compiler: only build thunk struct type when it is needed
[official-gcc.git] / gcc / tree-ssa-dom.cc
blobe6b8dace5e9113dc246d9a9ecb9e5edced20f81b
1 /* SSA Dominator optimizations for trees
2 Copyright (C) 2001-2022 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "cfgloop.h"
33 #include "gimple-iterator.h"
34 #include "gimple-fold.h"
35 #include "tree-eh.h"
36 #include "tree-inline.h"
37 #include "tree-cfg.h"
38 #include "tree-into-ssa.h"
39 #include "domwalk.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-ssa-threadupdate.h"
42 #include "tree-ssa-scopedtables.h"
43 #include "tree-ssa-threadedge.h"
44 #include "tree-ssa-dom.h"
45 #include "gimplify.h"
46 #include "tree-cfgcleanup.h"
47 #include "dbgcnt.h"
48 #include "alloc-pool.h"
49 #include "tree-vrp.h"
50 #include "vr-values.h"
51 #include "gimple-range.h"
52 #include "gimple-range-path.h"
53 #include "alias.h"
55 /* This file implements optimizations on the dominator tree. */
57 /* Structure for recording edge equivalences.
59 Computing and storing the edge equivalences instead of creating
60 them on-demand can save significant amounts of time, particularly
61 for pathological cases involving switch statements.
63 These structures live for a single iteration of the dominator
64 optimizer in the edge's AUX field. At the end of an iteration we
65 free each of these structures. */
66 class edge_info
68 public:
69 typedef std::pair <tree, tree> equiv_pair;
70 edge_info (edge);
71 ~edge_info ();
73 /* Record a simple LHS = RHS equivalence. This may trigger
74 calls to derive_equivalences. */
75 void record_simple_equiv (tree, tree);
77 /* If traversing this edge creates simple equivalences, we store
78 them as LHS/RHS pairs within this vector. */
79 vec<equiv_pair> simple_equivalences;
81 /* Traversing an edge may also indicate one or more particular conditions
82 are true or false. */
83 vec<cond_equivalence> cond_equivalences;
85 private:
86 /* Derive equivalences by walking the use-def chains. */
87 void derive_equivalences (tree, tree, int);
90 /* Track whether or not we have changed the control flow graph. */
91 static bool cfg_altered;
93 /* Bitmap of blocks that have had EH statements cleaned. We should
94 remove their dead edges eventually. */
95 static bitmap need_eh_cleanup;
96 static vec<gimple *> need_noreturn_fixup;
98 /* Statistics for dominator optimizations. */
99 struct opt_stats_d
101 long num_stmts;
102 long num_exprs_considered;
103 long num_re;
104 long num_const_prop;
105 long num_copy_prop;
108 static struct opt_stats_d opt_stats;
110 /* Local functions. */
111 static void record_equality (tree, tree, class const_and_copies *);
112 static void record_equivalences_from_phis (basic_block);
113 static void record_equivalences_from_incoming_edge (basic_block,
114 class const_and_copies *,
115 class avail_exprs_stack *,
116 bitmap blocks_on_stack);
117 static void eliminate_redundant_computations (gimple_stmt_iterator *,
118 class const_and_copies *,
119 class avail_exprs_stack *);
120 static void record_equivalences_from_stmt (gimple *, int,
121 class avail_exprs_stack *);
122 static void dump_dominator_optimization_stats (FILE *file,
123 hash_table<expr_elt_hasher> *);
124 static void record_temporary_equivalences (edge, class const_and_copies *,
125 class avail_exprs_stack *, bitmap);
127 /* Constructor for EDGE_INFO. An EDGE_INFO instance is always
128 associated with an edge E. */
130 edge_info::edge_info (edge e)
132 /* Free the old one associated with E, if it exists and
133 associate our new object with E. */
134 free_dom_edge_info (e);
135 e->aux = this;
137 /* And initialize the embedded vectors. */
138 simple_equivalences = vNULL;
139 cond_equivalences = vNULL;
142 /* Destructor just needs to release the vectors. */
144 edge_info::~edge_info (void)
146 this->cond_equivalences.release ();
147 this->simple_equivalences.release ();
150 /* NAME is known to have the value VALUE, which must be a constant.
152 Walk through its use-def chain to see if there are other equivalences
153 we might be able to derive.
