* opt-functions.awk (var_type): New function.
[official-gcc.git] / gcc / cfg.c
blobc1cf389e69f5e94462d4bb95089a3d197dbb1624
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* This file contains low level functions to manipulate the CFG and
24 analyze it. All other modules should not transform the data structure
25 directly and use abstraction instead. The file is supposed to be
26 ordered bottom-up and should not contain any code dependent on a
27 particular intermediate language (RTL or trees).
29 Available functionality:
30 - Initialization/deallocation
31 init_flow, clear_edges
32 - Low level basic block manipulation
33 alloc_block, expunge_block
34 - Edge manipulation
35 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
36 - Low level edge redirection (without updating instruction chain)
37 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
38 - Dumping and debugging
39 dump_flow_info, debug_flow_info, dump_edge_info
40 - Allocation of AUX fields for basic blocks
41 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
42 - clear_bb_flags
43 - Consistency checking
44 verify_flow_info
45 - Dumping and debugging
46 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
49 #include "config.h"
50 #include "system.h"
51 #include "coretypes.h"
52 #include "tm.h"
53 #include "tree.h"
54 #include "rtl.h"
55 #include "hard-reg-set.h"
56 #include "regs.h"
57 #include "flags.h"
58 #include "output.h"
59 #include "function.h"
60 #include "except.h"
61 #include "toplev.h"
62 #include "tm_p.h"
63 #include "obstack.h"
64 #include "timevar.h"
65 #include "ggc.h"
67 /* The obstack on which the flow graph components are allocated. */
69 struct bitmap_obstack reg_obstack;
71 void debug_flow_info (void);
72 static void free_edge (edge);
74 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
76 /* Called once at initialization time. */
78 void
79 init_flow (void)
81 if (!cfun->cfg)
82 cfun->cfg = ggc_alloc_cleared (sizeof (struct control_flow_graph));
83 n_edges = 0;
84 ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (struct basic_block_def));
85 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
86 EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (struct basic_block_def));
87 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
88 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
89 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
92 /* Helper function for remove_edge and clear_edges. Frees edge structure
93 without actually unlinking it from the pred/succ lists. */
95 static void
96 free_edge (edge e ATTRIBUTE_UNUSED)
98 n_edges--;
99 ggc_free (e);
102 /* Free the memory associated with the edge structures. */
104 void
105 clear_edges (void)
107 basic_block bb;
108 edge e;
109 edge_iterator ei;
111 FOR_EACH_BB (bb)
113 FOR_EACH_EDGE (e, ei, bb->succs)
114 free_edge (e);
115 VEC_truncate (edge, bb->succs, 0);
116 VEC_truncate (edge, bb->preds, 0);
119 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
120 free_edge (e);
121 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
122 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
124 gcc_assert (!n_edges);
127 /* Allocate memory for basic_block. */
129 basic_block
130 alloc_block (void)
132 basic_block bb;
133 bb = ggc_alloc_cleared (sizeof (*bb));
134 return bb;
137 /* Initialize rbi (the structure containing data used by basic block
138 duplication and reordering) for the given basic block. */
140 void
141 initialize_bb_rbi (basic_block bb)
143 gcc_assert (!bb->rbi);
144 bb->rbi = ggc_alloc_cleared (sizeof (struct reorder_block_def));
147 /* Link block B to chain after AFTER. */
148 void
149 link_block (basic_block b, basic_block after)
151 b->next_bb = after->next_bb;
152 b->prev_bb = after;
153 after->next_bb = b;
154 b->next_bb->prev_bb = b;
157 /* Unlink block B from chain. */
158 void
159 unlink_block (basic_block b)
161 b->next_bb->prev_bb = b->prev_bb;
162 b->prev_bb->next_bb = b->next_bb;
163 b->prev_bb = NULL;
164 b->next_bb = NULL;
167 /* Sequentially order blocks and compact the arrays. */
168 void
169 compact_blocks (void)
171 int i;
172 basic_block bb;
174 i = 0;
175 FOR_EACH_BB (bb)
177 BASIC_BLOCK (i) = bb;
178 bb->index = i;
179 i++;
182 gcc_assert (i == n_basic_blocks);
184 for (; i < last_basic_block; i++)
185 BASIC_BLOCK (i) = NULL;
187 last_basic_block = n_basic_blocks;
190 /* Remove block B from the basic block array. */
192 void
193 expunge_block (basic_block b)
195 unlink_block (b);
196 BASIC_BLOCK (b->index) = NULL;
197 n_basic_blocks--;
198 /* We should be able to ggc_free here, but we are not.
