1 /* Vector API for GNU compiler.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 /* FIXME - When compiling some of the gen* binaries, we cannot enable GC
26 support because the headers generated by gengtype are still not
27 present. In particular, the header file gtype-desc.h is missing,
28 so compilation may fail if we try to include ggc.h.
30 Since we use some of those declarations, we need to provide them
31 (even if the GC-based templates are not used). This is not a
32 problem because the code that runs before gengtype is built will
33 never need to use GC vectors. But it does force us to declare
34 these functions more than once. */
36 #define VEC_GC_ENABLED 0
38 #define VEC_GC_ENABLED 1
39 #endif // GENERATOR_FILE
41 #include "statistics.h" // For CXX_MEM_STAT_INFO.
47 /* Even if we think that GC is not enabled, the test that sets it is
48 weak. There are files compiled with -DGENERATOR_FILE that already
49 include ggc.h. We only need to provide these definitions if ggc.h
50 has not been included. Sigh. */
52 extern void ggc_free (void *);
53 extern size_t ggc_round_alloc_size (size_t requested_size
);
54 extern void *ggc_realloc (void *, size_t MEM_STAT_DECL
);
56 #endif // VEC_GC_ENABLED
58 /* Templated vector type and associated interfaces.
60 The interface functions are typesafe and use inline functions,
61 sometimes backed by out-of-line generic functions. The vectors are
62 designed to interoperate with the GTY machinery.
64 There are both 'index' and 'iterate' accessors. The index accessor
65 is implemented by operator[]. The iterator returns a boolean
66 iteration condition and updates the iteration variable passed by
67 reference. Because the iterator will be inlined, the address-of
68 can be optimized away.
70 Each operation that increases the number of active elements is
71 available in 'quick' and 'safe' variants. The former presumes that
72 there is sufficient allocated space for the operation to succeed
73 (it dies if there is not). The latter will reallocate the
74 vector, if needed. Reallocation causes an exponential increase in
75 vector size. If you know you will be adding N elements, it would
76 be more efficient to use the reserve operation before adding the
77 elements with the 'quick' operation. This will ensure there are at
78 least as many elements as you ask for, it will exponentially
79 increase if there are too few spare slots. If you want reserve a
80 specific number of slots, but do not want the exponential increase
81 (for instance, you know this is the last allocation), use the
82 reserve_exact operation. You can also create a vector of a
83 specific size from the get go.
85 You should prefer the push and pop operations, as they append and
86 remove from the end of the vector. If you need to remove several
87 items in one go, use the truncate operation. The insert and remove
88 operations allow you to change elements in the middle of the
89 vector. There are two remove operations, one which preserves the
90 element ordering 'ordered_remove', and one which does not
91 'unordered_remove'. The latter function copies the end element
92 into the removed slot, rather than invoke a memmove operation. The
93 'lower_bound' function will determine where to place an item in the
94 array using insert that will maintain sorted order.
96 Vectors are template types with three arguments: the type of the
97 elements in the vector, the allocation strategy, and the physical
100 Four allocation strategies are supported:
102 - Heap: allocation is done using malloc/free. This is the
103 default allocation strategy.
105 - GC: allocation is done using ggc_alloc/ggc_free.
107 - GC atomic: same as GC with the exception that the elements
108 themselves are assumed to be of an atomic type that does
109 not need to be garbage collected. This means that marking
110 routines do not need to traverse the array marking the
111 individual elements. This increases the performance of
114 Two physical layouts are supported:
116 - Embedded: The vector is structured using the trailing array
117 idiom. The last member of the structure is an array of size
118 1. When the vector is initially allocated, a single memory
119 block is created to hold the vector's control data and the
120 array of elements. These vectors cannot grow without
121 reallocation (see discussion on embeddable vectors below).
123 - Space efficient: The vector is structured as a pointer to an
124 embedded vector. This is the default layout. It means that
125 vectors occupy a single word of storage before initial
126 allocation. Vectors are allowed to grow (the internal
127 pointer is reallocated but the main vector instance does not
130 The type, allocation and layout are specified when the vector is
133 If you need to directly manipulate a vector, then the 'address'
134 accessor will return the address of the start of the vector. Also
135 the 'space' predicate will tell you whether there is spare capacity
136 in the vector. You will not normally need to use these two functions.
138 Notes on the different layout strategies
140 * Embeddable vectors (vec<T, A, vl_embed>)
142 These vectors are suitable to be embedded in other data
143 structures so that they can be pre-allocated in a contiguous
146 Embeddable vectors are implemented using the trailing array
147 idiom, thus they are not resizeable without changing the address
148 of the vector object itself. This means you cannot have
149 variables or fields of embeddable vector type -- always use a
150 pointer to a vector. The one exception is the final field of a
151 structure, which could be a vector type.
153 You will have to use the embedded_size & embedded_init calls to
154 create such objects, and they will not be resizeable (so the
155 'safe' allocation variants are not available).
157 Properties of embeddable vectors:
159 - The whole vector and control data are allocated in a single
160 contiguous block. It uses the trailing-vector idiom, so
161 allocation must reserve enough space for all the elements
162 in the vector plus its control data.
163 - The vector cannot be re-allocated.
164 - The vector cannot grow nor shrink.
165 - No indirections needed for access/manipulation.
166 - It requires 2 words of storage (prior to vector allocation).
169 * Space efficient vector (vec<T, A, vl_ptr>)
171 These vectors can grow dynamically and are allocated together
172 with their control data. They are suited to be included in data
173 structures. Prior to initial allocation, they only take a single
176 These vectors are implemented as a pointer to embeddable vectors.
177 The semantics allow for this pointer to be NULL to represent
178 empty vectors. This way, empty vectors occupy minimal space in
179 the structure containing them.
183 - The whole vector and control data are allocated in a single
185 - The whole vector may be re-allocated.
186 - Vector data may grow and shrink.
187 - Access and manipulation requires a pointer test and
189 - It requires 1 word of storage (prior to vector allocation).
191 An example of their use would be,
194 // A space-efficient vector of tree pointers in GC memory.