155 RECURSION_LIMIT controls how far back we recurse through the use-def
156 chains. */
158 void
159 edge_info::derive_equivalences (tree name, tree value, int recursion_limit)
161 if (TREE_CODE (name) != SSA_NAME || TREE_CODE (value) != INTEGER_CST)
162 return;
164 /* This records the equivalence for the toplevel object. Do
165 this before checking the recursion limit. */
166 simple_equivalences.safe_push (equiv_pair (name, value));
168 /* Limit how far up the use-def chains we are willing to walk. */
169 if (recursion_limit == 0)
170 return;
172 /* We can walk up the use-def chains to potentially find more
173 equivalences. */
174 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
175 if (is_gimple_assign (def_stmt))
177 enum tree_code code = gimple_assign_rhs_code (def_stmt);
178 switch (code)
180 /* If the result of an OR is zero, then its operands are, too. */
181 case BIT_IOR_EXPR:
182 if (integer_zerop (value))
184 tree rhs1 = gimple_assign_rhs1 (def_stmt);
185 tree rhs2 = gimple_assign_rhs2 (def_stmt);
187 value = build_zero_cst (TREE_TYPE (rhs1));
188 derive_equivalences (rhs1, value, recursion_limit - 1);
189 value = build_zero_cst (TREE_TYPE (rhs2));
190 derive_equivalences (rhs2, value, recursion_limit - 1);
192 break;
194 /* If the result of an AND is nonzero, then its operands are, too. */
195 case BIT_AND_EXPR:
196 if (!integer_zerop (value))
198 tree rhs1 = gimple_assign_rhs1 (def_stmt);
199 tree rhs2 = gimple_assign_rhs2 (def_stmt);
201 /* If either operand has a boolean range, then we
202 know its value must be one, otherwise we just know it
203 is nonzero. The former is clearly useful, I haven't
204 seen cases where the latter is helpful yet. */
205 if (TREE_CODE (rhs1) == SSA_NAME)
207 if (ssa_name_has_boolean_range (rhs1))
209 value = build_one_cst (TREE_TYPE (rhs1));
210 derive_equivalences (rhs1, value, recursion_limit - 1);
213 if (TREE_CODE (rhs2) == SSA_NAME)
215 if (ssa_name_has_boolean_range (rhs2))
217 value = build_one_cst (TREE_TYPE (rhs2));
218 derive_equivalences (rhs2, value, recursion_limit - 1);
222 break;
224 /* If LHS is an SSA_NAME and RHS is a constant integer and LHS was
225 set via a widening type conversion, then we may be able to record
226 additional equivalences. */
227 CASE_CONVERT:
229 tree rhs = gimple_assign_rhs1 (def_stmt);
230 tree rhs_type = TREE_TYPE (rhs);
231 if (INTEGRAL_TYPE_P (rhs_type)
232 && (TYPE_PRECISION (TREE_TYPE (name))
233 >= TYPE_PRECISION (rhs_type))
234 && int_fits_type_p (value, rhs_type))
235 derive_equivalences (rhs,
236 fold_convert (rhs_type, value),
237 recursion_limit - 1);
238 break;
241 /* We can invert the operation of these codes trivially if
242 one of the RHS operands is a constant to produce a known
243 value for the other RHS operand. */
244 case POINTER_PLUS_EXPR:
245 case PLUS_EXPR:
247 tree rhs1 = gimple_assign_rhs1 (def_stmt);
248 tree rhs2 = gimple_assign_rhs2 (def_stmt);
250 /* If either argument is a constant, then we can compute
251 a constant value for the nonconstant argument. */
252 if (TREE_CODE (rhs1) == INTEGER_CST
253 && TREE_CODE (rhs2) == SSA_NAME)
254 derive_equivalences (rhs2,
255 fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
256 value, rhs1),
257 recursion_limit - 1);
258 else if (TREE_CODE (rhs2) == INTEGER_CST
259 && TREE_CODE (rhs1) == SSA_NAME)
260 derive_equivalences (rhs1,
261 fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
262 value, rhs2),
263 recursion_limit - 1);
264 break;
267 /* If one of the operands is a constant, then we can compute
268 the value of the other operand. If both operands are
269 SSA_NAMEs, then they must be equal if the result is zero. */
270 case MINUS_EXPR:
272 tree rhs1 = gimple_assign_rhs1 (def_stmt);
273 tree rhs2 = gimple_assign_rhs2 (def_stmt);
275 /* If either argument is a constant, then we can compute
276 a constant value for the nonconstant argument. */
277 if (TREE_CODE (rhs1) == INTEGER_CST
278 && TREE_CODE (rhs2) == SSA_NAME)
279 derive_equivalences (rhs2,
280 fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
281 rhs1, value),
282 recursion_limit - 1);
283 else if (TREE_CODE (rhs2) == INTEGER_CST
284 && TREE_CODE (rhs1) == SSA_NAME)
285 derive_equivalences (rhs1,
286 fold_binary (PLUS_EXPR, TREE_TYPE (rhs1),
287 value, rhs2),
288 recursion_limit - 1);
289 else if (integer_zerop (value))
291 tree cond = build2 (EQ_EXPR, boolean_type_node,
292 gimple_assign_rhs1 (def_stmt),
293 gimple_assign_rhs2 (def_stmt));
294 tree inverted = invert_truthvalue (cond);
295 record_conditions (&this->cond_equivalences, cond, inverted);
297 break;
300 case EQ_EXPR:
301 case NE_EXPR:
303 if ((code == EQ_EXPR && integer_onep (value))
304 || (code == NE_EXPR && integer_zerop (value)))
306 tree rhs1 = gimple_assign_rhs1 (def_stmt);
307 tree rhs2 = gimple_assign_rhs2 (def_stmt);
309 /* If either argument is a constant, then record the
310 other argument as being the same as that constant.