199 The dead SSA_NAMES are left pointing to dead statements that are pointing
200 to dead basic blocks making garbage collector to die.
201 We should be able to release all dead SSA_NAMES and at the same time we should
202 clear out BB pointer of dead statements consistently. */
205 /* Connect E to E->src. */
207 static inline void
208 connect_src (edge e)
210 VEC_safe_push (edge, gc, e->src->succs, e);
213 /* Connect E to E->dest. */
215 static inline void
216 connect_dest (edge e)
218 basic_block dest = e->dest;
219 VEC_safe_push (edge, gc, dest->preds, e);
220 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
223 /* Disconnect edge E from E->src. */
225 static inline void
226 disconnect_src (edge e)
228 basic_block src = e->src;
229 edge_iterator ei;
230 edge tmp;
232 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
234 if (tmp == e)
236 VEC_unordered_remove (edge, src->succs, ei.index);
237 return;
239 else
240 ei_next (&ei);
243 gcc_unreachable ();
246 /* Disconnect edge E from E->dest. */
248 static inline void
249 disconnect_dest (edge e)
251 basic_block dest = e->dest;
252 unsigned int dest_idx = e->dest_idx;
254 VEC_unordered_remove (edge, dest->preds, dest_idx);
256 /* If we removed an edge in the middle of the edge vector, we need
257 to update dest_idx of the edge that moved into the "hole". */
258 if (dest_idx < EDGE_COUNT (dest->preds))
259 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
262 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
263 created edge. Use this only if you are sure that this edge can't
264 possibly already exist. */
266 edge
267 unchecked_make_edge (basic_block src, basic_block dst, int flags)
269 edge e;
270 e = ggc_alloc_cleared (sizeof (*e));
271 n_edges++;
273 e->src = src;
274 e->dest = dst;
275 e->flags = flags;
277 connect_src (e);
278 connect_dest (e);
280 execute_on_growing_pred (e);
282 return e;
285 /* Create an edge connecting SRC and DST with FLAGS optionally using
286 edge cache CACHE. Return the new edge, NULL if already exist. */
288 edge
289 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
291 if (edge_cache == NULL
292 || src == ENTRY_BLOCK_PTR
293 || dst == EXIT_BLOCK_PTR)
294 return make_edge (src, dst, flags);
296 /* Does the requested edge already exist? */
297 if (! TEST_BIT (edge_cache, dst->index))
299 /* The edge does not exist. Create one and update the
300 cache. */
301 SET_BIT (edge_cache, dst->index);
302 return unchecked_make_edge (src, dst, flags);
305 /* At this point, we know that the requested edge exists. Adjust
306 flags if necessary. */
307 if (flags)
309 edge e = find_edge (src, dst);
310 e->flags |= flags;
313 return NULL;
316 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
317 created edge or NULL if already exist. */
319 edge
320 make_edge (basic_block src, basic_block dest, int flags)
322 edge e = find_edge (src, dest);
324 /* Make sure we don't add duplicate edges. */
325 if (e)
327 e->flags |= flags;
328 return NULL;
331 return unchecked_make_edge (src, dest, flags);
334 /* Create an edge connecting SRC to DEST and set probability by knowing
335 that it is the single edge leaving SRC. */
337 edge
338 make_single_succ_edge (basic_block src, basic_block dest, int flags)
340 edge e = make_edge (src, dest, flags);
342 e->probability = REG_BR_PROB_BASE;
343 e->count = src->count;
344 return e;
347 /* This function will remove an edge from the flow graph. */
349 void
350 remove_edge (edge e)
352 execute_on_shrinking_pred (e);
354 disconnect_src (e);
355 disconnect_dest (e);
