* stor-layout.c (new_record_layout_info): Fix typo inside ifdef
[official-gcc.git] / gcc / reload.c
blob272ce4c819502dfde34f54fcd8b0724e714d2196
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* This file contains subroutines used only from the file reload1.c.
24 It knows how to scan one insn for operands and values
25 that need to be copied into registers to make valid code.
26 It also finds other operands and values which are valid
27 but for which equivalent values in registers exist and
28 ought to be used instead.
30 Before processing the first insn of the function, call `init_reload'.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
75 Using a reload register for several reloads in one insn:
77 When an insn has reloads, it is considered as having three parts:
78 the input reloads, the insn itself after reloading, and the output reloads.
79 Reloads of values used in memory addresses are often needed for only one part.
81 When this is so, reload_when_needed records which part needs the reload.
82 Two reloads for different parts of the insn can share the same reload
83 register.
85 When a reload is used for addresses in multiple parts, or when it is
86 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
87 a register with any other reload. */
89 #define REG_OK_STRICT
91 #include "config.h"
92 #include "system.h"
93 #include "rtl.h"
94 #include "tm_p.h"
95 #include "insn-config.h"
96 #include "insn-codes.h"
97 #include "recog.h"
98 #include "reload.h"
99 #include "regs.h"
100 #include "hard-reg-set.h"
101 #include "flags.h"
102 #include "real.h"
103 #include "output.h"
104 #include "function.h"
105 #include "expr.h"
106 #include "toplev.h"
108 #ifndef REGISTER_MOVE_COST
109 #define REGISTER_MOVE_COST(x, y) 2
110 #endif
112 #ifndef REGNO_MODE_OK_FOR_BASE_P
113 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
114 #endif
116 #ifndef REG_MODE_OK_FOR_BASE_P
117 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
118 #endif
120 /* All reloads of the current insn are recorded here. See reload.h for
121 comments. */
122 int n_reloads;
123 struct reload rld[MAX_RELOADS];
125 /* All the "earlyclobber" operands of the current insn
126 are recorded here. */
127 int n_earlyclobbers;
128 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
130 int reload_n_operands;
132 /* Replacing reloads.
134 If `replace_reloads' is nonzero, then as each reload is recorded
135 an entry is made for it in the table `replacements'.
136 Then later `subst_reloads' can look through that table and
137 perform all the replacements needed. */
139 /* Nonzero means record the places to replace. */
140 static int replace_reloads;
142 /* Each replacement is recorded with a structure like this. */
143 struct replacement
145 rtx *where; /* Location to store in */
146 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
147 a SUBREG; 0 otherwise. */
148 int what; /* which reload this is for */
149 enum machine_mode mode; /* mode it must have */
152 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
154 /* Number of replacements currently recorded. */
155 static int n_replacements;
157 /* Used to track what is modified by an operand. */
158 struct decomposition
160 int reg_flag; /* Nonzero if referencing a register. */
161 int safe; /* Nonzero if this can't conflict with anything. */
162 rtx base; /* Base address for MEM. */
163 HOST_WIDE_INT start; /* Starting offset or register number. */
164 HOST_WIDE_INT end; /* Ending offset or register number. */
167 #ifdef SECONDARY_MEMORY_NEEDED
169 /* Save MEMs needed to copy from one class of registers to another. One MEM
170 is used per mode, but normally only one or two modes are ever used.
172 We keep two versions, before and after register elimination. The one
173 after register elimination is record separately for each operand. This
174 is done in case the address is not valid to be sure that we separately
175 reload each. */
177 static rtx secondary_memlocs[NUM_MACHINE_MODES];
178 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
179 #endif
181 /* The instruction we are doing reloads for;
182 so we can test whether a register dies in it. */
183 static rtx this_insn;
185 /* Nonzero if this instruction is a user-specified asm with operands. */
186 static int this_insn_is_asm;
188 /* If hard_regs_live_known is nonzero,
189 we can tell which hard regs are currently live,
190 at least enough to succeed in choosing dummy reloads. */
191 static int hard_regs_live_known;
193 /* Indexed by hard reg number,
194 element is nonnegative if hard reg has been spilled.
195 This vector is passed to `find_reloads' as an argument
196 and is not changed here. */
197 static short *static_reload_reg_p;
199 /* Set to 1 in subst_reg_equivs if it changes anything. */
200 static int subst_reg_equivs_changed;
202 /* On return from push_reload, holds the reload-number for the OUT
203 operand, which can be different for that from the input operand. */
204 static int output_reloadnum;
206 /* Compare two RTX's. */
207 #define MATCHES(x, y) \
208 (x == y || (x != 0 && (GET_CODE (x) == REG \
209 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
210 : rtx_equal_p (x, y) && ! side_effects_p (x))))
212 /* Indicates if two reloads purposes are for similar enough things that we
213 can merge their reloads. */
214 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
215 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
216 || ((when1) == (when2) && (op1) == (op2)) \
217 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
218 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
219 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
220 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
221 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
223 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
224 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
225 ((when1) != (when2) \
226 || ! ((op1) == (op2) \
227 || (when1) == RELOAD_FOR_INPUT \
228 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
229 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
231 /* If we are going to reload an address, compute the reload type to
232 use. */
233 #define ADDR_TYPE(type) \
234 ((type) == RELOAD_FOR_INPUT_ADDRESS \
235 ? RELOAD_FOR_INPADDR_ADDRESS \
236 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
237 ? RELOAD_FOR_OUTADDR_ADDRESS \
238 : (type)))
240 #ifdef HAVE_SECONDARY_RELOADS
241 static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
242 enum machine_mode, enum reload_type,
243 enum insn_code *));
244 #endif
245 static enum reg_class find_valid_class PARAMS ((enum machine_mode, int));
246 static int push_reload PARAMS ((rtx, rtx, rtx *, rtx *, enum reg_class,
247 enum machine_mode, enum machine_mode,
248 int, int, int, enum reload_type));
249 static void push_replacement PARAMS ((rtx *, int, enum machine_mode));
250 static void combine_reloads PARAMS ((void));
251 static int find_reusable_reload PARAMS ((rtx *, rtx, enum reg_class,
252 enum reload_type, int, int));
253 static rtx find_dummy_reload PARAMS ((rtx, rtx, rtx *, rtx *,
254 enum machine_mode, enum machine_mode,
255 enum reg_class, int, int));
256 static int hard_reg_set_here_p PARAMS ((int, int, rtx));
257 static struct decomposition decompose PARAMS ((rtx));
258 static int immune_p PARAMS ((rtx, rtx, struct decomposition));
259 static int alternative_allows_memconst PARAMS ((const char *, int));
260 static rtx find_reloads_toplev PARAMS ((rtx, int, enum reload_type, int, int, rtx));
261 static rtx make_memloc PARAMS ((rtx, int));
262 static int find_reloads_address PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
263 int, enum reload_type, int, rtx));
264 static rtx subst_reg_equivs PARAMS ((rtx, rtx));
265 static rtx subst_indexed_address PARAMS ((rtx));
266 static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
267 int, enum reload_type,int, rtx));
268 static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
269 enum machine_mode, int,
270 enum reload_type, int));
271 static rtx find_reloads_subreg_address PARAMS ((rtx, int, int, enum reload_type,
272 int, rtx));
273 static int find_inc_amount PARAMS ((rtx, rtx));
274 static int loc_mentioned_in_p PARAMS ((rtx *, rtx));
275 extern void debug_reload_to_stream PARAMS ((FILE *));
276 extern void debug_reload PARAMS ((void));
278 #ifdef HAVE_SECONDARY_RELOADS
280 /* Determine if any secondary reloads are needed for loading (if IN_P is
281 non-zero) or storing (if IN_P is zero) X to or from a reload register of
282 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
283 are needed, push them.
285 Return the reload number of the secondary reload we made, or -1 if
286 we didn't need one. *PICODE is set to the insn_code to use if we do
287 need a secondary reload. */
289 static int
290 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
291 type, picode)
292 int in_p;
293 rtx x;
294 int opnum;
295 int optional;
296 enum reg_class reload_class;
297 enum machine_mode reload_mode;
298 enum reload_type type;
299 enum insn_code *picode;
301 enum reg_class class = NO_REGS;
302 enum machine_mode mode = reload_mode;
303 enum insn_code icode = CODE_FOR_nothing;
304 enum reg_class t_class = NO_REGS;
305 enum machine_mode t_mode = VOIDmode;
306 enum insn_code t_icode = CODE_FOR_nothing;
307 enum reload_type secondary_type;
308 int s_reload, t_reload = -1;
310 if (type == RELOAD_FOR_INPUT_ADDRESS
311 || type == RELOAD_FOR_OUTPUT_ADDRESS
312 || type == RELOAD_FOR_INPADDR_ADDRESS
313 || type == RELOAD_FOR_OUTADDR_ADDRESS)
314 secondary_type = type;
315 else
316 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
318 *picode = CODE_FOR_nothing;
320 /* If X is a paradoxical SUBREG, use the inner value to determine both the
321 mode and object being reloaded. */
322 if (GET_CODE (x) == SUBREG
323 && (GET_MODE_SIZE (GET_MODE (x))
324 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
326 x = SUBREG_REG (x);
327 reload_mode = GET_MODE (x);
330 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
331 is still a pseudo-register by now, it *must* have an equivalent MEM
332 but we don't want to assume that), use that equivalent when seeing if
333 a secondary reload is needed since whether or not a reload is needed
334 might be sensitive to the form of the MEM. */
336 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
337 && reg_equiv_mem[REGNO (x)] != 0)
338 x = reg_equiv_mem[REGNO (x)];
340 #ifdef SECONDARY_INPUT_RELOAD_CLASS
341 if (in_p)
342 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
343 #endif
345 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
346 if (! in_p)
347 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
348 #endif
350 /* If we don't need any secondary registers, done. */
351 if (class == NO_REGS)
352 return -1;
354 /* Get a possible insn to use. If the predicate doesn't accept X, don't
355 use the insn. */
357 icode = (in_p ? reload_in_optab[(int) reload_mode]
358 : reload_out_optab[(int) reload_mode]);
360 if (icode != CODE_FOR_nothing
361 && insn_data[(int) icode].operand[in_p].predicate
362 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
363 icode = CODE_FOR_nothing;
365 /* If we will be using an insn, see if it can directly handle the reload
366 register we will be using. If it can, the secondary reload is for a
367 scratch register. If it can't, we will use the secondary reload for
368 an intermediate register and require a tertiary reload for the scratch
369 register. */
371 if (icode != CODE_FOR_nothing)
373 /* If IN_P is non-zero, the reload register will be the output in
374 operand 0. If IN_P is zero, the reload register will be the input
375 in operand 1. Outputs should have an initial "=", which we must
376 skip. */
378 char insn_letter
379 = insn_data[(int) icode].operand[!in_p].constraint[in_p];
380 enum reg_class insn_class
381 = (insn_letter == 'r' ? GENERAL_REGS
382 : REG_CLASS_FROM_LETTER ((unsigned char) insn_letter));
384 if (insn_class == NO_REGS
385 || (in_p
386 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
387 /* The scratch register's constraint must start with "=&". */
388 || insn_data[(int) icode].operand[2].constraint[0] != '='
389 || insn_data[(int) icode].operand[2].constraint[1] != '&')
390 abort ();
392 if (reg_class_subset_p (reload_class, insn_class))
393 mode = insn_data[(int) icode].operand[2].mode;
394 else
396 char t_letter = insn_data[(int) icode].operand[2].constraint[2];
397 class = insn_class;
398 t_mode = insn_data[(int) icode].operand[2].mode;
399 t_class = (t_letter == 'r' ? GENERAL_REGS
400 : REG_CLASS_FROM_LETTER ((unsigned char) t_letter));
401 t_icode = icode;
402 icode = CODE_FOR_nothing;
406 /* This case isn't valid, so fail. Reload is allowed to use the same
407 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
408 in the case of a secondary register, we actually need two different
409 registers for correct code. We fail here to prevent the possibility of
410 silently generating incorrect code later.
412 The convention is that secondary input reloads are valid only if the
413 secondary_class is different from class. If you have such a case, you
414 can not use secondary reloads, you must work around the problem some
415 other way.
417 Allow this when MODE is not reload_mode and assume that the generated
418 code handles this case (it does on the Alpha, which is the only place
419 this currently happens). */
421 if (in_p && class == reload_class && mode == reload_mode)
422 abort ();
424 /* If we need a tertiary reload, see if we have one we can reuse or else
425 make a new one. */
427 if (t_class != NO_REGS)
429 for (t_reload = 0; t_reload < n_reloads; t_reload++)
430 if (rld[t_reload].secondary_p
431 && (reg_class_subset_p (t_class, rld[t_reload].class)
432 || reg_class_subset_p (rld[t_reload].class, t_class))
433 && ((in_p && rld[t_reload].inmode == t_mode)
434 || (! in_p && rld[t_reload].outmode == t_mode))
435 && ((in_p && (rld[t_reload].secondary_in_icode
436 == CODE_FOR_nothing))
437 || (! in_p &&(rld[t_reload].secondary_out_icode
438 == CODE_FOR_nothing)))
439 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
440 && MERGABLE_RELOADS (secondary_type,
441 rld[t_reload].when_needed,
442 opnum, rld[t_reload].opnum))
444 if (in_p)
445 rld[t_reload].inmode = t_mode;
446 if (! in_p)
447 rld[t_reload].outmode = t_mode;
449 if (reg_class_subset_p (t_class, rld[t_reload].class))
450 rld[t_reload].class = t_class;
452 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
453 rld[t_reload].optional &= optional;
454 rld[t_reload].secondary_p = 1;
455 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
456 opnum, rld[t_reload].opnum))
457 rld[t_reload].when_needed = RELOAD_OTHER;
460 if (t_reload == n_reloads)
462 /* We need to make a new tertiary reload for this register class. */
463 rld[t_reload].in = rld[t_reload].out = 0;
464 rld[t_reload].class = t_class;
465 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
466 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
467 rld[t_reload].reg_rtx = 0;
468 rld[t_reload].optional = optional;
469 rld[t_reload].inc = 0;
470 /* Maybe we could combine these, but it seems too tricky. */
471 rld[t_reload].nocombine = 1;
472 rld[t_reload].in_reg = 0;
473 rld[t_reload].out_reg = 0;
474 rld[t_reload].opnum = opnum;
475 rld[t_reload].when_needed = secondary_type;
476 rld[t_reload].secondary_in_reload = -1;
477 rld[t_reload].secondary_out_reload = -1;
478 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
479 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
480 rld[t_reload].secondary_p = 1;
482 n_reloads++;
486 /* See if we can reuse an existing secondary reload. */
487 for (s_reload = 0; s_reload < n_reloads; s_reload++)
488 if (rld[s_reload].secondary_p
489 && (reg_class_subset_p (class, rld[s_reload].class)
490 || reg_class_subset_p (rld[s_reload].class, class))
491 && ((in_p && rld[s_reload].inmode == mode)
492 || (! in_p && rld[s_reload].outmode == mode))
493 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
494 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
495 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
496 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
497 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
498 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
499 opnum, rld[s_reload].opnum))
501 if (in_p)
502 rld[s_reload].inmode = mode;
503 if (! in_p)
504 rld[s_reload].outmode = mode;
506 if (reg_class_subset_p (class, rld[s_reload].class))
507 rld[s_reload].class = class;
509 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
510 rld[s_reload].optional &= optional;
511 rld[s_reload].secondary_p = 1;
512 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
513 opnum, rld[s_reload].opnum))
514 rld[s_reload].when_needed = RELOAD_OTHER;
517 if (s_reload == n_reloads)
519 #ifdef SECONDARY_MEMORY_NEEDED
520 /* If we need a memory location to copy between the two reload regs,
521 set it up now. Note that we do the input case before making
522 the reload and the output case after. This is due to the
523 way reloads are output. */
525 if (in_p && icode == CODE_FOR_nothing
526 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
527 get_secondary_mem (x, reload_mode, opnum, type);
528 #endif
530 /* We need to make a new secondary reload for this register class. */
531 rld[s_reload].in = rld[s_reload].out = 0;
532 rld[s_reload].class = class;
534 rld[s_reload].inmode = in_p ? mode : VOIDmode;
535 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
536 rld[s_reload].reg_rtx = 0;
537 rld[s_reload].optional = optional;
538 rld[s_reload].inc = 0;
539 /* Maybe we could combine these, but it seems too tricky. */
540 rld[s_reload].nocombine = 1;
541 rld[s_reload].in_reg = 0;
542 rld[s_reload].out_reg = 0;
543 rld[s_reload].opnum = opnum;
544 rld[s_reload].when_needed = secondary_type;
545 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
546 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
547 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
548 rld[s_reload].secondary_out_icode
549 = ! in_p ? t_icode : CODE_FOR_nothing;
550 rld[s_reload].secondary_p = 1;
552 n_reloads++;
554 #ifdef SECONDARY_MEMORY_NEEDED
555 if (! in_p && icode == CODE_FOR_nothing
556 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
557 get_secondary_mem (x, mode, opnum, type);
558 #endif
561 *picode = icode;
562 return s_reload;
564 #endif /* HAVE_SECONDARY_RELOADS */
566 #ifdef SECONDARY_MEMORY_NEEDED
568 /* Return a memory location that will be used to copy X in mode MODE.
569 If we haven't already made a location for this mode in this insn,
570 call find_reloads_address on the location being returned. */
573 get_secondary_mem (x, mode, opnum, type)
574 rtx x ATTRIBUTE_UNUSED;
575 enum machine_mode mode;
576 int opnum;
577 enum reload_type type;
579 rtx loc;
580 int mem_valid;
582 /* By default, if MODE is narrower than a word, widen it to a word.
583 This is required because most machines that require these memory
584 locations do not support short load and stores from all registers
585 (e.g., FP registers). */
587 #ifdef SECONDARY_MEMORY_NEEDED_MODE
588 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
589 #else
590 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
591 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
592 #endif
594 /* If we already have made a MEM for this operand in MODE, return it. */
595 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
596 return secondary_memlocs_elim[(int) mode][opnum];
598 /* If this is the first time we've tried to get a MEM for this mode,
599 allocate a new one. `something_changed' in reload will get set
600 by noticing that the frame size has changed. */
602 if (secondary_memlocs[(int) mode] == 0)
604 #ifdef SECONDARY_MEMORY_NEEDED_RTX
605 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
606 #else
607 secondary_memlocs[(int) mode]
608 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
609 #endif
612 /* Get a version of the address doing any eliminations needed. If that
613 didn't give us a new MEM, make a new one if it isn't valid. */
615 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
616 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
618 if (! mem_valid && loc == secondary_memlocs[(int) mode])
619 loc = copy_rtx (loc);
621 /* The only time the call below will do anything is if the stack
622 offset is too large. In that case IND_LEVELS doesn't matter, so we
623 can just pass a zero. Adjust the type to be the address of the
624 corresponding object. If the address was valid, save the eliminated
625 address. If it wasn't valid, we need to make a reload each time, so
626 don't save it. */
628 if (! mem_valid)
630 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
631 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
632 : RELOAD_OTHER);
634 find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
635 opnum, type, 0, 0);
638 secondary_memlocs_elim[(int) mode][opnum] = loc;
639 return loc;
642 /* Clear any secondary memory locations we've made. */
644 void
645 clear_secondary_mem ()
647 bzero ((char *) secondary_memlocs, sizeof secondary_memlocs);
649 #endif /* SECONDARY_MEMORY_NEEDED */
651 /* Find the largest class for which every register number plus N is valid in
652 M1 (if in range). Abort if no such class exists. */
654 static enum reg_class
655 find_valid_class (m1, n)
656 enum machine_mode m1 ATTRIBUTE_UNUSED;
657 int n;
659 int class;
660 int regno;
661 enum reg_class best_class = NO_REGS;
662 int best_size = 0;
664 for (class = 1; class < N_REG_CLASSES; class++)
666 int bad = 0;
667 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
668 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
669 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
670 && ! HARD_REGNO_MODE_OK (regno + n, m1))
671 bad = 1;
673 if (! bad && reg_class_size[class] > best_size)
674 best_class = class, best_size = reg_class_size[class];
677 if (best_size == 0)
678 abort ();
680 return best_class;
683 /* Return the number of a previously made reload that can be combined with
684 a new one, or n_reloads if none of the existing reloads can be used.
685 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
686 push_reload, they determine the kind of the new reload that we try to
687 combine. P_IN points to the corresponding value of IN, which can be
688 modified by this function.
689 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
690 static int
691 find_reusable_reload (p_in, out, class, type, opnum, dont_share)
692 rtx *p_in, out;
693 enum reg_class class;
694 enum reload_type type;
695 int opnum, dont_share;
697 rtx in = *p_in;
698 int i;
699 /* We can't merge two reloads if the output of either one is
700 earlyclobbered. */
702 if (earlyclobber_operand_p (out))
703 return n_reloads;
705 /* We can use an existing reload if the class is right
706 and at least one of IN and OUT is a match
707 and the other is at worst neutral.
708 (A zero compared against anything is neutral.)
710 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
711 for the same thing since that can cause us to need more reload registers
712 than we otherwise would. */
714 for (i = 0; i < n_reloads; i++)
715 if ((reg_class_subset_p (class, rld[i].class)
716 || reg_class_subset_p (rld[i].class, class))
717 /* If the existing reload has a register, it must fit our class. */
718 && (rld[i].reg_rtx == 0
719 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
720 true_regnum (rld[i].reg_rtx)))
721 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
722 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
723 || (out != 0 && MATCHES (rld[i].out, out)
724 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
725 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
726 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
727 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
728 return i;
730 /* Reloading a plain reg for input can match a reload to postincrement
731 that reg, since the postincrement's value is the right value.
732 Likewise, it can match a preincrement reload, since we regard
733 the preincrementation as happening before any ref in this insn
734 to that register. */
735 for (i = 0; i < n_reloads; i++)
736 if ((reg_class_subset_p (class, rld[i].class)
737 || reg_class_subset_p (rld[i].class, class))
738 /* If the existing reload has a register, it must fit our
739 class. */
740 && (rld[i].reg_rtx == 0
741 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
742 true_regnum (rld[i].reg_rtx)))
743 && out == 0 && rld[i].out == 0 && rld[i].in != 0
744 && ((GET_CODE (in) == REG
745 && (GET_CODE (rld[i].in) == POST_INC
746 || GET_CODE (rld[i].in) == POST_DEC
747 || GET_CODE (rld[i].in) == PRE_INC
748 || GET_CODE (rld[i].in) == PRE_DEC)
749 && MATCHES (XEXP (rld[i].in, 0), in))
751 (GET_CODE (rld[i].in) == REG
752 && (GET_CODE (in) == POST_INC
753 || GET_CODE (in) == POST_DEC
754 || GET_CODE (in) == PRE_INC
755 || GET_CODE (in) == PRE_DEC)
756 && MATCHES (XEXP (in, 0), rld[i].in)))
757 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
758 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
759 && MERGABLE_RELOADS (type, rld[i].when_needed,
760 opnum, rld[i].opnum))
762 /* Make sure reload_in ultimately has the increment,
763 not the plain register. */
764 if (GET_CODE (in) == REG)
765 *p_in = rld[i].in;
766 return i;
768 return n_reloads;
771 /* Record one reload that needs to be performed.
772 IN is an rtx saying where the data are to be found before this instruction.
773 OUT says where they must be stored after the instruction.
774 (IN is zero for data not read, and OUT is zero for data not written.)
775 INLOC and OUTLOC point to the places in the instructions where
776 IN and OUT were found.
777 If IN and OUT are both non-zero, it means the same register must be used
778 to reload both IN and OUT.
780 CLASS is a register class required for the reloaded data.
781 INMODE is the machine mode that the instruction requires
782 for the reg that replaces IN and OUTMODE is likewise for OUT.
784 If IN is zero, then OUT's location and mode should be passed as
785 INLOC and INMODE.
787 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
789 OPTIONAL nonzero means this reload does not need to be performed:
790 it can be discarded if that is more convenient.
792 OPNUM and TYPE say what the purpose of this reload is.
794 The return value is the reload-number for this reload.
796 If both IN and OUT are nonzero, in some rare cases we might
797 want to make two separate reloads. (Actually we never do this now.)
798 Therefore, the reload-number for OUT is stored in
799 output_reloadnum when we return; the return value applies to IN.
