2013-11-08 Andrew MacLeod <amacleod@redhat.com>
[official-gcc.git] / gcc / cp / class.c
blob64681ba44df824d442ba3411c36576bb4ad7d18b
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* High-level class interface. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "tree.h"
29 #include "cp-tree.h"
30 #include "flags.h"
31 #include "toplev.h"
32 #include "target.h"
33 #include "convert.h"
34 #include "cgraph.h"
35 #include "dumpfile.h"
36 #include "splay-tree.h"
37 #include "pointer-set.h"
38 #include "hash-table.h"
40 /* The number of nested classes being processed. If we are not in the
41 scope of any class, this is zero. */
43 int current_class_depth;
45 /* In order to deal with nested classes, we keep a stack of classes.
46 The topmost entry is the innermost class, and is the entry at index
47 CURRENT_CLASS_DEPTH */
49 typedef struct class_stack_node {
50 /* The name of the class. */
51 tree name;
53 /* The _TYPE node for the class. */
54 tree type;
56 /* The access specifier pending for new declarations in the scope of
57 this class. */
58 tree access;
60 /* If were defining TYPE, the names used in this class. */
61 splay_tree names_used;
63 /* Nonzero if this class is no longer open, because of a call to
64 push_to_top_level. */
65 size_t hidden;
66 }* class_stack_node_t;
68 typedef struct vtbl_init_data_s
70 /* The base for which we're building initializers. */
71 tree binfo;
72 /* The type of the most-derived type. */
73 tree derived;
74 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
75 unless ctor_vtbl_p is true. */
76 tree rtti_binfo;
77 /* The negative-index vtable initializers built up so far. These
78 are in order from least negative index to most negative index. */
79 vec<constructor_elt, va_gc> *inits;
80 /* The binfo for the virtual base for which we're building
81 vcall offset initializers. */
82 tree vbase;
83 /* The functions in vbase for which we have already provided vcall
84 offsets. */
85 vec<tree, va_gc> *fns;
86 /* The vtable index of the next vcall or vbase offset. */
87 tree index;
88 /* Nonzero if we are building the initializer for the primary
89 vtable. */
90 int primary_vtbl_p;
91 /* Nonzero if we are building the initializer for a construction
92 vtable. */
93 int ctor_vtbl_p;
94 /* True when adding vcall offset entries to the vtable. False when
95 merely computing the indices. */
96 bool generate_vcall_entries;
97 } vtbl_init_data;
99 /* The type of a function passed to walk_subobject_offsets. */
100 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
102 /* The stack itself. This is a dynamically resized array. The
103 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
104 static int current_class_stack_size;
105 static class_stack_node_t current_class_stack;
107 /* The size of the largest empty class seen in this translation unit. */
108 static GTY (()) tree sizeof_biggest_empty_class;
110 /* An array of all local classes present in this translation unit, in
111 declaration order. */
112 vec<tree, va_gc> *local_classes;
114 static tree get_vfield_name (tree);
115 static void finish_struct_anon (tree);
116 static tree get_vtable_name (tree);
117 static tree get_basefndecls (tree, tree);
118 static int build_primary_vtable (tree, tree);
119 static int build_secondary_vtable (tree);
120 static void finish_vtbls (tree);
121 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
122 static void finish_struct_bits (tree);
123 static int alter_access (tree, tree, tree);
124 static void handle_using_decl (tree, tree);
125 static tree dfs_modify_vtables (tree, void *);
126 static tree modify_all_vtables (tree, tree);
127 static void determine_primary_bases (tree);
128 static void finish_struct_methods (tree);
129 static void maybe_warn_about_overly_private_class (tree);
130 static int method_name_cmp (const void *, const void *);
131 static int resort_method_name_cmp (const void *, const void *);
132 static void add_implicitly_declared_members (tree, tree*, int, int);
133 static tree fixed_type_or_null (tree, int *, int *);
134 static tree build_simple_base_path (tree expr, tree binfo);
135 static tree build_vtbl_ref_1 (tree, tree);
136 static void build_vtbl_initializer (tree, tree, tree, tree, int *,
137 vec<constructor_elt, va_gc> **);
138 static int count_fields (tree);
139 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
140 static void insert_into_classtype_sorted_fields (tree, tree, int);
141 static bool check_bitfield_decl (tree);
142 static void check_field_decl (tree, tree, int *, int *, int *);
143 static void check_field_decls (tree, tree *, int *, int *);
144 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
145 static void build_base_fields (record_layout_info, splay_tree, tree *);
146 static void check_methods (tree);
147 static void remove_zero_width_bit_fields (tree);
148 static void check_bases (tree, int *, int *);
149 static void check_bases_and_members (tree);
150 static tree create_vtable_ptr (tree, tree *);
151 static void include_empty_classes (record_layout_info);
152 static void layout_class_type (tree, tree *);
153 static void propagate_binfo_offsets (tree, tree);
154 static void layout_virtual_bases (record_layout_info, splay_tree);
155 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
156 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
157 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
158 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
159 static void add_vcall_offset (tree, tree, vtbl_init_data *);
160 static void layout_vtable_decl (tree, int);
161 static tree dfs_find_final_overrider_pre (tree, void *);
162 static tree dfs_find_final_overrider_post (tree, void *);
163 static tree find_final_overrider (tree, tree, tree);
164 static int make_new_vtable (tree, tree);
165 static tree get_primary_binfo (tree);
166 static int maybe_indent_hierarchy (FILE *, int, int);
167 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
168 static void dump_class_hierarchy (tree);
169 static void dump_class_hierarchy_1 (FILE *, int, tree);
170 static void dump_array (FILE *, tree);
171 static void dump_vtable (tree, tree, tree);
172 static void dump_vtt (tree, tree);
173 static void dump_thunk (FILE *, int, tree);
174 static tree build_vtable (tree, tree, tree);
175 static void initialize_vtable (tree, vec<constructor_elt, va_gc> *);
176 static void layout_nonempty_base_or_field (record_layout_info,
177 tree, tree, splay_tree);
178 static tree end_of_class (tree, int);
179 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
180 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
181 vec<constructor_elt, va_gc> **);
182 static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
183 vec<constructor_elt, va_gc> **);
184 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
185 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
186 static void clone_constructors_and_destructors (tree);
187 static tree build_clone (tree, tree);
188 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
189 static void build_ctor_vtbl_group (tree, tree);
190 static void build_vtt (tree);
191 static tree binfo_ctor_vtable (tree);
192 static void build_vtt_inits (tree, tree, vec<constructor_elt, va_gc> **,
193 tree *);
194 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
195 static tree dfs_fixup_binfo_vtbls (tree, void *);
196 static int record_subobject_offset (tree, tree, splay_tree);
197 static int check_subobject_offset (tree, tree, splay_tree);
198 static int walk_subobject_offsets (tree, subobject_offset_fn,
199 tree, splay_tree, tree, int);
200 static void record_subobject_offsets (tree, tree, splay_tree, bool);
201 static int layout_conflict_p (tree, tree, splay_tree, int);
202 static int splay_tree_compare_integer_csts (splay_tree_key k1,
203 splay_tree_key k2);
204 static void warn_about_ambiguous_bases (tree);
205 static bool type_requires_array_cookie (tree);
206 static bool contains_empty_class_p (tree);
207 static bool base_derived_from (tree, tree);
208 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
209 static tree end_of_base (tree);
210 static tree get_vcall_index (tree, tree);
212 /* Variables shared between class.c and call.c. */
214 int n_vtables = 0;
215 int n_vtable_entries = 0;
216 int n_vtable_searches = 0;
217 int n_vtable_elems = 0;
218 int n_convert_harshness = 0;
219 int n_compute_conversion_costs = 0;
220 int n_inner_fields_searched = 0;
222 /* Convert to or from a base subobject. EXPR is an expression of type
223 `A' or `A*', an expression of type `B' or `B*' is returned. To
224 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
225 the B base instance within A. To convert base A to derived B, CODE
226 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
227 In this latter case, A must not be a morally virtual base of B.
228 NONNULL is true if EXPR is known to be non-NULL (this is only
229 needed when EXPR is of pointer type). CV qualifiers are preserved
230 from EXPR. */
232 tree
233 build_base_path (enum tree_code code,
234 tree expr,
235 tree binfo,
236 int nonnull,
237 tsubst_flags_t complain)
239 tree v_binfo = NULL_TREE;
240 tree d_binfo = NULL_TREE;
241 tree probe;
242 tree offset;
243 tree target_type;
244 tree null_test = NULL;
245 tree ptr_target_type;
246 int fixed_type_p;
247 int want_pointer = TYPE_PTR_P (TREE_TYPE (expr));
248 bool has_empty = false;
249 bool virtual_access;
251 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
252 return error_mark_node;
254 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
256 d_binfo = probe;
257 if (is_empty_class (BINFO_TYPE (probe)))
258 has_empty = true;
259 if (!v_binfo && BINFO_VIRTUAL_P (probe))
260 v_binfo = probe;
263 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
264 if (want_pointer)
265 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
267 if (code == PLUS_EXPR
268 && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
270 /* This can happen when adjust_result_of_qualified_name_lookup can't
271 find a unique base binfo in a call to a member function. We
272 couldn't give the diagnostic then since we might have been calling
273 a static member function, so we do it now. */
274 if (complain & tf_error)
276 tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
277 ba_unique, NULL, complain);
278 gcc_assert (base == error_mark_node);
280 return error_mark_node;
283 gcc_assert ((code == MINUS_EXPR
284 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
285 || code == PLUS_EXPR);
287 if (binfo == d_binfo)
288 /* Nothing to do. */
289 return expr;
291 if (code == MINUS_EXPR && v_binfo)
293 if (complain & tf_error)
295 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (v_binfo)))
297 if (want_pointer)
298 error ("cannot convert from pointer to base class %qT to "
299 "pointer to derived class %qT because the base is "
300 "virtual", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
301 else
302 error ("cannot convert from base class %qT to derived "
303 "class %qT because the base is virtual",
304 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
306 else
308 if (want_pointer)
309 error ("cannot convert from pointer to base class %qT to "
310 "pointer to derived class %qT via virtual base %qT",
311 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
312 BINFO_TYPE (v_binfo));
313 else
314 error ("cannot convert from base class %qT to derived "
315 "class %qT via virtual base %qT", BINFO_TYPE (binfo),
316 BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
319 return error_mark_node;
322 if (!want_pointer)
323 /* This must happen before the call to save_expr. */
324 expr = cp_build_addr_expr (expr, complain);
325 else
326 expr = mark_rvalue_use (expr);
328 offset = BINFO_OFFSET (binfo);
329 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
330 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
331 /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
332 cv-unqualified. Extract the cv-qualifiers from EXPR so that the
333 expression returned matches the input. */
334 target_type = cp_build_qualified_type
335 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
336 ptr_target_type = build_pointer_type (target_type);
338 /* Do we need to look in the vtable for the real offset? */
339 virtual_access = (v_binfo && fixed_type_p <= 0);
341 /* Don't bother with the calculations inside sizeof; they'll ICE if the
342 source type is incomplete and the pointer value doesn't matter. In a
343 template (even in fold_non_dependent_expr), we don't have vtables set
344 up properly yet, and the value doesn't matter there either; we're just
345 interested in the result of overload resolution. */
346 if (cp_unevaluated_operand != 0
347 || in_template_function ())
349 expr = build_nop (ptr_target_type, expr);
350 if (!want_pointer)
351 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
352 return expr;
355 /* If we're in an NSDMI, we don't have the full constructor context yet
356 that we need for converting to a virtual base, so just build a stub
357 CONVERT_EXPR and expand it later in bot_replace. */
358 if (virtual_access && fixed_type_p < 0
359 && current_scope () != current_function_decl)
361 expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
362 CONVERT_EXPR_VBASE_PATH (expr) = true;
363 if (!want_pointer)
364 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
365 return expr;
368 /* Do we need to check for a null pointer? */
369 if (want_pointer && !nonnull)
371 /* If we know the conversion will not actually change the value
372 of EXPR, then we can avoid testing the expression for NULL.
373 We have to avoid generating a COMPONENT_REF for a base class
374 field, because other parts of the compiler know that such
375 expressions are always non-NULL. */
376 if (!virtual_access && integer_zerop (offset))
377 return build_nop (ptr_target_type, expr);
378 null_test = error_mark_node;
381 /* Protect against multiple evaluation if necessary. */
382 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
383 expr = save_expr (expr);
385 /* Now that we've saved expr, build the real null test. */
386 if (null_test)
388 tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain);
389 null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
390 expr, zero);
393 /* If this is a simple base reference, express it as a COMPONENT_REF. */
394 if (code == PLUS_EXPR && !virtual_access
395 /* We don't build base fields for empty bases, and they aren't very
396 interesting to the optimizers anyway. */
397 && !has_empty)
399 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
400 expr = build_simple_base_path (expr, binfo);
401 if (want_pointer)
402 expr = build_address (expr);
403 target_type = TREE_TYPE (expr);
404 goto out;
407 if (virtual_access)
409 /* Going via virtual base V_BINFO. We need the static offset
410 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
411 V_BINFO. That offset is an entry in D_BINFO's vtable. */
412 tree v_offset;
414 if (fixed_type_p < 0 && in_base_initializer)
416 /* In a base member initializer, we cannot rely on the
417 vtable being set up. We have to indirect via the
418 vtt_parm. */
419 tree t;
421 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
422 t = build_pointer_type (t);
423 v_offset = convert (t, current_vtt_parm);
424 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
426 else
427 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, RO_NULL,
428 complain),
429 TREE_TYPE (TREE_TYPE (expr)));
431 v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
432 v_offset = build1 (NOP_EXPR,
433 build_pointer_type (ptrdiff_type_node),
434 v_offset);
435 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
436 TREE_CONSTANT (v_offset) = 1;
438 offset = convert_to_integer (ptrdiff_type_node,
439 size_diffop_loc (input_location, offset,
440 BINFO_OFFSET (v_binfo)));
442 if (!integer_zerop (offset))
443 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
445 if (fixed_type_p < 0)
446 /* Negative fixed_type_p means this is a constructor or destructor;
447 virtual base layout is fixed in in-charge [cd]tors, but not in
448 base [cd]tors. */
449 offset = build3 (COND_EXPR, ptrdiff_type_node,
450 build2 (EQ_EXPR, boolean_type_node,
451 current_in_charge_parm, integer_zero_node),
452 v_offset,
453 convert_to_integer (ptrdiff_type_node,
454 BINFO_OFFSET (binfo)));
455 else
456 offset = v_offset;
459 if (want_pointer)
460 target_type = ptr_target_type;
462 expr = build1 (NOP_EXPR, ptr_target_type, expr);
464 if (!integer_zerop (offset))
466 offset = fold_convert (sizetype, offset);
467 if (code == MINUS_EXPR)
468 offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
469 expr = fold_build_pointer_plus (expr, offset);
471 else
472 null_test = NULL;
474 if (!want_pointer)
475 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
477 out:
478 if (null_test)
479 expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
480 build_zero_cst (target_type));
482 return expr;
485 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
486 Perform a derived-to-base conversion by recursively building up a
487 sequence of COMPONENT_REFs to the appropriate base fields. */
489 static tree
490 build_simple_base_path (tree expr, tree binfo)
492 tree type = BINFO_TYPE (binfo);
493 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
494 tree field;
496 if (d_binfo == NULL_TREE)
498 tree temp;
500 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
502 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
503 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
504 an lvalue in the front end; only _DECLs and _REFs are lvalues
505 in the back end. */
506 temp = unary_complex_lvalue (ADDR_EXPR, expr);
507 if (temp)
508 expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
510 return expr;
513 /* Recurse. */
514 expr = build_simple_base_path (expr, d_binfo);
516 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
517 field; field = DECL_CHAIN (field))
518 /* Is this the base field created by build_base_field? */
519 if (TREE_CODE (field) == FIELD_DECL
520 && DECL_FIELD_IS_BASE (field)
521 && TREE_TYPE (field) == type
522 /* If we're looking for a field in the most-derived class,
523 also check the field offset; we can have two base fields
524 of the same type if one is an indirect virtual base and one
525 is a direct non-virtual base. */
526 && (BINFO_INHERITANCE_CHAIN (d_binfo)
527 || tree_int_cst_equal (byte_position (field),
528 BINFO_OFFSET (binfo))))
530 /* We don't use build_class_member_access_expr here, as that
531 has unnecessary checks, and more importantly results in
532 recursive calls to dfs_walk_once. */
533 int type_quals = cp_type_quals (TREE_TYPE (expr));
535 expr = build3 (COMPONENT_REF,
536 cp_build_qualified_type (type, type_quals),
537 expr, field, NULL_TREE);
538 expr = fold_if_not_in_template (expr);
540 /* Mark the expression const or volatile, as appropriate.
541 Even though we've dealt with the type above, we still have
542 to mark the expression itself. */
543 if (type_quals & TYPE_QUAL_CONST)
544 TREE_READONLY (expr) = 1;
545 if (type_quals & TYPE_QUAL_VOLATILE)
546 TREE_THIS_VOLATILE (expr) = 1;
548 return expr;
551 /* Didn't find the base field?!? */
552 gcc_unreachable ();
555 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
556 type is a class type or a pointer to a class type. In the former
557 case, TYPE is also a class type; in the latter it is another
558 pointer type. If CHECK_ACCESS is true, an error message is emitted
559 if TYPE is inaccessible. If OBJECT has pointer type, the value is
560 assumed to be non-NULL. */
562 tree
563 convert_to_base (tree object, tree type, bool check_access, bool nonnull,
564 tsubst_flags_t complain)
566 tree binfo;
567 tree object_type;
569 if (TYPE_PTR_P (TREE_TYPE (object)))
571 object_type = TREE_TYPE (TREE_TYPE (object));
572 type = TREE_TYPE (type);
574 else
575 object_type = TREE_TYPE (object);
577 binfo = lookup_base (object_type, type, check_access ? ba_check : ba_unique,
578 NULL, complain);
579 if (!binfo || binfo == error_mark_node)
580 return error_mark_node;
582 return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
585 /* EXPR is an expression with unqualified class type. BASE is a base
586 binfo of that class type. Returns EXPR, converted to the BASE
587 type. This function assumes that EXPR is the most derived class;
588 therefore virtual bases can be found at their static offsets. */
590 tree
591 convert_to_base_statically (tree expr, tree base)
593 tree expr_type;
595 expr_type = TREE_TYPE (expr);
596 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
598 /* If this is a non-empty base, use a COMPONENT_REF. */
599 if (!is_empty_class (BINFO_TYPE (base)))
600 return build_simple_base_path (expr, base);
602 /* We use fold_build2 and fold_convert below to simplify the trees
603 provided to the optimizers. It is not safe to call these functions
604 when processing a template because they do not handle C++-specific
605 trees. */
606 gcc_assert (!processing_template_decl);
607 expr = cp_build_addr_expr (expr, tf_warning_or_error);
608 if (!integer_zerop (BINFO_OFFSET (base)))
609 expr = fold_build_pointer_plus_loc (input_location,
610 expr, BINFO_OFFSET (base));
611 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
612 expr = build_fold_indirect_ref_loc (input_location, expr);
615 return expr;
619 tree
620 build_vfield_ref (tree datum, tree type)
622 tree vfield, vcontext;
624 if (datum == error_mark_node)
625 return error_mark_node;
627 /* First, convert to the requested type. */
628 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
629 datum = convert_to_base (datum, type, /*check_access=*/false,
630 /*nonnull=*/true, tf_warning_or_error);
632 /* Second, the requested type may not be the owner of its own vptr.
633 If not, convert to the base class that owns it. We cannot use
634 convert_to_base here, because VCONTEXT may appear more than once
635 in the inheritance hierarchy of TYPE, and thus direct conversion
636 between the types may be ambiguous. Following the path back up
637 one step at a time via primary bases avoids the problem. */
638 vfield = TYPE_VFIELD (type);
639 vcontext = DECL_CONTEXT (vfield);
640 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
642 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
643 type = TREE_TYPE (datum);
646 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
649 /* Given an object INSTANCE, return an expression which yields the
650 vtable element corresponding to INDEX. There are many special
651 cases for INSTANCE which we take care of here, mainly to avoid
652 creating extra tree nodes when we don't have to. */
654 static tree
655 build_vtbl_ref_1 (tree instance, tree idx)
657 tree aref;
658 tree vtbl = NULL_TREE;
660 /* Try to figure out what a reference refers to, and
661 access its virtual function table directly. */
663 int cdtorp = 0;
664 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
666 tree basetype = non_reference (TREE_TYPE (instance));
668 if (fixed_type && !cdtorp)
670 tree binfo = lookup_base (fixed_type, basetype,
671 ba_unique, NULL, tf_none);
672 if (binfo && binfo != error_mark_node)
673 vtbl = unshare_expr (BINFO_VTABLE (binfo));
676 if (!vtbl)
677 vtbl = build_vfield_ref (instance, basetype);
679 aref = build_array_ref (input_location, vtbl, idx);
680 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
682 return aref;
685 tree
686 build_vtbl_ref (tree instance, tree idx)
688 tree aref = build_vtbl_ref_1 (instance, idx);
690 return aref;
693 /* Given a stable object pointer INSTANCE_PTR, return an expression which
694 yields a function pointer corresponding to vtable element INDEX. */
696 tree
697 build_vfn_ref (tree instance_ptr, tree idx)
699 tree aref;
701 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
702 tf_warning_or_error),
703 idx);
705 /* When using function descriptors, the address of the
706 vtable entry is treated as a function pointer. */
707 if (TARGET_VTABLE_USES_DESCRIPTORS)
708 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
709 cp_build_addr_expr (aref, tf_warning_or_error));
711 /* Remember this as a method reference, for later devirtualization. */
712 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
714 return aref;
717 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
718 for the given TYPE. */
720 static tree
721 get_vtable_name (tree type)
723 return mangle_vtbl_for_type (type);
726 /* DECL is an entity associated with TYPE, like a virtual table or an
727 implicitly generated constructor. Determine whether or not DECL
728 should have external or internal linkage at the object file
729 level. This routine does not deal with COMDAT linkage and other
730 similar complexities; it simply sets TREE_PUBLIC if it possible for
731 entities in other translation units to contain copies of DECL, in
732 the abstract. */
734 void
735 set_linkage_according_to_type (tree /*type*/, tree decl)
737 TREE_PUBLIC (decl) = 1;
738 determine_visibility (decl);
741 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
742 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
743 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
745 static tree
746 build_vtable (tree class_type, tree name, tree vtable_type)
748 tree decl;
750 decl = build_lang_decl (VAR_DECL, name, vtable_type);
751 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
752 now to avoid confusion in mangle_decl. */
753 SET_DECL_ASSEMBLER_NAME (decl, name);
754 DECL_CONTEXT (decl) = class_type;
755 DECL_ARTIFICIAL (decl) = 1;
756 TREE_STATIC (decl) = 1;
757 TREE_READONLY (decl) = 1;
758 DECL_VIRTUAL_P (decl) = 1;
759 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
760 DECL_VTABLE_OR_VTT_P (decl) = 1;
761 /* At one time the vtable info was grabbed 2 words at a time. This
762 fails on sparc unless you have 8-byte alignment. (tiemann) */
763 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
764 DECL_ALIGN (decl));
765 set_linkage_according_to_type (class_type, decl);
766 /* The vtable has not been defined -- yet. */
767 DECL_EXTERNAL (decl) = 1;
768 DECL_NOT_REALLY_EXTERN (decl) = 1;
770 /* Mark the VAR_DECL node representing the vtable itself as a
771 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
772 is rather important that such things be ignored because any
773 effort to actually generate DWARF for them will run into
774 trouble when/if we encounter code like:
776 #pragma interface
777 struct S { virtual void member (); };
779 because the artificial declaration of the vtable itself (as
780 manufactured by the g++ front end) will say that the vtable is
781 a static member of `S' but only *after* the debug output for
782 the definition of `S' has already been output. This causes
783 grief because the DWARF entry for the definition of the vtable
784 will try to refer back to an earlier *declaration* of the
785 vtable as a static member of `S' and there won't be one. We
786 might be able to arrange to have the "vtable static member"
787 attached to the member list for `S' before the debug info for
788 `S' get written (which would solve the problem) but that would
789 require more intrusive changes to the g++ front end. */
790 DECL_IGNORED_P (decl) = 1;
792 return decl;
795 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
796 or even complete. If this does not exist, create it. If COMPLETE is
797 nonzero, then complete the definition of it -- that will render it
798 impossible to actually build the vtable, but is useful to get at those
799 which are known to exist in the runtime. */
801 tree
802 get_vtable_decl (tree type, int complete)
804 tree decl;
806 if (CLASSTYPE_VTABLES (type))
807 return CLASSTYPE_VTABLES (type);
809 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
810 CLASSTYPE_VTABLES (type) = decl;
812 if (complete)
814 DECL_EXTERNAL (decl) = 1;
815 cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
818 return decl;
821 /* Build the primary virtual function table for TYPE. If BINFO is
822 non-NULL, build the vtable starting with the initial approximation
823 that it is the same as the one which is the head of the association
824 list. Returns a nonzero value if a new vtable is actually
825 created. */
827 static int
828 build_primary_vtable (tree binfo, tree type)
830 tree decl;
831 tree virtuals;
833 decl = get_vtable_decl (type, /*complete=*/0);
835 if (binfo)
837 if (BINFO_NEW_VTABLE_MARKED (binfo))
838 /* We have already created a vtable for this base, so there's
839 no need to do it again. */
840 return 0;
842 virtuals = copy_list (BINFO_VIRTUALS (binfo));
843 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
844 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
845 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
847 else
849 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
850 virtuals = NULL_TREE;
853 if (GATHER_STATISTICS)
855 n_vtables += 1;
856 n_vtable_elems += list_length (virtuals);
859 /* Initialize the association list for this type, based
860 on our first approximation. */
861 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
862 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
863 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
864 return 1;
867 /* Give BINFO a new virtual function table which is initialized
868 with a skeleton-copy of its original initialization. The only
869 entry that changes is the `delta' entry, so we can really
870 share a lot of structure.
872 FOR_TYPE is the most derived type which caused this table to
873 be needed.
875 Returns nonzero if we haven't met BINFO before.
877 The order in which vtables are built (by calling this function) for
878 an object must remain the same, otherwise a binary incompatibility
879 can result. */
881 static int
882 build_secondary_vtable (tree binfo)
884 if (BINFO_NEW_VTABLE_MARKED (binfo))
885 /* We already created a vtable for this base. There's no need to
886 do it again. */
887 return 0;
889 /* Remember that we've created a vtable for this BINFO, so that we
890 don't try to do so again. */
891 SET_BINFO_NEW_VTABLE_MARKED (binfo);
893 /* Make fresh virtual list, so we can smash it later. */
894 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
896 /* Secondary vtables are laid out as part of the same structure as
897 the primary vtable. */
898 BINFO_VTABLE (binfo) = NULL_TREE;
899 return 1;
902 /* Create a new vtable for BINFO which is the hierarchy dominated by
903 T. Return nonzero if we actually created a new vtable. */
905 static int
906 make_new_vtable (tree t, tree binfo)
908 if (binfo == TYPE_BINFO (t))
909 /* In this case, it is *type*'s vtable we are modifying. We start
910 with the approximation that its vtable is that of the
911 immediate base class. */
912 return build_primary_vtable (binfo, t);
913 else
914 /* This is our very own copy of `basetype' to play with. Later,
915 we will fill in all the virtual functions that override the
916 virtual functions in these base classes which are not defined
917 by the current type. */
918 return build_secondary_vtable (binfo);
921 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
922 (which is in the hierarchy dominated by T) list FNDECL as its
923 BV_FN. DELTA is the required constant adjustment from the `this'
924 pointer where the vtable entry appears to the `this' required when
925 the function is actually called. */
927 static void
928 modify_vtable_entry (tree t,
929 tree binfo,
930 tree fndecl,
931 tree delta,
932 tree *virtuals)
934 tree v;
936 v = *virtuals;
938 if (fndecl != BV_FN (v)
939 || !tree_int_cst_equal (delta, BV_DELTA (v)))
941 /* We need a new vtable for BINFO. */
942 if (make_new_vtable (t, binfo))
944 /* If we really did make a new vtable, we also made a copy
945 of the BINFO_VIRTUALS list. Now, we have to find the
946 corresponding entry in that list. */
947 *virtuals = BINFO_VIRTUALS (binfo);
948 while (BV_FN (*virtuals) != BV_FN (v))
949 *virtuals = TREE_CHAIN (*virtuals);
950 v = *virtuals;
953 BV_DELTA (v) = delta;
954 BV_VCALL_INDEX (v) = NULL_TREE;
955 BV_FN (v) = fndecl;
960 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
961 the USING_DECL naming METHOD. Returns true if the method could be
962 added to the method vec. */
964 bool
965 add_method (tree type, tree method, tree using_decl)
967 unsigned slot;
968 tree overload;
969 bool template_conv_p = false;
970 bool conv_p;
971 vec<tree, va_gc> *method_vec;
972 bool complete_p;
973 bool insert_p = false;
974 tree current_fns;
975 tree fns;
977 if (method == error_mark_node)
978 return false;
980 complete_p = COMPLETE_TYPE_P (type);
981 conv_p = DECL_CONV_FN_P (method);
982 if (conv_p)
983 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
984 && DECL_TEMPLATE_CONV_FN_P (method));
986 method_vec = CLASSTYPE_METHOD_VEC (type);
987 if (!method_vec)
989 /* Make a new method vector. We start with 8 entries. We must
990 allocate at least two (for constructors and destructors), and
991 we're going to end up with an assignment operator at some
992 point as well. */
993 vec_alloc (method_vec, 8);
994 /* Create slots for constructors and destructors. */
995 method_vec->quick_push (NULL_TREE);
996 method_vec->quick_push (NULL_TREE);
997 CLASSTYPE_METHOD_VEC (type) = method_vec;
1000 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
1001 grok_special_member_properties (method);
1003 /* Constructors and destructors go in special slots. */
1004 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
1005 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
1006 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1008 slot = CLASSTYPE_DESTRUCTOR_SLOT;
1010 if (TYPE_FOR_JAVA (type))
1012 if (!DECL_ARTIFICIAL (method))
1013 error ("Java class %qT cannot have a destructor", type);
1014 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
1015 error ("Java class %qT cannot have an implicit non-trivial "
1016 "destructor",
1017 type);
1020 else
1022 tree m;
1024 insert_p = true;
1025 /* See if we already have an entry with this name. */
1026 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1027 vec_safe_iterate (method_vec, slot, &m);
1028 ++slot)
1030 m = OVL_CURRENT (m);
1031 if (template_conv_p)
1033 if (TREE_CODE (m) == TEMPLATE_DECL
1034 && DECL_TEMPLATE_CONV_FN_P (m))
1035 insert_p = false;
1036 break;
1038 if (conv_p && !DECL_CONV_FN_P (m))
1039 break;
1040 if (DECL_NAME (m) == DECL_NAME (method))
1042 insert_p = false;
1043 break;
1045 if (complete_p
1046 && !DECL_CONV_FN_P (m)
1047 && DECL_NAME (m) > DECL_NAME (method))
1048 break;
1051 current_fns = insert_p ? NULL_TREE : (*method_vec)[slot];
1053 /* Check to see if we've already got this method. */
1054 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1056 tree fn = OVL_CURRENT (fns);
1057 tree fn_type;
1058 tree method_type;
1059 tree parms1;
1060 tree parms2;
1062 if (TREE_CODE (fn) != TREE_CODE (method))
1063 continue;
1065 /* [over.load] Member function declarations with the
1066 same name and the same parameter types cannot be
1067 overloaded if any of them is a static member
1068 function declaration.
1070 [over.load] Member function declarations with the same name and
1071 the same parameter-type-list as well as member function template
1072 declarations with the same name, the same parameter-type-list, and
1073 the same template parameter lists cannot be overloaded if any of
1074 them, but not all, have a ref-qualifier.