357 free_edge (e);
360 /* Redirect an edge's successor from one block to another. */
362 void
363 redirect_edge_succ (edge e, basic_block new_succ)
365 execute_on_shrinking_pred (e);
367 disconnect_dest (e);
369 e->dest = new_succ;
371 /* Reconnect the edge to the new successor block. */
372 connect_dest (e);
374 execute_on_growing_pred (e);
377 /* Like previous but avoid possible duplicate edge. */
379 edge
380 redirect_edge_succ_nodup (edge e, basic_block new_succ)
382 edge s;
384 s = find_edge (e->src, new_succ);
385 if (s && s != e)
387 s->flags |= e->flags;
388 s->probability += e->probability;
389 if (s->probability > REG_BR_PROB_BASE)
390 s->probability = REG_BR_PROB_BASE;
391 s->count += e->count;
392 remove_edge (e);
393 e = s;
395 else
396 redirect_edge_succ (e, new_succ);
398 return e;
401 /* Redirect an edge's predecessor from one block to another. */
403 void
404 redirect_edge_pred (edge e, basic_block new_pred)
406 disconnect_src (e);
408 e->src = new_pred;
410 /* Reconnect the edge to the new predecessor block. */
411 connect_src (e);
414 /* Clear all basic block flags, with the exception of partitioning. */
415 void
416 clear_bb_flags (void)
418 basic_block bb;
420 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
421 bb->flags = BB_PARTITION (bb) | (bb->flags & BB_DISABLE_SCHEDULE);
424 /* Check the consistency of profile information. We can't do that
425 in verify_flow_info, as the counts may get invalid for incompletely
426 solved graphs, later eliminating of conditionals or roundoff errors.
427 It is still practical to have them reported for debugging of simple
428 testcases. */
429 void
430 check_bb_profile (basic_block bb, FILE * file)
432 edge e;
433 int sum = 0;
434 gcov_type lsum;
435 edge_iterator ei;
437 if (profile_status == PROFILE_ABSENT)
438 return;
440 if (bb != EXIT_BLOCK_PTR)
442 FOR_EACH_EDGE (e, ei, bb->succs)
443 sum += e->probability;
444 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
445 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
446 sum * 100.0 / REG_BR_PROB_BASE);
447 lsum = 0;
448 FOR_EACH_EDGE (e, ei, bb->succs)
449 lsum += e->count;
450 if (EDGE_COUNT (bb->succs)
451 && (lsum - bb->count > 100 || lsum - bb->count < -100))
452 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
453 (int) lsum, (int) bb->count);
455 if (bb != ENTRY_BLOCK_PTR)
457 sum = 0;
458 FOR_EACH_EDGE (e, ei, bb->preds)
459 sum += EDGE_FREQUENCY (e);
460 if (abs (sum - bb->frequency) > 100)
461 fprintf (file,
462 "Invalid sum of incoming frequencies %i, should be %i\n",
463 sum, bb->frequency);
464 lsum = 0;
465 FOR_EACH_EDGE (e, ei, bb->preds)
466 lsum += e->count;
467 if (lsum - bb->count > 100 || lsum - bb->count < -100)
468 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
469 (int) lsum, (int) bb->count);
473 void
474 dump_flow_info (FILE *file)
476 basic_block bb;
478 /* There are no pseudo registers after reload. Don't dump them. */
479 if (reg_n_info && !reload_completed)
481 unsigned int i, max = max_reg_num ();
482 fprintf (file, "%d registers.\n", max);
483 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
484 if (REG_N_REFS (i))
486 enum reg_class class, altclass;
488 fprintf (file, "\nRegister %d used %d times across %d insns",
489 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
490 if (REG_BASIC_BLOCK (i) >= 0)
491 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
492 if (REG_N_SETS (i))
493 fprintf (file, "; set %d time%s", REG_N_SETS (i),
494 (REG_N_SETS (i) == 1) ? "" : "s");
495 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
