1 c Copyright (C) 1988-2018 Free Software Foundation, Inc.
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
7 @chapter Extensions to the C Language Family
8 @cindex extensions, C language
9 @cindex C language extensions
12 GNU C provides several language features not found in ISO standard C@.
13 (The @option{-pedantic} option directs GCC to print a warning message if
14 any of these features is used.) To test for the availability of these
15 features in conditional compilation, check for a predefined macro
16 @code{__GNUC__}, which is always defined under GCC@.
18 These extensions are available in C and Objective-C@. Most of them are
19 also available in C++. @xref{C++ Extensions,,Extensions to the
20 C++ Language}, for extensions that apply @emph{only} to C++.
22 Some features that are in ISO C99 but not C90 or C++ are also, as
23 extensions, accepted by GCC in C90 mode and in C++.
26 * Statement Exprs:: Putting statements and declarations inside expressions.
27 * Local Labels:: Labels local to a block.
28 * Labels as Values:: Getting pointers to labels, and computed gotos.
29 * Nested Functions:: Nested function in GNU C.
30 * Constructing Calls:: Dispatching a call to another function.
31 * Typeof:: @code{typeof}: referring to the type of an expression.
32 * Conditionals:: Omitting the middle operand of a @samp{?:} expression.
33 * __int128:: 128-bit integers---@code{__int128}.
34 * Long Long:: Double-word integers---@code{long long int}.
35 * Complex:: Data types for complex numbers.
36 * Floating Types:: Additional Floating Types.
37 * Half-Precision:: Half-Precision Floating Point.
38 * Decimal Float:: Decimal Floating Types.
39 * Hex Floats:: Hexadecimal floating-point constants.
40 * Fixed-Point:: Fixed-Point Types.
41 * Named Address Spaces::Named address spaces.
42 * Zero Length:: Zero-length arrays.
43 * Empty Structures:: Structures with no members.
44 * Variable Length:: Arrays whose length is computed at run time.
45 * Variadic Macros:: Macros with a variable number of arguments.
46 * Escaped Newlines:: Slightly looser rules for escaped newlines.
47 * Subscripting:: Any array can be subscripted, even if not an lvalue.
48 * Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers.
49 * Pointers to Arrays:: Pointers to arrays with qualifiers work as expected.
50 * Initializers:: Non-constant initializers.
51 * Compound Literals:: Compound literals give structures, unions
53 * Designated Inits:: Labeling elements of initializers.
54 * Case Ranges:: `case 1 ... 9' and such.
55 * Cast to Union:: Casting to union type from any member of the union.
56 * Mixed Declarations:: Mixing declarations and code.
57 * Function Attributes:: Declaring that functions have no side effects,
58 or that they can never return.
59 * Variable Attributes:: Specifying attributes of variables.
60 * Type Attributes:: Specifying attributes of types.
61 * Label Attributes:: Specifying attributes on labels.
62 * Enumerator Attributes:: Specifying attributes on enumerators.
63 * Statement Attributes:: Specifying attributes on statements.
64 * Attribute Syntax:: Formal syntax for attributes.
65 * Function Prototypes:: Prototype declarations and old-style definitions.
66 * C++ Comments:: C++ comments are recognized.
67 * Dollar Signs:: Dollar sign is allowed in identifiers.
68 * Character Escapes:: @samp{\e} stands for the character @key{ESC}.
69 * Alignment:: Determining the alignment of a function, type or variable.
70 * Inline:: Defining inline functions (as fast as macros).
71 * Volatiles:: What constitutes an access to a volatile object.
72 * Using Assembly Language with C:: Instructions and extensions for interfacing C with assembler.
73 * Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files.
74 * Incomplete Enums:: @code{enum foo;}, with details to follow.
75 * Function Names:: Printable strings which are the name of the current
77 * Return Address:: Getting the return or frame address of a function.
78 * Vector Extensions:: Using vector instructions through built-in functions.
79 * Offsetof:: Special syntax for implementing @code{offsetof}.
80 * __sync Builtins:: Legacy built-in functions for atomic memory access.
81 * __atomic Builtins:: Atomic built-in functions with memory model.
82 * Integer Overflow Builtins:: Built-in functions to perform arithmetics and
83 arithmetic overflow checking.
84 * x86 specific memory model extensions for transactional memory:: x86 memory models.
85 * Object Size Checking:: Built-in functions for limited buffer overflow
87 * Other Builtins:: Other built-in functions.
88 * Target Builtins:: Built-in functions specific to particular targets.
89 * Target Format Checks:: Format checks specific to particular targets.
90 * Pragmas:: Pragmas accepted by GCC.
91 * Unnamed Fields:: Unnamed struct/union fields within structs/unions.
92 * Thread-Local:: Per-thread variables.
93 * Binary constants:: Binary constants using the @samp{0b} prefix.
97 @section Statements and Declarations in Expressions
98 @cindex statements inside expressions
99 @cindex declarations inside expressions
100 @cindex expressions containing statements
101 @cindex macros, statements in expressions
103 @c the above section title wrapped and causes an underfull hbox.. i
104 @c changed it from "within" to "in". --mew 4feb93
105 A compound statement enclosed in parentheses may appear as an expression
106 in GNU C@. This allows you to use loops, switches, and local variables
107 within an expression.
109 Recall that a compound statement is a sequence of statements surrounded
110 by braces; in this construct, parentheses go around the braces. For
114 (@{ int y = foo (); int z;
121 is a valid (though slightly more complex than necessary) expression
122 for the absolute value of @code{foo ()}.
124 The last thing in the compound statement should be an expression
125 followed by a semicolon; the value of this subexpression serves as the
126 value of the entire construct. (If you use some other kind of statement
127 last within the braces, the construct has type @code{void}, and thus
128 effectively no value.)
130 This feature is especially useful in making macro definitions ``safe'' (so
131 that they evaluate each operand exactly once). For example, the
132 ``maximum'' function is commonly defined as a macro in standard C as
136 #define max(a,b) ((a) > (b) ? (a) : (b))
140 @cindex side effects, macro argument
141 But this definition computes either @var{a} or @var{b} twice, with bad
142 results if the operand has side effects. In GNU C, if you know the
143 type of the operands (here taken as @code{int}), you can define
144 the macro safely as follows:
147 #define maxint(a,b) \
148 (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
151 Embedded statements are not allowed in constant expressions, such as
152 the value of an enumeration constant, the width of a bit-field, or
153 the initial value of a static variable.
155 If you don't know the type of the operand, you can still do this, but you
156 must use @code{typeof} or @code{__auto_type} (@pxref{Typeof}).
158 In G++, the result value of a statement expression undergoes array and
159 function pointer decay, and is returned by value to the enclosing
160 expression. For instance, if @code{A} is a class, then
169 constructs a temporary @code{A} object to hold the result of the
170 statement expression, and that is used to invoke @code{Foo}.
171 Therefore the @code{this} pointer observed by @code{Foo} is not the
174 In a statement expression, any temporaries created within a statement
175 are destroyed at that statement's end. This makes statement
176 expressions inside macros slightly different from function calls. In
177 the latter case temporaries introduced during argument evaluation are
178 destroyed at the end of the statement that includes the function
179 call. In the statement expression case they are destroyed during
180 the statement expression. For instance,
183 #define macro(a) (@{__typeof__(a) b = (a); b + 3; @})
184 template<typename T> T function(T a) @{ T b = a; return b + 3; @}
194 has different places where temporaries are destroyed. For the
195 @code{macro} case, the temporary @code{X} is destroyed just after
196 the initialization of @code{b}. In the @code{function} case that
197 temporary is destroyed when the function returns.
199 These considerations mean that it is probably a bad idea to use
200 statement expressions of this form in header files that are designed to
201 work with C++. (Note that some versions of the GNU C Library contained
202 header files using statement expressions that lead to precisely this
205 Jumping into a statement expression with @code{goto} or using a
206 @code{switch} statement outside the statement expression with a
207 @code{case} or @code{default} label inside the statement expression is
208 not permitted. Jumping into a statement expression with a computed
209 @code{goto} (@pxref{Labels as Values}) has undefined behavior.
210 Jumping out of a statement expression is permitted, but if the
211 statement expression is part of a larger expression then it is
212 unspecified which other subexpressions of that expression have been
213 evaluated except where the language definition requires certain
214 subexpressions to be evaluated before or after the statement
215 expression. In any case, as with a function call, the evaluation of a
216 statement expression is not interleaved with the evaluation of other
217 parts of the containing expression. For example,
220 foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
224 calls @code{foo} and @code{bar1} and does not call @code{baz} but
225 may or may not call @code{bar2}. If @code{bar2} is called, it is
226 called after @code{foo} and before @code{bar1}.
229 @section Locally Declared Labels
231 @cindex macros, local labels
233 GCC allows you to declare @dfn{local labels} in any nested block
234 scope. A local label is just like an ordinary label, but you can
235 only reference it (with a @code{goto} statement, or by taking its
236 address) within the block in which it is declared.
238 A local label declaration looks like this:
241 __label__ @var{label};
248 __label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
251 Local label declarations must come at the beginning of the block,
252 before any ordinary declarations or statements.
254 The label declaration defines the label @emph{name}, but does not define
255 the label itself. You must do this in the usual way, with
256 @code{@var{label}:}, within the statements of the statement expression.
258 The local label feature is useful for complex macros. If a macro
259 contains nested loops, a @code{goto} can be useful for breaking out of
260 them. However, an ordinary label whose scope is the whole function
261 cannot be used: if the macro can be expanded several times in one
262 function, the label is multiply defined in that function. A
263 local label avoids this problem. For example:
266 #define SEARCH(value, array, target) \
269 typeof (target) _SEARCH_target = (target); \
270 typeof (*(array)) *_SEARCH_array = (array); \
273 for (i = 0; i < max; i++) \
274 for (j = 0; j < max; j++) \
275 if (_SEARCH_array[i][j] == _SEARCH_target) \
276 @{ (value) = i; goto found; @} \
282 This could also be written using a statement expression:
285 #define SEARCH(array, target) \
288 typeof (target) _SEARCH_target = (target); \
289 typeof (*(array)) *_SEARCH_array = (array); \
292 for (i = 0; i < max; i++) \
293 for (j = 0; j < max; j++) \
294 if (_SEARCH_array[i][j] == _SEARCH_target) \
295 @{ value = i; goto found; @} \
302 Local label declarations also make the labels they declare visible to
303 nested functions, if there are any. @xref{Nested Functions}, for details.
305 @node Labels as Values
306 @section Labels as Values
307 @cindex labels as values
308 @cindex computed gotos
309 @cindex goto with computed label
310 @cindex address of a label
312 You can get the address of a label defined in the current function
313 (or a containing function) with the unary operator @samp{&&}. The
314 value has type @code{void *}. This value is a constant and can be used
315 wherever a constant of that type is valid. For example:
323 To use these values, you need to be able to jump to one. This is done
324 with the computed goto statement@footnote{The analogous feature in
325 Fortran is called an assigned goto, but that name seems inappropriate in
326 C, where one can do more than simply store label addresses in label
327 variables.}, @code{goto *@var{exp};}. For example,
334 Any expression of type @code{void *} is allowed.
336 One way of using these constants is in initializing a static array that
337 serves as a jump table:
340 static void *array[] = @{ &&foo, &&bar, &&hack @};
344 Then you can select a label with indexing, like this:
351 Note that this does not check whether the subscript is in bounds---array
352 indexing in C never does that.
354 Such an array of label values serves a purpose much like that of the
355 @code{switch} statement. The @code{switch} statement is cleaner, so
356 use that rather than an array unless the problem does not fit a
357 @code{switch} statement very well.
359 Another use of label values is in an interpreter for threaded code.
360 The labels within the interpreter function can be stored in the
361 threaded code for super-fast dispatching.
363 You may not use this mechanism to jump to code in a different function.
364 If you do that, totally unpredictable things happen. The best way to
365 avoid this is to store the label address only in automatic variables and
366 never pass it as an argument.
368 An alternate way to write the above example is
371 static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
373 goto *(&&foo + array[i]);
377 This is more friendly to code living in shared libraries, as it reduces
378 the number of dynamic relocations that are needed, and by consequence,
379 allows the data to be read-only.
380 This alternative with label differences is not supported for the AVR target,
381 please use the first approach for AVR programs.
383 The @code{&&foo} expressions for the same label might have different
384 values if the containing function is inlined or cloned. If a program
385 relies on them being always the same,
386 @code{__attribute__((__noinline__,__noclone__))} should be used to
387 prevent inlining and cloning. If @code{&&foo} is used in a static
388 variable initializer, inlining and cloning is forbidden.
390 @node Nested Functions
391 @section Nested Functions
392 @cindex nested functions
393 @cindex downward funargs
396 A @dfn{nested function} is a function defined inside another function.
397 Nested functions are supported as an extension in GNU C, but are not
398 supported by GNU C++.
400 The nested function's name is local to the block where it is defined.
401 For example, here we define a nested function named @code{square}, and
406 foo (double a, double b)
408 double square (double z) @{ return z * z; @}
410 return square (a) + square (b);
415 The nested function can access all the variables of the containing
416 function that are visible at the point of its definition. This is
417 called @dfn{lexical scoping}. For example, here we show a nested
418 function which uses an inherited variable named @code{offset}:
422 bar (int *array, int offset, int size)
424 int access (int *array, int index)
425 @{ return array[index + offset]; @}
428 for (i = 0; i < size; i++)
429 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
434 Nested function definitions are permitted within functions in the places
435 where variable definitions are allowed; that is, in any block, mixed
436 with the other declarations and statements in the block.
438 It is possible to call the nested function from outside the scope of its
439 name by storing its address or passing the address to another function:
442 hack (int *array, int size)
444 void store (int index, int value)
445 @{ array[index] = value; @}
447 intermediate (store, size);
451 Here, the function @code{intermediate} receives the address of
452 @code{store} as an argument. If @code{intermediate} calls @code{store},
453 the arguments given to @code{store} are used to store into @code{array}.
454 But this technique works only so long as the containing function
455 (@code{hack}, in this example) does not exit.
457 If you try to call the nested function through its address after the
458 containing function exits, all hell breaks loose. If you try
459 to call it after a containing scope level exits, and if it refers
460 to some of the variables that are no longer in scope, you may be lucky,
461 but it's not wise to take the risk. If, however, the nested function
462 does not refer to anything that has gone out of scope, you should be
465 GCC implements taking the address of a nested function using a technique
466 called @dfn{trampolines}. This technique was described in
467 @cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
468 C++ Conference Proceedings, October 17-21, 1988).
470 A nested function can jump to a label inherited from a containing
471 function, provided the label is explicitly declared in the containing
472 function (@pxref{Local Labels}). Such a jump returns instantly to the
473 containing function, exiting the nested function that did the
474 @code{goto} and any intermediate functions as well. Here is an example:
478 bar (int *array, int offset, int size)
481 int access (int *array, int index)
485 return array[index + offset];
489 for (i = 0; i < size; i++)
490 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
494 /* @r{Control comes here from @code{access}
495 if it detects an error.} */
502 A nested function always has no linkage. Declaring one with
503 @code{extern} or @code{static} is erroneous. If you need to declare the nested function
504 before its definition, use @code{auto} (which is otherwise meaningless
505 for function declarations).
508 bar (int *array, int offset, int size)
511 auto int access (int *, int);
513 int access (int *array, int index)
517 return array[index + offset];
523 @node Constructing Calls
524 @section Constructing Function Calls
525 @cindex constructing calls
526 @cindex forwarding calls
528 Using the built-in functions described below, you can record
529 the arguments a function received, and call another function
530 with the same arguments, without knowing the number or types
533 You can also record the return value of that function call,
534 and later return that value, without knowing what data type
535 the function tried to return (as long as your caller expects
538 However, these built-in functions may interact badly with some
539 sophisticated features or other extensions of the language. It
540 is, therefore, not recommended to use them outside very simple
541 functions acting as mere forwarders for their arguments.
543 @deftypefn {Built-in Function} {void *} __builtin_apply_args ()
544 This built-in function returns a pointer to data
545 describing how to perform a call with the same arguments as are passed
546 to the current function.
548 The function saves the arg pointer register, structure value address,
549 and all registers that might be used to pass arguments to a function
550 into a block of memory allocated on the stack. Then it returns the
551 address of that block.
554 @deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
555 This built-in function invokes @var{function}
556 with a copy of the parameters described by @var{arguments}
559 The value of @var{arguments} should be the value returned by
560 @code{__builtin_apply_args}. The argument @var{size} specifies the size
561 of the stack argument data, in bytes.
563 This function returns a pointer to data describing
564 how to return whatever value is returned by @var{function}. The data
565 is saved in a block of memory allocated on the stack.
567 It is not always simple to compute the proper value for @var{size}. The
568 value is used by @code{__builtin_apply} to compute the amount of data
569 that should be pushed on the stack and copied from the incoming argument
573 @deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
574 This built-in function returns the value described by @var{result} from
575 the containing function. You should specify, for @var{result}, a value
576 returned by @code{__builtin_apply}.
579 @deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
580 This built-in function represents all anonymous arguments of an inline
581 function. It can be used only in inline functions that are always
582 inlined, never compiled as a separate function, such as those using
583 @code{__attribute__ ((__always_inline__))} or
584 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
585 It must be only passed as last argument to some other function
586 with variable arguments. This is useful for writing small wrapper
587 inlines for variable argument functions, when using preprocessor
588 macros is undesirable. For example:
590 extern int myprintf (FILE *f, const char *format, ...);
591 extern inline __attribute__ ((__gnu_inline__)) int
592 myprintf (FILE *f, const char *format, ...)
594 int r = fprintf (f, "myprintf: ");
597 int s = fprintf (f, format, __builtin_va_arg_pack ());
605 @deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
606 This built-in function returns the number of anonymous arguments of
607 an inline function. It can be used only in inline functions that
608 are always inlined, never compiled as a separate function, such
609 as those using @code{__attribute__ ((__always_inline__))} or
610 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
611 For example following does link- or run-time checking of open
612 arguments for optimized code:
615 extern inline __attribute__((__gnu_inline__)) int
616 myopen (const char *path, int oflag, ...)
618 if (__builtin_va_arg_pack_len () > 1)
619 warn_open_too_many_arguments ();
621 if (__builtin_constant_p (oflag))
623 if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
625 warn_open_missing_mode ();
626 return __open_2 (path, oflag);
628 return open (path, oflag, __builtin_va_arg_pack ());
631 if (__builtin_va_arg_pack_len () < 1)
632 return __open_2 (path, oflag);
634 return open (path, oflag, __builtin_va_arg_pack ());
641 @section Referring to a Type with @code{typeof}
644 @cindex macros, types of arguments
646 Another way to refer to the type of an expression is with @code{typeof}.
647 The syntax of using of this keyword looks like @code{sizeof}, but the
648 construct acts semantically like a type name defined with @code{typedef}.
650 There are two ways of writing the argument to @code{typeof}: with an
651 expression or with a type. Here is an example with an expression:
658 This assumes that @code{x} is an array of pointers to functions;
659 the type described is that of the values of the functions.
661 Here is an example with a typename as the argument:
668 Here the type described is that of pointers to @code{int}.
670 If you are writing a header file that must work when included in ISO C
671 programs, write @code{__typeof__} instead of @code{typeof}.
672 @xref{Alternate Keywords}.
674 A @code{typeof} construct can be used anywhere a typedef name can be
675 used. For example, you can use it in a declaration, in a cast, or inside
676 of @code{sizeof} or @code{typeof}.
678 The operand of @code{typeof} is evaluated for its side effects if and
679 only if it is an expression of variably modified type or the name of
682 @code{typeof} is often useful in conjunction with
683 statement expressions (@pxref{Statement Exprs}).
684 Here is how the two together can
685 be used to define a safe ``maximum'' macro which operates on any
686 arithmetic type and evaluates each of its arguments exactly once:
690 (@{ typeof (a) _a = (a); \
691 typeof (b) _b = (b); \
692 _a > _b ? _a : _b; @})
695 @cindex underscores in variables in macros
696 @cindex @samp{_} in variables in macros
697 @cindex local variables in macros
698 @cindex variables, local, in macros
699 @cindex macros, local variables in
701 The reason for using names that start with underscores for the local
702 variables is to avoid conflicts with variable names that occur within the
703 expressions that are substituted for @code{a} and @code{b}. Eventually we
704 hope to design a new form of declaration syntax that allows you to declare
705 variables whose scopes start only after their initializers; this will be a
706 more reliable way to prevent such conflicts.
709 Some more examples of the use of @code{typeof}:
713 This declares @code{y} with the type of what @code{x} points to.
720 This declares @code{y} as an array of such values.
727 This declares @code{y} as an array of pointers to characters:
730 typeof (typeof (char *)[4]) y;
734 It is equivalent to the following traditional C declaration:
740 To see the meaning of the declaration using @code{typeof}, and why it
741 might be a useful way to write, rewrite it with these macros:
744 #define pointer(T) typeof(T *)
745 #define array(T, N) typeof(T [N])
749 Now the declaration can be rewritten this way:
752 array (pointer (char), 4) y;
756 Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
757 pointers to @code{char}.
760 In GNU C, but not GNU C++, you may also declare the type of a variable
761 as @code{__auto_type}. In that case, the declaration must declare
762 only one variable, whose declarator must just be an identifier, the
763 declaration must be initialized, and the type of the variable is
764 determined by the initializer; the name of the variable is not in
765 scope until after the initializer. (In C++, you should use C++11
766 @code{auto} for this purpose.) Using @code{__auto_type}, the
767 ``maximum'' macro above could be written as:
771 (@{ __auto_type _a = (a); \
772 __auto_type _b = (b); \
773 _a > _b ? _a : _b; @})
776 Using @code{__auto_type} instead of @code{typeof} has two advantages:
779 @item Each argument to the macro appears only once in the expansion of
780 the macro. This prevents the size of the macro expansion growing
781 exponentially when calls to such macros are nested inside arguments of
784 @item If the argument to the macro has variably modified type, it is
785 evaluated only once when using @code{__auto_type}, but twice if
786 @code{typeof} is used.
790 @section Conditionals with Omitted Operands
791 @cindex conditional expressions, extensions
792 @cindex omitted middle-operands
793 @cindex middle-operands, omitted
794 @cindex extensions, @code{?:}
795 @cindex @code{?:} extensions
797 The middle operand in a conditional expression may be omitted. Then
798 if the first operand is nonzero, its value is the value of the conditional
801 Therefore, the expression
808 has the value of @code{x} if that is nonzero; otherwise, the value of
811 This example is perfectly equivalent to
817 @cindex side effect in @code{?:}
818 @cindex @code{?:} side effect
820 In this simple case, the ability to omit the middle operand is not
821 especially useful. When it becomes useful is when the first operand does,
822 or may (if it is a macro argument), contain a side effect. Then repeating
823 the operand in the middle would perform the side effect twice. Omitting
824 the middle operand uses the value already computed without the undesirable
825 effects of recomputing it.
828 @section 128-bit Integers
829 @cindex @code{__int128} data types
831 As an extension the integer scalar type @code{__int128} is supported for
832 targets which have an integer mode wide enough to hold 128 bits.
833 Simply write @code{__int128} for a signed 128-bit integer, or
834 @code{unsigned __int128} for an unsigned 128-bit integer. There is no
835 support in GCC for expressing an integer constant of type @code{__int128}
836 for targets with @code{long long} integer less than 128 bits wide.
839 @section Double-Word Integers
840 @cindex @code{long long} data types
841 @cindex double-word arithmetic
842 @cindex multiprecision arithmetic
843 @cindex @code{LL} integer suffix
844 @cindex @code{ULL} integer suffix
846 ISO C99 and ISO C++11 support data types for integers that are at least
847 64 bits wide, and as an extension GCC supports them in C90 and C++98 modes.
848 Simply write @code{long long int} for a signed integer, or
849 @code{unsigned long long int} for an unsigned integer. To make an
850 integer constant of type @code{long long int}, add the suffix @samp{LL}
851 to the integer. To make an integer constant of type @code{unsigned long
852 long int}, add the suffix @samp{ULL} to the integer.
854 You can use these types in arithmetic like any other integer types.
855 Addition, subtraction, and bitwise boolean operations on these types
856 are open-coded on all types of machines. Multiplication is open-coded
857 if the machine supports a fullword-to-doubleword widening multiply
858 instruction. Division and shifts are open-coded only on machines that
859 provide special support. The operations that are not open-coded use
860 special library routines that come with GCC@.
862 There may be pitfalls when you use @code{long long} types for function
863 arguments without function prototypes. If a function
864 expects type @code{int} for its argument, and you pass a value of type
865 @code{long long int}, confusion results because the caller and the
866 subroutine disagree about the number of bytes for the argument.
867 Likewise, if the function expects @code{long long int} and you pass
868 @code{int}. The best way to avoid such problems is to use prototypes.
871 @section Complex Numbers
872 @cindex complex numbers
873 @cindex @code{_Complex} keyword
874 @cindex @code{__complex__} keyword
876 ISO C99 supports complex floating data types, and as an extension GCC
877 supports them in C90 mode and in C++. GCC also supports complex integer data
878 types which are not part of ISO C99. You can declare complex types
879 using the keyword @code{_Complex}. As an extension, the older GNU
880 keyword @code{__complex__} is also supported.
882 For example, @samp{_Complex double x;} declares @code{x} as a
883 variable whose real part and imaginary part are both of type
884 @code{double}. @samp{_Complex short int y;} declares @code{y} to
885 have real and imaginary parts of type @code{short int}; this is not
886 likely to be useful, but it shows that the set of complex types is
889 To write a constant with a complex data type, use the suffix @samp{i} or
890 @samp{j} (either one; they are equivalent). For example, @code{2.5fi}
891 has type @code{_Complex float} and @code{3i} has type
892 @code{_Complex int}. Such a constant always has a pure imaginary
893 value, but you can form any complex value you like by adding one to a
894 real constant. This is a GNU extension; if you have an ISO C99
895 conforming C library (such as the GNU C Library), and want to construct complex
896 constants of floating type, you should include @code{<complex.h>} and
897 use the macros @code{I} or @code{_Complex_I} instead.
899 The ISO C++14 library also defines the @samp{i} suffix, so C++14 code
900 that includes the @samp{<complex>} header cannot use @samp{i} for the
901 GNU extension. The @samp{j} suffix still has the GNU meaning.
903 @cindex @code{__real__} keyword
904 @cindex @code{__imag__} keyword
905 To extract the real part of a complex-valued expression @var{exp}, write
906 @code{__real__ @var{exp}}. Likewise, use @code{__imag__} to
907 extract the imaginary part. This is a GNU extension; for values of
908 floating type, you should use the ISO C99 functions @code{crealf},
909 @code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
910 @code{cimagl}, declared in @code{<complex.h>} and also provided as
911 built-in functions by GCC@.
913 @cindex complex conjugation
914 The operator @samp{~} performs complex conjugation when used on a value
915 with a complex type. This is a GNU extension; for values of
916 floating type, you should use the ISO C99 functions @code{conjf},
917 @code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
918 provided as built-in functions by GCC@.
920 GCC can allocate complex automatic variables in a noncontiguous
921 fashion; it's even possible for the real part to be in a register while
922 the imaginary part is on the stack (or vice versa). Only the DWARF
923 debug info format can represent this, so use of DWARF is recommended.
924 If you are using the stabs debug info format, GCC describes a noncontiguous
925 complex variable as if it were two separate variables of noncomplex type.
926 If the variable's actual name is @code{foo}, the two fictitious
927 variables are named @code{foo$real} and @code{foo$imag}. You can
928 examine and set these two fictitious variables with your debugger.
931 @section Additional Floating Types
932 @cindex additional floating types
933 @cindex @code{_Float@var{n}} data types
934 @cindex @code{_Float@var{n}x} data types
935 @cindex @code{__float80} data type
936 @cindex @code{__float128} data type
937 @cindex @code{__ibm128} data type
938 @cindex @code{w} floating point suffix
939 @cindex @code{q} floating point suffix
940 @cindex @code{W} floating point suffix
941 @cindex @code{Q} floating point suffix
943 ISO/IEC TS 18661-3:2015 defines C support for additional floating
944 types @code{_Float@var{n}} and @code{_Float@var{n}x}, and GCC supports
945 these type names; the set of types supported depends on the target
946 architecture. These types are not supported when compiling C++.
947 Constants with these types use suffixes @code{f@var{n}} or
948 @code{F@var{n}} and @code{f@var{n}x} or @code{F@var{n}x}. These type
949 names can be used together with @code{_Complex} to declare complex
952 As an extension, GNU C and GNU C++ support additional floating
953 types, which are not supported by all targets.
955 @item @code{__float128} is available on i386, x86_64, IA-64, and
956 hppa HP-UX, as well as on PowerPC GNU/Linux targets that enable
957 the vector scalar (VSX) instruction set. @code{__float128} supports
958 the 128-bit floating type. On i386, x86_64, PowerPC, and IA-64
959 other than HP-UX, @code{__float128} is an alias for @code{_Float128}.
960 On hppa and IA-64 HP-UX, @code{__float128} is an alias for @code{long
963 @item @code{__float80} is available on the i386, x86_64, and IA-64
964 targets, and supports the 80-bit (@code{XFmode}) floating type. It is
965 an alias for the type name @code{_Float64x} on these targets.
967 @item @code{__ibm128} is available on PowerPC targets, and provides
968 access to the IBM extended double format which is the current format
969 used for @code{long double}. When @code{long double} transitions to
970 @code{__float128} on PowerPC in the future, @code{__ibm128} will remain
971 for use in conversions between the two types.
974 Support for these additional types includes the arithmetic operators:
975 add, subtract, multiply, divide; unary arithmetic operators;
976 relational operators; equality operators; and conversions to and from
977 integer and other floating types. Use a suffix @samp{w} or @samp{W}
978 in a literal constant of type @code{__float80} or type
979 @code{__ibm128}. Use a suffix @samp{q} or @samp{Q} for @code{_float128}.
981 In order to use @code{_Float128}, @code{__float128}, and @code{__ibm128}
982 on PowerPC Linux systems, you must use the @option{-mfloat128} option. It is
983 expected in future versions of GCC that @code{_Float128} and @code{__float128}
984 will be enabled automatically.
986 The @code{_Float128} type is supported on all systems where
987 @code{__float128} is supported or where @code{long double} has the
988 IEEE binary128 format. The @code{_Float64x} type is supported on all
989 systems where @code{__float128} is supported. The @code{_Float32}
990 type is supported on all systems supporting IEEE binary32; the
991 @code{_Float64} and @code{_Float32x} types are supported on all systems
992 supporting IEEE binary64. The @code{_Float16} type is supported on AArch64
993 systems by default, and on ARM systems when the IEEE format for 16-bit
994 floating-point types is selected with @option{-mfp16-format=ieee}.
995 GCC does not currently support @code{_Float128x} on any systems.
997 On the i386, x86_64, IA-64, and HP-UX targets, you can declare complex
998 types using the corresponding internal complex type, @code{XCmode} for
999 @code{__float80} type and @code{TCmode} for @code{__float128} type:
1002 typedef _Complex float __attribute__((mode(TC))) _Complex128;
1003 typedef _Complex float __attribute__((mode(XC))) _Complex80;
1006 On the PowerPC Linux VSX targets, you can declare complex types using
1007 the corresponding internal complex type, @code{KCmode} for
1008 @code{__float128} type and @code{ICmode} for @code{__ibm128} type:
1011 typedef _Complex float __attribute__((mode(KC))) _Complex_float128;
1012 typedef _Complex float __attribute__((mode(IC))) _Complex_ibm128;
1015 @node Half-Precision
1016 @section Half-Precision Floating Point
1017 @cindex half-precision floating point
1018 @cindex @code{__fp16} data type
1020 On ARM and AArch64 targets, GCC supports half-precision (16-bit) floating
1021 point via the @code{__fp16} type defined in the ARM C Language Extensions.
1022 On ARM systems, you must enable this type explicitly with the
1023 @option{-mfp16-format} command-line option in order to use it.
1025 ARM targets support two incompatible representations for half-precision
1026 floating-point values. You must choose one of the representations and
1027 use it consistently in your program.
1029 Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
1030 This format can represent normalized values in the range of @math{2^{-14}} to 65504.
1031 There are 11 bits of significand precision, approximately 3
1034 Specifying @option{-mfp16-format=alternative} selects the ARM
1035 alternative format. This representation is similar to the IEEE
1036 format, but does not support infinities or NaNs. Instead, the range
1037 of exponents is extended, so that this format can represent normalized
1038 values in the range of @math{2^{-14}} to 131008.
1040 The GCC port for AArch64 only supports the IEEE 754-2008 format, and does
1041 not require use of the @option{-mfp16-format} command-line option.
1043 The @code{__fp16} type may only be used as an argument to intrinsics defined
1044 in @code{<arm_fp16.h>}, or as a storage format. For purposes of
1045 arithmetic and other operations, @code{__fp16} values in C or C++
1046 expressions are automatically promoted to @code{float}.
1048 The ARM target provides hardware support for conversions between
1049 @code{__fp16} and @code{float} values
1050 as an extension to VFP and NEON (Advanced SIMD), and from ARMv8-A provides
1051 hardware support for conversions between @code{__fp16} and @code{double}
1052 values. GCC generates code using these hardware instructions if you
1053 compile with options to select an FPU that provides them;
1054 for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
1055 in addition to the @option{-mfp16-format} option to select
1056 a half-precision format.
1058 Language-level support for the @code{__fp16} data type is
1059 independent of whether GCC generates code using hardware floating-point
1060 instructions. In cases where hardware support is not specified, GCC
1061 implements conversions between @code{__fp16} and other types as library
1064 It is recommended that portable code use the @code{_Float16} type defined
1065 by ISO/IEC TS 18661-3:2015. @xref{Floating Types}.
1068 @section Decimal Floating Types
1069 @cindex decimal floating types
1070 @cindex @code{_Decimal32} data type
1071 @cindex @code{_Decimal64} data type
1072 @cindex @code{_Decimal128} data type
1073 @cindex @code{df} integer suffix
1074 @cindex @code{dd} integer suffix
1075 @cindex @code{dl} integer suffix
1076 @cindex @code{DF} integer suffix
1077 @cindex @code{DD} integer suffix
1078 @cindex @code{DL} integer suffix
1080 As an extension, GNU C supports decimal floating types as
1081 defined in the N1312 draft of ISO/IEC WDTR24732. Support for decimal
1082 floating types in GCC will evolve as the draft technical report changes.
1083 Calling conventions for any target might also change. Not all targets
1084 support decimal floating types.
1086 The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
1087 @code{_Decimal128}. They use a radix of ten, unlike the floating types
1088 @code{float}, @code{double}, and @code{long double} whose radix is not
1089 specified by the C standard but is usually two.
1091 Support for decimal floating types includes the arithmetic operators
1092 add, subtract, multiply, divide; unary arithmetic operators;
1093 relational operators; equality operators; and conversions to and from
1094 integer and other floating types. Use a suffix @samp{df} or
1095 @samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
1096 or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
1099 GCC support of decimal float as specified by the draft technical report
1104 When the value of a decimal floating type cannot be represented in the
1105 integer type to which it is being converted, the result is undefined
1106 rather than the result value specified by the draft technical report.
1109 GCC does not provide the C library functionality associated with
1110 @file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
1111 @file{wchar.h}, which must come from a separate C library implementation.
1112 Because of this the GNU C compiler does not define macro
1113 @code{__STDC_DEC_FP__} to indicate that the implementation conforms to
1114 the technical report.
1117 Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
1118 are supported by the DWARF debug information format.
1124 ISO C99 and ISO C++17 support floating-point numbers written not only in
1125 the usual decimal notation, such as @code{1.55e1}, but also numbers such as
1126 @code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC
1127 supports this in C90 mode (except in some cases when strictly
1128 conforming) and in C++98, C++11 and C++14 modes. In that format the
1129 @samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
1130 mandatory. The exponent is a decimal number that indicates the power of
1131 2 by which the significant part is multiplied. Thus @samp{0x1.f} is
1138 @samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
1139 is the same as @code{1.55e1}.
1141 Unlike for floating-point numbers in the decimal notation the exponent
1142 is always required in the hexadecimal notation. Otherwise the compiler
1143 would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This
1144 could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
1145 extension for floating-point constants of type @code{float}.
1148 @section Fixed-Point Types
1149 @cindex fixed-point types
1150 @cindex @code{_Fract} data type
1151 @cindex @code{_Accum} data type
1152 @cindex @code{_Sat} data type
1153 @cindex @code{hr} fixed-suffix
1154 @cindex @code{r} fixed-suffix
1155 @cindex @code{lr} fixed-suffix
1156 @cindex @code{llr} fixed-suffix
1157 @cindex @code{uhr} fixed-suffix
1158 @cindex @code{ur} fixed-suffix
1159 @cindex @code{ulr} fixed-suffix
1160 @cindex @code{ullr} fixed-suffix
1161 @cindex @code{hk} fixed-suffix
1162 @cindex @code{k} fixed-suffix
1163 @cindex @code{lk} fixed-suffix
1164 @cindex @code{llk} fixed-suffix
1165 @cindex @code{uhk} fixed-suffix
1166 @cindex @code{uk} fixed-suffix
1167 @cindex @code{ulk} fixed-suffix
1168 @cindex @code{ullk} fixed-suffix
1169 @cindex @code{HR} fixed-suffix
1170 @cindex @code{R} fixed-suffix
1171 @cindex @code{LR} fixed-suffix
1172 @cindex @code{LLR} fixed-suffix
1173 @cindex @code{UHR} fixed-suffix
1174 @cindex @code{UR} fixed-suffix
1175 @cindex @code{ULR} fixed-suffix
1176 @cindex @code{ULLR} fixed-suffix
1177 @cindex @code{HK} fixed-suffix
1178 @cindex @code{K} fixed-suffix
1179 @cindex @code{LK} fixed-suffix
1180 @cindex @code{LLK} fixed-suffix
1181 @cindex @code{UHK} fixed-suffix
1182 @cindex @code{UK} fixed-suffix
1183 @cindex @code{ULK} fixed-suffix
1184 @cindex @code{ULLK} fixed-suffix
1186 As an extension, GNU C supports fixed-point types as
1187 defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
1188 types in GCC will evolve as the draft technical report changes.
1189 Calling conventions for any target might also change. Not all targets
1190 support fixed-point types.
1192 The fixed-point types are
1193 @code{short _Fract},
1196 @code{long long _Fract},
1197 @code{unsigned short _Fract},
1198 @code{unsigned _Fract},
1199 @code{unsigned long _Fract},
1200 @code{unsigned long long _Fract},
1201 @code{_Sat short _Fract},
1203 @code{_Sat long _Fract},
1204 @code{_Sat long long _Fract},
1205 @code{_Sat unsigned short _Fract},
1206 @code{_Sat unsigned _Fract},
1207 @code{_Sat unsigned long _Fract},
1208 @code{_Sat unsigned long long _Fract},
1209 @code{short _Accum},
1212 @code{long long _Accum},
1213 @code{unsigned short _Accum},
1214 @code{unsigned _Accum},
1215 @code{unsigned long _Accum},
1216 @code{unsigned long long _Accum},
1217 @code{_Sat short _Accum},
1219 @code{_Sat long _Accum},
1220 @code{_Sat long long _Accum},
1221 @code{_Sat unsigned short _Accum},
1222 @code{_Sat unsigned _Accum},
1223 @code{_Sat unsigned long _Accum},
1224 @code{_Sat unsigned long long _Accum}.
1226 Fixed-point data values contain fractional and optional integral parts.
1227 The format of fixed-point data varies and depends on the target machine.
1229 Support for fixed-point types includes:
1232 prefix and postfix increment and decrement operators (@code{++}, @code{--})
1234 unary arithmetic operators (@code{+}, @code{-}, @code{!})
1236 binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
1238 binary shift operators (@code{<<}, @code{>>})
1240 relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
1242 equality operators (@code{==}, @code{!=})
1244 assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
1245 @code{<<=}, @code{>>=})
1247 conversions to and from integer, floating-point, or fixed-point types
1250 Use a suffix in a fixed-point literal constant:
1252 @item @samp{hr} or @samp{HR} for @code{short _Fract} and
1253 @code{_Sat short _Fract}
1254 @item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
1255 @item @samp{lr} or @samp{LR} for @code{long _Fract} and
1256 @code{_Sat long _Fract}
1257 @item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1258 @code{_Sat long long _Fract}
1259 @item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1260 @code{_Sat unsigned short _Fract}
1261 @item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1262 @code{_Sat unsigned _Fract}
1263 @item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1264 @code{_Sat unsigned long _Fract}
1265 @item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1266 and @code{_Sat unsigned long long _Fract}
1267 @item @samp{hk} or @samp{HK} for @code{short _Accum} and
1268 @code{_Sat short _Accum}
1269 @item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
1270 @item @samp{lk} or @samp{LK} for @code{long _Accum} and
1271 @code{_Sat long _Accum}
1272 @item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1273 @code{_Sat long long _Accum}
1274 @item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1275 @code{_Sat unsigned short _Accum}
1276 @item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1277 @code{_Sat unsigned _Accum}
1278 @item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1279 @code{_Sat unsigned long _Accum}
1280 @item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1281 and @code{_Sat unsigned long long _Accum}
1284 GCC support of fixed-point types as specified by the draft technical report
1289 Pragmas to control overflow and rounding behaviors are not implemented.
1292 Fixed-point types are supported by the DWARF debug information format.
1294 @node Named Address Spaces
1295 @section Named Address Spaces
1296 @cindex Named Address Spaces
1298 As an extension, GNU C supports named address spaces as
1299 defined in the N1275 draft of ISO/IEC DTR 18037. Support for named
1300 address spaces in GCC will evolve as the draft technical report
1301 changes. Calling conventions for any target might also change. At
1302 present, only the AVR, SPU, M32C, RL78, and x86 targets support
1303 address spaces other than the generic address space.
1305 Address space identifiers may be used exactly like any other C type
1306 qualifier (e.g., @code{const} or @code{volatile}). See the N1275
1307 document for more details.
1309 @anchor{AVR Named Address Spaces}
1310 @subsection AVR Named Address Spaces
1312 On the AVR target, there are several address spaces that can be used
1313 in order to put read-only data into the flash memory and access that
1314 data by means of the special instructions @code{LPM} or @code{ELPM}
1315 needed to read from flash.
1317 Devices belonging to @code{avrtiny} and @code{avrxmega3} can access
1318 flash memory by means of @code{LD*} instructions because the flash
1319 memory is mapped into the RAM address space. There is @emph{no need}
1320 for language extensions like @code{__flash} or attribute
1321 @ref{AVR Variable Attributes,,@code{progmem}}.
1322 The default linker description files for these devices cater for that
1323 feature and @code{.rodata} stays in flash: The compiler just generates
1324 @code{LD*} instructions, and the linker script adds core specific
1325 offsets to all @code{.rodata} symbols: @code{0x4000} in the case of
1326 @code{avrtiny} and @code{0x8000} in the case of @code{avrxmega3}.
1327 See @ref{AVR Options} for a list of respective devices.
1329 For devices not in @code{avrtiny} or @code{avrxmega3},
1330 any data including read-only data is located in RAM (the generic
1331 address space) because flash memory is not visible in the RAM address
1332 space. In order to locate read-only data in flash memory @emph{and}
1333 to generate the right instructions to access this data without
1334 using (inline) assembler code, special address spaces are needed.
1338 @cindex @code{__flash} AVR Named Address Spaces
1339 The @code{__flash} qualifier locates data in the
1340 @code{.progmem.data} section. Data is read using the @code{LPM}
1341 instruction. Pointers to this address space are 16 bits wide.
1348 @cindex @code{__flash1} AVR Named Address Spaces
1349 @cindex @code{__flash2} AVR Named Address Spaces
1350 @cindex @code{__flash3} AVR Named Address Spaces
1351 @cindex @code{__flash4} AVR Named Address Spaces
1352 @cindex @code{__flash5} AVR Named Address Spaces
1353 These are 16-bit address spaces locating data in section
1354 @code{.progmem@var{N}.data} where @var{N} refers to
1355 address space @code{__flash@var{N}}.
1356 The compiler sets the @code{RAMPZ} segment register appropriately
1357 before reading data by means of the @code{ELPM} instruction.
1360 @cindex @code{__memx} AVR Named Address Spaces
1361 This is a 24-bit address space that linearizes flash and RAM:
1362 If the high bit of the address is set, data is read from
1363 RAM using the lower two bytes as RAM address.
1364 If the high bit of the address is clear, data is read from flash
1365 with @code{RAMPZ} set according to the high byte of the address.
1366 @xref{AVR Built-in Functions,,@code{__builtin_avr_flash_segment}}.
1368 Objects in this address space are located in @code{.progmemx.data}.
1374 char my_read (const __flash char ** p)
1376 /* p is a pointer to RAM that points to a pointer to flash.
1377 The first indirection of p reads that flash pointer
1378 from RAM and the second indirection reads a char from this
1384 /* Locate array[] in flash memory */
1385 const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};
1391 /* Return 17 by reading from flash memory */
1392 return array[array[i]];
1397 For each named address space supported by avr-gcc there is an equally
1398 named but uppercase built-in macro defined.
1399 The purpose is to facilitate testing if respective address space
1400 support is available or not:
1404 const __flash int var = 1;
1411 #include <avr/pgmspace.h> /* From AVR-LibC */
1413 const int var PROGMEM = 1;
1417 return (int) pgm_read_word (&var);
1419 #endif /* __FLASH */
1423 Notice that attribute @ref{AVR Variable Attributes,,@code{progmem}}
1424 locates data in flash but
1425 accesses to these data read from generic address space, i.e.@:
1427 so that you need special accessors like @code{pgm_read_byte}
1428 from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}}
1429 together with attribute @code{progmem}.
1432 @b{Limitations and caveats}
1436 Reading across the 64@tie{}KiB section boundary of
1437 the @code{__flash} or @code{__flash@var{N}} address spaces
1438 shows undefined behavior. The only address space that
1439 supports reading across the 64@tie{}KiB flash segment boundaries is
1443 If you use one of the @code{__flash@var{N}} address spaces
1444 you must arrange your linker script to locate the
1445 @code{.progmem@var{N}.data} sections according to your needs.
1448 Any data or pointers to the non-generic address spaces must
1449 be qualified as @code{const}, i.e.@: as read-only data.
1450 This still applies if the data in one of these address
1451 spaces like software version number or calibration lookup table are intended to
1452 be changed after load time by, say, a boot loader. In this case
1453 the right qualification is @code{const} @code{volatile} so that the compiler
1454 must not optimize away known values or insert them
1455 as immediates into operands of instructions.
1458 The following code initializes a variable @code{pfoo}
1459 located in static storage with a 24-bit address:
1461 extern const __memx char foo;
1462 const __memx void *pfoo = &foo;
1466 On the reduced Tiny devices like ATtiny40, no address spaces are supported.
1467 Just use vanilla C / C++ code without overhead as outlined above.
1468 Attribute @code{progmem} is supported but works differently,
1469 see @ref{AVR Variable Attributes}.
1473 @subsection M32C Named Address Spaces
1474 @cindex @code{__far} M32C Named Address Spaces
1476 On the M32C target, with the R8C and M16C CPU variants, variables
1477 qualified with @code{__far} are accessed using 32-bit addresses in
1478 order to access memory beyond the first 64@tie{}Ki bytes. If
1479 @code{__far} is used with the M32CM or M32C CPU variants, it has no
1482 @subsection RL78 Named Address Spaces
1483 @cindex @code{__far} RL78 Named Address Spaces
1485 On the RL78 target, variables qualified with @code{__far} are accessed
1486 with 32-bit pointers (20-bit addresses) rather than the default 16-bit
1487 addresses. Non-far variables are assumed to appear in the topmost
1488 64@tie{}KiB of the address space.
1490 @subsection SPU Named Address Spaces
1491 @cindex @code{__ea} SPU Named Address Spaces
1493 On the SPU target variables may be declared as
1494 belonging to another address space by qualifying the type with the
1495 @code{__ea} address space identifier:
1502 The compiler generates special code to access the variable @code{i}.
1503 It may use runtime library
1504 support, or generate special machine instructions to access that address
1507 @subsection x86 Named Address Spaces
1508 @cindex x86 named address spaces
1510 On the x86 target, variables may be declared as being relative
1511 to the @code{%fs} or @code{%gs} segments.
1516 @cindex @code{__seg_fs} x86 named address space
1517 @cindex @code{__seg_gs} x86 named address space
1518 The object is accessed with the respective segment override prefix.
1520 The respective segment base must be set via some method specific to
1521 the operating system. Rather than require an expensive system call
1522 to retrieve the segment base, these address spaces are not considered
1523 to be subspaces of the generic (flat) address space. This means that
1524 explicit casts are required to convert pointers between these address
1525 spaces and the generic address space. In practice the application
1526 should cast to @code{uintptr_t} and apply the segment base offset
1527 that it installed previously.
1529 The preprocessor symbols @code{__SEG_FS} and @code{__SEG_GS} are
1530 defined when these address spaces are supported.
1534 @section Arrays of Length Zero
1535 @cindex arrays of length zero
1536 @cindex zero-length arrays
1537 @cindex length-zero arrays
1538 @cindex flexible array members
1540 Declaring zero-length arrays is allowed in GNU C as an extension.
1541 A zero-length array can be useful as the last element of a structure
1542 that is really a header for a variable-length object:
1550 struct line *thisline = (struct line *)
1551 malloc (sizeof (struct line) + this_length);
1552 thisline->length = this_length;
1555 Although the size of a zero-length array is zero, an array member of
1556 this kind may increase the size of the enclosing type as a result of tail
1557 padding. The offset of a zero-length array member from the beginning
1558 of the enclosing structure is the same as the offset of an array with
1559 one or more elements of the same type. The alignment of a zero-length
1560 array is the same as the alignment of its elements.
1562 Declaring zero-length arrays in other contexts, including as interior
1563 members of structure objects or as non-member objects, is discouraged.
1564 Accessing elements of zero-length arrays declared in such contexts is
1565 undefined and may be diagnosed.
1567 In the absence of the zero-length array extension, in ISO C90
1568 the @code{contents} array in the example above would typically be declared
1569 to have a single element. Unlike a zero-length array which only contributes
1570 to the size of the enclosing structure for the purposes of alignment,
1571 a one-element array always occupies at least as much space as a single
1572 object of the type. Although using one-element arrays this way is
1573 discouraged, GCC handles accesses to trailing one-element array members
1574 analogously to zero-length arrays.
1576 The preferred mechanism to declare variable-length types like
1577 @code{struct line} above is the ISO C99 @dfn{flexible array member},
1578 with slightly different syntax and semantics:
1582 Flexible array members are written as @code{contents[]} without
1586 Flexible array members have incomplete type, and so the @code{sizeof}
1587 operator may not be applied. As a quirk of the original implementation
1588 of zero-length arrays, @code{sizeof} evaluates to zero.
1591 Flexible array members may only appear as the last member of a
1592 @code{struct} that is otherwise non-empty.
1595 A structure containing a flexible array member, or a union containing
1596 such a structure (possibly recursively), may not be a member of a
1597 structure or an element of an array. (However, these uses are
1598 permitted by GCC as extensions.)
1601 Non-empty initialization of zero-length
1602 arrays is treated like any case where there are more initializer
1603 elements than the array holds, in that a suitable warning about ``excess
1604 elements in array'' is given, and the excess elements (all of them, in
1605 this case) are ignored.
1607 GCC allows static initialization of flexible array members.
1608 This is equivalent to defining a new structure containing the original
1609 structure followed by an array of sufficient size to contain the data.
1610 E.g.@: in the following, @code{f1} is constructed as if it were declared
1616 @} f1 = @{ 1, @{ 2, 3, 4 @} @};
1619 struct f1 f1; int data[3];
1620 @} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
1624 The convenience of this extension is that @code{f1} has the desired
1625 type, eliminating the need to consistently refer to @code{f2.f1}.
1627 This has symmetry with normal static arrays, in that an array of
1628 unknown size is also written with @code{[]}.
1630 Of course, this extension only makes sense if the extra data comes at
1631 the end of a top-level object, as otherwise we would be overwriting
1632 data at subsequent offsets. To avoid undue complication and confusion
1633 with initialization of deeply nested arrays, we simply disallow any
1634 non-empty initialization except when the structure is the top-level
1635 object. For example:
1638 struct foo @{ int x; int y[]; @};
1639 struct bar @{ struct foo z; @};
1641 struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.}
1642 struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1643 struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.}
1644 struct foo d[1] = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1647 @node Empty Structures
1648 @section Structures with No Members
1649 @cindex empty structures
1650 @cindex zero-size structures
1652 GCC permits a C structure to have no members:
1659 The structure has size zero. In C++, empty structures are part
1660 of the language. G++ treats empty structures as if they had a single
1661 member of type @code{char}.
1663 @node Variable Length
1664 @section Arrays of Variable Length
1665 @cindex variable-length arrays
1666 @cindex arrays of variable length
1669 Variable-length automatic arrays are allowed in ISO C99, and as an
1670 extension GCC accepts them in C90 mode and in C++. These arrays are
1671 declared like any other automatic arrays, but with a length that is not
1672 a constant expression. The storage is allocated at the point of
1673 declaration and deallocated when the block scope containing the declaration
1679 concat_fopen (char *s1, char *s2, char *mode)
1681 char str[strlen (s1) + strlen (s2) + 1];
1684 return fopen (str, mode);
1688 @cindex scope of a variable length array
1689 @cindex variable-length array scope
1690 @cindex deallocating variable length arrays
1691 Jumping or breaking out of the scope of the array name deallocates the
1692 storage. Jumping into the scope is not allowed; you get an error
1695 @cindex variable-length array in a structure
1696 As an extension, GCC accepts variable-length arrays as a member of
1697 a structure or a union. For example:
1703 struct S @{ int x[n]; @};
1707 @cindex @code{alloca} vs variable-length arrays
1708 You can use the function @code{alloca} to get an effect much like
1709 variable-length arrays. The function @code{alloca} is available in
1710 many other C implementations (but not in all). On the other hand,
1711 variable-length arrays are more elegant.
1713 There are other differences between these two methods. Space allocated
1714 with @code{alloca} exists until the containing @emph{function} returns.
1715 The space for a variable-length array is deallocated as soon as the array
1716 name's scope ends, unless you also use @code{alloca} in this scope.
1718 You can also use variable-length arrays as arguments to functions:
1722 tester (int len, char data[len][len])
1728 The length of an array is computed once when the storage is allocated
1729 and is remembered for the scope of the array in case you access it with
1732 If you want to pass the array first and the length afterward, you can
1733 use a forward declaration in the parameter list---another GNU extension.
1737 tester (int len; char data[len][len], int len)
1743 @cindex parameter forward declaration
1744 The @samp{int len} before the semicolon is a @dfn{parameter forward
1745 declaration}, and it serves the purpose of making the name @code{len}
1746 known when the declaration of @code{data} is parsed.
1748 You can write any number of such parameter forward declarations in the
1749 parameter list. They can be separated by commas or semicolons, but the
1750 last one must end with a semicolon, which is followed by the ``real''
1751 parameter declarations. Each forward declaration must match a ``real''
1752 declaration in parameter name and data type. ISO C99 does not support
1753 parameter forward declarations.
1755 @node Variadic Macros
1756 @section Macros with a Variable Number of Arguments.
1757 @cindex variable number of arguments
1758 @cindex macro with variable arguments
1759 @cindex rest argument (in macro)
1760 @cindex variadic macros
1762 In the ISO C standard of 1999, a macro can be declared to accept a
1763 variable number of arguments much as a function can. The syntax for
1764 defining the macro is similar to that of a function. Here is an
1768 #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
1772 Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of
1773 such a macro, it represents the zero or more tokens until the closing
1774 parenthesis that ends the invocation, including any commas. This set of
1775 tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1776 wherever it appears. See the CPP manual for more information.
1778 GCC has long supported variadic macros, and used a different syntax that
1779 allowed you to give a name to the variable arguments just like any other
1780 argument. Here is an example:
1783 #define debug(format, args...) fprintf (stderr, format, args)
1787 This is in all ways equivalent to the ISO C example above, but arguably
1788 more readable and descriptive.
1790 GNU CPP has two further variadic macro extensions, and permits them to
1791 be used with either of the above forms of macro definition.
1793 In standard C, you are not allowed to leave the variable argument out
1794 entirely; but you are allowed to pass an empty argument. For example,
1795 this invocation is invalid in ISO C, because there is no comma after
1802 GNU CPP permits you to completely omit the variable arguments in this
1803 way. In the above examples, the compiler would complain, though since
1804 the expansion of the macro still has the extra comma after the format
1807 To help solve this problem, CPP behaves specially for variable arguments
1808 used with the token paste operator, @samp{##}. If instead you write
1811 #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
1815 and if the variable arguments are omitted or empty, the @samp{##}
1816 operator causes the preprocessor to remove the comma before it. If you
1817 do provide some variable arguments in your macro invocation, GNU CPP
1818 does not complain about the paste operation and instead places the
1819 variable arguments after the comma. Just like any other pasted macro
1820 argument, these arguments are not macro expanded.
1822 @node Escaped Newlines
1823 @section Slightly Looser Rules for Escaped Newlines
1824 @cindex escaped newlines
1825 @cindex newlines (escaped)
1827 The preprocessor treatment of escaped newlines is more relaxed
1828 than that specified by the C90 standard, which requires the newline
1829 to immediately follow a backslash.
1830 GCC's implementation allows whitespace in the form
1831 of spaces, horizontal and vertical tabs, and form feeds between the
1832 backslash and the subsequent newline. The preprocessor issues a
1833 warning, but treats it as a valid escaped newline and combines the two
1834 lines to form a single logical line. This works within comments and
1835 tokens, as well as between tokens. Comments are @emph{not} treated as
1836 whitespace for the purposes of this relaxation, since they have not
1837 yet been replaced with spaces.
1840 @section Non-Lvalue Arrays May Have Subscripts
1841 @cindex subscripting
1842 @cindex arrays, non-lvalue
1844 @cindex subscripting and function values
1845 In ISO C99, arrays that are not lvalues still decay to pointers, and
1846 may be subscripted, although they may not be modified or used after
1847 the next sequence point and the unary @samp{&} operator may not be
1848 applied to them. As an extension, GNU C allows such arrays to be
1849 subscripted in C90 mode, though otherwise they do not decay to
1850 pointers outside C99 mode. For example,
1851 this is valid in GNU C though not valid in C90:
1855 struct foo @{int a[4];@};
1861 return f().a[index];
1867 @section Arithmetic on @code{void}- and Function-Pointers
1868 @cindex void pointers, arithmetic
1869 @cindex void, size of pointer to
1870 @cindex function pointers, arithmetic
1871 @cindex function, size of pointer to
1873 In GNU C, addition and subtraction operations are supported on pointers to
1874 @code{void} and on pointers to functions. This is done by treating the
1875 size of a @code{void} or of a function as 1.
1877 A consequence of this is that @code{sizeof} is also allowed on @code{void}
1878 and on function types, and returns 1.
1880 @opindex Wpointer-arith
1881 The option @option{-Wpointer-arith} requests a warning if these extensions
1884 @node Pointers to Arrays
1885 @section Pointers to Arrays with Qualifiers Work as Expected
1886 @cindex pointers to arrays
1887 @cindex const qualifier
1889 In GNU C, pointers to arrays with qualifiers work similar to pointers
1890 to other qualified types. For example, a value of type @code{int (*)[5]}
1891 can be used to initialize a variable of type @code{const int (*)[5]}.
1892 These types are incompatible in ISO C because the @code{const} qualifier
1893 is formally attached to the element type of the array and not the
1898 transpose (int N, int M, double out[M][N], const double in[N][M]);
1902 transpose(3, 2, y, x);
1906 @section Non-Constant Initializers
1907 @cindex initializers, non-constant
1908 @cindex non-constant initializers
1910 As in standard C++ and ISO C99, the elements of an aggregate initializer for an
1911 automatic variable are not required to be constant expressions in GNU C@.
1912 Here is an example of an initializer with run-time varying elements:
1915 foo (float f, float g)
1917 float beat_freqs[2] = @{ f-g, f+g @};
1922 @node Compound Literals
1923 @section Compound Literals
1924 @cindex constructor expressions
1925 @cindex initializations in expressions
1926 @cindex structures, constructor expression
1927 @cindex expressions, constructor
1928 @cindex compound literals
1929 @c The GNU C name for what C99 calls compound literals was "constructor expressions".
1931 A compound literal looks like a cast of a brace-enclosed aggregate
1932 initializer list. Its value is an object of the type specified in
1933 the cast, containing the elements specified in the initializer.
1934 Unlike the result of a cast, a compound literal is an lvalue. ISO
1935 C99 and later support compound literals. As an extension, GCC
1936 supports compound literals also in C90 mode and in C++, although
1937 as explained below, the C++ semantics are somewhat different.
1939 Usually, the specified type of a compound literal is a structure. Assume
1940 that @code{struct foo} and @code{structure} are declared as shown:
1943 struct foo @{int a; char b[2];@} structure;
1947 Here is an example of constructing a @code{struct foo} with a compound literal:
1950 structure = ((struct foo) @{x + y, 'a', 0@});
1954 This is equivalent to writing the following:
1958 struct foo temp = @{x + y, 'a', 0@};
1963 You can also construct an array, though this is dangerous in C++, as
1964 explained below. If all the elements of the compound literal are
1965 (made up of) simple constant expressions suitable for use in
1966 initializers of objects of static storage duration, then the compound
1967 literal can be coerced to a pointer to its first element and used in
1968 such an initializer, as shown here:
1971 char **foo = (char *[]) @{ "x", "y", "z" @};
1974 Compound literals for scalar types and union types are also allowed. In
1975 the following example the variable @code{i} is initialized to the value
1976 @code{2}, the result of incrementing the unnamed object created by
1977 the compound literal.
1980 int i = ++(int) @{ 1 @};
1983 As a GNU extension, GCC allows initialization of objects with static storage
1984 duration by compound literals (which is not possible in ISO C99 because
1985 the initializer is not a constant).
1986 It is handled as if the object were initialized only with the brace-enclosed
1987 list if the types of the compound literal and the object match.
1988 The elements of the compound literal must be constant.
1989 If the object being initialized has array type of unknown size, the size is
1990 determined by the size of the compound literal.
1993 static struct foo x = (struct foo) @{1, 'a', 'b'@};
1994 static int y[] = (int []) @{1, 2, 3@};
1995 static int z[] = (int [3]) @{1@};
1999 The above lines are equivalent to the following:
2001 static struct foo x = @{1, 'a', 'b'@};
2002 static int y[] = @{1, 2, 3@};
2003 static int z[] = @{1, 0, 0@};
2006 In C, a compound literal designates an unnamed object with static or
2007 automatic storage duration. In C++, a compound literal designates a
2008 temporary object that only lives until the end of its full-expression.
2009 As a result, well-defined C code that takes the address of a subobject
2010 of a compound literal can be undefined in C++, so G++ rejects
2011 the conversion of a temporary array to a pointer. For instance, if
2012 the array compound literal example above appeared inside a function,
2013 any subsequent use of @code{foo} in C++ would have undefined behavior
2014 because the lifetime of the array ends after the declaration of @code{foo}.
2016 As an optimization, G++ sometimes gives array compound literals longer
2017 lifetimes: when the array either appears outside a function or has
2018 a @code{const}-qualified type. If @code{foo} and its initializer had
2019 elements of type @code{char *const} rather than @code{char *}, or if
2020 @code{foo} were a global variable, the array would have static storage
2021 duration. But it is probably safest just to avoid the use of array
2022 compound literals in C++ code.
2024 @node Designated Inits
2025 @section Designated Initializers
2026 @cindex initializers with labeled elements
2027 @cindex labeled elements in initializers
2028 @cindex case labels in initializers
2029 @cindex designated initializers
2031 Standard C90 requires the elements of an initializer to appear in a fixed
2032 order, the same as the order of the elements in the array or structure
2035 In ISO C99 you can give the elements in any order, specifying the array
2036 indices or structure field names they apply to, and GNU C allows this as
2037 an extension in C90 mode as well. This extension is not
2038 implemented in GNU C++.
2040 To specify an array index, write
2041 @samp{[@var{index}] =} before the element value. For example,
2044 int a[6] = @{ [4] = 29, [2] = 15 @};
2051 int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
2055 The index values must be constant expressions, even if the array being
2056 initialized is automatic.
2058 An alternative syntax for this that has been obsolete since GCC 2.5 but
2059 GCC still accepts is to write @samp{[@var{index}]} before the element
2060 value, with no @samp{=}.
2062 To initialize a range of elements to the same value, write
2063 @samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU
2064 extension. For example,
2067 int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
2071 If the value in it has side effects, the side effects happen only once,
2072 not for each initialized field by the range initializer.
2075 Note that the length of the array is the highest value specified
2078 In a structure initializer, specify the name of a field to initialize
2079 with @samp{.@var{fieldname} =} before the element value. For example,
2080 given the following structure,
2083 struct point @{ int x, y; @};
2087 the following initialization
2090 struct point p = @{ .y = yvalue, .x = xvalue @};
2097 struct point p = @{ xvalue, yvalue @};
2100 Another syntax that has the same meaning, obsolete since GCC 2.5, is
2101 @samp{@var{fieldname}:}, as shown here:
2104 struct point p = @{ y: yvalue, x: xvalue @};
2107 Omitted field members are implicitly initialized the same as objects
2108 that have static storage duration.
2111 The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
2112 @dfn{designator}. You can also use a designator (or the obsolete colon
2113 syntax) when initializing a union, to specify which element of the union
2114 should be used. For example,
2117 union foo @{ int i; double d; @};
2119 union foo f = @{ .d = 4 @};
2123 converts 4 to a @code{double} to store it in the union using
2124 the second element. By contrast, casting 4 to type @code{union foo}
2125 stores it into the union as the integer @code{i}, since it is
2126 an integer. @xref{Cast to Union}.
2128 You can combine this technique of naming elements with ordinary C
2129 initialization of successive elements. Each initializer element that
2130 does not have a designator applies to the next consecutive element of the
2131 array or structure. For example,
2134 int a[6] = @{ [1] = v1, v2, [4] = v4 @};
2141 int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
2144 Labeling the elements of an array initializer is especially useful
2145 when the indices are characters or belong to an @code{enum} type.
2150 = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
2151 ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
2154 @cindex designator lists
2155 You can also write a series of @samp{.@var{fieldname}} and
2156 @samp{[@var{index}]} designators before an @samp{=} to specify a
2157 nested subobject to initialize; the list is taken relative to the
2158 subobject corresponding to the closest surrounding brace pair. For
2159 example, with the @samp{struct point} declaration above:
2162 struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
2166 If the same field is initialized multiple times, it has the value from
2167 the last initialization. If any such overridden initialization has
2168 side effect, it is unspecified whether the side effect happens or not.
2169 Currently, GCC discards them and issues a warning.
2172 @section Case Ranges
2174 @cindex ranges in case statements
2176 You can specify a range of consecutive values in a single @code{case} label,
2180 case @var{low} ... @var{high}:
2184 This has the same effect as the proper number of individual @code{case}
2185 labels, one for each integer value from @var{low} to @var{high}, inclusive.
2187 This feature is especially useful for ranges of ASCII character codes:
2193 @strong{Be careful:} Write spaces around the @code{...}, for otherwise
2194 it may be parsed wrong when you use it with integer values. For example,
2209 @section Cast to a Union Type
2210 @cindex cast to a union
2211 @cindex union, casting to a
2213 A cast to union type looks similar to other casts, except that the type
2214 specified is a union type. You can specify the type either with the
2215 @code{union} keyword or with a @code{typedef} name that refers to
2216 a union. A cast to a union actually creates a compound literal and
2217 yields an lvalue, not an rvalue like true casts do.
2218 @xref{Compound Literals}.
2220 The types that may be cast to the union type are those of the members
2221 of the union. Thus, given the following union and variables:
2224 union foo @{ int i; double d; @};
2230 both @code{x} and @code{y} can be cast to type @code{union foo}.
2232 Using the cast as the right-hand side of an assignment to a variable of
2233 union type is equivalent to storing in a member of the union:
2238 u = (union foo) x @equiv{} u.i = x
2239 u = (union foo) y @equiv{} u.d = y
2242 You can also use the union cast as a function argument:
2245 void hack (union foo);
2247 hack ((union foo) x);
2250 @node Mixed Declarations
2251 @section Mixed Declarations and Code
2252 @cindex mixed declarations and code
2253 @cindex declarations, mixed with code
2254 @cindex code, mixed with declarations
2256 ISO C99 and ISO C++ allow declarations and code to be freely mixed
2257 within compound statements. As an extension, GNU C also allows this in
2258 C90 mode. For example, you could do:
2267 Each identifier is visible from where it is declared until the end of
2268 the enclosing block.
2270 @node Function Attributes
2271 @section Declaring Attributes of Functions
2272 @cindex function attributes
2273 @cindex declaring attributes of functions
2274 @cindex @code{volatile} applied to function
2275 @cindex @code{const} applied to function
2277 In GNU C, you can use function attributes to declare certain things
2278 about functions called in your program which help the compiler
2279 optimize calls and check your code more carefully. For example, you
2280 can use attributes to declare that a function never returns
2281 (@code{noreturn}), returns a value depending only on its arguments
2282 (@code{pure}), or has @code{printf}-style arguments (@code{format}).
2284 You can also use attributes to control memory placement, code
2285 generation options or call/return conventions within the function
2286 being annotated. Many of these attributes are target-specific. For
2287 example, many targets support attributes for defining interrupt
2288 handler functions, which typically must follow special register usage
2289 and return conventions.
2291 Function attributes are introduced by the @code{__attribute__} keyword
2292 on a declaration, followed by an attribute specification inside double
2293 parentheses. You can specify multiple attributes in a declaration by
2294 separating them by commas within the double parentheses or by
2295 immediately following an attribute declaration with another attribute
2296 declaration. @xref{Attribute Syntax}, for the exact rules on attribute
2297 syntax and placement. Compatible attribute specifications on distinct
2298 declarations of the same function are merged. An attribute specification
2299 that is not compatible with attributes already applied to a declaration
2300 of the same function is ignored with a warning.
2302 GCC also supports attributes on
2303 variable declarations (@pxref{Variable Attributes}),
2304 labels (@pxref{Label Attributes}),
2305 enumerators (@pxref{Enumerator Attributes}),
2306 statements (@pxref{Statement Attributes}),
2307 and types (@pxref{Type Attributes}).
2309 There is some overlap between the purposes of attributes and pragmas
2310 (@pxref{Pragmas,,Pragmas Accepted by GCC}). It has been
2311 found convenient to use @code{__attribute__} to achieve a natural
2312 attachment of attributes to their corresponding declarations, whereas
2313 @code{#pragma} is of use for compatibility with other compilers
2314 or constructs that do not naturally form part of the grammar.
2316 In addition to the attributes documented here,
2317 GCC plugins may provide their own attributes.
2320 * Common Function Attributes::
2321 * AArch64 Function Attributes::
2322 * ARC Function Attributes::
2323 * ARM Function Attributes::
2324 * AVR Function Attributes::
2325 * Blackfin Function Attributes::
2326 * CR16 Function Attributes::
2327 * C-SKY Function Attributes::
2328 * Epiphany Function Attributes::
2329 * H8/300 Function Attributes::
2330 * IA-64 Function Attributes::
2331 * M32C Function Attributes::
2332 * M32R/D Function Attributes::
2333 * m68k Function Attributes::
2334 * MCORE Function Attributes::
2335 * MeP Function Attributes::
2336 * MicroBlaze Function Attributes::
2337 * Microsoft Windows Function Attributes::
2338 * MIPS Function Attributes::
2339 * MSP430 Function Attributes::
2340 * NDS32 Function Attributes::
2341 * Nios II Function Attributes::
2342 * Nvidia PTX Function Attributes::
2343 * PowerPC Function Attributes::
2344 * RISC-V Function Attributes::
2345 * RL78 Function Attributes::
2346 * RX Function Attributes::
2347 * S/390 Function Attributes::
2348 * SH Function Attributes::
2349 * SPU Function Attributes::
2350 * Symbian OS Function Attributes::
2351 * V850 Function Attributes::
2352 * Visium Function Attributes::
2353 * x86 Function Attributes::
2354 * Xstormy16 Function Attributes::
2357 @node Common Function Attributes
2358 @subsection Common Function Attributes
2360 The following attributes are supported on most targets.
2363 @c Keep this table alphabetized by attribute name. Treat _ as space.
2365 @item alias ("@var{target}")
2366 @cindex @code{alias} function attribute
2367 The @code{alias} attribute causes the declaration to be emitted as an
2368 alias for another symbol, which must be specified. For instance,
2371 void __f () @{ /* @r{Do something.} */; @}
2372 void f () __attribute__ ((weak, alias ("__f")));
2376 defines @samp{f} to be a weak alias for @samp{__f}. In C++, the
2377 mangled name for the target must be used. It is an error if @samp{__f}
2378 is not defined in the same translation unit.
2380 This attribute requires assembler and object file support,
2381 and may not be available on all targets.
2384 @itemx aligned (@var{alignment})
2385 @cindex @code{aligned} function attribute
2386 The @code{aligned} attribute specifies a minimum alignment for
2387 the function, measured in bytes. When specified, @var{alignment} must
2388 be an integer constant power of 2. Specifying no @var{alignment} argument
2389 implies the maximum alignment for the target, which is often, but by no
2390 means always, 8 or 16 bytes.
2392 You cannot use this attribute to decrease the alignment of a function,
2393 only to increase it. However, when you explicitly specify a function
2394 alignment this overrides the effect of the
2395 @option{-falign-functions} (@pxref{Optimize Options}) option for this
2398 Note that the effectiveness of @code{aligned} attributes may be
2399 limited by inherent limitations in your linker. On many systems, the
2400 linker is only able to arrange for functions to be aligned up to a
2401 certain maximum alignment. (For some linkers, the maximum supported
2402 alignment may be very very small.) See your linker documentation for
2403 further information.
2405 The @code{aligned} attribute can also be used for variables and fields
2406 (@pxref{Variable Attributes}.)
2409 @cindex @code{alloc_align} function attribute
2410 The @code{alloc_align} attribute is used to tell the compiler that the
2411 function return value points to memory, where the returned pointer minimum
2412 alignment is given by one of the functions parameters. GCC uses this
2413 information to improve pointer alignment analysis.
2415 The function parameter denoting the allocated alignment is specified by
2416 one integer argument, whose number is the argument of the attribute.
2417 Argument numbering starts at one.
2422 void* my_memalign(size_t, size_t) __attribute__((alloc_align(1)))
2426 declares that @code{my_memalign} returns memory with minimum alignment
2427 given by parameter 1.
2430 @cindex @code{alloc_size} function attribute
2431 The @code{alloc_size} attribute is used to tell the compiler that the
2432 function return value points to memory, where the size is given by
2433 one or two of the functions parameters. GCC uses this
2434 information to improve the correctness of @code{__builtin_object_size}.
2436 The function parameter(s) denoting the allocated size are specified by
2437 one or two integer arguments supplied to the attribute. The allocated size
2438 is either the value of the single function argument specified or the product
2439 of the two function arguments specified. Argument numbering starts at
2445 void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
2446 void* my_realloc(void*, size_t) __attribute__((alloc_size(2)))
2450 declares that @code{my_calloc} returns memory of the size given by
2451 the product of parameter 1 and 2 and that @code{my_realloc} returns memory
2452 of the size given by parameter 2.
2455 @cindex @code{always_inline} function attribute
2456 Generally, functions are not inlined unless optimization is specified.
2457 For functions declared inline, this attribute inlines the function
2458 independent of any restrictions that otherwise apply to inlining.
2459 Failure to inline such a function is diagnosed as an error.
2460 Note that if such a function is called indirectly the compiler may
2461 or may not inline it depending on optimization level and a failure
2462 to inline an indirect call may or may not be diagnosed.
2465 @cindex @code{artificial} function attribute
2466 This attribute is useful for small inline wrappers that if possible
2467 should appear during debugging as a unit. Depending on the debug
2468 info format it either means marking the function as artificial
2469 or using the caller location for all instructions within the inlined
2472 @item assume_aligned
2473 @cindex @code{assume_aligned} function attribute
2474 The @code{assume_aligned} attribute is used to tell the compiler that the
2475 function return value points to memory, where the returned pointer minimum
2476 alignment is given by the first argument.
2477 If the attribute has two arguments, the second argument is misalignment offset.
2482 void* my_alloc1(size_t) __attribute__((assume_aligned(16)))
2483 void* my_alloc2(size_t) __attribute__((assume_aligned(32, 8)))
2487 declares that @code{my_alloc1} returns 16-byte aligned pointer and
2488 that @code{my_alloc2} returns a pointer whose value modulo 32 is equal
2492 @cindex @code{cold} function attribute
2493 The @code{cold} attribute on functions is used to inform the compiler that
2494 the function is unlikely to be executed. The function is optimized for
2495 size rather than speed and on many targets it is placed into a special
2496 subsection of the text section so all cold functions appear close together,
2497 improving code locality of non-cold parts of program. The paths leading
2498 to calls of cold functions within code are marked as unlikely by the branch
2499 prediction mechanism. It is thus useful to mark functions used to handle
2500 unlikely conditions, such as @code{perror}, as cold to improve optimization
2501 of hot functions that do call marked functions in rare occasions.
2503 When profile feedback is available, via @option{-fprofile-use}, cold functions
2504 are automatically detected and this attribute is ignored.
2507 @cindex @code{const} function attribute
2508 @cindex functions that have no side effects
2509 Many functions do not examine any values except their arguments, and
2510 have no effects except to return a value. Calls to such functions lend
2511 themselves to optimization such as common subexpression elimination.
2512 The @code{const} attribute imposes greater restrictions on a function's
2513 definition than the similar @code{pure} attribute below because it prohibits
2514 the function from reading global variables. Consequently, the presence of
2515 the attribute on a function declaration allows GCC to emit more efficient
2516 code for some calls to the function. Decorating the same function with
2517 both the @code{const} and the @code{pure} attribute is diagnosed.
2519 @cindex pointer arguments
2520 Note that a function that has pointer arguments and examines the data
2521 pointed to must @emph{not} be declared @code{const}. Likewise, a
2522 function that calls a non-@code{const} function usually must not be
2523 @code{const}. Because a @code{const} function cannot have any side
2524 effects it does not make sense for such a function to return @code{void}.
2525 Declaring such a function is diagnosed.
2529 @itemx constructor (@var{priority})
2530 @itemx destructor (@var{priority})
2531 @cindex @code{constructor} function attribute
2532 @cindex @code{destructor} function attribute
2533 The @code{constructor} attribute causes the function to be called
2534 automatically before execution enters @code{main ()}. Similarly, the
2535 @code{destructor} attribute causes the function to be called
2536 automatically after @code{main ()} completes or @code{exit ()} is
2537 called. Functions with these attributes are useful for
2538 initializing data that is used implicitly during the execution of
2541 You may provide an optional integer priority to control the order in
2542 which constructor and destructor functions are run. A constructor
2543 with a smaller priority number runs before a constructor with a larger
2544 priority number; the opposite relationship holds for destructors. So,
2545 if you have a constructor that allocates a resource and a destructor
2546 that deallocates the same resource, both functions typically have the
2547 same priority. The priorities for constructor and destructor
2548 functions are the same as those specified for namespace-scope C++
2549 objects (@pxref{C++ Attributes}). However, at present, the order in which
2550 constructors for C++ objects with static storage duration and functions
2551 decorated with attribute @code{constructor} are invoked is unspecified.
2552 In mixed declarations, attribute @code{init_priority} can be used to
2553 impose a specific ordering.
2556 @itemx deprecated (@var{msg})
2557 @cindex @code{deprecated} function attribute
2558 The @code{deprecated} attribute results in a warning if the function
2559 is used anywhere in the source file. This is useful when identifying
2560 functions that are expected to be removed in a future version of a
2561 program. The warning also includes the location of the declaration
2562 of the deprecated function, to enable users to easily find further
2563 information about why the function is deprecated, or what they should
2564 do instead. Note that the warnings only occurs for uses:
2567 int old_fn () __attribute__ ((deprecated));
2569 int (*fn_ptr)() = old_fn;
2573 results in a warning on line 3 but not line 2. The optional @var{msg}
2574 argument, which must be a string, is printed in the warning if
2577 The @code{deprecated} attribute can also be used for variables and
2578 types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2580 The message attached to the attribute is affected by the setting of
2581 the @option{-fmessage-length} option.
2583 @item error ("@var{message}")
2584 @itemx warning ("@var{message}")
2585 @cindex @code{error} function attribute
2586 @cindex @code{warning} function attribute
2587 If the @code{error} or @code{warning} attribute
2588 is used on a function declaration and a call to such a function
2589 is not eliminated through dead code elimination or other optimizations,
2590 an error or warning (respectively) that includes @var{message} is diagnosed.
2592 for compile-time checking, especially together with @code{__builtin_constant_p}
2593 and inline functions where checking the inline function arguments is not
2594 possible through @code{extern char [(condition) ? 1 : -1];} tricks.
2596 While it is possible to leave the function undefined and thus invoke
2597 a link failure (to define the function with
2598 a message in @code{.gnu.warning*} section),
2599 when using these attributes the problem is diagnosed
2600 earlier and with exact location of the call even in presence of inline
2601 functions or when not emitting debugging information.
2603 @item externally_visible
2604 @cindex @code{externally_visible} function attribute
2605 This attribute, attached to a global variable or function, nullifies
2606 the effect of the @option{-fwhole-program} command-line option, so the
2607 object remains visible outside the current compilation unit.
2609 If @option{-fwhole-program} is used together with @option{-flto} and
2610 @command{gold} is used as the linker plugin,
2611 @code{externally_visible} attributes are automatically added to functions
2612 (not variable yet due to a current @command{gold} issue)
2613 that are accessed outside of LTO objects according to resolution file
2614 produced by @command{gold}.
2615 For other linkers that cannot generate resolution file,
2616 explicit @code{externally_visible} attributes are still necessary.
2619 @cindex @code{flatten} function attribute
2620 Generally, inlining into a function is limited. For a function marked with
2621 this attribute, every call inside this function is inlined, if possible.
2622 Functions declared with attribute @code{noinline} and similar are not
2623 inlined. Whether the function itself is considered for inlining depends
2624 on its size and the current inlining parameters.
2626 @item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2627 @cindex @code{format} function attribute
2628 @cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
2630 The @code{format} attribute specifies that a function takes @code{printf},
2631 @code{scanf}, @code{strftime} or @code{strfmon} style arguments that
2632 should be type-checked against a format string. For example, the
2637 my_printf (void *my_object, const char *my_format, ...)
2638 __attribute__ ((format (printf, 2, 3)));
2642 causes the compiler to check the arguments in calls to @code{my_printf}
2643 for consistency with the @code{printf} style format string argument
2646 The parameter @var{archetype} determines how the format string is
2647 interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2648 @code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2649 @code{strfmon}. (You can also use @code{__printf__},
2650 @code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) On
2651 MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2652 @code{ms_strftime} are also present.
2653 @var{archetype} values such as @code{printf} refer to the formats accepted
2654 by the system's C runtime library,
2655 while values prefixed with @samp{gnu_} always refer
2656 to the formats accepted by the GNU C Library. On Microsoft Windows
2657 targets, values prefixed with @samp{ms_} refer to the formats accepted by the
2658 @file{msvcrt.dll} library.
2659 The parameter @var{string-index}
2660 specifies which argument is the format string argument (starting
2661 from 1), while @var{first-to-check} is the number of the first
2662 argument to check against the format string. For functions
2663 where the arguments are not available to be checked (such as
2664 @code{vprintf}), specify the third parameter as zero. In this case the
2665 compiler only checks the format string for consistency. For
2666 @code{strftime} formats, the third parameter is required to be zero.
2667 Since non-static C++ methods have an implicit @code{this} argument, the
2668 arguments of such methods should be counted from two, not one, when
2669 giving values for @var{string-index} and @var{first-to-check}.
2671 In the example above, the format string (@code{my_format}) is the second
2672 argument of the function @code{my_print}, and the arguments to check
2673 start with the third argument, so the correct parameters for the format
2674 attribute are 2 and 3.
2676 @opindex ffreestanding
2677 @opindex fno-builtin
2678 The @code{format} attribute allows you to identify your own functions
2679 that take format strings as arguments, so that GCC can check the
2680 calls to these functions for errors. The compiler always (unless
2681 @option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
2682 for the standard library functions @code{printf}, @code{fprintf},
2683 @code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
2684 @code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
2685 warnings are requested (using @option{-Wformat}), so there is no need to
2686 modify the header file @file{stdio.h}. In C99 mode, the functions
2687 @code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
2688 @code{vsscanf} are also checked. Except in strictly conforming C
2689 standard modes, the X/Open function @code{strfmon} is also checked as
2690 are @code{printf_unlocked} and @code{fprintf_unlocked}.
2691 @xref{C Dialect Options,,Options Controlling C Dialect}.
2693 For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
2694 recognized in the same context. Declarations including these format attributes
2695 are parsed for correct syntax, however the result of checking of such format
2696 strings is not yet defined, and is not carried out by this version of the
2699 The target may also provide additional types of format checks.
2700 @xref{Target Format Checks,,Format Checks Specific to Particular
2703 @item format_arg (@var{string-index})
2704 @cindex @code{format_arg} function attribute
2705 @opindex Wformat-nonliteral
2706 The @code{format_arg} attribute specifies that a function takes one or
2707 more format strings for a @code{printf}, @code{scanf}, @code{strftime} or
2708 @code{strfmon} style function and modifies it (for example, to translate
2709 it into another language), so the result can be passed to a
2710 @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2711 function (with the remaining arguments to the format function the same
2712 as they would have been for the unmodified string). Multiple
2713 @code{format_arg} attributes may be applied to the same function, each
2714 designating a distinct parameter as a format string. For example, the
2719 my_dgettext (char *my_domain, const char *my_format)
2720 __attribute__ ((format_arg (2)));
2724 causes the compiler to check the arguments in calls to a @code{printf},
2725 @code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2726 format string argument is a call to the @code{my_dgettext} function, for
2727 consistency with the format string argument @code{my_format}. If the
2728 @code{format_arg} attribute had not been specified, all the compiler
2729 could tell in such calls to format functions would be that the format
2730 string argument is not constant; this would generate a warning when
2731 @option{-Wformat-nonliteral} is used, but the calls could not be checked
2732 without the attribute.
2734 In calls to a function declared with more than one @code{format_arg}
2735 attribute, each with a distinct argument value, the corresponding
2736 actual function arguments are checked against all format strings
2737 designated by the attributes. This capability is designed to support
2738 the GNU @code{ngettext} family of functions.
2740 The parameter @var{string-index} specifies which argument is the format
2741 string argument (starting from one). Since non-static C++ methods have
2742 an implicit @code{this} argument, the arguments of such methods should
2743 be counted from two.
2745 The @code{format_arg} attribute allows you to identify your own
2746 functions that modify format strings, so that GCC can check the
2747 calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2748 type function whose operands are a call to one of your own function.
2749 The compiler always treats @code{gettext}, @code{dgettext}, and
2750 @code{dcgettext} in this manner except when strict ISO C support is
2751 requested by @option{-ansi} or an appropriate @option{-std} option, or
2752 @option{-ffreestanding} or @option{-fno-builtin}
2753 is used. @xref{C Dialect Options,,Options
2754 Controlling C Dialect}.
2756 For Objective-C dialects, the @code{format-arg} attribute may refer to an
2757 @code{NSString} reference for compatibility with the @code{format} attribute
2760 The target may also allow additional types in @code{format-arg} attributes.
2761 @xref{Target Format Checks,,Format Checks Specific to Particular
2765 @cindex @code{gnu_inline} function attribute
2766 This attribute should be used with a function that is also declared
2767 with the @code{inline} keyword. It directs GCC to treat the function
2768 as if it were defined in gnu90 mode even when compiling in C99 or
2771 If the function is declared @code{extern}, then this definition of the
2772 function is used only for inlining. In no case is the function
2773 compiled as a standalone function, not even if you take its address
2774 explicitly. Such an address becomes an external reference, as if you
2775 had only declared the function, and had not defined it. This has
2776 almost the effect of a macro. The way to use this is to put a
2777 function definition in a header file with this attribute, and put
2778 another copy of the function, without @code{extern}, in a library
2779 file. The definition in the header file causes most calls to the
2780 function to be inlined. If any uses of the function remain, they
2781 refer to the single copy in the library. Note that the two
2782 definitions of the functions need not be precisely the same, although
2783 if they do not have the same effect your program may behave oddly.
2785 In C, if the function is neither @code{extern} nor @code{static}, then
2786 the function is compiled as a standalone function, as well as being
2787 inlined where possible.
2789 This is how GCC traditionally handled functions declared
2790 @code{inline}. Since ISO C99 specifies a different semantics for
2791 @code{inline}, this function attribute is provided as a transition
2792 measure and as a useful feature in its own right. This attribute is
2793 available in GCC 4.1.3 and later. It is available if either of the
2794 preprocessor macros @code{__GNUC_GNU_INLINE__} or
2795 @code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline
2796 Function is As Fast As a Macro}.
2798 In C++, this attribute does not depend on @code{extern} in any way,
2799 but it still requires the @code{inline} keyword to enable its special
2803 @cindex @code{hot} function attribute
2804 The @code{hot} attribute on a function is used to inform the compiler that
2805 the function is a hot spot of the compiled program. The function is
2806 optimized more aggressively and on many targets it is placed into a special
2807 subsection of the text section so all hot functions appear close together,
2810 When profile feedback is available, via @option{-fprofile-use}, hot functions
2811 are automatically detected and this attribute is ignored.
2813 @item ifunc ("@var{resolver}")
2814 @cindex @code{ifunc} function attribute
2815 @cindex indirect functions
2816 @cindex functions that are dynamically resolved
2817 The @code{ifunc} attribute is used to mark a function as an indirect
2818 function using the STT_GNU_IFUNC symbol type extension to the ELF
2819 standard. This allows the resolution of the symbol value to be
2820 determined dynamically at load time, and an optimized version of the
2821 routine to be selected for the particular processor or other system
2822 characteristics determined then. To use this attribute, first define
2823 the implementation functions available, and a resolver function that
2824 returns a pointer to the selected implementation function. The
2825 implementation functions' declarations must match the API of the
2826 function being implemented. The resolver should be declared to
2827 be a function taking no arguments and returning a pointer to
2828 a function of the same type as the implementation. For example:
2831 void *my_memcpy (void *dst, const void *src, size_t len)
2837 static void * (*resolve_memcpy (void))(void *, const void *, size_t)
2839 return my_memcpy; // we will just always select this routine
2844 The exported header file declaring the function the user calls would
2848 extern void *memcpy (void *, const void *, size_t);
2852 allowing the user to call @code{memcpy} as a regular function, unaware of
2853 the actual implementation. Finally, the indirect function needs to be
2854 defined in the same translation unit as the resolver function:
2857 void *memcpy (void *, const void *, size_t)
2858 __attribute__ ((ifunc ("resolve_memcpy")));
2861 In C++, the @code{ifunc} attribute takes a string that is the mangled name
2862 of the resolver function. A C++ resolver for a non-static member function
2863 of class @code{C} should be declared to return a pointer to a non-member
2864 function taking pointer to @code{C} as the first argument, followed by
2865 the same arguments as of the implementation function. G++ checks
2866 the signatures of the two functions and issues
2867 a @option{-Wattribute-alias} warning for mismatches. To suppress a warning
2868 for the necessary cast from a pointer to the implementation member function
2869 to the type of the corresponding non-member function use
2870 the @option{-Wno-pmf-conversions} option. For example:
2876 int debug_impl (int);
2877 int optimized_impl (int);
2879 typedef int Func (S*, int);
2881 static Func* resolver ();
2884 int interface (int);
2887 int S::debug_impl (int) @{ /* @r{@dots{}} */ @}
2888 int S::optimized_impl (int) @{ /* @r{@dots{}} */ @}
2890 S::Func* S::resolver ()
2892 int (S::*pimpl) (int)
2893 = getenv ("DEBUG") ? &S::debug_impl : &S::optimized_impl;
2895 // Cast triggers -Wno-pmf-conversions.
2896 return reinterpret_cast<Func*>(pimpl);
2899 int S::interface (int) __attribute__ ((ifunc ("_ZN1S8resolverEv")));
2902 Indirect functions cannot be weak. Binutils version 2.20.1 or higher
2903 and GNU C Library version 2.11.1 are required to use this feature.
2906 @itemx interrupt_handler
2907 Many GCC back ends support attributes to indicate that a function is
2908 an interrupt handler, which tells the compiler to generate function
2909 entry and exit sequences that differ from those from regular
2910 functions. The exact syntax and behavior are target-specific;
2911 refer to the following subsections for details.
2914 @cindex @code{leaf} function attribute
2915 Calls to external functions with this attribute must return to the
2916 current compilation unit only by return or by exception handling. In
2917 particular, a leaf function is not allowed to invoke callback functions
2918 passed to it from the current compilation unit, directly call functions
2919 exported by the unit, or @code{longjmp} into the unit. Leaf functions
2920 might still call functions from other compilation units and thus they
2921 are not necessarily leaf in the sense that they contain no function
2924 The attribute is intended for library functions to improve dataflow
2925 analysis. The compiler takes the hint that any data not escaping the
2926 current compilation unit cannot be used or modified by the leaf
2927 function. For example, the @code{sin} function is a leaf function, but
2928 @code{qsort} is not.
2930 Note that leaf functions might indirectly run a signal handler defined
2931 in the current compilation unit that uses static variables. Similarly,
2932 when lazy symbol resolution is in effect, leaf functions might invoke
2933 indirect functions whose resolver function or implementation function is
2934 defined in the current compilation unit and uses static variables. There
2935 is no standard-compliant way to write such a signal handler, resolver
2936 function, or implementation function, and the best that you can do is to
2937 remove the @code{leaf} attribute or mark all such static variables
2938 @code{volatile}. Lastly, for ELF-based systems that support symbol
2939 interposition, care should be taken that functions defined in the
2940 current compilation unit do not unexpectedly interpose other symbols
2941 based on the defined standards mode and defined feature test macros;
2942 otherwise an inadvertent callback would be added.
2944 The attribute has no effect on functions defined within the current
2945 compilation unit. This is to allow easy merging of multiple compilation
2946 units into one, for example, by using the link-time optimization. For
2947 this reason the attribute is not allowed on types to annotate indirect
2951 @cindex @code{malloc} function attribute
2952 @cindex functions that behave like malloc
2953 This tells the compiler that a function is @code{malloc}-like, i.e.,
2954 that the pointer @var{P} returned by the function cannot alias any
2955 other pointer valid when the function returns, and moreover no
2956 pointers to valid objects occur in any storage addressed by @var{P}.
2958 Using this attribute can improve optimization. Compiler predicts
2959 that a function with the attribute returns non-null in most cases.
2961 @code{malloc} and @code{calloc} have this property because they return
2962 a pointer to uninitialized or zeroed-out storage. However, functions
2963 like @code{realloc} do not have this property, as they can return a
2964 pointer to storage containing pointers.
2967 @cindex @code{no_icf} function attribute
2968 This function attribute prevents a functions from being merged with another
2969 semantically equivalent function.
2971 @item no_instrument_function
2972 @cindex @code{no_instrument_function} function attribute
2973 @opindex finstrument-functions
2974 If @option{-finstrument-functions} is given, profiling function calls are
2975 generated at entry and exit of most user-compiled functions.
2976 Functions with this attribute are not so instrumented.
2978 @item no_profile_instrument_function
2979 @cindex @code{no_profile_instrument_function} function attribute
2980 The @code{no_profile_instrument_function} attribute on functions is used
2981 to inform the compiler that it should not process any profile feedback based
2982 optimization code instrumentation.
2985 @cindex @code{no_reorder} function attribute
2986 Do not reorder functions or variables marked @code{no_reorder}
2987 against each other or top level assembler statements the executable.
2988 The actual order in the program will depend on the linker command
2989 line. Static variables marked like this are also not removed.
2990 This has a similar effect
2991 as the @option{-fno-toplevel-reorder} option, but only applies to the
2994 @item no_sanitize ("@var{sanitize_option}")
2995 @cindex @code{no_sanitize} function attribute
2996 The @code{no_sanitize} attribute on functions is used
2997 to inform the compiler that it should not do sanitization of all options
2998 mentioned in @var{sanitize_option}. A list of values acceptable by
2999 @option{-fsanitize} option can be provided.
3002 void __attribute__ ((no_sanitize ("alignment", "object-size")))
3003 f () @{ /* @r{Do something.} */; @}
3004 void __attribute__ ((no_sanitize ("alignment,object-size")))
3005 g () @{ /* @r{Do something.} */; @}
3008 @item no_sanitize_address
3009 @itemx no_address_safety_analysis
3010 @cindex @code{no_sanitize_address} function attribute
3011 The @code{no_sanitize_address} attribute on functions is used
3012 to inform the compiler that it should not instrument memory accesses
3013 in the function when compiling with the @option{-fsanitize=address} option.
3014 The @code{no_address_safety_analysis} is a deprecated alias of the
3015 @code{no_sanitize_address} attribute, new code should use
3016 @code{no_sanitize_address}.
3018 @item no_sanitize_thread
3019 @cindex @code{no_sanitize_thread} function attribute
3020 The @code{no_sanitize_thread} attribute on functions is used
3021 to inform the compiler that it should not instrument memory accesses
3022 in the function when compiling with the @option{-fsanitize=thread} option.
3024 @item no_sanitize_undefined
3025 @cindex @code{no_sanitize_undefined} function attribute
3026 The @code{no_sanitize_undefined} attribute on functions is used
3027 to inform the compiler that it should not check for undefined behavior
3028 in the function when compiling with the @option{-fsanitize=undefined} option.
3030 @item no_split_stack
3031 @cindex @code{no_split_stack} function attribute
3032 @opindex fsplit-stack
3033 If @option{-fsplit-stack} is given, functions have a small
3034 prologue which decides whether to split the stack. Functions with the
3035 @code{no_split_stack} attribute do not have that prologue, and thus
3036 may run with only a small amount of stack space available.
3038 @item no_stack_limit
3039 @cindex @code{no_stack_limit} function attribute
3040 This attribute locally overrides the @option{-fstack-limit-register}
3041 and @option{-fstack-limit-symbol} command-line options; it has the effect
3042 of disabling stack limit checking in the function it applies to.
3045 @cindex @code{noclone} function attribute
3046 This function attribute prevents a function from being considered for
3047 cloning---a mechanism that produces specialized copies of functions
3048 and which is (currently) performed by interprocedural constant
3052 @cindex @code{noinline} function attribute
3053 This function attribute prevents a function from being considered for
3055 @c Don't enumerate the optimizations by name here; we try to be
3056 @c future-compatible with this mechanism.
3057 If the function does not have side effects, there are optimizations
3058 other than inlining that cause function calls to be optimized away,
3059 although the function call is live. To keep such calls from being
3066 (@pxref{Extended Asm}) in the called function, to serve as a special
3070 @cindex @code{noipa} function attribute
3071 Disable interprocedural optimizations between the function with this
3072 attribute and its callers, as if the body of the function is not available
3073 when optimizing callers and the callers are unavailable when optimizing
3074 the body. This attribute implies @code{noinline}, @code{noclone} and
3075 @code{no_icf} attributes. However, this attribute is not equivalent
3076 to a combination of other attributes, because its purpose is to suppress
3077 existing and future optimizations employing interprocedural analysis,
3078 including those that do not have an attribute suitable for disabling
3079 them individually. This attribute is supported mainly for the purpose
3080 of testing the compiler.
3083 @itemx nonnull (@var{arg-index}, @dots{})
3084 @cindex @code{nonnull} function attribute
3085 @cindex functions with non-null pointer arguments
3086 The @code{nonnull} attribute specifies that some function parameters should
3087 be non-null pointers. For instance, the declaration:
3091 my_memcpy (void *dest, const void *src, size_t len)
3092 __attribute__((nonnull (1, 2)));
3096 causes the compiler to check that, in calls to @code{my_memcpy},
3097 arguments @var{dest} and @var{src} are non-null. If the compiler
3098 determines that a null pointer is passed in an argument slot marked
3099 as non-null, and the @option{-Wnonnull} option is enabled, a warning
3100 is issued. @xref{Warning Options}. Unless disabled by
3101 the @option{-fno-delete-null-pointer-checks} option the compiler may
3102 also perform optimizations based on the knowledge that certain function
3103 arguments cannot be null. In addition,
3104 the @option{-fisolate-erroneous-paths-attribute} option can be specified
3105 to have GCC transform calls with null arguments to non-null functions
3106 into traps. @xref{Optimize Options}.
3108 If no @var{arg-index} is given to the @code{nonnull} attribute,
3109 all pointer arguments are marked as non-null. To illustrate, the
3110 following declaration is equivalent to the previous example:
3114 my_memcpy (void *dest, const void *src, size_t len)
3115 __attribute__((nonnull));
3119 @cindex @code{noplt} function attribute
3120 The @code{noplt} attribute is the counterpart to option @option{-fno-plt}.
3121 Calls to functions marked with this attribute in position-independent code
3126 /* Externally defined function foo. */
3127 int foo () __attribute__ ((noplt));
3130 main (/* @r{@dots{}} */)
3139 The @code{noplt} attribute on function @code{foo}
3140 tells the compiler to assume that
3141 the function @code{foo} is externally defined and that the call to
3142 @code{foo} must avoid the PLT
3143 in position-independent code.
3145 In position-dependent code, a few targets also convert calls to
3146 functions that are marked to not use the PLT to use the GOT instead.
3149 @cindex @code{noreturn} function attribute
3150 @cindex functions that never return
3151 A few standard library functions, such as @code{abort} and @code{exit},
3152 cannot return. GCC knows this automatically. Some programs define
3153 their own functions that never return. You can declare them
3154 @code{noreturn} to tell the compiler this fact. For example,
3158 void fatal () __attribute__ ((noreturn));
3161 fatal (/* @r{@dots{}} */)
3163 /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
3169 The @code{noreturn} keyword tells the compiler to assume that
3170 @code{fatal} cannot return. It can then optimize without regard to what
3171 would happen if @code{fatal} ever did return. This makes slightly
3172 better code. More importantly, it helps avoid spurious warnings of
3173 uninitialized variables.
3175 The @code{noreturn} keyword does not affect the exceptional path when that
3176 applies: a @code{noreturn}-marked function may still return to the caller
3177 by throwing an exception or calling @code{longjmp}.
3179 In order to preserve backtraces, GCC will never turn calls to
3180 @code{noreturn} functions into tail calls.
3182 Do not assume that registers saved by the calling function are
3183 restored before calling the @code{noreturn} function.
3185 It does not make sense for a @code{noreturn} function to have a return
3186 type other than @code{void}.
3189 @cindex @code{nothrow} function attribute
3190 The @code{nothrow} attribute is used to inform the compiler that a
3191 function cannot throw an exception. For example, most functions in
3192 the standard C library can be guaranteed not to throw an exception
3193 with the notable exceptions of @code{qsort} and @code{bsearch} that
3194 take function pointer arguments.
3196 @item optimize (@var{level}, @dots{})
3197 @item optimize (@var{string}, @dots{})
3198 @cindex @code{optimize} function attribute
3199 The @code{optimize} attribute is used to specify that a function is to
3200 be compiled with different optimization options than specified on the
3201 command line. Valid arguments are constant non-negative integers and
3202 strings. Each numeric argument specifies an optimization @var{level}.
3203 Each @var{string} argument consists of one or more comma-separated
3204 substrings. Each substring that begins with the letter @code{O} refers
3205 to an optimization option such as @option{-O0} or @option{-Os}. Other
3206 substrings are taken as suffixes to the @code{-f} prefix jointly
3207 forming the name of an optimization option. @xref{Optimize Options}.
3209 @samp{#pragma GCC optimize} can be used to set optimization options
3210 for more than one function. @xref{Function Specific Option Pragmas},
3211 for details about the pragma.
3213 Providing multiple strings as arguments separated by commas to specify
3214 multiple options is equivalent to separating the option suffixes with
3215 a comma (@samp{,}) within a single string. Spaces are not permitted
3218 Not every optimization option that starts with the @var{-f} prefix
3219 specified by the attribute necessarily has an effect on the function.
3220 The @code{optimize} attribute should be used for debugging purposes only.
3221 It is not suitable in production code.
3223 @item patchable_function_entry
3224 @cindex @code{patchable_function_entry} function attribute
3225 @cindex extra NOP instructions at the function entry point
3226 In case the target's text segment can be made writable at run time by
3227 any means, padding the function entry with a number of NOPs can be
3228 used to provide a universal tool for instrumentation.
3230 The @code{patchable_function_entry} function attribute can be used to
3231 change the number of NOPs to any desired value. The two-value syntax
3232 is the same as for the command-line switch
3233 @option{-fpatchable-function-entry=N,M}, generating @var{N} NOPs, with
3234 the function entry point before the @var{M}th NOP instruction.
3235 @var{M} defaults to 0 if omitted e.g.@: function entry point is before
3238 If patchable function entries are enabled globally using the command-line
3239 option @option{-fpatchable-function-entry=N,M}, then you must disable
3240 instrumentation on all functions that are part of the instrumentation
3241 framework with the attribute @code{patchable_function_entry (0)}
3242 to prevent recursion.
3245 @cindex @code{pure} function attribute
3246 @cindex functions that have no side effects
3247 Many functions have no effects except the return value and their
3248 return value depends only on the parameters and/or global variables.
3249 Calls to such functions can be subject
3250 to common subexpression elimination and loop optimization just as an
3251 arithmetic operator would be. These functions should be declared
3252 with the attribute @code{pure}. For example,
3255 int square (int) __attribute__ ((pure));
3259 says that the hypothetical function @code{square} is safe to call
3260 fewer times than the program says.
3262 Some common examples of pure functions are @code{strlen} or @code{memcmp}.
3263 Interesting non-pure functions are functions with infinite loops or those
3264 depending on volatile memory or other system resource, that may change between
3265 two consecutive calls (such as @code{feof} in a multithreading environment).
3267 The @code{pure} attribute imposes similar but looser restrictions on
3268 a function's defintion than the @code{const} attribute: it allows the
3269 function to read global variables. Decorating the same function with
3270 both the @code{pure} and the @code{const} attribute is diagnosed.
3271 Because a @code{pure} function cannot have any side effects it does not
3272 make sense for such a function to return @code{void}. Declaring such
3273 a function is diagnosed.
3275 @item returns_nonnull
3276 @cindex @code{returns_nonnull} function attribute
3277 The @code{returns_nonnull} attribute specifies that the function
3278 return value should be a non-null pointer. For instance, the declaration:
3282 mymalloc (size_t len) __attribute__((returns_nonnull));
3286 lets the compiler optimize callers based on the knowledge
3287 that the return value will never be null.
3290 @cindex @code{returns_twice} function attribute
3291 @cindex functions that return more than once
3292 The @code{returns_twice} attribute tells the compiler that a function may
3293 return more than one time. The compiler ensures that all registers
3294 are dead before calling such a function and emits a warning about
3295 the variables that may be clobbered after the second return from the
3296 function. Examples of such functions are @code{setjmp} and @code{vfork}.
3297 The @code{longjmp}-like counterpart of such function, if any, might need
3298 to be marked with the @code{noreturn} attribute.
3300 @item section ("@var{section-name}")
3301 @cindex @code{section} function attribute
3302 @cindex functions in arbitrary sections
3303 Normally, the compiler places the code it generates in the @code{text} section.
3304 Sometimes, however, you need additional sections, or you need certain
3305 particular functions to appear in special sections. The @code{section}
3306 attribute specifies that a function lives in a particular section.
3307 For example, the declaration:
3310 extern void foobar (void) __attribute__ ((section ("bar")));
3314 puts the function @code{foobar} in the @code{bar} section.
3316 Some file formats do not support arbitrary sections so the @code{section}
3317 attribute is not available on all platforms.
3318 If you need to map the entire contents of a module to a particular
3319 section, consider using the facilities of the linker instead.
3322 @cindex @code{sentinel} function attribute
3323 This function attribute ensures that a parameter in a function call is
3324 an explicit @code{NULL}. The attribute is only valid on variadic
3325 functions. By default, the sentinel is located at position zero, the
3326 last parameter of the function call. If an optional integer position
3327 argument P is supplied to the attribute, the sentinel must be located at
3328 position P counting backwards from the end of the argument list.
3331 __attribute__ ((sentinel))
3333 __attribute__ ((sentinel(0)))
3336 The attribute is automatically set with a position of 0 for the built-in
3337 functions @code{execl} and @code{execlp}. The built-in function
3338 @code{execle} has the attribute set with a position of 1.
3340 A valid @code{NULL} in this context is defined as zero with any pointer
3341 type. If your system defines the @code{NULL} macro with an integer type
3342 then you need to add an explicit cast. GCC replaces @code{stddef.h}
3343 with a copy that redefines NULL appropriately.
3345 The warnings for missing or incorrect sentinels are enabled with
3349 @itemx simd("@var{mask}")
3350 @cindex @code{simd} function attribute
3351 This attribute enables creation of one or more function versions that
3352 can process multiple arguments using SIMD instructions from a
3353 single invocation. Specifying this attribute allows compiler to
3354 assume that such versions are available at link time (provided
3355 in the same or another translation unit). Generated versions are
3356 target-dependent and described in the corresponding Vector ABI document. For
3357 x86_64 target this document can be found
3358 @w{@uref{https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt,here}}.
3360 The optional argument @var{mask} may have the value
3361 @code{notinbranch} or @code{inbranch},
3362 and instructs the compiler to generate non-masked or masked
3363 clones correspondingly. By default, all clones are generated.
3365 If the attribute is specified and @code{#pragma omp declare simd} is
3366 present on a declaration and the @option{-fopenmp} or @option{-fopenmp-simd}
3367 switch is specified, then the attribute is ignored.
3370 @cindex @code{stack_protect} function attribute
3371 This attribute adds stack protection code to the function if
3372 flags @option{-fstack-protector}, @option{-fstack-protector-strong}
3373 or @option{-fstack-protector-explicit} are set.
3375 @item target (@var{string}, @dots{})
3376 @cindex @code{target} function attribute
3377 Multiple target back ends implement the @code{target} attribute
3378 to specify that a function is to
3379 be compiled with different target options than specified on the
3380 command line. One or more strings can be provided as arguments.
3381 Each string consists of one or more comma-separated suffixes to
3382 the @code{-m} prefix jointly forming the name of a machine-dependent
3383 option. @xref{Submodel Options,,Machine-Dependent Options}.
3385 The @code{target} attribute can be used for instance to have a function
3386 compiled with a different ISA (instruction set architecture) than the
3387 default. @samp{#pragma GCC target} can be used to specify target-specific
3388 options for more than one function. @xref{Function Specific Option Pragmas},
3389 for details about the pragma.
3391 For instance, on an x86, you could declare one function with the
3392 @code{target("sse4.1,arch=core2")} attribute and another with
3393 @code{target("sse4a,arch=amdfam10")}. This is equivalent to
3394 compiling the first function with @option{-msse4.1} and
3395 @option{-march=core2} options, and the second function with
3396 @option{-msse4a} and @option{-march=amdfam10} options. It is up to you
3397 to make sure that a function is only invoked on a machine that
3398 supports the particular ISA it is compiled for (for example by using
3399 @code{cpuid} on x86 to determine what feature bits and architecture
3403 int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
3404 int sse3_func (void) __attribute__ ((__target__ ("sse3")));
3407 Providing multiple strings as arguments separated by commas to specify
3408 multiple options is equivalent to separating the option suffixes with
3409 a comma (@samp{,}) within a single string. Spaces are not permitted
3412 The options supported are specific to each target; refer to @ref{x86
3413 Function Attributes}, @ref{PowerPC Function Attributes},
3414 @ref{ARM Function Attributes}, @ref{AArch64 Function Attributes},
3415 @ref{Nios II Function Attributes}, and @ref{S/390 Function Attributes}
3418 @item target_clones (@var{options})
3419 @cindex @code{target_clones} function attribute
3420 The @code{target_clones} attribute is used to specify that a function
3421 be cloned into multiple versions compiled with different target options
3422 than specified on the command line. The supported options and restrictions
3423 are the same as for @code{target} attribute.