800 Usually (presently always), when IN and OUT are nonzero,
801 the two reload-numbers are equal, but the caller should be careful to
802 distinguish them. */
804 static int
805 push_reload (in, out, inloc, outloc, class,
806 inmode, outmode, strict_low, optional, opnum, type)
807 rtx in, out;
808 rtx *inloc, *outloc;
809 enum reg_class class;
810 enum machine_mode inmode, outmode;
811 int strict_low;
812 int optional;
813 int opnum;
814 enum reload_type type;
816 register int i;
817 int dont_share = 0;
818 int dont_remove_subreg = 0;
819 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
820 int secondary_in_reload = -1, secondary_out_reload = -1;
821 enum insn_code secondary_in_icode = CODE_FOR_nothing;
822 enum insn_code secondary_out_icode = CODE_FOR_nothing;
824 /* INMODE and/or OUTMODE could be VOIDmode if no mode
825 has been specified for the operand. In that case,
826 use the operand's mode as the mode to reload. */
827 if (inmode == VOIDmode && in != 0)
828 inmode = GET_MODE (in);
829 if (outmode == VOIDmode && out != 0)
830 outmode = GET_MODE (out);
832 /* If IN is a pseudo register everywhere-equivalent to a constant, and
833 it is not in a hard register, reload straight from the constant,
834 since we want to get rid of such pseudo registers.
835 Often this is done earlier, but not always in find_reloads_address. */
836 if (in != 0 && GET_CODE (in) == REG)
838 register int regno = REGNO (in);
840 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
841 && reg_equiv_constant[regno] != 0)
842 in = reg_equiv_constant[regno];
845 /* Likewise for OUT. Of course, OUT will never be equivalent to
846 an actual constant, but it might be equivalent to a memory location
847 (in the case of a parameter). */
848 if (out != 0 && GET_CODE (out) == REG)
850 register int regno = REGNO (out);
852 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
853 && reg_equiv_constant[regno] != 0)
854 out = reg_equiv_constant[regno];
857 /* If we have a read-write operand with an address side-effect,
858 change either IN or OUT so the side-effect happens only once. */
859 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
861 if (GET_CODE (XEXP (in, 0)) == POST_INC
862 || GET_CODE (XEXP (in, 0)) == POST_DEC)
863 in = gen_rtx_MEM (GET_MODE (in), XEXP (XEXP (in, 0), 0));
864 if (GET_CODE (XEXP (in, 0)) == PRE_INC
865 || GET_CODE (XEXP (in, 0)) == PRE_DEC)
866 out = gen_rtx_MEM (GET_MODE (out), XEXP (XEXP (out, 0), 0));
869 /* If we are reloading a (SUBREG constant ...), really reload just the
870 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
871 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
872 a pseudo and hence will become a MEM) with M1 wider than M2 and the
873 register is a pseudo, also reload the inside expression.
874 For machines that extend byte loads, do this for any SUBREG of a pseudo
875 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
876 M2 is an integral mode that gets extended when loaded.
877 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
878 either M1 is not valid for R or M2 is wider than a word but we only
879 need one word to store an M2-sized quantity in R.
880 (However, if OUT is nonzero, we need to reload the reg *and*
881 the subreg, so do nothing here, and let following statement handle it.)
883 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
884 we can't handle it here because CONST_INT does not indicate a mode.
886 Similarly, we must reload the inside expression if we have a
887 STRICT_LOW_PART (presumably, in == out in the cas).
889 Also reload the inner expression if it does not require a secondary
890 reload but the SUBREG does.
892 Finally, reload the inner expression if it is a register that is in
893 the class whose registers cannot be referenced in a different size
894 and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
895 cannot reload just the inside since we might end up with the wrong
896 register class. But if it is inside a STRICT_LOW_PART, we have
897 no choice, so we hope we do get the right register class there. */
899 if (in != 0 && GET_CODE (in) == SUBREG
900 && (SUBREG_WORD (in) == 0 || strict_low)
901 #ifdef CLASS_CANNOT_CHANGE_SIZE
902 && class != CLASS_CANNOT_CHANGE_SIZE
903 #endif
904 && (CONSTANT_P (SUBREG_REG (in))
905 || GET_CODE (SUBREG_REG (in)) == PLUS
906 || strict_low
907 || (((GET_CODE (SUBREG_REG (in)) == REG
908 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
909 || GET_CODE (SUBREG_REG (in)) == MEM)
910 && ((GET_MODE_SIZE (inmode)
911 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
912 #ifdef LOAD_EXTEND_OP
913 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
914 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
915 <= UNITS_PER_WORD)
916 && (GET_MODE_SIZE (inmode)
917 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
918 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
919 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
920 #endif
921 #ifdef WORD_REGISTER_OPERATIONS
922 || ((GET_MODE_SIZE (inmode)
923 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
924 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
925 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
926 / UNITS_PER_WORD)))
927 #endif
929 || (GET_CODE (SUBREG_REG (in)) == REG
930 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
931 /* The case where out is nonzero
932 is handled differently in the following statement. */
933 && (out == 0 || SUBREG_WORD (in) == 0)
934 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
935 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
936 > UNITS_PER_WORD)
937 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
938 / UNITS_PER_WORD)
939 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
940 GET_MODE (SUBREG_REG (in)))))
941 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in))
942 + SUBREG_WORD (in)),
943 inmode)))
944 #ifdef SECONDARY_INPUT_RELOAD_CLASS
945 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
946 && (SECONDARY_INPUT_RELOAD_CLASS (class,
947 GET_MODE (SUBREG_REG (in)),
948 SUBREG_REG (in))
949 == NO_REGS))
950 #endif
951 #ifdef CLASS_CANNOT_CHANGE_SIZE
952 || (GET_CODE (SUBREG_REG (in)) == REG
953 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
954 && (TEST_HARD_REG_BIT
955 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
956 REGNO (SUBREG_REG (in))))
957 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
958 != GET_MODE_SIZE (inmode)))
959 #endif
962 in_subreg_loc = inloc;
963 inloc = &SUBREG_REG (in);
964 in = *inloc;
965 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
966 if (GET_CODE (in) == MEM)
967 /* This is supposed to happen only for paradoxical subregs made by
968 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
969 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
970 abort ();
971 #endif
972 inmode = GET_MODE (in);
975 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
976 either M1 is not valid for R or M2 is wider than a word but we only
977 need one word to store an M2-sized quantity in R.
979 However, we must reload the inner reg *as well as* the subreg in
980 that case. */
982 /* Similar issue for (SUBREG constant ...) if it was not handled by the
983 code above. This can happen if SUBREG_WORD != 0. */
985 if (in != 0 && GET_CODE (in) == SUBREG
986 && (CONSTANT_P (SUBREG_REG (in))
987 || (GET_CODE (SUBREG_REG (in)) == REG
988 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
989 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in))
990 + SUBREG_WORD (in),
991 inmode)
992 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
993 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
994 > UNITS_PER_WORD)
995 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
996 / UNITS_PER_WORD)
997 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
998 GET_MODE (SUBREG_REG (in)))))))))
1000 /* This relies on the fact that emit_reload_insns outputs the
1001 instructions for input reloads of type RELOAD_OTHER in the same
1002 order as the reloads. Thus if the outer reload is also of type
1003 RELOAD_OTHER, we are guaranteed that this inner reload will be
1004 output before the outer reload. */
1005 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
1006 find_valid_class (inmode, SUBREG_WORD (in)),
1007 VOIDmode, VOIDmode, 0, 0, opnum, type);
1008 dont_remove_subreg = 1;
1011 /* Similarly for paradoxical and problematical SUBREGs on the output.
1012 Note that there is no reason we need worry about the previous value
1013 of SUBREG_REG (out); even if wider than out,
1014 storing in a subreg is entitled to clobber it all
1015 (except in the case of STRICT_LOW_PART,
1016 and in that case the constraint should label it input-output.) */
1017 if (out != 0 && GET_CODE (out) == SUBREG
1018 && (SUBREG_WORD (out) == 0 || strict_low)
1019 #ifdef CLASS_CANNOT_CHANGE_SIZE
1020 && class != CLASS_CANNOT_CHANGE_SIZE
1021 #endif
1022 && (CONSTANT_P (SUBREG_REG (out))
1023 || strict_low
1024 || (((GET_CODE (SUBREG_REG (out)) == REG
1025 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1026 || GET_CODE (SUBREG_REG (out)) == MEM)
1027 && ((GET_MODE_SIZE (outmode)
1028 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1029 #ifdef WORD_REGISTER_OPERATIONS
1030 || ((GET_MODE_SIZE (outmode)
1031 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1032 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1033 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1034 / UNITS_PER_WORD)))
1035 #endif
1037 || (GET_CODE (SUBREG_REG (out)) == REG
1038 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1039 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1040 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1041 > UNITS_PER_WORD)
1042 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1043 / UNITS_PER_WORD)
1044 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1045 GET_MODE (SUBREG_REG (out)))))
1046 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out))
1047 + SUBREG_WORD (out)),
1048 outmode)))
1049 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1050 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1051 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1052 GET_MODE (SUBREG_REG (out)),
1053 SUBREG_REG (out))
1054 == NO_REGS))
1055 #endif
1056 #ifdef CLASS_CANNOT_CHANGE_SIZE
1057 || (GET_CODE (SUBREG_REG (out)) == REG
1058 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1059 && (TEST_HARD_REG_BIT
1060 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
1061 REGNO (SUBREG_REG (out))))
1062 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1063 != GET_MODE_SIZE (outmode)))
1064 #endif
1067 out_subreg_loc = outloc;
1068 outloc = &SUBREG_REG (out);
1069 out = *outloc;
1070 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1071 if (GET_CODE (out) == MEM
1072 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1073 abort ();
1074 #endif
1075 outmode = GET_MODE (out);
1078 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1079 either M1 is not valid for R or M2 is wider than a word but we only
1080 need one word to store an M2-sized quantity in R.
1082 However, we must reload the inner reg *as well as* the subreg in
1083 that case. In this case, the inner reg is an in-out reload. */
1085 if (out != 0 && GET_CODE (out) == SUBREG
1086 && GET_CODE (SUBREG_REG (out)) == REG
1087 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1088 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (out)) + SUBREG_WORD (out),
1089 outmode)
1090 || (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1091 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1092 > UNITS_PER_WORD)
1093 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1094 / UNITS_PER_WORD)
1095 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1096 GET_MODE (SUBREG_REG (out)))))))
1098 /* This relies on the fact that emit_reload_insns outputs the
1099 instructions for output reloads of type RELOAD_OTHER in reverse
1100 order of the reloads. Thus if the outer reload is also of type
1101 RELOAD_OTHER, we are guaranteed that this inner reload will be
1102 output after the outer reload. */
1103 dont_remove_subreg = 1;
1104 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1105 &SUBREG_REG (out),
1106 find_valid_class (outmode, SUBREG_WORD (out)),
1107 VOIDmode, VOIDmode, 0, 0,
1108 opnum, RELOAD_OTHER);
1111 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1112 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1113 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1114 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1115 dont_share = 1;
1117 /* If IN is a SUBREG of a hard register, make a new REG. This
1118 simplifies some of the cases below. */
1120 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1121 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1122 && ! dont_remove_subreg)
1123 in = gen_rtx_REG (GET_MODE (in),
1124 REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
1126 /* Similarly for OUT. */
1127 if (out != 0 && GET_CODE (out) == SUBREG
1128 && GET_CODE (SUBREG_REG (out)) == REG
1129 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1130 && ! dont_remove_subreg)
1131 out = gen_rtx_REG (GET_MODE (out),
1132 REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
1134 /* Narrow down the class of register wanted if that is
1135 desirable on this machine for efficiency. */
1136 if (in != 0)
1137 class = PREFERRED_RELOAD_CLASS (in, class);
1139 /* Output reloads may need analogous treatment, different in detail. */
1140 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1141 if (out != 0)
1142 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1143 #endif
1145 /* Make sure we use a class that can handle the actual pseudo
1146 inside any subreg. For example, on the 386, QImode regs
1147 can appear within SImode subregs. Although GENERAL_REGS
1148 can handle SImode, QImode needs a smaller class. */
1149 #ifdef LIMIT_RELOAD_CLASS
1150 if (in_subreg_loc)
1151 class = LIMIT_RELOAD_CLASS (inmode, class);
1152 else if (in != 0 && GET_CODE (in) == SUBREG)
1153 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1155 if (out_subreg_loc)
1156 class = LIMIT_RELOAD_CLASS (outmode, class);
1157 if (out != 0 && GET_CODE (out) == SUBREG)
1158 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1159 #endif
1161 /* Verify that this class is at least possible for the mode that
1162 is specified. */
1163 if (this_insn_is_asm)
1165 enum machine_mode mode;
1166 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1167 mode = inmode;
1168 else
1169 mode = outmode;
1170 if (mode == VOIDmode)
1172 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1173 mode = word_mode;
1174 if (in != 0)
1175 inmode = word_mode;
1176 if (out != 0)
1177 outmode = word_mode;
1179 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1180 if (HARD_REGNO_MODE_OK (i, mode)
1181 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1183 int nregs = HARD_REGNO_NREGS (i, mode);
1185 int j;
1186 for (j = 1; j < nregs; j++)
1187 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1188 break;
1189 if (j == nregs)
1190 break;
1192 if (i == FIRST_PSEUDO_REGISTER)
1194 error_for_asm (this_insn, "impossible register constraint in `asm'");
1195 class = ALL_REGS;
1199 /* Optional output reloads are always OK even if we have no register class,
1200 since the function of these reloads is only to have spill_reg_store etc.
1201 set, so that the storing insn can be deleted later. */
1202 if (class == NO_REGS
1203 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1204 abort ();
1206 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1208 if (i == n_reloads)
1210 /* See if we need a secondary reload register to move between CLASS
1211 and IN or CLASS and OUT. Get the icode and push any required reloads
1212 needed for each of them if so. */
1214 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1215 if (in != 0)
1216 secondary_in_reload
1217 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1218 &secondary_in_icode);
1219 #endif
1221 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1222 if (out != 0 && GET_CODE (out) != SCRATCH)
1223 secondary_out_reload
1224 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1225 type, &secondary_out_icode);
1226 #endif
1228 /* We found no existing reload suitable for re-use.
1229 So add an additional reload. */
1231 #ifdef SECONDARY_MEMORY_NEEDED
1232 /* If a memory location is needed for the copy, make one. */
1233 if (in != 0 && GET_CODE (in) == REG
1234 && REGNO (in) < FIRST_PSEUDO_REGISTER
1235 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1236 class, inmode))
1237 get_secondary_mem (in, inmode, opnum, type);
1238 #endif
1240 i = n_reloads;
1241 rld[i].in = in;
1242 rld[i].out = out;
1243 rld[i].class = class;
1244 rld[i].inmode = inmode;
1245 rld[i].outmode = outmode;
1246 rld[i].reg_rtx = 0;
1247 rld[i].optional = optional;
1248 rld[i].inc = 0;
1249 rld[i].nocombine = 0;
1250 rld[i].in_reg = inloc ? *inloc : 0;
1251 rld[i].out_reg = outloc ? *outloc : 0;
1252 rld[i].opnum = opnum;
1253 rld[i].when_needed = type;
1254 rld[i].secondary_in_reload = secondary_in_reload;
1255 rld[i].secondary_out_reload = secondary_out_reload;
1256 rld[i].secondary_in_icode = secondary_in_icode;
1257 rld[i].secondary_out_icode = secondary_out_icode;
1258 rld[i].secondary_p = 0;
1260 n_reloads++;
1262 #ifdef SECONDARY_MEMORY_NEEDED
1263 if (out != 0 && GET_CODE (out) == REG
1264 && REGNO (out) < FIRST_PSEUDO_REGISTER
1265 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1266 outmode))
1267 get_secondary_mem (out, outmode, opnum, type);
1268 #endif
1270 else
1272 /* We are reusing an existing reload,
1273 but we may have additional information for it.
1274 For example, we may now have both IN and OUT
1275 while the old one may have just one of them. */
1277 /* The modes can be different. If they are, we want to reload in
1278 the larger mode, so that the value is valid for both modes. */
1279 if (inmode != VOIDmode
1280 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1281 rld[i].inmode = inmode;
1282 if (outmode != VOIDmode
1283 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1284 rld[i].outmode = outmode;
1285 if (in != 0)
1287 rtx in_reg = inloc ? *inloc : 0;
1288 /* If we merge reloads for two distinct rtl expressions that
1289 are identical in content, there might be duplicate address
1290 reloads. Remove the extra set now, so that if we later find
1291 that we can inherit this reload, we can get rid of the
1292 address reloads altogether.
1294 Do not do this if both reloads are optional since the result
1295 would be an optional reload which could potentially leave
1296 unresolved address replacements.
1298 It is not sufficient to call transfer_replacements since
1299 choose_reload_regs will remove the replacements for address
1300 reloads of inherited reloads which results in the same
1301 problem. */
1302 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1303 && ! (rld[i].optional && optional))
1305 /* We must keep the address reload with the lower operand
1306 number alive. */
1307 if (opnum > rld[i].opnum)
1309 remove_address_replacements (in);
1310 in = rld[i].in;
1311 in_reg = rld[i].in_reg;
1313 else
1314 remove_address_replacements (rld[i].in);
1316 rld[i].in = in;
1317 rld[i].in_reg = in_reg;
1319 if (out != 0)
1321 rld[i].out = out;
1322 rld[i].out_reg = outloc ? *outloc : 0;
1324 if (reg_class_subset_p (class, rld[i].class))
1325 rld[i].class = class;
1326 rld[i].optional &= optional;
1327 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1328 opnum, rld[i].opnum))
1329 rld[i].when_needed = RELOAD_OTHER;
1330 rld[i].opnum = MIN (rld[i].opnum, opnum);
1333 /* If the ostensible rtx being reload differs from the rtx found
1334 in the location to substitute, this reload is not safe to combine
1335 because we cannot reliably tell whether it appears in the insn. */
1337 if (in != 0 && in != *inloc)
1338 rld[i].nocombine = 1;
1340 #if 0
1341 /* This was replaced by changes in find_reloads_address_1 and the new
1342 function inc_for_reload, which go with a new meaning of reload_inc. */
1344 /* If this is an IN/OUT reload in an insn that sets the CC,
1345 it must be for an autoincrement. It doesn't work to store
1346 the incremented value after the insn because that would clobber the CC.
1347 So we must do the increment of the value reloaded from,
1348 increment it, store it back, then decrement again. */
1349 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1351 out = 0;
1352 rld[i].out = 0;
1353 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1354 /* If we did not find a nonzero amount-to-increment-by,
1355 that contradicts the belief that IN is being incremented
1356 in an address in this insn. */
1357 if (rld[i].inc == 0)
1358 abort ();
1360 #endif
1362 /* If we will replace IN and OUT with the reload-reg,
1363 record where they are located so that substitution need
1364 not do a tree walk. */
1366 if (replace_reloads)
1368 if (inloc != 0)
1370 register struct replacement *r = &replacements[n_replacements++];
1371 r->what = i;
1372 r->subreg_loc = in_subreg_loc;
1373 r->where = inloc;
1374 r->mode = inmode;
1376 if (outloc != 0 && outloc != inloc)
1378 register struct replacement *r = &replacements[n_replacements++];
1379 r->what = i;
1380 r->where = outloc;
1381 r->subreg_loc = out_subreg_loc;
1382 r->mode = outmode;
1386 /* If this reload is just being introduced and it has both
1387 an incoming quantity and an outgoing quantity that are
1388 supposed to be made to match, see if either one of the two
1389 can serve as the place to reload into.
1391 If one of them is acceptable, set rld[i].reg_rtx
1392 to that one. */
1394 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1396 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1397 inmode, outmode,
1398 rld[i].class, i,
1399 earlyclobber_operand_p (out));
1401 /* If the outgoing register already contains the same value
1402 as the incoming one, we can dispense with loading it.
1403 The easiest way to tell the caller that is to give a phony
1404 value for the incoming operand (same as outgoing one). */
1405 if (rld[i].reg_rtx == out
1406 && (GET_CODE (in) == REG || CONSTANT_P (in))
1407 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1408 static_reload_reg_p, i, inmode))
1409 rld[i].in = out;
1412 /* If this is an input reload and the operand contains a register that
1413 dies in this insn and is used nowhere else, see if it is the right class
1414 to be used for this reload. Use it if so. (This occurs most commonly
1415 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1416 this if it is also an output reload that mentions the register unless
1417 the output is a SUBREG that clobbers an entire register.
1419 Note that the operand might be one of the spill regs, if it is a
1420 pseudo reg and we are in a block where spilling has not taken place.
1421 But if there is no spilling in this block, that is OK.
1422 An explicitly used hard reg cannot be a spill reg. */
1424 if (rld[i].reg_rtx == 0 && in != 0)
1426 rtx note;
1427 int regno;
1429 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1430 if (REG_NOTE_KIND (note) == REG_DEAD
1431 && GET_CODE (XEXP (note, 0)) == REG
1432 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1433 && reg_mentioned_p (XEXP (note, 0), in)
1434 && ! refers_to_regno_for_reload_p (regno,
1435 (regno
1436 + HARD_REGNO_NREGS (regno,
1437 inmode)),
1438 PATTERN (this_insn), inloc)
1439 /* If this is also an output reload, IN cannot be used as
1440 the reload register if it is set in this insn unless IN
1441 is also OUT. */
1442 && (out == 0 || in == out
1443 || ! hard_reg_set_here_p (regno,
1444 (regno
1445 + HARD_REGNO_NREGS (regno,
1446 inmode)),
1447 PATTERN (this_insn)))
1448 /* ??? Why is this code so different from the previous?
1449 Is there any simple coherent way to describe the two together?
1450 What's going on here. */
1451 && (in != out
1452 || (GET_CODE (in) == SUBREG
1453 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1454 / UNITS_PER_WORD)
1455 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1456 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1457 /* Make sure the operand fits in the reg that dies. */
1458 && GET_MODE_SIZE (inmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1459 && HARD_REGNO_MODE_OK (regno, inmode)
1460 && GET_MODE_SIZE (outmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1461 && HARD_REGNO_MODE_OK (regno, outmode))
1463 int offs;
1464 int nregs = HARD_REGNO_NREGS (regno, inmode);
1465 for (offs = 0; offs < nregs; offs++)
1466 if (fixed_regs[regno + offs]
1467 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1468 regno + offs))
1469 break;
1471 if (offs == nregs)
1473 rld[i].reg_rtx = gen_rtx_REG (inmode, regno);
1474 break;
1479 if (out)
1480 output_reloadnum = i;
1482 return i;
1485 /* Record an additional place we must replace a value
1486 for which we have already recorded a reload.
1487 RELOADNUM is the value returned by push_reload
1488 when the reload was recorded.
1489 This is used in insn patterns that use match_dup. */
1491 static void
1492 push_replacement (loc, reloadnum, mode)
1493 rtx *loc;
1494 int reloadnum;
1495 enum machine_mode mode;
1497 if (replace_reloads)
1499 register struct replacement *r = &replacements[n_replacements++];
1500 r->what = reloadnum;
1501 r->where = loc;
1502 r->subreg_loc = 0;
1503 r->mode = mode;
1507 /* Transfer all replacements that used to be in reload FROM to be in
1508 reload TO. */
1510 void
1511 transfer_replacements (to, from)
1512 int to, from;
1514 int i;
1516 for (i = 0; i < n_replacements; i++)
1517 if (replacements[i].what == from)
1518 replacements[i].what = to;
1521 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1522 or a subpart of it. If we have any replacements registered for IN_RTX,
1523 cancel the reloads that were supposed to load them.
1524 Return non-zero if we canceled any reloads. */
1526 remove_address_replacements (in_rtx)
1527 rtx in_rtx;
1529 int i, j;
1530 char reload_flags[MAX_RELOADS];
1531 int something_changed = 0;
1533 bzero (reload_flags, sizeof reload_flags);
1534 for (i = 0, j = 0; i < n_replacements; i++)
1536 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1537 reload_flags[replacements[i].what] |= 1;
1538 else
1540 replacements[j++] = replacements[i];
1541 reload_flags[replacements[i].what] |= 2;
1544 /* Note that the following store must be done before the recursive calls. */
1545 n_replacements = j;
1547 for (i = n_reloads - 1; i >= 0; i--)
1549 if (reload_flags[i] == 1)
1551 deallocate_reload_reg (i);
1552 remove_address_replacements (rld[i].in);
1553 rld[i].in = 0;
1554 something_changed = 1;
1557 return something_changed;
1560 /* Return non-zero if IN contains a piece of rtl that has the address LOC */
1561 static int
1562 loc_mentioned_in_p (loc, in)
1563 rtx *loc, in;
1565 enum rtx_code code = GET_CODE (in);
1566 const char *fmt = GET_RTX_FORMAT (code);
1567 int i, j;
1569 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1571 if (loc == &in->fld[i].rtx)
1572 return 1;
1573 if (fmt[i] == 'e')
1575 if (loc_mentioned_in_p (loc, XEXP (in, i)))
1576 return 1;
1578 else if (fmt[i] == 'E')
1579 for (j = XVECLEN (in, i) - 1; i >= 0; i--)
1580 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
1581 return 1;
1583 return 0;
1586 /* If there is only one output reload, and it is not for an earlyclobber
1587 operand, try to combine it with a (logically unrelated) input reload
1588 to reduce the number of reload registers needed.
1590 This is safe if the input reload does not appear in
1591 the value being output-reloaded, because this implies
1592 it is not needed any more once the original insn completes.