496 fprintf (file, "; user var");
497 if (REG_N_DEATHS (i) != 1)
498 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
499 if (REG_N_CALLS_CROSSED (i) == 1)
500 fprintf (file, "; crosses 1 call");
501 else if (REG_N_CALLS_CROSSED (i))
502 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
503 if (regno_reg_rtx[i] != NULL
504 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
505 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
507 class = reg_preferred_class (i);
508 altclass = reg_alternate_class (i);
509 if (class != GENERAL_REGS || altclass != ALL_REGS)
511 if (altclass == ALL_REGS || class == ALL_REGS)
512 fprintf (file, "; pref %s", reg_class_names[(int) class]);
513 else if (altclass == NO_REGS)
514 fprintf (file, "; %s or none", reg_class_names[(int) class]);
515 else
516 fprintf (file, "; pref %s, else %s",
517 reg_class_names[(int) class],
518 reg_class_names[(int) altclass]);
521 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
522 fprintf (file, "; pointer");
523 fprintf (file, ".\n");
527 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
528 FOR_EACH_BB (bb)
530 edge e;
531 edge_iterator ei;
533 fprintf (file, "\nBasic block %d ", bb->index);
534 fprintf (file, "prev %d, next %d, ",
535 bb->prev_bb->index, bb->next_bb->index);
536 fprintf (file, "loop_depth %d, count ", bb->loop_depth);
537 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
538 fprintf (file, ", freq %i", bb->frequency);
539 if (maybe_hot_bb_p (bb))
540 fprintf (file, ", maybe hot");
541 if (probably_never_executed_bb_p (bb))
542 fprintf (file, ", probably never executed");
543 fprintf (file, ".\n");
545 fprintf (file, "Predecessors: ");
546 FOR_EACH_EDGE (e, ei, bb->preds)
547 dump_edge_info (file, e, 0);
549 fprintf (file, "\nSuccessors: ");
550 FOR_EACH_EDGE (e, ei, bb->succs)
551 dump_edge_info (file, e, 1);
553 if (bb->global_live_at_start)
555 fprintf (file, "\nRegisters live at start:");
556 dump_regset (bb->global_live_at_start, file);
559 if (bb->global_live_at_end)
561 fprintf (file, "\nRegisters live at end:");
562 dump_regset (bb->global_live_at_end, file);
565 putc ('\n', file);
566 check_bb_profile (bb, file);
569 putc ('\n', file);
572 void
573 debug_flow_info (void)
575 dump_flow_info (stderr);
578 void
579 dump_edge_info (FILE *file, edge e, int do_succ)
581 basic_block side = (do_succ ? e->dest : e->src);
583 if (side == ENTRY_BLOCK_PTR)
584 fputs (" ENTRY", file);
585 else if (side == EXIT_BLOCK_PTR)
586 fputs (" EXIT", file);
587 else
588 fprintf (file, " %d", side->index);
590 if (e->probability)
591 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
593 if (e->count)
595 fprintf (file, " count:");
596 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
599 if (e->flags)
601 static const char * const bitnames[] = {
602 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
603 "can_fallthru", "irreducible", "sibcall", "loop_exit",
604 "true", "false", "exec"
606 int comma = 0;
607 int i, flags = e->flags;
609 fputs (" (", file);
610 for (i = 0; flags; i++)
611 if (flags & (1 << i))
613 flags &= ~(1 << i);
615 if (comma)
616 fputc (',', file);
617 if (i < (int) ARRAY_SIZE (bitnames))
618 fputs (bitnames[i], file);
619 else
620 fprintf (file, "%d", i);
621 comma = 1;
624 fputc (')', file);
628 /* Simple routines to easily allocate AUX fields of basic blocks. */
630 static struct obstack block_aux_obstack;
631 static void *first_block_aux_obj = 0;
632 static struct obstack edge_aux_obstack;
633 static void *first_edge_aux_obj = 0;