1076 [namespace.udecl] When a using-declaration brings names
1077 from a base class into a derived class scope, member
1078 functions in the derived class override and/or hide member
1079 functions with the same name and parameter types in a base
1080 class (rather than conflicting). */
1081 fn_type = TREE_TYPE (fn);
1082 method_type = TREE_TYPE (method);
1083 parms1 = TYPE_ARG_TYPES (fn_type);
1084 parms2 = TYPE_ARG_TYPES (method_type);
1086 /* Compare the quals on the 'this' parm. Don't compare
1087 the whole types, as used functions are treated as
1088 coming from the using class in overload resolution. */
1089 if (! DECL_STATIC_FUNCTION_P (fn)
1090 && ! DECL_STATIC_FUNCTION_P (method)
1091 /* Either both or neither need to be ref-qualified for
1092 differing quals to allow overloading. */
1093 && (FUNCTION_REF_QUALIFIED (fn_type)
1094 == FUNCTION_REF_QUALIFIED (method_type))
1095 && (type_memfn_quals (fn_type) != type_memfn_quals (method_type)
1096 || type_memfn_rqual (fn_type) != type_memfn_rqual (method_type)))
1097 continue;
1099 /* For templates, the return type and template parameters
1100 must be identical. */
1101 if (TREE_CODE (fn) == TEMPLATE_DECL
1102 && (!same_type_p (TREE_TYPE (fn_type),
1103 TREE_TYPE (method_type))
1104 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1105 DECL_TEMPLATE_PARMS (method))))
1106 continue;
1108 if (! DECL_STATIC_FUNCTION_P (fn))
1109 parms1 = TREE_CHAIN (parms1);
1110 if (! DECL_STATIC_FUNCTION_P (method))
1111 parms2 = TREE_CHAIN (parms2);
1113 if (compparms (parms1, parms2)
1114 && (!DECL_CONV_FN_P (fn)
1115 || same_type_p (TREE_TYPE (fn_type),
1116 TREE_TYPE (method_type))))
1118 /* For function versions, their parms and types match
1119 but they are not duplicates. Record function versions
1120 as and when they are found. extern "C" functions are
1121 not treated as versions. */
1122 if (TREE_CODE (fn) == FUNCTION_DECL
1123 && TREE_CODE (method) == FUNCTION_DECL
1124 && !DECL_EXTERN_C_P (fn)
1125 && !DECL_EXTERN_C_P (method)
1126 && targetm.target_option.function_versions (fn, method))
1128 /* Mark functions as versions if necessary. Modify the mangled
1129 decl name if necessary. */
1130 if (!DECL_FUNCTION_VERSIONED (fn))
1132 DECL_FUNCTION_VERSIONED (fn) = 1;
1133 if (DECL_ASSEMBLER_NAME_SET_P (fn))
1134 mangle_decl (fn);
1136 if (!DECL_FUNCTION_VERSIONED (method))
1138 DECL_FUNCTION_VERSIONED (method) = 1;
1139 if (DECL_ASSEMBLER_NAME_SET_P (method))
1140 mangle_decl (method);
1142 record_function_versions (fn, method);
1143 continue;
1145 if (DECL_INHERITED_CTOR_BASE (method))
1147 if (DECL_INHERITED_CTOR_BASE (fn))
1149 error_at (DECL_SOURCE_LOCATION (method),
1150 "%q#D inherited from %qT", method,
1151 DECL_INHERITED_CTOR_BASE (method));
1152 error_at (DECL_SOURCE_LOCATION (fn),
1153 "conflicts with version inherited from %qT",
1154 DECL_INHERITED_CTOR_BASE (fn));
1156 /* Otherwise defer to the other function. */
1157 return false;
1159 if (using_decl)
1161 if (DECL_CONTEXT (fn) == type)
1162 /* Defer to the local function. */
1163 return false;
1165 else
1167 error ("%q+#D cannot be overloaded", method);
1168 error ("with %q+#D", fn);
1171 /* We don't call duplicate_decls here to merge the
1172 declarations because that will confuse things if the
1173 methods have inline definitions. In particular, we
1174 will crash while processing the definitions. */
1175 return false;
1179 /* A class should never have more than one destructor. */
1180 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1181 return false;
1183 /* Add the new binding. */
1184 if (using_decl)
1186 overload = ovl_cons (method, current_fns);
1187 OVL_USED (overload) = true;
1189 else
1190 overload = build_overload (method, current_fns);
1192 if (conv_p)
1193 TYPE_HAS_CONVERSION (type) = 1;
1194 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1195 push_class_level_binding (DECL_NAME (method), overload);
1197 if (insert_p)
1199 bool reallocated;
1201 /* We only expect to add few methods in the COMPLETE_P case, so
1202 just make room for one more method in that case. */
1203 if (complete_p)
1204 reallocated = vec_safe_reserve_exact (method_vec, 1);
1205 else
1206 reallocated = vec_safe_reserve (method_vec, 1);
1207 if (reallocated)
1208 CLASSTYPE_METHOD_VEC (type) = method_vec;
1209 if (slot == method_vec->length ())
1210 method_vec->quick_push (overload);
1211 else
1212 method_vec->quick_insert (slot, overload);
1214 else
1215 /* Replace the current slot. */
1216 (*method_vec)[slot] = overload;
1217 return true;
1220 /* Subroutines of finish_struct. */
1222 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1223 legit, otherwise return 0. */
1225 static int
1226 alter_access (tree t, tree fdecl, tree access)
1228 tree elem;
1230 if (!DECL_LANG_SPECIFIC (fdecl))
1231 retrofit_lang_decl (fdecl);
1233 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1235 elem = purpose_member (t, DECL_ACCESS (fdecl));
1236 if (elem)
1238 if (TREE_VALUE (elem) != access)
1240 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1241 error ("conflicting access specifications for method"
1242 " %q+D, ignored", TREE_TYPE (fdecl));
1243 else
1244 error ("conflicting access specifications for field %qE, ignored",
1245 DECL_NAME (fdecl));
1247 else
1249 /* They're changing the access to the same thing they changed
1250 it to before. That's OK. */
1254 else
1256 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl,
1257 tf_warning_or_error);
1258 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1259 return 1;
1261 return 0;
1264 /* Process the USING_DECL, which is a member of T. */
1266 static void
1267 handle_using_decl (tree using_decl, tree t)
1269 tree decl = USING_DECL_DECLS (using_decl);
1270 tree name = DECL_NAME (using_decl);
1271 tree access
1272 = TREE_PRIVATE (using_decl) ? access_private_node
1273 : TREE_PROTECTED (using_decl) ? access_protected_node
1274 : access_public_node;
1275 tree flist = NULL_TREE;
1276 tree old_value;
1278 gcc_assert (!processing_template_decl && decl);
1280 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
1281 tf_warning_or_error);
1282 if (old_value)
1284 if (is_overloaded_fn (old_value))
1285 old_value = OVL_CURRENT (old_value);
1287 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1288 /* OK */;
1289 else
1290 old_value = NULL_TREE;
1293 cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
1295 if (is_overloaded_fn (decl))
1296 flist = decl;
1298 if (! old_value)
1300 else if (is_overloaded_fn (old_value))
1302 if (flist)
1303 /* It's OK to use functions from a base when there are functions with
1304 the same name already present in the current class. */;
1305 else
1307 error ("%q+D invalid in %q#T", using_decl, t);
1308 error (" because of local method %q+#D with same name",
1309 OVL_CURRENT (old_value));
1310 return;
1313 else if (!DECL_ARTIFICIAL (old_value))
1315 error ("%q+D invalid in %q#T", using_decl, t);
1316 error (" because of local member %q+#D with same name", old_value);
1317 return;
1320 /* Make type T see field decl FDECL with access ACCESS. */
1321 if (flist)
1322 for (; flist; flist = OVL_NEXT (flist))
1324 add_method (t, OVL_CURRENT (flist), using_decl);
1325 alter_access (t, OVL_CURRENT (flist), access);
1327 else
1328 alter_access (t, decl, access);
1331 /* walk_tree callback for check_abi_tags: if the type at *TP involves any
1332 types with abi tags, add the corresponding identifiers to the VEC in
1333 *DATA and set IDENTIFIER_MARKED. */
1335 struct abi_tag_data
1337 tree t;
1338 tree subob;
1341 static tree
1342 find_abi_tags_r (tree *tp, int */*walk_subtrees*/, void *data)
1344 if (!OVERLOAD_TYPE_P (*tp))
1345 return NULL_TREE;
1347 if (tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (*tp)))
1349 struct abi_tag_data *p = static_cast<struct abi_tag_data*>(data);
1350 for (tree list = TREE_VALUE (attributes); list;
1351 list = TREE_CHAIN (list))
1353 tree tag = TREE_VALUE (list);
1354 tree id = get_identifier (TREE_STRING_POINTER (tag));
1355 if (!IDENTIFIER_MARKED (id))
1357 if (TYPE_P (p->subob))
1359 warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1360 "that base %qT has", p->t, tag, p->subob);
1361 inform (location_of (p->subob), "%qT declared here",
1362 p->subob);
1364 else
1366 warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1367 "that %qT (used in the type of %qD) has",
1368 p->t, tag, *tp, p->subob);
1369 inform (location_of (p->subob), "%qD declared here",
1370 p->subob);
1371 inform (location_of (*tp), "%qT declared here", *tp);
1376 return NULL_TREE;
1379 /* Set IDENTIFIER_MARKED on all the ABI tags on T and its (transitively
1380 complete) template arguments. */
1382 static void
1383 mark_type_abi_tags (tree t, bool val)
1385 tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1386 if (attributes)
1388 for (tree list = TREE_VALUE (attributes); list;
1389 list = TREE_CHAIN (list))
1391 tree tag = TREE_VALUE (list);
1392 tree id = get_identifier (TREE_STRING_POINTER (tag));
1393 IDENTIFIER_MARKED (id) = val;
1397 /* Also mark ABI tags from template arguments. */
1398 if (CLASSTYPE_TEMPLATE_INFO (t))
1400 tree args = CLASSTYPE_TI_ARGS (t);
1401 for (int i = 0; i < TMPL_ARGS_DEPTH (args); ++i)
1403 tree level = TMPL_ARGS_LEVEL (args, i+1);
1404 for (int j = 0; j < TREE_VEC_LENGTH (level); ++j)
1406 tree arg = TREE_VEC_ELT (level, j);
1407 if (CLASS_TYPE_P (arg))
1408 mark_type_abi_tags (arg, val);
1414 /* Check that class T has all the abi tags that subobject SUBOB has, or
1415 warn if not. */
1417 static void
1418 check_abi_tags (tree t, tree subob)
1420 mark_type_abi_tags (t, true);
1422 tree subtype = TYPE_P (subob) ? subob : TREE_TYPE (subob);
1423 struct abi_tag_data data = { t, subob };
1425 cp_walk_tree_without_duplicates (&subtype, find_abi_tags_r, &data);
1427 mark_type_abi_tags (t, false);
1430 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1431 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1432 properties of the bases. */
1434 static void
1435 check_bases (tree t,
1436 int* cant_have_const_ctor_p,
1437 int* no_const_asn_ref_p)
1439 int i;
1440 bool seen_non_virtual_nearly_empty_base_p = 0;
1441 int seen_tm_mask = 0;
1442 tree base_binfo;
1443 tree binfo;
1444 tree field = NULL_TREE;
1446 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1447 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
1448 if (TREE_CODE (field) == FIELD_DECL)
1449 break;
1451 for (binfo = TYPE_BINFO (t), i = 0;
1452 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1454 tree basetype = TREE_TYPE (base_binfo);
1456 gcc_assert (COMPLETE_TYPE_P (basetype));
1458 if (CLASSTYPE_FINAL (basetype))
1459 error ("cannot derive from %<final%> base %qT in derived type %qT",
1460 basetype, t);
1462 /* If any base class is non-literal, so is the derived class. */
1463 if (!CLASSTYPE_LITERAL_P (basetype))
1464 CLASSTYPE_LITERAL_P (t) = false;
1466 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1467 here because the case of virtual functions but non-virtual
1468 dtor is handled in finish_struct_1. */
1469 if (!TYPE_POLYMORPHIC_P (basetype))
1470 warning (OPT_Weffc__,
1471 "base class %q#T has a non-virtual destructor", basetype);
1473 /* If the base class doesn't have copy constructors or
1474 assignment operators that take const references, then the
1475 derived class cannot have such a member automatically
1476 generated. */
1477 if (TYPE_HAS_COPY_CTOR (basetype)
1478 && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
1479 *cant_have_const_ctor_p = 1;
1480 if (TYPE_HAS_COPY_ASSIGN (basetype)
1481 && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
1482 *no_const_asn_ref_p = 1;
1484 if (BINFO_VIRTUAL_P (base_binfo))
1485 /* A virtual base does not effect nearly emptiness. */
1487 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1489 if (seen_non_virtual_nearly_empty_base_p)
1490 /* And if there is more than one nearly empty base, then the
1491 derived class is not nearly empty either. */
1492 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1493 else
1494 /* Remember we've seen one. */
1495 seen_non_virtual_nearly_empty_base_p = 1;
1497 else if (!is_empty_class (basetype))
1498 /* If the base class is not empty or nearly empty, then this
1499 class cannot be nearly empty. */
1500 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1502 /* A lot of properties from the bases also apply to the derived
1503 class. */
1504 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1505 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1506 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1507 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
1508 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
1509 || !TYPE_HAS_COPY_ASSIGN (basetype));
1510 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
1511 || !TYPE_HAS_COPY_CTOR (basetype));
1512 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
1513 |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
1514 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
1515 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1516 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1517 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1518 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
1519 || TYPE_HAS_COMPLEX_DFLT (basetype));
1520 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT
1521 (t, CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
1522 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (basetype));
1523 SET_CLASSTYPE_REF_FIELDS_NEED_INIT
1524 (t, CLASSTYPE_REF_FIELDS_NEED_INIT (t)
1525 | CLASSTYPE_REF_FIELDS_NEED_INIT (basetype));
1527 /* A standard-layout class is a class that:
1529 * has no non-standard-layout base classes, */
1530 CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
1531 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1533 tree basefield;
1534 /* ...has no base classes of the same type as the first non-static
1535 data member... */
1536 if (field && DECL_CONTEXT (field) == t
1537 && (same_type_ignoring_top_level_qualifiers_p
1538 (TREE_TYPE (field), basetype)))
1539 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1540 else
1541 /* ...either has no non-static data members in the most-derived
1542 class and at most one base class with non-static data
1543 members, or has no base classes with non-static data
1544 members */
1545 for (basefield = TYPE_FIELDS (basetype); basefield;
1546 basefield = DECL_CHAIN (basefield))
1547 if (TREE_CODE (basefield) == FIELD_DECL)
1549 if (field)
1550 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1551 else
1552 field = basefield;
1553 break;
1557 /* Don't bother collecting tm attributes if transactional memory
1558 support is not enabled. */
1559 if (flag_tm)
1561 tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
1562 if (tm_attr)
1563 seen_tm_mask |= tm_attr_to_mask (tm_attr);
1566 check_abi_tags (t, basetype);
1569 /* If one of the base classes had TM attributes, and the current class
1570 doesn't define its own, then the current class inherits one. */
1571 if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
1573 tree tm_attr = tm_mask_to_attr (seen_tm_mask & -seen_tm_mask);
1574 TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
1578 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1579 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1580 that have had a nearly-empty virtual primary base stolen by some
1581 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1582 T. */
1584 static void
1585 determine_primary_bases (tree t)
1587 unsigned i;
1588 tree primary = NULL_TREE;
1589 tree type_binfo = TYPE_BINFO (t);
1590 tree base_binfo;
1592 /* Determine the primary bases of our bases. */
1593 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1594 base_binfo = TREE_CHAIN (base_binfo))
1596 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1598 /* See if we're the non-virtual primary of our inheritance
1599 chain. */
1600 if (!BINFO_VIRTUAL_P (base_binfo))
1602 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1603 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1605 if (parent_primary
1606 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1607 BINFO_TYPE (parent_primary)))
1608 /* We are the primary binfo. */
1609 BINFO_PRIMARY_P (base_binfo) = 1;
1611 /* Determine if we have a virtual primary base, and mark it so.
1613 if (primary && BINFO_VIRTUAL_P (primary))
1615 tree this_primary = copied_binfo (primary, base_binfo);
1617 if (BINFO_PRIMARY_P (this_primary))
1618 /* Someone already claimed this base. */
1619 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1620 else
1622 tree delta;
1624 BINFO_PRIMARY_P (this_primary) = 1;
1625 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1627 /* A virtual binfo might have been copied from within
1628 another hierarchy. As we're about to use it as a
1629 primary base, make sure the offsets match. */
1630 delta = size_diffop_loc (input_location,
1631 convert (ssizetype,
1632 BINFO_OFFSET (base_binfo)),
1633 convert (ssizetype,
1634 BINFO_OFFSET (this_primary)));
1636 propagate_binfo_offsets (this_primary, delta);
1641 /* First look for a dynamic direct non-virtual base. */
1642 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1644 tree basetype = BINFO_TYPE (base_binfo);
1646 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1648 primary = base_binfo;
1649 goto found;
1653 /* A "nearly-empty" virtual base class can be the primary base
1654 class, if no non-virtual polymorphic base can be found. Look for
1655 a nearly-empty virtual dynamic base that is not already a primary
1656 base of something in the hierarchy. If there is no such base,
1657 just pick the first nearly-empty virtual base. */
1659 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1660 base_binfo = TREE_CHAIN (base_binfo))
1661 if (BINFO_VIRTUAL_P (base_binfo)
1662 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1664 if (!BINFO_PRIMARY_P (base_binfo))
1666 /* Found one that is not primary. */
1667 primary = base_binfo;
1668 goto found;
1670 else if (!primary)
1671 /* Remember the first candidate. */
1672 primary = base_binfo;
1675 found:
1676 /* If we've got a primary base, use it. */
1677 if (primary)
1679 tree basetype = BINFO_TYPE (primary);
1681 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1682 if (BINFO_PRIMARY_P (primary))
1683 /* We are stealing a primary base. */
1684 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1685 BINFO_PRIMARY_P (primary) = 1;
1686 if (BINFO_VIRTUAL_P (primary))
1688 tree delta;
1690 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1691 /* A virtual binfo might have been copied from within
1692 another hierarchy. As we're about to use it as a primary
1693 base, make sure the offsets match. */
1694 delta = size_diffop_loc (input_location, ssize_int (0),
1695 convert (ssizetype, BINFO_OFFSET (primary)));
1697 propagate_binfo_offsets (primary, delta);
1700 primary = TYPE_BINFO (basetype);
1702 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1703 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1704 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1708 /* Update the variant types of T. */
1710 void
1711 fixup_type_variants (tree t)
1713 tree variants;
1715 if (!t)
1716 return;
1718 for (variants = TYPE_NEXT_VARIANT (t);
1719 variants;
1720 variants = TYPE_NEXT_VARIANT (variants))
1722 /* These fields are in the _TYPE part of the node, not in
1723 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1724 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1725 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1726 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1727 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1729 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1731 TYPE_BINFO (variants) = TYPE_BINFO (t);
1733 /* Copy whatever these are holding today. */
1734 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1735 TYPE_METHODS (variants) = TYPE_METHODS (t);
1736 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1740 /* Early variant fixups: we apply attributes at the beginning of the class
1741 definition, and we need to fix up any variants that have already been
1742 made via elaborated-type-specifier so that check_qualified_type works. */
1744 void
1745 fixup_attribute_variants (tree t)
1747 tree variants;
1749 if (!t)
1750 return;
1752 for (variants = TYPE_NEXT_VARIANT (t);
1753 variants;
1754 variants = TYPE_NEXT_VARIANT (variants))
1756 /* These are the two fields that check_qualified_type looks at and
1757 are affected by attributes. */
1758 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1759 TYPE_ALIGN (variants) = TYPE_ALIGN (t);
1763 /* Set memoizing fields and bits of T (and its variants) for later
1764 use. */
1766 static void
1767 finish_struct_bits (tree t)
1769 /* Fix up variants (if any). */
1770 fixup_type_variants (t);
1772 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1773 /* For a class w/o baseclasses, 'finish_struct' has set
1774 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1775 Similarly for a class whose base classes do not have vtables.
1776 When neither of these is true, we might have removed abstract
1777 virtuals (by providing a definition), added some (by declaring
1778 new ones), or redeclared ones from a base class. We need to
1779 recalculate what's really an abstract virtual at this point (by
1780 looking in the vtables). */
1781 get_pure_virtuals (t);
1783 /* If this type has a copy constructor or a destructor, force its
1784 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1785 nonzero. This will cause it to be passed by invisible reference
1786 and prevent it from being returned in a register. */
1787 if (type_has_nontrivial_copy_init (t)
1788 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1790 tree variants;
1791 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1792 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1794 SET_TYPE_MODE (variants, BLKmode);
1795 TREE_ADDRESSABLE (variants) = 1;
1800 /* Issue warnings about T having private constructors, but no friends,
1801 and so forth.
1803 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1804 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1805 non-private static member functions. */
1807 static void
1808 maybe_warn_about_overly_private_class (tree t)
1810 int has_member_fn = 0;
1811 int has_nonprivate_method = 0;
1812 tree fn;
1814 if (!warn_ctor_dtor_privacy
1815 /* If the class has friends, those entities might create and
1816 access instances, so we should not warn. */
1817 || (CLASSTYPE_FRIEND_CLASSES (t)
1818 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1819 /* We will have warned when the template was declared; there's
1820 no need to warn on every instantiation. */
1821 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1822 /* There's no reason to even consider warning about this
1823 class. */
1824 return;
1826 /* We only issue one warning, if more than one applies, because
1827 otherwise, on code like:
1829 class A {
1830 // Oops - forgot `public:'
1831 A();
1832 A(const A&);
1833 ~A();
1836 we warn several times about essentially the same problem. */
1838 /* Check to see if all (non-constructor, non-destructor) member
1839 functions are private. (Since there are no friends or
1840 non-private statics, we can't ever call any of the private member
1841 functions.) */
1842 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
1843 /* We're not interested in compiler-generated methods; they don't
1844 provide any way to call private members. */
1845 if (!DECL_ARTIFICIAL (fn))
1847 if (!TREE_PRIVATE (fn))
1849 if (DECL_STATIC_FUNCTION_P (fn))
1850 /* A non-private static member function is just like a
1851 friend; it can create and invoke private member
1852 functions, and be accessed without a class
1853 instance. */
1854 return;
1856 has_nonprivate_method = 1;
1857 /* Keep searching for a static member function. */
1859 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1860 has_member_fn = 1;
1863 if (!has_nonprivate_method && has_member_fn)
1865 /* There are no non-private methods, and there's at least one
1866 private member function that isn't a constructor or
1867 destructor. (If all the private members are
1868 constructors/destructors we want to use the code below that
1869 issues error messages specifically referring to
1870 constructors/destructors.) */
1871 unsigned i;
1872 tree binfo = TYPE_BINFO (t);
1874 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1875 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1877 has_nonprivate_method = 1;
1878 break;
1880 if (!has_nonprivate_method)
1882 warning (OPT_Wctor_dtor_privacy,
1883 "all member functions in class %qT are private", t);
1884 return;
1888 /* Even if some of the member functions are non-private, the class
1889 won't be useful for much if all the constructors or destructors
1890 are private: such an object can never be created or destroyed. */
1891 fn = CLASSTYPE_DESTRUCTORS (t);
1892 if (fn && TREE_PRIVATE (fn))
1894 warning (OPT_Wctor_dtor_privacy,
1895 "%q#T only defines a private destructor and has no friends",
1897 return;
1900 /* Warn about classes that have private constructors and no friends. */
1901 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1902 /* Implicitly generated constructors are always public. */
1903 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1904 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1906 int nonprivate_ctor = 0;
1908 /* If a non-template class does not define a copy
1909 constructor, one is defined for it, enabling it to avoid
1910 this warning. For a template class, this does not
1911 happen, and so we would normally get a warning on:
1913 template <class T> class C { private: C(); };
1915 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
1916 complete non-template or fully instantiated classes have this
1917 flag set. */
1918 if (!TYPE_HAS_COPY_CTOR (t))
1919 nonprivate_ctor = 1;
1920 else
1921 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1923 tree ctor = OVL_CURRENT (fn);
1924 /* Ideally, we wouldn't count copy constructors (or, in
1925 fact, any constructor that takes an argument of the
1926 class type as a parameter) because such things cannot
1927 be used to construct an instance of the class unless
1928 you already have one. But, for now at least, we're
1929 more generous. */
1930 if (! TREE_PRIVATE (ctor))
1932 nonprivate_ctor = 1;
1933 break;
1937 if (nonprivate_ctor == 0)
1939 warning (OPT_Wctor_dtor_privacy,
1940 "%q#T only defines private constructors and has no friends",
1942 return;
1947 static struct {
1948 gt_pointer_operator new_value;
1949 void *cookie;
1950 } resort_data;
1952 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1954 static int
1955 method_name_cmp (const void* m1_p, const void* m2_p)
1957 const tree *const m1 = (const tree *) m1_p;
1958 const tree *const m2 = (const tree *) m2_p;
1960 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1961 return 0;
1962 if (*m1 == NULL_TREE)
1963 return -1;
1964 if (*m2 == NULL_TREE)
1965 return 1;
1966 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1967 return -1;
1968 return 1;
1971 /* This routine compares two fields like method_name_cmp but using the
1972 pointer operator in resort_field_decl_data. */
1974 static int
1975 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1977 const tree *const m1 = (const tree *) m1_p;
1978 const tree *const m2 = (const tree *) m2_p;
1979 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1980 return 0;
1981 if (*m1 == NULL_TREE)
1982 return -1;
1983 if (*m2 == NULL_TREE)
1984 return 1;
1986 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1987 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1988 resort_data.new_value (&d1, resort_data.cookie);
1989 resort_data.new_value (&d2, resort_data.cookie);
1990 if (d1 < d2)
1991 return -1;
1993 return 1;
1996 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1998 void
1999 resort_type_method_vec (void* obj,
2000 void* /*orig_obj*/,
2001 gt_pointer_operator new_value,
2002 void* cookie)
2004 vec<tree, va_gc> *method_vec = (vec<tree, va_gc> *) obj;
2005 int len = vec_safe_length (method_vec);
2006 size_t slot;
2007 tree fn;
2009 /* The type conversion ops have to live at the front of the vec, so we
2010 can't sort them. */
2011 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2012 vec_safe_iterate (method_vec, slot, &fn);
2013 ++slot)
2014 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
2015 break;
2017 if (len - slot > 1)
2019 resort_data.new_value = new_value;
2020 resort_data.cookie = cookie;
2021 qsort (method_vec->address () + slot, len - slot, sizeof (tree),
2022 resort_method_name_cmp);
2026 /* Warn about duplicate methods in fn_fields.
2028 Sort methods that are not special (i.e., constructors, destructors,
2029 and type conversion operators) so that we can find them faster in
2030 search. */
2032 static void
2033 finish_struct_methods (tree t)
2035 tree fn_fields;
2036 vec<tree, va_gc> *method_vec;
2037 int slot, len;
2039 method_vec = CLASSTYPE_METHOD_VEC (t);
2040 if (!method_vec)
2041 return;
2043 len = method_vec->length ();
2045 /* Clear DECL_IN_AGGR_P for all functions. */
2046 for (fn_fields = TYPE_METHODS (t); fn_fields;
2047 fn_fields = DECL_CHAIN (fn_fields))
2048 DECL_IN_AGGR_P (fn_fields) = 0;
2050 /* Issue warnings about private constructors and such. If there are
2051 no methods, then some public defaults are generated. */
2052 maybe_warn_about_overly_private_class (t);
2054 /* The type conversion ops have to live at the front of the vec, so we
2055 can't sort them. */
2056 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2057 method_vec->iterate (slot, &fn_fields);
2058 ++slot)
2059 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
2060 break;
2061 if (len - slot > 1)
2062 qsort (method_vec->address () + slot,
2063 len-slot, sizeof (tree), method_name_cmp);
2066 /* Make BINFO's vtable have N entries, including RTTI entries,
2067 vbase and vcall offsets, etc. Set its type and call the back end
2068 to lay it out. */
2070 static void
2071 layout_vtable_decl (tree binfo, int n)
2073 tree atype;
2074 tree vtable;
2076 atype = build_array_of_n_type (vtable_entry_type, n);
2077 layout_type (atype);
2079 /* We may have to grow the vtable. */
2080 vtable = get_vtbl_decl_for_binfo (binfo);
2081 if (!same_type_p (TREE_TYPE (vtable), atype))
2083 TREE_TYPE (vtable) = atype;
2084 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
2085 layout_decl (vtable, 0);
2089 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
2090 have the same signature. */
2093 same_signature_p (const_tree fndecl, const_tree base_fndecl)
2095 /* One destructor overrides another if they are the same kind of
2096 destructor. */
2097 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
2098 && special_function_p (base_fndecl) == special_function_p (fndecl))
2099 return 1;
2100 /* But a non-destructor never overrides a destructor, nor vice
2101 versa, nor do different kinds of destructors override
2102 one-another. For example, a complete object destructor does not
2103 override a deleting destructor. */
2104 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
2105 return 0;
2107 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
2108 || (DECL_CONV_FN_P (fndecl)
2109 && DECL_CONV_FN_P (base_fndecl)
2110 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
2111 DECL_CONV_FN_TYPE (base_fndecl))))
2113 tree fntype = TREE_TYPE (fndecl);
2114 tree base_fntype = TREE_TYPE (base_fndecl);
2115 if (type_memfn_quals (fntype) == type_memfn_quals (base_fntype)
2116 && type_memfn_rqual (fntype) == type_memfn_rqual (base_fntype)
2117 && compparms (FUNCTION_FIRST_USER_PARMTYPE (fndecl),
2118 FUNCTION_FIRST_USER_PARMTYPE (base_fndecl)))
2119 return 1;
2121 return 0;
2124 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
2125 subobject. */
2127 static bool
2128 base_derived_from (tree derived, tree base)
2130 tree probe;
2132 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
2134 if (probe == derived)
2135 return true;
2136 else if (BINFO_VIRTUAL_P (probe))
2137 /* If we meet a virtual base, we can't follow the inheritance
2138 any more. See if the complete type of DERIVED contains
2139 such a virtual base. */
2140 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
2141 != NULL_TREE);
2143 return false;
2146 typedef struct find_final_overrider_data_s {
2147 /* The function for which we are trying to find a final overrider. */
2148 tree fn;
2149 /* The base class in which the function was declared. */
2150 tree declaring_base;
2151 /* The candidate overriders. */
2152 tree candidates;
2153 /* Path to most derived. */
2154 vec<tree> path;
2155 } find_final_overrider_data;
2157 /* Add the overrider along the current path to FFOD->CANDIDATES.
2158 Returns true if an overrider was found; false otherwise. */
2160 static bool
2161 dfs_find_final_overrider_1 (tree binfo,
2162 find_final_overrider_data *ffod,
2163 unsigned depth)
2165 tree method;
2167 /* If BINFO is not the most derived type, try a more derived class.
2168 A definition there will overrider a definition here. */
2169 if (depth)
2171 depth--;
2172 if (dfs_find_final_overrider_1
2173 (ffod->path[depth], ffod, depth))
2174 return true;
2177 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
2178 if (method)
2180 tree *candidate = &ffod->candidates;
2182 /* Remove any candidates overridden by this new function. */
2183 while (*candidate)
2185 /* If *CANDIDATE overrides METHOD, then METHOD
2186 cannot override anything else on the list. */
2187 if (base_derived_from (TREE_VALUE (*candidate), binfo))
2188 return true;
2189 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
2190 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
2191 *candidate = TREE_CHAIN (*candidate);
2192 else
2193 candidate = &TREE_CHAIN (*candidate);
2196 /* Add the new function. */
2197 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
2198 return true;
2201 return false;
2204 /* Called from find_final_overrider via dfs_walk. */
2206 static tree
2207 dfs_find_final_overrider_pre (tree binfo, void *data)
2209 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2211 if (binfo == ffod->declaring_base)
2212 dfs_find_final_overrider_1 (binfo, ffod, ffod->path.length ());
2213 ffod->path.safe_push (binfo);
2215 return NULL_TREE;
2218 static tree
2219 dfs_find_final_overrider_post (tree /*binfo*/, void *data)
2221 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2222 ffod->path.pop ();
2224 return NULL_TREE;
2227 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2228 FN and whose TREE_VALUE is the binfo for the base where the
2229 overriding occurs. BINFO (in the hierarchy dominated by the binfo
2230 DERIVED) is the base object in which FN is declared. */
2232 static tree
2233 find_final_overrider (tree derived, tree binfo, tree fn)
2235 find_final_overrider_data ffod;
2237 /* Getting this right is a little tricky. This is valid:
2239 struct S { virtual void f (); };
2240 struct T { virtual void f (); };
2241 struct U : public S, public T { };
2243 even though calling `f' in `U' is ambiguous. But,
2245 struct R { virtual void f(); };
2246 struct S : virtual public R { virtual void f (); };
2247 struct T : virtual public R { virtual void f (); };
2248 struct U : public S, public T { };
2250 is not -- there's no way to decide whether to put `S::f' or
2251 `T::f' in the vtable for `R'.
2253 The solution is to look at all paths to BINFO. If we find
2254 different overriders along any two, then there is a problem. */
2255 if (DECL_THUNK_P (fn))
2256 fn = THUNK_TARGET (fn);
2258 /* Determine the depth of the hierarchy. */
2259 ffod.fn = fn;
2260 ffod.declaring_base = binfo;
2261 ffod.candidates = NULL_TREE;
2262 ffod.path.create (30);
2264 dfs_walk_all (derived, dfs_find_final_overrider_pre,
2265 dfs_find_final_overrider_post, &ffod);
2267 ffod.path.release ();
2269 /* If there was no winner, issue an error message. */
2270 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2271 return error_mark_node;
2273 return ffod.candidates;
2276 /* Return the index of the vcall offset for FN when TYPE is used as a
2277 virtual base. */
2279 static tree
2280 get_vcall_index (tree fn, tree type)
2282 vec<tree_pair_s, va_gc> *indices = CLASSTYPE_VCALL_INDICES (type);
2283 tree_pair_p p;
2284 unsigned ix;
2286 FOR_EACH_VEC_SAFE_ELT (indices, ix, p)
2287 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2288 || same_signature_p (fn, p->purpose))
2289 return p->value;
2291 /* There should always be an appropriate index. */
2292 gcc_unreachable ();
2295 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2296 dominated by T. FN is the old function; VIRTUALS points to the
2297 corresponding position in the new BINFO_VIRTUALS list. IX is the index
2298 of that entry in the list. */
2300 static void
2301 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2302 unsigned ix)
2304 tree b;
2305 tree overrider;
2306 tree delta;
2307 tree virtual_base;
2308 tree first_defn;
2309 tree overrider_fn, overrider_target;
2310 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2311 tree over_return, base_return;
2312 bool lost = false;
2314 /* Find the nearest primary base (possibly binfo itself) which defines
2315 this function; this is the class the caller will convert to when
2316 calling FN through BINFO. */
2317 for (b = binfo; ; b = get_primary_binfo (b))
2319 gcc_assert (b);
2320 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2321 break;
2323 /* The nearest definition is from a lost primary. */
2324 if (BINFO_LOST_PRIMARY_P (b))
2325 lost = true;
2327 first_defn = b;
2329 /* Find the final overrider. */
2330 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2331 if (overrider == error_mark_node)
2333 error ("no unique final overrider for %qD in %qT", target_fn, t);
2334 return;
2336 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2338 /* Check for adjusting covariant return types. */
2339 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2340 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2342 if (POINTER_TYPE_P (over_return)
2343 && TREE_CODE (over_return) == TREE_CODE (base_return)
2344 && CLASS_TYPE_P (TREE_TYPE (over_return))
2345 && CLASS_TYPE_P (TREE_TYPE (base_return))
2346 /* If the overrider is invalid, don't even try. */
2347 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2349 /* If FN is a covariant thunk, we must figure out the adjustment
2350 to the final base FN was converting to. As OVERRIDER_TARGET might
2351 also be converting to the return type of FN, we have to
2352 combine the two conversions here. */
2353 tree fixed_offset, virtual_offset;
2355 over_return = TREE_TYPE (over_return);
2356 base_return = TREE_TYPE (base_return);
2358 if (DECL_THUNK_P (fn))
2360 gcc_assert (DECL_RESULT_THUNK_P (fn));
2361 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2362 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2364 else
2365 fixed_offset = virtual_offset = NULL_TREE;
2367 if (virtual_offset)
2368 /* Find the equivalent binfo within the return type of the
2369 overriding function. We will want the vbase offset from
2370 there. */
2371 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2372 over_return);
2373 else if (!same_type_ignoring_top_level_qualifiers_p
2374 (over_return, base_return))
2376 /* There was no existing virtual thunk (which takes
2377 precedence). So find the binfo of the base function's
2378 return type within the overriding function's return type.