312 If neither operand is a constant, then we have a
313 conditional name == name equivalence. */
314 if (TREE_CODE (rhs1) == INTEGER_CST)
315 derive_equivalences (rhs2, rhs1, recursion_limit - 1);
316 else if (TREE_CODE (rhs2) == INTEGER_CST)
317 derive_equivalences (rhs1, rhs2, recursion_limit - 1);
319 else
321 tree cond = build2 (code, boolean_type_node,
322 gimple_assign_rhs1 (def_stmt),
323 gimple_assign_rhs2 (def_stmt));
324 tree inverted = invert_truthvalue (cond);
325 if (integer_zerop (value))
326 std::swap (cond, inverted);
327 record_conditions (&this->cond_equivalences, cond, inverted);
329 break;
332 /* For BIT_NOT and NEGATE, we can just apply the operation to the
333 VALUE to get the new equivalence. It will always be a constant
334 so we can recurse. */
335 case BIT_NOT_EXPR:
336 case NEGATE_EXPR:
338 tree rhs = gimple_assign_rhs1 (def_stmt);
339 tree res;
340 /* If this is a NOT and the operand has a boolean range, then we
341 know its value must be zero or one. We are not supposed to
342 have a BIT_NOT_EXPR for boolean types with precision > 1 in
343 the general case, see e.g. the handling of TRUTH_NOT_EXPR in
344 the gimplifier, but it can be generated by match.pd out of
345 a BIT_XOR_EXPR wrapped in a BIT_AND_EXPR. Now the handling
346 of BIT_AND_EXPR above already forces a specific semantics for
347 boolean types with precision > 1 so we must do the same here,
348 otherwise we could change the semantics of TRUTH_NOT_EXPR for
349 boolean types with precision > 1. */
350 if (code == BIT_NOT_EXPR
351 && TREE_CODE (rhs) == SSA_NAME
352 && ssa_name_has_boolean_range (rhs))
354 if ((TREE_INT_CST_LOW (value) & 1) == 0)
355 res = build_one_cst (TREE_TYPE (rhs));
356 else
357 res = build_zero_cst (TREE_TYPE (rhs));
359 else
360 res = fold_build1 (code, TREE_TYPE (rhs), value);
361 derive_equivalences (rhs, res, recursion_limit - 1);
362 break;
365 default:
367 if (TREE_CODE_CLASS (code) == tcc_comparison)
369 tree cond = build2 (code, boolean_type_node,
370 gimple_assign_rhs1 (def_stmt),
371 gimple_assign_rhs2 (def_stmt));
372 tree inverted = invert_truthvalue (cond);
373 if (integer_zerop (value))
374 std::swap (cond, inverted);
375 record_conditions (&this->cond_equivalences, cond, inverted);
376 break;
378 break;
384 void
385 edge_info::record_simple_equiv (tree lhs, tree rhs)
387 /* If the RHS is a constant, then we may be able to derive
388 further equivalences. Else just record the name = name
389 equivalence. */
390 if (TREE_CODE (rhs) == INTEGER_CST)
391 derive_equivalences (lhs, rhs, 4);
392 else
393 simple_equivalences.safe_push (equiv_pair (lhs, rhs));
396 /* Free the edge_info data attached to E, if it exists and
397 clear e->aux. */
399 void
400 free_dom_edge_info (edge e)
402 class edge_info *edge_info = (class edge_info *)e->aux;
404 if (edge_info)
405 delete edge_info;
406 e->aux = NULL;
409 /* Free all EDGE_INFO structures associated with edges in the CFG.