1594 If that doesn't work, see we can use any of the registers that
1595 die in this insn as a reload register. We can if it is of the right
1596 class and does not appear in the value being output-reloaded. */
1598 static void
1599 combine_reloads ()
1601 int i;
1602 int output_reload = -1;
1603 int secondary_out = -1;
1604 rtx note;
1606 /* Find the output reload; return unless there is exactly one
1607 and that one is mandatory. */
1609 for (i = 0; i < n_reloads; i++)
1610 if (rld[i].out != 0)
1612 if (output_reload >= 0)
1613 return;
1614 output_reload = i;
1617 if (output_reload < 0 || rld[output_reload].optional)
1618 return;
1620 /* An input-output reload isn't combinable. */
1622 if (rld[output_reload].in != 0)
1623 return;
1625 /* If this reload is for an earlyclobber operand, we can't do anything. */
1626 if (earlyclobber_operand_p (rld[output_reload].out))
1627 return;
1629 /* Check each input reload; can we combine it? */
1631 for (i = 0; i < n_reloads; i++)
1632 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1633 /* Life span of this reload must not extend past main insn. */
1634 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1635 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1636 && rld[i].when_needed != RELOAD_OTHER
1637 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1638 == CLASS_MAX_NREGS (rld[output_reload].class,
1639 rld[output_reload].outmode))
1640 && rld[i].inc == 0
1641 && rld[i].reg_rtx == 0
1642 #ifdef SECONDARY_MEMORY_NEEDED
1643 /* Don't combine two reloads with different secondary
1644 memory locations. */
1645 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1646 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1647 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1648 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1649 #endif
1650 && (SMALL_REGISTER_CLASSES
1651 ? (rld[i].class == rld[output_reload].class)
1652 : (reg_class_subset_p (rld[i].class,
1653 rld[output_reload].class)
1654 || reg_class_subset_p (rld[output_reload].class,
1655 rld[i].class)))
1656 && (MATCHES (rld[i].in, rld[output_reload].out)
1657 /* Args reversed because the first arg seems to be
1658 the one that we imagine being modified
1659 while the second is the one that might be affected. */
1660 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1661 rld[i].in)
1662 /* However, if the input is a register that appears inside
1663 the output, then we also can't share.
1664 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1665 If the same reload reg is used for both reg 69 and the
1666 result to be stored in memory, then that result
1667 will clobber the address of the memory ref. */
1668 && ! (GET_CODE (rld[i].in) == REG
1669 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1670 rld[output_reload].out))))
1671 && (reg_class_size[(int) rld[i].class]
1672 || SMALL_REGISTER_CLASSES)
1673 /* We will allow making things slightly worse by combining an
1674 input and an output, but no worse than that. */
1675 && (rld[i].when_needed == RELOAD_FOR_INPUT
1676 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1678 int j;
1680 /* We have found a reload to combine with! */
1681 rld[i].out = rld[output_reload].out;
1682 rld[i].out_reg = rld[output_reload].out_reg;
1683 rld[i].outmode = rld[output_reload].outmode;
1684 /* Mark the old output reload as inoperative. */
1685 rld[output_reload].out = 0;
1686 /* The combined reload is needed for the entire insn. */
1687 rld[i].when_needed = RELOAD_OTHER;
1688 /* If the output reload had a secondary reload, copy it. */
1689 if (rld[output_reload].secondary_out_reload != -1)
1691 rld[i].secondary_out_reload
1692 = rld[output_reload].secondary_out_reload;
1693 rld[i].secondary_out_icode
1694 = rld[output_reload].secondary_out_icode;
1697 #ifdef SECONDARY_MEMORY_NEEDED
1698 /* Copy any secondary MEM. */
1699 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1700 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1701 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1702 #endif
1703 /* If required, minimize the register class. */
1704 if (reg_class_subset_p (rld[output_reload].class,
1705 rld[i].class))
1706 rld[i].class = rld[output_reload].class;
1708 /* Transfer all replacements from the old reload to the combined. */
1709 for (j = 0; j < n_replacements; j++)
1710 if (replacements[j].what == output_reload)
1711 replacements[j].what = i;
1713 return;
1716 /* If this insn has only one operand that is modified or written (assumed
1717 to be the first), it must be the one corresponding to this reload. It
1718 is safe to use anything that dies in this insn for that output provided
1719 that it does not occur in the output (we already know it isn't an
1720 earlyclobber. If this is an asm insn, give up. */
1722 if (INSN_CODE (this_insn) == -1)
1723 return;
1725 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1726 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1727 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1728 return;
1730 /* See if some hard register that dies in this insn and is not used in
1731 the output is the right class. Only works if the register we pick
1732 up can fully hold our output reload. */
1733 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1734 if (REG_NOTE_KIND (note) == REG_DEAD
1735 && GET_CODE (XEXP (note, 0)) == REG
1736 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1737 rld[output_reload].out)
1738 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1739 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1740 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1741 REGNO (XEXP (note, 0)))
1742 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1743 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1744 /* Ensure that a secondary or tertiary reload for this output
1745 won't want this register. */
1746 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1747 || (! (TEST_HARD_REG_BIT
1748 (reg_class_contents[(int) rld[secondary_out].class],
1749 REGNO (XEXP (note, 0))))
1750 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1751 || ! (TEST_HARD_REG_BIT
1752 (reg_class_contents[(int) rld[secondary_out].class],
1753 REGNO (XEXP (note, 0)))))))
1754 && ! fixed_regs[REGNO (XEXP (note, 0))])
1756 rld[output_reload].reg_rtx
1757 = gen_rtx_REG (rld[output_reload].outmode,
1758 REGNO (XEXP (note, 0)));
1759 return;
1763 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1764 See if one of IN and OUT is a register that may be used;
1765 this is desirable since a spill-register won't be needed.
1766 If so, return the register rtx that proves acceptable.
1768 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1769 CLASS is the register class required for the reload.
1771 If FOR_REAL is >= 0, it is the number of the reload,
1772 and in some cases when it can be discovered that OUT doesn't need
1773 to be computed, clear out rld[FOR_REAL].out.
1775 If FOR_REAL is -1, this should not be done, because this call
1776 is just to see if a register can be found, not to find and install it.
1778 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1779 puts an additional constraint on being able to use IN for OUT since
1780 IN must not appear elsewhere in the insn (it is assumed that IN itself
1781 is safe from the earlyclobber). */
1783 static rtx
1784 find_dummy_reload (real_in, real_out, inloc, outloc,
1785 inmode, outmode, class, for_real, earlyclobber)
1786 rtx real_in, real_out;
1787 rtx *inloc, *outloc;
1788 enum machine_mode inmode, outmode;
1789 enum reg_class class;
1790 int for_real;
1791 int earlyclobber;
1793 rtx in = real_in;
1794 rtx out = real_out;
1795 int in_offset = 0;
1796 int out_offset = 0;
1797 rtx value = 0;
1799 /* If operands exceed a word, we can't use either of them
1800 unless they have the same size. */
1801 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1802 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1803 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1804 return 0;
1806 /* Find the inside of any subregs. */
1807 while (GET_CODE (out) == SUBREG)
1809 out_offset = SUBREG_WORD (out);
1810 out = SUBREG_REG (out);
1812 while (GET_CODE (in) == SUBREG)
1814 in_offset = SUBREG_WORD (in);
1815 in = SUBREG_REG (in);
1818 /* Narrow down the reg class, the same way push_reload will;
1819 otherwise we might find a dummy now, but push_reload won't. */
1820 class = PREFERRED_RELOAD_CLASS (in, class);
1822 /* See if OUT will do. */
1823 if (GET_CODE (out) == REG
1824 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1826 register int regno = REGNO (out) + out_offset;
1827 int nwords = HARD_REGNO_NREGS (regno, outmode);
1828 rtx saved_rtx;
1830 /* When we consider whether the insn uses OUT,
1831 ignore references within IN. They don't prevent us
1832 from copying IN into OUT, because those refs would
1833 move into the insn that reloads IN.
1835 However, we only ignore IN in its role as this reload.
1836 If the insn uses IN elsewhere and it contains OUT,
1837 that counts. We can't be sure it's the "same" operand
1838 so it might not go through this reload. */
1839 saved_rtx = *inloc;
1840 *inloc = const0_rtx;
1842 if (regno < FIRST_PSEUDO_REGISTER
1843 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1844 PATTERN (this_insn), outloc))
1846 int i;
1847 for (i = 0; i < nwords; i++)
1848 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1849 regno + i))
1850 break;
1852 if (i == nwords)
1854 if (GET_CODE (real_out) == REG)
1855 value = real_out;
1856 else
1857 value = gen_rtx_REG (outmode, regno);
1861 *inloc = saved_rtx;
1864 /* Consider using IN if OUT was not acceptable
1865 or if OUT dies in this insn (like the quotient in a divmod insn).
1866 We can't use IN unless it is dies in this insn,
1867 which means we must know accurately which hard regs are live.
1868 Also, the result can't go in IN if IN is used within OUT,
1869 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1870 if (hard_regs_live_known
1871 && GET_CODE (in) == REG
1872 && REGNO (in) < FIRST_PSEUDO_REGISTER
1873 && (value == 0
1874 || find_reg_note (this_insn, REG_UNUSED, real_out))
1875 && find_reg_note (this_insn, REG_DEAD, real_in)
1876 && !fixed_regs[REGNO (in)]
1877 && HARD_REGNO_MODE_OK (REGNO (in),
1878 /* The only case where out and real_out might
1879 have different modes is where real_out
1880 is a subreg, and in that case, out
1881 has a real mode. */
1882 (GET_MODE (out) != VOIDmode
1883 ? GET_MODE (out) : outmode)))
1885 register int regno = REGNO (in) + in_offset;
1886 int nwords = HARD_REGNO_NREGS (regno, inmode);
1888 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
1889 && ! hard_reg_set_here_p (regno, regno + nwords,
1890 PATTERN (this_insn))
1891 && (! earlyclobber
1892 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1893 PATTERN (this_insn), inloc)))
1895 int i;
1896 for (i = 0; i < nwords; i++)
1897 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1898 regno + i))
1899 break;
1901 if (i == nwords)
1903 /* If we were going to use OUT as the reload reg
1904 and changed our mind, it means OUT is a dummy that
1905 dies here. So don't bother copying value to it. */
1906 if (for_real >= 0 && value == real_out)
1907 rld[for_real].out = 0;
1908 if (GET_CODE (real_in) == REG)
1909 value = real_in;
1910 else
1911 value = gen_rtx_REG (inmode, regno);
1916 return value;
1919 /* This page contains subroutines used mainly for determining
1920 whether the IN or an OUT of a reload can serve as the
1921 reload register. */
1923 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1926 earlyclobber_operand_p (x)
1927 rtx x;
1929 int i;
1931 for (i = 0; i < n_earlyclobbers; i++)
1932 if (reload_earlyclobbers[i] == x)
1933 return 1;
1935 return 0;
1938 /* Return 1 if expression X alters a hard reg in the range
1939 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1940 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1941 X should be the body of an instruction. */
1943 static int
1944 hard_reg_set_here_p (beg_regno, end_regno, x)
1945 register int beg_regno, end_regno;
1946 rtx x;
1948 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1950 register rtx op0 = SET_DEST (x);
1951 while (GET_CODE (op0) == SUBREG)
1952 op0 = SUBREG_REG (op0);
1953 if (GET_CODE (op0) == REG)
1955 register int r = REGNO (op0);
1956 /* See if this reg overlaps range under consideration. */
1957 if (r < end_regno
1958 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1959 return 1;
1962 else if (GET_CODE (x) == PARALLEL)
1964 register int i = XVECLEN (x, 0) - 1;
1965 for (; i >= 0; i--)
1966 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
1967 return 1;
1970 return 0;
1973 /* Return 1 if ADDR is a valid memory address for mode MODE,
1974 and check that each pseudo reg has the proper kind of
1975 hard reg. */
1978 strict_memory_address_p (mode, addr)
1979 enum machine_mode mode ATTRIBUTE_UNUSED;
1980 register rtx addr;
1982 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1983 return 0;
1985 win:
1986 return 1;
1989 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
1990 if they are the same hard reg, and has special hacks for
1991 autoincrement and autodecrement.
1992 This is specifically intended for find_reloads to use
1993 in determining whether two operands match.
1994 X is the operand whose number is the lower of the two.
1996 The value is 2 if Y contains a pre-increment that matches
1997 a non-incrementing address in X. */
1999 /* ??? To be completely correct, we should arrange to pass
2000 for X the output operand and for Y the input operand.
2001 For now, we assume that the output operand has the lower number
2002 because that is natural in (SET output (... input ...)). */
2005 operands_match_p (x, y)
2006 register rtx x, y;
2008 register int i;
2009 register RTX_CODE code = GET_CODE (x);
2010 register const char *fmt;
2011 int success_2;
2013 if (x == y)
2014 return 1;
2015 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2016 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2017 && GET_CODE (SUBREG_REG (y)) == REG)))
2019 register int j;
2021 if (code == SUBREG)
2023 i = REGNO (SUBREG_REG (x));
2024 if (i >= FIRST_PSEUDO_REGISTER)
2025 goto slow;
2026 i += SUBREG_WORD (x);
2028 else
2029 i = REGNO (x);
2031 if (GET_CODE (y) == SUBREG)
2033 j = REGNO (SUBREG_REG (y));
2034 if (j >= FIRST_PSEUDO_REGISTER)
2035 goto slow;
2036 j += SUBREG_WORD (y);
2038 else
2039 j = REGNO (y);
2041 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2042 multiple hard register group, so that for example (reg:DI 0) and
2043 (reg:SI 1) will be considered the same register. */
2044 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2045 && i < FIRST_PSEUDO_REGISTER)
2046 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
2047 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2048 && j < FIRST_PSEUDO_REGISTER)
2049 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
2051 return i == j;
2053 /* If two operands must match, because they are really a single
2054 operand of an assembler insn, then two postincrements are invalid
2055 because the assembler insn would increment only once.
2056 On the other hand, an postincrement matches ordinary indexing
2057 if the postincrement is the output operand. */
2058 if (code == POST_DEC || code == POST_INC)
2059 return operands_match_p (XEXP (x, 0), y);
2060 /* Two preincrements are invalid
2061 because the assembler insn would increment only once.
2062 On the other hand, an preincrement matches ordinary indexing
2063 if the preincrement is the input operand.
2064 In this case, return 2, since some callers need to do special
2065 things when this happens. */
2066 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC)
2067 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2069 slow:
2071 /* Now we have disposed of all the cases
2072 in which different rtx codes can match. */
2073 if (code != GET_CODE (y))
2074 return 0;
2075 if (code == LABEL_REF)
2076 return XEXP (x, 0) == XEXP (y, 0);
2077 if (code == SYMBOL_REF)
2078 return XSTR (x, 0) == XSTR (y, 0);
2080 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2082 if (GET_MODE (x) != GET_MODE (y))
2083 return 0;
2085 /* Compare the elements. If any pair of corresponding elements
2086 fail to match, return 0 for the whole things. */
2088 success_2 = 0;
2089 fmt = GET_RTX_FORMAT (code);
2090 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2092 int val, j;
2093 switch (fmt[i])
2095 case 'w':
2096 if (XWINT (x, i) != XWINT (y, i))
2097 return 0;
2098 break;
2100 case 'i':
2101 if (XINT (x, i) != XINT (y, i))
2102 return 0;
2103 break;
2105 case 'e':
2106 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2107 if (val == 0)
2108 return 0;
2109 /* If any subexpression returns 2,
2110 we should return 2 if we are successful. */
2111 if (val == 2)
2112 success_2 = 1;
2113 break;
2115 case '0':
2116 break;
2118 case 'E':
2119 if (XVECLEN (x, i) != XVECLEN (y, i))
2120 return 0;
2121 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2123 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2124 if (val == 0)
2125 return 0;
2126 if (val == 2)
2127 success_2 = 1;
2129 break;
2131 /* It is believed that rtx's at this level will never
2132 contain anything but integers and other rtx's,
2133 except for within LABEL_REFs and SYMBOL_REFs. */
2134 default:
2135 abort ();
2138 return 1 + success_2;
2141 /* Describe the range of registers or memory referenced by X.
2142 If X is a register, set REG_FLAG and put the first register
2143 number into START and the last plus one into END.
2144 If X is a memory reference, put a base address into BASE
2145 and a range of integer offsets into START and END.
2146 If X is pushing on the stack, we can assume it causes no trouble,
2147 so we set the SAFE field. */
2149 static struct decomposition
2150 decompose (x)
2151 rtx x;
2153 struct decomposition val;
2154 int all_const = 0;
2156 val.reg_flag = 0;
2157 val.safe = 0;
2158 val.base = 0;
2159 if (GET_CODE (x) == MEM)
2161 rtx base = NULL_RTX, offset = 0;
2162 rtx addr = XEXP (x, 0);
2164 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2165 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2167 val.base = XEXP (addr, 0);
2168 val.start = - GET_MODE_SIZE (GET_MODE (x));
2169 val.end = GET_MODE_SIZE (GET_MODE (x));
2170 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2171 return val;
2174 if (GET_CODE (addr) == CONST)
2176 addr = XEXP (addr, 0);
2177 all_const = 1;
2179 if (GET_CODE (addr) == PLUS)
2181 if (CONSTANT_P (XEXP (addr, 0)))
2183 base = XEXP (addr, 1);
2184 offset = XEXP (addr, 0);
2186 else if (CONSTANT_P (XEXP (addr, 1)))
2188 base = XEXP (addr, 0);
2189 offset = XEXP (addr, 1);
2193 if (offset == 0)
2195 base = addr;
2196 offset = const0_rtx;
2198 if (GET_CODE (offset) == CONST)
2199 offset = XEXP (offset, 0);
2200 if (GET_CODE (offset) == PLUS)
2202 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2204 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2205 offset = XEXP (offset, 0);
2207 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2209 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2210 offset = XEXP (offset, 1);
2212 else
2214 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2215 offset = const0_rtx;
2218 else if (GET_CODE (offset) != CONST_INT)
2220 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2221 offset = const0_rtx;
2224 if (all_const && GET_CODE (base) == PLUS)
2225 base = gen_rtx_CONST (GET_MODE (base), base);
2227 if (GET_CODE (offset) != CONST_INT)
2228 abort ();
2230 val.start = INTVAL (offset);
2231 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2232 val.base = base;
2233 return val;
2235 else if (GET_CODE (x) == REG)
2237 val.reg_flag = 1;
2238 val.start = true_regnum (x);
2239 if (val.start < 0)
2241 /* A pseudo with no hard reg. */
2242 val.start = REGNO (x);
2243 val.end = val.start + 1;
2245 else
2246 /* A hard reg. */
2247 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2249 else if (GET_CODE (x) == SUBREG)
2251 if (GET_CODE (SUBREG_REG (x)) != REG)
2252 /* This could be more precise, but it's good enough. */
2253 return decompose (SUBREG_REG (x));
2254 val.reg_flag = 1;
2255 val.start = true_regnum (x);
2256 if (val.start < 0)
2257 return decompose (SUBREG_REG (x));
2258 else
2259 /* A hard reg. */
2260 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2262 else if (CONSTANT_P (x)
2263 /* This hasn't been assigned yet, so it can't conflict yet. */
2264 || GET_CODE (x) == SCRATCH)
2265 val.safe = 1;
2266 else
2267 abort ();
2268 return val;
2271 /* Return 1 if altering Y will not modify the value of X.
2272 Y is also described by YDATA, which should be decompose (Y). */
2274 static int
2275 immune_p (x, y, ydata)
2276 rtx x, y;
2277 struct decomposition ydata;
2279 struct decomposition xdata;
2281 if (ydata.reg_flag)
2282 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
2283 if (ydata.safe)
2284 return 1;
2286 if (GET_CODE (y) != MEM)
2287 abort ();
2288 /* If Y is memory and X is not, Y can't affect X. */
2289 if (GET_CODE (x) != MEM)
2290 return 1;
2292 xdata = decompose (x);
2294 if (! rtx_equal_p (xdata.base, ydata.base))
2296 /* If bases are distinct symbolic constants, there is no overlap. */
2297 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2298 return 1;
2299 /* Constants and stack slots never overlap. */
2300 if (CONSTANT_P (xdata.base)
2301 && (ydata.base == frame_pointer_rtx
2302 || ydata.base == hard_frame_pointer_rtx
2303 || ydata.base == stack_pointer_rtx))
2304 return 1;
2305 if (CONSTANT_P (ydata.base)
2306 && (xdata.base == frame_pointer_rtx
2307 || xdata.base == hard_frame_pointer_rtx
2308 || xdata.base == stack_pointer_rtx))
2309 return 1;
2310 /* If either base is variable, we don't know anything. */
2311 return 0;
2315 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2318 /* Similar, but calls decompose. */
2321 safe_from_earlyclobber (op, clobber)
2322 rtx op, clobber;
2324 struct decomposition early_data;
2326 early_data = decompose (clobber);
2327 return immune_p (op, clobber, early_data);
2330 /* Main entry point of this file: search the body of INSN
2331 for values that need reloading and record them with push_reload.
2332 REPLACE nonzero means record also where the values occur
2333 so that subst_reloads can be used.
2335 IND_LEVELS says how many levels of indirection are supported by this
2336 machine; a value of zero means that a memory reference is not a valid
2337 memory address.
2339 LIVE_KNOWN says we have valid information about which hard
2340 regs are live at each point in the program; this is true when
2341 we are called from global_alloc but false when stupid register
2342 allocation has been done.
2344 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2345 which is nonnegative if the reg has been commandeered for reloading into.
2346 It is copied into STATIC_RELOAD_REG_P and referenced from there
2347 by various subroutines.
2349 Return TRUE if some operands need to be changed, because of swapping
2350 commutative operands, reg_equiv_address substitution, or whatever. */
2353 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2354 rtx insn;
2355 int replace, ind_levels;
2356 int live_known;
2357 short *reload_reg_p;
2359 register int insn_code_number;
2360 register int i, j;
2361 int noperands;
2362 /* These start out as the constraints for the insn
2363 and they are chewed up as we consider alternatives. */
2364 char *constraints[MAX_RECOG_OPERANDS];
2365 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2366 a register. */
2367 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2368 char pref_or_nothing[MAX_RECOG_OPERANDS];
2369 /* Nonzero for a MEM operand whose entire address needs a reload. */
2370 int address_reloaded[MAX_RECOG_OPERANDS];
2371 /* Value of enum reload_type to use for operand. */
2372 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2373 /* Value of enum reload_type to use within address of operand. */
2374 enum reload_type address_type[MAX_RECOG_OPERANDS];
2375 /* Save the usage of each operand. */
2376 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2377 int no_input_reloads = 0, no_output_reloads = 0;
2378 int n_alternatives;
2379 int this_alternative[MAX_RECOG_OPERANDS];
2380 char this_alternative_win[MAX_RECOG_OPERANDS];
2381 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2382 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2383 int this_alternative_matches[MAX_RECOG_OPERANDS];
2384 int swapped;
2385 int goal_alternative[MAX_RECOG_OPERANDS];
2386 int this_alternative_number;
2387 int goal_alternative_number = 0;
2388 int operand_reloadnum[MAX_RECOG_OPERANDS];
2389 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2390 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2391 char goal_alternative_win[MAX_RECOG_OPERANDS];
2392 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2393 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2394 int goal_alternative_swapped;
2395 int best;
2396 int commutative;
2397 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2398 rtx substed_operand[MAX_RECOG_OPERANDS];
2399 rtx body = PATTERN (insn);
2400 rtx set = single_set (insn);
2401 int goal_earlyclobber = 0, this_earlyclobber;
2402 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2403 int retval = 0;
2405 this_insn = insn;
2406 n_reloads = 0;
2407 n_replacements = 0;
2408 n_earlyclobbers = 0;
2409 replace_reloads = replace;
2410 hard_regs_live_known = live_known;
2411 static_reload_reg_p = reload_reg_p;
2413 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2414 neither are insns that SET cc0. Insns that use CC0 are not allowed
2415 to have any input reloads. */
2416 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2417 no_output_reloads = 1;
2419 #ifdef HAVE_cc0
2420 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2421 no_input_reloads = 1;
2422 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2423 no_output_reloads = 1;
2424 #endif
2426 #ifdef SECONDARY_MEMORY_NEEDED
2427 /* The eliminated forms of any secondary memory locations are per-insn, so
2428 clear them out here. */
2430 bzero ((char *) secondary_memlocs_elim, sizeof secondary_memlocs_elim);
2431 #endif
2433 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2434 is cheap to move between them. If it is not, there may not be an insn
2435 to do the copy, so we may need a reload. */
2436 if (GET_CODE (body) == SET
2437 && GET_CODE (SET_DEST (body)) == REG
2438 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2439 && GET_CODE (SET_SRC (body)) == REG
2440 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2441 && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2442 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2443 return 0;
2445 extract_insn (insn);
2447 noperands = reload_n_operands = recog_data.n_operands;
2448 n_alternatives = recog_data.n_alternatives;
2450 /* Just return "no reloads" if insn has no operands with constraints. */
2451 if (noperands == 0 || n_alternatives == 0)
2452 return 0;
2454 insn_code_number = INSN_CODE (insn);
2455 this_insn_is_asm = insn_code_number < 0;
2457 memcpy (operand_mode, recog_data.operand_mode,
2458 noperands * sizeof (enum machine_mode));
2459 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2461 commutative = -1;
2463 /* If we will need to know, later, whether some pair of operands
2464 are the same, we must compare them now and save the result.
