtx
))
1089 p
= find_temp_slot_from_address (old_rtx
);
1091 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1092 NEW_RTX is a register, see if one operand of the PLUS is a
1093 temporary location. If so, NEW_RTX points into it. Otherwise,
1094 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1095 in common between them. If so, try a recursive call on those
1099 if (GET_CODE (old_rtx
) != PLUS
)
1102 if (REG_P (new_rtx
))
1104 update_temp_slot_address (XEXP (old_rtx
, 0), new_rtx
);
1105 update_temp_slot_address (XEXP (old_rtx
, 1), new_rtx
);
1108 else if (GET_CODE (new_rtx
) != PLUS
)
1111 if (rtx_equal_p (XEXP (old_rtx
, 0), XEXP (new_rtx
, 0)))
1112 update_temp_slot_address (XEXP (old_rtx
, 1), XEXP (new_rtx
, 1));
1113 else if (rtx_equal_p (XEXP (old_rtx
, 1), XEXP (new_rtx
, 0)))
1114 update_temp_slot_address (XEXP (old_rtx
, 0), XEXP (new_rtx
, 1));
1115 else if (rtx_equal_p (XEXP (old_rtx
, 0), XEXP (new_rtx
, 1)))
1116 update_temp_slot_address (XEXP (old_rtx
, 1), XEXP (new_rtx
, 0));
1117 else if (rtx_equal_p (XEXP (old_rtx
, 1), XEXP (new_rtx
, 1)))
1118 update_temp_slot_address (XEXP (old_rtx
, 0), XEXP (new_rtx
, 0));
1123 /* Otherwise add an alias for the temp's address. */
1124 insert_temp_slot_address (new_rtx
, p
);
1127 /* If X could be a reference to a temporary slot, mark that slot as
1128 belonging to the to one level higher than the current level. If X
1129 matched one of our slots, just mark that one. Otherwise, we can't
1130 easily predict which it is, so upgrade all of them.
1132 This is called when an ({...}) construct occurs and a statement
1133 returns a value in memory. */
1136 preserve_temp_slots (rtx x
)
1138 struct temp_slot
*p
= 0, *next
;
1143 /* If X is a register that is being used as a pointer, see if we have
1144 a temporary slot we know it points to. */
1145 if (REG_P (x
) && REG_POINTER (x
))
1146 p
= find_temp_slot_from_address (x
);
1148 /* If X is not in memory or is at a constant address, it cannot be in
1149 a temporary slot. */
1150 if (p
== 0 && (!MEM_P (x
) || CONSTANT_P (XEXP (x
, 0))))
1153 /* First see if we can find a match. */
1155 p
= find_temp_slot_from_address (XEXP (x
, 0));
1159 if (p
->level
== temp_slot_level
)
1160 move_slot_to_level (p
, temp_slot_level
- 1);
1164 /* Otherwise, preserve all non-kept slots at this level. */
1165 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1168 move_slot_to_level (p
, temp_slot_level
- 1);
1172 /* Free all temporaries used so far. This is normally called at the
1173 end of generating code for a statement. */
1176 free_temp_slots (void)
1178 struct temp_slot
*p
, *next
;
1179 bool some_available
= false;
1181 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1184 make_slot_available (p
);
1185 some_available
= true;
1190 remove_unused_temp_slot_addresses ();
1191 combine_temp_slots ();
1195 /* Push deeper into the nesting level for stack temporaries. */
1198 push_temp_slots (void)
1203 /* Pop a temporary nesting level. All slots in use in the current level
1207 pop_temp_slots (void)
1213 /* Initialize temporary slots. */
1216 init_temp_slots (void)
1218 /* We have not allocated any temporaries yet. */
1219 avail_temp_slots
= 0;
1220 vec_alloc (used_temp_slots
, 0);
1221 temp_slot_level
= 0;
1222 n_temp_slots_in_use
= 0;
1224 /* Set up the table to map addresses to temp slots. */
1225 if (! temp_slot_address_table
)
1226 temp_slot_address_table
= hash_table
<temp_address_hasher
>::create_ggc (32);
1228 temp_slot_address_table
->empty ();
1231 /* Functions and data structures to keep track of the values hard regs
1232 had at the start of the function. */
1234 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1235 and has_hard_reg_initial_val.. */
1236 struct GTY(()) initial_value_pair
{
1240 /* ??? This could be a VEC but there is currently no way to define an
1241 opaque VEC type. This could be worked around by defining struct
1242 initial_value_pair in function.h. */
1243 struct GTY(()) initial_value_struct
{
1246 initial_value_pair
* GTY ((length ("%h.num_entries"))) entries
;
1249 /* If a pseudo represents an initial hard reg (or expression), return
1250 it, else return NULL_RTX. */
1253 get_hard_reg_initial_reg (rtx reg
)
1255 struct initial_value_struct
*ivs
= crtl
->hard_reg_initial_vals
;
1261 for (i
= 0; i
< ivs
->num_entries
; i
++)
1262 if (rtx_equal_p (ivs
->entries
[i
].pseudo
, reg
))
1263 return ivs
->entries
[i
].hard_reg
;
1268 /* Make sure that there's a pseudo register of mode MODE that stores the
1269 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1272 get_hard_reg_initial_val (machine_mode mode
, unsigned int regno
)
1274 struct initial_value_struct
*ivs
;
1277 rv
= has_hard_reg_initial_val (mode
, regno
);
1281 ivs
= crtl
->hard_reg_initial_vals
;
1284 ivs
= ggc_alloc
<initial_value_struct
> ();
1285 ivs
->num_entries
= 0;
1286 ivs
->max_entries
= 5;
1287 ivs
->entries
= ggc_vec_alloc
<initial_value_pair
> (5);
1288 crtl
->hard_reg_initial_vals
= ivs
;
1291 if (ivs
->num_entries
>= ivs
->max_entries
)
1293 ivs
->max_entries
+= 5;
1294 ivs
->entries
= GGC_RESIZEVEC (initial_value_pair
, ivs
->entries
,
1298 ivs
->entries
[ivs
->num_entries
].hard_reg
= gen_rtx_REG (mode
, regno
);
1299 ivs
->entries
[ivs
->num_entries
].pseudo
= gen_reg_rtx (mode
);
1301 return ivs
->entries
[ivs
->num_entries
++].pseudo
;
1304 /* See if get_hard_reg_initial_val has been used to create a pseudo
1305 for the initial value of hard register REGNO in mode MODE. Return
1306 the associated pseudo if so, otherwise return NULL. */
1309 has_hard_reg_initial_val (machine_mode mode
, unsigned int regno
)
1311 struct initial_value_struct
*ivs
;
1314 ivs
= crtl
->hard_reg_initial_vals
;
1316 for (i
= 0; i
< ivs
->num_entries
; i
++)
1317 if (GET_MODE (ivs
->entries
[i
].hard_reg
) == mode
1318 && REGNO (ivs
->entries
[i
].hard_reg
) == regno
)
1319 return ivs
->entries
[i
].pseudo
;
1325 emit_initial_value_sets (void)
1327 struct initial_value_struct
*ivs
= crtl
->hard_reg_initial_vals
;
1335 for (i
= 0; i
< ivs
->num_entries
; i
++)
1336 emit_move_insn (ivs
->entries
[i
].pseudo
, ivs
->entries
[i
].hard_reg
);
1340 emit_insn_at_entry (seq
);
1344 /* Return the hardreg-pseudoreg initial values pair entry I and
1345 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1347 initial_value_entry (int i
, rtx
*hreg
, rtx
*preg
)
1349 struct initial_value_struct
*ivs
= crtl
->hard_reg_initial_vals
;
1350 if (!ivs
|| i
>= ivs
->num_entries
)
1353 *hreg
= ivs
->entries
[i
].hard_reg
;
1354 *preg
= ivs
->entries
[i
].pseudo
;
1358 /* These routines are responsible for converting virtual register references
1359 to the actual hard register references once RTL generation is complete.
1361 The following four variables are used for communication between the
1362 routines. They contain the offsets of the virtual registers from their
1363 respective hard registers. */
1365 static int in_arg_offset
;
1366 static int var_offset
;
1367 static int dynamic_offset
;
1368 static int out_arg_offset
;
1369 static int cfa_offset
;
1371 /* In most machines, the stack pointer register is equivalent to the bottom
1374 #ifndef STACK_POINTER_OFFSET
1375 #define STACK_POINTER_OFFSET 0
1378 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1379 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1382 /* If not defined, pick an appropriate default for the offset of dynamically
1383 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1384 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1386 #ifndef STACK_DYNAMIC_OFFSET
1388 /* The bottom of the stack points to the actual arguments. If
1389 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1390 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1391 stack space for register parameters is not pushed by the caller, but
1392 rather part of the fixed stack areas and hence not included in
1393 `crtl->outgoing_args_size'. Nevertheless, we must allow
1394 for it when allocating stack dynamic objects. */
1396 #ifdef INCOMING_REG_PARM_STACK_SPACE
1397 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1398 ((ACCUMULATE_OUTGOING_ARGS \
1399 ? (crtl->outgoing_args_size \
1400 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1401 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1402 : 0) + (STACK_POINTER_OFFSET))
1404 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1405 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1406 + (STACK_POINTER_OFFSET))
1411 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1412 is a virtual register, return the equivalent hard register and set the
1413 offset indirectly through the pointer. Otherwise, return 0. */
1416 instantiate_new_reg (rtx x
, HOST_WIDE_INT
*poffset
)
1419 HOST_WIDE_INT offset
;
1421 if (x
== virtual_incoming_args_rtx
)
1423 if (stack_realign_drap
)
1425 /* Replace virtual_incoming_args_rtx with internal arg
1426 pointer if DRAP is used to realign stack. */
1427 new_rtx
= crtl
->args
.internal_arg_pointer
;
1431 new_rtx
= arg_pointer_rtx
, offset
= in_arg_offset
;
1433 else if (x
== virtual_stack_vars_rtx
)
1434 new_rtx
= frame_pointer_rtx
, offset
= var_offset
;
1435 else if (x
== virtual_stack_dynamic_rtx
)
1436 new_rtx
= stack_pointer_rtx
, offset
= dynamic_offset
;
1437 else if (x
== virtual_outgoing_args_rtx
)
1438 new_rtx
= stack_pointer_rtx
, offset
= out_arg_offset
;
1439 else if (x
== virtual_cfa_rtx
)
1441 #ifdef FRAME_POINTER_CFA_OFFSET
1442 new_rtx
= frame_pointer_rtx
;
1444 new_rtx
= arg_pointer_rtx
;
1446 offset
= cfa_offset
;
1448 else if (x
== virtual_preferred_stack_boundary_rtx
)
1450 new_rtx
= GEN_INT (crtl
->preferred_stack_boundary
/ BITS_PER_UNIT
);
1460 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1461 registers present inside of *LOC. The expression is simplified,
1462 as much as possible, but is not to be considered "valid" in any sense
1463 implied by the target. Return true if any change is made. */
1466 instantiate_virtual_regs_in_rtx (rtx
*loc
)
1470 bool changed
= false;
1471 subrtx_ptr_iterator::array_type array
;
1472 FOR_EACH_SUBRTX_PTR (iter
, array
, loc
, NONCONST
)
1478 HOST_WIDE_INT offset
;
1479 switch (GET_CODE (x
))
1482 new_rtx
= instantiate_new_reg (x
, &offset
);
1485 *loc
= plus_constant (GET_MODE (x
), new_rtx
, offset
);
1488 iter
.skip_subrtxes ();
1492 new_rtx
= instantiate_new_reg (XEXP (x
, 0), &offset
);
1495 XEXP (x
, 0) = new_rtx
;
1496 *loc
= plus_constant (GET_MODE (x
), x
, offset
, true);
1498 iter
.skip_subrtxes ();
1502 /* FIXME -- from old code */
1503 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1504 we can commute the PLUS and SUBREG because pointers into the
1505 frame are well-behaved. */
1516 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1517 matches the predicate for insn CODE operand OPERAND. */
1520 safe_insn_predicate (int code
, int operand
, rtx x
)
1522 return code
< 0 || insn_operand_matches ((enum insn_code
) code
, operand
, x
);
1525 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1526 registers present inside of insn. The result will be a valid insn. */
1529 instantiate_virtual_regs_in_insn (rtx_insn
*insn
)
1531 HOST_WIDE_INT offset
;
1533 bool any_change
= false;
1534 rtx set
, new_rtx
, x
;
1537 /* There are some special cases to be handled first. */
1538 set
= single_set (insn
);
1541 /* We're allowed to assign to a virtual register. This is interpreted
1542 to mean that the underlying register gets assigned the inverse
1543 transformation. This is used, for example, in the handling of
1545 new_rtx
= instantiate_new_reg (SET_DEST (set
), &offset
);
1550 instantiate_virtual_regs_in_rtx (&SET_SRC (set
));
1551 x
= simplify_gen_binary (PLUS
, GET_MODE (new_rtx
), SET_SRC (set
),
1552 gen_int_mode (-offset
, GET_MODE (new_rtx
)));
1553 x
= force_operand (x
, new_rtx
);
1555 emit_move_insn (new_rtx
, x
);
1560 emit_insn_before (seq
, insn
);
1565 /* Handle a straight copy from a virtual register by generating a
1566 new add insn. The difference between this and falling through
1567 to the generic case is avoiding a new pseudo and eliminating a
1568 move insn in the initial rtl stream. */
1569 new_rtx
= instantiate_new_reg (SET_SRC (set
), &offset
);
1570 if (new_rtx
&& offset
!= 0
1571 && REG_P (SET_DEST (set
))
1572 && REGNO (SET_DEST (set
)) > LAST_VIRTUAL_REGISTER
)
1576 x
= expand_simple_binop (GET_MODE (SET_DEST (set
)), PLUS
, new_rtx
,
1577 gen_int_mode (offset
,
1578 GET_MODE (SET_DEST (set
))),
1579 SET_DEST (set
), 1, OPTAB_LIB_WIDEN
);
1580 if (x
!= SET_DEST (set
))
1581 emit_move_insn (SET_DEST (set
), x
);
1586 emit_insn_before (seq
, insn
);
1591 extract_insn (insn
);
1592 insn_code
= INSN_CODE (insn
);
1594 /* Handle a plus involving a virtual register by determining if the
1595 operands remain valid if they're modified in place. */
1596 if (GET_CODE (SET_SRC (set
)) == PLUS
1597 && recog_data
.n_operands
>= 3
1598 && recog_data
.operand_loc
[1] == &XEXP (SET_SRC (set
), 0)
1599 && recog_data
.operand_loc
[2] == &XEXP (SET_SRC (set
), 1)
1600 && CONST_INT_P (recog_data
.operand
[2])
1601 && (new_rtx
= instantiate_new_reg (recog_data
.operand
[1], &offset
)))
1603 offset
+= INTVAL (recog_data
.operand
[2]);
1605 /* If the sum is zero, then replace with a plain move. */
1607 && REG_P (SET_DEST (set
))
1608 && REGNO (SET_DEST (set
)) > LAST_VIRTUAL_REGISTER
)
1611 emit_move_insn (SET_DEST (set
), new_rtx
);
1615 emit_insn_before (seq
, insn
);
1620 x
= gen_int_mode (offset
, recog_data
.operand_mode
[2]);
1622 /* Using validate_change and apply_change_group here leaves
1623 recog_data in an invalid state. Since we know exactly what
1624 we want to check, do those two by hand. */
1625 if (safe_insn_predicate (insn_code
, 1, new_rtx
)
1626 && safe_insn_predicate (insn_code
, 2, x
))
1628 *recog_data
.operand_loc
[1] = recog_data
.operand
[1] = new_rtx
;
1629 *recog_data
.operand_loc
[2] = recog_data
.operand
[2] = x
;
1632 /* Fall through into the regular operand fixup loop in
1633 order to take care of operands other than 1 and 2. */
1639 extract_insn (insn
);
1640 insn_code
= INSN_CODE (insn
);
1643 /* In the general case, we expect virtual registers to appear only in
1644 operands, and then only as either bare registers or inside memories. */
1645 for (i
= 0; i
< recog_data
.n_operands
; ++i
)
1647 x
= recog_data
.operand
[i
];
1648 switch (GET_CODE (x
))
1652 rtx addr
= XEXP (x
, 0);
1654 if (!instantiate_virtual_regs_in_rtx (&addr
))
1658 x
= replace_equiv_address (x
, addr
, true);
1659 /* It may happen that the address with the virtual reg
1660 was valid (e.g. based on the virtual stack reg, which might
1661 be acceptable to the predicates with all offsets), whereas
1662 the address now isn't anymore, for instance when the address
1663 is still offsetted, but the base reg isn't virtual-stack-reg
1664 anymore. Below we would do a force_reg on the whole operand,
1665 but this insn might actually only accept memory. Hence,
1666 before doing that last resort, try to reload the address into
1667 a register, so this operand stays a MEM. */
1668 if (!safe_insn_predicate (insn_code
, i
, x
))
1670 addr
= force_reg (GET_MODE (addr
), addr
);
1671 x
= replace_equiv_address (x
, addr
, true);
1676 emit_insn_before (seq
, insn
);
1681 new_rtx
= instantiate_new_reg (x
, &offset
);
1682 if (new_rtx
== NULL
)
1690 /* Careful, special mode predicates may have stuff in
1691 insn_data[insn_code].operand[i].mode that isn't useful
1692 to us for computing a new value. */
1693 /* ??? Recognize address_operand and/or "p" constraints
1694 to see if (plus new offset) is a valid before we put
1695 this through expand_simple_binop. */
1696 x
= expand_simple_binop (GET_MODE (x
), PLUS
, new_rtx
,
1697 gen_int_mode (offset
, GET_MODE (x
)),
1698 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1701 emit_insn_before (seq
, insn
);
1706 new_rtx
= instantiate_new_reg (SUBREG_REG (x
), &offset
);
1707 if (new_rtx
== NULL
)
1712 new_rtx
= expand_simple_binop
1713 (GET_MODE (new_rtx
), PLUS
, new_rtx
,
1714 gen_int_mode (offset
, GET_MODE (new_rtx
)),
1715 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1718 emit_insn_before (seq
, insn
);
1720 x
= simplify_gen_subreg (recog_data
.operand_mode
[i
], new_rtx
,
1721 GET_MODE (new_rtx
), SUBREG_BYTE (x
));
1729 /* At this point, X contains the new value for the operand.
1730 Validate the new value vs the insn predicate. Note that
1731 asm insns will have insn_code -1 here. */
1732 if (!safe_insn_predicate (insn_code
, i
, x
))
1737 gcc_assert (REGNO (x
) <= LAST_VIRTUAL_REGISTER
);
1738 x
= copy_to_reg (x
);
1741 x
= force_reg (insn_data
[insn_code
].operand
[i
].mode
, x
);
1745 emit_insn_before (seq
, insn
);
1748 *recog_data
.operand_loc
[i
] = recog_data
.operand
[i
] = x
;
1754 /* Propagate operand changes into the duplicates. */
1755 for (i
= 0; i
< recog_data
.n_dups
; ++i
)
1756 *recog_data
.dup_loc
[i
]
1757 = copy_rtx (recog_data
.operand
[(unsigned)recog_data
.dup_num
[i
]]);
1759 /* Force re-recognition of the instruction for validation. */
1760 INSN_CODE (insn
) = -1;
1763 if (asm_noperands (PATTERN (insn
)) >= 0)
1765 if (!check_asm_operands (PATTERN (insn
)))
1767 error_for_asm (insn
, "impossible constraint in %<asm%>");
1768 /* For asm goto, instead of fixing up all the edges
1769 just clear the template and clear input operands
1770 (asm goto doesn't have any output operands). */
1773 rtx asm_op
= extract_asm_operands (PATTERN (insn
));
1774 ASM_OPERANDS_TEMPLATE (asm_op
) = ggc_strdup ("");
1775 ASM_OPERANDS_INPUT_VEC (asm_op
) = rtvec_alloc (0);
1776 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op
) = rtvec_alloc (0);
1784 if (recog_memoized (insn
) < 0)
1785 fatal_insn_not_found (insn
);
1789 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1790 do any instantiation required. */
1793 instantiate_decl_rtl (rtx x
)
1800 /* If this is a CONCAT, recurse for the pieces. */
1801 if (GET_CODE (x
) == CONCAT
)
1803 instantiate_decl_rtl (XEXP (x
, 0));
1804 instantiate_decl_rtl (XEXP (x
, 1));
1808 /* If this is not a MEM, no need to do anything. Similarly if the
1809 address is a constant or a register that is not a virtual register. */
1814 if (CONSTANT_P (addr
)
1816 && (REGNO (addr
) < FIRST_VIRTUAL_REGISTER
1817 || REGNO (addr
) > LAST_VIRTUAL_REGISTER
)))
1820 instantiate_virtual_regs_in_rtx (&XEXP (x
, 0));
1823 /* Helper for instantiate_decls called via walk_tree: Process all decls
1824 in the given DECL_VALUE_EXPR. */
1827 instantiate_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
1835 if (DECL_RTL_SET_P (t
))
1836 instantiate_decl_rtl (DECL_RTL (t
));
1837 if (TREE_CODE (t
) == PARM_DECL
&& DECL_NAMELESS (t
)
1838 && DECL_INCOMING_RTL (t
))
1839 instantiate_decl_rtl (DECL_INCOMING_RTL (t
));
1840 if ((VAR_P (t
) || TREE_CODE (t
) == RESULT_DECL
)
1841 && DECL_HAS_VALUE_EXPR_P (t
))
1843 tree v
= DECL_VALUE_EXPR (t
);
1844 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1851 /* Subroutine of instantiate_decls: Process all decls in the given
1852 BLOCK node and all its subblocks. */
1855 instantiate_decls_1 (tree let
)
1859 for (t
= BLOCK_VARS (let
); t
; t
= DECL_CHAIN (t
))
1861 if (DECL_RTL_SET_P (t
))
1862 instantiate_decl_rtl (DECL_RTL (t
));
1863 if (VAR_P (t
) && DECL_HAS_VALUE_EXPR_P (t
))
1865 tree v
= DECL_VALUE_EXPR (t
);
1866 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1870 /* Process all subblocks. */
1871 for (t
= BLOCK_SUBBLOCKS (let
); t
; t
= BLOCK_CHAIN (t
))
1872 instantiate_decls_1 (t
);
1875 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1876 all virtual registers in their DECL_RTL's. */
1879 instantiate_decls (tree fndecl
)
1884 /* Process all parameters of the function. */
1885 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= DECL_CHAIN (decl
))
1887 instantiate_decl_rtl (DECL_RTL (decl
));
1888 instantiate_decl_rtl (DECL_INCOMING_RTL (decl
));
1889 if (DECL_HAS_VALUE_EXPR_P (decl
))
1891 tree v
= DECL_VALUE_EXPR (decl
);
1892 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1896 if ((decl
= DECL_RESULT (fndecl
))
1897 && TREE_CODE (decl
) == RESULT_DECL
)
1899 if (DECL_RTL_SET_P (decl
))
1900 instantiate_decl_rtl (DECL_RTL (decl
));
1901 if (DECL_HAS_VALUE_EXPR_P (decl
))
1903 tree v
= DECL_VALUE_EXPR (decl
);
1904 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1908 /* Process the saved static chain if it exists. */
1909 decl
= DECL_STRUCT_FUNCTION (fndecl
)->static_chain_decl
;
1910 if (decl
&& DECL_HAS_VALUE_EXPR_P (decl
))
1911 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl
)));
1913 /* Now process all variables defined in the function or its subblocks. */
1914 if (DECL_INITIAL (fndecl
))
1915 instantiate_decls_1 (DECL_INITIAL (fndecl
));
1917 FOR_EACH_LOCAL_DECL (cfun
, ix
, decl
)
1918 if (DECL_RTL_SET_P (decl
))
1919 instantiate_decl_rtl (DECL_RTL (decl
));
1920 vec_free (cfun
->local_decls
);
1923 /* Pass through the INSNS of function FNDECL and convert virtual register
1924 references to hard register references. */
1927 instantiate_virtual_regs (void)
1931 /* Compute the offsets to use for this function. */
1932 in_arg_offset
= FIRST_PARM_OFFSET (current_function_decl
);
1933 var_offset
= STARTING_FRAME_OFFSET
;
1934 dynamic_offset
= STACK_DYNAMIC_OFFSET (current_function_decl
);
1935 out_arg_offset
= STACK_POINTER_OFFSET
;
1936 #ifdef FRAME_POINTER_CFA_OFFSET
1937 cfa_offset
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
1939 cfa_offset
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
1942 /* Initialize recognition, indicating that volatile is OK. */
1945 /* Scan through all the insns, instantiating every virtual register still
1947 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1950 /* These patterns in the instruction stream can never be recognized.