2379 We cannot call lookup base here, because we're inside a
2380 dfs_walk, and will therefore clobber the BINFO_MARKED
2381 flags. Fortunately we know the covariancy is valid (it
2382 has already been checked), so we can just iterate along
2383 the binfos, which have been chained in inheritance graph
2384 order. Of course it is lame that we have to repeat the
2385 search here anyway -- we should really be caching pieces
2386 of the vtable and avoiding this repeated work. */
2387 tree thunk_binfo, base_binfo;
2389 /* Find the base binfo within the overriding function's
2390 return type. We will always find a thunk_binfo, except
2391 when the covariancy is invalid (which we will have
2392 already diagnosed). */
2393 for (base_binfo = TYPE_BINFO (base_return),
2394 thunk_binfo = TYPE_BINFO (over_return);
2395 thunk_binfo;
2396 thunk_binfo = TREE_CHAIN (thunk_binfo))
2397 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2398 BINFO_TYPE (base_binfo)))
2399 break;
2401 /* See if virtual inheritance is involved. */
2402 for (virtual_offset = thunk_binfo;
2403 virtual_offset;
2404 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2405 if (BINFO_VIRTUAL_P (virtual_offset))
2406 break;
2408 if (virtual_offset
2409 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2411 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2413 if (virtual_offset)
2415 /* We convert via virtual base. Adjust the fixed
2416 offset to be from there. */
2417 offset =
2418 size_diffop (offset,
2419 convert (ssizetype,
2420 BINFO_OFFSET (virtual_offset)));
2422 if (fixed_offset)
2423 /* There was an existing fixed offset, this must be
2424 from the base just converted to, and the base the
2425 FN was thunking to. */
2426 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2427 else
2428 fixed_offset = offset;
2432 if (fixed_offset || virtual_offset)
2433 /* Replace the overriding function with a covariant thunk. We
2434 will emit the overriding function in its own slot as
2435 well. */
2436 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2437 fixed_offset, virtual_offset);
2439 else
2440 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2441 !DECL_THUNK_P (fn));
2443 /* If we need a covariant thunk, then we may need to adjust first_defn.
2444 The ABI specifies that the thunks emitted with a function are
2445 determined by which bases the function overrides, so we need to be
2446 sure that we're using a thunk for some overridden base; even if we
2447 know that the necessary this adjustment is zero, there may not be an
2448 appropriate zero-this-adjusment thunk for us to use since thunks for
2449 overriding virtual bases always use the vcall offset.
2451 Furthermore, just choosing any base that overrides this function isn't
2452 quite right, as this slot won't be used for calls through a type that
2453 puts a covariant thunk here. Calling the function through such a type
2454 will use a different slot, and that slot is the one that determines
2455 the thunk emitted for that base.
2457 So, keep looking until we find the base that we're really overriding
2458 in this slot: the nearest primary base that doesn't use a covariant
2459 thunk in this slot. */
2460 if (overrider_target != overrider_fn)
2462 if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
2463 /* We already know that the overrider needs a covariant thunk. */
2464 b = get_primary_binfo (b);
2465 for (; ; b = get_primary_binfo (b))
2467 tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
2468 tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
2469 if (!DECL_THUNK_P (TREE_VALUE (bv)))
2470 break;
2471 if (BINFO_LOST_PRIMARY_P (b))
2472 lost = true;
2474 first_defn = b;
2477 /* Assume that we will produce a thunk that convert all the way to
2478 the final overrider, and not to an intermediate virtual base. */
2479 virtual_base = NULL_TREE;
2481 /* See if we can convert to an intermediate virtual base first, and then
2482 use the vcall offset located there to finish the conversion. */
2483 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2485 /* If we find the final overrider, then we can stop
2486 walking. */
2487 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2488 BINFO_TYPE (TREE_VALUE (overrider))))
2489 break;
2491 /* If we find a virtual base, and we haven't yet found the
2492 overrider, then there is a virtual base between the
2493 declaring base (first_defn) and the final overrider. */
2494 if (BINFO_VIRTUAL_P (b))
2496 virtual_base = b;
2497 break;
2501 /* Compute the constant adjustment to the `this' pointer. The
2502 `this' pointer, when this function is called, will point at BINFO
2503 (or one of its primary bases, which are at the same offset). */
2504 if (virtual_base)
2505 /* The `this' pointer needs to be adjusted from the declaration to
2506 the nearest virtual base. */
2507 delta = size_diffop_loc (input_location,
2508 convert (ssizetype, BINFO_OFFSET (virtual_base)),
2509 convert (ssizetype, BINFO_OFFSET (first_defn)));
2510 else if (lost)
2511 /* If the nearest definition is in a lost primary, we don't need an
2512 entry in our vtable. Except possibly in a constructor vtable,
2513 if we happen to get our primary back. In that case, the offset
2514 will be zero, as it will be a primary base. */
2515 delta = size_zero_node;
2516 else
2517 /* The `this' pointer needs to be adjusted from pointing to
2518 BINFO to pointing at the base where the final overrider
2519 appears. */
2520 delta = size_diffop_loc (input_location,
2521 convert (ssizetype,
2522 BINFO_OFFSET (TREE_VALUE (overrider))),
2523 convert (ssizetype, BINFO_OFFSET (binfo)));
2525 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2527 if (virtual_base)
2528 BV_VCALL_INDEX (*virtuals)
2529 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2530 else
2531 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2533 BV_LOST_PRIMARY (*virtuals) = lost;
2536 /* Called from modify_all_vtables via dfs_walk. */
2538 static tree
2539 dfs_modify_vtables (tree binfo, void* data)
2541 tree t = (tree) data;
2542 tree virtuals;
2543 tree old_virtuals;
2544 unsigned ix;
2546 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2547 /* A base without a vtable needs no modification, and its bases
2548 are uninteresting. */
2549 return dfs_skip_bases;
2551 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2552 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2553 /* Don't do the primary vtable, if it's new. */
2554 return NULL_TREE;
2556 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2557 /* There's no need to modify the vtable for a non-virtual primary
2558 base; we're not going to use that vtable anyhow. We do still
2559 need to do this for virtual primary bases, as they could become
2560 non-primary in a construction vtable. */
2561 return NULL_TREE;
2563 make_new_vtable (t, binfo);
2565 /* Now, go through each of the virtual functions in the virtual
2566 function table for BINFO. Find the final overrider, and update
2567 the BINFO_VIRTUALS list appropriately. */
2568 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2569 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2570 virtuals;
2571 ix++, virtuals = TREE_CHAIN (virtuals),
2572 old_virtuals = TREE_CHAIN (old_virtuals))
2573 update_vtable_entry_for_fn (t,
2574 binfo,
2575 BV_FN (old_virtuals),
2576 &virtuals, ix);
2578 return NULL_TREE;
2581 /* Update all of the primary and secondary vtables for T. Create new
2582 vtables as required, and initialize their RTTI information. Each
2583 of the functions in VIRTUALS is declared in T and may override a
2584 virtual function from a base class; find and modify the appropriate
2585 entries to point to the overriding functions. Returns a list, in
2586 declaration order, of the virtual functions that are declared in T,
2587 but do not appear in the primary base class vtable, and which
2588 should therefore be appended to the end of the vtable for T. */
2590 static tree
2591 modify_all_vtables (tree t, tree virtuals)
2593 tree binfo = TYPE_BINFO (t);
2594 tree *fnsp;
2596 /* Mangle the vtable name before entering dfs_walk (c++/51884). */
2597 if (TYPE_CONTAINS_VPTR_P (t))
2598 get_vtable_decl (t, false);
2600 /* Update all of the vtables. */
2601 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2603 /* Add virtual functions not already in our primary vtable. These
2604 will be both those introduced by this class, and those overridden
2605 from secondary bases. It does not include virtuals merely
2606 inherited from secondary bases. */
2607 for (fnsp = &virtuals; *fnsp; )
2609 tree fn = TREE_VALUE (*fnsp);
2611 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2612 || DECL_VINDEX (fn) == error_mark_node)
2614 /* We don't need to adjust the `this' pointer when
2615 calling this function. */
2616 BV_DELTA (*fnsp) = integer_zero_node;
2617 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2619 /* This is a function not already in our vtable. Keep it. */
2620 fnsp = &TREE_CHAIN (*fnsp);
2622 else
2623 /* We've already got an entry for this function. Skip it. */
2624 *fnsp = TREE_CHAIN (*fnsp);
2627 return virtuals;
2630 /* Get the base virtual function declarations in T that have the
2631 indicated NAME. */
2633 static tree
2634 get_basefndecls (tree name, tree t)
2636 tree methods;
2637 tree base_fndecls = NULL_TREE;
2638 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2639 int i;
2641 /* Find virtual functions in T with the indicated NAME. */
2642 i = lookup_fnfields_1 (t, name);
2643 if (i != -1)
2644 for (methods = (*CLASSTYPE_METHOD_VEC (t))[i];
2645 methods;
2646 methods = OVL_NEXT (methods))
2648 tree method = OVL_CURRENT (methods);
2650 if (TREE_CODE (method) == FUNCTION_DECL
2651 && DECL_VINDEX (method))
2652 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2655 if (base_fndecls)
2656 return base_fndecls;
2658 for (i = 0; i < n_baseclasses; i++)
2660 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2661 base_fndecls = chainon (get_basefndecls (name, basetype),
2662 base_fndecls);
2665 return base_fndecls;
2668 /* If this declaration supersedes the declaration of
2669 a method declared virtual in the base class, then
2670 mark this field as being virtual as well. */
2672 void
2673 check_for_override (tree decl, tree ctype)
2675 bool overrides_found = false;
2676 if (TREE_CODE (decl) == TEMPLATE_DECL)
2677 /* In [temp.mem] we have:
2679 A specialization of a member function template does not
2680 override a virtual function from a base class. */
2681 return;
2682 if ((DECL_DESTRUCTOR_P (decl)
2683 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2684 || DECL_CONV_FN_P (decl))
2685 && look_for_overrides (ctype, decl)
2686 && !DECL_STATIC_FUNCTION_P (decl))
2687 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2688 the error_mark_node so that we know it is an overriding
2689 function. */
2691 DECL_VINDEX (decl) = decl;
2692 overrides_found = true;
2695 if (DECL_VIRTUAL_P (decl))
2697 if (!DECL_VINDEX (decl))
2698 DECL_VINDEX (decl) = error_mark_node;
2699 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2700 if (DECL_DESTRUCTOR_P (decl))
2701 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
2703 else if (DECL_FINAL_P (decl))
2704 error ("%q+#D marked final, but is not virtual", decl);
2705 if (DECL_OVERRIDE_P (decl) && !overrides_found)
2706 error ("%q+#D marked override, but does not override", decl);
2709 /* Warn about hidden virtual functions that are not overridden in t.
2710 We know that constructors and destructors don't apply. */
2712 static void
2713 warn_hidden (tree t)
2715 vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (t);
2716 tree fns;
2717 size_t i;
2719 /* We go through each separately named virtual function. */
2720 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2721 vec_safe_iterate (method_vec, i, &fns);
2722 ++i)
2724 tree fn;
2725 tree name;
2726 tree fndecl;
2727 tree base_fndecls;
2728 tree base_binfo;
2729 tree binfo;
2730 int j;
2732 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2733 have the same name. Figure out what name that is. */
2734 name = DECL_NAME (OVL_CURRENT (fns));
2735 /* There are no possibly hidden functions yet. */
2736 base_fndecls = NULL_TREE;
2737 /* Iterate through all of the base classes looking for possibly
2738 hidden functions. */
2739 for (binfo = TYPE_BINFO (t), j = 0;
2740 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2742 tree basetype = BINFO_TYPE (base_binfo);
2743 base_fndecls = chainon (get_basefndecls (name, basetype),
2744 base_fndecls);
2747 /* If there are no functions to hide, continue. */
2748 if (!base_fndecls)
2749 continue;
2751 /* Remove any overridden functions. */
2752 for (fn = fns; fn; fn = OVL_NEXT (fn))
2754 fndecl = OVL_CURRENT (fn);
2755 if (DECL_VINDEX (fndecl))
2757 tree *prev = &base_fndecls;
2759 while (*prev)
2760 /* If the method from the base class has the same
2761 signature as the method from the derived class, it
2762 has been overridden. */
2763 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2764 *prev = TREE_CHAIN (*prev);
2765 else
2766 prev = &TREE_CHAIN (*prev);
2770 /* Now give a warning for all base functions without overriders,
2771 as they are hidden. */
2772 while (base_fndecls)
2774 /* Here we know it is a hider, and no overrider exists. */
2775 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2776 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2777 base_fndecls = TREE_CHAIN (base_fndecls);
2782 /* Recursive helper for finish_struct_anon. */
2784 static void
2785 finish_struct_anon_r (tree field, bool complain)
2787 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2788 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2789 for (; elt; elt = DECL_CHAIN (elt))
2791 /* We're generally only interested in entities the user
2792 declared, but we also find nested classes by noticing
2793 the TYPE_DECL that we create implicitly. You're
2794 allowed to put one anonymous union inside another,
2795 though, so we explicitly tolerate that. We use
2796 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2797 we also allow unnamed types used for defining fields. */
2798 if (DECL_ARTIFICIAL (elt)
2799 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2800 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2801 continue;
2803 if (TREE_CODE (elt) != FIELD_DECL)
2805 if (complain)
2807 if (is_union)
2808 permerror (input_location,
2809 "%q+#D invalid; an anonymous union can "
2810 "only have non-static data members", elt);
2811 else
2812 permerror (input_location,
2813 "%q+#D invalid; an anonymous struct can "
2814 "only have non-static data members", elt);
2816 continue;
2819 if (complain)
2821 if (TREE_PRIVATE (elt))
2823 if (is_union)
2824 permerror (input_location,
2825 "private member %q+#D in anonymous union", elt);
2826 else
2827 permerror (input_location,
2828 "private member %q+#D in anonymous struct", elt);
2830 else if (TREE_PROTECTED (elt))
2832 if (is_union)
2833 permerror (input_location,
2834 "protected member %q+#D in anonymous union", elt);
2835 else
2836 permerror (input_location,
2837 "protected member %q+#D in anonymous struct", elt);
2841 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2842 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2844 /* Recurse into the anonymous aggregates to handle correctly
2845 access control (c++/24926):
2847 class A {
2848 union {
2849 union {
2850 int i;
2855 int j=A().i; */
2856 if (DECL_NAME (elt) == NULL_TREE
2857 && ANON_AGGR_TYPE_P (TREE_TYPE (elt)))
2858 finish_struct_anon_r (elt, /*complain=*/false);
2862 /* Check for things that are invalid. There are probably plenty of other
2863 things we should check for also. */
2865 static void
2866 finish_struct_anon (tree t)
2868 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2870 if (TREE_STATIC (field))
2871 continue;
2872 if (TREE_CODE (field) != FIELD_DECL)
2873 continue;
2875 if (DECL_NAME (field) == NULL_TREE
2876 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2877 finish_struct_anon_r (field, /*complain=*/true);
2881 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2882 will be used later during class template instantiation.
2883 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2884 a non-static member data (FIELD_DECL), a member function
2885 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2886 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2887 When FRIEND_P is nonzero, T is either a friend class
2888 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2889 (FUNCTION_DECL, TEMPLATE_DECL). */
2891 void
2892 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2894 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2895 if (CLASSTYPE_TEMPLATE_INFO (type))
2896 CLASSTYPE_DECL_LIST (type)
2897 = tree_cons (friend_p ? NULL_TREE : type,
2898 t, CLASSTYPE_DECL_LIST (type));
2901 /* This function is called from declare_virt_assop_and_dtor via
2902 dfs_walk_all.
2904 DATA is a type that direcly or indirectly inherits the base
2905 represented by BINFO. If BINFO contains a virtual assignment [copy
2906 assignment or move assigment] operator or a virtual constructor,
2907 declare that function in DATA if it hasn't been already declared. */
2909 static tree
2910 dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
2912 tree bv, fn, t = (tree)data;
2913 tree opname = ansi_assopname (NOP_EXPR);
2915 gcc_assert (t && CLASS_TYPE_P (t));
2916 gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
2918 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2919 /* A base without a vtable needs no modification, and its bases
2920 are uninteresting. */
2921 return dfs_skip_bases;
2923 if (BINFO_PRIMARY_P (binfo))
2924 /* If this is a primary base, then we have already looked at the
2925 virtual functions of its vtable. */
2926 return NULL_TREE;
2928 for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
2930 fn = BV_FN (bv);
2932 if (DECL_NAME (fn) == opname)
2934 if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
2935 lazily_declare_fn (sfk_copy_assignment, t);
2936 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
2937 lazily_declare_fn (sfk_move_assignment, t);
2939 else if (DECL_DESTRUCTOR_P (fn)
2940 && CLASSTYPE_LAZY_DESTRUCTOR (t))
2941 lazily_declare_fn (sfk_destructor, t);
2944 return NULL_TREE;
2947 /* If the class type T has a direct or indirect base that contains a
2948 virtual assignment operator or a virtual destructor, declare that
2949 function in T if it hasn't been already declared. */
2951 static void
2952 declare_virt_assop_and_dtor (tree t)
2954 if (!(TYPE_POLYMORPHIC_P (t)
2955 && (CLASSTYPE_LAZY_COPY_ASSIGN (t)
2956 || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
2957 || CLASSTYPE_LAZY_DESTRUCTOR (t))))
2958 return;
2960 dfs_walk_all (TYPE_BINFO (t),
2961 dfs_declare_virt_assop_and_dtor,
2962 NULL, t);
2965 /* Declare the inheriting constructor for class T inherited from base
2966 constructor CTOR with the parameter array PARMS of size NPARMS. */
2968 static void
2969 one_inheriting_sig (tree t, tree ctor, tree *parms, int nparms)
2971 /* We don't declare an inheriting ctor that would be a default,
2972 copy or move ctor for derived or base. */
2973 if (nparms == 0)
2974 return;
2975 if (nparms == 1
2976 && TREE_CODE (parms[0]) == REFERENCE_TYPE)
2978 tree parm = TYPE_MAIN_VARIANT (TREE_TYPE (parms[0]));
2979 if (parm == t || parm == DECL_CONTEXT (ctor))
2980 return;
2983 tree parmlist = void_list_node;
2984 for (int i = nparms - 1; i >= 0; i--)
2985 parmlist = tree_cons (NULL_TREE, parms[i], parmlist);
2986 tree fn = implicitly_declare_fn (sfk_inheriting_constructor,
2987 t, false, ctor, parmlist);
2988 if (add_method (t, fn, NULL_TREE))
2990 DECL_CHAIN (fn) = TYPE_METHODS (t);
2991 TYPE_METHODS (t) = fn;
2995 /* Declare all the inheriting constructors for class T inherited from base
2996 constructor CTOR. */
2998 static void
2999 one_inherited_ctor (tree ctor, tree t)
3001 tree parms = FUNCTION_FIRST_USER_PARMTYPE (ctor);
3003 tree *new_parms = XALLOCAVEC (tree, list_length (parms));
3004 int i = 0;
3005 for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms))
3007 if (TREE_PURPOSE (parms))
3008 one_inheriting_sig (t, ctor, new_parms, i);
3009 new_parms[i++] = TREE_VALUE (parms);
3011 one_inheriting_sig (t, ctor, new_parms, i);
3012 if (parms == NULL_TREE)
3014 warning (OPT_Winherited_variadic_ctor,
3015 "the ellipsis in %qD is not inherited", ctor);
3016 inform (DECL_SOURCE_LOCATION (ctor), "%qD declared here", ctor);
3020 /* Create default constructors, assignment operators, and so forth for
3021 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
3022 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
3023 the class cannot have a default constructor, copy constructor
3024 taking a const reference argument, or an assignment operator taking
3025 a const reference, respectively. */
3027 static void
3028 add_implicitly_declared_members (tree t, tree* access_decls,
3029 int cant_have_const_cctor,
3030 int cant_have_const_assignment)
3032 bool move_ok = false;
3034 if (cxx_dialect >= cxx11 && !CLASSTYPE_DESTRUCTORS (t)
3035 && !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
3036 && !type_has_move_constructor (t) && !type_has_move_assign (t))
3037 move_ok = true;
3039 /* Destructor. */
3040 if (!CLASSTYPE_DESTRUCTORS (t))
3042 /* In general, we create destructors lazily. */
3043 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
3045 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3046 && TYPE_FOR_JAVA (t))
3047 /* But if this is a Java class, any non-trivial destructor is
3048 invalid, even if compiler-generated. Therefore, if the
3049 destructor is non-trivial we create it now. */
3050 lazily_declare_fn (sfk_destructor, t);
3053 /* [class.ctor]
3055 If there is no user-declared constructor for a class, a default
3056 constructor is implicitly declared. */
3057 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
3059 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
3060 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
3061 if (cxx_dialect >= cxx11)
3062 TYPE_HAS_CONSTEXPR_CTOR (t)
3063 /* This might force the declaration. */
3064 = type_has_constexpr_default_constructor (t);
3067 /* [class.ctor]
3069 If a class definition does not explicitly declare a copy
3070 constructor, one is declared implicitly. */
3071 if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t))
3073 TYPE_HAS_COPY_CTOR (t) = 1;
3074 TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
3075 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
3076 if (move_ok)
3077 CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
3080 /* If there is no assignment operator, one will be created if and
3081 when it is needed. For now, just record whether or not the type
3082 of the parameter to the assignment operator will be a const or
3083 non-const reference. */
3084 if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t))
3086 TYPE_HAS_COPY_ASSIGN (t) = 1;
3087 TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
3088 CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
3089 if (move_ok)
3090 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
3093 /* We can't be lazy about declaring functions that might override
3094 a virtual function from a base class. */
3095 declare_virt_assop_and_dtor (t);
3097 while (*access_decls)
3099 tree using_decl = TREE_VALUE (*access_decls);
3100 tree decl = USING_DECL_DECLS (using_decl);
3101 if (DECL_NAME (using_decl) == ctor_identifier)
3103 /* declare, then remove the decl */
3104 tree ctor_list = decl;
3105 location_t loc = input_location;
3106 input_location = DECL_SOURCE_LOCATION (using_decl);
3107 if (ctor_list)
3108 for (; ctor_list; ctor_list = OVL_NEXT (ctor_list))
3109 one_inherited_ctor (OVL_CURRENT (ctor_list), t);
3110 *access_decls = TREE_CHAIN (*access_decls);
3111 input_location = loc;
3113 else
3114 access_decls = &TREE_CHAIN (*access_decls);
3118 /* Subroutine of insert_into_classtype_sorted_fields. Recursively
3119 count the number of fields in TYPE, including anonymous union
3120 members. */
3122 static int
3123 count_fields (tree fields)
3125 tree x;
3126 int n_fields = 0;
3127 for (x = fields; x; x = DECL_CHAIN (x))
3129 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3130 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
3131 else
3132 n_fields += 1;
3134 return n_fields;
3137 /* Subroutine of insert_into_classtype_sorted_fields. Recursively add
3138 all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE
3139 elts, starting at offset IDX. */
3141 static int
3142 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
3144 tree x;
3145 for (x = fields; x; x = DECL_CHAIN (x))
3147 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3148 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
3149 else
3150 field_vec->elts[idx++] = x;
3152 return idx;
3155 /* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts,
3156 starting at offset IDX. */
3158 static int
3159 add_enum_fields_to_record_type (tree enumtype,
3160 struct sorted_fields_type *field_vec,
3161 int idx)
3163 tree values;
3164 for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
3165 field_vec->elts[idx++] = TREE_VALUE (values);
3166 return idx;
3169 /* FIELD is a bit-field. We are finishing the processing for its
3170 enclosing type. Issue any appropriate messages and set appropriate
3171 flags. Returns false if an error has been diagnosed. */
3173 static bool
3174 check_bitfield_decl (tree field)
3176 tree type = TREE_TYPE (field);
3177 tree w;
3179 /* Extract the declared width of the bitfield, which has been
3180 temporarily stashed in DECL_INITIAL. */
3181 w = DECL_INITIAL (field);
3182 gcc_assert (w != NULL_TREE);
3183 /* Remove the bit-field width indicator so that the rest of the
3184 compiler does not treat that value as an initializer. */
3185 DECL_INITIAL (field) = NULL_TREE;
3187 /* Detect invalid bit-field type. */
3188 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
3190 error ("bit-field %q+#D with non-integral type", field);
3191 w = error_mark_node;
3193 else
3195 location_t loc = input_location;
3196 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
3197 STRIP_NOPS (w);
3199 /* detect invalid field size. */
3200 input_location = DECL_SOURCE_LOCATION (field);
3201 w = cxx_constant_value (w);
3202 input_location = loc;
3204 if (TREE_CODE (w) != INTEGER_CST)
3206 error ("bit-field %q+D width not an integer constant", field);
3207 w = error_mark_node;
3209 else if (tree_int_cst_sgn (w) < 0)
3211 error ("negative width in bit-field %q+D", field);
3212 w = error_mark_node;
3214 else if (integer_zerop (w) && DECL_NAME (field) != 0)
3216 error ("zero width for bit-field %q+D", field);
3217 w = error_mark_node;
3219 else if ((TREE_CODE (type) != ENUMERAL_TYPE
3220 && TREE_CODE (type) != BOOLEAN_TYPE
3221 && compare_tree_int (w, TYPE_PRECISION (type)) > 0)
3222 || ((TREE_CODE (type) == ENUMERAL_TYPE
3223 || TREE_CODE (type) == BOOLEAN_TYPE)
3224 && tree_int_cst_lt (TYPE_SIZE (type), w)))
3225 warning (0, "width of %q+D exceeds its type", field);
3226 else if (TREE_CODE (type) == ENUMERAL_TYPE
3227 && (0 > (compare_tree_int
3228 (w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
3229 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
3232 if (w != error_mark_node)
3234 DECL_SIZE (field) = convert (bitsizetype, w);
3235 DECL_BIT_FIELD (field) = 1;
3236 return true;
3238 else
3240 /* Non-bit-fields are aligned for their type. */
3241 DECL_BIT_FIELD (field) = 0;
3242 CLEAR_DECL_C_BIT_FIELD (field);
3243 return false;
3247 /* FIELD is a non bit-field. We are finishing the processing for its
3248 enclosing type T. Issue any appropriate messages and set appropriate
3249 flags. */
3251 static void
3252 check_field_decl (tree field,
3253 tree t,
3254 int* cant_have_const_ctor,
3255 int* no_const_asn_ref,
3256 int* any_default_members)
3258 tree type = strip_array_types (TREE_TYPE (field));
3260 /* In C++98 an anonymous union cannot contain any fields which would change
3261 the settings of CANT_HAVE_CONST_CTOR and friends. */
3262 if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx11)
3264 /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
3265 structs. So, we recurse through their fields here. */
3266 else if (ANON_AGGR_TYPE_P (type))
3268 tree fields;
3270 for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields))
3271 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
3272 check_field_decl (fields, t, cant_have_const_ctor,
3273 no_const_asn_ref, any_default_members);
3275 /* Check members with class type for constructors, destructors,
3276 etc. */
3277 else if (CLASS_TYPE_P (type))
3279 /* Never let anything with uninheritable virtuals
3280 make it through without complaint. */
3281 abstract_virtuals_error (field, type);
3283 if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx11)
3285 static bool warned;
3286 int oldcount = errorcount;
3287 if (TYPE_NEEDS_CONSTRUCTING (type))
3288 error ("member %q+#D with constructor not allowed in union",
3289 field);
3290 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
3291 error ("member %q+#D with destructor not allowed in union", field);
3292 if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
3293 error ("member %q+#D with copy assignment operator not allowed in union",
3294 field);
3295 if (!warned && errorcount > oldcount)
3297 inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
3298 "only available with -std=c++11 or -std=gnu++11");
3299 warned = true;
3302 else
3304 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
3305 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3306 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
3307 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
3308 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
3309 || !TYPE_HAS_COPY_ASSIGN (type));
3310 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
3311 || !TYPE_HAS_COPY_CTOR (type));
3312 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
3313 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
3314 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
3315 || TYPE_HAS_COMPLEX_DFLT (type));
3318 if (TYPE_HAS_COPY_CTOR (type)
3319 && !TYPE_HAS_CONST_COPY_CTOR (type))
3320 *cant_have_const_ctor = 1;
3322 if (TYPE_HAS_COPY_ASSIGN (type)
3323 && !TYPE_HAS_CONST_COPY_ASSIGN (type))
3324 *no_const_asn_ref = 1;
3327 check_abi_tags (t, field);
3329 if (DECL_INITIAL (field) != NULL_TREE)
3331 /* `build_class_init_list' does not recognize
3332 non-FIELD_DECLs. */
3333 if (TREE_CODE (t) == UNION_TYPE && *any_default_members != 0)
3334 error ("multiple fields in union %qT initialized", t);
3335 *any_default_members = 1;
3339 /* Check the data members (both static and non-static), class-scoped
3340 typedefs, etc., appearing in the declaration of T. Issue
3341 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
3342 declaration order) of access declarations; each TREE_VALUE in this
3343 list is a USING_DECL.
3345 In addition, set the following flags:
3347 EMPTY_P
3348 The class is empty, i.e., contains no non-static data members.
3350 CANT_HAVE_CONST_CTOR_P
3351 This class cannot have an implicitly generated copy constructor
3352 taking a const reference.
3354 CANT_HAVE_CONST_ASN_REF
3355 This class cannot have an implicitly generated assignment
3356 operator taking a const reference.
3358 All of these flags should be initialized before calling this
3359 function.
3361 Returns a pointer to the end of the TYPE_FIELDs chain; additional
3362 fields can be added by adding to this chain. */
3364 static void
3365 check_field_decls (tree t, tree *access_decls,
3366 int *cant_have_const_ctor_p,
3367 int *no_const_asn_ref_p)
3369 tree *field;
3370 tree *next;
3371 bool has_pointers;
3372 int any_default_members;
3373 int cant_pack = 0;
3374 int field_access = -1;
3376 /* Assume there are no access declarations. */
3377 *access_decls = NULL_TREE;
3378 /* Assume this class has no pointer members. */
3379 has_pointers = false;
3380 /* Assume none of the members of this class have default
3381 initializations. */
3382 any_default_members = 0;
3384 for (field = &TYPE_FIELDS (t); *field; field = next)
3386 tree x = *field;
3387 tree type = TREE_TYPE (x);
3388 int this_field_access;
3390 next = &DECL_CHAIN (x);
3392 if (TREE_CODE (x) == USING_DECL)
3394 /* Save the access declarations for our caller. */
3395 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
3396 continue;
3399 if (TREE_CODE (x) == TYPE_DECL
3400 || TREE_CODE (x) == TEMPLATE_DECL)
3401 continue;
3403 /* If we've gotten this far, it's a data member, possibly static,
3404 or an enumerator. */
3405 if (TREE_CODE (x) != CONST_DECL)
3406 DECL_CONTEXT (x) = t;
3408 /* When this goes into scope, it will be a non-local reference. */
3409 DECL_NONLOCAL (x) = 1;
3411 if (TREE_CODE (t) == UNION_TYPE)
3413 /* [class.union]
3415 If a union contains a static data member, or a member of
3416 reference type, the program is ill-formed. */
3417 if (VAR_P (x))
3419 error ("%q+D may not be static because it is a member of a union", x);
3420 continue;
3422 if (TREE_CODE (type) == REFERENCE_TYPE)
3424 error ("%q+D may not have reference type %qT because"
3425 " it is a member of a union",
3426 x, type);
3427 continue;
3431 /* Perform error checking that did not get done in
3432 grokdeclarator. */
3433 if (TREE_CODE (type) == FUNCTION_TYPE)
3435 error ("field %q+D invalidly declared function type", x);
3436 type = build_pointer_type (type);
3437 TREE_TYPE (x) = type;
3439 else if (TREE_CODE (type) == METHOD_TYPE)
3441 error ("field %q+D invalidly declared method type", x);
3442 type = build_pointer_type (type);
3443 TREE_TYPE (x) = type;
3446 if (type == error_mark_node)
3447 continue;
3449 if (TREE_CODE (x) == CONST_DECL || VAR_P (x))
3450 continue;
3452 /* Now it can only be a FIELD_DECL. */
3454 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3455 CLASSTYPE_NON_AGGREGATE (t) = 1;
3457 /* If at least one non-static data member is non-literal, the whole
3458 class becomes non-literal. Note: if the type is incomplete we
3459 will complain later on. */
3460 if (COMPLETE_TYPE_P (type) && !literal_type_p (type))
3461 CLASSTYPE_LITERAL_P (t) = false;
3463 /* A standard-layout class is a class that:
3465 has the same access control (Clause 11) for all non-static data members,
3466 ... */
3467 this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
3468 if (field_access == -1)
3469 field_access = this_field_access;
3470 else if (this_field_access != field_access)
3471 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3473 /* If this is of reference type, check if it needs an init. */
3474 if (TREE_CODE (type) == REFERENCE_TYPE)
3476 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3477 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3478 if (DECL_INITIAL (x) == NULL_TREE)
3479 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3481 /* ARM $12.6.2: [A member initializer list] (or, for an
3482 aggregate, initialization by a brace-enclosed list) is the
3483 only way to initialize nonstatic const and reference
3484 members. */
3485 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3486 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3489 type = strip_array_types (type);
3491 if (TYPE_PACKED (t))
3493 if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
3495 warning
3497 "ignoring packed attribute because of unpacked non-POD field %q+#D",
3499 cant_pack = 1;
3501 else if (DECL_C_BIT_FIELD (x)
3502 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
3503 DECL_PACKED (x) = 1;
3506 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
3507 /* We don't treat zero-width bitfields as making a class
3508 non-empty. */
3510 else
3512 /* The class is non-empty. */
3513 CLASSTYPE_EMPTY_P (t) = 0;
3514 /* The class is not even nearly empty. */
3515 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3516 /* If one of the data members contains an empty class,
3517 so does T. */
3518 if (CLASS_TYPE_P (type)
3519 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3520 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3523 /* This is used by -Weffc++ (see below). Warn only for pointers
3524 to members which might hold dynamic memory. So do not warn
3525 for pointers to functions or pointers to members. */
3526 if (TYPE_PTR_P (type)
3527 && !TYPE_PTRFN_P (type))
3528 has_pointers = true;
3530 if (CLASS_TYPE_P (type))
3532 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3533 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3534 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3535 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3538 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3539 CLASSTYPE_HAS_MUTABLE (t) = 1;
3541 if (DECL_MUTABLE_P (x))
3543 if (CP_TYPE_CONST_P (type))
3545 error ("member %q+D cannot be declared both %<const%> "
3546 "and %<mutable%>", x);
3547 continue;
3549 if (TREE_CODE (type) == REFERENCE_TYPE)
3551 error ("member %q+D cannot be declared as a %<mutable%> "
3552 "reference", x);
3553 continue;
3557 if (! layout_pod_type_p (type))
3558 /* DR 148 now allows pointers to members (which are POD themselves),
3559 to be allowed in POD structs. */
3560 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3562 if (!std_layout_type_p (type))
3563 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3565 if (! zero_init_p (type))
3566 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3568 /* We set DECL_C_BIT_FIELD in grokbitfield.