195 vec<tree, va_gc, vl_ptr> v;
200 if (s->v.length ()) { we have some contents }
201 s->v.safe_push (decl); // append some decl onto the end
202 for (ix = 0; s->v.iterate (ix, &elt); ix++)
203 { do something with elt }
206 /* Support function for statistics. */
207 extern void dump_vec_loc_statistics (void);
209 /* Hashtable mapping vec addresses to descriptors. */
210 extern htab_t vec_mem_usage_hash
;
212 /* Control data for vectors. This contains the number of allocated
213 and used slots inside a vector. */
217 /* FIXME - These fields should be private, but we need to cater to
218 compilers that have stricter notions of PODness for types. */
220 /* Memory allocation support routines in vec.c. */
221 void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO
);
222 void release_overhead (void *, size_t, bool CXX_MEM_STAT_INFO
);
223 static unsigned calculate_allocation (vec_prefix
*, unsigned, bool);
224 static unsigned calculate_allocation_1 (unsigned, unsigned);
226 /* Note that vec_prefix should be a base class for vec, but we use
227 offsetof() on vector fields of tree structures (e.g.,
228 tree_binfo::base_binfos), and offsetof only supports base types.
230 To compensate, we make vec_prefix a field inside vec and make
231 vec a friend class of vec_prefix so it can access its fields. */
232 template <typename
, typename
, typename
> friend struct vec
;
234 /* The allocator types also need access to our internals. */
236 friend struct va_gc_atomic
;
237 friend struct va_heap
;
239 unsigned m_alloc
: 31;
240 unsigned m_using_auto_storage
: 1;
244 /* Calculate the number of slots to reserve a vector, making sure that
245 RESERVE slots are free. If EXACT grow exactly, otherwise grow
246 exponentially. PFX is the control data for the vector. */
249 vec_prefix::calculate_allocation (vec_prefix
*pfx
, unsigned reserve
,
253 return (pfx
? pfx
->m_num
: 0) + reserve
;
255 return MAX (4, reserve
);
256 return calculate_allocation_1 (pfx
->m_alloc
, pfx
->m_num
+ reserve
);
259 template<typename
, typename
, typename
> struct vec
;
261 /* Valid vector layouts
263 vl_embed - Embeddable vector that uses the trailing array idiom.
264 vl_ptr - Space efficient vector that uses a pointer to an
265 embeddable vector. */
270 /* Types of supported allocations
272 va_heap - Allocation uses malloc/free.
273 va_gc - Allocation uses ggc_alloc.
274 va_gc_atomic - Same as GC, but individual elements of the array
275 do not need to be marked during collection. */
277 /* Allocator type for heap vectors. */
280 /* Heap vectors are frequently regular instances, so use the vl_ptr
282 typedef vl_ptr default_layout
;
285 static void reserve (vec
<T
, va_heap
, vl_embed
> *&, unsigned, bool
289 static void release (vec
<T
, va_heap
, vl_embed
> *&);
293 /* Allocator for heap memory. Ensure there are at least RESERVE free
294 slots in V. If EXACT is true, grow exactly, else grow
295 exponentially. As a special case, if the vector had not been
296 allocated and and RESERVE is 0, no vector will be created. */
300 va_heap::reserve (vec
<T
, va_heap
, vl_embed
> *&v
, unsigned reserve
, bool exact
304 = vec_prefix::calculate_allocation (v
? &v
->m_vecpfx
: 0, reserve
, exact
);
305 gcc_checking_assert (alloc
);
307 if (GATHER_STATISTICS
&& v
)
308 v
->m_vecpfx
.release_overhead (v
, v
->allocated (), false);
310 size_t size
= vec
<T
, va_heap
, vl_embed
>::embedded_size (alloc
);
311 unsigned nelem
= v
? v
->length () : 0;
312 v
= static_cast <vec
<T
, va_heap
, vl_embed
> *> (xrealloc (v
, size
));
313 v
->embedded_init (alloc
, nelem
);
315 if (GATHER_STATISTICS
)
316 v
->m_vecpfx
.register_overhead (v
, alloc
, nelem PASS_MEM_STAT
);
320 /* Free the heap space allocated for vector V. */
324 va_heap::release (vec
<T
, va_heap
, vl_embed
> *&v
)
329 if (GATHER_STATISTICS
)
330 v
->m_vecpfx
.release_overhead (v
, v
->allocated (), true);
336 /* Allocator type for GC vectors. Notice that we need the structure
337 declaration even if GC is not enabled. */
341 /* Use vl_embed as the default layout for GC vectors. Due to GTY
342 limitations, GC vectors must always be pointers, so it is more
343 efficient to use a pointer to the vl_embed layout, rather than
344 using a pointer to a pointer as would be the case with vl_ptr. */
345 typedef vl_embed default_layout
;
347 template<typename T
, typename A
>
348 static void reserve (vec
<T
, A
, vl_embed
> *&, unsigned, bool
351 template<typename T
, typename A
>
352 static void release (vec
<T
, A
, vl_embed
> *&v
);
356 /* Free GC memory used by V and reset V to NULL. */
358 template<typename T
, typename A
>
360 va_gc::release (vec
<T
, A
, vl_embed
> *&v
)
368 /* Allocator for GC memory. Ensure there are at least RESERVE free
369 slots in V. If EXACT is true, grow exactly, else grow
370 exponentially. As a special case, if the vector had not been
371 allocated and and RESERVE is 0, no vector will be created. */
373 template<typename T
, typename A
>
375 va_gc::reserve (vec
<T
, A
, vl_embed
> *&v
, unsigned reserve
, bool exact
379 = vec_prefix::calculate_allocation (v
? &v
->m_vecpfx
: 0, reserve
, exact
);
387 /* Calculate the amount of space we want. */
388 size_t size
= vec
<T
, A
, vl_embed
>::embedded_size (alloc
);
390 /* Ask the allocator how much space it will really give us. */
391 size
= ::ggc_round_alloc_size (size
);
393 /* Adjust the number of slots accordingly. */
394 size_t vec_offset
= sizeof (vec_prefix
);
395 size_t elt_size
= sizeof (T
);
396 alloc
= (size
- vec_offset
) / elt_size
;
398 /* And finally, recalculate the amount of space we ask for. */
399 size
= vec_offset
+ alloc
* elt_size
;
401 unsigned nelem
= v
? v
->length () : 0;
402 v
= static_cast <vec
<T
, A
, vl_embed
> *> (::ggc_realloc (v
, size
404 v
->embedded_init (alloc
, nelem
);
408 /* Allocator type for GC vectors. This is for vectors of types
409 atomics w.r.t. collection, so allocation and deallocation is
410 completely inherited from va_gc. */
411 struct va_gc_atomic
: va_gc
416 /* Generic vector template. Default values for A and L indicate the
417 most commonly used strategies.
