* config/xtensa/predicates.md (call expander): Update for
[official-gcc.git] / gcc / recog.c
blobcb4988311e23a1af34cd8cbdd9b92d7d3adec7e3
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl-error.h"
27 #include "tm_p.h"
28 #include "insn-config.h"
29 #include "insn-attr.h"
30 #include "hard-reg-set.h"
31 #include "recog.h"
32 #include "regs.h"
33 #include "addresses.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "flags.h"
37 #include "basic-block.h"
38 #include "reload.h"
39 #include "target.h"
40 #include "tree-pass.h"
41 #include "df.h"
42 #include "insn-codes.h"
44 #ifndef STACK_PUSH_CODE
45 #ifdef STACK_GROWS_DOWNWARD
46 #define STACK_PUSH_CODE PRE_DEC
47 #else
48 #define STACK_PUSH_CODE PRE_INC
49 #endif
50 #endif
52 #ifndef STACK_POP_CODE
53 #ifdef STACK_GROWS_DOWNWARD
54 #define STACK_POP_CODE POST_INC
55 #else
56 #define STACK_POP_CODE POST_DEC
57 #endif
58 #endif
60 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
61 static void validate_replace_src_1 (rtx *, void *);
62 static rtx split_insn (rtx);
64 struct target_recog default_target_recog;
65 #if SWITCHABLE_TARGET
66 struct target_recog *this_target_recog = &default_target_recog;
67 #endif
69 /* Nonzero means allow operands to be volatile.
70 This should be 0 if you are generating rtl, such as if you are calling
71 the functions in optabs.c and expmed.c (most of the time).
72 This should be 1 if all valid insns need to be recognized,
73 such as in reginfo.c and final.c and reload.c.
75 init_recog and init_recog_no_volatile are responsible for setting this. */
77 int volatile_ok;
79 struct recog_data_d recog_data;
81 /* Contains a vector of operand_alternative structures, such that
82 operand OP of alternative A is at index A * n_operands + OP.
83 Set up by preprocess_constraints. */
84 const operand_alternative *recog_op_alt;
86 /* Used to provide recog_op_alt for asms. */
87 static operand_alternative asm_op_alt[MAX_RECOG_OPERANDS
88 * MAX_RECOG_ALTERNATIVES];
90 /* On return from `constrain_operands', indicate which alternative
91 was satisfied. */
93 int which_alternative;
95 /* Nonzero after end of reload pass.
96 Set to 1 or 0 by toplev.c.
97 Controls the significance of (SUBREG (MEM)). */
99 int reload_completed;
101 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
102 int epilogue_completed;
104 /* Initialize data used by the function `recog'.
105 This must be called once in the compilation of a function
106 before any insn recognition may be done in the function. */
108 void
109 init_recog_no_volatile (void)
111 volatile_ok = 0;
114 void
115 init_recog (void)
117 volatile_ok = 1;
121 /* Return true if labels in asm operands BODY are LABEL_REFs. */
123 static bool
124 asm_labels_ok (rtx body)
126 rtx asmop;
127 int i;
129 asmop = extract_asm_operands (body);
130 if (asmop == NULL_RTX)
131 return true;
133 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
134 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
135 return false;
137 return true;
140 /* Check that X is an insn-body for an `asm' with operands
141 and that the operands mentioned in it are legitimate. */
144 check_asm_operands (rtx x)
146 int noperands;
147 rtx *operands;
148 const char **constraints;
149 int i;
151 if (!asm_labels_ok (x))
152 return 0;
154 /* Post-reload, be more strict with things. */
155 if (reload_completed)
157 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
158 extract_insn (make_insn_raw (x));
159 constrain_operands (1);
160 return which_alternative >= 0;
163 noperands = asm_noperands (x);
164 if (noperands < 0)
165 return 0;
166 if (noperands == 0)
167 return 1;
169 operands = XALLOCAVEC (rtx, noperands);
170 constraints = XALLOCAVEC (const char *, noperands);
172 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
174 for (i = 0; i < noperands; i++)
176 const char *c = constraints[i];
177 if (c[0] == '%')
178 c++;
179 if (! asm_operand_ok (operands[i], c, constraints))
180 return 0;
183 return 1;
186 /* Static data for the next two routines. */
188 typedef struct change_t
190 rtx object;
191 int old_code;
192 rtx *loc;
193 rtx old;
194 bool unshare;
195 } change_t;
197 static change_t *changes;
198 static int changes_allocated;
200 static int num_changes = 0;
202 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
203 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
204 the change is simply made.
206 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
207 will be called with the address and mode as parameters. If OBJECT is
208 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
209 the change in place.
211 IN_GROUP is nonzero if this is part of a group of changes that must be
212 performed as a group. In that case, the changes will be stored. The
213 function `apply_change_group' will validate and apply the changes.
215 If IN_GROUP is zero, this is a single change. Try to recognize the insn
216 or validate the memory reference with the change applied. If the result
217 is not valid for the machine, suppress the change and return zero.
218 Otherwise, perform the change and return 1. */
220 static bool
221 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
223 rtx old = *loc;
225 if (old == new_rtx || rtx_equal_p (old, new_rtx))
226 return 1;
228 gcc_assert (in_group != 0 || num_changes == 0);
230 *loc = new_rtx;
232 /* Save the information describing this change. */
233 if (num_changes >= changes_allocated)
235 if (changes_allocated == 0)
236 /* This value allows for repeated substitutions inside complex
237 indexed addresses, or changes in up to 5 insns. */
238 changes_allocated = MAX_RECOG_OPERANDS * 5;
239 else
240 changes_allocated *= 2;
242 changes = XRESIZEVEC (change_t, changes, changes_allocated);
245 changes[num_changes].object = object;
246 changes[num_changes].loc = loc;
247 changes[num_changes].old = old;
248 changes[num_changes].unshare = unshare;
250 if (object && !MEM_P (object))
252 /* Set INSN_CODE to force rerecognition of insn. Save old code in
253 case invalid. */
254 changes[num_changes].old_code = INSN_CODE (object);
255 INSN_CODE (object) = -1;
258 num_changes++;
260 /* If we are making a group of changes, return 1. Otherwise, validate the
261 change group we made. */
263 if (in_group)
264 return 1;
265 else
266 return apply_change_group ();
269 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
270 UNSHARE to false. */
272 bool
273 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
275 return validate_change_1 (object, loc, new_rtx, in_group, false);
278 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
279 UNSHARE to true. */
281 bool
282 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
284 return validate_change_1 (object, loc, new_rtx, in_group, true);
288 /* Keep X canonicalized if some changes have made it non-canonical; only
289 modifies the operands of X, not (for example) its code. Simplifications
290 are not the job of this routine.
292 Return true if anything was changed. */
293 bool
294 canonicalize_change_group (rtx insn, rtx x)
296 if (COMMUTATIVE_P (x)
297 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
299 /* Oops, the caller has made X no longer canonical.
300 Let's redo the changes in the correct order. */
301 rtx tem = XEXP (x, 0);
302 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
303 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
304 return true;
306 else
307 return false;
311 /* This subroutine of apply_change_group verifies whether the changes to INSN
312 were valid; i.e. whether INSN can still be recognized.
314 If IN_GROUP is true clobbers which have to be added in order to
315 match the instructions will be added to the current change group.
316 Otherwise the changes will take effect immediately. */
319 insn_invalid_p (rtx insn, bool in_group)
321 rtx pat = PATTERN (insn);
322 int num_clobbers = 0;
323 /* If we are before reload and the pattern is a SET, see if we can add
324 clobbers. */
325 int icode = recog (pat, insn,
326 (GET_CODE (pat) == SET
327 && ! reload_completed
328 && ! reload_in_progress)
329 ? &num_clobbers : 0);
330 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
333 /* If this is an asm and the operand aren't legal, then fail. Likewise if
334 this is not an asm and the insn wasn't recognized. */
335 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
336 || (!is_asm && icode < 0))
337 return 1;
339 /* If we have to add CLOBBERs, fail if we have to add ones that reference
340 hard registers since our callers can't know if they are live or not.
341 Otherwise, add them. */
342 if (num_clobbers > 0)
344 rtx newpat;
346 if (added_clobbers_hard_reg_p (icode))
347 return 1;
349 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
350 XVECEXP (newpat, 0, 0) = pat;
351 add_clobbers (newpat, icode);
352 if (in_group)
353 validate_change (insn, &PATTERN (insn), newpat, 1);
354 else
355 PATTERN (insn) = pat = newpat;
358 /* After reload, verify that all constraints are satisfied. */
359 if (reload_completed)
361 extract_insn (insn);
363 if (! constrain_operands (1))
364 return 1;
367 INSN_CODE (insn) = icode;
368 return 0;
371 /* Return number of changes made and not validated yet. */
373 num_changes_pending (void)
375 return num_changes;
378 /* Tentatively apply the changes numbered NUM and up.
379 Return 1 if all changes are valid, zero otherwise. */
382 verify_changes (int num)
384 int i;
385 rtx last_validated = NULL_RTX;
387 /* The changes have been applied and all INSN_CODEs have been reset to force
388 rerecognition.
390 The changes are valid if we aren't given an object, or if we are
391 given a MEM and it still is a valid address, or if this is in insn
392 and it is recognized. In the latter case, if reload has completed,
393 we also require that the operands meet the constraints for
394 the insn. */
396 for (i = num; i < num_changes; i++)
398 rtx object = changes[i].object;
400 /* If there is no object to test or if it is the same as the one we
401 already tested, ignore it. */
402 if (object == 0 || object == last_validated)
403 continue;
405 if (MEM_P (object))
407 if (! memory_address_addr_space_p (GET_MODE (object),
408 XEXP (object, 0),
409 MEM_ADDR_SPACE (object)))
410 break;
412 else if (/* changes[i].old might be zero, e.g. when putting a
413 REG_FRAME_RELATED_EXPR into a previously empty list. */
414 changes[i].old
415 && REG_P (changes[i].old)
416 && asm_noperands (PATTERN (object)) > 0
417 && REG_EXPR (changes[i].old) != NULL_TREE
418 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
419 && DECL_REGISTER (REG_EXPR (changes[i].old)))
421 /* Don't allow changes of hard register operands to inline
422 assemblies if they have been defined as register asm ("x"). */
423 break;
425 else if (DEBUG_INSN_P (object))
426 continue;
427 else if (insn_invalid_p (object, true))
429 rtx pat = PATTERN (object);
431 /* Perhaps we couldn't recognize the insn because there were
432 extra CLOBBERs at the end. If so, try to re-recognize
433 without the last CLOBBER (later iterations will cause each of
434 them to be eliminated, in turn). But don't do this if we
435 have an ASM_OPERAND. */
436 if (GET_CODE (pat) == PARALLEL
437 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
438 && asm_noperands (PATTERN (object)) < 0)
440 rtx newpat;
442 if (XVECLEN (pat, 0) == 2)
443 newpat = XVECEXP (pat, 0, 0);
444 else
446 int j;
448 newpat
449 = gen_rtx_PARALLEL (VOIDmode,
450 rtvec_alloc (XVECLEN (pat, 0) - 1));
451 for (j = 0; j < XVECLEN (newpat, 0); j++)
452 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
455 /* Add a new change to this group to replace the pattern
456 with this new pattern. Then consider this change
457 as having succeeded. The change we added will
458 cause the entire call to fail if things remain invalid.
460 Note that this can lose if a later change than the one
461 we are processing specified &XVECEXP (PATTERN (object), 0, X)
462 but this shouldn't occur. */
464 validate_change (object, &PATTERN (object), newpat, 1);
465 continue;
467 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
468 || GET_CODE (pat) == VAR_LOCATION)
469 /* If this insn is a CLOBBER or USE, it is always valid, but is
470 never recognized. */
471 continue;
472 else
473 break;
475 last_validated = object;
478 return (i == num_changes);
481 /* A group of changes has previously been issued with validate_change
482 and verified with verify_changes. Call df_insn_rescan for each of
483 the insn changed and clear num_changes. */
485 void
486 confirm_change_group (void)
488 int i;
489 rtx last_object = NULL;
491 for (i = 0; i < num_changes; i++)
493 rtx object = changes[i].object;
495 if (changes[i].unshare)
496 *changes[i].loc = copy_rtx (*changes[i].loc);
498 /* Avoid unnecessary rescanning when multiple changes to same instruction
499 are made. */
500 if (object)
502 if (object != last_object && last_object && INSN_P (last_object))
503 df_insn_rescan (last_object);
504 last_object = object;
508 if (last_object && INSN_P (last_object))
509 df_insn_rescan (last_object);
510 num_changes = 0;
513 /* Apply a group of changes previously issued with `validate_change'.