3569 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3570 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3571 check_field_decl (x, t,
3572 cant_have_const_ctor_p,
3573 no_const_asn_ref_p,
3574 &any_default_members);
3576 /* Now that we've removed bit-field widths from DECL_INITIAL,
3577 anything left in DECL_INITIAL is an NSDMI that makes the class
3578 non-aggregate. */
3579 if (DECL_INITIAL (x))
3580 CLASSTYPE_NON_AGGREGATE (t) = true;
3582 /* If any field is const, the structure type is pseudo-const. */
3583 if (CP_TYPE_CONST_P (type))
3585 C_TYPE_FIELDS_READONLY (t) = 1;
3586 if (DECL_INITIAL (x) == NULL_TREE)
3587 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3589 /* ARM $12.6.2: [A member initializer list] (or, for an
3590 aggregate, initialization by a brace-enclosed list) is the
3591 only way to initialize nonstatic const and reference
3592 members. */
3593 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3594 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3596 /* A field that is pseudo-const makes the structure likewise. */
3597 else if (CLASS_TYPE_P (type))
3599 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3600 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3601 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3602 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3605 /* Core issue 80: A nonstatic data member is required to have a
3606 different name from the class iff the class has a
3607 user-declared constructor. */
3608 if (constructor_name_p (DECL_NAME (x), t)
3609 && TYPE_HAS_USER_CONSTRUCTOR (t))
3610 permerror (input_location, "field %q+#D with same name as class", x);
3613 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3614 it should also define a copy constructor and an assignment operator to
3615 implement the correct copy semantic (deep vs shallow, etc.). As it is
3616 not feasible to check whether the constructors do allocate dynamic memory
3617 and store it within members, we approximate the warning like this:
3619 -- Warn only if there are members which are pointers
3620 -- Warn only if there is a non-trivial constructor (otherwise,
3621 there cannot be memory allocated).
3622 -- Warn only if there is a non-trivial destructor. We assume that the
3623 user at least implemented the cleanup correctly, and a destructor
3624 is needed to free dynamic memory.
3626 This seems enough for practical purposes. */
3627 if (warn_ecpp
3628 && has_pointers
3629 && TYPE_HAS_USER_CONSTRUCTOR (t)
3630 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3631 && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
3633 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3635 if (! TYPE_HAS_COPY_CTOR (t))
3637 warning (OPT_Weffc__,
3638 " but does not override %<%T(const %T&)%>", t, t);
3639 if (!TYPE_HAS_COPY_ASSIGN (t))
3640 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3642 else if (! TYPE_HAS_COPY_ASSIGN (t))
3643 warning (OPT_Weffc__,
3644 " but does not override %<operator=(const %T&)%>", t);
3647 /* Non-static data member initializers make the default constructor
3648 non-trivial. */
3649 if (any_default_members)
3651 TYPE_NEEDS_CONSTRUCTING (t) = true;
3652 TYPE_HAS_COMPLEX_DFLT (t) = true;
3655 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3656 if (cant_pack)
3657 TYPE_PACKED (t) = 0;
3659 /* Check anonymous struct/anonymous union fields. */
3660 finish_struct_anon (t);
3662 /* We've built up the list of access declarations in reverse order.
3663 Fix that now. */
3664 *access_decls = nreverse (*access_decls);
3667 /* If TYPE is an empty class type, records its OFFSET in the table of
3668 OFFSETS. */
3670 static int
3671 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3673 splay_tree_node n;
3675 if (!is_empty_class (type))
3676 return 0;
3678 /* Record the location of this empty object in OFFSETS. */
3679 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3680 if (!n)
3681 n = splay_tree_insert (offsets,
3682 (splay_tree_key) offset,
3683 (splay_tree_value) NULL_TREE);
3684 n->value = ((splay_tree_value)
3685 tree_cons (NULL_TREE,
3686 type,
3687 (tree) n->value));
3689 return 0;
3692 /* Returns nonzero if TYPE is an empty class type and there is
3693 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3695 static int
3696 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3698 splay_tree_node n;
3699 tree t;
3701 if (!is_empty_class (type))
3702 return 0;
3704 /* Record the location of this empty object in OFFSETS. */
3705 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3706 if (!n)
3707 return 0;
3709 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3710 if (same_type_p (TREE_VALUE (t), type))
3711 return 1;
3713 return 0;
3716 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3717 F for every subobject, passing it the type, offset, and table of
3718 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3719 be traversed.
3721 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3722 than MAX_OFFSET will not be walked.
3724 If F returns a nonzero value, the traversal ceases, and that value
3725 is returned. Otherwise, returns zero. */
3727 static int
3728 walk_subobject_offsets (tree type,
3729 subobject_offset_fn f,
3730 tree offset,
3731 splay_tree offsets,
3732 tree max_offset,
3733 int vbases_p)
3735 int r = 0;
3736 tree type_binfo = NULL_TREE;
3738 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3739 stop. */
3740 if (max_offset && INT_CST_LT (max_offset, offset))
3741 return 0;
3743 if (type == error_mark_node)
3744 return 0;
3746 if (!TYPE_P (type))
3748 if (abi_version_at_least (2))
3749 type_binfo = type;
3750 type = BINFO_TYPE (type);
3753 if (CLASS_TYPE_P (type))
3755 tree field;
3756 tree binfo;
3757 int i;
3759 /* Avoid recursing into objects that are not interesting. */
3760 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3761 return 0;
3763 /* Record the location of TYPE. */
3764 r = (*f) (type, offset, offsets);
3765 if (r)
3766 return r;
3768 /* Iterate through the direct base classes of TYPE. */
3769 if (!type_binfo)
3770 type_binfo = TYPE_BINFO (type);
3771 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3773 tree binfo_offset;
3775 if (abi_version_at_least (2)
3776 && BINFO_VIRTUAL_P (binfo))
3777 continue;
3779 if (!vbases_p
3780 && BINFO_VIRTUAL_P (binfo)
3781 && !BINFO_PRIMARY_P (binfo))
3782 continue;
3784 if (!abi_version_at_least (2))
3785 binfo_offset = size_binop (PLUS_EXPR,
3786 offset,
3787 BINFO_OFFSET (binfo));
3788 else
3790 tree orig_binfo;
3791 /* We cannot rely on BINFO_OFFSET being set for the base
3792 class yet, but the offsets for direct non-virtual
3793 bases can be calculated by going back to the TYPE. */
3794 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3795 binfo_offset = size_binop (PLUS_EXPR,
3796 offset,
3797 BINFO_OFFSET (orig_binfo));
3800 r = walk_subobject_offsets (binfo,
3802 binfo_offset,
3803 offsets,
3804 max_offset,
3805 (abi_version_at_least (2)
3806 ? /*vbases_p=*/0 : vbases_p));
3807 if (r)
3808 return r;
3811 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3813 unsigned ix;
3814 vec<tree, va_gc> *vbases;
3816 /* Iterate through the virtual base classes of TYPE. In G++
3817 3.2, we included virtual bases in the direct base class
3818 loop above, which results in incorrect results; the
3819 correct offsets for virtual bases are only known when
3820 working with the most derived type. */
3821 if (vbases_p)
3822 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3823 vec_safe_iterate (vbases, ix, &binfo); ix++)
3825 r = walk_subobject_offsets (binfo,
3827 size_binop (PLUS_EXPR,
3828 offset,
3829 BINFO_OFFSET (binfo)),
3830 offsets,
3831 max_offset,
3832 /*vbases_p=*/0);
3833 if (r)
3834 return r;
3836 else
3838 /* We still have to walk the primary base, if it is
3839 virtual. (If it is non-virtual, then it was walked
3840 above.) */
3841 tree vbase = get_primary_binfo (type_binfo);
3843 if (vbase && BINFO_VIRTUAL_P (vbase)
3844 && BINFO_PRIMARY_P (vbase)
3845 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3847 r = (walk_subobject_offsets
3848 (vbase, f, offset,
3849 offsets, max_offset, /*vbases_p=*/0));
3850 if (r)
3851 return r;
3856 /* Iterate through the fields of TYPE. */
3857 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3858 if (TREE_CODE (field) == FIELD_DECL
3859 && TREE_TYPE (field) != error_mark_node
3860 && !DECL_ARTIFICIAL (field))
3862 tree field_offset;
3864 if (abi_version_at_least (2))
3865 field_offset = byte_position (field);
3866 else
3867 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3868 field_offset = DECL_FIELD_OFFSET (field);
3870 r = walk_subobject_offsets (TREE_TYPE (field),
3872 size_binop (PLUS_EXPR,
3873 offset,
3874 field_offset),
3875 offsets,
3876 max_offset,
3877 /*vbases_p=*/1);
3878 if (r)
3879 return r;
3882 else if (TREE_CODE (type) == ARRAY_TYPE)
3884 tree element_type = strip_array_types (type);
3885 tree domain = TYPE_DOMAIN (type);
3886 tree index;
3888 /* Avoid recursing into objects that are not interesting. */
3889 if (!CLASS_TYPE_P (element_type)
3890 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3891 return 0;
3893 /* Step through each of the elements in the array. */
3894 for (index = size_zero_node;
3895 /* G++ 3.2 had an off-by-one error here. */
3896 (abi_version_at_least (2)
3897 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3898 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3899 index = size_binop (PLUS_EXPR, index, size_one_node))
3901 r = walk_subobject_offsets (TREE_TYPE (type),
3903 offset,
3904 offsets,
3905 max_offset,
3906 /*vbases_p=*/1);
3907 if (r)
3908 return r;
3909 offset = size_binop (PLUS_EXPR, offset,
3910 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3911 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3912 there's no point in iterating through the remaining
3913 elements of the array. */
3914 if (max_offset && INT_CST_LT (max_offset, offset))
3915 break;
3919 return 0;
3922 /* Record all of the empty subobjects of TYPE (either a type or a
3923 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3924 is being placed at OFFSET; otherwise, it is a base class that is
3925 being placed at OFFSET. */
3927 static void
3928 record_subobject_offsets (tree type,
3929 tree offset,
3930 splay_tree offsets,
3931 bool is_data_member)
3933 tree max_offset;
3934 /* If recording subobjects for a non-static data member or a
3935 non-empty base class , we do not need to record offsets beyond
3936 the size of the biggest empty class. Additional data members
3937 will go at the end of the class. Additional base classes will go
3938 either at offset zero (if empty, in which case they cannot
3939 overlap with offsets past the size of the biggest empty class) or
3940 at the end of the class.
3942 However, if we are placing an empty base class, then we must record
3943 all offsets, as either the empty class is at offset zero (where
3944 other empty classes might later be placed) or at the end of the
3945 class (where other objects might then be placed, so other empty
3946 subobjects might later overlap). */
3947 if (is_data_member
3948 || !is_empty_class (BINFO_TYPE (type)))
3949 max_offset = sizeof_biggest_empty_class;
3950 else
3951 max_offset = NULL_TREE;
3952 walk_subobject_offsets (type, record_subobject_offset, offset,
3953 offsets, max_offset, is_data_member);
3956 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3957 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3958 virtual bases of TYPE are examined. */
3960 static int
3961 layout_conflict_p (tree type,
3962 tree offset,
3963 splay_tree offsets,
3964 int vbases_p)
3966 splay_tree_node max_node;
3968 /* Get the node in OFFSETS that indicates the maximum offset where
3969 an empty subobject is located. */
3970 max_node = splay_tree_max (offsets);
3971 /* If there aren't any empty subobjects, then there's no point in
3972 performing this check. */
3973 if (!max_node)
3974 return 0;
3976 return walk_subobject_offsets (type, check_subobject_offset, offset,
3977 offsets, (tree) (max_node->key),
3978 vbases_p);
3981 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3982 non-static data member of the type indicated by RLI. BINFO is the
3983 binfo corresponding to the base subobject, OFFSETS maps offsets to
3984 types already located at those offsets. This function determines
3985 the position of the DECL. */
3987 static void
3988 layout_nonempty_base_or_field (record_layout_info rli,
3989 tree decl,
3990 tree binfo,
3991 splay_tree offsets)
3993 tree offset = NULL_TREE;
3994 bool field_p;
3995 tree type;
3997 if (binfo)
3999 /* For the purposes of determining layout conflicts, we want to
4000 use the class type of BINFO; TREE_TYPE (DECL) will be the
4001 CLASSTYPE_AS_BASE version, which does not contain entries for
4002 zero-sized bases. */
4003 type = TREE_TYPE (binfo);
4004 field_p = false;
4006 else
4008 type = TREE_TYPE (decl);
4009 field_p = true;
4012 /* Try to place the field. It may take more than one try if we have
4013 a hard time placing the field without putting two objects of the
4014 same type at the same address. */
4015 while (1)
4017 struct record_layout_info_s old_rli = *rli;
4019 /* Place this field. */
4020 place_field (rli, decl);
4021 offset = byte_position (decl);
4023 /* We have to check to see whether or not there is already
4024 something of the same type at the offset we're about to use.
4025 For example, consider:
4027 struct S {};
4028 struct T : public S { int i; };
4029 struct U : public S, public T {};
4031 Here, we put S at offset zero in U. Then, we can't put T at
4032 offset zero -- its S component would be at the same address
4033 as the S we already allocated. So, we have to skip ahead.
4034 Since all data members, including those whose type is an
4035 empty class, have nonzero size, any overlap can happen only
4036 with a direct or indirect base-class -- it can't happen with
4037 a data member. */
4038 /* In a union, overlap is permitted; all members are placed at
4039 offset zero. */
4040 if (TREE_CODE (rli->t) == UNION_TYPE)
4041 break;
4042 /* G++ 3.2 did not check for overlaps when placing a non-empty
4043 virtual base. */
4044 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
4045 break;
4046 if (layout_conflict_p (field_p ? type : binfo, offset,
4047 offsets, field_p))
4049 /* Strip off the size allocated to this field. That puts us
4050 at the first place we could have put the field with
4051 proper alignment. */
4052 *rli = old_rli;
4054 /* Bump up by the alignment required for the type. */
4055 rli->bitpos
4056 = size_binop (PLUS_EXPR, rli->bitpos,
4057 bitsize_int (binfo
4058 ? CLASSTYPE_ALIGN (type)
4059 : TYPE_ALIGN (type)));
4060 normalize_rli (rli);
4062 else
4063 /* There was no conflict. We're done laying out this field. */
4064 break;
4067 /* Now that we know where it will be placed, update its
4068 BINFO_OFFSET. */
4069 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
4070 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
4071 this point because their BINFO_OFFSET is copied from another
4072 hierarchy. Therefore, we may not need to add the entire
4073 OFFSET. */
4074 propagate_binfo_offsets (binfo,
4075 size_diffop_loc (input_location,
4076 convert (ssizetype, offset),
4077 convert (ssizetype,
4078 BINFO_OFFSET (binfo))));
4081 /* Returns true if TYPE is empty and OFFSET is nonzero. */
4083 static int
4084 empty_base_at_nonzero_offset_p (tree type,
4085 tree offset,
4086 splay_tree /*offsets*/)
4088 return is_empty_class (type) && !integer_zerop (offset);
4091 /* Layout the empty base BINFO. EOC indicates the byte currently just
4092 past the end of the class, and should be correctly aligned for a
4093 class of the type indicated by BINFO; OFFSETS gives the offsets of
4094 the empty bases allocated so far. T is the most derived
4095 type. Return nonzero iff we added it at the end. */
4097 static bool
4098 layout_empty_base (record_layout_info rli, tree binfo,
4099 tree eoc, splay_tree offsets)
4101 tree alignment;
4102 tree basetype = BINFO_TYPE (binfo);
4103 bool atend = false;
4105 /* This routine should only be used for empty classes. */
4106 gcc_assert (is_empty_class (basetype));
4107 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
4109 if (!integer_zerop (BINFO_OFFSET (binfo)))
4111 if (abi_version_at_least (2))
4112 propagate_binfo_offsets
4113 (binfo, size_diffop_loc (input_location,
4114 size_zero_node, BINFO_OFFSET (binfo)));
4115 else
4116 warning (OPT_Wabi,
4117 "offset of empty base %qT may not be ABI-compliant and may"
4118 "change in a future version of GCC",
4119 BINFO_TYPE (binfo));
4122 /* This is an empty base class. We first try to put it at offset
4123 zero. */
4124 if (layout_conflict_p (binfo,
4125 BINFO_OFFSET (binfo),
4126 offsets,
4127 /*vbases_p=*/0))
4129 /* That didn't work. Now, we move forward from the next
4130 available spot in the class. */
4131 atend = true;
4132 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
4133 while (1)
4135 if (!layout_conflict_p (binfo,
4136 BINFO_OFFSET (binfo),
4137 offsets,
4138 /*vbases_p=*/0))
4139 /* We finally found a spot where there's no overlap. */
4140 break;
4142 /* There's overlap here, too. Bump along to the next spot. */
4143 propagate_binfo_offsets (binfo, alignment);
4147 if (CLASSTYPE_USER_ALIGN (basetype))
4149 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
4150 if (warn_packed)
4151 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
4152 TYPE_USER_ALIGN (rli->t) = 1;
4155 return atend;
4158 /* Layout the base given by BINFO in the class indicated by RLI.
4159 *BASE_ALIGN is a running maximum of the alignments of
4160 any base class. OFFSETS gives the location of empty base
4161 subobjects. T is the most derived type. Return nonzero if the new
4162 object cannot be nearly-empty. A new FIELD_DECL is inserted at
4163 *NEXT_FIELD, unless BINFO is for an empty base class.
4165 Returns the location at which the next field should be inserted. */
4167 static tree *
4168 build_base_field (record_layout_info rli, tree binfo,
4169 splay_tree offsets, tree *next_field)
4171 tree t = rli->t;
4172 tree basetype = BINFO_TYPE (binfo);
4174 if (!COMPLETE_TYPE_P (basetype))
4175 /* This error is now reported in xref_tag, thus giving better
4176 location information. */
4177 return next_field;
4179 /* Place the base class. */
4180 if (!is_empty_class (basetype))
4182 tree decl;
4184 /* The containing class is non-empty because it has a non-empty
4185 base class. */
4186 CLASSTYPE_EMPTY_P (t) = 0;
4188 /* Create the FIELD_DECL. */
4189 decl = build_decl (input_location,
4190 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
4191 DECL_ARTIFICIAL (decl) = 1;
4192 DECL_IGNORED_P (decl) = 1;
4193 DECL_FIELD_CONTEXT (decl) = t;
4194 if (CLASSTYPE_AS_BASE (basetype))
4196 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
4197 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
4198 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
4199 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
4200 DECL_MODE (decl) = TYPE_MODE (basetype);
4201 DECL_FIELD_IS_BASE (decl) = 1;
4203 /* Try to place the field. It may take more than one try if we
4204 have a hard time placing the field without putting two
4205 objects of the same type at the same address. */
4206 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
4207 /* Add the new FIELD_DECL to the list of fields for T. */
4208 DECL_CHAIN (decl) = *next_field;
4209 *next_field = decl;
4210 next_field = &DECL_CHAIN (decl);
4213 else
4215 tree eoc;
4216 bool atend;
4218 /* On some platforms (ARM), even empty classes will not be
4219 byte-aligned. */
4220 eoc = round_up_loc (input_location,
4221 rli_size_unit_so_far (rli),
4222 CLASSTYPE_ALIGN_UNIT (basetype));
4223 atend = layout_empty_base (rli, binfo, eoc, offsets);
4224 /* A nearly-empty class "has no proper base class that is empty,
4225 not morally virtual, and at an offset other than zero." */
4226 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
4228 if (atend)
4229 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4230 /* The check above (used in G++ 3.2) is insufficient because
4231 an empty class placed at offset zero might itself have an
4232 empty base at a nonzero offset. */
4233 else if (walk_subobject_offsets (basetype,
4234 empty_base_at_nonzero_offset_p,
4235 size_zero_node,
4236 /*offsets=*/NULL,
4237 /*max_offset=*/NULL_TREE,
4238 /*vbases_p=*/true))
4240 if (abi_version_at_least (2))
4241 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4242 else
4243 warning (OPT_Wabi,
4244 "class %qT will be considered nearly empty in a "
4245 "future version of GCC", t);
4249 /* We do not create a FIELD_DECL for empty base classes because
4250 it might overlap some other field. We want to be able to
4251 create CONSTRUCTORs for the class by iterating over the
4252 FIELD_DECLs, and the back end does not handle overlapping
4253 FIELD_DECLs. */
4255 /* An empty virtual base causes a class to be non-empty
4256 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
4257 here because that was already done when the virtual table
4258 pointer was created. */
4261 /* Record the offsets of BINFO and its base subobjects. */
4262 record_subobject_offsets (binfo,
4263 BINFO_OFFSET (binfo),
4264 offsets,
4265 /*is_data_member=*/false);
4267 return next_field;
4270 /* Layout all of the non-virtual base classes. Record empty
4271 subobjects in OFFSETS. T is the most derived type. Return nonzero
4272 if the type cannot be nearly empty. The fields created
4273 corresponding to the base classes will be inserted at
4274 *NEXT_FIELD. */
4276 static void
4277 build_base_fields (record_layout_info rli,
4278 splay_tree offsets, tree *next_field)
4280 /* Chain to hold all the new FIELD_DECLs which stand in for base class
4281 subobjects. */
4282 tree t = rli->t;
4283 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
4284 int i;
4286 /* The primary base class is always allocated first. */
4287 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4288 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
4289 offsets, next_field);
4291 /* Now allocate the rest of the bases. */
4292 for (i = 0; i < n_baseclasses; ++i)
4294 tree base_binfo;
4296 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
4298 /* The primary base was already allocated above, so we don't
4299 need to allocate it again here. */
4300 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
4301 continue;
4303 /* Virtual bases are added at the end (a primary virtual base
4304 will have already been added). */
4305 if (BINFO_VIRTUAL_P (base_binfo))
4306 continue;
4308 next_field = build_base_field (rli, base_binfo,
4309 offsets, next_field);
4313 /* Go through the TYPE_METHODS of T issuing any appropriate
4314 diagnostics, figuring out which methods override which other
4315 methods, and so forth. */
4317 static void
4318 check_methods (tree t)
4320 tree x;
4322 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
4324 check_for_override (x, t);
4325 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
4326 error ("initializer specified for non-virtual method %q+D", x);
4327 /* The name of the field is the original field name
4328 Save this in auxiliary field for later overloading. */
4329 if (DECL_VINDEX (x))
4331 TYPE_POLYMORPHIC_P (t) = 1;
4332 if (DECL_PURE_VIRTUAL_P (x))
4333 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
4335 /* All user-provided destructors are non-trivial.
4336 Constructors and assignment ops are handled in
4337 grok_special_member_properties. */
4338 if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
4339 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
4343 /* FN is a constructor or destructor. Clone the declaration to create
4344 a specialized in-charge or not-in-charge version, as indicated by
4345 NAME. */
4347 static tree
4348 build_clone (tree fn, tree name)
4350 tree parms;
4351 tree clone;
4353 /* Copy the function. */
4354 clone = copy_decl (fn);
4355 /* Reset the function name. */
4356 DECL_NAME (clone) = name;
4357 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
4358 /* Remember where this function came from. */
4359 DECL_ABSTRACT_ORIGIN (clone) = fn;
4360 /* Make it easy to find the CLONE given the FN. */
4361 DECL_CHAIN (clone) = DECL_CHAIN (fn);
4362 DECL_CHAIN (fn) = clone;
4364 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
4365 if (TREE_CODE (clone) == TEMPLATE_DECL)
4367 tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
4368 DECL_TEMPLATE_RESULT (clone) = result;
4369 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
4370 DECL_TI_TEMPLATE (result) = clone;
4371 TREE_TYPE (clone) = TREE_TYPE (result);
4372 return clone;
4375 DECL_CLONED_FUNCTION (clone) = fn;
4376 /* There's no pending inline data for this function. */
4377 DECL_PENDING_INLINE_INFO (clone) = NULL;
4378 DECL_PENDING_INLINE_P (clone) = 0;
4380 /* The base-class destructor is not virtual. */
4381 if (name == base_dtor_identifier)
4383 DECL_VIRTUAL_P (clone) = 0;
4384 if (TREE_CODE (clone) != TEMPLATE_DECL)
4385 DECL_VINDEX (clone) = NULL_TREE;
4388 /* If there was an in-charge parameter, drop it from the function
4389 type. */
4390 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4392 tree basetype;
4393 tree parmtypes;
4394 tree exceptions;
4396 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4397 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4398 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
4399 /* Skip the `this' parameter. */
4400 parmtypes = TREE_CHAIN (parmtypes);
4401 /* Skip the in-charge parameter. */
4402 parmtypes = TREE_CHAIN (parmtypes);
4403 /* And the VTT parm, in a complete [cd]tor. */
4404 if (DECL_HAS_VTT_PARM_P (fn)
4405 && ! DECL_NEEDS_VTT_PARM_P (clone))
4406 parmtypes = TREE_CHAIN (parmtypes);
4407 /* If this is subobject constructor or destructor, add the vtt
4408 parameter. */
4409 TREE_TYPE (clone)
4410 = build_method_type_directly (basetype,
4411 TREE_TYPE (TREE_TYPE (clone)),
4412 parmtypes);
4413 if (exceptions)
4414 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
4415 exceptions);
4416 TREE_TYPE (clone)
4417 = cp_build_type_attribute_variant (TREE_TYPE (clone),
4418 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
4421 /* Copy the function parameters. */
4422 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
4423 /* Remove the in-charge parameter. */
4424 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4426 DECL_CHAIN (DECL_ARGUMENTS (clone))
4427 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4428 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
4430 /* And the VTT parm, in a complete [cd]tor. */
4431 if (DECL_HAS_VTT_PARM_P (fn))
4433 if (DECL_NEEDS_VTT_PARM_P (clone))
4434 DECL_HAS_VTT_PARM_P (clone) = 1;
4435 else
4437 DECL_CHAIN (DECL_ARGUMENTS (clone))
4438 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4439 DECL_HAS_VTT_PARM_P (clone) = 0;
4443 for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
4445 DECL_CONTEXT (parms) = clone;
4446 cxx_dup_lang_specific_decl (parms);
4449 /* Create the RTL for this function. */
4450 SET_DECL_RTL (clone, NULL);
4451 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
4453 if (pch_file)
4454 note_decl_for_pch (clone);
4456 return clone;
4459 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
4460 not invoke this function directly.
4462 For a non-thunk function, returns the address of the slot for storing
4463 the function it is a clone of. Otherwise returns NULL_TREE.
4465 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
4466 cloned_function is unset. This is to support the separate
4467 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
4468 on a template makes sense, but not the former. */
4470 tree *
4471 decl_cloned_function_p (const_tree decl, bool just_testing)
4473 tree *ptr;
4474 if (just_testing)
4475 decl = STRIP_TEMPLATE (decl);
4477 if (TREE_CODE (decl) != FUNCTION_DECL
4478 || !DECL_LANG_SPECIFIC (decl)
4479 || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
4481 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4482 if (!just_testing)
4483 lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
4484 else
4485 #endif
4486 return NULL;
4489 ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
4490 if (just_testing && *ptr == NULL_TREE)
4491 return NULL;
4492 else
4493 return ptr;
4496 /* Produce declarations for all appropriate clones of FN. If
4497 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4498 CLASTYPE_METHOD_VEC as well. */
4500 void
4501 clone_function_decl (tree fn, int update_method_vec_p)
4503 tree clone;
4505 /* Avoid inappropriate cloning. */
4506 if (DECL_CHAIN (fn)
4507 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
4508 return;
4510 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
4512 /* For each constructor, we need two variants: an in-charge version
4513 and a not-in-charge version. */
4514 clone = build_clone (fn, complete_ctor_identifier);
4515 if (update_method_vec_p)
4516 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4517 clone = build_clone (fn, base_ctor_identifier);
4518 if (update_method_vec_p)
4519 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4521 else
4523 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
4525 /* For each destructor, we need three variants: an in-charge
4526 version, a not-in-charge version, and an in-charge deleting
4527 version. We clone the deleting version first because that
4528 means it will go second on the TYPE_METHODS list -- and that
4529 corresponds to the correct layout order in the virtual
4530 function table.