419 FIXME - Ideally, they would all be vl_ptr to encourage using regular
420 instances for vectors, but the existing GTY machinery is limited
421 in that it can only deal with GC objects that are pointers
424 This means that vector operations that need to deal with
425 potentially NULL pointers, must be provided as free
426 functions (see the vec_safe_* functions above). */
428 typename A
= va_heap
,
429 typename L
= typename
A::default_layout
>
430 struct GTY((user
)) vec
434 /* Type to provide NULL values for vec<T, A, L>. This is used to
435 provide nil initializers for vec instances. Since vec must be
436 a POD, we cannot have proper ctor/dtor for it. To initialize
437 a vec instance, you can assign it the value vNULL. */
440 template <typename T
, typename A
, typename L
>
441 operator vec
<T
, A
, L
> () { return vec
<T
, A
, L
>(); }
446 /* Embeddable vector. These vectors are suitable to be embedded
447 in other data structures so that they can be pre-allocated in a
448 contiguous memory block.
450 Embeddable vectors are implemented using the trailing array idiom,
451 thus they are not resizeable without changing the address of the
452 vector object itself. This means you cannot have variables or
453 fields of embeddable vector type -- always use a pointer to a
454 vector. The one exception is the final field of a structure, which
455 could be a vector type.
457 You will have to use the embedded_size & embedded_init calls to
458 create such objects, and they will not be resizeable (so the 'safe'
459 allocation variants are not available).
463 - The whole vector and control data are allocated in a single
464 contiguous block. It uses the trailing-vector idiom, so
465 allocation must reserve enough space for all the elements
466 in the vector plus its control data.
467 - The vector cannot be re-allocated.
468 - The vector cannot grow nor shrink.
469 - No indirections needed for access/manipulation.
470 - It requires 2 words of storage (prior to vector allocation). */
472 template<typename T
, typename A
>
473 struct GTY((user
)) vec
<T
, A
, vl_embed
>
476 unsigned allocated (void) const { return m_vecpfx
.m_alloc
; }
477 unsigned length (void) const { return m_vecpfx
.m_num
; }
478 bool is_empty (void) const { return m_vecpfx
.m_num
== 0; }
479 T
*address (void) { return m_vecdata
; }
480 const T
*address (void) const { return m_vecdata
; }
481 const T
&operator[] (unsigned) const;
482 T
&operator[] (unsigned);
484 bool space (unsigned) const;
485 bool iterate (unsigned, T
*) const;
486 bool iterate (unsigned, T
**) const;
487 vec
*copy (ALONE_CXX_MEM_STAT_INFO
) const;
488 void splice (const vec
&);
489 void splice (const vec
*src
);
490 T
*quick_push (const T
&);
492 void truncate (unsigned);
493 void quick_insert (unsigned, const T
&);
494 void ordered_remove (unsigned);
495 void unordered_remove (unsigned);
496 void block_remove (unsigned, unsigned);
497 void qsort (int (*) (const void *, const void *));
498 T
*bsearch (const void *key
, int (*compar
)(const void *, const void *));
499 unsigned lower_bound (T
, bool (*)(const T
&, const T
&)) const;
500 static size_t embedded_size (unsigned);
501 void embedded_init (unsigned, unsigned = 0, unsigned = 0);
502 void quick_grow (unsigned len
);
503 void quick_grow_cleared (unsigned len
);
505 /* vec class can access our internal data and functions. */
506 template <typename
, typename
, typename
> friend struct vec
;
508 /* The allocator types also need access to our internals. */
510 friend struct va_gc_atomic
;
511 friend struct va_heap
;
513 /* FIXME - These fields should be private, but we need to cater to
514 compilers that have stricter notions of PODness for types. */
520 /* Convenience wrapper functions to use when dealing with pointers to
521 embedded vectors. Some functionality for these vectors must be
522 provided via free functions for these reasons:
524 1- The pointer may be NULL (e.g., before initial allocation).
526 2- When the vector needs to grow, it must be reallocated, so
527 the pointer will change its value.
529 Because of limitations with the current GC machinery, all vectors
530 in GC memory *must* be pointers. */
533 /* If V contains no room for NELEMS elements, return false. Otherwise,
535 template<typename T
, typename A
>
537 vec_safe_space (const vec
<T
, A
, vl_embed
> *v
, unsigned nelems
)
539 return v
? v
->space (nelems
) : nelems
== 0;
543 /* If V is NULL, return 0. Otherwise, return V->length(). */
544 template<typename T
, typename A
>
546 vec_safe_length (const vec
<T
, A
, vl_embed
> *v
)
548 return v
? v
->length () : 0;
552 /* If V is NULL, return NULL. Otherwise, return V->address(). */
553 template<typename T
, typename A
>
555 vec_safe_address (vec
<T
, A
, vl_embed
> *v
)
557 return v
? v
->address () : NULL
;
561 /* If V is NULL, return true. Otherwise, return V->is_empty(). */
562 template<typename T
, typename A
>
564 vec_safe_is_empty (vec
<T
, A
, vl_embed
> *v
)
566 return v
? v
->is_empty () : true;
570 /* If V does not have space for NELEMS elements, call
571 V->reserve(NELEMS, EXACT). */
572 template<typename T
, typename A
>
574 vec_safe_reserve (vec
<T
, A
, vl_embed
> *&v
, unsigned nelems
, bool exact
= false
577 bool extend
= nelems
? !vec_safe_space (v
, nelems
) : false;
579 A::reserve (v
, nelems
, exact PASS_MEM_STAT
);
583 template<typename T
, typename A
>
585 vec_safe_reserve_exact (vec