514 If all changes are valid, call confirm_change_group and return 1,
515 otherwise, call cancel_changes and return 0. */
518 apply_change_group (void)
520 if (verify_changes (0))
522 confirm_change_group ();
523 return 1;
525 else
527 cancel_changes (0);
528 return 0;
533 /* Return the number of changes so far in the current group. */
536 num_validated_changes (void)
538 return num_changes;
541 /* Retract the changes numbered NUM and up. */
543 void
544 cancel_changes (int num)
546 int i;
548 /* Back out all the changes. Do this in the opposite order in which
549 they were made. */
550 for (i = num_changes - 1; i >= num; i--)
552 *changes[i].loc = changes[i].old;
553 if (changes[i].object && !MEM_P (changes[i].object))
554 INSN_CODE (changes[i].object) = changes[i].old_code;
556 num_changes = num;
559 /* Reduce conditional compilation elsewhere. */
560 #ifndef HAVE_extv
561 #define HAVE_extv 0
562 #define CODE_FOR_extv CODE_FOR_nothing
563 #endif
564 #ifndef HAVE_extzv
565 #define HAVE_extzv 0
566 #define CODE_FOR_extzv CODE_FOR_nothing
567 #endif
569 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
570 rtx. */
572 static void
573 simplify_while_replacing (rtx *loc, rtx to, rtx object,
574 enum machine_mode op0_mode)
576 rtx x = *loc;
577 enum rtx_code code = GET_CODE (x);
578 rtx new_rtx = NULL_RTX;
580 if (SWAPPABLE_OPERANDS_P (x)
581 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
583 validate_unshare_change (object, loc,
584 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
585 : swap_condition (code),
586 GET_MODE (x), XEXP (x, 1),
587 XEXP (x, 0)), 1);
588 x = *loc;
589 code = GET_CODE (x);
592 /* Canonicalize arithmetics with all constant operands. */
593 switch (GET_RTX_CLASS (code))
595 case RTX_UNARY:
596 if (CONSTANT_P (XEXP (x, 0)))
597 new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
598 op0_mode);
599 break;
600 case RTX_COMM_ARITH:
601 case RTX_BIN_ARITH:
602 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
603 new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
604 XEXP (x, 1));
605 break;
606 case RTX_COMPARE:
607 case RTX_COMM_COMPARE:
608 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
609 new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
610 XEXP (x, 0), XEXP (x, 1));
611 break;
612 default:
613 break;
615 if (new_rtx)
617 validate_change (object, loc, new_rtx, 1);
618 return;
621 switch (code)
623 case PLUS:
624 /* If we have a PLUS whose second operand is now a CONST_INT, use
625 simplify_gen_binary to try to simplify it.
626 ??? We may want later to remove this, once simplification is
627 separated from this function. */
628 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
629 validate_change (object, loc,
630 simplify_gen_binary
631 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
632 break;
633 case MINUS:
634 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
635 validate_change (object, loc,
636 simplify_gen_binary
637 (PLUS, GET_MODE (x), XEXP (x, 0),
638 simplify_gen_unary (NEG,
639 GET_MODE (x), XEXP (x, 1),
640 GET_MODE (x))), 1);
641 break;
642 case ZERO_EXTEND:
643 case SIGN_EXTEND:
644 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
646 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
647 op0_mode);
648 /* If any of the above failed, substitute in something that
649 we know won't be recognized. */
650 if (!new_rtx)
651 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
652 validate_change (object, loc, new_rtx, 1);
654 break;
655 case SUBREG:
656 /* All subregs possible to simplify should be simplified. */
657 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
658 SUBREG_BYTE (x));
660 /* Subregs of VOIDmode operands are incorrect. */
661 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
662 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
663 if (new_rtx)
664 validate_change (object, loc, new_rtx, 1);
665 break;
666 case ZERO_EXTRACT:
667 case SIGN_EXTRACT:
668 /* If we are replacing a register with memory, try to change the memory
669 to be the mode required for memory in extract operations (this isn't
670 likely to be an insertion operation; if it was, nothing bad will
671 happen, we might just fail in some cases). */
673 if (MEM_P (XEXP (x, 0))
674 && CONST_INT_P (XEXP (x, 1))
675 && CONST_INT_P (XEXP (x, 2))
676 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
677 MEM_ADDR_SPACE (XEXP (x, 0)))
678 && !MEM_VOLATILE_P (XEXP (x, 0)))
680 enum machine_mode wanted_mode = VOIDmode;
681 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
682 int pos = INTVAL (XEXP (x, 2));
684 if (GET_CODE (x) == ZERO_EXTRACT && HAVE_extzv)
686 wanted_mode = insn_data[CODE_FOR_extzv].operand[1].mode;
687 if (wanted_mode == VOIDmode)
688 wanted_mode = word_mode;
690 else if (GET_CODE (x) == SIGN_EXTRACT && HAVE_extv)
692 wanted_mode = insn_data[CODE_FOR_extv].operand[1].mode;
693 if (wanted_mode == VOIDmode)
694 wanted_mode = word_mode;
697 /* If we have a narrower mode, we can do something. */
698 if (wanted_mode != VOIDmode
699 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
701 int offset = pos / BITS_PER_UNIT;
702 rtx newmem;
704 /* If the bytes and bits are counted differently, we
705 must adjust the offset. */
706 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
707 offset =
708 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
709 offset);
711 gcc_assert (GET_MODE_PRECISION (wanted_mode)
712 == GET_MODE_BITSIZE (wanted_mode));
713 pos %= GET_MODE_BITSIZE (wanted_mode);
715 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
717 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
718 validate_change (object, &XEXP (x, 0), newmem, 1);
722 break;
724 default:
725 break;
729 /* Replace every occurrence of FROM in X with TO. Mark each change with
730 validate_change passing OBJECT. */
732 static void
733 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
734 bool simplify)
736 int i, j;
737 const char *fmt;
738 rtx x = *loc;
739 enum rtx_code code;
740 enum machine_mode op0_mode = VOIDmode;
741 int prev_changes = num_changes;
743 if (!x)
744 return;
746 code = GET_CODE (x);
747 fmt = GET_RTX_FORMAT (code);
748 if (fmt[0] == 'e')
749 op0_mode = GET_MODE (XEXP (x, 0));
751 /* X matches FROM if it is the same rtx or they are both referring to the
752 same register in the same mode. Avoid calling rtx_equal_p unless the
753 operands look similar. */
755 if (x == from
756 || (REG_P (x) && REG_P (from)
757 && GET_MODE (x) == GET_MODE (from)
758 && REGNO (x) == REGNO (from))
759 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
760 && rtx_equal_p (x, from)))
762 validate_unshare_change (object, loc, to, 1);
763 return;
766 /* Call ourself recursively to perform the replacements.
767 We must not replace inside already replaced expression, otherwise we
768 get infinite recursion for replacements like (reg X)->(subreg (reg X))
769 so we must special case shared ASM_OPERANDS. */
771 if (GET_CODE (x) == PARALLEL)
773 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
775 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
776 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
778 /* Verify that operands are really shared. */
779 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
780 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
781 (x, 0, j))));
782 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
783 from, to, object, simplify);
785 else
786 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
787 simplify);
790 else
791 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
793 if (fmt[i] == 'e')
794 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
795 else if (fmt[i] == 'E')
796 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
797 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
798 simplify);
801 /* If we didn't substitute, there is nothing more to do. */
802 if (num_changes == prev_changes)
803 return;
805 /* ??? The regmove is no more, so is this aberration still necessary? */
806 /* Allow substituted expression to have different mode. This is used by
807 regmove to change mode of pseudo register. */
808 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
809 op0_mode = GET_MODE (XEXP (x, 0));
811 /* Do changes needed to keep rtx consistent. Don't do any other
812 simplifications, as it is not our job. */
813 if (simplify)
814 simplify_while_replacing (loc, to, object, op0_mode);
817 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
818 with TO. After all changes have been made, validate by seeing
819 if INSN is still valid. */
822 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
824 validate_replace_rtx_1 (loc, from, to, insn, true);
825 return apply_change_group ();
828 /* Try replacing every occurrence of FROM in INSN with TO. After all
829 changes have been made, validate by seeing if INSN is still valid. */
832 validate_replace_rtx (rtx from, rtx to, rtx insn)
834 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
835 return apply_change_group ();
838 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
839 is a part of INSN. After all changes have been made, validate by seeing if
840 INSN is still valid.
841 validate_replace_rtx (from, to, insn) is equivalent to
842 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
845 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
847 validate_replace_rtx_1 (where, from, to, insn, true);
848 return apply_change_group ();
851 /* Same as above, but do not simplify rtx afterwards. */
853 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
854 rtx insn)
856 validate_replace_rtx_1 (where, from, to, insn, false);
857 return apply_change_group ();
861 /* Try replacing every occurrence of FROM in INSN with TO. This also
862 will replace in REG_EQUAL and REG_EQUIV notes. */
864 void
865 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
867 rtx note;
868 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
869 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
870 if (REG_NOTE_KIND (note) == REG_EQUAL
871 || REG_NOTE_KIND (note) == REG_EQUIV)
872 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
875 /* Function called by note_uses to replace used subexpressions. */
876 struct validate_replace_src_data
878 rtx from; /* Old RTX */
879 rtx to; /* New RTX */
880 rtx insn; /* Insn in which substitution is occurring. */
883 static void
884 validate_replace_src_1 (rtx *x, void *data)
886 struct validate_replace_src_data *d
887 = (struct validate_replace_src_data *) data;
889 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
892 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
893 SET_DESTs. */
895 void
896 validate_replace_src_group (rtx from, rtx to, rtx insn)
898 struct validate_replace_src_data d;
900 d.from = from;
901 d.to = to;
902 d.insn = insn;
903 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
906 /* Try simplify INSN.
907 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
908 pattern and return true if something was simplified. */
910 bool
911 validate_simplify_insn (rtx insn)
913 int i;
914 rtx pat = NULL;
915 rtx newpat = NULL;
917 pat = PATTERN (insn);
919 if (GET_CODE (pat) == SET)
921 newpat = simplify_rtx (SET_SRC (pat));
922 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
923 validate_change (insn, &SET_SRC (pat), newpat, 1);
924 newpat = simplify_rtx (SET_DEST (pat));
925 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
926 validate_change (insn, &SET_DEST (pat), newpat, 1);
928 else if (GET_CODE (pat) == PARALLEL)
929 for (i = 0; i < XVECLEN (pat, 0); i++)
931 rtx s = XVECEXP (pat, 0, i);
933 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
935 newpat = simplify_rtx (SET_SRC (s));
936 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
937 validate_change (insn, &SET_SRC (s), newpat, 1);
938 newpat = simplify_rtx (SET_DEST (s));
939 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
940 validate_change (insn, &SET_DEST (s), newpat, 1);
943 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
946 #ifdef HAVE_cc0
947 /* Return 1 if the insn using CC0 set by INSN does not contain
948 any ordered tests applied to the condition codes.
949 EQ and NE tests do not count. */
952 next_insn_tests_no_inequality (rtx insn)
954 rtx next = next_cc0_user (insn);
956 /* If there is no next insn, we have to take the conservative choice. */
957 if (next == 0)
958 return 0;
960 return (INSN_P (next)
961 && ! inequality_comparisons_p (PATTERN (next)));
963 #endif
965 /* Return 1 if OP is a valid general operand for machine mode MODE.
966 This is either a register reference, a memory reference,
967 or a constant. In the case of a memory reference, the address
968 is checked for general validity for the target machine.
970 Register and memory references must have mode MODE in order to be valid,
971 but some constants have no machine mode and are valid for any mode.
973 If MODE is VOIDmode, OP is checked for validity for whatever mode
974 it has.
976 The main use of this function is as a predicate in match_operand
977 expressions in the machine description. */
980 general_operand (rtx op, enum machine_mode mode)
982 enum rtx_code code = GET_CODE (op);
984 if (mode == VOIDmode)
985 mode = GET_MODE (op);
987 /* Don't accept CONST_INT or anything similar
988 if the caller wants something floating. */
989 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
990 && GET_MODE_CLASS (mode) != MODE_INT
991 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
992 return 0;
994 if (CONST_INT_P (op)
995 && mode != VOIDmode
996 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
997 return 0;
999 if (CONSTANT_P (op))
1000 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1001 || mode == VOIDmode)
1002 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1003 && targetm.legitimate_constant_p (mode == VOIDmode
1004 ? GET_MODE (op)
1005 : mode, op));
1007 /* Except for certain constants with VOIDmode, already checked for,
1008 OP's mode must match MODE if MODE specifies a mode. */
1010 if (GET_MODE (op) != mode)
1011 return 0;
1013 if (code == SUBREG)
1015 rtx sub = SUBREG_REG (op);
1017 #ifdef INSN_SCHEDULING
1018 /* On machines that have insn scheduling, we want all memory
1019 reference to be explicit, so outlaw paradoxical SUBREGs.
1020 However, we must allow them after reload so that they can
1021 get cleaned up by cleanup_subreg_operands. */
1022 if (!reload_completed && MEM_P (sub)
1023 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
1024 return 0;
1025 #endif
1026 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1027 may result in incorrect reference. We should simplify all valid
1028 subregs of MEM anyway. But allow this after reload because we
1029 might be called from cleanup_subreg_operands.