635 /* Allocate a memory block of SIZE as BB->aux. The obstack must
636 be first initialized by alloc_aux_for_blocks. */
638 inline void
639 alloc_aux_for_block (basic_block bb, int size)
641 /* Verify that aux field is clear. */
642 gcc_assert (!bb->aux && first_block_aux_obj);
643 bb->aux = obstack_alloc (&block_aux_obstack, size);
644 memset (bb->aux, 0, size);
647 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
648 alloc_aux_for_block for each basic block. */
650 void
651 alloc_aux_for_blocks (int size)
653 static int initialized;
655 if (!initialized)
657 gcc_obstack_init (&block_aux_obstack);
658 initialized = 1;
660 else
661 /* Check whether AUX data are still allocated. */
662 gcc_assert (!first_block_aux_obj);
664 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
665 if (size)
667 basic_block bb;
669 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
670 alloc_aux_for_block (bb, size);
674 /* Clear AUX pointers of all blocks. */
676 void
677 clear_aux_for_blocks (void)
679 basic_block bb;
681 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
682 bb->aux = NULL;
685 /* Free data allocated in block_aux_obstack and clear AUX pointers
686 of all blocks. */
688 void
689 free_aux_for_blocks (void)
691 gcc_assert (first_block_aux_obj);
692 obstack_free (&block_aux_obstack, first_block_aux_obj);
693 first_block_aux_obj = NULL;
695 clear_aux_for_blocks ();
698 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
699 be first initialized by alloc_aux_for_edges. */
701 inline void
702 alloc_aux_for_edge (edge e, int size)
704 /* Verify that aux field is clear. */
705 gcc_assert (!e->aux && first_edge_aux_obj);
706 e->aux = obstack_alloc (&edge_aux_obstack, size);
707 memset (e->aux, 0, size);
710 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
711 alloc_aux_for_edge for each basic edge. */
713 void
714 alloc_aux_for_edges (int size)
716 static int initialized;
718 if (!initialized)
720 gcc_obstack_init (&edge_aux_obstack);
721 initialized = 1;
723 else
724 /* Check whether AUX data are still allocated. */
725 gcc_assert (!first_edge_aux_obj);
727 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
728 if (size)
730 basic_block bb;
732 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
734 edge e;
735 edge_iterator ei;
737 FOR_EACH_EDGE (e, ei, bb->succs)
738 alloc_aux_for_edge (e, size);
743 /* Clear AUX pointers of all edges. */
745 void
746 clear_aux_for_edges (void)
748 basic_block bb;
749 edge e;
751 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
753 edge_iterator ei;
754 FOR_EACH_EDGE (e, ei, bb->succs)
755 e->aux = NULL;
759 /* Free data allocated in edge_aux_obstack and clear AUX pointers
760 of all edges. */
762 void
763 free_aux_for_edges (void)
765 gcc_assert (first_edge_aux_obj);
766 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
767 first_edge_aux_obj = NULL;
769 clear_aux_for_edges ();
772 void
773 debug_bb (basic_block bb)
775 dump_bb (bb, stderr, 0);
778 basic_block
779 debug_bb_n (int n)
781 basic_block bb = BASIC_BLOCK (n);
782 dump_bb (bb, stderr, 0);
783 return bb;
786 /* Dumps cfg related information about basic block BB to FILE. */
788 static void
789 dump_cfg_bb_info (FILE *file, basic_block bb)
791 unsigned i;
792 edge_iterator ei;
793 bool first = true;
794 static const char * const bb_bitnames[] =
796 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
798 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
799 edge e;
801 fprintf (file, "Basic block %d", bb->index);
802 for (i = 0; i < n_bitnames; i++)