<T
, A
, vl_embed
> *&v
, unsigned nelems
588 return vec_safe_reserve (v
, nelems
, true PASS_MEM_STAT
);
592 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
593 is 0, V is initialized to NULL. */
595 template<typename T
, typename A
>
597 vec_alloc (vec
<T
, A
, vl_embed
> *&v
, unsigned nelems CXX_MEM_STAT_INFO
)
600 vec_safe_reserve (v
, nelems
, false PASS_MEM_STAT
);
604 /* Free the GC memory allocated by vector V and set it to NULL. */
606 template<typename T
, typename A
>
608 vec_free (vec
<T
, A
, vl_embed
> *&v
)
614 /* Grow V to length LEN. Allocate it, if necessary. */
615 template<typename T
, typename A
>
617 vec_safe_grow (vec
<T
, A
, vl_embed
> *&v
, unsigned len CXX_MEM_STAT_INFO
)
619 unsigned oldlen
= vec_safe_length (v
);
620 gcc_checking_assert (len
>= oldlen
);
621 vec_safe_reserve_exact (v
, len
- oldlen PASS_MEM_STAT
);
626 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
627 template<typename T
, typename A
>
629 vec_safe_grow_cleared (vec
<T
, A
, vl_embed
> *&v
, unsigned len CXX_MEM_STAT_INFO
)
631 unsigned oldlen
= vec_safe_length (v
);
632 vec_safe_grow (v
, len PASS_MEM_STAT
);
633 memset (&(v
->address ()[oldlen
]), 0, sizeof (T
) * (len
- oldlen
));
637 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
638 template<typename T
, typename A
>
640 vec_safe_iterate (const vec
<T
, A
, vl_embed
> *v
, unsigned ix
, T
**ptr
)
643 return v
->iterate (ix
, ptr
);
651 template<typename T
, typename A
>
653 vec_safe_iterate (const vec
<T
, A
, vl_embed
> *v
, unsigned ix
, T
*ptr
)
656 return v
->iterate (ix
, ptr
);
665 /* If V has no room for one more element, reallocate it. Then call
666 V->quick_push(OBJ). */
667 template<typename T
, typename A
>
669 vec_safe_push (vec
<T
, A
, vl_embed
> *&v
, const T
&obj CXX_MEM_STAT_INFO
)
671 vec_safe_reserve (v
, 1, false PASS_MEM_STAT
);
672 return v
->quick_push (obj
);
676 /* if V has no room for one more element, reallocate it. Then call
677 V->quick_insert(IX, OBJ). */
678 template<typename T
, typename A
>
680 vec_safe_insert (vec
<T
, A
, vl_embed
> *&v
, unsigned ix
, const T
&obj
683 vec_safe_reserve (v
, 1, false PASS_MEM_STAT
);
684 v
->quick_insert (ix
, obj
);
688 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
689 template<typename T
, typename A
>
691 vec_safe_truncate (vec
<T
, A
, vl_embed
> *v
, unsigned size
)
698 /* If SRC is not NULL, return a pointer to a copy of it. */
699 template<typename T
, typename A
>
700 inline vec
<T
, A
, vl_embed
> *
701 vec_safe_copy (vec
<T
, A
, vl_embed
> *src CXX_MEM_STAT_INFO
)
703 return src
? src
->copy (ALONE_PASS_MEM_STAT
) : NULL
;
706 /* Copy the elements from SRC to the end of DST as if by memcpy.
707 Reallocate DST, if necessary. */
708 template<typename T
, typename A
>
710 vec_safe_splice (vec
<T
, A
, vl_embed
> *&dst
, const vec
<T
, A
, vl_embed
> *src
713 unsigned src_len
= vec_safe_length (src
);
716 vec_safe_reserve_exact (dst
, vec_safe_length (dst
) + src_len
723 /* Index into vector. Return the IX'th element. IX must be in the
724 domain of the vector. */
726 template<typename T
, typename A
>
728 vec
<T
, A
, vl_embed
>::operator[] (unsigned ix
) const
730 gcc_checking_assert (ix
< m_vecpfx
.m_num
);
731 return m_vecdata
[ix
];
734 template<typename T
, typename A
>
736 vec
<T
, A
, vl_embed
>::operator[] (unsigned ix
)
738 gcc_checking_assert (ix
< m_vecpfx
.m_num
);
739 return m_vecdata
[ix
];
743 /* Get the final element of the vector, which must not be empty. */
745 template<typename T
, typename A
>
747 vec
<T
, A
, vl_embed
>::last (void)
749 gcc_checking_assert (m_vecpfx
.m_num
> 0);
750 return (*this)[m_vecpfx
.m_num
- 1];
754 /* If this vector has space for NELEMS additional entries, return
755 true. You usually only need to use this if you are doing your
756 own vector reallocation, for instance on an embedded vector. This
757 returns true in exactly the same circumstances that vec::reserve
760 template<typename T
, typename A
>
762 vec
<T
, A
, vl_embed
>::space (unsigned nelems
) const
764 return m_vecpfx
.m_alloc
- m_vecpfx
.m_num
>= nelems
;
768 /* Return iteration condition and update PTR to point to the IX'th
769 element of this vector. Use this to iterate over the elements of a
772 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
775 template<typename T
, typename A
>
777 vec
<T
, A
, vl_embed
>::iterate (unsigned ix
, T
*ptr
) const
779 if (ix
< m_vecpfx
.m_num
)
781 *ptr
= m_vecdata
[ix
];
792 /* Return iteration condition and update *PTR to point to the
793 IX'th element of this vector. Use this to iterate over the
794 elements of a vector as follows,
796 for (ix = 0; v->iterate (ix, &ptr); ix++)
799 This variant is for vectors of objects. */
801 template<typename T
, typename A
>
803 vec
<T
, A
, vl_embed
>::iterate (unsigned ix
, T
**ptr
) const
805 if (ix
< m_vecpfx
.m_num
)
807 *ptr
= CONST_CAST (T
*, &m_vecdata
[ix
]);
818 /* Return a pointer to a copy of this vector. */
820 template<typename T
, typename A
>
821 inline vec
<T
, A
, vl_embed
> *
822 vec
<T
, A
, vl_embed
>::copy (ALONE_MEM_STAT_DECL
) const
824 vec
<T
, A
, vl_embed
> *new_vec
= NULL
;
825 unsigned len
= length ();
828 vec_alloc (new_vec
, len PASS_MEM_STAT
);
829 new_vec
->embedded_init (len
, len
);
830 memcpy (new_vec
->address (), m_vecdata
, sizeof (T
) * len
);
836 /* Copy the elements from SRC to the end of this vector as if by memcpy.