410 If a particular edge can be threaded, copy the redirection
411 target from the EDGE_INFO structure into the edge's AUX field
412 as required by code to update the CFG and SSA graph for
413 jump threading. */
415 static void
416 free_all_edge_infos (void)
418 basic_block bb;
419 edge_iterator ei;
420 edge e;
422 FOR_EACH_BB_FN (bb, cfun)
424 FOR_EACH_EDGE (e, ei, bb->preds)
425 free_dom_edge_info (e);
429 /* Return TRUE if BB has precisely two preds, one of which
430 is a backedge from a forwarder block where the forwarder
431 block is a direct successor of BB. Being a forwarder
432 block, it has no side effects other than transfer of
433 control. Otherwise return FALSE. */
435 static bool
436 single_block_loop_p (basic_block bb)
438 /* Two preds. */
439 if (EDGE_COUNT (bb->preds) != 2)
440 return false;
442 /* One and only one of the edges must be marked with
443 EDGE_DFS_BACK. */
444 basic_block pred = NULL;
445 unsigned int count = 0;
446 if (EDGE_PRED (bb, 0)->flags & EDGE_DFS_BACK)
448 pred = EDGE_PRED (bb, 0)->src;
449 count++;
451 if (EDGE_PRED (bb, 1)->flags & EDGE_DFS_BACK)
453 pred = EDGE_PRED (bb, 1)->src;
454 count++;
457 if (count != 1)
458 return false;
460 /* Now examine PRED. It should have a single predecessor which
461 is BB and a single successor that is also BB. */
462 if (EDGE_COUNT (pred->preds) != 1
463 || EDGE_COUNT (pred->succs) != 1
464 || EDGE_PRED (pred, 0)->src != bb
465 || EDGE_SUCC (pred, 0)->dest != bb)
466 return false;
468 /* This looks good from a CFG standpoint. Now look at the guts
469 of PRED. Basically we want to verify there are no PHI nodes
470 and no real statements. */
471 if (! gimple_seq_empty_p (phi_nodes (pred)))
472 return false;
474 gimple_stmt_iterator gsi;
475 for (gsi = gsi_last_bb (pred); !gsi_end_p (gsi); gsi_prev (&gsi))
477 gimple *stmt = gsi_stmt (gsi);
479 switch (gimple_code (stmt))
481 case GIMPLE_LABEL:
482 if (DECL_NONLOCAL (gimple_label_label (as_a <glabel *> (stmt))))
483 return false;
484 break;
486 case GIMPLE_DEBUG:
487 break;
489 default:
490 return false;
494 return true;
497 /* We have finished optimizing BB, record any information implied by
498 taking a specific outgoing edge from BB. */
500 static void
501 record_edge_info (basic_block bb)
503 gimple_stmt_iterator gsi = gsi_last_bb (bb);
504 class edge_info *edge_info;
506 /* Free all the outgoing edge info data associated with
507 BB's outgoing edges. */
508 edge e;
509 edge_iterator ei;
510 FOR_EACH_EDGE (e, ei, bb->succs)
511 free_dom_edge_info (e);
513 if (! gsi_end_p (gsi))
515 gimple *stmt = gsi_stmt (gsi);
516 location_t loc = gimple_location (stmt);
518 if (gimple_code (stmt) == GIMPLE_SWITCH)
520 gswitch *switch_stmt = as_a <gswitch *> (stmt);
521 tree index = gimple_switch_index (switch_stmt);
523 if (TREE_CODE (index) == SSA_NAME)
525 int i;
526 int n_labels = gimple_switch_num_labels (switch_stmt);
527 tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
529 for (i = 0; i < n_labels; i++)
531 tree label = gimple_switch_label (switch_stmt, i);
532 basic_block target_bb
533 = label_to_block (cfun, CASE_LABEL (label));
534 if (CASE_HIGH (label)
535 || !CASE_LOW (label)
536 || info[target_bb->index])
537 info[target_bb->index] = error_mark_node;
538 else
539 info[target_bb->index] = label;
542 FOR_EACH_EDGE (e, ei, bb->succs)
544 basic_block target_bb = e->dest;
545 tree label = info[target_bb->index];
547 if (label != NULL && label != error_mark_node)
549 tree x = fold_convert_loc (loc, TREE_TYPE (index),
550 CASE_LOW (label));
551 edge_info = new class edge_info (e);
552 edge_info->record_simple_equiv (index, x);
555 free (info);
559 /* A COND_EXPR may create equivalences too. */
560 if (gimple_code (stmt) == GIMPLE_COND)
562 edge true_edge;
563 edge false_edge;
565 tree op0 = gimple_cond_lhs (stmt);
566 tree op1 = gimple_cond_rhs (stmt);
567 enum tree_code code = gimple_cond_code (stmt);
569 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
571 /* Special case comparing booleans against a constant as we
572 know the value of OP0 on both arms of the branch. i.e., we
573 can record an equivalence for OP0 rather than COND.