2465 Reloading the base and index registers will clobber them
2466 and afterward they will fail to match. */
2468 for (i = 0; i < noperands; i++)
2470 register char *p;
2471 register int c;
2473 substed_operand[i] = recog_data.operand[i];
2474 p = constraints[i];
2476 modified[i] = RELOAD_READ;
2478 /* Scan this operand's constraint to see if it is an output operand,
2479 an in-out operand, is commutative, or should match another. */
2481 while ((c = *p++))
2483 if (c == '=')
2484 modified[i] = RELOAD_WRITE;
2485 else if (c == '+')
2486 modified[i] = RELOAD_READ_WRITE;
2487 else if (c == '%')
2489 /* The last operand should not be marked commutative. */
2490 if (i == noperands - 1)
2491 abort ();
2493 commutative = i;
2495 else if (c >= '0' && c <= '9')
2497 c -= '0';
2498 operands_match[c][i]
2499 = operands_match_p (recog_data.operand[c],
2500 recog_data.operand[i]);
2502 /* An operand may not match itself. */
2503 if (c == i)
2504 abort ();
2506 /* If C can be commuted with C+1, and C might need to match I,
2507 then C+1 might also need to match I. */
2508 if (commutative >= 0)
2510 if (c == commutative || c == commutative + 1)
2512 int other = c + (c == commutative ? 1 : -1);
2513 operands_match[other][i]
2514 = operands_match_p (recog_data.operand[other],
2515 recog_data.operand[i]);
2517 if (i == commutative || i == commutative + 1)
2519 int other = i + (i == commutative ? 1 : -1);
2520 operands_match[c][other]
2521 = operands_match_p (recog_data.operand[c],
2522 recog_data.operand[other]);
2524 /* Note that C is supposed to be less than I.
2525 No need to consider altering both C and I because in
2526 that case we would alter one into the other. */
2532 /* Examine each operand that is a memory reference or memory address
2533 and reload parts of the addresses into index registers.
2534 Also here any references to pseudo regs that didn't get hard regs
2535 but are equivalent to constants get replaced in the insn itself
2536 with those constants. Nobody will ever see them again.
2538 Finally, set up the preferred classes of each operand. */
2540 for (i = 0; i < noperands; i++)
2542 register RTX_CODE code = GET_CODE (recog_data.operand[i]);
2544 address_reloaded[i] = 0;
2545 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2546 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2547 : RELOAD_OTHER);
2548 address_type[i]
2549 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2550 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2551 : RELOAD_OTHER);
2553 if (*constraints[i] == 0)
2554 /* Ignore things like match_operator operands. */
2556 else if (constraints[i][0] == 'p')
2558 find_reloads_address (VOIDmode, NULL_PTR,
2559 recog_data.operand[i],
2560 recog_data.operand_loc[i],
2561 i, operand_type[i], ind_levels, insn);
2563 /* If we now have a simple operand where we used to have a
2564 PLUS or MULT, re-recognize and try again. */
2565 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2566 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2567 && (GET_CODE (recog_data.operand[i]) == MULT
2568 || GET_CODE (recog_data.operand[i]) == PLUS))
2570 INSN_CODE (insn) = -1;
2571 retval = find_reloads (insn, replace, ind_levels, live_known,
2572 reload_reg_p);
2573 return retval;
2576 recog_data.operand[i] = *recog_data.operand_loc[i];
2577 substed_operand[i] = recog_data.operand[i];
2579 else if (code == MEM)
2581 address_reloaded[i]
2582 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2583 recog_data.operand_loc[i],
2584 XEXP (recog_data.operand[i], 0),
2585 &XEXP (recog_data.operand[i], 0),
2586 i, address_type[i], ind_levels, insn);
2587 recog_data.operand[i] = *recog_data.operand_loc[i];
2588 substed_operand[i] = recog_data.operand[i];
2590 else if (code == SUBREG)
2592 rtx reg = SUBREG_REG (recog_data.operand[i]);
2593 rtx op
2594 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2595 ind_levels,
2596 set != 0
2597 && &SET_DEST (set) == recog_data.operand_loc[i],
2598 insn);
2600 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2601 that didn't get a hard register, emit a USE with a REG_EQUAL
2602 note in front so that we might inherit a previous, possibly
2603 wider reload. */
2605 if (replace
2606 && GET_CODE (op) == MEM
2607 && GET_CODE (reg) == REG
2608 && (GET_MODE_SIZE (GET_MODE (reg))
2609 >= GET_MODE_SIZE (GET_MODE (op))))
2610 REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode, reg), insn))
2611 = gen_rtx_EXPR_LIST (REG_EQUAL,
2612 reg_equiv_memory_loc[REGNO (reg)], NULL_RTX);
2614 substed_operand[i] = recog_data.operand[i] = op;
2616 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2617 /* We can get a PLUS as an "operand" as a result of register
2618 elimination. See eliminate_regs and gen_reload. We handle
2619 a unary operator by reloading the operand. */
2620 substed_operand[i] = recog_data.operand[i]
2621 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2622 ind_levels, 0, insn);
2623 else if (code == REG)
2625 /* This is equivalent to calling find_reloads_toplev.
2626 The code is duplicated for speed.
2627 When we find a pseudo always equivalent to a constant,
2628 we replace it by the constant. We must be sure, however,
2629 that we don't try to replace it in the insn in which it
2630 is being set. */
2631 register int regno = REGNO (recog_data.operand[i]);
2632 if (reg_equiv_constant[regno] != 0
2633 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2635 /* Record the existing mode so that the check if constants are
2636 allowed will work when operand_mode isn't specified. */
2638 if (operand_mode[i] == VOIDmode)
2639 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2641 substed_operand[i] = recog_data.operand[i]
2642 = reg_equiv_constant[regno];
2644 if (reg_equiv_memory_loc[regno] != 0
2645 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2646 /* We need not give a valid is_set_dest argument since the case
2647 of a constant equivalence was checked above. */
2648 substed_operand[i] = recog_data.operand[i]
2649 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2650 ind_levels, 0, insn);
2652 /* If the operand is still a register (we didn't replace it with an
2653 equivalent), get the preferred class to reload it into. */
2654 code = GET_CODE (recog_data.operand[i]);
2655 preferred_class[i]
2656 = ((code == REG && REGNO (recog_data.operand[i])
2657 >= FIRST_PSEUDO_REGISTER)
2658 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2659 : NO_REGS);
2660 pref_or_nothing[i]
2661 = (code == REG
2662 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2663 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2666 /* If this is simply a copy from operand 1 to operand 0, merge the
2667 preferred classes for the operands. */
2668 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2669 && recog_data.operand[1] == SET_SRC (set))
2671 preferred_class[0] = preferred_class[1]
2672 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2673 pref_or_nothing[0] |= pref_or_nothing[1];
2674 pref_or_nothing[1] |= pref_or_nothing[0];
2677 /* Now see what we need for pseudo-regs that didn't get hard regs
2678 or got the wrong kind of hard reg. For this, we must consider
2679 all the operands together against the register constraints. */
2681 best = MAX_RECOG_OPERANDS * 2 + 600;
2683 swapped = 0;
2684 goal_alternative_swapped = 0;
2685 try_swapped:
2687 /* The constraints are made of several alternatives.
2688 Each operand's constraint looks like foo,bar,... with commas
2689 separating the alternatives. The first alternatives for all
2690 operands go together, the second alternatives go together, etc.
2692 First loop over alternatives. */
2694 for (this_alternative_number = 0;
2695 this_alternative_number < n_alternatives;
2696 this_alternative_number++)
2698 /* Loop over operands for one constraint alternative. */
2699 /* LOSERS counts those that don't fit this alternative
2700 and would require loading. */
2701 int losers = 0;
2702 /* BAD is set to 1 if it some operand can't fit this alternative
2703 even after reloading. */
2704 int bad = 0;
2705 /* REJECT is a count of how undesirable this alternative says it is
2706 if any reloading is required. If the alternative matches exactly
2707 then REJECT is ignored, but otherwise it gets this much
2708 counted against it in addition to the reloading needed. Each
2709 ? counts three times here since we want the disparaging caused by
2710 a bad register class to only count 1/3 as much. */
2711 int reject = 0;
2713 this_earlyclobber = 0;
2715 for (i = 0; i < noperands; i++)
2717 register char *p = constraints[i];
2718 register int win = 0;
2719 /* 0 => this operand can be reloaded somehow for this alternative */
2720 int badop = 1;
2721 /* 0 => this operand can be reloaded if the alternative allows regs. */
2722 int winreg = 0;
2723 int c;
2724 register rtx operand = recog_data.operand[i];
2725 int offset = 0;
2726 /* Nonzero means this is a MEM that must be reloaded into a reg
2727 regardless of what the constraint says. */
2728 int force_reload = 0;
2729 int offmemok = 0;
2730 /* Nonzero if a constant forced into memory would be OK for this
2731 operand. */
2732 int constmemok = 0;
2733 int earlyclobber = 0;
2735 /* If the predicate accepts a unary operator, it means that
2736 we need to reload the operand, but do not do this for
2737 match_operator and friends. */
2738 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2739 operand = XEXP (operand, 0);
2741 /* If the operand is a SUBREG, extract
2742 the REG or MEM (or maybe even a constant) within.
2743 (Constants can occur as a result of reg_equiv_constant.) */
2745 while (GET_CODE (operand) == SUBREG)
2747 offset += SUBREG_WORD (operand);
2748 operand = SUBREG_REG (operand);
2749 /* Force reload if this is a constant or PLUS or if there may
2750 be a problem accessing OPERAND in the outer mode. */
2751 if (CONSTANT_P (operand)
2752 || GET_CODE (operand) == PLUS
2753 /* We must force a reload of paradoxical SUBREGs
2754 of a MEM because the alignment of the inner value
2755 may not be enough to do the outer reference. On
2756 big-endian machines, it may also reference outside
2757 the object.
2759 On machines that extend byte operations and we have a
2760 SUBREG where both the inner and outer modes are no wider
2761 than a word and the inner mode is narrower, is integral,
2762 and gets extended when loaded from memory, combine.c has
2763 made assumptions about the behavior of the machine in such
2764 register access. If the data is, in fact, in memory we
2765 must always load using the size assumed to be in the
2766 register and let the insn do the different-sized
2767 accesses.
2769 This is doubly true if WORD_REGISTER_OPERATIONS. In
2770 this case eliminate_regs has left non-paradoxical
2771 subregs for push_reloads to see. Make sure it does
2772 by forcing the reload.
2774 ??? When is it right at this stage to have a subreg
2775 of a mem that is _not_ to be handled specialy? IMO
2776 those should have been reduced to just a mem. */
2777 || ((GET_CODE (operand) == MEM
2778 || (GET_CODE (operand)== REG
2779 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2780 #ifndef WORD_REGISTER_OPERATIONS
2781 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2782 < BIGGEST_ALIGNMENT)
2783 && (GET_MODE_SIZE (operand_mode[i])
2784 > GET_MODE_SIZE (GET_MODE (operand))))
2785 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2786 #ifdef LOAD_EXTEND_OP
2787 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2788 && (GET_MODE_SIZE (GET_MODE (operand))
2789 <= UNITS_PER_WORD)
2790 && (GET_MODE_SIZE (operand_mode[i])
2791 > GET_MODE_SIZE (GET_MODE (operand)))
2792 && INTEGRAL_MODE_P (GET_MODE (operand))
2793 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2794 #endif
2796 #endif
2798 /* Subreg of a hard reg which can't handle the subreg's mode
2799 or which would handle that mode in the wrong number of
2800 registers for subregging to work. */
2801 || (GET_CODE (operand) == REG
2802 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2803 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2804 && (GET_MODE_SIZE (GET_MODE (operand))
2805 > UNITS_PER_WORD)
2806 && ((GET_MODE_SIZE (GET_MODE (operand))
2807 / UNITS_PER_WORD)
2808 != HARD_REGNO_NREGS (REGNO (operand),
2809 GET_MODE (operand))))
2810 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2811 operand_mode[i]))))
2812 force_reload = 1;
2815 this_alternative[i] = (int) NO_REGS;
2816 this_alternative_win[i] = 0;
2817 this_alternative_offmemok[i] = 0;
2818 this_alternative_earlyclobber[i] = 0;
2819 this_alternative_matches[i] = -1;
2821 /* An empty constraint or empty alternative
2822 allows anything which matched the pattern. */
2823 if (*p == 0 || *p == ',')
2824 win = 1, badop = 0;
2826 /* Scan this alternative's specs for this operand;
2827 set WIN if the operand fits any letter in this alternative.
2828 Otherwise, clear BADOP if this operand could
2829 fit some letter after reloads,
2830 or set WINREG if this operand could fit after reloads
2831 provided the constraint allows some registers. */
2833 while (*p && (c = *p++) != ',')
2834 switch (c)
2836 case '=': case '+': case '*':
2837 break;
2839 case '%':
2840 /* The last operand should not be marked commutative. */
2841 if (i != noperands - 1)
2842 commutative = i;
2843 break;
2845 case '?':
2846 reject += 6;
2847 break;
2849 case '!':
2850 reject = 600;
2851 break;
2853 case '#':
2854 /* Ignore rest of this alternative as far as
2855 reloading is concerned. */
2856 while (*p && *p != ',') p++;
2857 break;
2859 case '0': case '1': case '2': case '3': case '4':
2860 case '5': case '6': case '7': case '8': case '9':
2862 c -= '0';
2863 this_alternative_matches[i] = c;
2864 /* We are supposed to match a previous operand.
2865 If we do, we win if that one did.
2866 If we do not, count both of the operands as losers.
2867 (This is too conservative, since most of the time
2868 only a single reload insn will be needed to make
2869 the two operands win. As a result, this alternative
2870 may be rejected when it is actually desirable.) */
2871 if ((swapped && (c != commutative || i != commutative + 1))
2872 /* If we are matching as if two operands were swapped,
2873 also pretend that operands_match had been computed
2874 with swapped.
2875 But if I is the second of those and C is the first,
2876 don't exchange them, because operands_match is valid
2877 only on one side of its diagonal. */
2878 ? (operands_match
2879 [(c == commutative || c == commutative + 1)
2880 ? 2*commutative + 1 - c : c]
2881 [(i == commutative || i == commutative + 1)
2882 ? 2*commutative + 1 - i : i])
2883 : operands_match[c][i])
2885 /* If we are matching a non-offsettable address where an
2886 offsettable address was expected, then we must reject
2887 this combination, because we can't reload it. */
2888 if (this_alternative_offmemok[c]
2889 && GET_CODE (recog_data.operand[c]) == MEM
2890 && this_alternative[c] == (int) NO_REGS
2891 && ! this_alternative_win[c])
2892 bad = 1;
2894 win = this_alternative_win[c];
2896 else
2898 /* Operands don't match. */
2899 rtx value;
2900 /* Retroactively mark the operand we had to match
2901 as a loser, if it wasn't already. */
2902 if (this_alternative_win[c])
2903 losers++;
2904 this_alternative_win[c] = 0;
2905 if (this_alternative[c] == (int) NO_REGS)
2906 bad = 1;
2907 /* But count the pair only once in the total badness of
2908 this alternative, if the pair can be a dummy reload. */
2909 value
2910 = find_dummy_reload (recog_data.operand[i],
2911 recog_data.operand[c],
2912 recog_data.operand_loc[i],
2913 recog_data.operand_loc[c],
2914 operand_mode[i], operand_mode[c],
2915 this_alternative[c], -1,
2916 this_alternative_earlyclobber[c]);
2918 if (value != 0)
2919 losers--;
2921 /* This can be fixed with reloads if the operand
2922 we are supposed to match can be fixed with reloads. */
2923 badop = 0;
2924 this_alternative[i] = this_alternative[c];
2926 /* If we have to reload this operand and some previous
2927 operand also had to match the same thing as this
2928 operand, we don't know how to do that. So reject this
2929 alternative. */
2930 if (! win || force_reload)
2931 for (j = 0; j < i; j++)
2932 if (this_alternative_matches[j]
2933 == this_alternative_matches[i])
2934 badop = 1;
2936 break;
2938 case 'p':
2939 /* All necessary reloads for an address_operand
2940 were handled in find_reloads_address. */
2941 this_alternative[i] = (int) BASE_REG_CLASS;
2942 win = 1;
2943 break;
2945 case 'm':
2946 if (force_reload)
2947 break;
2948 if (GET_CODE (operand) == MEM
2949 || (GET_CODE (operand) == REG
2950 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
2951 && reg_renumber[REGNO (operand)] < 0))
2952 win = 1;
2953 if (CONSTANT_P (operand)
2954 /* force_const_mem does not accept HIGH. */
2955 && GET_CODE (operand) != HIGH)
2956 badop = 0;
2957 constmemok = 1;
2958 break;
2960 case '<':
2961 if (GET_CODE (operand) == MEM
2962 && ! address_reloaded[i]
2963 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
2964 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
2965 win = 1;
2966 break;
2968 case '>':
2969 if (GET_CODE (operand) == MEM
2970 && ! address_reloaded[i]
2971 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
2972 || GET_CODE (XEXP (operand, 0)) == POST_INC))
2973 win = 1;
2974 break;
2976 /* Memory operand whose address is not offsettable. */
2977 case 'V':
2978 if (force_reload)
2979 break;
2980 if (GET_CODE (operand) == MEM
2981 && ! (ind_levels ? offsettable_memref_p (operand)
2982 : offsettable_nonstrict_memref_p (operand))
2983 /* Certain mem addresses will become offsettable
2984 after they themselves are reloaded. This is important;
2985 we don't want our own handling of unoffsettables
2986 to override the handling of reg_equiv_address. */
2987 && !(GET_CODE (XEXP (operand, 0)) == REG
2988 && (ind_levels == 0
2989 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
2990 win = 1;
2991 break;
2993 /* Memory operand whose address is offsettable. */
2994 case 'o':
2995 if (force_reload)
2996 break;
2997 if ((GET_CODE (operand) == MEM
2998 /* If IND_LEVELS, find_reloads_address won't reload a
2999 pseudo that didn't get a hard reg, so we have to
3000 reject that case. */
3001 && ((ind_levels ? offsettable_memref_p (operand)
3002 : offsettable_nonstrict_memref_p (operand))
3003 /* A reloaded address is offsettable because it is now
3004 just a simple register indirect. */
3005 || address_reloaded[i]))
3006 || (GET_CODE (operand) == REG
3007 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3008 && reg_renumber[REGNO (operand)] < 0
3009 /* If reg_equiv_address is nonzero, we will be
3010 loading it into a register; hence it will be
3011 offsettable, but we cannot say that reg_equiv_mem
3012 is offsettable without checking. */
3013 && ((reg_equiv_mem[REGNO (operand)] != 0
3014 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3015 || (reg_equiv_address[REGNO (operand)] != 0))))
3016 win = 1;
3017 /* force_const_mem does not accept HIGH. */
3018 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3019 || GET_CODE (operand) == MEM)
3020 badop = 0;
3021 constmemok = 1;
3022 offmemok = 1;
3023 break;
3025 case '&':
3026 /* Output operand that is stored before the need for the
3027 input operands (and their index registers) is over. */
3028 earlyclobber = 1, this_earlyclobber = 1;
3029 break;
3031 case 'E':
3032 #ifndef REAL_ARITHMETIC
3033 /* Match any floating double constant, but only if
3034 we can examine the bits of it reliably. */
3035 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3036 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3037 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3038 break;
3039 #endif
3040 if (GET_CODE (operand) == CONST_DOUBLE)
3041 win = 1;
3042 break;
3044 case 'F':
3045 if (GET_CODE (operand) == CONST_DOUBLE)
3046 win = 1;
3047 break;
3049 case 'G':
3050 case 'H':
3051 if (GET_CODE (operand) == CONST_DOUBLE
3052 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3053 win = 1;
3054 break;
3056 case 's':
3057 if (GET_CODE (operand) == CONST_INT
3058 || (GET_CODE (operand) == CONST_DOUBLE
3059 && GET_MODE (operand) == VOIDmode))
3060 break;
3061 case 'i':
3062 if (CONSTANT_P (operand)
3063 #ifdef LEGITIMATE_PIC_OPERAND_P
3064 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3065 #endif
3067 win = 1;
3068 break;
3070 case 'n':
3071 if (GET_CODE (operand) == CONST_INT
3072 || (GET_CODE (operand) == CONST_DOUBLE
3073 && GET_MODE (operand) == VOIDmode))
3074 win = 1;
3075 break;
3077 case 'I':
3078 case 'J':
3079 case 'K':
3080 case 'L':
3081 case 'M':
3082 case 'N':
3083 case 'O':
3084 case 'P':
3085 if (GET_CODE (operand) == CONST_INT
3086 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3087 win = 1;
3088 break;
3090 case 'X':
3091 win = 1;
3092 break;
3094 case 'g':
3095 if (! force_reload
3096 /* A PLUS is never a valid operand, but reload can make
3097 it from a register when eliminating registers. */
3098 && GET_CODE (operand) != PLUS
3099 /* A SCRATCH is not a valid operand. */
3100 && GET_CODE (operand) != SCRATCH
3101 #ifdef LEGITIMATE_PIC_OPERAND_P
3102 && (! CONSTANT_P (operand)
3103 || ! flag_pic
3104 || LEGITIMATE_PIC_OPERAND_P (operand))
3105 #endif
3106 && (GENERAL_REGS == ALL_REGS
3107 || GET_CODE (operand) != REG
3108 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3109 && reg_renumber[REGNO (operand)] < 0)))
3110 win = 1;
3111 /* Drop through into 'r' case */
3113 case 'r':
3114 this_alternative[i]
3115 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3116 goto reg;
3118 #ifdef EXTRA_CONSTRAINT
3119 case 'Q':
3120 case 'R':
3121 case 'S':
3122 case 'T':
3123 case 'U':
3124 if (EXTRA_CONSTRAINT (operand, c))
3125 win = 1;
3126 break;
3127 #endif
3129 default:
3130 this_alternative[i]
3131 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3133 reg:
3134 if (GET_MODE (operand) == BLKmode)
3135 break;
3136 winreg = 1;
3137 if (GET_CODE (operand) == REG
3138 && reg_fits_class_p (operand, this_alternative[i],
3139 offset, GET_MODE (recog_data.operand[i])))
3140 win = 1;
3141 break;
3144 constraints[i] = p;
3146 /* If this operand could be handled with a reg,
3147 and some reg is allowed, then this operand can be handled. */
3148 if (winreg && this_alternative[i] != (int) NO_REGS)
3149 badop = 0;
3151 /* Record which operands fit this alternative. */
3152 this_alternative_earlyclobber[i] = earlyclobber;
3153 if (win && ! force_reload)
3154 this_alternative_win[i] = 1;
3155 else
3157 int const_to_mem = 0;
3159 this_alternative_offmemok[i] = offmemok;
3160 losers++;
3161 if (badop)
3162 bad = 1;
3163 /* Alternative loses if it has no regs for a reg operand. */
3164 if (GET_CODE (operand) == REG
3165 && this_alternative[i] == (int) NO_REGS
3166 && this_alternative_matches[i] < 0)
3167 bad = 1;
3169 /* If this is a constant that is reloaded into the desired
3170 class by copying it to memory first, count that as another
3171 reload. This is consistent with other code and is
3172 required to avoid choosing another alternative when
3173 the constant is moved into memory by this function on
3174 an early reload pass. Note that the test here is
3175 precisely the same as in the code below that calls
3176 force_const_mem. */
3177 if (CONSTANT_P (operand)
3178 /* force_const_mem does not accept HIGH. */
3179 && GET_CODE (operand) != HIGH
3180 && ((PREFERRED_RELOAD_CLASS (operand,
3181 (enum reg_class) this_alternative[i])
3182 == NO_REGS)
3183 || no_input_reloads)
3184 && operand_mode[i] != VOIDmode)
3186 const_to_mem = 1;
3187 if (this_alternative[i] != (int) NO_REGS)
3188 losers++;
3191 /* If we can't reload this value at all, reject this
3192 alternative. Note that we could also lose due to
3193 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3194 here. */
3196 if (! CONSTANT_P (operand)
3197 && (enum reg_class) this_alternative[i] != NO_REGS
3198 && (PREFERRED_RELOAD_CLASS (operand,
3199 (enum reg_class) this_alternative[i])
3200 == NO_REGS))
3201 bad = 1;
3203 /* Alternative loses if it requires a type of reload not
3204 permitted for this insn. We can always reload SCRATCH
3205 and objects with a REG_UNUSED note. */
3206 else if (GET_CODE (operand) != SCRATCH
3207 && modified[i] != RELOAD_READ && no_output_reloads
3208 && ! find_reg_note (insn, REG_UNUSED, operand))
3209 bad = 1;
3210 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3211 && ! const_to_mem)
3212 bad = 1;
3215 /* We prefer to reload pseudos over reloading other things,
3216 since such reloads may be able to be eliminated later.