4532 For a non-virtual destructor, we do not build a deleting
4533 destructor. */
4534 if (DECL_VIRTUAL_P (fn))
4536 clone = build_clone (fn, deleting_dtor_identifier);
4537 if (update_method_vec_p)
4538 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4540 clone = build_clone (fn, complete_dtor_identifier);
4541 if (update_method_vec_p)
4542 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4543 clone = build_clone (fn, base_dtor_identifier);
4544 if (update_method_vec_p)
4545 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4548 /* Note that this is an abstract function that is never emitted. */
4549 DECL_ABSTRACT (fn) = 1;
4552 /* DECL is an in charge constructor, which is being defined. This will
4553 have had an in class declaration, from whence clones were
4554 declared. An out-of-class definition can specify additional default
4555 arguments. As it is the clones that are involved in overload
4556 resolution, we must propagate the information from the DECL to its
4557 clones. */
4559 void
4560 adjust_clone_args (tree decl)
4562 tree clone;
4564 for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
4565 clone = DECL_CHAIN (clone))
4567 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
4568 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
4569 tree decl_parms, clone_parms;
4571 clone_parms = orig_clone_parms;
4573 /* Skip the 'this' parameter. */
4574 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
4575 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4577 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
4578 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4579 if (DECL_HAS_VTT_PARM_P (decl))
4580 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4582 clone_parms = orig_clone_parms;
4583 if (DECL_HAS_VTT_PARM_P (clone))
4584 clone_parms = TREE_CHAIN (clone_parms);
4586 for (decl_parms = orig_decl_parms; decl_parms;
4587 decl_parms = TREE_CHAIN (decl_parms),
4588 clone_parms = TREE_CHAIN (clone_parms))
4590 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4591 TREE_TYPE (clone_parms)));
4593 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4595 /* A default parameter has been added. Adjust the
4596 clone's parameters. */
4597 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4598 tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
4599 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4600 tree type;
4602 clone_parms = orig_decl_parms;
4604 if (DECL_HAS_VTT_PARM_P (clone))
4606 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4607 TREE_VALUE (orig_clone_parms),
4608 clone_parms);
4609 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4611 type = build_method_type_directly (basetype,
4612 TREE_TYPE (TREE_TYPE (clone)),
4613 clone_parms);
4614 if (exceptions)
4615 type = build_exception_variant (type, exceptions);
4616 if (attrs)
4617 type = cp_build_type_attribute_variant (type, attrs);
4618 TREE_TYPE (clone) = type;
4620 clone_parms = NULL_TREE;
4621 break;
4624 gcc_assert (!clone_parms);
4628 /* For each of the constructors and destructors in T, create an
4629 in-charge and not-in-charge variant. */
4631 static void
4632 clone_constructors_and_destructors (tree t)
4634 tree fns;
4636 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4637 out now. */
4638 if (!CLASSTYPE_METHOD_VEC (t))
4639 return;
4641 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4642 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4643 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4644 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4647 /* Deduce noexcept for a destructor DTOR. */
4649 void
4650 deduce_noexcept_on_destructor (tree dtor)
4652 if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor)))
4654 tree ctx = DECL_CONTEXT (dtor);
4655 tree implicit_fn = implicitly_declare_fn (sfk_destructor, ctx,
4656 /*const_p=*/false,
4657 NULL, NULL);
4658 tree eh_spec = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (implicit_fn));
4659 TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor), eh_spec);
4663 /* For each destructor in T, deduce noexcept:
4665 12.4/3: A declaration of a destructor that does not have an
4666 exception-specification is implicitly considered to have the
4667 same exception-specification as an implicit declaration (15.4). */
4669 static void
4670 deduce_noexcept_on_destructors (tree t)
4672 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4673 out now. */
4674 if (!CLASSTYPE_METHOD_VEC (t))
4675 return;
4677 for (tree fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4678 deduce_noexcept_on_destructor (OVL_CURRENT (fns));
4681 /* Subroutine of set_one_vmethod_tm_attributes. Search base classes
4682 of TYPE for virtual functions which FNDECL overrides. Return a
4683 mask of the tm attributes found therein. */
4685 static int
4686 look_for_tm_attr_overrides (tree type, tree fndecl)
4688 tree binfo = TYPE_BINFO (type);
4689 tree base_binfo;
4690 int ix, found = 0;
4692 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
4694 tree o, basetype = BINFO_TYPE (base_binfo);
4696 if (!TYPE_POLYMORPHIC_P (basetype))
4697 continue;
4699 o = look_for_overrides_here (basetype, fndecl);
4700 if (o)
4701 found |= tm_attr_to_mask (find_tm_attribute
4702 (TYPE_ATTRIBUTES (TREE_TYPE (o))));
4703 else
4704 found |= look_for_tm_attr_overrides (basetype, fndecl);
4707 return found;
4710 /* Subroutine of set_method_tm_attributes. Handle the checks and
4711 inheritance for one virtual method FNDECL. */
4713 static void
4714 set_one_vmethod_tm_attributes (tree type, tree fndecl)
4716 tree tm_attr;
4717 int found, have;
4719 found = look_for_tm_attr_overrides (type, fndecl);
4721 /* If FNDECL doesn't actually override anything (i.e. T is the
4722 class that first declares FNDECL virtual), then we're done. */
4723 if (found == 0)
4724 return;
4726 tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
4727 have = tm_attr_to_mask (tm_attr);
4729 /* Intel STM Language Extension 3.0, Section 4.2 table 4:
4730 tm_pure must match exactly, otherwise no weakening of
4731 tm_safe > tm_callable > nothing. */
4732 /* ??? The tm_pure attribute didn't make the transition to the
4733 multivendor language spec. */
4734 if (have == TM_ATTR_PURE)
4736 if (found != TM_ATTR_PURE)
4738 found &= -found;
4739 goto err_override;
4742 /* If the overridden function is tm_pure, then FNDECL must be. */
4743 else if (found == TM_ATTR_PURE && tm_attr)
4744 goto err_override;
4745 /* Look for base class combinations that cannot be satisfied. */
4746 else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
4748 found &= ~TM_ATTR_PURE;
4749 found &= -found;
4750 error_at (DECL_SOURCE_LOCATION (fndecl),
4751 "method overrides both %<transaction_pure%> and %qE methods",
4752 tm_mask_to_attr (found));
4754 /* If FNDECL did not declare an attribute, then inherit the most
4755 restrictive one. */
4756 else if (tm_attr == NULL)
4758 apply_tm_attr (fndecl, tm_mask_to_attr (found & -found));
4760 /* Otherwise validate that we're not weaker than a function
4761 that is being overridden. */
4762 else
4764 found &= -found;
4765 if (found <= TM_ATTR_CALLABLE && have > found)
4766 goto err_override;
4768 return;
4770 err_override:
4771 error_at (DECL_SOURCE_LOCATION (fndecl),
4772 "method declared %qE overriding %qE method",
4773 tm_attr, tm_mask_to_attr (found));
4776 /* For each of the methods in T, propagate a class-level tm attribute. */
4778 static void
4779 set_method_tm_attributes (tree t)
4781 tree class_tm_attr, fndecl;
4783 /* Don't bother collecting tm attributes if transactional memory
4784 support is not enabled. */
4785 if (!flag_tm)
4786 return;
4788 /* Process virtual methods first, as they inherit directly from the
4789 base virtual function and also require validation of new attributes. */
4790 if (TYPE_CONTAINS_VPTR_P (t))
4792 tree vchain;
4793 for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
4794 vchain = TREE_CHAIN (vchain))
4796 fndecl = BV_FN (vchain);
4797 if (DECL_THUNK_P (fndecl))
4798 fndecl = THUNK_TARGET (fndecl);
4799 set_one_vmethod_tm_attributes (t, fndecl);
4803 /* If the class doesn't have an attribute, nothing more to do. */
4804 class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
4805 if (class_tm_attr == NULL)
4806 return;
4808 /* Any method that does not yet have a tm attribute inherits
4809 the one from the class. */
4810 for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl))
4812 if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
4813 apply_tm_attr (fndecl, class_tm_attr);
4817 /* Returns true iff class T has a user-defined constructor other than
4818 the default constructor. */
4820 bool
4821 type_has_user_nondefault_constructor (tree t)
4823 tree fns;
4825 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4826 return false;
4828 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4830 tree fn = OVL_CURRENT (fns);
4831 if (!DECL_ARTIFICIAL (fn)
4832 && (TREE_CODE (fn) == TEMPLATE_DECL
4833 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4834 != NULL_TREE)))
4835 return true;
4838 return false;
4841 /* Returns the defaulted constructor if T has one. Otherwise, returns
4842 NULL_TREE. */
4844 tree
4845 in_class_defaulted_default_constructor (tree t)
4847 tree fns, args;
4849 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4850 return NULL_TREE;
4852 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4854 tree fn = OVL_CURRENT (fns);
4856 if (DECL_DEFAULTED_IN_CLASS_P (fn))
4858 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4859 while (args && TREE_PURPOSE (args))
4860 args = TREE_CHAIN (args);
4861 if (!args || args == void_list_node)
4862 return fn;
4866 return NULL_TREE;
4869 /* Returns true iff FN is a user-provided function, i.e. user-declared
4870 and not defaulted at its first declaration; or explicit, private,
4871 protected, or non-const. */
4873 bool
4874 user_provided_p (tree fn)
4876 if (TREE_CODE (fn) == TEMPLATE_DECL)
4877 return true;
4878 else
4879 return (!DECL_ARTIFICIAL (fn)
4880 && !(DECL_INITIALIZED_IN_CLASS_P (fn)
4881 && (DECL_DEFAULTED_FN (fn) || DECL_DELETED_FN (fn))));
4884 /* Returns true iff class T has a user-provided constructor. */
4886 bool
4887 type_has_user_provided_constructor (tree t)
4889 tree fns;
4891 if (!CLASS_TYPE_P (t))
4892 return false;
4894 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4895 return false;
4897 /* This can happen in error cases; avoid crashing. */
4898 if (!CLASSTYPE_METHOD_VEC (t))
4899 return false;
4901 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4902 if (user_provided_p (OVL_CURRENT (fns)))
4903 return true;
4905 return false;
4908 /* Returns true iff class T has a user-provided default constructor. */
4910 bool
4911 type_has_user_provided_default_constructor (tree t)
4913 tree fns;
4915 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4916 return false;
4918 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4920 tree fn = OVL_CURRENT (fns);
4921 if (TREE_CODE (fn) == FUNCTION_DECL
4922 && user_provided_p (fn)
4923 && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)))
4924 return true;
4927 return false;
4930 /* TYPE is being used as a virtual base, and has a non-trivial move
4931 assignment. Return true if this is due to there being a user-provided
4932 move assignment in TYPE or one of its subobjects; if there isn't, then
4933 multiple move assignment can't cause any harm. */
4935 bool
4936 vbase_has_user_provided_move_assign (tree type)
4938 /* Does the type itself have a user-provided move assignment operator? */
4939 for (tree fns
4940 = lookup_fnfields_slot_nolazy (type, ansi_assopname (NOP_EXPR));
4941 fns; fns = OVL_NEXT (fns))
4943 tree fn = OVL_CURRENT (fns);
4944 if (move_fn_p (fn) && user_provided_p (fn))
4945 return true;
4948 /* Do any of its bases? */
4949 tree binfo = TYPE_BINFO (type);
4950 tree base_binfo;
4951 for (int i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4952 if (vbase_has_user_provided_move_assign (BINFO_TYPE (base_binfo)))
4953 return true;
4955 /* Or non-static data members? */
4956 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
4958 if (TREE_CODE (field) == FIELD_DECL
4959 && CLASS_TYPE_P (TREE_TYPE (field))
4960 && vbase_has_user_provided_move_assign (TREE_TYPE (field)))
4961 return true;
4964 /* Seems not. */
4965 return false;
4968 /* If default-initialization leaves part of TYPE uninitialized, returns
4969 a DECL for the field or TYPE itself (DR 253). */
4971 tree
4972 default_init_uninitialized_part (tree type)
4974 tree t, r, binfo;
4975 int i;
4977 type = strip_array_types (type);
4978 if (!CLASS_TYPE_P (type))
4979 return type;
4980 if (type_has_user_provided_default_constructor (type))
4981 return NULL_TREE;
4982 for (binfo = TYPE_BINFO (type), i = 0;
4983 BINFO_BASE_ITERATE (binfo, i, t); ++i)
4985 r = default_init_uninitialized_part (BINFO_TYPE (t));
4986 if (r)
4987 return r;
4989 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
4990 if (TREE_CODE (t) == FIELD_DECL
4991 && !DECL_ARTIFICIAL (t)
4992 && !DECL_INITIAL (t))
4994 r = default_init_uninitialized_part (TREE_TYPE (t));
4995 if (r)
4996 return DECL_P (r) ? r : t;
4999 return NULL_TREE;
5002 /* Returns true iff for class T, a trivial synthesized default constructor
5003 would be constexpr. */
5005 bool
5006 trivial_default_constructor_is_constexpr (tree t)
5008 /* A defaulted trivial default constructor is constexpr
5009 if there is nothing to initialize. */
5010 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
5011 return is_really_empty_class (t);
5014 /* Returns true iff class T has a constexpr default constructor. */
5016 bool
5017 type_has_constexpr_default_constructor (tree t)
5019 tree fns;
5021 if (!CLASS_TYPE_P (t))
5023 /* The caller should have stripped an enclosing array. */
5024 gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
5025 return false;
5027 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
5029 if (!TYPE_HAS_COMPLEX_DFLT (t))
5030 return trivial_default_constructor_is_constexpr (t);
5031 /* Non-trivial, we need to check subobject constructors. */
5032 lazily_declare_fn (sfk_constructor, t);
5034 fns = locate_ctor (t);
5035 return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
5038 /* Returns true iff class TYPE has a virtual destructor. */
5040 bool
5041 type_has_virtual_destructor (tree type)
5043 tree dtor;
5045 if (!CLASS_TYPE_P (type))
5046 return false;
5048 gcc_assert (COMPLETE_TYPE_P (type));
5049 dtor = CLASSTYPE_DESTRUCTORS (type);
5050 return (dtor && DECL_VIRTUAL_P (dtor));
5053 /* Returns true iff class T has a move constructor. */
5055 bool
5056 type_has_move_constructor (tree t)
5058 tree fns;
5060 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5062 gcc_assert (COMPLETE_TYPE_P (t));
5063 lazily_declare_fn (sfk_move_constructor, t);
5066 if (!CLASSTYPE_METHOD_VEC (t))
5067 return false;
5069 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5070 if (move_fn_p (OVL_CURRENT (fns)))
5071 return true;
5073 return false;
5076 /* Returns true iff class T has a move assignment operator. */
5078 bool
5079 type_has_move_assign (tree t)
5081 tree fns;
5083 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5085 gcc_assert (COMPLETE_TYPE_P (t));
5086 lazily_declare_fn (sfk_move_assignment, t);
5089 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5090 fns; fns = OVL_NEXT (fns))
5091 if (move_fn_p (OVL_CURRENT (fns)))
5092 return true;
5094 return false;
5097 /* Returns true iff class T has a move constructor that was explicitly
5098 declared in the class body. Note that this is different from
5099 "user-provided", which doesn't include functions that are defaulted in
5100 the class. */
5102 bool
5103 type_has_user_declared_move_constructor (tree t)
5105 tree fns;
5107 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5108 return false;
5110 if (!CLASSTYPE_METHOD_VEC (t))
5111 return false;
5113 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5115 tree fn = OVL_CURRENT (fns);
5116 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5117 return true;
5120 return false;
5123 /* Returns true iff class T has a move assignment operator that was
5124 explicitly declared in the class body. */
5126 bool
5127 type_has_user_declared_move_assign (tree t)
5129 tree fns;
5131 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5132 return false;
5134 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5135 fns; fns = OVL_NEXT (fns))
5137 tree fn = OVL_CURRENT (fns);
5138 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5139 return true;
5142 return false;
5145 /* Nonzero if we need to build up a constructor call when initializing an
5146 object of this class, either because it has a user-declared constructor
5147 or because it doesn't have a default constructor (so we need to give an
5148 error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
5149 what you care about is whether or not an object can be produced by a
5150 constructor (e.g. so we don't set TREE_READONLY on const variables of
5151 such type); use this function when what you care about is whether or not
5152 to try to call a constructor to create an object. The latter case is
5153 the former plus some cases of constructors that cannot be called. */
5155 bool
5156 type_build_ctor_call (tree t)
5158 tree inner;
5159 if (TYPE_NEEDS_CONSTRUCTING (t))
5160 return true;
5161 inner = strip_array_types (t);
5162 if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner))
5163 return false;
5164 if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (inner))
5165 return true;
5166 if (cxx_dialect < cxx11)
5167 return false;
5168 /* A user-declared constructor might be private, and a constructor might
5169 be trivial but deleted. */
5170 for (tree fns = lookup_fnfields_slot (inner, complete_ctor_identifier);
5171 fns; fns = OVL_NEXT (fns))
5173 tree fn = OVL_CURRENT (fns);
5174 if (!DECL_ARTIFICIAL (fn)
5175 || DECL_DELETED_FN (fn))
5176 return true;
5178 return false;
5181 /* Like type_build_ctor_call, but for destructors. */
5183 bool
5184 type_build_dtor_call (tree t)
5186 tree inner;
5187 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5188 return true;
5189 inner = strip_array_types (t);
5190 if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner)
5191 || !COMPLETE_TYPE_P (inner))
5192 return false;
5193 if (cxx_dialect < cxx11)
5194 return false;
5195 /* A user-declared destructor might be private, and a destructor might
5196 be trivial but deleted. */
5197 for (tree fns = lookup_fnfields_slot (inner, complete_dtor_identifier);
5198 fns; fns = OVL_NEXT (fns))
5200 tree fn = OVL_CURRENT (fns);
5201 if (!DECL_ARTIFICIAL (fn)
5202 || DECL_DELETED_FN (fn))
5203 return true;
5205 return false;
5208 /* Remove all zero-width bit-fields from T. */
5210 static void
5211 remove_zero_width_bit_fields (tree t)
5213 tree *fieldsp;
5215 fieldsp = &TYPE_FIELDS (t);
5216 while (*fieldsp)
5218 if (TREE_CODE (*fieldsp) == FIELD_DECL
5219 && DECL_C_BIT_FIELD (*fieldsp)
5220 /* We should not be confused by the fact that grokbitfield
5221 temporarily sets the width of the bit field into
5222 DECL_INITIAL (*fieldsp).
5223 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
5224 to that width. */
5225 && integer_zerop (DECL_SIZE (*fieldsp)))
5226 *fieldsp = DECL_CHAIN (*fieldsp);
5227 else
5228 fieldsp = &DECL_CHAIN (*fieldsp);
5232 /* Returns TRUE iff we need a cookie when dynamically allocating an
5233 array whose elements have the indicated class TYPE. */
5235 static bool
5236 type_requires_array_cookie (tree type)
5238 tree fns;
5239 bool has_two_argument_delete_p = false;
5241 gcc_assert (CLASS_TYPE_P (type));
5243 /* If there's a non-trivial destructor, we need a cookie. In order
5244 to iterate through the array calling the destructor for each
5245 element, we'll have to know how many elements there are. */
5246 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
5247 return true;
5249 /* If the usual deallocation function is a two-argument whose second
5250 argument is of type `size_t', then we have to pass the size of
5251 the array to the deallocation function, so we will need to store
5252 a cookie. */
5253 fns = lookup_fnfields (TYPE_BINFO (type),
5254 ansi_opname (VEC_DELETE_EXPR),
5255 /*protect=*/0);
5256 /* If there are no `operator []' members, or the lookup is
5257 ambiguous, then we don't need a cookie. */
5258 if (!fns || fns == error_mark_node)
5259 return false;
5260 /* Loop through all of the functions. */
5261 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
5263 tree fn;
5264 tree second_parm;
5266 /* Select the current function. */
5267 fn = OVL_CURRENT (fns);
5268 /* See if this function is a one-argument delete function. If
5269 it is, then it will be the usual deallocation function. */
5270 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
5271 if (second_parm == void_list_node)
5272 return false;
5273 /* Do not consider this function if its second argument is an
5274 ellipsis. */
5275 if (!second_parm)
5276 continue;
5277 /* Otherwise, if we have a two-argument function and the second
5278 argument is `size_t', it will be the usual deallocation
5279 function -- unless there is one-argument function, too. */
5280 if (TREE_CHAIN (second_parm) == void_list_node
5281 && same_type_p (TREE_VALUE (second_parm), size_type_node))
5282 has_two_argument_delete_p = true;
5285 return has_two_argument_delete_p;
5288 /* Finish computing the `literal type' property of class type T.
5290 At this point, we have already processed base classes and
5291 non-static data members. We need to check whether the copy
5292 constructor is trivial, the destructor is trivial, and there
5293 is a trivial default constructor or at least one constexpr
5294 constructor other than the copy constructor. */
5296 static void
5297 finalize_literal_type_property (tree t)
5299 tree fn;
5301 if (cxx_dialect < cxx11
5302 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5303 CLASSTYPE_LITERAL_P (t) = false;
5304 else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
5305 && CLASSTYPE_NON_AGGREGATE (t)
5306 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5307 CLASSTYPE_LITERAL_P (t) = false;
5309 if (!CLASSTYPE_LITERAL_P (t))
5310 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5311 if (DECL_DECLARED_CONSTEXPR_P (fn)
5312 && TREE_CODE (fn) != TEMPLATE_DECL
5313 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5314 && !DECL_CONSTRUCTOR_P (fn))
5316 DECL_DECLARED_CONSTEXPR_P (fn) = false;
5317 if (!DECL_GENERATED_P (fn))
5319 error ("enclosing class of constexpr non-static member "
5320 "function %q+#D is not a literal type", fn);
5321 explain_non_literal_class (t);
5326 /* T is a non-literal type used in a context which requires a constant
5327 expression. Explain why it isn't literal. */
5329 void
5330 explain_non_literal_class (tree t)
5332 static struct pointer_set_t *diagnosed;
5334 if (!CLASS_TYPE_P (t))
5335 return;
5336 t = TYPE_MAIN_VARIANT (t);
5338 if (diagnosed == NULL)
5339 diagnosed = pointer_set_create ();
5340 if (pointer_set_insert (diagnosed, t) != 0)
5341 /* Already explained. */
5342 return;
5344 inform (0, "%q+T is not literal because:", t);
5345 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5346 inform (0, " %q+T has a non-trivial destructor", t);
5347 else if (CLASSTYPE_NON_AGGREGATE (t)
5348 && !TYPE_HAS_TRIVIAL_DFLT (t)
5349 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5351 inform (0, " %q+T is not an aggregate, does not have a trivial "
5352 "default constructor, and has no constexpr constructor that "
5353 "is not a copy or move constructor", t);
5354 if (TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
5355 && !type_has_user_provided_default_constructor (t))
5357 /* Note that we can't simply call locate_ctor because when the
5358 constructor is deleted it just returns NULL_TREE. */
5359 tree fns;
5360 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5362 tree fn = OVL_CURRENT (fns);
5363 tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
5365 parms = skip_artificial_parms_for (fn, parms);
5367 if (sufficient_parms_p (parms))
5369 if (DECL_DELETED_FN (fn))
5370 maybe_explain_implicit_delete (fn);
5371 else
5372 explain_invalid_constexpr_fn (fn);
5373 break;
5378 else
5380 tree binfo, base_binfo, field; int i;
5381 for (binfo = TYPE_BINFO (t), i = 0;
5382 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5384 tree basetype = TREE_TYPE (base_binfo);
5385 if (!CLASSTYPE_LITERAL_P (basetype))
5387 inform (0, " base class %qT of %q+T is non-literal",
5388 basetype, t);
5389 explain_non_literal_class (basetype);
5390 return;
5393 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5395 tree ftype;
5396 if (TREE_CODE (field) != FIELD_DECL)
5397 continue;
5398 ftype = TREE_TYPE (field);
5399 if (!literal_type_p (ftype))
5401 inform (0, " non-static data member %q+D has "
5402 "non-literal type", field);
5403 if (CLASS_TYPE_P (ftype))
5404 explain_non_literal_class (ftype);
5410 /* Check the validity of the bases and members declared in T. Add any
5411 implicitly-generated functions (like copy-constructors and
5412 assignment operators). Compute various flag bits (like
5413 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
5414 level: i.e., independently of the ABI in use. */
5416 static void
5417 check_bases_and_members (tree t)
5419 /* Nonzero if the implicitly generated copy constructor should take
5420 a non-const reference argument. */
5421 int cant_have_const_ctor;
5422 /* Nonzero if the implicitly generated assignment operator
5423 should take a non-const reference argument. */
5424 int no_const_asn_ref;
5425 tree access_decls;
5426 bool saved_complex_asn_ref;
5427 bool saved_nontrivial_dtor;
5428 tree fn;
5430 /* By default, we use const reference arguments and generate default
5431 constructors. */
5432 cant_have_const_ctor = 0;
5433 no_const_asn_ref = 0;
5435 /* Check all the base-classes. */
5436 check_bases (t, &cant_have_const_ctor,
5437 &no_const_asn_ref);
5439 /* Deduce noexcept on destructors. This needs to happen after we've set
5440 triviality flags appropriately for our bases. */
5441 if (cxx_dialect >= cxx11)
5442 deduce_noexcept_on_destructors (t);
5444 /* Check all the method declarations. */
5445 check_methods (t);
5447 /* Save the initial values of these flags which only indicate whether
5448 or not the class has user-provided functions. As we analyze the
5449 bases and members we can set these flags for other reasons. */
5450 saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
5451 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
5453 /* Check all the data member declarations. We cannot call
5454 check_field_decls until we have called check_bases check_methods,
5455 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
5456 being set appropriately. */
5457 check_field_decls (t, &access_decls,
5458 &cant_have_const_ctor,
5459 &no_const_asn_ref);
5461 /* A nearly-empty class has to be vptr-containing; a nearly empty
5462 class contains just a vptr. */
5463 if (!TYPE_CONTAINS_VPTR_P (t))
5464 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
5466 /* Do some bookkeeping that will guide the generation of implicitly
5467 declared member functions. */
5468 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5469 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5470 /* We need to call a constructor for this class if it has a
5471 user-provided constructor, or if the default constructor is going
5472 to initialize the vptr. (This is not an if-and-only-if;
5473 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
5474 themselves need constructing.) */
5475 TYPE_NEEDS_CONSTRUCTING (t)
5476 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
5477 /* [dcl.init.aggr]
5479 An aggregate is an array or a class with no user-provided
5480 constructors ... and no virtual functions.
5482 Again, other conditions for being an aggregate are checked
5483 elsewhere. */
5484 CLASSTYPE_NON_AGGREGATE (t)
5485 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
5486 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
5487 retain the old definition internally for ABI reasons. */
5488 CLASSTYPE_NON_LAYOUT_POD_P (t)
5489 |= (CLASSTYPE_NON_AGGREGATE (t)
5490 || saved_nontrivial_dtor || saved_complex_asn_ref);
5491 CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
5492 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5493 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5494 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
5496 /* If the class has no user-declared constructor, but does have
5497 non-static const or reference data members that can never be
5498 initialized, issue a warning. */
5499 if (warn_uninitialized
5500 /* Classes with user-declared constructors are presumed to
5501 initialize these members. */
5502 && !TYPE_HAS_USER_CONSTRUCTOR (t)
5503 /* Aggregates can be initialized with brace-enclosed
5504 initializers. */
5505 && CLASSTYPE_NON_AGGREGATE (t))
5507 tree field;
5509 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5511 tree type;
5513 if (TREE_CODE (field) != FIELD_DECL
5514 || DECL_INITIAL (field) != NULL_TREE)
5515 continue;
5517 type = TREE_TYPE (field);
5518 if (TREE_CODE (type) == REFERENCE_TYPE)
5519 warning (OPT_Wuninitialized, "non-static reference %q+#D "
5520 "in class without a constructor", field);
5521 else if (CP_TYPE_CONST_P (type)
5522 && (!CLASS_TYPE_P (type)
5523 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
5524 warning (OPT_Wuninitialized, "non-static const member %q+#D "
5525 "in class without a constructor", field);
5529 /* Synthesize any needed methods. */
5530 add_implicitly_declared_members (t, &access_decls,
5531 cant_have_const_ctor,
5532 no_const_asn_ref);
5534 /* Check defaulted declarations here so we have cant_have_const_ctor
5535 and don't need to worry about clones. */
5536 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5537 if (!DECL_ARTIFICIAL (fn) && DECL_DEFAULTED_IN_CLASS_P (fn))
5539 int copy = copy_fn_p (fn);
5540 if (copy > 0)
5542 bool imp_const_p
5543 = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
5544 : !no_const_asn_ref);
5545 bool fn_const_p = (copy == 2);
5547 if (fn_const_p && !imp_const_p)
5548 /* If the function is defaulted outside the class, we just
5549 give the synthesis error. */
5550 error ("%q+D declared to take const reference, but implicit "
5551 "declaration would take non-const", fn);
5553 defaulted_late_check (fn);
5556 if (LAMBDA_TYPE_P (t))
5558 /* "The closure type associated with a lambda-expression has a deleted
5559 default constructor and a deleted copy assignment operator." */
5560 TYPE_NEEDS_CONSTRUCTING (t) = 1;
5561 TYPE_HAS_COMPLEX_DFLT (t) = 1;
5562 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
5563 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 0;
5565 /* "This class type is not an aggregate." */
5566 CLASSTYPE_NON_AGGREGATE (t) = 1;
5569 /* Compute the 'literal type' property before we
5570 do anything with non-static member functions. */
5571 finalize_literal_type_property (t);
5573 /* Create the in-charge and not-in-charge variants of constructors
5574 and destructors. */
5575 clone_constructors_and_destructors (t);
5577 /* Process the using-declarations. */
5578 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
5579 handle_using_decl (TREE_VALUE (access_decls), t);
5581 /* Build and sort the CLASSTYPE_METHOD_VEC. */
5582 finish_struct_methods (t);
5584 /* Figure out whether or not we will need a cookie when dynamically
5585 allocating an array of this type. */
5586 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
5587 = type_requires_array_cookie (t);
5590 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
5591 accordingly. If a new vfield was created (because T doesn't have a
5592 primary base class), then the newly created field is returned. It
5593 is not added to the TYPE_FIELDS list; it is the caller's
5594 responsibility to do that. Accumulate declared virtual functions
5595 on VIRTUALS_P. */
5597 static tree
5598 create_vtable_ptr (tree t, tree* virtuals_p)
5600 tree fn;
5602 /* Collect the virtual functions declared in T. */
5603 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5604 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
5605 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
5607 tree new_virtual = make_node (TREE_LIST);
5609 BV_FN (new_virtual) = fn;
5610 BV_DELTA (new_virtual) = integer_zero_node;
5611 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
5613 TREE_CHAIN (new_virtual) = *virtuals_p;
5614 *virtuals_p = new_virtual;
5617 /* If we couldn't find an appropriate base class, create a new field
5618 here. Even if there weren't any new virtual functions, we might need a
5619 new virtual function table if we're supposed to include vptrs in
5620 all classes that need them. */
5621 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
5623 /* We build this decl with vtbl_ptr_type_node, which is a
5624 `vtable_entry_type*'. It might seem more precise to use
5625 `vtable_entry_type (*)[N]' where N is the number of virtual
5626 functions. However, that would require the vtable pointer in
5627 base classes to have a different type than the vtable pointer
5628 in derived classes. We could make that happen, but that
5629 still wouldn't solve all the problems. In particular, the
5630 type-based alias analysis code would decide that assignments
5631 to the base class vtable pointer can't alias assignments to
5632 the derived class vtable pointer, since they have different
5633 types. Thus, in a derived class destructor, where the base
5634 class constructor was inlined, we could generate bad code for
5635 setting up the vtable pointer.
5637 Therefore, we use one type for all vtable pointers. We still
5638 use a type-correct type; it's just doesn't indicate the array
5639 bounds. That's better than using `void*' or some such; it's
5640 cleaner, and it let's the alias analysis code know that these
5641 stores cannot alias stores to void*! */
5642 tree field;
5644 field = build_decl (input_location,
5645 FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
5646 DECL_VIRTUAL_P (field) = 1;
5647 DECL_ARTIFICIAL (field) = 1;
5648 DECL_FIELD_CONTEXT (field) = t;
5649 DECL_FCONTEXT (field) = t;
5650 if (TYPE_PACKED (t))
5651 DECL_PACKED (field) = 1;
5653 TYPE_VFIELD (t) = field;
5655 /* This class is non-empty. */
5656 CLASSTYPE_EMPTY_P (t) = 0;
5658 return field;
5661 return NULL_TREE;
5664 /* Add OFFSET to all base types of BINFO which is a base in the
5665 hierarchy dominated by T.