575 However, don't do this if the constant isn't zero or one.
576 Such conditionals will get optimized more thoroughly during
577 the domwalk. */
578 if ((code == EQ_EXPR || code == NE_EXPR)
579 && TREE_CODE (op0) == SSA_NAME
580 && ssa_name_has_boolean_range (op0)
581 && is_gimple_min_invariant (op1)
582 && (integer_zerop (op1) || integer_onep (op1)))
584 tree true_val = constant_boolean_node (true, TREE_TYPE (op0));
585 tree false_val = constant_boolean_node (false, TREE_TYPE (op0));
587 if (code == EQ_EXPR)
589 edge_info = new class edge_info (true_edge);
590 edge_info->record_simple_equiv (op0,
591 (integer_zerop (op1)
592 ? false_val : true_val));
593 edge_info = new class edge_info (false_edge);
594 edge_info->record_simple_equiv (op0,
595 (integer_zerop (op1)
596 ? true_val : false_val));
598 else
600 edge_info = new class edge_info (true_edge);
601 edge_info->record_simple_equiv (op0,
602 (integer_zerop (op1)
603 ? true_val : false_val));
604 edge_info = new class edge_info (false_edge);
605 edge_info->record_simple_equiv (op0,
606 (integer_zerop (op1)
607 ? false_val : true_val));
610 /* This can show up in the IL as a result of copy propagation
611 it will eventually be canonicalized, but we have to cope
612 with this case within the pass. */
613 else if (is_gimple_min_invariant (op0)
614 && TREE_CODE (op1) == SSA_NAME)
616 tree cond = build2 (code, boolean_type_node, op0, op1);
617 tree inverted = invert_truthvalue_loc (loc, cond);
618 bool can_infer_simple_equiv
619 = !(HONOR_SIGNED_ZEROS (op0)
620 && real_zerop (op0));
621 class edge_info *edge_info;
623 edge_info = new class edge_info (true_edge);
624 record_conditions (&edge_info->cond_equivalences, cond, inverted);
626 if (can_infer_simple_equiv && code == EQ_EXPR)
627 edge_info->record_simple_equiv (op1, op0);
629 edge_info = new class edge_info (false_edge);
630 record_conditions (&edge_info->cond_equivalences, inverted, cond);
632 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
633 edge_info->record_simple_equiv (op1, op0);
636 else if (TREE_CODE (op0) == SSA_NAME
637 && (TREE_CODE (op1) == SSA_NAME
638 || is_gimple_min_invariant (op1)))
640 tree cond = build2 (code, boolean_type_node, op0, op1);
641 tree inverted = invert_truthvalue_loc (loc, cond);
642 bool can_infer_simple_equiv
643 = !(HONOR_SIGNED_ZEROS (op1)
644 && (TREE_CODE (op1) == SSA_NAME || real_zerop (op1)));
645 class edge_info *edge_info;
647 edge_info = new class edge_info (true_edge);
648 record_conditions (&edge_info->cond_equivalences, cond, inverted);
650 if (can_infer_simple_equiv && code == EQ_EXPR)
651 edge_info->record_simple_equiv (op0, op1);
653 edge_info = new class edge_info (false_edge);
654 record_conditions (&edge_info->cond_equivalences, inverted, cond);
656 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
657 edge_info->record_simple_equiv (op0, op1);
660 /* If this block is a single block loop, then we may be able to
661 record some equivalences on the loop's exit edge. */
662 if (single_block_loop_p (bb))
664 /* We know it's a single block loop. Now look at the loop
665 exit condition. What we're looking for is whether or not
666 the exit condition is loop invariant which we can detect
667 by checking if all the SSA_NAMEs referenced are defined
668 outside the loop. */
669 if ((TREE_CODE (op0) != SSA_NAME
670 || gimple_bb (SSA_NAME_DEF_STMT (op0)) != bb)
671 && (TREE_CODE (op1) != SSA_NAME
672 || gimple_bb (SSA_NAME_DEF_STMT (op1)) != bb))
674 /* At this point we know the exit condition is loop
675 invariant. The only way to get out of the loop is
676 if never traverses the backedge to begin with. This
677 implies that any PHI nodes create equivalances we can
678 attach to the loop exit edge. */
679 int alternative
680 = (EDGE_PRED (bb, 0)->flags & EDGE_DFS_BACK) ? 1 : 0;
682 gphi_iterator gsi;
683 for (gsi = gsi_start_phis (bb);
684 !gsi_end_p (gsi);
685 gsi_next (&gsi))
687 /* Now get the EDGE_INFO class so we can append
688 it to our list. We want the successor edge
689 where the destination is not the source of
690 an incoming edge. */
691 gphi *phi = gsi.phi ();
692 tree src = PHI_ARG_DEF (phi, alternative);
693 tree dst = PHI_RESULT (phi);
695 /* If the other alternative is the same as the result,
696 then this is a degenerate and can be ignored. */
697 if (dst == PHI_ARG_DEF (phi, !alternative))
698 continue;
700 if (EDGE_SUCC (bb, 0)->dest
701 != EDGE_PRED (bb, !alternative)->src)
702 edge_info = (class edge_info *)EDGE_SUCC (bb, 0)->aux;
703 else
704 edge_info = (class edge_info *)EDGE_SUCC (bb, 1)->aux;
706 /* Note that since this processing is done independently
707 of other edge equivalency processing, we may not
708 have an EDGE_INFO structure set up yet. */
709 if (edge_info == NULL)
710 edge_info = new class edge_info (false_edge);
711 edge_info->record_simple_equiv (dst, src);
719 class dom_jt_state : public jt_state
721 public:
722 dom_jt_state (const_and_copies *copies, avail_exprs_stack *avails)
723 : m_copies (copies), m_avails (avails)
725 bitmap_tree_view (m_blocks_on_stack);
727 void push (edge e) override
729 m_copies->push_marker ();
730 m_avails->push_marker ();
731 jt_state::push (e);
733 void pop () override
735 m_copies->pop_to_marker ();
736 m_avails->pop_to_marker ();
737 jt_state::pop ();