3425 For instance, on an x86, you could compile a function with
3426 @code{target_clones("sse4.1,avx")}. GCC creates two function clones,
3427 one compiled with @option{-msse4.1} and another with @option{-mavx}.
3429 On a PowerPC, you can compile a function with
3430 @code{target_clones("cpu=power9,default")}. GCC will create two
3431 function clones, one compiled with @option{-mcpu=power9} and another
3432 with the default options. GCC must be configured to use GLIBC 2.23 or
3433 newer in order to use the @code{target_clones} attribute.
3435 It also creates a resolver function (see
3436 the @code{ifunc} attribute above) that dynamically selects a clone
3437 suitable for current architecture. The resolver is created only if there
3438 is a usage of a function with @code{target_clones} attribute.
3441 @cindex @code{unused} function attribute
3442 This attribute, attached to a function, means that the function is meant
3443 to be possibly unused. GCC does not produce a warning for this
3447 @cindex @code{used} function attribute
3448 This attribute, attached to a function, means that code must be emitted
3449 for the function even if it appears that the function is not referenced.
3450 This is useful, for example, when the function is referenced only in
3453 When applied to a member function of a C++ class template, the
3454 attribute also means that the function is instantiated if the
3455 class itself is instantiated.
3457 @item visibility ("@var{visibility_type}")
3458 @cindex @code{visibility} function attribute
3459 This attribute affects the linkage of the declaration to which it is attached.
3460 It can be applied to variables (@pxref{Common Variable Attributes}) and types
3461 (@pxref{Common Type Attributes}) as well as functions.
3463 There are four supported @var{visibility_type} values: default,
3464 hidden, protected or internal visibility.
3467 void __attribute__ ((visibility ("protected")))
3468 f () @{ /* @r{Do something.} */; @}
3469 int i __attribute__ ((visibility ("hidden")));
3472 The possible values of @var{visibility_type} correspond to the
3473 visibility settings in the ELF gABI.
3476 @c keep this list of visibilities in alphabetical order.
3479 Default visibility is the normal case for the object file format.
3480 This value is available for the visibility attribute to override other
3481 options that may change the assumed visibility of entities.
3483 On ELF, default visibility means that the declaration is visible to other
3484 modules and, in shared libraries, means that the declared entity may be
3487 On Darwin, default visibility means that the declaration is visible to
3490 Default visibility corresponds to ``external linkage'' in the language.
3493 Hidden visibility indicates that the entity declared has a new
3494 form of linkage, which we call ``hidden linkage''. Two
3495 declarations of an object with hidden linkage refer to the same object
3496 if they are in the same shared object.
3499 Internal visibility is like hidden visibility, but with additional
3500 processor specific semantics. Unless otherwise specified by the
3501 psABI, GCC defines internal visibility to mean that a function is
3502 @emph{never} called from another module. Compare this with hidden
3503 functions which, while they cannot be referenced directly by other
3504 modules, can be referenced indirectly via function pointers. By
3505 indicating that a function cannot be called from outside the module,
3506 GCC may for instance omit the load of a PIC register since it is known
3507 that the calling function loaded the correct value.
3510 Protected visibility is like default visibility except that it
3511 indicates that references within the defining module bind to the
3512 definition in that module. That is, the declared entity cannot be
3513 overridden by another module.
3517 All visibilities are supported on many, but not all, ELF targets
3518 (supported when the assembler supports the @samp{.visibility}
3519 pseudo-op). Default visibility is supported everywhere. Hidden
3520 visibility is supported on Darwin targets.
3522 The visibility attribute should be applied only to declarations that
3523 would otherwise have external linkage. The attribute should be applied
3524 consistently, so that the same entity should not be declared with
3525 different settings of the attribute.
3527 In C++, the visibility attribute applies to types as well as functions
3528 and objects, because in C++ types have linkage. A class must not have
3529 greater visibility than its non-static data member types and bases,
3530 and class members default to the visibility of their class. Also, a
3531 declaration without explicit visibility is limited to the visibility
3534 In C++, you can mark member functions and static member variables of a
3535 class with the visibility attribute. This is useful if you know a
3536 particular method or static member variable should only be used from
3537 one shared object; then you can mark it hidden while the rest of the
3538 class has default visibility. Care must be taken to avoid breaking
3539 the One Definition Rule; for example, it is usually not useful to mark
3540 an inline method as hidden without marking the whole class as hidden.
3542 A C++ namespace declaration can also have the visibility attribute.
3545 namespace nspace1 __attribute__ ((visibility ("protected")))
3546 @{ /* @r{Do something.} */; @}
3549 This attribute applies only to the particular namespace body, not to
3550 other definitions of the same namespace; it is equivalent to using
3551 @samp{#pragma GCC visibility} before and after the namespace
3552 definition (@pxref{Visibility Pragmas}).
3554 In C++, if a template argument has limited visibility, this
3555 restriction is implicitly propagated to the template instantiation.
3556 Otherwise, template instantiations and specializations default to the
3557 visibility of their template.
3559 If both the template and enclosing class have explicit visibility, the
3560 visibility from the template is used.
3562 @item warn_unused_result
3563 @cindex @code{warn_unused_result} function attribute
3564 The @code{warn_unused_result} attribute causes a warning to be emitted
3565 if a caller of the function with this attribute does not use its
3566 return value. This is useful for functions where not checking
3567 the result is either a security problem or always a bug, such as
3571 int fn () __attribute__ ((warn_unused_result));
3574 if (fn () < 0) return -1;
3581 results in warning on line 5.
3584 @cindex @code{weak} function attribute
3585 The @code{weak} attribute causes the declaration to be emitted as a weak
3586 symbol rather than a global. This is primarily useful in defining
3587 library functions that can be overridden in user code, though it can
3588 also be used with non-function declarations. Weak symbols are supported
3589 for ELF targets, and also for a.out targets when using the GNU assembler
3593 @itemx weakref ("@var{target}")
3594 @cindex @code{weakref} function attribute
3595 The @code{weakref} attribute marks a declaration as a weak reference.
3596 Without arguments, it should be accompanied by an @code{alias} attribute
3597 naming the target symbol. Optionally, the @var{target} may be given as
3598 an argument to @code{weakref} itself. In either case, @code{weakref}
3599 implicitly marks the declaration as @code{weak}. Without a
3600 @var{target}, given as an argument to @code{weakref} or to @code{alias},
3601 @code{weakref} is equivalent to @code{weak}.
3604 static int x() __attribute__ ((weakref ("y")));
3605 /* is equivalent to... */
3606 static int x() __attribute__ ((weak, weakref, alias ("y")));
3608 static int x() __attribute__ ((weakref));
3609 static int x() __attribute__ ((alias ("y")));
3612 A weak reference is an alias that does not by itself require a
3613 definition to be given for the target symbol. If the target symbol is
3614 only referenced through weak references, then it becomes a @code{weak}
3615 undefined symbol. If it is directly referenced, however, then such
3616 strong references prevail, and a definition is required for the
3617 symbol, not necessarily in the same translation unit.
3619 The effect is equivalent to moving all references to the alias to a
3620 separate translation unit, renaming the alias to the aliased symbol,
3621 declaring it as weak, compiling the two separate translation units and
3622 performing a reloadable link on them.
3624 At present, a declaration to which @code{weakref} is attached can
3625 only be @code{static}.
3630 @c This is the end of the target-independent attribute table
3632 @node AArch64 Function Attributes
3633 @subsection AArch64 Function Attributes
3635 The following target-specific function attributes are available for the
3636 AArch64 target. For the most part, these options mirror the behavior of
3637 similar command-line options (@pxref{AArch64 Options}), but on a
3641 @item general-regs-only
3642 @cindex @code{general-regs-only} function attribute, AArch64
3643 Indicates that no floating-point or Advanced SIMD registers should be
3644 used when generating code for this function. If the function explicitly
3645 uses floating-point code, then the compiler gives an error. This is
3646 the same behavior as that of the command-line option
3647 @option{-mgeneral-regs-only}.
3649 @item fix-cortex-a53-835769
3650 @cindex @code{fix-cortex-a53-835769} function attribute, AArch64
3651 Indicates that the workaround for the Cortex-A53 erratum 835769 should be
3652 applied to this function. To explicitly disable the workaround for this
3653 function specify the negated form: @code{no-fix-cortex-a53-835769}.
3654 This corresponds to the behavior of the command line options
3655 @option{-mfix-cortex-a53-835769} and @option{-mno-fix-cortex-a53-835769}.
3658 @cindex @code{cmodel=} function attribute, AArch64
3659 Indicates that code should be generated for a particular code model for
3660 this function. The behavior and permissible arguments are the same as
3661 for the command line option @option{-mcmodel=}.
3664 @itemx no-strict-align
3665 @cindex @code{strict-align} function attribute, AArch64
3666 @code{strict-align} indicates that the compiler should not assume that unaligned
3667 memory references are handled by the system. To allow the compiler to assume
3668 that aligned memory references are handled by the system, the inverse attribute
3669 @code{no-strict-align} can be specified. The behavior is same as for the
3670 command-line option @option{-mstrict-align} and @option{-mno-strict-align}.
3672 @item omit-leaf-frame-pointer
3673 @cindex @code{omit-leaf-frame-pointer} function attribute, AArch64
3674 Indicates that the frame pointer should be omitted for a leaf function call.
3675 To keep the frame pointer, the inverse attribute
3676 @code{no-omit-leaf-frame-pointer} can be specified. These attributes have
3677 the same behavior as the command-line options @option{-momit-leaf-frame-pointer}
3678 and @option{-mno-omit-leaf-frame-pointer}.
3681 @cindex @code{tls-dialect=} function attribute, AArch64
3682 Specifies the TLS dialect to use for this function. The behavior and
3683 permissible arguments are the same as for the command-line option
3684 @option{-mtls-dialect=}.
3687 @cindex @code{arch=} function attribute, AArch64
3688 Specifies the architecture version and architectural extensions to use
3689 for this function. The behavior and permissible arguments are the same as
3690 for the @option{-march=} command-line option.
3693 @cindex @code{tune=} function attribute, AArch64
3694 Specifies the core for which to tune the performance of this function.
3695 The behavior and permissible arguments are the same as for the @option{-mtune=}
3696 command-line option.
3699 @cindex @code{cpu=} function attribute, AArch64
3700 Specifies the core for which to tune the performance of this function and also
3701 whose architectural features to use. The behavior and valid arguments are the
3702 same as for the @option{-mcpu=} command-line option.
3704 @item sign-return-address
3705 @cindex @code{sign-return-address} function attribute, AArch64
3706 Select the function scope on which return address signing will be applied. The
3707 behavior and permissible arguments are the same as for the command-line option
3708 @option{-msign-return-address=}. The default value is @code{none}.
3712 The above target attributes can be specified as follows:
3715 __attribute__((target("@var{attr-string}")))
3723 where @code{@var{attr-string}} is one of the attribute strings specified above.
3725 Additionally, the architectural extension string may be specified on its
3726 own. This can be used to turn on and off particular architectural extensions
3727 without having to specify a particular architecture version or core. Example:
3730 __attribute__((target("+crc+nocrypto")))
3738 In this example @code{target("+crc+nocrypto")} enables the @code{crc}
3739 extension and disables the @code{crypto} extension for the function @code{foo}
3740 without modifying an existing @option{-march=} or @option{-mcpu} option.
3742 Multiple target function attributes can be specified by separating them with
3743 a comma. For example:
3745 __attribute__((target("arch=armv8-a+crc+crypto,tune=cortex-a53")))
3753 is valid and compiles function @code{foo} for ARMv8-A with @code{crc}
3754 and @code{crypto} extensions and tunes it for @code{cortex-a53}.
3756 @subsubsection Inlining rules
3757 Specifying target attributes on individual functions or performing link-time
3758 optimization across translation units compiled with different target options
3759 can affect function inlining rules:
3761 In particular, a caller function can inline a callee function only if the
3762 architectural features available to the callee are a subset of the features
3763 available to the caller.
3764 For example: A function @code{foo} compiled with @option{-march=armv8-a+crc},
3765 or tagged with the equivalent @code{arch=armv8-a+crc} attribute,
3766 can inline a function @code{bar} compiled with @option{-march=armv8-a+nocrc}
3767 because the all the architectural features that function @code{bar} requires
3768 are available to function @code{foo}. Conversely, function @code{bar} cannot
3769 inline function @code{foo}.
3771 Additionally inlining a function compiled with @option{-mstrict-align} into a
3772 function compiled without @code{-mstrict-align} is not allowed.
3773 However, inlining a function compiled without @option{-mstrict-align} into a
3774 function compiled with @option{-mstrict-align} is allowed.
3776 Note that CPU tuning options and attributes such as the @option{-mcpu=},
3777 @option{-mtune=} do not inhibit inlining unless the CPU specified by the
3778 @option{-mcpu=} option or the @code{cpu=} attribute conflicts with the
3779 architectural feature rules specified above.
3781 @node ARC Function Attributes
3782 @subsection ARC Function Attributes
3784 These function attributes are supported by the ARC back end:
3788 @cindex @code{interrupt} function attribute, ARC
3789 Use this attribute to indicate
3790 that the specified function is an interrupt handler. The compiler generates
3791 function entry and exit sequences suitable for use in an interrupt handler
3792 when this attribute is present.
3794 On the ARC, you must specify the kind of interrupt to be handled
3795 in a parameter to the interrupt attribute like this:
3798 void f () __attribute__ ((interrupt ("ilink1")));
3801 Permissible values for this parameter are: @w{@code{ilink1}} and
3807 @cindex @code{long_call} function attribute, ARC
3808 @cindex @code{medium_call} function attribute, ARC
3809 @cindex @code{short_call} function attribute, ARC
3810 @cindex indirect calls, ARC
3811 These attributes specify how a particular function is called.
3812 These attributes override the
3813 @option{-mlong-calls} and @option{-mmedium-calls} (@pxref{ARC Options})
3814 command-line switches and @code{#pragma long_calls} settings.
3816 For ARC, a function marked with the @code{long_call} attribute is
3817 always called using register-indirect jump-and-link instructions,
3818 thereby enabling the called function to be placed anywhere within the
3819 32-bit address space. A function marked with the @code{medium_call}
3820 attribute will always be close enough to be called with an unconditional
3821 branch-and-link instruction, which has a 25-bit offset from
3822 the call site. A function marked with the @code{short_call}
3823 attribute will always be close enough to be called with a conditional
3824 branch-and-link instruction, which has a 21-bit offset from
3828 @cindex @code{jli_always} function attribute, ARC
3829 Forces a particular function to be called using @code{jli}
3830 instruction. The @code{jli} instruction makes use of a table stored
3831 into @code{.jlitab} section, which holds the location of the functions
3832 which are addressed using this instruction.
3835 @cindex @code{jli_fixed} function attribute, ARC
3836 Identical like the above one, but the location of the function in the
3837 @code{jli} table is known and given as an attribute parameter.
3840 @cindex @code{secure_call} function attribute, ARC
3841 This attribute allows one to mark secure-code functions that are
3842 callable from normal mode. The location of the secure call function
3843 into the @code{sjli} table needs to be passed as argument.
3847 @node ARM Function Attributes
3848 @subsection ARM Function Attributes
3850 These function attributes are supported for ARM targets:
3854 @cindex @code{interrupt} function attribute, ARM
3855 Use this attribute to indicate
3856 that the specified function is an interrupt handler. The compiler generates
3857 function entry and exit sequences suitable for use in an interrupt handler
3858 when this attribute is present.
3860 You can specify the kind of interrupt to be handled by
3861 adding an optional parameter to the interrupt attribute like this:
3864 void f () __attribute__ ((interrupt ("IRQ")));
3868 Permissible values for this parameter are: @code{IRQ}, @code{FIQ},
3869 @code{SWI}, @code{ABORT} and @code{UNDEF}.
3871 On ARMv7-M the interrupt type is ignored, and the attribute means the function
3872 may be called with a word-aligned stack pointer.
3875 @cindex @code{isr} function attribute, ARM
3876 Use this attribute on ARM to write Interrupt Service Routines. This is an
3877 alias to the @code{interrupt} attribute above.
3881 @cindex @code{long_call} function attribute, ARM
3882 @cindex @code{short_call} function attribute, ARM
3883 @cindex indirect calls, ARM
3884 These attributes specify how a particular function is called.
3885 These attributes override the
3886 @option{-mlong-calls} (@pxref{ARM Options})
3887 command-line switch and @code{#pragma long_calls} settings. For ARM, the
3888 @code{long_call} attribute indicates that the function might be far
3889 away from the call site and require a different (more expensive)
3890 calling sequence. The @code{short_call} attribute always places
3891 the offset to the function from the call site into the @samp{BL}
3892 instruction directly.
3895 @cindex @code{naked} function attribute, ARM
3896 This attribute allows the compiler to construct the
3897 requisite function declaration, while allowing the body of the
3898 function to be assembly code. The specified function will not have
3899 prologue/epilogue sequences generated by the compiler. Only basic
3900 @code{asm} statements can safely be included in naked functions
3901 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
3902 basic @code{asm} and C code may appear to work, they cannot be
3903 depended upon to work reliably and are not supported.
3906 @cindex @code{pcs} function attribute, ARM
3908 The @code{pcs} attribute can be used to control the calling convention
3909 used for a function on ARM. The attribute takes an argument that specifies
3910 the calling convention to use.
3912 When compiling using the AAPCS ABI (or a variant of it) then valid
3913 values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}. In
3914 order to use a variant other than @code{"aapcs"} then the compiler must
3915 be permitted to use the appropriate co-processor registers (i.e., the
3916 VFP registers must be available in order to use @code{"aapcs-vfp"}).
3920 /* Argument passed in r0, and result returned in r0+r1. */
3921 double f2d (float) __attribute__((pcs("aapcs")));
3924 Variadic functions always use the @code{"aapcs"} calling convention and
3925 the compiler rejects attempts to specify an alternative.
3927 @item target (@var{options})
3928 @cindex @code{target} function attribute
3929 As discussed in @ref{Common Function Attributes}, this attribute
3930 allows specification of target-specific compilation options.
3932 On ARM, the following options are allowed:
3936 @cindex @code{target("thumb")} function attribute, ARM
3937 Force code generation in the Thumb (T16/T32) ISA, depending on the
3941 @cindex @code{target("arm")} function attribute, ARM
3942 Force code generation in the ARM (A32) ISA.
3944 Functions from different modes can be inlined in the caller's mode.
3947 @cindex @code{target("fpu=")} function attribute, ARM
3948 Specifies the fpu for which to tune the performance of this function.
3949 The behavior and permissible arguments are the same as for the @option{-mfpu=}
3950 command-line option.
3953 @cindex @code{arch=} function attribute, ARM
3954 Specifies the architecture version and architectural extensions to use
3955 for this function. The behavior and permissible arguments are the same as
3956 for the @option{-march=} command-line option.
3958 The above target attributes can be specified as follows:
3961 __attribute__((target("arch=armv8-a+crc")))
3969 Additionally, the architectural extension string may be specified on its
3970 own. This can be used to turn on and off particular architectural extensions
3971 without having to specify a particular architecture version or core. Example:
3974 __attribute__((target("+crc+nocrypto")))
3982 In this example @code{target("+crc+nocrypto")} enables the @code{crc}
3983 extension and disables the @code{crypto} extension for the function @code{foo}
3984 without modifying an existing @option{-march=} or @option{-mcpu} option.
3990 @node AVR Function Attributes
3991 @subsection AVR Function Attributes
3993 These function attributes are supported by the AVR back end:
3997 @cindex @code{interrupt} function attribute, AVR
3998 Use this attribute to indicate
3999 that the specified function is an interrupt handler. The compiler generates
4000 function entry and exit sequences suitable for use in an interrupt handler
4001 when this attribute is present.
4003 On the AVR, the hardware globally disables interrupts when an
4004 interrupt is executed. The first instruction of an interrupt handler
4005 declared with this attribute is a @code{SEI} instruction to
4006 re-enable interrupts. See also the @code{signal} function attribute
4007 that does not insert a @code{SEI} instruction. If both @code{signal} and
4008 @code{interrupt} are specified for the same function, @code{signal}
4009 is silently ignored.
4012 @cindex @code{naked} function attribute, AVR
4013 This attribute allows the compiler to construct the
4014 requisite function declaration, while allowing the body of the
4015 function to be assembly code. The specified function will not have
4016 prologue/epilogue sequences generated by the compiler. Only basic
4017 @code{asm} statements can safely be included in naked functions
4018 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4019 basic @code{asm} and C code may appear to work, they cannot be
4020 depended upon to work reliably and are not supported.
4023 @cindex @code{no_gccisr} function attribute, AVR
4024 Do not use @code{__gcc_isr} pseudo instructions in a function with
4025 the @code{interrupt} or @code{signal} attribute aka. interrupt
4026 service routine (ISR).
4027 Use this attribute if the preamble of the ISR prologue should always read
4031 in __tmp_reg__, __SREG__
4035 and accordingly for the postamble of the epilogue --- no matter whether
4036 the mentioned registers are actually used in the ISR or not.
4037 Situations where you might want to use this attribute include:
4040 Code that (effectively) clobbers bits of @code{SREG} other than the
4041 @code{I}-flag by writing to the memory location of @code{SREG}.
4043 Code that uses inline assembler to jump to a different function which
4044 expects (parts of) the prologue code as outlined above to be present.
4046 To disable @code{__gcc_isr} generation for the whole compilation unit,
4047 there is option @option{-mno-gas-isr-prologues}, @pxref{AVR Options}.
4051 @cindex @code{OS_main} function attribute, AVR
4052 @cindex @code{OS_task} function attribute, AVR
4053 On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
4054 do not save/restore any call-saved register in their prologue/epilogue.
4056 The @code{OS_main} attribute can be used when there @emph{is
4057 guarantee} that interrupts are disabled at the time when the function
4058 is entered. This saves resources when the stack pointer has to be
4059 changed to set up a frame for local variables.
4061 The @code{OS_task} attribute can be used when there is @emph{no
4062 guarantee} that interrupts are disabled at that time when the function
4063 is entered like for, e@.g@. task functions in a multi-threading operating
4064 system. In that case, changing the stack pointer register is
4065 guarded by save/clear/restore of the global interrupt enable flag.
4067 The differences to the @code{naked} function attribute are:
4069 @item @code{naked} functions do not have a return instruction whereas
4070 @code{OS_main} and @code{OS_task} functions have a @code{RET} or
4071 @code{RETI} return instruction.
4072 @item @code{naked} functions do not set up a frame for local variables
4073 or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
4078 @cindex @code{signal} function attribute, AVR
4079 Use this attribute on the AVR to indicate that the specified
4080 function is an interrupt handler. The compiler generates function
4081 entry and exit sequences suitable for use in an interrupt handler when this
4082 attribute is present.
4084 See also the @code{interrupt} function attribute.
4086 The AVR hardware globally disables interrupts when an interrupt is executed.
4087 Interrupt handler functions defined with the @code{signal} attribute
4088 do not re-enable interrupts. It is save to enable interrupts in a
4089 @code{signal} handler. This ``save'' only applies to the code
4090 generated by the compiler and not to the IRQ layout of the
4091 application which is responsibility of the application.
4093 If both @code{signal} and @code{interrupt} are specified for the same
4094 function, @code{signal} is silently ignored.
4097 @node Blackfin Function Attributes
4098 @subsection Blackfin Function Attributes
4100 These function attributes are supported by the Blackfin back end:
4104 @item exception_handler
4105 @cindex @code{exception_handler} function attribute
4106 @cindex exception handler functions, Blackfin
4107 Use this attribute on the Blackfin to indicate that the specified function
4108 is an exception handler. The compiler generates function entry and
4109 exit sequences suitable for use in an exception handler when this
4110 attribute is present.
4112 @item interrupt_handler
4113 @cindex @code{interrupt_handler} function attribute, Blackfin
4114 Use this attribute to
4115 indicate that the specified function is an interrupt handler. The compiler
4116 generates function entry and exit sequences suitable for use in an
4117 interrupt handler when this attribute is present.
4120 @cindex @code{kspisusp} function attribute, Blackfin
4121 @cindex User stack pointer in interrupts on the Blackfin
4122 When used together with @code{interrupt_handler}, @code{exception_handler}
4123 or @code{nmi_handler}, code is generated to load the stack pointer
4124 from the USP register in the function prologue.
4127 @cindex @code{l1_text} function attribute, Blackfin
4128 This attribute specifies a function to be placed into L1 Instruction
4129 SRAM@. The function is put into a specific section named @code{.l1.text}.
4130 With @option{-mfdpic}, function calls with a such function as the callee
4131 or caller uses inlined PLT.
4134 @cindex @code{l2} function attribute, Blackfin
4135 This attribute specifies a function to be placed into L2
4136 SRAM. The function is put into a specific section named
4137 @code{.l2.text}. With @option{-mfdpic}, callers of such functions use
4142 @cindex indirect calls, Blackfin
4143 @cindex @code{longcall} function attribute, Blackfin
4144 @cindex @code{shortcall} function attribute, Blackfin
4145 The @code{longcall} attribute
4146 indicates that the function might be far away from the call site and
4147 require a different (more expensive) calling sequence. The
4148 @code{shortcall} attribute indicates that the function is always close
4149 enough for the shorter calling sequence to be used. These attributes
4150 override the @option{-mlongcall} switch.
4153 @cindex @code{nesting} function attribute, Blackfin
4154 @cindex Allow nesting in an interrupt handler on the Blackfin processor
4155 Use this attribute together with @code{interrupt_handler},
4156 @code{exception_handler} or @code{nmi_handler} to indicate that the function
4157 entry code should enable nested interrupts or exceptions.
4160 @cindex @code{nmi_handler} function attribute, Blackfin
4161 @cindex NMI handler functions on the Blackfin processor
4162 Use this attribute on the Blackfin to indicate that the specified function
4163 is an NMI handler. The compiler generates function entry and
4164 exit sequences suitable for use in an NMI handler when this
4165 attribute is present.
4168 @cindex @code{saveall} function attribute, Blackfin
4169 @cindex save all registers on the Blackfin
4170 Use this attribute to indicate that
4171 all registers except the stack pointer should be saved in the prologue
4172 regardless of whether they are used or not.
4175 @node CR16 Function Attributes
4176 @subsection CR16 Function Attributes
4178 These function attributes are supported by the CR16 back end:
4182 @cindex @code{interrupt} function attribute, CR16
4183 Use this attribute to indicate
4184 that the specified function is an interrupt handler. The compiler generates
4185 function entry and exit sequences suitable for use in an interrupt handler
4186 when this attribute is present.
4189 @node C-SKY Function Attributes
4190 @subsection C-SKY Function Attributes
4192 These function attributes are supported by the C-SKY back end:
4197 @cindex @code{interrupt} function attribute, C-SKY
4198 @cindex @code{isr} function attribute, C-SKY
4199 Use these attributes to indicate that the specified function
4200 is an interrupt handler.
4201 The compiler generates function entry and exit sequences suitable for
4202 use in an interrupt handler when either of these attributes are present.
4204 Use of these options requires the @option{-mistack} command-line option
4205 to enable support for the necessary interrupt stack instructions. They
4206 are ignored with a warning otherwise. @xref{C-SKY Options}.
4209 @cindex @code{naked} function attribute, C-SKY
4210 This attribute allows the compiler to construct the
4211 requisite function declaration, while allowing the body of the
4212 function to be assembly code. The specified function will not have
4213 prologue/epilogue sequences generated by the compiler. Only basic
4214 @code{asm} statements can safely be included in naked functions
4215 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4216 basic @code{asm} and C code may appear to work, they cannot be
4217 depended upon to work reliably and are not supported.
4221 @node Epiphany Function Attributes
4222 @subsection Epiphany Function Attributes
4224 These function attributes are supported by the Epiphany back end:
4228 @cindex @code{disinterrupt} function attribute, Epiphany
4229 This attribute causes the compiler to emit
4230 instructions to disable interrupts for the duration of the given
4233 @item forwarder_section
4234 @cindex @code{forwarder_section} function attribute, Epiphany
4235 This attribute modifies the behavior of an interrupt handler.
4236 The interrupt handler may be in external memory which cannot be
4237 reached by a branch instruction, so generate a local memory trampoline
4238 to transfer control. The single parameter identifies the section where
4239 the trampoline is placed.
4242 @cindex @code{interrupt} function attribute, Epiphany
4243 Use this attribute to indicate
4244 that the specified function is an interrupt handler. The compiler generates
4245 function entry and exit sequences suitable for use in an interrupt handler
4246 when this attribute is present. It may also generate
4247 a special section with code to initialize the interrupt vector table.
4249 On Epiphany targets one or more optional parameters can be added like this:
4252 void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
4255 Permissible values for these parameters are: @w{@code{reset}},
4256 @w{@code{software_exception}}, @w{@code{page_miss}},
4257 @w{@code{timer0}}, @w{@code{timer1}}, @w{@code{message}},
4258 @w{@code{dma0}}, @w{@code{dma1}}, @w{@code{wand}} and @w{@code{swi}}.
4259 Multiple parameters indicate that multiple entries in the interrupt
4260 vector table should be initialized for this function, i.e.@: for each
4261 parameter @w{@var{name}}, a jump to the function is emitted in
4262 the section @w{ivt_entry_@var{name}}. The parameter(s) may be omitted
4263 entirely, in which case no interrupt vector table entry is provided.
4265 Note that interrupts are enabled inside the function
4266 unless the @code{disinterrupt} attribute is also specified.
4268 The following examples are all valid uses of these attributes on
4271 void __attribute__ ((interrupt)) universal_handler ();
4272 void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
4273 void __attribute__ ((interrupt ("dma0, dma1")))
4274 universal_dma_handler ();
4275 void __attribute__ ((interrupt ("timer0"), disinterrupt))
4276 fast_timer_handler ();
4277 void __attribute__ ((interrupt ("dma0, dma1"),
4278 forwarder_section ("tramp")))
4279 external_dma_handler ();
4284 @cindex @code{long_call} function attribute, Epiphany
4285 @cindex @code{short_call} function attribute, Epiphany
4286 @cindex indirect calls, Epiphany
4287 These attributes specify how a particular function is called.
4288 These attributes override the
4289 @option{-mlong-calls} (@pxref{Adapteva Epiphany Options})
4290 command-line switch and @code{#pragma long_calls} settings.
4294 @node H8/300 Function Attributes
4295 @subsection H8/300 Function Attributes
4297 These function attributes are available for H8/300 targets:
4300 @item function_vector
4301 @cindex @code{function_vector} function attribute, H8/300
4302 Use this attribute on the H8/300, H8/300H, and H8S to indicate
4303 that the specified function should be called through the function vector.
4304 Calling a function through the function vector reduces code size; however,
4305 the function vector has a limited size (maximum 128 entries on the H8/300
4306 and 64 entries on the H8/300H and H8S)
4307 and shares space with the interrupt vector.
4309 @item interrupt_handler
4310 @cindex @code{interrupt_handler} function attribute, H8/300
4311 Use this attribute on the H8/300, H8/300H, and H8S to
4312 indicate that the specified function is an interrupt handler. The compiler
4313 generates function entry and exit sequences suitable for use in an
4314 interrupt handler when this attribute is present.
4317 @cindex @code{saveall} function attribute, H8/300
4318 @cindex save all registers on the H8/300, H8/300H, and H8S
4319 Use this attribute on the H8/300, H8/300H, and H8S to indicate that
4320 all registers except the stack pointer should be saved in the prologue
4321 regardless of whether they are used or not.
4324 @node IA-64 Function Attributes
4325 @subsection IA-64 Function Attributes
4327 These function attributes are supported on IA-64 targets:
4330 @item syscall_linkage
4331 @cindex @code{syscall_linkage} function attribute, IA-64
4332 This attribute is used to modify the IA-64 calling convention by marking
4333 all input registers as live at all function exits. This makes it possible
4334 to restart a system call after an interrupt without having to save/restore
4335 the input registers. This also prevents kernel data from leaking into
4339 @cindex @code{version_id} function attribute, IA-64
4340 This IA-64 HP-UX attribute, attached to a global variable or function, renames a
4341 symbol to contain a version string, thus allowing for function level
4342 versioning. HP-UX system header files may use function level versioning
4343 for some system calls.
4346 extern int foo () __attribute__((version_id ("20040821")));
4350 Calls to @code{foo} are mapped to calls to @code{foo@{20040821@}}.
4353 @node M32C Function Attributes
4354 @subsection M32C Function Attributes
4356 These function attributes are supported by the M32C back end:
4360 @cindex @code{bank_switch} function attribute, M32C
4361 When added to an interrupt handler with the M32C port, causes the
4362 prologue and epilogue to use bank switching to preserve the registers
4363 rather than saving them on the stack.
4365 @item fast_interrupt
4366 @cindex @code{fast_interrupt} function attribute, M32C
4367 Use this attribute on the M32C port to indicate that the specified
4368 function is a fast interrupt handler. This is just like the
4369 @code{interrupt} attribute, except that @code{freit} is used to return
4370 instead of @code{reit}.
4372 @item function_vector
4373 @cindex @code{function_vector} function attribute, M16C/M32C
4374 On M16C/M32C targets, the @code{function_vector} attribute declares a
4375 special page subroutine call function. Use of this attribute reduces
4376 the code size by 2 bytes for each call generated to the
4377 subroutine. The argument to the attribute is the vector number entry
4378 from the special page vector table which contains the 16 low-order
4379 bits of the subroutine's entry address. Each vector table has special
4380 page number (18 to 255) that is used in @code{jsrs} instructions.
4381 Jump addresses of the routines are generated by adding 0x0F0000 (in
4382 case of M16C targets) or 0xFF0000 (in case of M32C targets), to the
4383 2-byte addresses set in the vector table. Therefore you need to ensure
4384 that all the special page vector routines should get mapped within the
4385 address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
4388 In the following example 2 bytes are saved for each call to
4389 function @code{foo}.
4392 void foo (void) __attribute__((function_vector(0x18)));
4403 If functions are defined in one file and are called in another file,
4404 then be sure to write this declaration in both files.
4406 This attribute is ignored for R8C target.
4409 @cindex @code{interrupt} function attribute, M32C
4410 Use this attribute to indicate
4411 that the specified function is an interrupt handler. The compiler generates
4412 function entry and exit sequences suitable for use in an interrupt handler
4413 when this attribute is present.
4416 @node M32R/D Function Attributes
4417 @subsection M32R/D Function Attributes
4419 These function attributes are supported by the M32R/D back end:
4423 @cindex @code{interrupt} function attribute, M32R/D
4424 Use this attribute to indicate
4425 that the specified function is an interrupt handler. The compiler generates
4426 function entry and exit sequences suitable for use in an interrupt handler
4427 when this attribute is present.
4429 @item model (@var{model-name})
4430 @cindex @code{model} function attribute, M32R/D
4431 @cindex function addressability on the M32R/D
4433 On the M32R/D, use this attribute to set the addressability of an
4434 object, and of the code generated for a function. The identifier
4435 @var{model-name} is one of @code{small}, @code{medium}, or
4436 @code{large}, representing each of the code models.
4438 Small model objects live in the lower 16MB of memory (so that their
4439 addresses can be loaded with the @code{ld24} instruction), and are
4440 callable with the @code{bl} instruction.
4442 Medium model objects may live anywhere in the 32-bit address space (the
4443 compiler generates @code{seth/add3} instructions to load their addresses),
4444 and are callable with the @code{bl} instruction.
4446 Large model objects may live anywhere in the 32-bit address space (the
4447 compiler generates @code{seth/add3} instructions to load their addresses),
4448 and may not be reachable with the @code{bl} instruction (the compiler
4449 generates the much slower @code{seth/add3/jl} instruction sequence).
4452 @node m68k Function Attributes
4453 @subsection m68k Function Attributes
4455 These function attributes are supported by the m68k back end:
4459 @itemx interrupt_handler
4460 @cindex @code{interrupt} function attribute, m68k
4461 @cindex @code{interrupt_handler} function attribute, m68k
4462 Use this attribute to
4463 indicate that the specified function is an interrupt handler. The compiler
4464 generates function entry and exit sequences suitable for use in an
4465 interrupt handler when this attribute is present. Either name may be used.
4467 @item interrupt_thread
4468 @cindex @code{interrupt_thread} function attribute, fido
4469 Use this attribute on fido, a subarchitecture of the m68k, to indicate
4470 that the specified function is an interrupt handler that is designed
4471 to run as a thread. The compiler omits generate prologue/epilogue
4472 sequences and replaces the return instruction with a @code{sleep}
4473 instruction. This attribute is available only on fido.
4476 @node MCORE Function Attributes
4477 @subsection MCORE Function Attributes
4479 These function attributes are supported by the MCORE back end:
4483 @cindex @code{naked} function attribute, MCORE
4484 This attribute allows the compiler to construct the
4485 requisite function declaration, while allowing the body of the
4486 function to be assembly code. The specified function will not have
4487 prologue/epilogue sequences generated by the compiler. Only basic
4488 @code{asm} statements can safely be included in naked functions
4489 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4490 basic @code{asm} and C code may appear to work, they cannot be
4491 depended upon to work reliably and are not supported.
4494 @node MeP Function Attributes
4495 @subsection MeP Function Attributes
4497 These function attributes are supported by the MeP back end:
4501 @cindex @code{disinterrupt} function attribute, MeP
4502 On MeP targets, this attribute causes the compiler to emit
4503 instructions to disable interrupts for the duration of the given
4507 @cindex @code{interrupt} function attribute, MeP
4508 Use this attribute to indicate
4509 that the specified function is an interrupt handler. The compiler generates
4510 function entry and exit sequences suitable for use in an interrupt handler
4511 when this attribute is present.
4514 @cindex @code{near} function attribute, MeP
4515 This attribute causes the compiler to assume the called
4516 function is close enough to use the normal calling convention,
4517 overriding the @option{-mtf} command-line option.
4520 @cindex @code{far} function attribute, MeP
4521 On MeP targets this causes the compiler to use a calling convention
4522 that assumes the called function is too far away for the built-in
4526 @cindex @code{vliw} function attribute, MeP
4527 The @code{vliw} attribute tells the compiler to emit
4528 instructions in VLIW mode instead of core mode. Note that this
4529 attribute is not allowed unless a VLIW coprocessor has been configured
4530 and enabled through command-line options.
4533 @node MicroBlaze Function Attributes
4534 @subsection MicroBlaze Function Attributes
4536 These function attributes are supported on MicroBlaze targets:
4539 @item save_volatiles
4540 @cindex @code{save_volatiles} function attribute, MicroBlaze
4541 Use this attribute to indicate that the function is
4542 an interrupt handler. All volatile registers (in addition to non-volatile
4543 registers) are saved in the function prologue. If the function is a leaf
4544 function, only volatiles used by the function are saved. A normal function
4545 return is generated instead of a return from interrupt.
4548 @cindex @code{break_handler} function attribute, MicroBlaze
4549 @cindex break handler functions
4550 Use this attribute to indicate that
4551 the specified function is a break handler. The compiler generates function
4552 entry and exit sequences suitable for use in an break handler when this
4553 attribute is present. The return from @code{break_handler} is done through
4554 the @code{rtbd} instead of @code{rtsd}.
4557 void f () __attribute__ ((break_handler));
4560 @item interrupt_handler
4561 @itemx fast_interrupt
4562 @cindex @code{interrupt_handler} function attribute, MicroBlaze
4563 @cindex @code{fast_interrupt} function attribute, MicroBlaze
4564 These attributes indicate that the specified function is an interrupt
4565 handler. Use the @code{fast_interrupt} attribute to indicate handlers
4566 used in low-latency interrupt mode, and @code{interrupt_handler} for
4567 interrupts that do not use low-latency handlers. In both cases, GCC
4568 emits appropriate prologue code and generates a return from the handler
4569 using @code{rtid} instead of @code{rtsd}.
4572 @node Microsoft Windows Function Attributes
4573 @subsection Microsoft Windows Function Attributes
4575 The following attributes are available on Microsoft Windows and Symbian OS
4580 @cindex @code{dllexport} function attribute
4581 @cindex @code{__declspec(dllexport)}
4582 On Microsoft Windows targets and Symbian OS targets the
4583 @code{dllexport} attribute causes the compiler to provide a global
4584 pointer to a pointer in a DLL, so that it can be referenced with the
4585 @code{dllimport} attribute. On Microsoft Windows targets, the pointer
4586 name is formed by combining @code{_imp__} and the function or variable
4589 You can use @code{__declspec(dllexport)} as a synonym for
4590 @code{__attribute__ ((dllexport))} for compatibility with other
4593 On systems that support the @code{visibility} attribute, this
4594 attribute also implies ``default'' visibility. It is an error to
4595 explicitly specify any other visibility.
4597 GCC's default behavior is to emit all inline functions with the
4598 @code{dllexport} attribute. Since this can cause object file-size bloat,
4599 you can use @option{-fno-keep-inline-dllexport}, which tells GCC to
4600 ignore the attribute for inlined functions unless the
4601 @option{-fkeep-inline-functions} flag is used instead.
4603 The attribute is ignored for undefined symbols.
4605 When applied to C++ classes, the attribute marks defined non-inlined
4606 member functions and static data members as exports. Static consts
4607 initialized in-class are not marked unless they are also defined
4610 For Microsoft Windows targets there are alternative methods for
4611 including the symbol in the DLL's export table such as using a
4612 @file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
4613 the @option{--export-all} linker flag.
4616 @cindex @code{dllimport} function attribute
4617 @cindex @code{__declspec(dllimport)}
4618 On Microsoft Windows and Symbian OS targets, the @code{dllimport}
4619 attribute causes the compiler to reference a function or variable via
4620 a global pointer to a pointer that is set up by the DLL exporting the
4621 symbol. The attribute implies @code{extern}. On Microsoft Windows
4622 targets, the pointer name is formed by combining @code{_imp__} and the
4623 function or variable name.
4625 You can use @code{__declspec(dllimport)} as a synonym for
4626 @code{__attribute__ ((dllimport))} for compatibility with other
4629 On systems that support the @code{visibility} attribute, this
4630 attribute also implies ``default'' visibility. It is an error to
4631 explicitly specify any other visibility.
4633 Currently, the attribute is ignored for inlined functions. If the
4634 attribute is applied to a symbol @emph{definition}, an error is reported.
4635 If a symbol previously declared @code{dllimport} is later defined, the
4636 attribute is ignored in subsequent references, and a warning is emitted.
4637 The attribute is also overridden by a subsequent declaration as
4640 When applied to C++ classes, the attribute marks non-inlined
4641 member functions and static data members as imports. However, the
4642 attribute is ignored for virtual methods to allow creation of vtables
4645 On the SH Symbian OS target the @code{dllimport} attribute also has
4646 another affect---it can cause the vtable and run-time type information
4647 for a class to be exported. This happens when the class has a
4648 dllimported constructor or a non-inline, non-pure virtual function
4649 and, for either of those two conditions, the class also has an inline
4650 constructor or destructor and has a key function that is defined in
4651 the current translation unit.
4653 For Microsoft Windows targets the use of the @code{dllimport}
4654 attribute on functions is not necessary, but provides a small
4655 performance benefit by eliminating a thunk in the DLL@. The use of the
4656 @code{dllimport} attribute on imported variables can be avoided by passing the
4657 @option{--enable-auto-import} switch to the GNU linker. As with
4658 functions, using the attribute for a variable eliminates a thunk in
4661 One drawback to using this attribute is that a pointer to a
4662 @emph{variable} marked as @code{dllimport} cannot be used as a constant
4663 address. However, a pointer to a @emph{function} with the
4664 @code{dllimport} attribute can be used as a constant initializer; in
4665 this case, the address of a stub function in the import lib is
4666 referenced. On Microsoft Windows targets, the attribute can be disabled
4667 for functions by setting the @option{-mnop-fun-dllimport} flag.
4670 @node MIPS Function Attributes
4671 @subsection MIPS Function Attributes
4673 These function attributes are supported by the MIPS back end:
4677 @cindex @code{interrupt} function attribute, MIPS
4678 Use this attribute to indicate that the specified function is an interrupt
4679 handler. The compiler generates function entry and exit sequences suitable
4680 for use in an interrupt handler when this attribute is present.
4681 An optional argument is supported for the interrupt attribute which allows
4682 the interrupt mode to be described. By default GCC assumes the external
4683 interrupt controller (EIC) mode is in use, this can be explicitly set using
4684 @code{eic}. When interrupts are non-masked then the requested Interrupt
4685 Priority Level (IPL) is copied to the current IPL which has the effect of only
4686 enabling higher priority interrupts. To use vectored interrupt mode use
4687 the argument @code{vector=[sw0|sw1|hw0|hw1|hw2|hw3|hw4|hw5]}, this will change
4688 the behavior of the non-masked interrupt support and GCC will arrange to mask
4689 all interrupts from sw0 up to and including the specified interrupt vector.
4691 You can use the following attributes to modify the behavior
4692 of an interrupt handler:
4694 @item use_shadow_register_set
4695 @cindex @code{use_shadow_register_set} function attribute, MIPS
4696 Assume that the handler uses a shadow register set, instead of
4697 the main general-purpose registers. An optional argument @code{intstack} is
4698 supported to indicate that the shadow register set contains a valid stack
4701 @item keep_interrupts_masked
4702 @cindex @code{keep_interrupts_masked} function attribute, MIPS
4703 Keep interrupts masked for the whole function. Without this attribute,
4704 GCC tries to reenable interrupts for as much of the function as it can.
4706 @item use_debug_exception_return
4707 @cindex @code{use_debug_exception_return} function attribute, MIPS
4708 Return using the @code{deret} instruction. Interrupt handlers that don't
4709 have this attribute return using @code{eret} instead.
4712 You can use any combination of these attributes, as shown below:
4714 void __attribute__ ((interrupt)) v0 ();
4715 void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
4716 void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
4717 void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
4718 void __attribute__ ((interrupt, use_shadow_register_set,
4719 keep_interrupts_masked)) v4 ();
4720 void __attribute__ ((interrupt, use_shadow_register_set,
4721 use_debug_exception_return)) v5 ();
4722 void __attribute__ ((interrupt, keep_interrupts_masked,
4723 use_debug_exception_return)) v6 ();
4724 void __attribute__ ((interrupt, use_shadow_register_set,
4725 keep_interrupts_masked,
4726 use_debug_exception_return)) v7 ();
4727 void __attribute__ ((interrupt("eic"))) v8 ();
4728 void __attribute__ ((interrupt("vector=hw3"))) v9 ();
4735 @cindex indirect calls, MIPS
4736 @cindex @code{long_call} function attribute, MIPS
4737 @cindex @code{short_call} function attribute, MIPS
4738 @cindex @code{near} function attribute, MIPS
4739 @cindex @code{far} function attribute, MIPS
4740 These attributes specify how a particular function is called on MIPS@.
4741 The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
4742 command-line switch. The @code{long_call} and @code{far} attributes are
4743 synonyms, and cause the compiler to always call
4744 the function by first loading its address into a register, and then using
4745 the contents of that register. The @code{short_call} and @code{near}
4746 attributes are synonyms, and have the opposite
4747 effect; they specify that non-PIC calls should be made using the more
4748 efficient @code{jal} instruction.
4752 @cindex @code{mips16} function attribute, MIPS
4753 @cindex @code{nomips16} function attribute, MIPS
4755 On MIPS targets, you can use the @code{mips16} and @code{nomips16}
4756 function attributes to locally select or turn off MIPS16 code generation.
4757 A function with the @code{mips16} attribute is emitted as MIPS16 code,
4758 while MIPS16 code generation is disabled for functions with the
4759 @code{nomips16} attribute. These attributes override the
4760 @option{-mips16} and @option{-mno-mips16} options on the command line
4761 (@pxref{MIPS Options}).
4763 When compiling files containing mixed MIPS16 and non-MIPS16 code, the
4764 preprocessor symbol @code{__mips16} reflects the setting on the command line,
4765 not that within individual functions. Mixed MIPS16 and non-MIPS16 code
4766 may interact badly with some GCC extensions such as @code{__builtin_apply}
4767 (@pxref{Constructing Calls}).
4769 @item micromips, MIPS
4770 @itemx nomicromips, MIPS
4771 @cindex @code{micromips} function attribute
4772 @cindex @code{nomicromips} function attribute
4774 On MIPS targets, you can use the @code{micromips} and @code{nomicromips}
4775 function attributes to locally select or turn off microMIPS code generation.
4776 A function with the @code{micromips} attribute is emitted as microMIPS code,
4777 while microMIPS code generation is disabled for functions with the
4778 @code{nomicromips} attribute. These attributes override the
4779 @option{-mmicromips} and @option{-mno-micromips} options on the command line
4780 (@pxref{MIPS Options}).
4782 When compiling files containing mixed microMIPS and non-microMIPS code, the
4783 preprocessor symbol @code{__mips_micromips} reflects the setting on the
4785 not that within individual functions. Mixed microMIPS and non-microMIPS code
4786 may interact badly with some GCC extensions such as @code{__builtin_apply}
4787 (@pxref{Constructing Calls}).
4790 @cindex @code{nocompression} function attribute, MIPS
4791 On MIPS targets, you can use the @code{nocompression} function attribute
4792 to locally turn off MIPS16 and microMIPS code generation. This attribute
4793 overrides the @option{-mips16} and @option{-mmicromips} options on the
4794 command line (@pxref{MIPS Options}).
4797 @node MSP430 Function Attributes
4798 @subsection MSP430 Function Attributes
4800 These function attributes are supported by the MSP430 back end:
4804 @cindex @code{critical} function attribute, MSP430
4805 Critical functions disable interrupts upon entry and restore the
4806 previous interrupt state upon exit. Critical functions cannot also
4807 have the @code{naked} or @code{reentrant} attributes. They can have
4808 the @code{interrupt} attribute.
4811 @cindex @code{interrupt} function attribute, MSP430
4812 Use this attribute to indicate
4813 that the specified function is an interrupt handler. The compiler generates
4814 function entry and exit sequences suitable for use in an interrupt handler
4815 when this attribute is present.
4817 You can provide an argument to the interrupt
4818 attribute which specifies a name or number. If the argument is a
4819 number it indicates the slot in the interrupt vector table (0 - 31) to
4820 which this handler should be assigned. If the argument is a name it
4821 is treated as a symbolic name for the vector slot. These names should
4822 match up with appropriate entries in the linker script. By default
4823 the names @code{watchdog} for vector 26, @code{nmi} for vector 30 and
4824 @code{reset} for vector 31 are recognized.
4827 @cindex @code{naked} function attribute, MSP430
4828 This attribute allows the compiler to construct the
4829 requisite function declaration, while allowing the body of the
4830 function to be assembly code. The specified function will not have
4831 prologue/epilogue sequences generated by the compiler. Only basic
4832 @code{asm} statements can safely be included in naked functions
4833 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4834 basic @code{asm} and C code may appear to work, they cannot be
4835 depended upon to work reliably and are not supported.
4838 @cindex @code{reentrant} function attribute, MSP430
4839 Reentrant functions disable interrupts upon entry and enable them
4840 upon exit. Reentrant functions cannot also have the @code{naked}
4841 or @code{critical} attributes. They can have the @code{interrupt}
4845 @cindex @code{wakeup} function attribute, MSP430
4846 This attribute only applies to interrupt functions. It is silently
4847 ignored if applied to a non-interrupt function. A wakeup interrupt
4848 function will rouse the processor from any low-power state that it
4849 might be in when the function exits.
4854 @cindex @code{lower} function attribute, MSP430
4855 @cindex @code{upper} function attribute, MSP430
4856 @cindex @code{either} function attribute, MSP430
4857 On the MSP430 target these attributes can be used to specify whether
4858 the function or variable should be placed into low memory, high
4859 memory, or the placement should be left to the linker to decide. The
4860 attributes are only significant if compiling for the MSP430X
4863 The attributes work in conjunction with a linker script that has been
4864 augmented to specify where to place sections with a @code{.lower} and
4865 a @code{.upper} prefix. So, for example, as well as placing the
4866 @code{.data} section, the script also specifies the placement of a
4867 @code{.lower.data} and a @code{.upper.data} section. The intention
4868 is that @code{lower} sections are placed into a small but easier to
4869 access memory region and the upper sections are placed into a larger, but
4870 slower to access, region.
4872 The @code{either} attribute is special. It tells the linker to place
4873 the object into the corresponding @code{lower} section if there is
4874 room for it. If there is insufficient room then the object is placed
4875 into the corresponding @code{upper} section instead. Note that the
4876 placement algorithm is not very sophisticated. It does not attempt to
4877 find an optimal packing of the @code{lower} sections. It just makes
4878 one pass over the objects and does the best that it can. Using the
4879 @option{-ffunction-sections} and @option{-fdata-sections} command-line
4880 options can help the packing, however, since they produce smaller,
4881 easier to pack regions.
4884 @node NDS32 Function Attributes
4885 @subsection NDS32 Function Attributes
4887 These function attributes are supported by the NDS32 back end:
4891 @cindex @code{exception} function attribute
4892 @cindex exception handler functions, NDS32
4893 Use this attribute on the NDS32 target to indicate that the specified function
4894 is an exception handler. The compiler will generate corresponding sections
4895 for use in an exception handler.
4898 @cindex @code{interrupt} function attribute, NDS32
4899 On NDS32 target, this attribute indicates that the specified function
4900 is an interrupt handler. The compiler generates corresponding sections
4901 for use in an interrupt handler. You can use the following attributes
4902 to modify the behavior:
4905 @cindex @code{nested} function attribute, NDS32
4906 This interrupt service routine is interruptible.
4908 @cindex @code{not_nested} function attribute, NDS32
4909 This interrupt service routine is not interruptible.
4911 @cindex @code{nested_ready} function attribute, NDS32
4912 This interrupt service routine is interruptible after @code{PSW.GIE}
4913 (global interrupt enable) is set. This allows interrupt service routine to
4914 finish some short critical code before enabling interrupts.
4916 @cindex @code{save_all} function attribute, NDS32
4917 The system will help save all registers into stack before entering
4920 @cindex @code{partial_save} function attribute, NDS32
4921 The system will help save caller registers into stack before entering
4926 @cindex @code{naked} function attribute, NDS32
4927 This attribute allows the compiler to construct the
4928 requisite function declaration, while allowing the body of the
4929 function to be assembly code. The specified function will not have
4930 prologue/epilogue sequences generated by the compiler. Only basic
4931 @code{asm} statements can safely be included in naked functions
4932 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4933 basic @code{asm} and C code may appear to work, they cannot be
4934 depended upon to work reliably and are not supported.
4937 @cindex @code{reset} function attribute, NDS32
4938 @cindex reset handler functions
4939 Use this attribute on the NDS32 target to indicate that the specified function
4940 is a reset handler. The compiler will generate corresponding sections
4941 for use in a reset handler. You can use the following attributes
4942 to provide extra exception handling:
4945 @cindex @code{nmi} function attribute, NDS32
4946 Provide a user-defined function to handle NMI exception.
4948 @cindex @code{warm} function attribute, NDS32
4949 Provide a user-defined function to handle warm reset exception.
4953 @node Nios II Function Attributes
4954 @subsection Nios II Function Attributes
4956 These function attributes are supported by the Nios II back end:
4959 @item target (@var{options})
4960 @cindex @code{target} function attribute
4961 As discussed in @ref{Common Function Attributes}, this attribute
4962 allows specification of target-specific compilation options.
4964 When compiling for Nios II, the following options are allowed:
4967 @item custom-@var{insn}=@var{N}
4968 @itemx no-custom-@var{insn}
4969 @cindex @code{target("custom-@var{insn}=@var{N}")} function attribute, Nios II
4970 @cindex @code{target("no-custom-@var{insn}")} function attribute, Nios II
4971 Each @samp{custom-@var{insn}=@var{N}} attribute locally enables use of a
4972 custom instruction with encoding @var{N} when generating code that uses
4973 @var{insn}. Similarly, @samp{no-custom-@var{insn}} locally inhibits use of
4974 the custom instruction @var{insn}.
4975 These target attributes correspond to the
4976 @option{-mcustom-@var{insn}=@var{N}} and @option{-mno-custom-@var{insn}}
4977 command-line options, and support the same set of @var{insn} keywords.
4978 @xref{Nios II Options}, for more information.
4980 @item custom-fpu-cfg=@var{name}
4981 @cindex @code{target("custom-fpu-cfg=@var{name}")} function attribute, Nios II
4982 This attribute corresponds to the @option{-mcustom-fpu-cfg=@var{name}}
4983 command-line option, to select a predefined set of custom instructions
4985 @xref{Nios II Options}, for more information.
4989 @node Nvidia PTX Function Attributes
4990 @subsection Nvidia PTX Function Attributes
4992 These function attributes are supported by the Nvidia PTX back end:
4996 @cindex @code{kernel} attribute, Nvidia PTX
4997 This attribute indicates that the corresponding function should be compiled
4998 as a kernel function, which can be invoked from the host via the CUDA RT
5000 By default functions are only callable only from other PTX functions.
5002 Kernel functions must have @code{void} return type.
5005 @node PowerPC Function Attributes
5006 @subsection PowerPC Function Attributes
5008 These function attributes are supported by the PowerPC back end:
5013 @cindex indirect calls, PowerPC
5014 @cindex @code{longcall} function attribute, PowerPC
5015 @cindex @code{shortcall} function attribute, PowerPC
5016 The @code{longcall} attribute
5017 indicates that the function might be far away from the call site and
5018 require a different (more expensive) calling sequence. The
5019 @code{shortcall} attribute indicates that the function is always close
5020 enough for the shorter calling sequence to be used. These attributes
5021 override both the @option{-mlongcall} switch and
5022 the @code{#pragma longcall} setting.
5024 @xref{RS/6000 and PowerPC Options}, for more information on whether long
5025 calls are necessary.
5027 @item target (@var{options})
5028 @cindex @code{target} function attribute
5029 As discussed in @ref{Common Function Attributes}, this attribute
5030 allows specification of target-specific compilation options.
5032 On the PowerPC, the following options are allowed:
5037 @cindex @code{target("altivec")} function attribute, PowerPC
5038 Generate code that uses (does not use) AltiVec instructions. In
5039 32-bit code, you cannot enable AltiVec instructions unless
5040 @option{-mabi=altivec} is used on the command line.
5044 @cindex @code{target("cmpb")} function attribute, PowerPC
5045 Generate code that uses (does not use) the compare bytes instruction
5046 implemented on the POWER6 processor and other processors that support
5047 the PowerPC V2.05 architecture.
5051 @cindex @code{target("dlmzb")} function attribute, PowerPC
5052 Generate code that uses (does not use) the string-search @samp{dlmzb}
5053 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
5054 generated by default when targeting those processors.
5058 @cindex @code{target("fprnd")} function attribute, PowerPC
5059 Generate code that uses (does not use) the FP round to integer
5060 instructions implemented on the POWER5+ processor and other processors
5061 that support the PowerPC V2.03 architecture.
5065 @cindex @code{target("hard-dfp")} function attribute, PowerPC
5066 Generate code that uses (does not use) the decimal floating-point
5067 instructions implemented on some POWER processors.
5071 @cindex @code{target("isel")} function attribute, PowerPC
5072 Generate code that uses (does not use) ISEL instruction.
5076 @cindex @code{target("mfcrf")} function attribute, PowerPC
5077 Generate code that uses (does not use) the move from condition
5078 register field instruction implemented on the POWER4 processor and
5079 other processors that support the PowerPC V2.01 architecture.
5083 @cindex @code{target("mfpgpr")} function attribute, PowerPC
5084 Generate code that uses (does not use) the FP move to/from general
5085 purpose register instructions implemented on the POWER6X processor and
5086 other processors that support the extended PowerPC V2.05 architecture.
5090 @cindex @code{target("mulhw")} function attribute, PowerPC
5091 Generate code that uses (does not use) the half-word multiply and
5092 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
5093 These instructions are generated by default when targeting those
5098 @cindex @code{target("multiple")} function attribute, PowerPC
5099 Generate code that uses (does not use) the load multiple word
5100 instructions and the store multiple word instructions.
5104 @cindex @code{target("update")} function attribute, PowerPC
5105 Generate code that uses (does not use) the load or store instructions
5106 that update the base register to the address of the calculated memory
5111 @cindex @code{target("popcntb")} function attribute, PowerPC
5112 Generate code that uses (does not use) the popcount and double-precision
5113 FP reciprocal estimate instruction implemented on the POWER5
5114 processor and other processors that support the PowerPC V2.02
5119 @cindex @code{target("popcntd")} function attribute, PowerPC
5120 Generate code that uses (does not use) the popcount instruction
5121 implemented on the POWER7 processor and other processors that support
5122 the PowerPC V2.06 architecture.
5124 @item powerpc-gfxopt
5125 @itemx no-powerpc-gfxopt
5126 @cindex @code{target("powerpc-gfxopt")} function attribute, PowerPC
5127 Generate code that uses (does not use) the optional PowerPC
5128 architecture instructions in the Graphics group, including
5129 floating-point select.
5132 @itemx no-powerpc-gpopt
5133 @cindex @code{target("powerpc-gpopt")} function attribute, PowerPC
5134 Generate code that uses (does not use) the optional PowerPC
5135 architecture instructions in the General Purpose group, including
5136 floating-point square root.
5138 @item recip-precision
5139 @itemx no-recip-precision
5140 @cindex @code{target("recip-precision")} function attribute, PowerPC
5141 Assume (do not assume) that the reciprocal estimate instructions
5142 provide higher-precision estimates than is mandated by the PowerPC
5147 @cindex @code{target("string")} function attribute, PowerPC
5148 Generate code that uses (does not use) the load string instructions
5149 and the store string word instructions to save multiple registers and
5150 do small block moves.
5154 @cindex @code{target("vsx")} function attribute, PowerPC
5155 Generate code that uses (does not use) vector/scalar (VSX)
5156 instructions, and also enable the use of built-in functions that allow
5157 more direct access to the VSX instruction set. In 32-bit code, you
5158 cannot enable VSX or AltiVec instructions unless
5159 @option{-mabi=altivec} is used on the command line.
5163 @cindex @code{target("friz")} function attribute, PowerPC
5164 Generate (do not generate) the @code{friz} instruction when the
5165 @option{-funsafe-math-optimizations} option is used to optimize
5166 rounding a floating-point value to 64-bit integer and back to floating
5167 point. The @code{friz} instruction does not return the same value if
5168 the floating-point number is too large to fit in an integer.
5170 @item avoid-indexed-addresses
5171 @itemx no-avoid-indexed-addresses
5172 @cindex @code{target("avoid-indexed-addresses")} function attribute, PowerPC
5173 Generate code that tries to avoid (not avoid) the use of indexed load
5174 or store instructions.
5178 @cindex @code{target("paired")} function attribute, PowerPC
5179 Generate code that uses (does not use) the generation of PAIRED simd
5184 @cindex @code{target("longcall")} function attribute, PowerPC
5185 Generate code that assumes (does not assume) that all calls are far
5186 away so that a longer more expensive calling sequence is required.
5189 @cindex @code{target("cpu=@var{CPU}")} function attribute, PowerPC
5190 Specify the architecture to generate code for when compiling the
5191 function. If you select the @code{target("cpu=power7")} attribute when
5192 generating 32-bit code, VSX and AltiVec instructions are not generated
5193 unless you use the @option{-mabi=altivec} option on the command line.
5195 @item tune=@var{TUNE}
5196 @cindex @code{target("tune=@var{TUNE}")} function attribute, PowerPC
5197 Specify the architecture to tune for when compiling the function. If
5198 you do not specify the @code{target("tune=@var{TUNE}")} attribute and
5199 you do specify the @code{target("cpu=@var{CPU}")} attribute,
5200 compilation tunes for the @var{CPU} architecture, and not the
5201 default tuning specified on the command line.
5204 On the PowerPC, the inliner does not inline a
5205 function that has different target options than the caller, unless the
5206 callee has a subset of the target options of the caller.
5209 @node RISC-V Function Attributes
5210 @subsection RISC-V Function Attributes
5212 These function attributes are supported by the RISC-V back end:
5216 @cindex @code{naked} function attribute, RISC-V
5217 This attribute allows the compiler to construct the
5218 requisite function declaration, while allowing the body of the
5219 function to be assembly code. The specified function will not have
5220 prologue/epilogue sequences generated by the compiler. Only basic
5221 @code{asm} statements can safely be included in naked functions
5222 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5223 basic @code{asm} and C code may appear to work, they cannot be
5224 depended upon to work reliably and are not supported.
5227 @cindex @code{interrupt} function attribute, RISC-V
5228 Use this attribute to indicate that the specified function is an interrupt
5229 handler. The compiler generates function entry and exit sequences suitable
5230 for use in an interrupt handler when this attribute is present.
5232 You can specify the kind of interrupt to be handled by adding an optional
5233 parameter to the interrupt attribute like this:
5236 void f (void) __attribute__ ((interrupt ("user")));
5239 Permissible values for this parameter are @code{user}, @code{supervisor},
5240 and @code{machine}. If there is no parameter, then it defaults to
5244 @node RL78 Function Attributes
5245 @subsection RL78 Function Attributes
5247 These function attributes are supported by the RL78 back end:
5251 @itemx brk_interrupt
5252 @cindex @code{interrupt} function attribute, RL78
5253 @cindex @code{brk_interrupt} function attribute, RL78
5254 These attributes indicate
5255 that the specified function is an interrupt handler. The compiler generates
5256 function entry and exit sequences suitable for use in an interrupt handler
5257 when this attribute is present.
5259 Use @code{brk_interrupt} instead of @code{interrupt} for
5260 handlers intended to be used with the @code{BRK} opcode (i.e.@: those
5261 that must end with @code{RETB} instead of @code{RETI}).
5264 @cindex @code{naked} function attribute, RL78
5265 This attribute allows the compiler to construct the
5266 requisite function declaration, while allowing the body of the
5267 function to be assembly code. The specified function will not have
5268 prologue/epilogue sequences generated by the compiler. Only basic
5269 @code{asm} statements can safely be included in naked functions
5270 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5271 basic @code{asm} and C code may appear to work, they cannot be
5272 depended upon to work reliably and are not supported.
5275 @node RX Function Attributes
5276 @subsection RX Function Attributes
5278 These function attributes are supported by the RX back end:
5281 @item fast_interrupt
5282 @cindex @code{fast_interrupt} function attribute, RX
5283 Use this attribute on the RX port to indicate that the specified
5284 function is a fast interrupt handler. This is just like the
5285 @code{interrupt} attribute, except that @code{freit} is used to return
5286 instead of @code{reit}.
5289 @cindex @code{interrupt} function attribute, RX
5290 Use this attribute to indicate
5291 that the specified function is an interrupt handler. The compiler generates
5292 function entry and exit sequences suitable for use in an interrupt handler
5293 when this attribute is present.
5295 On RX and RL78 targets, you may specify one or more vector numbers as arguments
5296 to the attribute, as well as naming an alternate table name.
5297 Parameters are handled sequentially, so one handler can be assigned to
5298 multiple entries in multiple tables. One may also pass the magic
5299 string @code{"$default"} which causes the function to be used for any
5300 unfilled slots in the current table.
5302 This example shows a simple assignment of a function to one vector in
5303 the default table (note that preprocessor macros may be used for
5304 chip-specific symbolic vector names):
5306 void __attribute__ ((interrupt (5))) txd1_handler ();
5309 This example assigns a function to two slots in the default table
5310 (using preprocessor macros defined elsewhere) and makes it the default
5311 for the @code{dct} table:
5313 void __attribute__ ((interrupt (RXD1_VECT,RXD2_VECT,"dct","$default")))
5318 @cindex @code{naked} function attribute, RX
5319 This attribute allows the compiler to construct the
5320 requisite function declaration, while allowing the body of the
5321 function to be assembly code. The specified function will not have
5322 prologue/epilogue sequences generated by the compiler. Only basic
5323 @code{asm} statements can safely be included in naked functions
5324 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5325 basic @code{asm} and C code may appear to work, they cannot be
5326 depended upon to work reliably and are not supported.
5329 @cindex @code{vector} function attribute, RX
5330 This RX attribute is similar to the @code{interrupt} attribute, including its
5331 parameters, but does not make the function an interrupt-handler type
5332 function (i.e.@: it retains the normal C function calling ABI). See the
5333 @code{interrupt} attribute for a description of its arguments.
5336 @node S/390 Function Attributes
5337 @subsection S/390 Function Attributes
5339 These function attributes are supported on the S/390:
5342 @item hotpatch (@var{halfwords-before-function-label},@var{halfwords-after-function-label})
5343 @cindex @code{hotpatch} function attribute, S/390
5345 On S/390 System z targets, you can use this function attribute to
5346 make GCC generate a ``hot-patching'' function prologue. If the
5347 @option{-mhotpatch=} command-line option is used at the same time,
5348 the @code{hotpatch} attribute takes precedence. The first of the
5349 two arguments specifies the number of halfwords to be added before
5350 the function label. A second argument can be used to specify the
5351 number of halfwords to be added after the function label. For
5352 both arguments the maximum allowed value is 1000000.
5354 If both arguments are zero, hotpatching is disabled.
5356 @item target (@var{options})
5357 @cindex @code{target} function attribute
5358 As discussed in @ref{Common Function Attributes}, this attribute
5359 allows specification of target-specific compilation options.
5361 On S/390, the following options are supported:
5369 @item warn-framesize=
5381 @itemx no-packed-stack
5383 @itemx no-small-exec
5386 @item warn-dynamicstack
5387 @itemx no-warn-dynamicstack
5390 The options work exactly like the S/390 specific command line
5391 options (without the prefix @option{-m}) except that they do not
5392 change any feature macros. For example,
5395 @code{target("no-vx")}
5398 does not undefine the @code{__VEC__} macro.
5401 @node SH Function Attributes
5402 @subsection SH Function Attributes
5404 These function attributes are supported on the SH family of processors:
5407 @item function_vector
5408 @cindex @code{function_vector} function attribute, SH
5409 @cindex calling functions through the function vector on SH2A
5410 On SH2A targets, this attribute declares a function to be called using the
5411 TBR relative addressing mode. The argument to this attribute is the entry
5412 number of the same function in a vector table containing all the TBR
5413 relative addressable functions. For correct operation the TBR must be setup
5414 accordingly to point to the start of the vector table before any functions with
5415 this attribute are invoked. Usually a good place to do the initialization is
5416 the startup routine. The TBR relative vector table can have at max 256 function
5417 entries. The jumps to these functions are generated using a SH2A specific,
5418 non delayed branch instruction JSR/N @@(disp8,TBR). You must use GAS and GLD
5419 from GNU binutils version 2.7 or later for this attribute to work correctly.
5421 In an application, for a function being called once, this attribute
5422 saves at least 8 bytes of code; and if other successive calls are being
5423 made to the same function, it saves 2 bytes of code per each of these
5426 @item interrupt_handler
5427 @cindex @code{interrupt_handler} function attribute, SH
5428 Use this attribute to
5429 indicate that the specified function is an interrupt handler. The compiler
5430 generates function entry and exit sequences suitable for use in an
5431 interrupt handler when this attribute is present.
5433 @item nosave_low_regs
5434 @cindex @code{nosave_low_regs} function attribute, SH
5435 Use this attribute on SH targets to indicate that an @code{interrupt_handler}
5436 function should not save and restore registers R0..R7. This can be used on SH3*
5437 and SH4* targets that have a second R0..R7 register bank for non-reentrant
5441 @cindex @code{renesas} function attribute, SH
5442 On SH targets this attribute specifies that the function or struct follows the
5446 @cindex @code{resbank} function attribute, SH
5447 On the SH2A target, this attribute enables the high-speed register
5448 saving and restoration using a register bank for @code{interrupt_handler}
5449 routines. Saving to the bank is performed automatically after the CPU
5450 accepts an interrupt that uses a register bank.
5452 The nineteen 32-bit registers comprising general register R0 to R14,
5453 control register GBR, and system registers MACH, MACL, and PR and the
5454 vector table address offset are saved into a register bank. Register
5455 banks are stacked in first-in last-out (FILO) sequence. Restoration
5456 from the bank is executed by issuing a RESBANK instruction.
5459 @cindex @code{sp_switch} function attribute, SH
5460 Use this attribute on the SH to indicate an @code{interrupt_handler}
5461 function should switch to an alternate stack. It expects a string
5462 argument that names a global variable holding the address of the
5467 void f () __attribute__ ((interrupt_handler,
5468 sp_switch ("alt_stack")));
5472 @cindex @code{trap_exit} function attribute, SH
5473 Use this attribute on the SH for an @code{interrupt_handler} to return using
5474 @code{trapa} instead of @code{rte}. This attribute expects an integer
5475 argument specifying the trap number to be used.
5478 @cindex @code{trapa_handler} function attribute, SH
5479 On SH targets this function attribute is similar to @code{interrupt_handler}
5480 but it does not save and restore all registers.
5483 @node SPU Function Attributes
5484 @subsection SPU Function Attributes
5486 These function attributes are supported by the SPU back end:
5490 @cindex @code{naked} function attribute, SPU
5491 This attribute allows the compiler to construct the
5492 requisite function declaration, while allowing the body of the
5493 function to be assembly code. The specified function will not have
5494 prologue/epilogue sequences generated by the compiler. Only basic
5495 @code{asm} statements can safely be included in naked functions
5496 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5497 basic @code{asm} and C code may appear to work, they cannot be
5498 depended upon to work reliably and are not supported.
5501 @node Symbian OS Function Attributes
5502 @subsection Symbian OS Function Attributes
5504 @xref{Microsoft Windows Function Attributes}, for discussion of the
5505 @code{dllexport} and @code{dllimport} attributes.
5507 @node V850 Function Attributes
5508 @subsection V850 Function Attributes
5510 The V850 back end supports these function attributes:
5514 @itemx interrupt_handler
5515 @cindex @code{interrupt} function attribute, V850
5516 @cindex @code{interrupt_handler} function attribute, V850
5517 Use these attributes to indicate
5518 that the specified function is an interrupt handler. The compiler generates
5519 function entry and exit sequences suitable for use in an interrupt handler
5520 when either attribute is present.
5523 @node Visium Function Attributes
5524 @subsection Visium Function Attributes
5526 These function attributes are supported by the Visium back end:
5530 @cindex @code{interrupt} function attribute, Visium
5531 Use this attribute to indicate
5532 that the specified function is an interrupt handler. The compiler generates
5533 function entry and exit sequences suitable for use in an interrupt handler
5534 when this attribute is present.
5537 @node x86 Function Attributes
5538 @subsection x86 Function Attributes
5540 These function attributes are supported by the x86 back end:
5544 @cindex @code{cdecl} function attribute, x86-32
5545 @cindex functions that pop the argument stack on x86-32
5547 On the x86-32 targets, the @code{cdecl} attribute causes the compiler to
5548 assume that the calling function pops off the stack space used to
5549 pass arguments. This is
5550 useful to override the effects of the @option{-mrtd} switch.
5553 @cindex @code{fastcall} function attribute, x86-32
5554 @cindex functions that pop the argument stack on x86-32
5555 On x86-32 targets, the @code{fastcall} attribute causes the compiler to
5556 pass the first argument (if of integral type) in the register ECX and
5557 the second argument (if of integral type) in the register EDX@. Subsequent
5558 and other typed arguments are passed on the stack. The called function
5559 pops the arguments off the stack. If the number of arguments is variable all
5560 arguments are pushed on the stack.
5563 @cindex @code{thiscall} function attribute, x86-32
5564 @cindex functions that pop the argument stack on x86-32
5565 On x86-32 targets, the @code{thiscall} attribute causes the compiler to
5566 pass the first argument (if of integral type) in the register ECX.
5567 Subsequent and other typed arguments are passed on the stack. The called
5568 function pops the arguments off the stack.
5569 If the number of arguments is variable all arguments are pushed on the
5571 The @code{thiscall} attribute is intended for C++ non-static member functions.
5572 As a GCC extension, this calling convention can be used for C functions
5573 and for static member methods.
5577 @cindex @code{ms_abi} function attribute, x86
5578 @cindex @code{sysv_abi} function attribute, x86
5580 On 32-bit and 64-bit x86 targets, you can use an ABI attribute
5581 to indicate which calling convention should be used for a function. The
5582 @code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
5583 while the @code{sysv_abi} attribute tells the compiler to use the ABI
5584 used on GNU/Linux and other systems. The default is to use the Microsoft ABI
5585 when targeting Windows. On all other systems, the default is the x86/AMD ABI.
5587 Note, the @code{ms_abi} attribute for Microsoft Windows 64-bit targets currently
5588 requires the @option{-maccumulate-outgoing-args} option.
5590 @item callee_pop_aggregate_return (@var{number})
5591 @cindex @code{callee_pop_aggregate_return} function attribute, x86
5593 On x86-32 targets, you can use this attribute to control how
5594 aggregates are returned in memory. If the caller is responsible for
5595 popping the hidden pointer together with the rest of the arguments, specify
5596 @var{number} equal to zero. If callee is responsible for popping the
5597 hidden pointer, specify @var{number} equal to one.
5599 The default x86-32 ABI assumes that the callee pops the
5600 stack for hidden pointer. However, on x86-32 Microsoft Windows targets,
5601 the compiler assumes that the
5602 caller pops the stack for hidden pointer.
5604 @item ms_hook_prologue
5605 @cindex @code{ms_hook_prologue} function attribute, x86
5607 On 32-bit and 64-bit x86 targets, you can use
5608 this function attribute to make GCC generate the ``hot-patching'' function
5609 prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
5613 @cindex @code{naked} function attribute, x86
5614 This attribute allows the compiler to construct the
5615 requisite function declaration, while allowing the body of the
5616 function to be assembly code. The specified function will not have
5617 prologue/epilogue sequences generated by the compiler. Only basic
5618 @code{asm} statements can safely be included in naked functions
5619 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5620 basic @code{asm} and C code may appear to work, they cannot be
5621 depended upon to work reliably and are not supported.
5623 @item regparm (@var{number})
5624 @cindex @code{regparm} function attribute, x86
5625 @cindex functions that are passed arguments in registers on x86-32
5626 On x86-32 targets, the @code{regparm} attribute causes the compiler to
5627 pass arguments number one to @var{number} if they are of integral type
5628 in registers EAX, EDX, and ECX instead of on the stack. Functions that
5629 take a variable number of arguments continue to be passed all of their
5630 arguments on the stack.
5632 Beware that on some ELF systems this attribute is unsuitable for
5633 global functions in shared libraries with lazy binding (which is the
5634 default). Lazy binding sends the first call via resolving code in
5635 the loader, which might assume EAX, EDX and ECX can be clobbered, as
5636 per the standard calling conventions. Solaris 8 is affected by this.
5637 Systems with the GNU C Library version 2.1 or higher
5638 and FreeBSD are believed to be
5639 safe since the loaders there save EAX, EDX and ECX. (Lazy binding can be
5640 disabled with the linker or the loader if desired, to avoid the
5644 @cindex @code{sseregparm} function attribute, x86
5645 On x86-32 targets with SSE support, the @code{sseregparm} attribute
5646 causes the compiler to pass up to 3 floating-point arguments in
5647 SSE registers instead of on the stack. Functions that take a
5648 variable number of arguments continue to pass all of their
5649 floating-point arguments on the stack.
5651 @item force_align_arg_pointer
5652 @cindex @code{force_align_arg_pointer} function attribute, x86
5653 On x86 targets, the @code{force_align_arg_pointer} attribute may be
5654 applied to individual function definitions, generating an alternate
5655 prologue and epilogue that realigns the run-time stack if necessary.
5656 This supports mixing legacy codes that run with a 4-byte aligned stack
5657 with modern codes that keep a 16-byte stack for SSE compatibility.
5660 @cindex @code{stdcall} function attribute, x86-32
5661 @cindex functions that pop the argument stack on x86-32
5662 On x86-32 targets, the @code{stdcall} attribute causes the compiler to
5663 assume that the called function pops off the stack space used to
5664 pass arguments, unless it takes a variable number of arguments.
5666 @item no_caller_saved_registers
5667 @cindex @code{no_caller_saved_registers} function attribute, x86
5668 Use this attribute to indicate that the specified function has no
5669 caller-saved registers. That is, all registers are callee-saved. For
5670 example, this attribute can be used for a function called from an
5671 interrupt handler. The compiler generates proper function entry and
5672 exit sequences to save and restore any modified registers, except for
5673 the EFLAGS register. Since GCC doesn't preserve SSE, MMX nor x87
5674 states, the GCC option @option{-mgeneral-regs-only} should be used to
5675 compile functions with @code{no_caller_saved_registers} attribute.
5678 @cindex @code{interrupt} function attribute, x86
5679 Use this attribute to indicate that the specified function is an
5680 interrupt handler or an exception handler (depending on parameters passed
5681 to the function, explained further). The compiler generates function
5682 entry and exit sequences suitable for use in an interrupt handler when
5683 this attribute is present. The @code{IRET} instruction, instead of the
5684 @code{RET} instruction, is used to return from interrupt handlers. All
5685 registers, except for the EFLAGS register which is restored by the
5686 @code{IRET} instruction, are preserved by the compiler. Since GCC
5687 doesn't preserve SSE, MMX nor x87 states, the GCC option
5688 @option{-mgeneral-regs-only} should be used to compile interrupt and
5691 Any interruptible-without-stack-switch code must be compiled with
5692 @option{-mno-red-zone} since interrupt handlers can and will, because
5693 of the hardware design, touch the red zone.
5695 An interrupt handler must be declared with a mandatory pointer
5699 struct interrupt_frame;
5701 __attribute__ ((interrupt))
5703 f (struct interrupt_frame *frame)
5709 and you must define @code{struct interrupt_frame} as described in the
5712 Exception handlers differ from interrupt handlers because the system
5713 pushes an error code on the stack. An exception handler declaration is
5714 similar to that for an interrupt handler, but with a different mandatory
5715 function signature. The compiler arranges to pop the error code off the
5716 stack before the @code{IRET} instruction.
5720 typedef unsigned long long int uword_t;
5722 typedef unsigned int uword_t;
5725 struct interrupt_frame;
5727 __attribute__ ((interrupt))
5729 f (struct interrupt_frame *frame, uword_t error_code)
5735 Exception handlers should only be used for exceptions that push an error
5736 code; you should use an interrupt handler in other cases. The system
5737 will crash if the wrong kind of handler is used.
5739 @item target (@var{options})
5740 @cindex @code{target} function attribute
5741 As discussed in @ref{Common Function Attributes}, this attribute
5742 allows specification of target-specific compilation options.
5744 On the x86, the following options are allowed:
5748 @cindex @code{target("abm")} function attribute, x86
5749 Enable/disable the generation of the advanced bit instructions.
5753 @cindex @code{target("aes")} function attribute, x86
5754 Enable/disable the generation of the AES instructions.
5757 @cindex @code{target("default")} function attribute, x86
5758 @xref{Function Multiversioning}, where it is used to specify the
5759 default function version.
5763 @cindex @code{target("mmx")} function attribute, x86
5764 Enable/disable the generation of the MMX instructions.
5768 @cindex @code{target("pclmul")} function attribute, x86
5769 Enable/disable the generation of the PCLMUL instructions.
5773 @cindex @code{target("popcnt")} function attribute, x86
5774 Enable/disable the generation of the POPCNT instruction.
5778 @cindex @code{target("sse")} function attribute, x86
5779 Enable/disable the generation of the SSE instructions.
5783 @cindex @code{target("sse2")} function attribute, x86
5784 Enable/disable the generation of the SSE2 instructions.
5788 @cindex @code{target("sse3")} function attribute, x86
5789 Enable/disable the generation of the SSE3 instructions.
5793 @cindex @code{target("sse4")} function attribute, x86
5794 Enable/disable the generation of the SSE4 instructions (both SSE4.1
5799 @cindex @code{target("sse4.1")} function attribute, x86
5800 Enable/disable the generation of the sse4.1 instructions.
5804 @cindex @code{target("sse4.2")} function attribute, x86
5805 Enable/disable the generation of the sse4.2 instructions.
5809 @cindex @code{target("sse4a")} function attribute, x86
5810 Enable/disable the generation of the SSE4A instructions.
5814 @cindex @code{target("fma4")} function attribute, x86
5815 Enable/disable the generation of the FMA4 instructions.
5819 @cindex @code{target("xop")} function attribute, x86
5820 Enable/disable the generation of the XOP instructions.
5824 @cindex @code{target("lwp")} function attribute, x86
5825 Enable/disable the generation of the LWP instructions.
5829 @cindex @code{target("ssse3")} function attribute, x86
5830 Enable/disable the generation of the SSSE3 instructions.
5834 @cindex @code{target("cld")} function attribute, x86
5835 Enable/disable the generation of the CLD before string moves.
5837 @item fancy-math-387
5838 @itemx no-fancy-math-387
5839 @cindex @code{target("fancy-math-387")} function attribute, x86
5840 Enable/disable the generation of the @code{sin}, @code{cos}, and
5841 @code{sqrt} instructions on the 387 floating-point unit.
5845 @cindex @code{target("ieee-fp")} function attribute, x86
5846 Enable/disable the generation of floating point that depends on IEEE arithmetic.
5848 @item inline-all-stringops
5849 @itemx no-inline-all-stringops
5850 @cindex @code{target("inline-all-stringops")} function attribute, x86
5851 Enable/disable inlining of string operations.
5853 @item inline-stringops-dynamically
5854 @itemx no-inline-stringops-dynamically
5855 @cindex @code{target("inline-stringops-dynamically")} function attribute, x86
5856 Enable/disable the generation of the inline code to do small string
5857 operations and calling the library routines for large operations.
5859 @item align-stringops
5860 @itemx no-align-stringops
5861 @cindex @code{target("align-stringops")} function attribute, x86
5862 Do/do not align destination of inlined string operations.
5866 @cindex @code{target("recip")} function attribute, x86
5867 Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
5868 instructions followed an additional Newton-Raphson step instead of
5869 doing a floating-point division.
5871 @item arch=@var{ARCH}
5872 @cindex @code{target("arch=@var{ARCH}")} function attribute, x86
5873 Specify the architecture to generate code for in compiling the function.
5875 @item tune=@var{TUNE}
5876 @cindex @code{target("tune=@var{TUNE}")} function attribute, x86
5877 Specify the architecture to tune for in compiling the function.
5879 @item fpmath=@var{FPMATH}
5880 @cindex @code{target("fpmath=@var{FPMATH}")} function attribute, x86
5881 Specify which floating-point unit to use. You must specify the
5882 @code{target("fpmath=sse,387")} option as
5883 @code{target("fpmath=sse+387")} because the comma would separate
5886 @item indirect_branch("@var{choice}")
5887 @cindex @code{indirect_branch} function attribute, x86
5888 On x86 targets, the @code{indirect_branch} attribute causes the compiler
5889 to convert indirect call and jump with @var{choice}. @samp{keep}
5890 keeps indirect call and jump unmodified. @samp{thunk} converts indirect
5891 call and jump to call and return thunk. @samp{thunk-inline} converts
5892 indirect call and jump to inlined call and return thunk.
5893 @samp{thunk-extern} converts indirect call and jump to external call
5894 and return thunk provided in a separate object file.
5896 @item function_return("@var{choice}")
5897 @cindex @code{function_return} function attribute, x86
5898 On x86 targets, the @code{function_return} attribute causes the compiler
5899 to convert function return with @var{choice}. @samp{keep} keeps function
5900 return unmodified. @samp{thunk} converts function return to call and
5901 return thunk. @samp{thunk-inline} converts function return to inlined
5902 call and return thunk. @samp{thunk-extern} converts function return to
5903 external call and return thunk provided in a separate object file.
5906 @cindex @code{nocf_check} function attribute
5907 The @code{nocf_check} attribute on a function is used to inform the
5908 compiler that the function's prologue should not be instrumented when
5909 compiled with the @option{-fcf-protection=branch} option. The
5910 compiler assumes that the function's address is a valid target for a
5911 control-flow transfer.
5913 The @code{nocf_check} attribute on a type of pointer to function is
5914 used to inform the compiler that a call through the pointer should
5915 not be instrumented when compiled with the
5916 @option{-fcf-protection=branch} option. The compiler assumes
5917 that the function's address from the pointer is a valid target for
5918 a control-flow transfer. A direct function call through a function
5919 name is assumed to be a safe call thus direct calls are not
5920 instrumented by the compiler.
5922 The @code{nocf_check} attribute is applied to an object's type.
5923 In case of assignment of a function address or a function pointer to
5924 another pointer, the attribute is not carried over from the right-hand
5925 object's type; the type of left-hand object stays unchanged. The
5926 compiler checks for @code{nocf_check} attribute mismatch and reports
5927 a warning in case of mismatch.
5931 int foo (void) __attribute__(nocf_check);
5932 void (*foo1)(void) __attribute__(nocf_check);
5935 /* foo's address is assumed to be valid. */
5939 /* This call site is not checked for control-flow
5943 /* A warning is issued about attribute mismatch. */
5946 /* This call site is still not checked. */
5949 /* This call site is checked. */
5952 /* A warning is issued about attribute mismatch. */
5955 /* This call site is still checked. */
5962 @item indirect_return
5963 @cindex @code{indirect_return} function attribute, x86
5965 The @code{indirect_return} attribute can be applied to a function,
5966 as well as variable or type of function pointer to inform the
5967 compiler that the function may return via indirect branch.
5971 On the x86, the inliner does not inline a
5972 function that has different target options than the caller, unless the
5973 callee has a subset of the target options of the caller. For example
5974 a function declared with @code{target("sse3")} can inline a function
5975 with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
5978 @node Xstormy16 Function Attributes
5979 @subsection Xstormy16 Function Attributes
5981 These function attributes are supported by the Xstormy16 back end:
5985 @cindex @code{interrupt} function attribute, Xstormy16
5986 Use this attribute to indicate
5987 that the specified function is an interrupt handler. The compiler generates
5988 function entry and exit sequences suitable for use in an interrupt handler
5989 when this attribute is present.
5992 @node Variable Attributes
5993 @section Specifying Attributes of Variables
5994 @cindex attribute of variables
5995 @cindex variable attributes
5997 The keyword @code{__attribute__} allows you to specify special
5998 attributes of variables or structure fields. This keyword is followed
5999 by an attribute specification inside double parentheses. Some
6000 attributes are currently defined generically for variables.
6001 Other attributes are defined for variables on particular target
6002 systems. Other attributes are available for functions
6003 (@pxref{Function Attributes}), labels (@pxref{Label Attributes}),
6004 enumerators (@pxref{Enumerator Attributes}), statements
6005 (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
6006 Other front ends might define more attributes
6007 (@pxref{C++ Extensions,,Extensions to the C++ Language}).
6009 @xref{Attribute Syntax}, for details of the exact syntax for using
6013 * Common Variable Attributes::
6014 * ARC Variable Attributes::
6015 * AVR Variable Attributes::
6016 * Blackfin Variable Attributes::
6017 * H8/300 Variable Attributes::
6018 * IA-64 Variable Attributes::
6019 * M32R/D Variable Attributes::
6020 * MeP Variable Attributes::
6021 * Microsoft Windows Variable Attributes::
6022 * MSP430 Variable Attributes::
6023 * Nvidia PTX Variable Attributes::
6024 * PowerPC Variable Attributes::
6025 * RL78 Variable Attributes::
6026 * SPU Variable Attributes::
6027 * V850 Variable Attributes::
6028 * x86 Variable Attributes::
6029 * Xstormy16 Variable Attributes::
6032 @node Common Variable Attributes
6033 @subsection Common Variable Attributes
6035 The following attributes are supported on most targets.
6038 @cindex @code{aligned} variable attribute
6040 @itemx aligned (@var{alignment})
6041 The @code{aligned} attribute specifies a minimum alignment for the variable
6042 or structure field, measured in bytes. When specified, @var{alignment} must
6043 be an integer constant power of 2. Specifying no @var{alignment} argument
6044 implies the maximum alignment for the target, which is often, but by no
6045 means always, 8 or 16 bytes.
6047 For example, the declaration:
6050 int x __attribute__ ((aligned (16))) = 0;
6054 causes the compiler to allocate the global variable @code{x} on a
6055 16-byte boundary. On a 68040, this could be used in conjunction with
6056 an @code{asm} expression to access the @code{move16} instruction which
6057 requires 16-byte aligned operands.
6059 You can also specify the alignment of structure fields. For example, to
6060 create a double-word aligned @code{int} pair, you could write:
6063 struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
6067 This is an alternative to creating a union with a @code{double} member,
6068 which forces the union to be double-word aligned.
6070 As in the preceding examples, you can explicitly specify the alignment
6071 (in bytes) that you wish the compiler to use for a given variable or
6072 structure field. Alternatively, you can leave out the alignment factor
6073 and just ask the compiler to align a variable or field to the
6074 default alignment for the target architecture you are compiling for.
6075 The default alignment is sufficient for all scalar types, but may not be
6076 enough for all vector types on a target that supports vector operations.
6077 The default alignment is fixed for a particular target ABI.
6079 GCC also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
6080 which is the largest alignment ever used for any data type on the
6081 target machine you are compiling for. For example, you could write:
6084 short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
6087 The compiler automatically sets the alignment for the declared
6088 variable or field to @code{__BIGGEST_ALIGNMENT__}. Doing this can
6089 often make copy operations more efficient, because the compiler can
6090 use whatever instructions copy the biggest chunks of memory when
6091 performing copies to or from the variables or fields that you have
6092 aligned this way. Note that the value of @code{__BIGGEST_ALIGNMENT__}
6093 may change depending on command-line options.
6095 When used on a struct, or struct member, the @code{aligned} attribute can
6096 only increase the alignment; in order to decrease it, the @code{packed}
6097 attribute must be specified as well. When used as part of a typedef, the
6098 @code{aligned} attribute can both increase and decrease alignment, and
6099 specifying the @code{packed} attribute generates a warning.
6101 Note that the effectiveness of @code{aligned} attributes may be limited
6102 by inherent limitations in your linker. On many systems, the linker is
6103 only able to arrange for variables to be aligned up to a certain maximum
6104 alignment. (For some linkers, the maximum supported alignment may
6105 be very very small.) If your linker is only able to align variables
6106 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
6107 in an @code{__attribute__} still only provides you with 8-byte
6108 alignment. See your linker documentation for further information.
6110 The @code{aligned} attribute can also be used for functions
6111 (@pxref{Common Function Attributes}.)
6113 @cindex @code{warn_if_not_aligned} variable attribute
6114 @item warn_if_not_aligned (@var{alignment})
6115 This attribute specifies a threshold for the structure field, measured
6116 in bytes. If the structure field is aligned below the threshold, a
6117 warning will be issued. For example, the declaration:
6124 unsigned long long x __attribute__((warn_if_not_aligned(16)));
6129 causes the compiler to issue an warning on @code{struct foo}, like
6130 @samp{warning: alignment 8 of 'struct foo' is less than 16}.
6131 The compiler also issues a warning, like @samp{warning: 'x' offset
6132 8 in 'struct foo' isn't aligned to 16}, when the structure field has
6133 the misaligned offset:
6140 unsigned long long x __attribute__((warn_if_not_aligned(16)));
6141 @} __attribute__((aligned(16)));
6144 This warning can be disabled by @option{-Wno-if-not-aligned}.
6145 The @code{warn_if_not_aligned} attribute can also be used for types
6146 (@pxref{Common Type Attributes}.)
6148 @item cleanup (@var{cleanup_function})
6149 @cindex @code{cleanup} variable attribute
6150 The @code{cleanup} attribute runs a function when the variable goes
6151 out of scope. This attribute can only be applied to auto function
6152 scope variables; it may not be applied to parameters or variables
6153 with static storage duration. The function must take one parameter,
6154 a pointer to a type compatible with the variable. The return value
6155 of the function (if any) is ignored.
6157 If @option{-fexceptions} is enabled, then @var{cleanup_function}
6158 is run during the stack unwinding that happens during the
6159 processing of the exception. Note that the @code{cleanup} attribute
6160 does not allow the exception to be caught, only to perform an action.
6161 It is undefined what happens if @var{cleanup_function} does not
6166 @cindex @code{common} variable attribute
6167 @cindex @code{nocommon} variable attribute
6170 The @code{common} attribute requests GCC to place a variable in
6171 ``common'' storage. The @code{nocommon} attribute requests the
6172 opposite---to allocate space for it directly.
6174 These attributes override the default chosen by the
6175 @option{-fno-common} and @option{-fcommon} flags respectively.
6178 @itemx deprecated (@var{msg})
6179 @cindex @code{deprecated} variable attribute
6180 The @code{deprecated} attribute results in a warning if the variable
6181 is used anywhere in the source file. This is useful when identifying
6182 variables that are expected to be removed in a future version of a
6183 program. The warning also includes the location of the declaration
6184 of the deprecated variable, to enable users to easily find further
6185 information about why the variable is deprecated, or what they should
6186 do instead. Note that the warning only occurs for uses:
6189 extern int old_var __attribute__ ((deprecated));
6191 int new_fn () @{ return old_var; @}
6195 results in a warning on line 3 but not line 2. The optional @var{msg}
6196 argument, which must be a string, is printed in the warning if
6199 The @code{deprecated} attribute can also be used for functions and
6200 types (@pxref{Common Function Attributes},
6201 @pxref{Common Type Attributes}).
6203 The message attached to the attribute is affected by the setting of
6204 the @option{-fmessage-length} option.
6206 @item mode (@var{mode})
6207 @cindex @code{mode} variable attribute
6208 This attribute specifies the data type for the declaration---whichever
6209 type corresponds to the mode @var{mode}. This in effect lets you
6210 request an integer or floating-point type according to its width.
6212 @xref{Machine Modes,,, gccint, GNU Compiler Collection (GCC) Internals},
6213 for a list of the possible keywords for @var{mode}.
6214 You may also specify a mode of @code{byte} or @code{__byte__} to
6215 indicate the mode corresponding to a one-byte integer, @code{word} or
6216 @code{__word__} for the mode of a one-word integer, and @code{pointer}
6217 or @code{__pointer__} for the mode used to represent pointers.
6220 @cindex @code{nonstring} variable attribute
6221 The @code{nonstring} variable attribute specifies that an object or member
6222 declaration with type array of @code{char}, @code{signed char}, or
6223 @code{unsigned char}, or pointer to such a type is intended to store
6224 character arrays that do not necessarily contain a terminating @code{NUL}.
6225 This is useful in detecting uses of such arrays or pointers with functions
6226 that expect @code{NUL}-terminated strings, and to avoid warnings when such
6227 an array or pointer is used as an argument to a bounded string manipulation
6228 function such as @code{strncpy}. For example, without the attribute, GCC
6229 will issue a warning for the @code{strncpy} call below because it may
6230 truncate the copy without appending the terminating @code{NUL} character.
6231 Using the attribute makes it possible to suppress the warning. However,
6232 when the array is declared with the attribute the call to @code{strlen} is
6233 diagnosed because when the array doesn't contain a @code{NUL}-terminated
6234 string the call is undefined. To copy, compare, of search non-string
6235 character arrays use the @code{memcpy}, @code{memcmp}, @code{memchr},
6236 and other functions that operate on arrays of bytes. In addition,
6237 calling @code{strnlen} and @code{strndup} with such arrays is safe
6238 provided a suitable bound is specified, and not diagnosed.
6243 char name [32] __attribute__ ((nonstring));
6246 int f (struct Data *pd, const char *s)
6248 strncpy (pd->name, s, sizeof pd->name);
6250 return strlen (pd->name); // unsafe, gets a warning
6255 @cindex @code{packed} variable attribute
6256 The @code{packed} attribute specifies that a structure member should have
6257 the smallest possible alignment---one bit for a bit-field and one byte
6258 otherwise, unless a larger value is specified with the @code{aligned}
6259 attribute. The attribute does not apply to non-member objects.
6261 For example in the structure below, the member array @code{x} is packed
6262 so that it immediately follows @code{a} with no intervening padding:
6268 int x[2] __attribute__ ((packed));
6272 @emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
6273 @code{packed} attribute on bit-fields of type @code{char}. This has
6274 been fixed in GCC 4.4 but the change can lead to differences in the
6275 structure layout. See the documentation of
6276 @option{-Wpacked-bitfield-compat} for more information.
6278 @item section ("@var{section-name}")
6279 @cindex @code{section} variable attribute
6280 Normally, the compiler places the objects it generates in sections like
6281 @code{data} and @code{bss}. Sometimes, however, you need additional sections,
6282 or you need certain particular variables to appear in special sections,
6283 for example to map to special hardware. The @code{section}
6284 attribute specifies that a variable (or function) lives in a particular
6285 section. For example, this small program uses several specific section names:
6288 struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
6289 struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
6290 char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
6291 int init_data __attribute__ ((section ("INITDATA")));
6295 /* @r{Initialize stack pointer} */
6296 init_sp (stack + sizeof (stack));
6298 /* @r{Initialize initialized data} */
6299 memcpy (&init_data, &data, &edata - &data);
6301 /* @r{Turn on the serial ports} */
6308 Use the @code{section} attribute with
6309 @emph{global} variables and not @emph{local} variables,
6310 as shown in the example.
6312 You may use the @code{section} attribute with initialized or
6313 uninitialized global variables but the linker requires
6314 each object be defined once, with the exception that uninitialized
6315 variables tentatively go in the @code{common} (or @code{bss}) section
6316 and can be multiply ``defined''. Using the @code{section} attribute
6317 changes what section the variable goes into and may cause the
6318 linker to issue an error if an uninitialized variable has multiple
6319 definitions. You can force a variable to be initialized with the
6320 @option{-fno-common} flag or the @code{nocommon} attribute.
6322 Some file formats do not support arbitrary sections so the @code{section}
6323 attribute is not available on all platforms.
6324 If you need to map the entire contents of a module to a particular
6325 section, consider using the facilities of the linker instead.
6327 @item tls_model ("@var{tls_model}")
6328 @cindex @code{tls_model} variable attribute
6329 The @code{tls_model} attribute sets thread-local storage model
6330 (@pxref{Thread-Local}) of a particular @code{__thread} variable,
6331 overriding @option{-ftls-model=} command-line switch on a per-variable
6333 The @var{tls_model} argument should be one of @code{global-dynamic},
6334 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
6336 Not all targets support this attribute.
6339 @cindex @code{unused} variable attribute
6340 This attribute, attached to a variable, means that the variable is meant
6341 to be possibly unused. GCC does not produce a warning for this
6345 @cindex @code{used} variable attribute
6346 This attribute, attached to a variable with static storage, means that
6347 the variable must be emitted even if it appears that the variable is not
6350 When applied to a static data member of a C++ class template, the
6351 attribute also means that the member is instantiated if the
6352 class itself is instantiated.
6354 @item vector_size (@var{bytes})
6355 @cindex @code{vector_size} variable attribute
6356 This attribute specifies the vector size for the variable, measured in
6357 bytes. For example, the declaration:
6360 int foo __attribute__ ((vector_size (16)));
6364 causes the compiler to set the mode for @code{foo}, to be 16 bytes,
6365 divided into @code{int} sized units. Assuming a 32-bit int (a vector of
6366 4 units of 4 bytes), the corresponding mode of @code{foo} is V4SI@.
6368 This attribute is only applicable to integral and float scalars,
6369 although arrays, pointers, and function return values are allowed in
6370 conjunction with this construct.
6372 Aggregates with this attribute are invalid, even if they are of the same
6373 size as a corresponding scalar. For example, the declaration:
6376 struct S @{ int a; @};
6377 struct S __attribute__ ((vector_size (16))) foo;
6381 is invalid even if the size of the structure is the same as the size of
6384 @item visibility ("@var{visibility_type}")
6385 @cindex @code{visibility} variable attribute
6386 This attribute affects the linkage of the declaration to which it is attached.
6387 The @code{visibility} attribute is described in
6388 @ref{Common Function Attributes}.
6391 @cindex @code{weak} variable attribute
6392 The @code{weak} attribute is described in
6393 @ref{Common Function Attributes}.
6397 @node ARC Variable Attributes
6398 @subsection ARC Variable Attributes
6402 @cindex @code{aux} variable attribute, ARC
6403 The @code{aux} attribute is used to directly access the ARC's
6404 auxiliary register space from C. The auxilirary register number is
6405 given via attribute argument.
6409 @node AVR Variable Attributes
6410 @subsection AVR Variable Attributes
6414 @cindex @code{progmem} variable attribute, AVR
6415 The @code{progmem} attribute is used on the AVR to place read-only
6416 data in the non-volatile program memory (flash). The @code{progmem}
6417 attribute accomplishes this by putting respective variables into a
6418 section whose name starts with @code{.progmem}.
6420 This attribute works similar to the @code{section} attribute
6421 but adds additional checking.
6424 @item @bullet{}@tie{} Ordinary AVR cores with 32 general purpose registers:
6425 @code{progmem} affects the location
6426 of the data but not how this data is accessed.
6427 In order to read data located with the @code{progmem} attribute
6428 (inline) assembler must be used.
6430 /* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}} */
6431 #include <avr/pgmspace.h>
6433 /* Locate var in flash memory */
6434 const int var[2] PROGMEM = @{ 1, 2 @};
6436 int read_var (int i)
6438 /* Access var[] by accessor macro from avr/pgmspace.h */
6439 return (int) pgm_read_word (& var[i]);
6443 AVR is a Harvard architecture processor and data and read-only data
6444 normally resides in the data memory (RAM).
6446 See also the @ref{AVR Named Address Spaces} section for
6447 an alternate way to locate and access data in flash memory.
6449 @item @bullet{}@tie{} AVR cores with flash memory visible in the RAM address range:
6450 On such devices, there is no need for attribute @code{progmem} or
6451 @ref{AVR Named Address Spaces,,@code{__flash}} qualifier at all.
6452 Just use standard C / C++. The compiler will generate @code{LD*}
6453 instructions. As flash memory is visible in the RAM address range,
6454 and the default linker script does @emph{not} locate @code{.rodata} in
6455 RAM, no special features are needed in order not to waste RAM for
6456 read-only data or to read from flash. You might even get slightly better
6458 avoiding @code{progmem} and @code{__flash}. This applies to devices from
6459 families @code{avrtiny} and @code{avrxmega3}, see @ref{AVR Options} for
6462 @item @bullet{}@tie{}Reduced AVR Tiny cores like ATtiny40:
6463 The compiler adds @code{0x4000}
6464 to the addresses of objects and declarations in @code{progmem} and locates
6465 the objects in flash memory, namely in section @code{.progmem.data}.
6466 The offset is needed because the flash memory is visible in the RAM
6467 address space starting at address @code{0x4000}.
6469 Data in @code{progmem} can be accessed by means of ordinary C@tie{}code,
6470 no special functions or macros are needed.
6473 /* var is located in flash memory */
6474 extern const int var[2] __attribute__((progmem));
6476 int read_var (int i)
6482 Please notice that on these devices, there is no need for @code{progmem}
6488 @itemx io (@var{addr})
6489 @cindex @code{io} variable attribute, AVR
6490 Variables with the @code{io} attribute are used to address
6491 memory-mapped peripherals in the io address range.
6492 If an address is specified, the variable
6493 is assigned that address, and the value is interpreted as an
6494 address in the data address space.
6498 volatile int porta __attribute__((io (0x22)));
6501 The address specified in the address in the data address range.
6503 Otherwise, the variable it is not assigned an address, but the
6504 compiler will still use in/out instructions where applicable,
6505 assuming some other module assigns an address in the io address range.
6509 extern volatile int porta __attribute__((io));
6513 @itemx io_low (@var{addr})
6514 @cindex @code{io_low} variable attribute, AVR
6515 This is like the @code{io} attribute, but additionally it informs the
6516 compiler that the object lies in the lower half of the I/O area,
6517 allowing the use of @code{cbi}, @code{sbi}, @code{sbic} and @code{sbis}
6521 @itemx address (@var{addr})
6522 @cindex @code{address} variable attribute, AVR
6523 Variables with the @code{address} attribute are used to address
6524 memory-mapped peripherals that may lie outside the io address range.
6527 volatile int porta __attribute__((address (0x600)));
6531 @cindex @code{absdata} variable attribute, AVR
6532 Variables in static storage and with the @code{absdata} attribute can
6533 be accessed by the @code{LDS} and @code{STS} instructions which take
6538 This attribute is only supported for the reduced AVR Tiny core
6542 You must make sure that respective data is located in the
6543 address range @code{0x40}@dots{}@code{0xbf} accessible by
6544 @code{LDS} and @code{STS}. One way to achieve this as an
6545 appropriate linker description file.
6548 If the location does not fit the address range of @code{LDS}
6549 and @code{STS}, there is currently (Binutils 2.26) just an unspecific
6552 @code{module.c:(.text+0x1c): warning: internal error: out of range error}
6557 See also the @option{-mabsdata} @ref{AVR Options,command-line option}.
6561 @node Blackfin Variable Attributes
6562 @subsection Blackfin Variable Attributes
6564 Three attributes are currently defined for the Blackfin.
6570 @cindex @code{l1_data} variable attribute, Blackfin
6571 @cindex @code{l1_data_A} variable attribute, Blackfin
6572 @cindex @code{l1_data_B} variable attribute, Blackfin
6573 Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
6574 Variables with @code{l1_data} attribute are put into the specific section
6575 named @code{.l1.data}. Those with @code{l1_data_A} attribute are put into
6576 the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
6577 attribute are put into the specific section named @code{.l1.data.B}.
6580 @cindex @code{l2} variable attribute, Blackfin
6581 Use this attribute on the Blackfin to place the variable into L2 SRAM.
6582 Variables with @code{l2} attribute are put into the specific section
6583 named @code{.l2.data}.
6586 @node H8/300 Variable Attributes
6587 @subsection H8/300 Variable Attributes
6589 These variable attributes are available for H8/300 targets:
6593 @cindex @code{eightbit_data} variable attribute, H8/300
6594 @cindex eight-bit data on the H8/300, H8/300H, and H8S
6595 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
6596 variable should be placed into the eight-bit data section.
6597 The compiler generates more efficient code for certain operations
6598 on data in the eight-bit data area. Note the eight-bit data area is limited to
6601 You must use GAS and GLD from GNU binutils version 2.7 or later for
6602 this attribute to work correctly.
6605 @cindex @code{tiny_data} variable attribute, H8/300
6606 @cindex tiny data section on the H8/300H and H8S
6607 Use this attribute on the H8/300H and H8S to indicate that the specified
6608 variable should be placed into the tiny data section.
6609 The compiler generates more efficient code for loads and stores
6610 on data in the tiny data section. Note the tiny data area is limited to
6611 slightly under 32KB of data.
6615 @node IA-64 Variable Attributes
6616 @subsection IA-64 Variable Attributes
6618 The IA-64 back end supports the following variable attribute:
6621 @item model (@var{model-name})
6622 @cindex @code{model} variable attribute, IA-64
6624 On IA-64, use this attribute to set the addressability of an object.
6625 At present, the only supported identifier for @var{model-name} is
6626 @code{small}, indicating addressability via ``small'' (22-bit)
6627 addresses (so that their addresses can be loaded with the @code{addl}
6628 instruction). Caveat: such addressing is by definition not position
6629 independent and hence this attribute must not be used for objects
6630 defined by shared libraries.