3217 If we are reloading a SCRATCH, we won't be generating any
3218 insns, just using a register, so it is also preferred.
3219 So bump REJECT in other cases. Don't do this in the
3220 case where we are forcing a constant into memory and
3221 it will then win since we don't want to have a different
3222 alternative match then. */
3223 if (! (GET_CODE (operand) == REG
3224 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3225 && GET_CODE (operand) != SCRATCH
3226 && ! (const_to_mem && constmemok))
3227 reject += 2;
3229 /* Input reloads can be inherited more often than output
3230 reloads can be removed, so penalize output reloads. */
3231 if (operand_type[i] != RELOAD_FOR_INPUT
3232 && GET_CODE (operand) != SCRATCH)
3233 reject++;
3236 /* If this operand is a pseudo register that didn't get a hard
3237 reg and this alternative accepts some register, see if the
3238 class that we want is a subset of the preferred class for this
3239 register. If not, but it intersects that class, use the
3240 preferred class instead. If it does not intersect the preferred
3241 class, show that usage of this alternative should be discouraged;
3242 it will be discouraged more still if the register is `preferred
3243 or nothing'. We do this because it increases the chance of
3244 reusing our spill register in a later insn and avoiding a pair
3245 of memory stores and loads.
3247 Don't bother with this if this alternative will accept this
3248 operand.
3250 Don't do this for a multiword operand, since it is only a
3251 small win and has the risk of requiring more spill registers,
3252 which could cause a large loss.
3254 Don't do this if the preferred class has only one register
3255 because we might otherwise exhaust the class. */
3258 if (! win && this_alternative[i] != (int) NO_REGS
3259 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3260 && reg_class_size[(int) preferred_class[i]] > 1)
3262 if (! reg_class_subset_p (this_alternative[i],
3263 preferred_class[i]))
3265 /* Since we don't have a way of forming the intersection,
3266 we just do something special if the preferred class
3267 is a subset of the class we have; that's the most
3268 common case anyway. */
3269 if (reg_class_subset_p (preferred_class[i],
3270 this_alternative[i]))
3271 this_alternative[i] = (int) preferred_class[i];
3272 else
3273 reject += (2 + 2 * pref_or_nothing[i]);
3278 /* Now see if any output operands that are marked "earlyclobber"
3279 in this alternative conflict with any input operands
3280 or any memory addresses. */
3282 for (i = 0; i < noperands; i++)
3283 if (this_alternative_earlyclobber[i]
3284 && this_alternative_win[i])
3286 struct decomposition early_data;
3288 early_data = decompose (recog_data.operand[i]);
3290 if (modified[i] == RELOAD_READ)
3291 abort ();
3293 if (this_alternative[i] == NO_REGS)
3295 this_alternative_earlyclobber[i] = 0;
3296 if (this_insn_is_asm)
3297 error_for_asm (this_insn,
3298 "`&' constraint used with no register class");
3299 else
3300 abort ();
3303 for (j = 0; j < noperands; j++)
3304 /* Is this an input operand or a memory ref? */
3305 if ((GET_CODE (recog_data.operand[j]) == MEM
3306 || modified[j] != RELOAD_WRITE)
3307 && j != i
3308 /* Ignore things like match_operator operands. */
3309 && *recog_data.constraints[j] != 0
3310 /* Don't count an input operand that is constrained to match
3311 the early clobber operand. */
3312 && ! (this_alternative_matches[j] == i
3313 && rtx_equal_p (recog_data.operand[i],
3314 recog_data.operand[j]))
3315 /* Is it altered by storing the earlyclobber operand? */
3316 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3317 early_data))
3319 /* If the output is in a single-reg class,
3320 it's costly to reload it, so reload the input instead. */
3321 if (reg_class_size[this_alternative[i]] == 1
3322 && (GET_CODE (recog_data.operand[j]) == REG
3323 || GET_CODE (recog_data.operand[j]) == SUBREG))
3325 losers++;
3326 this_alternative_win[j] = 0;
3328 else
3329 break;
3331 /* If an earlyclobber operand conflicts with something,
3332 it must be reloaded, so request this and count the cost. */
3333 if (j != noperands)
3335 losers++;
3336 this_alternative_win[i] = 0;
3337 for (j = 0; j < noperands; j++)
3338 if (this_alternative_matches[j] == i
3339 && this_alternative_win[j])
3341 this_alternative_win[j] = 0;
3342 losers++;
3347 /* If one alternative accepts all the operands, no reload required,
3348 choose that alternative; don't consider the remaining ones. */
3349 if (losers == 0)
3351 /* Unswap these so that they are never swapped at `finish'. */
3352 if (commutative >= 0)
3354 recog_data.operand[commutative] = substed_operand[commutative];
3355 recog_data.operand[commutative + 1]
3356 = substed_operand[commutative + 1];
3358 for (i = 0; i < noperands; i++)
3360 goal_alternative_win[i] = 1;
3361 goal_alternative[i] = this_alternative[i];
3362 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3363 goal_alternative_matches[i] = this_alternative_matches[i];
3364 goal_alternative_earlyclobber[i]
3365 = this_alternative_earlyclobber[i];
3367 goal_alternative_number = this_alternative_number;
3368 goal_alternative_swapped = swapped;
3369 goal_earlyclobber = this_earlyclobber;
3370 goto finish;
3373 /* REJECT, set by the ! and ? constraint characters and when a register
3374 would be reloaded into a non-preferred class, discourages the use of
3375 this alternative for a reload goal. REJECT is incremented by six
3376 for each ? and two for each non-preferred class. */
3377 losers = losers * 6 + reject;
3379 /* If this alternative can be made to work by reloading,
3380 and it needs less reloading than the others checked so far,
3381 record it as the chosen goal for reloading. */
3382 if (! bad && best > losers)
3384 for (i = 0; i < noperands; i++)
3386 goal_alternative[i] = this_alternative[i];
3387 goal_alternative_win[i] = this_alternative_win[i];
3388 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3389 goal_alternative_matches[i] = this_alternative_matches[i];
3390 goal_alternative_earlyclobber[i]
3391 = this_alternative_earlyclobber[i];
3393 goal_alternative_swapped = swapped;
3394 best = losers;
3395 goal_alternative_number = this_alternative_number;
3396 goal_earlyclobber = this_earlyclobber;
3400 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3401 then we need to try each alternative twice,
3402 the second time matching those two operands
3403 as if we had exchanged them.
3404 To do this, really exchange them in operands.
3406 If we have just tried the alternatives the second time,
3407 return operands to normal and drop through. */
3409 if (commutative >= 0)
3411 swapped = !swapped;
3412 if (swapped)
3414 register enum reg_class tclass;
3415 register int t;
3417 recog_data.operand[commutative] = substed_operand[commutative + 1];
3418 recog_data.operand[commutative + 1] = substed_operand[commutative];
3420 tclass = preferred_class[commutative];
3421 preferred_class[commutative] = preferred_class[commutative + 1];
3422 preferred_class[commutative + 1] = tclass;
3424 t = pref_or_nothing[commutative];
3425 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3426 pref_or_nothing[commutative + 1] = t;
3428 memcpy (constraints, recog_data.constraints,
3429 noperands * sizeof (char *));
3430 goto try_swapped;
3432 else
3434 recog_data.operand[commutative] = substed_operand[commutative];
3435 recog_data.operand[commutative + 1]
3436 = substed_operand[commutative + 1];
3440 /* The operands don't meet the constraints.
3441 goal_alternative describes the alternative
3442 that we could reach by reloading the fewest operands.
3443 Reload so as to fit it. */
3445 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3447 /* No alternative works with reloads?? */
3448 if (insn_code_number >= 0)
3449 fatal_insn ("Unable to generate reloads for:", insn);
3450 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3451 /* Avoid further trouble with this insn. */
3452 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3453 n_reloads = 0;
3454 return 0;
3457 /* Jump to `finish' from above if all operands are valid already.
3458 In that case, goal_alternative_win is all 1. */
3459 finish:
3461 /* Right now, for any pair of operands I and J that are required to match,
3462 with I < J,
3463 goal_alternative_matches[J] is I.
3464 Set up goal_alternative_matched as the inverse function:
3465 goal_alternative_matched[I] = J. */
3467 for (i = 0; i < noperands; i++)
3468 goal_alternative_matched[i] = -1;
3470 for (i = 0; i < noperands; i++)
3471 if (! goal_alternative_win[i]
3472 && goal_alternative_matches[i] >= 0)
3473 goal_alternative_matched[goal_alternative_matches[i]] = i;
3475 /* If the best alternative is with operands 1 and 2 swapped,
3476 consider them swapped before reporting the reloads. Update the
3477 operand numbers of any reloads already pushed. */
3479 if (goal_alternative_swapped)
3481 register rtx tem;
3483 tem = substed_operand[commutative];
3484 substed_operand[commutative] = substed_operand[commutative + 1];
3485 substed_operand[commutative + 1] = tem;
3486 tem = recog_data.operand[commutative];
3487 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3488 recog_data.operand[commutative + 1] = tem;
3489 tem = *recog_data.operand_loc[commutative];
3490 *recog_data.operand_loc[commutative]
3491 = *recog_data.operand_loc[commutative + 1];
3492 *recog_data.operand_loc[commutative+1] = tem;
3494 for (i = 0; i < n_reloads; i++)
3496 if (rld[i].opnum == commutative)
3497 rld[i].opnum = commutative + 1;
3498 else if (rld[i].opnum == commutative + 1)
3499 rld[i].opnum = commutative;
3503 for (i = 0; i < noperands; i++)
3505 operand_reloadnum[i] = -1;
3507 /* If this is an earlyclobber operand, we need to widen the scope.
3508 The reload must remain valid from the start of the insn being
3509 reloaded until after the operand is stored into its destination.
3510 We approximate this with RELOAD_OTHER even though we know that we
3511 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3513 One special case that is worth checking is when we have an
3514 output that is earlyclobber but isn't used past the insn (typically
3515 a SCRATCH). In this case, we only need have the reload live
3516 through the insn itself, but not for any of our input or output
3517 reloads.
3518 But we must not accidentally narrow the scope of an existing
3519 RELOAD_OTHER reload - leave these alone.
3521 In any case, anything needed to address this operand can remain
3522 however they were previously categorized. */
3524 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3525 operand_type[i]
3526 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3527 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3530 /* Any constants that aren't allowed and can't be reloaded
3531 into registers are here changed into memory references. */
3532 for (i = 0; i < noperands; i++)
3533 if (! goal_alternative_win[i]
3534 && CONSTANT_P (recog_data.operand[i])
3535 /* force_const_mem does not accept HIGH. */
3536 && GET_CODE (recog_data.operand[i]) != HIGH
3537 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3538 (enum reg_class) goal_alternative[i])
3539 == NO_REGS)
3540 || no_input_reloads)
3541 && operand_mode[i] != VOIDmode)
3543 substed_operand[i] = recog_data.operand[i]
3544 = find_reloads_toplev (force_const_mem (operand_mode[i],
3545 recog_data.operand[i]),
3546 i, address_type[i], ind_levels, 0, insn);
3547 if (alternative_allows_memconst (recog_data.constraints[i],
3548 goal_alternative_number))
3549 goal_alternative_win[i] = 1;
3552 /* Record the values of the earlyclobber operands for the caller. */
3553 if (goal_earlyclobber)
3554 for (i = 0; i < noperands; i++)
3555 if (goal_alternative_earlyclobber[i])
3556 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3558 /* Now record reloads for all the operands that need them. */
3559 for (i = 0; i < noperands; i++)
3560 if (! goal_alternative_win[i])
3562 /* Operands that match previous ones have already been handled. */
3563 if (goal_alternative_matches[i] >= 0)
3565 /* Handle an operand with a nonoffsettable address
3566 appearing where an offsettable address will do
3567 by reloading the address into a base register.
3569 ??? We can also do this when the operand is a register and
3570 reg_equiv_mem is not offsettable, but this is a bit tricky,
3571 so we don't bother with it. It may not be worth doing. */
3572 else if (goal_alternative_matched[i] == -1
3573 && goal_alternative_offmemok[i]
3574 && GET_CODE (recog_data.operand[i]) == MEM)
3576 operand_reloadnum[i]
3577 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3578 &XEXP (recog_data.operand[i], 0), NULL_PTR,
3579 BASE_REG_CLASS,
3580 GET_MODE (XEXP (recog_data.operand[i], 0)),
3581 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3582 rld[operand_reloadnum[i]].inc
3583 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3585 /* If this operand is an output, we will have made any
3586 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3587 now we are treating part of the operand as an input, so
3588 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3590 if (modified[i] == RELOAD_WRITE)
3592 for (j = 0; j < n_reloads; j++)
3594 if (rld[j].opnum == i)
3596 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3597 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3598 else if (rld[j].when_needed
3599 == RELOAD_FOR_OUTADDR_ADDRESS)
3600 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3605 else if (goal_alternative_matched[i] == -1)
3607 operand_reloadnum[i]
3608 = push_reload ((modified[i] != RELOAD_WRITE
3609 ? recog_data.operand[i] : 0),
3610 (modified[i] != RELOAD_READ
3611 ? recog_data.operand[i] : 0),
3612 (modified[i] != RELOAD_WRITE
3613 ? recog_data.operand_loc[i] : 0),
3614 (modified[i] != RELOAD_READ
3615 ? recog_data.operand_loc[i] : 0),
3616 (enum reg_class) goal_alternative[i],
3617 (modified[i] == RELOAD_WRITE
3618 ? VOIDmode : operand_mode[i]),
3619 (modified[i] == RELOAD_READ
3620 ? VOIDmode : operand_mode[i]),
3621 (insn_code_number < 0 ? 0
3622 : insn_data[insn_code_number].operand[i].strict_low),
3623 0, i, operand_type[i]);
3625 /* In a matching pair of operands, one must be input only
3626 and the other must be output only.
3627 Pass the input operand as IN and the other as OUT. */
3628 else if (modified[i] == RELOAD_READ
3629 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3631 operand_reloadnum[i]
3632 = push_reload (recog_data.operand[i],
3633 recog_data.operand[goal_alternative_matched[i]],
3634 recog_data.operand_loc[i],
3635 recog_data.operand_loc[goal_alternative_matched[i]],
3636 (enum reg_class) goal_alternative[i],
3637 operand_mode[i],
3638 operand_mode[goal_alternative_matched[i]],
3639 0, 0, i, RELOAD_OTHER);
3640 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3642 else if (modified[i] == RELOAD_WRITE
3643 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3645 operand_reloadnum[goal_alternative_matched[i]]
3646 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3647 recog_data.operand[i],
3648 recog_data.operand_loc[goal_alternative_matched[i]],
3649 recog_data.operand_loc[i],
3650 (enum reg_class) goal_alternative[i],
3651 operand_mode[goal_alternative_matched[i]],
3652 operand_mode[i],
3653 0, 0, i, RELOAD_OTHER);
3654 operand_reloadnum[i] = output_reloadnum;
3656 else if (insn_code_number >= 0)
3657 abort ();
3658 else
3660 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3661 /* Avoid further trouble with this insn. */
3662 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3663 n_reloads = 0;
3664 return 0;
3667 else if (goal_alternative_matched[i] < 0
3668 && goal_alternative_matches[i] < 0
3669 && optimize)
3671 /* For each non-matching operand that's a MEM or a pseudo-register
3672 that didn't get a hard register, make an optional reload.
3673 This may get done even if the insn needs no reloads otherwise. */
3675 rtx operand = recog_data.operand[i];
3677 while (GET_CODE (operand) == SUBREG)
3678 operand = XEXP (operand, 0);
3679 if ((GET_CODE (operand) == MEM
3680 || (GET_CODE (operand) == REG
3681 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3682 /* If this is only for an output, the optional reload would not
3683 actually cause us to use a register now, just note that
3684 something is stored here. */
3685 && ((enum reg_class) goal_alternative[i] != NO_REGS
3686 || modified[i] == RELOAD_WRITE)
3687 && ! no_input_reloads
3688 /* An optional output reload might allow to delete INSN later.
3689 We mustn't make in-out reloads on insns that are not permitted
3690 output reloads.
3691 If this is an asm, we can't delete it; we must not even call
3692 push_reload for an optional output reload in this case,
3693 because we can't be sure that the constraint allows a register,
3694 and push_reload verifies the constraints for asms. */
3695 && (modified[i] == RELOAD_READ
3696 || (! no_output_reloads && ! this_insn_is_asm)))
3697 operand_reloadnum[i]
3698 = push_reload ((modified[i] != RELOAD_WRITE
3699 ? recog_data.operand[i] : 0),
3700 (modified[i] != RELOAD_READ
3701 ? recog_data.operand[i] : 0),
3702 (modified[i] != RELOAD_WRITE
3703 ? recog_data.operand_loc[i] : 0),
3704 (modified[i] != RELOAD_READ
3705 ? recog_data.operand_loc[i] : 0),
3706 (enum reg_class) goal_alternative[i],
3707 (modified[i] == RELOAD_WRITE
3708 ? VOIDmode : operand_mode[i]),
3709 (modified[i] == RELOAD_READ
3710 ? VOIDmode : operand_mode[i]),
3711 (insn_code_number < 0 ? 0
3712 : insn_data[insn_code_number].operand[i].strict_low),
3713 1, i, operand_type[i]);
3714 /* If a memory reference remains (either as a MEM or a pseudo that
3715 did not get a hard register), yet we can't make an optional
3716 reload, check if this is actually a pseudo register reference;
3717 we then need to emit a USE and/or a CLOBBER so that reload
3718 inheritance will do the right thing. */
3719 else if (replace
3720 && (GET_CODE (operand) == MEM
3721 || (GET_CODE (operand) == REG
3722 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3723 && reg_renumber [REGNO (operand)] < 0)))
3725 operand = *recog_data.operand_loc[i];
3727 while (GET_CODE (operand) == SUBREG)
3728 operand = XEXP (operand, 0);
3729 if (GET_CODE (operand) == REG)
3731 if (modified[i] != RELOAD_WRITE)
3732 emit_insn_before (gen_rtx_USE (VOIDmode, operand), insn);
3733 if (modified[i] != RELOAD_READ)
3734 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3738 else if (goal_alternative_matches[i] >= 0
3739 && goal_alternative_win[goal_alternative_matches[i]]
3740 && modified[i] == RELOAD_READ
3741 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3742 && ! no_input_reloads && ! no_output_reloads
3743 && optimize)
3745 /* Similarly, make an optional reload for a pair of matching
3746 objects that are in MEM or a pseudo that didn't get a hard reg. */
3748 rtx operand = recog_data.operand[i];
3750 while (GET_CODE (operand) == SUBREG)
3751 operand = XEXP (operand, 0);
3752 if ((GET_CODE (operand) == MEM
3753 || (GET_CODE (operand) == REG
3754 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3755 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3756 != NO_REGS))
3757 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3758 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3759 recog_data.operand[i],
3760 recog_data.operand_loc[goal_alternative_matches[i]],
3761 recog_data.operand_loc[i],
3762 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3763 operand_mode[goal_alternative_matches[i]],
3764 operand_mode[i],
3765 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3768 /* Perform whatever substitutions on the operands we are supposed
3769 to make due to commutativity or replacement of registers
3770 with equivalent constants or memory slots. */
3772 for (i = 0; i < noperands; i++)
3774 /* We only do this on the last pass through reload, because it is
3775 possible for some data (like reg_equiv_address) to be changed during
3776 later passes. Moreover, we loose the opportunity to get a useful
3777 reload_{in,out}_reg when we do these replacements. */
3779 if (replace)
3781 rtx substitution = substed_operand[i];
3783 *recog_data.operand_loc[i] = substitution;
3785 /* If we're replacing an operand with a LABEL_REF, we need
3786 to make sure that there's a REG_LABEL note attached to
3787 this instruction. */
3788 if (GET_CODE (insn) != JUMP_INSN
3789 && GET_CODE (substitution) == LABEL_REF
3790 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3791 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL,
3792 XEXP (substitution, 0),
3793 REG_NOTES (insn));
3795 else
3796 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
3799 /* If this insn pattern contains any MATCH_DUP's, make sure that
3800 they will be substituted if the operands they match are substituted.
3801 Also do now any substitutions we already did on the operands.
3803 Don't do this if we aren't making replacements because we might be
3804 propagating things allocated by frame pointer elimination into places
3805 it doesn't expect. */
3807 if (insn_code_number >= 0 && replace)
3808 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
3810 int opno = recog_data.dup_num[i];
3811 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
3812 if (operand_reloadnum[opno] >= 0)
3813 push_replacement (recog_data.dup_loc[i], operand_reloadnum[opno],
3814 insn_data[insn_code_number].operand[opno].mode);
3817 #if 0
3818 /* This loses because reloading of prior insns can invalidate the equivalence
3819 (or at least find_equiv_reg isn't smart enough to find it any more),
3820 causing this insn to need more reload regs than it needed before.
3821 It may be too late to make the reload regs available.
3822 Now this optimization is done safely in choose_reload_regs. */
3824 /* For each reload of a reg into some other class of reg,
3825 search for an existing equivalent reg (same value now) in the right class.
3826 We can use it as long as we don't need to change its contents. */
3827 for (i = 0; i < n_reloads; i++)
3828 if (rld[i].reg_rtx == 0
3829 && rld[i].in != 0
3830 && GET_CODE (rld[i].in) == REG
3831 && rld[i].out == 0)
3833 rld[i].reg_rtx
3834 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
3835 static_reload_reg_p, 0, rld[i].inmode);
3836 /* Prevent generation of insn to load the value
3837 because the one we found already has the value. */
3838 if (rld[i].reg_rtx)
3839 rld[i].in = rld[i].reg_rtx;
3841 #endif
3843 /* Perhaps an output reload can be combined with another
3844 to reduce needs by one. */
3845 if (!goal_earlyclobber)
3846 combine_reloads ();
3848 /* If we have a pair of reloads for parts of an address, they are reloading
3849 the same object, the operands themselves were not reloaded, and they
3850 are for two operands that are supposed to match, merge the reloads and
3851 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3853 for (i = 0; i < n_reloads; i++)
3855 int k;
3857 for (j = i + 1; j < n_reloads; j++)
3858 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3859 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3860 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3861 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3862 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
3863 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3864 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3865 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3866 && rtx_equal_p (rld[i].in, rld[j].in)
3867 && (operand_reloadnum[rld[i].opnum] < 0
3868 || rld[operand_reloadnum[rld[i].opnum]].optional)
3869 && (operand_reloadnum[rld[j].opnum] < 0
3870 || rld[operand_reloadnum[rld[j].opnum]].optional)
3871 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
3872 || (goal_alternative_matches[rld[j].opnum]
3873 == rld[i].opnum)))
3875 for (k = 0; k < n_replacements; k++)
3876 if (replacements[k].what == j)
3877 replacements[k].what = i;
3879 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3880 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3881 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
3882 else
3883 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
3884 rld[j].in = 0;
3888 /* Scan all the reloads and update their type.
3889 If a reload is for the address of an operand and we didn't reload
3890 that operand, change the type. Similarly, change the operand number
3891 of a reload when two operands match. If a reload is optional, treat it
3892 as though the operand isn't reloaded.
3894 ??? This latter case is somewhat odd because if we do the optional
3895 reload, it means the object is hanging around. Thus we need only
3896 do the address reload if the optional reload was NOT done.
3898 Change secondary reloads to be the address type of their operand, not
3899 the normal type.