739 void register_equivs_edge (edge e) override
741 record_temporary_equivalences (e, m_copies, m_avails, m_blocks_on_stack);
743 void register_equiv (tree dest, tree src, bool update) override;
744 bitmap get_blocks_on_stack () { return m_blocks_on_stack; }
745 private:
746 const_and_copies *m_copies;
747 avail_exprs_stack *m_avails;
748 /* Set of blocks on the stack, to be used for medium-fast
749 dominance queries in back_propagate_equivalences. */
750 auto_bitmap m_blocks_on_stack;
753 void
754 dom_jt_state::register_equiv (tree dest, tree src, bool)
756 m_copies->record_const_or_copy (dest, src);
759 class dom_jt_simplifier : public hybrid_jt_simplifier
761 public:
762 dom_jt_simplifier (avail_exprs_stack *avails, gimple_ranger *ranger,
763 path_range_query *query)
764 : hybrid_jt_simplifier (ranger, query), m_avails (avails) { }
766 private:
767 tree simplify (gimple *, gimple *, basic_block, jt_state *) override;
768 avail_exprs_stack *m_avails;
771 tree
772 dom_jt_simplifier::simplify (gimple *stmt, gimple *within_stmt,
773 basic_block bb, jt_state *state)
775 /* First see if the conditional is in the hash table. */
776 tree cached_lhs = m_avails->lookup_avail_expr (stmt, false, true);
777 if (cached_lhs)
778 return cached_lhs;
780 /* Otherwise call the ranger if possible. */
781 if (state)
782 return hybrid_jt_simplifier::simplify (stmt, within_stmt, bb, state);
784 return NULL;
787 class dom_opt_dom_walker : public dom_walker
789 public:
790 dom_opt_dom_walker (cdi_direction direction,
791 jump_threader *threader,
792 dom_jt_state *state,
793 gimple_ranger *ranger,
794 const_and_copies *const_and_copies,
795 avail_exprs_stack *avail_exprs_stack)
796 : dom_walker (direction, REACHABLE_BLOCKS)
798 m_ranger = ranger;
799 m_state = state;
800 m_dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node,
801 integer_zero_node, NULL, NULL);
802 m_const_and_copies = const_and_copies;
803 m_avail_exprs_stack = avail_exprs_stack;
804 m_threader = threader;
807 edge before_dom_children (basic_block) final override;
808 void after_dom_children (basic_block) final override;
810 private:
812 /* Unwindable equivalences, both const/copy and expression varieties. */
813 class const_and_copies *m_const_and_copies;
814 class avail_exprs_stack *m_avail_exprs_stack;
816 /* Dummy condition to avoid creating lots of throw away statements. */
817 gcond *m_dummy_cond;
819 /* Optimize a single statement within a basic block using the
820 various tables mantained by DOM. Returns the taken edge if
821 the statement is a conditional with a statically determined
822 value. */
823 edge optimize_stmt (basic_block, gimple_stmt_iterator *, bool *);
825 void set_global_ranges_from_unreachable_edges (basic_block);
827 void test_for_singularity (gimple *, avail_exprs_stack *);
828 edge fold_cond (gcond *cond);
830 jump_threader *m_threader;
831 gimple_ranger *m_ranger;
832 dom_jt_state *m_state;
835 /* Jump threading, redundancy elimination and const/copy propagation.
837 This pass may expose new symbols that need to be renamed into SSA. For
838 every new symbol exposed, its corresponding bit will be set in
839 VARS_TO_RENAME. */
841 namespace {
843 const pass_data pass_data_dominator =
845 GIMPLE_PASS, /* type */
846 "dom", /* name */
847 OPTGROUP_NONE, /* optinfo_flags */
848 TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
849 ( PROP_cfg | PROP_ssa ), /* properties_required */
850 0, /* properties_provided */
851 0, /* properties_destroyed */
852 0, /* todo_flags_start */
853 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
856 class pass_dominator : public gimple_opt_pass
858 public:
859 pass_dominator (gcc::context *ctxt)
860 : gimple_opt_pass (pass_data_dominator, ctxt),
861 may_peel_loop_headers_p (false)
864 /* opt_pass methods: */
865 opt_pass * clone () final override { return new pass_dominator (m_ctxt); }
866 void set_pass_param (unsigned int n, bool param) final override
868 gcc_assert (n == 0);
869 may_peel_loop_headers_p = param;
871 bool gate (function *) final override { return flag_tree_dom != 0; }
872 unsigned int execute (function *) final override;
874 private:
875 /* This flag is used to prevent loops from being peeled repeatedly in jump
876 threading; it will be removed once we preserve loop structures throughout
877 the compilation -- we will be able to mark the affected loops directly in
878 jump threading, and avoid peeling them next time. */
879 bool may_peel_loop_headers_p;
880 }; // class pass_dominator
882 unsigned int
883 pass_dominator::execute (function *fun)
885 memset (&opt_stats, 0, sizeof (opt_stats));
887 /* Create our hash tables. */
888 hash_table<expr_elt_hasher> *avail_exprs
889 = new hash_table<expr_elt_hasher> (1024);
890 class avail_exprs_stack *avail_exprs_stack
891 = new class avail_exprs_stack (avail_exprs);
892 class const_and_copies *const_and_copies = new class const_and_copies ();
893 need_eh_cleanup = BITMAP_ALLOC (NULL);
894 need_noreturn_fixup.create (0);
896 calculate_dominance_info (CDI_DOMINATORS);
897 cfg_altered = false;
899 /* We need to know loop structures in order to avoid destroying them
900 in jump threading. Note that we still can e.g. thread through loop
901 headers to an exit edge, or through loop header to the loop body, assuming
902 that we update the loop info.