6634 @node M32R/D Variable Attributes
6635 @subsection M32R/D Variable Attributes
6637 One attribute is currently defined for the M32R/D@.
6640 @item model (@var{model-name})
6641 @cindex @code{model-name} variable attribute, M32R/D
6642 @cindex variable addressability on the M32R/D
6643 Use this attribute on the M32R/D to set the addressability of an object.
6644 The identifier @var{model-name} is one of @code{small}, @code{medium},
6645 or @code{large}, representing each of the code models.
6647 Small model objects live in the lower 16MB of memory (so that their
6648 addresses can be loaded with the @code{ld24} instruction).
6650 Medium and large model objects may live anywhere in the 32-bit address space
6651 (the compiler generates @code{seth/add3} instructions to load their
6655 @node MeP Variable Attributes
6656 @subsection MeP Variable Attributes
6658 The MeP target has a number of addressing modes and busses. The
6659 @code{near} space spans the standard memory space's first 16 megabytes
6660 (24 bits). The @code{far} space spans the entire 32-bit memory space.
6661 The @code{based} space is a 128-byte region in the memory space that
6662 is addressed relative to the @code{$tp} register. The @code{tiny}
6663 space is a 65536-byte region relative to the @code{$gp} register. In
6664 addition to these memory regions, the MeP target has a separate 16-bit
6665 control bus which is specified with @code{cb} attributes.
6670 @cindex @code{based} variable attribute, MeP
6671 Any variable with the @code{based} attribute is assigned to the
6672 @code{.based} section, and is accessed with relative to the
6673 @code{$tp} register.
6676 @cindex @code{tiny} variable attribute, MeP
6677 Likewise, the @code{tiny} attribute assigned variables to the
6678 @code{.tiny} section, relative to the @code{$gp} register.
6681 @cindex @code{near} variable attribute, MeP
6682 Variables with the @code{near} attribute are assumed to have addresses
6683 that fit in a 24-bit addressing mode. This is the default for large
6684 variables (@code{-mtiny=4} is the default) but this attribute can
6685 override @code{-mtiny=} for small variables, or override @code{-ml}.
6688 @cindex @code{far} variable attribute, MeP
6689 Variables with the @code{far} attribute are addressed using a full
6690 32-bit address. Since this covers the entire memory space, this
6691 allows modules to make no assumptions about where variables might be
6695 @cindex @code{io} variable attribute, MeP
6696 @itemx io (@var{addr})
6697 Variables with the @code{io} attribute are used to address
6698 memory-mapped peripherals. If an address is specified, the variable
6699 is assigned that address, else it is not assigned an address (it is
6700 assumed some other module assigns an address). Example:
6703 int timer_count __attribute__((io(0x123)));
6707 @itemx cb (@var{addr})
6708 @cindex @code{cb} variable attribute, MeP
6709 Variables with the @code{cb} attribute are used to access the control
6710 bus, using special instructions. @code{addr} indicates the control bus
6714 int cpu_clock __attribute__((cb(0x123)));
6719 @node Microsoft Windows Variable Attributes
6720 @subsection Microsoft Windows Variable Attributes
6722 You can use these attributes on Microsoft Windows targets.
6723 @ref{x86 Variable Attributes} for additional Windows compatibility
6724 attributes available on all x86 targets.
6729 @cindex @code{dllimport} variable attribute
6730 @cindex @code{dllexport} variable attribute
6731 The @code{dllimport} and @code{dllexport} attributes are described in
6732 @ref{Microsoft Windows Function Attributes}.
6735 @cindex @code{selectany} variable attribute
6736 The @code{selectany} attribute causes an initialized global variable to
6737 have link-once semantics. When multiple definitions of the variable are
6738 encountered by the linker, the first is selected and the remainder are
6739 discarded. Following usage by the Microsoft compiler, the linker is told
6740 @emph{not} to warn about size or content differences of the multiple
6743 Although the primary usage of this attribute is for POD types, the
6744 attribute can also be applied to global C++ objects that are initialized
6745 by a constructor. In this case, the static initialization and destruction
6746 code for the object is emitted in each translation defining the object,
6747 but the calls to the constructor and destructor are protected by a
6748 link-once guard variable.
6750 The @code{selectany} attribute is only available on Microsoft Windows
6751 targets. You can use @code{__declspec (selectany)} as a synonym for
6752 @code{__attribute__ ((selectany))} for compatibility with other
6756 @cindex @code{shared} variable attribute
6757 On Microsoft Windows, in addition to putting variable definitions in a named
6758 section, the section can also be shared among all running copies of an
6759 executable or DLL@. For example, this small program defines shared data
6760 by putting it in a named section @code{shared} and marking the section
6764 int foo __attribute__((section ("shared"), shared)) = 0;
6769 /* @r{Read and write foo. All running
6770 copies see the same value.} */
6776 You may only use the @code{shared} attribute along with @code{section}
6777 attribute with a fully-initialized global definition because of the way
6778 linkers work. See @code{section} attribute for more information.
6780 The @code{shared} attribute is only available on Microsoft Windows@.
6784 @node MSP430 Variable Attributes
6785 @subsection MSP430 Variable Attributes
6789 @cindex @code{noinit} variable attribute, MSP430
6790 Any data with the @code{noinit} attribute will not be initialised by
6791 the C runtime startup code, or the program loader. Not initialising
6792 data in this way can reduce program startup times.
6795 @cindex @code{persistent} variable attribute, MSP430
6796 Any variable with the @code{persistent} attribute will not be
6797 initialised by the C runtime startup code. Instead its value will be
6798 set once, when the application is loaded, and then never initialised
6799 again, even if the processor is reset or the program restarts.
6800 Persistent data is intended to be placed into FLASH RAM, where its
6801 value will be retained across resets. The linker script being used to
6802 create the application should ensure that persistent data is correctly
6808 @cindex @code{lower} variable attribute, MSP430
6809 @cindex @code{upper} variable attribute, MSP430
6810 @cindex @code{either} variable attribute, MSP430
6811 These attributes are the same as the MSP430 function attributes of the
6812 same name (@pxref{MSP430 Function Attributes}).
6813 These attributes can be applied to both functions and variables.
6816 @node Nvidia PTX Variable Attributes
6817 @subsection Nvidia PTX Variable Attributes
6819 These variable attributes are supported by the Nvidia PTX back end:
6823 @cindex @code{shared} attribute, Nvidia PTX
6824 Use this attribute to place a variable in the @code{.shared} memory space.
6825 This memory space is private to each cooperative thread array; only threads
6826 within one thread block refer to the same instance of the variable.
6827 The runtime does not initialize variables in this memory space.
6830 @node PowerPC Variable Attributes
6831 @subsection PowerPC Variable Attributes
6833 Three attributes currently are defined for PowerPC configurations:
6834 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
6836 @cindex @code{ms_struct} variable attribute, PowerPC
6837 @cindex @code{gcc_struct} variable attribute, PowerPC
6838 For full documentation of the struct attributes please see the
6839 documentation in @ref{x86 Variable Attributes}.
6841 @cindex @code{altivec} variable attribute, PowerPC
6842 For documentation of @code{altivec} attribute please see the
6843 documentation in @ref{PowerPC Type Attributes}.
6845 @node RL78 Variable Attributes
6846 @subsection RL78 Variable Attributes
6848 @cindex @code{saddr} variable attribute, RL78
6849 The RL78 back end supports the @code{saddr} variable attribute. This
6850 specifies placement of the corresponding variable in the SADDR area,
6851 which can be accessed more efficiently than the default memory region.
6853 @node SPU Variable Attributes
6854 @subsection SPU Variable Attributes
6856 @cindex @code{spu_vector} variable attribute, SPU
6857 The SPU supports the @code{spu_vector} attribute for variables. For
6858 documentation of this attribute please see the documentation in
6859 @ref{SPU Type Attributes}.
6861 @node V850 Variable Attributes
6862 @subsection V850 Variable Attributes
6864 These variable attributes are supported by the V850 back end:
6869 @cindex @code{sda} variable attribute, V850
6870 Use this attribute to explicitly place a variable in the small data area,
6871 which can hold up to 64 kilobytes.
6874 @cindex @code{tda} variable attribute, V850
6875 Use this attribute to explicitly place a variable in the tiny data area,
6876 which can hold up to 256 bytes in total.
6879 @cindex @code{zda} variable attribute, V850
6880 Use this attribute to explicitly place a variable in the first 32 kilobytes
6884 @node x86 Variable Attributes
6885 @subsection x86 Variable Attributes
6887 Two attributes are currently defined for x86 configurations:
6888 @code{ms_struct} and @code{gcc_struct}.
6893 @cindex @code{ms_struct} variable attribute, x86
6894 @cindex @code{gcc_struct} variable attribute, x86
6896 If @code{packed} is used on a structure, or if bit-fields are used,
6897 it may be that the Microsoft ABI lays out the structure differently
6898 than the way GCC normally does. Particularly when moving packed
6899 data between functions compiled with GCC and the native Microsoft compiler
6900 (either via function call or as data in a file), it may be necessary to access
6903 The @code{ms_struct} and @code{gcc_struct} attributes correspond
6904 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
6905 command-line options, respectively;
6906 see @ref{x86 Options}, for details of how structure layout is affected.
6907 @xref{x86 Type Attributes}, for information about the corresponding
6908 attributes on types.
6912 @node Xstormy16 Variable Attributes
6913 @subsection Xstormy16 Variable Attributes
6915 One attribute is currently defined for xstormy16 configurations:
6920 @cindex @code{below100} variable attribute, Xstormy16
6922 If a variable has the @code{below100} attribute (@code{BELOW100} is
6923 allowed also), GCC places the variable in the first 0x100 bytes of
6924 memory and use special opcodes to access it. Such variables are
6925 placed in either the @code{.bss_below100} section or the
6926 @code{.data_below100} section.
6930 @node Type Attributes
6931 @section Specifying Attributes of Types
6932 @cindex attribute of types
6933 @cindex type attributes
6935 The keyword @code{__attribute__} allows you to specify special
6936 attributes of types. Some type attributes apply only to @code{struct}
6937 and @code{union} types, while others can apply to any type defined
6938 via a @code{typedef} declaration. Other attributes are defined for
6939 functions (@pxref{Function Attributes}), labels (@pxref{Label
6940 Attributes}), enumerators (@pxref{Enumerator Attributes}),
6941 statements (@pxref{Statement Attributes}), and for
6942 variables (@pxref{Variable Attributes}).
6944 The @code{__attribute__} keyword is followed by an attribute specification
6945 inside double parentheses.
6947 You may specify type attributes in an enum, struct or union type
6948 declaration or definition by placing them immediately after the
6949 @code{struct}, @code{union} or @code{enum} keyword. A less preferred
6950 syntax is to place them just past the closing curly brace of the
6953 You can also include type attributes in a @code{typedef} declaration.
6954 @xref{Attribute Syntax}, for details of the exact syntax for using
6958 * Common Type Attributes::
6959 * ARC Type Attributes::
6960 * ARM Type Attributes::
6961 * MeP Type Attributes::
6962 * PowerPC Type Attributes::
6963 * SPU Type Attributes::
6964 * x86 Type Attributes::
6967 @node Common Type Attributes
6968 @subsection Common Type Attributes
6970 The following type attributes are supported on most targets.
6973 @cindex @code{aligned} type attribute
6975 @itemx aligned (@var{alignment})
6976 The @code{aligned} attribute specifies a minimum alignment (in bytes) for
6977 variables of the specified type. When specified, @var{alignment} must be
6978 a power of 2. Specifying no @var{alignment} argument implies the maximum
6979 alignment for the target, which is often, but by no means always, 8 or 16
6980 bytes. For example, the declarations:
6983 struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
6984 typedef int more_aligned_int __attribute__ ((aligned (8)));
6988 force the compiler to ensure (as far as it can) that each variable whose
6989 type is @code{struct S} or @code{more_aligned_int} is allocated and
6990 aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all
6991 variables of type @code{struct S} aligned to 8-byte boundaries allows
6992 the compiler to use the @code{ldd} and @code{std} (doubleword load and
6993 store) instructions when copying one variable of type @code{struct S} to
6994 another, thus improving run-time efficiency.
6996 Note that the alignment of any given @code{struct} or @code{union} type
6997 is required by the ISO C standard to be at least a perfect multiple of
6998 the lowest common multiple of the alignments of all of the members of
6999 the @code{struct} or @code{union} in question. This means that you @emph{can}
7000 effectively adjust the alignment of a @code{struct} or @code{union}
7001 type by attaching an @code{aligned} attribute to any one of the members
7002 of such a type, but the notation illustrated in the example above is a
7003 more obvious, intuitive, and readable way to request the compiler to
7004 adjust the alignment of an entire @code{struct} or @code{union} type.
7006 As in the preceding example, you can explicitly specify the alignment
7007 (in bytes) that you wish the compiler to use for a given @code{struct}
7008 or @code{union} type. Alternatively, you can leave out the alignment factor
7009 and just ask the compiler to align a type to the maximum
7010 useful alignment for the target machine you are compiling for. For
7011 example, you could write:
7014 struct S @{ short f[3]; @} __attribute__ ((aligned));
7017 Whenever you leave out the alignment factor in an @code{aligned}
7018 attribute specification, the compiler automatically sets the alignment
7019 for the type to the largest alignment that is ever used for any data
7020 type on the target machine you are compiling for. Doing this can often
7021 make copy operations more efficient, because the compiler can use
7022 whatever instructions copy the biggest chunks of memory when performing
7023 copies to or from the variables that have types that you have aligned
7026 In the example above, if the size of each @code{short} is 2 bytes, then
7027 the size of the entire @code{struct S} type is 6 bytes. The smallest
7028 power of two that is greater than or equal to that is 8, so the
7029 compiler sets the alignment for the entire @code{struct S} type to 8
7032 Note that although you can ask the compiler to select a time-efficient
7033 alignment for a given type and then declare only individual stand-alone
7034 objects of that type, the compiler's ability to select a time-efficient
7035 alignment is primarily useful only when you plan to create arrays of
7036 variables having the relevant (efficiently aligned) type. If you
7037 declare or use arrays of variables of an efficiently-aligned type, then
7038 it is likely that your program also does pointer arithmetic (or
7039 subscripting, which amounts to the same thing) on pointers to the
7040 relevant type, and the code that the compiler generates for these
7041 pointer arithmetic operations is often more efficient for
7042 efficiently-aligned types than for other types.
7044 Note that the effectiveness of @code{aligned} attributes may be limited
7045 by inherent limitations in your linker. On many systems, the linker is
7046 only able to arrange for variables to be aligned up to a certain maximum
7047 alignment. (For some linkers, the maximum supported alignment may
7048 be very very small.) If your linker is only able to align variables
7049 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
7050 in an @code{__attribute__} still only provides you with 8-byte
7051 alignment. See your linker documentation for further information.
7053 The @code{aligned} attribute can only increase alignment. Alignment
7054 can be decreased by specifying the @code{packed} attribute. See below.
7056 @cindex @code{warn_if_not_aligned} type attribute
7057 @item warn_if_not_aligned (@var{alignment})
7058 This attribute specifies a threshold for the structure field, measured
7059 in bytes. If the structure field is aligned below the threshold, a
7060 warning will be issued. For example, the declaration:
7063 typedef unsigned long long __u64
7064 __attribute__((aligned(4),warn_if_not_aligned(8)));
7075 causes the compiler to issue an warning on @code{struct foo}, like
7076 @samp{warning: alignment 4 of 'struct foo' is less than 8}.
7077 It is used to define @code{struct foo} in such a way that
7078 @code{struct foo} has the same layout and the structure field @code{x}
7079 has the same alignment when @code{__u64} is aligned at either 4 or
7080 8 bytes. Align @code{struct foo} to 8 bytes:
7088 @} __attribute__((aligned(8)));
7092 silences the warning. The compiler also issues a warning, like
7093 @samp{warning: 'x' offset 12 in 'struct foo' isn't aligned to 8},
7094 when the structure field has the misaligned offset:
7103 @} __attribute__((aligned(8)));
7106 This warning can be disabled by @option{-Wno-if-not-aligned}.
7109 @itemx deprecated (@var{msg})
7110 @cindex @code{deprecated} type attribute
7111 The @code{deprecated} attribute results in a warning if the type
7112 is used anywhere in the source file. This is useful when identifying
7113 types that are expected to be removed in a future version of a program.
7114 If possible, the warning also includes the location of the declaration
7115 of the deprecated type, to enable users to easily find further
7116 information about why the type is deprecated, or what they should do
7117 instead. Note that the warnings only occur for uses and then only
7118 if the type is being applied to an identifier that itself is not being
7119 declared as deprecated.
7122 typedef int T1 __attribute__ ((deprecated));
7126 typedef T1 T3 __attribute__ ((deprecated));
7127 T3 z __attribute__ ((deprecated));
7131 results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
7132 warning is issued for line 4 because T2 is not explicitly
7133 deprecated. Line 5 has no warning because T3 is explicitly
7134 deprecated. Similarly for line 6. The optional @var{msg}
7135 argument, which must be a string, is printed in the warning if
7136 present. Control characters in the string will be replaced with
7137 escape sequences, and if the @option{-fmessage-length} option is set
7138 to 0 (its default value) then any newline characters will be ignored.
7140 The @code{deprecated} attribute can also be used for functions and
7141 variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
7143 The message attached to the attribute is affected by the setting of
7144 the @option{-fmessage-length} option.
7146 @item designated_init
7147 @cindex @code{designated_init} type attribute
7148 This attribute may only be applied to structure types. It indicates
7149 that any initialization of an object of this type must use designated
7150 initializers rather than positional initializers. The intent of this
7151 attribute is to allow the programmer to indicate that a structure's
7152 layout may change, and that therefore relying on positional
7153 initialization will result in future breakage.
7155 GCC emits warnings based on this attribute by default; use
7156 @option{-Wno-designated-init} to suppress them.
7159 @cindex @code{may_alias} type attribute
7160 Accesses through pointers to types with this attribute are not subject
7161 to type-based alias analysis, but are instead assumed to be able to alias
7162 any other type of objects.
7163 In the context of section 6.5 paragraph 7 of the C99 standard,
7164 an lvalue expression
7165 dereferencing such a pointer is treated like having a character type.
7166 See @option{-fstrict-aliasing} for more information on aliasing issues.
7167 This extension exists to support some vector APIs, in which pointers to
7168 one vector type are permitted to alias pointers to a different vector type.
7170 Note that an object of a type with this attribute does not have any
7176 typedef short __attribute__((__may_alias__)) short_a;
7182 short_a *b = (short_a *) &a;
7186 if (a == 0x12345678)
7194 If you replaced @code{short_a} with @code{short} in the variable
7195 declaration, the above program would abort when compiled with
7196 @option{-fstrict-aliasing}, which is on by default at @option{-O2} or
7199 @item mode (@var{mode})
7200 @cindex @code{mode} type attribute
7201 This attribute specifies the data type for the declaration---whichever
7202 type corresponds to the mode @var{mode}. This in effect lets you
7203 request an integer or floating-point type according to its width.
7205 @xref{Machine Modes,,, gccint, GNU Compiler Collection (GCC) Internals},
7206 for a list of the possible keywords for @var{mode}.
7207 You may also specify a mode of @code{byte} or @code{__byte__} to
7208 indicate the mode corresponding to a one-byte integer, @code{word} or
7209 @code{__word__} for the mode of a one-word integer, and @code{pointer}
7210 or @code{__pointer__} for the mode used to represent pointers.
7213 @cindex @code{packed} type attribute
7214 This attribute, attached to @code{struct} or @code{union} type
7215 definition, specifies that each member (other than zero-width bit-fields)
7216 of the structure or union is placed to minimize the memory required. When
7217 attached to an @code{enum} definition, it indicates that the smallest
7218 integral type should be used.
7220 @opindex fshort-enums
7221 Specifying the @code{packed} attribute for @code{struct} and @code{union}
7222 types is equivalent to specifying the @code{packed} attribute on each
7223 of the structure or union members. Specifying the @option{-fshort-enums}
7224 flag on the command line is equivalent to specifying the @code{packed}
7225 attribute on all @code{enum} definitions.
7227 In the following example @code{struct my_packed_struct}'s members are
7228 packed closely together, but the internal layout of its @code{s} member
7229 is not packed---to do that, @code{struct my_unpacked_struct} needs to
7233 struct my_unpacked_struct
7239 struct __attribute__ ((__packed__)) my_packed_struct
7243 struct my_unpacked_struct s;
7247 You may only specify the @code{packed} attribute attribute on the definition
7248 of an @code{enum}, @code{struct} or @code{union}, not on a @code{typedef}
7249 that does not also define the enumerated type, structure or union.
7251 @item scalar_storage_order ("@var{endianness}")
7252 @cindex @code{scalar_storage_order} type attribute
7253 When attached to a @code{union} or a @code{struct}, this attribute sets
7254 the storage order, aka endianness, of the scalar fields of the type, as
7255 well as the array fields whose component is scalar. The supported
7256 endiannesses are @code{big-endian} and @code{little-endian}. The attribute
7257 has no effects on fields which are themselves a @code{union}, a @code{struct}
7258 or an array whose component is a @code{union} or a @code{struct}, and it is
7259 possible for these fields to have a different scalar storage order than the
7262 This attribute is supported only for targets that use a uniform default
7263 scalar storage order (fortunately, most of them), i.e.@: targets that store
7264 the scalars either all in big-endian or all in little-endian.
7266 Additional restrictions are enforced for types with the reverse scalar
7267 storage order with regard to the scalar storage order of the target:
7270 @item Taking the address of a scalar field of a @code{union} or a
7271 @code{struct} with reverse scalar storage order is not permitted and yields
7273 @item Taking the address of an array field, whose component is scalar, of
7274 a @code{union} or a @code{struct} with reverse scalar storage order is
7275 permitted but yields a warning, unless @option{-Wno-scalar-storage-order}
7277 @item Taking the address of a @code{union} or a @code{struct} with reverse
7278 scalar storage order is permitted.
7281 These restrictions exist because the storage order attribute is lost when
7282 the address of a scalar or the address of an array with scalar component is
7283 taken, so storing indirectly through this address generally does not work.
7284 The second case is nevertheless allowed to be able to perform a block copy
7285 from or to the array.
7287 Moreover, the use of type punning or aliasing to toggle the storage order
7288 is not supported; that is to say, a given scalar object cannot be accessed
7289 through distinct types that assign a different storage order to it.
7291 @item transparent_union
7292 @cindex @code{transparent_union} type attribute
7294 This attribute, attached to a @code{union} type definition, indicates
7295 that any function parameter having that union type causes calls to that
7296 function to be treated in a special way.
7298 First, the argument corresponding to a transparent union type can be of
7299 any type in the union; no cast is required. Also, if the union contains
7300 a pointer type, the corresponding argument can be a null pointer
7301 constant or a void pointer expression; and if the union contains a void
7302 pointer type, the corresponding argument can be any pointer expression.
7303 If the union member type is a pointer, qualifiers like @code{const} on
7304 the referenced type must be respected, just as with normal pointer
7307 Second, the argument is passed to the function using the calling
7308 conventions of the first member of the transparent union, not the calling
7309 conventions of the union itself. All members of the union must have the
7310 same machine representation; this is necessary for this argument passing
7313 Transparent unions are designed for library functions that have multiple
7314 interfaces for compatibility reasons. For example, suppose the
7315 @code{wait} function must accept either a value of type @code{int *} to
7316 comply with POSIX, or a value of type @code{union wait *} to comply with
7317 the 4.1BSD interface. If @code{wait}'s parameter were @code{void *},
7318 @code{wait} would accept both kinds of arguments, but it would also
7319 accept any other pointer type and this would make argument type checking
7320 less useful. Instead, @code{<sys/wait.h>} might define the interface
7324 typedef union __attribute__ ((__transparent_union__))
7328 @} wait_status_ptr_t;
7330 pid_t wait (wait_status_ptr_t);
7334 This interface allows either @code{int *} or @code{union wait *}
7335 arguments to be passed, using the @code{int *} calling convention.
7336 The program can call @code{wait} with arguments of either type:
7339 int w1 () @{ int w; return wait (&w); @}
7340 int w2 () @{ union wait w; return wait (&w); @}
7344 With this interface, @code{wait}'s implementation might look like this:
7347 pid_t wait (wait_status_ptr_t p)
7349 return waitpid (-1, p.__ip, 0);
7354 @cindex @code{unused} type attribute
7355 When attached to a type (including a @code{union} or a @code{struct}),
7356 this attribute means that variables of that type are meant to appear
7357 possibly unused. GCC does not produce a warning for any variables of
7358 that type, even if the variable appears to do nothing. This is often
7359 the case with lock or thread classes, which are usually defined and then
7360 not referenced, but contain constructors and destructors that have
7361 nontrivial bookkeeping functions.
7364 @cindex @code{visibility} type attribute
7365 In C++, attribute visibility (@pxref{Function Attributes}) can also be
7366 applied to class, struct, union and enum types. Unlike other type
7367 attributes, the attribute must appear between the initial keyword and
7368 the name of the type; it cannot appear after the body of the type.
7370 Note that the type visibility is applied to vague linkage entities
7371 associated with the class (vtable, typeinfo node, etc.). In
7372 particular, if a class is thrown as an exception in one shared object
7373 and caught in another, the class must have default visibility.
7374 Otherwise the two shared objects are unable to use the same
7375 typeinfo node and exception handling will break.
7379 To specify multiple attributes, separate them by commas within the
7380 double parentheses: for example, @samp{__attribute__ ((aligned (16),
7383 @node ARC Type Attributes
7384 @subsection ARC Type Attributes
7386 @cindex @code{uncached} type attribute, ARC
7387 Declaring objects with @code{uncached} allows you to exclude
7388 data-cache participation in load and store operations on those objects
7389 without involving the additional semantic implications of
7390 @code{volatile}. The @code{.di} instruction suffix is used for all
7391 loads and stores of data declared @code{uncached}.
7393 @node ARM Type Attributes
7394 @subsection ARM Type Attributes
7396 @cindex @code{notshared} type attribute, ARM
7397 On those ARM targets that support @code{dllimport} (such as Symbian
7398 OS), you can use the @code{notshared} attribute to indicate that the
7399 virtual table and other similar data for a class should not be
7400 exported from a DLL@. For example:
7403 class __declspec(notshared) C @{
7405 __declspec(dllimport) C();
7409 __declspec(dllexport)
7414 In this code, @code{C::C} is exported from the current DLL, but the
7415 virtual table for @code{C} is not exported. (You can use
7416 @code{__attribute__} instead of @code{__declspec} if you prefer, but
7417 most Symbian OS code uses @code{__declspec}.)
7419 @node MeP Type Attributes
7420 @subsection MeP Type Attributes
7422 @cindex @code{based} type attribute, MeP
7423 @cindex @code{tiny} type attribute, MeP
7424 @cindex @code{near} type attribute, MeP
7425 @cindex @code{far} type attribute, MeP
7426 Many of the MeP variable attributes may be applied to types as well.
7427 Specifically, the @code{based}, @code{tiny}, @code{near}, and
7428 @code{far} attributes may be applied to either. The @code{io} and
7429 @code{cb} attributes may not be applied to types.
7431 @node PowerPC Type Attributes
7432 @subsection PowerPC Type Attributes
7434 Three attributes currently are defined for PowerPC configurations:
7435 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
7437 @cindex @code{ms_struct} type attribute, PowerPC
7438 @cindex @code{gcc_struct} type attribute, PowerPC
7439 For full documentation of the @code{ms_struct} and @code{gcc_struct}
7440 attributes please see the documentation in @ref{x86 Type Attributes}.
7442 @cindex @code{altivec} type attribute, PowerPC
7443 The @code{altivec} attribute allows one to declare AltiVec vector data
7444 types supported by the AltiVec Programming Interface Manual. The
7445 attribute requires an argument to specify one of three vector types:
7446 @code{vector__}, @code{pixel__} (always followed by unsigned short),
7447 and @code{bool__} (always followed by unsigned).
7450 __attribute__((altivec(vector__)))
7451 __attribute__((altivec(pixel__))) unsigned short
7452 __attribute__((altivec(bool__))) unsigned
7455 These attributes mainly are intended to support the @code{__vector},
7456 @code{__pixel}, and @code{__bool} AltiVec keywords.
7458 @node SPU Type Attributes
7459 @subsection SPU Type Attributes
7461 @cindex @code{spu_vector} type attribute, SPU
7462 The SPU supports the @code{spu_vector} attribute for types. This attribute
7463 allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
7464 Language Extensions Specification. It is intended to support the
7465 @code{__vector} keyword.
7467 @node x86 Type Attributes
7468 @subsection x86 Type Attributes
7470 Two attributes are currently defined for x86 configurations:
7471 @code{ms_struct} and @code{gcc_struct}.
7477 @cindex @code{ms_struct} type attribute, x86
7478 @cindex @code{gcc_struct} type attribute, x86
7480 If @code{packed} is used on a structure, or if bit-fields are used
7481 it may be that the Microsoft ABI packs them differently
7482 than GCC normally packs them. Particularly when moving packed
7483 data between functions compiled with GCC and the native Microsoft compiler
7484 (either via function call or as data in a file), it may be necessary to access
7487 The @code{ms_struct} and @code{gcc_struct} attributes correspond
7488 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
7489 command-line options, respectively;
7490 see @ref{x86 Options}, for details of how structure layout is affected.
7491 @xref{x86 Variable Attributes}, for information about the corresponding
7492 attributes on variables.
7496 @node Label Attributes
7497 @section Label Attributes
7498 @cindex Label Attributes
7500 GCC allows attributes to be set on C labels. @xref{Attribute Syntax}, for
7501 details of the exact syntax for using attributes. Other attributes are
7502 available for functions (@pxref{Function Attributes}), variables
7503 (@pxref{Variable Attributes}), enumerators (@pxref{Enumerator Attributes}),
7504 statements (@pxref{Statement Attributes}), and for types
7505 (@pxref{Type Attributes}).
7507 This example uses the @code{cold} label attribute to indicate the
7508 @code{ErrorHandling} branch is unlikely to be taken and that the
7509 @code{ErrorHandling} label is unused:
7513 asm goto ("some asm" : : : : NoError);
7515 /* This branch (the fall-through from the asm) is less commonly used */
7517 __attribute__((cold, unused)); /* Semi-colon is required here */
7522 printf("no error\n");
7528 @cindex @code{unused} label attribute
7529 This feature is intended for program-generated code that may contain
7530 unused labels, but which is compiled with @option{-Wall}. It is
7531 not normally appropriate to use in it human-written code, though it
7532 could be useful in cases where the code that jumps to the label is
7533 contained within an @code{#ifdef} conditional.
7536 @cindex @code{hot} label attribute
7537 The @code{hot} attribute on a label is used to inform the compiler that
7538 the path following the label is more likely than paths that are not so
7539 annotated. This attribute is used in cases where @code{__builtin_expect}
7540 cannot be used, for instance with computed goto or @code{asm goto}.
7543 @cindex @code{cold} label attribute
7544 The @code{cold} attribute on labels is used to inform the compiler that
7545 the path following the label is unlikely to be executed. This attribute
7546 is used in cases where @code{__builtin_expect} cannot be used, for instance
7547 with computed goto or @code{asm goto}.
7551 @node Enumerator Attributes
7552 @section Enumerator Attributes
7553 @cindex Enumerator Attributes
7555 GCC allows attributes to be set on enumerators. @xref{Attribute Syntax}, for
7556 details of the exact syntax for using attributes. Other attributes are
7557 available for functions (@pxref{Function Attributes}), variables
7558 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), statements
7559 (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
7561 This example uses the @code{deprecated} enumerator attribute to indicate the
7562 @code{oldval} enumerator is deprecated:
7566 oldval __attribute__((deprecated)),
7579 @cindex @code{deprecated} enumerator attribute
7580 The @code{deprecated} attribute results in a warning if the enumerator
7581 is used anywhere in the source file. This is useful when identifying
7582 enumerators that are expected to be removed in a future version of a
7583 program. The warning also includes the location of the declaration
7584 of the deprecated enumerator, to enable users to easily find further
7585 information about why the enumerator is deprecated, or what they should
7586 do instead. Note that the warnings only occurs for uses.
7590 @node Statement Attributes
7591 @section Statement Attributes
7592 @cindex Statement Attributes
7594 GCC allows attributes to be set on null statements. @xref{Attribute Syntax},
7595 for details of the exact syntax for using attributes. Other attributes are
7596 available for functions (@pxref{Function Attributes}), variables
7597 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), enumerators
7598 (@pxref{Enumerator Attributes}), and for types (@pxref{Type Attributes}).
7600 This example uses the @code{fallthrough} statement attribute to indicate that
7601 the @option{-Wimplicit-fallthrough} warning should not be emitted:
7608 __attribute__((fallthrough));
7616 @cindex @code{fallthrough} statement attribute
7617 The @code{fallthrough} attribute with a null statement serves as a
7618 fallthrough statement. It hints to the compiler that a statement
7619 that falls through to another case label, or user-defined label
7620 in a switch statement is intentional and thus the
7621 @option{-Wimplicit-fallthrough} warning must not trigger. The
7622 fallthrough attribute may appear at most once in each attribute
7623 list, and may not be mixed with other attributes. It can only
7624 be used in a switch statement (the compiler will issue an error
7625 otherwise), after a preceding statement and before a logically
7626 succeeding case label, or user-defined label.
7630 @node Attribute Syntax
7631 @section Attribute Syntax
7632 @cindex attribute syntax
7634 This section describes the syntax with which @code{__attribute__} may be
7635 used, and the constructs to which attribute specifiers bind, for the C
7636 language. Some details may vary for C++ and Objective-C@. Because of
7637 infelicities in the grammar for attributes, some forms described here
7638 may not be successfully parsed in all cases.
7640 There are some problems with the semantics of attributes in C++. For
7641 example, there are no manglings for attributes, although they may affect
7642 code generation, so problems may arise when attributed types are used in
7643 conjunction with templates or overloading. Similarly, @code{typeid}
7644 does not distinguish between types with different attributes. Support
7645 for attributes in C++ may be restricted in future to attributes on
7646 declarations only, but not on nested declarators.
7648 @xref{Function Attributes}, for details of the semantics of attributes
7649 applying to functions. @xref{Variable Attributes}, for details of the
7650 semantics of attributes applying to variables. @xref{Type Attributes},
7651 for details of the semantics of attributes applying to structure, union
7652 and enumerated types.
7653 @xref{Label Attributes}, for details of the semantics of attributes
7655 @xref{Enumerator Attributes}, for details of the semantics of attributes
7656 applying to enumerators.
7657 @xref{Statement Attributes}, for details of the semantics of attributes
7658 applying to statements.
7660 An @dfn{attribute specifier} is of the form
7661 @code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list}
7662 is a possibly empty comma-separated sequence of @dfn{attributes}, where
7663 each attribute is one of the following:
7667 Empty. Empty attributes are ignored.
7671 (which may be an identifier such as @code{unused}, or a reserved
7672 word such as @code{const}).
7675 An attribute name followed by a parenthesized list of
7676 parameters for the attribute.
7677 These parameters take one of the following forms:
7681 An identifier. For example, @code{mode} attributes use this form.
7684 An identifier followed by a comma and a non-empty comma-separated list
7685 of expressions. For example, @code{format} attributes use this form.
7688 A possibly empty comma-separated list of expressions. For example,
7689 @code{format_arg} attributes use this form with the list being a single
7690 integer constant expression, and @code{alias} attributes use this form
7691 with the list being a single string constant.
7695 An @dfn{attribute specifier list} is a sequence of one or more attribute
7696 specifiers, not separated by any other tokens.
7698 You may optionally specify attribute names with @samp{__}
7699 preceding and following the name.
7700 This allows you to use them in header files without
7701 being concerned about a possible macro of the same name. For example,
7702 you may use the attribute name @code{__noreturn__} instead of @code{noreturn}.
7705 @subsubheading Label Attributes
7707 In GNU C, an attribute specifier list may appear after the colon following a
7708 label, other than a @code{case} or @code{default} label. GNU C++ only permits
7709 attributes on labels if the attribute specifier is immediately
7710 followed by a semicolon (i.e., the label applies to an empty
7711 statement). If the semicolon is missing, C++ label attributes are
7712 ambiguous, as it is permissible for a declaration, which could begin
7713 with an attribute list, to be labelled in C++. Declarations cannot be
7714 labelled in C90 or C99, so the ambiguity does not arise there.
7716 @subsubheading Enumerator Attributes
7718 In GNU C, an attribute specifier list may appear as part of an enumerator.
7719 The attribute goes after the enumeration constant, before @code{=}, if
7720 present. The optional attribute in the enumerator appertains to the
7721 enumeration constant. It is not possible to place the attribute after
7722 the constant expression, if present.
7724 @subsubheading Statement Attributes
7725 In GNU C, an attribute specifier list may appear as part of a null
7726 statement. The attribute goes before the semicolon.
7728 @subsubheading Type Attributes
7730 An attribute specifier list may appear as part of a @code{struct},
7731 @code{union} or @code{enum} specifier. It may go either immediately
7732 after the @code{struct}, @code{union} or @code{enum} keyword, or after
7733 the closing brace. The former syntax is preferred.
7734 Where attribute specifiers follow the closing brace, they are considered
7735 to relate to the structure, union or enumerated type defined, not to any
7736 enclosing declaration the type specifier appears in, and the type
7737 defined is not complete until after the attribute specifiers.
7738 @c Otherwise, there would be the following problems: a shift/reduce
7739 @c conflict between attributes binding the struct/union/enum and
7740 @c binding to the list of specifiers/qualifiers; and "aligned"
7741 @c attributes could use sizeof for the structure, but the size could be
7742 @c changed later by "packed" attributes.
7745 @subsubheading All other attributes
7747 Otherwise, an attribute specifier appears as part of a declaration,
7748 counting declarations of unnamed parameters and type names, and relates
7749 to that declaration (which may be nested in another declaration, for
7750 example in the case of a parameter declaration), or to a particular declarator
7751 within a declaration. Where an
7752 attribute specifier is applied to a parameter declared as a function or
7753 an array, it should apply to the function or array rather than the
7754 pointer to which the parameter is implicitly converted, but this is not
7755 yet correctly implemented.
7757 Any list of specifiers and qualifiers at the start of a declaration may
7758 contain attribute specifiers, whether or not such a list may in that
7759 context contain storage class specifiers. (Some attributes, however,
7760 are essentially in the nature of storage class specifiers, and only make
7761 sense where storage class specifiers may be used; for example,
7762 @code{section}.) There is one necessary limitation to this syntax: the
7763 first old-style parameter declaration in a function definition cannot
7764 begin with an attribute specifier, because such an attribute applies to
7765 the function instead by syntax described below (which, however, is not
7766 yet implemented in this case). In some other cases, attribute
7767 specifiers are permitted by this grammar but not yet supported by the
7768 compiler. All attribute specifiers in this place relate to the
7769 declaration as a whole. In the obsolescent usage where a type of
7770 @code{int} is implied by the absence of type specifiers, such a list of
7771 specifiers and qualifiers may be an attribute specifier list with no
7772 other specifiers or qualifiers.
7774 At present, the first parameter in a function prototype must have some
7775 type specifier that is not an attribute specifier; this resolves an
7776 ambiguity in the interpretation of @code{void f(int
7777 (__attribute__((foo)) x))}, but is subject to change. At present, if
7778 the parentheses of a function declarator contain only attributes then
7779 those attributes are ignored, rather than yielding an error or warning
7780 or implying a single parameter of type int, but this is subject to
7783 An attribute specifier list may appear immediately before a declarator
7784 (other than the first) in a comma-separated list of declarators in a
7785 declaration of more than one identifier using a single list of
7786 specifiers and qualifiers. Such attribute specifiers apply
7787 only to the identifier before whose declarator they appear. For
7791 __attribute__((noreturn)) void d0 (void),
7792 __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
7797 the @code{noreturn} attribute applies to all the functions
7798 declared; the @code{format} attribute only applies to @code{d1}.
7800 An attribute specifier list may appear immediately before the comma,
7801 @code{=} or semicolon terminating the declaration of an identifier other
7802 than a function definition. Such attribute specifiers apply
7803 to the declared object or function. Where an
7804 assembler name for an object or function is specified (@pxref{Asm
7805 Labels}), the attribute must follow the @code{asm}
7808 An attribute specifier list may, in future, be permitted to appear after
7809 the declarator in a function definition (before any old-style parameter
7810 declarations or the function body).
7812 Attribute specifiers may be mixed with type qualifiers appearing inside
7813 the @code{[]} of a parameter array declarator, in the C99 construct by
7814 which such qualifiers are applied to the pointer to which the array is
7815 implicitly converted. Such attribute specifiers apply to the pointer,
7816 not to the array, but at present this is not implemented and they are
7819 An attribute specifier list may appear at the start of a nested
7820 declarator. At present, there are some limitations in this usage: the
7821 attributes correctly apply to the declarator, but for most individual
7822 attributes the semantics this implies are not implemented.
7823 When attribute specifiers follow the @code{*} of a pointer
7824 declarator, they may be mixed with any type qualifiers present.
7825 The following describes the formal semantics of this syntax. It makes the
7826 most sense if you are familiar with the formal specification of
7827 declarators in the ISO C standard.
7829 Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
7830 D1}, where @code{T} contains declaration specifiers that specify a type
7831 @var{Type} (such as @code{int}) and @code{D1} is a declarator that
7832 contains an identifier @var{ident}. The type specified for @var{ident}
7833 for derived declarators whose type does not include an attribute
7834 specifier is as in the ISO C standard.
7836 If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
7837 and the declaration @code{T D} specifies the type
7838 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
7839 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
7840 @var{attribute-specifier-list} @var{Type}'' for @var{ident}.
7842 If @code{D1} has the form @code{*
7843 @var{type-qualifier-and-attribute-specifier-list} D}, and the
7844 declaration @code{T D} specifies the type
7845 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
7846 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
7847 @var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
7853 void (__attribute__((noreturn)) ****f) (void);
7857 specifies the type ``pointer to pointer to pointer to pointer to
7858 non-returning function returning @code{void}''. As another example,
7861 char *__attribute__((aligned(8))) *f;
7865 specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
7866 Note again that this does not work with most attributes; for example,
7867 the usage of @samp{aligned} and @samp{noreturn} attributes given above
7868 is not yet supported.
7870 For compatibility with existing code written for compiler versions that
7871 did not implement attributes on nested declarators, some laxity is
7872 allowed in the placing of attributes. If an attribute that only applies
7873 to types is applied to a declaration, it is treated as applying to
7874 the type of that declaration. If an attribute that only applies to
7875 declarations is applied to the type of a declaration, it is treated
7876 as applying to that declaration; and, for compatibility with code
7877 placing the attributes immediately before the identifier declared, such
7878 an attribute applied to a function return type is treated as
7879 applying to the function type, and such an attribute applied to an array
7880 element type is treated as applying to the array type. If an
7881 attribute that only applies to function types is applied to a
7882 pointer-to-function type, it is treated as applying to the pointer
7883 target type; if such an attribute is applied to a function return type
7884 that is not a pointer-to-function type, it is treated as applying
7885 to the function type.
7887 @node Function Prototypes
7888 @section Prototypes and Old-Style Function Definitions
7889 @cindex function prototype declarations
7890 @cindex old-style function definitions
7891 @cindex promotion of formal parameters
7893 GNU C extends ISO C to allow a function prototype to override a later
7894 old-style non-prototype definition. Consider the following example:
7897 /* @r{Use prototypes unless the compiler is old-fashioned.} */
7904 /* @r{Prototype function declaration.} */
7905 int isroot P((uid_t));
7907 /* @r{Old-style function definition.} */
7909 isroot (x) /* @r{??? lossage here ???} */
7916 Suppose the type @code{uid_t} happens to be @code{short}. ISO C does
7917 not allow this example, because subword arguments in old-style
7918 non-prototype definitions are promoted. Therefore in this example the
7919 function definition's argument is really an @code{int}, which does not
7920 match the prototype argument type of @code{short}.
7922 This restriction of ISO C makes it hard to write code that is portable
7923 to traditional C compilers, because the programmer does not know
7924 whether the @code{uid_t} type is @code{short}, @code{int}, or
7925 @code{long}. Therefore, in cases like these GNU C allows a prototype
7926 to override a later old-style definition. More precisely, in GNU C, a
7927 function prototype argument type overrides the argument type specified
7928 by a later old-style definition if the former type is the same as the
7929 latter type before promotion. Thus in GNU C the above example is
7930 equivalent to the following:
7943 GNU C++ does not support old-style function definitions, so this
7944 extension is irrelevant.
7947 @section C++ Style Comments
7949 @cindex C++ comments
7950 @cindex comments, C++ style
7952 In GNU C, you may use C++ style comments, which start with @samp{//} and
7953 continue until the end of the line. Many other C implementations allow
7954 such comments, and they are included in the 1999 C standard. However,
7955 C++ style comments are not recognized if you specify an @option{-std}
7956 option specifying a version of ISO C before C99, or @option{-ansi}
7957 (equivalent to @option{-std=c90}).
7960 @section Dollar Signs in Identifier Names
7962 @cindex dollar signs in identifier names
7963 @cindex identifier names, dollar signs in
7965 In GNU C, you may normally use dollar signs in identifier names.
7966 This is because many traditional C implementations allow such identifiers.
7967 However, dollar signs in identifiers are not supported on a few target
7968 machines, typically because the target assembler does not allow them.
7970 @node Character Escapes
7971 @section The Character @key{ESC} in Constants
7973 You can use the sequence @samp{\e} in a string or character constant to
7974 stand for the ASCII character @key{ESC}.
7977 @section Determining the Alignment of Functions, Types or Variables
7979 @cindex type alignment
7980 @cindex variable alignment
7982 The keyword @code{__alignof__} determines the alignment requirement of
7983 a function, object, or a type, or the minimum alignment usually required
7984 by a type. Its syntax is just like @code{sizeof} and C11 @code{_Alignof}.
7986 For example, if the target machine requires a @code{double} value to be
7987 aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
7988 This is true on many RISC machines. On more traditional machine
7989 designs, @code{__alignof__ (double)} is 4 or even 2.
7991 Some machines never actually require alignment; they allow references to any
7992 data type even at an odd address. For these machines, @code{__alignof__}
7993 reports the smallest alignment that GCC gives the data type, usually as
7994 mandated by the target ABI.
7996 If the operand of @code{__alignof__} is an lvalue rather than a type,
7997 its value is the required alignment for its type, taking into account
7998 any minimum alignment specified by attribute @code{aligned}
7999 (@pxref{Common Variable Attributes}). For example, after this
8003 struct foo @{ int x; char y; @} foo1;
8007 the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
8008 alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
8009 It is an error to ask for the alignment of an incomplete type other
8012 If the operand of the @code{__alignof__} expression is a function,
8013 the expression evaluates to the alignment of the function which may
8014 be specified by attribute @code{aligned} (@pxref{Common Function Attributes}).
8017 @section An Inline Function is As Fast As a Macro
8018 @cindex inline functions
8019 @cindex integrating function code
8021 @cindex macros, inline alternative
8023 By declaring a function inline, you can direct GCC to make
8024 calls to that function faster. One way GCC can achieve this is to
8025 integrate that function's code into the code for its callers. This
8026 makes execution faster by eliminating the function-call overhead; in
8027 addition, if any of the actual argument values are constant, their
8028 known values may permit simplifications at compile time so that not
8029 all of the inline function's code needs to be included. The effect on
8030 code size is less predictable; object code may be larger or smaller
8031 with function inlining, depending on the particular case. You can
8032 also direct GCC to try to integrate all ``simple enough'' functions
8033 into their callers with the option @option{-finline-functions}.
8035 GCC implements three different semantics of declaring a function
8036 inline. One is available with @option{-std=gnu89} or
8037 @option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
8038 on all inline declarations, another when
8040 @option{-std=gnu99} or an option for a later C version is used
8041 (without @option{-fgnu89-inline}), and the third
8042 is used when compiling C++.
8044 To declare a function inline, use the @code{inline} keyword in its
8045 declaration, like this:
8055 If you are writing a header file to be included in ISO C90 programs, write
8056 @code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}.
8058 The three types of inlining behave similarly in two important cases:
8059 when the @code{inline} keyword is used on a @code{static} function,
8060 like the example above, and when a function is first declared without
8061 using the @code{inline} keyword and then is defined with
8062 @code{inline}, like this:
8065 extern int inc (int *a);
8073 In both of these common cases, the program behaves the same as if you
8074 had not used the @code{inline} keyword, except for its speed.
8076 @cindex inline functions, omission of
8077 @opindex fkeep-inline-functions
8078 When a function is both inline and @code{static}, if all calls to the
8079 function are integrated into the caller, and the function's address is
8080 never used, then the function's own assembler code is never referenced.
8081 In this case, GCC does not actually output assembler code for the
8082 function, unless you specify the option @option{-fkeep-inline-functions}.
8083 If there is a nonintegrated call, then the function is compiled to
8084 assembler code as usual. The function must also be compiled as usual if
8085 the program refers to its address, because that cannot be inlined.
8088 Note that certain usages in a function definition can make it unsuitable
8089 for inline substitution. Among these usages are: variadic functions,
8090 use of @code{alloca}, use of computed goto (@pxref{Labels as Values}),
8091 use of nonlocal goto, use of nested functions, use of @code{setjmp}, use
8092 of @code{__builtin_longjmp} and use of @code{__builtin_return} or
8093 @code{__builtin_apply_args}. Using @option{-Winline} warns when a
8094 function marked @code{inline} could not be substituted, and gives the
8095 reason for the failure.
8097 @cindex automatic @code{inline} for C++ member fns
8098 @cindex @code{inline} automatic for C++ member fns
8099 @cindex member fns, automatically @code{inline}
8100 @cindex C++ member fns, automatically @code{inline}
8101 @opindex fno-default-inline
8102 As required by ISO C++, GCC considers member functions defined within
8103 the body of a class to be marked inline even if they are
8104 not explicitly declared with the @code{inline} keyword. You can
8105 override this with @option{-fno-default-inline}; @pxref{C++ Dialect
8106 Options,,Options Controlling C++ Dialect}.
8108 GCC does not inline any functions when not optimizing unless you specify
8109 the @samp{always_inline} attribute for the function, like this:
8112 /* @r{Prototype.} */
8113 inline void foo (const char) __attribute__((always_inline));
8116 The remainder of this section is specific to GNU C90 inlining.
8118 @cindex non-static inline function
8119 When an inline function is not @code{static}, then the compiler must assume
8120 that there may be calls from other source files; since a global symbol can
8121 be defined only once in any program, the function must not be defined in
8122 the other source files, so the calls therein cannot be integrated.
8123 Therefore, a non-@code{static} inline function is always compiled on its
8124 own in the usual fashion.
8126 If you specify both @code{inline} and @code{extern} in the function
8127 definition, then the definition is used only for inlining. In no case
8128 is the function compiled on its own, not even if you refer to its
8129 address explicitly. Such an address becomes an external reference, as
8130 if you had only declared the function, and had not defined it.
8132 This combination of @code{inline} and @code{extern} has almost the
8133 effect of a macro. The way to use it is to put a function definition in
8134 a header file with these keywords, and put another copy of the
8135 definition (lacking @code{inline} and @code{extern}) in a library file.
8136 The definition in the header file causes most calls to the function
8137 to be inlined. If any uses of the function remain, they refer to
8138 the single copy in the library.
8141 @section When is a Volatile Object Accessed?
8142 @cindex accessing volatiles
8143 @cindex volatile read
8144 @cindex volatile write
8145 @cindex volatile access
8147 C has the concept of volatile objects. These are normally accessed by
8148 pointers and used for accessing hardware or inter-thread
8149 communication. The standard encourages compilers to refrain from
8150 optimizations concerning accesses to volatile objects, but leaves it
8151 implementation defined as to what constitutes a volatile access. The
8152 minimum requirement is that at a sequence point all previous accesses
8153 to volatile objects have stabilized and no subsequent accesses have
8154 occurred. Thus an implementation is free to reorder and combine
8155 volatile accesses that occur between sequence points, but cannot do
8156 so for accesses across a sequence point. The use of volatile does
8157 not allow you to violate the restriction on updating objects multiple
8158 times between two sequence points.
8160 Accesses to non-volatile objects are not ordered with respect to
8161 volatile accesses. You cannot use a volatile object as a memory
8162 barrier to order a sequence of writes to non-volatile memory. For
8166 int *ptr = @var{something};
8168 *ptr = @var{something};
8173 Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
8174 that the write to @var{*ptr} occurs by the time the update
8175 of @var{vobj} happens. If you need this guarantee, you must use
8176 a stronger memory barrier such as:
8179 int *ptr = @var{something};
8181 *ptr = @var{something};
8182 asm volatile ("" : : : "memory");
8186 A scalar volatile object is read when it is accessed in a void context:
8189 volatile int *src = @var{somevalue};
8193 Such expressions are rvalues, and GCC implements this as a
8194 read of the volatile object being pointed to.
8196 Assignments are also expressions and have an rvalue. However when
8197 assigning to a scalar volatile, the volatile object is not reread,
8198 regardless of whether the assignment expression's rvalue is used or
8199 not. If the assignment's rvalue is used, the value is that assigned
8200 to the volatile object. For instance, there is no read of @var{vobj}
8201 in all the following cases:
8206 vobj = @var{something};
8207 obj = vobj = @var{something};
8208 obj ? vobj = @var{onething} : vobj = @var{anotherthing};
8209 obj = (@var{something}, vobj = @var{anotherthing});
8212 If you need to read the volatile object after an assignment has
8213 occurred, you must use a separate expression with an intervening
8216 As bit-fields are not individually addressable, volatile bit-fields may
8217 be implicitly read when written to, or when adjacent bit-fields are
8218 accessed. Bit-field operations may be optimized such that adjacent
8219 bit-fields are only partially accessed, if they straddle a storage unit
8220 boundary. For these reasons it is unwise to use volatile bit-fields to
8223 @node Using Assembly Language with C
8224 @section How to Use Inline Assembly Language in C Code
8225 @cindex @code{asm} keyword
8226 @cindex assembly language in C
8227 @cindex inline assembly language
8228 @cindex mixing assembly language and C
8230 The @code{asm} keyword allows you to embed assembler instructions
8231 within C code. GCC provides two forms of inline @code{asm}
8232 statements. A @dfn{basic @code{asm}} statement is one with no
8233 operands (@pxref{Basic Asm}), while an @dfn{extended @code{asm}}
8234 statement (@pxref{Extended Asm}) includes one or more operands.
8235 The extended form is preferred for mixing C and assembly language
8236 within a function, but to include assembly language at
8237 top level you must use basic @code{asm}.
8239 You can also use the @code{asm} keyword to override the assembler name
8240 for a C symbol, or to place a C variable in a specific register.
8243 * Basic Asm:: Inline assembler without operands.
8244 * Extended Asm:: Inline assembler with operands.
8245 * Constraints:: Constraints for @code{asm} operands
8246 * Asm Labels:: Specifying the assembler name to use for a C symbol.
8247 * Explicit Register Variables:: Defining variables residing in specified
8249 * Size of an asm:: How GCC calculates the size of an @code{asm} block.
8253 @subsection Basic Asm --- Assembler Instructions Without Operands
8254 @cindex basic @code{asm}
8255 @cindex assembly language in C, basic
8257 A basic @code{asm} statement has the following syntax:
8260 asm @r{[} volatile @r{]} ( @var{AssemblerInstructions} )
8263 The @code{asm} keyword is a GNU extension.
8264 When writing code that can be compiled with @option{-ansi} and the
8265 various @option{-std} options, use @code{__asm__} instead of
8266 @code{asm} (@pxref{Alternate Keywords}).
8268 @subsubheading Qualifiers
8271 The optional @code{volatile} qualifier has no effect.
8272 All basic @code{asm} blocks are implicitly volatile.
8275 @subsubheading Parameters
8278 @item AssemblerInstructions
8279 This is a literal string that specifies the assembler code. The string can
8280 contain any instructions recognized by the assembler, including directives.
8281 GCC does not parse the assembler instructions themselves and
8282 does not know what they mean or even whether they are valid assembler input.
8284 You may place multiple assembler instructions together in a single @code{asm}
8285 string, separated by the characters normally used in assembly code for the
8286 system. A combination that works in most places is a newline to break the
8287 line, plus a tab character (written as @samp{\n\t}).
8288 Some assemblers allow semicolons as a line separator. However,
8289 note that some assembler dialects use semicolons to start a comment.
8292 @subsubheading Remarks
8293 Using extended @code{asm} (@pxref{Extended Asm}) typically produces
8294 smaller, safer, and more efficient code, and in most cases it is a
8295 better solution than basic @code{asm}. However, there are two
8296 situations where only basic @code{asm} can be used:
8300 Extended @code{asm} statements have to be inside a C
8301 function, so to write inline assembly language at file scope (``top-level''),
8302 outside of C functions, you must use basic @code{asm}.
8303 You can use this technique to emit assembler directives,
8304 define assembly language macros that can be invoked elsewhere in the file,
8305 or write entire functions in assembly language.
8309 with the @code{naked} attribute also require basic @code{asm}
8310 (@pxref{Function Attributes}).
8313 Safely accessing C data and calling functions from basic @code{asm} is more
8314 complex than it may appear. To access C data, it is better to use extended
8317 Do not expect a sequence of @code{asm} statements to remain perfectly
8318 consecutive after compilation. If certain instructions need to remain
8319 consecutive in the output, put them in a single multi-instruction @code{asm}
8320 statement. Note that GCC's optimizers can move @code{asm} statements
8321 relative to other code, including across jumps.
8323 @code{asm} statements may not perform jumps into other @code{asm} statements.
8324 GCC does not know about these jumps, and therefore cannot take
8325 account of them when deciding how to optimize. Jumps from @code{asm} to C
8326 labels are only supported in extended @code{asm}.
8328 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
8329 assembly code when optimizing. This can lead to unexpected duplicate
8330 symbol errors during compilation if your assembly code defines symbols or
8333 @strong{Warning:} The C standards do not specify semantics for @code{asm},
8334 making it a potential source of incompatibilities between compilers. These
8335 incompatibilities may not produce compiler warnings/errors.
8337 GCC does not parse basic @code{asm}'s @var{AssemblerInstructions}, which
8338 means there is no way to communicate to the compiler what is happening
8339 inside them. GCC has no visibility of symbols in the @code{asm} and may
8340 discard them as unreferenced. It also does not know about side effects of
8341 the assembler code, such as modifications to memory or registers. Unlike
8342 some compilers, GCC assumes that no changes to general purpose registers
8343 occur. This assumption may change in a future release.
8345 To avoid complications from future changes to the semantics and the
8346 compatibility issues between compilers, consider replacing basic @code{asm}
8347 with extended @code{asm}. See
8348 @uref{https://gcc.gnu.org/wiki/ConvertBasicAsmToExtended, How to convert
8349 from basic asm to extended asm} for information about how to perform this
8352 The compiler copies the assembler instructions in a basic @code{asm}
8353 verbatim to the assembly language output file, without
8354 processing dialects or any of the @samp{%} operators that are available with
8355 extended @code{asm}. This results in minor differences between basic
8356 @code{asm} strings and extended @code{asm} templates. For example, to refer to
8357 registers you might use @samp{%eax} in basic @code{asm} and
8358 @samp{%%eax} in extended @code{asm}.
8360 On targets such as x86 that support multiple assembler dialects,
8361 all basic @code{asm} blocks use the assembler dialect specified by the
8362 @option{-masm} command-line option (@pxref{x86 Options}).
8363 Basic @code{asm} provides no
8364 mechanism to provide different assembler strings for different dialects.
8366 For basic @code{asm} with non-empty assembler string GCC assumes
8367 the assembler block does not change any general purpose registers,
8368 but it may read or write any globally accessible variable.
8370 Here is an example of basic @code{asm} for i386:
8373 /* Note that this code will not compile with -masm=intel */
8374 #define DebugBreak() asm("int $3")
8378 @subsection Extended Asm - Assembler Instructions with C Expression Operands
8379 @cindex extended @code{asm}
8380 @cindex assembly language in C, extended
8382 With extended @code{asm} you can read and write C variables from
8383 assembler and perform jumps from assembler code to C labels.
8384 Extended @code{asm} syntax uses colons (@samp{:}) to delimit
8385 the operand parameters after the assembler template:
8388 asm @r{[}volatile@r{]} ( @var{AssemblerTemplate}
8389 : @var{OutputOperands}
8390 @r{[} : @var{InputOperands}
8391 @r{[} : @var{Clobbers} @r{]} @r{]})
8393 asm @r{[}volatile@r{]} goto ( @var{AssemblerTemplate}
8395 : @var{InputOperands}
8400 The @code{asm} keyword is a GNU extension.
8401 When writing code that can be compiled with @option{-ansi} and the
8402 various @option{-std} options, use @code{__asm__} instead of
8403 @code{asm} (@pxref{Alternate Keywords}).
8405 @subsubheading Qualifiers
8409 The typical use of extended @code{asm} statements is to manipulate input
8410 values to produce output values. However, your @code{asm} statements may
8411 also produce side effects. If so, you may need to use the @code{volatile}
8412 qualifier to disable certain optimizations. @xref{Volatile}.
8415 This qualifier informs the compiler that the @code{asm} statement may
8416 perform a jump to one of the labels listed in the @var{GotoLabels}.
8420 @subsubheading Parameters
8422 @item AssemblerTemplate
8423 This is a literal string that is the template for the assembler code. It is a
8424 combination of fixed text and tokens that refer to the input, output,
8425 and goto parameters. @xref{AssemblerTemplate}.
8427 @item OutputOperands
8428 A comma-separated list of the C variables modified by the instructions in the
8429 @var{AssemblerTemplate}. An empty list is permitted. @xref{OutputOperands}.
8432 A comma-separated list of C expressions read by the instructions in the
8433 @var{AssemblerTemplate}. An empty list is permitted. @xref{InputOperands}.
8436 A comma-separated list of registers or other values changed by the
8437 @var{AssemblerTemplate}, beyond those listed as outputs.
8438 An empty list is permitted. @xref{Clobbers and Scratch Registers}.
8441 When you are using the @code{goto} form of @code{asm}, this section contains
8442 the list of all C labels to which the code in the
8443 @var{AssemblerTemplate} may jump.
8446 @code{asm} statements may not perform jumps into other @code{asm} statements,
8447 only to the listed @var{GotoLabels}.
8448 GCC's optimizers do not know about other jumps; therefore they cannot take
8449 account of them when deciding how to optimize.
8452 The total number of input + output + goto operands is limited to 30.
8454 @subsubheading Remarks
8455 The @code{asm} statement allows you to include assembly instructions directly
8456 within C code. This may help you to maximize performance in time-sensitive
8457 code or to access assembly instructions that are not readily available to C
8460 Note that extended @code{asm} statements must be inside a function. Only
8461 basic @code{asm} may be outside functions (@pxref{Basic Asm}).
8462 Functions declared with the @code{naked} attribute also require basic
8463 @code{asm} (@pxref{Function Attributes}).
8465 While the uses of @code{asm} are many and varied, it may help to think of an
8466 @code{asm} statement as a series of low-level instructions that convert input
8467 parameters to output parameters. So a simple (if not particularly useful)
8468 example for i386 using @code{asm} might look like this:
8474 asm ("mov %1, %0\n\t"
8479 printf("%d\n", dst);
8482 This code copies @code{src} to @code{dst} and add 1 to @code{dst}.
8485 @subsubsection Volatile
8486 @cindex volatile @code{asm}
8487 @cindex @code{asm} volatile
8489 GCC's optimizers sometimes discard @code{asm} statements if they determine
8490 there is no need for the output variables. Also, the optimizers may move
8491 code out of loops if they believe that the code will always return the same
8492 result (i.e.@: none of its input values change between calls). Using the
8493 @code{volatile} qualifier disables these optimizations. @code{asm} statements
8494 that have no output operands, including @code{asm goto} statements,
8495 are implicitly volatile.
8497 This i386 code demonstrates a case that does not use (or require) the
8498 @code{volatile} qualifier. If it is performing assertion checking, this code
8499 uses @code{asm} to perform the validation. Otherwise, @code{dwRes} is
8500 unreferenced by any code. As a result, the optimizers can discard the
8501 @code{asm} statement, which in turn removes the need for the entire
8502 @code{DoCheck} routine. By omitting the @code{volatile} qualifier when it
8503 isn't needed you allow the optimizers to produce the most efficient code
8507 void DoCheck(uint32_t dwSomeValue)
8511 // Assumes dwSomeValue is not zero.
8521 The next example shows a case where the optimizers can recognize that the input
8522 (@code{dwSomeValue}) never changes during the execution of the function and can
8523 therefore move the @code{asm} outside the loop to produce more efficient code.
8524 Again, using @code{volatile} disables this type of optimization.
8527 void do_print(uint32_t dwSomeValue)
8531 for (uint32_t x=0; x < 5; x++)
8533 // Assumes dwSomeValue is not zero.
8539 printf("%u: %u %u\n", x, dwSomeValue, dwRes);
8544 The following example demonstrates a case where you need to use the
8545 @code{volatile} qualifier.
8546 It uses the x86 @code{rdtsc} instruction, which reads
8547 the computer's time-stamp counter. Without the @code{volatile} qualifier,
8548 the optimizers might assume that the @code{asm} block will always return the
8549 same value and therefore optimize away the second call.
8554 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
8555 "shl $32, %%rdx\n\t" // Shift the upper bits left.
8556 "or %%rdx, %0" // 'Or' in the lower bits.
8561 printf("msr: %llx\n", msr);
8565 // Reprint the timestamp
8566 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
8567 "shl $32, %%rdx\n\t" // Shift the upper bits left.
8568 "or %%rdx, %0" // 'Or' in the lower bits.
8573 printf("msr: %llx\n", msr);
8576 GCC's optimizers do not treat this code like the non-volatile code in the
8577 earlier examples. They do not move it out of loops or omit it on the
8578 assumption that the result from a previous call is still valid.
8580 Note that the compiler can move even volatile @code{asm} instructions relative
8581 to other code, including across jump instructions. For example, on many
8582 targets there is a system register that controls the rounding mode of
8583 floating-point operations. Setting it with a volatile @code{asm}, as in the
8584 following PowerPC example, does not work reliably.
8587 asm volatile("mtfsf 255, %0" : : "f" (fpenv));
8591 The compiler may move the addition back before the volatile @code{asm}. To
8592 make it work as expected, add an artificial dependency to the @code{asm} by
8593 referencing a variable in the subsequent code, for example:
8596 asm volatile ("mtfsf 255,%1" : "=X" (sum) : "f" (fpenv));
8600 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
8601 assembly code when optimizing. This can lead to unexpected duplicate symbol
8602 errors during compilation if your asm code defines symbols or labels.
8604 (@pxref{AssemblerTemplate}) may help resolve this problem.
8606 @anchor{AssemblerTemplate}
8607 @subsubsection Assembler Template
8608 @cindex @code{asm} assembler template
8610 An assembler template is a literal string containing assembler instructions.
8611 The compiler replaces tokens in the template that refer
8612 to inputs, outputs, and goto labels,
8613 and then outputs the resulting string to the assembler. The
8614 string can contain any instructions recognized by the assembler, including
8615 directives. GCC does not parse the assembler instructions
8616 themselves and does not know what they mean or even whether they are valid
8617 assembler input. However, it does count the statements
8618 (@pxref{Size of an asm}).
8620 You may place multiple assembler instructions together in a single @code{asm}
8621 string, separated by the characters normally used in assembly code for the
8622 system. A combination that works in most places is a newline to break the
8623 line, plus a tab character to move to the instruction field (written as
8625 Some assemblers allow semicolons as a line separator. However, note
8626 that some assembler dialects use semicolons to start a comment.
8628 Do not expect a sequence of @code{asm} statements to remain perfectly
8629 consecutive after compilation, even when you are using the @code{volatile}
8630 qualifier. If certain instructions need to remain consecutive in the output,
8631 put them in a single multi-instruction asm statement.
8633 Accessing data from C programs without using input/output operands (such as
8634 by using global symbols directly from the assembler template) may not work as
8635 expected. Similarly, calling functions directly from an assembler template
8636 requires a detailed understanding of the target assembler and ABI.
8638 Since GCC does not parse the assembler template,
8639 it has no visibility of any
8640 symbols it references. This may result in GCC discarding those symbols as
8641 unreferenced unless they are also listed as input, output, or goto operands.
8643 @subsubheading Special format strings
8645 In addition to the tokens described by the input, output, and goto operands,
8646 these tokens have special meanings in the assembler template:
8650 Outputs a single @samp{%} into the assembler code.
8653 Outputs a number that is unique to each instance of the @code{asm}
8654 statement in the entire compilation. This option is useful when creating local
8655 labels and referring to them multiple times in a single template that
8656 generates multiple assembler instructions.
8661 Outputs @samp{@{}, @samp{|}, and @samp{@}} characters (respectively)
8662 into the assembler code. When unescaped, these characters have special
8663 meaning to indicate multiple assembler dialects, as described below.
8666 @subsubheading Multiple assembler dialects in @code{asm} templates
8668 On targets such as x86, GCC supports multiple assembler dialects.
8669 The @option{-masm} option controls which dialect GCC uses as its
8670 default for inline assembler. The target-specific documentation for the
8671 @option{-masm} option contains the list of supported dialects, as well as the
8672 default dialect if the option is not specified. This information may be
8673 important to understand, since assembler code that works correctly when
8674 compiled using one dialect will likely fail if compiled using another.
8677 If your code needs to support multiple assembler dialects (for example, if
8678 you are writing public headers that need to support a variety of compilation
8679 options), use constructs of this form:
8682 @{ dialect0 | dialect1 | dialect2... @}
8685 This construct outputs @code{dialect0}
8686 when using dialect #0 to compile the code,
8687 @code{dialect1} for dialect #1, etc. If there are fewer alternatives within the
8688 braces than the number of dialects the compiler supports, the construct
8691 For example, if an x86 compiler supports two dialects
8692 (@samp{att}, @samp{intel}), an
8693 assembler template such as this:
8696 "bt@{l %[Offset],%[Base] | %[Base],%[Offset]@}; jc %l2"
8700 is equivalent to one of
8703 "btl %[Offset],%[Base] ; jc %l2" @r{/* att dialect */}
8704 "bt %[Base],%[Offset]; jc %l2" @r{/* intel dialect */}
8707 Using that same compiler, this code:
8710 "xchg@{l@}\t@{%%@}ebx, %1"
8714 corresponds to either
8717 "xchgl\t%%ebx, %1" @r{/* att dialect */}
8718 "xchg\tebx, %1" @r{/* intel dialect */}
8721 There is no support for nesting dialect alternatives.
8723 @anchor{OutputOperands}
8724 @subsubsection Output Operands
8725 @cindex @code{asm} output operands
8727 An @code{asm} statement has zero or more output operands indicating the names
8728 of C variables modified by the assembler code.
8730 In this i386 example, @code{old} (referred to in the template string as
8731 @code{%0}) and @code{*Base} (as @code{%1}) are outputs and @code{Offset}
8732 (@code{%2}) is an input:
8737 __asm__ ("btsl %2,%1\n\t" // Turn on zero-based bit #Offset in Base.
8738 "sbb %0,%0" // Use the CF to calculate old.
8739 : "=r" (old), "+rm" (*Base)
8746 Operands are separated by commas. Each operand has this format:
8749 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cvariablename})
8753 @item asmSymbolicName
8754 Specifies a symbolic name for the operand.
8755 Reference the name in the assembler template
8756 by enclosing it in square brackets
8757 (i.e.@: @samp{%[Value]}). The scope of the name is the @code{asm} statement
8758 that contains the definition. Any valid C variable name is acceptable,
8759 including names already defined in the surrounding code. No two operands
8760 within the same @code{asm} statement can use the same symbolic name.
8762 When not using an @var{asmSymbolicName}, use the (zero-based) position
8764 in the list of operands in the assembler template. For example if there are
8765 three output operands, use @samp{%0} in the template to refer to the first,
8766 @samp{%1} for the second, and @samp{%2} for the third.
8769 A string constant specifying constraints on the placement of the operand;
8770 @xref{Constraints}, for details.
8772 Output constraints must begin with either @samp{=} (a variable overwriting an
8773 existing value) or @samp{+} (when reading and writing). When using
8774 @samp{=}, do not assume the location contains the existing value
8775 on entry to the @code{asm}, except
8776 when the operand is tied to an input; @pxref{InputOperands,,Input Operands}.
8778 After the prefix, there must be one or more additional constraints
8779 (@pxref{Constraints}) that describe where the value resides. Common
8780 constraints include @samp{r} for register and @samp{m} for memory.
8781 When you list more than one possible location (for example, @code{"=rm"}),
8782 the compiler chooses the most efficient one based on the current context.
8783 If you list as many alternates as the @code{asm} statement allows, you permit
8784 the optimizers to produce the best possible code.
8785 If you must use a specific register, but your Machine Constraints do not
8786 provide sufficient control to select the specific register you want,
8787 local register variables may provide a solution (@pxref{Local Register
8791 Specifies a C lvalue expression to hold the output, typically a variable name.
8792 The enclosing parentheses are a required part of the syntax.
8796 When the compiler selects the registers to use to
8797 represent the output operands, it does not use any of the clobbered registers
8798 (@pxref{Clobbers and Scratch Registers}).
8800 Output operand expressions must be lvalues. The compiler cannot check whether
8801 the operands have data types that are reasonable for the instruction being
8802 executed. For output expressions that are not directly addressable (for
8803 example a bit-field), the constraint must allow a register. In that case, GCC
8804 uses the register as the output of the @code{asm}, and then stores that
8805 register into the output.
8807 Operands using the @samp{+} constraint modifier count as two operands
8808 (that is, both as input and output) towards the total maximum of 30 operands
8809 per @code{asm} statement.
8811 Use the @samp{&} constraint modifier (@pxref{Modifiers}) on all output
8812 operands that must not overlap an input. Otherwise,
8813 GCC may allocate the output operand in the same register as an unrelated
8814 input operand, on the assumption that the assembler code consumes its
8815 inputs before producing outputs. This assumption may be false if the assembler
8816 code actually consists of more than one instruction.
8818 The same problem can occur if one output parameter (@var{a}) allows a register
8819 constraint and another output parameter (@var{b}) allows a memory constraint.
8820 The code generated by GCC to access the memory address in @var{b} can contain
8821 registers which @emph{might} be shared by @var{a}, and GCC considers those
8822 registers to be inputs to the asm. As above, GCC assumes that such input
8823 registers are consumed before any outputs are written. This assumption may
8824 result in incorrect behavior if the asm writes to @var{a} before using
8825 @var{b}. Combining the @samp{&} modifier with the register constraint on @var{a}
8826 ensures that modifying @var{a} does not affect the address referenced by
8827 @var{b}. Otherwise, the location of @var{b}
8828 is undefined if @var{a} is modified before using @var{b}.
8830 @code{asm} supports operand modifiers on operands (for example @samp{%k2}
8831 instead of simply @samp{%2}). Typically these qualifiers are hardware
8832 dependent. The list of supported modifiers for x86 is found at
8833 @ref{x86Operandmodifiers,x86 Operand modifiers}.
8835 If the C code that follows the @code{asm} makes no use of any of the output
8836 operands, use @code{volatile} for the @code{asm} statement to prevent the
8837 optimizers from discarding the @code{asm} statement as unneeded
8838 (see @ref{Volatile}).
8840 This code makes no use of the optional @var{asmSymbolicName}. Therefore it
8841 references the first output operand as @code{%0} (were there a second, it
8842 would be @code{%1}, etc). The number of the first input operand is one greater
8843 than that of the last output operand. In this i386 example, that makes
8844 @code{Mask} referenced as @code{%1}:
8847 uint32_t Mask = 1234;
8856 That code overwrites the variable @code{Index} (@samp{=}),
8857 placing the value in a register (@samp{r}).
8858 Using the generic @samp{r} constraint instead of a constraint for a specific
8859 register allows the compiler to pick the register to use, which can result
8860 in more efficient code. This may not be possible if an assembler instruction
8861 requires a specific register.
8863 The following i386 example uses the @var{asmSymbolicName} syntax.
8865 same result as the code above, but some may consider it more readable or more
8866 maintainable since reordering index numbers is not necessary when adding or
8867 removing operands. The names @code{aIndex} and @code{aMask}
8868 are only used in this example to emphasize which
8869 names get used where.
8870 It is acceptable to reuse the names @code{Index} and @code{Mask}.
8873 uint32_t Mask = 1234;
8876 asm ("bsfl %[aMask], %[aIndex]"
8877 : [aIndex] "=r" (Index)
8878 : [aMask] "r" (Mask)
8882 Here are some more examples of output operands.
8889 asm ("mov %[e], %[d]"
8894 Here, @code{d} may either be in a register or in memory. Since the compiler
8895 might already have the current value of the @code{uint32_t} location
8896 pointed to by @code{e}
8897 in a register, you can enable it to choose the best location
8898 for @code{d} by specifying both constraints.
8900 @anchor{FlagOutputOperands}
8901 @subsubsection Flag Output Operands
8902 @cindex @code{asm} flag output operands
8904 Some targets have a special register that holds the ``flags'' for the
8905 result of an operation or comparison. Normally, the contents of that
8906 register are either unmodifed by the asm, or the asm is considered to
8907 clobber the contents.
8909 On some targets, a special form of output operand exists by which
8910 conditions in the flags register may be outputs of the asm. The set of
8911 conditions supported are target specific, but the general rule is that
8912 the output variable must be a scalar integer, and the value is boolean.
8913 When supported, the target defines the preprocessor symbol
8914 @code{__GCC_ASM_FLAG_OUTPUTS__}.
8916 Because of the special nature of the flag output operands, the constraint
8917 may not include alternatives.
8919 Most often, the target has only one flags register, and thus is an implied
8920 operand of many instructions. In this case, the operand should not be
8921 referenced within the assembler template via @code{%0} etc, as there's
8922 no corresponding text in the assembly language.
8926 The flag output constraints for the x86 family are of the form
8927 @samp{=@@cc@var{cond}} where @var{cond} is one of the standard
8928 conditions defined in the ISA manual for @code{j@var{cc}} or
8933 ``above'' or unsigned greater than
8935 ``above or equal'' or unsigned greater than or equal
8937 ``below'' or unsigned less than
8939 ``below or equal'' or unsigned less than or equal
8944 ``equal'' or zero flag set
8948 signed greater than or equal
8952 signed less than or equal
8973 ``not'' @var{flag}, or inverted versions of those above
8978 @anchor{InputOperands}
8979 @subsubsection Input Operands
8980 @cindex @code{asm} input operands
8981 @cindex @code{asm} expressions
8983 Input operands make values from C variables and expressions available to the
8986 Operands are separated by commas. Each operand has this format:
8989 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cexpression})
8993 @item asmSymbolicName
8994 Specifies a symbolic name for the operand.
8995 Reference the name in the assembler template
8996 by enclosing it in square brackets
8997 (i.e.@: @samp{%[Value]}). The scope of the name is the @code{asm} statement
8998 that contains the definition. Any valid C variable name is acceptable,
8999 including names already defined in the surrounding code. No two operands
9000 within the same @code{asm} statement can use the same symbolic name.
9002 When not using an @var{asmSymbolicName}, use the (zero-based) position
9004 in the list of operands in the assembler template. For example if there are
9005 two output operands and three inputs,
9006 use @samp{%2} in the template to refer to the first input operand,
9007 @samp{%3} for the second, and @samp{%4} for the third.
9010 A string constant specifying constraints on the placement of the operand;
9011 @xref{Constraints}, for details.
9013 Input constraint strings may not begin with either @samp{=} or @samp{+}.
9014 When you list more than one possible location (for example, @samp{"irm"}),
9015 the compiler chooses the most efficient one based on the current context.
9016 If you must use a specific register, but your Machine Constraints do not
9017 provide sufficient control to select the specific register you want,
9018 local register variables may provide a solution (@pxref{Local Register
9021 Input constraints can also be digits (for example, @code{"0"}). This indicates
9022 that the specified input must be in the same place as the output constraint
9023 at the (zero-based) index in the output constraint list.
9024 When using @var{asmSymbolicName} syntax for the output operands,
9025 you may use these names (enclosed in brackets @samp{[]}) instead of digits.
9028 This is the C variable or expression being passed to the @code{asm} statement
9029 as input. The enclosing parentheses are a required part of the syntax.
9033 When the compiler selects the registers to use to represent the input
9034 operands, it does not use any of the clobbered registers
9035 (@pxref{Clobbers and Scratch Registers}).
9037 If there are no output operands but there are input operands, place two
9038 consecutive colons where the output operands would go:
9041 __asm__ ("some instructions"
9043 : "r" (Offset / 8));
9046 @strong{Warning:} Do @emph{not} modify the contents of input-only operands
9047 (except for inputs tied to outputs). The compiler assumes that on exit from
9048 the @code{asm} statement these operands contain the same values as they
9049 had before executing the statement.
9050 It is @emph{not} possible to use clobbers
9051 to inform the compiler that the values in these inputs are changing. One
9052 common work-around is to tie the changing input variable to an output variable
9053 that never gets used. Note, however, that if the code that follows the
9054 @code{asm} statement makes no use of any of the output operands, the GCC
9055 optimizers may discard the @code{asm} statement as unneeded
9056 (see @ref{Volatile}).
9058 @code{asm} supports operand modifiers on operands (for example @samp{%k2}
9059 instead of simply @samp{%2}). Typically these qualifiers are hardware
9060 dependent. The list of supported modifiers for x86 is found at
9061 @ref{x86Operandmodifiers,x86 Operand modifiers}.
9063 In this example using the fictitious @code{combine} instruction, the
9064 constraint @code{"0"} for input operand 1 says that it must occupy the same
9065 location as output operand 0. Only input operands may use numbers in
9066 constraints, and they must each refer to an output operand. Only a number (or
9067 the symbolic assembler name) in the constraint can guarantee that one operand
9068 is in the same place as another. The mere fact that @code{foo} is the value of
9069 both operands is not enough to guarantee that they are in the same place in
9070 the generated assembler code.
9073 asm ("combine %2, %0"
9075 : "0" (foo), "g" (bar));
9078 Here is an example using symbolic names.
9081 asm ("cmoveq %1, %2, %[result]"
9082 : [result] "=r"(result)
9083 : "r" (test), "r" (new), "[result]" (old));
9086 @anchor{Clobbers and Scratch Registers}
9087 @subsubsection Clobbers and Scratch Registers
9088 @cindex @code{asm} clobbers
9089 @cindex @code{asm} scratch registers
9091 While the compiler is aware of changes to entries listed in the output
9092 operands, the inline @code{asm} code may modify more than just the outputs. For
9093 example, calculations may require additional registers, or the processor may
9094 overwrite a register as a side effect of a particular assembler instruction.
9095 In order to inform the compiler of these changes, list them in the clobber
9096 list. Clobber list items are either register names or the special clobbers
9097 (listed below). Each clobber list item is a string constant
9098 enclosed in double quotes and separated by commas.
9100 Clobber descriptions may not in any way overlap with an input or output
9101 operand. For example, you may not have an operand describing a register class
9102 with one member when listing that register in the clobber list. Variables
9103 declared to live in specific registers (@pxref{Explicit Register
9104 Variables}) and used
9105 as @code{asm} input or output operands must have no part mentioned in the
9106 clobber description. In particular, there is no way to specify that input
9107 operands get modified without also specifying them as output operands.
9109 When the compiler selects which registers to use to represent input and output
9110 operands, it does not use any of the clobbered registers. As a result,
9111 clobbered registers are available for any use in the assembler code.
9113 Here is a realistic example for the VAX showing the use of clobbered
9117 asm volatile ("movc3 %0, %1, %2"
9119 : "g" (from), "g" (to), "g" (count)
9120 : "r0", "r1", "r2", "r3", "r4", "r5", "memory");
9123 Also, there are two special clobber arguments:
9127 The @code{"cc"} clobber indicates that the assembler code modifies the flags
9128 register. On some machines, GCC represents the condition codes as a specific
9129 hardware register; @code{"cc"} serves to name this register.
9130 On other machines, condition code handling is different,
9131 and specifying @code{"cc"} has no effect. But
9132 it is valid no matter what the target.
9135 The @code{"memory"} clobber tells the compiler that the assembly code
9137 reads or writes to items other than those listed in the input and output
9138 operands (for example, accessing the memory pointed to by one of the input
9139 parameters). To ensure memory contains correct values, GCC may need to flush
9140 specific register values to memory before executing the @code{asm}. Further,
9141 the compiler does not assume that any values read from memory before an
9142 @code{asm} remain unchanged after that @code{asm}; it reloads them as
9144 Using the @code{"memory"} clobber effectively forms a read/write
9145 memory barrier for the compiler.
9147 Note that this clobber does not prevent the @emph{processor} from doing
9148 speculative reads past the @code{asm} statement. To prevent that, you need
9149 processor-specific fence instructions.
9153 Flushing registers to memory has performance implications and may be
9154 an issue for time-sensitive code. You can provide better information
9155 to GCC to avoid this, as shown in the following examples. At a
9156 minimum, aliasing rules allow GCC to know what memory @emph{doesn't}
9159 Here is a fictitious sum of squares instruction, that takes two
9160 pointers to floating point values in memory and produces a floating
9161 point register output.
9162 Notice that @code{x}, and @code{y} both appear twice in the @code{asm}
9163 parameters, once to specify memory accessed, and once to specify a
9164 base register used by the @code{asm}. You won't normally be wasting a
9165 register by doing this as GCC can use the same register for both
9166 purposes. However, it would be foolish to use both @code{%1} and
9167 @code{%3} for @code{x} in this @code{asm} and expect them to be the
9168 same. In fact, @code{%3} may well not be a register. It might be a
9169 symbolic memory reference to the object pointed to by @code{x}.
9172 asm ("sumsq %0, %1, %2"
9174 : "r" (x), "r" (y), "m" (*x), "m" (*y));
9177 Here is a fictitious @code{*z++ = *x++ * *y++} instruction.
9178 Notice that the @code{x}, @code{y} and @code{z} pointer registers
9179 must be specified as input/output because the @code{asm} modifies
9183 asm ("vecmul %0, %1, %2"
9184 : "+r" (z), "+r" (x), "+r" (y), "=m" (*z)
9185 : "m" (*x), "m" (*y));
9188 An x86 example where the string memory argument is of unknown length.
9192 : "=c" (count), "+D" (p)
9193 : "m" (*(const char (*)[]) p), "0" (-1), "a" (0));
9196 If you know the above will only be reading a ten byte array then you
9197 could instead use a memory input like:
9198 @code{"m" (*(const char (*)[10]) p)}.
9200 Here is an example of a PowerPC vector scale implemented in assembly,
9201 complete with vector and condition code clobbers, and some initialized
9202 offset registers that are unchanged by the @code{asm}.
9206 dscal (size_t n, double *x, double alpha)
9208 asm ("/* lots of asm here */"
9209 : "+m" (*(double (*)[n]) x), "+&r" (n), "+b" (x)
9210 : "d" (alpha), "b" (32), "b" (48), "b" (64),
9211 "b" (80), "b" (96), "b" (112)
9213 "vs32","vs33","vs34","vs35","vs36","vs37","vs38","vs39",
9214 "vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47");
9218 Rather than allocating fixed registers via clobbers to provide scratch
9219 registers for an @code{asm} statement, an alternative is to define a
9220 variable and make it an early-clobber output as with @code{a2} and
9221 @code{a3} in the example below. This gives the compiler register
9222 allocator more freedom. You can also define a variable and make it an
9223 output tied to an input as with @code{a0} and @code{a1}, tied
9224 respectively to @code{ap} and @code{lda}. Of course, with tied
9225 outputs your @code{asm} can't use the input value after modifying the
9226 output register since they are one and the same register. What's
9227 more, if you omit the early-clobber on the output, it is possible that
9228 GCC might allocate the same register to another of the inputs if GCC
9229 could prove they had the same value on entry to the @code{asm}. This
9230 is why @code{a1} has an early-clobber. Its tied input, @code{lda}
9231 might conceivably be known to have the value 16 and without an
9232 early-clobber share the same register as @code{%11}. On the other
9233 hand, @code{ap} can't be the same as any of the other inputs, so an
9234 early-clobber on @code{a0} is not needed. It is also not desirable in
9235 this case. An early-clobber on @code{a0} would cause GCC to allocate
9236 a separate register for the @code{"m" (*(const double (*)[]) ap)}
9237 input. Note that tying an input to an output is the way to set up an
9238 initialized temporary register modified by an @code{asm} statement.
9239 An input not tied to an output is assumed by GCC to be unchanged, for
9240 example @code{"b" (16)} below sets up @code{%11} to 16, and GCC might
9241 use that register in following code if the value 16 happened to be
9242 needed. You can even use a normal @code{asm} output for a scratch if
9243 all inputs that might share the same register are consumed before the
9244 scratch is used. The VSX registers clobbered by the @code{asm}
9245 statement could have used this technique except for GCC's limit on the
9246 number of @code{asm} parameters.
9250 dgemv_kernel_4x4 (long n, const double *ap, long lda,
9251 const double *x, double *y, double alpha)
9260 /* lots of asm here */
9261 "#n=%1 ap=%8=%12 lda=%13 x=%7=%10 y=%0=%2 alpha=%9 o16=%11\n"
9262 "#a0=%3 a1=%4 a2=%5 a3=%6"
9264 "+m" (*(double (*)[n]) y),
9272 "m" (*(const double (*)[n]) x),
9273 "m" (*(const double (*)[]) ap),
9281 "vs32","vs33","vs34","vs35","vs36","vs37",
9282 "vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47"
9288 @subsubsection Goto Labels
9289 @cindex @code{asm} goto labels
9291 @code{asm goto} allows assembly code to jump to one or more C labels. The
9292 @var{GotoLabels} section in an @code{asm goto} statement contains
9294 list of all C labels to which the assembler code may jump. GCC assumes that
9295 @code{asm} execution falls through to the next statement (if this is not the
9296 case, consider using the @code{__builtin_unreachable} intrinsic after the
9297 @code{asm} statement). Optimization of @code{asm goto} may be improved by
9298 using the @code{hot} and @code{cold} label attributes (@pxref{Label
9301 An @code{asm goto} statement cannot have outputs.
9302 This is due to an internal restriction of
9303 the compiler: control transfer instructions cannot have outputs.
9304 If the assembler code does modify anything, use the @code{"memory"} clobber
9306 optimizers to flush all register values to memory and reload them if
9307 necessary after the @code{asm} statement.
9309 Also note that an @code{asm goto} statement is always implicitly
9310 considered volatile.
9312 To reference a label in the assembler template,
9313 prefix it with @samp{%l} (lowercase @samp{L}) followed
9314 by its (zero-based) position in @var{GotoLabels} plus the number of input
9315 operands. For example, if the @code{asm} has three inputs and references two
9316 labels, refer to the first label as @samp{%l3} and the second as @samp{%l4}).
9318 Alternately, you can reference labels using the actual C label name enclosed
9319 in brackets. For example, to reference a label named @code{carry}, you can
9320 use @samp{%l[carry]}. The label must still be listed in the @var{GotoLabels}
9321 section when using this approach.
9323 Here is an example of @code{asm goto} for i386:
9330 : "r" (p1), "r" (p2)
9340 The following example shows an @code{asm goto} that uses a memory clobber.
9346 asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
9357 @anchor{x86Operandmodifiers}
9358 @subsubsection x86 Operand Modifiers
9360 References to input, output, and goto operands in the assembler template
9361 of extended @code{asm} statements can use
9362 modifiers to affect the way the operands are formatted in
9363 the code output to the assembler. For example, the
9364 following code uses the @samp{h} and @samp{b} modifiers for x86:
9368 asm volatile ("xchg %h0, %b0" : "+a" (num) );
9372 These modifiers generate this assembler code:
9378 The rest of this discussion uses the following code for illustrative purposes.
9387 asm volatile goto ("some assembler instructions here"
9389 : "q" (iInt), "X" (sizeof(unsigned char) + 1), "i" (42)
9390 : /* No clobbers. */
9395 With no modifiers, this is what the output from the operands would be
9396 for the @samp{att} and @samp{intel} dialects of assembler:
9398 @multitable {Operand} {$.L2} {OFFSET FLAT:.L2}
9399 @headitem Operand @tab @samp{att} @tab @samp{intel}
9408 @tab @code{OFFSET FLAT:.L3}
9411 The table below shows the list of supported modifiers and their effects.
9413 @multitable {Modifier} {Print the opcode suffix for the size of th} {Operand} {@samp{att}} {@samp{intel}}
9414 @headitem Modifier @tab Description @tab Operand @tab @samp{att} @tab @samp{intel}
9416 @tab Print an absolute memory reference.
9421 @tab Print the QImode name of the register.
9426 @tab Require a constant operand and print the constant expression with no punctuation.
9431 @tab Print the address in Double Integer (DImode) mode (8 bytes) when the target is 64-bit.
9432 Otherwise mode is unspecified (VOIDmode).
9437 @tab Print the QImode name for a ``high'' register.
9442 @tab Add 8 bytes to an offsettable memory reference. Useful when accessing the
9443 high 8 bytes of SSE values. For a memref in (%rax), it generates
9448 @tab Print the SImode name of the register.
9453 @tab Print the label name with no punctuation.
9458 @tab Print raw symbol name (without syntax-specific prefixes).
9463 @tab If used for a function, print the PLT suffix and generate PIC code.
9464 For example, emit @code{foo@@PLT} instead of 'foo' for the function
9465 foo(). If used for a constant, drop all syntax-specific prefixes and
9466 issue the bare constant. See @code{p} above.
9468 @tab Print the DImode name of the register.
9473 @tab Print the HImode name of the register.
9478 @tab Print the opcode suffix for the size of the current integer operand (one of @code{b}/@code{w}/@code{l}/@code{q}).
9484 @code{V} is a special modifier which prints the name of the full integer
9485 register without @code{%}.
9487 @anchor{x86floatingpointasmoperands}
9488 @subsubsection x86 Floating-Point @code{asm} Operands
9490 On x86 targets, there are several rules on the usage of stack-like registers
9491 in the operands of an @code{asm}. These rules apply only to the operands
9492 that are stack-like registers:
9496 Given a set of input registers that die in an @code{asm}, it is
9497 necessary to know which are implicitly popped by the @code{asm}, and
9498 which must be explicitly popped by GCC@.
9500 An input register that is implicitly popped by the @code{asm} must be
9501 explicitly clobbered, unless it is constrained to match an
9505 For any input register that is implicitly popped by an @code{asm}, it is
9506 necessary to know how to adjust the stack to compensate for the pop.
9507 If any non-popped input is closer to the top of the reg-stack than
9508 the implicitly popped register, it would not be possible to know what the
9509 stack looked like---it's not clear how the rest of the stack ``slides
9512 All implicitly popped input registers must be closer to the top of
9513 the reg-stack than any input that is not implicitly popped.
9515 It is possible that if an input dies in an @code{asm}, the compiler might
9516 use the input register for an output reload. Consider this example:
9519 asm ("foo" : "=t" (a) : "f" (b));
9523 This code says that input @code{b} is not popped by the @code{asm}, and that
9524 the @code{asm} pushes a result onto the reg-stack, i.e., the stack is one
9525 deeper after the @code{asm} than it was before. But, it is possible that
9526 reload may think that it can use the same register for both the input and
9529 To prevent this from happening,
9530 if any input operand uses the @samp{f} constraint, all output register
9531 constraints must use the @samp{&} early-clobber modifier.
9533 The example above is correctly written as:
9536 asm ("foo" : "=&t" (a) : "f" (b));
9540 Some operands need to be in particular places on the stack. All
9541 output operands fall in this category---GCC has no other way to
9542 know which registers the outputs appear in unless you indicate
9543 this in the constraints.
9545 Output operands must specifically indicate which register an output
9546 appears in after an @code{asm}. @samp{=f} is not allowed: the operand
9547 constraints must select a class with a single register.
9550 Output operands may not be ``inserted'' between existing stack registers.
9551 Since no 387 opcode uses a read/write operand, all output operands
9552 are dead before the @code{asm}, and are pushed by the @code{asm}.
9553 It makes no sense to push anywhere but the top of the reg-stack.
9555 Output operands must start at the top of the reg-stack: output
9556 operands may not ``skip'' a register.
9559 Some @code{asm} statements may need extra stack space for internal
9560 calculations. This can be guaranteed by clobbering stack registers
9561 unrelated to the inputs and outputs.
9566 takes one input, which is internally popped, and produces two outputs.
9569 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
9573 This @code{asm} takes two inputs, which are popped by the @code{fyl2xp1} opcode,
9574 and replaces them with one output. The @code{st(1)} clobber is necessary
9575 for the compiler to know that @code{fyl2xp1} pops both inputs.
9578 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
9586 @subsection Controlling Names Used in Assembler Code
9587 @cindex assembler names for identifiers
9588 @cindex names used in assembler code
9589 @cindex identifiers, names in assembler code
9591 You can specify the name to be used in the assembler code for a C
9592 function or variable by writing the @code{asm} (or @code{__asm__})
9593 keyword after the declarator.
9594 It is up to you to make sure that the assembler names you choose do not
9595 conflict with any other assembler symbols, or reference registers.
9597 @subsubheading Assembler names for data:
9599 This sample shows how to specify the assembler name for data:
9602 int foo asm ("myfoo") = 2;
9606 This specifies that the name to be used for the variable @code{foo} in
9607 the assembler code should be @samp{myfoo} rather than the usual
9610 On systems where an underscore is normally prepended to the name of a C
9611 variable, this feature allows you to define names for the
9612 linker that do not start with an underscore.
9614 GCC does not support using this feature with a non-static local variable
9615 since such variables do not have assembler names. If you are
9616 trying to put the variable in a particular register, see
9617 @ref{Explicit Register Variables}.
9619 @subsubheading Assembler names for functions:
9621 To specify the assembler name for functions, write a declaration for the
9622 function before its definition and put @code{asm} there, like this:
9625 int func (int x, int y) asm ("MYFUNC");
9627 int func (int x, int y)
9633 This specifies that the name to be used for the function @code{func} in
9634 the assembler code should be @code{MYFUNC}.
9636 @node Explicit Register Variables
9637 @subsection Variables in Specified Registers
9638 @anchor{Explicit Reg Vars}
9639 @cindex explicit register variables
9640 @cindex variables in specified registers
9641 @cindex specified registers
9643 GNU C allows you to associate specific hardware registers with C
9644 variables. In almost all cases, allowing the compiler to assign
9645 registers produces the best code. However under certain unusual
9646 circumstances, more precise control over the variable storage is
9649 Both global and local variables can be associated with a register. The
9650 consequences of performing this association are very different between
9651 the two, as explained in the sections below.
9654 * Global Register Variables:: Variables declared at global scope.
9655 * Local Register Variables:: Variables declared within a function.
9658 @node Global Register Variables
9659 @subsubsection Defining Global Register Variables
9660 @anchor{Global Reg Vars}
9661 @cindex global register variables
9662 @cindex registers, global variables in
9663 @cindex registers, global allocation
9665 You can define a global register variable and associate it with a specified
9669 register int *foo asm ("r12");
9673 Here @code{r12} is the name of the register that should be used. Note that
9674 this is the same syntax used for defining local register variables, but for
9675 a global variable the declaration appears outside a function. The
9676 @code{register} keyword is required, and cannot be combined with
9677 @code{static}. The register name must be a valid register name for the
9680 Do not use type qualifiers such as @code{const} and @code{volatile}, as
9681 the outcome may be contrary to expectations. In particular, using the
9682 @code{volatile} qualifier does not fully prevent the compiler from
9683 optimizing accesses to the register.
9685 Registers are a scarce resource on most systems and allowing the
9686 compiler to manage their usage usually results in the best code. However,
9687 under special circumstances it can make sense to reserve some globally.
9688 For example this may be useful in programs such as programming language
9689 interpreters that have a couple of global variables that are accessed
9692 After defining a global register variable, for the current compilation
9696 @item If the register is a call-saved register, call ABI is affected:
9697 the register will not be restored in function epilogue sequences after
9698 the variable has been assigned. Therefore, functions cannot safely
9699 return to callers that assume standard ABI.
9700 @item Conversely, if the register is a call-clobbered register, making
9701 calls to functions that use standard ABI may lose contents of the variable.
9702 Such calls may be created by the compiler even if none are evident in
9703 the original program, for example when libgcc functions are used to
9704 make up for unavailable instructions.
9705 @item Accesses to the variable may be optimized as usual and the register
9706 remains available for allocation and use in any computations, provided that
9707 observable values of the variable are not affected.
9708 @item If the variable is referenced in inline assembly, the type of access
9709 must be provided to the compiler via constraints (@pxref{Constraints}).
9710 Accesses from basic asms are not supported.
9713 Note that these points @emph{only} apply to code that is compiled with the
9714 definition. The behavior of code that is merely linked in (for example
9715 code from libraries) is not affected.
9717 If you want to recompile source files that do not actually use your global
9718 register variable so they do not use the specified register for any other
9719 purpose, you need not actually add the global register declaration to
9720 their source code. It suffices to specify the compiler option
9721 @option{-ffixed-@var{reg}} (@pxref{Code Gen Options}) to reserve the
9724 @subsubheading Declaring the variable
9726 Global register variables can not have initial values, because an
9727 executable file has no means to supply initial contents for a register.
9729 When selecting a register, choose one that is normally saved and
9730 restored by function calls on your machine. This ensures that code
9731 which is unaware of this reservation (such as library routines) will
9732 restore it before returning.
9734 On machines with register windows, be sure to choose a global
9735 register that is not affected magically by the function call mechanism.
9737 @subsubheading Using the variable
9739 @cindex @code{qsort}, and global register variables
9740 When calling routines that are not aware of the reservation, be
9741 cautious if those routines call back into code which uses them. As an
9742 example, if you call the system library version of @code{qsort}, it may
9743 clobber your registers during execution, but (if you have selected
9744 appropriate registers) it will restore them before returning. However
9745 it will @emph{not} restore them before calling @code{qsort}'s comparison
9746 function. As a result, global values will not reliably be available to
9747 the comparison function unless the @code{qsort} function itself is rebuilt.
9749 Similarly, it is not safe to access the global register variables from signal
9750 handlers or from more than one thread of control. Unless you recompile
9751 them specially for the task at hand, the system library routines may
9752 temporarily use the register for other things. Furthermore, since the register
9753 is not reserved exclusively for the variable, accessing it from handlers of
9754 asynchronous signals may observe unrelated temporary values residing in the
9757 @cindex register variable after @code{longjmp}
9758 @cindex global register after @code{longjmp}
9759 @cindex value after @code{longjmp}
9762 On most machines, @code{longjmp} restores to each global register
9763 variable the value it had at the time of the @code{setjmp}. On some
9764 machines, however, @code{longjmp} does not change the value of global
9765 register variables. To be portable, the function that called @code{setjmp}
9766 should make other arrangements to save the values of the global register
9767 variables, and to restore them in a @code{longjmp}. This way, the same
9768 thing happens regardless of what @code{longjmp} does.
9770 @node Local Register Variables
9771 @subsubsection Specifying Registers for Local Variables
9772 @anchor{Local Reg Vars}
9773 @cindex local variables, specifying registers
9774 @cindex specifying registers for local variables
9775 @cindex registers for local variables
9777 You can define a local register variable and associate it with a specified
9781 register int *foo asm ("r12");
9785 Here @code{r12} is the name of the register that should be used. Note
9786 that this is the same syntax used for defining global register variables,
9787 but for a local variable the declaration appears within a function. The
9788 @code{register} keyword is required, and cannot be combined with
9789 @code{static}. The register name must be a valid register name for the
9792 Do not use type qualifiers such as @code{const} and @code{volatile}, as
9793 the outcome may be contrary to expectations. In particular, when the
9794 @code{const} qualifier is used, the compiler may substitute the
9795 variable with its initializer in @code{asm} statements, which may cause
9796 the corresponding operand to appear in a different register.
9798 As with global register variables, it is recommended that you choose
9799 a register that is normally saved and restored by function calls on your
9800 machine, so that calls to library routines will not clobber it.
9802 The only supported use for this feature is to specify registers
9803 for input and output operands when calling Extended @code{asm}
9804 (@pxref{Extended Asm}). This may be necessary if the constraints for a
9805 particular machine don't provide sufficient control to select the desired
9806 register. To force an operand into a register, create a local variable
9807 and specify the register name after the variable's declaration. Then use
9808 the local variable for the @code{asm} operand and specify any constraint
9809 letter that matches the register:
9812 register int *p1 asm ("r0") = @dots{};
9813 register int *p2 asm ("r1") = @dots{};
9814 register int *result asm ("r0");
9815 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
9818 @emph{Warning:} In the above example, be aware that a register (for example
9819 @code{r0}) can be call-clobbered by subsequent code, including function
9820 calls and library calls for arithmetic operators on other variables (for
9821 example the initialization of @code{p2}). In this case, use temporary
9822 variables for expressions between the register assignments:
9826 register int *p1 asm ("r0") = @dots{};
9827 register int *p2 asm ("r1") = t1;
9828 register int *result asm ("r0");
9829 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
9832 Defining a register variable does not reserve the register. Other than
9833 when invoking the Extended @code{asm}, the contents of the specified
9834 register are not guaranteed. For this reason, the following uses
9835 are explicitly @emph{not} supported. If they appear to work, it is only
9836 happenstance, and may stop working as intended due to (seemingly)
9837 unrelated changes in surrounding code, or even minor changes in the
9838 optimization of a future version of gcc:
9841 @item Passing parameters to or from Basic @code{asm}
9842 @item Passing parameters to or from Extended @code{asm} without using input
9844 @item Passing parameters to or from routines written in assembler (or
9845 other languages) using non-standard calling conventions.
9848 Some developers use Local Register Variables in an attempt to improve
9849 gcc's allocation of registers, especially in large functions. In this
9850 case the register name is essentially a hint to the register allocator.
9851 While in some instances this can generate better code, improvements are
9852 subject to the whims of the allocator/optimizers. Since there are no
9853 guarantees that your improvements won't be lost, this usage of Local
9854 Register Variables is discouraged.
9856 On the MIPS platform, there is related use for local register variables
9857 with slightly different characteristics (@pxref{MIPS Coprocessors,,
9858 Defining coprocessor specifics for MIPS targets, gccint,
9859 GNU Compiler Collection (GCC) Internals}).
9861 @node Size of an asm
9862 @subsection Size of an @code{asm}
9864 Some targets require that GCC track the size of each instruction used
9865 in order to generate correct code. Because the final length of the
9866 code produced by an @code{asm} statement is only known by the
9867 assembler, GCC must make an estimate as to how big it will be. It
9868 does this by counting the number of instructions in the pattern of the
9869 @code{asm} and multiplying that by the length of the longest
9870 instruction supported by that processor. (When working out the number
9871 of instructions, it assumes that any occurrence of a newline or of
9872 whatever statement separator character is supported by the assembler --
9873 typically @samp{;} --- indicates the end of an instruction.)
9875 Normally, GCC's estimate is adequate to ensure that correct
9876 code is generated, but it is possible to confuse the compiler if you use
9877 pseudo instructions or assembler macros that expand into multiple real
9878 instructions, or if you use assembler directives that expand to more
9879 space in the object file than is needed for a single instruction.
9880 If this happens then the assembler may produce a diagnostic saying that
9881 a label is unreachable.
9883 @node Alternate Keywords
9884 @section Alternate Keywords
9885 @cindex alternate keywords
9886 @cindex keywords, alternate
9888 @option{-ansi} and the various @option{-std} options disable certain
9889 keywords. This causes trouble when you want to use GNU C extensions, or
9890 a general-purpose header file that should be usable by all programs,
9891 including ISO C programs. The keywords @code{asm}, @code{typeof} and
9892 @code{inline} are not available in programs compiled with
9893 @option{-ansi} or @option{-std} (although @code{inline} can be used in a
9894 program compiled with @option{-std=c99} or @option{-std=c11}). The
9896 @code{restrict} is only available when @option{-std=gnu99} (which will
9897 eventually be the default) or @option{-std=c99} (or the equivalent
9898 @option{-std=iso9899:1999}), or an option for a later standard
9901 The way to solve these problems is to put @samp{__} at the beginning and
9902 end of each problematical keyword. For example, use @code{__asm__}
9903 instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
9905 Other C compilers won't accept these alternative keywords; if you want to
9906 compile with another compiler, you can define the alternate keywords as
9907 macros to replace them with the customary keywords. It looks like this:
9915 @findex __extension__
9917 @option{-pedantic} and other options cause warnings for many GNU C extensions.
9919 prevent such warnings within one expression by writing
9920 @code{__extension__} before the expression. @code{__extension__} has no
9921 effect aside from this.
9923 @node Incomplete Enums
9924 @section Incomplete @code{enum} Types
9926 You can define an @code{enum} tag without specifying its possible values.
9927 This results in an incomplete type, much like what you get if you write
9928 @code{struct foo} without describing the elements. A later declaration
9929 that does specify the possible values completes the type.
9931 You cannot allocate variables or storage using the type while it is
9932 incomplete. However, you can work with pointers to that type.
9934 This extension may not be very useful, but it makes the handling of
9935 @code{enum} more consistent with the way @code{struct} and @code{union}
9938 This extension is not supported by GNU C++.
9940 @node Function Names
9941 @section Function Names as Strings
9942 @cindex @code{__func__} identifier
9943 @cindex @code{__FUNCTION__} identifier
9944 @cindex @code{__PRETTY_FUNCTION__} identifier
9946 GCC provides three magic constants that hold the name of the current
9947 function as a string. In C++11 and later modes, all three are treated
9948 as constant expressions and can be used in @code{constexpr} constexts.
9949 The first of these constants is @code{__func__}, which is part of
9952 The identifier @code{__func__} is implicitly declared by the translator
9953 as if, immediately following the opening brace of each function
9954 definition, the declaration
9957 static const char __func__[] = "function-name";
9961 appeared, where function-name is the name of the lexically-enclosing
9962 function. This name is the unadorned name of the function. As an
9963 extension, at file (or, in C++, namespace scope), @code{__func__}
9964 evaluates to the empty string.
9966 @code{__FUNCTION__} is another name for @code{__func__}, provided for
9967 backward compatibility with old versions of GCC.
9969 In C, @code{__PRETTY_FUNCTION__} is yet another name for
9970 @code{__func__}, except that at file (or, in C++, namespace scope),
9971 it evaluates to the string @code{"top level"}. In addition, in C++,
9972 @code{__PRETTY_FUNCTION__} contains the signature of the function as
9973 well as its bare name. For example, this program:
9976 extern "C" int printf (const char *, ...);
9982 printf ("__FUNCTION__ = %s\n", __FUNCTION__);
9983 printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
10001 __PRETTY_FUNCTION__ = void a::sub(int)
10004 These identifiers are variables, not preprocessor macros, and may not
10005 be used to initialize @code{char} arrays or be concatenated with string
10008 @node Return Address
10009 @section Getting the Return or Frame Address of a Function
10011 These functions may be used to get information about the callers of a
10014 @deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
10015 This function returns the return address of the current function, or of
10016 one of its callers. The @var{level} argument is number of frames to
10017 scan up the call stack. A value of @code{0} yields the return address
10018 of the current function, a value of @code{1} yields the return address
10019 of the caller of the current function, and so forth. When inlining
10020 the expected behavior is that the function returns the address of
10021 the function that is returned to. To work around this behavior use
10022 the @code{noinline} function attribute.
10024 The @var{level} argument must be a constant integer.
10026 On some machines it may be impossible to determine the return address of
10027 any function other than the current one; in such cases, or when the top
10028 of the stack has been reached, this function returns @code{0} or a
10029 random value. In addition, @code{__builtin_frame_address} may be used
10030 to determine if the top of the stack has been reached.