3901 If an operand's reload is now RELOAD_OTHER, change any
3902 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3903 RELOAD_FOR_OTHER_ADDRESS. */
3905 for (i = 0; i < n_reloads; i++)
3907 if (rld[i].secondary_p
3908 && rld[i].when_needed == operand_type[rld[i].opnum])
3909 rld[i].when_needed = address_type[rld[i].opnum];
3911 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3912 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3913 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3914 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3915 && (operand_reloadnum[rld[i].opnum] < 0
3916 || rld[operand_reloadnum[rld[i].opnum]].optional))
3918 /* If we have a secondary reload to go along with this reload,
3919 change its type to RELOAD_FOR_OPADDR_ADDR. */
3921 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3922 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
3923 && rld[i].secondary_in_reload != -1)
3925 int secondary_in_reload = rld[i].secondary_in_reload;
3927 rld[secondary_in_reload].when_needed
3928 = RELOAD_FOR_OPADDR_ADDR;
3930 /* If there's a tertiary reload we have to change it also. */
3931 if (secondary_in_reload > 0
3932 && rld[secondary_in_reload].secondary_in_reload != -1)
3933 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
3934 = RELOAD_FOR_OPADDR_ADDR;
3937 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3938 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3939 && rld[i].secondary_out_reload != -1)
3941 int secondary_out_reload = rld[i].secondary_out_reload;
3943 rld[secondary_out_reload].when_needed
3944 = RELOAD_FOR_OPADDR_ADDR;
3946 /* If there's a tertiary reload we have to change it also. */
3947 if (secondary_out_reload
3948 && rld[secondary_out_reload].secondary_out_reload != -1)
3949 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
3950 = RELOAD_FOR_OPADDR_ADDR;
3953 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3954 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3955 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
3956 else
3957 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
3960 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3961 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
3962 && operand_reloadnum[rld[i].opnum] >= 0
3963 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
3964 == RELOAD_OTHER))
3965 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
3967 if (goal_alternative_matches[rld[i].opnum] >= 0)
3968 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
3971 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
3972 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
3973 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
3975 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
3976 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
3977 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
3978 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
3979 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
3980 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
3981 This is complicated by the fact that a single operand can have more
3982 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
3983 choose_reload_regs without affecting code quality, and cases that
3984 actually fail are extremely rare, so it turns out to be better to fix
3985 the problem here by not generating cases that choose_reload_regs will
3986 fail for. */
3987 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
3988 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
3989 a single operand.
3990 We can reduce the register pressure by exploiting that a
3991 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
3992 does not conflict with any of them, if it is only used for the first of
3993 the RELOAD_FOR_X_ADDRESS reloads. */
3995 int first_op_addr_num = -2;
3996 int first_inpaddr_num[MAX_RECOG_OPERANDS];
3997 int first_outpaddr_num[MAX_RECOG_OPERANDS];
3998 int need_change= 0;
3999 /* We use last_op_addr_reload and the contents of the above arrays
4000 first as flags - -2 means no instance encountered, -1 means exactly
4001 one instance encountered.
4002 If more than one instance has been encountered, we store the reload
4003 number of the first reload of the kind in question; reload numbers
4004 are known to be non-negative. */
4005 for (i = 0; i < noperands; i++)
4006 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4007 for (i = n_reloads - 1; i >= 0; i--)
4009 switch (rld[i].when_needed)
4011 case RELOAD_FOR_OPERAND_ADDRESS:
4012 if (++first_op_addr_num >= 0)
4014 first_op_addr_num = i;
4015 need_change = 1;
4017 break;
4018 case RELOAD_FOR_INPUT_ADDRESS:
4019 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4021 first_inpaddr_num[rld[i].opnum] = i;
4022 need_change = 1;
4024 break;
4025 case RELOAD_FOR_OUTPUT_ADDRESS:
4026 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4028 first_outpaddr_num[rld[i].opnum] = i;
4029 need_change = 1;
4031 break;
4032 default:
4033 break;
4037 if (need_change)
4039 for (i = 0; i < n_reloads; i++)
4041 int first_num;
4042 enum reload_type type;
4044 switch (rld[i].when_needed)
4046 case RELOAD_FOR_OPADDR_ADDR:
4047 first_num = first_op_addr_num;
4048 type = RELOAD_FOR_OPERAND_ADDRESS;
4049 break;
4050 case RELOAD_FOR_INPADDR_ADDRESS:
4051 first_num = first_inpaddr_num[rld[i].opnum];
4052 type = RELOAD_FOR_INPUT_ADDRESS;
4053 break;
4054 case RELOAD_FOR_OUTADDR_ADDRESS:
4055 first_num = first_outpaddr_num[rld[i].opnum];
4056 type = RELOAD_FOR_OUTPUT_ADDRESS;
4057 break;
4058 default:
4059 continue;
4061 if (first_num < 0)
4062 continue;
4063 else if (i > first_num)
4064 rld[i].when_needed = type;
4065 else
4067 /* Check if the only TYPE reload that uses reload I is
4068 reload FIRST_NUM. */
4069 for (j = n_reloads - 1; j > first_num; j--)
4071 if (rld[j].when_needed == type
4072 && (rld[i].secondary_p
4073 ? rld[j].secondary_in_reload == i
4074 : reg_mentioned_p (rld[i].in, rld[j].in)))
4076 rld[i].when_needed = type;
4077 break;
4085 /* See if we have any reloads that are now allowed to be merged
4086 because we've changed when the reload is needed to
4087 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4088 check for the most common cases. */
4090 for (i = 0; i < n_reloads; i++)
4091 if (rld[i].in != 0 && rld[i].out == 0
4092 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4093 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4094 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4095 for (j = 0; j < n_reloads; j++)
4096 if (i != j && rld[j].in != 0 && rld[j].out == 0
4097 && rld[j].when_needed == rld[i].when_needed
4098 && MATCHES (rld[i].in, rld[j].in)
4099 && rld[i].class == rld[j].class
4100 && !rld[i].nocombine && !rld[j].nocombine
4101 && rld[i].reg_rtx == rld[j].reg_rtx)
4103 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4104 transfer_replacements (i, j);
4105 rld[j].in = 0;
4108 #ifdef HAVE_cc0
4109 /* If we made any reloads for addresses, see if they violate a
4110 "no input reloads" requirement for this insn. But loads that we
4111 do after the insn (such as for output addresses) are fine. */
4112 if (no_input_reloads)
4113 for (i = 0; i < n_reloads; i++)
4114 if (rld[i].in != 0
4115 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4116 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4117 abort ();
4118 #endif
4120 /* Compute reload_mode and reload_nregs. */
4121 for (i = 0; i < n_reloads; i++)
4123 rld[i].mode
4124 = (rld[i].inmode == VOIDmode
4125 || (GET_MODE_SIZE (rld[i].outmode)
4126 > GET_MODE_SIZE (rld[i].inmode)))
4127 ? rld[i].outmode : rld[i].inmode;
4129 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4132 return retval;
4135 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4136 accepts a memory operand with constant address. */
4138 static int
4139 alternative_allows_memconst (constraint, altnum)
4140 const char *constraint;
4141 int altnum;
4143 register int c;
4144 /* Skip alternatives before the one requested. */
4145 while (altnum > 0)
4147 while (*constraint++ != ',');
4148 altnum--;
4150 /* Scan the requested alternative for 'm' or 'o'.
4151 If one of them is present, this alternative accepts memory constants. */
4152 while ((c = *constraint++) && c != ',' && c != '#')
4153 if (c == 'm' || c == 'o')
4154 return 1;
4155 return 0;
4158 /* Scan X for memory references and scan the addresses for reloading.
4159 Also checks for references to "constant" regs that we want to eliminate
4160 and replaces them with the values they stand for.
4161 We may alter X destructively if it contains a reference to such.
4162 If X is just a constant reg, we return the equivalent value
4163 instead of X.
4165 IND_LEVELS says how many levels of indirect addressing this machine
4166 supports.
4168 OPNUM and TYPE identify the purpose of the reload.
4170 IS_SET_DEST is true if X is the destination of a SET, which is not
4171 appropriate to be replaced by a constant.
4173 INSN, if nonzero, is the insn in which we do the reload. It is used
4174 to determine if we may generate output reloads, and where to put USEs
4175 for pseudos that we have to replace with stack slots. */
4177 static rtx
4178 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn)
4179 rtx x;
4180 int opnum;
4181 enum reload_type type;
4182 int ind_levels;
4183 int is_set_dest;
4184 rtx insn;
4186 register RTX_CODE code = GET_CODE (x);
4188 register const char *fmt = GET_RTX_FORMAT (code);
4189 register int i;
4190 int copied;
4192 if (code == REG)
4194 /* This code is duplicated for speed in find_reloads. */
4195 register int regno = REGNO (x);
4196 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4197 x = reg_equiv_constant[regno];
4198 #if 0
4199 /* This creates (subreg (mem...)) which would cause an unnecessary
4200 reload of the mem. */
4201 else if (reg_equiv_mem[regno] != 0)
4202 x = reg_equiv_mem[regno];
4203 #endif
4204 else if (reg_equiv_memory_loc[regno]
4205 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4207 rtx mem = make_memloc (x, regno);
4208 if (reg_equiv_address[regno]
4209 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4211 /* If this is not a toplevel operand, find_reloads doesn't see
4212 this substitution. We have to emit a USE of the pseudo so
4213 that delete_output_reload can see it. */
4214 if (replace_reloads && recog_data.operand[opnum] != x)
4215 emit_insn_before (gen_rtx_USE (VOIDmode, x), insn);
4216 x = mem;
4217 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4218 opnum, type, ind_levels, insn);
4221 return x;
4223 if (code == MEM)
4225 rtx tem = x;
4226 find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4227 opnum, type, ind_levels, insn);
4228 return tem;
4231 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4233 /* Check for SUBREG containing a REG that's equivalent to a constant.
4234 If the constant has a known value, truncate it right now.
4235 Similarly if we are extracting a single-word of a multi-word
4236 constant. If the constant is symbolic, allow it to be substituted
4237 normally. push_reload will strip the subreg later. If the
4238 constant is VOIDmode, abort because we will lose the mode of
4239 the register (this should never happen because one of the cases
4240 above should handle it). */
4242 register int regno = REGNO (SUBREG_REG (x));
4243 rtx tem;
4245 if (subreg_lowpart_p (x)
4246 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4247 && reg_equiv_constant[regno] != 0
4248 && (tem = gen_lowpart_common (GET_MODE (x),
4249 reg_equiv_constant[regno])) != 0)
4250 return tem;
4252 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4253 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4254 && reg_equiv_constant[regno] != 0
4255 && (tem = operand_subword (reg_equiv_constant[regno],
4256 SUBREG_WORD (x), 0,
4257 GET_MODE (SUBREG_REG (x)))) != 0)
4259 /* TEM is now a word sized constant for the bits from X that
4260 we wanted. However, TEM may be the wrong representation.
4262 Use gen_lowpart_common to convert a CONST_INT into a
4263 CONST_DOUBLE and vice versa as needed according to by the mode
4264 of the SUBREG. */
4265 tem = gen_lowpart_common (GET_MODE (x), tem);
4266 if (!tem)
4267 abort ();
4268 return tem;
4271 /* If the SUBREG is wider than a word, the above test will fail.
4272 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4273 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4274 a 32 bit target. We still can - and have to - handle this
4275 for non-paradoxical subregs of CONST_INTs. */
4276 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4277 && reg_equiv_constant[regno] != 0
4278 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4279 && (GET_MODE_SIZE (GET_MODE (x))
4280 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4282 int shift = SUBREG_WORD (x) * BITS_PER_WORD;
4283 if (WORDS_BIG_ENDIAN)
4284 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4285 - GET_MODE_BITSIZE (GET_MODE (x))
4286 - shift);
4287 /* Here we use the knowledge that CONST_INTs have a
4288 HOST_WIDE_INT field. */
4289 if (shift >= HOST_BITS_PER_WIDE_INT)
4290 shift = HOST_BITS_PER_WIDE_INT - 1;
4291 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4294 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4295 && reg_equiv_constant[regno] != 0
4296 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4297 abort ();
4299 /* If the subreg contains a reg that will be converted to a mem,
4300 convert the subreg to a narrower memref now.
4301 Otherwise, we would get (subreg (mem ...) ...),
4302 which would force reload of the mem.
4304 We also need to do this if there is an equivalent MEM that is
4305 not offsettable. In that case, alter_subreg would produce an
4306 invalid address on big-endian machines.
4308 For machines that extend byte loads, we must not reload using
4309 a wider mode if we have a paradoxical SUBREG. find_reloads will
4310 force a reload in that case. So we should not do anything here. */
4312 else if (regno >= FIRST_PSEUDO_REGISTER
4313 #ifdef LOAD_EXTEND_OP
4314 && (GET_MODE_SIZE (GET_MODE (x))
4315 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4316 #endif
4317 && (reg_equiv_address[regno] != 0
4318 || (reg_equiv_mem[regno] != 0
4319 && (! strict_memory_address_p (GET_MODE (x),
4320 XEXP (reg_equiv_mem[regno], 0))
4321 || ! offsettable_memref_p (reg_equiv_mem[regno])
4322 || num_not_at_initial_offset))))
4323 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4324 insn);
4327 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4329 if (fmt[i] == 'e')
4331 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4332 ind_levels, is_set_dest, insn);
4333 /* If we have replaced a reg with it's equivalent memory loc -
4334 that can still be handled here e.g. if it's in a paradoxical
4335 subreg - we must make the change in a copy, rather than using
4336 a destructive change. This way, find_reloads can still elect
4337 not to do the change. */
4338 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4340 x = shallow_copy_rtx (x);
4341 copied = 1;
4343 XEXP (x, i) = new_part;
4346 return x;
4349 /* Return a mem ref for the memory equivalent of reg REGNO.
4350 This mem ref is not shared with anything. */
4352 static rtx
4353 make_memloc (ad, regno)
4354 rtx ad;
4355 int regno;
4357 /* We must rerun eliminate_regs, in case the elimination
4358 offsets have changed. */
4359 rtx tem
4360 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4362 /* If TEM might contain a pseudo, we must copy it to avoid
4363 modifying it when we do the substitution for the reload. */
4364 if (rtx_varies_p (tem))
4365 tem = copy_rtx (tem);
4367 tem = gen_rtx_MEM (GET_MODE (ad), tem);
4368 RTX_UNCHANGING_P (tem) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4369 return tem;
4372 /* Record all reloads needed for handling memory address AD
4373 which appears in *LOC in a memory reference to mode MODE
4374 which itself is found in location *MEMREFLOC.
4375 Note that we take shortcuts assuming that no multi-reg machine mode
4376 occurs as part of an address.
4378 OPNUM and TYPE specify the purpose of this reload.
4380 IND_LEVELS says how many levels of indirect addressing this machine
4381 supports.
4383 INSN, if nonzero, is the insn in which we do the reload. It is used
4384 to determine if we may generate output reloads, and where to put USEs
4385 for pseudos that we have to replace with stack slots.
4387 Value is nonzero if this address is reloaded or replaced as a whole.
4388 This is interesting to the caller if the address is an autoincrement.
4390 Note that there is no verification that the address will be valid after
4391 this routine does its work. Instead, we rely on the fact that the address
4392 was valid when reload started. So we need only undo things that reload
4393 could have broken. These are wrong register types, pseudos not allocated
4394 to a hard register, and frame pointer elimination. */
4396 static int
4397 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4398 enum machine_mode mode;
4399 rtx *memrefloc;
4400 rtx ad;
4401 rtx *loc;
4402 int opnum;
4403 enum reload_type type;
4404 int ind_levels;
4405 rtx insn;
4407 register int regno;
4408 int removed_and = 0;
4409 rtx tem;
4411 /* If the address is a register, see if it is a legitimate address and
4412 reload if not. We first handle the cases where we need not reload
4413 or where we must reload in a non-standard way. */
4415 if (GET_CODE (ad) == REG)
4417 regno = REGNO (ad);
4419 if (reg_equiv_constant[regno] != 0
4420 && strict_memory_address_p (mode, reg_equiv_constant[regno]))
4422 *loc = ad = reg_equiv_constant[regno];
4423 return 0;
4426 tem = reg_equiv_memory_loc[regno];
4427 if (tem != 0)
4429 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4431 tem = make_memloc (ad, regno);
4432 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4434 find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
4435 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
4436 ind_levels, insn);
4438 /* We can avoid a reload if the register's equivalent memory
4439 expression is valid as an indirect memory address.
4440 But not all addresses are valid in a mem used as an indirect
4441 address: only reg or reg+constant. */
4443 if (ind_levels > 0
4444 && strict_memory_address_p (mode, tem)
4445 && (GET_CODE (XEXP (tem, 0)) == REG
4446 || (GET_CODE (XEXP (tem, 0)) == PLUS
4447 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4448 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4450 /* TEM is not the same as what we'll be replacing the
4451 pseudo with after reload, put a USE in front of INSN
4452 in the final reload pass. */
4453 if (replace_reloads
4454 && num_not_at_initial_offset
4455 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4457 *loc = tem;
4458 emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn);
4459 /* This doesn't really count as replacing the address
4460 as a whole, since it is still a memory access. */
4462 return 0;
4464 ad = tem;
4468 /* The only remaining case where we can avoid a reload is if this is a
4469 hard register that is valid as a base register and which is not the
4470 subject of a CLOBBER in this insn. */
4472 else if (regno < FIRST_PSEUDO_REGISTER
4473 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4474 && ! regno_clobbered_p (regno, this_insn))
4475 return 0;
4477 /* If we do not have one of the cases above, we must do the reload. */
4478 push_reload (ad, NULL_RTX, loc, NULL_PTR, BASE_REG_CLASS,
4479 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4480 return 1;
4483 if (strict_memory_address_p (mode, ad))
4485 /* The address appears valid, so reloads are not needed.
4486 But the address may contain an eliminable register.
4487 This can happen because a machine with indirect addressing
4488 may consider a pseudo register by itself a valid address even when
4489 it has failed to get a hard reg.
4490 So do a tree-walk to find and eliminate all such regs. */
4492 /* But first quickly dispose of a common case. */
4493 if (GET_CODE (ad) == PLUS
4494 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4495 && GET_CODE (XEXP (ad, 0)) == REG
4496 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4497 return 0;
4499 subst_reg_equivs_changed = 0;
4500 *loc = subst_reg_equivs (ad, insn);
4502 if (! subst_reg_equivs_changed)
4503 return 0;
4505 /* Check result for validity after substitution. */
4506 if (strict_memory_address_p (mode, ad))
4507 return 0;
4510 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4513 if (memrefloc)
4515 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4516 ind_levels, win);
4518 break;
4519 win:
4520 *memrefloc = copy_rtx (*memrefloc);
4521 XEXP (*memrefloc, 0) = ad;
4522 move_replacements (&ad, &XEXP (*memrefloc, 0));
4523 return 1;
4525 while (0);
4526 #endif
4528 /* The address is not valid. We have to figure out why. First see if
4529 we have an outer AND and remove it if so. Then analyze what's inside. */
4531 if (GET_CODE (ad) == AND)
4533 removed_and = 1;
4534 loc = &XEXP (ad, 0);
4535 ad = *loc;
4538 /* One possibility for why the address is invalid is that it is itself
4539 a MEM. This can happen when the frame pointer is being eliminated, a
4540 pseudo is not allocated to a hard register, and the offset between the
4541 frame and stack pointers is not its initial value. In that case the
4542 pseudo will have been replaced by a MEM referring to the
4543 stack pointer. */
4544 if (GET_CODE (ad) == MEM)
4546 /* First ensure that the address in this MEM is valid. Then, unless
4547 indirect addresses are valid, reload the MEM into a register. */
4548 tem = ad;
4549 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4550 opnum, ADDR_TYPE (type),
4551 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4553 /* If tem was changed, then we must create a new memory reference to
4554 hold it and store it back into memrefloc. */
4555 if (tem != ad && memrefloc)
4557 *memrefloc = copy_rtx (*memrefloc);
4558 copy_replacements (tem, XEXP (*memrefloc, 0));
4559 loc = &XEXP (*memrefloc, 0);
4560 if (removed_and)
4561 loc = &XEXP (*loc, 0);
4564 /* Check similar cases as for indirect addresses as above except
4565 that we can allow pseudos and a MEM since they should have been
4566 taken care of above. */
4568 if (ind_levels == 0
4569 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4570 || GET_CODE (XEXP (tem, 0)) == MEM
4571 || ! (GET_CODE (XEXP (tem, 0)) == REG
4572 || (GET_CODE (XEXP (tem, 0)) == PLUS
4573 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4574 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4576 /* Must use TEM here, not AD, since it is the one that will
4577 have any subexpressions reloaded, if needed. */
4578 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4579 BASE_REG_CLASS, GET_MODE (tem),
4580 VOIDmode, 0,
4581 0, opnum, type);
4582 return ! removed_and;
4584 else
4585 return 0;
4588 /* If we have address of a stack slot but it's not valid because the
4589 displacement is too large, compute the sum in a register.
4590 Handle all base registers here, not just fp/ap/sp, because on some
4591 targets (namely SH) we can also get too large displacements from
4592 big-endian corrections. */
4593 else if (GET_CODE (ad) == PLUS
4594 && GET_CODE (XEXP (ad, 0)) == REG
4595 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4596 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4597 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4599 /* Unshare the MEM rtx so we can safely alter it. */
4600 if (memrefloc)
4602 *memrefloc = copy_rtx (*memrefloc);
4603 loc = &XEXP (*memrefloc, 0);
4604 if (removed_and)
4605 loc = &XEXP (*loc, 0);
4608 if (double_reg_address_ok)
4610 /* Unshare the sum as well. */
4611 *loc = ad = copy_rtx (ad);
4613 /* Reload the displacement into an index reg.
4614 We assume the frame pointer or arg pointer is a base reg. */
4615 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4616 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4617 type, ind_levels);
4618 return 0;
4620 else
4622 /* If the sum of two regs is not necessarily valid,
4623 reload the sum into a base reg.
4624 That will at least work. */
4625 find_reloads_address_part (ad, loc, BASE_REG_CLASS,
4626 Pmode, opnum, type, ind_levels);
4628 return ! removed_and;
4631 /* If we have an indexed stack slot, there are three possible reasons why
4632 it might be invalid: The index might need to be reloaded, the address
4633 might have been made by frame pointer elimination and hence have a
4634 constant out of range, or both reasons might apply.
4636 We can easily check for an index needing reload, but even if that is the
4637 case, we might also have an invalid constant. To avoid making the
4638 conservative assumption and requiring two reloads, we see if this address
4639 is valid when not interpreted strictly. If it is, the only problem is
4640 that the index needs a reload and find_reloads_address_1 will take care
4641 of it.
4643 If we decide to do something here, it must be that
4644 `double_reg_address_ok' is true and that this address rtl was made by
4645 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4646 rework the sum so that the reload register will be added to the index.
4647 This is safe because we know the address isn't shared.
4649 We check for fp/ap/sp as both the first and second operand of the
4650 innermost PLUS. */
4652 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4653 && GET_CODE (XEXP (ad, 0)) == PLUS
4654 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4655 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4656 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4657 #endif
4658 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4659 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4660 #endif
4661 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4662 && ! memory_address_p (mode, ad))
4664 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4665 plus_constant (XEXP (XEXP (ad, 0), 0),
4666 INTVAL (XEXP (ad, 1))),
4667 XEXP (XEXP (ad, 0), 1));
4668 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0), BASE_REG_CLASS,
4669 GET_MODE (ad), opnum, type, ind_levels);
4670 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4671 type, 0, insn);
4673 return 0;
4676 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4677 && GET_CODE (XEXP (ad, 0)) == PLUS
4678 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4679 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4680 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4681 #endif
4682 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4683 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4684 #endif
4685 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4686 && ! memory_address_p (mode, ad))
4688 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4689 XEXP (XEXP (ad, 0), 0),
4690 plus_constant (XEXP (XEXP (ad, 0), 1),
4691 INTVAL (XEXP (ad, 1))));
4692 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1), BASE_REG_CLASS,
4693 GET_MODE (ad), opnum, type, ind_levels);
4694 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4695 type, 0, insn);
4697 return 0;
4700 /* See if address becomes valid when an eliminable register
4701 in a sum is replaced. */
4703 tem = ad;
4704 if (GET_CODE (ad) == PLUS)
4705 tem = subst_indexed_address (ad);
4706 if (tem != ad && strict_memory_address_p (mode, tem))
4708 /* Ok, we win that way. Replace any additional eliminable
4709 registers. */
4711 subst_reg_equivs_changed = 0;
4712 tem = subst_reg_equivs (tem, insn);
4714 /* Make sure that didn't make the address invalid again. */
4716 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4718 *loc = tem;
4719 return 0;
4723 /* If constants aren't valid addresses, reload the constant address
4724 into a register. */
4725 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4727 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4728 Unshare it so we can safely alter it. */
4729 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4730 && CONSTANT_POOL_ADDRESS_P (ad))
4732 *memrefloc = copy_rtx (*memrefloc);
4733 loc = &XEXP (*memrefloc, 0);
4734 if (removed_and)
4735 loc = &XEXP (*loc, 0);
4738 find_reloads_address_part (ad, loc, BASE_REG_CLASS, Pmode, opnum, type,
4739 ind_levels);
4740 return ! removed_and;
4743 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4744 insn);
4747 /* Find all pseudo regs appearing in AD
4748 that are eliminable in favor of equivalent values
4749 and do not have hard regs; replace them by their equivalents.