904 TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due
905 to several overly conservative bail-outs in jump threading, case
906 gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is
907 missing. We should improve jump threading in future then
908 LOOPS_HAVE_PREHEADERS won't be needed here. */
909 loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES
910 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
912 /* We need accurate information regarding back edges in the CFG
913 for jump threading; this may include back edges that are not part of
914 a single loop. */
915 mark_dfs_back_edges ();
917 /* We want to create the edge info structures before the dominator walk
918 so that they'll be in place for the jump threader, particularly when
919 threading through a join block.
921 The conditions will be lazily updated with global equivalences as
922 we reach them during the dominator walk. */
923 basic_block bb;
924 FOR_EACH_BB_FN (bb, fun)
925 record_edge_info (bb);
927 /* Recursively walk the dominator tree optimizing statements. */
928 gimple_ranger *ranger = enable_ranger (fun);
929 path_range_query path_query (*ranger);
930 dom_jt_simplifier simplifier (avail_exprs_stack, ranger, &path_query);
931 dom_jt_state state (const_and_copies, avail_exprs_stack);
932 jump_threader threader (&simplifier, &state);
933 dom_opt_dom_walker walker (CDI_DOMINATORS,
934 &threader,
935 &state,
936 ranger,
937 const_and_copies,
938 avail_exprs_stack);
939 walker.walk (fun->cfg->x_entry_block_ptr);
941 ranger->export_global_ranges ();
942 disable_ranger (fun);
944 /* Look for blocks where we cleared EDGE_EXECUTABLE on an outgoing
945 edge. When found, remove jump threads which contain any outgoing
946 edge from the affected block. */
947 if (cfg_altered)
949 FOR_EACH_BB_FN (bb, fun)
951 edge_iterator ei;
952 edge e;
954 /* First see if there are any edges without EDGE_EXECUTABLE
955 set. */
956 bool found = false;
957 FOR_EACH_EDGE (e, ei, bb->succs)
959 if ((e->flags & EDGE_EXECUTABLE) == 0)
961 found = true;
962 break;
966 /* If there were any such edges found, then remove jump threads
967 containing any edge leaving BB. */
968 if (found)
969 FOR_EACH_EDGE (e, ei, bb->succs)
970 threader.remove_jump_threads_including (e);
975 gimple_stmt_iterator gsi;
976 basic_block bb;
977 FOR_EACH_BB_FN (bb, fun)
979 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
980 update_stmt_if_modified (gsi_stmt (gsi));
984 /* If we exposed any new variables, go ahead and put them into
985 SSA form now, before we handle jump threading. This simplifies
986 interactions between rewriting of _DECL nodes into SSA form
987 and rewriting SSA_NAME nodes into SSA form after block
988 duplication and CFG manipulation. */
989 update_ssa (TODO_update_ssa);
991 free_all_edge_infos ();
993 /* Thread jumps, creating duplicate blocks as needed. */
994 cfg_altered |= threader.thread_through_all_blocks (may_peel_loop_headers_p);
996 if (cfg_altered)
997 free_dominance_info (CDI_DOMINATORS);
999 /* Removal of statements may make some EH edges dead. Purge
1000 such edges from the CFG as needed. */
1001 if (!bitmap_empty_p (need_eh_cleanup))
1003 unsigned i;
1004 bitmap_iterator bi;
1006 /* Jump threading may have created forwarder blocks from blocks
1007 needing EH cleanup; the new successor of these blocks, which
1008 has inherited from the original block, needs the cleanup.