1951 Fortunately, they shouldn't contain virtual registers either. */
1952 if (GET_CODE (PATTERN (insn
)) == USE
1953 || GET_CODE (PATTERN (insn
)) == CLOBBER
1954 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
)
1956 else if (DEBUG_INSN_P (insn
))
1957 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn
));
1959 instantiate_virtual_regs_in_insn (insn
);
1961 if (insn
->deleted ())
1964 instantiate_virtual_regs_in_rtx (®_NOTES (insn
));
1966 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1968 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn
));
1971 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1972 instantiate_decls (current_function_decl
);
1974 targetm
.instantiate_decls ();
1976 /* Indicate that, from now on, assign_stack_local should use
1977 frame_pointer_rtx. */
1978 virtuals_instantiated
= 1;
1985 const pass_data pass_data_instantiate_virtual_regs
=
1987 RTL_PASS
, /* type */
1989 OPTGROUP_NONE
, /* optinfo_flags */
1990 TV_NONE
, /* tv_id */
1991 0, /* properties_required */
1992 0, /* properties_provided */
1993 0, /* properties_destroyed */
1994 0, /* todo_flags_start */
1995 0, /* todo_flags_finish */
1998 class pass_instantiate_virtual_regs
: public rtl_opt_pass
2001 pass_instantiate_virtual_regs (gcc::context
*ctxt
)
2002 : rtl_opt_pass (pass_data_instantiate_virtual_regs
, ctxt
)
2005 /* opt_pass methods: */
2006 virtual unsigned int execute (function
*)
2008 return instantiate_virtual_regs ();
2011 }; // class pass_instantiate_virtual_regs
2016 make_pass_instantiate_virtual_regs (gcc::context
*ctxt
)
2018 return new pass_instantiate_virtual_regs (ctxt
);
2022 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2023 This means a type for which function calls must pass an address to the
2024 function or get an address back from the function.
2025 EXP may be a type node or an expression (whose type is tested). */
2028 aggregate_value_p (const_tree exp
, const_tree fntype
)
2030 const_tree type
= (TYPE_P (exp
)) ? exp
: TREE_TYPE (exp
);
2031 int i
, regno
, nregs
;
2035 switch (TREE_CODE (fntype
))
2039 tree fndecl
= get_callee_fndecl (fntype
);
2041 fntype
= TREE_TYPE (fndecl
);
2042 else if (CALL_EXPR_FN (fntype
))
2043 fntype
= TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype
)));
2045 /* For internal functions, assume nothing needs to be
2046 returned in memory. */
2051 fntype
= TREE_TYPE (fntype
);
2056 case IDENTIFIER_NODE
:
2060 /* We don't expect other tree types here. */
2064 if (VOID_TYPE_P (type
))
2067 /* If a record should be passed the same as its first (and only) member
2068 don't pass it as an aggregate. */
2069 if (TREE_CODE (type
) == RECORD_TYPE
&& TYPE_TRANSPARENT_AGGR (type
))
2070 return aggregate_value_p (first_field (type
), fntype
);
2072 /* If the front end has decided that this needs to be passed by
2073 reference, do so. */
2074 if ((TREE_CODE (exp
) == PARM_DECL
|| TREE_CODE (exp
) == RESULT_DECL
)
2075 && DECL_BY_REFERENCE (exp
))
2078 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2079 if (fntype
&& TREE_ADDRESSABLE (fntype
))
2082 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2083 and thus can't be returned in registers. */
2084 if (TREE_ADDRESSABLE (type
))
2087 if (flag_pcc_struct_return
&& AGGREGATE_TYPE_P (type
))
2090 if (targetm
.calls
.return_in_memory (type
, fntype
))
2093 /* Make sure we have suitable call-clobbered regs to return
2094 the value in; if not, we must return it in memory. */
2095 reg
= hard_function_value (type
, 0, fntype
, 0);
2097 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2102 regno
= REGNO (reg
);
2103 nregs
= hard_regno_nregs (regno
, TYPE_MODE (type
));
2104 for (i
= 0; i
< nregs
; i
++)
2105 if (! call_used_regs
[regno
+ i
])
2111 /* Return true if we should assign DECL a pseudo register; false if it
2112 should live on the local stack. */
2115 use_register_for_decl (const_tree decl
)
2117 if (TREE_CODE (decl
) == SSA_NAME
)
2119 /* We often try to use the SSA_NAME, instead of its underlying
2120 decl, to get type information and guide decisions, to avoid
2121 differences of behavior between anonymous and named
2122 variables, but in this one case we have to go for the actual
2123 variable if there is one. The main reason is that, at least
2124 at -O0, we want to place user variables on the stack, but we
2125 don't mind using pseudos for anonymous or ignored temps.
2126 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2127 should go in pseudos, whereas their corresponding variables
2128 might have to go on the stack. So, disregarding the decl
2129 here would negatively impact debug info at -O0, enable
2130 coalescing between SSA_NAMEs that ought to get different
2131 stack/pseudo assignments, and get the incoming argument
2132 processing thoroughly confused by PARM_DECLs expected to live
2133 in stack slots but assigned to pseudos. */
2134 if (!SSA_NAME_VAR (decl
))
2135 return TYPE_MODE (TREE_TYPE (decl
)) != BLKmode
2136 && !(flag_float_store
&& FLOAT_TYPE_P (TREE_TYPE (decl
)));
2138 decl
= SSA_NAME_VAR (decl
);
2141 /* Honor volatile. */
2142 if (TREE_SIDE_EFFECTS (decl
))
2145 /* Honor addressability. */
2146 if (TREE_ADDRESSABLE (decl
))
2149 /* RESULT_DECLs are a bit special in that they're assigned without
2150 regard to use_register_for_decl, but we generally only store in
2151 them. If we coalesce their SSA NAMEs, we'd better return a
2152 result that matches the assignment in expand_function_start. */
2153 if (TREE_CODE (decl
) == RESULT_DECL
)
2155 /* If it's not an aggregate, we're going to use a REG or a
2156 PARALLEL containing a REG. */
2157 if (!aggregate_value_p (decl
, current_function_decl
))
2160 /* If expand_function_start determines the return value, we'll
2161 use MEM if it's not by reference. */
2162 if (cfun
->returns_pcc_struct
2163 || (targetm
.calls
.struct_value_rtx
2164 (TREE_TYPE (current_function_decl
), 1)))
2165 return DECL_BY_REFERENCE (decl
);
2167 /* Otherwise, we're taking an extra all.function_result_decl
2168 argument. It's set up in assign_parms_augmented_arg_list,
2169 under the (negated) conditions above, and then it's used to
2170 set up the RESULT_DECL rtl in assign_params, after looping
2171 over all parameters. Now, if the RESULT_DECL is not by
2172 reference, we'll use a MEM either way. */
2173 if (!DECL_BY_REFERENCE (decl
))
2176 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2177 the function_result_decl's assignment. Since it's a pointer,
2178 we can short-circuit a number of the tests below, and we must
2179 duplicat e them because we don't have the
2180 function_result_decl to test. */
2181 if (!targetm
.calls
.allocate_stack_slots_for_args ())
2183 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2186 /* We don't set DECL_REGISTER for the function_result_decl. */
2190 /* Decl is implicitly addressible by bound stores and loads
2191 if it is an aggregate holding bounds. */
2192 if (chkp_function_instrumented_p (current_function_decl
)
2194 && !BOUNDED_P (decl
)
2195 && chkp_type_has_pointer (TREE_TYPE (decl
)))
2198 /* Only register-like things go in registers. */
2199 if (DECL_MODE (decl
) == BLKmode
)
2202 /* If -ffloat-store specified, don't put explicit float variables
2204 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2205 propagates values across these stores, and it probably shouldn't. */
2206 if (flag_float_store
&& FLOAT_TYPE_P (TREE_TYPE (decl
)))
2209 if (!targetm
.calls
.allocate_stack_slots_for_args ())
2212 /* If we're not interested in tracking debugging information for
2213 this decl, then we can certainly put it in a register. */
2214 if (DECL_IGNORED_P (decl
))
2220 if (!DECL_REGISTER (decl
))
2223 /* When not optimizing, disregard register keyword for types that
2224 could have methods, otherwise the methods won't be callable from
2226 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl
)))
2232 /* Structures to communicate between the subroutines of assign_parms.
2233 The first holds data persistent across all parameters, the second
2234 is cleared out for each parameter. */
2236 struct assign_parm_data_all
2238 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2239 should become a job of the target or otherwise encapsulated. */
2240 CUMULATIVE_ARGS args_so_far_v
;
2241 cumulative_args_t args_so_far
;
2242 struct args_size stack_args_size
;
2243 tree function_result_decl
;
2245 rtx_insn
*first_conversion_insn
;
2246 rtx_insn
*last_conversion_insn
;
2247 HOST_WIDE_INT pretend_args_size
;
2248 HOST_WIDE_INT extra_pretend_bytes
;
2249 int reg_parm_stack_space
;
2252 struct assign_parm_data_one
2258 machine_mode nominal_mode
;
2259 machine_mode passed_mode
;
2260 machine_mode promoted_mode
;
2261 struct locate_and_pad_arg_data locate
;
2263 BOOL_BITFIELD named_arg
: 1;
2264 BOOL_BITFIELD passed_pointer
: 1;
2265 BOOL_BITFIELD on_stack
: 1;
2266 BOOL_BITFIELD loaded_in_reg
: 1;
2269 struct bounds_parm_data
2271 assign_parm_data_one parm_data
;
2278 /* A subroutine of assign_parms. Initialize ALL. */
2281 assign_parms_initialize_all (struct assign_parm_data_all
*all
)
2283 tree fntype ATTRIBUTE_UNUSED
;
2285 memset (all
, 0, sizeof (*all
));
2287 fntype
= TREE_TYPE (current_function_decl
);
2289 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2290 INIT_CUMULATIVE_INCOMING_ARGS (all
->args_so_far_v
, fntype
, NULL_RTX
);
2292 INIT_CUMULATIVE_ARGS (all
->args_so_far_v
, fntype
, NULL_RTX
,
2293 current_function_decl
, -1);
2295 all
->args_so_far
= pack_cumulative_args (&all
->args_so_far_v
);
2297 #ifdef INCOMING_REG_PARM_STACK_SPACE
2298 all
->reg_parm_stack_space
2299 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl
);
2303 /* If ARGS contains entries with complex types, split the entry into two
2304 entries of the component type. Return a new list of substitutions are
2305 needed, else the old list. */
2308 split_complex_args (vec
<tree
> *args
)
2313 FOR_EACH_VEC_ELT (*args
, i
, p
)
2315 tree type
= TREE_TYPE (p
);
2316 if (TREE_CODE (type
) == COMPLEX_TYPE
2317 && targetm
.calls
.split_complex_arg (type
))
2320 tree subtype
= TREE_TYPE (type
);
2321 bool addressable
= TREE_ADDRESSABLE (p
);
2323 /* Rewrite the PARM_DECL's type with its component. */
2325 TREE_TYPE (p
) = subtype
;
2326 DECL_ARG_TYPE (p
) = TREE_TYPE (DECL_ARG_TYPE (p
));
2327 SET_DECL_MODE (p
, VOIDmode
);
2328 DECL_SIZE (p
) = NULL
;
2329 DECL_SIZE_UNIT (p
) = NULL
;
2330 /* If this arg must go in memory, put it in a pseudo here.
2331 We can't allow it to go in memory as per normal parms,
2332 because the usual place might not have the imag part
2333 adjacent to the real part. */
2334 DECL_ARTIFICIAL (p
) = addressable
;
2335 DECL_IGNORED_P (p
) = addressable
;
2336 TREE_ADDRESSABLE (p
) = 0;
2340 /* Build a second synthetic decl. */
2341 decl
= build_decl (EXPR_LOCATION (p
),
2342 PARM_DECL
, NULL_TREE
, subtype
);
2343 DECL_ARG_TYPE (decl
) = DECL_ARG_TYPE (p
);
2344 DECL_ARTIFICIAL (decl
) = addressable
;
2345 DECL_IGNORED_P (decl
) = addressable
;
2346 layout_decl (decl
, 0);
2347 args
->safe_insert (++i
, decl
);
2352 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2353 the hidden struct return argument, and (abi willing) complex args.
2354 Return the new parameter list. */
2357 assign_parms_augmented_arg_list (struct assign_parm_data_all
*all
)
2359 tree fndecl
= current_function_decl
;
2360 tree fntype
= TREE_TYPE (fndecl
);
2361 vec
<tree
> fnargs
= vNULL
;
2364 for (arg
= DECL_ARGUMENTS (fndecl
); arg
; arg
= DECL_CHAIN (arg
))
2365 fnargs
.safe_push (arg
);
2367 all
->orig_fnargs
= DECL_ARGUMENTS (fndecl
);
2369 /* If struct value address is treated as the first argument, make it so. */
2370 if (aggregate_value_p (DECL_RESULT (fndecl
), fndecl
)
2371 && ! cfun
->returns_pcc_struct
2372 && targetm
.calls
.struct_value_rtx (TREE_TYPE (fndecl
), 1) == 0)
2374 tree type
= build_pointer_type (TREE_TYPE (fntype
));
2377 decl
= build_decl (DECL_SOURCE_LOCATION (fndecl
),
2378 PARM_DECL
, get_identifier (".result_ptr"), type
);
2379 DECL_ARG_TYPE (decl
) = type
;
2380 DECL_ARTIFICIAL (decl
) = 1;
2381 DECL_NAMELESS (decl
) = 1;
2382 TREE_CONSTANT (decl
) = 1;
2383 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2384 changes, the end of the RESULT_DECL handling block in
2385 use_register_for_decl must be adjusted to match. */
2387 DECL_CHAIN (decl
) = all
->orig_fnargs
;
2388 all
->orig_fnargs
= decl
;
2389 fnargs
.safe_insert (0, decl
);
2391 all
->function_result_decl
= decl
;
2393 /* If function is instrumented then bounds of the
2394 passed structure address is the second argument. */
2395 if (chkp_function_instrumented_p (fndecl
))
2397 decl
= build_decl (DECL_SOURCE_LOCATION (fndecl
),
2398 PARM_DECL
, get_identifier (".result_bnd"),
2399 pointer_bounds_type_node
);
2400 DECL_ARG_TYPE (decl
) = pointer_bounds_type_node
;
2401 DECL_ARTIFICIAL (decl
) = 1;
2402 DECL_NAMELESS (decl
) = 1;
2403 TREE_CONSTANT (decl
) = 1;
2405 DECL_CHAIN (decl
) = DECL_CHAIN (all
->orig_fnargs
);
2406 DECL_CHAIN (all
->orig_fnargs
) = decl
;
2407 fnargs
.safe_insert (1, decl
);
2411 /* If the target wants to split complex arguments into scalars, do so. */
2412 if (targetm
.calls
.split_complex_arg
)
2413 split_complex_args (&fnargs
);
2418 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2419 data for the parameter. Incorporate ABI specifics such as pass-by-
2420 reference and type promotion. */
2423 assign_parm_find_data_types (struct assign_parm_data_all
*all
, tree parm
,
2424 struct assign_parm_data_one
*data
)
2426 tree nominal_type
, passed_type
;
2427 machine_mode nominal_mode
, passed_mode
, promoted_mode
;
2430 memset (data
, 0, sizeof (*data
));
2432 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2434 data
->named_arg
= 1; /* No variadic parms. */
2435 else if (DECL_CHAIN (parm
))
2436 data
->named_arg
= 1; /* Not the last non-variadic parm. */
2437 else if (targetm
.calls
.strict_argument_naming (all
->args_so_far
))
2438 data
->named_arg
= 1; /* Only variadic ones are unnamed. */
2440 data
->named_arg
= 0; /* Treat as variadic. */
2442 nominal_type
= TREE_TYPE (parm
);
2443 passed_type
= DECL_ARG_TYPE (parm
);
2445 /* Look out for errors propagating this far. Also, if the parameter's
2446 type is void then its value doesn't matter. */
2447 if (TREE_TYPE (parm
) == error_mark_node
2448 /* This can happen after weird syntax errors
2449 or if an enum type is defined among the parms. */
2450 || TREE_CODE (parm
) != PARM_DECL
2451 || passed_type
== NULL
2452 || VOID_TYPE_P (nominal_type
))
2454 nominal_type
= passed_type
= void_type_node
;
2455 nominal_mode
= passed_mode
= promoted_mode
= VOIDmode
;
2459 /* Find mode of arg as it is passed, and mode of arg as it should be
2460 during execution of this function. */
2461 passed_mode
= TYPE_MODE (passed_type
);
2462 nominal_mode
= TYPE_MODE (nominal_type
);
2464 /* If the parm is to be passed as a transparent union or record, use the
2465 type of the first field for the tests below. We have already verified
2466 that the modes are the same. */
2467 if ((TREE_CODE (passed_type
) == UNION_TYPE
2468 || TREE_CODE (passed_type
) == RECORD_TYPE
)
2469 && TYPE_TRANSPARENT_AGGR (passed_type
))
2470 passed_type
= TREE_TYPE (first_field (passed_type
));
2472 /* See if this arg was passed by invisible reference. */
2473 if (pass_by_reference (&all
->args_so_far_v
, passed_mode
,
2474 passed_type
, data
->named_arg
))
2476 passed_type
= nominal_type
= build_pointer_type (passed_type
);
2477 data
->passed_pointer
= true;
2478 passed_mode
= nominal_mode
= TYPE_MODE (nominal_type
);
2481 /* Find mode as it is passed by the ABI. */
2482 unsignedp
= TYPE_UNSIGNED (passed_type
);
2483 promoted_mode
= promote_function_mode (passed_type
, passed_mode
, &unsignedp
,
2484 TREE_TYPE (current_function_decl
), 0);
2487 data
->nominal_type
= nominal_type
;
2488 data
->passed_type
= passed_type
;
2489 data
->nominal_mode
= nominal_mode
;
2490 data
->passed_mode
= passed_mode
;
2491 data
->promoted_mode
= promoted_mode
;
2494 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2497 assign_parms_setup_varargs (struct assign_parm_data_all
*all
,
2498 struct assign_parm_data_one
*data
, bool no_rtl
)
2500 int varargs_pretend_bytes
= 0;
2502 targetm
.calls
.setup_incoming_varargs (all
->args_so_far
,
2503 data
->promoted_mode
,
2505 &varargs_pretend_bytes
, no_rtl
);
2507 /* If the back-end has requested extra stack space, record how much is
2508 needed. Do not change pretend_args_size otherwise since it may be
2509 nonzero from an earlier partial argument. */
2510 if (varargs_pretend_bytes
> 0)
2511 all
->pretend_args_size
= varargs_pretend_bytes
;
2514 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2515 the incoming location of the current parameter. */
2518 assign_parm_find_entry_rtl (struct assign_parm_data_all
*all
,
2519 struct assign_parm_data_one
*data
)
2521 HOST_WIDE_INT pretend_bytes
= 0;
2525 if (data
->promoted_mode
== VOIDmode
)
2527 data
->entry_parm
= data
->stack_parm
= const0_rtx
;
2531 entry_parm
= targetm
.calls
.function_incoming_arg (all
->args_so_far
,
2532 data
->promoted_mode
,
2536 if (entry_parm
== 0)
2537 data
->promoted_mode
= data
->passed_mode
;
2539 /* Determine parm's home in the stack, in case it arrives in the stack
2540 or we should pretend it did. Compute the stack position and rtx where
2541 the argument arrives and its size.
2543 There is one complexity here: If this was a parameter that would
2544 have been passed in registers, but wasn't only because it is
2545 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2546 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2547 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2548 as it was the previous time. */
2549 in_regs
= (entry_parm
!= 0) || POINTER_BOUNDS_TYPE_P (data
->passed_type
);
2550 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2553 if (!in_regs
&& !data
->named_arg
)
2555 if (targetm
.calls
.pretend_outgoing_varargs_named (all
->args_so_far
))
2558 tem
= targetm
.calls
.function_incoming_arg (all
->args_so_far
,
2559 data
->promoted_mode
,
2560 data
->passed_type
, true);
2561 in_regs
= tem
!= NULL
;
2565 /* If this parameter was passed both in registers and in the stack, use
2566 the copy on the stack. */
2567 if (targetm
.calls
.must_pass_in_stack (data
->promoted_mode
,
2575 partial
= targetm
.calls
.arg_partial_bytes (all
->args_so_far
,
2576 data
->promoted_mode
,
2579 data
->partial
= partial
;
2581 /* The caller might already have allocated stack space for the
2582 register parameters. */
2583 if (partial
!= 0 && all
->reg_parm_stack_space
== 0)
2585 /* Part of this argument is passed in registers and part
2586 is passed on the stack. Ask the prologue code to extend
2587 the stack part so that we can recreate the full value.