10032 Additional post-processing of the returned value may be needed, see
10033 @code{__builtin_extract_return_addr}.
10035 Calling this function with a nonzero argument can have unpredictable
10036 effects, including crashing the calling program. As a result, calls
10037 that are considered unsafe are diagnosed when the @option{-Wframe-address}
10038 option is in effect. Such calls should only be made in debugging
10042 @deftypefn {Built-in Function} {void *} __builtin_extract_return_addr (void *@var{addr})
10043 The address as returned by @code{__builtin_return_address} may have to be fed
10044 through this function to get the actual encoded address. For example, on the
10045 31-bit S/390 platform the highest bit has to be masked out, or on SPARC
10046 platforms an offset has to be added for the true next instruction to be
10049 If no fixup is needed, this function simply passes through @var{addr}.
10052 @deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr})
10053 This function does the reverse of @code{__builtin_extract_return_addr}.
10056 @deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
10057 This function is similar to @code{__builtin_return_address}, but it
10058 returns the address of the function frame rather than the return address
10059 of the function. Calling @code{__builtin_frame_address} with a value of
10060 @code{0} yields the frame address of the current function, a value of
10061 @code{1} yields the frame address of the caller of the current function,
10064 The frame is the area on the stack that holds local variables and saved
10065 registers. The frame address is normally the address of the first word
10066 pushed on to the stack by the function. However, the exact definition
10067 depends upon the processor and the calling convention. If the processor
10068 has a dedicated frame pointer register, and the function has a frame,
10069 then @code{__builtin_frame_address} returns the value of the frame
10072 On some machines it may be impossible to determine the frame address of
10073 any function other than the current one; in such cases, or when the top
10074 of the stack has been reached, this function returns @code{0} if
10075 the first frame pointer is properly initialized by the startup code.
10077 Calling this function with a nonzero argument can have unpredictable
10078 effects, including crashing the calling program. As a result, calls
10079 that are considered unsafe are diagnosed when the @option{-Wframe-address}
10080 option is in effect. Such calls should only be made in debugging
10084 @node Vector Extensions
10085 @section Using Vector Instructions through Built-in Functions
10087 On some targets, the instruction set contains SIMD vector instructions which
10088 operate on multiple values contained in one large register at the same time.
10089 For example, on the x86 the MMX, 3DNow!@: and SSE extensions can be used
10092 The first step in using these extensions is to provide the necessary data
10093 types. This should be done using an appropriate @code{typedef}:
10096 typedef int v4si __attribute__ ((vector_size (16)));
10100 The @code{int} type specifies the base type, while the attribute specifies
10101 the vector size for the variable, measured in bytes. For example, the
10102 declaration above causes the compiler to set the mode for the @code{v4si}
10103 type to be 16 bytes wide and divided into @code{int} sized units. For
10104 a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
10105 corresponding mode of @code{foo} is @acronym{V4SI}.
10107 The @code{vector_size} attribute is only applicable to integral and
10108 float scalars, although arrays, pointers, and function return values
10109 are allowed in conjunction with this construct. Only sizes that are
10110 a power of two are currently allowed.
10112 All the basic integer types can be used as base types, both as signed
10113 and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
10114 @code{long long}. In addition, @code{float} and @code{double} can be
10115 used to build floating-point vector types.
10117 Specifying a combination that is not valid for the current architecture
10118 causes GCC to synthesize the instructions using a narrower mode.
10119 For example, if you specify a variable of type @code{V4SI} and your
10120 architecture does not allow for this specific SIMD type, GCC
10121 produces code that uses 4 @code{SIs}.
10123 The types defined in this manner can be used with a subset of normal C
10124 operations. Currently, GCC allows using the following operators
10125 on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
10127 The operations behave like C++ @code{valarrays}. Addition is defined as
10128 the addition of the corresponding elements of the operands. For
10129 example, in the code below, each of the 4 elements in @var{a} is
10130 added to the corresponding 4 elements in @var{b} and the resulting
10131 vector is stored in @var{c}.
10134 typedef int v4si __attribute__ ((vector_size (16)));
10141 Subtraction, multiplication, division, and the logical operations
10142 operate in a similar manner. Likewise, the result of using the unary
10143 minus or complement operators on a vector type is a vector whose
10144 elements are the negative or complemented values of the corresponding
10145 elements in the operand.
10147 It is possible to use shifting operators @code{<<}, @code{>>} on
10148 integer-type vectors. The operation is defined as following: @code{@{a0,
10149 a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
10150 @dots{}, an >> bn@}}@. Vector operands must have the same number of
10153 For convenience, it is allowed to use a binary vector operation
10154 where one operand is a scalar. In that case the compiler transforms
10155 the scalar operand into a vector where each element is the scalar from
10156 the operation. The transformation happens only if the scalar could be
10157 safely converted to the vector-element type.
10158 Consider the following code.
10161 typedef int v4si __attribute__ ((vector_size (16)));
10166 a = b + 1; /* a = b + @{1,1,1,1@}; */
10167 a = 2 * b; /* a = @{2,2,2,2@} * b; */
10169 a = l + a; /* Error, cannot convert long to int. */
10172 Vectors can be subscripted as if the vector were an array with
10173 the same number of elements and base type. Out of bound accesses
10174 invoke undefined behavior at run time. Warnings for out of bound
10175 accesses for vector subscription can be enabled with
10176 @option{-Warray-bounds}.
10178 Vector comparison is supported with standard comparison
10179 operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
10180 vector expressions of integer-type or real-type. Comparison between
10181 integer-type vectors and real-type vectors are not supported. The
10182 result of the comparison is a vector of the same width and number of
10183 elements as the comparison operands with a signed integral element
10186 Vectors are compared element-wise producing 0 when comparison is false
10187 and -1 (constant of the appropriate type where all bits are set)
10188 otherwise. Consider the following example.
10191 typedef int v4si __attribute__ ((vector_size (16)));
10193 v4si a = @{1,2,3,4@};
10194 v4si b = @{3,2,1,4@};
10197 c = a > b; /* The result would be @{0, 0,-1, 0@} */
10198 c = a == b; /* The result would be @{0,-1, 0,-1@} */
10201 In C++, the ternary operator @code{?:} is available. @code{a?b:c}, where
10202 @code{b} and @code{c} are vectors of the same type and @code{a} is an
10203 integer vector with the same number of elements of the same size as @code{b}
10204 and @code{c}, computes all three arguments and creates a vector
10205 @code{@{a[0]?b[0]:c[0], a[1]?b[1]:c[1], @dots{}@}}. Note that unlike in
10206 OpenCL, @code{a} is thus interpreted as @code{a != 0} and not @code{a < 0}.
10207 As in the case of binary operations, this syntax is also accepted when
10208 one of @code{b} or @code{c} is a scalar that is then transformed into a
10209 vector. If both @code{b} and @code{c} are scalars and the type of
10210 @code{true?b:c} has the same size as the element type of @code{a}, then
10211 @code{b} and @code{c} are converted to a vector type whose elements have
10212 this type and with the same number of elements as @code{a}.
10214 In C++, the logic operators @code{!, &&, ||} are available for vectors.
10215 @code{!v} is equivalent to @code{v == 0}, @code{a && b} is equivalent to
10216 @code{a!=0 & b!=0} and @code{a || b} is equivalent to @code{a!=0 | b!=0}.
10217 For mixed operations between a scalar @code{s} and a vector @code{v},
10218 @code{s && v} is equivalent to @code{s?v!=0:0} (the evaluation is
10219 short-circuit) and @code{v && s} is equivalent to @code{v!=0 & (s?-1:0)}.
10221 @findex __builtin_shuffle
10222 Vector shuffling is available using functions
10223 @code{__builtin_shuffle (vec, mask)} and
10224 @code{__builtin_shuffle (vec0, vec1, mask)}.
10225 Both functions construct a permutation of elements from one or two
10226 vectors and return a vector of the same type as the input vector(s).
10227 The @var{mask} is an integral vector with the same width (@var{W})
10228 and element count (@var{N}) as the output vector.
10230 The elements of the input vectors are numbered in memory ordering of
10231 @var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}. The
10232 elements of @var{mask} are considered modulo @var{N} in the single-operand
10233 case and modulo @math{2*@var{N}} in the two-operand case.
10235 Consider the following example,
10238 typedef int v4si __attribute__ ((vector_size (16)));
10240 v4si a = @{1,2,3,4@};
10241 v4si b = @{5,6,7,8@};
10242 v4si mask1 = @{0,1,1,3@};
10243 v4si mask2 = @{0,4,2,5@};
10246 res = __builtin_shuffle (a, mask1); /* res is @{1,2,2,4@} */
10247 res = __builtin_shuffle (a, b, mask2); /* res is @{1,5,3,6@} */
10250 Note that @code{__builtin_shuffle} is intentionally semantically
10251 compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.
10253 You can declare variables and use them in function calls and returns, as
10254 well as in assignments and some casts. You can specify a vector type as
10255 a return type for a function. Vector types can also be used as function
10256 arguments. It is possible to cast from one vector type to another,
10257 provided they are of the same size (in fact, you can also cast vectors
10258 to and from other datatypes of the same size).
10260 You cannot operate between vectors of different lengths or different
10261 signedness without a cast.
10264 @section Support for @code{offsetof}
10265 @findex __builtin_offsetof
10267 GCC implements for both C and C++ a syntactic extension to implement
10268 the @code{offsetof} macro.
10272 "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
10274 offsetof_member_designator:
10276 | offsetof_member_designator "." @code{identifier}
10277 | offsetof_member_designator "[" @code{expr} "]"
10280 This extension is sufficient such that
10283 #define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member})
10287 is a suitable definition of the @code{offsetof} macro. In C++, @var{type}
10288 may be dependent. In either case, @var{member} may consist of a single
10289 identifier, or a sequence of member accesses and array references.
10291 @node __sync Builtins
10292 @section Legacy @code{__sync} Built-in Functions for Atomic Memory Access
10294 The following built-in functions
10295 are intended to be compatible with those described
10296 in the @cite{Intel Itanium Processor-specific Application Binary Interface},
10297 section 7.4. As such, they depart from normal GCC practice by not using
10298 the @samp{__builtin_} prefix and also by being overloaded so that they
10299 work on multiple types.
10301 The definition given in the Intel documentation allows only for the use of
10302 the types @code{int}, @code{long}, @code{long long} or their unsigned
10303 counterparts. GCC allows any scalar type that is 1, 2, 4 or 8 bytes in
10304 size other than the C type @code{_Bool} or the C++ type @code{bool}.
10305 Operations on pointer arguments are performed as if the operands were
10306 of the @code{uintptr_t} type. That is, they are not scaled by the size
10307 of the type to which the pointer points.
10309 These functions are implemented in terms of the @samp{__atomic}
10310 builtins (@pxref{__atomic Builtins}). They should not be used for new
10311 code which should use the @samp{__atomic} builtins instead.
10313 Not all operations are supported by all target processors. If a particular
10314 operation cannot be implemented on the target processor, a warning is
10315 generated and a call to an external function is generated. The external
10316 function carries the same name as the built-in version,
10317 with an additional suffix
10318 @samp{_@var{n}} where @var{n} is the size of the data type.
10320 @c ??? Should we have a mechanism to suppress this warning? This is almost
10321 @c useful for implementing the operation under the control of an external
10324 In most cases, these built-in functions are considered a @dfn{full barrier}.
10326 no memory operand is moved across the operation, either forward or
10327 backward. Further, instructions are issued as necessary to prevent the
10328 processor from speculating loads across the operation and from queuing stores
10329 after the operation.
10331 All of the routines are described in the Intel documentation to take
10332 ``an optional list of variables protected by the memory barrier''. It's
10333 not clear what is meant by that; it could mean that @emph{only} the
10334 listed variables are protected, or it could mean a list of additional
10335 variables to be protected. The list is ignored by GCC which treats it as
10336 empty. GCC interprets an empty list as meaning that all globally
10337 accessible variables should be protected.
10340 @item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
10341 @itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
10342 @itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
10343 @itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
10344 @itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
10345 @itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
10346 @findex __sync_fetch_and_add
10347 @findex __sync_fetch_and_sub
10348 @findex __sync_fetch_and_or
10349 @findex __sync_fetch_and_and
10350 @findex __sync_fetch_and_xor
10351 @findex __sync_fetch_and_nand
10352 These built-in functions perform the operation suggested by the name, and
10353 returns the value that had previously been in memory. That is, operations
10354 on integer operands have the following semantics. Operations on pointer
10355 arguments are performed as if the operands were of the @code{uintptr_t}
10356 type. That is, they are not scaled by the size of the type to which
10357 the pointer points.
10360 @{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
10361 @{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @} // nand
10364 The object pointed to by the first argument must be of integer or pointer
10365 type. It must not be a boolean type.
10367 @emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
10368 as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
10370 @item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
10371 @itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
10372 @itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
10373 @itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
10374 @itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
10375 @itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
10376 @findex __sync_add_and_fetch
10377 @findex __sync_sub_and_fetch
10378 @findex __sync_or_and_fetch
10379 @findex __sync_and_and_fetch
10380 @findex __sync_xor_and_fetch
10381 @findex __sync_nand_and_fetch
10382 These built-in functions perform the operation suggested by the name, and
10383 return the new value. That is, operations on integer operands have
10384 the following semantics. Operations on pointer operands are performed as
10385 if the operand's type were @code{uintptr_t}.
10388 @{ *ptr @var{op}= value; return *ptr; @}
10389 @{ *ptr = ~(*ptr & value); return *ptr; @} // nand
10392 The same constraints on arguments apply as for the corresponding
10393 @code{__sync_op_and_fetch} built-in functions.
10395 @emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
10396 as @code{*ptr = ~(*ptr & value)} instead of
10397 @code{*ptr = ~*ptr & value}.
10399 @item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
10400 @itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
10401 @findex __sync_bool_compare_and_swap
10402 @findex __sync_val_compare_and_swap
10403 These built-in functions perform an atomic compare and swap.
10404 That is, if the current
10405 value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
10408 The ``bool'' version returns true if the comparison is successful and
10409 @var{newval} is written. The ``val'' version returns the contents
10410 of @code{*@var{ptr}} before the operation.
10412 @item __sync_synchronize (...)
10413 @findex __sync_synchronize
10414 This built-in function issues a full memory barrier.
10416 @item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
10417 @findex __sync_lock_test_and_set
10418 This built-in function, as described by Intel, is not a traditional test-and-set
10419 operation, but rather an atomic exchange operation. It writes @var{value}
10420 into @code{*@var{ptr}}, and returns the previous contents of
10423 Many targets have only minimal support for such locks, and do not support
10424 a full exchange operation. In this case, a target may support reduced
10425 functionality here by which the @emph{only} valid value to store is the
10426 immediate constant 1. The exact value actually stored in @code{*@var{ptr}}
10427 is implementation defined.
10429 This built-in function is not a full barrier,
10430 but rather an @dfn{acquire barrier}.
10431 This means that references after the operation cannot move to (or be
10432 speculated to) before the operation, but previous memory stores may not
10433 be globally visible yet, and previous memory loads may not yet be
10436 @item void __sync_lock_release (@var{type} *ptr, ...)
10437 @findex __sync_lock_release
10438 This built-in function releases the lock acquired by
10439 @code{__sync_lock_test_and_set}.
10440 Normally this means writing the constant 0 to @code{*@var{ptr}}.
10442 This built-in function is not a full barrier,
10443 but rather a @dfn{release barrier}.
10444 This means that all previous memory stores are globally visible, and all
10445 previous memory loads have been satisfied, but following memory reads
10446 are not prevented from being speculated to before the barrier.
10449 @node __atomic Builtins
10450 @section Built-in Functions for Memory Model Aware Atomic Operations
10452 The following built-in functions approximately match the requirements
10453 for the C++11 memory model. They are all
10454 identified by being prefixed with @samp{__atomic} and most are
10455 overloaded so that they work with multiple types.
10457 These functions are intended to replace the legacy @samp{__sync}
10458 builtins. The main difference is that the memory order that is requested
10459 is a parameter to the functions. New code should always use the
10460 @samp{__atomic} builtins rather than the @samp{__sync} builtins.
10462 Note that the @samp{__atomic} builtins assume that programs will
10463 conform to the C++11 memory model. In particular, they assume
10464 that programs are free of data races. See the C++11 standard for
10465 detailed requirements.
10467 The @samp{__atomic} builtins can be used with any integral scalar or
10468 pointer type that is 1, 2, 4, or 8 bytes in length. 16-byte integral
10469 types are also allowed if @samp{__int128} (@pxref{__int128}) is
10470 supported by the architecture.
10472 The four non-arithmetic functions (load, store, exchange, and
10473 compare_exchange) all have a generic version as well. This generic
10474 version works on any data type. It uses the lock-free built-in function
10475 if the specific data type size makes that possible; otherwise, an
10476 external call is left to be resolved at run time. This external call is
10477 the same format with the addition of a @samp{size_t} parameter inserted
10478 as the first parameter indicating the size of the object being pointed to.
10479 All objects must be the same size.
10481 There are 6 different memory orders that can be specified. These map
10482 to the C++11 memory orders with the same names, see the C++11 standard
10483 or the @uref{http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki
10484 on atomic synchronization} for detailed definitions. Individual
10485 targets may also support additional memory orders for use on specific
10486 architectures. Refer to the target documentation for details of
10489 An atomic operation can both constrain code motion and
10490 be mapped to hardware instructions for synchronization between threads
10491 (e.g., a fence). To which extent this happens is controlled by the
10492 memory orders, which are listed here in approximately ascending order of
10493 strength. The description of each memory order is only meant to roughly
10494 illustrate the effects and is not a specification; see the C++11
10495 memory model for precise semantics.
10498 @item __ATOMIC_RELAXED
10499 Implies no inter-thread ordering constraints.
10500 @item __ATOMIC_CONSUME
10501 This is currently implemented using the stronger @code{__ATOMIC_ACQUIRE}
10502 memory order because of a deficiency in C++11's semantics for
10503 @code{memory_order_consume}.
10504 @item __ATOMIC_ACQUIRE
10505 Creates an inter-thread happens-before constraint from the release (or
10506 stronger) semantic store to this acquire load. Can prevent hoisting
10507 of code to before the operation.
10508 @item __ATOMIC_RELEASE
10509 Creates an inter-thread happens-before constraint to acquire (or stronger)
10510 semantic loads that read from this release store. Can prevent sinking
10511 of code to after the operation.
10512 @item __ATOMIC_ACQ_REL
10513 Combines the effects of both @code{__ATOMIC_ACQUIRE} and
10514 @code{__ATOMIC_RELEASE}.
10515 @item __ATOMIC_SEQ_CST
10516 Enforces total ordering with all other @code{__ATOMIC_SEQ_CST} operations.
10519 Note that in the C++11 memory model, @emph{fences} (e.g.,
10520 @samp{__atomic_thread_fence}) take effect in combination with other
10521 atomic operations on specific memory locations (e.g., atomic loads);
10522 operations on specific memory locations do not necessarily affect other
10523 operations in the same way.
10525 Target architectures are encouraged to provide their own patterns for
10526 each of the atomic built-in functions. If no target is provided, the original
10527 non-memory model set of @samp{__sync} atomic built-in functions are
10528 used, along with any required synchronization fences surrounding it in
10529 order to achieve the proper behavior. Execution in this case is subject
10530 to the same restrictions as those built-in functions.
10532 If there is no pattern or mechanism to provide a lock-free instruction
10533 sequence, a call is made to an external routine with the same parameters
10534 to be resolved at run time.
10536 When implementing patterns for these built-in functions, the memory order
10537 parameter can be ignored as long as the pattern implements the most
10538 restrictive @code{__ATOMIC_SEQ_CST} memory order. Any of the other memory
10539 orders execute correctly with this memory order but they may not execute as
10540 efficiently as they could with a more appropriate implementation of the
10541 relaxed requirements.
10543 Note that the C++11 standard allows for the memory order parameter to be
10544 determined at run time rather than at compile time. These built-in
10545 functions map any run-time value to @code{__ATOMIC_SEQ_CST} rather
10546 than invoke a runtime library call or inline a switch statement. This is
10547 standard compliant, safe, and the simplest approach for now.
10549 The memory order parameter is a signed int, but only the lower 16 bits are
10550 reserved for the memory order. The remainder of the signed int is reserved
10551 for target use and should be 0. Use of the predefined atomic values
10552 ensures proper usage.
10554 @deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memorder)
10555 This built-in function implements an atomic load operation. It returns the
10556 contents of @code{*@var{ptr}}.
10558 The valid memory order variants are
10559 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
10560 and @code{__ATOMIC_CONSUME}.
10564 @deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memorder)
10565 This is the generic version of an atomic load. It returns the
10566 contents of @code{*@var{ptr}} in @code{*@var{ret}}.
10570 @deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memorder)
10571 This built-in function implements an atomic store operation. It writes
10572 @code{@var{val}} into @code{*@var{ptr}}.
10574 The valid memory order variants are
10575 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.
10579 @deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memorder)
10580 This is the generic version of an atomic store. It stores the value
10581 of @code{*@var{val}} into @code{*@var{ptr}}.
10585 @deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memorder)
10586 This built-in function implements an atomic exchange operation. It writes
10587 @var{val} into @code{*@var{ptr}}, and returns the previous contents of
10590 The valid memory order variants are
10591 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
10592 @code{__ATOMIC_RELEASE}, and @code{__ATOMIC_ACQ_REL}.
10596 @deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memorder)
10597 This is the generic version of an atomic exchange. It stores the
10598 contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
10599 of @code{*@var{ptr}} is copied into @code{*@var{ret}}.
10603 @deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memorder, int failure_memorder)
10604 This built-in function implements an atomic compare and exchange operation.
10605 This compares the contents of @code{*@var{ptr}} with the contents of
10606 @code{*@var{expected}}. If equal, the operation is a @emph{read-modify-write}
10607 operation that writes @var{desired} into @code{*@var{ptr}}. If they are not
10608 equal, the operation is a @emph{read} and the current contents of
10609 @code{*@var{ptr}} are written into @code{*@var{expected}}. @var{weak} is true
10610 for weak compare_exchange, which may fail spuriously, and false for
10611 the strong variation, which never fails spuriously. Many targets
10612 only offer the strong variation and ignore the parameter. When in doubt, use
10613 the strong variation.
10615 If @var{desired} is written into @code{*@var{ptr}} then true is returned
10616 and memory is affected according to the
10617 memory order specified by @var{success_memorder}. There are no
10618 restrictions on what memory order can be used here.
10620 Otherwise, false is returned and memory is affected according
10621 to @var{failure_memorder}. This memory order cannot be
10622 @code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}. It also cannot be a
10623 stronger order than that specified by @var{success_memorder}.
10627 @deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memorder, int failure_memorder)
10628 This built-in function implements the generic version of
10629 @code{__atomic_compare_exchange}. The function is virtually identical to
10630 @code{__atomic_compare_exchange_n}, except the desired value is also a
10635 @deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memorder)
10636 @deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memorder)
10637 @deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memorder)
10638 @deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memorder)
10639 @deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memorder)
10640 @deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memorder)
10641 These built-in functions perform the operation suggested by the name, and
10642 return the result of the operation. Operations on pointer arguments are
10643 performed as if the operands were of the @code{uintptr_t} type. That is,
10644 they are not scaled by the size of the type to which the pointer points.
10647 @{ *ptr @var{op}= val; return *ptr; @}
10650 The object pointed to by the first argument must be of integer or pointer
10651 type. It must not be a boolean type. All memory orders are valid.
10655 @deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memorder)
10656 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memorder)
10657 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memorder)
10658 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memorder)
10659 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memorder)
10660 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memorder)
10661 These built-in functions perform the operation suggested by the name, and
10662 return the value that had previously been in @code{*@var{ptr}}. Operations
10663 on pointer arguments are performed as if the operands were of
10664 the @code{uintptr_t} type. That is, they are not scaled by the size of
10665 the type to which the pointer points.
10668 @{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
10671 The same constraints on arguments apply as for the corresponding
10672 @code{__atomic_op_fetch} built-in functions. All memory orders are valid.
10676 @deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memorder)
10678 This built-in function performs an atomic test-and-set operation on
10679 the byte at @code{*@var{ptr}}. The byte is set to some implementation
10680 defined nonzero ``set'' value and the return value is @code{true} if and only
10681 if the previous contents were ``set''.
10682 It should be only used for operands of type @code{bool} or @code{char}. For
10683 other types only part of the value may be set.
10685 All memory orders are valid.
10689 @deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memorder)
10691 This built-in function performs an atomic clear operation on
10692 @code{*@var{ptr}}. After the operation, @code{*@var{ptr}} contains 0.
10693 It should be only used for operands of type @code{bool} or @code{char} and
10694 in conjunction with @code{__atomic_test_and_set}.
10695 For other types it may only clear partially. If the type is not @code{bool}
10696 prefer using @code{__atomic_store}.
10698 The valid memory order variants are
10699 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
10700 @code{__ATOMIC_RELEASE}.
10704 @deftypefn {Built-in Function} void __atomic_thread_fence (int memorder)
10706 This built-in function acts as a synchronization fence between threads
10707 based on the specified memory order.
10709 All memory orders are valid.
10713 @deftypefn {Built-in Function} void __atomic_signal_fence (int memorder)
10715 This built-in function acts as a synchronization fence between a thread
10716 and signal handlers based in the same thread.
10718 All memory orders are valid.
10722 @deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size, void *ptr)
10724 This built-in function returns true if objects of @var{size} bytes always
10725 generate lock-free atomic instructions for the target architecture.
10726 @var{size} must resolve to a compile-time constant and the result also
10727 resolves to a compile-time constant.
10729 @var{ptr} is an optional pointer to the object that may be used to determine
10730 alignment. A value of 0 indicates typical alignment should be used. The
10731 compiler may also ignore this parameter.
10734 if (__atomic_always_lock_free (sizeof (long long), 0))
10739 @deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr)
10741 This built-in function returns true if objects of @var{size} bytes always
10742 generate lock-free atomic instructions for the target architecture. If
10743 the built-in function is not known to be lock-free, a call is made to a
10744 runtime routine named @code{__atomic_is_lock_free}.
10746 @var{ptr} is an optional pointer to the object that may be used to determine
10747 alignment. A value of 0 indicates typical alignment should be used. The
10748 compiler may also ignore this parameter.
10751 @node Integer Overflow Builtins
10752 @section Built-in Functions to Perform Arithmetic with Overflow Checking
10754 The following built-in functions allow performing simple arithmetic operations
10755 together with checking whether the operations overflowed.
10757 @deftypefn {Built-in Function} bool __builtin_add_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
10758 @deftypefnx {Built-in Function} bool __builtin_sadd_overflow (int a, int b, int *res)
10759 @deftypefnx {Built-in Function} bool __builtin_saddl_overflow (long int a, long int b, long int *res)
10760 @deftypefnx {Built-in Function} bool __builtin_saddll_overflow (long long int a, long long int b, long long int *res)
10761 @deftypefnx {Built-in Function} bool __builtin_uadd_overflow (unsigned int a, unsigned int b, unsigned int *res)
10762 @deftypefnx {Built-in Function} bool __builtin_uaddl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
10763 @deftypefnx {Built-in Function} bool __builtin_uaddll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
10765 These built-in functions promote the first two operands into infinite precision signed
10766 type and perform addition on those promoted operands. The result is then
10767 cast to the type the third pointer argument points to and stored there.
10768 If the stored result is equal to the infinite precision result, the built-in
10769 functions return false, otherwise they return true. As the addition is
10770 performed in infinite signed precision, these built-in functions have fully defined
10771 behavior for all argument values.
10773 The first built-in function allows arbitrary integral types for operands and
10774 the result type must be pointer to some integral type other than enumerated or
10775 boolean type, the rest of the built-in functions have explicit integer types.
10777 The compiler will attempt to use hardware instructions to implement
10778 these built-in functions where possible, like conditional jump on overflow
10779 after addition, conditional jump on carry etc.
10783 @deftypefn {Built-in Function} bool __builtin_sub_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
10784 @deftypefnx {Built-in Function} bool __builtin_ssub_overflow (int a, int b, int *res)
10785 @deftypefnx {Built-in Function} bool __builtin_ssubl_overflow (long int a, long int b, long int *res)
10786 @deftypefnx {Built-in Function} bool __builtin_ssubll_overflow (long long int a, long long int b, long long int *res)
10787 @deftypefnx {Built-in Function} bool __builtin_usub_overflow (unsigned int a, unsigned int b, unsigned int *res)
10788 @deftypefnx {Built-in Function} bool __builtin_usubl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
10789 @deftypefnx {Built-in Function} bool __builtin_usubll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
10791 These built-in functions are similar to the add overflow checking built-in
10792 functions above, except they perform subtraction, subtract the second argument
10793 from the first one, instead of addition.
10797 @deftypefn {Built-in Function} bool __builtin_mul_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
10798 @deftypefnx {Built-in Function} bool __builtin_smul_overflow (int a, int b, int *res)
10799 @deftypefnx {Built-in Function} bool __builtin_smull_overflow (long int a, long int b, long int *res)
10800 @deftypefnx {Built-in Function} bool __builtin_smulll_overflow (long long int a, long long int b, long long int *res)
10801 @deftypefnx {Built-in Function} bool __builtin_umul_overflow (unsigned int a, unsigned int b, unsigned int *res)
10802 @deftypefnx {Built-in Function} bool __builtin_umull_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
10803 @deftypefnx {Built-in Function} bool __builtin_umulll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
10805 These built-in functions are similar to the add overflow checking built-in
10806 functions above, except they perform multiplication, instead of addition.
10810 The following built-in functions allow checking if simple arithmetic operation
10813 @deftypefn {Built-in Function} bool __builtin_add_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10814 @deftypefnx {Built-in Function} bool __builtin_sub_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10815 @deftypefnx {Built-in Function} bool __builtin_mul_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10817 These built-in functions are similar to @code{__builtin_add_overflow},
10818 @code{__builtin_sub_overflow}, or @code{__builtin_mul_overflow}, except that
10819 they don't store the result of the arithmetic operation anywhere and the
10820 last argument is not a pointer, but some expression with integral type other
10821 than enumerated or boolean type.
10823 The built-in functions promote the first two operands into infinite precision signed type
10824 and perform addition on those promoted operands. The result is then
10825 cast to the type of the third argument. If the cast result is equal to the infinite
10826 precision result, the built-in functions return false, otherwise they return true.
10827 The value of the third argument is ignored, just the side effects in the third argument
10828 are evaluated, and no integral argument promotions are performed on the last argument.
10829 If the third argument is a bit-field, the type used for the result cast has the
10830 precision and signedness of the given bit-field, rather than precision and signedness
10831 of the underlying type.
10833 For example, the following macro can be used to portably check, at
10834 compile-time, whether or not adding two constant integers will overflow,
10835 and perform the addition only when it is known to be safe and not to trigger
10836 a @option{-Woverflow} warning.
10839 #define INT_ADD_OVERFLOW_P(a, b) \
10840 __builtin_add_overflow_p (a, b, (__typeof__ ((a) + (b))) 0)
10843 A = INT_MAX, B = 3,
10844 C = INT_ADD_OVERFLOW_P (A, B) ? 0 : A + B,
10845 D = __builtin_add_overflow_p (1, SCHAR_MAX, (signed char) 0)
10849 The compiler will attempt to use hardware instructions to implement
10850 these built-in functions where possible, like conditional jump on overflow
10851 after addition, conditional jump on carry etc.
10855 @node x86 specific memory model extensions for transactional memory
10856 @section x86-Specific Memory Model Extensions for Transactional Memory
10858 The x86 architecture supports additional memory ordering flags
10859 to mark critical sections for hardware lock elision.
10860 These must be specified in addition to an existing memory order to
10864 @item __ATOMIC_HLE_ACQUIRE
10865 Start lock elision on a lock variable.
10866 Memory order must be @code{__ATOMIC_ACQUIRE} or stronger.
10867 @item __ATOMIC_HLE_RELEASE
10868 End lock elision on a lock variable.
10869 Memory order must be @code{__ATOMIC_RELEASE} or stronger.
10872 When a lock acquire fails, it is required for good performance to abort
10873 the transaction quickly. This can be done with a @code{_mm_pause}.
10876 #include <immintrin.h> // For _mm_pause
10880 /* Acquire lock with lock elision */
10881 while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE))
10882 _mm_pause(); /* Abort failed transaction */
10884 /* Free lock with lock elision */
10885 __atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);
10888 @node Object Size Checking
10889 @section Object Size Checking Built-in Functions
10890 @findex __builtin_object_size
10891 @findex __builtin___memcpy_chk
10892 @findex __builtin___mempcpy_chk
10893 @findex __builtin___memmove_chk
10894 @findex __builtin___memset_chk
10895 @findex __builtin___strcpy_chk
10896 @findex __builtin___stpcpy_chk
10897 @findex __builtin___strncpy_chk
10898 @findex __builtin___strcat_chk
10899 @findex __builtin___strncat_chk
10900 @findex __builtin___sprintf_chk
10901 @findex __builtin___snprintf_chk
10902 @findex __builtin___vsprintf_chk
10903 @findex __builtin___vsnprintf_chk
10904 @findex __builtin___printf_chk
10905 @findex __builtin___vprintf_chk
10906 @findex __builtin___fprintf_chk
10907 @findex __builtin___vfprintf_chk
10909 GCC implements a limited buffer overflow protection mechanism that can
10910 prevent some buffer overflow attacks by determining the sizes of objects
10911 into which data is about to be written and preventing the writes when
10912 the size isn't sufficient. The built-in functions described below yield
10913 the best results when used together and when optimization is enabled.
10914 For example, to detect object sizes across function boundaries or to
10915 follow pointer assignments through non-trivial control flow they rely
10916 on various optimization passes enabled with @option{-O2}. However, to
10917 a limited extent, they can be used without optimization as well.
10919 @deftypefn {Built-in Function} {size_t} __builtin_object_size (const void * @var{ptr}, int @var{type})
10920 is a built-in construct that returns a constant number of bytes from
10921 @var{ptr} to the end of the object @var{ptr} pointer points to
10922 (if known at compile time). @code{__builtin_object_size} never evaluates
10923 its arguments for side effects. If there are any side effects in them, it
10924 returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
10925 for @var{type} 2 or 3. If there are multiple objects @var{ptr} can
10926 point to and all of them are known at compile time, the returned number
10927 is the maximum of remaining byte counts in those objects if @var{type} & 2 is
10928 0 and minimum if nonzero. If it is not possible to determine which objects
10929 @var{ptr} points to at compile time, @code{__builtin_object_size} should
10930 return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
10931 for @var{type} 2 or 3.
10933 @var{type} is an integer constant from 0 to 3. If the least significant
10934 bit is clear, objects are whole variables, if it is set, a closest
10935 surrounding subobject is considered the object a pointer points to.
10936 The second bit determines if maximum or minimum of remaining bytes
10940 struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
10941 char *p = &var.buf1[1], *q = &var.b;
10943 /* Here the object p points to is var. */
10944 assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
10945 /* The subobject p points to is var.buf1. */
10946 assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
10947 /* The object q points to is var. */
10948 assert (__builtin_object_size (q, 0)
10949 == (char *) (&var + 1) - (char *) &var.b);
10950 /* The subobject q points to is var.b. */
10951 assert (__builtin_object_size (q, 1) == sizeof (var.b));
10955 There are built-in functions added for many common string operation
10956 functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
10957 built-in is provided. This built-in has an additional last argument,
10958 which is the number of bytes remaining in the object the @var{dest}
10959 argument points to or @code{(size_t) -1} if the size is not known.
10961 The built-in functions are optimized into the normal string functions
10962 like @code{memcpy} if the last argument is @code{(size_t) -1} or if
10963 it is known at compile time that the destination object will not
10964 be overflowed. If the compiler can determine at compile time that the
10965 object will always be overflowed, it issues a warning.
10967 The intended use can be e.g.@:
10971 #define bos0(dest) __builtin_object_size (dest, 0)
10972 #define memcpy(dest, src, n) \
10973 __builtin___memcpy_chk (dest, src, n, bos0 (dest))
10977 /* It is unknown what object p points to, so this is optimized
10978 into plain memcpy - no checking is possible. */
10979 memcpy (p, "abcde", n);
10980 /* Destination is known and length too. It is known at compile
10981 time there will be no overflow. */
10982 memcpy (&buf[5], "abcde", 5);
10983 /* Destination is known, but the length is not known at compile time.
10984 This will result in __memcpy_chk call that can check for overflow
10986 memcpy (&buf[5], "abcde", n);
10987 /* Destination is known and it is known at compile time there will
10988 be overflow. There will be a warning and __memcpy_chk call that
10989 will abort the program at run time. */
10990 memcpy (&buf[6], "abcde", 5);
10993 Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
10994 @code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
10995 @code{strcat} and @code{strncat}.
10997 There are also checking built-in functions for formatted output functions.
10999 int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
11000 int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
11001 const char *fmt, ...);
11002 int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
11004 int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
11005 const char *fmt, va_list ap);
11008 The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
11009 etc.@: functions and can contain implementation specific flags on what
11010 additional security measures the checking function might take, such as
11011 handling @code{%n} differently.
11013 The @var{os} argument is the object size @var{s} points to, like in the
11014 other built-in functions. There is a small difference in the behavior
11015 though, if @var{os} is @code{(size_t) -1}, the built-in functions are
11016 optimized into the non-checking functions only if @var{flag} is 0, otherwise
11017 the checking function is called with @var{os} argument set to
11018 @code{(size_t) -1}.
11020 In addition to this, there are checking built-in functions
11021 @code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
11022 @code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
11023 These have just one additional argument, @var{flag}, right before
11024 format string @var{fmt}. If the compiler is able to optimize them to
11025 @code{fputc} etc.@: functions, it does, otherwise the checking function
11026 is called and the @var{flag} argument passed to it.
11028 @node Other Builtins
11029 @section Other Built-in Functions Provided by GCC
11030 @cindex built-in functions
11031 @findex __builtin_alloca
11032 @findex __builtin_alloca_with_align
11033 @findex __builtin_alloca_with_align_and_max
11034 @findex __builtin_call_with_static_chain
11035 @findex __builtin_extend_pointer
11036 @findex __builtin_fpclassify
11037 @findex __builtin_isfinite
11038 @findex __builtin_isnormal
11039 @findex __builtin_isgreater
11040 @findex __builtin_isgreaterequal
11041 @findex __builtin_isinf_sign
11042 @findex __builtin_isless
11043 @findex __builtin_islessequal
11044 @findex __builtin_islessgreater
11045 @findex __builtin_isunordered
11046 @findex __builtin_powi
11047 @findex __builtin_powif
11048 @findex __builtin_powil
11049 @findex __builtin_speculation_safe_value
11210 @findex fprintf_unlocked
11212 @findex fputs_unlocked
11320 @findex nexttowardf
11321 @findex nexttowardl
11329 @findex printf_unlocked
11359 @findex signbitd128
11360 @findex significand
11361 @findex significandf
11362 @findex significandl
11390 @findex strncasecmp
11434 GCC provides a large number of built-in functions other than the ones
11435 mentioned above. Some of these are for internal use in the processing
11436 of exceptions or variable-length argument lists and are not
11437 documented here because they may change from time to time; we do not
11438 recommend general use of these functions.
11440 The remaining functions are provided for optimization purposes.
11442 With the exception of built-ins that have library equivalents such as
11443 the standard C library functions discussed below, or that expand to
11444 library calls, GCC built-in functions are always expanded inline and
11445 thus do not have corresponding entry points and their address cannot
11446 be obtained. Attempting to use them in an expression other than
11447 a function call results in a compile-time error.
11449 @opindex fno-builtin
11450 GCC includes built-in versions of many of the functions in the standard
11451 C library. These functions come in two forms: one whose names start with
11452 the @code{__builtin_} prefix, and the other without. Both forms have the
11453 same type (including prototype), the same address (when their address is
11454 taken), and the same meaning as the C library functions even if you specify
11455 the @option{-fno-builtin} option @pxref{C Dialect Options}). Many of these
11456 functions are only optimized in certain cases; if they are not optimized in
11457 a particular case, a call to the library function is emitted.
11461 Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
11462 @option{-std=c99} or @option{-std=c11}), the functions
11463 @code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
11464 @code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
11465 @code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
11466 @code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
11467 @code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
11468 @code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
11469 @code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
11470 @code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
11471 @code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
11472 @code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
11473 @code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
11474 @code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
11475 @code{signbitd64}, @code{signbitd128}, @code{significandf},
11476 @code{significandl}, @code{significand}, @code{sincosf},
11477 @code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
11478 @code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
11479 @code{strndup}, @code{strnlen}, @code{toascii}, @code{y0f}, @code{y0l},
11480 @code{y0}, @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
11482 may be handled as built-in functions.
11483 All these functions have corresponding versions
11484 prefixed with @code{__builtin_}, which may be used even in strict C90
11487 The ISO C99 functions
11488 @code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
11489 @code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
11490 @code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
11491 @code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
11492 @code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
11493 @code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
11494 @code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
11495 @code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
11496 @code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
11497 @code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
11498 @code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
11499 @code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
11500 @code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
11501 @code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
11502 @code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
11503 @code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
11504 @code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
11505 @code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
11506 @code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
11507 @code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
11508 @code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
11509 @code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
11510 @code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
11511 @code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
11512 @code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
11513 @code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
11514 @code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
11515 @code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
11516 @code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
11517 @code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
11518 @code{nextafterf}, @code{nextafterl}, @code{nextafter},
11519 @code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
11520 @code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
11521 @code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
11522 @code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
11523 @code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
11524 @code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
11525 @code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
11526 @code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
11527 are handled as built-in functions
11528 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
11530 There are also built-in versions of the ISO C99 functions
11531 @code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
11532 @code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
11533 @code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
11534 @code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
11535 @code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
11536 @code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
11537 @code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
11538 @code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
11539 @code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
11540 that are recognized in any mode since ISO C90 reserves these names for
11541 the purpose to which ISO C99 puts them. All these functions have
11542 corresponding versions prefixed with @code{__builtin_}.
11544 There are also built-in functions @code{__builtin_fabsf@var{n}},
11545 @code{__builtin_fabsf@var{n}x}, @code{__builtin_copysignf@var{n}} and
11546 @code{__builtin_copysignf@var{n}x}, corresponding to the TS 18661-3
11547 functions @code{fabsf@var{n}}, @code{fabsf@var{n}x},
11548 @code{copysignf@var{n}} and @code{copysignf@var{n}x}, for supported
11549 types @code{_Float@var{n}} and @code{_Float@var{n}x}.
11551 There are also GNU extension functions @code{clog10}, @code{clog10f} and
11552 @code{clog10l} which names are reserved by ISO C99 for future use.
11553 All these functions have versions prefixed with @code{__builtin_}.
11555 The ISO C94 functions
11556 @code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
11557 @code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
11558 @code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
11560 are handled as built-in functions
11561 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
11563 The ISO C90 functions
11564 @code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
11565 @code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
11566 @code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
11567 @code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
11568 @code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
11569 @code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
11570 @code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
11571 @code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
11572 @code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
11573 @code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
11574 @code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
11575 @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
11576 @code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
11577 @code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
11578 @code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
11579 @code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
11580 are all recognized as built-in functions unless
11581 @option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
11582 is specified for an individual function). All of these functions have
11583 corresponding versions prefixed with @code{__builtin_}.
11585 GCC provides built-in versions of the ISO C99 floating-point comparison
11586 macros that avoid raising exceptions for unordered operands. They have
11587 the same names as the standard macros ( @code{isgreater},
11588 @code{isgreaterequal}, @code{isless}, @code{islessequal},
11589 @code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
11590 prefixed. We intend for a library implementor to be able to simply
11591 @code{#define} each standard macro to its built-in equivalent.
11592 In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
11593 @code{isinf_sign}, @code{isnormal} and @code{signbit} built-ins used with
11594 @code{__builtin_} prefixed. The @code{isinf} and @code{isnan}
11595 built-in functions appear both with and without the @code{__builtin_} prefix.
11597 @deftypefn {Built-in Function} void *__builtin_alloca (size_t size)
11598 The @code{__builtin_alloca} function must be called at block scope.
11599 The function allocates an object @var{size} bytes large on the stack
11600 of the calling function. The object is aligned on the default stack
11601 alignment boundary for the target determined by the
11602 @code{__BIGGEST_ALIGNMENT__} macro. The @code{__builtin_alloca}
11603 function returns a pointer to the first byte of the allocated object.
11604 The lifetime of the allocated object ends just before the calling
11605 function returns to its caller. This is so even when
11606 @code{__builtin_alloca} is called within a nested block.
11608 For example, the following function allocates eight objects of @code{n}
11609 bytes each on the stack, storing a pointer to each in consecutive elements
11610 of the array @code{a}. It then passes the array to function @code{g}
11611 which can safely use the storage pointed to by each of the array elements.
11614 void f (unsigned n)
11617 for (int i = 0; i != 8; ++i)
11618 a [i] = __builtin_alloca (n);
11620 g (a, n); // @r{safe}
11624 Since the @code{__builtin_alloca} function doesn't validate its argument
11625 it is the responsibility of its caller to make sure the argument doesn't
11626 cause it to exceed the stack size limit.
11627 The @code{__builtin_alloca} function is provided to make it possible to
11628 allocate on the stack arrays of bytes with an upper bound that may be
11629 computed at run time. Since C99 Variable Length Arrays offer
11630 similar functionality under a portable, more convenient, and safer
11631 interface they are recommended instead, in both C99 and C++ programs
11632 where GCC provides them as an extension.
11633 @xref{Variable Length}, for details.
11637 @deftypefn {Built-in Function} void *__builtin_alloca_with_align (size_t size, size_t alignment)
11638 The @code{__builtin_alloca_with_align} function must be called at block
11639 scope. The function allocates an object @var{size} bytes large on
11640 the stack of the calling function. The allocated object is aligned on
11641 the boundary specified by the argument @var{alignment} whose unit is given
11642 in bits (not bytes). The @var{size} argument must be positive and not
11643 exceed the stack size limit. The @var{alignment} argument must be a constant
11644 integer expression that evaluates to a power of 2 greater than or equal to
11645 @code{CHAR_BIT} and less than some unspecified maximum. Invocations
11646 with other values are rejected with an error indicating the valid bounds.
11647 The function returns a pointer to the first byte of the allocated object.
11648 The lifetime of the allocated object ends at the end of the block in which
11649 the function was called. The allocated storage is released no later than
11650 just before the calling function returns to its caller, but may be released
11651 at the end of the block in which the function was called.
11653 For example, in the following function the call to @code{g} is unsafe
11654 because when @code{overalign} is non-zero, the space allocated by
11655 @code{__builtin_alloca_with_align} may have been released at the end
11656 of the @code{if} statement in which it was called.
11659 void f (unsigned n, bool overalign)
11663 p = __builtin_alloca_with_align (n, 64 /* bits */);
11665 p = __builtin_alloc (n);
11667 g (p, n); // @r{unsafe}
11671 Since the @code{__builtin_alloca_with_align} function doesn't validate its
11672 @var{size} argument it is the responsibility of its caller to make sure
11673 the argument doesn't cause it to exceed the stack size limit.
11674 The @code{__builtin_alloca_with_align} function is provided to make
11675 it possible to allocate on the stack overaligned arrays of bytes with
11676 an upper bound that may be computed at run time. Since C99
11677 Variable Length Arrays offer the same functionality under
11678 a portable, more convenient, and safer interface they are recommended
11679 instead, in both C99 and C++ programs where GCC provides them as
11680 an extension. @xref{Variable Length}, for details.
11684 @deftypefn {Built-in Function} void *__builtin_alloca_with_align_and_max (size_t size, size_t alignment, size_t max_size)
11685 Similar to @code{__builtin_alloca_with_align} but takes an extra argument
11686 specifying an upper bound for @var{size} in case its value cannot be computed
11687 at compile time, for use by @option{-fstack-usage}, @option{-Wstack-usage}
11688 and @option{-Walloca-larger-than}. @var{max_size} must be a constant integer
11689 expression, it has no effect on code generation and no attempt is made to
11690 check its compatibility with @var{size}.
11694 @deftypefn {Built-in Function} @var{type} __builtin_speculation_safe_value (@var{type} val, @var{type} failval)
11696 This built-in function can be used to help mitigate against unsafe
11697 speculative execution. @var{type} may be any integral type or any
11702 If the CPU is not speculatively executing the code, then @var{val}
11705 If the CPU is executing speculatively then either:
11708 The function may cause execution to pause until it is known that the
11709 code is no-longer being executed speculatively (in which case
11710 @var{val} can be returned, as above); or
11712 The function may use target-dependent speculation tracking state to cause
11713 @var{failval} to be returned when it is known that speculative
11714 execution has incorrectly predicted a conditional branch operation.
11718 The second argument, @var{failval}, is optional and defaults to zero
11721 GCC defines the preprocessor macro
11722 @code{__HAVE_BUILTIN_SPECULATION_SAFE_VALUE} for targets that have been
11723 updated to support this builtin.
11725 The built-in function can be used where a variable appears to be used in a
11726 safe way, but the CPU, due to speculative execution may temporarily ignore
11727 the bounds checks. Consider, for example, the following function:
11731 int f (unsigned untrusted_index)
11733 if (untrusted_index < 500)
11734 return array[untrusted_index];
11739 If the function is called repeatedly with @code{untrusted_index} less
11740 than the limit of 500, then a branch predictor will learn that the
11741 block of code that returns a value stored in @code{array} will be
11742 executed. If the function is subsequently called with an
11743 out-of-range value it will still try to execute that block of code
11744 first until the CPU determines that the prediction was incorrect
11745 (the CPU will unwind any incorrect operations at that point).
11746 However, depending on how the result of the function is used, it might be
11747 possible to leave traces in the cache that can reveal what was stored
11748 at the out-of-bounds location. The built-in function can be used to
11749 provide some protection against leaking data in this way by changing
11754 int f (unsigned untrusted_index)
11756 if (untrusted_index < 500)
11757 return array[__builtin_speculation_safe_value (untrusted_index)];
11762 The built-in function will either cause execution to stall until the
11763 conditional branch has been fully resolved, or it may permit
11764 speculative execution to continue, but using 0 instead of
11765 @code{untrusted_value} if that exceeds the limit.
11767 If accessing any memory location is potentially unsafe when speculative
11768 execution is incorrect, then the code can be rewritten as
11772 int f (unsigned untrusted_index)
11774 if (untrusted_index < 500)
11775 return *__builtin_speculation_safe_value (&array[untrusted_index], NULL);
11780 which will cause a @code{NULL} pointer to be used for the unsafe case.
11784 @deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
11786 You can use the built-in function @code{__builtin_types_compatible_p} to
11787 determine whether two types are the same.
11789 This built-in function returns 1 if the unqualified versions of the
11790 types @var{type1} and @var{type2} (which are types, not expressions) are
11791 compatible, 0 otherwise. The result of this built-in function can be
11792 used in integer constant expressions.
11794 This built-in function ignores top level qualifiers (e.g., @code{const},
11795 @code{volatile}). For example, @code{int} is equivalent to @code{const
11798 The type @code{int[]} and @code{int[5]} are compatible. On the other
11799 hand, @code{int} and @code{char *} are not compatible, even if the size
11800 of their types, on the particular architecture are the same. Also, the
11801 amount of pointer indirection is taken into account when determining
11802 similarity. Consequently, @code{short *} is not similar to
11803 @code{short **}. Furthermore, two types that are typedefed are
11804 considered compatible if their underlying types are compatible.
11806 An @code{enum} type is not considered to be compatible with another
11807 @code{enum} type even if both are compatible with the same integer
11808 type; this is what the C standard specifies.
11809 For example, @code{enum @{foo, bar@}} is not similar to
11810 @code{enum @{hot, dog@}}.
11812 You typically use this function in code whose execution varies
11813 depending on the arguments' types. For example:
11818 typeof (x) tmp = (x); \
11819 if (__builtin_types_compatible_p (typeof (x), long double)) \
11820 tmp = foo_long_double (tmp); \
11821 else if (__builtin_types_compatible_p (typeof (x), double)) \
11822 tmp = foo_double (tmp); \
11823 else if (__builtin_types_compatible_p (typeof (x), float)) \
11824 tmp = foo_float (tmp); \
11831 @emph{Note:} This construct is only available for C@.
11835 @deftypefn {Built-in Function} @var{type} __builtin_call_with_static_chain (@var{call_exp}, @var{pointer_exp})
11837 The @var{call_exp} expression must be a function call, and the
11838 @var{pointer_exp} expression must be a pointer. The @var{pointer_exp}
11839 is passed to the function call in the target's static chain location.
11840 The result of builtin is the result of the function call.
11842 @emph{Note:} This builtin is only available for C@.
11843 This builtin can be used to call Go closures from C.
11847 @deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
11849 You can use the built-in function @code{__builtin_choose_expr} to
11850 evaluate code depending on the value of a constant expression. This
11851 built-in function returns @var{exp1} if @var{const_exp}, which is an
11852 integer constant expression, is nonzero. Otherwise it returns @var{exp2}.
11854 This built-in function is analogous to the @samp{? :} operator in C,
11855 except that the expression returned has its type unaltered by promotion
11856 rules. Also, the built-in function does not evaluate the expression
11857 that is not chosen. For example, if @var{const_exp} evaluates to true,
11858 @var{exp2} is not evaluated even if it has side effects.
11860 This built-in function can return an lvalue if the chosen argument is an
11863 If @var{exp1} is returned, the return type is the same as @var{exp1}'s
11864 type. Similarly, if @var{exp2} is returned, its return type is the same
11871 __builtin_choose_expr ( \
11872 __builtin_types_compatible_p (typeof (x), double), \
11874 __builtin_choose_expr ( \
11875 __builtin_types_compatible_p (typeof (x), float), \
11877 /* @r{The void expression results in a compile-time error} \
11878 @r{when assigning the result to something.} */ \
11882 @emph{Note:} This construct is only available for C@. Furthermore, the
11883 unused expression (@var{exp1} or @var{exp2} depending on the value of
11884 @var{const_exp}) may still generate syntax errors. This may change in
11889 @deftypefn {Built-in Function} @var{type} __builtin_tgmath (@var{functions}, @var{arguments})
11891 The built-in function @code{__builtin_tgmath}, available only for C
11892 and Objective-C, calls a function determined according to the rules of
11893 @code{<tgmath.h>} macros. It is intended to be used in
11894 implementations of that header, so that expansions of macros from that
11895 header only expand each of their arguments once, to avoid problems
11896 when calls to such macros are nested inside the arguments of other
11897 calls to such macros; in addition, it results in better diagnostics
11898 for invalid calls to @code{<tgmath.h>} macros than implementations
11899 using other GNU C language features. For example, the @code{pow}
11900 type-generic macro might be defined as:
11903 #define pow(a, b) __builtin_tgmath (powf, pow, powl, \
11904 cpowf, cpow, cpowl, a, b)
11907 The arguments to @code{__builtin_tgmath} are at least two pointers to
11908 functions, followed by the arguments to the type-generic macro (which
11909 will be passed as arguments to the selected function). All the
11910 pointers to functions must be pointers to prototyped functions, none
11911 of which may have variable arguments, and all of which must have the
11912 same number of parameters; the number of parameters of the first
11913 function determines how many arguments to @code{__builtin_tgmath} are
11914 interpreted as function pointers, and how many as the arguments to the
11917 The types of the specified functions must all be different, but
11918 related to each other in the same way as a set of functions that may
11919 be selected between by a macro in @code{<tgmath.h>}. This means that
11920 the functions are parameterized by a floating-point type @var{t},
11921 different for each such function. The function return types may all
11922 be the same type, or they may be @var{t} for each function, or they
11923 may be the real type corresponding to @var{t} for each function (if
11924 some of the types @var{t} are complex). Likewise, for each parameter
11925 position, the type of the parameter in that position may always be the
11926 same type, or may be @var{t} for each function (this case must apply
11927 for at least one parameter position), or may be the real type
11928 corresponding to @var{t} for each function.
11930 The standard rules for @code{<tgmath.h>} macros are used to find a
11931 common type @var{u} from the types of the arguments for parameters
11932 whose types vary between the functions; complex integer types (a GNU
11933 extension) are treated like @code{_Complex double} for this purpose
11934 (or @code{_Complex _Float64} if all the function return types are the
11935 same @code{_Float@var{n}} or @code{_Float@var{n}x} type).
11936 If the function return types vary, or are all the same integer type,
11937 the function called is the one for which @var{t} is @var{u}, and it is
11938 an error if there is no such function. If the function return types
11939 are all the same floating-point type, the type-generic macro is taken
11940 to be one of those from TS 18661 that rounds the result to a narrower
11941 type; if there is a function for which @var{t} is @var{u}, it is
11942 called, and otherwise the first function, if any, for which @var{t}
11943 has at least the range and precision of @var{u} is called, and it is
11944 an error if there is no such function.
11948 @deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
11950 The built-in function @code{__builtin_complex} is provided for use in
11951 implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
11952 @code{CMPLXL}. @var{real} and @var{imag} must have the same type, a
11953 real binary floating-point type, and the result has the corresponding
11954 complex type with real and imaginary parts @var{real} and @var{imag}.
11955 Unlike @samp{@var{real} + I * @var{imag}}, this works even when
11956 infinities, NaNs and negative zeros are involved.
11960 @deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
11961 You can use the built-in function @code{__builtin_constant_p} to
11962 determine if a value is known to be constant at compile time and hence
11963 that GCC can perform constant-folding on expressions involving that
11964 value. The argument of the function is the value to test. The function
11965 returns the integer 1 if the argument is known to be a compile-time
11966 constant and 0 if it is not known to be a compile-time constant. A
11967 return of 0 does not indicate that the value is @emph{not} a constant,
11968 but merely that GCC cannot prove it is a constant with the specified
11969 value of the @option{-O} option.
11971 You typically use this function in an embedded application where
11972 memory is a critical resource. If you have some complex calculation,
11973 you may want it to be folded if it involves constants, but need to call
11974 a function if it does not. For example:
11977 #define Scale_Value(X) \
11978 (__builtin_constant_p (X) \
11979 ? ((X) * SCALE + OFFSET) : Scale (X))
11982 You may use this built-in function in either a macro or an inline
11983 function. However, if you use it in an inlined function and pass an
11984 argument of the function as the argument to the built-in, GCC
11985 never returns 1 when you call the inline function with a string constant
11986 or compound literal (@pxref{Compound Literals}) and does not return 1
11987 when you pass a constant numeric value to the inline function unless you
11988 specify the @option{-O} option.
11990 You may also use @code{__builtin_constant_p} in initializers for static
11991 data. For instance, you can write
11994 static const int table[] = @{
11995 __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
12001 This is an acceptable initializer even if @var{EXPRESSION} is not a
12002 constant expression, including the case where
12003 @code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
12004 folded to a constant but @var{EXPRESSION} contains operands that are
12005 not otherwise permitted in a static initializer (for example,
12006 @code{0 && foo ()}). GCC must be more conservative about evaluating the
12007 built-in in this case, because it has no opportunity to perform
12011 @deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
12012 @opindex fprofile-arcs
12013 You may use @code{__builtin_expect} to provide the compiler with
12014 branch prediction information. In general, you should prefer to
12015 use actual profile feedback for this (@option{-fprofile-arcs}), as
12016 programmers are notoriously bad at predicting how their programs
12017 actually perform. However, there are applications in which this
12018 data is hard to collect.
12020 The return value is the value of @var{exp}, which should be an integral
12021 expression. The semantics of the built-in are that it is expected that
12022 @var{exp} == @var{c}. For example:
12025 if (__builtin_expect (x, 0))
12030 indicates that we do not expect to call @code{foo}, since
12031 we expect @code{x} to be zero. Since you are limited to integral
12032 expressions for @var{exp}, you should use constructions such as
12035 if (__builtin_expect (ptr != NULL, 1))
12040 when testing pointer or floating-point values.
12043 @deftypefn {Built-in Function} long __builtin_expect_with_probability
12044 (long @var{exp}, long @var{c}, double @var{probability})
12046 This function has the same semantics as @code{__builtin_expect},
12047 but the caller provides the expected probability that @var{exp} == @var{c}.
12048 The last argument, @var{probability}, is a floating-point value in the
12049 range 0.0 to 1.0, inclusive. The @var{probability} argument must be
12050 constant floating-point expression.
12053 @deftypefn {Built-in Function} void __builtin_trap (void)
12054 This function causes the program to exit abnormally. GCC implements
12055 this function by using a target-dependent mechanism (such as
12056 intentionally executing an illegal instruction) or by calling
12057 @code{abort}. The mechanism used may vary from release to release so
12058 you should not rely on any particular implementation.
12061 @deftypefn {Built-in Function} void __builtin_unreachable (void)
12062 If control flow reaches the point of the @code{__builtin_unreachable},
12063 the program is undefined. It is useful in situations where the
12064 compiler cannot deduce the unreachability of the code.
12066 One such case is immediately following an @code{asm} statement that
12067 either never terminates, or one that transfers control elsewhere
12068 and never returns. In this example, without the
12069 @code{__builtin_unreachable}, GCC issues a warning that control
12070 reaches the end of a non-void function. It also generates code
12071 to return after the @code{asm}.
12074 int f (int c, int v)
12082 asm("jmp error_handler");
12083 __builtin_unreachable ();
12089 Because the @code{asm} statement unconditionally transfers control out
12090 of the function, control never reaches the end of the function
12091 body. The @code{__builtin_unreachable} is in fact unreachable and
12092 communicates this fact to the compiler.
12094 Another use for @code{__builtin_unreachable} is following a call a
12095 function that never returns but that is not declared
12096 @code{__attribute__((noreturn))}, as in this example:
12099 void function_that_never_returns (void);
12109 function_that_never_returns ();
12110 __builtin_unreachable ();
12117 @deftypefn {Built-in Function} {void *} __builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
12118 This function returns its first argument, and allows the compiler
12119 to assume that the returned pointer is at least @var{align} bytes
12120 aligned. This built-in can have either two or three arguments,
12121 if it has three, the third argument should have integer type, and
12122 if it is nonzero means misalignment offset. For example:
12125 void *x = __builtin_assume_aligned (arg, 16);
12129 means that the compiler can assume @code{x}, set to @code{arg}, is at least
12130 16-byte aligned, while:
12133 void *x = __builtin_assume_aligned (arg, 32, 8);
12137 means that the compiler can assume for @code{x}, set to @code{arg}, that
12138 @code{(char *) x - 8} is 32-byte aligned.
12141 @deftypefn {Built-in Function} int __builtin_LINE ()
12142 This function is the equivalent of the preprocessor @code{__LINE__}
12143 macro and returns a constant integer expression that evaluates to
12144 the line number of the invocation of the built-in. When used as a C++
12145 default argument for a function @var{F}, it returns the line number
12146 of the call to @var{F}.
12149 @deftypefn {Built-in Function} {const char *} __builtin_FUNCTION ()
12150 This function is the equivalent of the @code{__FUNCTION__} symbol
12151 and returns an address constant pointing to the name of the function
12152 from which the built-in was invoked, or the empty string if
12153 the invocation is not at function scope. When used as a C++ default
12154 argument for a function @var{F}, it returns the name of @var{F}'s
12155 caller or the empty string if the call was not made at function
12159 @deftypefn {Built-in Function} {const char *} __builtin_FILE ()
12160 This function is the equivalent of the preprocessor @code{__FILE__}
12161 macro and returns an address constant pointing to the file name
12162 containing the invocation of the built-in, or the empty string if
12163 the invocation is not at function scope. When used as a C++ default
12164 argument for a function @var{F}, it returns the file name of the call
12165 to @var{F} or the empty string if the call was not made at function
12168 For example, in the following, each call to function @code{foo} will
12169 print a line similar to @code{"file.c:123: foo: message"} with the name
12170 of the file and the line number of the @code{printf} call, the name of
12171 the function @code{foo}, followed by the word @code{message}.
12175 function (const char *func = __builtin_FUNCTION ())
12182 printf ("%s:%i: %s: message\n", file (), line (), function ());
12188 @deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
12189 This function is used to flush the processor's instruction cache for
12190 the region of memory between @var{begin} inclusive and @var{end}
12191 exclusive. Some targets require that the instruction cache be
12192 flushed, after modifying memory containing code, in order to obtain
12193 deterministic behavior.
12195 If the target does not require instruction cache flushes,
12196 @code{__builtin___clear_cache} has no effect. Otherwise either
12197 instructions are emitted in-line to clear the instruction cache or a
12198 call to the @code{__clear_cache} function in libgcc is made.
12201 @deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
12202 This function is used to minimize cache-miss latency by moving data into
12203 a cache before it is accessed.
12204 You can insert calls to @code{__builtin_prefetch} into code for which
12205 you know addresses of data in memory that is likely to be accessed soon.
12206 If the target supports them, data prefetch instructions are generated.
12207 If the prefetch is done early enough before the access then the data will
12208 be in the cache by the time it is accessed.
12210 The value of @var{addr} is the address of the memory to prefetch.
12211 There are two optional arguments, @var{rw} and @var{locality}.
12212 The value of @var{rw} is a compile-time constant one or zero; one
12213 means that the prefetch is preparing for a write to the memory address
12214 and zero, the default, means that the prefetch is preparing for a read.
12215 The value @var{locality} must be a compile-time constant integer between
12216 zero and three. A value of zero means that the data has no temporal
12217 locality, so it need not be left in the cache after the access. A value
12218 of three means that the data has a high degree of temporal locality and
12219 should be left in all levels of cache possible. Values of one and two
12220 mean, respectively, a low or moderate degree of temporal locality. The
12224 for (i = 0; i < n; i++)
12226 a[i] = a[i] + b[i];
12227 __builtin_prefetch (&a[i+j], 1, 1);
12228 __builtin_prefetch (&b[i+j], 0, 1);
12233 Data prefetch does not generate faults if @var{addr} is invalid, but
12234 the address expression itself must be valid. For example, a prefetch
12235 of @code{p->next} does not fault if @code{p->next} is not a valid
12236 address, but evaluation faults if @code{p} is not a valid address.
12238 If the target does not support data prefetch, the address expression
12239 is evaluated if it includes side effects but no other code is generated
12240 and GCC does not issue a warning.
12243 @deftypefn {Built-in Function} double __builtin_huge_val (void)
12244 Returns a positive infinity, if supported by the floating-point format,
12245 else @code{DBL_MAX}. This function is suitable for implementing the
12246 ISO C macro @code{HUGE_VAL}.
12249 @deftypefn {Built-in Function} float __builtin_huge_valf (void)
12250 Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
12253 @deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
12254 Similar to @code{__builtin_huge_val}, except the return
12255 type is @code{long double}.
12258 @deftypefn {Built-in Function} _Float@var{n} __builtin_huge_valf@var{n} (void)
12259 Similar to @code{__builtin_huge_val}, except the return type is
12260 @code{_Float@var{n}}.
12263 @deftypefn {Built-in Function} _Float@var{n}x __builtin_huge_valf@var{n}x (void)
12264 Similar to @code{__builtin_huge_val}, except the return type is
12265 @code{_Float@var{n}x}.
12268 @deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
12269 This built-in implements the C99 fpclassify functionality. The first
12270 five int arguments should be the target library's notion of the
12271 possible FP classes and are used for return values. They must be
12272 constant values and they must appear in this order: @code{FP_NAN},
12273 @code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
12274 @code{FP_ZERO}. The ellipsis is for exactly one floating-point value
12275 to classify. GCC treats the last argument as type-generic, which
12276 means it does not do default promotion from float to double.
12279 @deftypefn {Built-in Function} double __builtin_inf (void)
12280 Similar to @code{__builtin_huge_val}, except a warning is generated
12281 if the target floating-point format does not support infinities.
12284 @deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
12285 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
12288 @deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
12289 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
12292 @deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
12293 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
12296 @deftypefn {Built-in Function} float __builtin_inff (void)
12297 Similar to @code{__builtin_inf}, except the return type is @code{float}.
12298 This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
12301 @deftypefn {Built-in Function} {long double} __builtin_infl (void)
12302 Similar to @code{__builtin_inf}, except the return
12303 type is @code{long double}.
12306 @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n} (void)
12307 Similar to @code{__builtin_inf}, except the return
12308 type is @code{_Float@var{n}}.
12311 @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n}x (void)
12312 Similar to @code{__builtin_inf}, except the return
12313 type is @code{_Float@var{n}x}.
12316 @deftypefn {Built-in Function} int __builtin_isinf_sign (...)
12317 Similar to @code{isinf}, except the return value is -1 for
12318 an argument of @code{-Inf} and 1 for an argument of @code{+Inf}.
12319 Note while the parameter list is an
12320 ellipsis, this function only accepts exactly one floating-point
12321 argument. GCC treats this parameter as type-generic, which means it
12322 does not do default promotion from float to double.
12325 @deftypefn {Built-in Function} double __builtin_nan (const char *str)
12326 This is an implementation of the ISO C99 function @code{nan}.
12328 Since ISO C99 defines this function in terms of @code{strtod}, which we
12329 do not implement, a description of the parsing is in order. The string
12330 is parsed as by @code{strtol}; that is, the base is recognized by
12331 leading @samp{0} or @samp{0x} prefixes. The number parsed is placed
12332 in the significand such that the least significant bit of the number
12333 is at the least significant bit of the significand. The number is
12334 truncated to fit the significand field provided. The significand is
12335 forced to be a quiet NaN@.
12337 This function, if given a string literal all of which would have been
12338 consumed by @code{strtol}, is evaluated early enough that it is considered a
12339 compile-time constant.
12342 @deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
12343 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
12346 @deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
12347 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
12350 @deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
12351 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
12354 @deftypefn {Built-in Function} float __builtin_nanf (const char *str)
12355 Similar to @code{__builtin_nan}, except the return type is @code{float}.
12358 @deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
12359 Similar to @code{__builtin_nan}, except the return type is @code{long double}.
12362 @deftypefn {Built-in Function} _Float@var{n} __builtin_nanf@var{n} (const char *str)
12363 Similar to @code{__builtin_nan}, except the return type is
12364 @code{_Float@var{n}}.
12367 @deftypefn {Built-in Function} _Float@var{n}x __builtin_nanf@var{n}x (const char *str)
12368 Similar to @code{__builtin_nan}, except the return type is
12369 @code{_Float@var{n}x}.
12372 @deftypefn {Built-in Function} double __builtin_nans (const char *str)
12373 Similar to @code{__builtin_nan}, except the significand is forced
12374 to be a signaling NaN@. The @code{nans} function is proposed by
12375 @uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
12378 @deftypefn {Built-in Function} float __builtin_nansf (const char *str)
12379 Similar to @code{__builtin_nans}, except the return type is @code{float}.
12382 @deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
12383 Similar to @code{__builtin_nans}, except the return type is @code{long double}.
12386 @deftypefn {Built-in Function} _Float@var{n} __builtin_nansf@var{n} (const char *str)
12387 Similar to @code{__builtin_nans}, except the return type is
12388 @code{_Float@var{n}}.
12391 @deftypefn {Built-in Function} _Float@var{n}x __builtin_nansf@var{n}x (const char *str)
12392 Similar to @code{__builtin_nans}, except the return type is
12393 @code{_Float@var{n}x}.
12396 @deftypefn {Built-in Function} int __builtin_ffs (int x)
12397 Returns one plus the index of the least significant 1-bit of @var{x}, or
12398 if @var{x} is zero, returns zero.
12401 @deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
12402 Returns the number of leading 0-bits in @var{x}, starting at the most
12403 significant bit position. If @var{x} is 0, the result is undefined.
12406 @deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
12407 Returns the number of trailing 0-bits in @var{x}, starting at the least
12408 significant bit position. If @var{x} is 0, the result is undefined.
12411 @deftypefn {Built-in Function} int __builtin_clrsb (int x)
12412 Returns the number of leading redundant sign bits in @var{x}, i.e.@: the
12413 number of bits following the most significant bit that are identical
12414 to it. There are no special cases for 0 or other values.
12417 @deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
12418 Returns the number of 1-bits in @var{x}.
12421 @deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
12422 Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
12426 @deftypefn {Built-in Function} int __builtin_ffsl (long)
12427 Similar to @code{__builtin_ffs}, except the argument type is
12431 @deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
12432 Similar to @code{__builtin_clz}, except the argument type is
12433 @code{unsigned long}.
12436 @deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
12437 Similar to @code{__builtin_ctz}, except the argument type is
12438 @code{unsigned long}.
12441 @deftypefn {Built-in Function} int __builtin_clrsbl (long)
12442 Similar to @code{__builtin_clrsb}, except the argument type is
12446 @deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
12447 Similar to @code{__builtin_popcount}, except the argument type is
12448 @code{unsigned long}.
12451 @deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
12452 Similar to @code{__builtin_parity}, except the argument type is
12453 @code{unsigned long}.
12456 @deftypefn {Built-in Function} int __builtin_ffsll (long long)
12457 Similar to @code{__builtin_ffs}, except the argument type is
12461 @deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
12462 Similar to @code{__builtin_clz}, except the argument type is
12463 @code{unsigned long long}.
12466 @deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
12467 Similar to @code{__builtin_ctz}, except the argument type is
12468 @code{unsigned long long}.
12471 @deftypefn {Built-in Function} int __builtin_clrsbll (long long)
12472 Similar to @code{__builtin_clrsb}, except the argument type is
12476 @deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
12477 Similar to @code{__builtin_popcount}, except the argument type is
12478 @code{unsigned long long}.
12481 @deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
12482 Similar to @code{__builtin_parity}, except the argument type is
12483 @code{unsigned long long}.
12486 @deftypefn {Built-in Function} double __builtin_powi (double, int)
12487 Returns the first argument raised to the power of the second. Unlike the
12488 @code{pow} function no guarantees about precision and rounding are made.
12491 @deftypefn {Built-in Function} float __builtin_powif (float, int)
12492 Similar to @code{__builtin_powi}, except the argument and return types
12496 @deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
12497 Similar to @code{__builtin_powi}, except the argument and return types
12498 are @code{long double}.
12501 @deftypefn {Built-in Function} uint16_t __builtin_bswap16 (uint16_t x)
12502 Returns @var{x} with the order of the bytes reversed; for example,
12503 @code{0xaabb} becomes @code{0xbbaa}. Byte here always means
12507 @deftypefn {Built-in Function} uint32_t __builtin_bswap32 (uint32_t x)
12508 Similar to @code{__builtin_bswap16}, except the argument and return types
12512 @deftypefn {Built-in Function} uint64_t __builtin_bswap64 (uint64_t x)
12513 Similar to @code{__builtin_bswap32}, except the argument and return types
12517 @deftypefn {Built-in Function} Pmode __builtin_extend_pointer (void * x)
12518 On targets where the user visible pointer size is smaller than the size
12519 of an actual hardware address this function returns the extended user
12520 pointer. Targets where this is true included ILP32 mode on x86_64 or
12521 Aarch64. This function is mainly useful when writing inline assembly
12525 @deftypefn {Built-in Function} int __builtin_goacc_parlevel_id (int x)
12526 Returns the openacc gang, worker or vector id depending on whether @var{x} is
12530 @deftypefn {Built-in Function} int __builtin_goacc_parlevel_size (int x)
12531 Returns the openacc gang, worker or vector size depending on whether @var{x} is
12535 @node Target Builtins
12536 @section Built-in Functions Specific to Particular Target Machines
12538 On some target machines, GCC supports many built-in functions specific
12539 to those machines. Generally these generate calls to specific machine
12540 instructions, but allow the compiler to schedule those calls.
12543 * AArch64 Built-in Functions::
12544 * Alpha Built-in Functions::
12545 * Altera Nios II Built-in Functions::
12546 * ARC Built-in Functions::
12547 * ARC SIMD Built-in Functions::
12548 * ARM iWMMXt Built-in Functions::
12549 * ARM C Language Extensions (ACLE)::
12550 * ARM Floating Point Status and Control Intrinsics::
12551 * ARM ARMv8-M Security Extensions::
12552 * AVR Built-in Functions::
12553 * Blackfin Built-in Functions::
12554 * FR-V Built-in Functions::
12555 * MIPS DSP Built-in Functions::
12556 * MIPS Paired-Single Support::
12557 * MIPS Loongson Built-in Functions::
12558 * MIPS SIMD Architecture (MSA) Support::
12559 * Other MIPS Built-in Functions::
12560 * MSP430 Built-in Functions::
12561 * NDS32 Built-in Functions::
12562 * picoChip Built-in Functions::
12563 * Basic PowerPC Built-in Functions::
12564 * PowerPC AltiVec/VSX Built-in Functions::
12565 * PowerPC Hardware Transactional Memory Built-in Functions::
12566 * PowerPC Atomic Memory Operation Functions::
12567 * RX Built-in Functions::
12568 * S/390 System z Built-in Functions::
12569 * SH Built-in Functions::
12570 * SPARC VIS Built-in Functions::
12571 * SPU Built-in Functions::
12572 * TI C6X Built-in Functions::
12573 * TILE-Gx Built-in Functions::
12574 * TILEPro Built-in Functions::
12575 * x86 Built-in Functions::
12576 * x86 transactional memory intrinsics::
12577 * x86 control-flow protection intrinsics::
12580 @node AArch64 Built-in Functions
12581 @subsection AArch64 Built-in Functions
12583 These built-in functions are available for the AArch64 family of
12586 unsigned int __builtin_aarch64_get_fpcr ()
12587 void __builtin_aarch64_set_fpcr (unsigned int)
12588 unsigned int __builtin_aarch64_get_fpsr ()
12589 void __builtin_aarch64_set_fpsr (unsigned int)
12592 @node Alpha Built-in Functions
12593 @subsection Alpha Built-in Functions
12595 These built-in functions are available for the Alpha family of
12596 processors, depending on the command-line switches used.
12598 The following built-in functions are always available. They
12599 all generate the machine instruction that is part of the name.
12602 long __builtin_alpha_implver (void)
12603 long __builtin_alpha_rpcc (void)
12604 long __builtin_alpha_amask (long)
12605 long __builtin_alpha_cmpbge (long, long)
12606 long __builtin_alpha_extbl (long, long)
12607 long __builtin_alpha_extwl (long, long)
12608 long __builtin_alpha_extll (long, long)
12609 long __builtin_alpha_extql (long, long)
12610 long __builtin_alpha_extwh (long, long)
12611 long __builtin_alpha_extlh (long, long)
12612 long __builtin_alpha_extqh (long, long)
12613 long __builtin_alpha_insbl (long, long)
12614 long __builtin_alpha_inswl (long, long)
12615 long __builtin_alpha_insll (long, long)
12616 long __builtin_alpha_insql (long, long)
12617 long __builtin_alpha_inswh (long, long)
12618 long __builtin_alpha_inslh (long, long)
12619 long __builtin_alpha_insqh (long, long)
12620 long __builtin_alpha_mskbl (long, long)
12621 long __builtin_alpha_mskwl (long, long)
12622 long __builtin_alpha_mskll (long, long)
12623 long __builtin_alpha_mskql (long, long)
12624 long __builtin_alpha_mskwh (long, long)
12625 long __builtin_alpha_msklh (long, long)
12626 long __builtin_alpha_mskqh (long, long)
12627 long __builtin_alpha_umulh (long, long)
12628 long __builtin_alpha_zap (long, long)
12629 long __builtin_alpha_zapnot (long, long)
12632 The following built-in functions are always with @option{-mmax}
12633 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
12634 later. They all generate the machine instruction that is part
12638 long __builtin_alpha_pklb (long)
12639 long __builtin_alpha_pkwb (long)
12640 long __builtin_alpha_unpkbl (long)
12641 long __builtin_alpha_unpkbw (long)
12642 long __builtin_alpha_minub8 (long, long)
12643 long __builtin_alpha_minsb8 (long, long)
12644 long __builtin_alpha_minuw4 (long, long)
12645 long __builtin_alpha_minsw4 (long, long)
12646 long __builtin_alpha_maxub8 (long, long)
12647 long __builtin_alpha_maxsb8 (long, long)
12648 long __builtin_alpha_maxuw4 (long, long)
12649 long __builtin_alpha_maxsw4 (long, long)
12650 long __builtin_alpha_perr (long, long)
12653 The following built-in functions are always with @option{-mcix}
12654 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
12655 later. They all generate the machine instruction that is part
12659 long __builtin_alpha_cttz (long)
12660 long __builtin_alpha_ctlz (long)
12661 long __builtin_alpha_ctpop (long)
12664 The following built-in functions are available on systems that use the OSF/1
12665 PALcode. Normally they invoke the @code{rduniq} and @code{wruniq}
12666 PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
12667 @code{rdval} and @code{wrval}.
12670 void *__builtin_thread_pointer (void)
12671 void __builtin_set_thread_pointer (void *)
12674 @node Altera Nios II Built-in Functions
12675 @subsection Altera Nios II Built-in Functions
12677 These built-in functions are available for the Altera Nios II
12678 family of processors.
12680 The following built-in functions are always available. They
12681 all generate the machine instruction that is part of the name.
12684 int __builtin_ldbio (volatile const void *)
12685 int __builtin_ldbuio (volatile const void *)
12686 int __builtin_ldhio (volatile const void *)
12687 int __builtin_ldhuio (volatile const void *)
12688 int __builtin_ldwio (volatile const void *)
12689 void __builtin_stbio (volatile void *, int)
12690 void __builtin_sthio (volatile void *, int)
12691 void __builtin_stwio (volatile void *, int)
12692 void __builtin_sync (void)
12693 int __builtin_rdctl (int)
12694 int __builtin_rdprs (int, int)
12695 void __builtin_wrctl (int, int)
12696 void __builtin_flushd (volatile void *)
12697 void __builtin_flushda (volatile void *)
12698 int __builtin_wrpie (int);
12699 void __builtin_eni (int);
12700 int __builtin_ldex (volatile const void *)
12701 int __builtin_stex (volatile void *, int)
12702 int __builtin_ldsex (volatile const void *)
12703 int __builtin_stsex (volatile void *, int)
12706 The following built-in functions are always available. They
12707 all generate a Nios II Custom Instruction. The name of the
12708 function represents the types that the function takes and
12709 returns. The letter before the @code{n} is the return type
12710 or void if absent. The @code{n} represents the first parameter
12711 to all the custom instructions, the custom instruction number.
12712 The two letters after the @code{n} represent the up to two
12713 parameters to the function.
12715 The letters represent the following data types:
12718 @code{void} for return type and no parameter for parameter types.
12721 @code{int} for return type and parameter type
12724 @code{float} for return type and parameter type
12727 @code{void *} for return type and parameter type
12731 And the function names are:
12733 void __builtin_custom_n (void)
12734 void __builtin_custom_ni (int)
12735 void __builtin_custom_nf (float)
12736 void __builtin_custom_np (void *)
12737 void __builtin_custom_nii (int, int)
12738 void __builtin_custom_nif (int, float)
12739 void __builtin_custom_nip (int, void *)
12740 void __builtin_custom_nfi (float, int)
12741 void __builtin_custom_nff (float, float)
12742 void __builtin_custom_nfp (float, void *)
12743 void __builtin_custom_npi (void *, int)
12744 void __builtin_custom_npf (void *, float)
12745 void __builtin_custom_npp (void *, void *)
12746 int __builtin_custom_in (void)
12747 int __builtin_custom_ini (int)
12748 int __builtin_custom_inf (float)
12749 int __builtin_custom_inp (void *)
12750 int __builtin_custom_inii (int, int)
12751 int __builtin_custom_inif (int, float)
12752 int __builtin_custom_inip (int, void *)
12753 int __builtin_custom_infi (float, int)
12754 int __builtin_custom_inff (float, float)
12755 int __builtin_custom_infp (float, void *)
12756 int __builtin_custom_inpi (void *, int)
12757 int __builtin_custom_inpf (void *, float)
12758 int __builtin_custom_inpp (void *, void *)
12759 float __builtin_custom_fn (void)
12760 float __builtin_custom_fni (int)
12761 float __builtin_custom_fnf (float)
12762 float __builtin_custom_fnp (void *)
12763 float __builtin_custom_fnii (int, int)
12764 float __builtin_custom_fnif (int, float)
12765 float __builtin_custom_fnip (int, void *)
12766 float __builtin_custom_fnfi (float, int)
12767 float __builtin_custom_fnff (float, float)
12768 float __builtin_custom_fnfp (float, void *)
12769 float __builtin_custom_fnpi (void *, int)
12770 float __builtin_custom_fnpf (void *, float)
12771 float __builtin_custom_fnpp (void *, void *)
12772 void * __builtin_custom_pn (void)
12773 void * __builtin_custom_pni (int)
12774 void * __builtin_custom_pnf (float)
12775 void * __builtin_custom_pnp (void *)
12776 void * __builtin_custom_pnii (int, int)
12777 void * __builtin_custom_pnif (int, float)
12778 void * __builtin_custom_pnip (int, void *)
12779 void * __builtin_custom_pnfi (float, int)
12780 void * __builtin_custom_pnff (float, float)
12781 void * __builtin_custom_pnfp (float, void *)
12782 void * __builtin_custom_pnpi (void *, int)
12783 void * __builtin_custom_pnpf (void *, float)
12784 void * __builtin_custom_pnpp (void *, void *)
12787 @node ARC Built-in Functions
12788 @subsection ARC Built-in Functions
12790 The following built-in functions are provided for ARC targets. The
12791 built-ins generate the corresponding assembly instructions. In the
12792 examples given below, the generated code often requires an operand or
12793 result to be in a register. Where necessary further code will be
12794 generated to ensure this is true, but for brevity this is not
12795 described in each case.
12797 @emph{Note:} Using a built-in to generate an instruction not supported
12798 by a target may cause problems. At present the compiler is not
12799 guaranteed to detect such misuse, and as a result an internal compiler
12800 error may be generated.
12802 @deftypefn {Built-in Function} int __builtin_arc_aligned (void *@var{val}, int @var{alignval})
12803 Return 1 if @var{val} is known to have the byte alignment given
12804 by @var{alignval}, otherwise return 0.
12805 Note that this is different from
12807 __alignof__(*(char *)@var{val}) >= alignval
12809 because __alignof__ sees only the type of the dereference, whereas
12810 __builtin_arc_align uses alignment information from the pointer
12811 as well as from the pointed-to type.
12812 The information available will depend on optimization level.
12815 @deftypefn {Built-in Function} void __builtin_arc_brk (void)
12822 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_core_read (unsigned int @var{regno})
12823 The operand is the number of a register to be read. Generates:
12825 mov @var{dest}, r@var{regno}
12827 where the value in @var{dest} will be the result returned from the
12831 @deftypefn {Built-in Function} void __builtin_arc_core_write (unsigned int @var{regno}, unsigned int @var{val})
12832 The first operand is the number of a register to be written, the
12833 second operand is a compile time constant to write into that
12834 register. Generates:
12836 mov r@var{regno}, @var{val}
12840 @deftypefn {Built-in Function} int __builtin_arc_divaw (int @var{a}, int @var{b})
12841 Only available if either @option{-mcpu=ARC700} or @option{-meA} is set.
12844 divaw @var{dest}, @var{a}, @var{b}
12846 where the value in @var{dest} will be the result returned from the
12850 @deftypefn {Built-in Function} void __builtin_arc_flag (unsigned int @var{a})
12857 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_lr (unsigned int @var{auxr})
12858 The operand, @var{auxv}, is the address of an auxiliary register and
12859 must be a compile time constant. Generates:
12861 lr @var{dest}, [@var{auxr}]
12863 Where the value in @var{dest} will be the result returned from the
12867 @deftypefn {Built-in Function} void __builtin_arc_mul64 (int @var{a}, int @var{b})
12868 Only available with @option{-mmul64}. Generates:
12870 mul64 @var{a}, @var{b}
12874 @deftypefn {Built-in Function} void __builtin_arc_mulu64 (unsigned int @var{a}, unsigned int @var{b})
12875 Only available with @option{-mmul64}. Generates:
12877 mulu64 @var{a}, @var{b}
12881 @deftypefn {Built-in Function} void __builtin_arc_nop (void)
12888 @deftypefn {Built-in Function} int __builtin_arc_norm (int @var{src})
12889 Only valid if the @samp{norm} instruction is available through the
12890 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
12893 norm @var{dest}, @var{src}
12895 Where the value in @var{dest} will be the result returned from the
12899 @deftypefn {Built-in Function} {short int} __builtin_arc_normw (short int @var{src})
12900 Only valid if the @samp{normw} instruction is available through the
12901 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
12904 normw @var{dest}, @var{src}
12906 Where the value in @var{dest} will be the result returned from the
12910 @deftypefn {Built-in Function} void __builtin_arc_rtie (void)
12917 @deftypefn {Built-in Function} void __builtin_arc_sleep (int @var{a}
12924 @deftypefn {Built-in Function} void __builtin_arc_sr (unsigned int @var{auxr}, unsigned int @var{val})
12925 The first argument, @var{auxv}, is the address of an auxiliary
12926 register, the second argument, @var{val}, is a compile time constant
12927 to be written to the register. Generates:
12929 sr @var{auxr}, [@var{val}]
12933 @deftypefn {Built-in Function} int __builtin_arc_swap (int @var{src})
12934 Only valid with @option{-mswap}. Generates:
12936 swap @var{dest}, @var{src}
12938 Where the value in @var{dest} will be the result returned from the
12942 @deftypefn {Built-in Function} void __builtin_arc_swi (void)
12949 @deftypefn {Built-in Function} void __builtin_arc_sync (void)
12950 Only available with @option{-mcpu=ARC700}. Generates:
12956 @deftypefn {Built-in Function} void __builtin_arc_trap_s (unsigned int @var{c})
12957 Only available with @option{-mcpu=ARC700}. Generates:
12963 @deftypefn {Built-in Function} void __builtin_arc_unimp_s (void)
12964 Only available with @option{-mcpu=ARC700}. Generates:
12970 The instructions generated by the following builtins are not
12971 considered as candidates for scheduling. They are not moved around by
12972 the compiler during scheduling, and thus can be expected to appear
12973 where they are put in the C code:
12975 __builtin_arc_brk()
12976 __builtin_arc_core_read()
12977 __builtin_arc_core_write()
12978 __builtin_arc_flag()
12980 __builtin_arc_sleep()
12982 __builtin_arc_swi()
12985 @node ARC SIMD Built-in Functions
12986 @subsection ARC SIMD Built-in Functions
12988 SIMD builtins provided by the compiler can be used to generate the
12989 vector instructions. This section describes the available builtins
12990 and their usage in programs. With the @option{-msimd} option, the
12991 compiler provides 128-bit vector types, which can be specified using
12992 the @code{vector_size} attribute. The header file @file{arc-simd.h}
12993 can be included to use the following predefined types:
12995 typedef int __v4si __attribute__((vector_size(16)));
12996 typedef short __v8hi __attribute__((vector_size(16)));
12999 These types can be used to define 128-bit variables. The built-in
13000 functions listed in the following section can be used on these
13001 variables to generate the vector operations.
13003 For all builtins, @code{__builtin_arc_@var{someinsn}}, the header file
13004 @file{arc-simd.h} also provides equivalent macros called
13005 @code{_@var{someinsn}} that can be used for programming ease and
13006 improved readability. The following macros for DMA control are also
13009 #define _setup_dma_in_channel_reg _vdiwr
13010 #define _setup_dma_out_channel_reg _vdowr
13013 The following is a complete list of all the SIMD built-ins provided
13014 for ARC, grouped by calling signature.
13016 The following take two @code{__v8hi} arguments and return a
13017 @code{__v8hi} result:
13019 __v8hi __builtin_arc_vaddaw (__v8hi, __v8hi)
13020 __v8hi __builtin_arc_vaddw (__v8hi, __v8hi)
13021 __v8hi __builtin_arc_vand (__v8hi, __v8hi)
13022 __v8hi __builtin_arc_vandaw (__v8hi, __v8hi)
13023 __v8hi __builtin_arc_vavb (__v8hi, __v8hi)
13024 __v8hi __builtin_arc_vavrb (__v8hi, __v8hi)
13025 __v8hi __builtin_arc_vbic (__v8hi, __v8hi)
13026 __v8hi __builtin_arc_vbicaw (__v8hi, __v8hi)
13027 __v8hi __builtin_arc_vdifaw (__v8hi, __v8hi)
13028 __v8hi __builtin_arc_vdifw (__v8hi, __v8hi)
13029 __v8hi __builtin_arc_veqw (__v8hi, __v8hi)
13030 __v8hi __builtin_arc_vh264f (__v8hi, __v8hi)
13031 __v8hi __builtin_arc_vh264ft (__v8hi, __v8hi)
13032 __v8hi __builtin_arc_vh264fw (__v8hi, __v8hi)
13033 __v8hi __builtin_arc_vlew (__v8hi, __v8hi)
13034 __v8hi __builtin_arc_vltw (__v8hi, __v8hi)
13035 __v8hi __builtin_arc_vmaxaw (__v8hi, __v8hi)
13036 __v8hi __builtin_arc_vmaxw (__v8hi, __v8hi)
13037 __v8hi __builtin_arc_vminaw (__v8hi, __v8hi)
13038 __v8hi __builtin_arc_vminw (__v8hi, __v8hi)
13039 __v8hi __builtin_arc_vmr1aw (__v8hi, __v8hi)
13040 __v8hi __builtin_arc_vmr1w (__v8hi, __v8hi)
13041 __v8hi __builtin_arc_vmr2aw (__v8hi, __v8hi)
13042 __v8hi __builtin_arc_vmr2w (__v8hi, __v8hi)
13043 __v8hi __builtin_arc_vmr3aw (__v8hi, __v8hi)
13044 __v8hi __builtin_arc_vmr3w (__v8hi, __v8hi)
13045 __v8hi __builtin_arc_vmr4aw (__v8hi, __v8hi)
13046 __v8hi __builtin_arc_vmr4w (__v8hi, __v8hi)
13047 __v8hi __builtin_arc_vmr5aw (__v8hi, __v8hi)
13048 __v8hi __builtin_arc_vmr5w (__v8hi, __v8hi)
13049 __v8hi __builtin_arc_vmr6aw (__v8hi, __v8hi)
13050 __v8hi __builtin_arc_vmr6w (__v8hi, __v8hi)
13051 __v8hi __builtin_arc_vmr7aw (__v8hi, __v8hi)
13052 __v8hi __builtin_arc_vmr7w (__v8hi, __v8hi)
13053 __v8hi __builtin_arc_vmrb (__v8hi, __v8hi)
13054 __v8hi __builtin_arc_vmulaw (__v8hi, __v8hi)
13055 __v8hi __builtin_arc_vmulfaw (__v8hi, __v8hi)
13056 __v8hi __builtin_arc_vmulfw (__v8hi, __v8hi)
13057 __v8hi __builtin_arc_vmulw (__v8hi, __v8hi)
13058 __v8hi __builtin_arc_vnew (__v8hi, __v8hi)
13059 __v8hi __builtin_arc_vor (__v8hi, __v8hi)
13060 __v8hi __builtin_arc_vsubaw (__v8hi, __v8hi)
13061 __v8hi __builtin_arc_vsubw (__v8hi, __v8hi)
13062 __v8hi __builtin_arc_vsummw (__v8hi, __v8hi)
13063 __v8hi __builtin_arc_vvc1f (__v8hi, __v8hi)
13064 __v8hi __builtin_arc_vvc1ft (__v8hi, __v8hi)
13065 __v8hi __builtin_arc_vxor (__v8hi, __v8hi)
13066 __v8hi __builtin_arc_vxoraw (__v8hi, __v8hi)
13069 The following take one @code{__v8hi} and one @code{int} argument and return a
13070 @code{__v8hi} result:
13073 __v8hi __builtin_arc_vbaddw (__v8hi, int)
13074 __v8hi __builtin_arc_vbmaxw (__v8hi, int)
13075 __v8hi __builtin_arc_vbminw (__v8hi, int)
13076 __v8hi __builtin_arc_vbmulaw (__v8hi, int)
13077 __v8hi __builtin_arc_vbmulfw (__v8hi, int)
13078 __v8hi __builtin_arc_vbmulw (__v8hi, int)
13079 __v8hi __builtin_arc_vbrsubw (__v8hi, int)
13080 __v8hi __builtin_arc_vbsubw (__v8hi, int)
13083 The following take one @code{__v8hi} argument and one @code{int} argument which
13084 must be a 3-bit compile time constant indicating a register number
13085 I0-I7. They return a @code{__v8hi} result.
13087 __v8hi __builtin_arc_vasrw (__v8hi, const int)
13088 __v8hi __builtin_arc_vsr8 (__v8hi, const int)
13089 __v8hi __builtin_arc_vsr8aw (__v8hi, const int)
13092 The following take one @code{__v8hi} argument and one @code{int}
13093 argument which must be a 6-bit compile time constant. They return a
13094 @code{__v8hi} result.
13096 __v8hi __builtin_arc_vasrpwbi (__v8hi, const int)
13097 __v8hi __builtin_arc_vasrrpwbi (__v8hi, const int)
13098 __v8hi __builtin_arc_vasrrwi (__v8hi, const int)
13099 __v8hi __builtin_arc_vasrsrwi (__v8hi, const int)
13100 __v8hi __builtin_arc_vasrwi (__v8hi, const int)
13101 __v8hi __builtin_arc_vsr8awi (__v8hi, const int)
13102 __v8hi __builtin_arc_vsr8i (__v8hi, const int)
13105 The following take one @code{__v8hi} argument and one @code{int} argument which
13106 must be a 8-bit compile time constant. They return a @code{__v8hi}
13109 __v8hi __builtin_arc_vd6tapf (__v8hi, const int)
13110 __v8hi __builtin_arc_vmvaw (__v8hi, const int)
13111 __v8hi __builtin_arc_vmvw (__v8hi, const int)
13112 __v8hi __builtin_arc_vmvzw (__v8hi, const int)
13115 The following take two @code{int} arguments, the second of which which
13116 must be a 8-bit compile time constant. They return a @code{__v8hi}
13119 __v8hi __builtin_arc_vmovaw (int, const int)
13120 __v8hi __builtin_arc_vmovw (int, const int)
13121 __v8hi __builtin_arc_vmovzw (int, const int)
13124 The following take a single @code{__v8hi} argument and return a
13125 @code{__v8hi} result:
13127 __v8hi __builtin_arc_vabsaw (__v8hi)
13128 __v8hi __builtin_arc_vabsw (__v8hi)
13129 __v8hi __builtin_arc_vaddsuw (__v8hi)
13130 __v8hi __builtin_arc_vexch1 (__v8hi)
13131 __v8hi __builtin_arc_vexch2 (__v8hi)
13132 __v8hi __builtin_arc_vexch4 (__v8hi)
13133 __v8hi __builtin_arc_vsignw (__v8hi)
13134 __v8hi __builtin_arc_vupbaw (__v8hi)
13135 __v8hi __builtin_arc_vupbw (__v8hi)
13136 __v8hi __builtin_arc_vupsbaw (__v8hi)
13137 __v8hi __builtin_arc_vupsbw (__v8hi)
13140 The following take two @code{int} arguments and return no result:
13142 void __builtin_arc_vdirun (int, int)
13143 void __builtin_arc_vdorun (int, int)
13146 The following take two @code{int} arguments and return no result. The
13147 first argument must a 3-bit compile time constant indicating one of
13148 the DR0-DR7 DMA setup channels:
13150 void __builtin_arc_vdiwr (const int, int)
13151 void __builtin_arc_vdowr (const int, int)
13154 The following take an @code{int} argument and return no result:
13156 void __builtin_arc_vendrec (int)
13157 void __builtin_arc_vrec (int)
13158 void __builtin_arc_vrecrun (int)
13159 void __builtin_arc_vrun (int)
13162 The following take a @code{__v8hi} argument and two @code{int}
13163 arguments and return a @code{__v8hi} result. The second argument must
13164 be a 3-bit compile time constants, indicating one the registers I0-I7,
13165 and the third argument must be an 8-bit compile time constant.
13167 @emph{Note:} Although the equivalent hardware instructions do not take
13168 an SIMD register as an operand, these builtins overwrite the relevant
13169 bits of the @code{__v8hi} register provided as the first argument with
13170 the value loaded from the @code{[Ib, u8]} location in the SDM.
13173 __v8hi __builtin_arc_vld32 (__v8hi, const int, const int)
13174 __v8hi __builtin_arc_vld32wh (__v8hi, const int, const int)
13175 __v8hi __builtin_arc_vld32wl (__v8hi, const int, const int)
13176 __v8hi __builtin_arc_vld64 (__v8hi, const int, const int)
13179 The following take two @code{int} arguments and return a @code{__v8hi}
13180 result. The first argument must be a 3-bit compile time constants,
13181 indicating one the registers I0-I7, and the second argument must be an
13182 8-bit compile time constant.
13185 __v8hi __builtin_arc_vld128 (const int, const int)
13186 __v8hi __builtin_arc_vld64w (const int, const int)
13189 The following take a @code{__v8hi} argument and two @code{int}
13190 arguments and return no result. The second argument must be a 3-bit
13191 compile time constants, indicating one the registers I0-I7, and the
13192 third argument must be an 8-bit compile time constant.
13195 void __builtin_arc_vst128 (__v8hi, const int, const int)
13196 void __builtin_arc_vst64 (__v8hi, const int, const int)
13199 The following take a @code{__v8hi} argument and three @code{int}
13200 arguments and return no result. The second argument must be a 3-bit
13201 compile-time constant, identifying the 16-bit sub-register to be
13202 stored, the third argument must be a 3-bit compile time constants,
13203 indicating one the registers I0-I7, and the fourth argument must be an
13204 8-bit compile time constant.
13207 void __builtin_arc_vst16_n (__v8hi, const int, const int, const int)
13208 void __builtin_arc_vst32_n (__v8hi, const int, const int, const int)
13211 @node ARM iWMMXt Built-in Functions
13212 @subsection ARM iWMMXt Built-in Functions
13214 These built-in functions are available for the ARM family of
13215 processors when the @option{-mcpu=iwmmxt} switch is used:
13218 typedef int v2si __attribute__ ((vector_size (8)));
13219 typedef short v4hi __attribute__ ((vector_size (8)));
13220 typedef char v8qi __attribute__ ((vector_size (8)));
13222 int __builtin_arm_getwcgr0 (void)
13223 void __builtin_arm_setwcgr0 (int)
13224 int __builtin_arm_getwcgr1 (void)
13225 void __builtin_arm_setwcgr1 (int)
13226 int __builtin_arm_getwcgr2 (void)
13227 void __builtin_arm_setwcgr2 (int)
13228 int __builtin_arm_getwcgr3 (void)
13229 void __builtin_arm_setwcgr3 (int)
13230 int __builtin_arm_textrmsb (v8qi, int)
13231 int __builtin_arm_textrmsh (v4hi, int)
13232 int __builtin_arm_textrmsw (v2si, int)
13233 int __builtin_arm_textrmub (v8qi, int)
13234 int __builtin_arm_textrmuh (v4hi, int)
13235 int __builtin_arm_textrmuw (v2si, int)
13236 v8qi __builtin_arm_tinsrb (v8qi, int, int)
13237 v4hi __builtin_arm_tinsrh (v4hi, int, int)
13238 v2si __builtin_arm_tinsrw (v2si, int, int)
13239 long long __builtin_arm_tmia (long long, int, int)
13240 long long __builtin_arm_tmiabb (long long, int, int)
13241 long long __builtin_arm_tmiabt (long long, int, int)
13242 long long __builtin_arm_tmiaph (long long, int, int)
13243 long long __builtin_arm_tmiatb (long long, int, int)
13244 long long __builtin_arm_tmiatt (long long, int, int)
13245 int __builtin_arm_tmovmskb (v8qi)
13246 int __builtin_arm_tmovmskh (v4hi)
13247 int __builtin_arm_tmovmskw (v2si)
13248 long long __builtin_arm_waccb (v8qi)
13249 long long __builtin_arm_wacch (v4hi)
13250 long long __builtin_arm_waccw (v2si)
13251 v8qi __builtin_arm_waddb (v8qi, v8qi)
13252 v8qi __builtin_arm_waddbss (v8qi, v8qi)
13253 v8qi __builtin_arm_waddbus (v8qi, v8qi)
13254 v4hi __builtin_arm_waddh (v4hi, v4hi)
13255 v4hi __builtin_arm_waddhss (v4hi, v4hi)
13256 v4hi __builtin_arm_waddhus (v4hi, v4hi)
13257 v2si __builtin_arm_waddw (v2si, v2si)
13258 v2si __builtin_arm_waddwss (v2si, v2si)
13259 v2si __builtin_arm_waddwus (v2si, v2si)
13260 v8qi __builtin_arm_walign (v8qi, v8qi, int)
13261 long long __builtin_arm_wand(long long, long long)
13262 long long __builtin_arm_wandn (long long, long long)
13263 v8qi __builtin_arm_wavg2b (v8qi, v8qi)
13264 v8qi __builtin_arm_wavg2br (v8qi, v8qi)
13265 v4hi __builtin_arm_wavg2h (v4hi, v4hi)
13266 v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
13267 v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
13268 v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
13269 v2si __builtin_arm_wcmpeqw (v2si, v2si)
13270 v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
13271 v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
13272 v2si __builtin_arm_wcmpgtsw (v2si, v2si)
13273 v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
13274 v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
13275 v2si __builtin_arm_wcmpgtuw (v2si, v2si)
13276 long long __builtin_arm_wmacs (long long, v4hi, v4hi)
13277 long long __builtin_arm_wmacsz (v4hi, v4hi)
13278 long long __builtin_arm_wmacu (long long, v4hi, v4hi)
13279 long long __builtin_arm_wmacuz (v4hi, v4hi)
13280 v4hi __builtin_arm_wmadds (v4hi, v4hi)
13281 v4hi __builtin_arm_wmaddu (v4hi, v4hi)
13282 v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
13283 v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
13284 v2si __builtin_arm_wmaxsw (v2si, v2si)
13285 v8qi __builtin_arm_wmaxub (v8qi, v8qi)
13286 v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
13287 v2si __builtin_arm_wmaxuw (v2si, v2si)
13288 v8qi __builtin_arm_wminsb (v8qi, v8qi)
13289 v4hi __builtin_arm_wminsh (v4hi, v4hi)
13290 v2si __builtin_arm_wminsw (v2si, v2si)
13291 v8qi __builtin_arm_wminub (v8qi, v8qi)
13292 v4hi __builtin_arm_wminuh (v4hi, v4hi)
13293 v2si __builtin_arm_wminuw (v2si, v2si)
13294 v4hi __builtin_arm_wmulsm (v4hi, v4hi)
13295 v4hi __builtin_arm_wmulul (v4hi, v4hi)
13296 v4hi __builtin_arm_wmulum (v4hi, v4hi)
13297 long long __builtin_arm_wor (long long, long long)
13298 v2si __builtin_arm_wpackdss (long long, long long)
13299 v2si __builtin_arm_wpackdus (long long, long long)
13300 v8qi __builtin_arm_wpackhss (v4hi, v4hi)
13301 v8qi __builtin_arm_wpackhus (v4hi, v4hi)
13302 v4hi __builtin_arm_wpackwss (v2si, v2si)
13303 v4hi __builtin_arm_wpackwus (v2si, v2si)
13304 long long __builtin_arm_wrord (long long, long long)
13305 long long __builtin_arm_wrordi (long long, int)
13306 v4hi __builtin_arm_wrorh (v4hi, long long)
13307 v4hi __builtin_arm_wrorhi (v4hi, int)
13308 v2si __builtin_arm_wrorw (v2si, long long)
13309 v2si __builtin_arm_wrorwi (v2si, int)
13310 v2si __builtin_arm_wsadb (v2si, v8qi, v8qi)
13311 v2si __builtin_arm_wsadbz (v8qi, v8qi)
13312 v2si __builtin_arm_wsadh (v2si, v4hi, v4hi)
13313 v2si __builtin_arm_wsadhz (v4hi, v4hi)
13314 v4hi __builtin_arm_wshufh (v4hi, int)
13315 long long __builtin_arm_wslld (long long, long long)
13316 long long __builtin_arm_wslldi (long long, int)
13317 v4hi __builtin_arm_wsllh (v4hi, long long)
13318 v4hi __builtin_arm_wsllhi (v4hi, int)
13319 v2si __builtin_arm_wsllw (v2si, long long)
13320 v2si __builtin_arm_wsllwi (v2si, int)
13321 long long __builtin_arm_wsrad (long long, long long)
13322 long long __builtin_arm_wsradi (long long, int)
13323 v4hi __builtin_arm_wsrah (v4hi, long long)
13324 v4hi __builtin_arm_wsrahi (v4hi, int)
13325 v2si __builtin_arm_wsraw (v2si, long long)
13326 v2si __builtin_arm_wsrawi (v2si, int)
13327 long long __builtin_arm_wsrld (long long, long long)
13328 long long __builtin_arm_wsrldi (long long, int)
13329 v4hi __builtin_arm_wsrlh (v4hi, long long)
13330 v4hi __builtin_arm_wsrlhi (v4hi, int)
13331 v2si __builtin_arm_wsrlw (v2si, long long)
13332 v2si __builtin_arm_wsrlwi (v2si, int)
13333 v8qi __builtin_arm_wsubb (v8qi, v8qi)
13334 v8qi __builtin_arm_wsubbss (v8qi, v8qi)
13335 v8qi __builtin_arm_wsubbus (v8qi, v8qi)
13336 v4hi __builtin_arm_wsubh (v4hi, v4hi)
13337 v4hi __builtin_arm_wsubhss (v4hi, v4hi)
13338 v4hi __builtin_arm_wsubhus (v4hi, v4hi)
13339 v2si __builtin_arm_wsubw (v2si, v2si)
13340 v2si __builtin_arm_wsubwss (v2si, v2si)
13341 v2si __builtin_arm_wsubwus (v2si, v2si)
13342 v4hi __builtin_arm_wunpckehsb (v8qi)
13343 v2si __builtin_arm_wunpckehsh (v4hi)
13344 long long __builtin_arm_wunpckehsw (v2si)
13345 v4hi __builtin_arm_wunpckehub (v8qi)
13346 v2si __builtin_arm_wunpckehuh (v4hi)
13347 long long __builtin_arm_wunpckehuw (v2si)
13348 v4hi __builtin_arm_wunpckelsb (v8qi)
13349 v2si __builtin_arm_wunpckelsh (v4hi)
13350 long long __builtin_arm_wunpckelsw (v2si)
13351 v4hi __builtin_arm_wunpckelub (v8qi)
13352 v2si __builtin_arm_wunpckeluh (v4hi)
13353 long long __builtin_arm_wunpckeluw (v2si)
13354 v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
13355 v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
13356 v2si __builtin_arm_wunpckihw (v2si, v2si)
13357 v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
13358 v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
13359 v2si __builtin_arm_wunpckilw (v2si, v2si)
13360 long long __builtin_arm_wxor (long long, long long)
13361 long long __builtin_arm_wzero ()
13365 @node ARM C Language Extensions (ACLE)
13366 @subsection ARM C Language Extensions (ACLE)
13368 GCC implements extensions for C as described in the ARM C Language
13369 Extensions (ACLE) specification, which can be found at
13370 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf}.
13372 As a part of ACLE, GCC implements extensions for Advanced SIMD as described in
13373 the ARM C Language Extensions Specification. The complete list of Advanced SIMD
13374 intrinsics can be found at
13375 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf}.
13376 The built-in intrinsics for the Advanced SIMD extension are available when
13379 Currently, ARM and AArch64 back ends do not support ACLE 2.0 fully. Both
13380 back ends support CRC32 intrinsics and the ARM back end supports the
13381 Coprocessor intrinsics, all from @file{arm_acle.h}. The ARM back end's 16-bit
13382 floating-point Advanced SIMD intrinsics currently comply to ACLE v1.1.
13383 AArch64's back end does not have support for 16-bit floating point Advanced SIMD
13386 See @ref{ARM Options} and @ref{AArch64 Options} for more information on the
13387 availability of extensions.