1031 ??? This is a kludge. */
1032 if (!reload_completed && SUBREG_BYTE (op) != 0
1033 && MEM_P (sub))
1034 return 0;
1036 #ifdef CANNOT_CHANGE_MODE_CLASS
1037 if (REG_P (sub)
1038 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1039 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1040 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1041 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1042 /* LRA can generate some invalid SUBREGS just for matched
1043 operand reload presentation. LRA needs to treat them as
1044 valid. */
1045 && ! LRA_SUBREG_P (op))
1046 return 0;
1047 #endif
1049 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1050 create such rtl, and we must reject it. */
1051 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1052 /* LRA can use subreg to store a floating point value in an
1053 integer mode. Although the floating point and the
1054 integer modes need the same number of hard registers, the
1055 size of floating point mode can be less than the integer
1056 mode. */
1057 && ! lra_in_progress
1058 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1059 return 0;
1061 op = sub;
1062 code = GET_CODE (op);
1065 if (code == REG)
1066 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1067 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1069 if (code == MEM)
1071 rtx y = XEXP (op, 0);
1073 if (! volatile_ok && MEM_VOLATILE_P (op))
1074 return 0;
1076 /* Use the mem's mode, since it will be reloaded thus. LRA can
1077 generate move insn with invalid addresses which is made valid
1078 and efficiently calculated by LRA through further numerous
1079 transformations. */
1080 if (lra_in_progress
1081 || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1082 return 1;
1085 return 0;
1088 /* Return 1 if OP is a valid memory address for a memory reference
1089 of mode MODE.
1091 The main use of this function is as a predicate in match_operand
1092 expressions in the machine description. */
1095 address_operand (rtx op, enum machine_mode mode)
1097 return memory_address_p (mode, op);
1100 /* Return 1 if OP is a register reference of mode MODE.
1101 If MODE is VOIDmode, accept a register in any mode.
1103 The main use of this function is as a predicate in match_operand
1104 expressions in the machine description. */
1107 register_operand (rtx op, enum machine_mode mode)
1109 if (GET_CODE (op) == SUBREG)
1111 rtx sub = SUBREG_REG (op);
1113 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1114 because it is guaranteed to be reloaded into one.
1115 Just make sure the MEM is valid in itself.
1116 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1117 but currently it does result from (SUBREG (REG)...) where the
1118 reg went on the stack.) */
1119 if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1120 return 0;
1122 else if (!REG_P (op))
1123 return 0;
1124 return general_operand (op, mode);
1127 /* Return 1 for a register in Pmode; ignore the tested mode. */
1130 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1132 return register_operand (op, Pmode);
1135 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1136 or a hard register. */
1139 scratch_operand (rtx op, enum machine_mode mode)
1141 if (GET_MODE (op) != mode && mode != VOIDmode)
1142 return 0;
1144 return (GET_CODE (op) == SCRATCH
1145 || (REG_P (op)
1146 && (lra_in_progress || REGNO (op) < FIRST_PSEUDO_REGISTER)));
1149 /* Return 1 if OP is a valid immediate operand for mode MODE.
1151 The main use of this function is as a predicate in match_operand
1152 expressions in the machine description. */
1155 immediate_operand (rtx op, enum machine_mode mode)
1157 /* Don't accept CONST_INT or anything similar
1158 if the caller wants something floating. */
1159 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1160 && GET_MODE_CLASS (mode) != MODE_INT
1161 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1162 return 0;
1164 if (CONST_INT_P (op)
1165 && mode != VOIDmode
1166 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1167 return 0;
1169 return (CONSTANT_P (op)
1170 && (GET_MODE (op) == mode || mode == VOIDmode
1171 || GET_MODE (op) == VOIDmode)
1172 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1173 && targetm.legitimate_constant_p (mode == VOIDmode
1174 ? GET_MODE (op)
1175 : mode, op));
1178 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1181 const_int_operand (rtx op, enum machine_mode mode)
1183 if (!CONST_INT_P (op))
1184 return 0;
1186 if (mode != VOIDmode
1187 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1188 return 0;
1190 return 1;
1193 #if TARGET_SUPPORTS_WIDE_INT
1194 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1195 of mode MODE. */
1197 const_scalar_int_operand (rtx op, enum machine_mode mode)
1199 if (!CONST_SCALAR_INT_P (op))
1200 return 0;
1202 if (CONST_INT_P (op))
1203 return const_int_operand (op, mode);
1205 if (mode != VOIDmode)
1207 int prec = GET_MODE_PRECISION (mode);
1208 int bitsize = GET_MODE_BITSIZE (mode);
1210 if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
1211 return 0;
1213 if (prec == bitsize)
1214 return 1;
1215 else
1217 /* Multiword partial int. */
1218 HOST_WIDE_INT x
1219 = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
1220 return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
1223 return 1;
1226 /* Returns 1 if OP is an operand that is a constant integer or constant
1227 floating-point number of MODE. */
1230 const_double_operand (rtx op, enum machine_mode mode)
1232 return (GET_CODE (op) == CONST_DOUBLE)
1233 && (GET_MODE (op) == mode || mode == VOIDmode);
1235 #else
1236 /* Returns 1 if OP is an operand that is a constant integer or constant
1237 floating-point number of MODE. */
1240 const_double_operand (rtx op, enum machine_mode mode)
1242 /* Don't accept CONST_INT or anything similar
1243 if the caller wants something floating. */
1244 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1245 && GET_MODE_CLASS (mode) != MODE_INT
1246 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1247 return 0;
1249 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1250 && (mode == VOIDmode || GET_MODE (op) == mode
1251 || GET_MODE (op) == VOIDmode));
1253 #endif
1254 /* Return 1 if OP is a general operand that is not an immediate
1255 operand of mode MODE. */
1258 nonimmediate_operand (rtx op, enum machine_mode mode)
1260 return (general_operand (op, mode) && ! CONSTANT_P (op));
1263 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1266 nonmemory_operand (rtx op, enum machine_mode mode)
1268 if (CONSTANT_P (op))
1269 return immediate_operand (op, mode);
1270 return register_operand (op, mode);
1273 /* Return 1 if OP is a valid operand that stands for pushing a
1274 value of mode MODE onto the stack.
1276 The main use of this function is as a predicate in match_operand
1277 expressions in the machine description. */
1280 push_operand (rtx op, enum machine_mode mode)
1282 unsigned int rounded_size = GET_MODE_SIZE (mode);
1284 #ifdef PUSH_ROUNDING
1285 rounded_size = PUSH_ROUNDING (rounded_size);
1286 #endif
1288 if (!MEM_P (op))
1289 return 0;
1291 if (mode != VOIDmode && GET_MODE (op) != mode)
1292 return 0;
1294 op = XEXP (op, 0);
1296 if (rounded_size == GET_MODE_SIZE (mode))
1298 if (GET_CODE (op) != STACK_PUSH_CODE)
1299 return 0;
1301 else
1303 if (GET_CODE (op) != PRE_MODIFY
1304 || GET_CODE (XEXP (op, 1)) != PLUS
1305 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1306 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1307 #ifdef STACK_GROWS_DOWNWARD
1308 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1309 #else
1310 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1311 #endif
1313 return 0;
1316 return XEXP (op, 0) == stack_pointer_rtx;
1319 /* Return 1 if OP is a valid operand that stands for popping a
1320 value of mode MODE off the stack.
1322 The main use of this function is as a predicate in match_operand
1323 expressions in the machine description. */
1326 pop_operand (rtx op, enum machine_mode mode)
1328 if (!MEM_P (op))
1329 return 0;
1331 if (mode != VOIDmode && GET_MODE (op) != mode)
1332 return 0;
1334 op = XEXP (op, 0);
1336 if (GET_CODE (op) != STACK_POP_CODE)
1337 return 0;
1339 return XEXP (op, 0) == stack_pointer_rtx;
1342 /* Return 1 if ADDR is a valid memory address
1343 for mode MODE in address space AS. */
1346 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1347 rtx addr, addr_space_t as)
1349 #ifdef GO_IF_LEGITIMATE_ADDRESS
1350 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1351 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1352 return 0;
1354 win:
1355 return 1;
1356 #else
1357 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1358 #endif
1361 /* Return 1 if OP is a valid memory reference with mode MODE,
1362 including a valid address.
1364 The main use of this function is as a predicate in match_operand
1365 expressions in the machine description. */
1368 memory_operand (rtx op, enum machine_mode mode)
1370 rtx inner;
1372 if (! reload_completed)
1373 /* Note that no SUBREG is a memory operand before end of reload pass,
1374 because (SUBREG (MEM...)) forces reloading into a register. */
1375 return MEM_P (op) && general_operand (op, mode);
1377 if (mode != VOIDmode && GET_MODE (op) != mode)
1378 return 0;
1380 inner = op;
1381 if (GET_CODE (inner) == SUBREG)
1382 inner = SUBREG_REG (inner);
1384 return (MEM_P (inner) && general_operand (op, mode));
1387 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1388 that is, a memory reference whose address is a general_operand. */
1391 indirect_operand (rtx op, enum machine_mode mode)
1393 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1394 if (! reload_completed
1395 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1397 int offset = SUBREG_BYTE (op);
1398 rtx inner = SUBREG_REG (op);
1400 if (mode != VOIDmode && GET_MODE (op) != mode)
1401 return 0;
1403 /* The only way that we can have a general_operand as the resulting
1404 address is if OFFSET is zero and the address already is an operand
1405 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1406 operand. */
1408 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1409 || (GET_CODE (XEXP (inner, 0)) == PLUS
1410 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1411 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1412 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1415 return (MEM_P (op)
1416 && memory_operand (op, mode)
1417 && general_operand (XEXP (op, 0), Pmode));
1420 /* Return 1 if this is an ordered comparison operator (not including
1421 ORDERED and UNORDERED). */
1424 ordered_comparison_operator (rtx op, enum machine_mode mode)
1426 if (mode != VOIDmode && GET_MODE (op) != mode)
1427 return false;
1428 switch (GET_CODE (op))
1430 case EQ:
1431 case NE:
1432 case LT:
1433 case LTU:
1434 case LE:
1435 case LEU:
1436 case GT:
1437 case GTU:
1438 case GE:
1439 case GEU:
1440 return true;
1441 default:
1442 return false;
1446 /* Return 1 if this is a comparison operator. This allows the use of
1447 MATCH_OPERATOR to recognize all the branch insns. */
1450 comparison_operator (rtx op, enum machine_mode mode)
1452 return ((mode == VOIDmode || GET_MODE (op) == mode)
1453 && COMPARISON_P (op));
1456 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1459 extract_asm_operands (rtx body)
1461 rtx tmp;
1462 switch (GET_CODE (body))
1464 case ASM_OPERANDS:
1465 return body;
1467 case SET:
1468 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1469 tmp = SET_SRC (body);
1470 if (GET_CODE (tmp) == ASM_OPERANDS)
1471 return tmp;
1472 break;
1474 case PARALLEL:
1475 tmp = XVECEXP (body, 0, 0);
1476 if (GET_CODE (tmp) == ASM_OPERANDS)
1477 return tmp;
1478 if (GET_CODE (tmp) == SET)
1480 tmp = SET_SRC (tmp);
1481 if (GET_CODE (tmp) == ASM_OPERANDS)
1482 return tmp;
1484 break;
1486 default:
1487 break;
1489 return NULL;
1492 /* If BODY is an insn body that uses ASM_OPERANDS,
1493 return the number of operands (both input and output) in the insn.
1494 Otherwise return -1. */
1497 asm_noperands (const_rtx body)
1499 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1500 int n_sets = 0;
1502 if (asm_op == NULL)
1503 return -1;
1505 if (GET_CODE (body) == SET)
1506 n_sets = 1;
1507 else if (GET_CODE (body) == PARALLEL)
1509 int i;
1510 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1512 /* Multiple output operands, or 1 output plus some clobbers:
1513 body is
1514 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1515 /* Count backwards through CLOBBERs to determine number of SETs. */
1516 for (i = XVECLEN (body, 0); i > 0; i--)
1518 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1519 break;
1520 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1521 return -1;
1524 /* N_SETS is now number of output operands. */
1525 n_sets = i;
1527 /* Verify that all the SETs we have
1528 came from a single original asm_operands insn
1529 (so that invalid combinations are blocked). */
1530 for (i = 0; i < n_sets; i++)
1532 rtx elt = XVECEXP (body, 0, i);
1533 if (GET_CODE (elt) != SET)
1534 return -1;
1535 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1536 return -1;
1537 /* If these ASM_OPERANDS rtx's came from different original insns
1538 then they aren't allowed together. */
1539 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1540 != ASM_OPERANDS_INPUT_VEC (asm_op))
1541 return -1;
1544 else
1546 /* 0 outputs, but some clobbers:
1547 body is [(asm_operands ...) (clobber (reg ...))...]. */
1548 /* Make sure all the other parallel things really are clobbers. */
1549 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1550 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1551 return -1;
1555 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1556 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1559 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1560 copy its operands (both input and output) into the vector OPERANDS,
1561 the locations of the operands within the insn into the vector OPERAND_LOCS,
1562 and the constraints for the operands into CONSTRAINTS.