2589 PRETEND_BYTES is the size of the registers we need to store.
2590 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2591 stack space that the prologue should allocate.
2593 Internally, gcc assumes that the argument pointer is aligned
2594 to STACK_BOUNDARY bits. This is used both for alignment
2595 optimizations (see init_emit) and to locate arguments that are
2596 aligned to more than PARM_BOUNDARY bits. We must preserve this
2597 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2598 a stack boundary. */
2600 /* We assume at most one partial arg, and it must be the first
2601 argument on the stack. */
2602 gcc_assert (!all
->extra_pretend_bytes
&& !all
->pretend_args_size
);
2604 pretend_bytes
= partial
;
2605 all
->pretend_args_size
= CEIL_ROUND (pretend_bytes
, STACK_BYTES
);
2607 /* We want to align relative to the actual stack pointer, so
2608 don't include this in the stack size until later. */
2609 all
->extra_pretend_bytes
= all
->pretend_args_size
;
2613 locate_and_pad_parm (data
->promoted_mode
, data
->passed_type
, in_regs
,
2614 all
->reg_parm_stack_space
,
2615 entry_parm
? data
->partial
: 0, current_function_decl
,
2616 &all
->stack_args_size
, &data
->locate
);
2618 /* Update parm_stack_boundary if this parameter is passed in the
2620 if (!in_regs
&& crtl
->parm_stack_boundary
< data
->locate
.boundary
)
2621 crtl
->parm_stack_boundary
= data
->locate
.boundary
;
2623 /* Adjust offsets to include the pretend args. */
2624 pretend_bytes
= all
->extra_pretend_bytes
- pretend_bytes
;
2625 data
->locate
.slot_offset
.constant
+= pretend_bytes
;
2626 data
->locate
.offset
.constant
+= pretend_bytes
;
2628 data
->entry_parm
= entry_parm
;
2631 /* A subroutine of assign_parms. If there is actually space on the stack
2632 for this parm, count it in stack_args_size and return true. */
2635 assign_parm_is_stack_parm (struct assign_parm_data_all
*all
,
2636 struct assign_parm_data_one
*data
)
2638 /* Bounds are never passed on the stack to keep compatibility
2639 with not instrumented code. */
2640 if (POINTER_BOUNDS_TYPE_P (data
->passed_type
))
2642 /* Trivially true if we've no incoming register. */
2643 else if (data
->entry_parm
== NULL
)
2645 /* Also true if we're partially in registers and partially not,
2646 since we've arranged to drop the entire argument on the stack. */
2647 else if (data
->partial
!= 0)
2649 /* Also true if the target says that it's passed in both registers
2650 and on the stack. */
2651 else if (GET_CODE (data
->entry_parm
) == PARALLEL
2652 && XEXP (XVECEXP (data
->entry_parm
, 0, 0), 0) == NULL_RTX
)
2654 /* Also true if the target says that there's stack allocated for
2655 all register parameters. */
2656 else if (all
->reg_parm_stack_space
> 0)
2658 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2662 all
->stack_args_size
.constant
+= data
->locate
.size
.constant
;
2663 if (data
->locate
.size
.var
)
2664 ADD_PARM_SIZE (all
->stack_args_size
, data
->locate
.size
.var
);
2669 /* A subroutine of assign_parms. Given that this parameter is allocated
2670 stack space by the ABI, find it. */
2673 assign_parm_find_stack_rtl (tree parm
, struct assign_parm_data_one
*data
)
2675 rtx offset_rtx
, stack_parm
;
2676 unsigned int align
, boundary
;
2678 /* If we're passing this arg using a reg, make its stack home the
2679 aligned stack slot. */
2680 if (data
->entry_parm
)
2681 offset_rtx
= ARGS_SIZE_RTX (data
->locate
.slot_offset
);
2683 offset_rtx
= ARGS_SIZE_RTX (data
->locate
.offset
);
2685 stack_parm
= crtl
->args
.internal_arg_pointer
;
2686 if (offset_rtx
!= const0_rtx
)
2687 stack_parm
= gen_rtx_PLUS (Pmode
, stack_parm
, offset_rtx
);
2688 stack_parm
= gen_rtx_MEM (data
->promoted_mode
, stack_parm
);
2690 if (!data
->passed_pointer
)
2692 set_mem_attributes (stack_parm
, parm
, 1);
2693 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2694 while promoted mode's size is needed. */
2695 if (data
->promoted_mode
!= BLKmode
2696 && data
->promoted_mode
!= DECL_MODE (parm
))
2698 set_mem_size (stack_parm
, GET_MODE_SIZE (data
->promoted_mode
));
2699 if (MEM_EXPR (stack_parm
) && MEM_OFFSET_KNOWN_P (stack_parm
))
2701 int offset
= subreg_lowpart_offset (DECL_MODE (parm
),
2702 data
->promoted_mode
);
2704 set_mem_offset (stack_parm
, MEM_OFFSET (stack_parm
) - offset
);
2709 boundary
= data
->locate
.boundary
;
2710 align
= BITS_PER_UNIT
;
2712 /* If we're padding upward, we know that the alignment of the slot
2713 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2714 intentionally forcing upward padding. Otherwise we have to come
2715 up with a guess at the alignment based on OFFSET_RTX. */
2716 if (data
->locate
.where_pad
!= PAD_DOWNWARD
|| data
->entry_parm
)
2718 else if (CONST_INT_P (offset_rtx
))
2720 align
= INTVAL (offset_rtx
) * BITS_PER_UNIT
| boundary
;
2721 align
= least_bit_hwi (align
);
2723 set_mem_align (stack_parm
, align
);
2725 if (data
->entry_parm
)
2726 set_reg_attrs_for_parm (data
->entry_parm
, stack_parm
);
2728 data
->stack_parm
= stack_parm
;
2731 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2732 always valid and contiguous. */
2735 assign_parm_adjust_entry_rtl (struct assign_parm_data_one
*data
)
2737 rtx entry_parm
= data
->entry_parm
;
2738 rtx stack_parm
= data
->stack_parm
;
2740 /* If this parm was passed part in regs and part in memory, pretend it
2741 arrived entirely in memory by pushing the register-part onto the stack.
2742 In the special case of a DImode or DFmode that is split, we could put
2743 it together in a pseudoreg directly, but for now that's not worth
2745 if (data
->partial
!= 0)
2747 /* Handle calls that pass values in multiple non-contiguous
2748 locations. The Irix 6 ABI has examples of this. */
2749 if (GET_CODE (entry_parm
) == PARALLEL
)
2750 emit_group_store (validize_mem (copy_rtx (stack_parm
)), entry_parm
,
2752 int_size_in_bytes (data
->passed_type
));
2755 gcc_assert (data
->partial
% UNITS_PER_WORD
== 0);
2756 move_block_from_reg (REGNO (entry_parm
),
2757 validize_mem (copy_rtx (stack_parm
)),
2758 data
->partial
/ UNITS_PER_WORD
);
2761 entry_parm
= stack_parm
;
2764 /* If we didn't decide this parm came in a register, by default it came
2766 else if (entry_parm
== NULL
)
2767 entry_parm
= stack_parm
;
2769 /* When an argument is passed in multiple locations, we can't make use
2770 of this information, but we can save some copying if the whole argument
2771 is passed in a single register. */
2772 else if (GET_CODE (entry_parm
) == PARALLEL
2773 && data
->nominal_mode
!= BLKmode
2774 && data
->passed_mode
!= BLKmode
)
2776 size_t i
, len
= XVECLEN (entry_parm
, 0);
2778 for (i
= 0; i
< len
; i
++)
2779 if (XEXP (XVECEXP (entry_parm
, 0, i
), 0) != NULL_RTX
2780 && REG_P (XEXP (XVECEXP (entry_parm
, 0, i
), 0))
2781 && (GET_MODE (XEXP (XVECEXP (entry_parm
, 0, i
), 0))
2782 == data
->passed_mode
)
2783 && INTVAL (XEXP (XVECEXP (entry_parm
, 0, i
), 1)) == 0)
2785 entry_parm
= XEXP (XVECEXP (entry_parm
, 0, i
), 0);
2790 data
->entry_parm
= entry_parm
;
2793 /* A subroutine of assign_parms. Reconstitute any values which were
2794 passed in multiple registers and would fit in a single register. */
2797 assign_parm_remove_parallels (struct assign_parm_data_one
*data
)
2799 rtx entry_parm
= data
->entry_parm
;
2801 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2802 This can be done with register operations rather than on the
2803 stack, even if we will store the reconstituted parameter on the
2805 if (GET_CODE (entry_parm
) == PARALLEL
&& GET_MODE (entry_parm
) != BLKmode
)
2807 rtx parmreg
= gen_reg_rtx (GET_MODE (entry_parm
));
2808 emit_group_store (parmreg
, entry_parm
, data
->passed_type
,
2809 GET_MODE_SIZE (GET_MODE (entry_parm
)));
2810 entry_parm
= parmreg
;
2813 data
->entry_parm
= entry_parm
;
2816 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2817 always valid and properly aligned. */
2820 assign_parm_adjust_stack_rtl (struct assign_parm_data_one
*data
)
2822 rtx stack_parm
= data
->stack_parm
;
2824 /* If we can't trust the parm stack slot to be aligned enough for its
2825 ultimate type, don't use that slot after entry. We'll make another
2826 stack slot, if we need one. */
2828 && ((STRICT_ALIGNMENT
2829 && GET_MODE_ALIGNMENT (data
->nominal_mode
) > MEM_ALIGN (stack_parm
))
2830 || (data
->nominal_type
2831 && TYPE_ALIGN (data
->nominal_type
) > MEM_ALIGN (stack_parm
)
2832 && MEM_ALIGN (stack_parm
) < PREFERRED_STACK_BOUNDARY
)))
2835 /* If parm was passed in memory, and we need to convert it on entry,
2836 don't store it back in that same slot. */
2837 else if (data
->entry_parm
== stack_parm
2838 && data
->nominal_mode
!= BLKmode
2839 && data
->nominal_mode
!= data
->passed_mode
)
2842 /* If stack protection is in effect for this function, don't leave any
2843 pointers in their passed stack slots. */
2844 else if (crtl
->stack_protect_guard
2845 && (flag_stack_protect
== 2
2846 || data
->passed_pointer
2847 || POINTER_TYPE_P (data
->nominal_type
)))
2850 data
->stack_parm
= stack_parm
;
2853 /* A subroutine of assign_parms. Return true if the current parameter
2854 should be stored as a BLKmode in the current frame. */
2857 assign_parm_setup_block_p (struct assign_parm_data_one
*data
)
2859 if (data
->nominal_mode
== BLKmode
)
2861 if (GET_MODE (data
->entry_parm
) == BLKmode
)
2864 #ifdef BLOCK_REG_PADDING
2865 /* Only assign_parm_setup_block knows how to deal with register arguments
2866 that are padded at the least significant end. */
2867 if (REG_P (data
->entry_parm
)
2868 && GET_MODE_SIZE (data
->promoted_mode
) < UNITS_PER_WORD
2869 && (BLOCK_REG_PADDING (data
->passed_mode
, data
->passed_type
, 1)
2870 == (BYTES_BIG_ENDIAN
? PAD_UPWARD
: PAD_DOWNWARD
)))
2877 /* A subroutine of assign_parms. Arrange for the parameter to be
2878 present and valid in DATA->STACK_RTL. */
2881 assign_parm_setup_block (struct assign_parm_data_all
*all
,
2882 tree parm
, struct assign_parm_data_one
*data
)
2884 rtx entry_parm
= data
->entry_parm
;
2885 rtx stack_parm
= data
->stack_parm
;
2886 rtx target_reg
= NULL_RTX
;
2887 bool in_conversion_seq
= false;
2889 HOST_WIDE_INT size_stored
;
2891 if (GET_CODE (entry_parm
) == PARALLEL
)
2892 entry_parm
= emit_group_move_into_temps (entry_parm
);
2894 /* If we want the parameter in a pseudo, don't use a stack slot. */
2895 if (is_gimple_reg (parm
) && use_register_for_decl (parm
))
2897 tree def
= ssa_default_def (cfun
, parm
);
2899 machine_mode mode
= promote_ssa_mode (def
, NULL
);
2900 rtx reg
= gen_reg_rtx (mode
);
2901 if (GET_CODE (reg
) != CONCAT
)
2906 /* Avoid allocating a stack slot, if there isn't one
2907 preallocated by the ABI. It might seem like we should
2908 always prefer a pseudo, but converting between
2909 floating-point and integer modes goes through the stack
2910 on various machines, so it's better to use the reserved
2911 stack slot than to risk wasting it and allocating more
2912 for the conversion. */
2913 if (stack_parm
== NULL_RTX
)
2915 int save
= generating_concat_p
;
2916 generating_concat_p
= 0;
2917 stack_parm
= gen_reg_rtx (mode
);
2918 generating_concat_p
= save
;
2921 data
->stack_parm
= NULL
;
2924 size
= int_size_in_bytes (data
->passed_type
);
2925 size_stored
= CEIL_ROUND (size
, UNITS_PER_WORD
);
2926 if (stack_parm
== 0)
2928 SET_DECL_ALIGN (parm
, MAX (DECL_ALIGN (parm
), BITS_PER_WORD
));
2929 stack_parm
= assign_stack_local (BLKmode
, size_stored
,
2931 if (GET_MODE_SIZE (GET_MODE (entry_parm
)) == size
)
2932 PUT_MODE (stack_parm
, GET_MODE (entry_parm
));
2933 set_mem_attributes (stack_parm
, parm
, 1);
2936 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2937 calls that pass values in multiple non-contiguous locations. */
2938 if (REG_P (entry_parm
) || GET_CODE (entry_parm
) == PARALLEL
)
2942 /* Note that we will be storing an integral number of words.
2943 So we have to be careful to ensure that we allocate an
2944 integral number of words. We do this above when we call
2945 assign_stack_local if space was not allocated in the argument
2946 list. If it was, this will not work if PARM_BOUNDARY is not
2947 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2948 if it becomes a problem. Exception is when BLKmode arrives
2949 with arguments not conforming to word_mode. */
2951 if (data
->stack_parm
== 0)
2953 else if (GET_CODE (entry_parm
) == PARALLEL
)
2956 gcc_assert (!size
|| !(PARM_BOUNDARY
% BITS_PER_WORD
));
2958 mem
= validize_mem (copy_rtx (stack_parm
));
2960 /* Handle values in multiple non-contiguous locations. */
2961 if (GET_CODE (entry_parm
) == PARALLEL
&& !MEM_P (mem
))
2962 emit_group_store (mem
, entry_parm
, data
->passed_type
, size
);
2963 else if (GET_CODE (entry_parm
) == PARALLEL
)
2965 push_to_sequence2 (all
->first_conversion_insn
,
2966 all
->last_conversion_insn
);
2967 emit_group_store (mem
, entry_parm
, data
->passed_type
, size
);
2968 all
->first_conversion_insn
= get_insns ();
2969 all
->last_conversion_insn
= get_last_insn ();
2971 in_conversion_seq
= true;
2977 /* If SIZE is that of a mode no bigger than a word, just use
2978 that mode's store operation. */
2979 else if (size
<= UNITS_PER_WORD
)
2981 unsigned int bits
= size
* BITS_PER_UNIT
;
2982 machine_mode mode
= int_mode_for_size (bits
, 0).else_blk ();
2985 #ifdef BLOCK_REG_PADDING
2986 && (size
== UNITS_PER_WORD
2987 || (BLOCK_REG_PADDING (mode
, data
->passed_type
, 1)
2988 != (BYTES_BIG_ENDIAN
? PAD_UPWARD
: PAD_DOWNWARD
)))
2994 /* We are really truncating a word_mode value containing
2995 SIZE bytes into a value of mode MODE. If such an
2996 operation requires no actual instructions, we can refer
2997 to the value directly in mode MODE, otherwise we must
2998 start with the register in word_mode and explicitly
3000 if (TRULY_NOOP_TRUNCATION (size
* BITS_PER_UNIT
, BITS_PER_WORD
))
3001 reg
= gen_rtx_REG (mode
, REGNO (entry_parm
));
3004 reg
= gen_rtx_REG (word_mode
, REGNO (entry_parm
));
3005 reg
= convert_to_mode (mode
, copy_to_reg (reg
), 1);
3007 emit_move_insn (change_address (mem
, mode
, 0), reg
);
3010 #ifdef BLOCK_REG_PADDING
3011 /* Storing the register in memory as a full word, as
3012 move_block_from_reg below would do, and then using the
3013 MEM in a smaller mode, has the effect of shifting right
3014 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3015 shifting must be explicit. */
3016 else if (!MEM_P (mem
))
3020 /* If the assert below fails, we should have taken the
3021 mode != BLKmode path above, unless we have downward
3022 padding of smaller-than-word arguments on a machine
3023 with little-endian bytes, which would likely require
3024 additional changes to work correctly. */
3025 gcc_checking_assert (BYTES_BIG_ENDIAN
3026 && (BLOCK_REG_PADDING (mode
,
3027 data
->passed_type
, 1)
3030 int by
= (UNITS_PER_WORD
- size
) * BITS_PER_UNIT
;
3032 x
= gen_rtx_REG (word_mode
, REGNO (entry_parm
));
3033 x
= expand_shift (RSHIFT_EXPR
, word_mode
, x
, by
,
3035 x
= force_reg (word_mode
, x
);
3036 x
= gen_lowpart_SUBREG (GET_MODE (mem
), x
);
3038 emit_move_insn (mem
, x
);
3042 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3043 machine must be aligned to the left before storing
3044 to memory. Note that the previous test doesn't
3045 handle all cases (e.g. SIZE == 3). */
3046 else if (size
!= UNITS_PER_WORD
3047 #ifdef BLOCK_REG_PADDING
3048 && (BLOCK_REG_PADDING (mode
, data
->passed_type
, 1)
3056 int by
= (UNITS_PER_WORD
- size
) * BITS_PER_UNIT
;
3057 rtx reg
= gen_rtx_REG (word_mode
, REGNO (entry_parm
));
3059 x
= expand_shift (LSHIFT_EXPR
, word_mode
, reg
, by
, NULL_RTX
, 1);
3060 tem
= change_address (mem
, word_mode
, 0);
3061 emit_move_insn (tem
, x
);
3064 move_block_from_reg (REGNO (entry_parm
), mem
,
3065 size_stored
/ UNITS_PER_WORD
);
3067 else if (!MEM_P (mem
))
3069 gcc_checking_assert (size
> UNITS_PER_WORD
);
3070 #ifdef BLOCK_REG_PADDING
3071 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem
),
3072 data
->passed_type
, 0)
3075 emit_move_insn (mem
, entry_parm
);
3078 move_block_from_reg (REGNO (entry_parm
), mem
,
3079 size_stored
/ UNITS_PER_WORD
);
3081 else if (data
->stack_parm
== 0)
3083 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
3084 emit_block_move (stack_parm
, data
->entry_parm
, GEN_INT (size
),
3086 all
->first_conversion_insn
= get_insns ();
3087 all
->last_conversion_insn
= get_last_insn ();
3089 in_conversion_seq
= true;
3094 if (!in_conversion_seq
)
3095 emit_move_insn (target_reg
, stack_parm
);
3098 push_to_sequence2 (all
->first_conversion_insn
,
3099 all
->last_conversion_insn
);
3100 emit_move_insn (target_reg
, stack_parm
);
3101 all
->first_conversion_insn
= get_insns ();
3102 all
->last_conversion_insn
= get_last_insn ();
3105 stack_parm
= target_reg
;
3108 data
->stack_parm
= stack_parm
;
3109 set_parm_rtl (parm
, stack_parm
);
3112 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3113 parameter. Get it there. Perform all ABI specified conversions. */
3116 assign_parm_setup_reg (struct assign_parm_data_all
*all
, tree parm
,
3117 struct assign_parm_data_one
*data
)
3119 rtx parmreg
, validated_mem
;
3120 rtx equiv_stack_parm
;
3121 machine_mode promoted_nominal_mode
;
3122 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (parm
));
3123 bool did_conversion
= false;
3124 bool need_conversion
, moved
;
3127 /* Store the parm in a pseudoregister during the function, but we may
3128 need to do it in a wider mode. Using 2 here makes the result
3129 consistent with promote_decl_mode and thus expand_expr_real_1. */
3130 promoted_nominal_mode
3131 = promote_function_mode (data
->nominal_type
, data
->nominal_mode
, &unsignedp
,
3132 TREE_TYPE (current_function_decl
), 2);
3134 parmreg
= gen_reg_rtx (promoted_nominal_mode
);
3135 if (!DECL_ARTIFICIAL (parm
))
3136 mark_user_reg (parmreg
);
3138 /* If this was an item that we received a pointer to,
3139 set rtl appropriately. */
3140 if (data
->passed_pointer
)
3142 rtl
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data
->passed_type
)), parmreg
);
3143 set_mem_attributes (rtl
, parm
, 1);
3148 assign_parm_remove_parallels (data
);
3150 /* Copy the value into the register, thus bridging between
3151 assign_parm_find_data_types and expand_expr_real_1. */
3153 equiv_stack_parm
= data
->stack_parm
;
3154 validated_mem
= validize_mem (copy_rtx (data
->entry_parm
));
3156 need_conversion
= (data
->nominal_mode
!= data
->passed_mode
3157 || promoted_nominal_mode
!= data
->promoted_mode
);
3161 && GET_MODE_CLASS (data
->nominal_mode
) == MODE_INT
3162 && data
->nominal_mode
== data
->passed_mode
3163 && data
->nominal_mode
== GET_MODE (data
->entry_parm
))
3165 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3166 mode, by the caller. We now have to convert it to
3167 NOMINAL_MODE, if different. However, PARMREG may be in
3168 a different mode than NOMINAL_MODE if it is being stored
3171 If ENTRY_PARM is a hard register, it might be in a register
3172 not valid for operating in its mode (e.g., an odd-numbered
3173 register for a DFmode). In that case, moves are the only
3174 thing valid, so we can't do a convert from there. This
3175 occurs when the calling sequence allow such misaligned
3178 In addition, the conversion may involve a call, which could
3179 clobber parameters which haven't been copied to pseudo
3182 First, we try to emit an insn which performs the necessary
3183 conversion. We verify that this insn does not clobber any
3186 enum insn_code icode
;
3189 icode
= can_extend_p (promoted_nominal_mode
, data
->passed_mode
,
3193 op1
= validated_mem
;
3194 if (icode
!= CODE_FOR_nothing
3195 && insn_operand_matches (icode
, 0, op0
)
3196 && insn_operand_matches (icode
, 1, op1
))
3198 enum rtx_code code
= unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
;
3199 rtx_insn
*insn
, *insns
;
3201 HARD_REG_SET hardregs
;
3204 /* If op1 is a hard register that is likely spilled, first
3205 force it into a pseudo, otherwise combiner might extend
3206 its lifetime too much. */
3207 if (GET_CODE (t
) == SUBREG
)
3210 && HARD_REGISTER_P (t
)
3211 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (t
))
3212 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t
))))
3214 t
= gen_reg_rtx (GET_MODE (op1
));
3215 emit_move_insn (t
, op1
);
3219 rtx_insn
*pat
= gen_extend_insn (op0
, t
, promoted_nominal_mode
,
3220 data
->passed_mode
, unsignedp
);
3222 insns
= get_insns ();
3225 CLEAR_HARD_REG_SET (hardregs
);
3226 for (insn
= insns
; insn
&& moved
; insn
= NEXT_INSN (insn
))
3229 note_stores (PATTERN (insn
), record_hard_reg_sets
,
3231 if (!hard_reg_set_empty_p (hardregs
))
3240 if (equiv_stack_parm
!= NULL_RTX
)
3241 equiv_stack_parm
= gen_rtx_fmt_e (code
, GET_MODE (parmreg
),
3248 /* Nothing to do. */
3250 else if (need_conversion
)
3252 /* We did not have an insn to convert directly, or the sequence
3253 generated appeared unsafe. We must first copy the parm to a
3254 pseudo reg, and save the conversion until after all
3255 parameters have been moved. */
3258 rtx tempreg
= gen_reg_rtx (GET_MODE (data
->entry_parm
));