5667 OFFSET, which is a type offset, is number of bytes. */
5669 static void
5670 propagate_binfo_offsets (tree binfo, tree offset)
5672 int i;
5673 tree primary_binfo;
5674 tree base_binfo;
5676 /* Update BINFO's offset. */
5677 BINFO_OFFSET (binfo)
5678 = convert (sizetype,
5679 size_binop (PLUS_EXPR,
5680 convert (ssizetype, BINFO_OFFSET (binfo)),
5681 offset));
5683 /* Find the primary base class. */
5684 primary_binfo = get_primary_binfo (binfo);
5686 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
5687 propagate_binfo_offsets (primary_binfo, offset);
5689 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
5690 downwards. */
5691 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5693 /* Don't do the primary base twice. */
5694 if (base_binfo == primary_binfo)
5695 continue;
5697 if (BINFO_VIRTUAL_P (base_binfo))
5698 continue;
5700 propagate_binfo_offsets (base_binfo, offset);
5704 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
5705 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
5706 empty subobjects of T. */
5708 static void
5709 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
5711 tree vbase;
5712 tree t = rli->t;
5713 bool first_vbase = true;
5714 tree *next_field;
5716 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
5717 return;
5719 if (!abi_version_at_least(2))
5721 /* In G++ 3.2, we incorrectly rounded the size before laying out
5722 the virtual bases. */
5723 finish_record_layout (rli, /*free_p=*/false);
5724 #ifdef STRUCTURE_SIZE_BOUNDARY
5725 /* Packed structures don't need to have minimum size. */
5726 if (! TYPE_PACKED (t))
5727 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
5728 #endif
5729 rli->offset = TYPE_SIZE_UNIT (t);
5730 rli->bitpos = bitsize_zero_node;
5731 rli->record_align = TYPE_ALIGN (t);
5734 /* Find the last field. The artificial fields created for virtual
5735 bases will go after the last extant field to date. */
5736 next_field = &TYPE_FIELDS (t);
5737 while (*next_field)
5738 next_field = &DECL_CHAIN (*next_field);
5740 /* Go through the virtual bases, allocating space for each virtual
5741 base that is not already a primary base class. These are
5742 allocated in inheritance graph order. */
5743 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
5745 if (!BINFO_VIRTUAL_P (vbase))
5746 continue;
5748 if (!BINFO_PRIMARY_P (vbase))
5750 tree basetype = TREE_TYPE (vbase);
5752 /* This virtual base is not a primary base of any class in the
5753 hierarchy, so we have to add space for it. */
5754 next_field = build_base_field (rli, vbase,
5755 offsets, next_field);
5757 /* If the first virtual base might have been placed at a
5758 lower address, had we started from CLASSTYPE_SIZE, rather
5759 than TYPE_SIZE, issue a warning. There can be both false
5760 positives and false negatives from this warning in rare
5761 cases; to deal with all the possibilities would probably
5762 require performing both layout algorithms and comparing
5763 the results which is not particularly tractable. */
5764 if (warn_abi
5765 && first_vbase
5766 && (tree_int_cst_lt
5767 (size_binop (CEIL_DIV_EXPR,
5768 round_up_loc (input_location,
5769 CLASSTYPE_SIZE (t),
5770 CLASSTYPE_ALIGN (basetype)),
5771 bitsize_unit_node),
5772 BINFO_OFFSET (vbase))))
5773 warning (OPT_Wabi,
5774 "offset of virtual base %qT is not ABI-compliant and "
5775 "may change in a future version of GCC",
5776 basetype);
5778 first_vbase = false;
5783 /* Returns the offset of the byte just past the end of the base class
5784 BINFO. */
5786 static tree
5787 end_of_base (tree binfo)
5789 tree size;
5791 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
5792 size = TYPE_SIZE_UNIT (char_type_node);
5793 else if (is_empty_class (BINFO_TYPE (binfo)))
5794 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
5795 allocate some space for it. It cannot have virtual bases, so
5796 TYPE_SIZE_UNIT is fine. */
5797 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5798 else
5799 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5801 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
5804 /* Returns the offset of the byte just past the end of the base class
5805 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
5806 only non-virtual bases are included. */
5808 static tree
5809 end_of_class (tree t, int include_virtuals_p)
5811 tree result = size_zero_node;
5812 vec<tree, va_gc> *vbases;
5813 tree binfo;
5814 tree base_binfo;
5815 tree offset;
5816 int i;
5818 for (binfo = TYPE_BINFO (t), i = 0;
5819 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5821 if (!include_virtuals_p
5822 && BINFO_VIRTUAL_P (base_binfo)
5823 && (!BINFO_PRIMARY_P (base_binfo)
5824 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
5825 continue;
5827 offset = end_of_base (base_binfo);
5828 if (INT_CST_LT_UNSIGNED (result, offset))
5829 result = offset;
5832 /* G++ 3.2 did not check indirect virtual bases. */
5833 if (abi_version_at_least (2) && include_virtuals_p)
5834 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5835 vec_safe_iterate (vbases, i, &base_binfo); i++)
5837 offset = end_of_base (base_binfo);
5838 if (INT_CST_LT_UNSIGNED (result, offset))
5839 result = offset;
5842 return result;
5845 /* Warn about bases of T that are inaccessible because they are
5846 ambiguous. For example:
5848 struct S {};
5849 struct T : public S {};
5850 struct U : public S, public T {};
5852 Here, `(S*) new U' is not allowed because there are two `S'
5853 subobjects of U. */
5855 static void
5856 warn_about_ambiguous_bases (tree t)
5858 int i;
5859 vec<tree, va_gc> *vbases;
5860 tree basetype;
5861 tree binfo;
5862 tree base_binfo;
5864 /* If there are no repeated bases, nothing can be ambiguous. */
5865 if (!CLASSTYPE_REPEATED_BASE_P (t))
5866 return;
5868 /* Check direct bases. */
5869 for (binfo = TYPE_BINFO (t), i = 0;
5870 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5872 basetype = BINFO_TYPE (base_binfo);
5874 if (!uniquely_derived_from_p (basetype, t))
5875 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
5876 basetype, t);
5879 /* Check for ambiguous virtual bases. */
5880 if (extra_warnings)
5881 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5882 vec_safe_iterate (vbases, i, &binfo); i++)
5884 basetype = BINFO_TYPE (binfo);
5886 if (!uniquely_derived_from_p (basetype, t))
5887 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due "
5888 "to ambiguity", basetype, t);
5892 /* Compare two INTEGER_CSTs K1 and K2. */
5894 static int
5895 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
5897 return tree_int_cst_compare ((tree) k1, (tree) k2);
5900 /* Increase the size indicated in RLI to account for empty classes
5901 that are "off the end" of the class. */
5903 static void
5904 include_empty_classes (record_layout_info rli)
5906 tree eoc;
5907 tree rli_size;
5909 /* It might be the case that we grew the class to allocate a
5910 zero-sized base class. That won't be reflected in RLI, yet,
5911 because we are willing to overlay multiple bases at the same
5912 offset. However, now we need to make sure that RLI is big enough
5913 to reflect the entire class. */
5914 eoc = end_of_class (rli->t,
5915 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
5916 rli_size = rli_size_unit_so_far (rli);
5917 if (TREE_CODE (rli_size) == INTEGER_CST
5918 && INT_CST_LT_UNSIGNED (rli_size, eoc))
5920 if (!abi_version_at_least (2))
5921 /* In version 1 of the ABI, the size of a class that ends with
5922 a bitfield was not rounded up to a whole multiple of a
5923 byte. Because rli_size_unit_so_far returns only the number
5924 of fully allocated bytes, any extra bits were not included
5925 in the size. */
5926 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
5927 else
5928 /* The size should have been rounded to a whole byte. */
5929 gcc_assert (tree_int_cst_equal
5930 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
5931 rli->bitpos
5932 = size_binop (PLUS_EXPR,
5933 rli->bitpos,
5934 size_binop (MULT_EXPR,
5935 convert (bitsizetype,
5936 size_binop (MINUS_EXPR,
5937 eoc, rli_size)),
5938 bitsize_int (BITS_PER_UNIT)));
5939 normalize_rli (rli);
5943 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
5944 BINFO_OFFSETs for all of the base-classes. Position the vtable
5945 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
5947 static void
5948 layout_class_type (tree t, tree *virtuals_p)
5950 tree non_static_data_members;
5951 tree field;
5952 tree vptr;
5953 record_layout_info rli;
5954 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
5955 types that appear at that offset. */
5956 splay_tree empty_base_offsets;
5957 /* True if the last field laid out was a bit-field. */
5958 bool last_field_was_bitfield = false;
5959 /* The location at which the next field should be inserted. */
5960 tree *next_field;
5961 /* T, as a base class. */
5962 tree base_t;
5964 /* Keep track of the first non-static data member. */
5965 non_static_data_members = TYPE_FIELDS (t);
5967 /* Start laying out the record. */
5968 rli = start_record_layout (t);
5970 /* Mark all the primary bases in the hierarchy. */
5971 determine_primary_bases (t);
5973 /* Create a pointer to our virtual function table. */
5974 vptr = create_vtable_ptr (t, virtuals_p);
5976 /* The vptr is always the first thing in the class. */
5977 if (vptr)
5979 DECL_CHAIN (vptr) = TYPE_FIELDS (t);
5980 TYPE_FIELDS (t) = vptr;
5981 next_field = &DECL_CHAIN (vptr);
5982 place_field (rli, vptr);
5984 else
5985 next_field = &TYPE_FIELDS (t);
5987 /* Build FIELD_DECLs for all of the non-virtual base-types. */
5988 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
5989 NULL, NULL);
5990 build_base_fields (rli, empty_base_offsets, next_field);
5992 /* Layout the non-static data members. */
5993 for (field = non_static_data_members; field; field = DECL_CHAIN (field))
5995 tree type;
5996 tree padding;
5998 /* We still pass things that aren't non-static data members to
5999 the back end, in case it wants to do something with them. */
6000 if (TREE_CODE (field) != FIELD_DECL)
6002 place_field (rli, field);
6003 /* If the static data member has incomplete type, keep track
6004 of it so that it can be completed later. (The handling
6005 of pending statics in finish_record_layout is
6006 insufficient; consider:
6008 struct S1;
6009 struct S2 { static S1 s1; };
6011 At this point, finish_record_layout will be called, but
6012 S1 is still incomplete.) */
6013 if (VAR_P (field))
6015 maybe_register_incomplete_var (field);
6016 /* The visibility of static data members is determined
6017 at their point of declaration, not their point of
6018 definition. */
6019 determine_visibility (field);
6021 continue;
6024 type = TREE_TYPE (field);
6025 if (type == error_mark_node)
6026 continue;
6028 padding = NULL_TREE;
6030 /* If this field is a bit-field whose width is greater than its
6031 type, then there are some special rules for allocating
6032 it. */
6033 if (DECL_C_BIT_FIELD (field)
6034 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
6036 unsigned int itk;
6037 tree integer_type;
6038 bool was_unnamed_p = false;
6039 /* We must allocate the bits as if suitably aligned for the
6040 longest integer type that fits in this many bits. type
6041 of the field. Then, we are supposed to use the left over
6042 bits as additional padding. */
6043 for (itk = itk_char; itk != itk_none; ++itk)
6044 if (integer_types[itk] != NULL_TREE
6045 && (INT_CST_LT (size_int (MAX_FIXED_MODE_SIZE),
6046 TYPE_SIZE (integer_types[itk]))
6047 || INT_CST_LT (DECL_SIZE (field),
6048 TYPE_SIZE (integer_types[itk]))))
6049 break;
6051 /* ITK now indicates a type that is too large for the
6052 field. We have to back up by one to find the largest
6053 type that fits. */
6056 --itk;
6057 integer_type = integer_types[itk];
6058 } while (itk > 0 && integer_type == NULL_TREE);
6060 /* Figure out how much additional padding is required. GCC
6061 3.2 always created a padding field, even if it had zero
6062 width. */
6063 if (!abi_version_at_least (2)
6064 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
6066 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
6067 /* In a union, the padding field must have the full width
6068 of the bit-field; all fields start at offset zero. */
6069 padding = DECL_SIZE (field);
6070 else
6072 if (TREE_CODE (t) == UNION_TYPE)
6073 warning (OPT_Wabi, "size assigned to %qT may not be "
6074 "ABI-compliant and may change in a future "
6075 "version of GCC",
6077 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
6078 TYPE_SIZE (integer_type));
6081 #ifdef PCC_BITFIELD_TYPE_MATTERS
6082 /* An unnamed bitfield does not normally affect the
6083 alignment of the containing class on a target where
6084 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
6085 make any exceptions for unnamed bitfields when the
6086 bitfields are longer than their types. Therefore, we
6087 temporarily give the field a name. */
6088 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
6090 was_unnamed_p = true;
6091 DECL_NAME (field) = make_anon_name ();
6093 #endif
6094 DECL_SIZE (field) = TYPE_SIZE (integer_type);
6095 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
6096 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
6097 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6098 empty_base_offsets);
6099 if (was_unnamed_p)
6100 DECL_NAME (field) = NULL_TREE;
6101 /* Now that layout has been performed, set the size of the
6102 field to the size of its declared type; the rest of the
6103 field is effectively invisible. */
6104 DECL_SIZE (field) = TYPE_SIZE (type);
6105 /* We must also reset the DECL_MODE of the field. */
6106 if (abi_version_at_least (2))
6107 DECL_MODE (field) = TYPE_MODE (type);
6108 else if (warn_abi
6109 && DECL_MODE (field) != TYPE_MODE (type))
6110 /* Versions of G++ before G++ 3.4 did not reset the
6111 DECL_MODE. */
6112 warning (OPT_Wabi,
6113 "the offset of %qD may not be ABI-compliant and may "
6114 "change in a future version of GCC", field);
6116 else
6117 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6118 empty_base_offsets);
6120 /* Remember the location of any empty classes in FIELD. */
6121 if (abi_version_at_least (2))
6122 record_subobject_offsets (TREE_TYPE (field),
6123 byte_position(field),
6124 empty_base_offsets,
6125 /*is_data_member=*/true);
6127 /* If a bit-field does not immediately follow another bit-field,
6128 and yet it starts in the middle of a byte, we have failed to
6129 comply with the ABI. */
6130 if (warn_abi
6131 && DECL_C_BIT_FIELD (field)
6132 /* The TREE_NO_WARNING flag gets set by Objective-C when
6133 laying out an Objective-C class. The ObjC ABI differs
6134 from the C++ ABI, and so we do not want a warning
6135 here. */
6136 && !TREE_NO_WARNING (field)
6137 && !last_field_was_bitfield
6138 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
6139 DECL_FIELD_BIT_OFFSET (field),
6140 bitsize_unit_node)))
6141 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
6142 "change in a future version of GCC", field);
6144 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
6145 offset of the field. */
6146 if (warn_abi
6147 && !abi_version_at_least (2)
6148 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
6149 byte_position (field))
6150 && contains_empty_class_p (TREE_TYPE (field)))
6151 warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
6152 "classes to be placed at different locations in a "
6153 "future version of GCC", field);
6155 /* The middle end uses the type of expressions to determine the
6156 possible range of expression values. In order to optimize
6157 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
6158 must be made aware of the width of "i", via its type.
6160 Because C++ does not have integer types of arbitrary width,
6161 we must (for the purposes of the front end) convert from the
6162 type assigned here to the declared type of the bitfield
6163 whenever a bitfield expression is used as an rvalue.
6164 Similarly, when assigning a value to a bitfield, the value
6165 must be converted to the type given the bitfield here. */
6166 if (DECL_C_BIT_FIELD (field))
6168 unsigned HOST_WIDE_INT width;
6169 tree ftype = TREE_TYPE (field);
6170 width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
6171 if (width != TYPE_PRECISION (ftype))
6173 TREE_TYPE (field)
6174 = c_build_bitfield_integer_type (width,
6175 TYPE_UNSIGNED (ftype));
6176 TREE_TYPE (field)
6177 = cp_build_qualified_type (TREE_TYPE (field),
6178 cp_type_quals (ftype));
6182 /* If we needed additional padding after this field, add it
6183 now. */
6184 if (padding)
6186 tree padding_field;
6188 padding_field = build_decl (input_location,
6189 FIELD_DECL,
6190 NULL_TREE,
6191 char_type_node);
6192 DECL_BIT_FIELD (padding_field) = 1;
6193 DECL_SIZE (padding_field) = padding;
6194 DECL_CONTEXT (padding_field) = t;
6195 DECL_ARTIFICIAL (padding_field) = 1;
6196 DECL_IGNORED_P (padding_field) = 1;
6197 layout_nonempty_base_or_field (rli, padding_field,
6198 NULL_TREE,
6199 empty_base_offsets);
6202 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
6205 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
6207 /* Make sure that we are on a byte boundary so that the size of
6208 the class without virtual bases will always be a round number
6209 of bytes. */
6210 rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
6211 normalize_rli (rli);
6214 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
6215 padding. */
6216 if (!abi_version_at_least (2))
6217 include_empty_classes(rli);
6219 /* Delete all zero-width bit-fields from the list of fields. Now
6220 that the type is laid out they are no longer important. */
6221 remove_zero_width_bit_fields (t);
6223 /* Create the version of T used for virtual bases. We do not use
6224 make_class_type for this version; this is an artificial type. For
6225 a POD type, we just reuse T. */
6226 if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
6228 base_t = make_node (TREE_CODE (t));
6230 /* Set the size and alignment for the new type. In G++ 3.2, all
6231 empty classes were considered to have size zero when used as
6232 base classes. */
6233 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
6235 TYPE_SIZE (base_t) = bitsize_zero_node;
6236 TYPE_SIZE_UNIT (base_t) = size_zero_node;
6237 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
6238 warning (OPT_Wabi,
6239 "layout of classes derived from empty class %qT "
6240 "may change in a future version of GCC",
6243 else
6245 tree eoc;
6247 /* If the ABI version is not at least two, and the last
6248 field was a bit-field, RLI may not be on a byte
6249 boundary. In particular, rli_size_unit_so_far might
6250 indicate the last complete byte, while rli_size_so_far
6251 indicates the total number of bits used. Therefore,
6252 rli_size_so_far, rather than rli_size_unit_so_far, is
6253 used to compute TYPE_SIZE_UNIT. */
6254 eoc = end_of_class (t, /*include_virtuals_p=*/0);
6255 TYPE_SIZE_UNIT (base_t)
6256 = size_binop (MAX_EXPR,
6257 convert (sizetype,
6258 size_binop (CEIL_DIV_EXPR,
6259 rli_size_so_far (rli),
6260 bitsize_int (BITS_PER_UNIT))),
6261 eoc);
6262 TYPE_SIZE (base_t)
6263 = size_binop (MAX_EXPR,
6264 rli_size_so_far (rli),
6265 size_binop (MULT_EXPR,
6266 convert (bitsizetype, eoc),
6267 bitsize_int (BITS_PER_UNIT)));
6269 TYPE_ALIGN (base_t) = rli->record_align;
6270 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
6272 /* Copy the fields from T. */
6273 next_field = &TYPE_FIELDS (base_t);
6274 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6275 if (TREE_CODE (field) == FIELD_DECL)
6277 *next_field = build_decl (input_location,
6278 FIELD_DECL,
6279 DECL_NAME (field),
6280 TREE_TYPE (field));
6281 DECL_CONTEXT (*next_field) = base_t;
6282 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
6283 DECL_FIELD_BIT_OFFSET (*next_field)
6284 = DECL_FIELD_BIT_OFFSET (field);
6285 DECL_SIZE (*next_field) = DECL_SIZE (field);
6286 DECL_MODE (*next_field) = DECL_MODE (field);
6287 next_field = &DECL_CHAIN (*next_field);
6290 /* Record the base version of the type. */
6291 CLASSTYPE_AS_BASE (t) = base_t;
6292 TYPE_CONTEXT (base_t) = t;
6294 else
6295 CLASSTYPE_AS_BASE (t) = t;
6297 /* Every empty class contains an empty class. */
6298 if (CLASSTYPE_EMPTY_P (t))
6299 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
6301 /* Set the TYPE_DECL for this type to contain the right
6302 value for DECL_OFFSET, so that we can use it as part
6303 of a COMPONENT_REF for multiple inheritance. */
6304 layout_decl (TYPE_MAIN_DECL (t), 0);
6306 /* Now fix up any virtual base class types that we left lying
6307 around. We must get these done before we try to lay out the
6308 virtual function table. As a side-effect, this will remove the
6309 base subobject fields. */
6310 layout_virtual_bases (rli, empty_base_offsets);
6312 /* Make sure that empty classes are reflected in RLI at this
6313 point. */
6314 include_empty_classes(rli);
6316 /* Make sure not to create any structures with zero size. */
6317 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
6318 place_field (rli,
6319 build_decl (input_location,
6320 FIELD_DECL, NULL_TREE, char_type_node));
6322 /* If this is a non-POD, declaring it packed makes a difference to how it
6323 can be used as a field; don't let finalize_record_size undo it. */
6324 if (TYPE_PACKED (t) && !layout_pod_type_p (t))
6325 rli->packed_maybe_necessary = true;
6327 /* Let the back end lay out the type. */
6328 finish_record_layout (rli, /*free_p=*/true);
6330 if (TYPE_SIZE_UNIT (t)
6331 && TREE_CODE (TYPE_SIZE_UNIT (t)) == INTEGER_CST
6332 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (t))
6333 && !valid_constant_size_p (TYPE_SIZE_UNIT (t)))
6334 error ("type %qT is too large", t);
6336 /* Warn about bases that can't be talked about due to ambiguity. */
6337 warn_about_ambiguous_bases (t);
6339 /* Now that we're done with layout, give the base fields the real types. */
6340 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6341 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
6342 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
6344 /* Clean up. */
6345 splay_tree_delete (empty_base_offsets);
6347 if (CLASSTYPE_EMPTY_P (t)
6348 && tree_int_cst_lt (sizeof_biggest_empty_class,
6349 TYPE_SIZE_UNIT (t)))
6350 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
6353 /* Determine the "key method" for the class type indicated by TYPE,
6354 and set CLASSTYPE_KEY_METHOD accordingly. */
6356 void
6357 determine_key_method (tree type)
6359 tree method;
6361 if (TYPE_FOR_JAVA (type)
6362 || processing_template_decl
6363 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
6364 || CLASSTYPE_INTERFACE_KNOWN (type))
6365 return;
6367 /* The key method is the first non-pure virtual function that is not
6368 inline at the point of class definition. On some targets the
6369 key function may not be inline; those targets should not call
6370 this function until the end of the translation unit. */
6371 for (method = TYPE_METHODS (type); method != NULL_TREE;
6372 method = DECL_CHAIN (method))
6373 if (DECL_VINDEX (method) != NULL_TREE
6374 && ! DECL_DECLARED_INLINE_P (method)
6375 && ! DECL_PURE_VIRTUAL_P (method))
6377 CLASSTYPE_KEY_METHOD (type) = method;
6378 break;
6381 return;
6385 /* Allocate and return an instance of struct sorted_fields_type with
6386 N fields. */
6388 static struct sorted_fields_type *
6389 sorted_fields_type_new (int n)
6391 struct sorted_fields_type *sft;
6392 sft = ggc_alloc_sorted_fields_type (sizeof (struct sorted_fields_type)
6393 + n * sizeof (tree));
6394 sft->len = n;
6396 return sft;
6400 /* Perform processing required when the definition of T (a class type)
6401 is complete. */
6403 void
6404 finish_struct_1 (tree t)
6406 tree x;
6407 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
6408 tree virtuals = NULL_TREE;
6410 if (COMPLETE_TYPE_P (t))
6412 gcc_assert (MAYBE_CLASS_TYPE_P (t));
6413 error ("redefinition of %q#T", t);
6414 popclass ();
6415 return;
6418 /* If this type was previously laid out as a forward reference,
6419 make sure we lay it out again. */
6420 TYPE_SIZE (t) = NULL_TREE;
6421 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
6423 /* Make assumptions about the class; we'll reset the flags if
6424 necessary. */
6425 CLASSTYPE_EMPTY_P (t) = 1;
6426 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
6427 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
6428 CLASSTYPE_LITERAL_P (t) = true;
6430 /* Do end-of-class semantic processing: checking the validity of the
6431 bases and members and add implicitly generated methods. */
6432 check_bases_and_members (t);
6434 /* Find the key method. */
6435 if (TYPE_CONTAINS_VPTR_P (t))
6437 /* The Itanium C++ ABI permits the key method to be chosen when
6438 the class is defined -- even though the key method so
6439 selected may later turn out to be an inline function. On
6440 some systems (such as ARM Symbian OS) the key method cannot
6441 be determined until the end of the translation unit. On such
6442 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
6443 will cause the class to be added to KEYED_CLASSES. Then, in
6444 finish_file we will determine the key method. */
6445 if (targetm.cxx.key_method_may_be_inline ())
6446 determine_key_method (t);
6448 /* If a polymorphic class has no key method, we may emit the vtable
6449 in every translation unit where the class definition appears. */
6450 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
6451 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
6454 /* Layout the class itself. */
6455 layout_class_type (t, &virtuals);
6456 if (CLASSTYPE_AS_BASE (t) != t)
6457 /* We use the base type for trivial assignments, and hence it
6458 needs a mode. */
6459 compute_record_mode (CLASSTYPE_AS_BASE (t));
6461 virtuals = modify_all_vtables (t, nreverse (virtuals));
6463 /* If necessary, create the primary vtable for this class. */
6464 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
6466 /* We must enter these virtuals into the table. */
6467 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6468 build_primary_vtable (NULL_TREE, t);
6469 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
6470 /* Here we know enough to change the type of our virtual
6471 function table, but we will wait until later this function. */
6472 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
6474 /* If we're warning about ABI tags, check the types of the new
6475 virtual functions. */
6476 if (warn_abi_tag)
6477 for (tree v = virtuals; v; v = TREE_CHAIN (v))
6478 check_abi_tags (t, TREE_VALUE (v));
6481 if (TYPE_CONTAINS_VPTR_P (t))
6483 int vindex;
6484 tree fn;
6486 if (BINFO_VTABLE (TYPE_BINFO (t)))
6487 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
6488 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6489 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
6491 /* Add entries for virtual functions introduced by this class. */
6492 BINFO_VIRTUALS (TYPE_BINFO (t))
6493 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
6495 /* Set DECL_VINDEX for all functions declared in this class. */
6496 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
6498 fn = TREE_CHAIN (fn),
6499 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
6500 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
6502 tree fndecl = BV_FN (fn);
6504 if (DECL_THUNK_P (fndecl))
6505 /* A thunk. We should never be calling this entry directly
6506 from this vtable -- we'd use the entry for the non
6507 thunk base function. */
6508 DECL_VINDEX (fndecl) = NULL_TREE;
6509 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
6510 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
6514 finish_struct_bits (t);
6515 set_method_tm_attributes (t);
6517 /* Complete the rtl for any static member objects of the type we're
6518 working on. */
6519 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6520 if (VAR_P (x) && TREE_STATIC (x)
6521 && TREE_TYPE (x) != error_mark_node
6522 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
6523 DECL_MODE (x) = TYPE_MODE (t);
6525 /* Done with FIELDS...now decide whether to sort these for
6526 faster lookups later.
6528 We use a small number because most searches fail (succeeding
6529 ultimately as the search bores through the inheritance
6530 hierarchy), and we want this failure to occur quickly. */
6532 insert_into_classtype_sorted_fields (TYPE_FIELDS (t), t, 8);
6534 /* Complain if one of the field types requires lower visibility. */
6535 constrain_class_visibility (t);
6537 /* Make the rtl for any new vtables we have created, and unmark
6538 the base types we marked. */
6539 finish_vtbls (t);
6541 /* Build the VTT for T. */
6542 build_vtt (t);
6544 /* This warning does not make sense for Java classes, since they
6545 cannot have destructors. */
6546 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
6548 tree dtor;
6550 dtor = CLASSTYPE_DESTRUCTORS (t);
6551 if (/* An implicitly declared destructor is always public. And,
6552 if it were virtual, we would have created it by now. */
6553 !dtor
6554 || (!DECL_VINDEX (dtor)
6555 && (/* public non-virtual */
6556 (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
6557 || (/* non-public non-virtual with friends */
6558 (TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
6559 && (CLASSTYPE_FRIEND_CLASSES (t)
6560 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
6561 warning (OPT_Wnon_virtual_dtor,
6562 "%q#T has virtual functions and accessible"
6563 " non-virtual destructor", t);
6566 complete_vars (t);
6568 if (warn_overloaded_virtual)
6569 warn_hidden (t);
6571 /* Class layout, assignment of virtual table slots, etc., is now
6572 complete. Give the back end a chance to tweak the visibility of
6573 the class or perform any other required target modifications. */
6574 targetm.cxx.adjust_class_at_definition (t);
6576 maybe_suppress_debug_info (t);
6578 if (flag_vtable_verify)
6579 vtv_save_class_info (t);
6581 dump_class_hierarchy (t);
6583 /* Finish debugging output for this type. */
6584 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
6586 if (TYPE_TRANSPARENT_AGGR (t))
6588 tree field = first_field (t);
6589 if (field == NULL_TREE || error_operand_p (field))
6591 error ("type transparent %q#T does not have any fields", t);
6592 TYPE_TRANSPARENT_AGGR (t) = 0;
6594 else if (DECL_ARTIFICIAL (field))
6596 if (DECL_FIELD_IS_BASE (field))
6597 error ("type transparent class %qT has base classes", t);
6598 else
6600 gcc_checking_assert (DECL_VIRTUAL_P (field));
6601 error ("type transparent class %qT has virtual functions", t);
6603 TYPE_TRANSPARENT_AGGR (t) = 0;
6605 else if (TYPE_MODE (t) != DECL_MODE (field))
6607 error ("type transparent %q#T cannot be made transparent because "
6608 "the type of the first field has a different ABI from the "
6609 "class overall", t);
6610 TYPE_TRANSPARENT_AGGR (t) = 0;
6615 /* Insert FIELDS into T for the sorted case if the FIELDS count is
6616 equal to THRESHOLD or greater than THRESHOLD. */
6618 static void
6619 insert_into_classtype_sorted_fields (tree fields, tree t, int threshold)
6621 int n_fields = count_fields (fields);
6622 if (n_fields >= threshold)
6624 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6625 add_fields_to_record_type (fields, field_vec, 0);
6626 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6627 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6631 /* Insert lately defined enum ENUMTYPE into T for the sorted case. */
6633 void
6634 insert_late_enum_def_into_classtype_sorted_fields (tree enumtype, tree t)
6636 struct sorted_fields_type *sorted_fields = CLASSTYPE_SORTED_FIELDS (t);
6637 if (sorted_fields)
6639 int i;
6640 int n_fields
6641 = list_length (TYPE_VALUES (enumtype)) + sorted_fields->len;
6642 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6644 for (i = 0; i < sorted_fields->len; ++i)
6645 field_vec->elts[i] = sorted_fields->elts[i];
6647 add_enum_fields_to_record_type (enumtype, field_vec,
6648 sorted_fields->len);
6649 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6650 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6654 /* When T was built up, the member declarations were added in reverse
6655 order. Rearrange them to declaration order. */
6657 void
6658 unreverse_member_declarations (tree t)
6660 tree next;
6661 tree prev;
6662 tree x;
6664 /* The following lists are all in reverse order. Put them in
6665 declaration order now. */
6666 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
6667 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
6669 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
6670 reverse order, so we can't just use nreverse. */
6671 prev = NULL_TREE;
6672 for (x = TYPE_FIELDS (t);
6673 x && TREE_CODE (x) != TYPE_DECL;
6674 x = next)
6676 next = DECL_CHAIN (x);
6677 DECL_CHAIN (x) = prev;
6678 prev = x;
6680 if (prev)
6682 DECL_CHAIN (TYPE_FIELDS (t)) = x;
6683 if (prev)
6684 TYPE_FIELDS (t) = prev;
6688 tree
6689 finish_struct (tree t, tree attributes)
6691 location_t saved_loc = input_location;
6693 /* Now that we've got all the field declarations, reverse everything
6694 as necessary. */
6695 unreverse_member_declarations (t);
6697 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
6699 /* Nadger the current location so that diagnostics point to the start of
6700 the struct, not the end. */
6701 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
6703 if (processing_template_decl)
6705 tree x;
6707 finish_struct_methods (t);
6708 TYPE_SIZE (t) = bitsize_zero_node;
6709 TYPE_SIZE_UNIT (t) = size_zero_node;
6711 /* We need to emit an error message if this type was used as a parameter
6712 and it is an abstract type, even if it is a template. We construct
6713 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
6714 account and we call complete_vars with this type, which will check
6715 the PARM_DECLS. Note that while the type is being defined,
6716 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
6717 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
6718 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
6719 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
6720 if (DECL_PURE_VIRTUAL_P (x))
6721 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
6722 complete_vars (t);
6723 /* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
6724 an enclosing scope is a template class, so that this function be
6725 found by lookup_fnfields_1 when the using declaration is not
6726 instantiated yet. */
6727 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6728 if (TREE_CODE (x) == USING_DECL)
6730 tree fn = strip_using_decl (x);
6731 if (is_overloaded_fn (fn))
6732 for (; fn; fn = OVL_NEXT (fn))
6733 add_method (t, OVL_CURRENT (fn), x);
6736 /* Remember current #pragma pack value. */
6737 TYPE_PRECISION (t) = maximum_field_alignment;
6739 /* Fix up any variants we've already built. */
6740 for (x = TYPE_NEXT_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
6742 TYPE_SIZE (x) = TYPE_SIZE (t);
6743 TYPE_SIZE_UNIT (x) = TYPE_SIZE_UNIT (t);
6744 TYPE_FIELDS (x) = TYPE_FIELDS (t);
6745 TYPE_METHODS (x) = TYPE_METHODS (t);
6748 else
6749 finish_struct_1 (t);
6751 input_location = saved_loc;
6753 TYPE_BEING_DEFINED (t) = 0;
6755 if (current_class_type)
6756 popclass ();
6757 else
6758 error ("trying to finish struct, but kicked out due to previous parse errors");
6760 if (processing_template_decl && at_function_scope_p ()
6761 /* Lambdas are defined by the LAMBDA_EXPR. */
6762 && !LAMBDA_TYPE_P (t))
6763 add_stmt (build_min (TAG_DEFN, t));
6765 return t;
6768 /* Hash table to avoid endless recursion when handling references. */
6769 static hash_table <pointer_hash <tree_node> > fixed_type_or_null_ref_ht;
6771 /* Return the dynamic type of INSTANCE, if known.
6772 Used to determine whether the virtual function table is needed
6773 or not.
6775 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6776 of our knowledge of its type. *NONNULL should be initialized
6777 before this function is called. */
6779 static tree
6780 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
6782 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
6784 switch (TREE_CODE (instance))
6786 case INDIRECT_REF:
6787 if (POINTER_TYPE_P (TREE_TYPE (instance)))
6788 return NULL_TREE;
6789 else
6790 return RECUR (TREE_OPERAND (instance, 0));
6792 case CALL_EXPR:
6793 /* This is a call to a constructor, hence it's never zero. */
6794 if (TREE_HAS_CONSTRUCTOR (instance))
6796 if (nonnull)
6797 *nonnull = 1;
6798 return TREE_TYPE (instance);
6800 return NULL_TREE;
6802 case SAVE_EXPR:
6803 /* This is a call to a constructor, hence it's never zero. */
6804 if (TREE_HAS_CONSTRUCTOR (instance))
6806 if (nonnull)
6807 *nonnull = 1;
6808 return TREE_TYPE (instance);
6810 return RECUR (TREE_OPERAND (instance, 0));
6812 case POINTER_PLUS_EXPR:
6813 case PLUS_EXPR:
6814 case MINUS_EXPR:
6815 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
6816 return RECUR (TREE_OPERAND (instance, 0));
6817 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
6818 /* Propagate nonnull. */
6819 return RECUR (TREE_OPERAND (instance, 0));
6821 return NULL_TREE;
6823 CASE_CONVERT:
6824 return RECUR (TREE_OPERAND (instance, 0));
6826 case ADDR_EXPR:
6827 instance = TREE_OPERAND (instance, 0);
6828 if (nonnull)
6830 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
6831 with a real object -- given &p->f, p can still be null. */
6832 tree t = get_base_address (instance);
6833 /* ??? Probably should check DECL_WEAK here. */
6834 if (t && DECL_P (t))
6835 *nonnull = 1;
6837 return RECUR (instance);
6839 case COMPONENT_REF:
6840 /* If this component is really a base class reference, then the field
6841 itself isn't definitive. */
6842 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
6843 return RECUR (TREE_OPERAND (instance, 0));
6844 return RECUR (TREE_OPERAND (instance, 1));
6846 case VAR_DECL:
6847 case FIELD_DECL:
6848 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
6849 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
6851 if (nonnull)
6852 *nonnull = 1;
6853 return TREE_TYPE (TREE_TYPE (instance));
6855 /* fall through... */
6856 case TARGET_EXPR:
6857 case PARM_DECL:
6858 case RESULT_DECL:
6859 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
6861 if (nonnull)
6862 *nonnull = 1;
6863 return TREE_TYPE (instance);
6865 else if (instance == current_class_ptr)
6867 if (nonnull)
6868 *nonnull = 1;
6870 /* if we're in a ctor or dtor, we know our type. If
6871 current_class_ptr is set but we aren't in a function, we're in
6872 an NSDMI (and therefore a constructor). */
6873 if (current_scope () != current_function_decl
6874 || (DECL_LANG_SPECIFIC (current_function_decl)
6875 && (DECL_CONSTRUCTOR_P (current_function_decl)
6876 || DECL_DESTRUCTOR_P (current_function_decl))))
6878 if (cdtorp)
6879 *cdtorp = 1;
6880 return TREE_TYPE (TREE_TYPE (instance));
6883 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
6885 /* We only need one hash table because it is always left empty. */
6886 if (!fixed_type_or_null_ref_ht.is_created ())
6887 fixed_type_or_null_ref_ht.create (37);
6889 /* Reference variables should be references to objects. */
6890 if (nonnull)
6891 *nonnull = 1;
6893 /* Enter the INSTANCE in a table to prevent recursion; a
6894 variable's initializer may refer to the variable
6895 itself. */
6896 if (VAR_P (instance)
6897 && DECL_INITIAL (instance)
6898 && !type_dependent_expression_p_push (DECL_INITIAL (instance))
6899 && !fixed_type_or_null_ref_ht.find (instance))
6901 tree type;
6902 tree_node **slot;
6904 slot = fixed_type_or_null_ref_ht.find_slot (instance, INSERT);
6905 *slot = instance;
6906 type = RECUR (DECL_INITIAL (instance));
6907 fixed_type_or_null_ref_ht.remove_elt (instance);
6909 return type;
6912 return NULL_TREE;
6914 default:
6915 return NULL_TREE;
6917 #undef RECUR
6920 /* Return nonzero if the dynamic type of INSTANCE is known, and
6921 equivalent to the static type. We also handle the case where
6922 INSTANCE is really a pointer. Return negative if this is a
6923 ctor/dtor. There the dynamic type is known, but this might not be
6924 the most derived base of the original object, and hence virtual
6925 bases may not be laid out according to this type.
6927 Used to determine whether the virtual function table is needed
6928 or not.
6930 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6931 of our knowledge of its type. *NONNULL should be initialized
6932 before this function is called. */
6935 resolves_to_fixed_type_p (tree instance, int* nonnull)
6937 tree t = TREE_TYPE (instance);
6938 int cdtorp = 0;
6939 tree fixed;
6941 /* processing_template_decl can be false in a template if we're in
6942 fold_non_dependent_expr, but we still want to suppress this check. */
6943 if (in_template_function ())
6945 /* In a template we only care about the type of the result. */
6946 if (nonnull)
6947 *nonnull = true;
6948 return true;
6951 fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
6952 if (fixed == NULL_TREE)
6953 return 0;
6954 if (POINTER_TYPE_P (t))
6955 t = TREE_TYPE (t);
6956 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
6957 return 0;
6958 return cdtorp ? -1 : 1;
6962 void
6963 init_class_processing (void)
6965 current_class_depth = 0;
6966 current_class_stack_size = 10;
6967 current_class_stack
6968 = XNEWVEC (struct class_stack_node, current_class_stack_size);
6969 vec_alloc (local_classes, 8);
6970 sizeof_biggest_empty_class = size_zero_node;
6972 ridpointers[(int) RID_PUBLIC] = access_public_node;
6973 ridpointers[(int) RID_PRIVATE] = access_private_node;
6974 ridpointers[(int) RID_PROTECTED] = access_protected_node;
6977 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
6979 static void
6980 restore_class_cache (void)
6982 tree type;
6984 /* We are re-entering the same class we just left, so we don't
6985 have to search the whole inheritance matrix to find all the
6986 decls to bind again. Instead, we install the cached
6987 class_shadowed list and walk through it binding names. */
6988 push_binding_level (previous_class_level);
6989 class_binding_level = previous_class_level;
6990 /* Restore IDENTIFIER_TYPE_VALUE. */
6991 for (type = class_binding_level->type_shadowed;
6992 type;
6993 type = TREE_CHAIN (type))
6994 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
6997 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
6998 appropriate for TYPE.