13389 @node ARM Floating Point Status and Control Intrinsics
13390 @subsection ARM Floating Point Status and Control Intrinsics
13392 These built-in functions are available for the ARM family of
13393 processors with floating-point unit.
13396 unsigned int __builtin_arm_get_fpscr ()
13397 void __builtin_arm_set_fpscr (unsigned int)
13400 @node ARM ARMv8-M Security Extensions
13401 @subsection ARM ARMv8-M Security Extensions
13403 GCC implements the ARMv8-M Security Extensions as described in the ARMv8-M
13404 Security Extensions: Requirements on Development Tools Engineering
13405 Specification, which can be found at
13406 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
13408 As part of the Security Extensions GCC implements two new function attributes:
13409 @code{cmse_nonsecure_entry} and @code{cmse_nonsecure_call}.
13411 As part of the Security Extensions GCC implements the intrinsics below. FPTR
13412 is used here to mean any function pointer type.
13415 cmse_address_info_t cmse_TT (void *)
13416 cmse_address_info_t cmse_TT_fptr (FPTR)
13417 cmse_address_info_t cmse_TTT (void *)
13418 cmse_address_info_t cmse_TTT_fptr (FPTR)
13419 cmse_address_info_t cmse_TTA (void *)
13420 cmse_address_info_t cmse_TTA_fptr (FPTR)
13421 cmse_address_info_t cmse_TTAT (void *)
13422 cmse_address_info_t cmse_TTAT_fptr (FPTR)
13423 void * cmse_check_address_range (void *, size_t, int)
13424 typeof(p) cmse_nsfptr_create (FPTR p)
13425 intptr_t cmse_is_nsfptr (FPTR)
13426 int cmse_nonsecure_caller (void)
13429 @node AVR Built-in Functions
13430 @subsection AVR Built-in Functions
13432 For each built-in function for AVR, there is an equally named,
13433 uppercase built-in macro defined. That way users can easily query if
13434 or if not a specific built-in is implemented or not. For example, if
13435 @code{__builtin_avr_nop} is available the macro
13436 @code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
13440 @item void __builtin_avr_nop (void)
13441 @itemx void __builtin_avr_sei (void)
13442 @itemx void __builtin_avr_cli (void)
13443 @itemx void __builtin_avr_sleep (void)
13444 @itemx void __builtin_avr_wdr (void)
13445 @itemx unsigned char __builtin_avr_swap (unsigned char)
13446 @itemx unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
13447 @itemx int __builtin_avr_fmuls (char, char)
13448 @itemx int __builtin_avr_fmulsu (char, unsigned char)
13449 These built-in functions map to the respective machine
13450 instruction, i.e.@: @code{nop}, @code{sei}, @code{cli}, @code{sleep},
13451 @code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
13452 resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
13453 as library call if no hardware multiplier is available.
13455 @item void __builtin_avr_delay_cycles (unsigned long ticks)
13456 Delay execution for @var{ticks} cycles. Note that this
13457 built-in does not take into account the effect of interrupts that
13458 might increase delay time. @var{ticks} must be a compile-time
13459 integer constant; delays with a variable number of cycles are not supported.
13461 @item char __builtin_avr_flash_segment (const __memx void*)
13462 This built-in takes a byte address to the 24-bit
13463 @ref{AVR Named Address Spaces,address space} @code{__memx} and returns
13464 the number of the flash segment (the 64 KiB chunk) where the address
13465 points to. Counting starts at @code{0}.
13466 If the address does not point to flash memory, return @code{-1}.
13468 @item uint8_t __builtin_avr_insert_bits (uint32_t map, uint8_t bits, uint8_t val)
13469 Insert bits from @var{bits} into @var{val} and return the resulting
13470 value. The nibbles of @var{map} determine how the insertion is
13471 performed: Let @var{X} be the @var{n}-th nibble of @var{map}
13473 @item If @var{X} is @code{0xf},
13474 then the @var{n}-th bit of @var{val} is returned unaltered.
13476 @item If X is in the range 0@dots{}7,
13477 then the @var{n}-th result bit is set to the @var{X}-th bit of @var{bits}
13479 @item If X is in the range 8@dots{}@code{0xe},
13480 then the @var{n}-th result bit is undefined.
13484 One typical use case for this built-in is adjusting input and
13485 output values to non-contiguous port layouts. Some examples:
13488 // same as val, bits is unused
13489 __builtin_avr_insert_bits (0xffffffff, bits, val)
13493 // same as bits, val is unused
13494 __builtin_avr_insert_bits (0x76543210, bits, val)
13498 // same as rotating bits by 4
13499 __builtin_avr_insert_bits (0x32107654, bits, 0)
13503 // high nibble of result is the high nibble of val
13504 // low nibble of result is the low nibble of bits
13505 __builtin_avr_insert_bits (0xffff3210, bits, val)
13509 // reverse the bit order of bits
13510 __builtin_avr_insert_bits (0x01234567, bits, 0)
13513 @item void __builtin_avr_nops (unsigned count)
13514 Insert @var{count} @code{NOP} instructions.
13515 The number of instructions must be a compile-time integer constant.
13520 There are many more AVR-specific built-in functions that are used to
13521 implement the ISO/IEC TR 18037 ``Embedded C'' fixed-point functions of
13522 section 7.18a.6. You don't need to use these built-ins directly.
13523 Instead, use the declarations as supplied by the @code{stdfix.h} header
13527 #include <stdfix.h>
13529 // Re-interpret the bit representation of unsigned 16-bit
13530 // integer @var{uval} as Q-format 0.16 value.
13531 unsigned fract get_bits (uint_ur_t uval)
13533 return urbits (uval);
13537 @node Blackfin Built-in Functions
13538 @subsection Blackfin Built-in Functions
13540 Currently, there are two Blackfin-specific built-in functions. These are
13541 used for generating @code{CSYNC} and @code{SSYNC} machine insns without
13542 using inline assembly; by using these built-in functions the compiler can
13543 automatically add workarounds for hardware errata involving these
13544 instructions. These functions are named as follows:
13547 void __builtin_bfin_csync (void)
13548 void __builtin_bfin_ssync (void)
13551 @node FR-V Built-in Functions
13552 @subsection FR-V Built-in Functions
13554 GCC provides many FR-V-specific built-in functions. In general,
13555 these functions are intended to be compatible with those described
13556 by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
13557 Semiconductor}. The two exceptions are @code{__MDUNPACKH} and
13558 @code{__MBTOHE}, the GCC forms of which pass 128-bit values by
13559 pointer rather than by value.
13561 Most of the functions are named after specific FR-V instructions.
13562 Such functions are said to be ``directly mapped'' and are summarized
13563 here in tabular form.
13567 * Directly-mapped Integer Functions::
13568 * Directly-mapped Media Functions::
13569 * Raw read/write Functions::
13570 * Other Built-in Functions::
13573 @node Argument Types
13574 @subsubsection Argument Types
13576 The arguments to the built-in functions can be divided into three groups:
13577 register numbers, compile-time constants and run-time values. In order
13578 to make this classification clear at a glance, the arguments and return
13579 values are given the following pseudo types:
13581 @multitable @columnfractions .20 .30 .15 .35
13582 @item Pseudo type @tab Real C type @tab Constant? @tab Description
13583 @item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
13584 @item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
13585 @item @code{sw1} @tab @code{int} @tab No @tab a signed word
13586 @item @code{uw2} @tab @code{unsigned long long} @tab No
13587 @tab an unsigned doubleword
13588 @item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
13589 @item @code{const} @tab @code{int} @tab Yes @tab an integer constant
13590 @item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
13591 @item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
13594 These pseudo types are not defined by GCC, they are simply a notational
13595 convenience used in this manual.
13597 Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
13598 and @code{sw2} are evaluated at run time. They correspond to
13599 register operands in the underlying FR-V instructions.
13601 @code{const} arguments represent immediate operands in the underlying
13602 FR-V instructions. They must be compile-time constants.
13604 @code{acc} arguments are evaluated at compile time and specify the number
13605 of an accumulator register. For example, an @code{acc} argument of 2
13606 selects the ACC2 register.
13608 @code{iacc} arguments are similar to @code{acc} arguments but specify the
13609 number of an IACC register. See @pxref{Other Built-in Functions}
13612 @node Directly-mapped Integer Functions
13613 @subsubsection Directly-Mapped Integer Functions
13615 The functions listed below map directly to FR-V I-type instructions.
13617 @multitable @columnfractions .45 .32 .23
13618 @item Function prototype @tab Example usage @tab Assembly output
13619 @item @code{sw1 __ADDSS (sw1, sw1)}
13620 @tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
13621 @tab @code{ADDSS @var{a},@var{b},@var{c}}
13622 @item @code{sw1 __SCAN (sw1, sw1)}
13623 @tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
13624 @tab @code{SCAN @var{a},@var{b},@var{c}}
13625 @item @code{sw1 __SCUTSS (sw1)}
13626 @tab @code{@var{b} = __SCUTSS (@var{a})}
13627 @tab @code{SCUTSS @var{a},@var{b}}
13628 @item @code{sw1 __SLASS (sw1, sw1)}
13629 @tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
13630 @tab @code{SLASS @var{a},@var{b},@var{c}}
13631 @item @code{void __SMASS (sw1, sw1)}
13632 @tab @code{__SMASS (@var{a}, @var{b})}
13633 @tab @code{SMASS @var{a},@var{b}}
13634 @item @code{void __SMSSS (sw1, sw1)}
13635 @tab @code{__SMSSS (@var{a}, @var{b})}
13636 @tab @code{SMSSS @var{a},@var{b}}
13637 @item @code{void __SMU (sw1, sw1)}
13638 @tab @code{__SMU (@var{a}, @var{b})}
13639 @tab @code{SMU @var{a},@var{b}}
13640 @item @code{sw2 __SMUL (sw1, sw1)}
13641 @tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
13642 @tab @code{SMUL @var{a},@var{b},@var{c}}
13643 @item @code{sw1 __SUBSS (sw1, sw1)}
13644 @tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
13645 @tab @code{SUBSS @var{a},@var{b},@var{c}}
13646 @item @code{uw2 __UMUL (uw1, uw1)}
13647 @tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
13648 @tab @code{UMUL @var{a},@var{b},@var{c}}
13651 @node Directly-mapped Media Functions
13652 @subsubsection Directly-Mapped Media Functions
13654 The functions listed below map directly to FR-V M-type instructions.
13656 @multitable @columnfractions .45 .32 .23
13657 @item Function prototype @tab Example usage @tab Assembly output
13658 @item @code{uw1 __MABSHS (sw1)}
13659 @tab @code{@var{b} = __MABSHS (@var{a})}
13660 @tab @code{MABSHS @var{a},@var{b}}
13661 @item @code{void __MADDACCS (acc, acc)}
13662 @tab @code{__MADDACCS (@var{b}, @var{a})}
13663 @tab @code{MADDACCS @var{a},@var{b}}
13664 @item @code{sw1 __MADDHSS (sw1, sw1)}
13665 @tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
13666 @tab @code{MADDHSS @var{a},@var{b},@var{c}}
13667 @item @code{uw1 __MADDHUS (uw1, uw1)}
13668 @tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
13669 @tab @code{MADDHUS @var{a},@var{b},@var{c}}
13670 @item @code{uw1 __MAND (uw1, uw1)}
13671 @tab @code{@var{c} = __MAND (@var{a}, @var{b})}
13672 @tab @code{MAND @var{a},@var{b},@var{c}}
13673 @item @code{void __MASACCS (acc, acc)}
13674 @tab @code{__MASACCS (@var{b}, @var{a})}
13675 @tab @code{MASACCS @var{a},@var{b}}
13676 @item @code{uw1 __MAVEH (uw1, uw1)}
13677 @tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
13678 @tab @code{MAVEH @var{a},@var{b},@var{c}}
13679 @item @code{uw2 __MBTOH (uw1)}
13680 @tab @code{@var{b} = __MBTOH (@var{a})}
13681 @tab @code{MBTOH @var{a},@var{b}}
13682 @item @code{void __MBTOHE (uw1 *, uw1)}
13683 @tab @code{__MBTOHE (&@var{b}, @var{a})}
13684 @tab @code{MBTOHE @var{a},@var{b}}
13685 @item @code{void __MCLRACC (acc)}
13686 @tab @code{__MCLRACC (@var{a})}
13687 @tab @code{MCLRACC @var{a}}
13688 @item @code{void __MCLRACCA (void)}
13689 @tab @code{__MCLRACCA ()}
13690 @tab @code{MCLRACCA}
13691 @item @code{uw1 __Mcop1 (uw1, uw1)}
13692 @tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
13693 @tab @code{Mcop1 @var{a},@var{b},@var{c}}
13694 @item @code{uw1 __Mcop2 (uw1, uw1)}
13695 @tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
13696 @tab @code{Mcop2 @var{a},@var{b},@var{c}}
13697 @item @code{uw1 __MCPLHI (uw2, const)}
13698 @tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
13699 @tab @code{MCPLHI @var{a},#@var{b},@var{c}}
13700 @item @code{uw1 __MCPLI (uw2, const)}
13701 @tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
13702 @tab @code{MCPLI @var{a},#@var{b},@var{c}}
13703 @item @code{void __MCPXIS (acc, sw1, sw1)}
13704 @tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
13705 @tab @code{MCPXIS @var{a},@var{b},@var{c}}
13706 @item @code{void __MCPXIU (acc, uw1, uw1)}
13707 @tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
13708 @tab @code{MCPXIU @var{a},@var{b},@var{c}}
13709 @item @code{void __MCPXRS (acc, sw1, sw1)}
13710 @tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
13711 @tab @code{MCPXRS @var{a},@var{b},@var{c}}
13712 @item @code{void __MCPXRU (acc, uw1, uw1)}
13713 @tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
13714 @tab @code{MCPXRU @var{a},@var{b},@var{c}}
13715 @item @code{uw1 __MCUT (acc, uw1)}
13716 @tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
13717 @tab @code{MCUT @var{a},@var{b},@var{c}}
13718 @item @code{uw1 __MCUTSS (acc, sw1)}
13719 @tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
13720 @tab @code{MCUTSS @var{a},@var{b},@var{c}}
13721 @item @code{void __MDADDACCS (acc, acc)}
13722 @tab @code{__MDADDACCS (@var{b}, @var{a})}
13723 @tab @code{MDADDACCS @var{a},@var{b}}
13724 @item @code{void __MDASACCS (acc, acc)}
13725 @tab @code{__MDASACCS (@var{b}, @var{a})}
13726 @tab @code{MDASACCS @var{a},@var{b}}
13727 @item @code{uw2 __MDCUTSSI (acc, const)}
13728 @tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
13729 @tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
13730 @item @code{uw2 __MDPACKH (uw2, uw2)}
13731 @tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
13732 @tab @code{MDPACKH @var{a},@var{b},@var{c}}
13733 @item @code{uw2 __MDROTLI (uw2, const)}
13734 @tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
13735 @tab @code{MDROTLI @var{a},#@var{b},@var{c}}
13736 @item @code{void __MDSUBACCS (acc, acc)}
13737 @tab @code{__MDSUBACCS (@var{b}, @var{a})}
13738 @tab @code{MDSUBACCS @var{a},@var{b}}
13739 @item @code{void __MDUNPACKH (uw1 *, uw2)}
13740 @tab @code{__MDUNPACKH (&@var{b}, @var{a})}
13741 @tab @code{MDUNPACKH @var{a},@var{b}}
13742 @item @code{uw2 __MEXPDHD (uw1, const)}
13743 @tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
13744 @tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
13745 @item @code{uw1 __MEXPDHW (uw1, const)}
13746 @tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
13747 @tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
13748 @item @code{uw1 __MHDSETH (uw1, const)}
13749 @tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
13750 @tab @code{MHDSETH @var{a},#@var{b},@var{c}}
13751 @item @code{sw1 __MHDSETS (const)}
13752 @tab @code{@var{b} = __MHDSETS (@var{a})}
13753 @tab @code{MHDSETS #@var{a},@var{b}}
13754 @item @code{uw1 __MHSETHIH (uw1, const)}
13755 @tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
13756 @tab @code{MHSETHIH #@var{a},@var{b}}
13757 @item @code{sw1 __MHSETHIS (sw1, const)}
13758 @tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
13759 @tab @code{MHSETHIS #@var{a},@var{b}}
13760 @item @code{uw1 __MHSETLOH (uw1, const)}
13761 @tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
13762 @tab @code{MHSETLOH #@var{a},@var{b}}
13763 @item @code{sw1 __MHSETLOS (sw1, const)}
13764 @tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
13765 @tab @code{MHSETLOS #@var{a},@var{b}}
13766 @item @code{uw1 __MHTOB (uw2)}
13767 @tab @code{@var{b} = __MHTOB (@var{a})}
13768 @tab @code{MHTOB @var{a},@var{b}}
13769 @item @code{void __MMACHS (acc, sw1, sw1)}
13770 @tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
13771 @tab @code{MMACHS @var{a},@var{b},@var{c}}
13772 @item @code{void __MMACHU (acc, uw1, uw1)}
13773 @tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
13774 @tab @code{MMACHU @var{a},@var{b},@var{c}}
13775 @item @code{void __MMRDHS (acc, sw1, sw1)}
13776 @tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
13777 @tab @code{MMRDHS @var{a},@var{b},@var{c}}
13778 @item @code{void __MMRDHU (acc, uw1, uw1)}
13779 @tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
13780 @tab @code{MMRDHU @var{a},@var{b},@var{c}}
13781 @item @code{void __MMULHS (acc, sw1, sw1)}
13782 @tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
13783 @tab @code{MMULHS @var{a},@var{b},@var{c}}
13784 @item @code{void __MMULHU (acc, uw1, uw1)}
13785 @tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
13786 @tab @code{MMULHU @var{a},@var{b},@var{c}}
13787 @item @code{void __MMULXHS (acc, sw1, sw1)}
13788 @tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
13789 @tab @code{MMULXHS @var{a},@var{b},@var{c}}
13790 @item @code{void __MMULXHU (acc, uw1, uw1)}
13791 @tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
13792 @tab @code{MMULXHU @var{a},@var{b},@var{c}}
13793 @item @code{uw1 __MNOT (uw1)}
13794 @tab @code{@var{b} = __MNOT (@var{a})}
13795 @tab @code{MNOT @var{a},@var{b}}
13796 @item @code{uw1 __MOR (uw1, uw1)}
13797 @tab @code{@var{c} = __MOR (@var{a}, @var{b})}
13798 @tab @code{MOR @var{a},@var{b},@var{c}}
13799 @item @code{uw1 __MPACKH (uh, uh)}
13800 @tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
13801 @tab @code{MPACKH @var{a},@var{b},@var{c}}
13802 @item @code{sw2 __MQADDHSS (sw2, sw2)}
13803 @tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
13804 @tab @code{MQADDHSS @var{a},@var{b},@var{c}}
13805 @item @code{uw2 __MQADDHUS (uw2, uw2)}
13806 @tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
13807 @tab @code{MQADDHUS @var{a},@var{b},@var{c}}
13808 @item @code{void __MQCPXIS (acc, sw2, sw2)}
13809 @tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
13810 @tab @code{MQCPXIS @var{a},@var{b},@var{c}}
13811 @item @code{void __MQCPXIU (acc, uw2, uw2)}
13812 @tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
13813 @tab @code{MQCPXIU @var{a},@var{b},@var{c}}
13814 @item @code{void __MQCPXRS (acc, sw2, sw2)}
13815 @tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
13816 @tab @code{MQCPXRS @var{a},@var{b},@var{c}}
13817 @item @code{void __MQCPXRU (acc, uw2, uw2)}
13818 @tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
13819 @tab @code{MQCPXRU @var{a},@var{b},@var{c}}
13820 @item @code{sw2 __MQLCLRHS (sw2, sw2)}
13821 @tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
13822 @tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
13823 @item @code{sw2 __MQLMTHS (sw2, sw2)}
13824 @tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
13825 @tab @code{MQLMTHS @var{a},@var{b},@var{c}}
13826 @item @code{void __MQMACHS (acc, sw2, sw2)}
13827 @tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
13828 @tab @code{MQMACHS @var{a},@var{b},@var{c}}
13829 @item @code{void __MQMACHU (acc, uw2, uw2)}
13830 @tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
13831 @tab @code{MQMACHU @var{a},@var{b},@var{c}}
13832 @item @code{void __MQMACXHS (acc, sw2, sw2)}
13833 @tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
13834 @tab @code{MQMACXHS @var{a},@var{b},@var{c}}
13835 @item @code{void __MQMULHS (acc, sw2, sw2)}
13836 @tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
13837 @tab @code{MQMULHS @var{a},@var{b},@var{c}}
13838 @item @code{void __MQMULHU (acc, uw2, uw2)}
13839 @tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
13840 @tab @code{MQMULHU @var{a},@var{b},@var{c}}
13841 @item @code{void __MQMULXHS (acc, sw2, sw2)}
13842 @tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
13843 @tab @code{MQMULXHS @var{a},@var{b},@var{c}}
13844 @item @code{void __MQMULXHU (acc, uw2, uw2)}
13845 @tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
13846 @tab @code{MQMULXHU @var{a},@var{b},@var{c}}
13847 @item @code{sw2 __MQSATHS (sw2, sw2)}
13848 @tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
13849 @tab @code{MQSATHS @var{a},@var{b},@var{c}}
13850 @item @code{uw2 __MQSLLHI (uw2, int)}
13851 @tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
13852 @tab @code{MQSLLHI @var{a},@var{b},@var{c}}
13853 @item @code{sw2 __MQSRAHI (sw2, int)}
13854 @tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
13855 @tab @code{MQSRAHI @var{a},@var{b},@var{c}}
13856 @item @code{sw2 __MQSUBHSS (sw2, sw2)}
13857 @tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
13858 @tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
13859 @item @code{uw2 __MQSUBHUS (uw2, uw2)}
13860 @tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
13861 @tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
13862 @item @code{void __MQXMACHS (acc, sw2, sw2)}
13863 @tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
13864 @tab @code{MQXMACHS @var{a},@var{b},@var{c}}
13865 @item @code{void __MQXMACXHS (acc, sw2, sw2)}
13866 @tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
13867 @tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
13868 @item @code{uw1 __MRDACC (acc)}
13869 @tab @code{@var{b} = __MRDACC (@var{a})}
13870 @tab @code{MRDACC @var{a},@var{b}}
13871 @item @code{uw1 __MRDACCG (acc)}
13872 @tab @code{@var{b} = __MRDACCG (@var{a})}
13873 @tab @code{MRDACCG @var{a},@var{b}}
13874 @item @code{uw1 __MROTLI (uw1, const)}
13875 @tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
13876 @tab @code{MROTLI @var{a},#@var{b},@var{c}}
13877 @item @code{uw1 __MROTRI (uw1, const)}
13878 @tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
13879 @tab @code{MROTRI @var{a},#@var{b},@var{c}}
13880 @item @code{sw1 __MSATHS (sw1, sw1)}
13881 @tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
13882 @tab @code{MSATHS @var{a},@var{b},@var{c}}
13883 @item @code{uw1 __MSATHU (uw1, uw1)}
13884 @tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
13885 @tab @code{MSATHU @var{a},@var{b},@var{c}}
13886 @item @code{uw1 __MSLLHI (uw1, const)}
13887 @tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
13888 @tab @code{MSLLHI @var{a},#@var{b},@var{c}}
13889 @item @code{sw1 __MSRAHI (sw1, const)}
13890 @tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
13891 @tab @code{MSRAHI @var{a},#@var{b},@var{c}}
13892 @item @code{uw1 __MSRLHI (uw1, const)}
13893 @tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
13894 @tab @code{MSRLHI @var{a},#@var{b},@var{c}}
13895 @item @code{void __MSUBACCS (acc, acc)}
13896 @tab @code{__MSUBACCS (@var{b}, @var{a})}
13897 @tab @code{MSUBACCS @var{a},@var{b}}
13898 @item @code{sw1 __MSUBHSS (sw1, sw1)}
13899 @tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
13900 @tab @code{MSUBHSS @var{a},@var{b},@var{c}}
13901 @item @code{uw1 __MSUBHUS (uw1, uw1)}
13902 @tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
13903 @tab @code{MSUBHUS @var{a},@var{b},@var{c}}
13904 @item @code{void __MTRAP (void)}
13905 @tab @code{__MTRAP ()}
13907 @item @code{uw2 __MUNPACKH (uw1)}
13908 @tab @code{@var{b} = __MUNPACKH (@var{a})}
13909 @tab @code{MUNPACKH @var{a},@var{b}}
13910 @item @code{uw1 __MWCUT (uw2, uw1)}
13911 @tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
13912 @tab @code{MWCUT @var{a},@var{b},@var{c}}
13913 @item @code{void __MWTACC (acc, uw1)}
13914 @tab @code{__MWTACC (@var{b}, @var{a})}
13915 @tab @code{MWTACC @var{a},@var{b}}
13916 @item @code{void __MWTACCG (acc, uw1)}
13917 @tab @code{__MWTACCG (@var{b}, @var{a})}
13918 @tab @code{MWTACCG @var{a},@var{b}}
13919 @item @code{uw1 __MXOR (uw1, uw1)}
13920 @tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
13921 @tab @code{MXOR @var{a},@var{b},@var{c}}
13924 @node Raw read/write Functions
13925 @subsubsection Raw Read/Write Functions
13927 This sections describes built-in functions related to read and write
13928 instructions to access memory. These functions generate
13929 @code{membar} instructions to flush the I/O load and stores where
13930 appropriate, as described in Fujitsu's manual described above.
13934 @item unsigned char __builtin_read8 (void *@var{data})
13935 @item unsigned short __builtin_read16 (void *@var{data})
13936 @item unsigned long __builtin_read32 (void *@var{data})
13937 @item unsigned long long __builtin_read64 (void *@var{data})
13939 @item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
13940 @item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
13941 @item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
13942 @item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
13945 @node Other Built-in Functions
13946 @subsubsection Other Built-in Functions
13948 This section describes built-in functions that are not named after
13949 a specific FR-V instruction.
13952 @item sw2 __IACCreadll (iacc @var{reg})
13953 Return the full 64-bit value of IACC0@. The @var{reg} argument is reserved
13954 for future expansion and must be 0.
13956 @item sw1 __IACCreadl (iacc @var{reg})
13957 Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
13958 Other values of @var{reg} are rejected as invalid.
13960 @item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
13961 Set the full 64-bit value of IACC0 to @var{x}. The @var{reg} argument
13962 is reserved for future expansion and must be 0.
13964 @item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
13965 Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
13966 is 1. Other values of @var{reg} are rejected as invalid.
13968 @item void __data_prefetch0 (const void *@var{x})
13969 Use the @code{dcpl} instruction to load the contents of address @var{x}
13970 into the data cache.
13972 @item void __data_prefetch (const void *@var{x})
13973 Use the @code{nldub} instruction to load the contents of address @var{x}
13974 into the data cache. The instruction is issued in slot I1@.
13977 @node MIPS DSP Built-in Functions
13978 @subsection MIPS DSP Built-in Functions
13980 The MIPS DSP Application-Specific Extension (ASE) includes new
13981 instructions that are designed to improve the performance of DSP and
13982 media applications. It provides instructions that operate on packed
13983 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
13985 GCC supports MIPS DSP operations using both the generic
13986 vector extensions (@pxref{Vector Extensions}) and a collection of
13987 MIPS-specific built-in functions. Both kinds of support are
13988 enabled by the @option{-mdsp} command-line option.
13990 Revision 2 of the ASE was introduced in the second half of 2006.
13991 This revision adds extra instructions to the original ASE, but is
13992 otherwise backwards-compatible with it. You can select revision 2
13993 using the command-line option @option{-mdspr2}; this option implies
13996 The SCOUNT and POS bits of the DSP control register are global. The
13997 WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
13998 POS bits. During optimization, the compiler does not delete these
13999 instructions and it does not delete calls to functions containing
14000 these instructions.
14002 At present, GCC only provides support for operations on 32-bit
14003 vectors. The vector type associated with 8-bit integer data is
14004 usually called @code{v4i8}, the vector type associated with Q7
14005 is usually called @code{v4q7}, the vector type associated with 16-bit
14006 integer data is usually called @code{v2i16}, and the vector type
14007 associated with Q15 is usually called @code{v2q15}. They can be
14008 defined in C as follows:
14011 typedef signed char v4i8 __attribute__ ((vector_size(4)));
14012 typedef signed char v4q7 __attribute__ ((vector_size(4)));
14013 typedef short v2i16 __attribute__ ((vector_size(4)));
14014 typedef short v2q15 __attribute__ ((vector_size(4)));
14017 @code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
14018 initialized in the same way as aggregates. For example:
14021 v4i8 a = @{1, 2, 3, 4@};
14023 b = (v4i8) @{5, 6, 7, 8@};
14025 v2q15 c = @{0x0fcb, 0x3a75@};
14027 d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
14030 @emph{Note:} The CPU's endianness determines the order in which values
14031 are packed. On little-endian targets, the first value is the least
14032 significant and the last value is the most significant. The opposite
14033 order applies to big-endian targets. For example, the code above
14034 sets the lowest byte of @code{a} to @code{1} on little-endian targets
14035 and @code{4} on big-endian targets.
14037 @emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
14038 representation. As shown in this example, the integer representation
14039 of a Q7 value can be obtained by multiplying the fractional value by
14040 @code{0x1.0p7}. The equivalent for Q15 values is to multiply by
14041 @code{0x1.0p15}. The equivalent for Q31 values is to multiply by
14044 The table below lists the @code{v4i8} and @code{v2q15} operations for which
14045 hardware support exists. @code{a} and @code{b} are @code{v4i8} values,
14046 and @code{c} and @code{d} are @code{v2q15} values.
14048 @multitable @columnfractions .50 .50
14049 @item C code @tab MIPS instruction
14050 @item @code{a + b} @tab @code{addu.qb}
14051 @item @code{c + d} @tab @code{addq.ph}
14052 @item @code{a - b} @tab @code{subu.qb}
14053 @item @code{c - d} @tab @code{subq.ph}
14056 The table below lists the @code{v2i16} operation for which
14057 hardware support exists for the DSP ASE REV 2. @code{e} and @code{f} are
14058 @code{v2i16} values.
14060 @multitable @columnfractions .50 .50
14061 @item C code @tab MIPS instruction
14062 @item @code{e * f} @tab @code{mul.ph}
14065 It is easier to describe the DSP built-in functions if we first define
14066 the following types:
14071 typedef unsigned int ui32;
14072 typedef long long a64;
14075 @code{q31} and @code{i32} are actually the same as @code{int}, but we
14076 use @code{q31} to indicate a Q31 fractional value and @code{i32} to
14077 indicate a 32-bit integer value. Similarly, @code{a64} is the same as
14078 @code{long long}, but we use @code{a64} to indicate values that are
14079 placed in one of the four DSP accumulators (@code{$ac0},
14080 @code{$ac1}, @code{$ac2} or @code{$ac3}).
14082 Also, some built-in functions prefer or require immediate numbers as
14083 parameters, because the corresponding DSP instructions accept both immediate
14084 numbers and register operands, or accept immediate numbers only. The
14085 immediate parameters are listed as follows.
14093 imm0_255: 0 to 255.
14094 imm_n32_31: -32 to 31.
14095 imm_n512_511: -512 to 511.
14098 The following built-in functions map directly to a particular MIPS DSP
14099 instruction. Please refer to the architecture specification
14100 for details on what each instruction does.
14103 v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
14104 v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
14105 q31 __builtin_mips_addq_s_w (q31, q31)
14106 v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
14107 v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
14108 v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
14109 v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
14110 q31 __builtin_mips_subq_s_w (q31, q31)
14111 v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
14112 v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
14113 i32 __builtin_mips_addsc (i32, i32)
14114 i32 __builtin_mips_addwc (i32, i32)
14115 i32 __builtin_mips_modsub (i32, i32)
14116 i32 __builtin_mips_raddu_w_qb (v4i8)
14117 v2q15 __builtin_mips_absq_s_ph (v2q15)
14118 q31 __builtin_mips_absq_s_w (q31)
14119 v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
14120 v2q15 __builtin_mips_precrq_ph_w (q31, q31)
14121 v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
14122 v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
14123 q31 __builtin_mips_preceq_w_phl (v2q15)
14124 q31 __builtin_mips_preceq_w_phr (v2q15)
14125 v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
14126 v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
14127 v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
14128 v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
14129 v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
14130 v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
14131 v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
14132 v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
14133 v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
14134 v4i8 __builtin_mips_shll_qb (v4i8, i32)
14135 v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
14136 v2q15 __builtin_mips_shll_ph (v2q15, i32)
14137 v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
14138 v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
14139 q31 __builtin_mips_shll_s_w (q31, imm0_31)
14140 q31 __builtin_mips_shll_s_w (q31, i32)
14141 v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
14142 v4i8 __builtin_mips_shrl_qb (v4i8, i32)
14143 v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
14144 v2q15 __builtin_mips_shra_ph (v2q15, i32)
14145 v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
14146 v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
14147 q31 __builtin_mips_shra_r_w (q31, imm0_31)
14148 q31 __builtin_mips_shra_r_w (q31, i32)
14149 v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
14150 v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
14151 v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
14152 q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
14153 q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
14154 a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
14155 a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
14156 a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
14157 a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
14158 a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
14159 a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
14160 a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
14161 a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
14162 a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
14163 a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
14164 a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
14165 a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
14166 a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
14167 i32 __builtin_mips_bitrev (i32)
14168 i32 __builtin_mips_insv (i32, i32)
14169 v4i8 __builtin_mips_repl_qb (imm0_255)
14170 v4i8 __builtin_mips_repl_qb (i32)
14171 v2q15 __builtin_mips_repl_ph (imm_n512_511)
14172 v2q15 __builtin_mips_repl_ph (i32)
14173 void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
14174 void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
14175 void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
14176 i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
14177 i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
14178 i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
14179 void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
14180 void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
14181 void __builtin_mips_cmp_le_ph (v2q15, v2q15)
14182 v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
14183 v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
14184 v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
14185 i32 __builtin_mips_extr_w (a64, imm0_31)
14186 i32 __builtin_mips_extr_w (a64, i32)
14187 i32 __builtin_mips_extr_r_w (a64, imm0_31)
14188 i32 __builtin_mips_extr_s_h (a64, i32)
14189 i32 __builtin_mips_extr_rs_w (a64, imm0_31)
14190 i32 __builtin_mips_extr_rs_w (a64, i32)
14191 i32 __builtin_mips_extr_s_h (a64, imm0_31)
14192 i32 __builtin_mips_extr_r_w (a64, i32)
14193 i32 __builtin_mips_extp (a64, imm0_31)
14194 i32 __builtin_mips_extp (a64, i32)
14195 i32 __builtin_mips_extpdp (a64, imm0_31)
14196 i32 __builtin_mips_extpdp (a64, i32)
14197 a64 __builtin_mips_shilo (a64, imm_n32_31)
14198 a64 __builtin_mips_shilo (a64, i32)
14199 a64 __builtin_mips_mthlip (a64, i32)
14200 void __builtin_mips_wrdsp (i32, imm0_63)
14201 i32 __builtin_mips_rddsp (imm0_63)
14202 i32 __builtin_mips_lbux (void *, i32)
14203 i32 __builtin_mips_lhx (void *, i32)
14204 i32 __builtin_mips_lwx (void *, i32)
14205 a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
14206 i32 __builtin_mips_bposge32 (void)
14207 a64 __builtin_mips_madd (a64, i32, i32);
14208 a64 __builtin_mips_maddu (a64, ui32, ui32);
14209 a64 __builtin_mips_msub (a64, i32, i32);
14210 a64 __builtin_mips_msubu (a64, ui32, ui32);
14211 a64 __builtin_mips_mult (i32, i32);
14212 a64 __builtin_mips_multu (ui32, ui32);
14215 The following built-in functions map directly to a particular MIPS DSP REV 2
14216 instruction. Please refer to the architecture specification
14217 for details on what each instruction does.
14220 v4q7 __builtin_mips_absq_s_qb (v4q7);
14221 v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
14222 v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
14223 v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
14224 v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
14225 i32 __builtin_mips_append (i32, i32, imm0_31);
14226 i32 __builtin_mips_balign (i32, i32, imm0_3);
14227 i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
14228 i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
14229 i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
14230 a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
14231 a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
14232 v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
14233 v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
14234 q31 __builtin_mips_mulq_rs_w (q31, q31);
14235 v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
14236 q31 __builtin_mips_mulq_s_w (q31, q31);
14237 a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
14238 v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
14239 v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
14240 v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
14241 i32 __builtin_mips_prepend (i32, i32, imm0_31);
14242 v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
14243 v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
14244 v4i8 __builtin_mips_shra_qb (v4i8, i32);
14245 v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
14246 v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
14247 v2i16 __builtin_mips_shrl_ph (v2i16, i32);
14248 v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
14249 v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
14250 v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
14251 v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
14252 v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
14253 v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
14254 q31 __builtin_mips_addqh_w (q31, q31);
14255 q31 __builtin_mips_addqh_r_w (q31, q31);
14256 v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
14257 v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
14258 q31 __builtin_mips_subqh_w (q31, q31);
14259 q31 __builtin_mips_subqh_r_w (q31, q31);
14260 a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
14261 a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
14262 a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
14263 a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
14264 a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
14265 a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
14269 @node MIPS Paired-Single Support
14270 @subsection MIPS Paired-Single Support
14272 The MIPS64 architecture includes a number of instructions that
14273 operate on pairs of single-precision floating-point values.
14274 Each pair is packed into a 64-bit floating-point register,
14275 with one element being designated the ``upper half'' and
14276 the other being designated the ``lower half''.
14278 GCC supports paired-single operations using both the generic
14279 vector extensions (@pxref{Vector Extensions}) and a collection of
14280 MIPS-specific built-in functions. Both kinds of support are
14281 enabled by the @option{-mpaired-single} command-line option.
14283 The vector type associated with paired-single values is usually
14284 called @code{v2sf}. It can be defined in C as follows:
14287 typedef float v2sf __attribute__ ((vector_size (8)));
14290 @code{v2sf} values are initialized in the same way as aggregates.
14294 v2sf a = @{1.5, 9.1@};
14297 b = (v2sf) @{e, f@};
14300 @emph{Note:} The CPU's endianness determines which value is stored in
14301 the upper half of a register and which value is stored in the lower half.
14302 On little-endian targets, the first value is the lower one and the second
14303 value is the upper one. The opposite order applies to big-endian targets.
14304 For example, the code above sets the lower half of @code{a} to
14305 @code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
14307 @node MIPS Loongson Built-in Functions
14308 @subsection MIPS Loongson Built-in Functions
14310 GCC provides intrinsics to access the SIMD instructions provided by the
14311 ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
14312 available after inclusion of the @code{loongson.h} header file,
14313 operate on the following 64-bit vector types:
14316 @item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
14317 @item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
14318 @item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
14319 @item @code{int8x8_t}, a vector of eight signed 8-bit integers;
14320 @item @code{int16x4_t}, a vector of four signed 16-bit integers;
14321 @item @code{int32x2_t}, a vector of two signed 32-bit integers.
14324 The intrinsics provided are listed below; each is named after the
14325 machine instruction to which it corresponds, with suffixes added as
14326 appropriate to distinguish intrinsics that expand to the same machine
14327 instruction yet have different argument types. Refer to the architecture
14328 documentation for a description of the functionality of each
14332 int16x4_t packsswh (int32x2_t s, int32x2_t t);
14333 int8x8_t packsshb (int16x4_t s, int16x4_t t);
14334 uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
14335 uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
14336 uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
14337 uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
14338 int32x2_t paddw_s (int32x2_t s, int32x2_t t);
14339 int16x4_t paddh_s (int16x4_t s, int16x4_t t);
14340 int8x8_t paddb_s (int8x8_t s, int8x8_t t);
14341 uint64_t paddd_u (uint64_t s, uint64_t t);
14342 int64_t paddd_s (int64_t s, int64_t t);
14343 int16x4_t paddsh (int16x4_t s, int16x4_t t);
14344 int8x8_t paddsb (int8x8_t s, int8x8_t t);
14345 uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
14346 uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
14347 uint64_t pandn_ud (uint64_t s, uint64_t t);
14348 uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
14349 uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
14350 uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
14351 int64_t pandn_sd (int64_t s, int64_t t);
14352 int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
14353 int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
14354 int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
14355 uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
14356 uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
14357 uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
14358 uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
14359 uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
14360 int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
14361 int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
14362 int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
14363 uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
14364 uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
14365 uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
14366 int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
14367 int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
14368 int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
14369 uint16x4_t pextrh_u (uint16x4_t s, int field);
14370 int16x4_t pextrh_s (int16x4_t s, int field);
14371 uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
14372 uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
14373 uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
14374 uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
14375 int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
14376 int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
14377 int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
14378 int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
14379 int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
14380 int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
14381 uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
14382 int16x4_t pminsh (int16x4_t s, int16x4_t t);
14383 uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
14384 uint8x8_t pmovmskb_u (uint8x8_t s);
14385 int8x8_t pmovmskb_s (int8x8_t s);
14386 uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
14387 int16x4_t pmulhh (int16x4_t s, int16x4_t t);
14388 int16x4_t pmullh (int16x4_t s, int16x4_t t);
14389 int64_t pmuluw (uint32x2_t s, uint32x2_t t);
14390 uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
14391 uint16x4_t biadd (uint8x8_t s);
14392 uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
14393 uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
14394 int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
14395 uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
14396 int16x4_t psllh_s (int16x4_t s, uint8_t amount);
14397 uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
14398 int32x2_t psllw_s (int32x2_t s, uint8_t amount);
14399 uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
14400 int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
14401 uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
14402 int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
14403 uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
14404 int16x4_t psrah_s (int16x4_t s, uint8_t amount);
14405 uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
14406 int32x2_t psraw_s (int32x2_t s, uint8_t amount);
14407 uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
14408 uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
14409 uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
14410 int32x2_t psubw_s (int32x2_t s, int32x2_t t);
14411 int16x4_t psubh_s (int16x4_t s, int16x4_t t);
14412 int8x8_t psubb_s (int8x8_t s, int8x8_t t);
14413 uint64_t psubd_u (uint64_t s, uint64_t t);
14414 int64_t psubd_s (int64_t s, int64_t t);
14415 int16x4_t psubsh (int16x4_t s, int16x4_t t);
14416 int8x8_t psubsb (int8x8_t s, int8x8_t t);
14417 uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
14418 uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
14419 uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
14420 uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
14421 uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
14422 int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
14423 int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
14424 int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
14425 uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
14426 uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
14427 uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
14428 int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
14429 int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
14430 int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
14434 * Paired-Single Arithmetic::
14435 * Paired-Single Built-in Functions::
14436 * MIPS-3D Built-in Functions::
14439 @node Paired-Single Arithmetic
14440 @subsubsection Paired-Single Arithmetic
14442 The table below lists the @code{v2sf} operations for which hardware
14443 support exists. @code{a}, @code{b} and @code{c} are @code{v2sf}
14444 values and @code{x} is an integral value.
14446 @multitable @columnfractions .50 .50
14447 @item C code @tab MIPS instruction
14448 @item @code{a + b} @tab @code{add.ps}
14449 @item @code{a - b} @tab @code{sub.ps}
14450 @item @code{-a} @tab @code{neg.ps}
14451 @item @code{a * b} @tab @code{mul.ps}
14452 @item @code{a * b + c} @tab @code{madd.ps}
14453 @item @code{a * b - c} @tab @code{msub.ps}
14454 @item @code{-(a * b + c)} @tab @code{nmadd.ps}
14455 @item @code{-(a * b - c)} @tab @code{nmsub.ps}
14456 @item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
14459 Note that the multiply-accumulate instructions can be disabled
14460 using the command-line option @code{-mno-fused-madd}.
14462 @node Paired-Single Built-in Functions
14463 @subsubsection Paired-Single Built-in Functions
14465 The following paired-single functions map directly to a particular
14466 MIPS instruction. Please refer to the architecture specification
14467 for details on what each instruction does.
14470 @item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
14471 Pair lower lower (@code{pll.ps}).
14473 @item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
14474 Pair upper lower (@code{pul.ps}).
14476 @item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
14477 Pair lower upper (@code{plu.ps}).
14479 @item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
14480 Pair upper upper (@code{puu.ps}).
14482 @item v2sf __builtin_mips_cvt_ps_s (float, float)
14483 Convert pair to paired single (@code{cvt.ps.s}).
14485 @item float __builtin_mips_cvt_s_pl (v2sf)
14486 Convert pair lower to single (@code{cvt.s.pl}).
14488 @item float __builtin_mips_cvt_s_pu (v2sf)
14489 Convert pair upper to single (@code{cvt.s.pu}).
14491 @item v2sf __builtin_mips_abs_ps (v2sf)
14492 Absolute value (@code{abs.ps}).
14494 @item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
14495 Align variable (@code{alnv.ps}).
14497 @emph{Note:} The value of the third parameter must be 0 or 4
14498 modulo 8, otherwise the result is unpredictable. Please read the
14499 instruction description for details.
14502 The following multi-instruction functions are also available.
14503 In each case, @var{cond} can be any of the 16 floating-point conditions:
14504 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
14505 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
14506 @code{lt}, @code{nge}, @code{le} or @code{ngt}.
14509 @item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14510 @itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14511 Conditional move based on floating-point comparison (@code{c.@var{cond}.ps},
14512 @code{movt.ps}/@code{movf.ps}).
14514 The @code{movt} functions return the value @var{x} computed by:
14517 c.@var{cond}.ps @var{cc},@var{a},@var{b}
14518 mov.ps @var{x},@var{c}
14519 movt.ps @var{x},@var{d},@var{cc}
14522 The @code{movf} functions are similar but use @code{movf.ps} instead
14525 @item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14526 @itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14527 Comparison of two paired-single values (@code{c.@var{cond}.ps},
14528 @code{bc1t}/@code{bc1f}).
14530 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
14531 and return either the upper or lower half of the result. For example:
14535 if (__builtin_mips_upper_c_eq_ps (a, b))
14536 upper_halves_are_equal ();
14538 upper_halves_are_unequal ();
14540 if (__builtin_mips_lower_c_eq_ps (a, b))
14541 lower_halves_are_equal ();
14543 lower_halves_are_unequal ();
14547 @node MIPS-3D Built-in Functions
14548 @subsubsection MIPS-3D Built-in Functions
14550 The MIPS-3D Application-Specific Extension (ASE) includes additional
14551 paired-single instructions that are designed to improve the performance
14552 of 3D graphics operations. Support for these instructions is controlled
14553 by the @option{-mips3d} command-line option.
14555 The functions listed below map directly to a particular MIPS-3D
14556 instruction. Please refer to the architecture specification for
14557 more details on what each instruction does.
14560 @item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
14561 Reduction add (@code{addr.ps}).
14563 @item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
14564 Reduction multiply (@code{mulr.ps}).
14566 @item v2sf __builtin_mips_cvt_pw_ps (v2sf)
14567 Convert paired single to paired word (@code{cvt.pw.ps}).
14569 @item v2sf __builtin_mips_cvt_ps_pw (v2sf)
14570 Convert paired word to paired single (@code{cvt.ps.pw}).
14572 @item float __builtin_mips_recip1_s (float)
14573 @itemx double __builtin_mips_recip1_d (double)
14574 @itemx v2sf __builtin_mips_recip1_ps (v2sf)
14575 Reduced-precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
14577 @item float __builtin_mips_recip2_s (float, float)
14578 @itemx double __builtin_mips_recip2_d (double, double)
14579 @itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
14580 Reduced-precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
14582 @item float __builtin_mips_rsqrt1_s (float)
14583 @itemx double __builtin_mips_rsqrt1_d (double)
14584 @itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
14585 Reduced-precision reciprocal square root (sequence step 1)
14586 (@code{rsqrt1.@var{fmt}}).
14588 @item float __builtin_mips_rsqrt2_s (float, float)
14589 @itemx double __builtin_mips_rsqrt2_d (double, double)
14590 @itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
14591 Reduced-precision reciprocal square root (sequence step 2)
14592 (@code{rsqrt2.@var{fmt}}).
14595 The following multi-instruction functions are also available.
14596 In each case, @var{cond} can be any of the 16 floating-point conditions:
14597 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
14598 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
14599 @code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
14602 @item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
14603 @itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
14604 Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
14605 @code{bc1t}/@code{bc1f}).
14607 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
14608 or @code{cabs.@var{cond}.d} and return the result as a boolean value.
14613 if (__builtin_mips_cabs_eq_s (a, b))
14619 @item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14620 @itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14621 Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
14622 @code{bc1t}/@code{bc1f}).
14624 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
14625 and return either the upper or lower half of the result. For example:
14629 if (__builtin_mips_upper_cabs_eq_ps (a, b))
14630 upper_halves_are_equal ();
14632 upper_halves_are_unequal ();
14634 if (__builtin_mips_lower_cabs_eq_ps (a, b))
14635 lower_halves_are_equal ();
14637 lower_halves_are_unequal ();
14640 @item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14641 @itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14642 Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
14643 @code{movt.ps}/@code{movf.ps}).
14645 The @code{movt} functions return the value @var{x} computed by:
14648 cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
14649 mov.ps @var{x},@var{c}
14650 movt.ps @var{x},@var{d},@var{cc}
14653 The @code{movf} functions are similar but use @code{movf.ps} instead
14656 @item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14657 @itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14658 @itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14659 @itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14660 Comparison of two paired-single values
14661 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
14662 @code{bc1any2t}/@code{bc1any2f}).
14664 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
14665 or @code{cabs.@var{cond}.ps}. The @code{any} forms return true if either
14666 result is true and the @code{all} forms return true if both results are true.
14671 if (__builtin_mips_any_c_eq_ps (a, b))
14676 if (__builtin_mips_all_c_eq_ps (a, b))
14682 @item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14683 @itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14684 @itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14685 @itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14686 Comparison of four paired-single values
14687 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
14688 @code{bc1any4t}/@code{bc1any4f}).
14690 These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
14691 to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
14692 The @code{any} forms return true if any of the four results are true
14693 and the @code{all} forms return true if all four results are true.
14698 if (__builtin_mips_any_c_eq_4s (a, b, c, d))
14703 if (__builtin_mips_all_c_eq_4s (a, b, c, d))
14710 @node MIPS SIMD Architecture (MSA) Support
14711 @subsection MIPS SIMD Architecture (MSA) Support
14714 * MIPS SIMD Architecture Built-in Functions::
14717 GCC provides intrinsics to access the SIMD instructions provided by the
14718 MSA MIPS SIMD Architecture. The interface is made available by including
14719 @code{<msa.h>} and using @option{-mmsa -mhard-float -mfp64 -mnan=2008}.
14720 For each @code{__builtin_msa_*}, there is a shortened name of the intrinsic,
14723 MSA implements 128-bit wide vector registers, operating on 8-, 16-, 32- and
14724 64-bit integer, 16- and 32-bit fixed-point, or 32- and 64-bit floating point
14725 data elements. The following vectors typedefs are included in @code{msa.h}:
14727 @item @code{v16i8}, a vector of sixteen signed 8-bit integers;
14728 @item @code{v16u8}, a vector of sixteen unsigned 8-bit integers;
14729 @item @code{v8i16}, a vector of eight signed 16-bit integers;
14730 @item @code{v8u16}, a vector of eight unsigned 16-bit integers;
14731 @item @code{v4i32}, a vector of four signed 32-bit integers;
14732 @item @code{v4u32}, a vector of four unsigned 32-bit integers;
14733 @item @code{v2i64}, a vector of two signed 64-bit integers;
14734 @item @code{v2u64}, a vector of two unsigned 64-bit integers;
14735 @item @code{v4f32}, a vector of four 32-bit floats;
14736 @item @code{v2f64}, a vector of two 64-bit doubles.
14739 Instructions and corresponding built-ins may have additional restrictions and/or
14740 input/output values manipulated:
14742 @item @code{imm0_1}, an integer literal in range 0 to 1;
14743 @item @code{imm0_3}, an integer literal in range 0 to 3;
14744 @item @code{imm0_7}, an integer literal in range 0 to 7;
14745 @item @code{imm0_15}, an integer literal in range 0 to 15;
14746 @item @code{imm0_31}, an integer literal in range 0 to 31;
14747 @item @code{imm0_63}, an integer literal in range 0 to 63;
14748 @item @code{imm0_255}, an integer literal in range 0 to 255;
14749 @item @code{imm_n16_15}, an integer literal in range -16 to 15;
14750 @item @code{imm_n512_511}, an integer literal in range -512 to 511;
14751 @item @code{imm_n1024_1022}, an integer literal in range -512 to 511 left
14752 shifted by 1 bit, i.e., -1024, -1022, @dots{}, 1020, 1022;
14753 @item @code{imm_n2048_2044}, an integer literal in range -512 to 511 left
14754 shifted by 2 bits, i.e., -2048, -2044, @dots{}, 2040, 2044;
14755 @item @code{imm_n4096_4088}, an integer literal in range -512 to 511 left
14756 shifted by 3 bits, i.e., -4096, -4088, @dots{}, 4080, 4088;
14757 @item @code{imm1_4}, an integer literal in range 1 to 4;
14758 @item @code{i32, i64, u32, u64, f32, f64}, defined as follows:
14764 #if __LONG_MAX__ == __LONG_LONG_MAX__
14767 typedef long long i64;
14770 typedef unsigned int u32;
14771 #if __LONG_MAX__ == __LONG_LONG_MAX__
14772 typedef unsigned long u64;
14774 typedef unsigned long long u64;
14777 typedef double f64;
14782 @node MIPS SIMD Architecture Built-in Functions
14783 @subsubsection MIPS SIMD Architecture Built-in Functions
14785 The intrinsics provided are listed below; each is named after the
14786 machine instruction.
14789 v16i8 __builtin_msa_add_a_b (v16i8, v16i8);
14790 v8i16 __builtin_msa_add_a_h (v8i16, v8i16);
14791 v4i32 __builtin_msa_add_a_w (v4i32, v4i32);
14792 v2i64 __builtin_msa_add_a_d (v2i64, v2i64);
14794 v16i8 __builtin_msa_adds_a_b (v16i8, v16i8);
14795 v8i16 __builtin_msa_adds_a_h (v8i16, v8i16);
14796 v4i32 __builtin_msa_adds_a_w (v4i32, v4i32);
14797 v2i64 __builtin_msa_adds_a_d (v2i64, v2i64);
14799 v16i8 __builtin_msa_adds_s_b (v16i8, v16i8);
14800 v8i16 __builtin_msa_adds_s_h (v8i16, v8i16);
14801 v4i32 __builtin_msa_adds_s_w (v4i32, v4i32);
14802 v2i64 __builtin_msa_adds_s_d (v2i64, v2i64);
14804 v16u8 __builtin_msa_adds_u_b (v16u8, v16u8);
14805 v8u16 __builtin_msa_adds_u_h (v8u16, v8u16);
14806 v4u32 __builtin_msa_adds_u_w (v4u32, v4u32);
14807 v2u64 __builtin_msa_adds_u_d (v2u64, v2u64);
14809 v16i8 __builtin_msa_addv_b (v16i8, v16i8);
14810 v8i16 __builtin_msa_addv_h (v8i16, v8i16);
14811 v4i32 __builtin_msa_addv_w (v4i32, v4i32);
14812 v2i64 __builtin_msa_addv_d (v2i64, v2i64);
14814 v16i8 __builtin_msa_addvi_b (v16i8, imm0_31);
14815 v8i16 __builtin_msa_addvi_h (v8i16, imm0_31);
14816 v4i32 __builtin_msa_addvi_w (v4i32, imm0_31);
14817 v2i64 __builtin_msa_addvi_d (v2i64, imm0_31);
14819 v16u8 __builtin_msa_and_v (v16u8, v16u8);
14821 v16u8 __builtin_msa_andi_b (v16u8, imm0_255);
14823 v16i8 __builtin_msa_asub_s_b (v16i8, v16i8);
14824 v8i16 __builtin_msa_asub_s_h (v8i16, v8i16);
14825 v4i32 __builtin_msa_asub_s_w (v4i32, v4i32);
14826 v2i64 __builtin_msa_asub_s_d (v2i64, v2i64);
14828 v16u8 __builtin_msa_asub_u_b (v16u8, v16u8);
14829 v8u16 __builtin_msa_asub_u_h (v8u16, v8u16);
14830 v4u32 __builtin_msa_asub_u_w (v4u32, v4u32);
14831 v2u64 __builtin_msa_asub_u_d (v2u64, v2u64);
14833 v16i8 __builtin_msa_ave_s_b (v16i8, v16i8);
14834 v8i16 __builtin_msa_ave_s_h (v8i16, v8i16);
14835 v4i32 __builtin_msa_ave_s_w (v4i32, v4i32);
14836 v2i64 __builtin_msa_ave_s_d (v2i64, v2i64);
14838 v16u8 __builtin_msa_ave_u_b (v16u8, v16u8);
14839 v8u16 __builtin_msa_ave_u_h (v8u16, v8u16);
14840 v4u32 __builtin_msa_ave_u_w (v4u32, v4u32);
14841 v2u64 __builtin_msa_ave_u_d (v2u64, v2u64);
14843 v16i8 __builtin_msa_aver_s_b (v16i8, v16i8);
14844 v8i16 __builtin_msa_aver_s_h (v8i16, v8i16);
14845 v4i32 __builtin_msa_aver_s_w (v4i32, v4i32);
14846 v2i64 __builtin_msa_aver_s_d (v2i64, v2i64);
14848 v16u8 __builtin_msa_aver_u_b (v16u8, v16u8);
14849 v8u16 __builtin_msa_aver_u_h (v8u16, v8u16);
14850 v4u32 __builtin_msa_aver_u_w (v4u32, v4u32);
14851 v2u64 __builtin_msa_aver_u_d (v2u64, v2u64);
14853 v16u8 __builtin_msa_bclr_b (v16u8, v16u8);
14854 v8u16 __builtin_msa_bclr_h (v8u16, v8u16);
14855 v4u32 __builtin_msa_bclr_w (v4u32, v4u32);
14856 v2u64 __builtin_msa_bclr_d (v2u64, v2u64);
14858 v16u8 __builtin_msa_bclri_b (v16u8, imm0_7);
14859 v8u16 __builtin_msa_bclri_h (v8u16, imm0_15);
14860 v4u32 __builtin_msa_bclri_w (v4u32, imm0_31);
14861 v2u64 __builtin_msa_bclri_d (v2u64, imm0_63);
14863 v16u8 __builtin_msa_binsl_b (v16u8, v16u8, v16u8);
14864 v8u16 __builtin_msa_binsl_h (v8u16, v8u16, v8u16);
14865 v4u32 __builtin_msa_binsl_w (v4u32, v4u32, v4u32);
14866 v2u64 __builtin_msa_binsl_d (v2u64, v2u64, v2u64);
14868 v16u8 __builtin_msa_binsli_b (v16u8, v16u8, imm0_7);
14869 v8u16 __builtin_msa_binsli_h (v8u16, v8u16, imm0_15);
14870 v4u32 __builtin_msa_binsli_w (v4u32, v4u32, imm0_31);
14871 v2u64 __builtin_msa_binsli_d (v2u64, v2u64, imm0_63);
14873 v16u8 __builtin_msa_binsr_b (v16u8, v16u8, v16u8);
14874 v8u16 __builtin_msa_binsr_h (v8u16, v8u16, v8u16);
14875 v4u32 __builtin_msa_binsr_w (v4u32, v4u32, v4u32);
14876 v2u64 __builtin_msa_binsr_d (v2u64, v2u64, v2u64);
14878 v16u8 __builtin_msa_binsri_b (v16u8, v16u8, imm0_7);
14879 v8u16 __builtin_msa_binsri_h (v8u16, v8u16, imm0_15);
14880 v4u32 __builtin_msa_binsri_w (v4u32, v4u32, imm0_31);
14881 v2u64 __builtin_msa_binsri_d (v2u64, v2u64, imm0_63);
14883 v16u8 __builtin_msa_bmnz_v (v16u8, v16u8, v16u8);
14885 v16u8 __builtin_msa_bmnzi_b (v16u8, v16u8, imm0_255);
14887 v16u8 __builtin_msa_bmz_v (v16u8, v16u8, v16u8);
14889 v16u8 __builtin_msa_bmzi_b (v16u8, v16u8, imm0_255);
14891 v16u8 __builtin_msa_bneg_b (v16u8, v16u8);
14892 v8u16 __builtin_msa_bneg_h (v8u16, v8u16);
14893 v4u32 __builtin_msa_bneg_w (v4u32, v4u32);
14894 v2u64 __builtin_msa_bneg_d (v2u64, v2u64);
14896 v16u8 __builtin_msa_bnegi_b (v16u8, imm0_7);
14897 v8u16 __builtin_msa_bnegi_h (v8u16, imm0_15);
14898 v4u32 __builtin_msa_bnegi_w (v4u32, imm0_31);
14899 v2u64 __builtin_msa_bnegi_d (v2u64, imm0_63);
14901 i32 __builtin_msa_bnz_b (v16u8);
14902 i32 __builtin_msa_bnz_h (v8u16);
14903 i32 __builtin_msa_bnz_w (v4u32);
14904 i32 __builtin_msa_bnz_d (v2u64);
14906 i32 __builtin_msa_bnz_v (v16u8);
14908 v16u8 __builtin_msa_bsel_v (v16u8, v16u8, v16u8);
14910 v16u8 __builtin_msa_bseli_b (v16u8, v16u8, imm0_255);
14912 v16u8 __builtin_msa_bset_b (v16u8, v16u8);
14913 v8u16 __builtin_msa_bset_h (v8u16, v8u16);
14914 v4u32 __builtin_msa_bset_w (v4u32, v4u32);
14915 v2u64 __builtin_msa_bset_d (v2u64, v2u64);
14917 v16u8 __builtin_msa_bseti_b (v16u8, imm0_7);
14918 v8u16 __builtin_msa_bseti_h (v8u16, imm0_15);
14919 v4u32 __builtin_msa_bseti_w (v4u32, imm0_31);
14920 v2u64 __builtin_msa_bseti_d (v2u64, imm0_63);
14922 i32 __builtin_msa_bz_b (v16u8);
14923 i32 __builtin_msa_bz_h (v8u16);
14924 i32 __builtin_msa_bz_w (v4u32);
14925 i32 __builtin_msa_bz_d (v2u64);
14927 i32 __builtin_msa_bz_v (v16u8);
14929 v16i8 __builtin_msa_ceq_b (v16i8, v16i8);
14930 v8i16 __builtin_msa_ceq_h (v8i16, v8i16);
14931 v4i32 __builtin_msa_ceq_w (v4i32, v4i32);
14932 v2i64 __builtin_msa_ceq_d (v2i64, v2i64);
14934 v16i8 __builtin_msa_ceqi_b (v16i8, imm_n16_15);
14935 v8i16 __builtin_msa_ceqi_h (v8i16, imm_n16_15);
14936 v4i32 __builtin_msa_ceqi_w (v4i32, imm_n16_15);
14937 v2i64 __builtin_msa_ceqi_d (v2i64, imm_n16_15);
14939 i32 __builtin_msa_cfcmsa (imm0_31);
14941 v16i8 __builtin_msa_cle_s_b (v16i8, v16i8);
14942 v8i16 __builtin_msa_cle_s_h (v8i16, v8i16);
14943 v4i32 __builtin_msa_cle_s_w (v4i32, v4i32);
14944 v2i64 __builtin_msa_cle_s_d (v2i64, v2i64);
14946 v16i8 __builtin_msa_cle_u_b (v16u8, v16u8);
14947 v8i16 __builtin_msa_cle_u_h (v8u16, v8u16);
14948 v4i32 __builtin_msa_cle_u_w (v4u32, v4u32);
14949 v2i64 __builtin_msa_cle_u_d (v2u64, v2u64);
14951 v16i8 __builtin_msa_clei_s_b (v16i8, imm_n16_15);
14952 v8i16 __builtin_msa_clei_s_h (v8i16, imm_n16_15);
14953 v4i32 __builtin_msa_clei_s_w (v4i32, imm_n16_15);
14954 v2i64 __builtin_msa_clei_s_d (v2i64, imm_n16_15);
14956 v16i8 __builtin_msa_clei_u_b (v16u8, imm0_31);
14957 v8i16 __builtin_msa_clei_u_h (v8u16, imm0_31);
14958 v4i32 __builtin_msa_clei_u_w (v4u32, imm0_31);
14959 v2i64 __builtin_msa_clei_u_d (v2u64, imm0_31);
14961 v16i8 __builtin_msa_clt_s_b (v16i8, v16i8);
14962 v8i16 __builtin_msa_clt_s_h (v8i16, v8i16);
14963 v4i32 __builtin_msa_clt_s_w (v4i32, v4i32);
14964 v2i64 __builtin_msa_clt_s_d (v2i64, v2i64);
14966 v16i8 __builtin_msa_clt_u_b (v16u8, v16u8);
14967 v8i16 __builtin_msa_clt_u_h (v8u16, v8u16);
14968 v4i32 __builtin_msa_clt_u_w (v4u32, v4u32);
14969 v2i64 __builtin_msa_clt_u_d (v2u64, v2u64);
14971 v16i8 __builtin_msa_clti_s_b (v16i8, imm_n16_15);
14972 v8i16 __builtin_msa_clti_s_h (v8i16, imm_n16_15);
14973 v4i32 __builtin_msa_clti_s_w (v4i32, imm_n16_15);
14974 v2i64 __builtin_msa_clti_s_d (v2i64, imm_n16_15);
14976 v16i8 __builtin_msa_clti_u_b (v16u8, imm0_31);
14977 v8i16 __builtin_msa_clti_u_h (v8u16, imm0_31);
14978 v4i32 __builtin_msa_clti_u_w (v4u32, imm0_31);
14979 v2i64 __builtin_msa_clti_u_d (v2u64, imm0_31);
14981 i32 __builtin_msa_copy_s_b (v16i8, imm0_15);
14982 i32 __builtin_msa_copy_s_h (v8i16, imm0_7);
14983 i32 __builtin_msa_copy_s_w (v4i32, imm0_3);
14984 i64 __builtin_msa_copy_s_d (v2i64, imm0_1);
14986 u32 __builtin_msa_copy_u_b (v16i8, imm0_15);
14987 u32 __builtin_msa_copy_u_h (v8i16, imm0_7);
14988 u32 __builtin_msa_copy_u_w (v4i32, imm0_3);
14989 u64 __builtin_msa_copy_u_d (v2i64, imm0_1);
14991 void __builtin_msa_ctcmsa (imm0_31, i32);
14993 v16i8 __builtin_msa_div_s_b (v16i8, v16i8);
14994 v8i16 __builtin_msa_div_s_h (v8i16, v8i16);
14995 v4i32 __builtin_msa_div_s_w (v4i32, v4i32);
14996 v2i64 __builtin_msa_div_s_d (v2i64, v2i64);
14998 v16u8 __builtin_msa_div_u_b (v16u8, v16u8);
14999 v8u16 __builtin_msa_div_u_h (v8u16, v8u16);
15000 v4u32 __builtin_msa_div_u_w (v4u32, v4u32);
15001 v2u64 __builtin_msa_div_u_d (v2u64, v2u64);
15003 v8i16 __builtin_msa_dotp_s_h (v16i8, v16i8);
15004 v4i32 __builtin_msa_dotp_s_w (v8i16, v8i16);
15005 v2i64 __builtin_msa_dotp_s_d (v4i32, v4i32);
15007 v8u16 __builtin_msa_dotp_u_h (v16u8, v16u8);
15008 v4u32 __builtin_msa_dotp_u_w (v8u16, v8u16);
15009 v2u64 __builtin_msa_dotp_u_d (v4u32, v4u32);
15011 v8i16 __builtin_msa_dpadd_s_h (v8i16, v16i8, v16i8);
15012 v4i32 __builtin_msa_dpadd_s_w (v4i32, v8i16, v8i16);
15013 v2i64 __builtin_msa_dpadd_s_d (v2i64, v4i32, v4i32);
15015 v8u16 __builtin_msa_dpadd_u_h (v8u16, v16u8, v16u8);
15016 v4u32 __builtin_msa_dpadd_u_w (v4u32, v8u16, v8u16);
15017 v2u64 __builtin_msa_dpadd_u_d (v2u64, v4u32, v4u32);
15019 v8i16 __builtin_msa_dpsub_s_h (v8i16, v16i8, v16i8);
15020 v4i32 __builtin_msa_dpsub_s_w (v4i32, v8i16, v8i16);
15021 v2i64 __builtin_msa_dpsub_s_d (v2i64, v4i32, v4i32);
15023 v8i16 __builtin_msa_dpsub_u_h (v8i16, v16u8, v16u8);
15024 v4i32 __builtin_msa_dpsub_u_w (v4i32, v8u16, v8u16);
15025 v2i64 __builtin_msa_dpsub_u_d (v2i64, v4u32, v4u32);
15027 v4f32 __builtin_msa_fadd_w (v4f32, v4f32);
15028 v2f64 __builtin_msa_fadd_d (v2f64, v2f64);
15030 v4i32 __builtin_msa_fcaf_w (v4f32, v4f32);
15031 v2i64 __builtin_msa_fcaf_d (v2f64, v2f64);
15033 v4i32 __builtin_msa_fceq_w (v4f32, v4f32);
15034 v2i64 __builtin_msa_fceq_d (v2f64, v2f64);
15036 v4i32 __builtin_msa_fclass_w (v4f32);
15037 v2i64 __builtin_msa_fclass_d (v2f64);
15039 v4i32 __builtin_msa_fcle_w (v4f32, v4f32);
15040 v2i64 __builtin_msa_fcle_d (v2f64, v2f64);
15042 v4i32 __builtin_msa_fclt_w (v4f32, v4f32);
15043 v2i64 __builtin_msa_fclt_d (v2f64, v2f64);
15045 v4i32 __builtin_msa_fcne_w (v4f32, v4f32);
15046 v2i64 __builtin_msa_fcne_d (v2f64, v2f64);
15048 v4i32 __builtin_msa_fcor_w (v4f32, v4f32);
15049 v2i64 __builtin_msa_fcor_d (v2f64, v2f64);
15051 v4i32 __builtin_msa_fcueq_w (v4f32, v4f32);
15052 v2i64 __builtin_msa_fcueq_d (v2f64, v2f64);
15054 v4i32 __builtin_msa_fcule_w (v4f32, v4f32);
15055 v2i64 __builtin_msa_fcule_d (v2f64, v2f64);
15057 v4i32 __builtin_msa_fcult_w (v4f32, v4f32);
15058 v2i64 __builtin_msa_fcult_d (v2f64, v2f64);
15060 v4i32 __builtin_msa_fcun_w (v4f32, v4f32);
15061 v2i64 __builtin_msa_fcun_d (v2f64, v2f64);
15063 v4i32 __builtin_msa_fcune_w (v4f32, v4f32);
15064 v2i64 __builtin_msa_fcune_d (v2f64, v2f64);
15066 v4f32 __builtin_msa_fdiv_w (v4f32, v4f32);
15067 v2f64 __builtin_msa_fdiv_d (v2f64, v2f64);
15069 v8i16 __builtin_msa_fexdo_h (v4f32, v4f32);
15070 v4f32 __builtin_msa_fexdo_w (v2f64, v2f64);
15072 v4f32 __builtin_msa_fexp2_w (v4f32, v4i32);
15073 v2f64 __builtin_msa_fexp2_d (v2f64, v2i64);
15075 v4f32 __builtin_msa_fexupl_w (v8i16);
15076 v2f64 __builtin_msa_fexupl_d (v4f32);
15078 v4f32 __builtin_msa_fexupr_w (v8i16);
15079 v2f64 __builtin_msa_fexupr_d (v4f32);
15081 v4f32 __builtin_msa_ffint_s_w (v4i32);
15082 v2f64 __builtin_msa_ffint_s_d (v2i64);
15084 v4f32 __builtin_msa_ffint_u_w (v4u32);
15085 v2f64 __builtin_msa_ffint_u_d (v2u64);
15087 v4f32 __builtin_msa_ffql_w (v8i16);
15088 v2f64 __builtin_msa_ffql_d (v4i32);
15090 v4f32 __builtin_msa_ffqr_w (v8i16);
15091 v2f64 __builtin_msa_ffqr_d (v4i32);
15093 v16i8 __builtin_msa_fill_b (i32);
15094 v8i16 __builtin_msa_fill_h (i32);
15095 v4i32 __builtin_msa_fill_w (i32);
15096 v2i64 __builtin_msa_fill_d (i64);
15098 v4f32 __builtin_msa_flog2_w (v4f32);
15099 v2f64 __builtin_msa_flog2_d (v2f64);
15101 v4f32 __builtin_msa_fmadd_w (v4f32, v4f32, v4f32);
15102 v2f64 __builtin_msa_fmadd_d (v2f64, v2f64, v2f64);
15104 v4f32 __builtin_msa_fmax_w (v4f32, v4f32);
15105 v2f64 __builtin_msa_fmax_d (v2f64, v2f64);
15107 v4f32 __builtin_msa_fmax_a_w (v4f32, v4f32);
15108 v2f64 __builtin_msa_fmax_a_d (v2f64, v2f64);
15110 v4f32 __builtin_msa_fmin_w (v4f32, v4f32);
15111 v2f64 __builtin_msa_fmin_d (v2f64, v2f64);
15113 v4f32 __builtin_msa_fmin_a_w (v4f32, v4f32);
15114 v2f64 __builtin_msa_fmin_a_d (v2f64, v2f64);
15116 v4f32 __builtin_msa_fmsub_w (v4f32, v4f32, v4f32);
15117 v2f64 __builtin_msa_fmsub_d (v2f64, v2f64, v2f64);
15119 v4f32 __builtin_msa_fmul_w (v4f32, v4f32);
15120 v2f64 __builtin_msa_fmul_d (v2f64, v2f64);
15122 v4f32 __builtin_msa_frint_w (v4f32);
15123 v2f64 __builtin_msa_frint_d (v2f64);
15125 v4f32 __builtin_msa_frcp_w (v4f32);
15126 v2f64 __builtin_msa_frcp_d (v2f64);
15128 v4f32 __builtin_msa_frsqrt_w (v4f32);
15129 v2f64 __builtin_msa_frsqrt_d (v2f64);
15131 v4i32 __builtin_msa_fsaf_w (v4f32, v4f32);
15132 v2i64 __builtin_msa_fsaf_d (v2f64, v2f64);
15134 v4i32 __builtin_msa_fseq_w (v4f32, v4f32);
15135 v2i64 __builtin_msa_fseq_d (v2f64, v2f64);
15137 v4i32 __builtin_msa_fsle_w (v4f32, v4f32);
15138 v2i64 __builtin_msa_fsle_d (v2f64, v2f64);
15140 v4i32 __builtin_msa_fslt_w (v4f32, v4f32);
15141 v2i64 __builtin_msa_fslt_d (v2f64, v2f64);
15143 v4i32 __builtin_msa_fsne_w (v4f32, v4f32);
15144 v2i64 __builtin_msa_fsne_d (v2f64, v2f64);
15146 v4i32 __builtin_msa_fsor_w (v4f32, v4f32);
15147 v2i64 __builtin_msa_fsor_d (v2f64, v2f64);
15149 v4f32 __builtin_msa_fsqrt_w (v4f32);
15150 v2f64 __builtin_msa_fsqrt_d (v2f64);
15152 v4f32 __builtin_msa_fsub_w (v4f32, v4f32);
15153 v2f64 __builtin_msa_fsub_d (v2f64, v2f64);
15155 v4i32 __builtin_msa_fsueq_w (v4f32, v4f32);
15156 v2i64 __builtin_msa_fsueq_d (v2f64, v2f64);
15158 v4i32 __builtin_msa_fsule_w (v4f32, v4f32);
15159 v2i64 __builtin_msa_fsule_d (v2f64, v2f64);
15161 v4i32 __builtin_msa_fsult_w (v4f32, v4f32);
15162 v2i64 __builtin_msa_fsult_d (v2f64, v2f64);
15164 v4i32 __builtin_msa_fsun_w (v4f32, v4f32);
15165 v2i64 __builtin_msa_fsun_d (v2f64, v2f64);
15167 v4i32 __builtin_msa_fsune_w (v4f32, v4f32);
15168 v2i64 __builtin_msa_fsune_d (v2f64, v2f64);
15170 v4i32 __builtin_msa_ftint_s_w (v4f32);
15171 v2i64 __builtin_msa_ftint_s_d (v2f64);
15173 v4u32 __builtin_msa_ftint_u_w (v4f32);
15174 v2u64 __builtin_msa_ftint_u_d (v2f64);
15176 v8i16 __builtin_msa_ftq_h (v4f32, v4f32);
15177 v4i32 __builtin_msa_ftq_w (v2f64, v2f64);
15179 v4i32 __builtin_msa_ftrunc_s_w (v4f32);
15180 v2i64 __builtin_msa_ftrunc_s_d (v2f64);
15182 v4u32 __builtin_msa_ftrunc_u_w (v4f32);
15183 v2u64 __builtin_msa_ftrunc_u_d (v2f64);
15185 v8i16 __builtin_msa_hadd_s_h (v16i8, v16i8);
15186 v4i32 __builtin_msa_hadd_s_w (v8i16, v8i16);
15187 v2i64 __builtin_msa_hadd_s_d (v4i32, v4i32);
15189 v8u16 __builtin_msa_hadd_u_h (v16u8, v16u8);
15190 v4u32 __builtin_msa_hadd_u_w (v8u16, v8u16);
15191 v2u64 __builtin_msa_hadd_u_d (v4u32, v4u32);
15193 v8i16 __builtin_msa_hsub_s_h (v16i8, v16i8);
15194 v4i32 __builtin_msa_hsub_s_w (v8i16, v8i16);
15195 v2i64 __builtin_msa_hsub_s_d (v4i32, v4i32);
15197 v8i16 __builtin_msa_hsub_u_h (v16u8, v16u8);
15198 v4i32 __builtin_msa_hsub_u_w (v8u16, v8u16);
15199 v2i64 __builtin_msa_hsub_u_d (v4u32, v4u32);
15201 v16i8 __builtin_msa_ilvev_b (v16i8, v16i8);
15202 v8i16 __builtin_msa_ilvev_h (v8i16, v8i16);
15203 v4i32 __builtin_msa_ilvev_w (v4i32, v4i32);
15204 v2i64 __builtin_msa_ilvev_d (v2i64, v2i64);
15206 v16i8 __builtin_msa_ilvl_b (v16i8, v16i8);
15207 v8i16 __builtin_msa_ilvl_h (v8i16, v8i16);
15208 v4i32 __builtin_msa_ilvl_w (v4i32, v4i32);
15209 v2i64 __builtin_msa_ilvl_d (v2i64, v2i64);
15211 v16i8 __builtin_msa_ilvod_b (v16i8, v16i8);
15212 v8i16 __builtin_msa_ilvod_h (v8i16, v8i16);
15213 v4i32 __builtin_msa_ilvod_w (v4i32, v4i32);
15214 v2i64 __builtin_msa_ilvod_d (v2i64, v2i64);
15216 v16i8 __builtin_msa_ilvr_b (v16i8, v16i8);
15217 v8i16 __builtin_msa_ilvr_h (v8i16, v8i16);
15218 v4i32 __builtin_msa_ilvr_w (v4i32, v4i32);
15219 v2i64 __builtin_msa_ilvr_d (v2i64, v2i64);
15221 v16i8 __builtin_msa_insert_b (v16i8, imm0_15, i32);
15222 v8i16 __builtin_msa_insert_h (v8i16, imm0_7, i32);
15223 v4i32 __builtin_msa_insert_w (v4i32, imm0_3, i32);
15224 v2i64 __builtin_msa_insert_d (v2i64, imm0_1, i64);
15226 v16i8 __builtin_msa_insve_b (v16i8, imm0_15, v16i8);
15227 v8i16 __builtin_msa_insve_h (v8i16, imm0_7, v8i16);
15228 v4i32 __builtin_msa_insve_w (v4i32, imm0_3, v4i32);
15229 v2i64 __builtin_msa_insve_d (v2i64, imm0_1, v2i64);
15231 v16i8 __builtin_msa_ld_b (void *, imm_n512_511);
15232 v8i16 __builtin_msa_ld_h (void *, imm_n1024_1022);
15233 v4i32 __builtin_msa_ld_w (void *, imm_n2048_2044);
15234 v2i64 __builtin_msa_ld_d (void *, imm_n4096_4088);
15236 v16i8 __builtin_msa_ldi_b (imm_n512_511);
15237 v8i16 __builtin_msa_ldi_h (imm_n512_511);
15238 v4i32 __builtin_msa_ldi_w (imm_n512_511);
15239 v2i64 __builtin_msa_ldi_d (imm_n512_511);
15241 v8i16 __builtin_msa_madd_q_h (v8i16, v8i16, v8i16);
15242 v4i32 __builtin_msa_madd_q_w (v4i32, v4i32, v4i32);
15244 v8i16 __builtin_msa_maddr_q_h (v8i16, v8i16, v8i16);
15245 v4i32 __builtin_msa_maddr_q_w (v4i32, v4i32, v4i32);
15247 v16i8 __builtin_msa_maddv_b (v16i8, v16i8, v16i8);
15248 v8i16 __builtin_msa_maddv_h (v8i16, v8i16, v8i16);
15249 v4i32 __builtin_msa_maddv_w (v4i32, v4i32, v4i32);
15250 v2i64 __builtin_msa_maddv_d (v2i64, v2i64, v2i64);
15252 v16i8 __builtin_msa_max_a_b (v16i8, v16i8);
15253 v8i16 __builtin_msa_max_a_h (v8i16, v8i16);
15254 v4i32 __builtin_msa_max_a_w (v4i32, v4i32);
15255 v2i64 __builtin_msa_max_a_d (v2i64, v2i64);
15257 v16i8 __builtin_msa_max_s_b (v16i8, v16i8);
15258 v8i16 __builtin_msa_max_s_h (v8i16, v8i16);
15259 v4i32 __builtin_msa_max_s_w (v4i32, v4i32);
15260 v2i64 __builtin_msa_max_s_d (v2i64, v2i64);
15262 v16u8 __builtin_msa_max_u_b (v16u8, v16u8);
15263 v8u16 __builtin_msa_max_u_h (v8u16, v8u16);
15264 v4u32 __builtin_msa_max_u_w (v4u32, v4u32);
15265 v2u64 __builtin_msa_max_u_d (v2u64, v2u64);
15267 v16i8 __builtin_msa_maxi_s_b (v16i8, imm_n16_15);
15268 v8i16 __builtin_msa_maxi_s_h (v8i16, imm_n16_15);
15269 v4i32 __builtin_msa_maxi_s_w (v4i32, imm_n16_15);
15270 v2i64 __builtin_msa_maxi_s_d (v2i64, imm_n16_15);
15272 v16u8 __builtin_msa_maxi_u_b (v16u8, imm0_31);
15273 v8u16 __builtin_msa_maxi_u_h (v8u16, imm0_31);
15274 v4u32 __builtin_msa_maxi_u_w (v4u32, imm0_31);
15275 v2u64 __builtin_msa_maxi_u_d (v2u64, imm0_31);
15277 v16i8 __builtin_msa_min_a_b (v16i8, v16i8);
15278 v8i16 __builtin_msa_min_a_h (v8i16, v8i16);
15279 v4i32 __builtin_msa_min_a_w (v4i32, v4i32);
15280 v2i64 __builtin_msa_min_a_d (v2i64, v2i64);
15282 v16i8 __builtin_msa_min_s_b (v16i8, v16i8);
15283 v8i16 __builtin_msa_min_s_h (v8i16, v8i16);
15284 v4i32 __builtin_msa_min_s_w (v4i32, v4i32);
15285 v2i64 __builtin_msa_min_s_d (v2i64, v2i64);
15287 v16u8 __builtin_msa_min_u_b (v16u8, v16u8);
15288 v8u16 __builtin_msa_min_u_h (v8u16, v8u16);
15289 v4u32 __builtin_msa_min_u_w (v4u32, v4u32);
15290 v2u64 __builtin_msa_min_u_d (v2u64, v2u64);
15292 v16i8 __builtin_msa_mini_s_b (v16i8, imm_n16_15);
15293 v8i16 __builtin_msa_mini_s_h (v8i16, imm_n16_15);
15294 v4i32 __builtin_msa_mini_s_w (v4i32, imm_n16_15);
15295 v2i64 __builtin_msa_mini_s_d (v2i64, imm_n16_15);
15297 v16u8 __builtin_msa_mini_u_b (v16u8, imm0_31);
15298 v8u16 __builtin_msa_mini_u_h (v8u16, imm0_31);
15299 v4u32 __builtin_msa_mini_u_w (v4u32, imm0_31);
15300 v2u64 __builtin_msa_mini_u_d (v2u64, imm0_31);
15302 v16i8 __builtin_msa_mod_s_b (v16i8, v16i8);
15303 v8i16 __builtin_msa_mod_s_h (v8i16, v8i16);
15304 v4i32 __builtin_msa_mod_s_w (v4i32, v4i32);
15305 v2i64 __builtin_msa_mod_s_d (v2i64, v2i64);
15307 v16u8 __builtin_msa_mod_u_b (v16u8, v16u8);
15308 v8u16 __builtin_msa_mod_u_h (v8u16, v8u16);
15309 v4u32 __builtin_msa_mod_u_w (v4u32, v4u32);
15310 v2u64 __builtin_msa_mod_u_d (v2u64, v2u64);
15312 v16i8 __builtin_msa_move_v (v16i8);
15314 v8i16 __builtin_msa_msub_q_h (v8i16, v8i16, v8i16);
15315 v4i32 __builtin_msa_msub_q_w (v4i32, v4i32, v4i32);
15317 v8i16 __builtin_msa_msubr_q_h (v8i16, v8i16, v8i16);
15318 v4i32 __builtin_msa_msubr_q_w (v4i32, v4i32, v4i32);
15320 v16i8 __builtin_msa_msubv_b (v16i8, v16i8, v16i8);
15321 v8i16 __builtin_msa_msubv_h (v8i16, v8i16, v8i16);
15322 v4i32 __builtin_msa_msubv_w (v4i32, v4i32, v4i32);
15323 v2i64 __builtin_msa_msubv_d (v2i64, v2i64, v2i64);
15325 v8i16 __builtin_msa_mul_q_h (v8i16, v8i16);
15326 v4i32 __builtin_msa_mul_q_w (v4i32, v4i32);
15328 v8i16 __builtin_msa_mulr_q_h (v8i16, v8i16);
15329 v4i32 __builtin_msa_mulr_q_w (v4i32, v4i32);
15331 v16i8 __builtin_msa_mulv_b (v16i8, v16i8);
15332 v8i16 __builtin_msa_mulv_h (v8i16, v8i16);
15333 v4i32 __builtin_msa_mulv_w (v4i32, v4i32);
15334 v2i64 __builtin_msa_mulv_d (v2i64, v2i64);
15336 v16i8 __builtin_msa_nloc_b (v16i8);
15337 v8i16 __builtin_msa_nloc_h (v8i16);
15338 v4i32 __builtin_msa_nloc_w (v4i32);
15339 v2i64 __builtin_msa_nloc_d (v2i64);
15341 v16i8 __builtin_msa_nlzc_b (v16i8);
15342 v8i16 __builtin_msa_nlzc_h (v8i16);
15343 v4i32 __builtin_msa_nlzc_w (v4i32);
15344 v2i64 __builtin_msa_nlzc_d (v2i64);
15346 v16u8 __builtin_msa_nor_v (v16u8, v16u8);
15348 v16u8 __builtin_msa_nori_b (v16u8, imm0_255);
15350 v16u8 __builtin_msa_or_v (v16u8, v16u8);
15352 v16u8 __builtin_msa_ori_b (v16u8, imm0_255);
15354 v16i8 __builtin_msa_pckev_b (v16i8, v16i8);
15355 v8i16 __builtin_msa_pckev_h (v8i16, v8i16);
15356 v4i32 __builtin_msa_pckev_w (v4i32, v4i32);
15357 v2i64 __builtin_msa_pckev_d (v2i64, v2i64);
15359 v16i8 __builtin_msa_pckod_b (v16i8, v16i8);
15360 v8i16 __builtin_msa_pckod_h (v8i16, v8i16);
15361 v4i32 __builtin_msa_pckod_w (v4i32, v4i32);
15362 v2i64 __builtin_msa_pckod_d (v2i64, v2i64);
15364 v16i8 __builtin_msa_pcnt_b (v16i8);
15365 v8i16 __builtin_msa_pcnt_h (v8i16);
15366 v4i32 __builtin_msa_pcnt_w (v4i32);
15367 v2i64 __builtin_msa_pcnt_d (v2i64);
15369 v16i8 __builtin_msa_sat_s_b (v16i8, imm0_7);
15370 v8i16 __builtin_msa_sat_s_h (v8i16, imm0_15);
15371 v4i32 __builtin_msa_sat_s_w (v4i32, imm0_31);
15372 v2i64 __builtin_msa_sat_s_d (v2i64, imm0_63);
15374 v16u8 __builtin_msa_sat_u_b (v16u8, imm0_7);
15375 v8u16 __builtin_msa_sat_u_h (v8u16, imm0_15);
15376 v4u32 __builtin_msa_sat_u_w (v4u32, imm0_31);
15377 v2u64 __builtin_msa_sat_u_d (v2u64, imm0_63);
15379 v16i8 __builtin_msa_shf_b (v16i8, imm0_255);
15380 v8i16 __builtin_msa_shf_h (v8i16, imm0_255);
15381 v4i32 __builtin_msa_shf_w (v4i32, imm0_255);
15383 v16i8 __builtin_msa_sld_b (v16i8, v16i8, i32);
15384 v8i16 __builtin_msa_sld_h (v8i16, v8i16, i32);
15385 v4i32 __builtin_msa_sld_w (v4i32, v4i32, i32);
15386 v2i64 __builtin_msa_sld_d (v2i64, v2i64, i32);
15388 v16i8 __builtin_msa_sldi_b (v16i8, v16i8, imm0_15);
15389 v8i16 __builtin_msa_sldi_h (v8i16, v8i16, imm0_7);
15390 v4i32 __builtin_msa_sldi_w (v4i32, v4i32, imm0_3);
15391 v2i64 __builtin_msa_sldi_d (v2i64, v2i64, imm0_1);
15393 v16i8 __builtin_msa_sll_b (v16i8, v16i8);
15394 v8i16 __builtin_msa_sll_h (v8i16, v8i16);
15395 v4i32 __builtin_msa_sll_w (v4i32, v4i32);
15396 v2i64 __builtin_msa_sll_d (v2i64, v2i64);
15398 v16i8 __builtin_msa_slli_b (v16i8, imm0_7);
15399 v8i16 __builtin_msa_slli_h (v8i16, imm0_15);
15400 v4i32 __builtin_msa_slli_w (v4i32, imm0_31);
15401 v2i64 __builtin_msa_slli_d (v2i64, imm0_63);
15403 v16i8 __builtin_msa_splat_b (v16i8, i32);
15404 v8i16 __builtin_msa_splat_h (v8i16, i32);
15405 v4i32 __builtin_msa_splat_w (v4i32, i32);
15406 v2i64 __builtin_msa_splat_d (v2i64, i32);
15408 v16i8 __builtin_msa_splati_b (v16i8, imm0_15);
15409 v8i16 __builtin_msa_splati_h (v8i16, imm0_7);
15410 v4i32 __builtin_msa_splati_w (v4i32, imm0_3);
15411 v2i64 __builtin_msa_splati_d (v2i64, imm0_1);
15413 v16i8 __builtin_msa_sra_b (v16i8, v16i8);
15414 v8i16 __builtin_msa_sra_h (v8i16, v8i16);
15415 v4i32 __builtin_msa_sra_w (v4i32, v4i32);
15416 v2i64 __builtin_msa_sra_d (v2i64, v2i64);
15418 v16i8 __builtin_msa_srai_b (v16i8, imm0_7);
15419 v8i16 __builtin_msa_srai_h (v8i16, imm0_15);
15420 v4i32 __builtin_msa_srai_w (v4i32, imm0_31);
15421 v2i64 __builtin_msa_srai_d (v2i64, imm0_63);
15423 v16i8 __builtin_msa_srar_b (v16i8, v16i8);
15424 v8i16 __builtin_msa_srar_h (v8i16, v8i16);
15425 v4i32 __builtin_msa_srar_w (v4i32, v4i32);
15426 v2i64 __builtin_msa_srar_d (v2i64, v2i64);
15428 v16i8 __builtin_msa_srari_b (v16i8, imm0_7);
15429 v8i16 __builtin_msa_srari_h (v8i16, imm0_15);
15430 v4i32 __builtin_msa_srari_w (v4i32, imm0_31);
15431 v2i64 __builtin_msa_srari_d (v2i64, imm0_63);
15433 v16i8 __builtin_msa_srl_b (v16i8, v16i8);
15434 v8i16 __builtin_msa_srl_h (v8i16, v8i16);
15435 v4i32 __builtin_msa_srl_w (v4i32, v4i32);
15436 v2i64 __builtin_msa_srl_d (v2i64, v2i64);
15438 v16i8 __builtin_msa_srli_b (v16i8, imm0_7);
15439 v8i16 __builtin_msa_srli_h (v8i16, imm0_15);
15440 v4i32 __builtin_msa_srli_w (v4i32, imm0_31);
15441 v2i64 __builtin_msa_srli_d (v2i64, imm0_63);
15443 v16i8 __builtin_msa_srlr_b (v16i8, v16i8);
15444 v8i16 __builtin_msa_srlr_h (v8i16, v8i16);
15445 v4i32 __builtin_msa_srlr_w (v4i32, v4i32);
15446 v2i64 __builtin_msa_srlr_d (v2i64, v2i64);
15448 v16i8 __builtin_msa_srlri_b (v16i8, imm0_7);
15449 v8i16 __builtin_msa_srlri_h (v8i16, imm0_15);
15450 v4i32 __builtin_msa_srlri_w (v4i32, imm0_31);
15451 v2i64 __builtin_msa_srlri_d (v2i64, imm0_63);
15453 void __builtin_msa_st_b (v16i8, void *, imm_n512_511);
15454 void __builtin_msa_st_h (v8i16, void *, imm_n1024_1022);
15455 void __builtin_msa_st_w (v4i32, void *, imm_n2048_2044);
15456 void __builtin_msa_st_d (v2i64, void *, imm_n4096_4088);
15458 v16i8 __builtin_msa_subs_s_b (v16i8, v16i8);
15459 v8i16 __builtin_msa_subs_s_h (v8i16, v8i16);
15460 v4i32 __builtin_msa_subs_s_w (v4i32, v4i32);
15461 v2i64 __builtin_msa_subs_s_d (v2i64, v2i64);
15463 v16u8 __builtin_msa_subs_u_b (v16u8, v16u8);
15464 v8u16 __builtin_msa_subs_u_h (v8u16, v8u16);
15465 v4u32 __builtin_msa_subs_u_w (v4u32, v4u32);
15466 v2u64 __builtin_msa_subs_u_d (v2u64, v2u64);
15468 v16u8 __builtin_msa_subsus_u_b (v16u8, v16i8);
15469 v8u16 __builtin_msa_subsus_u_h (v8u16, v8i16);
15470 v4u32 __builtin_msa_subsus_u_w (v4u32, v4i32);
15471 v2u64 __builtin_msa_subsus_u_d (v2u64, v2i64);
15473 v16i8 __builtin_msa_subsuu_s_b (v16u8, v16u8);
15474 v8i16 __builtin_msa_subsuu_s_h (v8u16, v8u16);
15475 v4i32 __builtin_msa_subsuu_s_w (v4u32, v4u32);
15476 v2i64 __builtin_msa_subsuu_s_d (v2u64, v2u64);
15478 v16i8 __builtin_msa_subv_b (v16i8, v16i8);
15479 v8i16 __builtin_msa_subv_h (v8i16, v8i16);
15480 v4i32 __builtin_msa_subv_w (v4i32, v4i32);
15481 v2i64 __builtin_msa_subv_d (v2i64, v2i64);
15483 v16i8 __builtin_msa_subvi_b (v16i8, imm0_31);
15484 v8i16 __builtin_msa_subvi_h (v8i16, imm0_31);
15485 v4i32 __builtin_msa_subvi_w (v4i32, imm0_31);
15486 v2i64 __builtin_msa_subvi_d (v2i64, imm0_31);
15488 v16i8 __builtin_msa_vshf_b (v16i8, v16i8, v16i8);
15489 v8i16 __builtin_msa_vshf_h (v8i16, v8i16, v8i16);
15490 v4i32 __builtin_msa_vshf_w (v4i32, v4i32, v4i32);
15491 v2i64 __builtin_msa_vshf_d (v2i64, v2i64, v2i64);
15493 v16u8 __builtin_msa_xor_v (v16u8, v16u8);
15495 v16u8 __builtin_msa_xori_b (v16u8, imm0_255);
15498 @node Other MIPS Built-in Functions
15499 @subsection Other MIPS Built-in Functions
15501 GCC provides other MIPS-specific built-in functions:
15504 @item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
15505 Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
15506 GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
15507 when this function is available.
15509 @item unsigned int __builtin_mips_get_fcsr (void)
15510 @itemx void __builtin_mips_set_fcsr (unsigned int @var{value})
15511 Get and set the contents of the floating-point control and status register
15512 (FPU control register 31). These functions are only available in hard-float
15513 code but can be called in both MIPS16 and non-MIPS16 contexts.
15515 @code{__builtin_mips_set_fcsr} can be used to change any bit of the
15516 register except the condition codes, which GCC assumes are preserved.
15519 @node MSP430 Built-in Functions
15520 @subsection MSP430 Built-in Functions
15522 GCC provides a couple of special builtin functions to aid in the
15523 writing of interrupt handlers in C.
15526 @item __bic_SR_register_on_exit (int @var{mask})
15527 This clears the indicated bits in the saved copy of the status register
15528 currently residing on the stack. This only works inside interrupt
15529 handlers and the changes to the status register will only take affect
15530 once the handler returns.
15532 @item __bis_SR_register_on_exit (int @var{mask})
15533 This sets the indicated bits in the saved copy of the status register
15534 currently residing on the stack. This only works inside interrupt
15535 handlers and the changes to the status register will only take affect
15536 once the handler returns.
15538 @item __delay_cycles (long long @var{cycles})
15539 This inserts an instruction sequence that takes exactly @var{cycles}
15540 cycles (between 0 and about 17E9) to complete. The inserted sequence
15541 may use jumps, loops, or no-ops, and does not interfere with any other
15542 instructions. Note that @var{cycles} must be a compile-time constant
15543 integer - that is, you must pass a number, not a variable that may be
15544 optimized to a constant later. The number of cycles delayed by this
15548 @node NDS32 Built-in Functions
15549 @subsection NDS32 Built-in Functions
15551 These built-in functions are available for the NDS32 target:
15553 @deftypefn {Built-in Function} void __builtin_nds32_isync (int *@var{addr})
15554 Insert an ISYNC instruction into the instruction stream where
15555 @var{addr} is an instruction address for serialization.
15558 @deftypefn {Built-in Function} void __builtin_nds32_isb (void)
15559 Insert an ISB instruction into the instruction stream.
15562 @deftypefn {Built-in Function} int __builtin_nds32_mfsr (int @var{sr})
15563 Return the content of a system register which is mapped by @var{sr}.
15566 @deftypefn {Built-in Function} int __builtin_nds32_mfusr (int @var{usr})
15567 Return the content of a user space register which is mapped by @var{usr}.
15570 @deftypefn {Built-in Function} void __builtin_nds32_mtsr (int @var{value}, int @var{sr})
15571 Move the @var{value} to a system register which is mapped by @var{sr}.
15574 @deftypefn {Built-in Function} void __builtin_nds32_mtusr (int @var{value}, int @var{usr})
15575 Move the @var{value} to a user space register which is mapped by @var{usr}.
15578 @deftypefn {Built-in Function} void __builtin_nds32_setgie_en (void)
15579 Enable global interrupt.
15582 @deftypefn {Built-in Function} void __builtin_nds32_setgie_dis (void)
15583 Disable global interrupt.
15586 @node picoChip Built-in Functions
15587 @subsection picoChip Built-in Functions
15589 GCC provides an interface to selected machine instructions from the
15590 picoChip instruction set.
15593 @item int __builtin_sbc (int @var{value})
15594 Sign bit count. Return the number of consecutive bits in @var{value}
15595 that have the same value as the sign bit. The result is the number of
15596 leading sign bits minus one, giving the number of redundant sign bits in
15599 @item int __builtin_byteswap (int @var{value})
15600 Byte swap. Return the result of swapping the upper and lower bytes of
15603 @item int __builtin_brev (int @var{value})
15604 Bit reversal. Return the result of reversing the bits in
15605 @var{value}. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
15608 @item int __builtin_adds (int @var{x}, int @var{y})
15609 Saturating addition. Return the result of adding @var{x} and @var{y},
15610 storing the value 32767 if the result overflows.
15612 @item int __builtin_subs (int @var{x}, int @var{y})
15613 Saturating subtraction. Return the result of subtracting @var{y} from
15614 @var{x}, storing the value @minus{}32768 if the result overflows.
15616 @item void __builtin_halt (void)
15617 Halt. The processor stops execution. This built-in is useful for
15618 implementing assertions.
15622 @node Basic PowerPC Built-in Functions
15623 @subsection Basic PowerPC Built-in Functions
15626 * Basic PowerPC Built-in Functions Available on all Configurations::
15627 * Basic PowerPC Built-in Functions Available on ISA 2.05::
15628 * Basic PowerPC Built-in Functions Available on ISA 2.06::
15629 * Basic PowerPC Built-in Functions Available on ISA 2.07::
15630 * Basic PowerPC Built-in Functions Available on ISA 3.0::
15633 This section describes PowerPC built-in functions that do not require
15634 the inclusion of any special header files to declare prototypes or
15635 provide macro definitions. The sections that follow describe
15636 additional PowerPC built-in functions.
15638 @node Basic PowerPC Built-in Functions Available on all Configurations
15639 @subsubsection Basic PowerPC Built-in Functions Available on all Configurations
15641 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
15642 This function is a @code{nop} on the PowerPC platform and is included solely
15643 to maintain API compatibility with the x86 builtins.
15646 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
15647 This function returns a value of @code{1} if the run-time CPU is of type
15648 @var{cpuname} and returns @code{0} otherwise
15650 The @code{__builtin_cpu_is} function requires GLIBC 2.23 or newer
15651 which exports the hardware capability bits. GCC defines the macro
15652 @code{__BUILTIN_CPU_SUPPORTS__} if the @code{__builtin_cpu_supports}
15653 built-in function is fully supported.
15655 If GCC was configured to use a GLIBC before 2.23, the built-in
15656 function @code{__builtin_cpu_is} always returns a 0 and the compiler
15659 The following CPU names can be detected:
15663 IBM POWER9 Server CPU.
15665 IBM POWER8 Server CPU.
15667 IBM POWER7 Server CPU.
15669 IBM POWER6 Server CPU (RAW mode).
15671 IBM POWER6 Server CPU (Architected mode).
15673 IBM POWER5+ Server CPU.
15675 IBM POWER5 Server CPU.
15677 IBM 970 Server CPU (ie, Apple G5).
15679 IBM POWER4 Server CPU.
15681 IBM A2 64-bit Embedded CPU
15683 IBM PowerPC 476FP 32-bit Embedded CPU.
15685 IBM PowerPC 464 32-bit Embedded CPU.
15687 PowerPC 440 32-bit Embedded CPU.
15689 PowerPC 405 32-bit Embedded CPU.
15691 IBM PowerPC Cell Broadband Engine Architecture CPU.
15694 Here is an example:
15696 #ifdef __BUILTIN_CPU_SUPPORTS__
15697 if (__builtin_cpu_is ("power8"))
15699 do_power8 (); // POWER8 specific implementation.
15704 do_generic (); // Generic implementation.
15709 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
15710 This function returns a value of @code{1} if the run-time CPU supports the HWCAP
15711 feature @var{feature} and returns @code{0} otherwise.
15713 The @code{__builtin_cpu_supports} function requires GLIBC 2.23 or
15714 newer which exports the hardware capability bits. GCC defines the
15715 macro @code{__BUILTIN_CPU_SUPPORTS__} if the
15716 @code{__builtin_cpu_supports} built-in function is fully supported.
15718 If GCC was configured to use a GLIBC before 2.23, the built-in
15719 function @code{__builtin_cpu_suports} always returns a 0 and the
15720 compiler issues a warning.
15722 The following features can be
15727 4xx CPU has a Multiply Accumulator.
15729 CPU has a SIMD/Vector Unit.
15731 CPU supports ISA 2.05 (eg, POWER6)
15733 CPU supports ISA 2.06 (eg, POWER7)
15735 CPU supports ISA 2.07 (eg, POWER8)
15737 CPU supports ISA 3.0 (eg, POWER9)
15739 CPU supports the set of compatible performance monitoring events.
15741 CPU supports the Embedded ISA category.
15743 CPU has a CELL broadband engine.
15745 CPU supports the @code{darn} (deliver a random number) instruction.
15747 CPU has a decimal floating point unit.
15749 CPU supports the data stream control register.
15751 CPU supports event base branching.
15753 CPU has a SPE double precision floating point unit.
15755 CPU has a SPE single precision floating point unit.
15757 CPU has a floating point unit.
15759 CPU has hardware transaction memory instructions.
15761 Kernel aborts hardware transactions when a syscall is made.
15762 @item htm-no-suspend
15763 CPU supports hardware transaction memory but does not support the
15764 @code{tsuspend.} instruction.
15766 CPU supports icache snooping capabilities.
15768 CPU supports 128-bit IEEE binary floating point instructions.
15770 CPU supports the integer select instruction.
15772 CPU has a memory management unit.
15774 CPU does not have a timebase (eg, 601 and 403gx).
15776 CPU supports the PA Semi 6T CORE ISA.
15778 CPU supports ISA 2.00 (eg, POWER4)
15780 CPU supports ISA 2.02 (eg, POWER5)
15782 CPU supports ISA 2.03 (eg, POWER5+)
15784 CPU supports ISA 2.05 (eg, POWER6) extended opcodes mffgpr and mftgpr.
15786 CPU supports 32-bit mode execution.
15788 CPU supports the old POWER ISA (eg, 601)
15790 CPU supports 64-bit mode execution.
15792 CPU supports a little-endian mode that uses address swizzling.
15794 Kernel supports system call vectored.
15796 CPU support simultaneous multi-threading.
15798 CPU has a signal processing extension unit.
15800 CPU supports the target address register.
15802 CPU supports true little-endian mode.
15804 CPU has unified I/D cache.
15806 CPU supports the vector cryptography instructions.
15808 CPU supports the vector-scalar extension.
15811 Here is an example:
15813 #ifdef __BUILTIN_CPU_SUPPORTS__
15814 if (__builtin_cpu_supports ("fpu"))
15816 asm("fadd %0,%1,%2" : "=d"(dst) : "d"(src1), "d"(src2));
15821 dst = __fadd (src1, src2); // Software FP addition function.
15826 The following built-in functions are also available on all PowerPC
15829 uint64_t __builtin_ppc_get_timebase ();
15830 unsigned long __builtin_ppc_mftb ();
15831 double __builtin_unpack_ibm128 (__ibm128, int);
15832 __ibm128 __builtin_pack_ibm128 (double, double);
15833 double __builtin_mffs (void);
15834 void __builtin_mtfsb0 (const int);
15835 void __builtin_mtfsb1 (const int);
15836 void __builtin_set_fpscr_rn (int);
15839 The @code{__builtin_ppc_get_timebase} and @code{__builtin_ppc_mftb}
15840 functions generate instructions to read the Time Base Register. The
15841 @code{__builtin_ppc_get_timebase} function may generate multiple
15842 instructions and always returns the 64 bits of the Time Base Register.
15843 The @code{__builtin_ppc_mftb} function always generates one instruction and
15844 returns the Time Base Register value as an unsigned long, throwing away
15845 the most significant word on 32-bit environments. The @code{__builtin_mffs}
15846 return the value of the FPSCR register. Note, ISA 3.0 supports the
15847 @code{__builtin_mffsl()} which permits software to read the control and
15848 non-sticky status bits in the FSPCR without the higher latency associated with
15849 accessing the sticky status bits. The
15850 @code{__builtin_mtfsb0} and @code{__builtin_mtfsb1} take the bit to change
15851 as an argument. The valid bit range is between 0 and 31. The builtins map to
15852 the @code{mtfsb0} and @code{mtfsb1} instructions which take the argument and
15853 add 32. Hence these instructions only modify the FPSCR[32:63] bits by
15854 changing the specified bit to a zero or one respectively. The
15855 @code{__builtin_set_fpscr_rn} builtin allows changing both of the floating
15856 point rounding mode bits. The argument is a 2-bit value. The argument can
15857 either be a const int or stored in a variable. The builtin uses the ISA 3.0
15858 instruction @code{mffscrn} if available, otherwise it reads the FPSCR, masks
15859 the current rounding mode bits out and OR's in the new value.
15861 @node Basic PowerPC Built-in Functions Available on ISA 2.05
15862 @subsubsection Basic PowerPC Built-in Functions Available on ISA 2.05
15864 The basic built-in functions described in this section are
15865 available on the PowerPC family of processors starting with ISA 2.05
15866 or later. Unless specific options are explicitly disabled on the
15867 command line, specifying option @option{-mcpu=power6} has the effect of
15868 enabling the @option{-mpowerpc64}, @option{-mpowerpc-gpopt},
15869 @option{-mpowerpc-gfxopt}, @option{-mmfcrf}, @option{-mpopcntb},
15870 @option{-mfprnd}, @option{-mcmpb}, @option{-mhard-dfp}, and
15871 @option{-mrecip-precision} options. Specify the
15872 @option{-maltivec} and @option{-mfpgpr} options explicitly in
15873 combination with the above options if they are desired.
15875 The following functions require option @option{-mcmpb}.
15877 unsigned long long __builtin_cmpb (unsigned long long int, unsigned long long int);
15878 unsigned int __builtin_cmpb (unsigned int, unsigned int);
15881 The @code{__builtin_cmpb} function
15882 performs a byte-wise compare on the contents of its two arguments,
15883 returning the result of the byte-wise comparison as the returned
15884 value. For each byte comparison, the corresponding byte of the return
15885 value holds 0xff if the input bytes are equal and 0 if the input bytes
15886 are not equal. If either of the arguments to this built-in function
15887 is wider than 32 bits, the function call expands into the form that
15888 expects @code{unsigned long long int} arguments
15889 which is only available on 64-bit targets.
15891 The following built-in functions are available
15892 when hardware decimal floating point
15893 (@option{-mhard-dfp}) is available:
15895 void __builtin_set_fpscr_drn(int);
15896 _Decimal64 __builtin_ddedpd (int, _Decimal64);
15897 _Decimal128 __builtin_ddedpdq (int, _Decimal128);
15898 _Decimal64 __builtin_denbcd (int, _Decimal64);
15899 _Decimal128 __builtin_denbcdq (int, _Decimal128);
15900 _Decimal64 __builtin_diex (long long, _Decimal64);
15901 _Decimal128 _builtin_diexq (long long, _Decimal128);
15902 _Decimal64 __builtin_dscli (_Decimal64, int);
15903 _Decimal128 __builtin_dscliq (_Decimal128, int);
15904 _Decimal64 __builtin_dscri (_Decimal64, int);
15905 _Decimal128 __builtin_dscriq (_Decimal128, int);
15906 long long __builtin_dxex (_Decimal64);
15907 long long __builtin_dxexq (_Decimal128);
15908 _Decimal128 __builtin_pack_dec128 (unsigned long long, unsigned long long);
15909 unsigned long long __builtin_unpack_dec128 (_Decimal128, int);
15911 The @code{__builtin_set_fpscr_drn} builtin allows changing the three decimal
15912 floating point rounding mode bits. The argument is a 3-bit value. The
15913 argument can either be a const int or the value can be stored in a variable.