3260 emit_move_insn (tempreg
, validated_mem
);
3262 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
3263 tempreg
= convert_to_mode (data
->nominal_mode
, tempreg
, unsignedp
);
3265 if (partial_subreg_p (tempreg
)
3266 && GET_MODE (tempreg
) == data
->nominal_mode
3267 && REG_P (SUBREG_REG (tempreg
))
3268 && data
->nominal_mode
== data
->passed_mode
3269 && GET_MODE (SUBREG_REG (tempreg
)) == GET_MODE (data
->entry_parm
))
3271 /* The argument is already sign/zero extended, so note it
3273 SUBREG_PROMOTED_VAR_P (tempreg
) = 1;
3274 SUBREG_PROMOTED_SET (tempreg
, unsignedp
);
3277 /* TREE_USED gets set erroneously during expand_assignment. */
3278 save_tree_used
= TREE_USED (parm
);
3279 SET_DECL_RTL (parm
, rtl
);
3280 expand_assignment (parm
, make_tree (data
->nominal_type
, tempreg
), false);
3281 SET_DECL_RTL (parm
, NULL_RTX
);
3282 TREE_USED (parm
) = save_tree_used
;
3283 all
->first_conversion_insn
= get_insns ();
3284 all
->last_conversion_insn
= get_last_insn ();
3287 did_conversion
= true;
3290 emit_move_insn (parmreg
, validated_mem
);
3292 /* If we were passed a pointer but the actual value can safely live
3293 in a register, retrieve it and use it directly. */
3294 if (data
->passed_pointer
&& TYPE_MODE (TREE_TYPE (parm
)) != BLKmode
)
3296 /* We can't use nominal_mode, because it will have been set to
3297 Pmode above. We must use the actual mode of the parm. */
3298 if (use_register_for_decl (parm
))
3300 parmreg
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm
)));
3301 mark_user_reg (parmreg
);
3305 int align
= STACK_SLOT_ALIGNMENT (TREE_TYPE (parm
),
3306 TYPE_MODE (TREE_TYPE (parm
)),
3307 TYPE_ALIGN (TREE_TYPE (parm
)));
3309 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm
)),
3310 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm
))),
3312 set_mem_attributes (parmreg
, parm
, 1);
3315 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3316 the debug info in case it is not legitimate. */
3317 if (GET_MODE (parmreg
) != GET_MODE (rtl
))
3319 rtx tempreg
= gen_reg_rtx (GET_MODE (rtl
));
3320 int unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (parm
));
3322 push_to_sequence2 (all
->first_conversion_insn
,
3323 all
->last_conversion_insn
);
3324 emit_move_insn (tempreg
, rtl
);
3325 tempreg
= convert_to_mode (GET_MODE (parmreg
), tempreg
, unsigned_p
);
3326 emit_move_insn (MEM_P (parmreg
) ? copy_rtx (parmreg
) : parmreg
,
3328 all
->first_conversion_insn
= get_insns ();
3329 all
->last_conversion_insn
= get_last_insn ();
3332 did_conversion
= true;
3335 emit_move_insn (MEM_P (parmreg
) ? copy_rtx (parmreg
) : parmreg
, rtl
);
3339 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3341 data
->stack_parm
= NULL
;
3344 set_parm_rtl (parm
, rtl
);
3346 /* Mark the register as eliminable if we did no conversion and it was
3347 copied from memory at a fixed offset, and the arg pointer was not
3348 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3349 offset formed an invalid address, such memory-equivalences as we
3350 make here would screw up life analysis for it. */
3351 if (data
->nominal_mode
== data
->passed_mode
3353 && data
->stack_parm
!= 0
3354 && MEM_P (data
->stack_parm
)
3355 && data
->locate
.offset
.var
== 0
3356 && reg_mentioned_p (virtual_incoming_args_rtx
,
3357 XEXP (data
->stack_parm
, 0)))
3359 rtx_insn
*linsn
= get_last_insn ();
3363 /* Mark complex types separately. */
3364 if (GET_CODE (parmreg
) == CONCAT
)
3366 scalar_mode submode
= GET_MODE_INNER (GET_MODE (parmreg
));
3367 int regnor
= REGNO (XEXP (parmreg
, 0));
3368 int regnoi
= REGNO (XEXP (parmreg
, 1));
3369 rtx stackr
= adjust_address_nv (data
->stack_parm
, submode
, 0);
3370 rtx stacki
= adjust_address_nv (data
->stack_parm
, submode
,
3371 GET_MODE_SIZE (submode
));
3373 /* Scan backwards for the set of the real and
3375 for (sinsn
= linsn
; sinsn
!= 0;
3376 sinsn
= prev_nonnote_insn (sinsn
))
3378 set
= single_set (sinsn
);
3382 if (SET_DEST (set
) == regno_reg_rtx
[regnoi
])
3383 set_unique_reg_note (sinsn
, REG_EQUIV
, stacki
);
3384 else if (SET_DEST (set
) == regno_reg_rtx
[regnor
])
3385 set_unique_reg_note (sinsn
, REG_EQUIV
, stackr
);
3389 set_dst_reg_note (linsn
, REG_EQUIV
, equiv_stack_parm
, parmreg
);
3392 /* For pointer data type, suggest pointer register. */
3393 if (POINTER_TYPE_P (TREE_TYPE (parm
)))
3394 mark_reg_pointer (parmreg
,
3395 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm
))));
3398 /* A subroutine of assign_parms. Allocate stack space to hold the current
3399 parameter. Get it there. Perform all ABI specified conversions. */
3402 assign_parm_setup_stack (struct assign_parm_data_all
*all
, tree parm
,
3403 struct assign_parm_data_one
*data
)
3405 /* Value must be stored in the stack slot STACK_PARM during function
3407 bool to_conversion
= false;
3409 assign_parm_remove_parallels (data
);
3411 if (data
->promoted_mode
!= data
->nominal_mode
)
3413 /* Conversion is required. */
3414 rtx tempreg
= gen_reg_rtx (GET_MODE (data
->entry_parm
));
3416 emit_move_insn (tempreg
, validize_mem (copy_rtx (data
->entry_parm
)));
3418 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
3419 to_conversion
= true;
3421 data
->entry_parm
= convert_to_mode (data
->nominal_mode
, tempreg
,
3422 TYPE_UNSIGNED (TREE_TYPE (parm
)));
3424 if (data
->stack_parm
)
3426 int offset
= subreg_lowpart_offset (data
->nominal_mode
,
3427 GET_MODE (data
->stack_parm
));
3428 /* ??? This may need a big-endian conversion on sparc64. */
3430 = adjust_address (data
->stack_parm
, data
->nominal_mode
, 0);
3431 if (offset
&& MEM_OFFSET_KNOWN_P (data
->stack_parm
))
3432 set_mem_offset (data
->stack_parm
,
3433 MEM_OFFSET (data
->stack_parm
) + offset
);
3437 if (data
->entry_parm
!= data
->stack_parm
)
3441 if (data
->stack_parm
== 0)
3443 int align
= STACK_SLOT_ALIGNMENT (data
->passed_type
,
3444 GET_MODE (data
->entry_parm
),
3445 TYPE_ALIGN (data
->passed_type
));
3447 = assign_stack_local (GET_MODE (data
->entry_parm
),
3448 GET_MODE_SIZE (GET_MODE (data
->entry_parm
)),
3450 set_mem_attributes (data
->stack_parm
, parm
, 1);
3453 dest
= validize_mem (copy_rtx (data
->stack_parm
));
3454 src
= validize_mem (copy_rtx (data
->entry_parm
));
3458 /* Use a block move to handle potentially misaligned entry_parm. */
3460 push_to_sequence2 (all
->first_conversion_insn
,
3461 all
->last_conversion_insn
);
3462 to_conversion
= true;
3464 emit_block_move (dest
, src
,
3465 GEN_INT (int_size_in_bytes (data
->passed_type
)),
3471 src
= force_reg (GET_MODE (src
), src
);
3472 emit_move_insn (dest
, src
);
3478 all
->first_conversion_insn
= get_insns ();
3479 all
->last_conversion_insn
= get_last_insn ();
3483 set_parm_rtl (parm
, data
->stack_parm
);
3486 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3487 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3490 assign_parms_unsplit_complex (struct assign_parm_data_all
*all
,
3494 tree orig_fnargs
= all
->orig_fnargs
;
3497 for (parm
= orig_fnargs
; parm
; parm
= TREE_CHAIN (parm
), ++i
)
3499 if (TREE_CODE (TREE_TYPE (parm
)) == COMPLEX_TYPE
3500 && targetm
.calls
.split_complex_arg (TREE_TYPE (parm
)))
3502 rtx tmp
, real
, imag
;
3503 scalar_mode inner
= GET_MODE_INNER (DECL_MODE (parm
));
3505 real
= DECL_RTL (fnargs
[i
]);
3506 imag
= DECL_RTL (fnargs
[i
+ 1]);
3507 if (inner
!= GET_MODE (real
))
3509 real
= gen_lowpart_SUBREG (inner
, real
);
3510 imag
= gen_lowpart_SUBREG (inner
, imag
);
3513 if (TREE_ADDRESSABLE (parm
))
3516 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (parm
));
3517 int align
= STACK_SLOT_ALIGNMENT (TREE_TYPE (parm
),
3519 TYPE_ALIGN (TREE_TYPE (parm
)));
3521 /* split_complex_arg put the real and imag parts in
3522 pseudos. Move them to memory. */
3523 tmp
= assign_stack_local (DECL_MODE (parm
), size
, align
);
3524 set_mem_attributes (tmp
, parm
, 1);
3525 rmem
= adjust_address_nv (tmp
, inner
, 0);
3526 imem
= adjust_address_nv (tmp
, inner
, GET_MODE_SIZE (inner
));
3527 push_to_sequence2 (all
->first_conversion_insn
,
3528 all
->last_conversion_insn
);
3529 emit_move_insn (rmem
, real
);
3530 emit_move_insn (imem
, imag
);
3531 all
->first_conversion_insn
= get_insns ();
3532 all
->last_conversion_insn
= get_last_insn ();
3536 tmp
= gen_rtx_CONCAT (DECL_MODE (parm
), real
, imag
);
3537 set_parm_rtl (parm
, tmp
);
3539 real
= DECL_INCOMING_RTL (fnargs
[i
]);
3540 imag
= DECL_INCOMING_RTL (fnargs
[i
+ 1]);
3541 if (inner
!= GET_MODE (real
))
3543 real
= gen_lowpart_SUBREG (inner
, real
);
3544 imag
= gen_lowpart_SUBREG (inner
, imag
);
3546 tmp
= gen_rtx_CONCAT (DECL_MODE (parm
), real
, imag
);
3547 set_decl_incoming_rtl (parm
, tmp
, false);
3553 /* Load bounds of PARM from bounds table. */
3555 assign_parm_load_bounds (struct assign_parm_data_one
*data
,
3561 unsigned i
, offs
= 0;
3563 rtx slot
= NULL
, ptr
= NULL
;
3568 bitmap_obstack_initialize (NULL
);
3569 slots
= BITMAP_ALLOC (NULL
);
3570 chkp_find_bound_slots (TREE_TYPE (parm
), slots
);
3571 EXECUTE_IF_SET_IN_BITMAP (slots
, 0, i
, bi
)
3581 BITMAP_FREE (slots
);
3582 bitmap_obstack_release (NULL
);
3585 /* We may have bounds not associated with any pointer. */
3587 offs
= bnd_no
* POINTER_SIZE
/ BITS_PER_UNIT
;
3589 /* Find associated pointer. */
3592 /* If bounds are not associated with any bounds,
3593 then it is passed in a register or special slot. */
3594 gcc_assert (data
->entry_parm
);
3597 else if (MEM_P (entry
))
3598 slot
= adjust_address (entry
, Pmode
, offs
);
3599 else if (REG_P (entry
))
3600 ptr
= gen_rtx_REG (Pmode
, REGNO (entry
) + bnd_no
);
3601 else if (GET_CODE (entry
) == PARALLEL
)
3602 ptr
= chkp_get_value_with_offs (entry
, GEN_INT (offs
));
3605 data
->entry_parm
= targetm
.calls
.load_bounds_for_arg (slot
, ptr
,
3609 /* Assign RTL expressions to the function's bounds parameters BNDARGS. */
3612 assign_bounds (vec
<bounds_parm_data
> &bndargs
,
3613 struct assign_parm_data_all
&all
,
3614 bool assign_regs
, bool assign_special
,
3618 bounds_parm_data
*pbdata
;
3620 if (!bndargs
.exists ())
3623 /* We make few passes to store input bounds. Firstly handle bounds
3624 passed in registers. After that we load bounds passed in special
3625 slots. Finally we load bounds from Bounds Table. */
3626 for (pass
= 0; pass
< 3; pass
++)
3627 FOR_EACH_VEC_ELT (bndargs
, i
, pbdata
)
3629 /* Pass 0 => regs only. */
3632 ||(!pbdata
->parm_data
.entry_parm
3633 || GET_CODE (pbdata
->parm_data
.entry_parm
) != REG
)))
3635 /* Pass 1 => slots only. */
3638 || (!pbdata
->parm_data
.entry_parm
3639 || GET_CODE (pbdata
->parm_data
.entry_parm
) == REG
)))
3641 /* Pass 2 => BT only. */
3644 || pbdata
->parm_data
.entry_parm
))
3647 if (!pbdata
->parm_data
.entry_parm
3648 || GET_CODE (pbdata
->parm_data
.entry_parm
) != REG
)
3649 assign_parm_load_bounds (&pbdata
->parm_data
, pbdata
->ptr_parm
,
3650 pbdata
->ptr_entry
, pbdata
->bound_no
);
3652 set_decl_incoming_rtl (pbdata
->bounds_parm
,
3653 pbdata
->parm_data
.entry_parm
, false);
3655 if (assign_parm_setup_block_p (&pbdata
->parm_data
))
3656 assign_parm_setup_block (&all
, pbdata
->bounds_parm
,
3657 &pbdata
->parm_data
);
3658 else if (pbdata
->parm_data
.passed_pointer
3659 || use_register_for_decl (pbdata
->bounds_parm
))
3660 assign_parm_setup_reg (&all
, pbdata
->bounds_parm
,
3661 &pbdata
->parm_data
);
3663 assign_parm_setup_stack (&all
, pbdata
->bounds_parm
,
3664 &pbdata
->parm_data
);
3668 /* Assign RTL expressions to the function's parameters. This may involve
3669 copying them into registers and using those registers as the DECL_RTL. */
3672 assign_parms (tree fndecl
)
3674 struct assign_parm_data_all all
;
3677 unsigned i
, bound_no
= 0;
3678 tree last_arg
= NULL
;
3679 rtx last_arg_entry
= NULL
;
3680 vec
<bounds_parm_data
> bndargs
= vNULL
;
3681 bounds_parm_data bdata
;
3683 crtl
->args
.internal_arg_pointer
3684 = targetm
.calls
.internal_arg_pointer ();
3686 assign_parms_initialize_all (&all
);
3687 fnargs
= assign_parms_augmented_arg_list (&all
);
3689 FOR_EACH_VEC_ELT (fnargs
, i
, parm
)
3691 struct assign_parm_data_one data
;
3693 /* Extract the type of PARM; adjust it according to ABI. */
3694 assign_parm_find_data_types (&all
, parm
, &data
);
3696 /* Early out for errors and void parameters. */
3697 if (data
.passed_mode
== VOIDmode
)
3699 SET_DECL_RTL (parm
, const0_rtx
);
3700 DECL_INCOMING_RTL (parm
) = DECL_RTL (parm
);
3704 /* Estimate stack alignment from parameter alignment. */
3705 if (SUPPORTS_STACK_ALIGNMENT
)
3708 = targetm
.calls
.function_arg_boundary (data
.promoted_mode
,
3710 align
= MINIMUM_ALIGNMENT (data
.passed_type
, data
.promoted_mode
,
3712 if (TYPE_ALIGN (data
.nominal_type
) > align
)
3713 align
= MINIMUM_ALIGNMENT (data
.nominal_type
,
3714 TYPE_MODE (data
.nominal_type
),
3715 TYPE_ALIGN (data
.nominal_type
));
3716 if (crtl
->stack_alignment_estimated
< align
)
3718 gcc_assert (!crtl
->stack_realign_processed
);
3719 crtl
->stack_alignment_estimated
= align
;
3723 /* Find out where the parameter arrives in this function. */
3724 assign_parm_find_entry_rtl (&all
, &data
);
3726 /* Find out where stack space for this parameter might be. */
3727 if (assign_parm_is_stack_parm (&all
, &data
))
3729 assign_parm_find_stack_rtl (parm
, &data
);
3730 assign_parm_adjust_entry_rtl (&data
);
3732 if (!POINTER_BOUNDS_TYPE_P (data
.passed_type
))
3734 /* Remember where last non bounds arg was passed in case
3735 we have to load associated bounds for it from Bounds
3738 last_arg_entry
= data
.entry_parm
;
3741 /* Record permanently how this parm was passed. */
3742 if (data
.passed_pointer
)
3745 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data
.passed_type
)),
3747 set_decl_incoming_rtl (parm
, incoming_rtl
, true);
3750 set_decl_incoming_rtl (parm
, data
.entry_parm
, false);
3752 assign_parm_adjust_stack_rtl (&data
);
3754 /* Bounds should be loaded in the particular order to
3755 have registers allocated correctly. Collect info about
3756 input bounds and load them later. */
3757 if (POINTER_BOUNDS_TYPE_P (data
.passed_type
))
3759 /* Expect bounds in instrumented functions only. */
3760 gcc_assert (chkp_function_instrumented_p (fndecl
));
3762 bdata
.parm_data
= data
;
3763 bdata
.bounds_parm
= parm
;
3764 bdata
.ptr_parm
= last_arg
;
3765 bdata
.ptr_entry
= last_arg_entry
;
3766 bdata
.bound_no
= bound_no
;
3767 bndargs
.safe_push (bdata
);
3771 if (assign_parm_setup_block_p (&data
))
3772 assign_parm_setup_block (&all
, parm
, &data
);
3773 else if (data
.passed_pointer
|| use_register_for_decl (parm
))
3774 assign_parm_setup_reg (&all
, parm
, &data
);
3776 assign_parm_setup_stack (&all
, parm
, &data
);
3779 if (cfun
->stdarg
&& !DECL_CHAIN (parm
))
3781 int pretend_bytes
= 0;
3783 assign_parms_setup_varargs (&all
, &data
, false);
3785 if (chkp_function_instrumented_p (fndecl
))
3787 /* We expect this is the last parm. Otherwise it is wrong
3788 to assign bounds right now. */
3789 gcc_assert (i
== (fnargs
.length () - 1));
3790 assign_bounds (bndargs
, all
, true, false, false);
3791 targetm
.calls
.setup_incoming_vararg_bounds (all
.args_so_far
,
3796 assign_bounds (bndargs
, all
, false, true, true);
3801 /* Update info on where next arg arrives in registers. */
3802 targetm
.calls
.function_arg_advance (all
.args_so_far
, data
.promoted_mode
,
3803 data
.passed_type
, data
.named_arg
);
3805 if (POINTER_BOUNDS_TYPE_P (data
.passed_type
))
3809 assign_bounds (bndargs
, all
, true, true, true);
3812 if (targetm
.calls
.split_complex_arg
)
3813 assign_parms_unsplit_complex (&all
, fnargs
);
3817 /* Output all parameter conversion instructions (possibly including calls)
3818 now that all parameters have been copied out of hard registers. */
3819 emit_insn (all
.first_conversion_insn
);
3821 /* Estimate reload stack alignment from scalar return mode. */
3822 if (SUPPORTS_STACK_ALIGNMENT
)
3824 if (DECL_RESULT (fndecl
))
3826 tree type
= TREE_TYPE (DECL_RESULT (fndecl
));
3827 machine_mode mode
= TYPE_MODE (type
);
3831 && !AGGREGATE_TYPE_P (type
))
3833 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
3834 if (crtl
->stack_alignment_estimated
< align
)
3836 gcc_assert (!crtl
->stack_realign_processed
);
3837 crtl
->stack_alignment_estimated
= align
;
3843 /* If we are receiving a struct value address as the first argument, set up
3844 the RTL for the function result. As this might require code to convert
3845 the transmitted address to Pmode, we do this here to ensure that possible
3846 preliminary conversions of the address have been emitted already. */
3847 if (all
.function_result_decl
)
3849 tree result
= DECL_RESULT (current_function_decl
);
3850 rtx addr
= DECL_RTL (all
.function_result_decl
);
3853 if (DECL_BY_REFERENCE (result
))
3855 SET_DECL_VALUE_EXPR (result
, all
.function_result_decl
);
3860 SET_DECL_VALUE_EXPR (result
,
3861 build1 (INDIRECT_REF
, TREE_TYPE (result
),
3862 all
.function_result_decl
));
3863 addr
= convert_memory_address (Pmode
, addr
);
3864 x
= gen_rtx_MEM (DECL_MODE (result
), addr
);
3865 set_mem_attributes (x
, result
, 1);
3868 DECL_HAS_VALUE_EXPR_P (result
) = 1;
3870 set_parm_rtl (result
, x
);
3873 /* We have aligned all the args, so add space for the pretend args. */
3874 crtl
->args
.pretend_args_size
= all
.pretend_args_size
;
3875 all
.stack_args_size
.constant
+= all
.extra_pretend_bytes
;
3876 crtl
->args
.size
= all
.stack_args_size
.constant
;
3878 /* Adjust function incoming argument size for alignment and
3881 crtl
->args
.size
= MAX (crtl
->args
.size
, all
.reg_parm_stack_space
);
3882 crtl
->args
.size
= CEIL_ROUND (crtl
->args
.size
,
3883 PARM_BOUNDARY
/ BITS_PER_UNIT
);
3885 if (ARGS_GROW_DOWNWARD
)
3887 crtl
->args
.arg_offset_rtx
3888 = (all
.stack_args_size
.var
== 0 ? GEN_INT (-all
.stack_args_size
.constant
)
3889 : expand_expr (size_diffop (all
.stack_args_size
.var
,
3890 size_int (-all
.stack_args_size
.constant
)),
3891 NULL_RTX
, VOIDmode
, EXPAND_NORMAL
));
3894 crtl
->args
.arg_offset_rtx
= ARGS_SIZE_RTX (all
.stack_args_size
);
3896 /* See how many bytes, if any, of its args a function should try to pop
3899 crtl
->args
.pops_args
= targetm
.calls
.return_pops_args (fndecl
,
3903 /* For stdarg.h function, save info about
3904 regs and stack space used by the named args. */
3906 crtl
->args
.info
= all
.args_so_far_v
;
3908 /* Set the rtx used for the function return value. Put this in its
3909 own variable so any optimizers that need this information don't have
3910 to include tree.h. Do this here so it gets done when an inlined
3911 function gets output. */
3914 = (DECL_RTL_SET_P (DECL_RESULT (fndecl
))
3915 ? DECL_RTL (DECL_RESULT (fndecl
)) : NULL_RTX
);
3917 /* If scalar return value was computed in a pseudo-reg, or was a named
3918 return value that got dumped to the stack, copy that to the hard
3920 if (DECL_RTL_SET_P (DECL_RESULT (fndecl
)))
3922 tree decl_result
= DECL_RESULT (fndecl
);
3923 rtx decl_rtl
= DECL_RTL (decl_result
);
3925 if (REG_P (decl_rtl
)
3926 ? REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
3927 : DECL_REGISTER (decl_result
))
3931 real_decl_rtl
= targetm
.calls
.function_value (TREE_TYPE (decl_result
),
3933 if (chkp_function_instrumented_p (fndecl
))
3935 = targetm
.calls
.chkp_function_value_bounds (TREE_TYPE (decl_result
),
3937 REG_FUNCTION_VALUE_P (real_decl_rtl
) = 1;
3938 /* The delay slot scheduler assumes that crtl->return_rtx
3939 holds the hard register containing the return value, not a
3940 temporary pseudo. */
3941 crtl
->return_rtx
= real_decl_rtl
;
3946 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3947 For all seen types, gimplify their sizes. */
3950 gimplify_parm_type (tree
*tp
, int *walk_subtrees
, void *data
)
3957 if (POINTER_TYPE_P (t
))
3959 else if (TYPE_SIZE (t
) && !TREE_CONSTANT (TYPE_SIZE (t
))
3960 && !TYPE_SIZES_GIMPLIFIED (t
))
3962 gimplify_type_sizes (t
, (gimple_seq
*) data
);
3970 /* Gimplify the parameter list for current_function_decl. This involves
3971 evaluating SAVE_EXPRs of variable sized parameters and generating code
3972 to implement callee-copies reference parameters. Returns a sequence of
3973 statements to add to the beginning of the function. */
3976 gimplify_parameters (void)
3978 struct assign_parm_data_all all
;
3980 gimple_seq stmts
= NULL
;
3984 assign_parms_initialize_all (&all
);
3985 fnargs
= assign_parms_augmented_arg_list (&all
);
3987 FOR_EACH_VEC_ELT (fnargs
, i
, parm
)
3989 struct assign_parm_data_one data
;
3991 /* Extract the type of PARM; adjust it according to ABI. */
3992 assign_parm_find_data_types (&all
, parm
, &data
);
3994 /* Early out for errors and void parameters. */
3995 if (data
.passed_mode
== VOIDmode
|| DECL_SIZE (parm
) == NULL
)
3998 /* Update info on where next arg arrives in registers. */
3999 targetm
.calls
.function_arg_advance (all
.args_so_far
, data
.promoted_mode
,
4000 data
.passed_type
, data
.named_arg
);
4002 /* ??? Once upon a time variable_size stuffed parameter list
4003 SAVE_EXPRs (amongst others) onto a pending sizes list. This
4004 turned out to be less than manageable in the gimple world.