803 if (bb->flags & (1 << i))
805 if (first)
806 fprintf (file, " (");
807 else
808 fprintf (file, ", ");
809 first = false;
810 fprintf (file, bb_bitnames[i]);
812 if (!first)
813 fprintf (file, ")");
814 fprintf (file, "\n");
816 fprintf (file, "Predecessors: ");
817 FOR_EACH_EDGE (e, ei, bb->preds)
818 dump_edge_info (file, e, 0);
820 fprintf (file, "\nSuccessors: ");
821 FOR_EACH_EDGE (e, ei, bb->succs)
822 dump_edge_info (file, e, 1);
823 fprintf (file, "\n\n");
826 /* Dumps a brief description of cfg to FILE. */
828 void
829 brief_dump_cfg (FILE *file)
831 basic_block bb;
833 FOR_EACH_BB (bb)
835 dump_cfg_bb_info (file, bb);
839 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
840 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
841 redirected to destination of TAKEN_EDGE.
843 This function may leave the profile inconsistent in the case TAKEN_EDGE
844 frequency or count is believed to be lower than FREQUENCY or COUNT
845 respectively. */
846 void
847 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
848 gcov_type count, edge taken_edge)
850 edge c;
851 int prob;
852 edge_iterator ei;
854 bb->count -= count;
855 if (bb->count < 0)
856 bb->count = 0;
858 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
859 Watch for overflows. */
860 if (bb->frequency)
861 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
862 else
863 prob = 0;
864 if (prob > taken_edge->probability)
866 if (dump_file)
867 fprintf (dump_file, "Jump threading proved probability of edge "
868 "%i->%i too small (it is %i, should be %i).\n",
869 taken_edge->src->index, taken_edge->dest->index,
870 taken_edge->probability, prob);
871 prob = taken_edge->probability;
874 /* Now rescale the probabilities. */
875 taken_edge->probability -= prob;
876 prob = REG_BR_PROB_BASE - prob;
877 bb->frequency -= edge_frequency;
878 if (bb->frequency < 0)
879 bb->frequency = 0;
880 if (prob <= 0)
882 if (dump_file)
883 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
884 "frequency of block should end up being 0, it is %i\n",
885 bb->index, bb->frequency);
886 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
887 ei = ei_start (bb->succs);
888 ei_next (&ei);
889 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
890 c->probability = 0;
892 else if (prob != REG_BR_PROB_BASE)
894 int scale = 65536 * REG_BR_PROB_BASE / prob;
896 FOR_EACH_EDGE (c, ei, bb->succs)
897 c->probability *= scale / 65536;
900 gcc_assert (bb == taken_edge->src);
901 taken_edge->count -= count;
902 if (taken_edge->count < 0)
903 taken_edge->count = 0;
906 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
907 by NUM/DEN, in int arithmetic. May lose some accuracy. */
908 void
909 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
911 int i;
912 edge e;
913 for (i = 0; i < nbbs; i++)
915 edge_iterator ei;
916 bbs[i]->frequency = (bbs[i]->frequency * num) / den;
917 bbs[i]->count = RDIV (bbs[i]->count * num, den);
918 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
919 e->count = (e->count * num) /den;
923 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
924 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
925 function but considerably slower. */
926 void
927 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
928 gcov_type den)
930 int i;
931 edge e;
933 for (i = 0; i < nbbs; i++)
935 edge_iterator ei;
936 bbs[i]->frequency = (bbs[i]->frequency * num) / den;
937 bbs[i]->count = RDIV (bbs[i]->count * num, den);
938 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
939 e->count = (e->count * num) /den;