837 The vector must have sufficient headroom available. */
839 template<typename T
, typename A
>
841 vec
<T
, A
, vl_embed
>::splice (const vec
<T
, A
, vl_embed
> &src
)
843 unsigned len
= src
.length ();
846 gcc_checking_assert (space (len
));
847 memcpy (address () + length (), src
.address (), len
* sizeof (T
));
848 m_vecpfx
.m_num
+= len
;
852 template<typename T
, typename A
>
854 vec
<T
, A
, vl_embed
>::splice (const vec
<T
, A
, vl_embed
> *src
)
861 /* Push OBJ (a new element) onto the end of the vector. There must be
862 sufficient space in the vector. Return a pointer to the slot
863 where OBJ was inserted. */
865 template<typename T
, typename A
>
867 vec
<T
, A
, vl_embed
>::quick_push (const T
&obj
)
869 gcc_checking_assert (space (1));
870 T
*slot
= &m_vecdata
[m_vecpfx
.m_num
++];
876 /* Pop and return the last element off the end of the vector. */
878 template<typename T
, typename A
>
880 vec
<T
, A
, vl_embed
>::pop (void)
882 gcc_checking_assert (length () > 0);
883 return m_vecdata
[--m_vecpfx
.m_num
];
887 /* Set the length of the vector to SIZE. The new length must be less
888 than or equal to the current length. This is an O(1) operation. */
890 template<typename T
, typename A
>
892 vec
<T
, A
, vl_embed
>::truncate (unsigned size
)
894 gcc_checking_assert (length () >= size
);
895 m_vecpfx
.m_num
= size
;
899 /* Insert an element, OBJ, at the IXth position of this vector. There
900 must be sufficient space. */
902 template<typename T
, typename A
>
904 vec
<T
, A
, vl_embed
>::quick_insert (unsigned ix
, const T
&obj
)
906 gcc_checking_assert (length () < allocated ());
907 gcc_checking_assert (ix
<= length ());
908 T
*slot
= &m_vecdata
[ix
];
909 memmove (slot
+ 1, slot
, (m_vecpfx
.m_num
++ - ix
) * sizeof (T
));
914 /* Remove an element from the IXth position of this vector. Ordering of
915 remaining elements is preserved. This is an O(N) operation due to
918 template<typename T
, typename A
>
920 vec
<T
, A
, vl_embed
>::ordered_remove (unsigned ix
)
922 gcc_checking_assert (ix
< length ());
923 T
*slot
= &m_vecdata
[ix
];
924 memmove (slot
, slot
+ 1, (--m_vecpfx
.m_num
- ix
) * sizeof (T
));
928 /* Remove an element from the IXth position of this vector. Ordering of
929 remaining elements is destroyed. This is an O(1) operation. */
931 template<typename T
, typename A
>
933 vec
<T
, A
, vl_embed
>::unordered_remove (unsigned ix
)
935 gcc_checking_assert (ix
< length ());
936 m_vecdata
[ix
] = m_vecdata
[--m_vecpfx
.m_num
];
940 /* Remove LEN elements starting at the IXth. Ordering is retained.
941 This is an O(N) operation due to memmove. */
943 template<typename T
, typename A
>
945 vec
<T
, A
, vl_embed
>::block_remove (unsigned ix
, unsigned len
)
947 gcc_checking_assert (ix
+ len
<= length ());
948 T
*slot
= &m_vecdata
[ix
];
949 m_vecpfx
.m_num
-= len
;
950 memmove (slot
, slot
+ len
, (m_vecpfx
.m_num
- ix
) * sizeof (T
));
954 /* Sort the contents of this vector with qsort. CMP is the comparison
955 function to pass to qsort. */
957 template<typename T
, typename A
>
959 vec
<T
, A
, vl_embed
>::qsort (int (*cmp
) (const void *, const void *))
962 ::qsort (address (), length (), sizeof (T
), cmp
);
966 /* Search the contents of the sorted vector with a binary search.
967 CMP is the comparison function to pass to bsearch. */
969 template<typename T
, typename A
>
971 vec
<T
, A
, vl_embed
>::bsearch (const void *key
,
972 int (*compar
) (const void *, const void *))
974 const void *base
= this->address ();
975 size_t nmemb
= this->length ();
976 size_t size
= sizeof (T
);
977 /* The following is a copy of glibc stdlib-bsearch.h. */
987 p
= (const void *) (((const char *) base
) + (idx
* size
));
988 comparison
= (*compar
) (key
, p
);
991 else if (comparison
> 0)
994 return (T
*)const_cast<void *>(p
);
1001 /* Find and return the first position in which OBJ could be inserted
1002 without changing the ordering of this vector. LESSTHAN is a
1003 function that returns true if the first argument is strictly less
1006 template<typename T
, typename A
>
1008 vec
<T
, A
, vl_embed
>::lower_bound (T obj
, bool (*lessthan
)(const T
&, const T
&))
1011 unsigned int len
= length ();
1012 unsigned int half
, middle
;
1013 unsigned int first
= 0;
1019 T middle_elem
= (*this)[middle
];
1020 if (lessthan (middle_elem
, obj
))
1024 len
= len
- half
- 1;
1033 /* Return the number of bytes needed to embed an instance of an
1034 embeddable vec inside another data structure.