4005 Now we have to hunt them down ourselves. */
4006 walk_tree_without_duplicates (&data
.passed_type
,
4007 gimplify_parm_type
, &stmts
);
4009 if (TREE_CODE (DECL_SIZE_UNIT (parm
)) != INTEGER_CST
)
4011 gimplify_one_sizepos (&DECL_SIZE (parm
), &stmts
);
4012 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm
), &stmts
);
4015 if (data
.passed_pointer
)
4017 tree type
= TREE_TYPE (data
.passed_type
);
4018 if (reference_callee_copied (&all
.args_so_far_v
, TYPE_MODE (type
),
4019 type
, data
.named_arg
))
4023 /* For constant-sized objects, this is trivial; for
4024 variable-sized objects, we have to play games. */
4025 if (TREE_CODE (DECL_SIZE_UNIT (parm
)) == INTEGER_CST
4026 && !(flag_stack_check
== GENERIC_STACK_CHECK
4027 && compare_tree_int (DECL_SIZE_UNIT (parm
),
4028 STACK_CHECK_MAX_VAR_SIZE
) > 0))
4030 local
= create_tmp_var (type
, get_name (parm
));
4031 DECL_IGNORED_P (local
) = 0;
4032 /* If PARM was addressable, move that flag over
4033 to the local copy, as its address will be taken,
4034 not the PARMs. Keep the parms address taken
4035 as we'll query that flag during gimplification. */
4036 if (TREE_ADDRESSABLE (parm
))
4037 TREE_ADDRESSABLE (local
) = 1;
4038 else if (TREE_CODE (type
) == COMPLEX_TYPE
4039 || TREE_CODE (type
) == VECTOR_TYPE
)
4040 DECL_GIMPLE_REG_P (local
) = 1;
4044 tree ptr_type
, addr
;
4046 ptr_type
= build_pointer_type (type
);
4047 addr
= create_tmp_reg (ptr_type
, get_name (parm
));
4048 DECL_IGNORED_P (addr
) = 0;
4049 local
= build_fold_indirect_ref (addr
);
4051 t
= builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN
);
4052 t
= build_call_expr (t
, 2, DECL_SIZE_UNIT (parm
),
4053 size_int (DECL_ALIGN (parm
)));
4055 /* The call has been built for a variable-sized object. */
4056 CALL_ALLOCA_FOR_VAR_P (t
) = 1;
4057 t
= fold_convert (ptr_type
, t
);
4058 t
= build2 (MODIFY_EXPR
, TREE_TYPE (addr
), addr
, t
);
4059 gimplify_and_add (t
, &stmts
);
4062 gimplify_assign (local
, parm
, &stmts
);
4064 SET_DECL_VALUE_EXPR (parm
, local
);
4065 DECL_HAS_VALUE_EXPR_P (parm
) = 1;
4075 /* Compute the size and offset from the start of the stacked arguments for a
4076 parm passed in mode PASSED_MODE and with type TYPE.
4078 INITIAL_OFFSET_PTR points to the current offset into the stacked
4081 The starting offset and size for this parm are returned in
4082 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
4083 nonzero, the offset is that of stack slot, which is returned in
4084 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
4085 padding required from the initial offset ptr to the stack slot.
4087 IN_REGS is nonzero if the argument will be passed in registers. It will
4088 never be set if REG_PARM_STACK_SPACE is not defined.
4090 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
4091 for arguments which are passed in registers.
4093 FNDECL is the function in which the argument was defined.
4095 There are two types of rounding that are done. The first, controlled by
4096 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
4097 argument list to be aligned to the specific boundary (in bits). This
4098 rounding affects the initial and starting offsets, but not the argument
4101 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4102 optionally rounds the size of the parm to PARM_BOUNDARY. The
4103 initial offset is not affected by this rounding, while the size always
4104 is and the starting offset may be. */
4106 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4107 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4108 callers pass in the total size of args so far as
4109 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4112 locate_and_pad_parm (machine_mode passed_mode
, tree type
, int in_regs
,
4113 int reg_parm_stack_space
, int partial
,
4114 tree fndecl ATTRIBUTE_UNUSED
,
4115 struct args_size
*initial_offset_ptr
,
4116 struct locate_and_pad_arg_data
*locate
)
4119 pad_direction where_pad
;
4120 unsigned int boundary
, round_boundary
;
4121 int part_size_in_regs
;
4123 /* If we have found a stack parm before we reach the end of the
4124 area reserved for registers, skip that area. */
4127 if (reg_parm_stack_space
> 0)
4129 if (initial_offset_ptr
->var
)
4131 initial_offset_ptr
->var
4132 = size_binop (MAX_EXPR
, ARGS_SIZE_TREE (*initial_offset_ptr
),
4133 ssize_int (reg_parm_stack_space
));
4134 initial_offset_ptr
->constant
= 0;
4136 else if (initial_offset_ptr
->constant
< reg_parm_stack_space
)
4137 initial_offset_ptr
->constant
= reg_parm_stack_space
;
4141 part_size_in_regs
= (reg_parm_stack_space
== 0 ? partial
: 0);
4144 = type
? size_in_bytes (type
) : size_int (GET_MODE_SIZE (passed_mode
));
4145 where_pad
= targetm
.calls
.function_arg_padding (passed_mode
, type
);
4146 boundary
= targetm
.calls
.function_arg_boundary (passed_mode
, type
);
4147 round_boundary
= targetm
.calls
.function_arg_round_boundary (passed_mode
,
4149 locate
->where_pad
= where_pad
;
4151 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4152 if (boundary
> MAX_SUPPORTED_STACK_ALIGNMENT
)
4153 boundary
= MAX_SUPPORTED_STACK_ALIGNMENT
;
4155 locate
->boundary
= boundary
;
4157 if (SUPPORTS_STACK_ALIGNMENT
)
4159 /* stack_alignment_estimated can't change after stack has been
4161 if (crtl
->stack_alignment_estimated
< boundary
)
4163 if (!crtl
->stack_realign_processed
)
4164 crtl
->stack_alignment_estimated
= boundary
;
4167 /* If stack is realigned and stack alignment value
4168 hasn't been finalized, it is OK not to increase
4169 stack_alignment_estimated. The bigger alignment
4170 requirement is recorded in stack_alignment_needed
4172 gcc_assert (!crtl
->stack_realign_finalized
4173 && crtl
->stack_realign_needed
);
4178 /* Remember if the outgoing parameter requires extra alignment on the
4179 calling function side. */
4180 if (crtl
->stack_alignment_needed
< boundary
)
4181 crtl
->stack_alignment_needed
= boundary
;
4182 if (crtl
->preferred_stack_boundary
< boundary
)
4183 crtl
->preferred_stack_boundary
= boundary
;
4185 if (ARGS_GROW_DOWNWARD
)
4187 locate
->slot_offset
.constant
= -initial_offset_ptr
->constant
;
4188 if (initial_offset_ptr
->var
)
4189 locate
->slot_offset
.var
= size_binop (MINUS_EXPR
, ssize_int (0),
4190 initial_offset_ptr
->var
);
4194 if (where_pad
!= PAD_NONE
4195 && (!tree_fits_uhwi_p (sizetree
)
4196 || (tree_to_uhwi (sizetree
) * BITS_PER_UNIT
) % round_boundary
))
4197 s2
= round_up (s2
, round_boundary
/ BITS_PER_UNIT
);
4198 SUB_PARM_SIZE (locate
->slot_offset
, s2
);
4201 locate
->slot_offset
.constant
+= part_size_in_regs
;
4203 if (!in_regs
|| reg_parm_stack_space
> 0)
4204 pad_to_arg_alignment (&locate
->slot_offset
, boundary
,
4205 &locate
->alignment_pad
);
4207 locate
->size
.constant
= (-initial_offset_ptr
->constant
4208 - locate
->slot_offset
.constant
);
4209 if (initial_offset_ptr
->var
)
4210 locate
->size
.var
= size_binop (MINUS_EXPR
,
4211 size_binop (MINUS_EXPR
,
4213 initial_offset_ptr
->var
),
4214 locate
->slot_offset
.var
);
4216 /* Pad_below needs the pre-rounded size to know how much to pad
4218 locate
->offset
= locate
->slot_offset
;
4219 if (where_pad
== PAD_DOWNWARD
)
4220 pad_below (&locate
->offset
, passed_mode
, sizetree
);
4225 if (!in_regs
|| reg_parm_stack_space
> 0)
4226 pad_to_arg_alignment (initial_offset_ptr
, boundary
,
4227 &locate
->alignment_pad
);
4228 locate
->slot_offset
= *initial_offset_ptr
;
4230 #ifdef PUSH_ROUNDING
4231 if (passed_mode
!= BLKmode
)
4232 sizetree
= size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree
)));
4235 /* Pad_below needs the pre-rounded size to know how much to pad below
4236 so this must be done before rounding up. */
4237 locate
->offset
= locate
->slot_offset
;
4238 if (where_pad
== PAD_DOWNWARD
)
4239 pad_below (&locate
->offset
, passed_mode
, sizetree
);
4241 if (where_pad
!= PAD_NONE
4242 && (!tree_fits_uhwi_p (sizetree
)
4243 || (tree_to_uhwi (sizetree
) * BITS_PER_UNIT
) % round_boundary
))
4244 sizetree
= round_up (sizetree
, round_boundary
/ BITS_PER_UNIT
);
4246 ADD_PARM_SIZE (locate
->size
, sizetree
);
4248 locate
->size
.constant
-= part_size_in_regs
;
4251 #ifdef FUNCTION_ARG_OFFSET
4252 locate
->offset
.constant
+= FUNCTION_ARG_OFFSET (passed_mode
, type
);
4256 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4257 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4260 pad_to_arg_alignment (struct args_size
*offset_ptr
, int boundary
,
4261 struct args_size
*alignment_pad
)
4263 tree save_var
= NULL_TREE
;
4264 HOST_WIDE_INT save_constant
= 0;
4265 int boundary_in_bytes
= boundary
/ BITS_PER_UNIT
;
4266 HOST_WIDE_INT sp_offset
= STACK_POINTER_OFFSET
;
4268 #ifdef SPARC_STACK_BOUNDARY_HACK
4269 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4270 the real alignment of %sp. However, when it does this, the
4271 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4272 if (SPARC_STACK_BOUNDARY_HACK
)
4276 if (boundary
> PARM_BOUNDARY
)
4278 save_var
= offset_ptr
->var
;
4279 save_constant
= offset_ptr
->constant
;
4282 alignment_pad
->var
= NULL_TREE
;
4283 alignment_pad
->constant
= 0;
4285 if (boundary
> BITS_PER_UNIT
)
4287 if (offset_ptr
->var
)
4289 tree sp_offset_tree
= ssize_int (sp_offset
);
4290 tree offset
= size_binop (PLUS_EXPR
,
4291 ARGS_SIZE_TREE (*offset_ptr
),
4294 if (ARGS_GROW_DOWNWARD
)
4295 rounded
= round_down (offset
, boundary
/ BITS_PER_UNIT
);
4297 rounded
= round_up (offset
, boundary
/ BITS_PER_UNIT
);
4299 offset_ptr
->var
= size_binop (MINUS_EXPR
, rounded
, sp_offset_tree
);
4300 /* ARGS_SIZE_TREE includes constant term. */
4301 offset_ptr
->constant
= 0;
4302 if (boundary
> PARM_BOUNDARY
)
4303 alignment_pad
->var
= size_binop (MINUS_EXPR
, offset_ptr
->var
,
4308 offset_ptr
->constant
= -sp_offset
+
4310 ? FLOOR_ROUND (offset_ptr
->constant
+ sp_offset
, boundary_in_bytes
)
4311 : CEIL_ROUND (offset_ptr
->constant
+ sp_offset
, boundary_in_bytes
));
4313 if (boundary
> PARM_BOUNDARY
)
4314 alignment_pad
->constant
= offset_ptr
->constant
- save_constant
;
4320 pad_below (struct args_size
*offset_ptr
, machine_mode passed_mode
, tree sizetree
)
4322 unsigned int align
= PARM_BOUNDARY
/ BITS_PER_UNIT
;
4323 if (passed_mode
!= BLKmode
)
4324 offset_ptr
->constant
+= -GET_MODE_SIZE (passed_mode
) & (align
- 1);
4327 if (TREE_CODE (sizetree
) != INTEGER_CST
4328 || (TREE_INT_CST_LOW (sizetree
) & (align
- 1)) != 0)
4330 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4331 tree s2
= round_up (sizetree
, align
);
4333 ADD_PARM_SIZE (*offset_ptr
, s2
);
4334 SUB_PARM_SIZE (*offset_ptr
, sizetree
);
4340 /* True if register REGNO was alive at a place where `setjmp' was
4341 called and was set more than once or is an argument. Such regs may
4342 be clobbered by `longjmp'. */
4345 regno_clobbered_at_setjmp (bitmap setjmp_crosses
, int regno
)
4347 /* There appear to be cases where some local vars never reach the
4348 backend but have bogus regnos. */
4349 if (regno
>= max_reg_num ())
4352 return ((REG_N_SETS (regno
) > 1
4353 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun
)),
4355 && REGNO_REG_SET_P (setjmp_crosses
, regno
));
4358 /* Walk the tree of blocks describing the binding levels within a
4359 function and warn about variables the might be killed by setjmp or
4360 vfork. This is done after calling flow_analysis before register
4361 allocation since that will clobber the pseudo-regs to hard
4365 setjmp_vars_warning (bitmap setjmp_crosses
, tree block
)
4369 for (decl
= BLOCK_VARS (block
); decl
; decl
= DECL_CHAIN (decl
))
4372 && DECL_RTL_SET_P (decl
)
4373 && REG_P (DECL_RTL (decl
))
4374 && regno_clobbered_at_setjmp (setjmp_crosses
, REGNO (DECL_RTL (decl
))))
4375 warning (OPT_Wclobbered
, "variable %q+D might be clobbered by"
4376 " %<longjmp%> or %<vfork%>", decl
);
4379 for (sub
= BLOCK_SUBBLOCKS (block
); sub
; sub
= BLOCK_CHAIN (sub
))
4380 setjmp_vars_warning (setjmp_crosses
, sub
);
4383 /* Do the appropriate part of setjmp_vars_warning
4384 but for arguments instead of local variables. */
4387 setjmp_args_warning (bitmap setjmp_crosses
)
4390 for (decl
= DECL_ARGUMENTS (current_function_decl
);
4391 decl
; decl
= DECL_CHAIN (decl
))
4392 if (DECL_RTL (decl
) != 0
4393 && REG_P (DECL_RTL (decl
))
4394 && regno_clobbered_at_setjmp (setjmp_crosses
, REGNO (DECL_RTL (decl
))))
4395 warning (OPT_Wclobbered
,
4396 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4400 /* Generate warning messages for variables live across setjmp. */
4403 generate_setjmp_warnings (void)
4405 bitmap setjmp_crosses
= regstat_get_setjmp_crosses ();
4407 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
4408 || bitmap_empty_p (setjmp_crosses
))
4411 setjmp_vars_warning (setjmp_crosses
, DECL_INITIAL (current_function_decl
));
4412 setjmp_args_warning (setjmp_crosses
);
4416 /* Reverse the order of elements in the fragment chain T of blocks,
4417 and return the new head of the chain (old last element).
4418 In addition to that clear BLOCK_SAME_RANGE flags when needed
4419 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4420 its super fragment origin. */
4423 block_fragments_nreverse (tree t
)
4425 tree prev
= 0, block
, next
, prev_super
= 0;
4426 tree super
= BLOCK_SUPERCONTEXT (t
);
4427 if (BLOCK_FRAGMENT_ORIGIN (super
))
4428 super
= BLOCK_FRAGMENT_ORIGIN (super
);
4429 for (block
= t
; block
; block
= next
)
4431 next
= BLOCK_FRAGMENT_CHAIN (block
);
4432 BLOCK_FRAGMENT_CHAIN (block
) = prev
;
4433 if ((prev
&& !BLOCK_SAME_RANGE (prev
))
4434 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block
))
4436 BLOCK_SAME_RANGE (block
) = 0;
4437 prev_super
= BLOCK_SUPERCONTEXT (block
);
4438 BLOCK_SUPERCONTEXT (block
) = super
;
4441 t
= BLOCK_FRAGMENT_ORIGIN (t
);
4442 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t
))
4444 BLOCK_SAME_RANGE (t
) = 0;
4445 BLOCK_SUPERCONTEXT (t
) = super
;
4449 /* Reverse the order of elements in the chain T of blocks,
4450 and return the new head of the chain (old last element).