15914 The builtin uses the ISA 3.0 instruction @code{mffscdrn} if available.
15915 Otherwise the builtin reads the FPSCR, masks the current decimal rounding
15916 mode bits out and OR's in the new value.
15920 The following functions require @option{-mhard-float},
15921 @option{-mpowerpc-gfxopt}, and @option{-mpopcntb} options.
15924 double __builtin_recipdiv (double, double);
15925 float __builtin_recipdivf (float, float);
15926 double __builtin_rsqrt (double);
15927 float __builtin_rsqrtf (float);
15930 The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
15931 @code{__builtin_rsqrtf} functions generate multiple instructions to
15932 implement the reciprocal sqrt functionality using reciprocal sqrt
15933 estimate instructions.
15935 The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
15936 functions generate multiple instructions to implement division using
15937 the reciprocal estimate instructions.
15939 The following functions require @option{-mhard-float} and
15940 @option{-mmultiple} options.
15942 The @code{__builtin_unpack_longdouble} function takes a
15943 @code{long double} argument and a compile time constant of 0 or 1. If
15944 the constant is 0, the first @code{double} within the
15945 @code{long double} is returned, otherwise the second @code{double}
15946 is returned. The @code{__builtin_unpack_longdouble} function is only
15947 available if @code{long double} uses the IBM extended double
15950 The @code{__builtin_pack_longdouble} function takes two @code{double}
15951 arguments and returns a @code{long double} value that combines the two
15952 arguments. The @code{__builtin_pack_longdouble} function is only
15953 available if @code{long double} uses the IBM extended double
15956 The @code{__builtin_unpack_ibm128} function takes a @code{__ibm128}
15957 argument and a compile time constant of 0 or 1. If the constant is 0,
15958 the first @code{double} within the @code{__ibm128} is returned,
15959 otherwise the second @code{double} is returned.
15961 The @code{__builtin_pack_ibm128} function takes two @code{double}
15962 arguments and returns a @code{__ibm128} value that combines the two
15965 Additional built-in functions are available for the 64-bit PowerPC
15966 family of processors, for efficient use of 128-bit floating point
15967 (@code{__float128}) values.
15969 @node Basic PowerPC Built-in Functions Available on ISA 2.06
15970 @subsubsection Basic PowerPC Built-in Functions Available on ISA 2.06
15972 The basic built-in functions described in this section are
15973 available on the PowerPC family of processors starting with ISA 2.05
15974 or later. Unless specific options are explicitly disabled on the
15975 command line, specifying option @option{-mcpu=power7} has the effect of
15976 enabling all the same options as for @option{-mcpu=power6} in
15977 addition to the @option{-maltivec}, @option{-mpopcntd}, and
15978 @option{-mvsx} options.
15980 The following basic built-in functions require @option{-mpopcntd}:
15982 unsigned int __builtin_addg6s (unsigned int, unsigned int);
15983 long long __builtin_bpermd (long long, long long);
15984 unsigned int __builtin_cbcdtd (unsigned int);
15985 unsigned int __builtin_cdtbcd (unsigned int);
15986 long long __builtin_divde (long long, long long);
15987 unsigned long long __builtin_divdeu (unsigned long long, unsigned long long);
15988 int __builtin_divwe (int, int);
15989 unsigned int __builtin_divweu (unsigned int, unsigned int);
15990 vector __int128 __builtin_pack_vector_int128 (long long, long long);
15991 void __builtin_rs6000_speculation_barrier (void);
15992 long long __builtin_unpack_vector_int128 (vector __int128, signed char);
15995 Of these, the @code{__builtin_divde} and @code{__builtin_divdeu} functions
15996 require a 64-bit environment.
15998 The following basic built-in functions, which are also supported on
15999 x86 targets, require @option{-mfloat128}.
16001 __float128 __builtin_fabsq (__float128);
16002 __float128 __builtin_copysignq (__float128, __float128);
16003 __float128 __builtin_infq (void);
16004 __float128 __builtin_huge_valq (void);
16005 __float128 __builtin_nanq (void);
16006 __float128 __builtin_nansq (void);
16008 __float128 __builtin_sqrtf128 (__float128);
16009 __float128 __builtin_fmaf128 (__float128, __float128, __float128);
16012 @node Basic PowerPC Built-in Functions Available on ISA 2.07
16013 @subsubsection Basic PowerPC Built-in Functions Available on ISA 2.07
16015 The basic built-in functions described in this section are
16016 available on the PowerPC family of processors starting with ISA 2.07
16017 or later. Unless specific options are explicitly disabled on the
16018 command line, specifying option @option{-mcpu=power8} has the effect of
16019 enabling all the same options as for @option{-mcpu=power7} in
16020 addition to the @option{-mpower8-fusion}, @option{-mpower8-vector},
16021 @option{-mcrypto}, @option{-mhtm}, @option{-mquad-memory}, and
16022 @option{-mquad-memory-atomic} options.
16024 This section intentionally empty.
16026 @node Basic PowerPC Built-in Functions Available on ISA 3.0
16027 @subsubsection Basic PowerPC Built-in Functions Available on ISA 3.0
16029 The basic built-in functions described in this section are
16030 available on the PowerPC family of processors starting with ISA 3.0
16031 or later. Unless specific options are explicitly disabled on the
16032 command line, specifying option @option{-mcpu=power9} has the effect of
16033 enabling all the same options as for @option{-mcpu=power8} in
16034 addition to the @option{-misel} option.
16036 The following built-in functions are available on Linux 64-bit systems
16037 that use the ISA 3.0 instruction set (@option{-mcpu=power9}):
16040 @item __float128 __builtin_addf128_round_to_odd (__float128, __float128)
16041 Perform a 128-bit IEEE floating point add using round to odd as the
16043 @findex __builtin_addf128_round_to_odd
16045 @item __float128 __builtin_subf128_round_to_odd (__float128, __float128)
16046 Perform a 128-bit IEEE floating point subtract using round to odd as
16048 @findex __builtin_subf128_round_to_odd
16050 @item __float128 __builtin_mulf128_round_to_odd (__float128, __float128)
16051 Perform a 128-bit IEEE floating point multiply using round to odd as
16053 @findex __builtin_mulf128_round_to_odd
16055 @item __float128 __builtin_divf128_round_to_odd (__float128, __float128)
16056 Perform a 128-bit IEEE floating point divide using round to odd as
16058 @findex __builtin_divf128_round_to_odd
16060 @item __float128 __builtin_sqrtf128_round_to_odd (__float128)
16061 Perform a 128-bit IEEE floating point square root using round to odd
16062 as the rounding mode.
16063 @findex __builtin_sqrtf128_round_to_odd
16065 @item __float128 __builtin_fmaf128_round_to_odd (__float128, __float128, __float128)
16066 Perform a 128-bit IEEE floating point fused multiply and add operation
16067 using round to odd as the rounding mode.
16068 @findex __builtin_fmaf128_round_to_odd
16070 @item double __builtin_truncf128_round_to_odd (__float128)
16071 Convert a 128-bit IEEE floating point value to @code{double} using
16072 round to odd as the rounding mode.
16073 @findex __builtin_truncf128_round_to_odd
16076 The following additional built-in functions are also available for the
16077 PowerPC family of processors, starting with ISA 3.0 or later:
16079 long long __builtin_darn (void);
16080 long long __builtin_darn_raw (void);
16081 int __builtin_darn_32 (void);
16084 The @code{__builtin_darn} and @code{__builtin_darn_raw}
16085 functions require a
16086 64-bit environment supporting ISA 3.0 or later.
16087 The @code{__builtin_darn} function provides a 64-bit conditioned
16088 random number. The @code{__builtin_darn_raw} function provides a
16089 64-bit raw random number. The @code{__builtin_darn_32} function
16090 provides a 32-bit conditioned random number.
16092 The following additional built-in functions are also available for the
16093 PowerPC family of processors, starting with ISA 3.0 or later:
16096 int __builtin_byte_in_set (unsigned char u, unsigned long long set);
16097 int __builtin_byte_in_range (unsigned char u, unsigned int range);
16098 int __builtin_byte_in_either_range (unsigned char u, unsigned int ranges);
16100 int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal64 value);
16101 int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal128 value);
16102 int __builtin_dfp_dtstsfi_lt_dd (unsigned int comparison, _Decimal64 value);
16103 int __builtin_dfp_dtstsfi_lt_td (unsigned int comparison, _Decimal128 value);
16105 int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal64 value);
16106 int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal128 value);
16107 int __builtin_dfp_dtstsfi_gt_dd (unsigned int comparison, _Decimal64 value);
16108 int __builtin_dfp_dtstsfi_gt_td (unsigned int comparison, _Decimal128 value);
16110 int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal64 value);
16111 int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal128 value);
16112 int __builtin_dfp_dtstsfi_eq_dd (unsigned int comparison, _Decimal64 value);
16113 int __builtin_dfp_dtstsfi_eq_td (unsigned int comparison, _Decimal128 value);
16115 int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal64 value);
16116 int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal128 value);
16117 int __builtin_dfp_dtstsfi_ov_dd (unsigned int comparison, _Decimal64 value);
16118 int __builtin_dfp_dtstsfi_ov_td (unsigned int comparison, _Decimal128 value);
16120 double __builtin_mffsl(void);
16123 The @code{__builtin_byte_in_set} function requires a
16124 64-bit environment supporting ISA 3.0 or later. This function returns
16125 a non-zero value if and only if its @code{u} argument exactly equals one of
16126 the eight bytes contained within its 64-bit @code{set} argument.
16128 The @code{__builtin_byte_in_range} and
16129 @code{__builtin_byte_in_either_range} require an environment
16130 supporting ISA 3.0 or later. For these two functions, the
16131 @code{range} argument is encoded as 4 bytes, organized as
16132 @code{hi_1:lo_1:hi_2:lo_2}.
16133 The @code{__builtin_byte_in_range} function returns a
16134 non-zero value if and only if its @code{u} argument is within the
16135 range bounded between @code{lo_2} and @code{hi_2} inclusive.
16136 The @code{__builtin_byte_in_either_range} function returns non-zero if
16137 and only if its @code{u} argument is within either the range bounded
16138 between @code{lo_1} and @code{hi_1} inclusive or the range bounded
16139 between @code{lo_2} and @code{hi_2} inclusive.
16141 The @code{__builtin_dfp_dtstsfi_lt} function returns a non-zero value
16142 if and only if the number of signficant digits of its @code{value} argument
16143 is less than its @code{comparison} argument. The
16144 @code{__builtin_dfp_dtstsfi_lt_dd} and
16145 @code{__builtin_dfp_dtstsfi_lt_td} functions behave similarly, but
16146 require that the type of the @code{value} argument be
16147 @code{__Decimal64} and @code{__Decimal128} respectively.
16149 The @code{__builtin_dfp_dtstsfi_gt} function returns a non-zero value
16150 if and only if the number of signficant digits of its @code{value} argument
16151 is greater than its @code{comparison} argument. The
16152 @code{__builtin_dfp_dtstsfi_gt_dd} and
16153 @code{__builtin_dfp_dtstsfi_gt_td} functions behave similarly, but
16154 require that the type of the @code{value} argument be
16155 @code{__Decimal64} and @code{__Decimal128} respectively.
16157 The @code{__builtin_dfp_dtstsfi_eq} function returns a non-zero value
16158 if and only if the number of signficant digits of its @code{value} argument
16159 equals its @code{comparison} argument. The
16160 @code{__builtin_dfp_dtstsfi_eq_dd} and
16161 @code{__builtin_dfp_dtstsfi_eq_td} functions behave similarly, but
16162 require that the type of the @code{value} argument be
16163 @code{__Decimal64} and @code{__Decimal128} respectively.
16165 The @code{__builtin_dfp_dtstsfi_ov} function returns a non-zero value
16166 if and only if its @code{value} argument has an undefined number of
16167 significant digits, such as when @code{value} is an encoding of @code{NaN}.
16168 The @code{__builtin_dfp_dtstsfi_ov_dd} and
16169 @code{__builtin_dfp_dtstsfi_ov_td} functions behave similarly, but
16170 require that the type of the @code{value} argument be
16171 @code{__Decimal64} and @code{__Decimal128} respectively.
16173 The @code{__builtin_mffsl} uses the ISA 3.0 @code{mffsl} instruction to read
16174 the FPSCR. The instruction is a lower latency version of the @code{mffs}
16175 instruction. If the @code{mffsl} instruction is not available, then the
16176 builtin uses the older @code{mffs} instruction to read the FPSCR.
16179 @node PowerPC AltiVec/VSX Built-in Functions
16180 @subsection PowerPC AltiVec/VSX Built-in Functions
16182 GCC provides an interface for the PowerPC family of processors to access
16183 the AltiVec operations described in Motorola's AltiVec Programming
16184 Interface Manual. The interface is made available by including
16185 @code{<altivec.h>} and using @option{-maltivec} and
16186 @option{-mabi=altivec}. The interface supports the following vector
16190 vector unsigned char
16194 vector unsigned short
16195 vector signed short
16199 vector unsigned int
16205 GCC's implementation of the high-level language interface available from
16206 C and C++ code differs from Motorola's documentation in several ways.
16211 A vector constant is a list of constant expressions within curly braces.
16214 A vector initializer requires no cast if the vector constant is of the
16215 same type as the variable it is initializing.
16218 If @code{signed} or @code{unsigned} is omitted, the signedness of the
16219 vector type is the default signedness of the base type. The default
16220 varies depending on the operating system, so a portable program should
16221 always specify the signedness.
16224 Compiling with @option{-maltivec} adds keywords @code{__vector},
16225 @code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
16226 @code{bool}. When compiling ISO C, the context-sensitive substitution
16227 of the keywords @code{vector}, @code{pixel} and @code{bool} is
16228 disabled. To use them, you must include @code{<altivec.h>} instead.
16231 GCC allows using a @code{typedef} name as the type specifier for a
16235 For C, overloaded functions are implemented with macros so the following
16239 vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
16243 Since @code{vec_add} is a macro, the vector constant in the example
16244 is treated as four separate arguments. Wrap the entire argument in
16245 parentheses for this to work.
16248 @emph{Note:} Only the @code{<altivec.h>} interface is supported.
16249 Internally, GCC uses built-in functions to achieve the functionality in
16250 the aforementioned header file, but they are not supported and are
16251 subject to change without notice.
16253 GCC complies with the OpenPOWER 64-Bit ELF V2 ABI Specification,
16254 which may be found at
16255 @uref{http://openpowerfoundation.org/wp-content/uploads/resources/leabi-prd/content/index.html}.
16256 Appendix A of this document lists the vector API interfaces that must be
16257 provided by compliant compilers. Programmers should preferentially use
16258 the interfaces described therein. However, historically GCC has provided
16259 additional interfaces for access to vector instructions. These are
16260 briefly described below.
16263 * PowerPC AltiVec Built-in Functions on ISA 2.05::
16264 * PowerPC AltiVec Built-in Functions Available on ISA 2.06::
16265 * PowerPC AltiVec Built-in Functions Available on ISA 2.07::
16266 * PowerPC AltiVec Built-in Functions Available on ISA 3.0::
16269 @node PowerPC AltiVec Built-in Functions on ISA 2.05
16270 @subsubsection PowerPC AltiVec Built-in Functions on ISA 2.05
16272 The following interfaces are supported for the generic and specific
16273 AltiVec operations and the AltiVec predicates. In cases where there
16274 is a direct mapping between generic and specific operations, only the
16275 generic names are shown here, although the specific operations can also
16278 Arguments that are documented as @code{const int} require literal
16279 integral values within the range required for that operation.
16282 vector signed char vec_abs (vector signed char);
16283 vector signed short vec_abs (vector signed short);
16284 vector signed int vec_abs (vector signed int);
16285 vector float vec_abs (vector float);
16287 vector signed char vec_abss (vector signed char);
16288 vector signed short vec_abss (vector signed short);
16289 vector signed int vec_abss (vector signed int);
16291 vector signed char vec_add (vector bool char, vector signed char);
16292 vector signed char vec_add (vector signed char, vector bool char);
16293 vector signed char vec_add (vector signed char, vector signed char);
16294 vector unsigned char vec_add (vector bool char, vector unsigned char);
16295 vector unsigned char vec_add (vector unsigned char, vector bool char);
16296 vector unsigned char vec_add (vector unsigned char, vector unsigned char);
16297 vector signed short vec_add (vector bool short, vector signed short);
16298 vector signed short vec_add (vector signed short, vector bool short);
16299 vector signed short vec_add (vector signed short, vector signed short);
16300 vector unsigned short vec_add (vector bool short, vector unsigned short);
16301 vector unsigned short vec_add (vector unsigned short, vector bool short);
16302 vector unsigned short vec_add (vector unsigned short, vector unsigned short);
16303 vector signed int vec_add (vector bool int, vector signed int);
16304 vector signed int vec_add (vector signed int, vector bool int);
16305 vector signed int vec_add (vector signed int, vector signed int);
16306 vector unsigned int vec_add (vector bool int, vector unsigned int);
16307 vector unsigned int vec_add (vector unsigned int, vector bool int);
16308 vector unsigned int vec_add (vector unsigned int, vector unsigned int);
16309 vector float vec_add (vector float, vector float);
16311 vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
16313 vector unsigned char vec_adds (vector bool char, vector unsigned char);
16314 vector unsigned char vec_adds (vector unsigned char, vector bool char);
16315 vector unsigned char vec_adds (vector unsigned char, vector unsigned char);
16316 vector signed char vec_adds (vector bool char, vector signed char);
16317 vector signed char vec_adds (vector signed char, vector bool char);
16318 vector signed char vec_adds (vector signed char, vector signed char);
16319 vector unsigned short vec_adds (vector bool short, vector unsigned short);
16320 vector unsigned short vec_adds (vector unsigned short, vector bool short);
16321 vector unsigned short vec_adds (vector unsigned short, vector unsigned short);
16322 vector signed short vec_adds (vector bool short, vector signed short);
16323 vector signed short vec_adds (vector signed short, vector bool short);
16324 vector signed short vec_adds (vector signed short, vector signed short);
16325 vector unsigned int vec_adds (vector bool int, vector unsigned int);
16326 vector unsigned int vec_adds (vector unsigned int, vector bool int);
16327 vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
16328 vector signed int vec_adds (vector bool int, vector signed int);
16329 vector signed int vec_adds (vector signed int, vector bool int);
16330 vector signed int vec_adds (vector signed int, vector signed int);
16332 int vec_all_eq (vector signed char, vector bool char);
16333 int vec_all_eq (vector signed char, vector signed char);
16334 int vec_all_eq (vector unsigned char, vector bool char);
16335 int vec_all_eq (vector unsigned char, vector unsigned char);
16336 int vec_all_eq (vector bool char, vector bool char);
16337 int vec_all_eq (vector bool char, vector unsigned char);
16338 int vec_all_eq (vector bool char, vector signed char);
16339 int vec_all_eq (vector signed short, vector bool short);
16340 int vec_all_eq (vector signed short, vector signed short);
16341 int vec_all_eq (vector unsigned short, vector bool short);
16342 int vec_all_eq (vector unsigned short, vector unsigned short);
16343 int vec_all_eq (vector bool short, vector bool short);
16344 int vec_all_eq (vector bool short, vector unsigned short);
16345 int vec_all_eq (vector bool short, vector signed short);
16346 int vec_all_eq (vector pixel, vector pixel);
16347 int vec_all_eq (vector signed int, vector bool int);
16348 int vec_all_eq (vector signed int, vector signed int);
16349 int vec_all_eq (vector unsigned int, vector bool int);
16350 int vec_all_eq (vector unsigned int, vector unsigned int);
16351 int vec_all_eq (vector bool int, vector bool int);
16352 int vec_all_eq (vector bool int, vector unsigned int);
16353 int vec_all_eq (vector bool int, vector signed int);
16354 int vec_all_eq (vector float, vector float);
16356 int vec_all_ge (vector bool char, vector unsigned char);
16357 int vec_all_ge (vector unsigned char, vector bool char);
16358 int vec_all_ge (vector unsigned char, vector unsigned char);
16359 int vec_all_ge (vector bool char, vector signed char);
16360 int vec_all_ge (vector signed char, vector bool char);
16361 int vec_all_ge (vector signed char, vector signed char);
16362 int vec_all_ge (vector bool short, vector unsigned short);
16363 int vec_all_ge (vector unsigned short, vector bool short);
16364 int vec_all_ge (vector unsigned short, vector unsigned short);
16365 int vec_all_ge (vector signed short, vector signed short);
16366 int vec_all_ge (vector bool short, vector signed short);
16367 int vec_all_ge (vector signed short, vector bool short);
16368 int vec_all_ge (vector bool int, vector unsigned int);
16369 int vec_all_ge (vector unsigned int, vector bool int);
16370 int vec_all_ge (vector unsigned int, vector unsigned int);
16371 int vec_all_ge (vector bool int, vector signed int);
16372 int vec_all_ge (vector signed int, vector bool int);
16373 int vec_all_ge (vector signed int, vector signed int);
16374 int vec_all_ge (vector float, vector float);
16376 int vec_all_gt (vector bool char, vector unsigned char);
16377 int vec_all_gt (vector unsigned char, vector bool char);
16378 int vec_all_gt (vector unsigned char, vector unsigned char);
16379 int vec_all_gt (vector bool char, vector signed char);
16380 int vec_all_gt (vector signed char, vector bool char);
16381 int vec_all_gt (vector signed char, vector signed char);
16382 int vec_all_gt (vector bool short, vector unsigned short);
16383 int vec_all_gt (vector unsigned short, vector bool short);
16384 int vec_all_gt (vector unsigned short, vector unsigned short);
16385 int vec_all_gt (vector bool short, vector signed short);
16386 int vec_all_gt (vector signed short, vector bool short);
16387 int vec_all_gt (vector signed short, vector signed short);
16388 int vec_all_gt (vector bool int, vector unsigned int);
16389 int vec_all_gt (vector unsigned int, vector bool int);
16390 int vec_all_gt (vector unsigned int, vector unsigned int);
16391 int vec_all_gt (vector bool int, vector signed int);
16392 int vec_all_gt (vector signed int, vector bool int);
16393 int vec_all_gt (vector signed int, vector signed int);
16394 int vec_all_gt (vector float, vector float);
16396 int vec_all_in (vector float, vector float);
16398 int vec_all_le (vector bool char, vector unsigned char);
16399 int vec_all_le (vector unsigned char, vector bool char);
16400 int vec_all_le (vector unsigned char, vector unsigned char);
16401 int vec_all_le (vector bool char, vector signed char);
16402 int vec_all_le (vector signed char, vector bool char);
16403 int vec_all_le (vector signed char, vector signed char);
16404 int vec_all_le (vector bool short, vector unsigned short);
16405 int vec_all_le (vector unsigned short, vector bool short);
16406 int vec_all_le (vector unsigned short, vector unsigned short);
16407 int vec_all_le (vector bool short, vector signed short);
16408 int vec_all_le (vector signed short, vector bool short);
16409 int vec_all_le (vector signed short, vector signed short);
16410 int vec_all_le (vector bool int, vector unsigned int);
16411 int vec_all_le (vector unsigned int, vector bool int);
16412 int vec_all_le (vector unsigned int, vector unsigned int);
16413 int vec_all_le (vector bool int, vector signed int);
16414 int vec_all_le (vector signed int, vector bool int);
16415 int vec_all_le (vector signed int, vector signed int);
16416 int vec_all_le (vector float, vector float);
16418 int vec_all_lt (vector bool char, vector unsigned char);
16419 int vec_all_lt (vector unsigned char, vector bool char);
16420 int vec_all_lt (vector unsigned char, vector unsigned char);
16421 int vec_all_lt (vector bool char, vector signed char);
16422 int vec_all_lt (vector signed char, vector bool char);
16423 int vec_all_lt (vector signed char, vector signed char);
16424 int vec_all_lt (vector bool short, vector unsigned short);
16425 int vec_all_lt (vector unsigned short, vector bool short);
16426 int vec_all_lt (vector unsigned short, vector unsigned short);
16427 int vec_all_lt (vector bool short, vector signed short);
16428 int vec_all_lt (vector signed short, vector bool short);
16429 int vec_all_lt (vector signed short, vector signed short);
16430 int vec_all_lt (vector bool int, vector unsigned int);
16431 int vec_all_lt (vector unsigned int, vector bool int);
16432 int vec_all_lt (vector unsigned int, vector unsigned int);
16433 int vec_all_lt (vector bool int, vector signed int);
16434 int vec_all_lt (vector signed int, vector bool int);
16435 int vec_all_lt (vector signed int, vector signed int);
16436 int vec_all_lt (vector float, vector float);
16438 int vec_all_nan (vector float);
16440 int vec_all_ne (vector signed char, vector bool char);
16441 int vec_all_ne (vector signed char, vector signed char);
16442 int vec_all_ne (vector unsigned char, vector bool char);
16443 int vec_all_ne (vector unsigned char, vector unsigned char);
16444 int vec_all_ne (vector bool char, vector bool char);
16445 int vec_all_ne (vector bool char, vector unsigned char);
16446 int vec_all_ne (vector bool char, vector signed char);
16447 int vec_all_ne (vector signed short, vector bool short);
16448 int vec_all_ne (vector signed short, vector signed short);
16449 int vec_all_ne (vector unsigned short, vector bool short);
16450 int vec_all_ne (vector unsigned short, vector unsigned short);
16451 int vec_all_ne (vector bool short, vector bool short);
16452 int vec_all_ne (vector bool short, vector unsigned short);
16453 int vec_all_ne (vector bool short, vector signed short);
16454 int vec_all_ne (vector pixel, vector pixel);
16455 int vec_all_ne (vector signed int, vector bool int);
16456 int vec_all_ne (vector signed int, vector signed int);
16457 int vec_all_ne (vector unsigned int, vector bool int);
16458 int vec_all_ne (vector unsigned int, vector unsigned int);
16459 int vec_all_ne (vector bool int, vector bool int);
16460 int vec_all_ne (vector bool int, vector unsigned int);
16461 int vec_all_ne (vector bool int, vector signed int);
16462 int vec_all_ne (vector float, vector float);
16464 int vec_all_nge (vector float, vector float);
16466 int vec_all_ngt (vector float, vector float);
16468 int vec_all_nle (vector float, vector float);
16470 int vec_all_nlt (vector float, vector float);
16472 int vec_all_numeric (vector float);
16474 vector float vec_and (vector float, vector float);
16475 vector float vec_and (vector float, vector bool int);
16476 vector float vec_and (vector bool int, vector float);
16477 vector bool int vec_and (vector bool int, vector bool int);
16478 vector signed int vec_and (vector bool int, vector signed int);
16479 vector signed int vec_and (vector signed int, vector bool int);
16480 vector signed int vec_and (vector signed int, vector signed int);
16481 vector unsigned int vec_and (vector bool int, vector unsigned int);
16482 vector unsigned int vec_and (vector unsigned int, vector bool int);
16483 vector unsigned int vec_and (vector unsigned int, vector unsigned int);
16484 vector bool short vec_and (vector bool short, vector bool short);
16485 vector signed short vec_and (vector bool short, vector signed short);
16486 vector signed short vec_and (vector signed short, vector bool short);
16487 vector signed short vec_and (vector signed short, vector signed short);
16488 vector unsigned short vec_and (vector bool short, vector unsigned short);
16489 vector unsigned short vec_and (vector unsigned short, vector bool short);
16490 vector unsigned short vec_and (vector unsigned short, vector unsigned short);
16491 vector signed char vec_and (vector bool char, vector signed char);
16492 vector bool char vec_and (vector bool char, vector bool char);
16493 vector signed char vec_and (vector signed char, vector bool char);
16494 vector signed char vec_and (vector signed char, vector signed char);
16495 vector unsigned char vec_and (vector bool char, vector unsigned char);
16496 vector unsigned char vec_and (vector unsigned char, vector bool char);
16497 vector unsigned char vec_and (vector unsigned char, vector unsigned char);
16499 vector float vec_andc (vector float, vector float);
16500 vector float vec_andc (vector float, vector bool int);
16501 vector float vec_andc (vector bool int, vector float);
16502 vector bool int vec_andc (vector bool int, vector bool int);
16503 vector signed int vec_andc (vector bool int, vector signed int);
16504 vector signed int vec_andc (vector signed int, vector bool int);
16505 vector signed int vec_andc (vector signed int, vector signed int);
16506 vector unsigned int vec_andc (vector bool int, vector unsigned int);
16507 vector unsigned int vec_andc (vector unsigned int, vector bool int);
16508 vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
16509 vector bool short vec_andc (vector bool short, vector bool short);
16510 vector signed short vec_andc (vector bool short, vector signed short);
16511 vector signed short vec_andc (vector signed short, vector bool short);
16512 vector signed short vec_andc (vector signed short, vector signed short);
16513 vector unsigned short vec_andc (vector bool short, vector unsigned short);
16514 vector unsigned short vec_andc (vector unsigned short, vector bool short);
16515 vector unsigned short vec_andc (vector unsigned short, vector unsigned short);
16516 vector signed char vec_andc (vector bool char, vector signed char);
16517 vector bool char vec_andc (vector bool char, vector bool char);
16518 vector signed char vec_andc (vector signed char, vector bool char);
16519 vector signed char vec_andc (vector signed char, vector signed char);
16520 vector unsigned char vec_andc (vector bool char, vector unsigned char);
16521 vector unsigned char vec_andc (vector unsigned char, vector bool char);
16522 vector unsigned char vec_andc (vector unsigned char, vector unsigned char);
16524 int vec_any_eq (vector signed char, vector bool char);
16525 int vec_any_eq (vector signed char, vector signed char);
16526 int vec_any_eq (vector unsigned char, vector bool char);
16527 int vec_any_eq (vector unsigned char, vector unsigned char);
16528 int vec_any_eq (vector bool char, vector bool char);
16529 int vec_any_eq (vector bool char, vector unsigned char);
16530 int vec_any_eq (vector bool char, vector signed char);
16531 int vec_any_eq (vector signed short, vector bool short);
16532 int vec_any_eq (vector signed short, vector signed short);
16533 int vec_any_eq (vector unsigned short, vector bool short);
16534 int vec_any_eq (vector unsigned short, vector unsigned short);
16535 int vec_any_eq (vector bool short, vector bool short);
16536 int vec_any_eq (vector bool short, vector unsigned short);
16537 int vec_any_eq (vector bool short, vector signed short);
16538 int vec_any_eq (vector pixel, vector pixel);
16539 int vec_any_eq (vector signed int, vector bool int);
16540 int vec_any_eq (vector signed int, vector signed int);
16541 int vec_any_eq (vector unsigned int, vector bool int);
16542 int vec_any_eq (vector unsigned int, vector unsigned int);
16543 int vec_any_eq (vector bool int, vector bool int);
16544 int vec_any_eq (vector bool int, vector unsigned int);
16545 int vec_any_eq (vector bool int, vector signed int);
16546 int vec_any_eq (vector float, vector float);
16548 int vec_any_ge (vector signed char, vector bool char);
16549 int vec_any_ge (vector unsigned char, vector bool char);
16550 int vec_any_ge (vector unsigned char, vector unsigned char);
16551 int vec_any_ge (vector signed char, vector signed char);
16552 int vec_any_ge (vector bool char, vector unsigned char);
16553 int vec_any_ge (vector bool char, vector signed char);
16554 int vec_any_ge (vector unsigned short, vector bool short);
16555 int vec_any_ge (vector unsigned short, vector unsigned short);
16556 int vec_any_ge (vector signed short, vector signed short);
16557 int vec_any_ge (vector signed short, vector bool short);
16558 int vec_any_ge (vector bool short, vector unsigned short);
16559 int vec_any_ge (vector bool short, vector signed short);
16560 int vec_any_ge (vector signed int, vector bool int);
16561 int vec_any_ge (vector unsigned int, vector bool int);
16562 int vec_any_ge (vector unsigned int, vector unsigned int);
16563 int vec_any_ge (vector signed int, vector signed int);
16564 int vec_any_ge (vector bool int, vector unsigned int);
16565 int vec_any_ge (vector bool int, vector signed int);
16566 int vec_any_ge (vector float, vector float);
16568 int vec_any_gt (vector bool char, vector unsigned char);
16569 int vec_any_gt (vector unsigned char, vector bool char);
16570 int vec_any_gt (vector unsigned char, vector unsigned char);
16571 int vec_any_gt (vector bool char, vector signed char);
16572 int vec_any_gt (vector signed char, vector bool char);
16573 int vec_any_gt (vector signed char, vector signed char);
16574 int vec_any_gt (vector bool short, vector unsigned short);
16575 int vec_any_gt (vector unsigned short, vector bool short);
16576 int vec_any_gt (vector unsigned short, vector unsigned short);
16577 int vec_any_gt (vector bool short, vector signed short);
16578 int vec_any_gt (vector signed short, vector bool short);
16579 int vec_any_gt (vector signed short, vector signed short);
16580 int vec_any_gt (vector bool int, vector unsigned int);
16581 int vec_any_gt (vector unsigned int, vector bool int);
16582 int vec_any_gt (vector unsigned int, vector unsigned int);
16583 int vec_any_gt (vector bool int, vector signed int);
16584 int vec_any_gt (vector signed int, vector bool int);
16585 int vec_any_gt (vector signed int, vector signed int);
16586 int vec_any_gt (vector float, vector float);
16588 int vec_any_le (vector bool char, vector unsigned char);
16589 int vec_any_le (vector unsigned char, vector bool char);
16590 int vec_any_le (vector unsigned char, vector unsigned char);
16591 int vec_any_le (vector bool char, vector signed char);
16592 int vec_any_le (vector signed char, vector bool char);
16593 int vec_any_le (vector signed char, vector signed char);
16594 int vec_any_le (vector bool short, vector unsigned short);
16595 int vec_any_le (vector unsigned short, vector bool short);
16596 int vec_any_le (vector unsigned short, vector unsigned short);
16597 int vec_any_le (vector bool short, vector signed short);
16598 int vec_any_le (vector signed short, vector bool short);
16599 int vec_any_le (vector signed short, vector signed short);
16600 int vec_any_le (vector bool int, vector unsigned int);
16601 int vec_any_le (vector unsigned int, vector bool int);
16602 int vec_any_le (vector unsigned int, vector unsigned int);
16603 int vec_any_le (vector bool int, vector signed int);
16604 int vec_any_le (vector signed int, vector bool int);
16605 int vec_any_le (vector signed int, vector signed int);
16606 int vec_any_le (vector float, vector float);
16608 int vec_any_lt (vector bool char, vector unsigned char);
16609 int vec_any_lt (vector unsigned char, vector bool char);
16610 int vec_any_lt (vector unsigned char, vector unsigned char);
16611 int vec_any_lt (vector bool char, vector signed char);
16612 int vec_any_lt (vector signed char, vector bool char);
16613 int vec_any_lt (vector signed char, vector signed char);
16614 int vec_any_lt (vector bool short, vector unsigned short);
16615 int vec_any_lt (vector unsigned short, vector bool short);
16616 int vec_any_lt (vector unsigned short, vector unsigned short);
16617 int vec_any_lt (vector bool short, vector signed short);
16618 int vec_any_lt (vector signed short, vector bool short);
16619 int vec_any_lt (vector signed short, vector signed short);
16620 int vec_any_lt (vector bool int, vector unsigned int);
16621 int vec_any_lt (vector unsigned int, vector bool int);
16622 int vec_any_lt (vector unsigned int, vector unsigned int);
16623 int vec_any_lt (vector bool int, vector signed int);
16624 int vec_any_lt (vector signed int, vector bool int);
16625 int vec_any_lt (vector signed int, vector signed int);
16626 int vec_any_lt (vector float, vector float);
16628 int vec_any_nan (vector float);
16630 int vec_any_ne (vector signed char, vector bool char);
16631 int vec_any_ne (vector signed char, vector signed char);
16632 int vec_any_ne (vector unsigned char, vector bool char);
16633 int vec_any_ne (vector unsigned char, vector unsigned char);
16634 int vec_any_ne (vector bool char, vector bool char);
16635 int vec_any_ne (vector bool char, vector unsigned char);
16636 int vec_any_ne (vector bool char, vector signed char);
16637 int vec_any_ne (vector signed short, vector bool short);
16638 int vec_any_ne (vector signed short, vector signed short);
16639 int vec_any_ne (vector unsigned short, vector bool short);
16640 int vec_any_ne (vector unsigned short, vector unsigned short);
16641 int vec_any_ne (vector bool short, vector bool short);
16642 int vec_any_ne (vector bool short, vector unsigned short);
16643 int vec_any_ne (vector bool short, vector signed short);
16644 int vec_any_ne (vector pixel, vector pixel);
16645 int vec_any_ne (vector signed int, vector bool int);
16646 int vec_any_ne (vector signed int, vector signed int);
16647 int vec_any_ne (vector unsigned int, vector bool int);
16648 int vec_any_ne (vector unsigned int, vector unsigned int);
16649 int vec_any_ne (vector bool int, vector bool int);
16650 int vec_any_ne (vector bool int, vector unsigned int);
16651 int vec_any_ne (vector bool int, vector signed int);
16652 int vec_any_ne (vector float, vector float);
16654 int vec_any_nge (vector float, vector float);
16656 int vec_any_ngt (vector float, vector float);
16658 int vec_any_nle (vector float, vector float);
16660 int vec_any_nlt (vector float, vector float);
16662 int vec_any_numeric (vector float);
16664 int vec_any_out (vector float, vector float);
16666 vector unsigned char vec_avg (vector unsigned char, vector unsigned char);
16667 vector signed char vec_avg (vector signed char, vector signed char);
16668 vector unsigned short vec_avg (vector unsigned short, vector unsigned short);
16669 vector signed short vec_avg (vector signed short, vector signed short);
16670 vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
16671 vector signed int vec_avg (vector signed int, vector signed int);
16673 vector float vec_ceil (vector float);
16675 vector signed int vec_cmpb (vector float, vector float);
16677 vector bool char vec_cmpeq (vector bool char, vector bool char);
16678 vector bool short vec_cmpeq (vector bool short, vector bool short);
16679 vector bool int vec_cmpeq (vector bool int, vector bool int);
16680 vector bool char vec_cmpeq (vector signed char, vector signed char);
16681 vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
16682 vector bool short vec_cmpeq (vector signed short, vector signed short);
16683 vector bool short vec_cmpeq (vector unsigned short, vector unsigned short);
16684 vector bool int vec_cmpeq (vector signed int, vector signed int);
16685 vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
16686 vector bool int vec_cmpeq (vector float, vector float);
16688 vector bool int vec_cmpge (vector float, vector float);
16690 vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
16691 vector bool char vec_cmpgt (vector signed char, vector signed char);
16692 vector bool short vec_cmpgt (vector unsigned short, vector unsigned short);
16693 vector bool short vec_cmpgt (vector signed short, vector signed short);
16694 vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
16695 vector bool int vec_cmpgt (vector signed int, vector signed int);
16696 vector bool int vec_cmpgt (vector float, vector float);
16698 vector bool int vec_cmple (vector float, vector float);
16700 vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
16701 vector bool char vec_cmplt (vector signed char, vector signed char);
16702 vector bool short vec_cmplt (vector unsigned short, vector unsigned short);
16703 vector bool short vec_cmplt (vector signed short, vector signed short);
16704 vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
16705 vector bool int vec_cmplt (vector signed int, vector signed int);
16706 vector bool int vec_cmplt (vector float, vector float);
16708 vector float vec_cpsgn (vector float, vector float);
16710 vector float vec_ctf (vector unsigned int, const int);
16711 vector float vec_ctf (vector signed int, const int);
16713 vector signed int vec_cts (vector float, const int);
16715 vector unsigned int vec_ctu (vector float, const int);
16717 void vec_dss (const int);
16719 void vec_dssall (void);
16721 void vec_dst (const vector unsigned char *, int, const int);
16722 void vec_dst (const vector signed char *, int, const int);
16723 void vec_dst (const vector bool char *, int, const int);
16724 void vec_dst (const vector unsigned short *, int, const int);
16725 void vec_dst (const vector signed short *, int, const int);
16726 void vec_dst (const vector bool short *, int, const int);
16727 void vec_dst (const vector pixel *, int, const int);
16728 void vec_dst (const vector unsigned int *, int, const int);
16729 void vec_dst (const vector signed int *, int, const int);
16730 void vec_dst (const vector bool int *, int, const int);
16731 void vec_dst (const vector float *, int, const int);
16732 void vec_dst (const unsigned char *, int, const int);
16733 void vec_dst (const signed char *, int, const int);
16734 void vec_dst (const unsigned short *, int, const int);
16735 void vec_dst (const short *, int, const int);
16736 void vec_dst (const unsigned int *, int, const int);
16737 void vec_dst (const int *, int, const int);
16738 void vec_dst (const float *, int, const int);
16740 void vec_dstst (const vector unsigned char *, int, const int);
16741 void vec_dstst (const vector signed char *, int, const int);
16742 void vec_dstst (const vector bool char *, int, const int);
16743 void vec_dstst (const vector unsigned short *, int, const int);
16744 void vec_dstst (const vector signed short *, int, const int);
16745 void vec_dstst (const vector bool short *, int, const int);
16746 void vec_dstst (const vector pixel *, int, const int);
16747 void vec_dstst (const vector unsigned int *, int, const int);
16748 void vec_dstst (const vector signed int *, int, const int);
16749 void vec_dstst (const vector bool int *, int, const int);
16750 void vec_dstst (const vector float *, int, const int);
16751 void vec_dstst (const unsigned char *, int, const int);
16752 void vec_dstst (const signed char *, int, const int);
16753 void vec_dstst (const unsigned short *, int, const int);
16754 void vec_dstst (const short *, int, const int);
16755 void vec_dstst (const unsigned int *, int, const int);
16756 void vec_dstst (const int *, int, const int);
16757 void vec_dstst (const unsigned long *, int, const int);
16758 void vec_dstst (const long *, int, const int);
16759 void vec_dstst (const float *, int, const int);
16761 void vec_dststt (const vector unsigned char *, int, const int);
16762 void vec_dststt (const vector signed char *, int, const int);
16763 void vec_dststt (const vector bool char *, int, const int);
16764 void vec_dststt (const vector unsigned short *, int, const int);
16765 void vec_dststt (const vector signed short *, int, const int);
16766 void vec_dststt (const vector bool short *, int, const int);
16767 void vec_dststt (const vector pixel *, int, const int);
16768 void vec_dststt (const vector unsigned int *, int, const int);
16769 void vec_dststt (const vector signed int *, int, const int);
16770 void vec_dststt (const vector bool int *, int, const int);
16771 void vec_dststt (const vector float *, int, const int);
16772 void vec_dststt (const unsigned char *, int, const int);
16773 void vec_dststt (const signed char *, int, const int);
16774 void vec_dststt (const unsigned short *, int, const int);
16775 void vec_dststt (const short *, int, const int);
16776 void vec_dststt (const unsigned int *, int, const int);
16777 void vec_dststt (const int *, int, const int);
16778 void vec_dststt (const float *, int, const int);
16780 void vec_dstt (const vector unsigned char *, int, const int);
16781 void vec_dstt (const vector signed char *, int, const int);
16782 void vec_dstt (const vector bool char *, int, const int);
16783 void vec_dstt (const vector unsigned short *, int, const int);
16784 void vec_dstt (const vector signed short *, int, const int);
16785 void vec_dstt (const vector bool short *, int, const int);
16786 void vec_dstt (const vector pixel *, int, const int);
16787 void vec_dstt (const vector unsigned int *, int, const int);
16788 void vec_dstt (const vector signed int *, int, const int);
16789 void vec_dstt (const vector bool int *, int, const int);
16790 void vec_dstt (const vector float *, int, const int);
16791 void vec_dstt (const unsigned char *, int, const int);
16792 void vec_dstt (const signed char *, int, const int);
16793 void vec_dstt (const unsigned short *, int, const int);
16794 void vec_dstt (const short *, int, const int);
16795 void vec_dstt (const unsigned int *, int, const int);
16796 void vec_dstt (const int *, int, const int);
16797 void vec_dstt (const float *, int, const int);
16799 vector float vec_expte (vector float);
16801 vector float vec_floor (vector float);
16803 vector float vec_ld (int, const vector float *);
16804 vector float vec_ld (int, const float *);
16805 vector bool int vec_ld (int, const vector bool int *);
16806 vector signed int vec_ld (int, const vector signed int *);
16807 vector signed int vec_ld (int, const int *);
16808 vector unsigned int vec_ld (int, const vector unsigned int *);
16809 vector unsigned int vec_ld (int, const unsigned int *);
16810 vector bool short vec_ld (int, const vector bool short *);
16811 vector pixel vec_ld (int, const vector pixel *);
16812 vector signed short vec_ld (int, const vector signed short *);
16813 vector signed short vec_ld (int, const short *);
16814 vector unsigned short vec_ld (int, const vector unsigned short *);
16815 vector unsigned short vec_ld (int, const unsigned short *);
16816 vector bool char vec_ld (int, const vector bool char *);
16817 vector signed char vec_ld (int, const vector signed char *);
16818 vector signed char vec_ld (int, const signed char *);
16819 vector unsigned char vec_ld (int, const vector unsigned char *);
16820 vector unsigned char vec_ld (int, const unsigned char *);
16822 vector signed char vec_lde (int, const signed char *);
16823 vector unsigned char vec_lde (int, const unsigned char *);
16824 vector signed short vec_lde (int, const short *);
16825 vector unsigned short vec_lde (int, const unsigned short *);
16826 vector float vec_lde (int, const float *);
16827 vector signed int vec_lde (int, const int *);
16828 vector unsigned int vec_lde (int, const unsigned int *);
16830 vector float vec_ldl (int, const vector float *);
16831 vector float vec_ldl (int, const float *);
16832 vector bool int vec_ldl (int, const vector bool int *);
16833 vector signed int vec_ldl (int, const vector signed int *);
16834 vector signed int vec_ldl (int, const int *);
16835 vector unsigned int vec_ldl (int, const vector unsigned int *);
16836 vector unsigned int vec_ldl (int, const unsigned int *);
16837 vector bool short vec_ldl (int, const vector bool short *);
16838 vector pixel vec_ldl (int, const vector pixel *);
16839 vector signed short vec_ldl (int, const vector signed short *);
16840 vector signed short vec_ldl (int, const short *);
16841 vector unsigned short vec_ldl (int, const vector unsigned short *);
16842 vector unsigned short vec_ldl (int, const unsigned short *);
16843 vector bool char vec_ldl (int, const vector bool char *);
16844 vector signed char vec_ldl (int, const vector signed char *);
16845 vector signed char vec_ldl (int, const signed char *);
16846 vector unsigned char vec_ldl (int, const vector unsigned char *);
16847 vector unsigned char vec_ldl (int, const unsigned char *);
16849 vector float vec_loge (vector float);
16851 vector signed char vec_lvebx (int, char *);
16852 vector unsigned char vec_lvebx (int, unsigned char *);
16854 vector signed short vec_lvehx (int, short *);
16855 vector unsigned short vec_lvehx (int, unsigned short *);
16857 vector float vec_lvewx (int, float *);
16858 vector signed int vec_lvewx (int, int *);
16859 vector unsigned int vec_lvewx (int, unsigned int *);
16861 vector unsigned char vec_lvsl (int, const unsigned char *);
16862 vector unsigned char vec_lvsl (int, const signed char *);
16863 vector unsigned char vec_lvsl (int, const unsigned short *);
16864 vector unsigned char vec_lvsl (int, const short *);
16865 vector unsigned char vec_lvsl (int, const unsigned int *);
16866 vector unsigned char vec_lvsl (int, const int *);
16867 vector unsigned char vec_lvsl (int, const float *);
16869 vector unsigned char vec_lvsr (int, const unsigned char *);
16870 vector unsigned char vec_lvsr (int, const signed char *);
16871 vector unsigned char vec_lvsr (int, const unsigned short *);
16872 vector unsigned char vec_lvsr (int, const short *);
16873 vector unsigned char vec_lvsr (int, const unsigned int *);
16874 vector unsigned char vec_lvsr (int, const int *);
16875 vector unsigned char vec_lvsr (int, const float *);
16877 vector float vec_madd (vector float, vector float, vector float);
16879 vector signed short vec_madds (vector signed short, vector signed short,
16880 vector signed short);
16882 vector unsigned char vec_max (vector bool char, vector unsigned char);
16883 vector unsigned char vec_max (vector unsigned char, vector bool char);
16884 vector unsigned char vec_max (vector unsigned char, vector unsigned char);
16885 vector signed char vec_max (vector bool char, vector signed char);
16886 vector signed char vec_max (vector signed char, vector bool char);
16887 vector signed char vec_max (vector signed char, vector signed char);
16888 vector unsigned short vec_max (vector bool short, vector unsigned short);
16889 vector unsigned short vec_max (vector unsigned short, vector bool short);
16890 vector unsigned short vec_max (vector unsigned short, vector unsigned short);
16891 vector signed short vec_max (vector bool short, vector signed short);
16892 vector signed short vec_max (vector signed short, vector bool short);
16893 vector signed short vec_max (vector signed short, vector signed short);
16894 vector unsigned int vec_max (vector bool int, vector unsigned int);
16895 vector unsigned int vec_max (vector unsigned int, vector bool int);
16896 vector unsigned int vec_max (vector unsigned int, vector unsigned int);
16897 vector signed int vec_max (vector bool int, vector signed int);
16898 vector signed int vec_max (vector signed int, vector bool int);
16899 vector signed int vec_max (vector signed int, vector signed int);
16900 vector float vec_max (vector float, vector float);
16902 vector bool char vec_mergeh (vector bool char, vector bool char);
16903 vector signed char vec_mergeh (vector signed char, vector signed char);
16904 vector unsigned char vec_mergeh (vector unsigned char, vector unsigned char);
16905 vector bool short vec_mergeh (vector bool short, vector bool short);
16906 vector pixel vec_mergeh (vector pixel, vector pixel);
16907 vector signed short vec_mergeh (vector signed short, vector signed short);
16908 vector unsigned short vec_mergeh (vector unsigned short, vector unsigned short);
16909 vector float vec_mergeh (vector float, vector float);
16910 vector bool int vec_mergeh (vector bool int, vector bool int);
16911 vector signed int vec_mergeh (vector signed int, vector signed int);
16912 vector unsigned int vec_mergeh (vector unsigned int, vector unsigned int);
16914 vector bool char vec_mergel (vector bool char, vector bool char);
16915 vector signed char vec_mergel (vector signed char, vector signed char);
16916 vector unsigned char vec_mergel (vector unsigned char, vector unsigned char);
16917 vector bool short vec_mergel (vector bool short, vector bool short);
16918 vector pixel vec_mergel (vector pixel, vector pixel);
16919 vector signed short vec_mergel (vector signed short, vector signed short);
16920 vector unsigned short vec_mergel (vector unsigned short, vector unsigned short);
16921 vector float vec_mergel (vector float, vector float);
16922 vector bool int vec_mergel (vector bool int, vector bool int);
16923 vector signed int vec_mergel (vector signed int, vector signed int);
16924 vector unsigned int vec_mergel (vector unsigned int, vector unsigned int);
16926 vector unsigned short vec_mfvscr (void);
16928 vector unsigned char vec_min (vector bool char, vector unsigned char);
16929 vector unsigned char vec_min (vector unsigned char, vector bool char);
16930 vector unsigned char vec_min (vector unsigned char, vector unsigned char);
16931 vector signed char vec_min (vector bool char, vector signed char);
16932 vector signed char vec_min (vector signed char, vector bool char);
16933 vector signed char vec_min (vector signed char, vector signed char);
16934 vector unsigned short vec_min (vector bool short, vector unsigned short);
16935 vector unsigned short vec_min (vector unsigned short, vector bool short);
16936 vector unsigned short vec_min (vector unsigned short, vector unsigned short);
16937 vector signed short vec_min (vector bool short, vector signed short);
16938 vector signed short vec_min (vector signed short, vector bool short);
16939 vector signed short vec_min (vector signed short, vector signed short);
16940 vector unsigned int vec_min (vector bool int, vector unsigned int);
16941 vector unsigned int vec_min (vector unsigned int, vector bool int);
16942 vector unsigned int vec_min (vector unsigned int, vector unsigned int);
16943 vector signed int vec_min (vector bool int, vector signed int);
16944 vector signed int vec_min (vector signed int, vector bool int);
16945 vector signed int vec_min (vector signed int, vector signed int);
16946 vector float vec_min (vector float, vector float);
16948 vector signed short vec_mladd (vector signed short, vector signed short,
16949 vector signed short);
16950 vector signed short vec_mladd (vector signed short, vector unsigned short,
16951 vector unsigned short);
16952 vector signed short vec_mladd (vector unsigned short, vector signed short,
16953 vector signed short);
16954 vector unsigned short vec_mladd (vector unsigned short, vector unsigned short,
16955 vector unsigned short);
16957 vector signed short vec_mradds (vector signed short, vector signed short,
16958 vector signed short);
16960 vector unsigned int vec_msum (vector unsigned char, vector unsigned char,
16961 vector unsigned int);
16962 vector signed int vec_msum (vector signed char, vector unsigned char,
16963 vector signed int);
16964 vector unsigned int vec_msum (vector unsigned short, vector unsigned short,
16965 vector unsigned int);
16966 vector signed int vec_msum (vector signed short, vector signed short,
16967 vector signed int);
16969 vector unsigned int vec_msums (vector unsigned short, vector unsigned short,
16970 vector unsigned int);
16971 vector signed int vec_msums (vector signed short, vector signed short,
16972 vector signed int);
16974 void vec_mtvscr (vector signed int);
16975 void vec_mtvscr (vector unsigned int);
16976 void vec_mtvscr (vector bool int);
16977 void vec_mtvscr (vector signed short);
16978 void vec_mtvscr (vector unsigned short);
16979 void vec_mtvscr (vector bool short);
16980 void vec_mtvscr (vector pixel);
16981 void vec_mtvscr (vector signed char);
16982 void vec_mtvscr (vector unsigned char);
16983 void vec_mtvscr (vector bool char);
16985 vector float vec_mul (vector float, vector float);
16987 vector unsigned short vec_mule (vector unsigned char, vector unsigned char);
16988 vector signed short vec_mule (vector signed char, vector signed char);
16989 vector unsigned int vec_mule (vector unsigned short, vector unsigned short);
16990 vector signed int vec_mule (vector signed short, vector signed short);
16992 vector unsigned short vec_mulo (vector unsigned char, vector unsigned char);
16993 vector signed short vec_mulo (vector signed char, vector signed char);
16994 vector unsigned int vec_mulo (vector unsigned short, vector unsigned short);
16995 vector signed int vec_mulo (vector signed short, vector signed short);
16997 vector signed char vec_nabs (vector signed char);
16998 vector signed short vec_nabs (vector signed short);
16999 vector signed int vec_nabs (vector signed int);
17000 vector float vec_nabs (vector float);
17002 vector float vec_nmsub (vector float, vector float, vector float);
17004 vector float vec_nor (vector float, vector float);
17005 vector signed int vec_nor (vector signed int, vector signed int);
17006 vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
17007 vector bool int vec_nor (vector bool int, vector bool int);
17008 vector signed short vec_nor (vector signed short, vector signed short);
17009 vector unsigned short vec_nor (vector unsigned short, vector unsigned short);
17010 vector bool short vec_nor (vector bool short, vector bool short);
17011 vector signed char vec_nor (vector signed char, vector signed char);
17012 vector unsigned char vec_nor (vector unsigned char, vector unsigned char);
17013 vector bool char vec_nor (vector bool char, vector bool char);
17015 vector float vec_or (vector float, vector float);
17016 vector float vec_or (vector float, vector bool int);
17017 vector float vec_or (vector bool int, vector float);
17018 vector bool int vec_or (vector bool int, vector bool int);
17019 vector signed int vec_or (vector bool int, vector signed int);
17020 vector signed int vec_or (vector signed int, vector bool int);
17021 vector signed int vec_or (vector signed int, vector signed int);
17022 vector unsigned int vec_or (vector bool int, vector unsigned int);
17023 vector unsigned int vec_or (vector unsigned int, vector bool int);
17024 vector unsigned int vec_or (vector unsigned int, vector unsigned int);
17025 vector bool short vec_or (vector bool short, vector bool short);
17026 vector signed short vec_or (vector bool short, vector signed short);
17027 vector signed short vec_or (vector signed short, vector bool short);
17028 vector signed short vec_or (vector signed short, vector signed short);
17029 vector unsigned short vec_or (vector bool short, vector unsigned short);
17030 vector unsigned short vec_or (vector unsigned short, vector bool short);
17031 vector unsigned short vec_or (vector unsigned short, vector unsigned short);
17032 vector signed char vec_or (vector bool char, vector signed char);
17033 vector bool char vec_or (vector bool char, vector bool char);
17034 vector signed char vec_or (vector signed char, vector bool char);
17035 vector signed char vec_or (vector signed char, vector signed char);
17036 vector unsigned char vec_or (vector bool char, vector unsigned char);
17037 vector unsigned char vec_or (vector unsigned char, vector bool char);
17038 vector unsigned char vec_or (vector unsigned char, vector unsigned char);
17040 vector signed char vec_pack (vector signed short, vector signed short);
17041 vector unsigned char vec_pack (vector unsigned short, vector unsigned short);
17042 vector bool char vec_pack (vector bool short, vector bool short);
17043 vector signed short vec_pack (vector signed int, vector signed int);
17044 vector unsigned short vec_pack (vector unsigned int, vector unsigned int);
17045 vector bool short vec_pack (vector bool int, vector bool int);
17047 vector pixel vec_packpx (vector unsigned int, vector unsigned int);
17049 vector unsigned char vec_packs (vector unsigned short, vector unsigned short);
17050 vector signed char vec_packs (vector signed short, vector signed short);
17051 vector unsigned short vec_packs (vector unsigned int, vector unsigned int);
17052 vector signed short vec_packs (vector signed int, vector signed int);
17054 vector unsigned char vec_packsu (vector unsigned short, vector unsigned short);
17055 vector unsigned char vec_packsu (vector signed short, vector signed short);
17056 vector unsigned short vec_packsu (vector unsigned int, vector unsigned int);
17057 vector unsigned short vec_packsu (vector signed int, vector signed int);
17059 vector float vec_perm (vector float, vector float, vector unsigned char);
17060 vector signed int vec_perm (vector signed int, vector signed int, vector unsigned char);
17061 vector unsigned int vec_perm (vector unsigned int, vector unsigned int,
17062 vector unsigned char);
17063 vector bool int vec_perm (vector bool int, vector bool int, vector unsigned char);
17064 vector signed short vec_perm (vector signed short, vector signed short,
17065 vector unsigned char);
17066 vector unsigned short vec_perm (vector unsigned short, vector unsigned short,
17067 vector unsigned char);
17068 vector bool short vec_perm (vector bool short, vector bool short, vector unsigned char);
17069 vector pixel vec_perm (vector pixel, vector pixel, vector unsigned char);
17070 vector signed char vec_perm (vector signed char, vector signed char,
17071 vector unsigned char);
17072 vector unsigned char vec_perm (vector unsigned char, vector unsigned char,
17073 vector unsigned char);
17074 vector bool char vec_perm (vector bool char, vector bool char, vector unsigned char);
17076 vector float vec_re (vector float);
17078 vector bool char vec_reve (vector bool char);
17079 vector signed char vec_reve (vector signed char);
17080 vector unsigned char vec_reve (vector unsigned char);
17081 vector bool int vec_reve (vector bool int);
17082 vector signed int vec_reve (vector signed int);
17083 vector unsigned int vec_reve (vector unsigned int);
17084 vector bool short vec_reve (vector bool short);
17085 vector signed short vec_reve (vector signed short);
17086 vector unsigned short vec_reve (vector unsigned short);
17088 vector signed char vec_rl (vector signed char, vector unsigned char);
17089 vector unsigned char vec_rl (vector unsigned char, vector unsigned char);
17090 vector signed short vec_rl (vector signed short, vector unsigned short);
17091 vector unsigned short vec_rl (vector unsigned short, vector unsigned short);
17092 vector signed int vec_rl (vector signed int, vector unsigned int);
17093 vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
17095 vector float vec_round (vector float);
17097 vector float vec_rsqrt (vector float);
17099 vector float vec_rsqrte (vector float);
17101 vector float vec_sel (vector float, vector float, vector bool int);
17102 vector float vec_sel (vector float, vector float, vector unsigned int);
17103 vector signed int vec_sel (vector signed int, vector signed int, vector bool int);
17104 vector signed int vec_sel (vector signed int, vector signed int, vector unsigned int);
17105 vector unsigned int vec_sel (vector unsigned int, vector unsigned int, vector bool int);
17106 vector unsigned int vec_sel (vector unsigned int, vector unsigned int,
17107 vector unsigned int);
17108 vector bool int vec_sel (vector bool int, vector bool int, vector bool int);
17109 vector bool int vec_sel (vector bool int, vector bool int, vector unsigned int);
17110 vector signed short vec_sel (vector signed short, vector signed short,
17111 vector bool short);
17112 vector signed short vec_sel (vector signed short, vector signed short,
17113 vector unsigned short);
17114 vector unsigned short vec_sel (vector unsigned short, vector unsigned short,
17115 vector bool short);
17116 vector unsigned short vec_sel (vector unsigned short, vector unsigned short,
17117 vector unsigned short);
17118 vector bool short vec_sel (vector bool short, vector bool short, vector bool short);
17119 vector bool short vec_sel (vector bool short, vector bool short, vector unsigned short);
17120 vector signed char vec_sel (vector signed char, vector signed char, vector bool char);
17121 vector signed char vec_sel (vector signed char, vector signed char,
17122 vector unsigned char);
17123 vector unsigned char vec_sel (vector unsigned char, vector unsigned char,
17125 vector unsigned char vec_sel (vector unsigned char, vector unsigned char,
17126 vector unsigned char);
17127 vector bool char vec_sel (vector bool char, vector bool char, vector bool char);
17128 vector bool char vec_sel (vector bool char, vector bool char, vector unsigned char);
17130 vector signed char vec_sl (vector signed char, vector unsigned char);
17131 vector unsigned char vec_sl (vector unsigned char, vector unsigned char);
17132 vector signed short vec_sl (vector signed short, vector unsigned short);
17133 vector unsigned short vec_sl (vector unsigned short, vector unsigned short);
17134 vector signed int vec_sl (vector signed int, vector unsigned int);
17135 vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
17137 vector float vec_sld (vector float, vector float, const int);
17138 vector signed int vec_sld (vector signed int, vector signed int, const int);
17139 vector unsigned int vec_sld (vector unsigned int, vector unsigned int, const int);
17140 vector bool int vec_sld (vector bool int, vector bool int, const int);
17141 vector signed short vec_sld (vector signed short, vector signed short, const int);
17142 vector unsigned short vec_sld (vector unsigned short, vector unsigned short, const int);
17143 vector bool short vec_sld (vector bool short, vector bool short, const int);
17144 vector pixel vec_sld (vector pixel, vector pixel, const int);
17145 vector signed char vec_sld (vector signed char, vector signed char, const int);
17146 vector unsigned char vec_sld (vector unsigned char, vector unsigned char, const int);
17147 vector bool char vec_sld (vector bool char, vector bool char, const int);
17149 vector signed int vec_sll (vector signed int, vector unsigned int);
17150 vector signed int vec_sll (vector signed int, vector unsigned short);
17151 vector signed int vec_sll (vector signed int, vector unsigned char);
17152 vector unsigned int vec_sll (vector unsigned int, vector unsigned int);
17153 vector unsigned int vec_sll (vector unsigned int, vector unsigned short);
17154 vector unsigned int vec_sll (vector unsigned int, vector unsigned char);
17155 vector bool int vec_sll (vector bool int, vector unsigned int);
17156 vector bool int vec_sll (vector bool int, vector unsigned short);
17157 vector bool int vec_sll (vector bool int, vector unsigned char);
17158 vector signed short vec_sll (vector signed short, vector unsigned int);
17159 vector signed short vec_sll (vector signed short, vector unsigned short);
17160 vector signed short vec_sll (vector signed short, vector unsigned char);
17161 vector unsigned short vec_sll (vector unsigned short, vector unsigned int);
17162 vector unsigned short vec_sll (vector unsigned short, vector unsigned short);
17163 vector unsigned short vec_sll (vector unsigned short, vector unsigned char);
17164 vector bool short vec_sll (vector bool short, vector unsigned int);
17165 vector bool short vec_sll (vector bool short, vector unsigned short);
17166 vector bool short vec_sll (vector bool short, vector unsigned char);
17167 vector pixel vec_sll (vector pixel, vector unsigned int);
17168 vector pixel vec_sll (vector pixel, vector unsigned short);
17169 vector pixel vec_sll (vector pixel, vector unsigned char);
17170 vector signed char vec_sll (vector signed char, vector unsigned int);
17171 vector signed char vec_sll (vector signed char, vector unsigned short);
17172 vector signed char vec_sll (vector signed char, vector unsigned char);
17173 vector unsigned char vec_sll (vector unsigned char, vector unsigned int);
17174 vector unsigned char vec_sll (vector unsigned char, vector unsigned short);
17175 vector unsigned char vec_sll (vector unsigned char, vector unsigned char);
17176 vector bool char vec_sll (vector bool char, vector unsigned int);
17177 vector bool char vec_sll (vector bool char, vector unsigned short);
17178 vector bool char vec_sll (vector bool char, vector unsigned char);
17180 vector float vec_slo (vector float, vector signed char);
17181 vector float vec_slo (vector float, vector unsigned char);
17182 vector signed int vec_slo (vector signed int, vector signed char);
17183 vector signed int vec_slo (vector signed int, vector unsigned char);
17184 vector unsigned int vec_slo (vector unsigned int, vector signed char);
17185 vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
17186 vector signed short vec_slo (vector signed short, vector signed char);
17187 vector signed short vec_slo (vector signed short, vector unsigned char);
17188 vector unsigned short vec_slo (vector unsigned short, vector signed char);
17189 vector unsigned short vec_slo (vector unsigned short, vector unsigned char);
17190 vector pixel vec_slo (vector pixel, vector signed char);
17191 vector pixel vec_slo (vector pixel, vector unsigned char);
17192 vector signed char vec_slo (vector signed char, vector signed char);
17193 vector signed char vec_slo (vector signed char, vector unsigned char);
17194 vector unsigned char vec_slo (vector unsigned char, vector signed char);
17195 vector unsigned char vec_slo (vector unsigned char, vector unsigned char);
17197 vector signed char vec_splat (vector signed char, const int);
17198 vector unsigned char vec_splat (vector unsigned char, const int);
17199 vector bool char vec_splat (vector bool char, const int);
17200 vector signed short vec_splat (vector signed short, const int);
17201 vector unsigned short vec_splat (vector unsigned short, const int);
17202 vector bool short vec_splat (vector bool short, const int);
17203 vector pixel vec_splat (vector pixel, const int);
17204 vector float vec_splat (vector float, const int);
17205 vector signed int vec_splat (vector signed int, const int);
17206 vector unsigned int vec_splat (vector unsigned int, const int);
17207 vector bool int vec_splat (vector bool int, const int);
17209 vector signed short vec_splat_s16 (const int);
17211 vector signed int vec_splat_s32 (const int);
17213 vector signed char vec_splat_s8 (const int);
17215 vector unsigned short vec_splat_u16 (const int);
17217 vector unsigned int vec_splat_u32 (const int);
17219 vector unsigned char vec_splat_u8 (const int);
17221 vector signed char vec_splats (signed char);
17222 vector unsigned char vec_splats (unsigned char);
17223 vector signed short vec_splats (signed short);
17224 vector unsigned short vec_splats (unsigned short);
17225 vector signed int vec_splats (signed int);
17226 vector unsigned int vec_splats (unsigned int);
17227 vector float vec_splats (float);
17229 vector signed char vec_sr (vector signed char, vector unsigned char);
17230 vector unsigned char vec_sr (vector unsigned char, vector unsigned char);
17231 vector signed short vec_sr (vector signed short, vector unsigned short);
17232 vector unsigned short vec_sr (vector unsigned short, vector unsigned short);
17233 vector signed int vec_sr (vector signed int, vector unsigned int);
17234 vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
17236 vector signed char vec_sra (vector signed char, vector unsigned char);
17237 vector unsigned char vec_sra (vector unsigned char, vector unsigned char);
17238 vector signed short vec_sra (vector signed short, vector unsigned short);
17239 vector unsigned short vec_sra (vector unsigned short, vector unsigned short);
17240 vector signed int vec_sra (vector signed int, vector unsigned int);
17241 vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
17243 vector signed int vec_srl (vector signed int, vector unsigned int);
17244 vector signed int vec_srl (vector signed int, vector unsigned short);
17245 vector signed int vec_srl (vector signed int, vector unsigned char);
17246 vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
17247 vector unsigned int vec_srl (vector unsigned int, vector unsigned short);
17248 vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
17249 vector bool int vec_srl (vector bool int, vector unsigned int);
17250 vector bool int vec_srl (vector bool int, vector unsigned short);
17251 vector bool int vec_srl (vector bool int, vector unsigned char);
17252 vector signed short vec_srl (vector signed short, vector unsigned int);
17253 vector signed short vec_srl (vector signed short, vector unsigned short);
17254 vector signed short vec_srl (vector signed short, vector unsigned char);
17255 vector unsigned short vec_srl (vector unsigned short, vector unsigned int);
17256 vector unsigned short vec_srl (vector unsigned short, vector unsigned short);
17257 vector unsigned short vec_srl (vector unsigned short, vector unsigned char);
17258 vector bool short vec_srl (vector bool short, vector unsigned int);
17259 vector bool short vec_srl (vector bool short, vector unsigned short);
17260 vector bool short vec_srl (vector bool short, vector unsigned char);
17261 vector pixel vec_srl (vector pixel, vector unsigned int);
17262 vector pixel vec_srl (vector pixel, vector unsigned short);
17263 vector pixel vec_srl (vector pixel, vector unsigned char);
17264 vector signed char vec_srl (vector signed char, vector unsigned int);
17265 vector signed char vec_srl (vector signed char, vector unsigned short);
17266 vector signed char vec_srl (vector signed char, vector unsigned char);
17267 vector unsigned char vec_srl (vector unsigned char, vector unsigned int);
17268 vector unsigned char vec_srl (vector unsigned char, vector unsigned short);
17269 vector unsigned char vec_srl (vector unsigned char, vector unsigned char);
17270 vector bool char vec_srl (vector bool char, vector unsigned int);
17271 vector bool char vec_srl (vector bool char, vector unsigned short);
17272 vector bool char vec_srl (vector bool char, vector unsigned char);
17274 vector float vec_sro (vector float, vector signed char);
17275 vector float vec_sro (vector float, vector unsigned char);
17276 vector signed int vec_sro (vector signed int, vector signed char);
17277 vector signed int vec_sro (vector signed int, vector unsigned char);
17278 vector unsigned int vec_sro (vector unsigned int, vector signed char);
17279 vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
17280 vector signed short vec_sro (vector signed short, vector signed char);
17281 vector signed short vec_sro (vector signed short, vector unsigned char);
17282 vector unsigned short vec_sro (vector unsigned short, vector signed char);
17283 vector unsigned short vec_sro (vector unsigned short, vector unsigned char);
17284 vector pixel vec_sro (vector pixel, vector signed char);
17285 vector pixel vec_sro (vector pixel, vector unsigned char);
17286 vector signed char vec_sro (vector signed char, vector signed char);
17287 vector signed char vec_sro (vector signed char, vector unsigned char);
17288 vector unsigned char vec_sro (vector unsigned char, vector signed char);
17289 vector unsigned char vec_sro (vector unsigned char, vector unsigned char);
17291 void vec_st (vector float, int, vector float *);
17292 void vec_st (vector float, int, float *);
17293 void vec_st (vector signed int, int, vector signed int *);
17294 void vec_st (vector signed int, int, int *);
17295 void vec_st (vector unsigned int, int, vector unsigned int *);
17296 void vec_st (vector unsigned int, int, unsigned int *);
17297 void vec_st (vector bool int, int, vector bool int *);
17298 void vec_st (vector bool int, int, unsigned int *);
17299 void vec_st (vector bool int, int, int *);
17300 void vec_st (vector signed short, int, vector signed short *);
17301 void vec_st (vector signed short, int, short *);
17302 void vec_st (vector unsigned short, int, vector unsigned short *);
17303 void vec_st (vector unsigned short, int, unsigned short *);
17304 void vec_st (vector bool short, int, vector bool short *);
17305 void vec_st (vector bool short, int, unsigned short *);
17306 void vec_st (vector pixel, int, vector pixel *);
17307 void vec_st (vector bool short, int, short *);
17308 void vec_st (vector signed char, int, vector signed char *);
17309 void vec_st (vector signed char, int, signed char *);
17310 void vec_st (vector unsigned char, int, vector unsigned char *);
17311 void vec_st (vector unsigned char, int, unsigned char *);
17312 void vec_st (vector bool char, int, vector bool char *);
17313 void vec_st (vector bool char, int, unsigned char *);
17314 void vec_st (vector bool char, int, signed char *);
17316 void vec_ste (vector signed char, int, signed char *);
17317 void vec_ste (vector unsigned char, int, unsigned char *);
17318 void vec_ste (vector bool char, int, signed char *);
17319 void vec_ste (vector bool char, int, unsigned char *);
17320 void vec_ste (vector signed short, int, short *);
17321 void vec_ste (vector unsigned short, int, unsigned short *);
17322 void vec_ste (vector bool short, int, short *);
17323 void vec_ste (vector bool short, int, unsigned short *);
17324 void vec_ste (vector pixel, int, short *);
17325 void vec_ste (vector pixel, int, unsigned short *);
17326 void vec_ste (vector float, int, float *);
17327 void vec_ste (vector signed int, int, int *);
17328 void vec_ste (vector unsigned int, int, unsigned int *);
17329 void vec_ste (vector bool int, int, int *);
17330 void vec_ste (vector bool int, int, unsigned int *);
17332 void vec_stl (vector float, int, vector float *);
17333 void vec_stl (vector float, int, float *);
17334 void vec_stl (vector signed int, int, vector signed int *);
17335 void vec_stl (vector signed int, int, int *);
17336 void vec_stl (vector unsigned int, int, vector unsigned int *);
17337 void vec_stl (vector unsigned int, int, unsigned int *);
17338 void vec_stl (vector bool int, int, vector bool int *);
17339 void vec_stl (vector bool int, int, unsigned int *);
17340 void vec_stl (vector bool int, int, int *);
17341 void vec_stl (vector signed short, int, vector signed short *);
17342 void vec_stl (vector signed short, int, short *);
17343 void vec_stl (vector unsigned short, int, vector unsigned short *);
17344 void vec_stl (vector unsigned short, int, unsigned short *);
17345 void vec_stl (vector bool short, int, vector bool short *);
17346 void vec_stl (vector bool short, int, unsigned short *);
17347 void vec_stl (vector bool short, int, short *);
17348 void vec_stl (vector pixel, int, vector pixel *);
17349 void vec_stl (vector signed char, int, vector signed char *);
17350 void vec_stl (vector signed char, int, signed char *);
17351 void vec_stl (vector unsigned char, int, vector unsigned char *);
17352 void vec_stl (vector unsigned char, int, unsigned char *);
17353 void vec_stl (vector bool char, int, vector bool char *);
17354 void vec_stl (vector bool char, int, unsigned char *);
17355 void vec_stl (vector bool char, int, signed char *);
17357 void vec_stvebx (vector signed char, int, signed char *);
17358 void vec_stvebx (vector unsigned char, int, unsigned char *);
17359 void vec_stvebx (vector bool char, int, signed char *);
17360 void vec_stvebx (vector bool char, int, unsigned char *);
17362 void vec_stvehx (vector signed short, int, short *);
17363 void vec_stvehx (vector unsigned short, int, unsigned short *);
17364 void vec_stvehx (vector bool short, int, short *);
17365 void vec_stvehx (vector bool short, int, unsigned short *);
17367 void vec_stvewx (vector float, int, float *);
17368 void vec_stvewx (vector signed int, int, int *);
17369 void vec_stvewx (vector unsigned int, int, unsigned int *);
17370 void vec_stvewx (vector bool int, int, int *);
17371 void vec_stvewx (vector bool int, int, unsigned int *);
17373 vector signed char vec_sub (vector bool char, vector signed char);
17374 vector signed char vec_sub (vector signed char, vector bool char);
17375 vector signed char vec_sub (vector signed char, vector signed char);
17376 vector unsigned char vec_sub (vector bool char, vector unsigned char);
17377 vector unsigned char vec_sub (vector unsigned char, vector bool char);
17378 vector unsigned char vec_sub (vector unsigned char, vector unsigned char);
17379 vector signed short vec_sub (vector bool short, vector signed short);
17380 vector signed short vec_sub (vector signed short, vector bool short);
17381 vector signed short vec_sub (vector signed short, vector signed short);
17382 vector unsigned short vec_sub (vector bool short, vector unsigned short);
17383 vector unsigned short vec_sub (vector unsigned short, vector bool short);
17384 vector unsigned short vec_sub (vector unsigned short, vector unsigned short);
17385 vector signed int vec_sub (vector bool int, vector signed int);
17386 vector signed int vec_sub (vector signed int, vector bool int);
17387 vector signed int vec_sub (vector signed int, vector signed int);
17388 vector unsigned int vec_sub (vector bool int, vector unsigned int);
17389 vector unsigned int vec_sub (vector unsigned int, vector bool int);
17390 vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
17391 vector float vec_sub (vector float, vector float);
17393 vector signed int vec_subc (vector signed int, vector signed int);
17394 vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
17396 vector signed int vec_sube (vector signed int, vector signed int,
17397 vector signed int);
17398 vector unsigned int vec_sube (vector unsigned int, vector unsigned int,
17399 vector unsigned int);
17401 vector signed int vec_subec (vector signed int, vector signed int,
17402 vector signed int);
17403 vector unsigned int vec_subec (vector unsigned int, vector unsigned int,
17404 vector unsigned int);
17406 vector unsigned char vec_subs (vector bool char, vector unsigned char);
17407 vector unsigned char vec_subs (vector unsigned char, vector bool char);
17408 vector unsigned char vec_subs (vector unsigned char, vector unsigned char);
17409 vector signed char vec_subs (vector bool char, vector signed char);
17410 vector signed char vec_subs (vector signed char, vector bool char);
17411 vector signed char vec_subs (vector signed char, vector signed char);
17412 vector unsigned short vec_subs (vector bool short, vector unsigned short);
17413 vector unsigned short vec_subs (vector unsigned short, vector bool short);
17414 vector unsigned short vec_subs (vector unsigned short, vector unsigned short);
17415 vector signed short vec_subs (vector bool short, vector signed short);
17416 vector signed short vec_subs (vector signed short, vector bool short);
17417 vector signed short vec_subs (vector signed short, vector signed short);
17418 vector unsigned int vec_subs (vector bool int, vector unsigned int);
17419 vector unsigned int vec_subs (vector unsigned int, vector bool int);
17420 vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
17421 vector signed int vec_subs (vector bool int, vector signed int);
17422 vector signed int vec_subs (vector signed int, vector bool int);
17423 vector signed int vec_subs (vector signed int, vector signed int);
17425 vector signed int vec_sum2s (vector signed int, vector signed int);
17427 vector unsigned int vec_sum4s (vector unsigned char, vector unsigned int);
17428 vector signed int vec_sum4s (vector signed char, vector signed int);
17429 vector signed int vec_sum4s (vector signed short, vector signed int);
17431 vector signed int vec_sums (vector signed int, vector signed int);
17433 vector float vec_trunc (vector float);
17435 vector signed short vec_unpackh (vector signed char);
17436 vector bool short vec_unpackh (vector bool char);
17437 vector signed int vec_unpackh (vector signed short);
17438 vector bool int vec_unpackh (vector bool short);
17439 vector unsigned int vec_unpackh (vector pixel);
17441 vector signed short vec_unpackl (vector signed char);
17442 vector bool short vec_unpackl (vector bool char);
17443 vector unsigned int vec_unpackl (vector pixel);
17444 vector signed int vec_unpackl (vector signed short);
17445 vector bool int vec_unpackl (vector bool short);
17447 vector float vec_vaddfp (vector float, vector float);
17449 vector signed char vec_vaddsbs (vector bool char, vector signed char);
17450 vector signed char vec_vaddsbs (vector signed char, vector bool char);
17451 vector signed char vec_vaddsbs (vector signed char, vector signed char);
17453 vector signed short vec_vaddshs (vector bool short, vector signed short);
17454 vector signed short vec_vaddshs (vector signed short, vector bool short);
17455 vector signed short vec_vaddshs (vector signed short, vector signed short);
17457 vector signed int vec_vaddsws (vector bool int, vector signed int);
17458 vector signed int vec_vaddsws (vector signed int, vector bool int);
17459 vector signed int vec_vaddsws (vector signed int, vector signed int);
17461 vector signed char vec_vaddubm (vector bool char, vector signed char);
17462 vector signed char vec_vaddubm (vector signed char, vector bool char);
17463 vector signed char vec_vaddubm (vector signed char, vector signed char);
17464 vector unsigned char vec_vaddubm (vector bool char, vector unsigned char);
17465 vector unsigned char vec_vaddubm (vector unsigned char, vector bool char);
17466 vector unsigned char vec_vaddubm (vector unsigned char, vector unsigned char);
17468 vector unsigned char vec_vaddubs (vector bool char, vector unsigned char);
17469 vector unsigned char vec_vaddubs (vector unsigned char, vector bool char);
17470 vector unsigned char vec_vaddubs (vector unsigned char, vector unsigned char);
17472 vector signed short vec_vadduhm (vector bool short, vector signed short);
17473 vector signed short vec_vadduhm (vector signed short, vector bool short);
17474 vector signed short vec_vadduhm (vector signed short, vector signed short);
17475 vector unsigned short vec_vadduhm (vector bool short, vector unsigned short);
17476 vector unsigned short vec_vadduhm (vector unsigned short, vector bool short);
17477 vector unsigned short vec_vadduhm (vector unsigned short, vector unsigned short);
17479 vector unsigned short vec_vadduhs (vector bool short, vector unsigned short);
17480 vector unsigned short vec_vadduhs (vector unsigned short, vector bool short);
17481 vector unsigned short vec_vadduhs (vector unsigned short, vector unsigned short);
17483 vector signed int vec_vadduwm (vector bool int, vector signed int);
17484 vector signed int vec_vadduwm (vector signed int, vector bool int);
17485 vector signed int vec_vadduwm (vector signed int, vector signed int);
17486 vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
17487 vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
17488 vector unsigned int vec_vadduwm (vector unsigned int, vector unsigned int);
17490 vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
17491 vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
17492 vector unsigned int vec_vadduws (vector unsigned int, vector unsigned int);
17494 vector signed char vec_vavgsb (vector signed char, vector signed char);
17496 vector signed short vec_vavgsh (vector signed short, vector signed short);
17498 vector signed int vec_vavgsw (vector signed int, vector signed int);
17500 vector unsigned char vec_vavgub (vector unsigned char, vector unsigned char);
17502 vector unsigned short vec_vavguh (vector unsigned short, vector unsigned short);
17504 vector unsigned int vec_vavguw (vector unsigned int, vector unsigned int);
17506 vector float vec_vcfsx (vector signed int, const int);
17508 vector float vec_vcfux (vector unsigned int, const int);
17510 vector bool int vec_vcmpeqfp (vector float, vector float);
17512 vector bool char vec_vcmpequb (vector signed char, vector signed char);
17513 vector bool char vec_vcmpequb (vector unsigned char, vector unsigned char);
17515 vector bool short vec_vcmpequh (vector signed short, vector signed short);
17516 vector bool short vec_vcmpequh (vector unsigned short, vector unsigned short);
17518 vector bool int vec_vcmpequw (vector signed int, vector signed int);
17519 vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
17521 vector bool int vec_vcmpgtfp (vector float, vector float);
17523 vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
17525 vector bool short vec_vcmpgtsh (vector signed short, vector signed short);
17527 vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
17529 vector bool char vec_vcmpgtub (vector unsigned char, vector unsigned char);
17531 vector bool short vec_vcmpgtuh (vector unsigned short, vector unsigned short);
17533 vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
17535 vector float vec_vmaxfp (vector float, vector float);
17537 vector signed char vec_vmaxsb (vector bool char, vector signed char);
17538 vector signed char vec_vmaxsb (vector signed char, vector bool char);
17539 vector signed char vec_vmaxsb (vector signed char, vector signed char);
17541 vector signed short vec_vmaxsh (vector bool short, vector signed short);
17542 vector signed short vec_vmaxsh (vector signed short, vector bool short);
17543 vector signed short vec_vmaxsh (vector signed short, vector signed short);
17545 vector signed int vec_vmaxsw (vector bool int, vector signed int);
17546 vector signed int vec_vmaxsw (vector signed int, vector bool int);
17547 vector signed int vec_vmaxsw (vector signed int, vector signed int);
17549 vector unsigned char vec_vmaxub (vector bool char, vector unsigned char);
17550 vector unsigned char vec_vmaxub (vector unsigned char, vector bool char);
17551 vector unsigned char vec_vmaxub (vector unsigned char, vector unsigned char);
17553 vector unsigned short vec_vmaxuh (vector bool short, vector unsigned short);
17554 vector unsigned short vec_vmaxuh (vector unsigned short, vector bool short);
17555 vector unsigned short vec_vmaxuh (vector unsigned short, vector unsigned short);
17557 vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
17558 vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
17559 vector unsigned int vec_vmaxuw (vector unsigned int, vector unsigned int);
17561 vector float vec_vminfp (vector float, vector float);
17563 vector signed char vec_vminsb (vector bool char, vector signed char);
17564 vector signed char vec_vminsb (vector signed char, vector bool char);
17565 vector signed char vec_vminsb (vector signed char, vector signed char);
17567 vector signed short vec_vminsh (vector bool short, vector signed short);
17568 vector signed short vec_vminsh (vector signed short, vector bool short);
17569 vector signed short vec_vminsh (vector signed short, vector signed short);
17571 vector signed int vec_vminsw (vector bool int, vector signed int);
17572 vector signed int vec_vminsw (vector signed int, vector bool int);
17573 vector signed int vec_vminsw (vector signed int, vector signed int);
17575 vector unsigned char vec_vminub (vector bool char, vector unsigned char);
17576 vector unsigned char vec_vminub (vector unsigned char, vector bool char);
17577 vector unsigned char vec_vminub (vector unsigned char, vector unsigned char);
17579 vector unsigned short vec_vminuh (vector bool short, vector unsigned short);
17580 vector unsigned short vec_vminuh (vector unsigned short, vector bool short);
17581 vector unsigned short vec_vminuh (vector unsigned short, vector unsigned short);
17583 vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
17584 vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
17585 vector unsigned int vec_vminuw (vector unsigned int, vector unsigned int);
17587 vector bool char vec_vmrghb (vector bool char, vector bool char);
17588 vector signed char vec_vmrghb (vector signed char, vector signed char);
17589 vector unsigned char vec_vmrghb (vector unsigned char, vector unsigned char);
17591 vector bool short vec_vmrghh (vector bool short, vector bool short);
17592 vector signed short vec_vmrghh (vector signed short, vector signed short);
17593 vector unsigned short vec_vmrghh (vector unsigned short, vector unsigned short);
17594 vector pixel vec_vmrghh (vector pixel, vector pixel);
17596 vector float vec_vmrghw (vector float, vector float);
17597 vector bool int vec_vmrghw (vector bool int, vector bool int);
17598 vector signed int vec_vmrghw (vector signed int, vector signed int);
17599 vector unsigned int vec_vmrghw (vector unsigned int, vector unsigned int);
17601 vector bool char vec_vmrglb (vector bool char, vector bool char);
17602 vector signed char vec_vmrglb (vector signed char, vector signed char);
17603 vector unsigned char vec_vmrglb (vector unsigned char, vector unsigned char);
17605 vector bool short vec_vmrglh (vector bool short, vector bool short);
17606 vector signed short vec_vmrglh (vector signed short, vector signed short);
17607 vector unsigned short vec_vmrglh (vector unsigned short, vector unsigned short);
17608 vector pixel vec_vmrglh (vector pixel, vector pixel);
17610 vector float vec_vmrglw (vector float, vector float);
17611 vector signed int vec_vmrglw (vector signed int, vector signed int);
17612 vector unsigned int vec_vmrglw (vector unsigned int, vector unsigned int);
17613 vector bool int vec_vmrglw (vector bool int, vector bool int);
17615 vector signed int vec_vmsummbm (vector signed char, vector unsigned char,
17616 vector signed int);
17618 vector signed int vec_vmsumshm (vector signed short, vector signed short,
17619 vector signed int);
17621 vector signed int vec_vmsumshs (vector signed short, vector signed short,
17622 vector signed int);
17624 vector unsigned int vec_vmsumubm (vector unsigned char, vector unsigned char,
17625 vector unsigned int);
17627 vector unsigned int vec_vmsumuhm (vector unsigned short, vector unsigned short,
17628 vector unsigned int);
17630 vector unsigned int vec_vmsumuhs (vector unsigned short, vector unsigned short,
17631 vector unsigned int);
17633 vector signed short vec_vmulesb (vector signed char, vector signed char);
17635 vector signed int vec_vmulesh (vector signed short, vector signed short);
17637 vector unsigned short vec_vmuleub (vector unsigned char, vector unsigned char);
17639 vector unsigned int vec_vmuleuh (vector unsigned short, vector unsigned short);
17641 vector signed short vec_vmulosb (vector signed char, vector signed char);
17643 vector signed int vec_vmulosh (vector signed short, vector signed short);
17645 vector unsigned short vec_vmuloub (vector unsigned char, vector unsigned char);
17647 vector unsigned int vec_vmulouh (vector unsigned short, vector unsigned short);
17649 vector signed char vec_vpkshss (vector signed short, vector signed short);
17651 vector unsigned char vec_vpkshus (vector signed short, vector signed short);
17653 vector signed short vec_vpkswss (vector signed int, vector signed int);
17655 vector unsigned short vec_vpkswus (vector signed int, vector signed int);
17657 vector bool char vec_vpkuhum (vector bool short, vector bool short);
17658 vector signed char vec_vpkuhum (vector signed short, vector signed short);
17659 vector unsigned char vec_vpkuhum (vector unsigned short, vector unsigned short);
17661 vector unsigned char vec_vpkuhus (vector unsigned short, vector unsigned short);
17663 vector bool short vec_vpkuwum (vector bool int, vector bool int);
17664 vector signed short vec_vpkuwum (vector signed int, vector signed int);
17665 vector unsigned short vec_vpkuwum (vector unsigned int, vector unsigned int);
17667 vector unsigned short vec_vpkuwus (vector unsigned int, vector unsigned int);
17669 vector signed char vec_vrlb (vector signed char, vector unsigned char);
17670 vector unsigned char vec_vrlb (vector unsigned char, vector unsigned char);
17672 vector signed short vec_vrlh (vector signed short, vector unsigned short);
17673 vector unsigned short vec_vrlh (vector unsigned short, vector unsigned short);
17675 vector signed int vec_vrlw (vector signed int, vector unsigned int);
17676 vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
17678 vector signed char vec_vslb (vector signed char, vector unsigned char);
17679 vector unsigned char vec_vslb (vector unsigned char, vector unsigned char);
17681 vector signed short vec_vslh (vector signed short, vector unsigned short);
17682 vector unsigned short vec_vslh (vector unsigned short, vector unsigned short);
17684 vector signed int vec_vslw (vector signed int, vector unsigned int);
17685 vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
17687 vector signed char vec_vspltb (vector signed char, const int);
17688 vector unsigned char vec_vspltb (vector unsigned char, const int);
17689 vector bool char vec_vspltb (vector bool char, const int);
17691 vector bool short vec_vsplth (vector bool short, const int);
17692 vector signed short vec_vsplth (vector signed short, const int);
17693 vector unsigned short vec_vsplth (vector unsigned short, const int);
17694 vector pixel vec_vsplth (vector pixel, const int);
17696 vector float vec_vspltw (vector float, const int);
17697 vector signed int vec_vspltw (vector signed int, const int);
17698 vector unsigned int vec_vspltw (vector unsigned int, const int);
17699 vector bool int vec_vspltw (vector bool int, const int);
17701 vector signed char vec_vsrab (vector signed char, vector unsigned char);
17702 vector unsigned char vec_vsrab (vector unsigned char, vector unsigned char);
17704 vector signed short vec_vsrah (vector signed short, vector unsigned short);
17705 vector unsigned short vec_vsrah (vector unsigned short, vector unsigned short);
17707 vector signed int vec_vsraw (vector signed int, vector unsigned int);
17708 vector unsigned int vec_vsraw (vector unsigned int, vector unsigned int);
17710 vector signed char vec_vsrb (vector signed char, vector unsigned char);
17711 vector unsigned char vec_vsrb (vector unsigned char, vector unsigned char);
17713 vector signed short vec_vsrh (vector signed short, vector unsigned short);
17714 vector unsigned short vec_vsrh (vector unsigned short, vector unsigned short);
17716 vector signed int vec_vsrw (vector signed int, vector unsigned int);
17717 vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
17719 vector float vec_vsubfp (vector float, vector float);
17721 vector signed char vec_vsubsbs (vector bool char, vector signed char);
17722 vector signed char vec_vsubsbs (vector signed char, vector bool char);
17723 vector signed char vec_vsubsbs (vector signed char, vector signed char);
17725 vector signed short vec_vsubshs (vector bool short, vector signed short);
17726 vector signed short vec_vsubshs (vector signed short, vector bool short);
17727 vector signed short vec_vsubshs (vector signed short, vector signed short);
17729 vector signed int vec_vsubsws (vector bool int, vector signed int);
17730 vector signed int vec_vsubsws (vector signed int, vector bool int);
17731 vector signed int vec_vsubsws (vector signed int, vector signed int);
17733 vector signed char vec_vsububm (vector bool char, vector signed char);
17734 vector signed char vec_vsububm (vector signed char, vector bool char);
17735 vector signed char vec_vsububm (vector signed char, vector signed char);
17736 vector unsigned char vec_vsububm (vector bool char, vector unsigned char);
17737 vector unsigned char vec_vsububm (vector unsigned char, vector bool char);
17738 vector unsigned char vec_vsububm (vector unsigned char, vector unsigned char);
17740 vector unsigned char vec_vsububs (vector bool char, vector unsigned char);
17741 vector unsigned char vec_vsububs (vector unsigned char, vector bool char);
17742 vector unsigned char vec_vsububs (vector unsigned char, vector unsigned char);
17744 vector signed short vec_vsubuhm (vector bool short, vector signed short);
17745 vector signed short vec_vsubuhm (vector signed short, vector bool short);
17746 vector signed short vec_vsubuhm (vector signed short, vector signed short);
17747 vector unsigned short vec_vsubuhm (vector bool short, vector unsigned short);
17748 vector unsigned short vec_vsubuhm (vector unsigned short, vector bool short);
17749 vector unsigned short vec_vsubuhm (vector unsigned short, vector unsigned short);
17751 vector unsigned short vec_vsubuhs (vector bool short, vector unsigned short);
17752 vector unsigned short vec_vsubuhs (vector unsigned short, vector bool short);
17753 vector unsigned short vec_vsubuhs (vector unsigned short, vector unsigned short);
17755 vector signed int vec_vsubuwm (vector bool int, vector signed int);
17756 vector signed int vec_vsubuwm (vector signed int, vector bool int);
17757 vector signed int vec_vsubuwm (vector signed int, vector signed int);
17758 vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
17759 vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
17760 vector unsigned int vec_vsubuwm (vector unsigned int, vector unsigned int);
17762 vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
17763 vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
17764 vector unsigned int vec_vsubuws (vector unsigned int, vector unsigned int);
17766 vector signed int vec_vsum4sbs (vector signed char, vector signed int);
17768 vector signed int vec_vsum4shs (vector signed short, vector signed int);
17770 vector unsigned int vec_vsum4ubs (vector unsigned char, vector unsigned int);
17772 vector unsigned int vec_vupkhpx (vector pixel);
17774 vector bool short vec_vupkhsb (vector bool char);
17775 vector signed short vec_vupkhsb (vector signed char);
17777 vector bool int vec_vupkhsh (vector bool short);
17778 vector signed int vec_vupkhsh (vector signed short);
17780 vector unsigned int vec_vupklpx (vector pixel);
17782 vector bool short vec_vupklsb (vector bool char);
17783 vector signed short vec_vupklsb (vector signed char);
17785 vector bool int vec_vupklsh (vector bool short);
17786 vector signed int vec_vupklsh (vector signed short);
17788 vector float vec_xor (vector float, vector float);
17789 vector float vec_xor (vector float, vector bool int);
17790 vector float vec_xor (vector bool int, vector float);
17791 vector bool int vec_xor (vector bool int, vector bool int);
17792 vector signed int vec_xor (vector bool int, vector signed int);
17793 vector signed int vec_xor (vector signed int, vector bool int);
17794 vector signed int vec_xor (vector signed int, vector signed int);
17795 vector unsigned int vec_xor (vector bool int, vector unsigned int);
17796 vector unsigned int vec_xor (vector unsigned int, vector bool int);
17797 vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
17798 vector bool short vec_xor (vector bool short, vector bool short);
17799 vector signed short vec_xor (vector bool short, vector signed short);
17800 vector signed short vec_xor (vector signed short, vector bool short);
17801 vector signed short vec_xor (vector signed short, vector signed short);
17802 vector unsigned short vec_xor (vector bool short, vector unsigned short);
17803 vector unsigned short vec_xor (vector unsigned short, vector bool short);
17804 vector unsigned short vec_xor (vector unsigned short, vector unsigned short);
17805 vector signed char vec_xor (vector bool char, vector signed char);
17806 vector bool char vec_xor (vector bool char, vector bool char);
17807 vector signed char vec_xor (vector signed char, vector bool char);
17808 vector signed char vec_xor (vector signed char, vector signed char);
17809 vector unsigned char vec_xor (vector bool char, vector unsigned char);
17810 vector unsigned char vec_xor (vector unsigned char, vector bool char);
17811 vector unsigned char vec_xor (vector unsigned char, vector unsigned char);
17814 @node PowerPC AltiVec Built-in Functions Available on ISA 2.06
17815 @subsubsection PowerPC AltiVec Built-in Functions Available on ISA 2.06
17817 The AltiVec built-in functions described in this section are
17818 available on the PowerPC family of processors starting with ISA 2.06
17819 or later. These are normally enabled by adding @option{-mvsx} to the
17822 When @option{-mvsx} is used, the following additional vector types are
17826 vector unsigned __int128
17827 vector signed __int128
17828 vector unsigned long long int
17829 vector signed long long int
17833 The long long types are only implemented for 64-bit code generation.
17837 vector bool long long vec_and (vector bool long long int, vector bool long long);
17839 vector double vec_ctf (vector unsigned long, const int);
17840 vector double vec_ctf (vector signed long, const int);
17842 vector signed long vec_cts (vector double, const int);
17844 vector unsigned long vec_ctu (vector double, const int);
17846 void vec_dst (const unsigned long *, int, const int);
17847 void vec_dst (const long *, int, const int);
17849 void vec_dststt (const unsigned long *, int, const int);
17850 void vec_dststt (const long *, int, const int);
17852 void vec_dstt (const unsigned long *, int, const int);
17853 void vec_dstt (const long *, int, const int);
17855 vector unsigned char vec_lvsl (int, const unsigned long *);
17856 vector unsigned char vec_lvsl (int, const long *);
17858 vector unsigned char vec_lvsr (int, const unsigned long *);
17859 vector unsigned char vec_lvsr (int, const long *);
17861 vector double vec_mul (vector double, vector double);
17862 vector long vec_mul (vector long, vector long);
17863 vector unsigned long vec_mul (vector unsigned long, vector unsigned long);
17865 vector unsigned long long vec_mule (vector unsigned int, vector unsigned int);
17866 vector signed long long vec_mule (vector signed int, vector signed int);
17868 vector unsigned long long vec_mulo (vector unsigned int, vector unsigned int);
17869 vector signed long long vec_mulo (vector signed int, vector signed int);
17871 vector double vec_nabs (vector double);
17873 vector bool long long vec_reve (vector bool long long);
17874 vector signed long long vec_reve (vector signed long long);
17875 vector unsigned long long vec_reve (vector unsigned long long);
17876 vector double vec_sld (vector double, vector double, const int);
17878 vector bool long long int vec_sld (vector bool long long int,
17879 vector bool long long int, const int);
17880 vector long long int vec_sld (vector long long int, vector long long int, const int);
17881 vector unsigned long long int vec_sld (vector unsigned long long int,
17882 vector unsigned long long int, const int);
17884 vector long long int vec_sll (vector long long int, vector unsigned char);
17885 vector unsigned long long int vec_sll (vector unsigned long long int,
17886 vector unsigned char);
17888 vector signed long long vec_slo (vector signed long long, vector signed char);
17889 vector signed long long vec_slo (vector signed long long, vector unsigned char);
17890 vector unsigned long long vec_slo (vector unsigned long long, vector signed char);
17891 vector unsigned long long vec_slo (vector unsigned long long, vector unsigned char);
17893 vector signed long vec_splat (vector signed long, const int);
17894 vector unsigned long vec_splat (vector unsigned long, const int);
17896 vector long long int vec_srl (vector long long int, vector unsigned char);
17897 vector unsigned long long int vec_srl (vector unsigned long long int,
17898 vector unsigned char);
17900 vector long long int vec_sro (vector long long int, vector char);
17901 vector long long int vec_sro (vector long long int, vector unsigned char);
17902 vector unsigned long long int vec_sro (vector unsigned long long int, vector char);
17903 vector unsigned long long int vec_sro (vector unsigned long long int,
17904 vector unsigned char);
17906 vector signed __int128 vec_subc (vector signed __int128, vector signed __int128);
17907 vector unsigned __int128 vec_subc (vector unsigned __int128, vector unsigned __int128);
17909 vector signed __int128 vec_sube (vector signed __int128, vector signed __int128,
17910 vector signed __int128);
17911 vector unsigned __int128 vec_sube (vector unsigned __int128, vector unsigned __int128,
17912 vector unsigned __int128);
17914 vector signed __int128 vec_subec (vector signed __int128, vector signed __int128,
17915 vector signed __int128);
17916 vector unsigned __int128 vec_subec (vector unsigned __int128, vector unsigned __int128,
17917 vector unsigned __int128);
17919 vector double vec_unpackh (vector float);
17921 vector double vec_unpackl (vector float);
17923 vector double vec_doublee (vector float);
17924 vector double vec_doublee (vector signed int);
17925 vector double vec_doublee (vector unsigned int);
17927 vector double vec_doubleo (vector float);
17928 vector double vec_doubleo (vector signed int);
17929 vector double vec_doubleo (vector unsigned int);
17931 vector double vec_doubleh (vector float);
17932 vector double vec_doubleh (vector signed int);
17933 vector double vec_doubleh (vector unsigned int);
17935 vector double vec_doublel (vector float);
17936 vector double vec_doublel (vector signed int);
17937 vector double vec_doublel (vector unsigned int);
17939 vector float vec_float (vector signed int);
17940 vector float vec_float (vector unsigned int);
17942 vector float vec_float2 (vector signed long long, vector signed long long);
17943 vector float vec_float2 (vector unsigned long long, vector signed long long);
17945 vector float vec_floate (vector double);
17946 vector float vec_floate (vector signed long long);
17947 vector float vec_floate (vector unsigned long long);
17949 vector float vec_floato (vector double);
17950 vector float vec_floato (vector signed long long);
17951 vector float vec_floato (vector unsigned long long);
17953 vector signed long long vec_signed (vector double);
17954 vector signed int vec_signed (vector float);
17956 vector signed int vec_signede (vector double);
17958 vector signed int vec_signedo (vector double);
17960 vector signed char vec_sldw (vector signed char, vector signed char, const int);
17961 vector unsigned char vec_sldw (vector unsigned char, vector unsigned char, const int);
17962 vector signed short vec_sldw (vector signed short, vector signed short, const int);
17963 vector unsigned short vec_sldw (vector unsigned short,
17964 vector unsigned short, const int);
17965 vector signed int vec_sldw (vector signed int, vector signed int, const int);
17966 vector unsigned int vec_sldw (vector unsigned int, vector unsigned int, const int);
17967 vector signed long long vec_sldw (vector signed long long,
17968 vector signed long long, const int);
17969 vector unsigned long long vec_sldw (vector unsigned long long,
17970 vector unsigned long long, const int);
17972 vector signed long long vec_unsigned (vector double);
17973 vector signed int vec_unsigned (vector float);
17975 vector signed int vec_unsignede (vector double);
17977 vector signed int vec_unsignedo (vector double);
17979 vector double vec_abs (vector double);
17980 vector double vec_add (vector double, vector double);
17981 vector double vec_and (vector double, vector double);
17982 vector double vec_and (vector double, vector bool long);
17983 vector double vec_and (vector bool long, vector double);
17984 vector long vec_and (vector long, vector long);
17985 vector long vec_and (vector long, vector bool long);
17986 vector long vec_and (vector bool long, vector long);
17987 vector unsigned long vec_and (vector unsigned long, vector unsigned long);
17988 vector unsigned long vec_and (vector unsigned long, vector bool long);
17989 vector unsigned long vec_and (vector bool long, vector unsigned long);
17990 vector double vec_andc (vector double, vector double);
17991 vector double vec_andc (vector double, vector bool long);
17992 vector double vec_andc (vector bool long, vector double);
17993 vector long vec_andc (vector long, vector long);
17994 vector long vec_andc (vector long, vector bool long);
17995 vector long vec_andc (vector bool long, vector long);
17996 vector unsigned long vec_andc (vector unsigned long, vector unsigned long);
17997 vector unsigned long vec_andc (vector unsigned long, vector bool long);
17998 vector unsigned long vec_andc (vector bool long, vector unsigned long);
17999 vector double vec_ceil (vector double);
18000 vector bool long vec_cmpeq (vector double, vector double);
18001 vector bool long vec_cmpge (vector double, vector double);
18002 vector bool long vec_cmpgt (vector double, vector double);
18003 vector bool long vec_cmple (vector double, vector double);
18004 vector bool long vec_cmplt (vector double, vector double);
18005 vector double vec_cpsgn (vector double, vector double);
18006 vector float vec_div (vector float, vector float);
18007 vector double vec_div (vector double, vector double);
18008 vector long vec_div (vector long, vector long);
18009 vector unsigned long vec_div (vector unsigned long, vector unsigned long);
18010 vector double vec_floor (vector double);
18011 vector __int128 vec_ld (int, const vector __int128 *);
18012 vector unsigned __int128 vec_ld (int, const vector unsigned __int128 *);
18013 vector __int128 vec_ld (int, const __int128 *);
18014 vector unsigned __int128 vec_ld (int, const unsigned __int128 *);
18015 vector double vec_ld (int, const vector double *);
18016 vector double vec_ld (int, const double *);
18017 vector double vec_ldl (int, const vector double *);
18018 vector double vec_ldl (int, const double *);
18019 vector unsigned char vec_lvsl (int, const double *);
18020 vector unsigned char vec_lvsr (int, const double *);
18021 vector double vec_madd (vector double, vector double, vector double);
18022 vector double vec_max (vector double, vector double);
18023 vector signed long vec_mergeh (vector signed long, vector signed long);
18024 vector signed long vec_mergeh (vector signed long, vector bool long);
18025 vector signed long vec_mergeh (vector bool long, vector signed long);
18026 vector unsigned long vec_mergeh (vector unsigned long, vector unsigned long);
18027 vector unsigned long vec_mergeh (vector unsigned long, vector bool long);
18028 vector unsigned long vec_mergeh (vector bool long, vector unsigned long);
18029 vector signed long vec_mergel (vector signed long, vector signed long);
18030 vector signed long vec_mergel (vector signed long, vector bool long);
18031 vector signed long vec_mergel (vector bool long, vector signed long);
18032 vector unsigned long vec_mergel (vector unsigned long, vector unsigned long);
18033 vector unsigned long vec_mergel (vector unsigned long, vector bool long);
18034 vector unsigned long vec_mergel (vector bool long, vector unsigned long);
18035 vector double vec_min (vector double, vector double);
18036 vector float vec_msub (vector float, vector float, vector float);
18037 vector double vec_msub (vector double, vector double, vector double);
18038 vector float vec_nearbyint (vector float);
18039 vector double vec_nearbyint (vector double);
18040 vector float vec_nmadd (vector float, vector float, vector float);
18041 vector double vec_nmadd (vector double, vector double, vector double);
18042 vector double vec_nmsub (vector double, vector double, vector double);
18043 vector double vec_nor (vector double, vector double);
18044 vector long vec_nor (vector long, vector long);
18045 vector long vec_nor (vector long, vector bool long);
18046 vector long vec_nor (vector bool long, vector long);
18047 vector unsigned long vec_nor (vector unsigned long, vector unsigned long);
18048 vector unsigned long vec_nor (vector unsigned long, vector bool long);
18049 vector unsigned long vec_nor (vector bool long, vector unsigned long);
18050 vector double vec_or (vector double, vector double);
18051 vector double vec_or (vector double, vector bool long);
18052 vector double vec_or (vector bool long, vector double);
18053 vector long vec_or (vector long, vector long);
18054 vector long vec_or (vector long, vector bool long);
18055 vector long vec_or (vector bool long, vector long);
18056 vector unsigned long vec_or (vector unsigned long, vector unsigned long);
18057 vector unsigned long vec_or (vector unsigned long, vector bool long);
18058 vector unsigned long vec_or (vector bool long, vector unsigned long);
18059 vector double vec_perm (vector double, vector double, vector unsigned char);
18060 vector long vec_perm (vector long, vector long, vector unsigned char);
18061 vector unsigned long vec_perm (vector unsigned long, vector unsigned long,
18062 vector unsigned char);
18063 vector bool char vec_permxor (vector bool char, vector bool char,
18065 vector unsigned char vec_permxor (vector signed char, vector signed char,
18066 vector signed char);
18067 vector unsigned char vec_permxor (vector unsigned char, vector unsigned char,
18068 vector unsigned char);
18069 vector double vec_rint (vector double);
18070 vector double vec_recip (vector double, vector double);
18071 vector double vec_rsqrt (vector double);
18072 vector double vec_rsqrte (vector double);
18073 vector double vec_sel (vector double, vector double, vector bool long);
18074 vector double vec_sel (vector double, vector double, vector unsigned long);
18075 vector long vec_sel (vector long, vector long, vector long);
18076 vector long vec_sel (vector long, vector long, vector unsigned long);
18077 vector long vec_sel (vector long, vector long, vector bool long);
18078 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
18080 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
18081 vector unsigned long);
18082 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
18084 vector double vec_splats (double);
18085 vector signed long vec_splats (signed long);
18086 vector unsigned long vec_splats (unsigned long);
18087 vector float vec_sqrt (vector float);
18088 vector double vec_sqrt (vector double);
18089 void vec_st (vector double, int, vector double *);
18090 void vec_st (vector double, int, double *);
18091 vector double vec_sub (vector double, vector double);
18092 vector double vec_trunc (vector double);
18093 vector double vec_xl (int, vector double *);
18094 vector double vec_xl (int, double *);
18095 vector long long vec_xl (int, vector long long *);
18096 vector long long vec_xl (int, long long *);
18097 vector unsigned long long vec_xl (int, vector unsigned long long *);
18098 vector unsigned long long vec_xl (int, unsigned long long *);
18099 vector float vec_xl (int, vector float *);
18100 vector float vec_xl (int, float *);
18101 vector int vec_xl (int, vector int *);
18102 vector int vec_xl (int, int *);
18103 vector unsigned int vec_xl (int, vector unsigned int *);
18104 vector unsigned int vec_xl (int, unsigned int *);
18105 vector double vec_xor (vector double, vector double);
18106 vector double vec_xor (vector double, vector bool long);
18107 vector double vec_xor (vector bool long, vector double);
18108 vector long vec_xor (vector long, vector long);
18109 vector long vec_xor (vector long, vector bool long);
18110 vector long vec_xor (vector bool long, vector long);
18111 vector unsigned long vec_xor (vector unsigned long, vector unsigned long);
18112 vector unsigned long vec_xor (vector unsigned long, vector bool long);
18113 vector unsigned long vec_xor (vector bool long, vector unsigned long);
18114 void vec_xst (vector double, int, vector double *);
18115 void vec_xst (vector double, int, double *);
18116 void vec_xst (vector long long, int, vector long long *);
18117 void vec_xst (vector long long, int, long long *);
18118 void vec_xst (vector unsigned long long, int, vector unsigned long long *);
18119 void vec_xst (vector unsigned long long, int, unsigned long long *);
18120 void vec_xst (vector float, int, vector float *);
18121 void vec_xst (vector float, int, float *);
18122 void vec_xst (vector int, int, vector int *);
18123 void vec_xst (vector int, int, int *);
18124 void vec_xst (vector unsigned int, int, vector unsigned int *);
18125 void vec_xst (vector unsigned int, int, unsigned int *);
18126 int vec_all_eq (vector double, vector double);
18127 int vec_all_ge (vector double, vector double);
18128 int vec_all_gt (vector double, vector double);
18129 int vec_all_le (vector double, vector double);
18130 int vec_all_lt (vector double, vector double);
18131 int vec_all_nan (vector double);
18132 int vec_all_ne (vector double, vector double);
18133 int vec_all_nge (vector double, vector double);
18134 int vec_all_ngt (vector double, vector double);
18135 int vec_all_nle (vector double, vector double);
18136 int vec_all_nlt (vector double, vector double);
18137 int vec_all_numeric (vector double);
18138 int vec_any_eq (vector double, vector double);
18139 int vec_any_ge (vector double, vector double);
18140 int vec_any_gt (vector double, vector double);
18141 int vec_any_le (vector double, vector double);
18142 int vec_any_lt (vector double, vector double);
18143 int vec_any_nan (vector double);
18144 int vec_any_ne (vector double, vector double);
18145 int vec_any_nge (vector double, vector double);
18146 int vec_any_ngt (vector double, vector double);
18147 int vec_any_nle (vector double, vector double);
18148 int vec_any_nlt (vector double, vector double);
18149 int vec_any_numeric (vector double);
18151 vector double vec_vsx_ld (int, const vector double *);
18152 vector double vec_vsx_ld (int, const double *);
18153 vector float vec_vsx_ld (int, const vector float *);
18154 vector float vec_vsx_ld (int, const float *);
18155 vector bool int vec_vsx_ld (int, const vector bool int *);
18156 vector signed int vec_vsx_ld (int, const vector signed int *);
18157 vector signed int vec_vsx_ld (int, const int *);
18158 vector signed int vec_vsx_ld (int, const long *);
18159 vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
18160 vector unsigned int vec_vsx_ld (int, const unsigned int *);
18161 vector unsigned int vec_vsx_ld (int, const unsigned long *);
18162 vector bool short vec_vsx_ld (int, const vector bool short *);
18163 vector pixel vec_vsx_ld (int, const vector pixel *);
18164 vector signed short vec_vsx_ld (int, const vector signed short *);
18165 vector signed short vec_vsx_ld (int, const short *);
18166 vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
18167 vector unsigned short vec_vsx_ld (int, const unsigned short *);
18168 vector bool char vec_vsx_ld (int, const vector bool char *);
18169 vector signed char vec_vsx_ld (int, const vector signed char *);
18170 vector signed char vec_vsx_ld (int, const signed char *);
18171 vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
18172 vector unsigned char vec_vsx_ld (int, const unsigned char *);
18174 void vec_vsx_st (vector double, int, vector double *);
18175 void vec_vsx_st (vector double, int, double *);
18176 void vec_vsx_st (vector float, int, vector float *);
18177 void vec_vsx_st (vector float, int, float *);
18178 void vec_vsx_st (vector signed int, int, vector signed int *);
18179 void vec_vsx_st (vector signed int, int, int *);
18180 void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
18181 void vec_vsx_st (vector unsigned int, int, unsigned int *);
18182 void vec_vsx_st (vector bool int, int, vector bool int *);
18183 void vec_vsx_st (vector bool int, int, unsigned int *);
18184 void vec_vsx_st (vector bool int, int, int *);
18185 void vec_vsx_st (vector signed short, int, vector signed short *);
18186 void vec_vsx_st (vector signed short, int, short *);
18187 void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
18188 void vec_vsx_st (vector unsigned short, int, unsigned short *);
18189 void vec_vsx_st (vector bool short, int, vector bool short *);
18190 void vec_vsx_st (vector bool short, int, unsigned short *);
18191 void vec_vsx_st (vector pixel, int, vector pixel *);
18192 void vec_vsx_st (vector pixel, int, unsigned short *);
18193 void vec_vsx_st (vector pixel, int, short *);
18194 void vec_vsx_st (vector bool short, int, short *);
18195 void vec_vsx_st (vector signed char, int, vector signed char *);
18196 void vec_vsx_st (vector signed char, int, signed char *);
18197 void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
18198 void vec_vsx_st (vector unsigned char, int, unsigned char *);
18199 void vec_vsx_st (vector bool char, int, vector bool char *);
18200 void vec_vsx_st (vector bool char, int, unsigned char *);
18201 void vec_vsx_st (vector bool char, int, signed char *);
18203 vector double vec_xxpermdi (vector double, vector double, const int);
18204 vector float vec_xxpermdi (vector float, vector float, const int);
18205 vector long long vec_xxpermdi (vector long long, vector long long, const int);
18206 vector unsigned long long vec_xxpermdi (vector unsigned long long,
18207 vector unsigned long long, const int);
18208 vector int vec_xxpermdi (vector int, vector int, const int);
18209 vector unsigned int vec_xxpermdi (vector unsigned int,
18210 vector unsigned int, const int);
18211 vector short vec_xxpermdi (vector short, vector short, const int);
18212 vector unsigned short vec_xxpermdi (vector unsigned short,
18213 vector unsigned short, const int);
18214 vector signed char vec_xxpermdi (vector signed char, vector signed char,
18216 vector unsigned char vec_xxpermdi (vector unsigned char,
18217 vector unsigned char, const int);
18219 vector double vec_xxsldi (vector double, vector double, int);
18220 vector float vec_xxsldi (vector float, vector float, int);
18221 vector long long vec_xxsldi (vector long long, vector long long, int);
18222 vector unsigned long long vec_xxsldi (vector unsigned long long,
18223 vector unsigned long long, int);
18224 vector int vec_xxsldi (vector int, vector int, int);
18225 vector unsigned int vec_xxsldi (vector unsigned int, vector unsigned int, int);
18226 vector short vec_xxsldi (vector short, vector short, int);
18227 vector unsigned short vec_xxsldi (vector unsigned short,
18228 vector unsigned short, int);
18229 vector signed char vec_xxsldi (vector signed char, vector signed char, int);
18230 vector unsigned char vec_xxsldi (vector unsigned char,
18231 vector unsigned char, int);
18234 Note that the @samp{vec_ld} and @samp{vec_st} built-in functions always
18235 generate the AltiVec @samp{LVX} and @samp{STVX} instructions even
18236 if the VSX instruction set is available. The @samp{vec_vsx_ld} and
18237 @samp{vec_vsx_st} built-in functions always generate the VSX @samp{LXVD2X},
18238 @samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
18240 @node PowerPC AltiVec Built-in Functions Available on ISA 2.07
18241 @subsubsection PowerPC AltiVec Built-in Functions Available on ISA 2.07
18243 If the ISA 2.07 additions to the vector/scalar (power8-vector)
18244 instruction set are available, the following additional functions are
18245 available for both 32-bit and 64-bit targets. For 64-bit targets, you
18246 can use @var{vector long} instead of @var{vector long long},
18247 @var{vector bool long} instead of @var{vector bool long long}, and
18248 @var{vector unsigned long} instead of @var{vector unsigned long long}.