1563 Write the modes of the operands into MODES.
1564 Return the assembler-template.
1566 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1567 we don't store that info. */
1569 const char *
1570 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1571 const char **constraints, enum machine_mode *modes,
1572 location_t *loc)
1574 int nbase = 0, n, i;
1575 rtx asmop;
1577 switch (GET_CODE (body))
1579 case ASM_OPERANDS:
1580 /* Zero output asm: BODY is (asm_operands ...). */
1581 asmop = body;
1582 break;
1584 case SET:
1585 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1586 asmop = SET_SRC (body);
1588 /* The output is in the SET.
1589 Its constraint is in the ASM_OPERANDS itself. */
1590 if (operands)
1591 operands[0] = SET_DEST (body);
1592 if (operand_locs)
1593 operand_locs[0] = &SET_DEST (body);
1594 if (constraints)
1595 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1596 if (modes)
1597 modes[0] = GET_MODE (SET_DEST (body));
1598 nbase = 1;
1599 break;
1601 case PARALLEL:
1603 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1605 asmop = XVECEXP (body, 0, 0);
1606 if (GET_CODE (asmop) == SET)
1608 asmop = SET_SRC (asmop);
1610 /* At least one output, plus some CLOBBERs. The outputs are in
1611 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1612 for (i = 0; i < nparallel; i++)
1614 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1615 break; /* Past last SET */
1616 if (operands)
1617 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1618 if (operand_locs)
1619 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1620 if (constraints)
1621 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1622 if (modes)
1623 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1625 nbase = i;
1627 break;
1630 default:
1631 gcc_unreachable ();
1634 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1635 for (i = 0; i < n; i++)
1637 if (operand_locs)
1638 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1639 if (operands)
1640 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1641 if (constraints)
1642 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1643 if (modes)
1644 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1646 nbase += n;
1648 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1649 for (i = 0; i < n; i++)
1651 if (operand_locs)
1652 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1653 if (operands)
1654 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1655 if (constraints)
1656 constraints[nbase + i] = "";
1657 if (modes)
1658 modes[nbase + i] = Pmode;
1661 if (loc)
1662 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1664 return ASM_OPERANDS_TEMPLATE (asmop);
1667 /* Parse inline assembly string STRING and determine which operands are
1668 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1669 to true if operand I is referenced.
1671 This is intended to distinguish barrier-like asms such as:
1673 asm ("" : "=m" (...));
1675 from real references such as:
1677 asm ("sw\t$0, %0" : "=m" (...)); */
1679 void
1680 get_referenced_operands (const char *string, bool *used,
1681 unsigned int noperands)
1683 memset (used, 0, sizeof (bool) * noperands);
1684 const char *p = string;
1685 while (*p)
1686 switch (*p)
1688 case '%':
1689 p += 1;
1690 /* A letter followed by a digit indicates an operand number. */
1691 if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1692 p += 1;
1693 if (ISDIGIT (*p))
1695 char *endptr;
1696 unsigned long opnum = strtoul (p, &endptr, 10);
1697 if (endptr != p && opnum < noperands)
1698 used[opnum] = true;
1699 p = endptr;
1701 else
1702 p += 1;
1703 break;
1705 default:
1706 p++;
1707 break;
1711 /* Check if an asm_operand matches its constraints.
1712 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1715 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1717 int result = 0;
1718 #ifdef AUTO_INC_DEC
1719 bool incdec_ok = false;
1720 #endif
1722 /* Use constrain_operands after reload. */
1723 gcc_assert (!reload_completed);
1725 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1726 many alternatives as required to match the other operands. */
1727 if (*constraint == '\0')
1728 result = 1;
1730 while (*constraint)
1732 enum constraint_num cn;
1733 char c = *constraint;
1734 int len;
1735 switch (c)
1737 case ',':
1738 constraint++;
1739 continue;
1741 case '0': case '1': case '2': case '3': case '4':
1742 case '5': case '6': case '7': case '8': case '9':
1743 /* If caller provided constraints pointer, look up
1744 the matching constraint. Otherwise, our caller should have
1745 given us the proper matching constraint, but we can't
1746 actually fail the check if they didn't. Indicate that
1747 results are inconclusive. */
1748 if (constraints)
1750 char *end;
1751 unsigned long match;
1753 match = strtoul (constraint, &end, 10);
1754 if (!result)
1755 result = asm_operand_ok (op, constraints[match], NULL);
1756 constraint = (const char *) end;
1758 else
1761 constraint++;
1762 while (ISDIGIT (*constraint));
1763 if (! result)
1764 result = -1;
1766 continue;
1768 /* The rest of the compiler assumes that reloading the address
1769 of a MEM into a register will make it fit an 'o' constraint.
1770 That is, if it sees a MEM operand for an 'o' constraint,
1771 it assumes that (mem (base-reg)) will fit.
1773 That assumption fails on targets that don't have offsettable
1774 addresses at all. We therefore need to treat 'o' asm
1775 constraints as a special case and only accept operands that
1776 are already offsettable, thus proving that at least one
1777 offsettable address exists. */
1778 case 'o': /* offsettable */
1779 if (offsettable_nonstrict_memref_p (op))
1780 result = 1;
1781 break;
1783 case 'g':
1784 if (general_operand (op, VOIDmode))
1785 result = 1;
1786 break;
1788 #ifdef AUTO_INC_DEC
1789 case '<':
1790 case '>':
1791 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1792 to exist, excepting those that expand_call created. Further,
1793 on some machines which do not have generalized auto inc/dec,
1794 an inc/dec is not a memory_operand.
1796 Match any memory and hope things are resolved after reload. */
1797 incdec_ok = true;
1798 #endif
1799 default:
1800 cn = lookup_constraint (constraint);
1801 switch (get_constraint_type (cn))
1803 case CT_REGISTER:
1804 if (!result
1805 && reg_class_for_constraint (cn) != NO_REGS
1806 && GET_MODE (op) != BLKmode
1807 && register_operand (op, VOIDmode))
1808 result = 1;
1809 break;
1811 case CT_CONST_INT:
1812 if (!result
1813 && CONST_INT_P (op)
1814 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
1815 result = 1;
1816 break;
1818 case CT_MEMORY:
1819 /* Every memory operand can be reloaded to fit. */
1820 result = result || memory_operand (op, VOIDmode);
1821 break;
1823 case CT_ADDRESS:
1824 /* Every address operand can be reloaded to fit. */
1825 result = result || address_operand (op, VOIDmode);
1826 break;
1828 case CT_FIXED_FORM:
1829 result = result || constraint_satisfied_p (op, cn);
1830 break;
1832 break;
1834 len = CONSTRAINT_LEN (c, constraint);
1836 constraint++;
1837 while (--len && *constraint);
1838 if (len)
1839 return 0;
1842 #ifdef AUTO_INC_DEC
1843 /* For operands without < or > constraints reject side-effects. */
1844 if (!incdec_ok && result && MEM_P (op))
1845 switch (GET_CODE (XEXP (op, 0)))
1847 case PRE_INC:
1848 case POST_INC:
1849 case PRE_DEC:
1850 case POST_DEC:
1851 case PRE_MODIFY:
1852 case POST_MODIFY:
1853 return 0;
1854 default:
1855 break;
1857 #endif
1859 return result;
1862 /* Given an rtx *P, if it is a sum containing an integer constant term,
1863 return the location (type rtx *) of the pointer to that constant term.
1864 Otherwise, return a null pointer. */
1866 rtx *
1867 find_constant_term_loc (rtx *p)
1869 rtx *tem;
1870 enum rtx_code code = GET_CODE (*p);
1872 /* If *P IS such a constant term, P is its location. */
1874 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1875 || code == CONST)
1876 return p;
1878 /* Otherwise, if not a sum, it has no constant term. */
1880 if (GET_CODE (*p) != PLUS)
1881 return 0;
1883 /* If one of the summands is constant, return its location. */
1885 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1886 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1887 return p;
1889 /* Otherwise, check each summand for containing a constant term. */
1891 if (XEXP (*p, 0) != 0)
1893 tem = find_constant_term_loc (&XEXP (*p, 0));
1894 if (tem != 0)
1895 return tem;
1898 if (XEXP (*p, 1) != 0)
1900 tem = find_constant_term_loc (&XEXP (*p, 1));
1901 if (tem != 0)
1902 return tem;
1905 return 0;
1908 /* Return 1 if OP is a memory reference
1909 whose address contains no side effects
1910 and remains valid after the addition
1911 of a positive integer less than the
1912 size of the object being referenced.
1914 We assume that the original address is valid and do not check it.
1916 This uses strict_memory_address_p as a subroutine, so
1917 don't use it before reload. */
1920 offsettable_memref_p (rtx op)
1922 return ((MEM_P (op))
1923 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1924 MEM_ADDR_SPACE (op)));
1927 /* Similar, but don't require a strictly valid mem ref:
1928 consider pseudo-regs valid as index or base regs. */
1931 offsettable_nonstrict_memref_p (rtx op)
1933 return ((MEM_P (op))
1934 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1935 MEM_ADDR_SPACE (op)));
1938 /* Return 1 if Y is a memory address which contains no side effects
1939 and would remain valid for address space AS after the addition of
1940 a positive integer less than the size of that mode.
1942 We assume that the original address is valid and do not check it.
1943 We do check that it is valid for narrower modes.
1945 If STRICTP is nonzero, we require a strictly valid address,
1946 for the sake of use in reload.c. */
1949 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1950 addr_space_t as)
1952 enum rtx_code ycode = GET_CODE (y);
1953 rtx z;
1954 rtx y1 = y;
1955 rtx *y2;
1956 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1957 (strictp ? strict_memory_address_addr_space_p
1958 : memory_address_addr_space_p);
1959 unsigned int mode_sz = GET_MODE_SIZE (mode);
1961 if (CONSTANT_ADDRESS_P (y))
1962 return 1;
1964 /* Adjusting an offsettable address involves changing to a narrower mode.
1965 Make sure that's OK. */
1967 if (mode_dependent_address_p (y, as))
1968 return 0;
1970 enum machine_mode address_mode = GET_MODE (y);
1971 if (address_mode == VOIDmode)
1972 address_mode = targetm.addr_space.address_mode (as);
1973 #ifdef POINTERS_EXTEND_UNSIGNED
1974 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1975 #endif
1977 /* ??? How much offset does an offsettable BLKmode reference need?
1978 Clearly that depends on the situation in which it's being used.
1979 However, the current situation in which we test 0xffffffff is
1980 less than ideal. Caveat user. */
1981 if (mode_sz == 0)
1982 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1984 /* If the expression contains a constant term,
1985 see if it remains valid when max possible offset is added. */
1987 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1989 int good;
1991 y1 = *y2;
1992 *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
1993 /* Use QImode because an odd displacement may be automatically invalid
1994 for any wider mode. But it should be valid for a single byte. */
1995 good = (*addressp) (QImode, y, as);
1997 /* In any case, restore old contents of memory. */
1998 *y2 = y1;
1999 return good;
2002 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
2003 return 0;
2005 /* The offset added here is chosen as the maximum offset that
2006 any instruction could need to add when operating on something
2007 of the specified mode. We assume that if Y and Y+c are
2008 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2009 go inside a LO_SUM here, so we do so as well. */
2010 if (GET_CODE (y) == LO_SUM
2011 && mode != BLKmode
2012 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
2013 z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
2014 plus_constant (address_mode, XEXP (y, 1),
2015 mode_sz - 1));
2016 #ifdef POINTERS_EXTEND_UNSIGNED
2017 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2018 else if (POINTERS_EXTEND_UNSIGNED > 0
2019 && GET_CODE (y) == ZERO_EXTEND
2020 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2021 z = gen_rtx_ZERO_EXTEND (address_mode,
2022 plus_constant (pointer_mode, XEXP (y, 0),
2023 mode_sz - 1));
2024 #endif
2025 else
2026 z = plus_constant (address_mode, y, mode_sz - 1);
2028 /* Use QImode because an odd displacement may be automatically invalid
2029 for any wider mode. But it should be valid for a single byte. */
2030 return (*addressp) (QImode, z, as);
2033 /* Return 1 if ADDR is an address-expression whose effect depends
2034 on the mode of the memory reference it is used in.
2036 ADDRSPACE is the address space associated with the address.
2038 Autoincrement addressing is a typical example of mode-dependence
2039 because the amount of the increment depends on the mode. */
2041 bool
2042 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2044 /* Auto-increment addressing with anything other than post_modify
2045 or pre_modify always introduces a mode dependency. Catch such
2046 cases now instead of deferring to the target. */
2047 if (GET_CODE (addr) == PRE_INC
2048 || GET_CODE (addr) == POST_INC
2049 || GET_CODE (addr) == PRE_DEC
2050 || GET_CODE (addr) == POST_DEC)
2051 return true;
2053 return targetm.mode_dependent_address_p (addr, addrspace);
2056 /* Return the mask of operand alternatives that are allowed for INSN.