4451 Also do the same on subblocks and reverse the order of elements
4452 in BLOCK_FRAGMENT_CHAIN as well. */
4455 blocks_nreverse_all (tree t
)
4457 tree prev
= 0, block
, next
;
4458 for (block
= t
; block
; block
= next
)
4460 next
= BLOCK_CHAIN (block
);
4461 BLOCK_CHAIN (block
) = prev
;
4462 if (BLOCK_FRAGMENT_CHAIN (block
)
4463 && BLOCK_FRAGMENT_ORIGIN (block
) == NULL_TREE
)
4465 BLOCK_FRAGMENT_CHAIN (block
)
4466 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block
));
4467 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block
)))
4468 BLOCK_SAME_RANGE (block
) = 0;
4470 BLOCK_SUBBLOCKS (block
) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block
));
4477 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4478 and create duplicate blocks. */
4479 /* ??? Need an option to either create block fragments or to create
4480 abstract origin duplicates of a source block. It really depends
4481 on what optimization has been performed. */
4484 reorder_blocks (void)
4486 tree block
= DECL_INITIAL (current_function_decl
);
4488 if (block
== NULL_TREE
)
4491 auto_vec
<tree
, 10> block_stack
;
4493 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4494 clear_block_marks (block
);
4496 /* Prune the old trees away, so that they don't get in the way. */
4497 BLOCK_SUBBLOCKS (block
) = NULL_TREE
;
4498 BLOCK_CHAIN (block
) = NULL_TREE
;
4500 /* Recreate the block tree from the note nesting. */
4501 reorder_blocks_1 (get_insns (), block
, &block_stack
);
4502 BLOCK_SUBBLOCKS (block
) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block
));
4505 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4508 clear_block_marks (tree block
)
4512 TREE_ASM_WRITTEN (block
) = 0;
4513 clear_block_marks (BLOCK_SUBBLOCKS (block
));
4514 block
= BLOCK_CHAIN (block
);
4519 reorder_blocks_1 (rtx_insn
*insns
, tree current_block
,
4520 vec
<tree
> *p_block_stack
)
4523 tree prev_beg
= NULL_TREE
, prev_end
= NULL_TREE
;
4525 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
4529 if (NOTE_KIND (insn
) == NOTE_INSN_BLOCK_BEG
)
4531 tree block
= NOTE_BLOCK (insn
);
4534 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block
) == NULL_TREE
);
4538 BLOCK_SAME_RANGE (prev_end
) = 0;
4539 prev_end
= NULL_TREE
;
4541 /* If we have seen this block before, that means it now
4542 spans multiple address regions. Create a new fragment. */
4543 if (TREE_ASM_WRITTEN (block
))
4545 tree new_block
= copy_node (block
);
4547 BLOCK_SAME_RANGE (new_block
) = 0;
4548 BLOCK_FRAGMENT_ORIGIN (new_block
) = origin
;
4549 BLOCK_FRAGMENT_CHAIN (new_block
)
4550 = BLOCK_FRAGMENT_CHAIN (origin
);
4551 BLOCK_FRAGMENT_CHAIN (origin
) = new_block
;
4553 NOTE_BLOCK (insn
) = new_block
;
4557 if (prev_beg
== current_block
&& prev_beg
)
4558 BLOCK_SAME_RANGE (block
) = 1;
4562 BLOCK_SUBBLOCKS (block
) = 0;
4563 TREE_ASM_WRITTEN (block
) = 1;
4564 /* When there's only one block for the entire function,
4565 current_block == block and we mustn't do this, it
4566 will cause infinite recursion. */
4567 if (block
!= current_block
)
4570 if (block
!= origin
)
4571 gcc_assert (BLOCK_SUPERCONTEXT (origin
) == current_block
4572 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4575 if (p_block_stack
->is_empty ())
4576 super
= current_block
;
4579 super
= p_block_stack
->last ();
4580 gcc_assert (super
== current_block
4581 || BLOCK_FRAGMENT_ORIGIN (super
)
4584 BLOCK_SUPERCONTEXT (block
) = super
;
4585 BLOCK_CHAIN (block
) = BLOCK_SUBBLOCKS (current_block
);
4586 BLOCK_SUBBLOCKS (current_block
) = block
;
4587 current_block
= origin
;
4589 p_block_stack
->safe_push (block
);
4591 else if (NOTE_KIND (insn
) == NOTE_INSN_BLOCK_END
)
4593 NOTE_BLOCK (insn
) = p_block_stack
->pop ();
4594 current_block
= BLOCK_SUPERCONTEXT (current_block
);
4595 if (BLOCK_FRAGMENT_ORIGIN (current_block
))
4596 current_block
= BLOCK_FRAGMENT_ORIGIN (current_block
);
4597 prev_beg
= NULL_TREE
;
4598 prev_end
= BLOCK_SAME_RANGE (NOTE_BLOCK (insn
))
4599 ? NOTE_BLOCK (insn
) : NULL_TREE
;
4604 prev_beg
= NULL_TREE
;
4606 BLOCK_SAME_RANGE (prev_end
) = 0;
4607 prev_end
= NULL_TREE
;
4612 /* Reverse the order of elements in the chain T of blocks,
4613 and return the new head of the chain (old last element). */
4616 blocks_nreverse (tree t
)
4618 tree prev
= 0, block
, next
;
4619 for (block
= t
; block
; block
= next
)
4621 next
= BLOCK_CHAIN (block
);
4622 BLOCK_CHAIN (block
) = prev
;
4628 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4629 by modifying the last node in chain 1 to point to chain 2. */
4632 block_chainon (tree op1
, tree op2
)
4641 for (t1
= op1
; BLOCK_CHAIN (t1
); t1
= BLOCK_CHAIN (t1
))
4643 BLOCK_CHAIN (t1
) = op2
;
4645 #ifdef ENABLE_TREE_CHECKING
4648 for (t2
= op2
; t2
; t2
= BLOCK_CHAIN (t2
))
4649 gcc_assert (t2
!= t1
);
4656 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4657 non-NULL, list them all into VECTOR, in a depth-first preorder
4658 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4662 all_blocks (tree block
, tree
*vector
)
4668 TREE_ASM_WRITTEN (block
) = 0;
4670 /* Record this block. */
4672 vector
[n_blocks
] = block
;
4676 /* Record the subblocks, and their subblocks... */
4677 n_blocks
+= all_blocks (BLOCK_SUBBLOCKS (block
),
4678 vector
? vector
+ n_blocks
: 0);
4679 block
= BLOCK_CHAIN (block
);
4685 /* Return a vector containing all the blocks rooted at BLOCK. The
4686 number of elements in the vector is stored in N_BLOCKS_P. The
4687 vector is dynamically allocated; it is the caller's responsibility
4688 to call `free' on the pointer returned. */
4691 get_block_vector (tree block
, int *n_blocks_p
)
4695 *n_blocks_p
= all_blocks (block
, NULL
);
4696 block_vector
= XNEWVEC (tree
, *n_blocks_p
);
4697 all_blocks (block
, block_vector
);
4699 return block_vector
;
4702 static GTY(()) int next_block_index
= 2;
4704 /* Set BLOCK_NUMBER for all the blocks in FN. */
4707 number_blocks (tree fn
)
4713 /* For SDB and XCOFF debugging output, we start numbering the blocks
4714 from 1 within each function, rather than keeping a running
4716 #if SDB_DEBUGGING_INFO || defined (XCOFF_DEBUGGING_INFO)
4717 if (write_symbols
== SDB_DEBUG
|| write_symbols
== XCOFF_DEBUG
)
4718 next_block_index
= 1;
4721 block_vector
= get_block_vector (DECL_INITIAL (fn
), &n_blocks
);
4723 /* The top-level BLOCK isn't numbered at all. */
4724 for (i
= 1; i
< n_blocks
; ++i
)
4725 /* We number the blocks from two. */
4726 BLOCK_NUMBER (block_vector
[i
]) = next_block_index
++;
4728 free (block_vector
);
4733 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4736 debug_find_var_in_block_tree (tree var
, tree block
)
4740 for (t
= BLOCK_VARS (block
); t
; t
= TREE_CHAIN (t
))
4744 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= TREE_CHAIN (t
))
4746 tree ret
= debug_find_var_in_block_tree (var
, t
);
4754 /* Keep track of whether we're in a dummy function context. If we are,
4755 we don't want to invoke the set_current_function hook, because we'll
4756 get into trouble if the hook calls target_reinit () recursively or
4757 when the initial initialization is not yet complete. */
4759 static bool in_dummy_function
;
4761 /* Invoke the target hook when setting cfun. Update the optimization options
4762 if the function uses different options than the default. */
4765 invoke_set_current_function_hook (tree fndecl
)
4767 if (!in_dummy_function
)
4769 tree opts
= ((fndecl
)
4770 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl
)
4771 : optimization_default_node
);
4774 opts
= optimization_default_node
;
4776 /* Change optimization options if needed. */
4777 if (optimization_current_node
!= opts
)
4779 optimization_current_node
= opts
;
4780 cl_optimization_restore (&global_options
, TREE_OPTIMIZATION (opts
));
4783 targetm
.set_current_function (fndecl
);
4784 this_fn_optabs
= this_target_optabs
;
4786 if (opts
!= optimization_default_node
)
4788 init_tree_optimization_optabs (opts
);
4789 if (TREE_OPTIMIZATION_OPTABS (opts
))
4790 this_fn_optabs
= (struct target_optabs
*)
4791 TREE_OPTIMIZATION_OPTABS (opts
);
4796 /* cfun should never be set directly; use this function. */
4799 set_cfun (struct function
*new_cfun
, bool force
)
4801 if (cfun
!= new_cfun
|| force
)
4804 invoke_set_current_function_hook (new_cfun
? new_cfun
->decl
: NULL_TREE
);
4805 redirect_edge_var_map_empty ();
4809 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4811 static vec
<function
*> cfun_stack
;
4813 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4814 current_function_decl accordingly. */
4817 push_cfun (struct function
*new_cfun
)
4819 gcc_assert ((!cfun
&& !current_function_decl
)
4820 || (cfun
&& current_function_decl
== cfun
->decl
));
4821 cfun_stack
.safe_push (cfun
);
4822 current_function_decl
= new_cfun
? new_cfun
->decl
: NULL_TREE
;
4823 set_cfun (new_cfun
);
4826 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4831 struct function
*new_cfun
= cfun_stack
.pop ();
4832 /* When in_dummy_function, we do have a cfun but current_function_decl is
4833 NULL. We also allow pushing NULL cfun and subsequently changing
4834 current_function_decl to something else and have both restored by
4836 gcc_checking_assert (in_dummy_function
4838 || current_function_decl
== cfun
->decl
);
4839 set_cfun (new_cfun
);
4840 current_function_decl
= new_cfun
? new_cfun
->decl
: NULL_TREE
;
4843 /* Return value of funcdef and increase it. */
4845 get_next_funcdef_no (void)
4847 return funcdef_no
++;
4850 /* Return value of funcdef. */
4852 get_last_funcdef_no (void)
4857 /* Allocate a function structure for FNDECL and set its contents
4858 to the defaults. Set cfun to the newly-allocated object.
4859 Some of the helper functions invoked during initialization assume
4860 that cfun has already been set. Therefore, assign the new object
4861 directly into cfun and invoke the back end hook explicitly at the
4862 very end, rather than initializing a temporary and calling set_cfun
4865 ABSTRACT_P is true if this is a function that will never be seen by
4866 the middle-end. Such functions are front-end concepts (like C++
4867 function templates) that do not correspond directly to functions
4868 placed in object files. */
4871 allocate_struct_function (tree fndecl
, bool abstract_p
)
4873 tree fntype
= fndecl
? TREE_TYPE (fndecl
) : NULL_TREE
;
4875 cfun
= ggc_cleared_alloc
<function
> ();
4877 init_eh_for_function ();
4879 if (init_machine_status
)
4880 cfun
->machine
= (*init_machine_status
) ();
4882 #ifdef OVERRIDE_ABI_FORMAT
4883 OVERRIDE_ABI_FORMAT (fndecl
);
4886 if (fndecl
!= NULL_TREE
)
4888 DECL_STRUCT_FUNCTION (fndecl
) = cfun
;
4889 cfun
->decl
= fndecl
;
4890 current_function_funcdef_no
= get_next_funcdef_no ();
4893 invoke_set_current_function_hook (fndecl
);
4895 if (fndecl
!= NULL_TREE
)
4897 tree result
= DECL_RESULT (fndecl
);
4901 /* Now that we have activated any function-specific attributes
4902 that might affect layout, particularly vector modes, relayout
4903 each of the parameters and the result. */
4904 relayout_decl (result
);
4905 for (tree parm
= DECL_ARGUMENTS (fndecl
); parm
;
4906 parm
= DECL_CHAIN (parm
))
4907 relayout_decl (parm
);
4909 /* Similarly relayout the function decl. */
4910 targetm
.target_option
.relayout_function (fndecl
);
4913 if (!abstract_p
&& aggregate_value_p (result
, fndecl
))
4915 #ifdef PCC_STATIC_STRUCT_RETURN
4916 cfun
->returns_pcc_struct
= 1;
4918 cfun
->returns_struct
= 1;
4921 cfun
->stdarg
= stdarg_p (fntype
);
4923 /* Assume all registers in stdarg functions need to be saved. */
4924 cfun
->va_list_gpr_size
= VA_LIST_MAX_GPR_SIZE
;
4925 cfun
->va_list_fpr_size
= VA_LIST_MAX_FPR_SIZE
;
4927 /* ??? This could be set on a per-function basis by the front-end
4928 but is this worth the hassle? */
4929 cfun
->can_throw_non_call_exceptions
= flag_non_call_exceptions
;
4930 cfun
->can_delete_dead_exceptions
= flag_delete_dead_exceptions
;
4932 if (!profile_flag
&& !flag_instrument_function_entry_exit
)
4933 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl
) = 1;
4937 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4938 instead of just setting it. */
4941 push_struct_function (tree fndecl
)
4943 /* When in_dummy_function we might be in the middle of a pop_cfun and
4944 current_function_decl and cfun may not match. */
4945 gcc_assert (in_dummy_function
4946 || (!cfun
&& !current_function_decl
)
4947 || (cfun
&& current_function_decl
== cfun
->decl
));
4948 cfun_stack
.safe_push (cfun
);
4949 current_function_decl
= fndecl
;
4950 allocate_struct_function (fndecl
, false);
4953 /* Reset crtl and other non-struct-function variables to defaults as
4954 appropriate for emitting rtl at the start of a function. */
4957 prepare_function_start (void)
4959 gcc_assert (!get_last_insn ());
4962 init_varasm_status ();
4964 default_rtl_profile ();
4966 if (flag_stack_usage_info
)
4968 cfun
->su
= ggc_cleared_alloc
<stack_usage
> ();
4969 cfun
->su
->static_stack_size
= -1;
4972 cse_not_expected
= ! optimize
;
4974 /* Caller save not needed yet. */
4975 caller_save_needed
= 0;
4977 /* We haven't done register allocation yet. */
4980 /* Indicate that we have not instantiated virtual registers yet. */
4981 virtuals_instantiated
= 0;
4983 /* Indicate that we want CONCATs now. */
4984 generating_concat_p
= 1;
4986 /* Indicate we have no need of a frame pointer yet. */
4987 frame_pointer_needed
= 0;
4991 push_dummy_function (bool with_decl
)
4993 tree fn_decl
, fn_type
, fn_result_decl
;
4995 gcc_assert (!in_dummy_function
);
4996 in_dummy_function
= true;
5000 fn_type
= build_function_type_list (void_type_node
, NULL_TREE
);
5001 fn_decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, NULL_TREE
,
5003 fn_result_decl
= build_decl (UNKNOWN_LOCATION
, RESULT_DECL
,
5004 NULL_TREE
, void_type_node
);
5005 DECL_RESULT (fn_decl
) = fn_result_decl
;
5008 fn_decl
= NULL_TREE
;
5010 push_struct_function (fn_decl
);
5013 /* Initialize the rtl expansion mechanism so that we can do simple things
5014 like generate sequences. This is used to provide a context during global
5015 initialization of some passes. You must call expand_dummy_function_end
5016 to exit this context. */
5019 init_dummy_function_start (void)
5021 push_dummy_function (false);
5022 prepare_function_start ();
5025 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5026 and initialize static variables for generating RTL for the statements
5030 init_function_start (tree subr
)
5032 /* Initialize backend, if needed. */
5035 prepare_function_start ();
5036 decide_function_section (subr
);
5038 /* Warn if this value is an aggregate type,
5039 regardless of which calling convention we are using for it. */
5040 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr
))))
5041 warning (OPT_Waggregate_return
, "function returns an aggregate");
5044 /* Expand code to verify the stack_protect_guard. This is invoked at
5045 the end of a function to be protected. */
5048 stack_protect_epilogue (void)
5050 tree guard_decl
= targetm
.stack_protect_guard ();
5051 rtx_code_label
*label
= gen_label_rtx ();
5055 x
= expand_normal (crtl
->stack_protect_guard
);
5057 y
= expand_normal (guard_decl
);
5061 /* Allow the target to compare Y with X without leaking either into
5063 if (targetm
.have_stack_protect_test ()
5064 && ((seq
= targetm
.gen_stack_protect_test (x
, y
, label
)) != NULL_RTX
))
5067 emit_cmp_and_jump_insns (x
, y
, EQ
, NULL_RTX
, ptr_mode
, 1, label
);
5069 /* The noreturn predictor has been moved to the tree level. The rtl-level
5070 predictors estimate this branch about 20%, which isn't enough to get
5071 things moved out of line. Since this is the only extant case of adding
5072 a noreturn function at the rtl level, it doesn't seem worth doing ought
5073 except adding the prediction by hand. */
5074 rtx_insn
*tmp
= get_last_insn ();
5076 predict_insn_def (tmp
, PRED_NORETURN
, TAKEN
);
5078 expand_call (targetm
.stack_protect_fail (), NULL_RTX
, /*ignore=*/true);
5083 /* Start the RTL for a new function, and set variables used for
5085 SUBR is the FUNCTION_DECL node.
5086 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5087 the function's parameters, which must be run at any return statement. */
5090 expand_function_start (tree subr
)
5092 /* Make sure volatile mem refs aren't considered
5093 valid operands of arithmetic insns. */
5094 init_recog_no_volatile ();
5098 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr
));
5101 = (stack_limit_rtx
!= NULL_RTX
&& ! DECL_NO_LIMIT_STACK (subr
));
5103 /* Make the label for return statements to jump to. Do not special
5104 case machines with special return instructions -- they will be
5105 handled later during jump, ifcvt, or epilogue creation. */
5106 return_label
= gen_label_rtx ();
5108 /* Initialize rtx used to return the value. */
5109 /* Do this before assign_parms so that we copy the struct value address
5110 before any library calls that assign parms might generate. */
5112 /* Decide whether to return the value in memory or in a register. */
5113 tree res
= DECL_RESULT (subr
);
5114 if (aggregate_value_p (res
, subr
))
5116 /* Returning something that won't go in a register. */
5117 rtx value_address
= 0;
5119 #ifdef PCC_STATIC_STRUCT_RETURN
5120 if (cfun
->returns_pcc_struct
)
5122 int size
= int_size_in_bytes (TREE_TYPE (res
));
5123 value_address
= assemble_static_space (size
);
5128 rtx sv
= targetm
.calls
.struct_value_rtx (TREE_TYPE (subr
), 2);
5129 /* Expect to be passed the address of a place to store the value.
5130 If it is passed as an argument, assign_parms will take care of
5134 value_address
= gen_reg_rtx (Pmode
);
5135 emit_move_insn (value_address
, sv
);
5140 rtx x
= value_address
;
5141 if (!DECL_BY_REFERENCE (res
))
5143 x
= gen_rtx_MEM (DECL_MODE (res
), x
);
5144 set_mem_attributes (x
, res
, 1);
5146 set_parm_rtl (res
, x
);
5149 else if (DECL_MODE (res
) == VOIDmode
)
5150 /* If return mode is void, this decl rtl should not be used. */
5151 set_parm_rtl (res
, NULL_RTX
);
5154 /* Compute the return values into a pseudo reg, which we will copy
5155 into the true return register after the cleanups are done. */
5156 tree return_type
= TREE_TYPE (res
);
5158 /* If we may coalesce this result, make sure it has the expected mode
5159 in case it was promoted. But we need not bother about BLKmode. */
5160 machine_mode promoted_mode
5161 = flag_tree_coalesce_vars
&& is_gimple_reg (res
)
5162 ? promote_ssa_mode (ssa_default_def (cfun
, res
), NULL
)
5165 if (promoted_mode
!= BLKmode
)
5166 set_parm_rtl (res
, gen_reg_rtx (promoted_mode
));
5167 else if (TYPE_MODE (return_type
) != BLKmode
5168 && targetm
.calls
.return_in_msb (return_type
))
5169 /* expand_function_end will insert the appropriate padding in
5170 this case. Use the return value's natural (unpadded) mode
5171 within the function proper. */
5172 set_parm_rtl (res
, gen_reg_rtx (TYPE_MODE (return_type
)));
5175 /* In order to figure out what mode to use for the pseudo, we
5176 figure out what the mode of the eventual return register will
5177 actually be, and use that. */
5178 rtx hard_reg
= hard_function_value (return_type
, subr
, 0, 1);
5180 /* Structures that are returned in registers are not
5181 aggregate_value_p, so we may see a PARALLEL or a REG. */
5182 if (REG_P (hard_reg
))
5183 set_parm_rtl (res
, gen_reg_rtx (GET_MODE (hard_reg
)));
5186 gcc_assert (GET_CODE (hard_reg
) == PARALLEL
);
5187 set_parm_rtl (res
, gen_group_rtx (hard_reg
));
5191 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5192 result to the real return register(s). */
5193 DECL_REGISTER (res
) = 1;
5195 if (chkp_function_instrumented_p (current_function_decl
))
5197 tree return_type
= TREE_TYPE (res
);
5198 rtx bounds
= targetm
.calls
.chkp_function_value_bounds (return_type
,
5200 SET_DECL_BOUNDS_RTL (res
, bounds
);
5204 /* Initialize rtx for parameters and local variables.