1036 Use these methods to determine the required size and initialization
1037 of a vector V of type T embedded within another structure (as the
1040 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1041 void v->embedded_init (unsigned alloc, unsigned num);
1043 These allow the caller to perform the memory allocation. */
1045 template<typename T
, typename A
>
1047 vec
<T
, A
, vl_embed
>::embedded_size (unsigned alloc
)
1049 typedef vec
<T
, A
, vl_embed
> vec_embedded
;
1050 return offsetof (vec_embedded
, m_vecdata
) + alloc
* sizeof (T
);
1054 /* Initialize the vector to contain room for ALLOC elements and
1055 NUM active elements. */
1057 template<typename T
, typename A
>
1059 vec
<T
, A
, vl_embed
>::embedded_init (unsigned alloc
, unsigned num
, unsigned aut
)
1061 m_vecpfx
.m_alloc
= alloc
;
1062 m_vecpfx
.m_using_auto_storage
= aut
;
1063 m_vecpfx
.m_num
= num
;
1067 /* Grow the vector to a specific length. LEN must be as long or longer than
1068 the current length. The new elements are uninitialized. */
1070 template<typename T
, typename A
>
1072 vec
<T
, A
, vl_embed
>::quick_grow (unsigned len
)
1074 gcc_checking_assert (length () <= len
&& len
<= m_vecpfx
.m_alloc
);
1075 m_vecpfx
.m_num
= len
;
1079 /* Grow the vector to a specific length. LEN must be as long or longer than
1080 the current length. The new elements are initialized to zero. */
1082 template<typename T
, typename A
>
1084 vec
<T
, A
, vl_embed
>::quick_grow_cleared (unsigned len
)
1086 unsigned oldlen
= length ();
1088 memset (&(address ()[oldlen
]), 0, sizeof (T
) * (len
- oldlen
));
1092 /* Garbage collection support for vec<T, A, vl_embed>. */
1094 template<typename T
>
1096 gt_ggc_mx (vec
<T
, va_gc
> *v
)
1098 extern void gt_ggc_mx (T
&);
1099 for (unsigned i
= 0; i
< v
->length (); i
++)
1100 gt_ggc_mx ((*v
)[i
]);
1103 template<typename T
>
1105 gt_ggc_mx (vec
<T
, va_gc_atomic
, vl_embed
> *v ATTRIBUTE_UNUSED
)
1107 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1112 /* PCH support for vec<T, A, vl_embed>. */
1114 template<typename T
, typename A
>
1116 gt_pch_nx (vec
<T
, A
, vl_embed
> *v
)
1118 extern void gt_pch_nx (T
&);
1119 for (unsigned i
= 0; i
< v
->length (); i
++)
1120 gt_pch_nx ((*v
)[i
]);
1123 template<typename T
, typename A
>
1125 gt_pch_nx (vec
<T
*, A
, vl_embed
> *v
, gt_pointer_operator op
, void *cookie
)
1127 for (unsigned i
= 0; i
< v
->length (); i
++)
1128 op (&((*v
)[i
]), cookie
);
1131 template<typename T
, typename A
>
1133 gt_pch_nx (vec
<T
, A
, vl_embed
> *v
, gt_pointer_operator op
, void *cookie
)
1135 extern void gt_pch_nx (T
*, gt_pointer_operator
, void *);
1136 for (unsigned i
= 0; i
< v
->length (); i
++)
1137 gt_pch_nx (&((*v
)[i
]), op
, cookie
);
1141 /* Space efficient vector. These vectors can grow dynamically and are
1142 allocated together with their control data. They are suited to be
1143 included in data structures. Prior to initial allocation, they
1144 only take a single word of storage.
1146 These vectors are implemented as a pointer to an embeddable vector.
1147 The semantics allow for this pointer to be NULL to represent empty
1148 vectors. This way, empty vectors occupy minimal space in the
1149 structure containing them.
1153 - The whole vector and control data are allocated in a single
1155 - The whole vector may be re-allocated.
1156 - Vector data may grow and shrink.
1157 - Access and manipulation requires a pointer test and
1159 - It requires 1 word of storage (prior to vector allocation).
1164 These vectors must be PODs because they are stored in unions.
1165 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1166 As long as we use C++03, we cannot have constructors nor
1167 destructors in classes that are stored in unions. */
1169 template<typename T
>
1170 struct vec
<T
, va_heap
, vl_ptr
>
1173 /* Memory allocation and deallocation for the embedded vector.
1174 Needed because we cannot have proper ctors/dtors defined. */
1175 void create (unsigned nelems CXX_MEM_STAT_INFO
);
1176 void release (void);
1178 /* Vector operations. */
1179 bool exists (void) const
1180 { return m_vec
!= NULL
; }
1182 bool is_empty (void) const
1183 { return m_vec
? m_vec
->is_empty () : true; }
1185 unsigned length (void) const
1186 { return m_vec
? m_vec
->length () : 0; }
1189 { return m_vec
? m_vec
->m_vecdata
: NULL
; }
1191 const T
*address (void) const
1192 { return m_vec
? m_vec
->m_vecdata
: NULL
; }
1194 const T
&operator[] (unsigned ix
) const
1195 { return (*m_vec
)[ix
]; }
1197 bool operator!=(const vec
&other
) const
1198 { return !(*this == other
); }
1200 bool operator==(const vec
&other
) const
1201 { return address () == other
.address (); }
1203 T
&operator[] (unsigned ix
)
1204 { return (*m_vec
)[ix
]; }
1207 { return m_vec
->last (); }
1209 bool space (int nelems
) const
1210 { return m_vec
? m_vec
->space (nelems
) : nelems
== 0; }
1212 bool iterate (unsigned ix
, T
*p
) const;
1213 bool iterate (unsigned ix
, T
**p
) const;
1214 vec
copy (ALONE_CXX_MEM_STAT_INFO
) const;
1215 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO
);
1216 bool reserve_exact (unsigned CXX_MEM_STAT_INFO
);
1217 void splice (const vec
&);
1218 void safe_splice (const vec
& CXX_MEM_STAT_INFO
);
1219 T
*quick_push (const T
&);
1220 T
*safe_push (const T
&CXX_MEM_STAT_INFO
);
1222 void truncate (unsigned);
1223 void safe_grow (unsigned CXX_MEM_STAT_INFO
);
1224 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO
);
1225 void quick_grow (unsigned);
1226 void quick_grow_cleared (unsigned);
1227 void quick_insert (unsigned, const T
&);
1228 void safe_insert (unsigned, const T
& CXX_MEM_STAT_INFO
);
1229 void ordered_remove (unsigned);
1230 void unordered_remove (unsigned);
1231 void block_remove (unsigned, unsigned);
1232 void qsort (int (*) (const void *, const void *));
1233 T
*bsearch (const void *key
, int (*compar
)(const void *, const void *));
1234 unsigned lower_bound (T
, bool (*)(const T
&, const T
&)) const;
1236 bool using_auto_storage () const;
1238 /* FIXME - This field should be private, but we need to cater to
1239 compilers that have stricter notions of PODness for types. */
1240 vec
<T
, va_heap
, vl_embed
> *m_vec
;
1244 /* auto_vec is a subclass of vec that automatically manages creating and
1245 releasing the internal vector. If N is non zero then it has N elements of
1246 internal storage. The default is no internal storage, and you probably only
1247 want to ask for internal storage for vectors on the stack because if the
1248 size of the vector is larger than the internal storage that space is wasted.