4750 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4751 front of it for pseudos that we have to replace with stack slots. */
4753 static rtx
4754 subst_reg_equivs (ad, insn)
4755 rtx ad;
4756 rtx insn;
4758 register RTX_CODE code = GET_CODE (ad);
4759 register int i;
4760 register const char *fmt;
4762 switch (code)
4764 case HIGH:
4765 case CONST_INT:
4766 case CONST:
4767 case CONST_DOUBLE:
4768 case SYMBOL_REF:
4769 case LABEL_REF:
4770 case PC:
4771 case CC0:
4772 return ad;
4774 case REG:
4776 register int regno = REGNO (ad);
4778 if (reg_equiv_constant[regno] != 0)
4780 subst_reg_equivs_changed = 1;
4781 return reg_equiv_constant[regno];
4783 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
4785 rtx mem = make_memloc (ad, regno);
4786 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
4788 subst_reg_equivs_changed = 1;
4789 emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn);
4790 return mem;
4794 return ad;
4796 case PLUS:
4797 /* Quickly dispose of a common case. */
4798 if (XEXP (ad, 0) == frame_pointer_rtx
4799 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4800 return ad;
4801 break;
4803 default:
4804 break;
4807 fmt = GET_RTX_FORMAT (code);
4808 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4809 if (fmt[i] == 'e')
4810 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
4811 return ad;
4814 /* Compute the sum of X and Y, making canonicalizations assumed in an
4815 address, namely: sum constant integers, surround the sum of two
4816 constants with a CONST, put the constant as the second operand, and
4817 group the constant on the outermost sum.
4819 This routine assumes both inputs are already in canonical form. */
4822 form_sum (x, y)
4823 rtx x, y;
4825 rtx tem;
4826 enum machine_mode mode = GET_MODE (x);
4828 if (mode == VOIDmode)
4829 mode = GET_MODE (y);
4831 if (mode == VOIDmode)
4832 mode = Pmode;
4834 if (GET_CODE (x) == CONST_INT)
4835 return plus_constant (y, INTVAL (x));
4836 else if (GET_CODE (y) == CONST_INT)
4837 return plus_constant (x, INTVAL (y));
4838 else if (CONSTANT_P (x))
4839 tem = x, x = y, y = tem;
4841 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4842 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4844 /* Note that if the operands of Y are specified in the opposite
4845 order in the recursive calls below, infinite recursion will occur. */
4846 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
4847 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4849 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4850 constant will have been placed second. */
4851 if (CONSTANT_P (x) && CONSTANT_P (y))
4853 if (GET_CODE (x) == CONST)
4854 x = XEXP (x, 0);
4855 if (GET_CODE (y) == CONST)
4856 y = XEXP (y, 0);
4858 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
4861 return gen_rtx_PLUS (mode, x, y);
4864 /* If ADDR is a sum containing a pseudo register that should be
4865 replaced with a constant (from reg_equiv_constant),
4866 return the result of doing so, and also apply the associative
4867 law so that the result is more likely to be a valid address.
4868 (But it is not guaranteed to be one.)
4870 Note that at most one register is replaced, even if more are
4871 replaceable. Also, we try to put the result into a canonical form
4872 so it is more likely to be a valid address.
4874 In all other cases, return ADDR. */
4876 static rtx
4877 subst_indexed_address (addr)
4878 rtx addr;
4880 rtx op0 = 0, op1 = 0, op2 = 0;
4881 rtx tem;
4882 int regno;
4884 if (GET_CODE (addr) == PLUS)
4886 /* Try to find a register to replace. */
4887 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
4888 if (GET_CODE (op0) == REG
4889 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
4890 && reg_renumber[regno] < 0
4891 && reg_equiv_constant[regno] != 0)
4892 op0 = reg_equiv_constant[regno];
4893 else if (GET_CODE (op1) == REG
4894 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
4895 && reg_renumber[regno] < 0
4896 && reg_equiv_constant[regno] != 0)
4897 op1 = reg_equiv_constant[regno];
4898 else if (GET_CODE (op0) == PLUS
4899 && (tem = subst_indexed_address (op0)) != op0)
4900 op0 = tem;
4901 else if (GET_CODE (op1) == PLUS
4902 && (tem = subst_indexed_address (op1)) != op1)
4903 op1 = tem;
4904 else
4905 return addr;
4907 /* Pick out up to three things to add. */
4908 if (GET_CODE (op1) == PLUS)
4909 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
4910 else if (GET_CODE (op0) == PLUS)
4911 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4913 /* Compute the sum. */
4914 if (op2 != 0)
4915 op1 = form_sum (op1, op2);
4916 if (op1 != 0)
4917 op0 = form_sum (op0, op1);
4919 return op0;
4921 return addr;
4924 /* Record the pseudo registers we must reload into hard registers in a
4925 subexpression of a would-be memory address, X referring to a value
4926 in mode MODE. (This function is not called if the address we find
4927 is strictly valid.)
4929 CONTEXT = 1 means we are considering regs as index regs,
4930 = 0 means we are considering them as base regs.
4932 OPNUM and TYPE specify the purpose of any reloads made.
4934 IND_LEVELS says how many levels of indirect addressing are
4935 supported at this point in the address.
4937 INSN, if nonzero, is the insn in which we do the reload. It is used
4938 to determine if we may generate output reloads.
4940 We return nonzero if X, as a whole, is reloaded or replaced. */
4942 /* Note that we take shortcuts assuming that no multi-reg machine mode
4943 occurs as part of an address.
4944 Also, this is not fully machine-customizable; it works for machines
4945 such as vaxes and 68000's and 32000's, but other possible machines
4946 could have addressing modes that this does not handle right. */
4948 static int
4949 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
4950 enum machine_mode mode;
4951 rtx x;
4952 int context;
4953 rtx *loc;
4954 int opnum;
4955 enum reload_type type;
4956 int ind_levels;
4957 rtx insn;
4959 register RTX_CODE code = GET_CODE (x);
4961 switch (code)
4963 case PLUS:
4965 register rtx orig_op0 = XEXP (x, 0);
4966 register rtx orig_op1 = XEXP (x, 1);
4967 register RTX_CODE code0 = GET_CODE (orig_op0);
4968 register RTX_CODE code1 = GET_CODE (orig_op1);
4969 register rtx op0 = orig_op0;
4970 register rtx op1 = orig_op1;
4972 if (GET_CODE (op0) == SUBREG)
4974 op0 = SUBREG_REG (op0);
4975 code0 = GET_CODE (op0);
4976 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
4977 op0 = gen_rtx_REG (word_mode,
4978 REGNO (op0) + SUBREG_WORD (orig_op0));
4981 if (GET_CODE (op1) == SUBREG)
4983 op1 = SUBREG_REG (op1);
4984 code1 = GET_CODE (op1);
4985 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
4986 op1 = gen_rtx_REG (GET_MODE (op1),
4987 REGNO (op1) + SUBREG_WORD (orig_op1));
4990 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
4991 || code0 == ZERO_EXTEND || code1 == MEM)
4993 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
4994 type, ind_levels, insn);
4995 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4996 type, ind_levels, insn);
4999 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5000 || code1 == ZERO_EXTEND || code0 == MEM)
5002 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5003 type, ind_levels, insn);
5004 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5005 type, ind_levels, insn);
5008 else if (code0 == CONST_INT || code0 == CONST
5009 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5010 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5011 type, ind_levels, insn);
5013 else if (code1 == CONST_INT || code1 == CONST
5014 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5015 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5016 type, ind_levels, insn);
5018 else if (code0 == REG && code1 == REG)
5020 if (REG_OK_FOR_INDEX_P (op0)
5021 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5022 return 0;
5023 else if (REG_OK_FOR_INDEX_P (op1)
5024 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5025 return 0;
5026 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5027 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5028 type, ind_levels, insn);
5029 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5030 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5031 type, ind_levels, insn);
5032 else if (REG_OK_FOR_INDEX_P (op1))
5033 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5034 type, ind_levels, insn);
5035 else if (REG_OK_FOR_INDEX_P (op0))
5036 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5037 type, ind_levels, insn);
5038 else
5040 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5041 type, ind_levels, insn);
5042 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5043 type, ind_levels, insn);
5047 else if (code0 == REG)
5049 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5050 type, ind_levels, insn);
5051 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5052 type, ind_levels, insn);
5055 else if (code1 == REG)
5057 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5058 type, ind_levels, insn);
5059 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5060 type, ind_levels, insn);
5064 return 0;
5066 case POST_INC:
5067 case POST_DEC:
5068 case PRE_INC:
5069 case PRE_DEC:
5070 if (GET_CODE (XEXP (x, 0)) == REG)
5072 register int regno = REGNO (XEXP (x, 0));
5073 int value = 0;
5074 rtx x_orig = x;
5076 /* A register that is incremented cannot be constant! */
5077 if (regno >= FIRST_PSEUDO_REGISTER
5078 && reg_equiv_constant[regno] != 0)
5079 abort ();
5081 /* Handle a register that is equivalent to a memory location
5082 which cannot be addressed directly. */
5083 if (reg_equiv_memory_loc[regno] != 0
5084 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5086 rtx tem = make_memloc (XEXP (x, 0), regno);
5087 if (reg_equiv_address[regno]
5088 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5090 /* First reload the memory location's address.
5091 We can't use ADDR_TYPE (type) here, because we need to
5092 write back the value after reading it, hence we actually
5093 need two registers. */
5094 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5095 &XEXP (tem, 0), opnum, type,
5096 ind_levels, insn);
5097 /* Put this inside a new increment-expression. */
5098 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5099 /* Proceed to reload that, as if it contained a register. */
5103 /* If we have a hard register that is ok as an index,
5104 don't make a reload. If an autoincrement of a nice register
5105 isn't "valid", it must be that no autoincrement is "valid".
5106 If that is true and something made an autoincrement anyway,
5107 this must be a special context where one is allowed.
5108 (For example, a "push" instruction.)
5109 We can't improve this address, so leave it alone. */
5111 /* Otherwise, reload the autoincrement into a suitable hard reg
5112 and record how much to increment by. */
5114 if (reg_renumber[regno] >= 0)
5115 regno = reg_renumber[regno];
5116 if ((regno >= FIRST_PSEUDO_REGISTER
5117 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5118 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5120 #ifdef AUTO_INC_DEC
5121 register rtx link;
5122 #endif
5123 int reloadnum;
5125 /* If we can output the register afterwards, do so, this
5126 saves the extra update.
5127 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5128 CALL_INSN - and it does not set CC0.
5129 But don't do this if we cannot directly address the
5130 memory location, since this will make it harder to
5131 reuse address reloads, and increases register pressure.
5132 Also don't do this if we can probably update x directly. */
5133 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5134 ? XEXP (x, 0)
5135 : reg_equiv_mem[regno]);
5136 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5137 if (insn && GET_CODE (insn) == INSN && equiv
5138 && memory_operand (equiv, GET_MODE (equiv))
5139 #ifdef HAVE_cc0
5140 && ! sets_cc0_p (PATTERN (insn))
5141 #endif
5142 && ! (icode != CODE_FOR_nothing
5143 && ((*insn_data[icode].operand[0].predicate)
5144 (equiv, Pmode))
5145 && ((*insn_data[icode].operand[1].predicate)
5146 (equiv, Pmode))))
5148 loc = &XEXP (x, 0);
5149 x = XEXP (x, 0);
5150 reloadnum
5151 = push_reload (x, x, loc, loc,
5152 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5153 GET_MODE (x), GET_MODE (x), 0, 0,
5154 opnum, RELOAD_OTHER);
5156 /* If we created a new MEM based on reg_equiv_mem[REGNO], then
5157 LOC above is part of the new MEM, not the MEM in INSN.
5159 We must also replace the address of the MEM in INSN. */
5160 if (&XEXP (x_orig, 0) != loc)
5161 push_replacement (&XEXP (x_orig, 0), reloadnum, VOIDmode);
5164 else
5166 reloadnum
5167 = push_reload (x, NULL_RTX, loc, NULL_PTR,
5168 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5169 GET_MODE (x), GET_MODE (x), 0, 0,
5170 opnum, type);
5171 rld[reloadnum].inc
5172 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5174 value = 1;
5177 #ifdef AUTO_INC_DEC
5178 /* Update the REG_INC notes. */
5180 for (link = REG_NOTES (this_insn);
5181 link; link = XEXP (link, 1))
5182 if (REG_NOTE_KIND (link) == REG_INC
5183 && REGNO (XEXP (link, 0)) == REGNO (XEXP (x_orig, 0)))
5184 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5185 #endif
5187 return value;
5190 else if (GET_CODE (XEXP (x, 0)) == MEM)
5192 /* This is probably the result of a substitution, by eliminate_regs,
5193 of an equivalent address for a pseudo that was not allocated to a
5194 hard register. Verify that the specified address is valid and
5195 reload it into a register. */
5196 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5197 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5198 register rtx link;
5199 int reloadnum;
5201 /* Since we know we are going to reload this item, don't decrement
5202 for the indirection level.
5204 Note that this is actually conservative: it would be slightly
5205 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5206 reload1.c here. */
5207 /* We can't use ADDR_TYPE (type) here, because we need to
5208 write back the value after reading it, hence we actually
5209 need two registers. */
5210 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5211 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5212 opnum, type, ind_levels, insn);
5214 reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
5215 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5216 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5217 rld[reloadnum].inc
5218 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5220 link = FIND_REG_INC_NOTE (this_insn, tem);
5221 if (link != 0)
5222 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5224 return 1;
5226 return 0;
5228 case MEM:
5229 /* This is probably the result of a substitution, by eliminate_regs, of
5230 an equivalent address for a pseudo that was not allocated to a hard
5231 register. Verify that the specified address is valid and reload it
5232 into a register.
5234 Since we know we are going to reload this item, don't decrement for
5235 the indirection level.
5237 Note that this is actually conservative: it would be slightly more
5238 efficient to use the value of SPILL_INDIRECT_LEVELS from
5239 reload1.c here. */
5241 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5242 opnum, ADDR_TYPE (type), ind_levels, insn);
5243 push_reload (*loc, NULL_RTX, loc, NULL_PTR,
5244 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5245 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5246 return 1;
5248 case REG:
5250 register int regno = REGNO (x);
5252 if (reg_equiv_constant[regno] != 0)
5254 find_reloads_address_part (reg_equiv_constant[regno], loc,
5255 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5256 GET_MODE (x), opnum, type, ind_levels);
5257 return 1;
5260 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5261 that feeds this insn. */
5262 if (reg_equiv_mem[regno] != 0)
5264 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
5265 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5266 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5267 return 1;
5269 #endif
5271 if (reg_equiv_memory_loc[regno]
5272 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5274 rtx tem = make_memloc (x, regno);
5275 if (reg_equiv_address[regno] != 0
5276 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5278 x = tem;
5279 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5280 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5281 ind_levels, insn);
5285 if (reg_renumber[regno] >= 0)
5286 regno = reg_renumber[regno];
5288 if ((regno >= FIRST_PSEUDO_REGISTER
5289 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5290 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5292 push_reload (x, NULL_RTX, loc, NULL_PTR,
5293 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5294 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5295 return 1;
5298 /* If a register appearing in an address is the subject of a CLOBBER
5299 in this insn, reload it into some other register to be safe.
5300 The CLOBBER is supposed to make the register unavailable
5301 from before this insn to after it. */
5302 if (regno_clobbered_p (regno, this_insn))
5304 push_reload (x, NULL_RTX, loc, NULL_PTR,
5305 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5306 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5307 return 1;
5310 return 0;
5312 case SUBREG:
5313 if (GET_CODE (SUBREG_REG (x)) == REG)
5315 /* If this is a SUBREG of a hard register and the resulting register
5316 is of the wrong class, reload the whole SUBREG. This avoids
5317 needless copies if SUBREG_REG is multi-word. */
5318 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5320 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5322 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5323 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5325 push_reload (x, NULL_RTX, loc, NULL_PTR,
5326 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5327 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5328 return 1;
5331 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5332 is larger than the class size, then reload the whole SUBREG. */
5333 else
5335 enum reg_class class = (context ? INDEX_REG_CLASS
5336 : BASE_REG_CLASS);
5337 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5338 > reg_class_size[class])
5340 x = find_reloads_subreg_address (x, 0, opnum, type,
5341 ind_levels, insn);
5342 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5343 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5344 return 1;
5348 break;
5350 default:
5351 break;
5355 register const char *fmt = GET_RTX_FORMAT (code);
5356 register int i;
5358 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5360 if (fmt[i] == 'e')
5361 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5362 opnum, type, ind_levels, insn);
5366 return 0;
5369 /* X, which is found at *LOC, is a part of an address that needs to be
5370 reloaded into a register of class CLASS. If X is a constant, or if
5371 X is a PLUS that contains a constant, check that the constant is a
5372 legitimate operand and that we are supposed to be able to load
5373 it into the register.
5375 If not, force the constant into memory and reload the MEM instead.
5377 MODE is the mode to use, in case X is an integer constant.
5379 OPNUM and TYPE describe the purpose of any reloads made.
5381 IND_LEVELS says how many levels of indirect addressing this machine
5382 supports. */
5384 static void
5385 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5386 rtx x;
5387 rtx *loc;
5388 enum reg_class class;
5389 enum machine_mode mode;
5390 int opnum;
5391 enum reload_type type;
5392 int ind_levels;
5394 if (CONSTANT_P (x)
5395 && (! LEGITIMATE_CONSTANT_P (x)
5396 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5398 rtx tem;
5400 /* If this is a CONST_INT, it could have been created by a
5401 plus_constant call in eliminate_regs, which means it may be
5402 on the reload_obstack. reload_obstack will be freed later, so
5403 we can't allow such RTL to be put in the constant pool. There
5404 is code in force_const_mem to check for this case, but it doesn't
5405 work because we have already popped off the reload_obstack, so
5406 rtl_obstack == saveable_obstack is true at this point. */
5407 if (GET_CODE (x) == CONST_INT)
5408 tem = x = force_const_mem (mode, GEN_INT (INTVAL (x)));
5409 else
5410 tem = x = force_const_mem (mode, x);
5412 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5413 opnum, type, ind_levels, 0);
5416 else if (GET_CODE (x) == PLUS
5417 && CONSTANT_P (XEXP (x, 1))
5418 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5419 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5421 rtx tem;
5423 /* See comment above. */
5424 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
5425 tem = force_const_mem (GET_MODE (x), GEN_INT (INTVAL (XEXP (x, 1))));
5426 else
5427 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5429 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5430 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5431 opnum, type, ind_levels, 0);
5434 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5435 mode, VOIDmode, 0, 0, opnum, type);
5438 /* X, a subreg of a pseudo, is a part of an address that needs to be
5439 reloaded.
5441 If the pseudo is equivalent to a memory location that cannot be directly
5442 addressed, make the necessary address reloads.
5444 If address reloads have been necessary, or if the address is changed
5445 by register elimination, return the rtx of the memory location;
5446 otherwise, return X.
5448 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5449 memory location.
5451 OPNUM and TYPE identify the purpose of the reload.
5453 IND_LEVELS says how many levels of indirect addressing are
5454 supported at this point in the address.
5456 INSN, if nonzero, is the insn in which we do the reload. It is used
5457 to determine where to put USEs for pseudos that we have to replace with
5458 stack slots. */
5460 static rtx
5461 find_reloads_subreg_address (x, force_replace, opnum, type,
5462 ind_levels, insn)
5463 rtx x;
5464 int force_replace;
5465 int opnum;
5466 enum reload_type type;
5467 int ind_levels;
5468 rtx insn;
5470 int regno = REGNO (SUBREG_REG (x));
5472 if (reg_equiv_memory_loc[regno])
5474 /* If the address is not directly addressable, or if the address is not
5475 offsettable, then it must be replaced. */
5476 if (! force_replace
5477 && (reg_equiv_address[regno]
5478 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5479 force_replace = 1;
5481 if (force_replace || num_not_at_initial_offset)
5483 rtx tem = make_memloc (SUBREG_REG (x), regno);
5485 /* If the address changes because of register elimination, then
5486 it must be replaced. */
5487 if (force_replace
5488 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5490 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
5492 if (BYTES_BIG_ENDIAN)
5494 int size;
5496 size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5497 offset += MIN (size, UNITS_PER_WORD);
5498 size = GET_MODE_SIZE (GET_MODE (x));
5499 offset -= MIN (size, UNITS_PER_WORD);
5501 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5502 PUT_MODE (tem, GET_MODE (x));
5503 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5504 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5505 ind_levels, insn);
5506 /* If this is not a toplevel operand, find_reloads doesn't see
5507 this substitution. We have to emit a USE of the pseudo so
5508 that delete_output_reload can see it. */
5509 if (replace_reloads && recog_data.operand[opnum] != x)
5510 emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn);
5511 x = tem;
5515 return x;
5518 /* Substitute into the current INSN the registers into which we have reloaded
5519 the things that need reloading. The array `replacements'
5520 says contains the locations of all pointers that must be changed
5521 and says what to replace them with.
5523 Return the rtx that X translates into; usually X, but modified. */
5525 void
5526 subst_reloads ()
5528 register int i;
5530 for (i = 0; i < n_replacements; i++)
5532 register struct replacement *r = &replacements[i];
5533 register rtx reloadreg = rld[r->what].reg_rtx;
5534 if (reloadreg)
5536 /* Encapsulate RELOADREG so its machine mode matches what
5537 used to be there. Note that gen_lowpart_common will
5538 do the wrong thing if RELOADREG is multi-word. RELOADREG
5539 will always be a REG here. */
5540 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5541 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5543 /* If we are putting this into a SUBREG and RELOADREG is a
5544 SUBREG, we would be making nested SUBREGs, so we have to fix
5545 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5547 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5549 if (GET_MODE (*r->subreg_loc)
5550 == GET_MODE (SUBREG_REG (reloadreg)))
5551 *r->subreg_loc = SUBREG_REG (reloadreg);
5552 else
5554 *r->where = SUBREG_REG (reloadreg);
5555 SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
5558 else
5559 *r->where = reloadreg;
5561 /* If reload got no reg and isn't optional, something's wrong. */
5562 else if (! rld[r->what].optional)
5563 abort ();
5567 /* Make a copy of any replacements being done into X and move those copies
5568 to locations in Y, a copy of X. We only look at the highest level of
5569 the RTL. */
5571 void
5572 copy_replacements (x, y)
5573 rtx x;
5574 rtx y;
5576 int i, j;
5577 enum rtx_code code = GET_CODE (x);
5578 const char *fmt = GET_RTX_FORMAT (code);
5579 struct replacement *r;
5581 /* We can't support X being a SUBREG because we might then need to know its
5582 location if something inside it was replaced. */
5583 if (code == SUBREG)
5584 abort ();
5586 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5587 if (fmt[i] == 'e')
5588 for (j = 0; j < n_replacements; j++)
5590 if (replacements[j].subreg_loc == &XEXP (x, i))
5592 r = &replacements[n_replacements++];
5593 r->where = replacements[j].where;
5594 r->subreg_loc = &XEXP (y, i);
5595 r->what = replacements[j].what;
5596 r->mode = replacements[j].mode;
5598 else if (replacements[j].where == &XEXP (x, i))
5600 r = &replacements[n_replacements++];
5601 r->where = &XEXP (y, i);
5602 r->subreg_loc = 0;
5603 r->what = replacements[j].what;
5604 r->mode = replacements[j].mode;
5609 /* Change any replacements being done to *X to be done to *Y */
5611 void
5612 move_replacements (x, y)
5613 rtx *x;
5614 rtx *y;
5616 int i;
5618 for (i = 0; i < n_replacements; i++)
5619 if (replacements[i].subreg_loc == x)
5620 replacements[i].subreg_loc = y;
5621 else if (replacements[i].where == x)
5623 replacements[i].where = y;
5624 replacements[i].subreg_loc = 0;
5628 /* If LOC was scheduled to be replaced by something, return the replacement.
5629 Otherwise, return *LOC. */
5632 find_replacement (loc)
5633 rtx *loc;
5635 struct replacement *r;
5637 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5639 rtx reloadreg = rld[r->what].reg_rtx;
5641 if (reloadreg && r->where == loc)
5643 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5644 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5646 return reloadreg;
5648 else if (reloadreg && r->subreg_loc == loc)
5650 /* RELOADREG must be either a REG or a SUBREG.
5652 ??? Is it actually still ever a SUBREG? If so, why? */
5654 if (GET_CODE (reloadreg) == REG)
5655 return gen_rtx_REG (GET_MODE (*loc),
5656 REGNO (reloadreg) + SUBREG_WORD (*loc));
5657 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5658 return reloadreg;
5659 else
5660 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
5661 SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
5665 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5666 what's inside and make a new rtl if so. */
5667 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
5668 || GET_CODE (*loc) == MULT)
5670 rtx x = find_replacement (&XEXP (*loc, 0));
5671 rtx y = find_replacement (&XEXP (*loc, 1));
5673 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
5674 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
5677 return *loc;
5680 /* Return nonzero if register in range [REGNO, ENDREGNO)
5681 appears either explicitly or implicitly in X
5682 other than being stored into (except for earlyclobber operands).