5205 In some cases this requires emitting insns. */
5206 assign_parms (subr
);
5208 /* If function gets a static chain arg, store it. */
5209 if (cfun
->static_chain_decl
)
5211 tree parm
= cfun
->static_chain_decl
;
5216 local
= gen_reg_rtx (promote_decl_mode (parm
, &unsignedp
));
5217 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
5219 set_decl_incoming_rtl (parm
, chain
, false);
5220 set_parm_rtl (parm
, local
);
5221 mark_reg_pointer (local
, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm
))));
5223 if (GET_MODE (local
) != GET_MODE (chain
))
5225 convert_move (local
, chain
, unsignedp
);
5226 insn
= get_last_insn ();
5229 insn
= emit_move_insn (local
, chain
);
5231 /* Mark the register as eliminable, similar to parameters. */
5233 && reg_mentioned_p (arg_pointer_rtx
, XEXP (chain
, 0)))
5234 set_dst_reg_note (insn
, REG_EQUIV
, chain
, local
);
5236 /* If we aren't optimizing, save the static chain onto the stack. */
5239 tree saved_static_chain_decl
5240 = build_decl (DECL_SOURCE_LOCATION (parm
), VAR_DECL
,
5241 DECL_NAME (parm
), TREE_TYPE (parm
));
5242 rtx saved_static_chain_rtx
5243 = assign_stack_local (Pmode
, GET_MODE_SIZE (Pmode
), 0);
5244 SET_DECL_RTL (saved_static_chain_decl
, saved_static_chain_rtx
);
5245 emit_move_insn (saved_static_chain_rtx
, chain
);
5246 SET_DECL_VALUE_EXPR (parm
, saved_static_chain_decl
);
5247 DECL_HAS_VALUE_EXPR_P (parm
) = 1;
5251 /* The following was moved from init_function_start.
5252 The move is supposed to make sdb output more accurate. */
5253 /* Indicate the beginning of the function body,
5254 as opposed to parm setup. */
5255 emit_note (NOTE_INSN_FUNCTION_BEG
);
5257 gcc_assert (NOTE_P (get_last_insn ()));
5259 parm_birth_insn
= get_last_insn ();
5261 /* If the function receives a non-local goto, then store the
5262 bits we need to restore the frame pointer. */
5263 if (cfun
->nonlocal_goto_save_area
)
5268 tree var
= TREE_OPERAND (cfun
->nonlocal_goto_save_area
, 0);
5269 gcc_assert (DECL_RTL_SET_P (var
));
5271 t_save
= build4 (ARRAY_REF
,
5272 TREE_TYPE (TREE_TYPE (cfun
->nonlocal_goto_save_area
)),
5273 cfun
->nonlocal_goto_save_area
,
5274 integer_zero_node
, NULL_TREE
, NULL_TREE
);
5275 r_save
= expand_expr (t_save
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5276 gcc_assert (GET_MODE (r_save
) == Pmode
);
5278 emit_move_insn (r_save
, targetm
.builtin_setjmp_frame_value ());
5279 update_nonlocal_goto_save_area ();
5285 PROFILE_HOOK (current_function_funcdef_no
);
5289 /* If we are doing generic stack checking, the probe should go here. */
5290 if (flag_stack_check
== GENERIC_STACK_CHECK
)
5291 stack_check_probe_note
= emit_note (NOTE_INSN_DELETED
);
5295 pop_dummy_function (void)
5298 in_dummy_function
= false;
5301 /* Undo the effects of init_dummy_function_start. */
5303 expand_dummy_function_end (void)
5305 gcc_assert (in_dummy_function
);
5307 /* End any sequences that failed to be closed due to syntax errors. */
5308 while (in_sequence_p ())
5311 /* Outside function body, can't compute type's actual size
5312 until next function's body starts. */
5314 free_after_parsing (cfun
);
5315 free_after_compilation (cfun
);
5316 pop_dummy_function ();
5319 /* Helper for diddle_return_value. */
5322 diddle_return_value_1 (void (*doit
) (rtx
, void *), void *arg
, rtx outgoing
)
5327 if (REG_P (outgoing
))
5328 (*doit
) (outgoing
, arg
);
5329 else if (GET_CODE (outgoing
) == PARALLEL
)
5333 for (i
= 0; i
< XVECLEN (outgoing
, 0); i
++)
5335 rtx x
= XEXP (XVECEXP (outgoing
, 0, i
), 0);
5337 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
5343 /* Call DOIT for each hard register used as a return value from
5344 the current function. */
5347 diddle_return_value (void (*doit
) (rtx
, void *), void *arg
)
5349 diddle_return_value_1 (doit
, arg
, crtl
->return_bnd
);
5350 diddle_return_value_1 (doit
, arg
, crtl
->return_rtx
);
5354 do_clobber_return_reg (rtx reg
, void *arg ATTRIBUTE_UNUSED
)
5360 clobber_return_register (void)
5362 diddle_return_value (do_clobber_return_reg
, NULL
);
5364 /* In case we do use pseudo to return value, clobber it too. */
5365 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl
)))
5367 tree decl_result
= DECL_RESULT (current_function_decl
);
5368 rtx decl_rtl
= DECL_RTL (decl_result
);
5369 if (REG_P (decl_rtl
) && REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
)
5371 do_clobber_return_reg (decl_rtl
, NULL
);
5377 do_use_return_reg (rtx reg
, void *arg ATTRIBUTE_UNUSED
)
5383 use_return_register (void)
5385 diddle_return_value (do_use_return_reg
, NULL
);
5388 /* Set the location of the insn chain starting at INSN to LOC. */
5391 set_insn_locations (rtx_insn
*insn
, int loc
)
5393 while (insn
!= NULL
)
5396 INSN_LOCATION (insn
) = loc
;
5397 insn
= NEXT_INSN (insn
);
5401 /* Generate RTL for the end of the current function. */
5404 expand_function_end (void)
5406 /* If arg_pointer_save_area was referenced only from a nested
5407 function, we will not have initialized it yet. Do that now. */
5408 if (arg_pointer_save_area
&& ! crtl
->arg_pointer_save_area_init
)
5409 get_arg_pointer_save_area ();
5411 /* If we are doing generic stack checking and this function makes calls,
5412 do a stack probe at the start of the function to ensure we have enough
5413 space for another stack frame. */
5414 if (flag_stack_check
== GENERIC_STACK_CHECK
)
5416 rtx_insn
*insn
, *seq
;
5418 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
5421 rtx max_frame_size
= GEN_INT (STACK_CHECK_MAX_FRAME_SIZE
);
5423 if (STACK_CHECK_MOVING_SP
)
5424 anti_adjust_stack_and_probe (max_frame_size
, true);
5426 probe_stack_range (STACK_OLD_CHECK_PROTECT
, max_frame_size
);
5429 set_insn_locations (seq
, prologue_location
);
5430 emit_insn_before (seq
, stack_check_probe_note
);
5435 /* End any sequences that failed to be closed due to syntax errors. */
5436 while (in_sequence_p ())
5439 clear_pending_stack_adjust ();
5440 do_pending_stack_adjust ();
5442 /* Output a linenumber for the end of the function.
5443 SDB depends on this. */
5444 set_curr_insn_location (input_location
);
5446 /* Before the return label (if any), clobber the return
5447 registers so that they are not propagated live to the rest of
5448 the function. This can only happen with functions that drop
5449 through; if there had been a return statement, there would
5450 have either been a return rtx, or a jump to the return label.
5452 We delay actual code generation after the current_function_value_rtx
5454 rtx_insn
*clobber_after
= get_last_insn ();
5456 /* Output the label for the actual return from the function. */
5457 emit_label (return_label
);
5459 if (targetm_common
.except_unwind_info (&global_options
) == UI_SJLJ
)
5461 /* Let except.c know where it should emit the call to unregister
5462 the function context for sjlj exceptions. */
5463 if (flag_exceptions
)
5464 sjlj_emit_function_exit_after (get_last_insn ());
5468 /* We want to ensure that instructions that may trap are not
5469 moved into the epilogue by scheduling, because we don't
5470 always emit unwind information for the epilogue. */
5471 if (cfun
->can_throw_non_call_exceptions
)
5472 emit_insn (gen_blockage ());
5475 /* If this is an implementation of throw, do what's necessary to
5476 communicate between __builtin_eh_return and the epilogue. */
5477 expand_eh_return ();
5479 /* If scalar return value was computed in a pseudo-reg, or was a named
5480 return value that got dumped to the stack, copy that to the hard
5482 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl
)))
5484 tree decl_result
= DECL_RESULT (current_function_decl
);
5485 rtx decl_rtl
= DECL_RTL (decl_result
);
5487 if (REG_P (decl_rtl
)
5488 ? REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
5489 : DECL_REGISTER (decl_result
))
5491 rtx real_decl_rtl
= crtl
->return_rtx
;
5494 /* This should be set in assign_parms. */
5495 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl
));
5497 /* If this is a BLKmode structure being returned in registers,
5498 then use the mode computed in expand_return. Note that if
5499 decl_rtl is memory, then its mode may have been changed,
5500 but that crtl->return_rtx has not. */
5501 if (GET_MODE (real_decl_rtl
) == BLKmode
)
5502 PUT_MODE (real_decl_rtl
, GET_MODE (decl_rtl
));
5504 /* If a non-BLKmode return value should be padded at the least
5505 significant end of the register, shift it left by the appropriate
5506 amount. BLKmode results are handled using the group load/store
5508 if (TYPE_MODE (TREE_TYPE (decl_result
)) != BLKmode
5509 && REG_P (real_decl_rtl
)
5510 && targetm
.calls
.return_in_msb (TREE_TYPE (decl_result
)))
5512 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl
),
5513 REGNO (real_decl_rtl
)),
5515 shift_return_value (GET_MODE (decl_rtl
), true, real_decl_rtl
);
5517 else if (GET_CODE (real_decl_rtl
) == PARALLEL
)
5519 /* If expand_function_start has created a PARALLEL for decl_rtl,
5520 move the result to the real return registers. Otherwise, do
5521 a group load from decl_rtl for a named return. */
5522 if (GET_CODE (decl_rtl
) == PARALLEL
)
5523 emit_group_move (real_decl_rtl
, decl_rtl
);
5525 emit_group_load (real_decl_rtl
, decl_rtl
,
5526 TREE_TYPE (decl_result
),
5527 int_size_in_bytes (TREE_TYPE (decl_result
)));
5529 /* In the case of complex integer modes smaller than a word, we'll
5530 need to generate some non-trivial bitfield insertions. Do that
5531 on a pseudo and not the hard register. */
5532 else if (GET_CODE (decl_rtl
) == CONCAT
5533 && is_complex_int_mode (GET_MODE (decl_rtl
), &cmode
)
5534 && GET_MODE_BITSIZE (cmode
) <= BITS_PER_WORD
)
5536 int old_generating_concat_p
;
5539 old_generating_concat_p
= generating_concat_p
;
5540 generating_concat_p
= 0;
5541 tmp
= gen_reg_rtx (GET_MODE (decl_rtl
));
5542 generating_concat_p
= old_generating_concat_p
;
5544 emit_move_insn (tmp
, decl_rtl
);
5545 emit_move_insn (real_decl_rtl
, tmp
);
5547 /* If a named return value dumped decl_return to memory, then
5548 we may need to re-do the PROMOTE_MODE signed/unsigned
5550 else if (GET_MODE (real_decl_rtl
) != GET_MODE (decl_rtl
))
5552 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (decl_result
));
5553 promote_function_mode (TREE_TYPE (decl_result
),
5554 GET_MODE (decl_rtl
), &unsignedp
,
5555 TREE_TYPE (current_function_decl
), 1);
5557 convert_move (real_decl_rtl
, decl_rtl
, unsignedp
);
5560 emit_move_insn (real_decl_rtl
, decl_rtl
);
5564 /* If returning a structure, arrange to return the address of the value
5565 in a place where debuggers expect to find it.
5567 If returning a structure PCC style,
5568 the caller also depends on this value.
5569 And cfun->returns_pcc_struct is not necessarily set. */
5570 if ((cfun
->returns_struct
|| cfun
->returns_pcc_struct
)
5571 && !targetm
.calls
.omit_struct_return_reg
)
5573 rtx value_address
= DECL_RTL (DECL_RESULT (current_function_decl
));
5574 tree type
= TREE_TYPE (DECL_RESULT (current_function_decl
));
5577 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl
)))
5578 type
= TREE_TYPE (type
);
5580 value_address
= XEXP (value_address
, 0);
5582 outgoing
= targetm
.calls
.function_value (build_pointer_type (type
),
5583 current_function_decl
, true);
5585 /* Mark this as a function return value so integrate will delete the
5586 assignment and USE below when inlining this function. */
5587 REG_FUNCTION_VALUE_P (outgoing
) = 1;
5589 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5590 scalar_int_mode mode
= as_a
<scalar_int_mode
> (GET_MODE (outgoing
));
5591 value_address
= convert_memory_address (mode
, value_address
);
5593 emit_move_insn (outgoing
, value_address
);
5595 /* Show return register used to hold result (in this case the address
5597 crtl
->return_rtx
= outgoing
;
5600 /* Emit the actual code to clobber return register. Don't emit
5601 it if clobber_after is a barrier, then the previous basic block
5602 certainly doesn't fall thru into the exit block. */
5603 if (!BARRIER_P (clobber_after
))
5606 clobber_return_register ();
5607 rtx_insn
*seq
= get_insns ();
5610 emit_insn_after (seq
, clobber_after
);
5613 /* Output the label for the naked return from the function. */
5614 if (naked_return_label
)
5615 emit_label (naked_return_label
);
5617 /* @@@ This is a kludge. We want to ensure that instructions that
5618 may trap are not moved into the epilogue by scheduling, because
5619 we don't always emit unwind information for the epilogue. */
5620 if (cfun
->can_throw_non_call_exceptions
5621 && targetm_common
.except_unwind_info (&global_options
) != UI_SJLJ
)
5622 emit_insn (gen_blockage ());
5624 /* If stack protection is enabled for this function, check the guard. */
5625 if (crtl
->stack_protect_guard
&& targetm
.stack_protect_runtime_enabled_p ())
5626 stack_protect_epilogue ();
5628 /* If we had calls to alloca, and this machine needs
5629 an accurate stack pointer to exit the function,
5630 insert some code to save and restore the stack pointer. */
5631 if (! EXIT_IGNORE_STACK
5632 && cfun
->calls_alloca
)
5637 emit_stack_save (SAVE_FUNCTION
, &tem
);
5638 rtx_insn
*seq
= get_insns ();
5640 emit_insn_before (seq
, parm_birth_insn
);
5642 emit_stack_restore (SAVE_FUNCTION
, tem
);
5645 /* ??? This should no longer be necessary since stupid is no longer with
5646 us, but there are some parts of the compiler (eg reload_combine, and
5647 sh mach_dep_reorg) that still try and compute their own lifetime info
5648 instead of using the general framework. */
5649 use_return_register ();
5653 get_arg_pointer_save_area (void)
5655 rtx ret
= arg_pointer_save_area
;
5659 ret
= assign_stack_local (Pmode
, GET_MODE_SIZE (Pmode
), 0);
5660 arg_pointer_save_area
= ret
;
5663 if (! crtl
->arg_pointer_save_area_init
)
5665 /* Save the arg pointer at the beginning of the function. The
5666 generated stack slot may not be a valid memory address, so we
5667 have to check it and fix it if necessary. */
5669 emit_move_insn (validize_mem (copy_rtx (ret
)),
5670 crtl
->args
.internal_arg_pointer
);
5671 rtx_insn
*seq
= get_insns ();
5674 push_topmost_sequence ();
5675 emit_insn_after (seq
, entry_of_function ());
5676 pop_topmost_sequence ();
5678 crtl
->arg_pointer_save_area_init
= true;
5684 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5685 for the first time. */
5688 record_insns (rtx_insn
*insns
, rtx end
, hash_table
<insn_cache_hasher
> **hashp
)
5691 hash_table
<insn_cache_hasher
> *hash
= *hashp
;
5694 *hashp
= hash
= hash_table
<insn_cache_hasher
>::create_ggc (17);
5696 for (tmp
= insns
; tmp
!= end
; tmp
= NEXT_INSN (tmp
))
5698 rtx
*slot
= hash
->find_slot (tmp
, INSERT
);
5699 gcc_assert (*slot
== NULL
);
5704 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5705 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5706 insn, then record COPY as well. */
5709 maybe_copy_prologue_epilogue_insn (rtx insn
, rtx copy
)
5711 hash_table
<insn_cache_hasher
> *hash
;
5714 hash
= epilogue_insn_hash
;
5715 if (!hash
|| !hash
->find (insn
))
5717 hash
= prologue_insn_hash
;
5718 if (!hash
|| !hash
->find (insn
))
5722 slot
= hash
->find_slot (copy
, INSERT
);
5723 gcc_assert (*slot
== NULL
);
5727 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5728 we can be running after reorg, SEQUENCE rtl is possible. */
5731 contains (const rtx_insn
*insn
, hash_table
<insn_cache_hasher
> *hash
)
5736 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
5738 rtx_sequence
*seq
= as_a
<rtx_sequence
*> (PATTERN (insn
));
5740 for (i
= seq
->len () - 1; i
>= 0; i
--)
5741 if (hash
->find (seq
->element (i
)))
5746 return hash
->find (const_cast<rtx_insn
*> (insn
)) != NULL
;
5750 prologue_contains (const rtx_insn
*insn
)
5752 return contains (insn
, prologue_insn_hash
);
5756 epilogue_contains (const rtx_insn
*insn
)
5758 return contains (insn
, epilogue_insn_hash
);
5762 prologue_epilogue_contains (const rtx_insn
*insn
)
5764 if (contains (insn
, prologue_insn_hash
))
5766 if (contains (insn
, epilogue_insn_hash
))
5772 record_prologue_seq (rtx_insn
*seq
)
5774 record_insns (seq
, NULL
, &prologue_insn_hash
);
5778 record_epilogue_seq (rtx_insn
*seq
)
5780 record_insns (seq
, NULL
, &epilogue_insn_hash
);
5783 /* Set JUMP_LABEL for a return insn. */
5786 set_return_jump_label (rtx_insn
*returnjump
)
5788 rtx pat
= PATTERN (returnjump
);
5789 if (GET_CODE (pat
) == PARALLEL
)
5790 pat
= XVECEXP (pat
, 0, 0);
5791 if (ANY_RETURN_P (pat
))
5792 JUMP_LABEL (returnjump
) = pat
;
5794 JUMP_LABEL (returnjump
) = ret_rtx
;
5797 /* Return a sequence to be used as the split prologue for the current
5798 function, or NULL. */
5801 make_split_prologue_seq (void)
5803 if (!flag_split_stack
5804 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun
->decl
)))
5808 emit_insn (targetm
.gen_split_stack_prologue ());
5809 rtx_insn
*seq
= get_insns ();
5812 record_insns (seq
, NULL
, &prologue_insn_hash
);
5813 set_insn_locations (seq
, prologue_location
);
5818 /* Return a sequence to be used as the prologue for the current function,
5822 make_prologue_seq (void)
5824 if (!targetm
.have_prologue ())
5828 rtx_insn
*seq
= targetm
.gen_prologue ();
5831 /* Insert an explicit USE for the frame pointer
5832 if the profiling is on and the frame pointer is required. */
5833 if (crtl
->profile
&& frame_pointer_needed
)
5834 emit_use (hard_frame_pointer_rtx
);
5836 /* Retain a map of the prologue insns. */
5837 record_insns (seq
, NULL
, &prologue_insn_hash
);
5838 emit_note (NOTE_INSN_PROLOGUE_END
);
5840 /* Ensure that instructions are not moved into the prologue when
5841 profiling is on. The call to the profiling routine can be
5842 emitted within the live range of a call-clobbered register. */
5843 if (!targetm
.profile_before_prologue () && crtl
->profile
)
5844 emit_insn (gen_blockage ());
5848 set_insn_locations (seq
, prologue_location
);
5853 /* Return a sequence to be used as the epilogue for the current function,
5857 make_epilogue_seq (void)
5859 if (!targetm
.have_epilogue ())
5863 emit_note (NOTE_INSN_EPILOGUE_BEG
);
5864 rtx_insn
*seq
= targetm
.gen_epilogue ();
5866 emit_jump_insn (seq
);
5868 /* Retain a map of the epilogue insns. */
5869 record_insns (seq
, NULL
, &epilogue_insn_hash
);
5870 set_insn_locations (seq
, epilogue_location
);
5873 rtx_insn
*returnjump
= get_last_insn ();
5876 if (JUMP_P (returnjump
))
5877 set_return_jump_label (returnjump
);
5883 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5884 this into place with notes indicating where the prologue ends and where
5885 the epilogue begins. Update the basic block information when possible.
5887 Notes on epilogue placement:
5888 There are several kinds of edges to the exit block:
5889 * a single fallthru edge from LAST_BB
5890 * possibly, edges from blocks containing sibcalls
5891 * possibly, fake edges from infinite loops
5893 The epilogue is always emitted on the fallthru edge from the last basic
5894 block in the function, LAST_BB, into the exit block.
5896 If LAST_BB is empty except for a label, it is the target of every
5897 other basic block in the function that ends in a return. If a
5898 target has a return or simple_return pattern (possibly with
5899 conditional variants), these basic blocks can be changed so that a
5900 return insn is emitted into them, and their target is adjusted to
5901 the real exit block.
5903 Notes on shrink wrapping: We implement a fairly conservative
5904 version of shrink-wrapping rather than the textbook one. We only
5905 generate a single prologue and a single epilogue. This is
5906 sufficient to catch a number of interesting cases involving early
5909 First, we identify the blocks that require the prologue to occur before
5910 them. These are the ones that modify a call-saved register, or reference
5911 any of the stack or frame pointer registers. To simplify things, we then
5912 mark everything reachable from these blocks as also requiring a prologue.
5913 This takes care of loops automatically, and avoids the need to examine
5914 whether MEMs reference the frame, since it is sufficient to check for
5915 occurrences of the stack or frame pointer.
5917 We then compute the set of blocks for which the need for a prologue
5918 is anticipatable (borrowing terminology from the shrink-wrapping
5919 description in Muchnick's book). These are the blocks which either
5920 require a prologue themselves, or those that have only successors
5921 where the prologue is anticipatable. The prologue needs to be
5922 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5923 is not. For the moment, we ensure that only one such edge exists.