7000 So that we may avoid calls to lookup_name, we cache the _TYPE
7001 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
7003 For multiple inheritance, we perform a two-pass depth-first search
7004 of the type lattice. */
7006 void
7007 pushclass (tree type)
7009 class_stack_node_t csn;
7011 type = TYPE_MAIN_VARIANT (type);
7013 /* Make sure there is enough room for the new entry on the stack. */
7014 if (current_class_depth + 1 >= current_class_stack_size)
7016 current_class_stack_size *= 2;
7017 current_class_stack
7018 = XRESIZEVEC (struct class_stack_node, current_class_stack,
7019 current_class_stack_size);
7022 /* Insert a new entry on the class stack. */
7023 csn = current_class_stack + current_class_depth;
7024 csn->name = current_class_name;
7025 csn->type = current_class_type;
7026 csn->access = current_access_specifier;
7027 csn->names_used = 0;
7028 csn->hidden = 0;
7029 current_class_depth++;
7031 /* Now set up the new type. */
7032 current_class_name = TYPE_NAME (type);
7033 if (TREE_CODE (current_class_name) == TYPE_DECL)
7034 current_class_name = DECL_NAME (current_class_name);
7035 current_class_type = type;
7037 /* By default, things in classes are private, while things in
7038 structures or unions are public. */
7039 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
7040 ? access_private_node
7041 : access_public_node);
7043 if (previous_class_level
7044 && type != previous_class_level->this_entity
7045 && current_class_depth == 1)
7047 /* Forcibly remove any old class remnants. */
7048 invalidate_class_lookup_cache ();
7051 if (!previous_class_level
7052 || type != previous_class_level->this_entity
7053 || current_class_depth > 1)
7054 pushlevel_class ();
7055 else
7056 restore_class_cache ();
7059 /* When we exit a toplevel class scope, we save its binding level so
7060 that we can restore it quickly. Here, we've entered some other
7061 class, so we must invalidate our cache. */
7063 void
7064 invalidate_class_lookup_cache (void)
7066 previous_class_level = NULL;
7069 /* Get out of the current class scope. If we were in a class scope
7070 previously, that is the one popped to. */
7072 void
7073 popclass (void)
7075 poplevel_class ();
7077 current_class_depth--;
7078 current_class_name = current_class_stack[current_class_depth].name;
7079 current_class_type = current_class_stack[current_class_depth].type;
7080 current_access_specifier = current_class_stack[current_class_depth].access;
7081 if (current_class_stack[current_class_depth].names_used)
7082 splay_tree_delete (current_class_stack[current_class_depth].names_used);
7085 /* Mark the top of the class stack as hidden. */
7087 void
7088 push_class_stack (void)
7090 if (current_class_depth)
7091 ++current_class_stack[current_class_depth - 1].hidden;
7094 /* Mark the top of the class stack as un-hidden. */
7096 void
7097 pop_class_stack (void)
7099 if (current_class_depth)
7100 --current_class_stack[current_class_depth - 1].hidden;
7103 /* Returns 1 if the class type currently being defined is either T or
7104 a nested type of T. */
7106 bool
7107 currently_open_class (tree t)
7109 int i;
7111 if (!CLASS_TYPE_P (t))
7112 return false;
7114 t = TYPE_MAIN_VARIANT (t);
7116 /* We start looking from 1 because entry 0 is from global scope,
7117 and has no type. */
7118 for (i = current_class_depth; i > 0; --i)
7120 tree c;
7121 if (i == current_class_depth)
7122 c = current_class_type;
7123 else
7125 if (current_class_stack[i].hidden)
7126 break;
7127 c = current_class_stack[i].type;
7129 if (!c)
7130 continue;
7131 if (same_type_p (c, t))
7132 return true;
7134 return false;
7137 /* If either current_class_type or one of its enclosing classes are derived
7138 from T, return the appropriate type. Used to determine how we found
7139 something via unqualified lookup. */
7141 tree
7142 currently_open_derived_class (tree t)
7144 int i;
7146 /* The bases of a dependent type are unknown. */
7147 if (dependent_type_p (t))
7148 return NULL_TREE;
7150 if (!current_class_type)
7151 return NULL_TREE;
7153 if (DERIVED_FROM_P (t, current_class_type))
7154 return current_class_type;
7156 for (i = current_class_depth - 1; i > 0; --i)
7158 if (current_class_stack[i].hidden)
7159 break;
7160 if (DERIVED_FROM_P (t, current_class_stack[i].type))
7161 return current_class_stack[i].type;
7164 return NULL_TREE;
7167 /* Returns the innermost class type which is not a lambda closure type. */
7169 tree
7170 current_nonlambda_class_type (void)
7172 int i;
7174 /* We start looking from 1 because entry 0 is from global scope,
7175 and has no type. */
7176 for (i = current_class_depth; i > 0; --i)
7178 tree c;
7179 if (i == current_class_depth)
7180 c = current_class_type;
7181 else
7183 if (current_class_stack[i].hidden)
7184 break;
7185 c = current_class_stack[i].type;
7187 if (!c)
7188 continue;
7189 if (!LAMBDA_TYPE_P (c))
7190 return c;
7192 return NULL_TREE;
7195 /* When entering a class scope, all enclosing class scopes' names with
7196 static meaning (static variables, static functions, types and
7197 enumerators) have to be visible. This recursive function calls
7198 pushclass for all enclosing class contexts until global or a local
7199 scope is reached. TYPE is the enclosed class. */
7201 void
7202 push_nested_class (tree type)
7204 /* A namespace might be passed in error cases, like A::B:C. */
7205 if (type == NULL_TREE
7206 || !CLASS_TYPE_P (type))
7207 return;
7209 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
7211 pushclass (type);
7214 /* Undoes a push_nested_class call. */
7216 void
7217 pop_nested_class (void)
7219 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
7221 popclass ();
7222 if (context && CLASS_TYPE_P (context))
7223 pop_nested_class ();
7226 /* Returns the number of extern "LANG" blocks we are nested within. */
7229 current_lang_depth (void)
7231 return vec_safe_length (current_lang_base);
7234 /* Set global variables CURRENT_LANG_NAME to appropriate value
7235 so that behavior of name-mangling machinery is correct. */
7237 void
7238 push_lang_context (tree name)
7240 vec_safe_push (current_lang_base, current_lang_name);
7242 if (name == lang_name_cplusplus)
7244 current_lang_name = name;
7246 else if (name == lang_name_java)
7248 current_lang_name = name;
7249 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
7250 (See record_builtin_java_type in decl.c.) However, that causes
7251 incorrect debug entries if these types are actually used.
7252 So we re-enable debug output after extern "Java". */
7253 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
7254 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
7255 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
7256 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
7257 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
7258 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
7259 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
7260 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
7262 else if (name == lang_name_c)
7264 current_lang_name = name;
7266 else
7267 error ("language string %<\"%E\"%> not recognized", name);
7270 /* Get out of the current language scope. */
7272 void
7273 pop_lang_context (void)
7275 current_lang_name = current_lang_base->pop ();
7278 /* Type instantiation routines. */
7280 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
7281 matches the TARGET_TYPE. If there is no satisfactory match, return
7282 error_mark_node, and issue an error & warning messages under
7283 control of FLAGS. Permit pointers to member function if FLAGS
7284 permits. If TEMPLATE_ONLY, the name of the overloaded function was
7285 a template-id, and EXPLICIT_TARGS are the explicitly provided
7286 template arguments.
7288 If OVERLOAD is for one or more member functions, then ACCESS_PATH
7289 is the base path used to reference those member functions. If
7290 the address is resolved to a member function, access checks will be
7291 performed and errors issued if appropriate. */
7293 static tree
7294 resolve_address_of_overloaded_function (tree target_type,
7295 tree overload,
7296 tsubst_flags_t flags,
7297 bool template_only,
7298 tree explicit_targs,
7299 tree access_path)
7301 /* Here's what the standard says:
7303 [over.over]
7305 If the name is a function template, template argument deduction
7306 is done, and if the argument deduction succeeds, the deduced
7307 arguments are used to generate a single template function, which
7308 is added to the set of overloaded functions considered.
7310 Non-member functions and static member functions match targets of
7311 type "pointer-to-function" or "reference-to-function." Nonstatic
7312 member functions match targets of type "pointer-to-member
7313 function;" the function type of the pointer to member is used to
7314 select the member function from the set of overloaded member
7315 functions. If a nonstatic member function is selected, the
7316 reference to the overloaded function name is required to have the
7317 form of a pointer to member as described in 5.3.1.
7319 If more than one function is selected, any template functions in
7320 the set are eliminated if the set also contains a non-template
7321 function, and any given template function is eliminated if the
7322 set contains a second template function that is more specialized
7323 than the first according to the partial ordering rules 14.5.5.2.
7324 After such eliminations, if any, there shall remain exactly one
7325 selected function. */
7327 int is_ptrmem = 0;
7328 /* We store the matches in a TREE_LIST rooted here. The functions
7329 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
7330 interoperability with most_specialized_instantiation. */
7331 tree matches = NULL_TREE;
7332 tree fn;
7333 tree target_fn_type;
7335 /* By the time we get here, we should be seeing only real
7336 pointer-to-member types, not the internal POINTER_TYPE to
7337 METHOD_TYPE representation. */
7338 gcc_assert (!TYPE_PTR_P (target_type)
7339 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
7341 gcc_assert (is_overloaded_fn (overload));
7343 /* Check that the TARGET_TYPE is reasonable. */
7344 if (TYPE_PTRFN_P (target_type)
7345 || TYPE_REFFN_P (target_type))
7346 /* This is OK. */;
7347 else if (TYPE_PTRMEMFUNC_P (target_type))
7348 /* This is OK, too. */
7349 is_ptrmem = 1;
7350 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
7351 /* This is OK, too. This comes from a conversion to reference
7352 type. */
7353 target_type = build_reference_type (target_type);
7354 else
7356 if (flags & tf_error)
7357 error ("cannot resolve overloaded function %qD based on"
7358 " conversion to type %qT",
7359 DECL_NAME (OVL_FUNCTION (overload)), target_type);
7360 return error_mark_node;
7363 /* Non-member functions and static member functions match targets of type
7364 "pointer-to-function" or "reference-to-function." Nonstatic member
7365 functions match targets of type "pointer-to-member-function;" the
7366 function type of the pointer to member is used to select the member
7367 function from the set of overloaded member functions.
7369 So figure out the FUNCTION_TYPE that we want to match against. */
7370 target_fn_type = static_fn_type (target_type);
7372 /* If we can find a non-template function that matches, we can just
7373 use it. There's no point in generating template instantiations
7374 if we're just going to throw them out anyhow. But, of course, we
7375 can only do this when we don't *need* a template function. */
7376 if (!template_only)
7378 tree fns;
7380 for (fns = overload; fns; fns = OVL_NEXT (fns))
7382 tree fn = OVL_CURRENT (fns);
7384 if (TREE_CODE (fn) == TEMPLATE_DECL)
7385 /* We're not looking for templates just yet. */
7386 continue;
7388 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7389 != is_ptrmem)
7390 /* We're looking for a non-static member, and this isn't
7391 one, or vice versa. */
7392 continue;
7394 /* Ignore functions which haven't been explicitly
7395 declared. */
7396 if (DECL_ANTICIPATED (fn))
7397 continue;
7399 /* See if there's a match. */
7400 if (same_type_p (target_fn_type, static_fn_type (fn)))
7401 matches = tree_cons (fn, NULL_TREE, matches);
7405 /* Now, if we've already got a match (or matches), there's no need
7406 to proceed to the template functions. But, if we don't have a
7407 match we need to look at them, too. */
7408 if (!matches)
7410 tree target_arg_types;
7411 tree target_ret_type;
7412 tree fns;
7413 tree *args;
7414 unsigned int nargs, ia;
7415 tree arg;
7417 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
7418 target_ret_type = TREE_TYPE (target_fn_type);
7420 nargs = list_length (target_arg_types);
7421 args = XALLOCAVEC (tree, nargs);
7422 for (arg = target_arg_types, ia = 0;
7423 arg != NULL_TREE && arg != void_list_node;
7424 arg = TREE_CHAIN (arg), ++ia)
7425 args[ia] = TREE_VALUE (arg);
7426 nargs = ia;
7428 for (fns = overload; fns; fns = OVL_NEXT (fns))
7430 tree fn = OVL_CURRENT (fns);
7431 tree instantiation;
7432 tree targs;
7434 if (TREE_CODE (fn) != TEMPLATE_DECL)
7435 /* We're only looking for templates. */
7436 continue;
7438 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7439 != is_ptrmem)
7440 /* We're not looking for a non-static member, and this is
7441 one, or vice versa. */
7442 continue;
7444 tree ret = target_ret_type;
7446 /* If the template has a deduced return type, don't expose it to
7447 template argument deduction. */
7448 if (undeduced_auto_decl (fn))
7449 ret = NULL_TREE;
7451 /* Try to do argument deduction. */
7452 targs = make_tree_vec (DECL_NTPARMS (fn));
7453 instantiation = fn_type_unification (fn, explicit_targs, targs, args,
7454 nargs, ret,
7455 DEDUCE_EXACT, LOOKUP_NORMAL,
7456 false, false);
7457 if (instantiation == error_mark_node)
7458 /* Instantiation failed. */
7459 continue;
7461 /* And now force instantiation to do return type deduction. */
7462 if (undeduced_auto_decl (instantiation))
7464 ++function_depth;
7465 instantiate_decl (instantiation, /*defer*/false, /*class*/false);
7466 --function_depth;
7468 require_deduced_type (instantiation);
7471 /* See if there's a match. */
7472 if (same_type_p (target_fn_type, static_fn_type (instantiation)))
7473 matches = tree_cons (instantiation, fn, matches);
7475 ggc_free (targs);
7478 /* Now, remove all but the most specialized of the matches. */
7479 if (matches)
7481 tree match = most_specialized_instantiation (matches);
7483 if (match != error_mark_node)
7484 matches = tree_cons (TREE_PURPOSE (match),
7485 NULL_TREE,
7486 NULL_TREE);
7490 /* Now we should have exactly one function in MATCHES. */
7491 if (matches == NULL_TREE)
7493 /* There were *no* matches. */
7494 if (flags & tf_error)
7496 error ("no matches converting function %qD to type %q#T",
7497 DECL_NAME (OVL_CURRENT (overload)),
7498 target_type);
7500 print_candidates (overload);
7502 return error_mark_node;
7504 else if (TREE_CHAIN (matches))
7506 /* There were too many matches. First check if they're all
7507 the same function. */
7508 tree match = NULL_TREE;
7510 fn = TREE_PURPOSE (matches);
7512 /* For multi-versioned functions, more than one match is just fine and
7513 decls_match will return false as they are different. */
7514 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
7515 if (!decls_match (fn, TREE_PURPOSE (match))
7516 && !targetm.target_option.function_versions
7517 (fn, TREE_PURPOSE (match)))
7518 break;
7520 if (match)
7522 if (flags & tf_error)
7524 error ("converting overloaded function %qD to type %q#T is ambiguous",
7525 DECL_NAME (OVL_FUNCTION (overload)),
7526 target_type);
7528 /* Since print_candidates expects the functions in the
7529 TREE_VALUE slot, we flip them here. */
7530 for (match = matches; match; match = TREE_CHAIN (match))
7531 TREE_VALUE (match) = TREE_PURPOSE (match);
7533 print_candidates (matches);
7536 return error_mark_node;
7540 /* Good, exactly one match. Now, convert it to the correct type. */
7541 fn = TREE_PURPOSE (matches);
7543 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
7544 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
7546 static int explained;
7548 if (!(flags & tf_error))
7549 return error_mark_node;
7551 permerror (input_location, "assuming pointer to member %qD", fn);
7552 if (!explained)
7554 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
7555 explained = 1;
7559 /* If a pointer to a function that is multi-versioned is requested, the
7560 pointer to the dispatcher function is returned instead. This works
7561 well because indirectly calling the function will dispatch the right
7562 function version at run-time. */
7563 if (DECL_FUNCTION_VERSIONED (fn))
7565 fn = get_function_version_dispatcher (fn);
7566 if (fn == NULL)
7567 return error_mark_node;
7568 /* Mark all the versions corresponding to the dispatcher as used. */
7569 if (!(flags & tf_conv))
7570 mark_versions_used (fn);
7573 /* If we're doing overload resolution purely for the purpose of
7574 determining conversion sequences, we should not consider the
7575 function used. If this conversion sequence is selected, the
7576 function will be marked as used at this point. */
7577 if (!(flags & tf_conv))
7579 /* Make =delete work with SFINAE. */
7580 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
7581 return error_mark_node;
7583 mark_used (fn);
7586 /* We could not check access to member functions when this
7587 expression was originally created since we did not know at that
7588 time to which function the expression referred. */
7589 if (DECL_FUNCTION_MEMBER_P (fn))
7591 gcc_assert (access_path);
7592 perform_or_defer_access_check (access_path, fn, fn, flags);
7595 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
7596 return cp_build_addr_expr (fn, flags);
7597 else
7599 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
7600 will mark the function as addressed, but here we must do it
7601 explicitly. */
7602 cxx_mark_addressable (fn);
7604 return fn;
7608 /* This function will instantiate the type of the expression given in
7609 RHS to match the type of LHSTYPE. If errors exist, then return
7610 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
7611 we complain on errors. If we are not complaining, never modify rhs,
7612 as overload resolution wants to try many possible instantiations, in
7613 the hope that at least one will work.
7615 For non-recursive calls, LHSTYPE should be a function, pointer to
7616 function, or a pointer to member function. */
7618 tree
7619 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
7621 tsubst_flags_t flags_in = flags;
7622 tree access_path = NULL_TREE;
7624 flags &= ~tf_ptrmem_ok;
7626 if (lhstype == unknown_type_node)
7628 if (flags & tf_error)
7629 error ("not enough type information");
7630 return error_mark_node;
7633 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
7635 tree fntype = non_reference (lhstype);
7636 if (same_type_p (fntype, TREE_TYPE (rhs)))
7637 return rhs;
7638 if (flag_ms_extensions
7639 && TYPE_PTRMEMFUNC_P (fntype)
7640 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
7641 /* Microsoft allows `A::f' to be resolved to a
7642 pointer-to-member. */
7644 else
7646 if (flags & tf_error)
7647 error ("cannot convert %qE from type %qT to type %qT",
7648 rhs, TREE_TYPE (rhs), fntype);
7649 return error_mark_node;
7653 if (BASELINK_P (rhs))
7655 access_path = BASELINK_ACCESS_BINFO (rhs);
7656 rhs = BASELINK_FUNCTIONS (rhs);
7659 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
7660 deduce any type information. */
7661 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
7663 if (flags & tf_error)
7664 error ("not enough type information");
7665 return error_mark_node;
7668 /* There only a few kinds of expressions that may have a type
7669 dependent on overload resolution. */
7670 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
7671 || TREE_CODE (rhs) == COMPONENT_REF
7672 || is_overloaded_fn (rhs)
7673 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
7675 /* This should really only be used when attempting to distinguish
7676 what sort of a pointer to function we have. For now, any
7677 arithmetic operation which is not supported on pointers
7678 is rejected as an error. */
7680 switch (TREE_CODE (rhs))
7682 case COMPONENT_REF:
7684 tree member = TREE_OPERAND (rhs, 1);
7686 member = instantiate_type (lhstype, member, flags);
7687 if (member != error_mark_node
7688 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
7689 /* Do not lose object's side effects. */
7690 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
7691 TREE_OPERAND (rhs, 0), member);
7692 return member;
7695 case OFFSET_REF:
7696 rhs = TREE_OPERAND (rhs, 1);
7697 if (BASELINK_P (rhs))
7698 return instantiate_type (lhstype, rhs, flags_in);
7700 /* This can happen if we are forming a pointer-to-member for a
7701 member template. */
7702 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
7704 /* Fall through. */
7706 case TEMPLATE_ID_EXPR:
7708 tree fns = TREE_OPERAND (rhs, 0);
7709 tree args = TREE_OPERAND (rhs, 1);
7711 return
7712 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
7713 /*template_only=*/true,
7714 args, access_path);
7717 case OVERLOAD:
7718 case FUNCTION_DECL:
7719 return
7720 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
7721 /*template_only=*/false,
7722 /*explicit_targs=*/NULL_TREE,
7723 access_path);
7725 case ADDR_EXPR:
7727 if (PTRMEM_OK_P (rhs))
7728 flags |= tf_ptrmem_ok;
7730 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
7733 case ERROR_MARK:
7734 return error_mark_node;
7736 default:
7737 gcc_unreachable ();
7739 return error_mark_node;
7742 /* Return the name of the virtual function pointer field
7743 (as an IDENTIFIER_NODE) for the given TYPE. Note that
7744 this may have to look back through base types to find the
7745 ultimate field name. (For single inheritance, these could
7746 all be the same name. Who knows for multiple inheritance). */
7748 static tree
7749 get_vfield_name (tree type)
7751 tree binfo, base_binfo;
7752 char *buf;
7754 for (binfo = TYPE_BINFO (type);
7755 BINFO_N_BASE_BINFOS (binfo);
7756 binfo = base_binfo)
7758 base_binfo = BINFO_BASE_BINFO (binfo, 0);
7760 if (BINFO_VIRTUAL_P (base_binfo)
7761 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
7762 break;
7765 type = BINFO_TYPE (binfo);
7766 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
7767 + TYPE_NAME_LENGTH (type) + 2);
7768 sprintf (buf, VFIELD_NAME_FORMAT,
7769 IDENTIFIER_POINTER (constructor_name (type)));
7770 return get_identifier (buf);
7773 void
7774 print_class_statistics (void)
7776 if (! GATHER_STATISTICS)
7777 return;
7779 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
7780 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
7781 if (n_vtables)
7783 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
7784 n_vtables, n_vtable_searches);
7785 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
7786 n_vtable_entries, n_vtable_elems);
7790 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
7791 according to [class]:
7792 The class-name is also inserted
7793 into the scope of the class itself. For purposes of access checking,
7794 the inserted class name is treated as if it were a public member name. */
7796 void
7797 build_self_reference (void)
7799 tree name = constructor_name (current_class_type);
7800 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
7801 tree saved_cas;
7803 DECL_NONLOCAL (value) = 1;
7804 DECL_CONTEXT (value) = current_class_type;
7805 DECL_ARTIFICIAL (value) = 1;
7806 SET_DECL_SELF_REFERENCE_P (value);
7807 set_underlying_type (value);
7809 if (processing_template_decl)
7810 value = push_template_decl (value);
7812 saved_cas = current_access_specifier;
7813 current_access_specifier = access_public_node;
7814 finish_member_declaration (value);
7815 current_access_specifier = saved_cas;
7818 /* Returns 1 if TYPE contains only padding bytes. */
7821 is_empty_class (tree type)
7823 if (type == error_mark_node)
7824 return 0;
7826 if (! CLASS_TYPE_P (type))
7827 return 0;
7829 /* In G++ 3.2, whether or not a class was empty was determined by
7830 looking at its size. */
7831 if (abi_version_at_least (2))
7832 return CLASSTYPE_EMPTY_P (type);
7833 else
7834 return integer_zerop (CLASSTYPE_SIZE (type));
7837 /* Returns true if TYPE contains an empty class. */
7839 static bool
7840 contains_empty_class_p (tree type)
7842 if (is_empty_class (type))
7843 return true;
7844 if (CLASS_TYPE_P (type))
7846 tree field;
7847 tree binfo;
7848 tree base_binfo;
7849 int i;
7851 for (binfo = TYPE_BINFO (type), i = 0;
7852 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7853 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
7854 return true;
7855 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
7856 if (TREE_CODE (field) == FIELD_DECL
7857 && !DECL_ARTIFICIAL (field)
7858 && is_empty_class (TREE_TYPE (field)))
7859 return true;
7861 else if (TREE_CODE (type) == ARRAY_TYPE)
7862 return contains_empty_class_p (TREE_TYPE (type));
7863 return false;
7866 /* Returns true if TYPE contains no actual data, just various
7867 possible combinations of empty classes and possibly a vptr. */
7869 bool
7870 is_really_empty_class (tree type)
7872 if (CLASS_TYPE_P (type))
7874 tree field;
7875 tree binfo;
7876 tree base_binfo;
7877 int i;
7879 /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
7880 out, but we'd like to be able to check this before then. */
7881 if (COMPLETE_TYPE_P (type) && is_empty_class (type))
7882 return true;
7884 for (binfo = TYPE_BINFO (type), i = 0;
7885 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7886 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
7887 return false;
7888 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
7889 if (TREE_CODE (field) == FIELD_DECL
7890 && !DECL_ARTIFICIAL (field)
7891 && !is_really_empty_class (TREE_TYPE (field)))
7892 return false;
7893 return true;
7895 else if (TREE_CODE (type) == ARRAY_TYPE)
7896 return is_really_empty_class (TREE_TYPE (type));
7897 return false;
7900 /* Note that NAME was looked up while the current class was being
7901 defined and that the result of that lookup was DECL. */
7903 void
7904 maybe_note_name_used_in_class (tree name, tree decl)
7906 splay_tree names_used;
7908 /* If we're not defining a class, there's nothing to do. */
7909 if (!(innermost_scope_kind() == sk_class
7910 && TYPE_BEING_DEFINED (current_class_type)
7911 && !LAMBDA_TYPE_P (current_class_type)))
7912 return;
7914 /* If there's already a binding for this NAME, then we don't have
7915 anything to worry about. */
7916 if (lookup_member (current_class_type, name,
7917 /*protect=*/0, /*want_type=*/false, tf_warning_or_error))
7918 return;
7920 if (!current_class_stack[current_class_depth - 1].names_used)
7921 current_class_stack[current_class_depth - 1].names_used
7922 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
7923 names_used = current_class_stack[current_class_depth - 1].names_used;
7925 splay_tree_insert (names_used,
7926 (splay_tree_key) name,
7927 (splay_tree_value) decl);
7930 /* Note that NAME was declared (as DECL) in the current class. Check
7931 to see that the declaration is valid. */
7933 void
7934 note_name_declared_in_class (tree name, tree decl)
7936 splay_tree names_used;
7937 splay_tree_node n;
7939 /* Look to see if we ever used this name. */
7940 names_used
7941 = current_class_stack[current_class_depth - 1].names_used;
7942 if (!names_used)
7943 return;
7944 /* The C language allows members to be declared with a type of the same
7945 name, and the C++ standard says this diagnostic is not required. So
7946 allow it in extern "C" blocks unless predantic is specified.
7947 Allow it in all cases if -ms-extensions is specified. */
7948 if ((!pedantic && current_lang_name == lang_name_c)
7949 || flag_ms_extensions)
7950 return;
7951 n = splay_tree_lookup (names_used, (splay_tree_key) name);
7952 if (n)
7954 /* [basic.scope.class]
7956 A name N used in a class S shall refer to the same declaration
7957 in its context and when re-evaluated in the completed scope of
7958 S. */
7959 permerror (input_location, "declaration of %q#D", decl);
7960 permerror (input_location, "changes meaning of %qD from %q+#D",
7961 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
7965 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
7966 Secondary vtables are merged with primary vtables; this function
7967 will return the VAR_DECL for the primary vtable. */
7969 tree
7970 get_vtbl_decl_for_binfo (tree binfo)
7972 tree decl;
7974 decl = BINFO_VTABLE (binfo);
7975 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
7977 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
7978 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
7980 if (decl)
7981 gcc_assert (VAR_P (decl));
7982 return decl;
7986 /* Returns the binfo for the primary base of BINFO. If the resulting
7987 BINFO is a virtual base, and it is inherited elsewhere in the
7988 hierarchy, then the returned binfo might not be the primary base of
7989 BINFO in the complete object. Check BINFO_PRIMARY_P or
7990 BINFO_LOST_PRIMARY_P to be sure. */
7992 static tree
7993 get_primary_binfo (tree binfo)
7995 tree primary_base;
7997 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
7998 if (!primary_base)
7999 return NULL_TREE;
8001 return copied_binfo (primary_base, binfo);
8004 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
8006 static int
8007 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
8009 if (!indented_p)
8010 fprintf (stream, "%*s", indent, "");
8011 return 1;
8014 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
8015 INDENT should be zero when called from the top level; it is
8016 incremented recursively. IGO indicates the next expected BINFO in
8017 inheritance graph ordering. */
8019 static tree
8020 dump_class_hierarchy_r (FILE *stream,
8021 int flags,
8022 tree binfo,
8023 tree igo,
8024 int indent)
8026 int indented = 0;
8027 tree base_binfo;
8028 int i;
8030 indented = maybe_indent_hierarchy (stream, indent, 0);
8031 fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ",
8032 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
8033 (HOST_WIDE_INT) (uintptr_t) binfo);
8034 if (binfo != igo)
8036 fprintf (stream, "alternative-path\n");
8037 return igo;
8039 igo = TREE_CHAIN (binfo);
8041 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
8042 tree_low_cst (BINFO_OFFSET (binfo), 0));
8043 if (is_empty_class (BINFO_TYPE (binfo)))
8044 fprintf (stream, " empty");
8045 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
8046 fprintf (stream, " nearly-empty");
8047 if (BINFO_VIRTUAL_P (binfo))
8048 fprintf (stream, " virtual");
8049 fprintf (stream, "\n");
8051 indented = 0;
8052 if (BINFO_PRIMARY_P (binfo))
8054 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8055 fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")",
8056 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
8057 TFF_PLAIN_IDENTIFIER),
8058 (HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo));
8060 if (BINFO_LOST_PRIMARY_P (binfo))
8062 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8063 fprintf (stream, " lost-primary");
8065 if (indented)
8066 fprintf (stream, "\n");
8068 if (!(flags & TDF_SLIM))
8070 int indented = 0;
8072 if (BINFO_SUBVTT_INDEX (binfo))
8074 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8075 fprintf (stream, " subvttidx=%s",
8076 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
8077 TFF_PLAIN_IDENTIFIER));
8079 if (BINFO_VPTR_INDEX (binfo))
8081 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8082 fprintf (stream, " vptridx=%s",
8083 expr_as_string (BINFO_VPTR_INDEX (binfo),
8084 TFF_PLAIN_IDENTIFIER));
8086 if (BINFO_VPTR_FIELD (binfo))
8088 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8089 fprintf (stream, " vbaseoffset=%s",
8090 expr_as_string (BINFO_VPTR_FIELD (binfo),
8091 TFF_PLAIN_IDENTIFIER));
8093 if (BINFO_VTABLE (binfo))
8095 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8096 fprintf (stream, " vptr=%s",
8097 expr_as_string (BINFO_VTABLE (binfo),
8098 TFF_PLAIN_IDENTIFIER));
8101 if (indented)
8102 fprintf (stream, "\n");
8105 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
8106 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
8108 return igo;
8111 /* Dump the BINFO hierarchy for T. */
8113 static void
8114 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
8116 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8117 fprintf (stream, " size=%lu align=%lu\n",
8118 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
8119 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
8120 fprintf (stream, " base size=%lu base align=%lu\n",
8121 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
8122 / BITS_PER_UNIT),
8123 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
8124 / BITS_PER_UNIT));
8125 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
8126 fprintf (stream, "\n");
8129 /* Debug interface to hierarchy dumping. */
8131 void
8132 debug_class (tree t)
8134 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
8137 static void
8138 dump_class_hierarchy (tree t)
8140 int flags;
8141 FILE *stream = dump_begin (TDI_class, &flags);
8143 if (stream)
8145 dump_class_hierarchy_1 (stream, flags, t);
8146 dump_end (TDI_class, stream);
8150 static void
8151 dump_array (FILE * stream, tree decl)
8153 tree value;
8154 unsigned HOST_WIDE_INT ix;
8155 HOST_WIDE_INT elt;
8156 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
8158 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
8159 / BITS_PER_UNIT);
8160 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
8161 fprintf (stream, " %s entries",
8162 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
8163 TFF_PLAIN_IDENTIFIER));
8164 fprintf (stream, "\n");
8166 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
8167 ix, value)
8168 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
8169 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
8172 static void
8173 dump_vtable (tree t, tree binfo, tree vtable)
8175 int flags;
8176 FILE *stream = dump_begin (TDI_class, &flags);
8178 if (!stream)
8179 return;
8181 if (!(flags & TDF_SLIM))
8183 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
8185 fprintf (stream, "%s for %s",
8186 ctor_vtbl_p ? "Construction vtable" : "Vtable",
8187 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
8188 if (ctor_vtbl_p)
8190 if (!BINFO_VIRTUAL_P (binfo))
8191 fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)",
8192 (HOST_WIDE_INT) (uintptr_t) binfo);
8193 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8195 fprintf (stream, "\n");
8196 dump_array (stream, vtable);
8197 fprintf (stream, "\n");
8200 dump_end (TDI_class, stream);
8203 static void
8204 dump_vtt (tree t, tree vtt)
8206 int flags;
8207 FILE *stream = dump_begin (TDI_class, &flags);
8209 if (!stream)
8210 return;
8212 if (!(flags & TDF_SLIM))
8214 fprintf (stream, "VTT for %s\n",
8215 type_as_string (t, TFF_PLAIN_IDENTIFIER));
8216 dump_array (stream, vtt);
8217 fprintf (stream, "\n");
8220 dump_end (TDI_class, stream);
8223 /* Dump a function or thunk and its thunkees. */
8225 static void
8226 dump_thunk (FILE *stream, int indent, tree thunk)
8228 static const char spaces[] = " ";
8229 tree name = DECL_NAME (thunk);
8230 tree thunks;
8232 fprintf (stream, "%.*s%p %s %s", indent, spaces,
8233 (void *)thunk,
8234 !DECL_THUNK_P (thunk) ? "function"
8235 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
8236 name ? IDENTIFIER_POINTER (name) : "<unset>");
8237 if (DECL_THUNK_P (thunk))
8239 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
8240 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
8242 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
8243 if (!virtual_adjust)
8244 /*NOP*/;
8245 else if (DECL_THIS_THUNK_P (thunk))
8246 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
8247 tree_low_cst (virtual_adjust, 0));
8248 else
8249 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
8250 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
8251 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
8252 if (THUNK_ALIAS (thunk))
8253 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
8255 fprintf (stream, "\n");
8256 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
8257 dump_thunk (stream, indent + 2, thunks);
8260 /* Dump the thunks for FN. */
8262 void
8263 debug_thunks (tree fn)
8265 dump_thunk (stderr, 0, fn);
8268 /* Virtual function table initialization. */
8270 /* Create all the necessary vtables for T and its base classes. */
8272 static void
8273 finish_vtbls (tree t)
8275 tree vbase;
8276 vec<constructor_elt, va_gc> *v = NULL;
8277 tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
8279 /* We lay out the primary and secondary vtables in one contiguous
8280 vtable. The primary vtable is first, followed by the non-virtual
8281 secondary vtables in inheritance graph order. */
8282 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
8283 vtable, t, &v);
8285 /* Then come the virtual bases, also in inheritance graph order. */
8286 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
8288 if (!BINFO_VIRTUAL_P (vbase))
8289 continue;
8290 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
8293 if (BINFO_VTABLE (TYPE_BINFO (t)))
8294 initialize_vtable (TYPE_BINFO (t), v);
8297 /* Initialize the vtable for BINFO with the INITS. */
8299 static void
8300 initialize_vtable (tree binfo, vec<constructor_elt, va_gc> *inits)
8302 tree decl;
8304 layout_vtable_decl (binfo, vec_safe_length (inits));
8305 decl = get_vtbl_decl_for_binfo (binfo);
8306 initialize_artificial_var (decl, inits);
8307 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
8310 /* Build the VTT (virtual table table) for T.