5684 References contained within the substructure at LOC do not count.
5685 LOC may be zero, meaning don't ignore anything.
5687 This is similar to refers_to_regno_p in rtlanal.c except that we
5688 look at equivalences for pseudos that didn't get hard registers. */
5691 refers_to_regno_for_reload_p (regno, endregno, x, loc)
5692 int regno, endregno;
5693 rtx x;
5694 rtx *loc;
5696 register int i;
5697 register RTX_CODE code;
5698 register const char *fmt;
5700 if (x == 0)
5701 return 0;
5703 repeat:
5704 code = GET_CODE (x);
5706 switch (code)
5708 case REG:
5709 i = REGNO (x);
5711 /* If this is a pseudo, a hard register must not have been allocated.
5712 X must therefore either be a constant or be in memory. */
5713 if (i >= FIRST_PSEUDO_REGISTER)
5715 if (reg_equiv_memory_loc[i])
5716 return refers_to_regno_for_reload_p (regno, endregno,
5717 reg_equiv_memory_loc[i],
5718 NULL_PTR);
5720 if (reg_equiv_constant[i])
5721 return 0;
5723 abort ();
5726 return (endregno > i
5727 && regno < i + (i < FIRST_PSEUDO_REGISTER
5728 ? HARD_REGNO_NREGS (i, GET_MODE (x))
5729 : 1));
5731 case SUBREG:
5732 /* If this is a SUBREG of a hard reg, we can see exactly which
5733 registers are being modified. Otherwise, handle normally. */
5734 if (GET_CODE (SUBREG_REG (x)) == REG
5735 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5737 int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5738 int inner_endregno
5739 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
5740 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5742 return endregno > inner_regno && regno < inner_endregno;
5744 break;
5746 case CLOBBER:
5747 case SET:
5748 if (&SET_DEST (x) != loc
5749 /* Note setting a SUBREG counts as referring to the REG it is in for
5750 a pseudo but not for hard registers since we can
5751 treat each word individually. */
5752 && ((GET_CODE (SET_DEST (x)) == SUBREG
5753 && loc != &SUBREG_REG (SET_DEST (x))
5754 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
5755 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
5756 && refers_to_regno_for_reload_p (regno, endregno,
5757 SUBREG_REG (SET_DEST (x)),
5758 loc))
5759 /* If the output is an earlyclobber operand, this is
5760 a conflict. */
5761 || ((GET_CODE (SET_DEST (x)) != REG
5762 || earlyclobber_operand_p (SET_DEST (x)))
5763 && refers_to_regno_for_reload_p (regno, endregno,
5764 SET_DEST (x), loc))))
5765 return 1;
5767 if (code == CLOBBER || loc == &SET_SRC (x))
5768 return 0;
5769 x = SET_SRC (x);
5770 goto repeat;
5772 default:
5773 break;
5776 /* X does not match, so try its subexpressions. */
5778 fmt = GET_RTX_FORMAT (code);
5779 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5781 if (fmt[i] == 'e' && loc != &XEXP (x, i))
5783 if (i == 0)
5785 x = XEXP (x, 0);
5786 goto repeat;
5788 else
5789 if (refers_to_regno_for_reload_p (regno, endregno,
5790 XEXP (x, i), loc))
5791 return 1;
5793 else if (fmt[i] == 'E')
5795 register int j;
5796 for (j = XVECLEN (x, i) - 1; j >=0; j--)
5797 if (loc != &XVECEXP (x, i, j)
5798 && refers_to_regno_for_reload_p (regno, endregno,
5799 XVECEXP (x, i, j), loc))
5800 return 1;
5803 return 0;
5806 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
5807 we check if any register number in X conflicts with the relevant register
5808 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
5809 contains a MEM (we don't bother checking for memory addresses that can't
5810 conflict because we expect this to be a rare case.
5812 This function is similar to reg_overlap_mention_p in rtlanal.c except
5813 that we look at equivalences for pseudos that didn't get hard registers. */
5816 reg_overlap_mentioned_for_reload_p (x, in)
5817 rtx x, in;
5819 int regno, endregno;
5821 /* Overly conservative. */
5822 if (GET_CODE (x) == STRICT_LOW_PART)
5823 x = XEXP (x, 0);
5825 /* If either argument is a constant, then modifying X can not affect IN. */
5826 if (CONSTANT_P (x) || CONSTANT_P (in))
5827 return 0;
5828 else if (GET_CODE (x) == SUBREG)
5830 regno = REGNO (SUBREG_REG (x));
5831 if (regno < FIRST_PSEUDO_REGISTER)
5832 regno += SUBREG_WORD (x);
5834 else if (GET_CODE (x) == REG)
5836 regno = REGNO (x);
5838 /* If this is a pseudo, it must not have been assigned a hard register.
5839 Therefore, it must either be in memory or be a constant. */
5841 if (regno >= FIRST_PSEUDO_REGISTER)
5843 if (reg_equiv_memory_loc[regno])
5844 return refers_to_mem_for_reload_p (in);
5845 else if (reg_equiv_constant[regno])
5846 return 0;
5847 abort ();
5850 else if (GET_CODE (x) == MEM)
5851 return refers_to_mem_for_reload_p (in);
5852 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
5853 || GET_CODE (x) == CC0)
5854 return reg_mentioned_p (x, in);
5855 else
5856 abort ();
5858 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
5859 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5861 return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
5864 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
5865 registers. */
5868 refers_to_mem_for_reload_p (x)
5869 rtx x;
5871 const char *fmt;
5872 int i;
5874 if (GET_CODE (x) == MEM)
5875 return 1;
5877 if (GET_CODE (x) == REG)
5878 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
5879 && reg_equiv_memory_loc[REGNO (x)]);
5881 fmt = GET_RTX_FORMAT (GET_CODE (x));
5882 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5883 if (fmt[i] == 'e'
5884 && (GET_CODE (XEXP (x, i)) == MEM
5885 || refers_to_mem_for_reload_p (XEXP (x, i))))
5886 return 1;
5888 return 0;
5891 /* Check the insns before INSN to see if there is a suitable register
5892 containing the same value as GOAL.
5893 If OTHER is -1, look for a register in class CLASS.
5894 Otherwise, just see if register number OTHER shares GOAL's value.
5896 Return an rtx for the register found, or zero if none is found.
5898 If RELOAD_REG_P is (short *)1,
5899 we reject any hard reg that appears in reload_reg_rtx
5900 because such a hard reg is also needed coming into this insn.
5902 If RELOAD_REG_P is any other nonzero value,
5903 it is a vector indexed by hard reg number
5904 and we reject any hard reg whose element in the vector is nonnegative
5905 as well as any that appears in reload_reg_rtx.
5907 If GOAL is zero, then GOALREG is a register number; we look
5908 for an equivalent for that register.
5910 MODE is the machine mode of the value we want an equivalence for.
5911 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
5913 This function is used by jump.c as well as in the reload pass.
5915 If GOAL is the sum of the stack pointer and a constant, we treat it
5916 as if it were a constant except that sp is required to be unchanging. */
5919 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
5920 register rtx goal;
5921 rtx insn;
5922 enum reg_class class;
5923 register int other;
5924 short *reload_reg_p;
5925 int goalreg;
5926 enum machine_mode mode;
5928 register rtx p = insn;
5929 rtx goaltry, valtry, value, where;
5930 register rtx pat;
5931 register int regno = -1;
5932 int valueno;
5933 int goal_mem = 0;
5934 int goal_const = 0;
5935 int goal_mem_addr_varies = 0;
5936 int need_stable_sp = 0;
5937 int nregs;
5938 int valuenregs;
5940 if (goal == 0)
5941 regno = goalreg;
5942 else if (GET_CODE (goal) == REG)
5943 regno = REGNO (goal);
5944 else if (GET_CODE (goal) == MEM)
5946 enum rtx_code code = GET_CODE (XEXP (goal, 0));
5947 if (MEM_VOLATILE_P (goal))
5948 return 0;
5949 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
5950 return 0;
5951 /* An address with side effects must be reexecuted. */
5952 switch (code)
5954 case POST_INC:
5955 case PRE_INC:
5956 case POST_DEC:
5957 case PRE_DEC:
5958 return 0;
5959 default:
5960 break;
5962 goal_mem = 1;
5964 else if (CONSTANT_P (goal))
5965 goal_const = 1;
5966 else if (GET_CODE (goal) == PLUS
5967 && XEXP (goal, 0) == stack_pointer_rtx
5968 && CONSTANT_P (XEXP (goal, 1)))
5969 goal_const = need_stable_sp = 1;
5970 else if (GET_CODE (goal) == PLUS
5971 && XEXP (goal, 0) == frame_pointer_rtx
5972 && CONSTANT_P (XEXP (goal, 1)))
5973 goal_const = 1;
5974 else
5975 return 0;
5977 /* Scan insns back from INSN, looking for one that copies
5978 a value into or out of GOAL.
5979 Stop and give up if we reach a label. */
5981 while (1)
5983 p = PREV_INSN (p);
5984 if (p == 0 || GET_CODE (p) == CODE_LABEL)
5985 return 0;
5986 if (GET_CODE (p) == INSN
5987 /* If we don't want spill regs ... */
5988 && (! (reload_reg_p != 0
5989 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
5990 /* ... then ignore insns introduced by reload; they aren't useful
5991 and can cause results in reload_as_needed to be different
5992 from what they were when calculating the need for spills.
5993 If we notice an input-reload insn here, we will reject it below,
5994 but it might hide a usable equivalent. That makes bad code.
5995 It may even abort: perhaps no reg was spilled for this insn
5996 because it was assumed we would find that equivalent. */
5997 || INSN_UID (p) < reload_first_uid))
5999 rtx tem;
6000 pat = single_set (p);
6001 /* First check for something that sets some reg equal to GOAL. */
6002 if (pat != 0
6003 && ((regno >= 0
6004 && true_regnum (SET_SRC (pat)) == regno
6005 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6007 (regno >= 0
6008 && true_regnum (SET_DEST (pat)) == regno
6009 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6011 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6012 /* When looking for stack pointer + const,
6013 make sure we don't use a stack adjust. */
6014 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6015 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6016 || (goal_mem
6017 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6018 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6019 || (goal_mem
6020 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6021 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6022 /* If we are looking for a constant,
6023 and something equivalent to that constant was copied
6024 into a reg, we can use that reg. */
6025 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6026 NULL_RTX))
6027 && rtx_equal_p (XEXP (tem, 0), goal)
6028 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6029 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6030 NULL_RTX))
6031 && GET_CODE (SET_DEST (pat)) == REG
6032 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6033 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
6034 && GET_CODE (goal) == CONST_INT
6035 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 0, 0,
6036 VOIDmode))
6037 && rtx_equal_p (goal, goaltry)
6038 && (valtry = operand_subword (SET_DEST (pat), 0, 0,
6039 VOIDmode))
6040 && (valueno = true_regnum (valtry)) >= 0)
6041 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6042 NULL_RTX))
6043 && GET_CODE (SET_DEST (pat)) == REG
6044 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6045 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
6046 && GET_CODE (goal) == CONST_INT
6047 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6048 VOIDmode))
6049 && rtx_equal_p (goal, goaltry)
6050 && (valtry
6051 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6052 && (valueno = true_regnum (valtry)) >= 0)))
6053 if (other >= 0
6054 ? valueno == other
6055 : ((unsigned) valueno < FIRST_PSEUDO_REGISTER
6056 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6057 valueno)))
6059 value = valtry;
6060 where = p;
6061 break;
6066 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6067 (or copying VALUE into GOAL, if GOAL is also a register).
6068 Now verify that VALUE is really valid. */
6070 /* VALUENO is the register number of VALUE; a hard register. */
6072 /* Don't try to re-use something that is killed in this insn. We want
6073 to be able to trust REG_UNUSED notes. */
6074 if (find_reg_note (where, REG_UNUSED, value))
6075 return 0;
6077 /* If we propose to get the value from the stack pointer or if GOAL is
6078 a MEM based on the stack pointer, we need a stable SP. */
6079 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6080 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6081 goal)))
6082 need_stable_sp = 1;
6084 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6085 if (GET_MODE (value) != mode)
6086 return 0;
6088 /* Reject VALUE if it was loaded from GOAL
6089 and is also a register that appears in the address of GOAL. */
6091 if (goal_mem && value == SET_DEST (single_set (where))
6092 && refers_to_regno_for_reload_p (valueno,
6093 (valueno
6094 + HARD_REGNO_NREGS (valueno, mode)),
6095 goal, NULL_PTR))
6096 return 0;
6098 /* Reject registers that overlap GOAL. */
6100 if (!goal_mem && !goal_const
6101 && regno + HARD_REGNO_NREGS (regno, mode) > valueno
6102 && regno < valueno + HARD_REGNO_NREGS (valueno, mode))
6103 return 0;
6105 /* Reject VALUE if it is one of the regs reserved for reloads.
6106 Reload1 knows how to reuse them anyway, and it would get
6107 confused if we allocated one without its knowledge.
6108 (Now that insns introduced by reload are ignored above,
6109 this case shouldn't happen, but I'm not positive.) */
6111 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1
6112 && reload_reg_p[valueno] >= 0)
6113 return 0;
6115 nregs = HARD_REGNO_NREGS (regno, mode);
6116 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6118 /* Reject VALUE if it is a register being used for an input reload
6119 even if it is not one of those reserved. */
6121 if (reload_reg_p != 0)
6123 int i;
6124 for (i = 0; i < n_reloads; i++)
6125 if (rld[i].reg_rtx != 0 && rld[i].in)
6127 int regno1 = REGNO (rld[i].reg_rtx);
6128 int nregs1 = HARD_REGNO_NREGS (regno1,
6129 GET_MODE (rld[i].reg_rtx));
6130 if (regno1 < valueno + valuenregs
6131 && regno1 + nregs1 > valueno)
6132 return 0;
6136 if (goal_mem)
6137 /* We must treat frame pointer as varying here,
6138 since it can vary--in a nonlocal goto as generated by expand_goto. */
6139 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6141 /* Now verify that the values of GOAL and VALUE remain unaltered
6142 until INSN is reached. */
6144 p = insn;
6145 while (1)
6147 p = PREV_INSN (p);
6148 if (p == where)
6149 return value;
6151 /* Don't trust the conversion past a function call
6152 if either of the two is in a call-clobbered register, or memory. */
6153 if (GET_CODE (p) == CALL_INSN
6154 && ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER
6155 && call_used_regs[regno])
6157 (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
6158 && call_used_regs[valueno])
6160 goal_mem
6161 || need_stable_sp))
6162 return 0;
6164 #ifdef NON_SAVING_SETJMP
6165 if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
6166 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
6167 return 0;
6168 #endif
6170 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6172 pat = PATTERN (p);
6174 /* Watch out for unspec_volatile, and volatile asms. */
6175 if (volatile_insn_p (pat))
6176 return 0;
6178 /* If this insn P stores in either GOAL or VALUE, return 0.
6179 If GOAL is a memory ref and this insn writes memory, return 0.
6180 If GOAL is a memory ref and its address is not constant,
6181 and this insn P changes a register used in GOAL, return 0. */
6183 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6185 register rtx dest = SET_DEST (pat);
6186 while (GET_CODE (dest) == SUBREG
6187 || GET_CODE (dest) == ZERO_EXTRACT
6188 || GET_CODE (dest) == SIGN_EXTRACT
6189 || GET_CODE (dest) == STRICT_LOW_PART)
6190 dest = XEXP (dest, 0);
6191 if (GET_CODE (dest) == REG)
6193 register int xregno = REGNO (dest);
6194 int xnregs;
6195 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6196 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6197 else
6198 xnregs = 1;
6199 if (xregno < regno + nregs && xregno + xnregs > regno)
6200 return 0;
6201 if (xregno < valueno + valuenregs
6202 && xregno + xnregs > valueno)
6203 return 0;
6204 if (goal_mem_addr_varies
6205 && reg_overlap_mentioned_for_reload_p (dest, goal))
6206 return 0;
6207 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6208 return 0;
6210 else if (goal_mem && GET_CODE (dest) == MEM
6211 && ! push_operand (dest, GET_MODE (dest)))
6212 return 0;
6213 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6214 && reg_equiv_memory_loc[regno] != 0)
6215 return 0;
6216 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6217 return 0;
6219 else if (GET_CODE (pat) == PARALLEL)
6221 register int i;
6222 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6224 register rtx v1 = XVECEXP (pat, 0, i);
6225 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6227 register rtx dest = SET_DEST (v1);
6228 while (GET_CODE (dest) == SUBREG
6229 || GET_CODE (dest) == ZERO_EXTRACT
6230 || GET_CODE (dest) == SIGN_EXTRACT
6231 || GET_CODE (dest) == STRICT_LOW_PART)
6232 dest = XEXP (dest, 0);
6233 if (GET_CODE (dest) == REG)
6235 register int xregno = REGNO (dest);
6236 int xnregs;
6237 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6238 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6239 else
6240 xnregs = 1;
6241 if (xregno < regno + nregs
6242 && xregno + xnregs > regno)
6243 return 0;
6244 if (xregno < valueno + valuenregs
6245 && xregno + xnregs > valueno)
6246 return 0;
6247 if (goal_mem_addr_varies
6248 && reg_overlap_mentioned_for_reload_p (dest,
6249 goal))
6250 return 0;
6251 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6252 return 0;
6254 else if (goal_mem && GET_CODE (dest) == MEM
6255 && ! push_operand (dest, GET_MODE (dest)))
6256 return 0;
6257 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6258 && reg_equiv_memory_loc[regno] != 0)
6259 return 0;
6260 else if (need_stable_sp
6261 && push_operand (dest, GET_MODE (dest)))
6262 return 0;
6267 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6269 rtx link;
6271 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6272 link = XEXP (link, 1))
6274 pat = XEXP (link, 0);
6275 if (GET_CODE (pat) == CLOBBER)
6277 register rtx dest = SET_DEST (pat);
6278 while (GET_CODE (dest) == SUBREG
6279 || GET_CODE (dest) == ZERO_EXTRACT
6280 || GET_CODE (dest) == SIGN_EXTRACT
6281 || GET_CODE (dest) == STRICT_LOW_PART)
6282 dest = XEXP (dest, 0);
6283 if (GET_CODE (dest) == REG)
6285 register int xregno = REGNO (dest);
6286 int xnregs;
6287 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6288 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6289 else
6290 xnregs = 1;
6291 if (xregno < regno + nregs
6292 && xregno + xnregs > regno)
6293 return 0;
6294 if (xregno < valueno + valuenregs
6295 && xregno + xnregs > valueno)
6296 return 0;
6297 if (goal_mem_addr_varies
6298 && reg_overlap_mentioned_for_reload_p (dest,
6299 goal))
6300 return 0;
6302 else if (goal_mem && GET_CODE (dest) == MEM
6303 && ! push_operand (dest, GET_MODE (dest)))
6304 return 0;
6305 else if (need_stable_sp
6306 && push_operand (dest, GET_MODE (dest)))
6307 return 0;
6312 #ifdef AUTO_INC_DEC
6313 /* If this insn auto-increments or auto-decrements
6314 either regno or valueno, return 0 now.
6315 If GOAL is a memory ref and its address is not constant,
6316 and this insn P increments a register used in GOAL, return 0. */
6318 register rtx link;
6320 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6321 if (REG_NOTE_KIND (link) == REG_INC
6322 && GET_CODE (XEXP (link, 0)) == REG)
6324 register int incno = REGNO (XEXP (link, 0));
6325 if (incno < regno + nregs && incno >= regno)
6326 return 0;
6327 if (incno < valueno + valuenregs && incno >= valueno)
6328 return 0;
6329 if (goal_mem_addr_varies
6330 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6331 goal))
6332 return 0;
6335 #endif
6340 /* Find a place where INCED appears in an increment or decrement operator
6341 within X, and return the amount INCED is incremented or decremented by.
6342 The value is always positive. */
6344 static int
6345 find_inc_amount (x, inced)
6346 rtx x, inced;
6348 register enum rtx_code code = GET_CODE (x);
6349 register const char *fmt;
6350 register int i;
6352 if (code == MEM)
6354 register rtx addr = XEXP (x, 0);
6355 if ((GET_CODE (addr) == PRE_DEC
6356 || GET_CODE (addr) == POST_DEC
6357 || GET_CODE (addr) == PRE_INC
6358 || GET_CODE (addr) == POST_INC)
6359 && XEXP (addr, 0) == inced)
6360 return GET_MODE_SIZE (GET_MODE (x));
6363 fmt = GET_RTX_FORMAT (code);
6364 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6366 if (fmt[i] == 'e')
6368 register int tem = find_inc_amount (XEXP (x, i), inced);
6369 if (tem != 0)
6370 return tem;
6372 if (fmt[i] == 'E')
6374 register int j;
6375 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6377 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6378 if (tem != 0)
6379 return tem;
6384 return 0;
6387 /* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
6390 regno_clobbered_p (regno, insn)
6391 int regno;
6392 rtx insn;
6394 if (GET_CODE (PATTERN (insn)) == CLOBBER
6395 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6396 return REGNO (XEXP (PATTERN (insn), 0)) == regno;
6398 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6400 int i = XVECLEN (PATTERN (insn), 0) - 1;
6402 for (; i >= 0; i--)
6404 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6405 if (GET_CODE (elt) == CLOBBER && GET_CODE (XEXP (elt, 0)) == REG
6406 && REGNO (XEXP (elt, 0)) == regno)
6407 return 1;
6411 return 0;
6414 static const char *reload_when_needed_name[] =
6416 "RELOAD_FOR_INPUT",
6417 "RELOAD_FOR_OUTPUT",
6418 "RELOAD_FOR_INSN",
6419 "RELOAD_FOR_INPUT_ADDRESS",
6420 "RELOAD_FOR_INPADDR_ADDRESS",
6421 "RELOAD_FOR_OUTPUT_ADDRESS",
6422 "RELOAD_FOR_OUTADDR_ADDRESS",
6423 "RELOAD_FOR_OPERAND_ADDRESS",
6424 "RELOAD_FOR_OPADDR_ADDR",
6425 "RELOAD_OTHER",
6426 "RELOAD_FOR_OTHER_ADDRESS"
6429 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6431 /* These functions are used to print the variables set by 'find_reloads' */
6433 void
6434 debug_reload_to_stream (f)
6435 FILE *f;
6437 int r;
6438 const char *prefix;
6440 if (! f)
6441 f = stderr;
6442 for (r = 0; r < n_reloads; r++)
6444 fprintf (f, "Reload %d: ", r);
6446 if (rld[r].in != 0)
6448 fprintf (f, "reload_in (%s) = ",
6449 GET_MODE_NAME (rld[r].inmode));
6450 print_inline_rtx (f, rld[r].in, 24);
6451 fprintf (f, "\n\t");
6454 if (rld[r].out != 0)
6456 fprintf (f, "reload_out (%s) = ",
6457 GET_MODE_NAME (rld[r].outmode));
6458 print_inline_rtx (f, rld[r].out, 24);
6459 fprintf (f, "\n\t");
6462 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6464 fprintf (f, "%s (opnum = %d)",
6465 reload_when_needed_name[(int) rld[r].when_needed],
6466 rld[r].opnum);
6468 if (rld[r].optional)
6469 fprintf (f, ", optional");
6471 if (rld[r].nongroup)
6472 fprintf (stderr, ", nongroup");
6474 if (rld[r].inc != 0)
6475 fprintf (f, ", inc by %d", rld[r].inc);
6477 if (rld[r].nocombine)
6478 fprintf (f, ", can't combine");
6480 if (rld[r].secondary_p)
6481 fprintf (f, ", secondary_reload_p");
6483 if (rld[r].in_reg != 0)
6485 fprintf (f, "\n\treload_in_reg: ");
6486 print_inline_rtx (f, rld[r].in_reg, 24);
6489 if (rld[r].out_reg != 0)
6491 fprintf (f, "\n\treload_out_reg: ");
6492 print_inline_rtx (f, rld[r].out_reg, 24);
6495 if (rld[r].reg_rtx != 0)
6497 fprintf (f, "\n\treload_reg_rtx: ");
6498 print_inline_rtx (f, rld[r].reg_rtx, 24);
6501 prefix = "\n\t";
6502 if (rld[r].secondary_in_reload != -1)
6504 fprintf (f, "%ssecondary_in_reload = %d",
6505 prefix, rld[r].secondary_in_reload);
6506 prefix = ", ";
6509 if (rld[r].secondary_out_reload != -1)
6510 fprintf (f, "%ssecondary_out_reload = %d\n",
6511 prefix, rld[r].secondary_out_reload);
6513 prefix = "\n\t";
6514 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
6516 fprintf (stderr, "%ssecondary_in_icode = %s", prefix,
6517 insn_data[rld[r].secondary_in_icode].name);
6518 prefix = ", ";
6521 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
6522 fprintf (stderr, "%ssecondary_out_icode = %s", prefix,
6523 insn_data[rld[r].secondary_out_icode].name);
6525 fprintf (f, "\n");
6529 void
6530 debug_reload ()
6532 debug_reload_to_stream (stderr);