18251 vector signed char vec_neg (vector signed char);
18252 vector signed short vec_neg (vector signed short);
18253 vector signed int vec_neg (vector signed int);
18254 vector signed long long vec_neg (vector signed long long);
18255 vector float char vec_neg (vector float);
18256 vector double vec_neg (vector double);
18258 vector signed int vec_signed2 (vector double, vector double);
18260 vector signed int vec_unsigned2 (vector double, vector double);
18262 vector long long vec_abs (vector long long);
18264 vector long long vec_add (vector long long, vector long long);
18265 vector unsigned long long vec_add (vector unsigned long long,
18266 vector unsigned long long);
18268 int vec_all_eq (vector long long, vector long long);
18269 int vec_all_eq (vector unsigned long long, vector unsigned long long);
18270 int vec_all_ge (vector long long, vector long long);
18271 int vec_all_ge (vector unsigned long long, vector unsigned long long);
18272 int vec_all_gt (vector long long, vector long long);
18273 int vec_all_gt (vector unsigned long long, vector unsigned long long);
18274 int vec_all_le (vector long long, vector long long);
18275 int vec_all_le (vector unsigned long long, vector unsigned long long);
18276 int vec_all_lt (vector long long, vector long long);
18277 int vec_all_lt (vector unsigned long long, vector unsigned long long);
18278 int vec_all_ne (vector long long, vector long long);
18279 int vec_all_ne (vector unsigned long long, vector unsigned long long);
18281 int vec_any_eq (vector long long, vector long long);
18282 int vec_any_eq (vector unsigned long long, vector unsigned long long);
18283 int vec_any_ge (vector long long, vector long long);
18284 int vec_any_ge (vector unsigned long long, vector unsigned long long);
18285 int vec_any_gt (vector long long, vector long long);
18286 int vec_any_gt (vector unsigned long long, vector unsigned long long);
18287 int vec_any_le (vector long long, vector long long);
18288 int vec_any_le (vector unsigned long long, vector unsigned long long);
18289 int vec_any_lt (vector long long, vector long long);
18290 int vec_any_lt (vector unsigned long long, vector unsigned long long);
18291 int vec_any_ne (vector long long, vector long long);
18292 int vec_any_ne (vector unsigned long long, vector unsigned long long);
18294 vector bool long long vec_cmpeq (vector bool long long, vector bool long long);
18296 vector long long vec_eqv (vector long long, vector long long);
18297 vector long long vec_eqv (vector bool long long, vector long long);
18298 vector long long vec_eqv (vector long long, vector bool long long);
18299 vector unsigned long long vec_eqv (vector unsigned long long, vector unsigned long long);
18300 vector unsigned long long vec_eqv (vector bool long long, vector unsigned long long);
18301 vector unsigned long long vec_eqv (vector unsigned long long,
18302 vector bool long long);
18303 vector int vec_eqv (vector int, vector int);
18304 vector int vec_eqv (vector bool int, vector int);
18305 vector int vec_eqv (vector int, vector bool int);
18306 vector unsigned int vec_eqv (vector unsigned int, vector unsigned int);
18307 vector unsigned int vec_eqv (vector bool unsigned int, vector unsigned int);
18308 vector unsigned int vec_eqv (vector unsigned int, vector bool unsigned int);
18309 vector short vec_eqv (vector short, vector short);
18310 vector short vec_eqv (vector bool short, vector short);
18311 vector short vec_eqv (vector short, vector bool short);
18312 vector unsigned short vec_eqv (vector unsigned short, vector unsigned short);
18313 vector unsigned short vec_eqv (vector bool unsigned short, vector unsigned short);
18314 vector unsigned short vec_eqv (vector unsigned short, vector bool unsigned short);
18315 vector signed char vec_eqv (vector signed char, vector signed char);
18316 vector signed char vec_eqv (vector bool signed char, vector signed char);
18317 vector signed char vec_eqv (vector signed char, vector bool signed char);
18318 vector unsigned char vec_eqv (vector unsigned char, vector unsigned char);
18319 vector unsigned char vec_eqv (vector bool unsigned char, vector unsigned char);
18320 vector unsigned char vec_eqv (vector unsigned char, vector bool unsigned char);
18322 vector long long vec_max (vector long long, vector long long);
18323 vector unsigned long long vec_max (vector unsigned long long,
18324 vector unsigned long long);
18326 vector signed int vec_mergee (vector signed int, vector signed int);
18327 vector unsigned int vec_mergee (vector unsigned int, vector unsigned int);
18328 vector bool int vec_mergee (vector bool int, vector bool int);
18330 vector signed int vec_mergeo (vector signed int, vector signed int);
18331 vector unsigned int vec_mergeo (vector unsigned int, vector unsigned int);
18332 vector bool int vec_mergeo (vector bool int, vector bool int);
18334 vector long long vec_min (vector long long, vector long long);
18335 vector unsigned long long vec_min (vector unsigned long long,
18336 vector unsigned long long);
18338 vector signed long long vec_nabs (vector signed long long);
18340 vector long long vec_nand (vector long long, vector long long);
18341 vector long long vec_nand (vector bool long long, vector long long);
18342 vector long long vec_nand (vector long long, vector bool long long);
18343 vector unsigned long long vec_nand (vector unsigned long long,
18344 vector unsigned long long);
18345 vector unsigned long long vec_nand (vector bool long long, vector unsigned long long);
18346 vector unsigned long long vec_nand (vector unsigned long long, vector bool long long);
18347 vector int vec_nand (vector int, vector int);
18348 vector int vec_nand (vector bool int, vector int);
18349 vector int vec_nand (vector int, vector bool int);
18350 vector unsigned int vec_nand (vector unsigned int, vector unsigned int);
18351 vector unsigned int vec_nand (vector bool unsigned int, vector unsigned int);
18352 vector unsigned int vec_nand (vector unsigned int, vector bool unsigned int);
18353 vector short vec_nand (vector short, vector short);
18354 vector short vec_nand (vector bool short, vector short);
18355 vector short vec_nand (vector short, vector bool short);
18356 vector unsigned short vec_nand (vector unsigned short, vector unsigned short);
18357 vector unsigned short vec_nand (vector bool unsigned short, vector unsigned short);
18358 vector unsigned short vec_nand (vector unsigned short, vector bool unsigned short);
18359 vector signed char vec_nand (vector signed char, vector signed char);
18360 vector signed char vec_nand (vector bool signed char, vector signed char);
18361 vector signed char vec_nand (vector signed char, vector bool signed char);
18362 vector unsigned char vec_nand (vector unsigned char, vector unsigned char);
18363 vector unsigned char vec_nand (vector bool unsigned char, vector unsigned char);
18364 vector unsigned char vec_nand (vector unsigned char, vector bool unsigned char);
18366 vector long long vec_orc (vector long long, vector long long);
18367 vector long long vec_orc (vector bool long long, vector long long);
18368 vector long long vec_orc (vector long long, vector bool long long);
18369 vector unsigned long long vec_orc (vector unsigned long long,
18370 vector unsigned long long);
18371 vector unsigned long long vec_orc (vector bool long long, vector unsigned long long);
18372 vector unsigned long long vec_orc (vector unsigned long long, vector bool long long);
18373 vector int vec_orc (vector int, vector int);
18374 vector int vec_orc (vector bool int, vector int);
18375 vector int vec_orc (vector int, vector bool int);
18376 vector unsigned int vec_orc (vector unsigned int, vector unsigned int);
18377 vector unsigned int vec_orc (vector bool unsigned int, vector unsigned int);
18378 vector unsigned int vec_orc (vector unsigned int, vector bool unsigned int);
18379 vector short vec_orc (vector short, vector short);
18380 vector short vec_orc (vector bool short, vector short);
18381 vector short vec_orc (vector short, vector bool short);
18382 vector unsigned short vec_orc (vector unsigned short, vector unsigned short);
18383 vector unsigned short vec_orc (vector bool unsigned short, vector unsigned short);
18384 vector unsigned short vec_orc (vector unsigned short, vector bool unsigned short);
18385 vector signed char vec_orc (vector signed char, vector signed char);
18386 vector signed char vec_orc (vector bool signed char, vector signed char);
18387 vector signed char vec_orc (vector signed char, vector bool signed char);
18388 vector unsigned char vec_orc (vector unsigned char, vector unsigned char);
18389 vector unsigned char vec_orc (vector bool unsigned char, vector unsigned char);
18390 vector unsigned char vec_orc (vector unsigned char, vector bool unsigned char);
18392 vector int vec_pack (vector long long, vector long long);
18393 vector unsigned int vec_pack (vector unsigned long long, vector unsigned long long);
18394 vector bool int vec_pack (vector bool long long, vector bool long long);
18395 vector float vec_pack (vector double, vector double);
18397 vector int vec_packs (vector long long, vector long long);
18398 vector unsigned int vec_packs (vector unsigned long long, vector unsigned long long);
18400 vector unsigned char vec_packsu (vector signed short, vector signed short)
18401 vector unsigned char vec_packsu (vector unsigned short, vector unsigned short)
18402 vector unsigned short int vec_packsu (vector signed int, vector signed int);
18403 vector unsigned short int vec_packsu (vector unsigned int, vector unsigned int);
18404 vector unsigned int vec_packsu (vector long long, vector long long);
18405 vector unsigned int vec_packsu (vector unsigned long long, vector unsigned long long);
18406 vector unsigned int vec_packsu (vector signed long long, vector signed long long);
18408 vector unsigned char vec_popcnt (vector signed char);
18409 vector unsigned char vec_popcnt (vector unsigned char);
18410 vector unsigned short vec_popcnt (vector signed short);
18411 vector unsigned short vec_popcnt (vector unsigned short);
18412 vector unsigned int vec_popcnt (vector signed int);
18413 vector unsigned int vec_popcnt (vector unsigned int);
18414 vector unsigned long long vec_popcnt (vector signed long long);
18415 vector unsigned long long vec_popcnt (vector unsigned long long);
18417 vector long long vec_rl (vector long long, vector unsigned long long);
18418 vector long long vec_rl (vector unsigned long long, vector unsigned long long);
18420 vector long long vec_sl (vector long long, vector unsigned long long);
18421 vector long long vec_sl (vector unsigned long long, vector unsigned long long);
18423 vector long long vec_sr (vector long long, vector unsigned long long);
18424 vector unsigned long long char vec_sr (vector unsigned long long,
18425 vector unsigned long long);
18427 vector long long vec_sra (vector long long, vector unsigned long long);
18428 vector unsigned long long vec_sra (vector unsigned long long,
18429 vector unsigned long long);
18431 vector long long vec_sub (vector long long, vector long long);
18432 vector unsigned long long vec_sub (vector unsigned long long,
18433 vector unsigned long long);
18435 vector long long vec_unpackh (vector int);
18436 vector unsigned long long vec_unpackh (vector unsigned int);
18438 vector long long vec_unpackl (vector int);
18439 vector unsigned long long vec_unpackl (vector unsigned int);
18441 vector long long vec_vaddudm (vector long long, vector long long);
18442 vector long long vec_vaddudm (vector bool long long, vector long long);
18443 vector long long vec_vaddudm (vector long long, vector bool long long);
18444 vector unsigned long long vec_vaddudm (vector unsigned long long,
18445 vector unsigned long long);
18446 vector unsigned long long vec_vaddudm (vector bool unsigned long long,
18447 vector unsigned long long);
18448 vector unsigned long long vec_vaddudm (vector unsigned long long,
18449 vector bool unsigned long long);
18451 vector long long vec_vbpermq (vector signed char, vector signed char);
18452 vector long long vec_vbpermq (vector unsigned char, vector unsigned char);
18454 vector unsigned char vec_bperm (vector unsigned char, vector unsigned char);
18455 vector unsigned char vec_bperm (vector unsigned long long, vector unsigned char);
18456 vector unsigned long long vec_bperm (vector unsigned __int128, vector unsigned char);
18458 vector long long vec_cntlz (vector long long);
18459 vector unsigned long long vec_cntlz (vector unsigned long long);
18460 vector int vec_cntlz (vector int);
18461 vector unsigned int vec_cntlz (vector int);
18462 vector short vec_cntlz (vector short);
18463 vector unsigned short vec_cntlz (vector unsigned short);
18464 vector signed char vec_cntlz (vector signed char);
18465 vector unsigned char vec_cntlz (vector unsigned char);
18467 vector long long vec_vclz (vector long long);
18468 vector unsigned long long vec_vclz (vector unsigned long long);
18469 vector int vec_vclz (vector int);
18470 vector unsigned int vec_vclz (vector int);
18471 vector short vec_vclz (vector short);
18472 vector unsigned short vec_vclz (vector unsigned short);
18473 vector signed char vec_vclz (vector signed char);
18474 vector unsigned char vec_vclz (vector unsigned char);
18476 vector signed char vec_vclzb (vector signed char);
18477 vector unsigned char vec_vclzb (vector unsigned char);
18479 vector long long vec_vclzd (vector long long);
18480 vector unsigned long long vec_vclzd (vector unsigned long long);
18482 vector short vec_vclzh (vector short);
18483 vector unsigned short vec_vclzh (vector unsigned short);
18485 vector int vec_vclzw (vector int);
18486 vector unsigned int vec_vclzw (vector int);
18488 vector signed char vec_vgbbd (vector signed char);
18489 vector unsigned char vec_vgbbd (vector unsigned char);
18491 vector long long vec_vmaxsd (vector long long, vector long long);
18493 vector unsigned long long vec_vmaxud (vector unsigned long long,
18494 unsigned vector long long);
18496 vector long long vec_vminsd (vector long long, vector long long);
18498 vector unsigned long long vec_vminud (vector long long, vector long long);
18500 vector int vec_vpksdss (vector long long, vector long long);
18501 vector unsigned int vec_vpksdss (vector long long, vector long long);
18503 vector unsigned int vec_vpkudus (vector unsigned long long,
18504 vector unsigned long long);
18506 vector int vec_vpkudum (vector long long, vector long long);
18507 vector unsigned int vec_vpkudum (vector unsigned long long,
18508 vector unsigned long long);
18509 vector bool int vec_vpkudum (vector bool long long, vector bool long long);
18511 vector long long vec_vpopcnt (vector long long);
18512 vector unsigned long long vec_vpopcnt (vector unsigned long long);
18513 vector int vec_vpopcnt (vector int);
18514 vector unsigned int vec_vpopcnt (vector int);
18515 vector short vec_vpopcnt (vector short);
18516 vector unsigned short vec_vpopcnt (vector unsigned short);
18517 vector signed char vec_vpopcnt (vector signed char);
18518 vector unsigned char vec_vpopcnt (vector unsigned char);
18520 vector signed char vec_vpopcntb (vector signed char);
18521 vector unsigned char vec_vpopcntb (vector unsigned char);
18523 vector long long vec_vpopcntd (vector long long);
18524 vector unsigned long long vec_vpopcntd (vector unsigned long long);
18526 vector short vec_vpopcnth (vector short);
18527 vector unsigned short vec_vpopcnth (vector unsigned short);
18529 vector int vec_vpopcntw (vector int);
18530 vector unsigned int vec_vpopcntw (vector int);
18532 vector long long vec_vrld (vector long long, vector unsigned long long);
18533 vector unsigned long long vec_vrld (vector unsigned long long,
18534 vector unsigned long long);
18536 vector long long vec_vsld (vector long long, vector unsigned long long);
18537 vector long long vec_vsld (vector unsigned long long,
18538 vector unsigned long long);
18540 vector long long vec_vsrad (vector long long, vector unsigned long long);
18541 vector unsigned long long vec_vsrad (vector unsigned long long,
18542 vector unsigned long long);
18544 vector long long vec_vsrd (vector long long, vector unsigned long long);
18545 vector unsigned long long char vec_vsrd (vector unsigned long long,
18546 vector unsigned long long);
18548 vector long long vec_vsubudm (vector long long, vector long long);
18549 vector long long vec_vsubudm (vector bool long long, vector long long);
18550 vector long long vec_vsubudm (vector long long, vector bool long long);
18551 vector unsigned long long vec_vsubudm (vector unsigned long long,
18552 vector unsigned long long);
18553 vector unsigned long long vec_vsubudm (vector bool long long,
18554 vector unsigned long long);
18555 vector unsigned long long vec_vsubudm (vector unsigned long long,
18556 vector bool long long);
18558 vector long long vec_vupkhsw (vector int);
18559 vector unsigned long long vec_vupkhsw (vector unsigned int);
18561 vector long long vec_vupklsw (vector int);
18562 vector unsigned long long vec_vupklsw (vector int);
18565 If the ISA 2.07 additions to the vector/scalar (power8-vector)
18566 instruction set are available, the following additional functions are
18567 available for 64-bit targets. New vector types
18568 (@var{vector __int128} and @var{vector __uint128}) are available
18569 to hold the @var{__int128} and @var{__uint128} types to use these
18572 The normal vector extract, and set operations work on
18573 @var{vector __int128} and @var{vector __uint128} types,
18574 but the index value must be 0.
18577 vector __int128 vec_vaddcuq (vector __int128, vector __int128);
18578 vector __uint128 vec_vaddcuq (vector __uint128, vector __uint128);
18580 vector __int128 vec_vadduqm (vector __int128, vector __int128);
18581 vector __uint128 vec_vadduqm (vector __uint128, vector __uint128);
18583 vector __int128 vec_vaddecuq (vector __int128, vector __int128,
18585 vector __uint128 vec_vaddecuq (vector __uint128, vector __uint128,
18588 vector __int128 vec_vaddeuqm (vector __int128, vector __int128,
18590 vector __uint128 vec_vaddeuqm (vector __uint128, vector __uint128,
18593 vector __int128 vec_vsubecuq (vector __int128, vector __int128,
18595 vector __uint128 vec_vsubecuq (vector __uint128, vector __uint128,
18598 vector __int128 vec_vsubeuqm (vector __int128, vector __int128,
18600 vector __uint128 vec_vsubeuqm (vector __uint128, vector __uint128,
18603 vector __int128 vec_vsubcuq (vector __int128, vector __int128);
18604 vector __uint128 vec_vsubcuq (vector __uint128, vector __uint128);
18606 __int128 vec_vsubuqm (__int128, __int128);
18607 __uint128 vec_vsubuqm (__uint128, __uint128);
18609 vector __int128 __builtin_bcdadd (vector __int128, vector __int128, const int);
18610 int __builtin_bcdadd_lt (vector __int128, vector __int128, const int);
18611 int __builtin_bcdadd_eq (vector __int128, vector __int128, const int);
18612 int __builtin_bcdadd_gt (vector __int128, vector __int128, const int);
18613 int __builtin_bcdadd_ov (vector __int128, vector __int128, const int);
18614 vector __int128 __builtin_bcdsub (vector __int128, vector __int128, const int);
18615 int __builtin_bcdsub_lt (vector __int128, vector __int128, const int);
18616 int __builtin_bcdsub_eq (vector __int128, vector __int128, const int);
18617 int __builtin_bcdsub_gt (vector __int128, vector __int128, const int);
18618 int __builtin_bcdsub_ov (vector __int128, vector __int128, const int);
18621 @node PowerPC AltiVec Built-in Functions Available on ISA 3.0
18622 @subsubsection PowerPC AltiVec Built-in Functions Available on ISA 3.0
18624 The following additional built-in functions are also available for the
18625 PowerPC family of processors, starting with ISA 3.0
18626 (@option{-mcpu=power9}) or later:
18628 unsigned int scalar_extract_exp (double source);
18629 unsigned long long int scalar_extract_exp (__ieee128 source);
18631 unsigned long long int scalar_extract_sig (double source);
18632 unsigned __int128 scalar_extract_sig (__ieee128 source);
18634 double scalar_insert_exp (unsigned long long int significand,
18635 unsigned long long int exponent);
18636 double scalar_insert_exp (double significand, unsigned long long int exponent);
18638 ieee_128 scalar_insert_exp (unsigned __int128 significand,
18639 unsigned long long int exponent);
18640 ieee_128 scalar_insert_exp (ieee_128 significand, unsigned long long int exponent);
18642 int scalar_cmp_exp_gt (double arg1, double arg2);
18643 int scalar_cmp_exp_lt (double arg1, double arg2);
18644 int scalar_cmp_exp_eq (double arg1, double arg2);
18645 int scalar_cmp_exp_unordered (double arg1, double arg2);
18647 bool scalar_test_data_class (float source, const int condition);
18648 bool scalar_test_data_class (double source, const int condition);
18649 bool scalar_test_data_class (__ieee128 source, const int condition);
18651 bool scalar_test_neg (float source);
18652 bool scalar_test_neg (double source);
18653 bool scalar_test_neg (__ieee128 source);
18656 The @code{scalar_extract_exp} and @code{scalar_extract_sig}
18657 functions require a 64-bit environment supporting ISA 3.0 or later.
18658 The @code{scalar_extract_exp} and @code{scalar_extract_sig} built-in
18659 functions return the significand and the biased exponent value
18660 respectively of their @code{source} arguments.
18661 When supplied with a 64-bit @code{source} argument, the
18662 result returned by @code{scalar_extract_sig} has
18663 the @code{0x0010000000000000} bit set if the
18664 function's @code{source} argument is in normalized form.
18665 Otherwise, this bit is set to 0.
18666 When supplied with a 128-bit @code{source} argument, the
18667 @code{0x00010000000000000000000000000000} bit of the result is
18669 Note that the sign of the significand is not represented in the result
18670 returned from the @code{scalar_extract_sig} function. Use the
18671 @code{scalar_test_neg} function to test the sign of its @code{double}
18674 The @code{scalar_insert_exp}
18675 functions require a 64-bit environment supporting ISA 3.0 or later.
18676 When supplied with a 64-bit first argument, the
18677 @code{scalar_insert_exp} built-in function returns a double-precision
18678 floating point value that is constructed by assembling the values of its
18679 @code{significand} and @code{exponent} arguments. The sign of the
18680 result is copied from the most significant bit of the
18681 @code{significand} argument. The significand and exponent components
18682 of the result are composed of the least significant 11 bits of the
18683 @code{exponent} argument and the least significant 52 bits of the
18684 @code{significand} argument respectively.
18686 When supplied with a 128-bit first argument, the
18687 @code{scalar_insert_exp} built-in function returns a quad-precision
18688 ieee floating point value. The sign bit of the result is copied from
18689 the most significant bit of the @code{significand} argument.
18690 The significand and exponent components of the result are composed of
18691 the least significant 15 bits of the @code{exponent} argument and the
18692 least significant 112 bits of the @code{significand} argument respectively.
18694 The @code{scalar_cmp_exp_gt}, @code{scalar_cmp_exp_lt},
18695 @code{scalar_cmp_exp_eq}, and @code{scalar_cmp_exp_unordered} built-in
18696 functions return a non-zero value if @code{arg1} is greater than, less
18697 than, equal to, or not comparable to @code{arg2} respectively. The
18698 arguments are not comparable if one or the other equals NaN (not a
18701 The @code{scalar_test_data_class} built-in function returns 1
18702 if any of the condition tests enabled by the value of the
18703 @code{condition} variable are true, and 0 otherwise. The
18704 @code{condition} argument must be a compile-time constant integer with
18705 value not exceeding 127. The
18706 @code{condition} argument is encoded as a bitmask with each bit
18707 enabling the testing of a different condition, as characterized by the
18711 0x20 Test for +Infinity
18712 0x10 Test for -Infinity
18713 0x08 Test for +Zero
18714 0x04 Test for -Zero
18715 0x02 Test for +Denormal
18716 0x01 Test for -Denormal
18719 The @code{scalar_test_neg} built-in function returns 1 if its
18720 @code{source} argument holds a negative value, 0 otherwise.
18722 The following built-in functions are also available for the PowerPC family
18723 of processors, starting with ISA 3.0 or later
18724 (@option{-mcpu=power9}). These string functions are described
18725 separately in order to group the descriptions closer to the function
18728 int vec_all_nez (vector signed char, vector signed char);
18729 int vec_all_nez (vector unsigned char, vector unsigned char);
18730 int vec_all_nez (vector signed short, vector signed short);
18731 int vec_all_nez (vector unsigned short, vector unsigned short);
18732 int vec_all_nez (vector signed int, vector signed int);
18733 int vec_all_nez (vector unsigned int, vector unsigned int);
18735 int vec_any_eqz (vector signed char, vector signed char);
18736 int vec_any_eqz (vector unsigned char, vector unsigned char);
18737 int vec_any_eqz (vector signed short, vector signed short);
18738 int vec_any_eqz (vector unsigned short, vector unsigned short);
18739 int vec_any_eqz (vector signed int, vector signed int);
18740 int vec_any_eqz (vector unsigned int, vector unsigned int);
18742 vector bool char vec_cmpnez (vector signed char arg1, vector signed char arg2);
18743 vector bool char vec_cmpnez (vector unsigned char arg1, vector unsigned char arg2);
18744 vector bool short vec_cmpnez (vector signed short arg1, vector signed short arg2);
18745 vector bool short vec_cmpnez (vector unsigned short arg1, vector unsigned short arg2);
18746 vector bool int vec_cmpnez (vector signed int arg1, vector signed int arg2);
18747 vector bool int vec_cmpnez (vector unsigned int, vector unsigned int);
18749 vector signed char vec_cnttz (vector signed char);
18750 vector unsigned char vec_cnttz (vector unsigned char);
18751 vector signed short vec_cnttz (vector signed short);
18752 vector unsigned short vec_cnttz (vector unsigned short);
18753 vector signed int vec_cnttz (vector signed int);
18754 vector unsigned int vec_cnttz (vector unsigned int);
18755 vector signed long long vec_cnttz (vector signed long long);
18756 vector unsigned long long vec_cnttz (vector unsigned long long);
18758 signed int vec_cntlz_lsbb (vector signed char);
18759 signed int vec_cntlz_lsbb (vector unsigned char);
18761 signed int vec_cnttz_lsbb (vector signed char);
18762 signed int vec_cnttz_lsbb (vector unsigned char);
18764 unsigned int vec_first_match_index (vector signed char, vector signed char);
18765 unsigned int vec_first_match_index (vector unsigned char, vector unsigned char);
18766 unsigned int vec_first_match_index (vector signed int, vector signed int);
18767 unsigned int vec_first_match_index (vector unsigned int, vector unsigned int);
18768 unsigned int vec_first_match_index (vector signed short, vector signed short);
18769 unsigned int vec_first_match_index (vector unsigned short, vector unsigned short);
18770 unsigned int vec_first_match_or_eos_index (vector signed char, vector signed char);
18771 unsigned int vec_first_match_or_eos_index (vector unsigned char, vector unsigned char);
18772 unsigned int vec_first_match_or_eos_index (vector signed int, vector signed int);
18773 unsigned int vec_first_match_or_eos_index (vector unsigned int, vector unsigned int);
18774 unsigned int vec_first_match_or_eos_index (vector signed short, vector signed short);
18775 unsigned int vec_first_match_or_eos_index (vector unsigned short,
18776 vector unsigned short);
18777 unsigned int vec_first_mismatch_index (vector signed char, vector signed char);
18778 unsigned int vec_first_mismatch_index (vector unsigned char, vector unsigned char);
18779 unsigned int vec_first_mismatch_index (vector signed int, vector signed int);
18780 unsigned int vec_first_mismatch_index (vector unsigned int, vector unsigned int);
18781 unsigned int vec_first_mismatch_index (vector signed short, vector signed short);
18782 unsigned int vec_first_mismatch_index (vector unsigned short, vector unsigned short);
18783 unsigned int vec_first_mismatch_or_eos_index (vector signed char, vector signed char);
18784 unsigned int vec_first_mismatch_or_eos_index (vector unsigned char,
18785 vector unsigned char);
18786 unsigned int vec_first_mismatch_or_eos_index (vector signed int, vector signed int);
18787 unsigned int vec_first_mismatch_or_eos_index (vector unsigned int, vector unsigned int);
18788 unsigned int vec_first_mismatch_or_eos_index (vector signed short, vector signed short);
18789 unsigned int vec_first_mismatch_or_eos_index (vector unsigned short,
18790 vector unsigned short);
18792 vector unsigned short vec_pack_to_short_fp32 (vector float, vector float);
18794 vector signed char vec_xl_be (signed long long, signed char *);
18795 vector unsigned char vec_xl_be (signed long long, unsigned char *);
18796 vector signed int vec_xl_be (signed long long, signed int *);
18797 vector unsigned int vec_xl_be (signed long long, unsigned int *);
18798 vector signed __int128 vec_xl_be (signed long long, signed __int128 *);
18799 vector unsigned __int128 vec_xl_be (signed long long, unsigned __int128 *);
18800 vector signed long long vec_xl_be (signed long long, signed long long *);
18801 vector unsigned long long vec_xl_be (signed long long, unsigned long long *);
18802 vector signed short vec_xl_be (signed long long, signed short *);
18803 vector unsigned short vec_xl_be (signed long long, unsigned short *);
18804 vector double vec_xl_be (signed long long, double *);
18805 vector float vec_xl_be (signed long long, float *);
18807 vector signed char vec_xl_len (signed char *addr, size_t len);
18808 vector unsigned char vec_xl_len (unsigned char *addr, size_t len);
18809 vector signed int vec_xl_len (signed int *addr, size_t len);
18810 vector unsigned int vec_xl_len (unsigned int *addr, size_t len);
18811 vector signed __int128 vec_xl_len (signed __int128 *addr, size_t len);
18812 vector unsigned __int128 vec_xl_len (unsigned __int128 *addr, size_t len);
18813 vector signed long long vec_xl_len (signed long long *addr, size_t len);
18814 vector unsigned long long vec_xl_len (unsigned long long *addr, size_t len);
18815 vector signed short vec_xl_len (signed short *addr, size_t len);
18816 vector unsigned short vec_xl_len (unsigned short *addr, size_t len);
18817 vector double vec_xl_len (double *addr, size_t len);
18818 vector float vec_xl_len (float *addr, size_t len);
18820 vector unsigned char vec_xl_len_r (unsigned char *addr, size_t len);
18822 void vec_xst_len (vector signed char data, signed char *addr, size_t len);
18823 void vec_xst_len (vector unsigned char data, unsigned char *addr, size_t len);
18824 void vec_xst_len (vector signed int data, signed int *addr, size_t len);
18825 void vec_xst_len (vector unsigned int data, unsigned int *addr, size_t len);
18826 void vec_xst_len (vector unsigned __int128 data, unsigned __int128 *addr, size_t len);
18827 void vec_xst_len (vector signed long long data, signed long long *addr, size_t len);
18828 void vec_xst_len (vector unsigned long long data, unsigned long long *addr, size_t len);
18829 void vec_xst_len (vector signed short data, signed short *addr, size_t len);
18830 void vec_xst_len (vector unsigned short data, unsigned short *addr, size_t len);
18831 void vec_xst_len (vector signed __int128 data, signed __int128 *addr, size_t len);
18832 void vec_xst_len (vector double data, double *addr, size_t len);
18833 void vec_xst_len (vector float data, float *addr, size_t len);
18835 void vec_xst_len_r (vector unsigned char data, unsigned char *addr, size_t len);
18837 signed char vec_xlx (unsigned int index, vector signed char data);
18838 unsigned char vec_xlx (unsigned int index, vector unsigned char data);
18839 signed short vec_xlx (unsigned int index, vector signed short data);
18840 unsigned short vec_xlx (unsigned int index, vector unsigned short data);
18841 signed int vec_xlx (unsigned int index, vector signed int data);
18842 unsigned int vec_xlx (unsigned int index, vector unsigned int data);
18843 float vec_xlx (unsigned int index, vector float data);
18845 signed char vec_xrx (unsigned int index, vector signed char data);
18846 unsigned char vec_xrx (unsigned int index, vector unsigned char data);
18847 signed short vec_xrx (unsigned int index, vector signed short data);
18848 unsigned short vec_xrx (unsigned int index, vector unsigned short data);
18849 signed int vec_xrx (unsigned int index, vector signed int data);
18850 unsigned int vec_xrx (unsigned int index, vector unsigned int data);
18851 float vec_xrx (unsigned int index, vector float data);
18854 The @code{vec_all_nez}, @code{vec_any_eqz}, and @code{vec_cmpnez}
18855 perform pairwise comparisons between the elements at the same
18856 positions within their two vector arguments.
18857 The @code{vec_all_nez} function returns a
18858 non-zero value if and only if all pairwise comparisons are not
18859 equal and no element of either vector argument contains a zero.
18860 The @code{vec_any_eqz} function returns a
18861 non-zero value if and only if at least one pairwise comparison is equal
18862 or if at least one element of either vector argument contains a zero.
18863 The @code{vec_cmpnez} function returns a vector of the same type as
18864 its two arguments, within which each element consists of all ones to
18865 denote that either the corresponding elements of the incoming arguments are
18866 not equal or that at least one of the corresponding elements contains
18867 zero. Otherwise, the element of the returned vector contains all zeros.
18869 The @code{vec_cntlz_lsbb} function returns the count of the number of
18870 consecutive leading byte elements (starting from position 0 within the
18871 supplied vector argument) for which the least-significant bit
18872 equals zero. The @code{vec_cnttz_lsbb} function returns the count of
18873 the number of consecutive trailing byte elements (starting from
18874 position 15 and counting backwards within the supplied vector
18875 argument) for which the least-significant bit equals zero.
18877 The @code{vec_xl_len} and @code{vec_xst_len} functions require a
18878 64-bit environment supporting ISA 3.0 or later. The @code{vec_xl_len}
18879 function loads a variable length vector from memory. The
18880 @code{vec_xst_len} function stores a variable length vector to memory.
18881 With both the @code{vec_xl_len} and @code{vec_xst_len} functions, the
18882 @code{addr} argument represents the memory address to or from which
18883 data will be transferred, and the
18884 @code{len} argument represents the number of bytes to be
18885 transferred, as computed by the C expression @code{min((len & 0xff), 16)}.
18886 If this expression's value is not a multiple of the vector element's
18887 size, the behavior of this function is undefined.
18888 In the case that the underlying computer is configured to run in
18889 big-endian mode, the data transfer moves bytes 0 to @code{(len - 1)} of
18890 the corresponding vector. In little-endian mode, the data transfer
18891 moves bytes @code{(16 - len)} to @code{15} of the corresponding
18892 vector. For the load function, any bytes of the result vector that
18893 are not loaded from memory are set to zero.
18894 The value of the @code{addr} argument need not be aligned on a
18895 multiple of the vector's element size.
18897 The @code{vec_xlx} and @code{vec_xrx} functions extract the single
18898 element selected by the @code{index} argument from the vector
18899 represented by the @code{data} argument. The @code{index} argument
18900 always specifies a byte offset, regardless of the size of the vector
18901 element. With @code{vec_xlx}, @code{index} is the offset of the first
18902 byte of the element to be extracted. With @code{vec_xrx}, @code{index}
18903 represents the last byte of the element to be extracted, measured
18904 from the right end of the vector. In other words, the last byte of
18905 the element to be extracted is found at position @code{(15 - index)}.
18906 There is no requirement that @code{index} be a multiple of the vector
18907 element size. However, if the size of the vector element added to
18908 @code{index} is greater than 15, the content of the returned value is
18911 If the ISA 3.0 instruction set additions (@option{-mcpu=power9})
18915 vector unsigned long long vec_bperm (vector unsigned long long, vector unsigned char);
18917 vector bool char vec_cmpne (vector bool char, vector bool char);
18918 vector bool char vec_cmpne (vector signed char, vector signed char);
18919 vector bool char vec_cmpne (vector unsigned char, vector unsigned char);
18920 vector bool int vec_cmpne (vector bool int, vector bool int);
18921 vector bool int vec_cmpne (vector signed int, vector signed int);
18922 vector bool int vec_cmpne (vector unsigned int, vector unsigned int);
18923 vector bool long long vec_cmpne (vector bool long long, vector bool long long);
18924 vector bool long long vec_cmpne (vector signed long long, vector signed long long);
18925 vector bool long long vec_cmpne (vector unsigned long long, vector unsigned long long);
18926 vector bool short vec_cmpne (vector bool short, vector bool short);
18927 vector bool short vec_cmpne (vector signed short, vector signed short);
18928 vector bool short vec_cmpne (vector unsigned short, vector unsigned short);
18929 vector bool long long vec_cmpne (vector double, vector double);
18930 vector bool int vec_cmpne (vector float, vector float);
18932 vector float vec_extract_fp32_from_shorth (vector unsigned short);
18933 vector float vec_extract_fp32_from_shortl (vector unsigned short);
18935 vector long long vec_vctz (vector long long);
18936 vector unsigned long long vec_vctz (vector unsigned long long);
18937 vector int vec_vctz (vector int);
18938 vector unsigned int vec_vctz (vector int);
18939 vector short vec_vctz (vector short);
18940 vector unsigned short vec_vctz (vector unsigned short);
18941 vector signed char vec_vctz (vector signed char);
18942 vector unsigned char vec_vctz (vector unsigned char);
18944 vector signed char vec_vctzb (vector signed char);
18945 vector unsigned char vec_vctzb (vector unsigned char);
18947 vector long long vec_vctzd (vector long long);
18948 vector unsigned long long vec_vctzd (vector unsigned long long);
18950 vector short vec_vctzh (vector short);
18951 vector unsigned short vec_vctzh (vector unsigned short);
18953 vector int vec_vctzw (vector int);
18954 vector unsigned int vec_vctzw (vector int);
18956 vector unsigned long long vec_extract4b (vector unsigned char, const int);
18958 vector unsigned char vec_insert4b (vector signed int, vector unsigned char,
18960 vector unsigned char vec_insert4b (vector unsigned int, vector unsigned char,
18963 vector unsigned int vec_parity_lsbb (vector signed int);
18964 vector unsigned int vec_parity_lsbb (vector unsigned int);
18965 vector unsigned __int128 vec_parity_lsbb (vector signed __int128);
18966 vector unsigned __int128 vec_parity_lsbb (vector unsigned __int128);
18967 vector unsigned long long vec_parity_lsbb (vector signed long long);
18968 vector unsigned long long vec_parity_lsbb (vector unsigned long long);
18970 vector int vec_vprtyb (vector int);
18971 vector unsigned int vec_vprtyb (vector unsigned int);
18972 vector long long vec_vprtyb (vector long long);
18973 vector unsigned long long vec_vprtyb (vector unsigned long long);
18975 vector int vec_vprtybw (vector int);
18976 vector unsigned int vec_vprtybw (vector unsigned int);
18978 vector long long vec_vprtybd (vector long long);
18979 vector unsigned long long vec_vprtybd (vector unsigned long long);
18982 On 64-bit targets, if the ISA 3.0 additions (@option{-mcpu=power9})
18986 vector long vec_vprtyb (vector long);
18987 vector unsigned long vec_vprtyb (vector unsigned long);
18988 vector __int128 vec_vprtyb (vector __int128);
18989 vector __uint128 vec_vprtyb (vector __uint128);
18991 vector long vec_vprtybd (vector long);
18992 vector unsigned long vec_vprtybd (vector unsigned long);
18994 vector __int128 vec_vprtybq (vector __int128);
18995 vector __uint128 vec_vprtybd (vector __uint128);
18998 The following built-in vector functions are available for the PowerPC family
18999 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
19001 __vector unsigned char
19002 vec_slv (__vector unsigned char src, __vector unsigned char shift_distance);
19003 __vector unsigned char
19004 vec_srv (__vector unsigned char src, __vector unsigned char shift_distance);
19007 The @code{vec_slv} and @code{vec_srv} functions operate on
19008 all of the bytes of their @code{src} and @code{shift_distance}
19009 arguments in parallel. The behavior of the @code{vec_slv} is as if
19010 there existed a temporary array of 17 unsigned characters
19011 @code{slv_array} within which elements 0 through 15 are the same as
19012 the entries in the @code{src} array and element 16 equals 0. The
19013 result returned from the @code{vec_slv} function is a
19014 @code{__vector} of 16 unsigned characters within which element
19015 @code{i} is computed using the C expression
19016 @code{0xff & (*((unsigned short *)(slv_array + i)) << (0x07 &
19017 shift_distance[i]))},
19018 with this resulting value coerced to the @code{unsigned char} type.
19019 The behavior of the @code{vec_srv} is as if
19020 there existed a temporary array of 17 unsigned characters
19021 @code{srv_array} within which element 0 equals zero and
19022 elements 1 through 16 equal the elements 0 through 15 of
19023 the @code{src} array. The
19024 result returned from the @code{vec_srv} function is a
19025 @code{__vector} of 16 unsigned characters within which element
19026 @code{i} is computed using the C expression
19027 @code{0xff & (*((unsigned short *)(srv_array + i)) >>
19028 (0x07 & shift_distance[i]))},
19029 with this resulting value coerced to the @code{unsigned char} type.
19031 The following built-in functions are available for the PowerPC family
19032 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
19034 __vector unsigned char
19035 vec_absd (__vector unsigned char arg1, __vector unsigned char arg2);
19036 __vector unsigned short
19037 vec_absd (__vector unsigned short arg1, __vector unsigned short arg2);
19038 __vector unsigned int
19039 vec_absd (__vector unsigned int arg1, __vector unsigned int arg2);
19041 __vector unsigned char
19042 vec_absdb (__vector unsigned char arg1, __vector unsigned char arg2);
19043 __vector unsigned short
19044 vec_absdh (__vector unsigned short arg1, __vector unsigned short arg2);
19045 __vector unsigned int
19046 vec_absdw (__vector unsigned int arg1, __vector unsigned int arg2);
19049 The @code{vec_absd}, @code{vec_absdb}, @code{vec_absdh}, and
19050 @code{vec_absdw} built-in functions each computes the absolute
19051 differences of the pairs of vector elements supplied in its two vector
19052 arguments, placing the absolute differences into the corresponding
19053 elements of the vector result.
19055 The following built-in functions are available for the PowerPC family
19056 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
19058 __vector unsigned int vec_extract_exp (__vector float source);
19059 __vector unsigned long long int vec_extract_exp (__vector double source);
19061 __vector unsigned int vec_extract_sig (__vector float source);
19062 __vector unsigned long long int vec_extract_sig (__vector double source);
19064 __vector float vec_insert_exp (__vector unsigned int significands,
19065 __vector unsigned int exponents);
19066 __vector float vec_insert_exp (__vector unsigned float significands,
19067 __vector unsigned int exponents);
19068 __vector double vec_insert_exp (__vector unsigned long long int significands,
19069 __vector unsigned long long int exponents);
19070 __vector double vec_insert_exp (__vector unsigned double significands,
19071 __vector unsigned long long int exponents);
19073 __vector bool int vec_test_data_class (__vector float source, const int condition);
19074 __vector bool long long int vec_test_data_class (__vector double source,
19075 const int condition);
19078 The @code{vec_extract_sig} and @code{vec_extract_exp} built-in
19079 functions return vectors representing the significands and biased
19080 exponent values of their @code{source} arguments respectively.
19081 Within the result vector returned by @code{vec_extract_sig}, the
19082 @code{0x800000} bit of each vector element returned when the
19083 function's @code{source} argument is of type @code{float} is set to 1
19084 if the corresponding floating point value is in normalized form.
19085 Otherwise, this bit is set to 0. When the @code{source} argument is
19086 of type @code{double}, the @code{0x10000000000000} bit within each of
19087 the result vector's elements is set according to the same rules.
19088 Note that the sign of the significand is not represented in the result
19089 returned from the @code{vec_extract_sig} function. To extract the
19091 @code{vec_cpsgn} function, which returns a new vector within which all
19092 of the sign bits of its second argument vector are overwritten with the
19093 sign bits copied from the coresponding elements of its first argument
19094 vector, and all other (non-sign) bits of the second argument vector
19095 are copied unchanged into the result vector.
19097 The @code{vec_insert_exp} built-in functions return a vector of
19098 single- or double-precision floating
19099 point values constructed by assembling the values of their
19100 @code{significands} and @code{exponents} arguments into the
19101 corresponding elements of the returned vector.
19103 element of the result is copied from the most significant bit of the
19104 corresponding entry within the @code{significands} argument.
19105 Note that the relevant
19106 bits of the @code{significands} argument are the same, for both integer
19107 and floating point types.
19109 significand and exponent components of each element of the result are
19110 composed of the least significant bits of the corresponding
19111 @code{significands} element and the least significant bits of the
19112 corresponding @code{exponents} element.
19114 The @code{vec_test_data_class} built-in function returns a vector
19115 representing the results of testing the @code{source} vector for the
19116 condition selected by the @code{condition} argument. The
19117 @code{condition} argument must be a compile-time constant integer with
19118 value not exceeding 127. The
19119 @code{condition} argument is encoded as a bitmask with each bit
19120 enabling the testing of a different condition, as characterized by the
19124 0x20 Test for +Infinity
19125 0x10 Test for -Infinity
19126 0x08 Test for +Zero
19127 0x04 Test for -Zero
19128 0x02 Test for +Denormal
19129 0x01 Test for -Denormal
19132 If any of the enabled test conditions is true, the corresponding entry
19133 in the result vector is -1. Otherwise (all of the enabled test
19134 conditions are false), the corresponding entry of the result vector is 0.
19136 The following built-in functions are available for the PowerPC family
19137 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
19139 vector unsigned int vec_rlmi (vector unsigned int, vector unsigned int,
19140 vector unsigned int);
19141 vector unsigned long long vec_rlmi (vector unsigned long long,
19142 vector unsigned long long,
19143 vector unsigned long long);
19144 vector unsigned int vec_rlnm (vector unsigned int, vector unsigned int,
19145 vector unsigned int);
19146 vector unsigned long long vec_rlnm (vector unsigned long long,
19147 vector unsigned long long,
19148 vector unsigned long long);
19149 vector unsigned int vec_vrlnm (vector unsigned int, vector unsigned int);
19150 vector unsigned long long vec_vrlnm (vector unsigned long long,
19151 vector unsigned long long);
19154 The result of @code{vec_rlmi} is obtained by rotating each element of
19155 the first argument vector left and inserting it under mask into the
19156 second argument vector. The third argument vector contains the mask
19157 beginning in bits 11:15, the mask end in bits 19:23, and the shift
19158 count in bits 27:31, of each element.
19160 The result of @code{vec_rlnm} is obtained by rotating each element of
19161 the first argument vector left and ANDing it with a mask specified by
19162 the second and third argument vectors. The second argument vector
19163 contains the shift count for each element in the low-order byte. The
19164 third argument vector contains the mask end for each element in the
19165 low-order byte, with the mask begin in the next higher byte.
19167 The result of @code{vec_vrlnm} is obtained by rotating each element
19168 of the first argument vector left and ANDing it with a mask. The
19169 second argument vector contains the mask beginning in bits 11:15,
19170 the mask end in bits 19:23, and the shift count in bits 27:31,
19173 If the ISA 3.0 instruction set additions (@option{-mcpu=power9})
19176 vector signed bool char vec_revb (vector signed char);
19177 vector signed char vec_revb (vector signed char);
19178 vector unsigned char vec_revb (vector unsigned char);
19179 vector bool short vec_revb (vector bool short);
19180 vector short vec_revb (vector short);
19181 vector unsigned short vec_revb (vector unsigned short);
19182 vector bool int vec_revb (vector bool int);
19183 vector int vec_revb (vector int);
19184 vector unsigned int vec_revb (vector unsigned int);
19185 vector float vec_revb (vector float);
19186 vector bool long long vec_revb (vector bool long long);
19187 vector long long vec_revb (vector long long);
19188 vector unsigned long long vec_revb (vector unsigned long long);
19189 vector double vec_revb (vector double);
19192 On 64-bit targets, if the ISA 3.0 additions (@option{-mcpu=power9})
19195 vector long vec_revb (vector long);
19196 vector unsigned long vec_revb (vector unsigned long);
19197 vector __int128 vec_revb (vector __int128);
19198 vector __uint128 vec_revb (vector __uint128);
19201 The @code{vec_revb} built-in function reverses the bytes on an element
19202 by element basis. A vector of @code{vector unsigned char} or
19203 @code{vector signed char} reverses the bytes in the whole word.
19205 If the cryptographic instructions are enabled (@option{-mcrypto} or
19206 @option{-mcpu=power8}), the following builtins are enabled.
19209 vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long);
19211 vector unsigned long long __builtin_crypto_vcipher (vector unsigned long long,
19212 vector unsigned long long);
19214 vector unsigned long long __builtin_crypto_vcipherlast
19215 (vector unsigned long long,
19216 vector unsigned long long);
19218 vector unsigned long long __builtin_crypto_vncipher (vector unsigned long long,
19219 vector unsigned long long);
19221 vector unsigned long long __builtin_crypto_vncipherlast (vector unsigned long long,
19222 vector unsigned long long);
19224 vector unsigned char __builtin_crypto_vpermxor (vector unsigned char,
19225 vector unsigned char,
19226 vector unsigned char);
19228 vector unsigned short __builtin_crypto_vpermxor (vector unsigned short,
19229 vector unsigned short,
19230 vector unsigned short);
19232 vector unsigned int __builtin_crypto_vpermxor (vector unsigned int,
19233 vector unsigned int,
19234 vector unsigned int);
19236 vector unsigned long long __builtin_crypto_vpermxor (vector unsigned long long,
19237 vector unsigned long long,
19238 vector unsigned long long);
19240 vector unsigned char __builtin_crypto_vpmsumb (vector unsigned char,
19241 vector unsigned char);
19243 vector unsigned short __builtin_crypto_vpmsumb (vector unsigned short,
19244 vector unsigned short);
19246 vector unsigned int __builtin_crypto_vpmsumb (vector unsigned int,
19247 vector unsigned int);
19249 vector unsigned long long __builtin_crypto_vpmsumb (vector unsigned long long,
19250 vector unsigned long long);
19252 vector unsigned long long __builtin_crypto_vshasigmad (vector unsigned long long,
19255 vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int, int, int);
19258 The second argument to @var{__builtin_crypto_vshasigmad} and
19259 @var{__builtin_crypto_vshasigmaw} must be a constant
19260 integer that is 0 or 1. The third argument to these built-in functions
19261 must be a constant integer in the range of 0 to 15.
19263 If the ISA 3.0 instruction set additions
19264 are enabled (@option{-mcpu=power9}), the following additional
19265 functions are available for both 32-bit and 64-bit targets.
19267 vector short vec_xl (int, vector short *);
19268 vector short vec_xl (int, short *);
19269 vector unsigned short vec_xl (int, vector unsigned short *);
19270 vector unsigned short vec_xl (int, unsigned short *);
19271 vector char vec_xl (int, vector char *);
19272 vector char vec_xl (int, char *);
19273 vector unsigned char vec_xl (int, vector unsigned char *);
19274 vector unsigned char vec_xl (int, unsigned char *);
19276 void vec_xst (vector short, int, vector short *);
19277 void vec_xst (vector short, int, short *);
19278 void vec_xst (vector unsigned short, int, vector unsigned short *);
19279 void vec_xst (vector unsigned short, int, unsigned short *);
19280 void vec_xst (vector char, int, vector char *);
19281 void vec_xst (vector char, int, char *);
19282 void vec_xst (vector unsigned char, int, vector unsigned char *);
19283 void vec_xst (vector unsigned char, int, unsigned char *);
19285 @node PowerPC Hardware Transactional Memory Built-in Functions
19286 @subsection PowerPC Hardware Transactional Memory Built-in Functions
19287 GCC provides two interfaces for accessing the Hardware Transactional
19288 Memory (HTM) instructions available on some of the PowerPC family
19289 of processors (eg, POWER8). The two interfaces come in a low level
19290 interface, consisting of built-in functions specific to PowerPC and a
19291 higher level interface consisting of inline functions that are common
19292 between PowerPC and S/390.
19294 @subsubsection PowerPC HTM Low Level Built-in Functions
19296 The following low level built-in functions are available with
19297 @option{-mhtm} or @option{-mcpu=CPU} where CPU is `power8' or later.
19298 They all generate the machine instruction that is part of the name.
19300 The HTM builtins (with the exception of @code{__builtin_tbegin}) return
19301 the full 4-bit condition register value set by their associated hardware
19302 instruction. The header file @code{htmintrin.h} defines some macros that can
19303 be used to decipher the return value. The @code{__builtin_tbegin} builtin
19304 returns a simple true or false value depending on whether a transaction was
19305 successfully started or not. The arguments of the builtins match exactly the
19306 type and order of the associated hardware instruction's operands, except for
19307 the @code{__builtin_tcheck} builtin, which does not take any input arguments.
19308 Refer to the ISA manual for a description of each instruction's operands.
19311 unsigned int __builtin_tbegin (unsigned int)
19312 unsigned int __builtin_tend (unsigned int)
19314 unsigned int __builtin_tabort (unsigned int)
19315 unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int)
19316 unsigned int __builtin_tabortdci (unsigned int, unsigned int, int)
19317 unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int)
19318 unsigned int __builtin_tabortwci (unsigned int, unsigned int, int)
19320 unsigned int __builtin_tcheck (void)
19321 unsigned int __builtin_treclaim (unsigned int)
19322 unsigned int __builtin_trechkpt (void)
19323 unsigned int __builtin_tsr (unsigned int)
19326 In addition to the above HTM built-ins, we have added built-ins for
19327 some common extended mnemonics of the HTM instructions:
19330 unsigned int __builtin_tendall (void)
19331 unsigned int __builtin_tresume (void)
19332 unsigned int __builtin_tsuspend (void)
19335 Note that the semantics of the above HTM builtins are required to mimic
19336 the locking semantics used for critical sections. Builtins that are used
19337 to create a new transaction or restart a suspended transaction must have
19338 lock acquisition like semantics while those builtins that end or suspend a
19339 transaction must have lock release like semantics. Specifically, this must
19340 mimic lock semantics as specified by C++11, for example: Lock acquisition is
19341 as-if an execution of __atomic_exchange_n(&globallock,1,__ATOMIC_ACQUIRE)
19342 that returns 0, and lock release is as-if an execution of
19343 __atomic_store(&globallock,0,__ATOMIC_RELEASE), with globallock being an
19344 implicit implementation-defined lock used for all transactions. The HTM
19345 instructions associated with with the builtins inherently provide the
19346 correct acquisition and release hardware barriers required. However,
19347 the compiler must also be prohibited from moving loads and stores across
19348 the builtins in a way that would violate their semantics. This has been
19349 accomplished by adding memory barriers to the associated HTM instructions
19350 (which is a conservative approach to provide acquire and release semantics).
19351 Earlier versions of the compiler did not treat the HTM instructions as
19352 memory barriers. A @code{__TM_FENCE__} macro has been added, which can
19353 be used to determine whether the current compiler treats HTM instructions
19354 as memory barriers or not. This allows the user to explicitly add memory
19355 barriers to their code when using an older version of the compiler.
19357 The following set of built-in functions are available to gain access
19358 to the HTM specific special purpose registers.
19361 unsigned long __builtin_get_texasr (void)
19362 unsigned long __builtin_get_texasru (void)
19363 unsigned long __builtin_get_tfhar (void)
19364 unsigned long __builtin_get_tfiar (void)
19366 void __builtin_set_texasr (unsigned long);
19367 void __builtin_set_texasru (unsigned long);
19368 void __builtin_set_tfhar (unsigned long);
19369 void __builtin_set_tfiar (unsigned long);
19372 Example usage of these low level built-in functions may look like:
19375 #include <htmintrin.h>
19377 int num_retries = 10;
19381 if (__builtin_tbegin (0))
19383 /* Transaction State Initiated. */
19384 if (is_locked (lock))
19385 __builtin_tabort (0);
19386 ... transaction code...
19387 __builtin_tend (0);
19392 /* Transaction State Failed. Use locks if the transaction
19393 failure is "persistent" or we've tried too many times. */
19394 if (num_retries-- <= 0
19395 || _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))
19397 acquire_lock (lock);
19398 ... non transactional fallback path...
19399 release_lock (lock);
19406 One final built-in function has been added that returns the value of
19407 the 2-bit Transaction State field of the Machine Status Register (MSR)
19408 as stored in @code{CR0}.
19411 unsigned long __builtin_ttest (void)
19414 This built-in can be used to determine the current transaction state
19415 using the following code example:
19418 #include <htmintrin.h>
19420 unsigned char tx_state = _HTM_STATE (__builtin_ttest ());
19422 if (tx_state == _HTM_TRANSACTIONAL)
19424 /* Code to use in transactional state. */
19426 else if (tx_state == _HTM_NONTRANSACTIONAL)
19428 /* Code to use in non-transactional state. */
19430 else if (tx_state == _HTM_SUSPENDED)
19432 /* Code to use in transaction suspended state. */
19436 @subsubsection PowerPC HTM High Level Inline Functions
19438 The following high level HTM interface is made available by including
19439 @code{<htmxlintrin.h>} and using @option{-mhtm} or @option{-mcpu=CPU}
19440 where CPU is `power8' or later. This interface is common between PowerPC
19441 and S/390, allowing users to write one HTM source implementation that
19442 can be compiled and executed on either system.
19445 long __TM_simple_begin (void)
19446 long __TM_begin (void* const TM_buff)
19447 long __TM_end (void)
19448 void __TM_abort (void)
19449 void __TM_named_abort (unsigned char const code)
19450 void __TM_resume (void)
19451 void __TM_suspend (void)
19453 long __TM_is_user_abort (void* const TM_buff)
19454 long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code)
19455 long __TM_is_illegal (void* const TM_buff)
19456 long __TM_is_footprint_exceeded (void* const TM_buff)
19457 long __TM_nesting_depth (void* const TM_buff)
19458 long __TM_is_nested_too_deep(void* const TM_buff)
19459 long __TM_is_conflict(void* const TM_buff)
19460 long __TM_is_failure_persistent(void* const TM_buff)
19461 long __TM_failure_address(void* const TM_buff)
19462 long long __TM_failure_code(void* const TM_buff)
19465 Using these common set of HTM inline functions, we can create
19466 a more portable version of the HTM example in the previous
19467 section that will work on either PowerPC or S/390:
19470 #include <htmxlintrin.h>
19472 int num_retries = 10;
19473 TM_buff_type TM_buff;
19477 if (__TM_begin (TM_buff) == _HTM_TBEGIN_STARTED)
19479 /* Transaction State Initiated. */
19480 if (is_locked (lock))
19482 ... transaction code...
19488 /* Transaction State Failed. Use locks if the transaction
19489 failure is "persistent" or we've tried too many times. */
19490 if (num_retries-- <= 0
19491 || __TM_is_failure_persistent (TM_buff))
19493 acquire_lock (lock);
19494 ... non transactional fallback path...
19495 release_lock (lock);
19502 @node PowerPC Atomic Memory Operation Functions
19503 @subsection PowerPC Atomic Memory Operation Functions
19504 ISA 3.0 of the PowerPC added new atomic memory operation (amo)
19505 instructions. GCC provides support for these instructions in 64-bit
19506 environments. All of the functions are declared in the include file
19509 The functions supported are:
19514 uint32_t amo_lwat_add (uint32_t *, uint32_t);
19515 uint32_t amo_lwat_xor (uint32_t *, uint32_t);
19516 uint32_t amo_lwat_ior (uint32_t *, uint32_t);
19517 uint32_t amo_lwat_and (uint32_t *, uint32_t);
19518 uint32_t amo_lwat_umax (uint32_t *, uint32_t);
19519 uint32_t amo_lwat_umin (uint32_t *, uint32_t);
19520 uint32_t amo_lwat_swap (uint32_t *, uint32_t);
19522 int32_t amo_lwat_sadd (int32_t *, int32_t);
19523 int32_t amo_lwat_smax (int32_t *, int32_t);
19524 int32_t amo_lwat_smin (int32_t *, int32_t);
19525 int32_t amo_lwat_sswap (int32_t *, int32_t);
19527 uint64_t amo_ldat_add (uint64_t *, uint64_t);
19528 uint64_t amo_ldat_xor (uint64_t *, uint64_t);
19529 uint64_t amo_ldat_ior (uint64_t *, uint64_t);
19530 uint64_t amo_ldat_and (uint64_t *, uint64_t);
19531 uint64_t amo_ldat_umax (uint64_t *, uint64_t);
19532 uint64_t amo_ldat_umin (uint64_t *, uint64_t);
19533 uint64_t amo_ldat_swap (uint64_t *, uint64_t);
19535 int64_t amo_ldat_sadd (int64_t *, int64_t);
19536 int64_t amo_ldat_smax (int64_t *, int64_t);
19537 int64_t amo_ldat_smin (int64_t *, int64_t);
19538 int64_t amo_ldat_sswap (int64_t *, int64_t);
19540 void amo_stwat_add (uint32_t *, uint32_t);
19541 void amo_stwat_xor (uint32_t *, uint32_t);
19542 void amo_stwat_ior (uint32_t *, uint32_t);
19543 void amo_stwat_and (uint32_t *, uint32_t);
19544 void amo_stwat_umax (uint32_t *, uint32_t);
19545 void amo_stwat_umin (uint32_t *, uint32_t);
19547 void amo_stwat_sadd (int32_t *, int32_t);
19548 void amo_stwat_smax (int32_t *, int32_t);
19549 void amo_stwat_smin (int32_t *, int32_t);
19551 void amo_stdat_add (uint64_t *, uint64_t);
19552 void amo_stdat_xor (uint64_t *, uint64_t);
19553 void amo_stdat_ior (uint64_t *, uint64_t);
19554 void amo_stdat_and (uint64_t *, uint64_t);
19555 void amo_stdat_umax (uint64_t *, uint64_t);
19556 void amo_stdat_umin (uint64_t *, uint64_t);
19558 void amo_stdat_sadd (int64_t *, int64_t);
19559 void amo_stdat_smax (int64_t *, int64_t);
19560 void amo_stdat_smin (int64_t *, int64_t);
19563 @node RX Built-in Functions
19564 @subsection RX Built-in Functions
19565 GCC supports some of the RX instructions which cannot be expressed in
19566 the C programming language via the use of built-in functions. The
19567 following functions are supported:
19569 @deftypefn {Built-in Function} void __builtin_rx_brk (void)
19570 Generates the @code{brk} machine instruction.
19573 @deftypefn {Built-in Function} void __builtin_rx_clrpsw (int)
19574 Generates the @code{clrpsw} machine instruction to clear the specified
19575 bit in the processor status word.
19578 @deftypefn {Built-in Function} void __builtin_rx_int (int)
19579 Generates the @code{int} machine instruction to generate an interrupt
19580 with the specified value.
19583 @deftypefn {Built-in Function} void __builtin_rx_machi (int, int)
19584 Generates the @code{machi} machine instruction to add the result of
19585 multiplying the top 16 bits of the two arguments into the
19589 @deftypefn {Built-in Function} void __builtin_rx_maclo (int, int)
19590 Generates the @code{maclo} machine instruction to add the result of
19591 multiplying the bottom 16 bits of the two arguments into the
19595 @deftypefn {Built-in Function} void __builtin_rx_mulhi (int, int)
19596 Generates the @code{mulhi} machine instruction to place the result of
19597 multiplying the top 16 bits of the two arguments into the
19601 @deftypefn {Built-in Function} void __builtin_rx_mullo (int, int)
19602 Generates the @code{mullo} machine instruction to place the result of
19603 multiplying the bottom 16 bits of the two arguments into the
19607 @deftypefn {Built-in Function} int __builtin_rx_mvfachi (void)
19608 Generates the @code{mvfachi} machine instruction to read the top
19609 32 bits of the accumulator.
19612 @deftypefn {Built-in Function} int __builtin_rx_mvfacmi (void)
19613 Generates the @code{mvfacmi} machine instruction to read the middle
19614 32 bits of the accumulator.
19617 @deftypefn {Built-in Function} int __builtin_rx_mvfc (int)
19618 Generates the @code{mvfc} machine instruction which reads the control
19619 register specified in its argument and returns its value.
19622 @deftypefn {Built-in Function} void __builtin_rx_mvtachi (int)
19623 Generates the @code{mvtachi} machine instruction to set the top
19624 32 bits of the accumulator.
19627 @deftypefn {Built-in Function} void __builtin_rx_mvtaclo (int)
19628 Generates the @code{mvtaclo} machine instruction to set the bottom
19629 32 bits of the accumulator.
19632 @deftypefn {Built-in Function} void __builtin_rx_mvtc (int reg, int val)
19633 Generates the @code{mvtc} machine instruction which sets control
19634 register number @code{reg} to @code{val}.
19637 @deftypefn {Built-in Function} void __builtin_rx_mvtipl (int)
19638 Generates the @code{mvtipl} machine instruction set the interrupt
19642 @deftypefn {Built-in Function} void __builtin_rx_racw (int)
19643 Generates the @code{racw} machine instruction to round the accumulator
19644 according to the specified mode.
19647 @deftypefn {Built-in Function} int __builtin_rx_revw (int)
19648 Generates the @code{revw} machine instruction which swaps the bytes in
19649 the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
19650 and also bits 16--23 occupy bits 24--31 and vice versa.
19653 @deftypefn {Built-in Function} void __builtin_rx_rmpa (void)
19654 Generates the @code{rmpa} machine instruction which initiates a
19655 repeated multiply and accumulate sequence.
19658 @deftypefn {Built-in Function} void __builtin_rx_round (float)
19659 Generates the @code{round} machine instruction which returns the
19660 floating-point argument rounded according to the current rounding mode
19661 set in the floating-point status word register.
19664 @deftypefn {Built-in Function} int __builtin_rx_sat (int)
19665 Generates the @code{sat} machine instruction which returns the
19666 saturated value of the argument.
19669 @deftypefn {Built-in Function} void __builtin_rx_setpsw (int)
19670 Generates the @code{setpsw} machine instruction to set the specified
19671 bit in the processor status word.
19674 @deftypefn {Built-in Function} void __builtin_rx_wait (void)
19675 Generates the @code{wait} machine instruction.
19678 @node S/390 System z Built-in Functions
19679 @subsection S/390 System z Built-in Functions
19680 @deftypefn {Built-in Function} int __builtin_tbegin (void*)
19681 Generates the @code{tbegin} machine instruction starting a
19682 non-constrained hardware transaction. If the parameter is non-NULL the
19683 memory area is used to store the transaction diagnostic buffer and
19684 will be passed as first operand to @code{tbegin}. This buffer can be
19685 defined using the @code{struct __htm_tdb} C struct defined in
19686 @code{htmintrin.h} and must reside on a double-word boundary. The
19687 second tbegin operand is set to @code{0xff0c}. This enables
19688 save/restore of all GPRs and disables aborts for FPR and AR
19689 manipulations inside the transaction body. The condition code set by
19690 the tbegin instruction is returned as integer value. The tbegin
19691 instruction by definition overwrites the content of all FPRs. The
19692 compiler will generate code which saves and restores the FPRs. For
19693 soft-float code it is recommended to used the @code{*_nofloat}
19694 variant. In order to prevent a TDB from being written it is required
19695 to pass a constant zero value as parameter. Passing a zero value
19696 through a variable is not sufficient. Although modifications of
19697 access registers inside the transaction will not trigger an
19698 transaction abort it is not supported to actually modify them. Access
19699 registers do not get saved when entering a transaction. They will have
19700 undefined state when reaching the abort code.
19703 Macros for the possible return codes of tbegin are defined in the
19704 @code{htmintrin.h} header file:
19707 @item _HTM_TBEGIN_STARTED
19708 @code{tbegin} has been executed as part of normal processing. The
19709 transaction body is supposed to be executed.
19710 @item _HTM_TBEGIN_INDETERMINATE
19711 The transaction was aborted due to an indeterminate condition which
19712 might be persistent.
19713 @item _HTM_TBEGIN_TRANSIENT
19714 The transaction aborted due to a transient failure. The transaction
19715 should be re-executed in that case.
19716 @item _HTM_TBEGIN_PERSISTENT
19717 The transaction aborted due to a persistent failure. Re-execution
19718 under same circumstances will not be productive.
19721 @defmac _HTM_FIRST_USER_ABORT_CODE
19722 The @code{_HTM_FIRST_USER_ABORT_CODE} defined in @code{htmintrin.h}
19723 specifies the first abort code which can be used for
19724 @code{__builtin_tabort}. Values below this threshold are reserved for
19728 @deftp {Data type} {struct __htm_tdb}
19729 The @code{struct __htm_tdb} defined in @code{htmintrin.h} describes
19730 the structure of the transaction diagnostic block as specified in the
19731 Principles of Operation manual chapter 5-91.
19734 @deftypefn {Built-in Function} int __builtin_tbegin_nofloat (void*)
19735 Same as @code{__builtin_tbegin} but without FPR saves and restores.
19736 Using this variant in code making use of FPRs will leave the FPRs in
19737 undefined state when entering the transaction abort handler code.
19740 @deftypefn {Built-in Function} int __builtin_tbegin_retry (void*, int)
19741 In addition to @code{__builtin_tbegin} a loop for transient failures
19742 is generated. If tbegin returns a condition code of 2 the transaction
19743 will be retried as often as specified in the second argument. The
19744 perform processor assist instruction is used to tell the CPU about the
19745 number of fails so far.
19748 @deftypefn {Built-in Function} int __builtin_tbegin_retry_nofloat (void*, int)
19749 Same as @code{__builtin_tbegin_retry} but without FPR saves and
19750 restores. Using this variant in code making use of FPRs will leave
19751 the FPRs in undefined state when entering the transaction abort
19755 @deftypefn {Built-in Function} void __builtin_tbeginc (void)
19756 Generates the @code{tbeginc} machine instruction starting a constrained
19757 hardware transaction. The second operand is set to @code{0xff08}.
19760 @deftypefn {Built-in Function} int __builtin_tend (void)
19761 Generates the @code{tend} machine instruction finishing a transaction
19762 and making the changes visible to other threads. The condition code
19763 generated by tend is returned as integer value.
19766 @deftypefn {Built-in Function} void __builtin_tabort (int)
19767 Generates the @code{tabort} machine instruction with the specified
19768 abort code. Abort codes from 0 through 255 are reserved and will
19769 result in an error message.
19772 @deftypefn {Built-in Function} void __builtin_tx_assist (int)
19773 Generates the @code{ppa rX,rY,1} machine instruction. Where the
19774 integer parameter is loaded into rX and a value of zero is loaded into
19775 rY. The integer parameter specifies the number of times the
19776 transaction repeatedly aborted.
19779 @deftypefn {Built-in Function} int __builtin_tx_nesting_depth (void)
19780 Generates the @code{etnd} machine instruction. The current nesting
19781 depth is returned as integer value. For a nesting depth of 0 the code
19782 is not executed as part of an transaction.
19785 @deftypefn {Built-in Function} void __builtin_non_tx_store (uint64_t *, uint64_t)
19787 Generates the @code{ntstg} machine instruction. The second argument
19788 is written to the first arguments location. The store operation will
19789 not be rolled-back in case of an transaction abort.
19792 @node SH Built-in Functions
19793 @subsection SH Built-in Functions
19794 The following built-in functions are supported on the SH1, SH2, SH3 and SH4
19795 families of processors:
19797 @deftypefn {Built-in Function} {void} __builtin_set_thread_pointer (void *@var{ptr})
19798 Sets the @samp{GBR} register to the specified value @var{ptr}. This is usually
19799 used by system code that manages threads and execution contexts. The compiler
19800 normally does not generate code that modifies the contents of @samp{GBR} and
19801 thus the value is preserved across function calls. Changing the @samp{GBR}
19802 value in user code must be done with caution, since the compiler might use
19803 @samp{GBR} in order to access thread local variables.
19807 @deftypefn {Built-in Function} {void *} __builtin_thread_pointer (void)
19808 Returns the value that is currently set in the @samp{GBR} register.
19809 Memory loads and stores that use the thread pointer as a base address are
19810 turned into @samp{GBR} based displacement loads and stores, if possible.
19818 int get_tcb_value (void)
19820 // Generate @samp{mov.l @@(8,gbr),r0} instruction
19821 return ((my_tcb*)__builtin_thread_pointer ())->c;
19827 @deftypefn {Built-in Function} {unsigned int} __builtin_sh_get_fpscr (void)
19828 Returns the value that is currently set in the @samp{FPSCR} register.
19831 @deftypefn {Built-in Function} {void} __builtin_sh_set_fpscr (unsigned int @var{val})
19832 Sets the @samp{FPSCR} register to the specified value @var{val}, while
19833 preserving the current values of the FR, SZ and PR bits.
19836 @node SPARC VIS Built-in Functions
19837 @subsection SPARC VIS Built-in Functions
19839 GCC supports SIMD operations on the SPARC using both the generic vector
19840 extensions (@pxref{Vector Extensions}) as well as built-in functions for
19841 the SPARC Visual Instruction Set (VIS). When you use the @option{-mvis}
19842 switch, the VIS extension is exposed as the following built-in functions:
19845 typedef int v1si __attribute__ ((vector_size (4)));
19846 typedef int v2si __attribute__ ((vector_size (8)));
19847 typedef short v4hi __attribute__ ((vector_size (8)));
19848 typedef short v2hi __attribute__ ((vector_size (4)));
19849 typedef unsigned char v8qi __attribute__ ((vector_size (8)));
19850 typedef unsigned char v4qi __attribute__ ((vector_size (4)));
19852 void __builtin_vis_write_gsr (int64_t);
19853 int64_t __builtin_vis_read_gsr (void);
19855 void * __builtin_vis_alignaddr (void *, long);
19856 void * __builtin_vis_alignaddrl (void *, long);
19857 int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
19858 v2si __builtin_vis_faligndatav2si (v2si, v2si);
19859 v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
19860 v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
19862 v4hi __builtin_vis_fexpand (v4qi);
19864 v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
19865 v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
19866 v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
19867 v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
19868 v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
19869 v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
19870 v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
19872 v4qi __builtin_vis_fpack16 (v4hi);
19873 v8qi __builtin_vis_fpack32 (v2si, v8qi);
19874 v2hi __builtin_vis_fpackfix (v2si);
19875 v8qi __builtin_vis_fpmerge (v4qi, v4qi);
19877 int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
19879 long __builtin_vis_edge8 (void *, void *);
19880 long __builtin_vis_edge8l (void *, void *);
19881 long __builtin_vis_edge16 (void *, void *);
19882 long __builtin_vis_edge16l (void *, void *);
19883 long __builtin_vis_edge32 (void *, void *);
19884 long __builtin_vis_edge32l (void *, void *);
19886 long __builtin_vis_fcmple16 (v4hi, v4hi);
19887 long __builtin_vis_fcmple32 (v2si, v2si);
19888 long __builtin_vis_fcmpne16 (v4hi, v4hi);
19889 long __builtin_vis_fcmpne32 (v2si, v2si);
19890 long __builtin_vis_fcmpgt16 (v4hi, v4hi);
19891 long __builtin_vis_fcmpgt32 (v2si, v2si);
19892 long __builtin_vis_fcmpeq16 (v4hi, v4hi);
19893 long __builtin_vis_fcmpeq32 (v2si, v2si);
19895 v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
19896 v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
19897 v2si __builtin_vis_fpadd32 (v2si, v2si);
19898 v1si __builtin_vis_fpadd32s (v1si, v1si);
19899 v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
19900 v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
19901 v2si __builtin_vis_fpsub32 (v2si, v2si);
19902 v1si __builtin_vis_fpsub32s (v1si, v1si);
19904 long __builtin_vis_array8 (long, long);
19905 long __builtin_vis_array16 (long, long);
19906 long __builtin_vis_array32 (long, long);
19909 When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
19910 functions also become available:
19913 long __builtin_vis_bmask (long, long);
19914 int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
19915 v2si __builtin_vis_bshufflev2si (v2si, v2si);
19916 v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
19917 v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
19919 long __builtin_vis_edge8n (void *, void *);
19920 long __builtin_vis_edge8ln (void *, void *);
19921 long __builtin_vis_edge16n (void *, void *);
19922 long __builtin_vis_edge16ln (void *, void *);
19923 long __builtin_vis_edge32n (void *, void *);
19924 long __builtin_vis_edge32ln (void *, void *);
19927 When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
19928 functions also become available:
19931 void __builtin_vis_cmask8 (long);
19932 void __builtin_vis_cmask16 (long);
19933 void __builtin_vis_cmask32 (long);
19935 v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
19937 v4hi __builtin_vis_fsll16 (v4hi, v4hi);
19938 v4hi __builtin_vis_fslas16 (v4hi, v4hi);
19939 v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
19940 v4hi __builtin_vis_fsra16 (v4hi, v4hi);
19941 v2si __builtin_vis_fsll16 (v2si, v2si);
19942 v2si __builtin_vis_fslas16 (v2si, v2si);
19943 v2si __builtin_vis_fsrl16 (v2si, v2si);
19944 v2si __builtin_vis_fsra16 (v2si, v2si);
19946 long __builtin_vis_pdistn (v8qi, v8qi);
19948 v4hi __builtin_vis_fmean16 (v4hi, v4hi);
19950 int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
19951 int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
19953 v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
19954 v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
19955 v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
19956 v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
19957 v2si __builtin_vis_fpadds32 (v2si, v2si);
19958 v1si __builtin_vis_fpadds32s (v1si, v1si);
19959 v2si __builtin_vis_fpsubs32 (v2si, v2si);
19960 v1si __builtin_vis_fpsubs32s (v1si, v1si);
19962 long __builtin_vis_fucmple8 (v8qi, v8qi);
19963 long __builtin_vis_fucmpne8 (v8qi, v8qi);
19964 long __builtin_vis_fucmpgt8 (v8qi, v8qi);
19965 long __builtin_vis_fucmpeq8 (v8qi, v8qi);
19967 float __builtin_vis_fhadds (float, float);
19968 double __builtin_vis_fhaddd (double, double);
19969 float __builtin_vis_fhsubs (float, float);
19970 double __builtin_vis_fhsubd (double, double);
19971 float __builtin_vis_fnhadds (float, float);
19972 double __builtin_vis_fnhaddd (double, double);
19974 int64_t __builtin_vis_umulxhi (int64_t, int64_t);
19975 int64_t __builtin_vis_xmulx (int64_t, int64_t);
19976 int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
19979 When you use the @option{-mvis4} switch, the VIS version 4.0 built-in
19980 functions also become available:
19983 v8qi __builtin_vis_fpadd8 (v8qi, v8qi);
19984 v8qi __builtin_vis_fpadds8 (v8qi, v8qi);
19985 v8qi __builtin_vis_fpaddus8 (v8qi, v8qi);
19986 v4hi __builtin_vis_fpaddus16 (v4hi, v4hi);
19988 v8qi __builtin_vis_fpsub8 (v8qi, v8qi);
19989 v8qi __builtin_vis_fpsubs8 (v8qi, v8qi);
19990 v8qi __builtin_vis_fpsubus8 (v8qi, v8qi);
19991 v4hi __builtin_vis_fpsubus16 (v4hi, v4hi);
19993 long __builtin_vis_fpcmple8 (v8qi, v8qi);
19994 long __builtin_vis_fpcmpgt8 (v8qi, v8qi);
19995 long __builtin_vis_fpcmpule16 (v4hi, v4hi);
19996 long __builtin_vis_fpcmpugt16 (v4hi, v4hi);
19997 long __builtin_vis_fpcmpule32 (v2si, v2si);
19998 long __builtin_vis_fpcmpugt32 (v2si, v2si);
20000 v8qi __builtin_vis_fpmax8 (v8qi, v8qi);
20001 v4hi __builtin_vis_fpmax16 (v4hi, v4hi);
20002 v2si __builtin_vis_fpmax32 (v2si, v2si);
20004 v8qi __builtin_vis_fpmaxu8 (v8qi, v8qi);
20005 v4hi __builtin_vis_fpmaxu16 (v4hi, v4hi);
20006 v2si __builtin_vis_fpmaxu32 (v2si, v2si);
20009 v8qi __builtin_vis_fpmin8 (v8qi, v8qi);
20010 v4hi __builtin_vis_fpmin16 (v4hi, v4hi);
20011 v2si __builtin_vis_fpmin32 (v2si, v2si);
20013 v8qi __builtin_vis_fpminu8 (v8qi, v8qi);
20014 v4hi __builtin_vis_fpminu16 (v4hi, v4hi);
20015 v2si __builtin_vis_fpminu32 (v2si, v2si);
20018 When you use the @option{-mvis4b} switch, the VIS version 4.0B
20019 built-in functions also become available:
20022 v8qi __builtin_vis_dictunpack8 (double, int);
20023 v4hi __builtin_vis_dictunpack16 (double, int);
20024 v2si __builtin_vis_dictunpack32 (double, int);
20026 long __builtin_vis_fpcmple8shl (v8qi, v8qi, int);
20027 long __builtin_vis_fpcmpgt8shl (v8qi, v8qi, int);
20028 long __builtin_vis_fpcmpeq8shl (v8qi, v8qi, int);
20029 long __builtin_vis_fpcmpne8shl (v8qi, v8qi, int);
20031 long __builtin_vis_fpcmple16shl (v4hi, v4hi, int);
20032 long __builtin_vis_fpcmpgt16shl (v4hi, v4hi, int);
20033 long __builtin_vis_fpcmpeq16shl (v4hi, v4hi, int);
20034 long __builtin_vis_fpcmpne16shl (v4hi, v4hi, int);
20036 long __builtin_vis_fpcmple32shl (v2si, v2si, int);
20037 long __builtin_vis_fpcmpgt32shl (v2si, v2si, int);
20038 long __builtin_vis_fpcmpeq32shl (v2si, v2si, int);
20039 long __builtin_vis_fpcmpne32shl (v2si, v2si, int);
20041 long __builtin_vis_fpcmpule8shl (v8qi, v8qi, int);
20042 long __builtin_vis_fpcmpugt8shl (v8qi, v8qi, int);
20043 long __builtin_vis_fpcmpule16shl (v4hi, v4hi, int);
20044 long __builtin_vis_fpcmpugt16shl (v4hi, v4hi, int);
20045 long __builtin_vis_fpcmpule32shl (v2si, v2si, int);
20046 long __builtin_vis_fpcmpugt32shl (v2si, v2si, int);
20048 long __builtin_vis_fpcmpde8shl (v8qi, v8qi, int);
20049 long __builtin_vis_fpcmpde16shl (v4hi, v4hi, int);
20050 long __builtin_vis_fpcmpde32shl (v2si, v2si, int);
20052 long __builtin_vis_fpcmpur8shl (v8qi, v8qi, int);
20053 long __builtin_vis_fpcmpur16shl (v4hi, v4hi, int);
20054 long __builtin_vis_fpcmpur32shl (v2si, v2si, int);
20057 @node SPU Built-in Functions
20058 @subsection SPU Built-in Functions
20060 GCC provides extensions for the SPU processor as described in the
20061 Sony/Toshiba/IBM SPU Language Extensions Specification. GCC's
20062 implementation differs in several ways.
20067 The optional extension of specifying vector constants in parentheses is
20071 A vector initializer requires no cast if the vector constant is of the
20072 same type as the variable it is initializing.
20075 If @code{signed} or @code{unsigned} is omitted, the signedness of the
20076 vector type is the default signedness of the base type. The default
20077 varies depending on the operating system, so a portable program should
20078 always specify the signedness.
20081 By default, the keyword @code{__vector} is added. The macro
20082 @code{vector} is defined in @code{<spu_intrinsics.h>} and can be
20086 GCC allows using a @code{typedef} name as the type specifier for a
20090 For C, overloaded functions are implemented with macros so the following
20094 spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
20098 Since @code{spu_add} is a macro, the vector constant in the example
20099 is treated as four separate arguments. Wrap the entire argument in
20100 parentheses for this to work.
20103 The extended version of @code{__builtin_expect} is not supported.
20107 @emph{Note:} Only the interface described in the aforementioned
20108 specification is supported. Internally, GCC uses built-in functions to
20109 implement the required functionality, but these are not supported and
20110 are subject to change without notice.
20112 @node TI C6X Built-in Functions
20113 @subsection TI C6X Built-in Functions
20115 GCC provides intrinsics to access certain instructions of the TI C6X
20116 processors. These intrinsics, listed below, are available after
20117 inclusion of the @code{c6x_intrinsics.h} header file. They map directly
20118 to C6X instructions.
20122 int _sadd (int, int)
20123 int _ssub (int, int)
20124 int _sadd2 (int, int)
20125 int _ssub2 (int, int)
20126 long long _mpy2 (int, int)
20127 long long _smpy2 (int, int)
20128 int _add4 (int, int)
20129 int _sub4 (int, int)
20130 int _saddu4 (int, int)
20132 int _smpy (int, int)
20133 int _smpyh (int, int)
20134 int _smpyhl (int, int)
20135 int _smpylh (int, int)
20137 int _sshl (int, int)
20138 int _subc (int, int)
20140 int _avg2 (int, int)
20141 int _avgu4 (int, int)
20143 int _clrr (int, int)
20144 int _extr (int, int)
20145 int _extru (int, int)
20151 @node TILE-Gx Built-in Functions
20152 @subsection TILE-Gx Built-in Functions
20154 GCC provides intrinsics to access every instruction of the TILE-Gx
20155 processor. The intrinsics are of the form:
20159 unsigned long long __insn_@var{op} (...)
20163 Where @var{op} is the name of the instruction. Refer to the ISA manual
20164 for the complete list of instructions.
20166 GCC also provides intrinsics to directly access the network registers.
20167 The intrinsics are:
20171 unsigned long long __tile_idn0_receive (void)
20172 unsigned long long __tile_idn1_receive (void)
20173 unsigned long long __tile_udn0_receive (void)
20174 unsigned long long __tile_udn1_receive (void)
20175 unsigned long long __tile_udn2_receive (void)
20176 unsigned long long __tile_udn3_receive (void)
20177 void __tile_idn_send (unsigned long long)
20178 void __tile_udn_send (unsigned long long)
20182 The intrinsic @code{void __tile_network_barrier (void)} is used to
20183 guarantee that no network operations before it are reordered with
20186 @node TILEPro Built-in Functions
20187 @subsection TILEPro Built-in Functions
20189 GCC provides intrinsics to access every instruction of the TILEPro
20190 processor. The intrinsics are of the form:
20194 unsigned __insn_@var{op} (...)
20199 where @var{op} is the name of the instruction. Refer to the ISA manual
20200 for the complete list of instructions.
20202 GCC also provides intrinsics to directly access the network registers.
20203 The intrinsics are:
20207 unsigned __tile_idn0_receive (void)
20208 unsigned __tile_idn1_receive (void)
20209 unsigned __tile_sn_receive (void)
20210 unsigned __tile_udn0_receive (void)
20211 unsigned __tile_udn1_receive (void)
20212 unsigned __tile_udn2_receive (void)
20213 unsigned __tile_udn3_receive (void)
20214 void __tile_idn_send (unsigned)
20215 void __tile_sn_send (unsigned)
20216 void __tile_udn_send (unsigned)
20220 The intrinsic @code{void __tile_network_barrier (void)} is used to
20221 guarantee that no network operations before it are reordered with
20224 @node x86 Built-in Functions
20225 @subsection x86 Built-in Functions
20227 These built-in functions are available for the x86-32 and x86-64 family
20228 of computers, depending on the command-line switches used.
20230 If you specify command-line switches such as @option{-msse},
20231 the compiler could use the extended instruction sets even if the built-ins
20232 are not used explicitly in the program. For this reason, applications
20233 that perform run-time CPU detection must compile separate files for each
20234 supported architecture, using the appropriate flags. In particular,
20235 the file containing the CPU detection code should be compiled without
20238 The following machine modes are available for use with MMX built-in functions
20239 (@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
20240 @code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
20241 vector of eight 8-bit integers. Some of the built-in functions operate on
20242 MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
20244 If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
20245 of two 32-bit floating-point values.
20247 If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
20248 floating-point values. Some instructions use a vector of four 32-bit
20249 integers, these use @code{V4SI}. Finally, some instructions operate on an
20250 entire vector register, interpreting it as a 128-bit integer, these use mode
20253 The x86-32 and x86-64 family of processors use additional built-in
20254 functions for efficient use of @code{TF} (@code{__float128}) 128-bit
20255 floating point and @code{TC} 128-bit complex floating-point values.
20257 The following floating-point built-in functions are always available. All
20258 of them implement the function that is part of the name.
20261 __float128 __builtin_fabsq (__float128)
20262 __float128 __builtin_copysignq (__float128, __float128)
20265 The following built-in functions are always available.
20268 @item __float128 __builtin_infq (void)
20269 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
20270 @findex __builtin_infq
20272 @item __float128 __builtin_huge_valq (void)
20273 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
20274 @findex __builtin_huge_valq
20276 @item __float128 __builtin_nanq (void)
20277 Similar to @code{__builtin_nan}, except the return type is @code{__float128}.
20278 @findex __builtin_nanq
20280 @item __float128 __builtin_nansq (void)
20281 Similar to @code{__builtin_nans}, except the return type is @code{__float128}.
20282 @findex __builtin_nansq
20285 The following built-in function is always available.
20288 @item void __builtin_ia32_pause (void)
20289 Generates the @code{pause} machine instruction with a compiler memory
20293 The following built-in functions are always available and can be used to
20294 check the target platform type.
20296 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
20297 This function runs the CPU detection code to check the type of CPU and the
20298 features supported. This built-in function needs to be invoked along with the built-in functions
20299 to check CPU type and features, @code{__builtin_cpu_is} and
20300 @code{__builtin_cpu_supports}, only when used in a function that is
20301 executed before any constructors are called. The CPU detection code is
20302 automatically executed in a very high priority constructor.
20304 For example, this function has to be used in @code{ifunc} resolvers that
20305 check for CPU type using the built-in functions @code{__builtin_cpu_is}
20306 and @code{__builtin_cpu_supports}, or in constructors on targets that
20307 don't support constructor priority.
20310 static void (*resolve_memcpy (void)) (void)
20312 // ifunc resolvers fire before constructors, explicitly call the init
20314 __builtin_cpu_init ();
20315 if (__builtin_cpu_supports ("ssse3"))
20316 return ssse3_memcpy; // super fast memcpy with ssse3 instructions.
20318 return default_memcpy;
20321 void *memcpy (void *, const void *, size_t)
20322 __attribute__ ((ifunc ("resolve_memcpy")));
20327 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
20328 This function returns a positive integer if the run-time CPU
20329 is of type @var{cpuname}
20330 and returns @code{0} otherwise. The following CPU names can be detected:
20346 Intel Core i7 Nehalem CPU.
20349 Intel Core i7 Westmere CPU.
20352 Intel Core i7 Sandy Bridge CPU.
20358 AMD Family 10h CPU.
20361 AMD Family 10h Barcelona CPU.
20364 AMD Family 10h Shanghai CPU.
20367 AMD Family 10h Istanbul CPU.
20370 AMD Family 14h CPU.
20373 AMD Family 15h CPU.
20376 AMD Family 15h Bulldozer version 1.
20379 AMD Family 15h Bulldozer version 2.
20382 AMD Family 15h Bulldozer version 3.
20385 AMD Family 15h Bulldozer version 4.
20388 AMD Family 16h CPU.
20391 AMD Family 17h CPU.
20394 AMD Family 17h Zen version 1.
20397 AMD Family 17h Zen version 2.
20400 Here is an example:
20402 if (__builtin_cpu_is ("corei7"))
20404 do_corei7 (); // Core i7 specific implementation.
20408 do_generic (); // Generic implementation.
20413 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
20414 This function returns a positive integer if the run-time CPU
20415 supports @var{feature}
20416 and returns @code{0} otherwise. The following features can be detected:
20424 POPCNT instruction.
20432 SSSE3 instructions.
20434 SSE4.1 instructions.
20436 SSE4.2 instructions.
20442 AVX512F instructions.
20445 Here is an example:
20447 if (__builtin_cpu_supports ("popcnt"))
20449 asm("popcnt %1,%0" : "=r"(count) : "rm"(n) : "cc");
20453 count = generic_countbits (n); //generic implementation.
20459 The following built-in functions are made available by @option{-mmmx}.
20460 All of them generate the machine instruction that is part of the name.
20463 v8qi __builtin_ia32_paddb (v8qi, v8qi)
20464 v4hi __builtin_ia32_paddw (v4hi, v4hi)
20465 v2si __builtin_ia32_paddd (v2si, v2si)
20466 v8qi __builtin_ia32_psubb (v8qi, v8qi)
20467 v4hi __builtin_ia32_psubw (v4hi, v4hi)
20468 v2si __builtin_ia32_psubd (v2si, v2si)
20469 v8qi __builtin_ia32_paddsb (v8qi, v8qi)
20470 v4hi __builtin_ia32_paddsw (v4hi, v4hi)
20471 v8qi __builtin_ia32_psubsb (v8qi, v8qi)
20472 v4hi __builtin_ia32_psubsw (v4hi, v4hi)
20473 v8qi __builtin_ia32_paddusb (v8qi, v8qi)
20474 v4hi __builtin_ia32_paddusw (v4hi, v4hi)
20475 v8qi __builtin_ia32_psubusb (v8qi, v8qi)
20476 v4hi __builtin_ia32_psubusw (v4hi, v4hi)
20477 v4hi __builtin_ia32_pmullw (v4hi, v4hi)
20478 v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
20479 di __builtin_ia32_pand (di, di)
20480 di __builtin_ia32_pandn (di,di)
20481 di __builtin_ia32_por (di, di)
20482 di __builtin_ia32_pxor (di, di)
20483 v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
20484 v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
20485 v2si __builtin_ia32_pcmpeqd (v2si, v2si)
20486 v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
20487 v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
20488 v2si __builtin_ia32_pcmpgtd (v2si, v2si)
20489 v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
20490 v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
20491 v2si __builtin_ia32_punpckhdq (v2si, v2si)
20492 v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
20493 v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
20494 v2si __builtin_ia32_punpckldq (v2si, v2si)
20495 v8qi __builtin_ia32_packsswb (v4hi, v4hi)
20496 v4hi __builtin_ia32_packssdw (v2si, v2si)
20497 v8qi __builtin_ia32_packuswb (v4hi, v4hi)
20499 v4hi __builtin_ia32_psllw (v4hi, v4hi)
20500 v2si __builtin_ia32_pslld (v2si, v2si)
20501 v1di __builtin_ia32_psllq (v1di, v1di)
20502 v4hi __builtin_ia32_psrlw (v4hi, v4hi)
20503 v2si __builtin_ia32_psrld (v2si, v2si)
20504 v1di __builtin_ia32_psrlq (v1di, v1di)
20505 v4hi __builtin_ia32_psraw (v4hi, v4hi)
20506 v2si __builtin_ia32_psrad (v2si, v2si)
20507 v4hi __builtin_ia32_psllwi (v4hi, int)
20508 v2si __builtin_ia32_pslldi (v2si, int)
20509 v1di __builtin_ia32_psllqi (v1di, int)
20510 v4hi __builtin_ia32_psrlwi (v4hi, int)
20511 v2si __builtin_ia32_psrldi (v2si, int)
20512 v1di __builtin_ia32_psrlqi (v1di, int)
20513 v4hi __builtin_ia32_psrawi (v4hi, int)
20514 v2si __builtin_ia32_psradi (v2si, int)
20518 The following built-in functions are made available either with
20519 @option{-msse}, or with @option{-m3dnowa}. All of them generate
20520 the machine instruction that is part of the name.