8311 A class requires a VTT if it has virtual bases.
8313 This holds
8314 1 - primary virtual pointer for complete object T
8315 2 - secondary VTTs for each direct non-virtual base of T which requires a
8317 3 - secondary virtual pointers for each direct or indirect base of T which
8318 has virtual bases or is reachable via a virtual path from T.
8319 4 - secondary VTTs for each direct or indirect virtual base of T.
8321 Secondary VTTs look like complete object VTTs without part 4. */
8323 static void
8324 build_vtt (tree t)
8326 tree type;
8327 tree vtt;
8328 tree index;
8329 vec<constructor_elt, va_gc> *inits;
8331 /* Build up the initializers for the VTT. */
8332 inits = NULL;
8333 index = size_zero_node;
8334 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
8336 /* If we didn't need a VTT, we're done. */
8337 if (!inits)
8338 return;
8340 /* Figure out the type of the VTT. */
8341 type = build_array_of_n_type (const_ptr_type_node,
8342 inits->length ());
8344 /* Now, build the VTT object itself. */
8345 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
8346 initialize_artificial_var (vtt, inits);
8347 /* Add the VTT to the vtables list. */
8348 DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
8349 DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
8351 dump_vtt (t, vtt);
8354 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
8355 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
8356 and CHAIN the vtable pointer for this binfo after construction is
8357 complete. VALUE can also be another BINFO, in which case we recurse. */
8359 static tree
8360 binfo_ctor_vtable (tree binfo)
8362 tree vt;
8364 while (1)
8366 vt = BINFO_VTABLE (binfo);
8367 if (TREE_CODE (vt) == TREE_LIST)
8368 vt = TREE_VALUE (vt);
8369 if (TREE_CODE (vt) == TREE_BINFO)
8370 binfo = vt;
8371 else
8372 break;
8375 return vt;
8378 /* Data for secondary VTT initialization. */
8379 typedef struct secondary_vptr_vtt_init_data_s
8381 /* Is this the primary VTT? */
8382 bool top_level_p;
8384 /* Current index into the VTT. */
8385 tree index;
8387 /* Vector of initializers built up. */
8388 vec<constructor_elt, va_gc> *inits;
8390 /* The type being constructed by this secondary VTT. */
8391 tree type_being_constructed;
8392 } secondary_vptr_vtt_init_data;
8394 /* Recursively build the VTT-initializer for BINFO (which is in the
8395 hierarchy dominated by T). INITS points to the end of the initializer
8396 list to date. INDEX is the VTT index where the next element will be
8397 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
8398 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
8399 for virtual bases of T. When it is not so, we build the constructor
8400 vtables for the BINFO-in-T variant. */
8402 static void
8403 build_vtt_inits (tree binfo, tree t, vec<constructor_elt, va_gc> **inits,
8404 tree *index)
8406 int i;
8407 tree b;
8408 tree init;
8409 secondary_vptr_vtt_init_data data;
8410 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8412 /* We only need VTTs for subobjects with virtual bases. */
8413 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8414 return;
8416 /* We need to use a construction vtable if this is not the primary
8417 VTT. */
8418 if (!top_level_p)
8420 build_ctor_vtbl_group (binfo, t);
8422 /* Record the offset in the VTT where this sub-VTT can be found. */
8423 BINFO_SUBVTT_INDEX (binfo) = *index;
8426 /* Add the address of the primary vtable for the complete object. */
8427 init = binfo_ctor_vtable (binfo);
8428 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8429 if (top_level_p)
8431 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8432 BINFO_VPTR_INDEX (binfo) = *index;
8434 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
8436 /* Recursively add the secondary VTTs for non-virtual bases. */
8437 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
8438 if (!BINFO_VIRTUAL_P (b))
8439 build_vtt_inits (b, t, inits, index);
8441 /* Add secondary virtual pointers for all subobjects of BINFO with
8442 either virtual bases or reachable along a virtual path, except
8443 subobjects that are non-virtual primary bases. */
8444 data.top_level_p = top_level_p;
8445 data.index = *index;
8446 data.inits = *inits;
8447 data.type_being_constructed = BINFO_TYPE (binfo);
8449 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
8451 *index = data.index;
8453 /* data.inits might have grown as we added secondary virtual pointers.
8454 Make sure our caller knows about the new vector. */
8455 *inits = data.inits;
8457 if (top_level_p)
8458 /* Add the secondary VTTs for virtual bases in inheritance graph
8459 order. */
8460 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
8462 if (!BINFO_VIRTUAL_P (b))
8463 continue;
8465 build_vtt_inits (b, t, inits, index);
8467 else
8468 /* Remove the ctor vtables we created. */
8469 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
8472 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
8473 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
8475 static tree
8476 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
8478 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
8480 /* We don't care about bases that don't have vtables. */
8481 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
8482 return dfs_skip_bases;
8484 /* We're only interested in proper subobjects of the type being
8485 constructed. */
8486 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
8487 return NULL_TREE;
8489 /* We're only interested in bases with virtual bases or reachable
8490 via a virtual path from the type being constructed. */
8491 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8492 || binfo_via_virtual (binfo, data->type_being_constructed)))
8493 return dfs_skip_bases;
8495 /* We're not interested in non-virtual primary bases. */
8496 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
8497 return NULL_TREE;
8499 /* Record the index where this secondary vptr can be found. */
8500 if (data->top_level_p)
8502 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8503 BINFO_VPTR_INDEX (binfo) = data->index;
8505 if (BINFO_VIRTUAL_P (binfo))
8507 /* It's a primary virtual base, and this is not a
8508 construction vtable. Find the base this is primary of in
8509 the inheritance graph, and use that base's vtable
8510 now. */
8511 while (BINFO_PRIMARY_P (binfo))
8512 binfo = BINFO_INHERITANCE_CHAIN (binfo);
8516 /* Add the initializer for the secondary vptr itself. */
8517 CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
8519 /* Advance the vtt index. */
8520 data->index = size_binop (PLUS_EXPR, data->index,
8521 TYPE_SIZE_UNIT (ptr_type_node));
8523 return NULL_TREE;
8526 /* Called from build_vtt_inits via dfs_walk. After building
8527 constructor vtables and generating the sub-vtt from them, we need
8528 to restore the BINFO_VTABLES that were scribbled on. DATA is the
8529 binfo of the base whose sub vtt was generated. */
8531 static tree
8532 dfs_fixup_binfo_vtbls (tree binfo, void* data)
8534 tree vtable = BINFO_VTABLE (binfo);
8536 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8537 /* If this class has no vtable, none of its bases do. */
8538 return dfs_skip_bases;
8540 if (!vtable)
8541 /* This might be a primary base, so have no vtable in this
8542 hierarchy. */
8543 return NULL_TREE;
8545 /* If we scribbled the construction vtable vptr into BINFO, clear it
8546 out now. */
8547 if (TREE_CODE (vtable) == TREE_LIST
8548 && (TREE_PURPOSE (vtable) == (tree) data))
8549 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
8551 return NULL_TREE;
8554 /* Build the construction vtable group for BINFO which is in the
8555 hierarchy dominated by T. */
8557 static void
8558 build_ctor_vtbl_group (tree binfo, tree t)
8560 tree type;
8561 tree vtbl;
8562 tree id;
8563 tree vbase;
8564 vec<constructor_elt, va_gc> *v;
8566 /* See if we've already created this construction vtable group. */
8567 id = mangle_ctor_vtbl_for_type (t, binfo);
8568 if (IDENTIFIER_GLOBAL_VALUE (id))
8569 return;
8571 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
8572 /* Build a version of VTBL (with the wrong type) for use in
8573 constructing the addresses of secondary vtables in the
8574 construction vtable group. */
8575 vtbl = build_vtable (t, id, ptr_type_node);
8576 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
8577 /* Don't export construction vtables from shared libraries. Even on
8578 targets that don't support hidden visibility, this tells
8579 can_refer_decl_in_current_unit_p not to assume that it's safe to
8580 access from a different compilation unit (bz 54314). */
8581 DECL_VISIBILITY (vtbl) = VISIBILITY_HIDDEN;
8582 DECL_VISIBILITY_SPECIFIED (vtbl) = true;
8584 v = NULL;
8585 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
8586 binfo, vtbl, t, &v);
8588 /* Add the vtables for each of our virtual bases using the vbase in T
8589 binfo. */
8590 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8591 vbase;
8592 vbase = TREE_CHAIN (vbase))
8594 tree b;
8596 if (!BINFO_VIRTUAL_P (vbase))
8597 continue;
8598 b = copied_binfo (vbase, binfo);
8600 accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
8603 /* Figure out the type of the construction vtable. */
8604 type = build_array_of_n_type (vtable_entry_type, v->length ());
8605 layout_type (type);
8606 TREE_TYPE (vtbl) = type;
8607 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
8608 layout_decl (vtbl, 0);
8610 /* Initialize the construction vtable. */
8611 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
8612 initialize_artificial_var (vtbl, v);
8613 dump_vtable (t, binfo, vtbl);
8616 /* Add the vtbl initializers for BINFO (and its bases other than
8617 non-virtual primaries) to the list of INITS. BINFO is in the
8618 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
8619 the constructor the vtbl inits should be accumulated for. (If this
8620 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
8621 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
8622 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
8623 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
8624 but are not necessarily the same in terms of layout. */
8626 static void
8627 accumulate_vtbl_inits (tree binfo,
8628 tree orig_binfo,
8629 tree rtti_binfo,
8630 tree vtbl,
8631 tree t,
8632 vec<constructor_elt, va_gc> **inits)
8634 int i;
8635 tree base_binfo;
8636 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8638 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
8640 /* If it doesn't have a vptr, we don't do anything. */
8641 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8642 return;
8644 /* If we're building a construction vtable, we're not interested in
8645 subobjects that don't require construction vtables. */
8646 if (ctor_vtbl_p
8647 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8648 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
8649 return;
8651 /* Build the initializers for the BINFO-in-T vtable. */
8652 dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
8654 /* Walk the BINFO and its bases. We walk in preorder so that as we
8655 initialize each vtable we can figure out at what offset the
8656 secondary vtable lies from the primary vtable. We can't use
8657 dfs_walk here because we need to iterate through bases of BINFO
8658 and RTTI_BINFO simultaneously. */
8659 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8661 /* Skip virtual bases. */
8662 if (BINFO_VIRTUAL_P (base_binfo))
8663 continue;
8664 accumulate_vtbl_inits (base_binfo,
8665 BINFO_BASE_BINFO (orig_binfo, i),
8666 rtti_binfo, vtbl, t,
8667 inits);
8671 /* Called from accumulate_vtbl_inits. Adds the initializers for the
8672 BINFO vtable to L. */
8674 static void
8675 dfs_accumulate_vtbl_inits (tree binfo,
8676 tree orig_binfo,
8677 tree rtti_binfo,
8678 tree orig_vtbl,
8679 tree t,
8680 vec<constructor_elt, va_gc> **l)
8682 tree vtbl = NULL_TREE;
8683 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8684 int n_inits;
8686 if (ctor_vtbl_p
8687 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
8689 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
8690 primary virtual base. If it is not the same primary in
8691 the hierarchy of T, we'll need to generate a ctor vtable
8692 for it, to place at its location in T. If it is the same
8693 primary, we still need a VTT entry for the vtable, but it
8694 should point to the ctor vtable for the base it is a
8695 primary for within the sub-hierarchy of RTTI_BINFO.
8697 There are three possible cases:
8699 1) We are in the same place.
8700 2) We are a primary base within a lost primary virtual base of
8701 RTTI_BINFO.
8702 3) We are primary to something not a base of RTTI_BINFO. */
8704 tree b;
8705 tree last = NULL_TREE;
8707 /* First, look through the bases we are primary to for RTTI_BINFO
8708 or a virtual base. */
8709 b = binfo;
8710 while (BINFO_PRIMARY_P (b))
8712 b = BINFO_INHERITANCE_CHAIN (b);
8713 last = b;
8714 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8715 goto found;
8717 /* If we run out of primary links, keep looking down our
8718 inheritance chain; we might be an indirect primary. */
8719 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
8720 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8721 break;
8722 found:
8724 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
8725 base B and it is a base of RTTI_BINFO, this is case 2. In
8726 either case, we share our vtable with LAST, i.e. the
8727 derived-most base within B of which we are a primary. */
8728 if (b == rtti_binfo
8729 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
8730 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
8731 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
8732 binfo_ctor_vtable after everything's been set up. */
8733 vtbl = last;
8735 /* Otherwise, this is case 3 and we get our own. */
8737 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
8738 return;
8740 n_inits = vec_safe_length (*l);
8742 if (!vtbl)
8744 tree index;
8745 int non_fn_entries;
8747 /* Add the initializer for this vtable. */
8748 build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
8749 &non_fn_entries, l);
8751 /* Figure out the position to which the VPTR should point. */
8752 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
8753 index = size_binop (MULT_EXPR,
8754 TYPE_SIZE_UNIT (vtable_entry_type),
8755 size_int (non_fn_entries + n_inits));
8756 vtbl = fold_build_pointer_plus (vtbl, index);
8759 if (ctor_vtbl_p)
8760 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
8761 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
8762 straighten this out. */
8763 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
8764 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
8765 /* Throw away any unneeded intializers. */
8766 (*l)->truncate (n_inits);
8767 else
8768 /* For an ordinary vtable, set BINFO_VTABLE. */
8769 BINFO_VTABLE (binfo) = vtbl;
8772 static GTY(()) tree abort_fndecl_addr;
8774 /* Construct the initializer for BINFO's virtual function table. BINFO
8775 is part of the hierarchy dominated by T. If we're building a
8776 construction vtable, the ORIG_BINFO is the binfo we should use to
8777 find the actual function pointers to put in the vtable - but they
8778 can be overridden on the path to most-derived in the graph that
8779 ORIG_BINFO belongs. Otherwise,
8780 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
8781 BINFO that should be indicated by the RTTI information in the
8782 vtable; it will be a base class of T, rather than T itself, if we
8783 are building a construction vtable.
8785 The value returned is a TREE_LIST suitable for wrapping in a
8786 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
8787 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
8788 number of non-function entries in the vtable.
8790 It might seem that this function should never be called with a
8791 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
8792 base is always subsumed by a derived class vtable. However, when
8793 we are building construction vtables, we do build vtables for
8794 primary bases; we need these while the primary base is being
8795 constructed. */
8797 static void
8798 build_vtbl_initializer (tree binfo,
8799 tree orig_binfo,
8800 tree t,
8801 tree rtti_binfo,
8802 int* non_fn_entries_p,
8803 vec<constructor_elt, va_gc> **inits)
8805 tree v;
8806 vtbl_init_data vid;
8807 unsigned ix, jx;
8808 tree vbinfo;
8809 vec<tree, va_gc> *vbases;
8810 constructor_elt *e;
8812 /* Initialize VID. */
8813 memset (&vid, 0, sizeof (vid));
8814 vid.binfo = binfo;
8815 vid.derived = t;
8816 vid.rtti_binfo = rtti_binfo;
8817 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8818 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8819 vid.generate_vcall_entries = true;
8820 /* The first vbase or vcall offset is at index -3 in the vtable. */
8821 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
8823 /* Add entries to the vtable for RTTI. */
8824 build_rtti_vtbl_entries (binfo, &vid);
8826 /* Create an array for keeping track of the functions we've
8827 processed. When we see multiple functions with the same
8828 signature, we share the vcall offsets. */
8829 vec_alloc (vid.fns, 32);
8830 /* Add the vcall and vbase offset entries. */
8831 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
8833 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
8834 build_vbase_offset_vtbl_entries. */
8835 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
8836 vec_safe_iterate (vbases, ix, &vbinfo); ix++)
8837 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
8839 /* If the target requires padding between data entries, add that now. */
8840 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
8842 int n_entries = vec_safe_length (vid.inits);
8844 vec_safe_grow (vid.inits, TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
8846 /* Move data entries into their new positions and add padding
8847 after the new positions. Iterate backwards so we don't
8848 overwrite entries that we would need to process later. */
8849 for (ix = n_entries - 1;
8850 vid.inits->iterate (ix, &e);
8851 ix--)
8853 int j;
8854 int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
8855 + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
8857 (*vid.inits)[new_position] = *e;
8859 for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
8861 constructor_elt *f = &(*vid.inits)[new_position - j];
8862 f->index = NULL_TREE;
8863 f->value = build1 (NOP_EXPR, vtable_entry_type,
8864 null_pointer_node);
8869 if (non_fn_entries_p)
8870 *non_fn_entries_p = vec_safe_length (vid.inits);
8872 /* The initializers for virtual functions were built up in reverse
8873 order. Straighten them out and add them to the running list in one
8874 step. */
8875 jx = vec_safe_length (*inits);
8876 vec_safe_grow (*inits, jx + vid.inits->length ());
8878 for (ix = vid.inits->length () - 1;
8879 vid.inits->iterate (ix, &e);
8880 ix--, jx++)
8881 (**inits)[jx] = *e;
8883 /* Go through all the ordinary virtual functions, building up
8884 initializers. */
8885 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
8887 tree delta;
8888 tree vcall_index;
8889 tree fn, fn_original;
8890 tree init = NULL_TREE;
8892 fn = BV_FN (v);
8893 fn_original = fn;
8894 if (DECL_THUNK_P (fn))
8896 if (!DECL_NAME (fn))
8897 finish_thunk (fn);
8898 if (THUNK_ALIAS (fn))
8900 fn = THUNK_ALIAS (fn);
8901 BV_FN (v) = fn;
8903 fn_original = THUNK_TARGET (fn);
8906 /* If the only definition of this function signature along our
8907 primary base chain is from a lost primary, this vtable slot will
8908 never be used, so just zero it out. This is important to avoid
8909 requiring extra thunks which cannot be generated with the function.
8911 We first check this in update_vtable_entry_for_fn, so we handle
8912 restored primary bases properly; we also need to do it here so we
8913 zero out unused slots in ctor vtables, rather than filling them
8914 with erroneous values (though harmless, apart from relocation
8915 costs). */
8916 if (BV_LOST_PRIMARY (v))
8917 init = size_zero_node;
8919 if (! init)
8921 /* Pull the offset for `this', and the function to call, out of
8922 the list. */
8923 delta = BV_DELTA (v);
8924 vcall_index = BV_VCALL_INDEX (v);
8926 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
8927 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
8929 /* You can't call an abstract virtual function; it's abstract.
8930 So, we replace these functions with __pure_virtual. */
8931 if (DECL_PURE_VIRTUAL_P (fn_original))
8933 fn = abort_fndecl;
8934 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8936 if (abort_fndecl_addr == NULL)
8937 abort_fndecl_addr
8938 = fold_convert (vfunc_ptr_type_node,
8939 build_fold_addr_expr (fn));
8940 init = abort_fndecl_addr;
8943 /* Likewise for deleted virtuals. */
8944 else if (DECL_DELETED_FN (fn_original))
8946 fn = get_identifier ("__cxa_deleted_virtual");
8947 if (!get_global_value_if_present (fn, &fn))
8948 fn = push_library_fn (fn, (build_function_type_list
8949 (void_type_node, NULL_TREE)),
8950 NULL_TREE, ECF_NORETURN);
8951 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8952 init = fold_convert (vfunc_ptr_type_node,
8953 build_fold_addr_expr (fn));
8955 else
8957 if (!integer_zerop (delta) || vcall_index)
8959 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
8960 if (!DECL_NAME (fn))
8961 finish_thunk (fn);
8963 /* Take the address of the function, considering it to be of an
8964 appropriate generic type. */
8965 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8966 init = fold_convert (vfunc_ptr_type_node,
8967 build_fold_addr_expr (fn));
8971 /* And add it to the chain of initializers. */
8972 if (TARGET_VTABLE_USES_DESCRIPTORS)
8974 int i;
8975 if (init == size_zero_node)
8976 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8977 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8978 else
8979 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8981 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
8982 fn, build_int_cst (NULL_TREE, i));
8983 TREE_CONSTANT (fdesc) = 1;
8985 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
8988 else
8989 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8993 /* Adds to vid->inits the initializers for the vbase and vcall
8994 offsets in BINFO, which is in the hierarchy dominated by T. */
8996 static void
8997 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
8999 tree b;
9001 /* If this is a derived class, we must first create entries
9002 corresponding to the primary base class. */
9003 b = get_primary_binfo (binfo);
9004 if (b)
9005 build_vcall_and_vbase_vtbl_entries (b, vid);
9007 /* Add the vbase entries for this base. */
9008 build_vbase_offset_vtbl_entries (binfo, vid);
9009 /* Add the vcall entries for this base. */
9010 build_vcall_offset_vtbl_entries (binfo, vid);
9013 /* Returns the initializers for the vbase offset entries in the vtable
9014 for BINFO (which is part of the class hierarchy dominated by T), in
9015 reverse order. VBASE_OFFSET_INDEX gives the vtable index
9016 where the next vbase offset will go. */
9018 static void
9019 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
9021 tree vbase;
9022 tree t;
9023 tree non_primary_binfo;
9025 /* If there are no virtual baseclasses, then there is nothing to
9026 do. */
9027 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
9028 return;
9030 t = vid->derived;
9032 /* We might be a primary base class. Go up the inheritance hierarchy
9033 until we find the most derived class of which we are a primary base:
9034 it is the offset of that which we need to use. */
9035 non_primary_binfo = binfo;
9036 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
9038 tree b;
9040 /* If we have reached a virtual base, then it must be a primary
9041 base (possibly multi-level) of vid->binfo, or we wouldn't
9042 have called build_vcall_and_vbase_vtbl_entries for it. But it
9043 might be a lost primary, so just skip down to vid->binfo. */
9044 if (BINFO_VIRTUAL_P (non_primary_binfo))
9046 non_primary_binfo = vid->binfo;
9047 break;
9050 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
9051 if (get_primary_binfo (b) != non_primary_binfo)
9052 break;
9053 non_primary_binfo = b;
9056 /* Go through the virtual bases, adding the offsets. */
9057 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
9058 vbase;
9059 vbase = TREE_CHAIN (vbase))
9061 tree b;
9062 tree delta;
9064 if (!BINFO_VIRTUAL_P (vbase))
9065 continue;
9067 /* Find the instance of this virtual base in the complete
9068 object. */
9069 b = copied_binfo (vbase, binfo);
9071 /* If we've already got an offset for this virtual base, we
9072 don't need another one. */
9073 if (BINFO_VTABLE_PATH_MARKED (b))
9074 continue;
9075 BINFO_VTABLE_PATH_MARKED (b) = 1;
9077 /* Figure out where we can find this vbase offset. */
9078 delta = size_binop (MULT_EXPR,
9079 vid->index,
9080 convert (ssizetype,
9081 TYPE_SIZE_UNIT (vtable_entry_type)));
9082 if (vid->primary_vtbl_p)
9083 BINFO_VPTR_FIELD (b) = delta;
9085 if (binfo != TYPE_BINFO (t))
9086 /* The vbase offset had better be the same. */
9087 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
9089 /* The next vbase will come at a more negative offset. */
9090 vid->index = size_binop (MINUS_EXPR, vid->index,
9091 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9093 /* The initializer is the delta from BINFO to this virtual base.
9094 The vbase offsets go in reverse inheritance-graph order, and
9095 we are walking in inheritance graph order so these end up in
9096 the right order. */
9097 delta = size_diffop_loc (input_location,
9098 BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
9100 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
9101 fold_build1_loc (input_location, NOP_EXPR,
9102 vtable_entry_type, delta));
9106 /* Adds the initializers for the vcall offset entries in the vtable
9107 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
9108 to VID->INITS. */
9110 static void
9111 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
9113 /* We only need these entries if this base is a virtual base. We
9114 compute the indices -- but do not add to the vtable -- when
9115 building the main vtable for a class. */
9116 if (binfo == TYPE_BINFO (vid->derived)
9117 || (BINFO_VIRTUAL_P (binfo)
9118 /* If BINFO is RTTI_BINFO, then (since BINFO does not
9119 correspond to VID->DERIVED), we are building a primary
9120 construction virtual table. Since this is a primary
9121 virtual table, we do not need the vcall offsets for
9122 BINFO. */
9123 && binfo != vid->rtti_binfo))
9125 /* We need a vcall offset for each of the virtual functions in this
9126 vtable. For example:
9128 class A { virtual void f (); };
9129 class B1 : virtual public A { virtual void f (); };
9130 class B2 : virtual public A { virtual void f (); };
9131 class C: public B1, public B2 { virtual void f (); };
9133 A C object has a primary base of B1, which has a primary base of A. A
9134 C also has a secondary base of B2, which no longer has a primary base
9135 of A. So the B2-in-C construction vtable needs a secondary vtable for
9136 A, which will adjust the A* to a B2* to call f. We have no way of
9137 knowing what (or even whether) this offset will be when we define B2,
9138 so we store this "vcall offset" in the A sub-vtable and look it up in
9139 a "virtual thunk" for B2::f.
9141 We need entries for all the functions in our primary vtable and
9142 in our non-virtual bases' secondary vtables. */
9143 vid->vbase = binfo;
9144 /* If we are just computing the vcall indices -- but do not need
9145 the actual entries -- not that. */
9146 if (!BINFO_VIRTUAL_P (binfo))
9147 vid->generate_vcall_entries = false;
9148 /* Now, walk through the non-virtual bases, adding vcall offsets. */
9149 add_vcall_offset_vtbl_entries_r (binfo, vid);
9153 /* Build vcall offsets, starting with those for BINFO. */
9155 static void
9156 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
9158 int i;
9159 tree primary_binfo;
9160 tree base_binfo;
9162 /* Don't walk into virtual bases -- except, of course, for the
9163 virtual base for which we are building vcall offsets. Any
9164 primary virtual base will have already had its offsets generated
9165 through the recursion in build_vcall_and_vbase_vtbl_entries. */
9166 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
9167 return;
9169 /* If BINFO has a primary base, process it first. */
9170 primary_binfo = get_primary_binfo (binfo);
9171 if (primary_binfo)
9172 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
9174 /* Add BINFO itself to the list. */
9175 add_vcall_offset_vtbl_entries_1 (binfo, vid);
9177 /* Scan the non-primary bases of BINFO. */
9178 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
9179 if (base_binfo != primary_binfo)
9180 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
9183 /* Called from build_vcall_offset_vtbl_entries_r. */
9185 static void
9186 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
9188 /* Make entries for the rest of the virtuals. */
9189 if (abi_version_at_least (2))
9191 tree orig_fn;
9193 /* The ABI requires that the methods be processed in declaration
9194 order. G++ 3.2 used the order in the vtable. */
9195 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
9196 orig_fn;
9197 orig_fn = DECL_CHAIN (orig_fn))
9198 if (DECL_VINDEX (orig_fn))
9199 add_vcall_offset (orig_fn, binfo, vid);
9201 else
9203 tree derived_virtuals;
9204 tree base_virtuals;
9205 tree orig_virtuals;
9206 /* If BINFO is a primary base, the most derived class which has
9207 BINFO as a primary base; otherwise, just BINFO. */
9208 tree non_primary_binfo;
9210 /* We might be a primary base class. Go up the inheritance hierarchy
9211 until we find the most derived class of which we are a primary base:
9212 it is the BINFO_VIRTUALS there that we need to consider. */
9213 non_primary_binfo = binfo;
9214 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
9216 tree b;
9218 /* If we have reached a virtual base, then it must be vid->vbase,
9219 because we ignore other virtual bases in
9220 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
9221 base (possibly multi-level) of vid->binfo, or we wouldn't
9222 have called build_vcall_and_vbase_vtbl_entries for it. But it
9223 might be a lost primary, so just skip down to vid->binfo. */
9224 if (BINFO_VIRTUAL_P (non_primary_binfo))
9226 gcc_assert (non_primary_binfo == vid->vbase);
9227 non_primary_binfo = vid->binfo;
9228 break;
9231 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
9232 if (get_primary_binfo (b) != non_primary_binfo)
9233 break;
9234 non_primary_binfo = b;
9237 if (vid->ctor_vtbl_p)
9238 /* For a ctor vtable we need the equivalent binfo within the hierarchy
9239 where rtti_binfo is the most derived type. */
9240 non_primary_binfo
9241 = original_binfo (non_primary_binfo, vid->rtti_binfo);
9243 for (base_virtuals = BINFO_VIRTUALS (binfo),
9244 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
9245 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
9246 base_virtuals;
9247 base_virtuals = TREE_CHAIN (base_virtuals),
9248 derived_virtuals = TREE_CHAIN (derived_virtuals),
9249 orig_virtuals = TREE_CHAIN (orig_virtuals))
9251 tree orig_fn;
9253 /* Find the declaration that originally caused this function to
9254 be present in BINFO_TYPE (binfo). */
9255 orig_fn = BV_FN (orig_virtuals);
9257 /* When processing BINFO, we only want to generate vcall slots for
9258 function slots introduced in BINFO. So don't try to generate
9259 one if the function isn't even defined in BINFO. */
9260 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
9261 continue;
9263 add_vcall_offset (orig_fn, binfo, vid);
9268 /* Add a vcall offset entry for ORIG_FN to the vtable. */
9270 static void
9271 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
9273 size_t i;
9274 tree vcall_offset;
9275 tree derived_entry;
9277 /* If there is already an entry for a function with the same
9278 signature as FN, then we do not need a second vcall offset.
9279 Check the list of functions already present in the derived
9280 class vtable. */
9281 FOR_EACH_VEC_SAFE_ELT (vid->fns, i, derived_entry)
9283 if (same_signature_p (derived_entry, orig_fn)
9284 /* We only use one vcall offset for virtual destructors,
9285 even though there are two virtual table entries. */
9286 || (DECL_DESTRUCTOR_P (derived_entry)
9287 && DECL_DESTRUCTOR_P (orig_fn)))
9288 return;
9291 /* If we are building these vcall offsets as part of building
9292 the vtable for the most derived class, remember the vcall
9293 offset. */
9294 if (vid->binfo == TYPE_BINFO (vid->derived))
9296 tree_pair_s elt = {orig_fn, vid->index};
9297 vec_safe_push (CLASSTYPE_VCALL_INDICES (vid->derived), elt);
9300 /* The next vcall offset will be found at a more negative
9301 offset. */
9302 vid->index = size_binop (MINUS_EXPR, vid->index,
9303 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9305 /* Keep track of this function. */
9306 vec_safe_push (vid->fns, orig_fn);
9308 if (vid->generate_vcall_entries)
9310 tree base;
9311 tree fn;
9313 /* Find the overriding function. */
9314 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
9315 if (fn == error_mark_node)
9316 vcall_offset = build_zero_cst (vtable_entry_type);
9317 else
9319 base = TREE_VALUE (fn);
9321 /* The vbase we're working on is a primary base of
9322 vid->binfo. But it might be a lost primary, so its
9323 BINFO_OFFSET might be wrong, so we just use the
9324 BINFO_OFFSET from vid->binfo. */
9325 vcall_offset = size_diffop_loc (input_location,
9326 BINFO_OFFSET (base),
9327 BINFO_OFFSET (vid->binfo));
9328 vcall_offset = fold_build1_loc (input_location,
9329 NOP_EXPR, vtable_entry_type,
9330 vcall_offset);
9332 /* Add the initializer to the vtable. */
9333 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
9337 /* Return vtbl initializers for the RTTI entries corresponding to the
9338 BINFO's vtable. The RTTI entries should indicate the object given
9339 by VID->rtti_binfo. */
9341 static void
9342 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
9344 tree b;
9345 tree t;
9346 tree offset;
9347 tree decl;
9348 tree init;
9350 t = BINFO_TYPE (vid->rtti_binfo);
9352 /* To find the complete object, we will first convert to our most
9353 primary base, and then add the offset in the vtbl to that value. */
9354 b = binfo;
9355 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
9356 && !BINFO_LOST_PRIMARY_P (b))
9358 tree primary_base;
9360 primary_base = get_primary_binfo (b);
9361 gcc_assert (BINFO_PRIMARY_P (primary_base)
9362 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
9363 b = primary_base;
9365 offset = size_diffop_loc (input_location,
9366 BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
9368 /* The second entry is the address of the typeinfo object. */
9369 if (flag_rtti)
9370 decl = build_address (get_tinfo_decl (t));
9371 else
9372 decl = integer_zero_node;
9374 /* Convert the declaration to a type that can be stored in the
9375 vtable. */
9376 init = build_nop (vfunc_ptr_type_node, decl);
9377 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9379 /* Add the offset-to-top entry. It comes earlier in the vtable than
9380 the typeinfo entry. Convert the offset to look like a
9381 function pointer, so that we can put it in the vtable. */
9382 init = build_nop (vfunc_ptr_type_node, offset);
9383 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9386 /* TRUE iff TYPE is uniquely derived from PARENT. Ignores
9387 accessibility. */
9389 bool
9390 uniquely_derived_from_p (tree parent, tree type)
9392 tree base = lookup_base (type, parent, ba_unique, NULL, tf_none);
9393 return base && base != error_mark_node;
9396 /* TRUE iff TYPE is publicly & uniquely derived from PARENT. */
9398 bool
9399 publicly_uniquely_derived_p (tree parent, tree type)
9401 tree base = lookup_base (type, parent, ba_ignore_scope | ba_check,
9402 NULL, tf_none);
9403 return base && base != error_mark_node;
9406 /* CTX1 and CTX2 are declaration contexts. Return the innermost common
9407 class between them, if any. */
9409 tree
9410 common_enclosing_class (tree ctx1, tree ctx2)
9412 if (!TYPE_P (ctx1) || !TYPE_P (ctx2))
9413 return NULL_TREE;
9414 gcc_assert (ctx1 == TYPE_MAIN_VARIANT (ctx1)
9415 && ctx2 == TYPE_MAIN_VARIANT (ctx2));
9416 if (ctx1 == ctx2)
9417 return ctx1;
9418 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9419 TYPE_MARKED_P (t) = true;
9420 tree found = NULL_TREE;
9421 for (tree t = ctx2; TYPE_P (t); t = TYPE_CONTEXT (t))
9422 if (TYPE_MARKED_P (t))
9424 found = t;
9425 break;
9427 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9428 TYPE_MARKED_P (t) = false;
9429 return found;
9432 #include "gt-cp-class.h"