5925 The epilogue is placed as described above, but we make a
5926 distinction between inserting return and simple_return patterns
5927 when modifying other blocks that end in a return. Blocks that end
5928 in a sibcall omit the sibcall_epilogue if the block is not in
5932 thread_prologue_and_epilogue_insns (void)
5936 /* Can't deal with multiple successors of the entry block at the
5937 moment. Function should always have at least one entry
5939 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun
)));
5941 edge entry_edge
= single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
5942 edge orig_entry_edge
= entry_edge
;
5944 rtx_insn
*split_prologue_seq
= make_split_prologue_seq ();
5945 rtx_insn
*prologue_seq
= make_prologue_seq ();
5946 rtx_insn
*epilogue_seq
= make_epilogue_seq ();
5948 /* Try to perform a kind of shrink-wrapping, making sure the
5949 prologue/epilogue is emitted only around those parts of the
5950 function that require it. */
5951 try_shrink_wrapping (&entry_edge
, prologue_seq
);
5953 /* If the target can handle splitting the prologue/epilogue into separate
5954 components, try to shrink-wrap these components separately. */
5955 try_shrink_wrapping_separate (entry_edge
->dest
);
5957 /* If that did anything for any component we now need the generate the
5958 "main" prologue again. Because some targets require some of these
5959 to be called in a specific order (i386 requires the split prologue
5960 to be first, for example), we create all three sequences again here.
5961 If this does not work for some target, that target should not enable
5962 separate shrink-wrapping. */
5963 if (crtl
->shrink_wrapped_separate
)
5965 split_prologue_seq
= make_split_prologue_seq ();
5966 prologue_seq
= make_prologue_seq ();
5967 epilogue_seq
= make_epilogue_seq ();
5970 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
));
5972 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5973 this marker for the splits of EH_RETURN patterns, and nothing else
5974 uses the flag in the meantime. */
5975 epilogue_completed
= 1;
5977 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5978 some targets, these get split to a special version of the epilogue
5979 code. In order to be able to properly annotate these with unwind
5980 info, try to split them now. If we get a valid split, drop an
5981 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5984 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
5986 rtx_insn
*prev
, *last
, *trial
;
5988 if (e
->flags
& EDGE_FALLTHRU
)
5990 last
= BB_END (e
->src
);
5991 if (!eh_returnjump_p (last
))
5994 prev
= PREV_INSN (last
);
5995 trial
= try_split (PATTERN (last
), last
, 1);
5999 record_insns (NEXT_INSN (prev
), NEXT_INSN (trial
), &epilogue_insn_hash
);
6000 emit_note_after (NOTE_INSN_EPILOGUE_BEG
, prev
);
6003 edge exit_fallthru_edge
= find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
);
6005 if (exit_fallthru_edge
)
6009 insert_insn_on_edge (epilogue_seq
, exit_fallthru_edge
);
6010 commit_edge_insertions ();
6012 /* The epilogue insns we inserted may cause the exit edge to no longer
6014 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
6016 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
6017 && returnjump_p (BB_END (e
->src
)))
6018 e
->flags
&= ~EDGE_FALLTHRU
;
6021 else if (next_active_insn (BB_END (exit_fallthru_edge
->src
)))
6023 /* We have a fall-through edge to the exit block, the source is not
6024 at the end of the function, and there will be an assembler epilogue
6025 at the end of the function.
6026 We can't use force_nonfallthru here, because that would try to
6027 use return. Inserting a jump 'by hand' is extremely messy, so
6028 we take advantage of cfg_layout_finalize using
6029 fixup_fallthru_exit_predecessor. */
6030 cfg_layout_initialize (0);
6032 FOR_EACH_BB_FN (cur_bb
, cfun
)
6033 if (cur_bb
->index
>= NUM_FIXED_BLOCKS
6034 && cur_bb
->next_bb
->index
>= NUM_FIXED_BLOCKS
)
6035 cur_bb
->aux
= cur_bb
->next_bb
;
6036 cfg_layout_finalize ();
6040 /* Insert the prologue. */
6042 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
6044 if (split_prologue_seq
|| prologue_seq
)
6046 rtx_insn
*split_prologue_insn
= split_prologue_seq
;
6047 if (split_prologue_seq
)
6049 while (split_prologue_insn
&& !NONDEBUG_INSN_P (split_prologue_insn
))
6050 split_prologue_insn
= NEXT_INSN (split_prologue_insn
);
6051 insert_insn_on_edge (split_prologue_seq
, orig_entry_edge
);
6054 rtx_insn
*prologue_insn
= prologue_seq
;
6057 while (prologue_insn
&& !NONDEBUG_INSN_P (prologue_insn
))
6058 prologue_insn
= NEXT_INSN (prologue_insn
);
6059 insert_insn_on_edge (prologue_seq
, entry_edge
);
6062 commit_edge_insertions ();
6064 /* Look for basic blocks within the prologue insns. */
6065 if (split_prologue_insn
6066 && BLOCK_FOR_INSN (split_prologue_insn
) == NULL
)
6067 split_prologue_insn
= NULL
;
6069 && BLOCK_FOR_INSN (prologue_insn
) == NULL
)
6070 prologue_insn
= NULL
;
6071 if (split_prologue_insn
|| prologue_insn
)
6073 auto_sbitmap
blocks (last_basic_block_for_fn (cfun
));
6074 bitmap_clear (blocks
);
6075 if (split_prologue_insn
)
6076 bitmap_set_bit (blocks
,
6077 BLOCK_FOR_INSN (split_prologue_insn
)->index
);
6079 bitmap_set_bit (blocks
, BLOCK_FOR_INSN (prologue_insn
)->index
);
6080 find_many_sub_basic_blocks (blocks
);
6084 default_rtl_profile ();
6086 /* Emit sibling epilogues before any sibling call sites. */
6087 for (ei
= ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
);
6088 (e
= ei_safe_edge (ei
));
6091 /* Skip those already handled, the ones that run without prologue. */
6092 if (e
->flags
& EDGE_IGNORE
)
6094 e
->flags
&= ~EDGE_IGNORE
;
6098 rtx_insn
*insn
= BB_END (e
->src
);
6100 if (!(CALL_P (insn
) && SIBLING_CALL_P (insn
)))
6103 if (rtx_insn
*ep_seq
= targetm
.gen_sibcall_epilogue ())
6106 emit_note (NOTE_INSN_EPILOGUE_BEG
);
6108 rtx_insn
*seq
= get_insns ();
6111 /* Retain a map of the epilogue insns. Used in life analysis to
6112 avoid getting rid of sibcall epilogue insns. Do this before we
6113 actually emit the sequence. */
6114 record_insns (seq
, NULL
, &epilogue_insn_hash
);
6115 set_insn_locations (seq
, epilogue_location
);
6117 emit_insn_before (seq
, insn
);
6123 rtx_insn
*insn
, *next
;
6125 /* Similarly, move any line notes that appear after the epilogue.
6126 There is no need, however, to be quite so anal about the existence
6127 of such a note. Also possibly move
6128 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6130 for (insn
= epilogue_seq
; insn
; insn
= next
)
6132 next
= NEXT_INSN (insn
);
6134 && (NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
))
6135 reorder_insns (insn
, insn
, PREV_INSN (epilogue_seq
));
6139 /* Threading the prologue and epilogue changes the artificial refs
6140 in the entry and exit blocks. */
6141 epilogue_completed
= 1;
6142 df_update_entry_exit_and_calls ();
6145 /* Reposition the prologue-end and epilogue-begin notes after
6146 instruction scheduling. */
6149 reposition_prologue_and_epilogue_notes (void)
6151 if (!targetm
.have_prologue ()
6152 && !targetm
.have_epilogue ()
6153 && !targetm
.have_sibcall_epilogue ())
6156 /* Since the hash table is created on demand, the fact that it is
6157 non-null is a signal that it is non-empty. */
6158 if (prologue_insn_hash
!= NULL
)
6160 size_t len
= prologue_insn_hash
->elements ();
6161 rtx_insn
*insn
, *last
= NULL
, *note
= NULL
;
6163 /* Scan from the beginning until we reach the last prologue insn. */
6164 /* ??? While we do have the CFG intact, there are two problems:
6165 (1) The prologue can contain loops (typically probing the stack),
6166 which means that the end of the prologue isn't in the first bb.
6167 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6168 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
6172 if (NOTE_KIND (insn
) == NOTE_INSN_PROLOGUE_END
)
6175 else if (contains (insn
, prologue_insn_hash
))
6187 /* Scan forward looking for the PROLOGUE_END note. It should
6188 be right at the beginning of the block, possibly with other
6189 insn notes that got moved there. */
6190 for (note
= NEXT_INSN (last
); ; note
= NEXT_INSN (note
))
6193 && NOTE_KIND (note
) == NOTE_INSN_PROLOGUE_END
)
6198 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6200 last
= NEXT_INSN (last
);
6201 reorder_insns (note
, note
, last
);
6205 if (epilogue_insn_hash
!= NULL
)
6210 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
6212 rtx_insn
*insn
, *first
= NULL
, *note
= NULL
;
6213 basic_block bb
= e
->src
;
6215 /* Scan from the beginning until we reach the first epilogue insn. */
6216 FOR_BB_INSNS (bb
, insn
)
6220 if (NOTE_KIND (insn
) == NOTE_INSN_EPILOGUE_BEG
)
6227 else if (first
== NULL
&& contains (insn
, epilogue_insn_hash
))
6237 /* If the function has a single basic block, and no real
6238 epilogue insns (e.g. sibcall with no cleanup), the
6239 epilogue note can get scheduled before the prologue
6240 note. If we have frame related prologue insns, having
6241 them scanned during the epilogue will result in a crash.
6242 In this case re-order the epilogue note to just before
6243 the last insn in the block. */
6245 first
= BB_END (bb
);
6247 if (PREV_INSN (first
) != note
)
6248 reorder_insns (note
, note
, PREV_INSN (first
));
6254 /* Returns the name of function declared by FNDECL. */
6256 fndecl_name (tree fndecl
)
6260 return lang_hooks
.decl_printable_name (fndecl
, 1);
6263 /* Returns the name of function FN. */
6265 function_name (struct function
*fn
)
6267 tree fndecl
= (fn
== NULL
) ? NULL
: fn
->decl
;
6268 return fndecl_name (fndecl
);
6271 /* Returns the name of the current function. */
6273 current_function_name (void)
6275 return function_name (cfun
);
6280 rest_of_handle_check_leaf_regs (void)
6282 #ifdef LEAF_REGISTERS
6283 crtl
->uses_only_leaf_regs
6284 = optimize
> 0 && only_leaf_regs_used () && leaf_function_p ();
6289 /* Insert a TYPE into the used types hash table of CFUN. */
6292 used_types_insert_helper (tree type
, struct function
*func
)
6294 if (type
!= NULL
&& func
!= NULL
)
6296 if (func
->used_types_hash
== NULL
)
6297 func
->used_types_hash
= hash_set
<tree
>::create_ggc (37);
6299 func
->used_types_hash
->add (type
);
6303 /* Given a type, insert it into the used hash table in cfun. */
6305 used_types_insert (tree t
)
6307 while (POINTER_TYPE_P (t
) || TREE_CODE (t
) == ARRAY_TYPE
)
6312 if (TREE_CODE (t
) == ERROR_MARK
)
6314 if (TYPE_NAME (t
) == NULL_TREE
6315 || TYPE_NAME (t
) == TYPE_NAME (TYPE_MAIN_VARIANT (t
)))
6316 t
= TYPE_MAIN_VARIANT (t
);
6317 if (debug_info_level
> DINFO_LEVEL_NONE
)
6320 used_types_insert_helper (t
, cfun
);
6323 /* So this might be a type referenced by a global variable.
6324 Record that type so that we can later decide to emit its
6325 debug information. */
6326 vec_safe_push (types_used_by_cur_var_decl
, t
);
6331 /* Helper to Hash a struct types_used_by_vars_entry. */
6334 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry
*entry
)
6336 gcc_assert (entry
&& entry
->var_decl
&& entry
->type
);
6338 return iterative_hash_object (entry
->type
,
6339 iterative_hash_object (entry
->var_decl
, 0));
6342 /* Hash function of the types_used_by_vars_entry hash table. */
6345 used_type_hasher::hash (types_used_by_vars_entry
*entry
)
6347 return hash_types_used_by_vars_entry (entry
);
6350 /*Equality function of the types_used_by_vars_entry hash table. */
6353 used_type_hasher::equal (types_used_by_vars_entry
*e1
,
6354 types_used_by_vars_entry
*e2
)
6356 return (e1
->var_decl
== e2
->var_decl
&& e1
->type
== e2
->type
);
6359 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6362 types_used_by_var_decl_insert (tree type
, tree var_decl
)
6364 if (type
!= NULL
&& var_decl
!= NULL
)
6366 types_used_by_vars_entry
**slot
;
6367 struct types_used_by_vars_entry e
;
6368 e
.var_decl
= var_decl
;
6370 if (types_used_by_vars_hash
== NULL
)
6371 types_used_by_vars_hash
6372 = hash_table
<used_type_hasher
>::create_ggc (37);
6374 slot
= types_used_by_vars_hash
->find_slot (&e
, INSERT
);
6377 struct types_used_by_vars_entry
*entry
;
6378 entry
= ggc_alloc
<types_used_by_vars_entry
> ();
6380 entry
->var_decl
= var_decl
;
6388 const pass_data pass_data_leaf_regs
=
6390 RTL_PASS
, /* type */
6391 "*leaf_regs", /* name */
6392 OPTGROUP_NONE
, /* optinfo_flags */
6393 TV_NONE
, /* tv_id */
6394 0, /* properties_required */
6395 0, /* properties_provided */
6396 0, /* properties_destroyed */
6397 0, /* todo_flags_start */
6398 0, /* todo_flags_finish */
6401 class pass_leaf_regs
: public rtl_opt_pass
6404 pass_leaf_regs (gcc::context
*ctxt
)
6405 : rtl_opt_pass (pass_data_leaf_regs
, ctxt
)
6408 /* opt_pass methods: */
6409 virtual unsigned int execute (function
*)
6411 return rest_of_handle_check_leaf_regs ();
6414 }; // class pass_leaf_regs
6419 make_pass_leaf_regs (gcc::context
*ctxt
)
6421 return new pass_leaf_regs (ctxt
);
6425 rest_of_handle_thread_prologue_and_epilogue (void)
6427 /* prepare_shrink_wrap is sensitive to the block structure of the control
6428 flow graph, so clean it up first. */
6432 /* On some machines, the prologue and epilogue code, or parts thereof,
6433 can be represented as RTL. Doing so lets us schedule insns between
6434 it and the rest of the code and also allows delayed branch
6435 scheduling to operate in the epilogue. */
6436 thread_prologue_and_epilogue_insns ();
6438 /* Some non-cold blocks may now be only reachable from cold blocks.
6440 fixup_partitions ();
6442 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6444 cleanup_cfg (optimize
? CLEANUP_EXPENSIVE
: 0);
6446 /* The stack usage info is finalized during prologue expansion. */
6447 if (flag_stack_usage_info
)
6448 output_stack_usage ();
6455 const pass_data pass_data_thread_prologue_and_epilogue
=
6457 RTL_PASS
, /* type */
6458 "pro_and_epilogue", /* name */
6459 OPTGROUP_NONE
, /* optinfo_flags */
6460 TV_THREAD_PROLOGUE_AND_EPILOGUE
, /* tv_id */
6461 0, /* properties_required */
6462 0, /* properties_provided */
6463 0, /* properties_destroyed */
6464 0, /* todo_flags_start */
6465 ( TODO_df_verify
| TODO_df_finish
), /* todo_flags_finish */
6468 class pass_thread_prologue_and_epilogue
: public rtl_opt_pass
6471 pass_thread_prologue_and_epilogue (gcc::context
*ctxt
)
6472 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue
, ctxt
)
6475 /* opt_pass methods: */
6476 virtual unsigned int execute (function
*)
6478 return rest_of_handle_thread_prologue_and_epilogue ();
6481 }; // class pass_thread_prologue_and_epilogue
6486 make_pass_thread_prologue_and_epilogue (gcc::context
*ctxt
)
6488 return new pass_thread_prologue_and_epilogue (ctxt
);
6492 /* This mini-pass fixes fall-out from SSA in asm statements that have
6493 in-out constraints. Say you start with
6496 asm ("": "+mr" (inout));
6499 which is transformed very early to use explicit output and match operands:
6502 asm ("": "=mr" (inout) : "0" (inout));
6505 Or, after SSA and copyprop,
6507 asm ("": "=mr" (inout_2) : "0" (inout_1));
6510 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6511 they represent two separate values, so they will get different pseudo
6512 registers during expansion. Then, since the two operands need to match
6513 per the constraints, but use different pseudo registers, reload can
6514 only register a reload for these operands. But reloads can only be
6515 satisfied by hardregs, not by memory, so we need a register for this
6516 reload, just because we are presented with non-matching operands.
6517 So, even though we allow memory for this operand, no memory can be
6518 used for it, just because the two operands don't match. This can
6519 cause reload failures on register-starved targets.
6521 So it's a symptom of reload not being able to use memory for reloads
6522 or, alternatively it's also a symptom of both operands not coming into
6523 reload as matching (in which case the pseudo could go to memory just
6524 fine, as the alternative allows it, and no reload would be necessary).
6525 We fix the latter problem here, by transforming
6527 asm ("": "=mr" (inout_2) : "0" (inout_1));
6532 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6535 match_asm_constraints_1 (rtx_insn
*insn
, rtx
*p_sets
, int noutputs
)
6538 bool changed
= false;
6539 rtx op
= SET_SRC (p_sets
[0]);
6540 int ninputs
= ASM_OPERANDS_INPUT_LENGTH (op
);
6541 rtvec inputs
= ASM_OPERANDS_INPUT_VEC (op
);
6542 bool *output_matched
= XALLOCAVEC (bool, noutputs
);
6544 memset (output_matched
, 0, noutputs
* sizeof (bool));
6545 for (i
= 0; i
< ninputs
; i
++)
6549 const char *constraint
= ASM_OPERANDS_INPUT_CONSTRAINT (op
, i
);
6553 if (*constraint
== '%')
6556 match
= strtoul (constraint
, &end
, 10);
6557 if (end
== constraint
)
6560 gcc_assert (match
< noutputs
);
6561 output
= SET_DEST (p_sets
[match
]);
6562 input
= RTVEC_ELT (inputs
, i
);
6563 /* Only do the transformation for pseudos. */
6564 if (! REG_P (output
)
6565 || rtx_equal_p (output
, input
)
6566 || (GET_MODE (input
) != VOIDmode
6567 && GET_MODE (input
) != GET_MODE (output
)))
6570 /* We can't do anything if the output is also used as input,
6571 as we're going to overwrite it. */
6572 for (j
= 0; j
< ninputs
; j
++)
6573 if (reg_overlap_mentioned_p (output
, RTVEC_ELT (inputs
, j
)))
6578 /* Avoid changing the same input several times. For
6579 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6580 only change in once (to out1), rather than changing it
6581 first to out1 and afterwards to out2. */
6584 for (j
= 0; j
< noutputs
; j
++)
6585 if (output_matched
[j
] && input
== SET_DEST (p_sets
[j
]))
6590 output_matched
[match
] = true;
6593 emit_move_insn (output
, input
);
6594 insns
= get_insns ();
6596 emit_insn_before (insns
, insn
);
6598 /* Now replace all mentions of the input with output. We can't
6599 just replace the occurrence in inputs[i], as the register might
6600 also be used in some other input (or even in an address of an
6601 output), which would mean possibly increasing the number of
6602 inputs by one (namely 'output' in addition), which might pose
6603 a too complicated problem for reload to solve. E.g. this situation:
6605 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6607 Here 'input' is used in two occurrences as input (once for the
6608 input operand, once for the address in the second output operand).
6609 If we would replace only the occurrence of the input operand (to
6610 make the matching) we would be left with this:
6613 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6615 Now we suddenly have two different input values (containing the same
6616 value, but different pseudos) where we formerly had only one.
6617 With more complicated asms this might lead to reload failures
6618 which wouldn't have happen without this pass. So, iterate over
6619 all operands and replace all occurrences of the register used. */
6620 for (j
= 0; j
< noutputs
; j
++)
6621 if (!rtx_equal_p (SET_DEST (p_sets
[j
]), input
)
6622 && reg_overlap_mentioned_p (input
, SET_DEST (p_sets
[j
])))
6623 SET_DEST (p_sets
[j
]) = replace_rtx (SET_DEST (p_sets
[j
]),
6625 for (j
= 0; j
< ninputs
; j
++)
6626 if (reg_overlap_mentioned_p (input
, RTVEC_ELT (inputs
, j
)))
6627 RTVEC_ELT (inputs
, j
) = replace_rtx (RTVEC_ELT (inputs
, j
),
6634 df_insn_rescan (insn
);
6637 /* Add the decl D to the local_decls list of FUN. */
6640 add_local_decl (struct function
*fun
, tree d
)
6642 gcc_assert (VAR_P (d
));
6643 vec_safe_push (fun
->local_decls
, d
);
6648 const pass_data pass_data_match_asm_constraints
=
6650 RTL_PASS
, /* type */
6651 "asmcons", /* name */
6652 OPTGROUP_NONE
, /* optinfo_flags */
6653 TV_NONE
, /* tv_id */
6654 0, /* properties_required */
6655 0, /* properties_provided */
6656 0, /* properties_destroyed */
6657 0, /* todo_flags_start */
6658 0, /* todo_flags_finish */
6661 class pass_match_asm_constraints
: public rtl_opt_pass
6664 pass_match_asm_constraints (gcc::context
*ctxt
)
6665 : rtl_opt_pass (pass_data_match_asm_constraints
, ctxt
)
6668 /* opt_pass methods: */
6669 virtual unsigned int execute (function
*);
6671 }; // class pass_match_asm_constraints
6674 pass_match_asm_constraints::execute (function
*fun
)
6681 if (!crtl
->has_asm_statement
)
6684 df_set_flags (DF_DEFER_INSN_RESCAN
);
6685 FOR_EACH_BB_FN (bb
, fun
)
6687 FOR_BB_INSNS (bb
, insn
)
6692 pat
= PATTERN (insn
);
6693 if (GET_CODE (pat
) == PARALLEL
)
6694 p_sets
= &XVECEXP (pat
, 0, 0), noutputs
= XVECLEN (pat
, 0);
6695 else if (GET_CODE (pat
) == SET
)
6696 p_sets
= &PATTERN (insn
), noutputs
= 1;
6700 if (GET_CODE (*p_sets
) == SET
6701 && GET_CODE (SET_SRC (*p_sets
)) == ASM_OPERANDS
)
6702 match_asm_constraints_1 (insn
, p_sets
, noutputs
);
6706 return TODO_df_finish
;
6712 make_pass_match_asm_constraints (gcc::context
*ctxt
)
6714 return new pass_match_asm_constraints (ctxt
);
6718 #include "gt-function.h"