1250 template<typename T
, size_t N
= 0>
1251 class auto_vec
: public vec
<T
, va_heap
>
1256 m_auto
.embedded_init (MAX (N
, 2), 0, 1);
1257 this->m_vec
= &m_auto
;
1266 vec
<T
, va_heap
, vl_embed
> m_auto
;
1267 T m_data
[MAX (N
- 1, 1)];
1270 /* auto_vec is a sub class of vec whose storage is released when it is
1272 template<typename T
>
1273 class auto_vec
<T
, 0> : public vec
<T
, va_heap
>
1276 auto_vec () { this->m_vec
= NULL
; }
1277 auto_vec (size_t n
) { this->create (n
); }
1278 ~auto_vec () { this->release (); }
1282 /* Allocate heap memory for pointer V and create the internal vector
1283 with space for NELEMS elements. If NELEMS is 0, the internal
1284 vector is initialized to empty. */
1286 template<typename T
>
1288 vec_alloc (vec
<T
> *&v
, unsigned nelems CXX_MEM_STAT_INFO
)
1291 v
->create (nelems PASS_MEM_STAT
);
1295 /* Conditionally allocate heap memory for VEC and its internal vector. */
1297 template<typename T
>
1299 vec_check_alloc (vec
<T
, va_heap
> *&vec
, unsigned nelems CXX_MEM_STAT_INFO
)
1302 vec_alloc (vec
, nelems PASS_MEM_STAT
);
1306 /* Free the heap memory allocated by vector V and set it to NULL. */
1308 template<typename T
>
1310 vec_free (vec
<T
> *&v
)
1321 /* Return iteration condition and update PTR to point to the IX'th
1322 element of this vector. Use this to iterate over the elements of a
1325 for (ix = 0; v.iterate (ix, &ptr); ix++)
1328 template<typename T
>
1330 vec
<T
, va_heap
, vl_ptr
>::iterate (unsigned ix
, T
*ptr
) const
1333 return m_vec
->iterate (ix
, ptr
);
1342 /* Return iteration condition and update *PTR to point to the
1343 IX'th element of this vector. Use this to iterate over the
1344 elements of a vector as follows,
1346 for (ix = 0; v->iterate (ix, &ptr); ix++)
1349 This variant is for vectors of objects. */
1351 template<typename T
>
1353 vec
<T
, va_heap
, vl_ptr
>::iterate (unsigned ix
, T
**ptr
) const
1356 return m_vec
->iterate (ix
, ptr
);
1365 /* Convenience macro for forward iteration. */
1366 #define FOR_EACH_VEC_ELT(V, I, P) \
1367 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1369 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1370 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1372 /* Likewise, but start from FROM rather than 0. */
1373 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1374 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1376 /* Convenience macro for reverse iteration. */
1377 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1378 for (I = (V).length () - 1; \
1379 (V).iterate ((I), &(P)); \
1382 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1383 for (I = vec_safe_length (V) - 1; \
1384 vec_safe_iterate ((V), (I), &(P)); \
1388 /* Return a copy of this vector. */
1390 template<typename T
>
1391 inline vec
<T
, va_heap
, vl_ptr
>
1392 vec
<T
, va_heap
, vl_ptr
>::copy (ALONE_MEM_STAT_DECL
) const
1394 vec
<T
, va_heap
, vl_ptr
> new_vec
= vNULL
;
1396 new_vec
.m_vec
= m_vec
->copy ();
1401 /* Ensure that the vector has at least RESERVE slots available (if
1402 EXACT is false), or exactly RESERVE slots available (if EXACT is
1405 This may create additional headroom if EXACT is false.
1407 Note that this can cause the embedded vector to be reallocated.
1408 Returns true iff reallocation actually occurred. */
1410 template<typename T
>
1412 vec
<T
, va_heap
, vl_ptr
>::reserve (unsigned nelems
, bool exact MEM_STAT_DECL
)
1417 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1418 this is necessary because it doesn't have enough information to know the
1419 embedded vector is in auto storage, and so should not be freed. */
1420 vec
<T
, va_heap
, vl_embed
> *oldvec
= m_vec
;
1421 unsigned int oldsize
= 0;
1422 bool handle_auto_vec
= m_vec
&& using_auto_storage ();
1423 if (handle_auto_vec
)
1426 oldsize
= oldvec
->length ();
1430 va_heap::reserve (m_vec
, nelems
, exact PASS_MEM_STAT
);
1431 if (handle_auto_vec
)
1433 memcpy (m_vec
->address (), oldvec
->address (), sizeof (T
) * oldsize
);
1434 m_vec
->m_vecpfx
.m_num
= oldsize
;
1441 /* Ensure that this vector has exactly NELEMS slots available. This
1442 will not create additional headroom. Note this can cause the
1443 embedded vector to be reallocated. Returns true iff reallocation
1444 actually occurred. */
1446 template<typename T
>
1448 vec
<T
, va_heap
, vl_ptr
>::reserve_exact (unsigned nelems MEM_STAT_DECL
)
1450 return reserve (nelems
, true PASS_MEM_STAT
);
1454 /* Create the internal vector and reserve NELEMS for it. This is
1455 exactly like vec::reserve, but the internal vector is
1456 unconditionally allocated from scratch. The old one, if it
1457 existed, is lost. */
1459 template<typename T
>
1461 vec
<T
, va_heap
, vl_ptr
>::create (unsigned nelems MEM_STAT_DECL
)
1465 reserve_exact (nelems PASS_MEM_STAT
);
1469 /* Free the memory occupied by the embedded vector. */
1471 template<typename T
>
1473 vec
<T
, va_heap
, vl_ptr
>::release (void)
1478 if (using_auto_storage ())
1480 m_vec
->m_vecpfx
.m_num
= 0;
1484 va_heap::release (m_vec
);
1487 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1488 SRC and this vector must be allocated with the same memory
1489 allocation mechanism. This vector is assumed to have sufficient
1490 headroom available. */
1492 template<typename T
>
1494 vec
<T
, va_heap
, vl_ptr
>::splice (const vec
<T
, va_heap
, vl_ptr
> &src
)
1497 m_vec
->splice (*(src
.m_vec
));
1501 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1502 SRC and this vector must be allocated with the same mechanism.