2057 This mask depends only on INSN and on the current target; it does not
2058 depend on things like the values of operands. */
2060 alternative_mask
2061 get_enabled_alternatives (rtx insn)
2063 /* Quick exit for asms and for targets that don't use the "enabled"
2064 attribute. */
2065 int code = INSN_CODE (insn);
2066 if (code < 0 || !HAVE_ATTR_enabled)
2067 return ALL_ALTERNATIVES;
2069 /* Calling get_attr_enabled can be expensive, so cache the mask
2070 for speed. */
2071 if (this_target_recog->x_enabled_alternatives[code])
2072 return this_target_recog->x_enabled_alternatives[code];
2074 /* Temporarily install enough information for get_attr_enabled to assume
2075 that the insn operands are already cached. As above, the attribute
2076 mustn't depend on the values of operands, so we don't provide their
2077 real values here. */
2078 rtx old_insn = recog_data.insn;
2079 int old_alternative = which_alternative;
2081 recog_data.insn = insn;
2082 alternative_mask enabled = ALL_ALTERNATIVES;
2083 int n_alternatives = insn_data[code].n_alternatives;
2084 for (int i = 0; i < n_alternatives; i++)
2086 which_alternative = i;
2087 if (!get_attr_enabled (insn))
2088 enabled &= ~ALTERNATIVE_BIT (i);
2091 recog_data.insn = old_insn;
2092 which_alternative = old_alternative;
2094 this_target_recog->x_enabled_alternatives[code] = enabled;
2095 return enabled;
2098 /* Like extract_insn, but save insn extracted and don't extract again, when
2099 called again for the same insn expecting that recog_data still contain the
2100 valid information. This is used primary by gen_attr infrastructure that
2101 often does extract insn again and again. */
2102 void
2103 extract_insn_cached (rtx insn)
2105 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2106 return;
2107 extract_insn (insn);
2108 recog_data.insn = insn;
2111 /* Do cached extract_insn, constrain_operands and complain about failures.
2112 Used by insn_attrtab. */
2113 void
2114 extract_constrain_insn_cached (rtx insn)
2116 extract_insn_cached (insn);
2117 if (which_alternative == -1
2118 && !constrain_operands (reload_completed))
2119 fatal_insn_not_found (insn);
2122 /* Do cached constrain_operands and complain about failures. */
2124 constrain_operands_cached (int strict)
2126 if (which_alternative == -1)
2127 return constrain_operands (strict);
2128 else
2129 return 1;
2132 /* Analyze INSN and fill in recog_data. */
2134 void
2135 extract_insn (rtx insn)
2137 int i;
2138 int icode;
2139 int noperands;
2140 rtx body = PATTERN (insn);
2142 recog_data.n_operands = 0;
2143 recog_data.n_alternatives = 0;
2144 recog_data.n_dups = 0;
2145 recog_data.is_asm = false;
2147 switch (GET_CODE (body))
2149 case USE:
2150 case CLOBBER:
2151 case ASM_INPUT:
2152 case ADDR_VEC:
2153 case ADDR_DIFF_VEC:
2154 case VAR_LOCATION:
2155 return;
2157 case SET:
2158 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2159 goto asm_insn;
2160 else
2161 goto normal_insn;
2162 case PARALLEL:
2163 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2164 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2165 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2166 goto asm_insn;
2167 else
2168 goto normal_insn;
2169 case ASM_OPERANDS:
2170 asm_insn:
2171 recog_data.n_operands = noperands = asm_noperands (body);
2172 if (noperands >= 0)
2174 /* This insn is an `asm' with operands. */
2176 /* expand_asm_operands makes sure there aren't too many operands. */
2177 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2179 /* Now get the operand values and constraints out of the insn. */
2180 decode_asm_operands (body, recog_data.operand,
2181 recog_data.operand_loc,
2182 recog_data.constraints,
2183 recog_data.operand_mode, NULL);
2184 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2185 if (noperands > 0)
2187 const char *p = recog_data.constraints[0];
2188 recog_data.n_alternatives = 1;
2189 while (*p)
2190 recog_data.n_alternatives += (*p++ == ',');
2192 recog_data.is_asm = true;
2193 break;
2195 fatal_insn_not_found (insn);
2197 default:
2198 normal_insn:
2199 /* Ordinary insn: recognize it, get the operands via insn_extract
2200 and get the constraints. */
2202 icode = recog_memoized (insn);
2203 if (icode < 0)
2204 fatal_insn_not_found (insn);
2206 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2207 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2208 recog_data.n_dups = insn_data[icode].n_dups;
2210 insn_extract (insn);
2212 for (i = 0; i < noperands; i++)
2214 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2215 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2216 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2217 /* VOIDmode match_operands gets mode from their real operand. */
2218 if (recog_data.operand_mode[i] == VOIDmode)
2219 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2222 for (i = 0; i < noperands; i++)
2223 recog_data.operand_type[i]
2224 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2225 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2226 : OP_IN);
2228 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2230 recog_data.enabled_alternatives = get_enabled_alternatives (insn);
2232 recog_data.insn = NULL;
2233 which_alternative = -1;
2236 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS operands,
2237 N_ALTERNATIVES alternatives and constraint strings CONSTRAINTS.
2238 OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries and CONSTRAINTS
2239 has N_OPERANDS entries. */
2241 void
2242 preprocess_constraints (int n_operands, int n_alternatives,
2243 const char **constraints,
2244 operand_alternative *op_alt_base)
2246 for (int i = 0; i < n_operands; i++)
2248 int j;
2249 struct operand_alternative *op_alt;
2250 const char *p = constraints[i];
2252 op_alt = op_alt_base;
2254 for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
2256 op_alt[i].cl = NO_REGS;
2257 op_alt[i].constraint = p;
2258 op_alt[i].matches = -1;
2259 op_alt[i].matched = -1;
2261 if (*p == '\0' || *p == ',')
2263 op_alt[i].anything_ok = 1;
2264 continue;
2267 for (;;)
2269 char c = *p;
2270 if (c == '#')
2272 c = *++p;
2273 while (c != ',' && c != '\0');
2274 if (c == ',' || c == '\0')
2276 p++;
2277 break;
2280 switch (c)
2282 case '?':
2283 op_alt[i].reject += 6;
2284 break;
2285 case '!':
2286 op_alt[i].reject += 600;
2287 break;
2288 case '&':
2289 op_alt[i].earlyclobber = 1;
2290 break;
2292 case '0': case '1': case '2': case '3': case '4':
2293 case '5': case '6': case '7': case '8': case '9':
2295 char *end;
2296 op_alt[i].matches = strtoul (p, &end, 10);
2297 op_alt[op_alt[i].matches].matched = i;
2298 p = end;
2300 continue;
2302 case 'X':
2303 op_alt[i].anything_ok = 1;
2304 break;
2306 case 'g':
2307 op_alt[i].cl =
2308 reg_class_subunion[(int) op_alt[i].cl][(int) GENERAL_REGS];
2309 break;
2311 default:
2312 enum constraint_num cn = lookup_constraint (p);
2313 enum reg_class cl;
2314 switch (get_constraint_type (cn))
2316 case CT_REGISTER:
2317 cl = reg_class_for_constraint (cn);
2318 if (cl != NO_REGS)
2319 op_alt[i].cl = reg_class_subunion[op_alt[i].cl][cl];
2320 break;
2322 case CT_CONST_INT:
2323 break;
2325 case CT_MEMORY:
2326 op_alt[i].memory_ok = 1;
2327 break;
2329 case CT_ADDRESS:
2330 op_alt[i].is_address = 1;
2331 op_alt[i].cl
2332 = (reg_class_subunion
2333 [(int) op_alt[i].cl]
2334 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2335 ADDRESS, SCRATCH)]);
2336 break;
2338 case CT_FIXED_FORM:
2339 break;
2341 break;
2343 p += CONSTRAINT_LEN (c, p);
2349 /* Return an array of operand_alternative instructions for
2350 instruction ICODE. */
2352 const operand_alternative *
2353 preprocess_insn_constraints (int icode)
2355 gcc_checking_assert (IN_RANGE (icode, 0, LAST_INSN_CODE));
2356 if (this_target_recog->x_op_alt[icode])
2357 return this_target_recog->x_op_alt[icode];
2359 int n_operands = insn_data[icode].n_operands;
2360 if (n_operands == 0)
2361 return 0;
2362 /* Always provide at least one alternative so that which_op_alt ()
2363 works correctly. If the instruction has 0 alternatives (i.e. all
2364 constraint strings are empty) then each operand in this alternative
2365 will have anything_ok set. */
2366 int n_alternatives = MAX (insn_data[icode].n_alternatives, 1);
2367 int n_entries = n_operands * n_alternatives;
2369 operand_alternative *op_alt = XCNEWVEC (operand_alternative, n_entries);
2370 const char **constraints = XALLOCAVEC (const char *, n_operands);
2372 for (int i = 0; i < n_operands; ++i)
2373 constraints[i] = insn_data[icode].operand[i].constraint;
2374 preprocess_constraints (n_operands, n_alternatives, constraints, op_alt);
2376 this_target_recog->x_op_alt[icode] = op_alt;
2377 return op_alt;
2380 /* After calling extract_insn, you can use this function to extract some
2381 information from the constraint strings into a more usable form.
2382 The collected data is stored in recog_op_alt. */
2384 void
2385 preprocess_constraints (rtx insn)
2387 int icode = INSN_CODE (insn);
2388 if (icode >= 0)
2389 recog_op_alt = preprocess_insn_constraints (icode);
2390 else
2392 int n_operands = recog_data.n_operands;
2393 int n_alternatives = recog_data.n_alternatives;
2394 int n_entries = n_operands * n_alternatives;
2395 memset (asm_op_alt, 0, n_entries * sizeof (operand_alternative));
2396 preprocess_constraints (n_operands, n_alternatives,
2397 recog_data.constraints, asm_op_alt);
2398 recog_op_alt = asm_op_alt;
2402 /* Check the operands of an insn against the insn's operand constraints
2403 and return 1 if they are valid.
2404 The information about the insn's operands, constraints, operand modes
2405 etc. is obtained from the global variables set up by extract_insn.
2407 WHICH_ALTERNATIVE is set to a number which indicates which
2408 alternative of constraints was matched: 0 for the first alternative,
2409 1 for the next, etc.
2411 In addition, when two operands are required to match
2412 and it happens that the output operand is (reg) while the
2413 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2414 make the output operand look like the input.
2415 This is because the output operand is the one the template will print.
2417 This is used in final, just before printing the assembler code and by
2418 the routines that determine an insn's attribute.
2420 If STRICT is a positive nonzero value, it means that we have been
2421 called after reload has been completed. In that case, we must
2422 do all checks strictly. If it is zero, it means that we have been called
2423 before reload has completed. In that case, we first try to see if we can
2424 find an alternative that matches strictly. If not, we try again, this
2425 time assuming that reload will fix up the insn. This provides a "best
2426 guess" for the alternative and is used to compute attributes of insns prior
2427 to reload. A negative value of STRICT is used for this internal call. */
2429 struct funny_match
2431 int this_op, other;
2435 constrain_operands (int strict)
2437 const char *constraints[MAX_RECOG_OPERANDS];
2438 int matching_operands[MAX_RECOG_OPERANDS];
2439 int earlyclobber[MAX_RECOG_OPERANDS];
2440 int c;
2442 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2443 int funny_match_index;
2445 which_alternative = 0;
2446 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2447 return 1;
2449 for (c = 0; c < recog_data.n_operands; c++)
2451 constraints[c] = recog_data.constraints[c];
2452 matching_operands[c] = -1;
2457 int seen_earlyclobber_at = -1;
2458 int opno;
2459 int lose = 0;
2460 funny_match_index = 0;
2462 if (!TEST_BIT (recog_data.enabled_alternatives, which_alternative))
2464 int i;
2466 for (i = 0; i < recog_data.n_operands; i++)
2467 constraints[i] = skip_alternative (constraints[i]);
2469 which_alternative++;
2470 continue;
2473 for (opno = 0; opno < recog_data.n_operands; opno++)
2475 rtx op = recog_data.operand[opno];
2476 enum machine_mode mode = GET_MODE (op);
2477 const char *p = constraints[opno];
2478 int offset = 0;
2479 int win = 0;
2480 int val;
2481 int len;
2483 earlyclobber[opno] = 0;
2485 /* A unary operator may be accepted by the predicate, but it
2486 is irrelevant for matching constraints. */
2487 if (UNARY_P (op))
2488 op = XEXP (op, 0);
2490 if (GET_CODE (op) == SUBREG)
2492 if (REG_P (SUBREG_REG (op))
2493 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2494 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2495 GET_MODE (SUBREG_REG (op)),
2496 SUBREG_BYTE (op),
2497 GET_MODE (op));
2498 op = SUBREG_REG (op);
2501 /* An empty constraint or empty alternative
2502 allows anything which matched the pattern. */
2503 if (*p == 0 || *p == ',')
2504 win = 1;
2507 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2509 case '\0':
2510 len = 0;
2511 break;
2512 case ',':
2513 c = '\0';
2514 break;
2516 case '#':
2517 /* Ignore rest of this alternative as far as
2518 constraint checking is concerned. */
2520 p++;
2521 while (*p && *p != ',');
2522 len = 0;
2523 break;
2525 case '&':
2526 earlyclobber[opno] = 1;
2527 if (seen_earlyclobber_at < 0)
2528 seen_earlyclobber_at = opno;
2529 break;
2531 case '0': case '1': case '2': case '3': case '4':
2532 case '5': case '6': case '7': case '8': case '9':
2534 /* This operand must be the same as a previous one.