20523 v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
20524 v8qi __builtin_ia32_pavgb (v8qi, v8qi)
20525 v4hi __builtin_ia32_pavgw (v4hi, v4hi)
20526 v1di __builtin_ia32_psadbw (v8qi, v8qi)
20527 v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
20528 v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
20529 v8qi __builtin_ia32_pminub (v8qi, v8qi)
20530 v4hi __builtin_ia32_pminsw (v4hi, v4hi)
20531 int __builtin_ia32_pmovmskb (v8qi)
20532 void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
20533 void __builtin_ia32_movntq (di *, di)
20534 void __builtin_ia32_sfence (void)
20537 The following built-in functions are available when @option{-msse} is used.
20538 All of them generate the machine instruction that is part of the name.
20541 int __builtin_ia32_comieq (v4sf, v4sf)
20542 int __builtin_ia32_comineq (v4sf, v4sf)
20543 int __builtin_ia32_comilt (v4sf, v4sf)
20544 int __builtin_ia32_comile (v4sf, v4sf)
20545 int __builtin_ia32_comigt (v4sf, v4sf)
20546 int __builtin_ia32_comige (v4sf, v4sf)
20547 int __builtin_ia32_ucomieq (v4sf, v4sf)
20548 int __builtin_ia32_ucomineq (v4sf, v4sf)
20549 int __builtin_ia32_ucomilt (v4sf, v4sf)
20550 int __builtin_ia32_ucomile (v4sf, v4sf)
20551 int __builtin_ia32_ucomigt (v4sf, v4sf)
20552 int __builtin_ia32_ucomige (v4sf, v4sf)
20553 v4sf __builtin_ia32_addps (v4sf, v4sf)
20554 v4sf __builtin_ia32_subps (v4sf, v4sf)
20555 v4sf __builtin_ia32_mulps (v4sf, v4sf)
20556 v4sf __builtin_ia32_divps (v4sf, v4sf)
20557 v4sf __builtin_ia32_addss (v4sf, v4sf)
20558 v4sf __builtin_ia32_subss (v4sf, v4sf)
20559 v4sf __builtin_ia32_mulss (v4sf, v4sf)
20560 v4sf __builtin_ia32_divss (v4sf, v4sf)
20561 v4sf __builtin_ia32_cmpeqps (v4sf, v4sf)
20562 v4sf __builtin_ia32_cmpltps (v4sf, v4sf)
20563 v4sf __builtin_ia32_cmpleps (v4sf, v4sf)
20564 v4sf __builtin_ia32_cmpgtps (v4sf, v4sf)
20565 v4sf __builtin_ia32_cmpgeps (v4sf, v4sf)
20566 v4sf __builtin_ia32_cmpunordps (v4sf, v4sf)
20567 v4sf __builtin_ia32_cmpneqps (v4sf, v4sf)
20568 v4sf __builtin_ia32_cmpnltps (v4sf, v4sf)
20569 v4sf __builtin_ia32_cmpnleps (v4sf, v4sf)
20570 v4sf __builtin_ia32_cmpngtps (v4sf, v4sf)
20571 v4sf __builtin_ia32_cmpngeps (v4sf, v4sf)
20572 v4sf __builtin_ia32_cmpordps (v4sf, v4sf)
20573 v4sf __builtin_ia32_cmpeqss (v4sf, v4sf)
20574 v4sf __builtin_ia32_cmpltss (v4sf, v4sf)
20575 v4sf __builtin_ia32_cmpless (v4sf, v4sf)
20576 v4sf __builtin_ia32_cmpunordss (v4sf, v4sf)
20577 v4sf __builtin_ia32_cmpneqss (v4sf, v4sf)
20578 v4sf __builtin_ia32_cmpnltss (v4sf, v4sf)
20579 v4sf __builtin_ia32_cmpnless (v4sf, v4sf)
20580 v4sf __builtin_ia32_cmpordss (v4sf, v4sf)
20581 v4sf __builtin_ia32_maxps (v4sf, v4sf)
20582 v4sf __builtin_ia32_maxss (v4sf, v4sf)
20583 v4sf __builtin_ia32_minps (v4sf, v4sf)
20584 v4sf __builtin_ia32_minss (v4sf, v4sf)
20585 v4sf __builtin_ia32_andps (v4sf, v4sf)
20586 v4sf __builtin_ia32_andnps (v4sf, v4sf)
20587 v4sf __builtin_ia32_orps (v4sf, v4sf)
20588 v4sf __builtin_ia32_xorps (v4sf, v4sf)
20589 v4sf __builtin_ia32_movss (v4sf, v4sf)
20590 v4sf __builtin_ia32_movhlps (v4sf, v4sf)
20591 v4sf __builtin_ia32_movlhps (v4sf, v4sf)
20592 v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
20593 v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
20594 v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
20595 v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
20596 v2si __builtin_ia32_cvtps2pi (v4sf)
20597 int __builtin_ia32_cvtss2si (v4sf)
20598 v2si __builtin_ia32_cvttps2pi (v4sf)
20599 int __builtin_ia32_cvttss2si (v4sf)
20600 v4sf __builtin_ia32_rcpps (v4sf)
20601 v4sf __builtin_ia32_rsqrtps (v4sf)
20602 v4sf __builtin_ia32_sqrtps (v4sf)
20603 v4sf __builtin_ia32_rcpss (v4sf)
20604 v4sf __builtin_ia32_rsqrtss (v4sf)
20605 v4sf __builtin_ia32_sqrtss (v4sf)
20606 v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
20607 void __builtin_ia32_movntps (float *, v4sf)
20608 int __builtin_ia32_movmskps (v4sf)
20611 The following built-in functions are available when @option{-msse} is used.
20614 @item v4sf __builtin_ia32_loadups (float *)
20615 Generates the @code{movups} machine instruction as a load from memory.
20616 @item void __builtin_ia32_storeups (float *, v4sf)
20617 Generates the @code{movups} machine instruction as a store to memory.
20618 @item v4sf __builtin_ia32_loadss (float *)
20619 Generates the @code{movss} machine instruction as a load from memory.
20620 @item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
20621 Generates the @code{movhps} machine instruction as a load from memory.
20622 @item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
20623 Generates the @code{movlps} machine instruction as a load from memory
20624 @item void __builtin_ia32_storehps (v2sf *, v4sf)
20625 Generates the @code{movhps} machine instruction as a store to memory.
20626 @item void __builtin_ia32_storelps (v2sf *, v4sf)
20627 Generates the @code{movlps} machine instruction as a store to memory.
20630 The following built-in functions are available when @option{-msse2} is used.
20631 All of them generate the machine instruction that is part of the name.
20634 int __builtin_ia32_comisdeq (v2df, v2df)
20635 int __builtin_ia32_comisdlt (v2df, v2df)
20636 int __builtin_ia32_comisdle (v2df, v2df)
20637 int __builtin_ia32_comisdgt (v2df, v2df)
20638 int __builtin_ia32_comisdge (v2df, v2df)
20639 int __builtin_ia32_comisdneq (v2df, v2df)
20640 int __builtin_ia32_ucomisdeq (v2df, v2df)
20641 int __builtin_ia32_ucomisdlt (v2df, v2df)
20642 int __builtin_ia32_ucomisdle (v2df, v2df)
20643 int __builtin_ia32_ucomisdgt (v2df, v2df)
20644 int __builtin_ia32_ucomisdge (v2df, v2df)
20645 int __builtin_ia32_ucomisdneq (v2df, v2df)
20646 v2df __builtin_ia32_cmpeqpd (v2df, v2df)
20647 v2df __builtin_ia32_cmpltpd (v2df, v2df)
20648 v2df __builtin_ia32_cmplepd (v2df, v2df)
20649 v2df __builtin_ia32_cmpgtpd (v2df, v2df)
20650 v2df __builtin_ia32_cmpgepd (v2df, v2df)
20651 v2df __builtin_ia32_cmpunordpd (v2df, v2df)
20652 v2df __builtin_ia32_cmpneqpd (v2df, v2df)
20653 v2df __builtin_ia32_cmpnltpd (v2df, v2df)
20654 v2df __builtin_ia32_cmpnlepd (v2df, v2df)
20655 v2df __builtin_ia32_cmpngtpd (v2df, v2df)
20656 v2df __builtin_ia32_cmpngepd (v2df, v2df)
20657 v2df __builtin_ia32_cmpordpd (v2df, v2df)
20658 v2df __builtin_ia32_cmpeqsd (v2df, v2df)
20659 v2df __builtin_ia32_cmpltsd (v2df, v2df)
20660 v2df __builtin_ia32_cmplesd (v2df, v2df)
20661 v2df __builtin_ia32_cmpunordsd (v2df, v2df)
20662 v2df __builtin_ia32_cmpneqsd (v2df, v2df)
20663 v2df __builtin_ia32_cmpnltsd (v2df, v2df)
20664 v2df __builtin_ia32_cmpnlesd (v2df, v2df)
20665 v2df __builtin_ia32_cmpordsd (v2df, v2df)
20666 v2di __builtin_ia32_paddq (v2di, v2di)
20667 v2di __builtin_ia32_psubq (v2di, v2di)
20668 v2df __builtin_ia32_addpd (v2df, v2df)
20669 v2df __builtin_ia32_subpd (v2df, v2df)
20670 v2df __builtin_ia32_mulpd (v2df, v2df)
20671 v2df __builtin_ia32_divpd (v2df, v2df)
20672 v2df __builtin_ia32_addsd (v2df, v2df)
20673 v2df __builtin_ia32_subsd (v2df, v2df)
20674 v2df __builtin_ia32_mulsd (v2df, v2df)
20675 v2df __builtin_ia32_divsd (v2df, v2df)
20676 v2df __builtin_ia32_minpd (v2df, v2df)
20677 v2df __builtin_ia32_maxpd (v2df, v2df)
20678 v2df __builtin_ia32_minsd (v2df, v2df)
20679 v2df __builtin_ia32_maxsd (v2df, v2df)
20680 v2df __builtin_ia32_andpd (v2df, v2df)
20681 v2df __builtin_ia32_andnpd (v2df, v2df)
20682 v2df __builtin_ia32_orpd (v2df, v2df)
20683 v2df __builtin_ia32_xorpd (v2df, v2df)
20684 v2df __builtin_ia32_movsd (v2df, v2df)
20685 v2df __builtin_ia32_unpckhpd (v2df, v2df)
20686 v2df __builtin_ia32_unpcklpd (v2df, v2df)
20687 v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
20688 v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
20689 v4si __builtin_ia32_paddd128 (v4si, v4si)
20690 v2di __builtin_ia32_paddq128 (v2di, v2di)
20691 v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
20692 v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
20693 v4si __builtin_ia32_psubd128 (v4si, v4si)
20694 v2di __builtin_ia32_psubq128 (v2di, v2di)
20695 v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
20696 v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
20697 v2di __builtin_ia32_pand128 (v2di, v2di)
20698 v2di __builtin_ia32_pandn128 (v2di, v2di)
20699 v2di __builtin_ia32_por128 (v2di, v2di)
20700 v2di __builtin_ia32_pxor128 (v2di, v2di)
20701 v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
20702 v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
20703 v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
20704 v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
20705 v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
20706 v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
20707 v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
20708 v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
20709 v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
20710 v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
20711 v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
20712 v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
20713 v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
20714 v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
20715 v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
20716 v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
20717 v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
20718 v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
20719 v4si __builtin_ia32_punpckldq128 (v4si, v4si)
20720 v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
20721 v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
20722 v8hi __builtin_ia32_packssdw128 (v4si, v4si)
20723 v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
20724 v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
20725 void __builtin_ia32_maskmovdqu (v16qi, v16qi)
20726 v2df __builtin_ia32_loadupd (double *)
20727 void __builtin_ia32_storeupd (double *, v2df)
20728 v2df __builtin_ia32_loadhpd (v2df, double const *)
20729 v2df __builtin_ia32_loadlpd (v2df, double const *)
20730 int __builtin_ia32_movmskpd (v2df)
20731 int __builtin_ia32_pmovmskb128 (v16qi)
20732 void __builtin_ia32_movnti (int *, int)
20733 void __builtin_ia32_movnti64 (long long int *, long long int)
20734 void __builtin_ia32_movntpd (double *, v2df)
20735 void __builtin_ia32_movntdq (v2df *, v2df)
20736 v4si __builtin_ia32_pshufd (v4si, int)
20737 v8hi __builtin_ia32_pshuflw (v8hi, int)
20738 v8hi __builtin_ia32_pshufhw (v8hi, int)
20739 v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
20740 v2df __builtin_ia32_sqrtpd (v2df)
20741 v2df __builtin_ia32_sqrtsd (v2df)
20742 v2df __builtin_ia32_shufpd (v2df, v2df, int)
20743 v2df __builtin_ia32_cvtdq2pd (v4si)
20744 v4sf __builtin_ia32_cvtdq2ps (v4si)
20745 v4si __builtin_ia32_cvtpd2dq (v2df)
20746 v2si __builtin_ia32_cvtpd2pi (v2df)
20747 v4sf __builtin_ia32_cvtpd2ps (v2df)
20748 v4si __builtin_ia32_cvttpd2dq (v2df)
20749 v2si __builtin_ia32_cvttpd2pi (v2df)
20750 v2df __builtin_ia32_cvtpi2pd (v2si)
20751 int __builtin_ia32_cvtsd2si (v2df)
20752 int __builtin_ia32_cvttsd2si (v2df)
20753 long long __builtin_ia32_cvtsd2si64 (v2df)
20754 long long __builtin_ia32_cvttsd2si64 (v2df)
20755 v4si __builtin_ia32_cvtps2dq (v4sf)
20756 v2df __builtin_ia32_cvtps2pd (v4sf)
20757 v4si __builtin_ia32_cvttps2dq (v4sf)
20758 v2df __builtin_ia32_cvtsi2sd (v2df, int)
20759 v2df __builtin_ia32_cvtsi642sd (v2df, long long)
20760 v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
20761 v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
20762 void __builtin_ia32_clflush (const void *)
20763 void __builtin_ia32_lfence (void)
20764 void __builtin_ia32_mfence (void)
20765 v16qi __builtin_ia32_loaddqu (const char *)
20766 void __builtin_ia32_storedqu (char *, v16qi)
20767 v1di __builtin_ia32_pmuludq (v2si, v2si)
20768 v2di __builtin_ia32_pmuludq128 (v4si, v4si)
20769 v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
20770 v4si __builtin_ia32_pslld128 (v4si, v4si)
20771 v2di __builtin_ia32_psllq128 (v2di, v2di)
20772 v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
20773 v4si __builtin_ia32_psrld128 (v4si, v4si)
20774 v2di __builtin_ia32_psrlq128 (v2di, v2di)
20775 v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
20776 v4si __builtin_ia32_psrad128 (v4si, v4si)
20777 v2di __builtin_ia32_pslldqi128 (v2di, int)
20778 v8hi __builtin_ia32_psllwi128 (v8hi, int)
20779 v4si __builtin_ia32_pslldi128 (v4si, int)
20780 v2di __builtin_ia32_psllqi128 (v2di, int)
20781 v2di __builtin_ia32_psrldqi128 (v2di, int)
20782 v8hi __builtin_ia32_psrlwi128 (v8hi, int)
20783 v4si __builtin_ia32_psrldi128 (v4si, int)
20784 v2di __builtin_ia32_psrlqi128 (v2di, int)
20785 v8hi __builtin_ia32_psrawi128 (v8hi, int)
20786 v4si __builtin_ia32_psradi128 (v4si, int)
20787 v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
20788 v2di __builtin_ia32_movq128 (v2di)
20791 The following built-in functions are available when @option{-msse3} is used.
20792 All of them generate the machine instruction that is part of the name.
20795 v2df __builtin_ia32_addsubpd (v2df, v2df)
20796 v4sf __builtin_ia32_addsubps (v4sf, v4sf)
20797 v2df __builtin_ia32_haddpd (v2df, v2df)
20798 v4sf __builtin_ia32_haddps (v4sf, v4sf)
20799 v2df __builtin_ia32_hsubpd (v2df, v2df)
20800 v4sf __builtin_ia32_hsubps (v4sf, v4sf)
20801 v16qi __builtin_ia32_lddqu (char const *)
20802 void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
20803 v4sf __builtin_ia32_movshdup (v4sf)
20804 v4sf __builtin_ia32_movsldup (v4sf)
20805 void __builtin_ia32_mwait (unsigned int, unsigned int)
20808 The following built-in functions are available when @option{-mssse3} is used.
20809 All of them generate the machine instruction that is part of the name.
20812 v2si __builtin_ia32_phaddd (v2si, v2si)
20813 v4hi __builtin_ia32_phaddw (v4hi, v4hi)
20814 v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
20815 v2si __builtin_ia32_phsubd (v2si, v2si)
20816 v4hi __builtin_ia32_phsubw (v4hi, v4hi)
20817 v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
20818 v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
20819 v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
20820 v8qi __builtin_ia32_pshufb (v8qi, v8qi)
20821 v8qi __builtin_ia32_psignb (v8qi, v8qi)
20822 v2si __builtin_ia32_psignd (v2si, v2si)
20823 v4hi __builtin_ia32_psignw (v4hi, v4hi)
20824 v1di __builtin_ia32_palignr (v1di, v1di, int)
20825 v8qi __builtin_ia32_pabsb (v8qi)
20826 v2si __builtin_ia32_pabsd (v2si)
20827 v4hi __builtin_ia32_pabsw (v4hi)
20830 The following built-in functions are available when @option{-mssse3} is used.
20831 All of them generate the machine instruction that is part of the name.
20834 v4si __builtin_ia32_phaddd128 (v4si, v4si)
20835 v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
20836 v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
20837 v4si __builtin_ia32_phsubd128 (v4si, v4si)
20838 v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
20839 v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
20840 v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
20841 v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
20842 v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
20843 v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
20844 v4si __builtin_ia32_psignd128 (v4si, v4si)
20845 v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
20846 v2di __builtin_ia32_palignr128 (v2di, v2di, int)
20847 v16qi __builtin_ia32_pabsb128 (v16qi)
20848 v4si __builtin_ia32_pabsd128 (v4si)
20849 v8hi __builtin_ia32_pabsw128 (v8hi)
20852 The following built-in functions are available when @option{-msse4.1} is
20853 used. All of them generate the machine instruction that is part of the
20857 v2df __builtin_ia32_blendpd (v2df, v2df, const int)
20858 v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
20859 v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
20860 v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
20861 v2df __builtin_ia32_dppd (v2df, v2df, const int)
20862 v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
20863 v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
20864 v2di __builtin_ia32_movntdqa (v2di *);
20865 v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
20866 v8hi __builtin_ia32_packusdw128 (v4si, v4si)
20867 v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
20868 v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
20869 v2di __builtin_ia32_pcmpeqq (v2di, v2di)
20870 v8hi __builtin_ia32_phminposuw128 (v8hi)
20871 v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
20872 v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
20873 v4si __builtin_ia32_pmaxud128 (v4si, v4si)
20874 v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
20875 v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
20876 v4si __builtin_ia32_pminsd128 (v4si, v4si)
20877 v4si __builtin_ia32_pminud128 (v4si, v4si)
20878 v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
20879 v4si __builtin_ia32_pmovsxbd128 (v16qi)
20880 v2di __builtin_ia32_pmovsxbq128 (v16qi)
20881 v8hi __builtin_ia32_pmovsxbw128 (v16qi)
20882 v2di __builtin_ia32_pmovsxdq128 (v4si)
20883 v4si __builtin_ia32_pmovsxwd128 (v8hi)
20884 v2di __builtin_ia32_pmovsxwq128 (v8hi)
20885 v4si __builtin_ia32_pmovzxbd128 (v16qi)
20886 v2di __builtin_ia32_pmovzxbq128 (v16qi)
20887 v8hi __builtin_ia32_pmovzxbw128 (v16qi)
20888 v2di __builtin_ia32_pmovzxdq128 (v4si)
20889 v4si __builtin_ia32_pmovzxwd128 (v8hi)
20890 v2di __builtin_ia32_pmovzxwq128 (v8hi)
20891 v2di __builtin_ia32_pmuldq128 (v4si, v4si)
20892 v4si __builtin_ia32_pmulld128 (v4si, v4si)
20893 int __builtin_ia32_ptestc128 (v2di, v2di)
20894 int __builtin_ia32_ptestnzc128 (v2di, v2di)
20895 int __builtin_ia32_ptestz128 (v2di, v2di)
20896 v2df __builtin_ia32_roundpd (v2df, const int)
20897 v4sf __builtin_ia32_roundps (v4sf, const int)
20898 v2df __builtin_ia32_roundsd (v2df, v2df, const int)
20899 v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
20902 The following built-in functions are available when @option{-msse4.1} is
20906 @item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
20907 Generates the @code{insertps} machine instruction.
20908 @item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
20909 Generates the @code{pextrb} machine instruction.
20910 @item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
20911 Generates the @code{pinsrb} machine instruction.
20912 @item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
20913 Generates the @code{pinsrd} machine instruction.
20914 @item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
20915 Generates the @code{pinsrq} machine instruction in 64bit mode.
20918 The following built-in functions are changed to generate new SSE4.1
20919 instructions when @option{-msse4.1} is used.
20922 @item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
20923 Generates the @code{extractps} machine instruction.
20924 @item int __builtin_ia32_vec_ext_v4si (v4si, const int)
20925 Generates the @code{pextrd} machine instruction.
20926 @item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
20927 Generates the @code{pextrq} machine instruction in 64bit mode.
20930 The following built-in functions are available when @option{-msse4.2} is
20931 used. All of them generate the machine instruction that is part of the
20935 v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
20936 int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
20937 int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
20938 int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
20939 int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
20940 int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
20941 int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
20942 v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
20943 int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
20944 int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
20945 int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
20946 int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
20947 int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
20948 int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
20949 v2di __builtin_ia32_pcmpgtq (v2di, v2di)
20952 The following built-in functions are available when @option{-msse4.2} is
20956 @item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
20957 Generates the @code{crc32b} machine instruction.
20958 @item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
20959 Generates the @code{crc32w} machine instruction.
20960 @item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
20961 Generates the @code{crc32l} machine instruction.
20962 @item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
20963 Generates the @code{crc32q} machine instruction.
20966 The following built-in functions are changed to generate new SSE4.2
20967 instructions when @option{-msse4.2} is used.
20970 @item int __builtin_popcount (unsigned int)
20971 Generates the @code{popcntl} machine instruction.
20972 @item int __builtin_popcountl (unsigned long)
20973 Generates the @code{popcntl} or @code{popcntq} machine instruction,
20974 depending on the size of @code{unsigned long}.
20975 @item int __builtin_popcountll (unsigned long long)
20976 Generates the @code{popcntq} machine instruction.
20979 The following built-in functions are available when @option{-mavx} is
20980 used. All of them generate the machine instruction that is part of the
20984 v4df __builtin_ia32_addpd256 (v4df,v4df)
20985 v8sf __builtin_ia32_addps256 (v8sf,v8sf)
20986 v4df __builtin_ia32_addsubpd256 (v4df,v4df)
20987 v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
20988 v4df __builtin_ia32_andnpd256 (v4df,v4df)
20989 v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
20990 v4df __builtin_ia32_andpd256 (v4df,v4df)
20991 v8sf __builtin_ia32_andps256 (v8sf,v8sf)
20992 v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
20993 v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
20994 v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
20995 v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
20996 v2df __builtin_ia32_cmppd (v2df,v2df,int)
20997 v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
20998 v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
20999 v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
21000 v2df __builtin_ia32_cmpsd (v2df,v2df,int)
21001 v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
21002 v4df __builtin_ia32_cvtdq2pd256 (v4si)
21003 v8sf __builtin_ia32_cvtdq2ps256 (v8si)
21004 v4si __builtin_ia32_cvtpd2dq256 (v4df)
21005 v4sf __builtin_ia32_cvtpd2ps256 (v4df)
21006 v8si __builtin_ia32_cvtps2dq256 (v8sf)
21007 v4df __builtin_ia32_cvtps2pd256 (v4sf)
21008 v4si __builtin_ia32_cvttpd2dq256 (v4df)
21009 v8si __builtin_ia32_cvttps2dq256 (v8sf)
21010 v4df __builtin_ia32_divpd256 (v4df,v4df)
21011 v8sf __builtin_ia32_divps256 (v8sf,v8sf)
21012 v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
21013 v4df __builtin_ia32_haddpd256 (v4df,v4df)
21014 v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
21015 v4df __builtin_ia32_hsubpd256 (v4df,v4df)
21016 v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
21017 v32qi __builtin_ia32_lddqu256 (pcchar)
21018 v32qi __builtin_ia32_loaddqu256 (pcchar)
21019 v4df __builtin_ia32_loadupd256 (pcdouble)
21020 v8sf __builtin_ia32_loadups256 (pcfloat)
21021 v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
21022 v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
21023 v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
21024 v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
21025 void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
21026 void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
21027 void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
21028 void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
21029 v4df __builtin_ia32_maxpd256 (v4df,v4df)
21030 v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
21031 v4df __builtin_ia32_minpd256 (v4df,v4df)
21032 v8sf __builtin_ia32_minps256 (v8sf,v8sf)
21033 v4df __builtin_ia32_movddup256 (v4df)
21034 int __builtin_ia32_movmskpd256 (v4df)
21035 int __builtin_ia32_movmskps256 (v8sf)
21036 v8sf __builtin_ia32_movshdup256 (v8sf)
21037 v8sf __builtin_ia32_movsldup256 (v8sf)
21038 v4df __builtin_ia32_mulpd256 (v4df,v4df)
21039 v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
21040 v4df __builtin_ia32_orpd256 (v4df,v4df)
21041 v8sf __builtin_ia32_orps256 (v8sf,v8sf)
21042 v2df __builtin_ia32_pd_pd256 (v4df)
21043 v4df __builtin_ia32_pd256_pd (v2df)
21044 v4sf __builtin_ia32_ps_ps256 (v8sf)
21045 v8sf __builtin_ia32_ps256_ps (v4sf)
21046 int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
21047 int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
21048 int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
21049 v8sf __builtin_ia32_rcpps256 (v8sf)
21050 v4df __builtin_ia32_roundpd256 (v4df,int)
21051 v8sf __builtin_ia32_roundps256 (v8sf,int)
21052 v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
21053 v8sf __builtin_ia32_rsqrtps256 (v8sf)
21054 v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
21055 v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
21056 v4si __builtin_ia32_si_si256 (v8si)
21057 v8si __builtin_ia32_si256_si (v4si)
21058 v4df __builtin_ia32_sqrtpd256 (v4df)
21059 v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
21060 v8sf __builtin_ia32_sqrtps256 (v8sf)
21061 void __builtin_ia32_storedqu256 (pchar,v32qi)
21062 void __builtin_ia32_storeupd256 (pdouble,v4df)
21063 void __builtin_ia32_storeups256 (pfloat,v8sf)
21064 v4df __builtin_ia32_subpd256 (v4df,v4df)
21065 v8sf __builtin_ia32_subps256 (v8sf,v8sf)
21066 v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
21067 v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
21068 v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
21069 v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
21070 v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
21071 v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
21072 v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
21073 v4sf __builtin_ia32_vbroadcastss (pcfloat)
21074 v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
21075 v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
21076 v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
21077 v4si __builtin_ia32_vextractf128_si256 (v8si,int)
21078 v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
21079 v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
21080 v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
21081 v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
21082 v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
21083 v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
21084 v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
21085 v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
21086 v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
21087 v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
21088 v2df __builtin_ia32_vpermilpd (v2df,int)
21089 v4df __builtin_ia32_vpermilpd256 (v4df,int)
21090 v4sf __builtin_ia32_vpermilps (v4sf,int)
21091 v8sf __builtin_ia32_vpermilps256 (v8sf,int)
21092 v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
21093 v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
21094 v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
21095 v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
21096 int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
21097 int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
21098 int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
21099 int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
21100 int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
21101 int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
21102 int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
21103 int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
21104 int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
21105 int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
21106 int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
21107 int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
21108 void __builtin_ia32_vzeroall (void)
21109 void __builtin_ia32_vzeroupper (void)
21110 v4df __builtin_ia32_xorpd256 (v4df,v4df)
21111 v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
21114 The following built-in functions are available when @option{-mavx2} is
21115 used. All of them generate the machine instruction that is part of the
21119 v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,int)
21120 v32qi __builtin_ia32_pabsb256 (v32qi)
21121 v16hi __builtin_ia32_pabsw256 (v16hi)
21122 v8si __builtin_ia32_pabsd256 (v8si)
21123 v16hi __builtin_ia32_packssdw256 (v8si,v8si)
21124 v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
21125 v16hi __builtin_ia32_packusdw256 (v8si,v8si)
21126 v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
21127 v32qi __builtin_ia32_paddb256 (v32qi,v32qi)
21128 v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
21129 v8si __builtin_ia32_paddd256 (v8si,v8si)
21130 v4di __builtin_ia32_paddq256 (v4di,v4di)
21131 v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
21132 v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
21133 v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
21134 v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
21135 v4di __builtin_ia32_palignr256 (v4di,v4di,int)
21136 v4di __builtin_ia32_andsi256 (v4di,v4di)
21137 v4di __builtin_ia32_andnotsi256 (v4di,v4di)
21138 v32qi __builtin_ia32_pavgb256 (v32qi,v32qi)
21139 v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
21140 v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
21141 v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
21142 v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
21143 v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
21144 v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
21145 v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
21146 v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
21147 v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
21148 v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
21149 v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
21150 v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
21151 v8si __builtin_ia32_phaddd256 (v8si,v8si)
21152 v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
21153 v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
21154 v8si __builtin_ia32_phsubd256 (v8si,v8si)
21155 v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
21156 v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
21157 v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
21158 v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
21159 v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
21160 v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
21161 v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
21162 v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
21163 v8si __builtin_ia32_pmaxud256 (v8si,v8si)
21164 v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
21165 v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
21166 v8si __builtin_ia32_pminsd256 (v8si,v8si)
21167 v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
21168 v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
21169 v8si __builtin_ia32_pminud256 (v8si,v8si)
21170 int __builtin_ia32_pmovmskb256 (v32qi)
21171 v16hi __builtin_ia32_pmovsxbw256 (v16qi)
21172 v8si __builtin_ia32_pmovsxbd256 (v16qi)
21173 v4di __builtin_ia32_pmovsxbq256 (v16qi)
21174 v8si __builtin_ia32_pmovsxwd256 (v8hi)
21175 v4di __builtin_ia32_pmovsxwq256 (v8hi)
21176 v4di __builtin_ia32_pmovsxdq256 (v4si)
21177 v16hi __builtin_ia32_pmovzxbw256 (v16qi)
21178 v8si __builtin_ia32_pmovzxbd256 (v16qi)
21179 v4di __builtin_ia32_pmovzxbq256 (v16qi)
21180 v8si __builtin_ia32_pmovzxwd256 (v8hi)
21181 v4di __builtin_ia32_pmovzxwq256 (v8hi)
21182 v4di __builtin_ia32_pmovzxdq256 (v4si)
21183 v4di __builtin_ia32_pmuldq256 (v8si,v8si)
21184 v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
21185 v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
21186 v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
21187 v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
21188 v8si __builtin_ia32_pmulld256 (v8si,v8si)
21189 v4di __builtin_ia32_pmuludq256 (v8si,v8si)
21190 v4di __builtin_ia32_por256 (v4di,v4di)
21191 v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
21192 v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
21193 v8si __builtin_ia32_pshufd256 (v8si,int)
21194 v16hi __builtin_ia32_pshufhw256 (v16hi,int)
21195 v16hi __builtin_ia32_pshuflw256 (v16hi,int)
21196 v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
21197 v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
21198 v8si __builtin_ia32_psignd256 (v8si,v8si)
21199 v4di __builtin_ia32_pslldqi256 (v4di,int)
21200 v16hi __builtin_ia32_psllwi256 (16hi,int)
21201 v16hi __builtin_ia32_psllw256(v16hi,v8hi)
21202 v8si __builtin_ia32_pslldi256 (v8si,int)
21203 v8si __builtin_ia32_pslld256(v8si,v4si)
21204 v4di __builtin_ia32_psllqi256 (v4di,int)
21205 v4di __builtin_ia32_psllq256(v4di,v2di)
21206 v16hi __builtin_ia32_psrawi256 (v16hi,int)
21207 v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
21208 v8si __builtin_ia32_psradi256 (v8si,int)
21209 v8si __builtin_ia32_psrad256 (v8si,v4si)
21210 v4di __builtin_ia32_psrldqi256 (v4di, int)
21211 v16hi __builtin_ia32_psrlwi256 (v16hi,int)
21212 v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
21213 v8si __builtin_ia32_psrldi256 (v8si,int)
21214 v8si __builtin_ia32_psrld256 (v8si,v4si)
21215 v4di __builtin_ia32_psrlqi256 (v4di,int)
21216 v4di __builtin_ia32_psrlq256(v4di,v2di)
21217 v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
21218 v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
21219 v8si __builtin_ia32_psubd256 (v8si,v8si)
21220 v4di __builtin_ia32_psubq256 (v4di,v4di)
21221 v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
21222 v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
21223 v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
21224 v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
21225 v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
21226 v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
21227 v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
21228 v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
21229 v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
21230 v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
21231 v8si __builtin_ia32_punpckldq256 (v8si,v8si)
21232 v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
21233 v4di __builtin_ia32_pxor256 (v4di,v4di)
21234 v4di __builtin_ia32_movntdqa256 (pv4di)
21235 v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
21236 v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
21237 v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
21238 v4di __builtin_ia32_vbroadcastsi256 (v2di)
21239 v4si __builtin_ia32_pblendd128 (v4si,v4si)
21240 v8si __builtin_ia32_pblendd256 (v8si,v8si)
21241 v32qi __builtin_ia32_pbroadcastb256 (v16qi)
21242 v16hi __builtin_ia32_pbroadcastw256 (v8hi)
21243 v8si __builtin_ia32_pbroadcastd256 (v4si)
21244 v4di __builtin_ia32_pbroadcastq256 (v2di)
21245 v16qi __builtin_ia32_pbroadcastb128 (v16qi)
21246 v8hi __builtin_ia32_pbroadcastw128 (v8hi)
21247 v4si __builtin_ia32_pbroadcastd128 (v4si)
21248 v2di __builtin_ia32_pbroadcastq128 (v2di)
21249 v8si __builtin_ia32_permvarsi256 (v8si,v8si)
21250 v4df __builtin_ia32_permdf256 (v4df,int)
21251 v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
21252 v4di __builtin_ia32_permdi256 (v4di,int)
21253 v4di __builtin_ia32_permti256 (v4di,v4di,int)
21254 v4di __builtin_ia32_extract128i256 (v4di,int)
21255 v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
21256 v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
21257 v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
21258 v4si __builtin_ia32_maskloadd (pcv4si,v4si)
21259 v2di __builtin_ia32_maskloadq (pcv2di,v2di)
21260 void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
21261 void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
21262 void __builtin_ia32_maskstored (pv4si,v4si,v4si)
21263 void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
21264 v8si __builtin_ia32_psllv8si (v8si,v8si)
21265 v4si __builtin_ia32_psllv4si (v4si,v4si)
21266 v4di __builtin_ia32_psllv4di (v4di,v4di)
21267 v2di __builtin_ia32_psllv2di (v2di,v2di)
21268 v8si __builtin_ia32_psrav8si (v8si,v8si)
21269 v4si __builtin_ia32_psrav4si (v4si,v4si)
21270 v8si __builtin_ia32_psrlv8si (v8si,v8si)
21271 v4si __builtin_ia32_psrlv4si (v4si,v4si)
21272 v4di __builtin_ia32_psrlv4di (v4di,v4di)
21273 v2di __builtin_ia32_psrlv2di (v2di,v2di)
21274 v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
21275 v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
21276 v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
21277 v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
21278 v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
21279 v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
21280 v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
21281 v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
21282 v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
21283 v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
21284 v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
21285 v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
21286 v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
21287 v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
21288 v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
21289 v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
21292 The following built-in functions are available when @option{-maes} is
21293 used. All of them generate the machine instruction that is part of the
21297 v2di __builtin_ia32_aesenc128 (v2di, v2di)
21298 v2di __builtin_ia32_aesenclast128 (v2di, v2di)
21299 v2di __builtin_ia32_aesdec128 (v2di, v2di)
21300 v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
21301 v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
21302 v2di __builtin_ia32_aesimc128 (v2di)
21305 The following built-in function is available when @option{-mpclmul} is
21309 @item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
21310 Generates the @code{pclmulqdq} machine instruction.
21313 The following built-in function is available when @option{-mfsgsbase} is
21314 used. All of them generate the machine instruction that is part of the
21318 unsigned int __builtin_ia32_rdfsbase32 (void)
21319 unsigned long long __builtin_ia32_rdfsbase64 (void)
21320 unsigned int __builtin_ia32_rdgsbase32 (void)
21321 unsigned long long __builtin_ia32_rdgsbase64 (void)
21322 void _writefsbase_u32 (unsigned int)
21323 void _writefsbase_u64 (unsigned long long)
21324 void _writegsbase_u32 (unsigned int)
21325 void _writegsbase_u64 (unsigned long long)
21328 The following built-in function is available when @option{-mrdrnd} is
21329 used. All of them generate the machine instruction that is part of the
21333 unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
21334 unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
21335 unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
21338 The following built-in function is available when @option{-mptwrite} is
21339 used. All of them generate the machine instruction that is part of the
21343 void __builtin_ia32_ptwrite32 (unsigned)
21344 void __builtin_ia32_ptwrite64 (unsigned long long)
21347 The following built-in functions are available when @option{-msse4a} is used.
21348 All of them generate the machine instruction that is part of the name.
21351 void __builtin_ia32_movntsd (double *, v2df)
21352 void __builtin_ia32_movntss (float *, v4sf)
21353 v2di __builtin_ia32_extrq (v2di, v16qi)
21354 v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
21355 v2di __builtin_ia32_insertq (v2di, v2di)
21356 v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
21359 The following built-in functions are available when @option{-mxop} is used.
21361 v2df __builtin_ia32_vfrczpd (v2df)
21362 v4sf __builtin_ia32_vfrczps (v4sf)
21363 v2df __builtin_ia32_vfrczsd (v2df)
21364 v4sf __builtin_ia32_vfrczss (v4sf)
21365 v4df __builtin_ia32_vfrczpd256 (v4df)
21366 v8sf __builtin_ia32_vfrczps256 (v8sf)
21367 v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
21368 v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
21369 v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
21370 v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
21371 v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
21372 v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
21373 v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
21374 v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
21375 v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
21376 v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
21377 v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
21378 v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
21379 v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
21380 v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
21381 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
21382 v4si __builtin_ia32_vpcomeqd (v4si, v4si)
21383 v2di __builtin_ia32_vpcomeqq (v2di, v2di)
21384 v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
21385 v4si __builtin_ia32_vpcomequd (v4si, v4si)
21386 v2di __builtin_ia32_vpcomequq (v2di, v2di)
21387 v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
21388 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
21389 v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
21390 v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
21391 v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
21392 v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
21393 v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
21394 v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
21395 v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
21396 v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
21397 v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
21398 v4si __builtin_ia32_vpcomged (v4si, v4si)
21399 v2di __builtin_ia32_vpcomgeq (v2di, v2di)
21400 v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
21401 v4si __builtin_ia32_vpcomgeud (v4si, v4si)
21402 v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
21403 v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
21404 v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
21405 v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
21406 v4si __builtin_ia32_vpcomgtd (v4si, v4si)
21407 v2di __builtin_ia32_vpcomgtq (v2di, v2di)
21408 v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
21409 v4si __builtin_ia32_vpcomgtud (v4si, v4si)
21410 v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
21411 v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
21412 v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
21413 v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
21414 v4si __builtin_ia32_vpcomled (v4si, v4si)
21415 v2di __builtin_ia32_vpcomleq (v2di, v2di)
21416 v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
21417 v4si __builtin_ia32_vpcomleud (v4si, v4si)
21418 v2di __builtin_ia32_vpcomleuq (v2di, v2di)
21419 v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
21420 v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
21421 v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
21422 v4si __builtin_ia32_vpcomltd (v4si, v4si)
21423 v2di __builtin_ia32_vpcomltq (v2di, v2di)
21424 v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
21425 v4si __builtin_ia32_vpcomltud (v4si, v4si)
21426 v2di __builtin_ia32_vpcomltuq (v2di, v2di)
21427 v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
21428 v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
21429 v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
21430 v4si __builtin_ia32_vpcomned (v4si, v4si)
21431 v2di __builtin_ia32_vpcomneq (v2di, v2di)
21432 v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
21433 v4si __builtin_ia32_vpcomneud (v4si, v4si)
21434 v2di __builtin_ia32_vpcomneuq (v2di, v2di)
21435 v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
21436 v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
21437 v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
21438 v4si __builtin_ia32_vpcomtrued (v4si, v4si)
21439 v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
21440 v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
21441 v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
21442 v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
21443 v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
21444 v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
21445 v4si __builtin_ia32_vphaddbd (v16qi)
21446 v2di __builtin_ia32_vphaddbq (v16qi)
21447 v8hi __builtin_ia32_vphaddbw (v16qi)
21448 v2di __builtin_ia32_vphadddq (v4si)
21449 v4si __builtin_ia32_vphaddubd (v16qi)
21450 v2di __builtin_ia32_vphaddubq (v16qi)
21451 v8hi __builtin_ia32_vphaddubw (v16qi)
21452 v2di __builtin_ia32_vphaddudq (v4si)
21453 v4si __builtin_ia32_vphadduwd (v8hi)
21454 v2di __builtin_ia32_vphadduwq (v8hi)
21455 v4si __builtin_ia32_vphaddwd (v8hi)
21456 v2di __builtin_ia32_vphaddwq (v8hi)
21457 v8hi __builtin_ia32_vphsubbw (v16qi)
21458 v2di __builtin_ia32_vphsubdq (v4si)
21459 v4si __builtin_ia32_vphsubwd (v8hi)
21460 v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
21461 v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
21462 v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
21463 v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
21464 v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
21465 v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
21466 v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
21467 v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
21468 v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
21469 v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
21470 v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
21471 v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
21472 v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
21473 v16qi __builtin_ia32_vprotb (v16qi, v16qi)
21474 v4si __builtin_ia32_vprotd (v4si, v4si)
21475 v2di __builtin_ia32_vprotq (v2di, v2di)
21476 v8hi __builtin_ia32_vprotw (v8hi, v8hi)
21477 v16qi __builtin_ia32_vpshab (v16qi, v16qi)
21478 v4si __builtin_ia32_vpshad (v4si, v4si)
21479 v2di __builtin_ia32_vpshaq (v2di, v2di)
21480 v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
21481 v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
21482 v4si __builtin_ia32_vpshld (v4si, v4si)
21483 v2di __builtin_ia32_vpshlq (v2di, v2di)
21484 v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
21487 The following built-in functions are available when @option{-mfma4} is used.
21488 All of them generate the machine instruction that is part of the name.
21491 v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df)
21492 v4sf __builtin_ia32_vfmaddps (v4sf, v4sf, v4sf)
21493 v2df __builtin_ia32_vfmaddsd (v2df, v2df, v2df)
21494 v4sf __builtin_ia32_vfmaddss (v4sf, v4sf, v4sf)
21495 v2df __builtin_ia32_vfmsubpd (v2df, v2df, v2df)
21496 v4sf __builtin_ia32_vfmsubps (v4sf, v4sf, v4sf)
21497 v2df __builtin_ia32_vfmsubsd (v2df, v2df, v2df)
21498 v4sf __builtin_ia32_vfmsubss (v4sf, v4sf, v4sf)
21499 v2df __builtin_ia32_vfnmaddpd (v2df, v2df, v2df)
21500 v4sf __builtin_ia32_vfnmaddps (v4sf, v4sf, v4sf)
21501 v2df __builtin_ia32_vfnmaddsd (v2df, v2df, v2df)
21502 v4sf __builtin_ia32_vfnmaddss (v4sf, v4sf, v4sf)
21503 v2df __builtin_ia32_vfnmsubpd (v2df, v2df, v2df)
21504 v4sf __builtin_ia32_vfnmsubps (v4sf, v4sf, v4sf)
21505 v2df __builtin_ia32_vfnmsubsd (v2df, v2df, v2df)
21506 v4sf __builtin_ia32_vfnmsubss (v4sf, v4sf, v4sf)
21507 v2df __builtin_ia32_vfmaddsubpd (v2df, v2df, v2df)
21508 v4sf __builtin_ia32_vfmaddsubps (v4sf, v4sf, v4sf)
21509 v2df __builtin_ia32_vfmsubaddpd (v2df, v2df, v2df)
21510 v4sf __builtin_ia32_vfmsubaddps (v4sf, v4sf, v4sf)
21511 v4df __builtin_ia32_vfmaddpd256 (v4df, v4df, v4df)
21512 v8sf __builtin_ia32_vfmaddps256 (v8sf, v8sf, v8sf)
21513 v4df __builtin_ia32_vfmsubpd256 (v4df, v4df, v4df)
21514 v8sf __builtin_ia32_vfmsubps256 (v8sf, v8sf, v8sf)
21515 v4df __builtin_ia32_vfnmaddpd256 (v4df, v4df, v4df)
21516 v8sf __builtin_ia32_vfnmaddps256 (v8sf, v8sf, v8sf)
21517 v4df __builtin_ia32_vfnmsubpd256 (v4df, v4df, v4df)
21518 v8sf __builtin_ia32_vfnmsubps256 (v8sf, v8sf, v8sf)
21519 v4df __builtin_ia32_vfmaddsubpd256 (v4df, v4df, v4df)
21520 v8sf __builtin_ia32_vfmaddsubps256 (v8sf, v8sf, v8sf)
21521 v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df)
21522 v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf)
21526 The following built-in functions are available when @option{-mlwp} is used.
21529 void __builtin_ia32_llwpcb16 (void *);
21530 void __builtin_ia32_llwpcb32 (void *);
21531 void __builtin_ia32_llwpcb64 (void *);
21532 void * __builtin_ia32_llwpcb16 (void);
21533 void * __builtin_ia32_llwpcb32 (void);
21534 void * __builtin_ia32_llwpcb64 (void);
21535 void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
21536 void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
21537 void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
21538 unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
21539 unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
21540 unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
21543 The following built-in functions are available when @option{-mbmi} is used.
21544 All of them generate the machine instruction that is part of the name.
21546 unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
21547 unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
21550 The following built-in functions are available when @option{-mbmi2} is used.
21551 All of them generate the machine instruction that is part of the name.
21553 unsigned int _bzhi_u32 (unsigned int, unsigned int)
21554 unsigned int _pdep_u32 (unsigned int, unsigned int)
21555 unsigned int _pext_u32 (unsigned int, unsigned int)
21556 unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
21557 unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
21558 unsigned long long _pext_u64 (unsigned long long, unsigned long long)
21561 The following built-in functions are available when @option{-mlzcnt} is used.
21562 All of them generate the machine instruction that is part of the name.
21564 unsigned short __builtin_ia32_lzcnt_u16(unsigned short);
21565 unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
21566 unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
21569 The following built-in functions are available when @option{-mfxsr} is used.
21570 All of them generate the machine instruction that is part of the name.
21572 void __builtin_ia32_fxsave (void *)
21573 void __builtin_ia32_fxrstor (void *)
21574 void __builtin_ia32_fxsave64 (void *)
21575 void __builtin_ia32_fxrstor64 (void *)
21578 The following built-in functions are available when @option{-mxsave} is used.
21579 All of them generate the machine instruction that is part of the name.
21581 void __builtin_ia32_xsave (void *, long long)
21582 void __builtin_ia32_xrstor (void *, long long)
21583 void __builtin_ia32_xsave64 (void *, long long)
21584 void __builtin_ia32_xrstor64 (void *, long long)
21587 The following built-in functions are available when @option{-mxsaveopt} is used.
21588 All of them generate the machine instruction that is part of the name.
21590 void __builtin_ia32_xsaveopt (void *, long long)
21591 void __builtin_ia32_xsaveopt64 (void *, long long)
21594 The following built-in functions are available when @option{-mtbm} is used.
21595 Both of them generate the immediate form of the bextr machine instruction.
21597 unsigned int __builtin_ia32_bextri_u32 (unsigned int,
21598 const unsigned int);
21599 unsigned long long __builtin_ia32_bextri_u64 (unsigned long long,
21600 const unsigned long long);
21604 The following built-in functions are available when @option{-m3dnow} is used.
21605 All of them generate the machine instruction that is part of the name.
21608 void __builtin_ia32_femms (void)
21609 v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
21610 v2si __builtin_ia32_pf2id (v2sf)
21611 v2sf __builtin_ia32_pfacc (v2sf, v2sf)
21612 v2sf __builtin_ia32_pfadd (v2sf, v2sf)
21613 v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
21614 v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
21615 v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
21616 v2sf __builtin_ia32_pfmax (v2sf, v2sf)
21617 v2sf __builtin_ia32_pfmin (v2sf, v2sf)
21618 v2sf __builtin_ia32_pfmul (v2sf, v2sf)
21619 v2sf __builtin_ia32_pfrcp (v2sf)
21620 v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
21621 v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
21622 v2sf __builtin_ia32_pfrsqrt (v2sf)
21623 v2sf __builtin_ia32_pfsub (v2sf, v2sf)
21624 v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
21625 v2sf __builtin_ia32_pi2fd (v2si)
21626 v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
21629 The following built-in functions are available when @option{-m3dnowa} is used.
21630 All of them generate the machine instruction that is part of the name.
21633 v2si __builtin_ia32_pf2iw (v2sf)
21634 v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
21635 v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
21636 v2sf __builtin_ia32_pi2fw (v2si)
21637 v2sf __builtin_ia32_pswapdsf (v2sf)
21638 v2si __builtin_ia32_pswapdsi (v2si)
21641 The following built-in functions are available when @option{-mrtm} is used
21642 They are used for restricted transactional memory. These are the internal
21643 low level functions. Normally the functions in
21644 @ref{x86 transactional memory intrinsics} should be used instead.
21647 int __builtin_ia32_xbegin ()
21648 void __builtin_ia32_xend ()
21649 void __builtin_ia32_xabort (status)
21650 int __builtin_ia32_xtest ()
21653 The following built-in functions are available when @option{-mmwaitx} is used.
21654 All of them generate the machine instruction that is part of the name.
21656 void __builtin_ia32_monitorx (void *, unsigned int, unsigned int)
21657 void __builtin_ia32_mwaitx (unsigned int, unsigned int, unsigned int)
21660 The following built-in functions are available when @option{-mclzero} is used.
21661 All of them generate the machine instruction that is part of the name.
21663 void __builtin_i32_clzero (void *)
21666 The following built-in functions are available when @option{-mpku} is used.
21667 They generate reads and writes to PKRU.
21669 void __builtin_ia32_wrpkru (unsigned int)
21670 unsigned int __builtin_ia32_rdpkru ()
21673 The following built-in functions are available when @option{-mcet} or
21674 @option{-mshstk} option is used. They support shadow stack
21675 machine instructions from Intel Control-flow Enforcement Technology (CET).
21676 Each built-in function generates the machine instruction that is part
21677 of the function's name. These are the internal low-level functions.
21678 Normally the functions in @ref{x86 control-flow protection intrinsics}
21679 should be used instead.
21682 unsigned int __builtin_ia32_rdsspd (void)
21683 unsigned long long __builtin_ia32_rdsspq (void)
21684 void __builtin_ia32_incsspd (unsigned int)
21685 void __builtin_ia32_incsspq (unsigned long long)
21686 void __builtin_ia32_saveprevssp(void);
21687 void __builtin_ia32_rstorssp(void *);
21688 void __builtin_ia32_wrssd(unsigned int, void *);
21689 void __builtin_ia32_wrssq(unsigned long long, void *);
21690 void __builtin_ia32_wrussd(unsigned int, void *);
21691 void __builtin_ia32_wrussq(unsigned long long, void *);
21692 void __builtin_ia32_setssbsy(void);
21693 void __builtin_ia32_clrssbsy(void *);
21696 @node x86 transactional memory intrinsics
21697 @subsection x86 Transactional Memory Intrinsics
21699 These hardware transactional memory intrinsics for x86 allow you to use
21700 memory transactions with RTM (Restricted Transactional Memory).
21701 This support is enabled with the @option{-mrtm} option.
21702 For using HLE (Hardware Lock Elision) see
21703 @ref{x86 specific memory model extensions for transactional memory} instead.
21705 A memory transaction commits all changes to memory in an atomic way,
21706 as visible to other threads. If the transaction fails it is rolled back
21707 and all side effects discarded.
21709 Generally there is no guarantee that a memory transaction ever succeeds
21710 and suitable fallback code always needs to be supplied.
21712 @deftypefn {RTM Function} {unsigned} _xbegin ()
21713 Start a RTM (Restricted Transactional Memory) transaction.
21714 Returns @code{_XBEGIN_STARTED} when the transaction
21715 started successfully (note this is not 0, so the constant has to be
21716 explicitly tested).
21718 If the transaction aborts, all side effects
21719 are undone and an abort code encoded as a bit mask is returned.
21720 The following macros are defined:
21723 @item _XABORT_EXPLICIT
21724 Transaction was explicitly aborted with @code{_xabort}. The parameter passed
21725 to @code{_xabort} is available with @code{_XABORT_CODE(status)}.
21726 @item _XABORT_RETRY
21727 Transaction retry is possible.
21728 @item _XABORT_CONFLICT
21729 Transaction abort due to a memory conflict with another thread.
21730 @item _XABORT_CAPACITY
21731 Transaction abort due to the transaction using too much memory.
21732 @item _XABORT_DEBUG
21733 Transaction abort due to a debug trap.
21734 @item _XABORT_NESTED
21735 Transaction abort in an inner nested transaction.
21738 There is no guarantee
21739 any transaction ever succeeds, so there always needs to be a valid
21743 @deftypefn {RTM Function} {void} _xend ()
21744 Commit the current transaction. When no transaction is active this faults.
21745 All memory side effects of the transaction become visible
21746 to other threads in an atomic manner.
21749 @deftypefn {RTM Function} {int} _xtest ()
21750 Return a nonzero value if a transaction is currently active, otherwise 0.
21753 @deftypefn {RTM Function} {void} _xabort (status)
21754 Abort the current transaction. When no transaction is active this is a no-op.
21755 The @var{status} is an 8-bit constant; its value is encoded in the return
21756 value from @code{_xbegin}.
21759 Here is an example showing handling for @code{_XABORT_RETRY}
21760 and a fallback path for other failures:
21763 #include <immintrin.h>
21765 int n_tries, max_tries;
21766 unsigned status = _XABORT_EXPLICIT;
21769 for (n_tries = 0; n_tries < max_tries; n_tries++)
21771 status = _xbegin ();
21772 if (status == _XBEGIN_STARTED || !(status & _XABORT_RETRY))
21775 if (status == _XBEGIN_STARTED)
21777 ... transaction code...
21782 ... non-transactional fallback path...
21787 Note that, in most cases, the transactional and non-transactional code
21788 must synchronize together to ensure consistency.
21790 @node x86 control-flow protection intrinsics
21791 @subsection x86 Control-Flow Protection Intrinsics
21793 @deftypefn {CET Function} {ret_type} _get_ssp (void)
21794 Get the current value of shadow stack pointer if shadow stack support
21795 from Intel CET is enabled in the hardware or @code{0} otherwise.
21796 The @code{ret_type} is @code{unsigned long long} for 64-bit targets
21797 and @code{unsigned int} for 32-bit targets.
21800 @deftypefn {CET Function} void _inc_ssp (unsigned int)
21801 Increment the current shadow stack pointer by the size specified by the
21802 function argument. The argument is masked to a byte value for security
21803 reasons, so to increment by more than 255 bytes you must call the function
21807 The shadow stack unwind code looks like:
21810 #include <immintrin.h>
21812 /* Unwind the shadow stack for EH. */
21813 #define _Unwind_Frames_Extra(x) \
21816 _Unwind_Word ssp = _get_ssp (); \
21819 _Unwind_Word tmp = (x); \
21820 while (tmp > 255) \
21832 This code runs unconditionally on all 64-bit processors. For 32-bit
21833 processors the code runs on those that support multi-byte NOP instructions.
21835 @node Target Format Checks
21836 @section Format Checks Specific to Particular Target Machines
21838 For some target machines, GCC supports additional options to the
21840 (@pxref{Function Attributes,,Declaring Attributes of Functions}).
21843 * Solaris Format Checks::
21844 * Darwin Format Checks::
21847 @node Solaris Format Checks
21848 @subsection Solaris Format Checks
21850 Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
21851 check. @code{cmn_err} accepts a subset of the standard @code{printf}
21852 conversions, and the two-argument @code{%b} conversion for displaying
21853 bit-fields. See the Solaris man page for @code{cmn_err} for more information.
21855 @node Darwin Format Checks
21856 @subsection Darwin Format Checks
21858 Darwin targets support the @code{CFString} (or @code{__CFString__}) in the format
21859 attribute context. Declarations made with such attribution are parsed for correct syntax
21860 and format argument types. However, parsing of the format string itself is currently undefined
21861 and is not carried out by this version of the compiler.
21863 Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
21864 also be used as format arguments. Note that the relevant headers are only likely to be
21865 available on Darwin (OSX) installations. On such installations, the XCode and system
21866 documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
21867 associated functions.
21870 @section Pragmas Accepted by GCC
21872 @cindex @code{#pragma}
21874 GCC supports several types of pragmas, primarily in order to compile
21875 code originally written for other compilers. Note that in general
21876 we do not recommend the use of pragmas; @xref{Function Attributes},
21877 for further explanation.
21880 * AArch64 Pragmas::
21884 * RS/6000 and PowerPC Pragmas::
21887 * Solaris Pragmas::
21888 * Symbol-Renaming Pragmas::
21889 * Structure-Layout Pragmas::
21891 * Diagnostic Pragmas::
21892 * Visibility Pragmas::
21893 * Push/Pop Macro Pragmas::
21894 * Function Specific Option Pragmas::
21895 * Loop-Specific Pragmas::
21898 @node AArch64 Pragmas
21899 @subsection AArch64 Pragmas
21901 The pragmas defined by the AArch64 target correspond to the AArch64
21902 target function attributes. They can be specified as below:
21904 #pragma GCC target("string")
21907 where @code{@var{string}} can be any string accepted as an AArch64 target
21908 attribute. @xref{AArch64 Function Attributes}, for more details
21909 on the permissible values of @code{string}.
21912 @subsection ARM Pragmas
21914 The ARM target defines pragmas for controlling the default addition of
21915 @code{long_call} and @code{short_call} attributes to functions.
21916 @xref{Function Attributes}, for information about the effects of these
21921 @cindex pragma, long_calls
21922 Set all subsequent functions to have the @code{long_call} attribute.
21924 @item no_long_calls
21925 @cindex pragma, no_long_calls
21926 Set all subsequent functions to have the @code{short_call} attribute.
21928 @item long_calls_off
21929 @cindex pragma, long_calls_off
21930 Do not affect the @code{long_call} or @code{short_call} attributes of
21931 subsequent functions.
21935 @subsection M32C Pragmas
21938 @item GCC memregs @var{number}
21939 @cindex pragma, memregs
21940 Overrides the command-line option @code{-memregs=} for the current
21941 file. Use with care! This pragma must be before any function in the
21942 file, and mixing different memregs values in different objects may
21943 make them incompatible. This pragma is useful when a
21944 performance-critical function uses a memreg for temporary values,
21945 as it may allow you to reduce the number of memregs used.
21947 @item ADDRESS @var{name} @var{address}
21948 @cindex pragma, address
21949 For any declared symbols matching @var{name}, this does three things
21950 to that symbol: it forces the symbol to be located at the given
21951 address (a number), it forces the symbol to be volatile, and it
21952 changes the symbol's scope to be static. This pragma exists for
21953 compatibility with other compilers, but note that the common
21954 @code{1234H} numeric syntax is not supported (use @code{0x1234}
21958 #pragma ADDRESS port3 0x103
21965 @subsection MeP Pragmas
21969 @item custom io_volatile (on|off)
21970 @cindex pragma, custom io_volatile
21971 Overrides the command-line option @code{-mio-volatile} for the current
21972 file. Note that for compatibility with future GCC releases, this
21973 option should only be used once before any @code{io} variables in each
21976 @item GCC coprocessor available @var{registers}
21977 @cindex pragma, coprocessor available
21978 Specifies which coprocessor registers are available to the register
21979 allocator. @var{registers} may be a single register, register range
21980 separated by ellipses, or comma-separated list of those. Example:
21983 #pragma GCC coprocessor available $c0...$c10, $c28
21986 @item GCC coprocessor call_saved @var{registers}
21987 @cindex pragma, coprocessor call_saved
21988 Specifies which coprocessor registers are to be saved and restored by
21989 any function using them. @var{registers} may be a single register,
21990 register range separated by ellipses, or comma-separated list of
21994 #pragma GCC coprocessor call_saved $c4...$c6, $c31
21997 @item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
21998 @cindex pragma, coprocessor subclass
21999 Creates and defines a register class. These register classes can be
22000 used by inline @code{asm} constructs. @var{registers} may be a single
22001 register, register range separated by ellipses, or comma-separated
22002 list of those. Example:
22005 #pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
22007 asm ("cpfoo %0" : "=B" (x));
22010 @item GCC disinterrupt @var{name} , @var{name} @dots{}
22011 @cindex pragma, disinterrupt
22012 For the named functions, the compiler adds code to disable interrupts
22013 for the duration of those functions. If any functions so named
22014 are not encountered in the source, a warning is emitted that the pragma is
22015 not used. Examples:
22018 #pragma disinterrupt foo
22019 #pragma disinterrupt bar, grill
22020 int foo () @{ @dots{} @}
22023 @item GCC call @var{name} , @var{name} @dots{}
22024 @cindex pragma, call
22025 For the named functions, the compiler always uses a register-indirect
22026 call model when calling the named functions. Examples:
22035 @node RS/6000 and PowerPC Pragmas
22036 @subsection RS/6000 and PowerPC Pragmas
22038 The RS/6000 and PowerPC targets define one pragma for controlling
22039 whether or not the @code{longcall} attribute is added to function
22040 declarations by default. This pragma overrides the @option{-mlongcall}
22041 option, but not the @code{longcall} and @code{shortcall} attributes.
22042 @xref{RS/6000 and PowerPC Options}, for more information about when long
22043 calls are and are not necessary.
22047 @cindex pragma, longcall
22048 Apply the @code{longcall} attribute to all subsequent function
22052 Do not apply the @code{longcall} attribute to subsequent function
22056 @c Describe h8300 pragmas here.
22057 @c Describe sh pragmas here.
22058 @c Describe v850 pragmas here.
22060 @node S/390 Pragmas
22061 @subsection S/390 Pragmas
22063 The pragmas defined by the S/390 target correspond to the S/390
22064 target function attributes and some the additional options:
22071 Note that options of the pragma, unlike options of the target
22072 attribute, do change the value of preprocessor macros like
22073 @code{__VEC__}. They can be specified as below:
22076 #pragma GCC target("string[,string]...")
22077 #pragma GCC target("string"[,"string"]...)
22080 @node Darwin Pragmas
22081 @subsection Darwin Pragmas
22083 The following pragmas are available for all architectures running the
22084 Darwin operating system. These are useful for compatibility with other
22088 @item mark @var{tokens}@dots{}
22089 @cindex pragma, mark
22090 This pragma is accepted, but has no effect.
22092 @item options align=@var{alignment}
22093 @cindex pragma, options align
22094 This pragma sets the alignment of fields in structures. The values of
22095 @var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
22096 @code{power}, to emulate PowerPC alignment. Uses of this pragma nest
22097 properly; to restore the previous setting, use @code{reset} for the
22100 @item segment @var{tokens}@dots{}
22101 @cindex pragma, segment
22102 This pragma is accepted, but has no effect.
22104 @item unused (@var{var} [, @var{var}]@dots{})
22105 @cindex pragma, unused
22106 This pragma declares variables to be possibly unused. GCC does not
22107 produce warnings for the listed variables. The effect is similar to
22108 that of the @code{unused} attribute, except that this pragma may appear
22109 anywhere within the variables' scopes.
22112 @node Solaris Pragmas
22113 @subsection Solaris Pragmas
22115 The Solaris target supports @code{#pragma redefine_extname}
22116 (@pxref{Symbol-Renaming Pragmas}). It also supports additional
22117 @code{#pragma} directives for compatibility with the system compiler.
22120 @item align @var{alignment} (@var{variable} [, @var{variable}]...)
22121 @cindex pragma, align
22123 Increase the minimum alignment of each @var{variable} to @var{alignment}.
22124 This is the same as GCC's @code{aligned} attribute @pxref{Variable
22125 Attributes}). Macro expansion occurs on the arguments to this pragma
22126 when compiling C and Objective-C@. It does not currently occur when
22127 compiling C++, but this is a bug which may be fixed in a future
22130 @item fini (@var{function} [, @var{function}]...)
22131 @cindex pragma, fini
22133 This pragma causes each listed @var{function} to be called after
22134 main, or during shared module unloading, by adding a call to the
22135 @code{.fini} section.
22137 @item init (@var{function} [, @var{function}]...)
22138 @cindex pragma, init
22140 This pragma causes each listed @var{function} to be called during
22141 initialization (before @code{main}) or during shared module loading, by
22142 adding a call to the @code{.init} section.
22146 @node Symbol-Renaming Pragmas
22147 @subsection Symbol-Renaming Pragmas
22149 GCC supports a @code{#pragma} directive that changes the name used in
22150 assembly for a given declaration. While this pragma is supported on all
22151 platforms, it is intended primarily to provide compatibility with the
22152 Solaris system headers. This effect can also be achieved using the asm
22153 labels extension (@pxref{Asm Labels}).
22156 @item redefine_extname @var{oldname} @var{newname}
22157 @cindex pragma, redefine_extname
22159 This pragma gives the C function @var{oldname} the assembly symbol
22160 @var{newname}. The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
22161 is defined if this pragma is available (currently on all platforms).
22164 This pragma and the asm labels extension interact in a complicated
22165 manner. Here are some corner cases you may want to be aware of:
22168 @item This pragma silently applies only to declarations with external
22169 linkage. Asm labels do not have this restriction.
22171 @item In C++, this pragma silently applies only to declarations with
22172 ``C'' linkage. Again, asm labels do not have this restriction.
22174 @item If either of the ways of changing the assembly name of a
22175 declaration are applied to a declaration whose assembly name has
22176 already been determined (either by a previous use of one of these
22177 features, or because the compiler needed the assembly name in order to
22178 generate code), and the new name is different, a warning issues and
22179 the name does not change.
22181 @item The @var{oldname} used by @code{#pragma redefine_extname} is
22182 always the C-language name.
22185 @node Structure-Layout Pragmas
22186 @subsection Structure-Layout Pragmas
22188 For compatibility with Microsoft Windows compilers, GCC supports a
22189 set of @code{#pragma} directives that change the maximum alignment of
22190 members of structures (other than zero-width bit-fields), unions, and
22191 classes subsequently defined. The @var{n} value below always is required
22192 to be a small power of two and specifies the new alignment in bytes.
22195 @item @code{#pragma pack(@var{n})} simply sets the new alignment.
22196 @item @code{#pragma pack()} sets the alignment to the one that was in
22197 effect when compilation started (see also command-line option
22198 @option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
22199 @item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
22200 setting on an internal stack and then optionally sets the new alignment.
22201 @item @code{#pragma pack(pop)} restores the alignment setting to the one
22202 saved at the top of the internal stack (and removes that stack entry).
22203 Note that @code{#pragma pack([@var{n}])} does not influence this internal
22204 stack; thus it is possible to have @code{#pragma pack(push)} followed by
22205 multiple @code{#pragma pack(@var{n})} instances and finalized by a single
22206 @code{#pragma pack(pop)}.
22209 Some targets, e.g.@: x86 and PowerPC, support the @code{#pragma ms_struct}
22210 directive which lays out structures and unions subsequently defined as the
22211 documented @code{__attribute__ ((ms_struct))}.
22214 @item @code{#pragma ms_struct on} turns on the Microsoft layout.
22215 @item @code{#pragma ms_struct off} turns off the Microsoft layout.
22216 @item @code{#pragma ms_struct reset} goes back to the default layout.
22219 Most targets also support the @code{#pragma scalar_storage_order} directive
22220 which lays out structures and unions subsequently defined as the documented
22221 @code{__attribute__ ((scalar_storage_order))}.
22224 @item @code{#pragma scalar_storage_order big-endian} sets the storage order
22225 of the scalar fields to big-endian.
22226 @item @code{#pragma scalar_storage_order little-endian} sets the storage order
22227 of the scalar fields to little-endian.
22228 @item @code{#pragma scalar_storage_order default} goes back to the endianness
22229 that was in effect when compilation started (see also command-line option
22230 @option{-fsso-struct=@var{endianness}} @pxref{C Dialect Options}).
22234 @subsection Weak Pragmas
22236 For compatibility with SVR4, GCC supports a set of @code{#pragma}
22237 directives for declaring symbols to be weak, and defining weak
22241 @item #pragma weak @var{symbol}
22242 @cindex pragma, weak
22243 This pragma declares @var{symbol} to be weak, as if the declaration
22244 had the attribute of the same name. The pragma may appear before
22245 or after the declaration of @var{symbol}. It is not an error for
22246 @var{symbol} to never be defined at all.
22248 @item #pragma weak @var{symbol1} = @var{symbol2}
22249 This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
22250 It is an error if @var{symbol2} is not defined in the current
22254 @node Diagnostic Pragmas
22255 @subsection Diagnostic Pragmas
22257 GCC allows the user to selectively enable or disable certain types of
22258 diagnostics, and change the kind of the diagnostic. For example, a
22259 project's policy might require that all sources compile with
22260 @option{-Werror} but certain files might have exceptions allowing
22261 specific types of warnings. Or, a project might selectively enable
22262 diagnostics and treat them as errors depending on which preprocessor
22263 macros are defined.
22266 @item #pragma GCC diagnostic @var{kind} @var{option}
22267 @cindex pragma, diagnostic
22269 Modifies the disposition of a diagnostic. Note that not all
22270 diagnostics are modifiable; at the moment only warnings (normally
22271 controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
22272 Use @option{-fdiagnostics-show-option} to determine which diagnostics
22273 are controllable and which option controls them.
22275 @var{kind} is @samp{error} to treat this diagnostic as an error,
22276 @samp{warning} to treat it like a warning (even if @option{-Werror} is
22277 in effect), or @samp{ignored} if the diagnostic is to be ignored.
22278 @var{option} is a double quoted string that matches the command-line
22282 #pragma GCC diagnostic warning "-Wformat"
22283 #pragma GCC diagnostic error "-Wformat"
22284 #pragma GCC diagnostic ignored "-Wformat"
22287 Note that these pragmas override any command-line options. GCC keeps
22288 track of the location of each pragma, and issues diagnostics according
22289 to the state as of that point in the source file. Thus, pragmas occurring
22290 after a line do not affect diagnostics caused by that line.
22292 @item #pragma GCC diagnostic push
22293 @itemx #pragma GCC diagnostic pop
22295 Causes GCC to remember the state of the diagnostics as of each
22296 @code{push}, and restore to that point at each @code{pop}. If a
22297 @code{pop} has no matching @code{push}, the command-line options are
22301 #pragma GCC diagnostic error "-Wuninitialized"
22302 foo(a); /* error is given for this one */
22303 #pragma GCC diagnostic push
22304 #pragma GCC diagnostic ignored "-Wuninitialized"
22305 foo(b); /* no diagnostic for this one */
22306 #pragma GCC diagnostic pop
22307 foo(c); /* error is given for this one */
22308 #pragma GCC diagnostic pop
22309 foo(d); /* depends on command-line options */
22314 GCC also offers a simple mechanism for printing messages during
22318 @item #pragma message @var{string}
22319 @cindex pragma, diagnostic
22321 Prints @var{string} as a compiler message on compilation. The message
22322 is informational only, and is neither a compilation warning nor an
22323 error. Newlines can be included in the string by using the @samp{\n}
22327 #pragma message "Compiling " __FILE__ "..."
22330 @var{string} may be parenthesized, and is printed with location
22331 information. For example,
22334 #define DO_PRAGMA(x) _Pragma (#x)
22335 #define TODO(x) DO_PRAGMA(message ("TODO - " #x))
22337 TODO(Remember to fix this)
22341 prints @samp{/tmp/file.c:4: note: #pragma message:
22342 TODO - Remember to fix this}.
22344 @item #pragma GCC error @var{message}
22345 @cindex pragma, diagnostic
22346 Generates an error message. This pragma @emph{is} considered to
22347 indicate an error in the compilation, and it will be treated as such.
22349 Newlines can be included in the string by using the @samp{\n}
22350 escape sequence. They will be displayed as newlines even if the
22351 @option{-fmessage-length} option is set to zero.
22353 The error is only generated if the pragma is present in the code after
22354 pre-processing has been completed. It does not matter however if the
22355 code containing the pragma is unreachable:
22359 #pragma GCC error "this error is not seen"
22364 #pragma GCC error "this error is seen"
22368 @item #pragma GCC warning @var{message}
22369 @cindex pragma, diagnostic
22370 This is just like @samp{pragma GCC error} except that a warning
22371 message is issued instead of an error message. Unless
22372 @option{-Werror} is in effect, in which case this pragma will generate
22377 @node Visibility Pragmas
22378 @subsection Visibility Pragmas
22381 @item #pragma GCC visibility push(@var{visibility})
22382 @itemx #pragma GCC visibility pop
22383 @cindex pragma, visibility
22385 This pragma allows the user to set the visibility for multiple
22386 declarations without having to give each a visibility attribute
22387 (@pxref{Function Attributes}).
22389 In C++, @samp{#pragma GCC visibility} affects only namespace-scope
22390 declarations. Class members and template specializations are not
22391 affected; if you want to override the visibility for a particular
22392 member or instantiation, you must use an attribute.
22397 @node Push/Pop Macro Pragmas
22398 @subsection Push/Pop Macro Pragmas
22400 For compatibility with Microsoft Windows compilers, GCC supports
22401 @samp{#pragma push_macro(@var{"macro_name"})}
22402 and @samp{#pragma pop_macro(@var{"macro_name"})}.
22405 @item #pragma push_macro(@var{"macro_name"})
22406 @cindex pragma, push_macro
22407 This pragma saves the value of the macro named as @var{macro_name} to
22408 the top of the stack for this macro.
22410 @item #pragma pop_macro(@var{"macro_name"})
22411 @cindex pragma, pop_macro
22412 This pragma sets the value of the macro named as @var{macro_name} to
22413 the value on top of the stack for this macro. If the stack for
22414 @var{macro_name} is empty, the value of the macro remains unchanged.
22421 #pragma push_macro("X")
22424 #pragma pop_macro("X")
22429 In this example, the definition of X as 1 is saved by @code{#pragma
22430 push_macro} and restored by @code{#pragma pop_macro}.
22432 @node Function Specific Option Pragmas
22433 @subsection Function Specific Option Pragmas
22436 @item #pragma GCC target (@var{string}, @dots{})
22437 @cindex pragma GCC target
22439 This pragma allows you to set target-specific options for functions
22440 defined later in the source file. One or more strings can be
22441 specified. Each function that is defined after this point is treated
22442 as if it had been declared with one @code{target(}@var{string}@code{)}
22443 attribute for each @var{string} argument. The parentheses around
22444 the strings in the pragma are optional. @xref{Function Attributes},
22445 for more information about the @code{target} attribute and the attribute
22448 The @code{#pragma GCC target} pragma is presently implemented for
22449 x86, ARM, AArch64, PowerPC, S/390, and Nios II targets only.
22451 @item #pragma GCC optimize (@var{string}, @dots{})
22452 @cindex pragma GCC optimize
22454 This pragma allows you to set global optimization options for functions
22455 defined later in the source file. One or more strings can be
22456 specified. Each function that is defined after this point is treated
22457 as if it had been declared with one @code{optimize(}@var{string}@code{)}
22458 attribute for each @var{string} argument. The parentheses around
22459 the strings in the pragma are optional. @xref{Function Attributes},
22460 for more information about the @code{optimize} attribute and the attribute
22463 @item #pragma GCC push_options
22464 @itemx #pragma GCC pop_options
22465 @cindex pragma GCC push_options
22466 @cindex pragma GCC pop_options
22468 These pragmas maintain a stack of the current target and optimization
22469 options. It is intended for include files where you temporarily want
22470 to switch to using a different @samp{#pragma GCC target} or
22471 @samp{#pragma GCC optimize} and then to pop back to the previous
22474 @item #pragma GCC reset_options
22475 @cindex pragma GCC reset_options
22477 This pragma clears the current @code{#pragma GCC target} and
22478 @code{#pragma GCC optimize} to use the default switches as specified
22479 on the command line.
22483 @node Loop-Specific Pragmas
22484 @subsection Loop-Specific Pragmas
22487 @item #pragma GCC ivdep
22488 @cindex pragma GCC ivdep
22490 With this pragma, the programmer asserts that there are no loop-carried
22491 dependencies which would prevent consecutive iterations of
22492 the following loop from executing concurrently with SIMD
22493 (single instruction multiple data) instructions.
22495 For example, the compiler can only unconditionally vectorize the following
22496 loop with the pragma:
22499 void foo (int n, int *a, int *b, int *c)
22503 for (i = 0; i < n; ++i)
22504 a[i] = b[i] + c[i];
22509 In this example, using the @code{restrict} qualifier had the same
22510 effect. In the following example, that would not be possible. Assume
22511 @math{k < -m} or @math{k >= m}. Only with the pragma, the compiler knows
22512 that it can unconditionally vectorize the following loop:
22515 void ignore_vec_dep (int *a, int k, int c, int m)
22518 for (int i = 0; i < m; i++)
22519 a[i] = a[i + k] * c;
22523 @item #pragma GCC unroll @var{n}
22524 @cindex pragma GCC unroll @var{n}
22526 You can use this pragma to control how many times a loop should be unrolled.
22527 It must be placed immediately before a @code{for}, @code{while} or @code{do}
22528 loop or a @code{#pragma GCC ivdep}, and applies only to the loop that follows.
22529 @var{n} is an integer constant expression specifying the unrolling factor.
22530 The values of @math{0} and @math{1} block any unrolling of the loop.
22534 @node Unnamed Fields
22535 @section Unnamed Structure and Union Fields
22536 @cindex @code{struct}
22537 @cindex @code{union}
22539 As permitted by ISO C11 and for compatibility with other compilers,
22540 GCC allows you to define
22541 a structure or union that contains, as fields, structures and unions
22542 without names. For example:
22556 In this example, you are able to access members of the unnamed
22557 union with code like @samp{foo.b}. Note that only unnamed structs and
22558 unions are allowed, you may not have, for example, an unnamed
22561 You must never create such structures that cause ambiguous field definitions.
22562 For example, in this structure:
22574 it is ambiguous which @code{a} is being referred to with @samp{foo.a}.
22575 The compiler gives errors for such constructs.
22577 @opindex fms-extensions
22578 Unless @option{-fms-extensions} is used, the unnamed field must be a
22579 structure or union definition without a tag (for example, @samp{struct
22580 @{ int a; @};}). If @option{-fms-extensions} is used, the field may
22581 also be a definition with a tag such as @samp{struct foo @{ int a;
22582 @};}, a reference to a previously defined structure or union such as
22583 @samp{struct foo;}, or a reference to a @code{typedef} name for a
22584 previously defined structure or union type.
22586 @opindex fplan9-extensions
22587 The option @option{-fplan9-extensions} enables
22588 @option{-fms-extensions} as well as two other extensions. First, a
22589 pointer to a structure is automatically converted to a pointer to an
22590 anonymous field for assignments and function calls. For example:
22593 struct s1 @{ int a; @};
22594 struct s2 @{ struct s1; @};
22595 extern void f1 (struct s1 *);
22596 void f2 (struct s2 *p) @{ f1 (p); @}
22600 In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
22601 converted into a pointer to the anonymous field.
22603 Second, when the type of an anonymous field is a @code{typedef} for a
22604 @code{struct} or @code{union}, code may refer to the field using the
22605 name of the @code{typedef}.
22608 typedef struct @{ int a; @} s1;
22609 struct s2 @{ s1; @};
22610 s1 f1 (struct s2 *p) @{ return p->s1; @}
22613 These usages are only permitted when they are not ambiguous.
22616 @section Thread-Local Storage
22617 @cindex Thread-Local Storage
22618 @cindex @acronym{TLS}
22619 @cindex @code{__thread}
22621 Thread-local storage (@acronym{TLS}) is a mechanism by which variables
22622 are allocated such that there is one instance of the variable per extant
22623 thread. The runtime model GCC uses to implement this originates
22624 in the IA-64 processor-specific ABI, but has since been migrated
22625 to other processors as well. It requires significant support from
22626 the linker (@command{ld}), dynamic linker (@command{ld.so}), and
22627 system libraries (@file{libc.so} and @file{libpthread.so}), so it
22628 is not available everywhere.
22630 At the user level, the extension is visible with a new storage
22631 class keyword: @code{__thread}. For example:
22635 extern __thread struct state s;
22636 static __thread char *p;
22639 The @code{__thread} specifier may be used alone, with the @code{extern}
22640 or @code{static} specifiers, but with no other storage class specifier.
22641 When used with @code{extern} or @code{static}, @code{__thread} must appear
22642 immediately after the other storage class specifier.
22644 The @code{__thread} specifier may be applied to any global, file-scoped
22645 static, function-scoped static, or static data member of a class. It may
22646 not be applied to block-scoped automatic or non-static data member.
22648 When the address-of operator is applied to a thread-local variable, it is
22649 evaluated at run time and returns the address of the current thread's
22650 instance of that variable. An address so obtained may be used by any
22651 thread. When a thread terminates, any pointers to thread-local variables
22652 in that thread become invalid.
22654 No static initialization may refer to the address of a thread-local variable.
22656 In C++, if an initializer is present for a thread-local variable, it must
22657 be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
22660 See @uref{https://www.akkadia.org/drepper/tls.pdf,
22661 ELF Handling For Thread-Local Storage} for a detailed explanation of
22662 the four thread-local storage addressing models, and how the runtime
22663 is expected to function.
22666 * C99 Thread-Local Edits::
22667 * C++98 Thread-Local Edits::
22670 @node C99 Thread-Local Edits
22671 @subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
22673 The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
22674 that document the exact semantics of the language extension.
22678 @cite{5.1.2 Execution environments}
22680 Add new text after paragraph 1
22683 Within either execution environment, a @dfn{thread} is a flow of
22684 control within a program. It is implementation defined whether
22685 or not there may be more than one thread associated with a program.
22686 It is implementation defined how threads beyond the first are
22687 created, the name and type of the function called at thread
22688 startup, and how threads may be terminated. However, objects
22689 with thread storage duration shall be initialized before thread
22694 @cite{6.2.4 Storage durations of objects}
22696 Add new text before paragraph 3
22699 An object whose identifier is declared with the storage-class
22700 specifier @w{@code{__thread}} has @dfn{thread storage duration}.
22701 Its lifetime is the entire execution of the thread, and its
22702 stored value is initialized only once, prior to thread startup.
22706 @cite{6.4.1 Keywords}
22708 Add @code{__thread}.
22711 @cite{6.7.1 Storage-class specifiers}
22713 Add @code{__thread} to the list of storage class specifiers in
22716 Change paragraph 2 to
22719 With the exception of @code{__thread}, at most one storage-class
22720 specifier may be given [@dots{}]. The @code{__thread} specifier may
22721 be used alone, or immediately following @code{extern} or
22725 Add new text after paragraph 6
22728 The declaration of an identifier for a variable that has
22729 block scope that specifies @code{__thread} shall also
22730 specify either @code{extern} or @code{static}.
22732 The @code{__thread} specifier shall be used only with
22737 @node C++98 Thread-Local Edits
22738 @subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
22740 The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
22741 that document the exact semantics of the language extension.
22745 @b{[intro.execution]}
22747 New text after paragraph 4
22750 A @dfn{thread} is a flow of control within the abstract machine.
22751 It is implementation defined whether or not there may be more than
22755 New text after paragraph 7
22758 It is unspecified whether additional action must be taken to
22759 ensure when and whether side effects are visible to other threads.
22765 Add @code{__thread}.
22768 @b{[basic.start.main]}
22770 Add after paragraph 5
22773 The thread that begins execution at the @code{main} function is called
22774 the @dfn{main thread}. It is implementation defined how functions
22775 beginning threads other than the main thread are designated or typed.
22776 A function so designated, as well as the @code{main} function, is called
22777 a @dfn{thread startup function}. It is implementation defined what
22778 happens if a thread startup function returns. It is implementation
22779 defined what happens to other threads when any thread calls @code{exit}.
22783 @b{[basic.start.init]}
22785 Add after paragraph 4
22788 The storage for an object of thread storage duration shall be
22789 statically initialized before the first statement of the thread startup
22790 function. An object of thread storage duration shall not require
22791 dynamic initialization.
22795 @b{[basic.start.term]}
22797 Add after paragraph 3
22800 The type of an object with thread storage duration shall not have a
22801 non-trivial destructor, nor shall it be an array type whose elements
22802 (directly or indirectly) have non-trivial destructors.
22808 Add ``thread storage duration'' to the list in paragraph 1.
22813 Thread, static, and automatic storage durations are associated with
22814 objects introduced by declarations [@dots{}].
22817 Add @code{__thread} to the list of specifiers in paragraph 3.
22820 @b{[basic.stc.thread]}
22822 New section before @b{[basic.stc.static]}
22825 The keyword @code{__thread} applied to a non-local object gives the
22826 object thread storage duration.
22828 A local variable or class data member declared both @code{static}
22829 and @code{__thread} gives the variable or member thread storage
22834 @b{[basic.stc.static]}
22839 All objects that have neither thread storage duration, dynamic
22840 storage duration nor are local [@dots{}].
22846 Add @code{__thread} to the list in paragraph 1.
22851 With the exception of @code{__thread}, at most one
22852 @var{storage-class-specifier} shall appear in a given
22853 @var{decl-specifier-seq}. The @code{__thread} specifier may
22854 be used alone, or immediately following the @code{extern} or
22855 @code{static} specifiers. [@dots{}]
22858 Add after paragraph 5
22861 The @code{__thread} specifier can be applied only to the names of objects
22862 and to anonymous unions.
22868 Add after paragraph 6
22871 Non-@code{static} members shall not be @code{__thread}.
22875 @node Binary constants
22876 @section Binary Constants using the @samp{0b} Prefix
22877 @cindex Binary constants using the @samp{0b} prefix
22879 Integer constants can be written as binary constants, consisting of a
22880 sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
22881 @samp{0B}. This is particularly useful in environments that operate a
22882 lot on the bit level (like microcontrollers).
22884 The following statements are identical:
22893 The type of these constants follows the same rules as for octal or
22894 hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
22897 @node C++ Extensions
22898 @chapter Extensions to the C++ Language
22899 @cindex extensions, C++ language
22900 @cindex C++ language extensions
22902 The GNU compiler provides these extensions to the C++ language (and you
22903 can also use most of the C language extensions in your C++ programs). If you
22904 want to write code that checks whether these features are available, you can
22905 test for the GNU compiler the same way as for C programs: check for a
22906 predefined macro @code{__GNUC__}. You can also use @code{__GNUG__} to
22907 test specifically for GNU C++ (@pxref{Common Predefined Macros,,
22908 Predefined Macros,cpp,The GNU C Preprocessor}).
22911 * C++ Volatiles:: What constitutes an access to a volatile object.
22912 * Restricted Pointers:: C99 restricted pointers and references.
22913 * Vague Linkage:: Where G++ puts inlines, vtables and such.
22914 * C++ Interface:: You can use a single C++ header file for both
22915 declarations and definitions.
22916 * Template Instantiation:: Methods for ensuring that exactly one copy of
22917 each needed template instantiation is emitted.
22918 * Bound member functions:: You can extract a function pointer to the
22919 method denoted by a @samp{->*} or @samp{.*} expression.
22920 * C++ Attributes:: Variable, function, and type attributes for C++ only.
22921 * Function Multiversioning:: Declaring multiple function versions.
22922 * Type Traits:: Compiler support for type traits.
22923 * C++ Concepts:: Improved support for generic programming.
22924 * Deprecated Features:: Things will disappear from G++.
22925 * Backwards Compatibility:: Compatibilities with earlier definitions of C++.
22928 @node C++ Volatiles
22929 @section When is a Volatile C++ Object Accessed?
22930 @cindex accessing volatiles
22931 @cindex volatile read
22932 @cindex volatile write
22933 @cindex volatile access
22935 The C++ standard differs from the C standard in its treatment of
22936 volatile objects. It fails to specify what constitutes a volatile
22937 access, except to say that C++ should behave in a similar manner to C
22938 with respect to volatiles, where possible. However, the different
22939 lvalueness of expressions between C and C++ complicate the behavior.
22940 G++ behaves the same as GCC for volatile access, @xref{C
22941 Extensions,,Volatiles}, for a description of GCC's behavior.
22943 The C and C++ language specifications differ when an object is
22944 accessed in a void context:
22947 volatile int *src = @var{somevalue};
22951 The C++ standard specifies that such expressions do not undergo lvalue
22952 to rvalue conversion, and that the type of the dereferenced object may
22953 be incomplete. The C++ standard does not specify explicitly that it
22954 is lvalue to rvalue conversion that is responsible for causing an
22955 access. There is reason to believe that it is, because otherwise
22956 certain simple expressions become undefined. However, because it
22957 would surprise most programmers, G++ treats dereferencing a pointer to
22958 volatile object of complete type as GCC would do for an equivalent
22959 type in C@. When the object has incomplete type, G++ issues a
22960 warning; if you wish to force an error, you must force a conversion to
22961 rvalue with, for instance, a static cast.
22963 When using a reference to volatile, G++ does not treat equivalent
22964 expressions as accesses to volatiles, but instead issues a warning that
22965 no volatile is accessed. The rationale for this is that otherwise it
22966 becomes difficult to determine where volatile access occur, and not
22967 possible to ignore the return value from functions returning volatile
22968 references. Again, if you wish to force a read, cast the reference to
22971 G++ implements the same behavior as GCC does when assigning to a
22972 volatile object---there is no reread of the assigned-to object, the
22973 assigned rvalue is reused. Note that in C++ assignment expressions
22974 are lvalues, and if used as an lvalue, the volatile object is
22975 referred to. For instance, @var{vref} refers to @var{vobj}, as
22976 expected, in the following example:
22980 volatile int &vref = vobj = @var{something};
22983 @node Restricted Pointers
22984 @section Restricting Pointer Aliasing
22985 @cindex restricted pointers
22986 @cindex restricted references
22987 @cindex restricted this pointer
22989 As with the C front end, G++ understands the C99 feature of restricted pointers,
22990 specified with the @code{__restrict__}, or @code{__restrict} type
22991 qualifier. Because you cannot compile C++ by specifying the @option{-std=c99}
22992 language flag, @code{restrict} is not a keyword in C++.
22994 In addition to allowing restricted pointers, you can specify restricted
22995 references, which indicate that the reference is not aliased in the local
22999 void fn (int *__restrict__ rptr, int &__restrict__ rref)
23006 In the body of @code{fn}, @var{rptr} points to an unaliased integer and
23007 @var{rref} refers to a (different) unaliased integer.
23009 You may also specify whether a member function's @var{this} pointer is
23010 unaliased by using @code{__restrict__} as a member function qualifier.
23013 void T::fn () __restrict__
23020 Within the body of @code{T::fn}, @var{this} has the effective
23021 definition @code{T *__restrict__ const this}. Notice that the
23022 interpretation of a @code{__restrict__} member function qualifier is
23023 different to that of @code{const} or @code{volatile} qualifier, in that it
23024 is applied to the pointer rather than the object. This is consistent with
23025 other compilers that implement restricted pointers.
23027 As with all outermost parameter qualifiers, @code{__restrict__} is
23028 ignored in function definition matching. This means you only need to
23029 specify @code{__restrict__} in a function definition, rather than
23030 in a function prototype as well.
23032 @node Vague Linkage
23033 @section Vague Linkage
23034 @cindex vague linkage
23036 There are several constructs in C++ that require space in the object
23037 file but are not clearly tied to a single translation unit. We say that
23038 these constructs have ``vague linkage''. Typically such constructs are
23039 emitted wherever they are needed, though sometimes we can be more
23043 @item Inline Functions
23044 Inline functions are typically defined in a header file which can be
23045 included in many different compilations. Hopefully they can usually be
23046 inlined, but sometimes an out-of-line copy is necessary, if the address
23047 of the function is taken or if inlining fails. In general, we emit an
23048 out-of-line copy in all translation units where one is needed. As an
23049 exception, we only emit inline virtual functions with the vtable, since
23050 it always requires a copy.
23052 Local static variables and string constants used in an inline function
23053 are also considered to have vague linkage, since they must be shared
23054 between all inlined and out-of-line instances of the function.
23058 C++ virtual functions are implemented in most compilers using a lookup
23059 table, known as a vtable. The vtable contains pointers to the virtual
23060 functions provided by a class, and each object of the class contains a
23061 pointer to its vtable (or vtables, in some multiple-inheritance
23062 situations). If the class declares any non-inline, non-pure virtual
23063 functions, the first one is chosen as the ``key method'' for the class,
23064 and the vtable is only emitted in the translation unit where the key
23067 @emph{Note:} If the chosen key method is later defined as inline, the
23068 vtable is still emitted in every translation unit that defines it.
23069 Make sure that any inline virtuals are declared inline in the class
23070 body, even if they are not defined there.
23072 @item @code{type_info} objects
23073 @cindex @code{type_info}
23075 C++ requires information about types to be written out in order to
23076 implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
23077 For polymorphic classes (classes with virtual functions), the @samp{type_info}
23078 object is written out along with the vtable so that @samp{dynamic_cast}
23079 can determine the dynamic type of a class object at run time. For all
23080 other types, we write out the @samp{type_info} object when it is used: when
23081 applying @samp{typeid} to an expression, throwing an object, or
23082 referring to a type in a catch clause or exception specification.
23084 @item Template Instantiations
23085 Most everything in this section also applies to template instantiations,
23086 but there are other options as well.
23087 @xref{Template Instantiation,,Where's the Template?}.
23091 When used with GNU ld version 2.8 or later on an ELF system such as
23092 GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
23093 these constructs will be discarded at link time. This is known as
23096 On targets that don't support COMDAT, but do support weak symbols, GCC
23097 uses them. This way one copy overrides all the others, but
23098 the unused copies still take up space in the executable.
23100 For targets that do not support either COMDAT or weak symbols,
23101 most entities with vague linkage are emitted as local symbols to
23102 avoid duplicate definition errors from the linker. This does not happen
23103 for local statics in inlines, however, as having multiple copies
23104 almost certainly breaks things.
23106 @xref{C++ Interface,,Declarations and Definitions in One Header}, for
23107 another way to control placement of these constructs.
23109 @node C++ Interface
23110 @section C++ Interface and Implementation Pragmas
23112 @cindex interface and implementation headers, C++
23113 @cindex C++ interface and implementation headers
23114 @cindex pragmas, interface and implementation
23116 @code{#pragma interface} and @code{#pragma implementation} provide the
23117 user with a way of explicitly directing the compiler to emit entities
23118 with vague linkage (and debugging information) in a particular
23121 @emph{Note:} These @code{#pragma}s have been superceded as of GCC 2.7.2
23122 by COMDAT support and the ``key method'' heuristic
23123 mentioned in @ref{Vague Linkage}. Using them can actually cause your
23124 program to grow due to unnecessary out-of-line copies of inline
23128 @item #pragma interface
23129 @itemx #pragma interface "@var{subdir}/@var{objects}.h"
23130 @kindex #pragma interface
23131 Use this directive in @emph{header files} that define object classes, to save
23132 space in most of the object files that use those classes. Normally,
23133 local copies of certain information (backup copies of inline member
23134 functions, debugging information, and the internal tables that implement
23135 virtual functions) must be kept in each object file that includes class
23136 definitions. You can use this pragma to avoid such duplication. When a
23137 header file containing @samp{#pragma interface} is included in a
23138 compilation, this auxiliary information is not generated (unless
23139 the main input source file itself uses @samp{#pragma implementation}).
23140 Instead, the object files contain references to be resolved at link
23143 The second form of this directive is useful for the case where you have
23144 multiple headers with the same name in different directories. If you
23145 use this form, you must specify the same string to @samp{#pragma
23148 @item #pragma implementation
23149 @itemx #pragma implementation "@var{objects}.h"
23150 @kindex #pragma implementation
23151 Use this pragma in a @emph{main input file}, when you want full output from
23152 included header files to be generated (and made globally visible). The
23153 included header file, in turn, should use @samp{#pragma interface}.
23154 Backup copies of inline member functions, debugging information, and the
23155 internal tables used to implement virtual functions are all generated in
23156 implementation files.
23158 @cindex implied @code{#pragma implementation}
23159 @cindex @code{#pragma implementation}, implied
23160 @cindex naming convention, implementation headers
23161 If you use @samp{#pragma implementation} with no argument, it applies to
23162 an include file with the same basename@footnote{A file's @dfn{basename}
23163 is the name stripped of all leading path information and of trailing
23164 suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
23165 file. For example, in @file{allclass.cc}, giving just
23166 @samp{#pragma implementation}
23167 by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
23169 Use the string argument if you want a single implementation file to
23170 include code from multiple header files. (You must also use
23171 @samp{#include} to include the header file; @samp{#pragma
23172 implementation} only specifies how to use the file---it doesn't actually
23175 There is no way to split up the contents of a single header file into
23176 multiple implementation files.
23179 @cindex inlining and C++ pragmas
23180 @cindex C++ pragmas, effect on inlining
23181 @cindex pragmas in C++, effect on inlining
23182 @samp{#pragma implementation} and @samp{#pragma interface} also have an
23183 effect on function inlining.
23185 If you define a class in a header file marked with @samp{#pragma
23186 interface}, the effect on an inline function defined in that class is
23187 similar to an explicit @code{extern} declaration---the compiler emits
23188 no code at all to define an independent version of the function. Its
23189 definition is used only for inlining with its callers.
23191 @opindex fno-implement-inlines
23192 Conversely, when you include the same header file in a main source file
23193 that declares it as @samp{#pragma implementation}, the compiler emits
23194 code for the function itself; this defines a version of the function
23195 that can be found via pointers (or by callers compiled without
23196 inlining). If all calls to the function can be inlined, you can avoid
23197 emitting the function by compiling with @option{-fno-implement-inlines}.
23198 If any calls are not inlined, you will get linker errors.
23200 @node Template Instantiation
23201 @section Where's the Template?
23202 @cindex template instantiation
23204 C++ templates were the first language feature to require more
23205 intelligence from the environment than was traditionally found on a UNIX
23206 system. Somehow the compiler and linker have to make sure that each
23207 template instance occurs exactly once in the executable if it is needed,
23208 and not at all otherwise. There are two basic approaches to this
23209 problem, which are referred to as the Borland model and the Cfront model.
23212 @item Borland model
23213 Borland C++ solved the template instantiation problem by adding the code
23214 equivalent of common blocks to their linker; the compiler emits template
23215 instances in each translation unit that uses them, and the linker
23216 collapses them together. The advantage of this model is that the linker
23217 only has to consider the object files themselves; there is no external
23218 complexity to worry about. The disadvantage is that compilation time
23219 is increased because the template code is being compiled repeatedly.
23220 Code written for this model tends to include definitions of all
23221 templates in the header file, since they must be seen to be
23225 The AT&T C++ translator, Cfront, solved the template instantiation
23226 problem by creating the notion of a template repository, an
23227 automatically maintained place where template instances are stored. A
23228 more modern version of the repository works as follows: As individual
23229 object files are built, the compiler places any template definitions and
23230 instantiations encountered in the repository. At link time, the link
23231 wrapper adds in the objects in the repository and compiles any needed
23232 instances that were not previously emitted. The advantages of this
23233 model are more optimal compilation speed and the ability to use the
23234 system linker; to implement the Borland model a compiler vendor also
23235 needs to replace the linker. The disadvantages are vastly increased
23236 complexity, and thus potential for error; for some code this can be
23237 just as transparent, but in practice it can been very difficult to build
23238 multiple programs in one directory and one program in multiple
23239 directories. Code written for this model tends to separate definitions
23240 of non-inline member templates into a separate file, which should be
23241 compiled separately.
23244 G++ implements the Borland model on targets where the linker supports it,
23245 including ELF targets (such as GNU/Linux), Mac OS X and Microsoft Windows.
23246 Otherwise G++ implements neither automatic model.
23248 You have the following options for dealing with template instantiations:
23252 Do nothing. Code written for the Borland model works fine, but
23253 each translation unit contains instances of each of the templates it
23254 uses. The duplicate instances will be discarded by the linker, but in
23255 a large program, this can lead to an unacceptable amount of code
23256 duplication in object files or shared libraries.
23258 Duplicate instances of a template can be avoided by defining an explicit
23259 instantiation in one object file, and preventing the compiler from doing
23260 implicit instantiations in any other object files by using an explicit
23261 instantiation declaration, using the @code{extern template} syntax:
23264 extern template int max (int, int);
23267 This syntax is defined in the C++ 2011 standard, but has been supported by
23268 G++ and other compilers since well before 2011.
23270 Explicit instantiations can be used for the largest or most frequently
23271 duplicated instances, without having to know exactly which other instances
23272 are used in the rest of the program. You can scatter the explicit
23273 instantiations throughout your program, perhaps putting them in the
23274 translation units where the instances are used or the translation units
23275 that define the templates themselves; you can put all of the explicit
23276 instantiations you need into one big file; or you can create small files
23283 template class Foo<int>;
23284 template ostream& operator <<
23285 (ostream&, const Foo<int>&);
23289 for each of the instances you need, and create a template instantiation
23290 library from those.
23292 This is the simplest option, but also offers flexibility and
23293 fine-grained control when necessary. It is also the most portable
23294 alternative and programs using this approach will work with most modern
23299 Compile your template-using code with @option{-frepo}. The compiler
23300 generates files with the extension @samp{.rpo} listing all of the
23301 template instantiations used in the corresponding object files that
23302 could be instantiated there; the link wrapper, @samp{collect2},
23303 then updates the @samp{.rpo} files to tell the compiler where to place
23304 those instantiations and rebuild any affected object files. The
23305 link-time overhead is negligible after the first pass, as the compiler
23306 continues to place the instantiations in the same files.
23308 This can be a suitable option for application code written for the Borland
23309 model, as it usually just works. Code written for the Cfront model
23310 needs to be modified so that the template definitions are available at
23311 one or more points of instantiation; usually this is as simple as adding
23312 @code{#include <tmethods.cc>} to the end of each template header.
23314 For library code, if you want the library to provide all of the template
23315 instantiations it needs, just try to link all of its object files
23316 together; the link will fail, but cause the instantiations to be
23317 generated as a side effect. Be warned, however, that this may cause
23318 conflicts if multiple libraries try to provide the same instantiations.
23319 For greater control, use explicit instantiation as described in the next
23323 @opindex fno-implicit-templates
23324 Compile your code with @option{-fno-implicit-templates} to disable the
23325 implicit generation of template instances, and explicitly instantiate
23326 all the ones you use. This approach requires more knowledge of exactly
23327 which instances you need than do the others, but it's less
23328 mysterious and allows greater control if you want to ensure that only
23329 the intended instances are used.
23331 If you are using Cfront-model code, you can probably get away with not
23332 using @option{-fno-implicit-templates} when compiling files that don't
23333 @samp{#include} the member template definitions.
23335 If you use one big file to do the instantiations, you may want to
23336 compile it without @option{-fno-implicit-templates} so you get all of the
23337 instances required by your explicit instantiations (but not by any
23338 other files) without having to specify them as well.
23340 In addition to forward declaration of explicit instantiations
23341 (with @code{extern}), G++ has extended the template instantiation
23342 syntax to support instantiation of the compiler support data for a
23343 template class (i.e.@: the vtable) without instantiating any of its
23344 members (with @code{inline}), and instantiation of only the static data
23345 members of a template class, without the support data or member
23346 functions (with @code{static}):
23349 inline template class Foo<int>;
23350 static template class Foo<int>;
23354 @node Bound member functions
23355 @section Extracting the Function Pointer from a Bound Pointer to Member Function
23357 @cindex pointer to member function
23358 @cindex bound pointer to member function
23360 In C++, pointer to member functions (PMFs) are implemented using a wide
23361 pointer of sorts to handle all the possible call mechanisms; the PMF
23362 needs to store information about how to adjust the @samp{this} pointer,
23363 and if the function pointed to is virtual, where to find the vtable, and
23364 where in the vtable to look for the member function. If you are using
23365 PMFs in an inner loop, you should really reconsider that decision. If
23366 that is not an option, you can extract the pointer to the function that
23367 would be called for a given object/PMF pair and call it directly inside
23368 the inner loop, to save a bit of time.
23370 Note that you still pay the penalty for the call through a
23371 function pointer; on most modern architectures, such a call defeats the
23372 branch prediction features of the CPU@. This is also true of normal
23373 virtual function calls.
23375 The syntax for this extension is
23379 extern int (A::*fp)();
23380 typedef int (*fptr)(A *);
23382 fptr p = (fptr)(a.*fp);
23385 For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
23386 no object is needed to obtain the address of the function. They can be
23387 converted to function pointers directly:
23390 fptr p1 = (fptr)(&A::foo);
23393 @opindex Wno-pmf-conversions
23394 You must specify @option{-Wno-pmf-conversions} to use this extension.
23396 @node C++ Attributes
23397 @section C++-Specific Variable, Function, and Type Attributes
23399 Some attributes only make sense for C++ programs.
23402 @item abi_tag ("@var{tag}", ...)
23403 @cindex @code{abi_tag} function attribute
23404 @cindex @code{abi_tag} variable attribute
23405 @cindex @code{abi_tag} type attribute
23406 The @code{abi_tag} attribute can be applied to a function, variable, or class
23407 declaration. It modifies the mangled name of the entity to
23408 incorporate the tag name, in order to distinguish the function or
23409 class from an earlier version with a different ABI; perhaps the class
23410 has changed size, or the function has a different return type that is
23411 not encoded in the mangled name.
23413 The attribute can also be applied to an inline namespace, but does not
23414 affect the mangled name of the namespace; in this case it is only used
23415 for @option{-Wabi-tag} warnings and automatic tagging of functions and
23416 variables. Tagging inline namespaces is generally preferable to
23417 tagging individual declarations, but the latter is sometimes
23418 necessary, such as when only certain members of a class need to be
23421 The argument can be a list of strings of arbitrary length. The
23422 strings are sorted on output, so the order of the list is
23425 A redeclaration of an entity must not add new ABI tags,
23426 since doing so would change the mangled name.
23428 The ABI tags apply to a name, so all instantiations and
23429 specializations of a template have the same tags. The attribute will
23430 be ignored if applied to an explicit specialization or instantiation.
23432 The @option{-Wabi-tag} flag enables a warning about a class which does
23433 not have all the ABI tags used by its subobjects and virtual functions; for users with code
23434 that needs to coexist with an earlier ABI, using this option can help
23435 to find all affected types that need to be tagged.
23437 When a type involving an ABI tag is used as the type of a variable or
23438 return type of a function where that tag is not already present in the
23439 signature of the function, the tag is automatically applied to the
23440 variable or function. @option{-Wabi-tag} also warns about this
23441 situation; this warning can be avoided by explicitly tagging the
23442 variable or function or moving it into a tagged inline namespace.
23444 @item init_priority (@var{priority})
23445 @cindex @code{init_priority} variable attribute
23447 In Standard C++, objects defined at namespace scope are guaranteed to be
23448 initialized in an order in strict accordance with that of their definitions
23449 @emph{in a given translation unit}. No guarantee is made for initializations
23450 across translation units. However, GNU C++ allows users to control the
23451 order of initialization of objects defined at namespace scope with the
23452 @code{init_priority} attribute by specifying a relative @var{priority},
23453 a constant integral expression currently bounded between 101 and 65535
23454 inclusive. Lower numbers indicate a higher priority.
23456 In the following example, @code{A} would normally be created before
23457 @code{B}, but the @code{init_priority} attribute reverses that order:
23460 Some_Class A __attribute__ ((init_priority (2000)));
23461 Some_Class B __attribute__ ((init_priority (543)));
23465 Note that the particular values of @var{priority} do not matter; only their
23469 @cindex @code{warn_unused} type attribute
23471 For C++ types with non-trivial constructors and/or destructors it is
23472 impossible for the compiler to determine whether a variable of this
23473 type is truly unused if it is not referenced. This type attribute
23474 informs the compiler that variables of this type should be warned
23475 about if they appear to be unused, just like variables of fundamental
23478 This attribute is appropriate for types which just represent a value,
23479 such as @code{std::string}; it is not appropriate for types which
23480 control a resource, such as @code{std::lock_guard}.
23482 This attribute is also accepted in C, but it is unnecessary because C
23483 does not have constructors or destructors.
23487 @node Function Multiversioning
23488 @section Function Multiversioning
23489 @cindex function versions
23491 With the GNU C++ front end, for x86 targets, you may specify multiple
23492 versions of a function, where each function is specialized for a
23493 specific target feature. At runtime, the appropriate version of the
23494 function is automatically executed depending on the characteristics of
23495 the execution platform. Here is an example.
23498 __attribute__ ((target ("default")))
23501 // The default version of foo.
23505 __attribute__ ((target ("sse4.2")))
23508 // foo version for SSE4.2
23512 __attribute__ ((target ("arch=atom")))
23515 // foo version for the Intel ATOM processor
23519 __attribute__ ((target ("arch=amdfam10")))
23522 // foo version for the AMD Family 0x10 processors.
23529 assert ((*p) () == foo ());
23534 In the above example, four versions of function foo are created. The
23535 first version of foo with the target attribute "default" is the default
23536 version. This version gets executed when no other target specific
23537 version qualifies for execution on a particular platform. A new version
23538 of foo is created by using the same function signature but with a
23539 different target string. Function foo is called or a pointer to it is
23540 taken just like a regular function. GCC takes care of doing the
23541 dispatching to call the right version at runtime. Refer to the
23542 @uref{http://gcc.gnu.org/wiki/FunctionMultiVersioning, GCC wiki on
23543 Function Multiversioning} for more details.
23546 @section Type Traits
23548 The C++ front end implements syntactic extensions that allow
23549 compile-time determination of
23550 various characteristics of a type (or of a
23554 @item __has_nothrow_assign (type)
23555 If @code{type} is const qualified or is a reference type then the trait is
23556 false. Otherwise if @code{__has_trivial_assign (type)} is true then the trait
23557 is true, else if @code{type} is a cv class or union type with copy assignment
23558 operators that are known not to throw an exception then the trait is true,
23559 else it is false. Requires: @code{type} shall be a complete type,
23560 (possibly cv-qualified) @code{void}, or an array of unknown bound.
23562 @item __has_nothrow_copy (type)
23563 If @code{__has_trivial_copy (type)} is true then the trait is true, else if
23564 @code{type} is a cv class or union type with copy constructors that
23565 are known not to throw an exception then the trait is true, else it is false.
23566 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
23567 @code{void}, or an array of unknown bound.
23569 @item __has_nothrow_constructor (type)
23570 If @code{__has_trivial_constructor (type)} is true then the trait is
23571 true, else if @code{type} is a cv class or union type (or array
23572 thereof) with a default constructor that is known not to throw an
23573 exception then the trait is true, else it is false. Requires:
23574 @code{type} shall be a complete type, (possibly cv-qualified)
23575 @code{void}, or an array of unknown bound.
23577 @item __has_trivial_assign (type)
23578 If @code{type} is const qualified or is a reference type then the trait is
23579 false. Otherwise if @code{__is_pod (type)} is true then the trait is
23580 true, else if @code{type} is a cv class or union type with a trivial
23581 copy assignment ([class.copy]) then the trait is true, else it is
23582 false. Requires: @code{type} shall be a complete type, (possibly
23583 cv-qualified) @code{void}, or an array of unknown bound.
23585 @item __has_trivial_copy (type)
23586 If @code{__is_pod (type)} is true or @code{type} is a reference type
23587 then the trait is true, else if @code{type} is a cv class or union type
23588 with a trivial copy constructor ([class.copy]) then the trait
23589 is true, else it is false. Requires: @code{type} shall be a complete
23590 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23592 @item __has_trivial_constructor (type)
23593 If @code{__is_pod (type)} is true then the trait is true, else if
23594 @code{type} is a cv class or union type (or array thereof) with a
23595 trivial default constructor ([class.ctor]) then the trait is true,
23596 else it is false. Requires: @code{type} shall be a complete
23597 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23599 @item __has_trivial_destructor (type)
23600 If @code{__is_pod (type)} is true or @code{type} is a reference type then
23601 the trait is true, else if @code{type} is a cv class or union type (or
23602 array thereof) with a trivial destructor ([class.dtor]) then the trait
23603 is true, else it is false. Requires: @code{type} shall be a complete
23604 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23606 @item __has_virtual_destructor (type)
23607 If @code{type} is a class type with a virtual destructor
23608 ([class.dtor]) then the trait is true, else it is false. Requires:
23609 @code{type} shall be a complete type, (possibly cv-qualified)
23610 @code{void}, or an array of unknown bound.
23612 @item __is_abstract (type)
23613 If @code{type} is an abstract class ([class.abstract]) then the trait
23614 is true, else it is false. Requires: @code{type} shall be a complete
23615 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23617 @item __is_base_of (base_type, derived_type)
23618 If @code{base_type} is a base class of @code{derived_type}
23619 ([class.derived]) then the trait is true, otherwise it is false.
23620 Top-level cv qualifications of @code{base_type} and
23621 @code{derived_type} are ignored. For the purposes of this trait, a
23622 class type is considered is own base. Requires: if @code{__is_class
23623 (base_type)} and @code{__is_class (derived_type)} are true and
23624 @code{base_type} and @code{derived_type} are not the same type
23625 (disregarding cv-qualifiers), @code{derived_type} shall be a complete
23626 type. A diagnostic is produced if this requirement is not met.
23628 @item __is_class (type)
23629 If @code{type} is a cv class type, and not a union type
23630 ([basic.compound]) the trait is true, else it is false.
23632 @item __is_empty (type)
23633 If @code{__is_class (type)} is false then the trait is false.
23634 Otherwise @code{type} is considered empty if and only if: @code{type}
23635 has no non-static data members, or all non-static data members, if
23636 any, are bit-fields of length 0, and @code{type} has no virtual
23637 members, and @code{type} has no virtual base classes, and @code{type}
23638 has no base classes @code{base_type} for which
23639 @code{__is_empty (base_type)} is false. Requires: @code{type} shall
23640 be a complete type, (possibly cv-qualified) @code{void}, or an array
23643 @item __is_enum (type)
23644 If @code{type} is a cv enumeration type ([basic.compound]) the trait is
23645 true, else it is false.
23647 @item __is_literal_type (type)
23648 If @code{type} is a literal type ([basic.types]) the trait is
23649 true, else it is false. Requires: @code{type} shall be a complete type,
23650 (possibly cv-qualified) @code{void}, or an array of unknown bound.
23652 @item __is_pod (type)
23653 If @code{type} is a cv POD type ([basic.types]) then the trait is true,
23654 else it is false. Requires: @code{type} shall be a complete type,
23655 (possibly cv-qualified) @code{void}, or an array of unknown bound.
23657 @item __is_polymorphic (type)
23658 If @code{type} is a polymorphic class ([class.virtual]) then the trait
23659 is true, else it is false. Requires: @code{type} shall be a complete
23660 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23662 @item __is_standard_layout (type)
23663 If @code{type} is a standard-layout type ([basic.types]) the trait is
23664 true, else it is false. Requires: @code{type} shall be a complete
23665 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23667 @item __is_trivial (type)
23668 If @code{type} is a trivial type ([basic.types]) the trait is
23669 true, else it is false. Requires: @code{type} shall be a complete
23670 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23672 @item __is_union (type)
23673 If @code{type} is a cv union type ([basic.compound]) the trait is
23674 true, else it is false.
23676 @item __underlying_type (type)
23677 The underlying type of @code{type}. Requires: @code{type} shall be
23678 an enumeration type ([dcl.enum]).
23680 @item __integer_pack (length)
23681 When used as the pattern of a pack expansion within a template
23682 definition, expands to a template argument pack containing integers
23683 from @code{0} to @code{length-1}. This is provided for efficient
23684 implementation of @code{std::make_integer_sequence}.
23690 @section C++ Concepts
23692 C++ concepts provide much-improved support for generic programming. In
23693 particular, they allow the specification of constraints on template arguments.
23694 The constraints are used to extend the usual overloading and partial
23695 specialization capabilities of the language, allowing generic data structures
23696 and algorithms to be ``refined'' based on their properties rather than their
23699 The following keywords are reserved for concepts.
23703 States an expression as an assumption, and if possible, verifies that the
23704 assumption is valid. For example, @code{assume(n > 0)}.
23707 Introduces an axiom definition. Axioms introduce requirements on values.
23710 Introduces a universally quantified object in an axiom. For example,
23711 @code{forall (int n) n + 0 == n}).
23714 Introduces a concept definition. Concepts are sets of syntactic and semantic
23715 requirements on types and their values.
23718 Introduces constraints on template arguments or requirements for a member
23719 function of a class template.
23723 The front end also exposes a number of internal mechanism that can be used
23724 to simplify the writing of type traits. Note that some of these traits are
23725 likely to be removed in the future.
23728 @item __is_same (type1, type2)
23729 A binary type trait: true whenever the type arguments are the same.
23734 @node Deprecated Features
23735 @section Deprecated Features
23737 In the past, the GNU C++ compiler was extended to experiment with new
23738 features, at a time when the C++ language was still evolving. Now that
23739 the C++ standard is complete, some of those features are superseded by
23740 superior alternatives. Using the old features might cause a warning in
23741 some cases that the feature will be dropped in the future. In other
23742 cases, the feature might be gone already.
23744 G++ allows a virtual function returning @samp{void *} to be overridden
23745 by one returning a different pointer type. This extension to the
23746 covariant return type rules is now deprecated and will be removed from a
23749 The use of default arguments in function pointers, function typedefs
23750 and other places where they are not permitted by the standard is
23751 deprecated and will be removed from a future version of G++.
23753 G++ allows floating-point literals to appear in integral constant expressions,
23754 e.g.@: @samp{ enum E @{ e = int(2.2 * 3.7) @} }
23755 This extension is deprecated and will be removed from a future version.
23757 G++ allows static data members of const floating-point type to be declared
23758 with an initializer in a class definition. The standard only allows
23759 initializers for static members of const integral types and const
23760 enumeration types so this extension has been deprecated and will be removed
23761 from a future version.
23763 G++ allows attributes to follow a parenthesized direct initializer,
23764 e.g.@: @samp{ int f (0) __attribute__ ((something)); } This extension
23765 has been ignored since G++ 3.3 and is deprecated.
23767 G++ allows anonymous structs and unions to have members that are not
23768 public non-static data members (i.e.@: fields). These extensions are
23771 @node Backwards Compatibility
23772 @section Backwards Compatibility
23773 @cindex Backwards Compatibility
23774 @cindex ARM [Annotated C++ Reference Manual]
23776 Now that there is a definitive ISO standard C++, G++ has a specification
23777 to adhere to. The C++ language evolved over time, and features that
23778 used to be acceptable in previous drafts of the standard, such as the ARM
23779 [Annotated C++ Reference Manual], are no longer accepted. In order to allow
23780 compilation of C++ written to such drafts, G++ contains some backwards
23781 compatibilities. @emph{All such backwards compatibility features are
23782 liable to disappear in future versions of G++.} They should be considered
23783 deprecated. @xref{Deprecated Features}.
23787 @item Implicit C language
23788 Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
23789 scope to set the language. On such systems, all system header files are
23790 implicitly scoped inside a C language scope. Such headers must
23791 correctly prototype function argument types, there is no leeway for
23792 @code{()} to indicate an unspecified set of arguments.
23796 @c LocalWords: emph deftypefn builtin ARCv2EM SIMD builtins msimd
23797 @c LocalWords: typedef v4si v8hi DMA dma vdiwr vdowr