1503 If there is not enough headroom in this vector, it will be reallocated
1506 template<typename T
>
1508 vec
<T
, va_heap
, vl_ptr
>::safe_splice (const vec
<T
, va_heap
, vl_ptr
> &src
1513 reserve_exact (src
.length ());
1519 /* Push OBJ (a new element) onto the end of the vector. There must be
1520 sufficient space in the vector. Return a pointer to the slot
1521 where OBJ was inserted. */
1523 template<typename T
>
1525 vec
<T
, va_heap
, vl_ptr
>::quick_push (const T
&obj
)
1527 return m_vec
->quick_push (obj
);
1531 /* Push a new element OBJ onto the end of this vector. Reallocates
1532 the embedded vector, if needed. Return a pointer to the slot where
1533 OBJ was inserted. */
1535 template<typename T
>
1537 vec
<T
, va_heap
, vl_ptr
>::safe_push (const T
&obj MEM_STAT_DECL
)
1539 reserve (1, false PASS_MEM_STAT
);
1540 return quick_push (obj
);
1544 /* Pop and return the last element off the end of the vector. */
1546 template<typename T
>
1548 vec
<T
, va_heap
, vl_ptr
>::pop (void)
1550 return m_vec
->pop ();
1554 /* Set the length of the vector to LEN. The new length must be less
1555 than or equal to the current length. This is an O(1) operation. */
1557 template<typename T
>
1559 vec
<T
, va_heap
, vl_ptr
>::truncate (unsigned size
)
1562 m_vec
->truncate (size
);
1564 gcc_checking_assert (size
== 0);
1568 /* Grow the vector to a specific length. LEN must be as long or
1569 longer than the current length. The new elements are
1570 uninitialized. Reallocate the internal vector, if needed. */
1572 template<typename T
>
1574 vec
<T
, va_heap
, vl_ptr
>::safe_grow (unsigned len MEM_STAT_DECL
)
1576 unsigned oldlen
= length ();
1577 gcc_checking_assert (oldlen
<= len
);
1578 reserve_exact (len
- oldlen PASS_MEM_STAT
);
1580 m_vec
->quick_grow (len
);
1582 gcc_checking_assert (len
== 0);
1586 /* Grow the embedded vector to a specific length. LEN must be as
1587 long or longer than the current length. The new elements are
1588 initialized to zero. Reallocate the internal vector, if needed. */
1590 template<typename T
>
1592 vec
<T
, va_heap
, vl_ptr
>::safe_grow_cleared (unsigned len MEM_STAT_DECL
)
1594 unsigned oldlen
= length ();
1595 safe_grow (len PASS_MEM_STAT
);
1596 memset (&(address ()[oldlen
]), 0, sizeof (T
) * (len
- oldlen
));
1600 /* Same as vec::safe_grow but without reallocation of the internal vector.
1601 If the vector cannot be extended, a runtime assertion will be triggered. */
1603 template<typename T
>
1605 vec
<T
, va_heap
, vl_ptr
>::quick_grow (unsigned len
)
1607 gcc_checking_assert (m_vec
);
1608 m_vec
->quick_grow (len
);
1612 /* Same as vec::quick_grow_cleared but without reallocation of the
1613 internal vector. If the vector cannot be extended, a runtime
1614 assertion will be triggered. */
1616 template<typename T
>
1618 vec
<T
, va_heap
, vl_ptr
>::quick_grow_cleared (unsigned len
)
1620 gcc_checking_assert (m_vec
);
1621 m_vec
->quick_grow_cleared (len
);
1625 /* Insert an element, OBJ, at the IXth position of this vector. There
1626 must be sufficient space. */
1628 template<typename T
>
1630 vec
<T
, va_heap
, vl_ptr
>::quick_insert (unsigned ix
, const T
&obj
)
1632 m_vec
->quick_insert (ix
, obj
);
1636 /* Insert an element, OBJ, at the IXth position of the vector.
1637 Reallocate the embedded vector, if necessary. */
1639 template<typename T
>
1641 vec
<T
, va_heap
, vl_ptr
>::safe_insert (unsigned ix
, const T
&obj MEM_STAT_DECL
)
1643 reserve (1, false PASS_MEM_STAT
);
1644 quick_insert (ix
, obj
);
1648 /* Remove an element from the IXth position of this vector. Ordering of
1649 remaining elements is preserved. This is an O(N) operation due to
1652 template<typename T
>
1654 vec
<T
, va_heap
, vl_ptr
>::ordered_remove (unsigned ix
)
1656 m_vec
->ordered_remove (ix
);
1660 /* Remove an element from the IXth position of this vector. Ordering
1661 of remaining elements is destroyed. This is an O(1) operation. */
1663 template<typename T
>
1665 vec
<T
, va_heap
, vl_ptr
>::unordered_remove (unsigned ix
)
1667 m_vec
->unordered_remove (ix
);
1671 /* Remove LEN elements starting at the IXth. Ordering is retained.
1672 This is an O(N) operation due to memmove. */
1674 template<typename T
>
1676 vec
<T
, va_heap
, vl_ptr
>::block_remove (unsigned ix
, unsigned len
)
1678 m_vec
->block_remove (ix
, len
);
1682 /* Sort the contents of this vector with qsort. CMP is the comparison
1683 function to pass to qsort. */
1685 template<typename T
>
1687 vec
<T
, va_heap
, vl_ptr
>::qsort (int (*cmp
) (const void *, const void *))
1694 /* Search the contents of the sorted vector with a binary search.
1695 CMP is the comparison function to pass to bsearch. */
1697 template<typename T
>
1699 vec
<T
, va_heap
, vl_ptr
>::bsearch (const void *key
,
1700 int (*cmp
) (const void *, const void *))
1703 return m_vec
->bsearch (key
, cmp
);
1708 /* Find and return the first position in which OBJ could be inserted
1709 without changing the ordering of this vector. LESSTHAN is a
1710 function that returns true if the first argument is strictly less
1713 template<typename T
>
1715 vec
<T
, va_heap
, vl_ptr
>::lower_bound (T obj
,
1716 bool (*lessthan
)(const T
&, const T
&))
1719 return m_vec
? m_vec
->lower_bound (obj
, lessthan
) : 0;
1722 template<typename T
>
1724 vec
<T
, va_heap
, vl_ptr
>::using_auto_storage () const
1726 return m_vec
->m_vecpfx
.m_using_auto_storage
;
1729 #if (GCC_VERSION >= 3000)
1730 # pragma GCC poison m_vec m_vecpfx m_vecdata