2535 This kind of constraint is used for instructions such
2536 as add when they take only two operands.
2538 Note that the lower-numbered operand is passed first.
2540 If we are not testing strictly, assume that this
2541 constraint will be satisfied. */
2543 char *end;
2544 int match;
2546 match = strtoul (p, &end, 10);
2547 p = end;
2549 if (strict < 0)
2550 val = 1;
2551 else
2553 rtx op1 = recog_data.operand[match];
2554 rtx op2 = recog_data.operand[opno];
2556 /* A unary operator may be accepted by the predicate,
2557 but it is irrelevant for matching constraints. */
2558 if (UNARY_P (op1))
2559 op1 = XEXP (op1, 0);
2560 if (UNARY_P (op2))
2561 op2 = XEXP (op2, 0);
2563 val = operands_match_p (op1, op2);
2566 matching_operands[opno] = match;
2567 matching_operands[match] = opno;
2569 if (val != 0)
2570 win = 1;
2572 /* If output is *x and input is *--x, arrange later
2573 to change the output to *--x as well, since the
2574 output op is the one that will be printed. */
2575 if (val == 2 && strict > 0)
2577 funny_match[funny_match_index].this_op = opno;
2578 funny_match[funny_match_index++].other = match;
2581 len = 0;
2582 break;
2584 case 'p':
2585 /* p is used for address_operands. When we are called by
2586 gen_reload, no one will have checked that the address is
2587 strictly valid, i.e., that all pseudos requiring hard regs
2588 have gotten them. */
2589 if (strict <= 0
2590 || (strict_memory_address_p (recog_data.operand_mode[opno],
2591 op)))
2592 win = 1;
2593 break;
2595 /* No need to check general_operand again;
2596 it was done in insn-recog.c. Well, except that reload
2597 doesn't check the validity of its replacements, but
2598 that should only matter when there's a bug. */
2599 case 'g':
2600 /* Anything goes unless it is a REG and really has a hard reg
2601 but the hard reg is not in the class GENERAL_REGS. */
2602 if (REG_P (op))
2604 if (strict < 0
2605 || GENERAL_REGS == ALL_REGS
2606 || (reload_in_progress
2607 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2608 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2609 win = 1;
2611 else if (strict < 0 || general_operand (op, mode))
2612 win = 1;
2613 break;
2615 default:
2617 enum constraint_num cn = lookup_constraint (p);
2618 enum reg_class cl = reg_class_for_constraint (cn);
2619 if (cl != NO_REGS)
2621 if (strict < 0
2622 || (strict == 0
2623 && REG_P (op)
2624 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2625 || (strict == 0 && GET_CODE (op) == SCRATCH)
2626 || (REG_P (op)
2627 && reg_fits_class_p (op, cl, offset, mode)))
2628 win = 1;
2631 else if (constraint_satisfied_p (op, cn))
2632 win = 1;
2634 else if (insn_extra_memory_constraint (cn)
2635 /* Every memory operand can be reloaded to fit. */
2636 && ((strict < 0 && MEM_P (op))
2637 /* Before reload, accept what reload can turn
2638 into mem. */
2639 || (strict < 0 && CONSTANT_P (op))
2640 /* During reload, accept a pseudo */
2641 || (reload_in_progress && REG_P (op)
2642 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2643 win = 1;
2644 else if (insn_extra_address_constraint (cn)
2645 /* Every address operand can be reloaded to fit. */
2646 && strict < 0)
2647 win = 1;
2648 /* Cater to architectures like IA-64 that define extra memory
2649 constraints without using define_memory_constraint. */
2650 else if (reload_in_progress
2651 && REG_P (op)
2652 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2653 && reg_renumber[REGNO (op)] < 0
2654 && reg_equiv_mem (REGNO (op)) != 0
2655 && constraint_satisfied_p
2656 (reg_equiv_mem (REGNO (op)), cn))
2657 win = 1;
2658 break;
2661 while (p += len, c);
2663 constraints[opno] = p;
2664 /* If this operand did not win somehow,
2665 this alternative loses. */
2666 if (! win)
2667 lose = 1;
2669 /* This alternative won; the operands are ok.
2670 Change whichever operands this alternative says to change. */
2671 if (! lose)
2673 int opno, eopno;
2675 /* See if any earlyclobber operand conflicts with some other
2676 operand. */
2678 if (strict > 0 && seen_earlyclobber_at >= 0)
2679 for (eopno = seen_earlyclobber_at;
2680 eopno < recog_data.n_operands;
2681 eopno++)
2682 /* Ignore earlyclobber operands now in memory,
2683 because we would often report failure when we have
2684 two memory operands, one of which was formerly a REG. */
2685 if (earlyclobber[eopno]
2686 && REG_P (recog_data.operand[eopno]))
2687 for (opno = 0; opno < recog_data.n_operands; opno++)
2688 if ((MEM_P (recog_data.operand[opno])
2689 || recog_data.operand_type[opno] != OP_OUT)
2690 && opno != eopno
2691 /* Ignore things like match_operator operands. */
2692 && *recog_data.constraints[opno] != 0
2693 && ! (matching_operands[opno] == eopno
2694 && operands_match_p (recog_data.operand[opno],
2695 recog_data.operand[eopno]))
2696 && ! safe_from_earlyclobber (recog_data.operand[opno],
2697 recog_data.operand[eopno]))
2698 lose = 1;
2700 if (! lose)
2702 while (--funny_match_index >= 0)
2704 recog_data.operand[funny_match[funny_match_index].other]
2705 = recog_data.operand[funny_match[funny_match_index].this_op];
2708 #ifdef AUTO_INC_DEC
2709 /* For operands without < or > constraints reject side-effects. */
2710 if (recog_data.is_asm)
2712 for (opno = 0; opno < recog_data.n_operands; opno++)
2713 if (MEM_P (recog_data.operand[opno]))
2714 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2716 case PRE_INC:
2717 case POST_INC:
2718 case PRE_DEC:
2719 case POST_DEC:
2720 case PRE_MODIFY:
2721 case POST_MODIFY:
2722 if (strchr (recog_data.constraints[opno], '<') == NULL
2723 && strchr (recog_data.constraints[opno], '>')
2724 == NULL)
2725 return 0;
2726 break;
2727 default:
2728 break;
2731 #endif
2732 return 1;
2736 which_alternative++;
2738 while (which_alternative < recog_data.n_alternatives);
2740 which_alternative = -1;
2741 /* If we are about to reject this, but we are not to test strictly,
2742 try a very loose test. Only return failure if it fails also. */
2743 if (strict == 0)
2744 return constrain_operands (-1);
2745 else
2746 return 0;
2749 /* Return true iff OPERAND (assumed to be a REG rtx)
2750 is a hard reg in class CLASS when its regno is offset by OFFSET
2751 and changed to mode MODE.
2752 If REG occupies multiple hard regs, all of them must be in CLASS. */
2754 bool
2755 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2756 enum machine_mode mode)
2758 unsigned int regno = REGNO (operand);
2760 if (cl == NO_REGS)
2761 return false;
2763 /* Regno must not be a pseudo register. Offset may be negative. */
2764 return (HARD_REGISTER_NUM_P (regno)
2765 && HARD_REGISTER_NUM_P (regno + offset)
2766 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2767 regno + offset));
2770 /* Split single instruction. Helper function for split_all_insns and
2771 split_all_insns_noflow. Return last insn in the sequence if successful,
2772 or NULL if unsuccessful. */
2774 static rtx
2775 split_insn (rtx insn)
2777 /* Split insns here to get max fine-grain parallelism. */
2778 rtx first = PREV_INSN (insn);
2779 rtx last = try_split (PATTERN (insn), insn, 1);
2780 rtx insn_set, last_set, note;
2782 if (last == insn)
2783 return NULL_RTX;
2785 /* If the original instruction was a single set that was known to be
2786 equivalent to a constant, see if we can say the same about the last
2787 instruction in the split sequence. The two instructions must set
2788 the same destination. */
2789 insn_set = single_set (insn);
2790 if (insn_set)
2792 last_set = single_set (last);
2793 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2795 note = find_reg_equal_equiv_note (insn);
2796 if (note && CONSTANT_P (XEXP (note, 0)))
2797 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2798 else if (CONSTANT_P (SET_SRC (insn_set)))
2799 set_unique_reg_note (last, REG_EQUAL,
2800 copy_rtx (SET_SRC (insn_set)));
2804 /* try_split returns the NOTE that INSN became. */
2805 SET_INSN_DELETED (insn);
2807 /* ??? Coddle to md files that generate subregs in post-reload
2808 splitters instead of computing the proper hard register. */
2809 if (reload_completed && first != last)
2811 first = NEXT_INSN (first);
2812 for (;;)
2814 if (INSN_P (first))
2815 cleanup_subreg_operands (first);
2816 if (first == last)
2817 break;
2818 first = NEXT_INSN (first);
2822 return last;
2825 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2827 void
2828 split_all_insns (void)
2830 sbitmap blocks;
2831 bool changed;
2832 basic_block bb;
2834 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
2835 bitmap_clear (blocks);
2836 changed = false;
2838 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2840 rtx insn, next;
2841 bool finish = false;
2843 rtl_profile_for_bb (bb);
2844 for (insn = BB_HEAD (bb); !finish ; insn = next)
2846 /* Can't use `next_real_insn' because that might go across
2847 CODE_LABELS and short-out basic blocks. */
2848 next = NEXT_INSN (insn);
2849 finish = (insn == BB_END (bb));
2850 if (INSN_P (insn))
2852 rtx set = single_set (insn);
2854 /* Don't split no-op move insns. These should silently
2855 disappear later in final. Splitting such insns would
2856 break the code that handles LIBCALL blocks. */
2857 if (set && set_noop_p (set))
2859 /* Nops get in the way while scheduling, so delete them
2860 now if register allocation has already been done. It
2861 is too risky to try to do this before register
2862 allocation, and there are unlikely to be very many
2863 nops then anyways. */
2864 if (reload_completed)
2865 delete_insn_and_edges (insn);
2867 else
2869 if (split_insn (insn))
2871 bitmap_set_bit (blocks, bb->index);
2872 changed = true;
2879 default_rtl_profile ();
2880 if (changed)
2881 find_many_sub_basic_blocks (blocks);
2883 #ifdef ENABLE_CHECKING
2884 verify_flow_info ();
2885 #endif
2887 sbitmap_free (blocks);
2890 /* Same as split_all_insns, but do not expect CFG to be available.
2891 Used by machine dependent reorg passes. */
2893 unsigned int
2894 split_all_insns_noflow (void)
2896 rtx next, insn;
2898 for (insn = get_insns (); insn; insn = next)
2900 next = NEXT_INSN (insn);
2901 if (INSN_P (insn))
2903 /* Don't split no-op move insns. These should silently
2904 disappear later in final. Splitting such insns would
2905 break the code that handles LIBCALL blocks. */
2906 rtx set = single_set (insn);
2907 if (set && set_noop_p (set))
2909 /* Nops get in the way while scheduling, so delete them
2910 now if register allocation has already been done. It
2911 is too risky to try to do this before register
2912 allocation, and there are unlikely to be very many
2913 nops then anyways.
2915 ??? Should we use delete_insn when the CFG isn't valid? */
2916 if (reload_completed)
2917 delete_insn_and_edges (insn);
2919 else
2920 split_insn (insn);
2923 return 0;
2926 #ifdef HAVE_peephole2
2927 struct peep2_insn_data
2929 rtx insn;
2930 regset live_before;
2933 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2934 static int peep2_current;
2936 static bool peep2_do_rebuild_jump_labels;
2937 static bool peep2_do_cleanup_cfg;
2939 /* The number of instructions available to match a peep2. */
2940 int peep2_current_count;
2942 /* A non-insn marker indicating the last insn of the block.
2943 The live_before regset for this element is correct, indicating
2944 DF_LIVE_OUT for the block. */
2945 #define PEEP2_EOB pc_rtx
2947 /* Wrap N to fit into the peep2_insn_data buffer. */
2949 static int
2950 peep2_buf_position (int n)
2952 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2953 n -= MAX_INSNS_PER_PEEP2 + 1;
2954 return n;
2957 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2958 does not exist. Used by the recognizer to find the next insn to match
2959 in a multi-insn pattern. */
2962 peep2_next_insn (int n)
2964 gcc_assert (n <= peep2_current_count);
2966 n = peep2_buf_position (peep2_current + n);
2968 return peep2_insn_data[n].insn;
2971 /* Return true if REGNO is dead before the Nth non-note insn
2972 after `current'. */
2975 peep2_regno_dead_p (int ofs, int regno)
2977 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2979 ofs = peep2_buf_position (peep2_current + ofs);
2981 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2983 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
2986 /* Similarly for a REG. */
2989 peep2_reg_dead_p (int ofs, rtx reg)
2991 int regno, n;
2993 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2995 ofs = peep2_buf_position (peep2_current + ofs);
2997 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2999 regno = REGNO (reg);
3000 n = hard_regno_nregs[regno][GET_MODE (reg)];
3001 while (--n >= 0)
3002 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3003 return 0;
3004 return 1;
3007 /* Regno offset to be used in the register search. */
3008 static int search_ofs;
3010 /* Try to find a hard register of mode MODE, matching the register class in
3011 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3012 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3013 in which case the only condition is that the register must be available
3014 before CURRENT_INSN.
3015 Registers that already have bits set in REG_SET will not be considered.
3017 If an appropriate register is available, it will be returned and the
3018 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3019 returned. */
3022 peep2_find_free_register (int from, int to, const char *class_str,
3023 enum machine_mode mode, HARD_REG_SET *reg_set)
3025 enum reg_class cl;
3026 HARD_REG_SET live;
3027 df_ref def;
3028 int i;
3030 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3031 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3033 from = peep2_buf_position (peep2_current + from);
3034 to = peep2_buf_position (peep2_current + to);
3036 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3037 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3039 while (from != to)
3041 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3043 /* Don't use registers set or clobbered by the insn. */
3044 FOR_EACH_INSN_DEF (def, peep2_insn_data[from].insn)
3045 SET_HARD_REG_BIT (live, DF_REF_REGNO (def));
3047 from = peep2_buf_position (from + 1);
3050 cl = reg_class_for_constraint (lookup_constraint (class_str));
3052 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3054 int raw_regno, regno, success, j;
3056 /* Distribute the free registers as much as possible. */
3057 raw_regno = search_ofs + i;
3058 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3059 raw_regno -= FIRST_PSEUDO_REGISTER;
3060 #ifdef REG_ALLOC_ORDER
3061 regno = reg_alloc_order[raw_regno];
3062 #else
3063 regno = raw_regno;
3064 #endif
3066 /* Can it support the mode we need? */
3067 if (! HARD_REGNO_MODE_OK (regno, mode))
3068 continue;
3070 success = 1;
3071 for (j = 0; success && j < hard_regno_nregs[regno][mode]; j++)
3073 /* Don't allocate fixed registers. */
3074 if (fixed_regs[regno + j])
3076 success = 0;
3077 break;
3079 /* Don't allocate global registers. */
3080 if (global_regs[regno + j])
3082 success = 0;
3083 break;
3085 /* Make sure the register is of the right class. */
3086 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3088 success = 0;
3089 break;
3091 /* And that we don't create an extra save/restore. */
3092 if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
3094 success = 0;
3095 break;
3098 if (! targetm.hard_regno_scratch_ok (regno + j))
3100 success = 0;
3101 break;
3104 /* And we don't clobber traceback for noreturn functions. */
3105 if ((regno + j == FRAME_POINTER_REGNUM
3106 || regno + j == HARD_FRAME_POINTER_REGNUM)
3107 && (! reload_completed || frame_pointer_needed))
3109 success = 0;
3110 break;
3113 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3114 || TEST_HARD_REG_BIT (live, regno + j))
3116 success = 0;
3117 break;
3121 if (success)
3123 add_to_hard_reg_set (reg_set, mode, regno);
3125 /* Start the next search with the next register. */
3126 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3127 raw_regno = 0;
3128 search_ofs = raw_regno;
3130 return gen_rtx_REG (mode, regno);
3134 search_ofs = 0;
3135 return NULL_RTX;
3138 /* Forget all currently tracked instructions, only remember current
3139 LIVE regset. */
3141 static void
3142 peep2_reinit_state (regset live)
3144 int i;
3146 /* Indicate that all slots except the last holds invalid data. */
3147 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3148 peep2_insn_data[i].insn = NULL_RTX;
3149 peep2_current_count = 0;
3151 /* Indicate that the last slot contains live_after data. */
3152 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3153 peep2_current = MAX_INSNS_PER_PEEP2;
3155 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3158 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3159 starting at INSN. Perform the replacement, removing the old insns and
3160 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3161 if the replacement is rejected. */
3163 static rtx
3164 peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
3166 int i;
3167 rtx last, eh_note, as_note, before_try, x;
3168 rtx old_insn, new_insn;
3169 bool was_call = false;
3171 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3172 match more than one insn, or to be split into more than one insn. */
3173 old_insn = peep2_insn_data[peep2_current].insn;
3174 if (RTX_FRAME_RELATED_P (old_insn))
3176 bool any_note = false;
3177 rtx note;
3179 if (match_len != 0)
3180 return NULL;
3182 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3183 may be in the stream for the purpose of register allocation. */
3184 if (active_insn_p (attempt))
3185 new_insn = attempt;
3186 else
3187 new_insn = next_active_insn (attempt);
3188 if (next_active_insn (new_insn))
3189 return NULL;
3191 /* We have a 1-1 replacement. Copy over any frame-related info. */
3192 RTX_FRAME_RELATED_P (new_insn) = 1;
3194 /* Allow the backend to fill in a note during the split. */
3195 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3196 switch (REG_NOTE_KIND (note))
3198 case REG_FRAME_RELATED_EXPR:
3199 case REG_CFA_DEF_CFA:
3200 case REG_CFA_ADJUST_CFA:
3201 case REG_CFA_OFFSET:
3202 case REG_CFA_REGISTER:
3203 case REG_CFA_EXPRESSION:
3204 case REG_CFA_RESTORE:
3205 case REG_CFA_SET_VDRAP:
3206 any_note = true;
3207 break;
3208 default:
3209 break;
3212 /* If the backend didn't supply a note, copy one over. */
3213 if (!any_note)
3214 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3215 switch (REG_NOTE_KIND (note))
3217 case REG_FRAME_RELATED_EXPR:
3218 case REG_CFA_DEF_CFA:
3219 case REG_CFA_ADJUST_CFA:
3220 case REG_CFA_OFFSET:
3221 case REG_CFA_REGISTER:
3222 case REG_CFA_EXPRESSION:
3223 case REG_CFA_RESTORE:
3224 case REG_CFA_SET_VDRAP:
3225 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3226 any_note = true;
3227 break;
3228 default:
3229 break;
3232 /* If there still isn't a note, make sure the unwind info sees the
3233 same expression as before the split. */
3234 if (!any_note)
3236 rtx old_set, new_set;
3238 /* The old insn had better have been simple, or annotated. */
3239 old_set = single_set (old_insn);
3240 gcc_assert (old_set != NULL);
3242 new_set = single_set (new_insn);
3243 if (!new_set || !rtx_equal_p (new_set, old_set))
3244 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3247 /* Copy prologue/epilogue status. This is required in order to keep
3248 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3249 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3252 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3253 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3254 cfg-related call notes. */
3255 for (i = 0; i <= match_len; ++i)
3257 int j;
3258 rtx note;
3260 j = peep2_buf_position (peep2_current + i);
3261 old_insn = peep2_insn_data[j].insn;
3262 if (!CALL_P (old_insn))
3263 continue;
3264 was_call = true;
3266 new_insn = attempt;
3267 while (new_insn != NULL_RTX)
3269 if (CALL_P (new_insn))
3270 break;
3271 new_insn = NEXT_INSN (new_insn);
3274 gcc_assert (new_insn != NULL_RTX);
3276 CALL_INSN_FUNCTION_USAGE (new_insn)
3277 = CALL_INSN_FUNCTION_USAGE (old_insn);
3278 SIBLING_CALL_P (new_insn) = SIBLING_CALL_P (old_insn);
3280 for (note = REG_NOTES (old_insn);
3281 note;
3282 note = XEXP (note, 1))
3283 switch (REG_NOTE_KIND (note))
3285 case REG_NORETURN:
3286 case REG_SETJMP:
3287 case REG_TM:
3288 add_reg_note (new_insn, REG_NOTE_KIND (note),
3289 XEXP (note, 0));
3290 break;
3291 default:
3292 /* Discard all other reg notes. */
3293 break;
3296 /* Croak if there is another call in the sequence. */
3297 while (++i <= match_len)
3299 j = peep2_buf_position (peep2_current + i);
3300 old_insn = peep2_insn_data[j].insn;
3301 gcc_assert (!CALL_P (old_insn));
3303 break;
3306 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3307 move those notes over to the new sequence. */
3308 as_note = NULL;
3309 for (i = match_len; i >= 0; --i)
3311 int j = peep2_buf_position (peep2_current + i);
3312 old_insn = peep2_insn_data[j].insn;
3314 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3315 if (as_note)
3316 break;
3319 i = peep2_buf_position (peep2_current + match_len);
3320 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3322 /* Replace the old sequence with the new. */
3323 last = emit_insn_after_setloc (attempt,
3324 peep2_insn_data[i].insn,
3325 INSN_LOCATION (peep2_insn_data[i].insn));
3326 before_try = PREV_INSN (insn);
3327 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3329 /* Re-insert the EH_REGION notes. */
3330 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3332 edge eh_edge;
3333 edge_iterator ei;
3335 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3336 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3337 break;
3339 if (eh_note)
3340 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3342 if (eh_edge)
3343 for (x = last; x != before_try; x = PREV_INSN (x))
3344 if (x != BB_END (bb)
3345 && (can_throw_internal (x)
3346 || can_nonlocal_goto (x)))
3348 edge nfte, nehe;
3349 int flags;
3351 nfte = split_block (bb, x);
3352 flags = (eh_edge->flags
3353 & (EDGE_EH | EDGE_ABNORMAL));
3354 if (CALL_P (x))
3355 flags |= EDGE_ABNORMAL_CALL;
3356 nehe = make_edge (nfte->src, eh_edge->dest,
3357 flags);
3359 nehe->probability = eh_edge->probability;
3360 nfte->probability
3361 = REG_BR_PROB_BASE - nehe->probability;
3363 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3364 bb = nfte->src;
3365 eh_edge = nehe;
3368 /* Converting possibly trapping insn to non-trapping is
3369 possible. Zap dummy outgoing edges. */
3370 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3373 /* Re-insert the ARGS_SIZE notes. */
3374 if (as_note)
3375 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3377 /* If we generated a jump instruction, it won't have
3378 JUMP_LABEL set. Recompute after we're done. */
3379 for (x = last; x != before_try; x = PREV_INSN (x))
3380 if (JUMP_P (x))
3382 peep2_do_rebuild_jump_labels = true;
3383 break;
3386 return last;
3389 /* After performing a replacement in basic block BB, fix up the life
3390 information in our buffer. LAST is the last of the insns that we
3391 emitted as a replacement. PREV is the insn before the start of
3392 the replacement. MATCH_LEN is the number of instructions that were
3393 matched, and which now need to be replaced in the buffer. */
3395 static void
3396 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3398 int i = peep2_buf_position (peep2_current + match_len + 1);
3399 rtx x;
3400 regset_head live;
3402 INIT_REG_SET (&live);
3403 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3405 gcc_assert (peep2_current_count >= match_len + 1);
3406 peep2_current_count -= match_len + 1;
3408 x = last;
3411 if (INSN_P (x))
3413 df_insn_rescan (x);
3414 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3416 peep2_current_count++;
3417 if (--i < 0)
3418 i = MAX_INSNS_PER_PEEP2;
3419 peep2_insn_data[i].insn = x;
3420 df_simulate_one_insn_backwards (bb, x, &live);
3421 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3424 x = PREV_INSN (x);
3426 while (x != prev);
3427 CLEAR_REG_SET (&live);
3429 peep2_current = i;
3432 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3433 Return true if we added it, false otherwise. The caller will try to match
3434 peepholes against the buffer if we return false; otherwise it will try to
3435 add more instructions to the buffer. */
3437 static bool
3438 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3440 int pos;
3442 /* Once we have filled the maximum number of insns the buffer can hold,
3443 allow the caller to match the insns against peepholes. We wait until
3444 the buffer is full in case the target has similar peepholes of different
3445 length; we always want to match the longest if possible. */
3446 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3447 return false;
3449 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3450 any other pattern, lest it change the semantics of the frame info. */
3451 if (RTX_FRAME_RELATED_P (insn))
3453 /* Let the buffer drain first. */
3454 if (peep2_current_count > 0)
3455 return false;
3456 /* Now the insn will be the only thing in the buffer. */
3459 pos = peep2_buf_position (peep2_current + peep2_current_count);
3460 peep2_insn_data[pos].insn = insn;
3461 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3462 peep2_current_count++;
3464 df_simulate_one_insn_forwards (bb, insn, live);
3465 return true;
3468 /* Perform the peephole2 optimization pass. */
3470 static void
3471 peephole2_optimize (void)
3473 rtx insn;
3474 bitmap live;
3475 int i;
3476 basic_block bb;
3478 peep2_do_cleanup_cfg = false;
3479 peep2_do_rebuild_jump_labels = false;
3481 df_set_flags (DF_LR_RUN_DCE);
3482 df_note_add_problem ();
3483 df_analyze ();
3485 /* Initialize the regsets we're going to use. */
3486 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3487 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3488 search_ofs = 0;
3489 live = BITMAP_ALLOC (&reg_obstack);
3491 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3493 bool past_end = false;
3494 int pos;
3496 rtl_profile_for_bb (bb);
3498 /* Start up propagation. */
3499 bitmap_copy (live, DF_LR_IN (bb));
3500 df_simulate_initialize_forwards (bb, live);
3501 peep2_reinit_state (live);
3503 insn = BB_HEAD (bb);
3504 for (;;)
3506 rtx attempt, head;
3507 int match_len;
3509 if (!past_end && !NONDEBUG_INSN_P (insn))
3511 next_insn:
3512 insn = NEXT_INSN (insn);
3513 if (insn == NEXT_INSN (BB_END (bb)))
3514 past_end = true;
3515 continue;
3517 if (!past_end && peep2_fill_buffer (bb, insn, live))
3518 goto next_insn;
3520 /* If we did not fill an empty buffer, it signals the end of the
3521 block. */
3522 if (peep2_current_count == 0)
3523 break;
3525 /* The buffer filled to the current maximum, so try to match. */
3527 pos = peep2_buf_position (peep2_current + peep2_current_count);
3528 peep2_insn_data[pos].insn = PEEP2_EOB;
3529 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3531 /* Match the peephole. */
3532 head = peep2_insn_data[peep2_current].insn;
3533 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3534 if (attempt != NULL)
3536 rtx last = peep2_attempt (bb, head, match_len, attempt);
3537 if (last)
3539 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3540 continue;
3544 /* No match: advance the buffer by one insn. */
3545 peep2_current = peep2_buf_position (peep2_current + 1);
3546 peep2_current_count--;
3550 default_rtl_profile ();
3551 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3552 BITMAP_FREE (peep2_insn_data[i].live_before);
3553 BITMAP_FREE (live);
3554 if (peep2_do_rebuild_jump_labels)
3555 rebuild_jump_labels (get_insns ());
3557 #endif /* HAVE_peephole2 */
3559 /* Common predicates for use with define_bypass. */
3561 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3562 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3563 must be either a single_set or a PARALLEL with SETs inside. */
3566 store_data_bypass_p (rtx out_insn, rtx in_insn)
3568 rtx out_set, in_set;
3569 rtx out_pat, in_pat;
3570 rtx out_exp, in_exp;
3571 int i, j;
3573 in_set = single_set (in_insn);
3574 if (in_set)
3576 if (!MEM_P (SET_DEST (in_set)))
3577 return false;
3579 out_set = single_set (out_insn);
3580 if (out_set)
3582 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3583 return false;
3585 else
3587 out_pat = PATTERN (out_insn);
3589 if (GET_CODE (out_pat) != PARALLEL)
3590 return false;
3592 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3594 out_exp = XVECEXP (out_pat, 0, i);
3596 if (GET_CODE (out_exp) == CLOBBER)
3597 continue;
3599 gcc_assert (GET_CODE (out_exp) == SET);
3601 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3602 return false;
3606 else
3608 in_pat = PATTERN (in_insn);
3609 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3611 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3613 in_exp = XVECEXP (in_pat, 0, i);
3615 if (GET_CODE (in_exp) == CLOBBER)
3616 continue;
3618 gcc_assert (GET_CODE (in_exp) == SET);
3620 if (!MEM_P (SET_DEST (in_exp)))
3621 return false;
3623 out_set = single_set (out_insn);
3624 if (out_set)
3626 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3627 return false;
3629 else
3631 out_pat = PATTERN (out_insn);
3632 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3634 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3636 out_exp = XVECEXP (out_pat, 0, j);
3638 if (GET_CODE (out_exp) == CLOBBER)
3639 continue;
3641 gcc_assert (GET_CODE (out_exp) == SET);
3643 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3644 return false;
3650 return true;
3653 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3654 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3655 or multiple set; IN_INSN should be single_set for truth, but for convenience
3656 of insn categorization may be any JUMP or CALL insn. */
3659 if_test_bypass_p (rtx out_insn, rtx in_insn)
3661 rtx out_set, in_set;
3663 in_set = single_set (in_insn);
3664 if (! in_set)
3666 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3667 return false;
3670 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3671 return false;
3672 in_set = SET_SRC (in_set);
3674 out_set = single_set (out_insn);
3675 if (out_set)
3677 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3678 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3679 return false;
3681 else
3683 rtx out_pat;
3684 int i;
3686 out_pat = PATTERN (out_insn);
3687 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3689 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3691 rtx exp = XVECEXP (out_pat, 0, i);
3693 if (GET_CODE (exp) == CLOBBER)
3694 continue;
3696 gcc_assert (GET_CODE (exp) == SET);
3698 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3699 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3700 return false;
3704 return true;
3707 static unsigned int
3708 rest_of_handle_peephole2 (void)
3710 #ifdef HAVE_peephole2
3711 peephole2_optimize ();
3712 #endif
3713 return 0;
3716 namespace {
3718 const pass_data pass_data_peephole2 =
3720 RTL_PASS, /* type */
3721 "peephole2", /* name */
3722 OPTGROUP_NONE, /* optinfo_flags */
3723 TV_PEEPHOLE2, /* tv_id */
3724 0, /* properties_required */
3725 0, /* properties_provided */
3726 0, /* properties_destroyed */
3727 0, /* todo_flags_start */
3728 TODO_df_finish, /* todo_flags_finish */
3731 class pass_peephole2 : public rtl_opt_pass
3733 public:
3734 pass_peephole2 (gcc::context *ctxt)
3735 : rtl_opt_pass (pass_data_peephole2, ctxt)
3738 /* opt_pass methods: */
3739 /* The epiphany backend creates a second instance of this pass, so we need
3740 a clone method. */
3741 opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
3742 virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
3743 virtual unsigned int execute (function *)
3745 return rest_of_handle_peephole2 ();
3748 }; // class pass_peephole2
3750 } // anon namespace
3752 rtl_opt_pass *
3753 make_pass_peephole2 (gcc::context *ctxt)
3755 return new pass_peephole2 (ctxt);
3758 namespace {
3760 const pass_data pass_data_split_all_insns =
3762 RTL_PASS, /* type */
3763 "split1", /* name */
3764 OPTGROUP_NONE, /* optinfo_flags */
3765 TV_NONE, /* tv_id */
3766 0, /* properties_required */
3767 0, /* properties_provided */
3768 0, /* properties_destroyed */
3769 0, /* todo_flags_start */
3770 0, /* todo_flags_finish */
3773 class pass_split_all_insns : public rtl_opt_pass
3775 public:
3776 pass_split_all_insns (gcc::context *ctxt)
3777 : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3780 /* opt_pass methods: */
3781 /* The epiphany backend creates a second instance of this pass, so
3782 we need a clone method. */
3783 opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
3784 virtual unsigned int execute (function *)
3786 split_all_insns ();
3787 return 0;
3790 }; // class pass_split_all_insns
3792 } // anon namespace
3794 rtl_opt_pass *
3795 make_pass_split_all_insns (gcc::context *ctxt)
3797 return new pass_split_all_insns (ctxt);
3800 static unsigned int
3801 rest_of_handle_split_after_reload (void)
3803 /* If optimizing, then go ahead and split insns now. */
3804 #ifndef STACK_REGS
3805 if (optimize > 0)
3806 #endif
3807 split_all_insns ();
3808 return 0;
3811 namespace {
3813 const pass_data pass_data_split_after_reload =
3815 RTL_PASS, /* type */
3816 "split2", /* name */
3817 OPTGROUP_NONE, /* optinfo_flags */
3818 TV_NONE, /* tv_id */
3819 0, /* properties_required */
3820 0, /* properties_provided */
3821 0, /* properties_destroyed */
3822 0, /* todo_flags_start */
3823 0, /* todo_flags_finish */
3826 class pass_split_after_reload : public rtl_opt_pass
3828 public:
3829 pass_split_after_reload (gcc::context *ctxt)
3830 : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3833 /* opt_pass methods: */
3834 virtual unsigned int execute (function *)
3836 return rest_of_handle_split_after_reload ();
3839 }; // class pass_split_after_reload
3841 } // anon namespace
3843 rtl_opt_pass *
3844 make_pass_split_after_reload (gcc::context *ctxt)
3846 return new pass_split_after_reload (ctxt);
3849 namespace {
3851 const pass_data pass_data_split_before_regstack =
3853 RTL_PASS, /* type */
3854 "split3", /* name */
3855 OPTGROUP_NONE, /* optinfo_flags */
3856 TV_NONE, /* tv_id */
3857 0, /* properties_required */
3858 0, /* properties_provided */
3859 0, /* properties_destroyed */
3860 0, /* todo_flags_start */
3861 0, /* todo_flags_finish */
3864 class pass_split_before_regstack : public rtl_opt_pass
3866 public:
3867 pass_split_before_regstack (gcc::context *ctxt)
3868 : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
3871 /* opt_pass methods: */
3872 virtual bool gate (function *);
3873 virtual unsigned int execute (function *)
3875 split_all_insns ();
3876 return 0;
3879 }; // class pass_split_before_regstack
3881 bool
3882 pass_split_before_regstack::gate (function *)
3884 #if HAVE_ATTR_length && defined (STACK_REGS)
3885 /* If flow2 creates new instructions which need splitting
3886 and scheduling after reload is not done, they might not be
3887 split until final which doesn't allow splitting
3888 if HAVE_ATTR_length. */
3889 # ifdef INSN_SCHEDULING
3890 return (optimize && !flag_schedule_insns_after_reload);
3891 # else
3892 return (optimize);
3893 # endif
3894 #else
3895 return 0;
3896 #endif
3899 } // anon namespace
3901 rtl_opt_pass *
3902 make_pass_split_before_regstack (gcc::context *ctxt)
3904 return new pass_split_before_regstack (ctxt);
3907 static unsigned int
3908 rest_of_handle_split_before_sched2 (void)
3910 #ifdef INSN_SCHEDULING
3911 split_all_insns ();
3912 #endif
3913 return 0;
3916 namespace {
3918 const pass_data pass_data_split_before_sched2 =
3920 RTL_PASS, /* type */
3921 "split4", /* name */
3922 OPTGROUP_NONE, /* optinfo_flags */
3923 TV_NONE, /* tv_id */
3924 0, /* properties_required */
3925 0, /* properties_provided */
3926 0, /* properties_destroyed */
3927 0, /* todo_flags_start */
3928 0, /* todo_flags_finish */
3931 class pass_split_before_sched2 : public rtl_opt_pass
3933 public:
3934 pass_split_before_sched2 (gcc::context *ctxt)
3935 : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
3938 /* opt_pass methods: */
3939 virtual bool gate (function *)
3941 #ifdef INSN_SCHEDULING
3942 return optimize > 0 && flag_schedule_insns_after_reload;
3943 #else
3944 return false;
3945 #endif
3948 virtual unsigned int execute (function *)
3950 return rest_of_handle_split_before_sched2 ();
3953 }; // class pass_split_before_sched2
3955 } // anon namespace
3957 rtl_opt_pass *
3958 make_pass_split_before_sched2 (gcc::context *ctxt)
3960 return new pass_split_before_sched2 (ctxt);
3963 namespace {
3965 const pass_data pass_data_split_for_shorten_branches =
3967 RTL_PASS, /* type */
3968 "split5", /* name */
3969 OPTGROUP_NONE, /* optinfo_flags */
3970 TV_NONE, /* tv_id */
3971 0, /* properties_required */
3972 0, /* properties_provided */
3973 0, /* properties_destroyed */
3974 0, /* todo_flags_start */
3975 0, /* todo_flags_finish */
3978 class pass_split_for_shorten_branches : public rtl_opt_pass
3980 public:
3981 pass_split_for_shorten_branches (gcc::context *ctxt)
3982 : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
3985 /* opt_pass methods: */
3986 virtual bool gate (function *)
3988 /* The placement of the splitting that we do for shorten_branches
3989 depends on whether regstack is used by the target or not. */
3990 #if HAVE_ATTR_length && !defined (STACK_REGS)
3991 return true;
3992 #else
3993 return false;
3994 #endif
3997 virtual unsigned int execute (function *)
3999 return split_all_insns_noflow ();
4002 }; // class pass_split_for_shorten_branches
4004 } // anon namespace
4006 rtl_opt_pass *
4007 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4009 return new pass_split_for_shorten_branches (ctxt);
4012 /* (Re)initialize the target information after a change in target. */
4014 void
4015 recog_init ()
4017 /* The information is zero-initialized, so we don't need to do anything
4018 first time round. */
4019 if (!this_target_recog->x_initialized)
4021 this_target_recog->x_initialized = true;
4022 return;
4024 memset (this_target_recog->x_enabled_alternatives, 0,
4025 sizeof (this_target_recog->x_enabled_alternatives));
4026 for (int i = 0; i < LAST_INSN_CODE; ++i)
4027 if (this_target_recog->x_op_alt[i])
4029 free (this_target_recog->x_op_alt[i]);
4030 this_target_recog->x_op_alt[i] = 0;