1009 Don't clear bits in the bitmap, as that can break the bitmap
1010 iterator. */
1011 EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
1013 basic_block bb = BASIC_BLOCK_FOR_FN (fun, i);
1014 if (bb == NULL)
1015 continue;
1016 while (single_succ_p (bb)
1017 && (single_succ_edge (bb)->flags
1018 & (EDGE_EH|EDGE_DFS_BACK)) == 0)
1019 bb = single_succ (bb);
1020 if (bb == EXIT_BLOCK_PTR_FOR_FN (fun))
1021 continue;
1022 if ((unsigned) bb->index != i)
1023 bitmap_set_bit (need_eh_cleanup, bb->index);
1026 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
1027 bitmap_clear (need_eh_cleanup);
1030 /* Fixup stmts that became noreturn calls. This may require splitting
1031 blocks and thus isn't possible during the dominator walk or before
1032 jump threading finished. Do this in reverse order so we don't
1033 inadvertedly remove a stmt we want to fixup by visiting a dominating
1034 now noreturn call first. */
1035 while (!need_noreturn_fixup.is_empty ())
1037 gimple *stmt = need_noreturn_fixup.pop ();
1038 if (dump_file && dump_flags & TDF_DETAILS)
1040 fprintf (dump_file, "Fixing up noreturn call ");
1041 print_gimple_stmt (dump_file, stmt, 0);
1042 fprintf (dump_file, "\n");
1044 fixup_noreturn_call (stmt);
1047 statistics_counter_event (fun, "Redundant expressions eliminated",
1048 opt_stats.num_re);
1049 statistics_counter_event (fun, "Constants propagated",
1050 opt_stats.num_const_prop);
1051 statistics_counter_event (fun, "Copies propagated",
1052 opt_stats.num_copy_prop);
1054 /* Debugging dumps. */
1055 if (dump_file && (dump_flags & TDF_STATS))
1056 dump_dominator_optimization_stats (dump_file, avail_exprs);
1058 loop_optimizer_finalize ();
1060 /* Delete our main hashtable. */
1061 delete avail_exprs;
1062 avail_exprs = NULL;
1064 /* Free asserted bitmaps and stacks. */
1065 BITMAP_FREE (need_eh_cleanup);
1066 need_noreturn_fixup.release ();
1067 delete avail_exprs_stack;
1068 delete const_and_copies;
1070 return 0;
1073 } // anon namespace
1075 gimple_opt_pass *
1076 make_pass_dominator (gcc::context *ctxt)
1078 return new pass_dominator (ctxt);
1081 /* Valueize hook for gimple_fold_stmt_to_constant_1. */
1083 static tree
1084 dom_valueize (tree t)
1086 if (TREE_CODE (t) == SSA_NAME)
1088 tree tem = SSA_NAME_VALUE (t);
1089 if (tem)
1090 return tem;
1092 return t;
1095 /* We have just found an equivalence for LHS on an edge E.
1096 Look backwards to other uses of LHS and see if we can derive
1097 additional equivalences that are valid on edge E. */
1098 static void
1099 back_propagate_equivalences (tree lhs, edge e,
1100 class const_and_copies *const_and_copies,
1101 bitmap domby)
1103 use_operand_p use_p;
1104 imm_use_iterator iter;
1105 basic_block dest = e->dest;
1106 bool domok = (dom_info_state (CDI_DOMINATORS) == DOM_OK);
1108 /* Iterate over the uses of LHS to see if any dominate E->dest.
1109 If so, they may create useful equivalences too.
1111 ??? If the code gets re-organized to a worklist to catch more
1112 indirect opportunities and it is made to handle PHIs then this
1113 should only consider use_stmts in basic-blocks we have already visited. */
1114 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
1116 gimple *use_stmt = USE_STMT (use_p);
1118 /* Often the use is in DEST, which we trivially know we can't use.
1119 This is cheaper than the dominator set tests below. */
1120 if (dest == gimple_bb (use_stmt))
1121 continue;
1123 /* Filter out statements that can never produce a useful
1124 equivalence. */
1125 tree lhs2 = gimple_get_lhs (use_stmt);
1126 if (!lhs2 || TREE_CODE (lhs2) != SSA_NAME)
1127 continue;
1129 if (domok)
1131 if (!dominated_by_p (CDI_DOMINATORS, dest, gimple_bb (use_stmt)))
1132 continue;
1134 else
1136 /* We can use the set of BBs on the stack from a domwalk
1137 for a medium fast way to query dominance. Profiling
1138 has shown non-fast query dominance tests here can be fairly
1139 expensive. */
1140 /* This tests if USE_STMT does not dominate DEST. */
1141 if (!bitmap_bit_p (domby, gimple_bb (use_stmt)->index))
1142 continue;
1145 /* At this point USE_STMT dominates DEST and may result in a
1146 useful equivalence. Try to simplify its RHS to a constant
1147 or SSA_NAME. */
1148 tree res = gimple_fold_stmt_to_constant_1 (use_stmt, dom_valueize,
1149 no_follow_ssa_edges);
1150 if (res && (TREE_CODE (res) == SSA_NAME || is_gimple_min_invariant (res)))
1151 record_equality (lhs2, res, const_and_copies);
1155 /* Record into CONST_AND_COPIES and AVAIL_EXPRS_STACK any equivalences implied
1156 by traversing edge E (which are cached in E->aux).
1158 Callers are responsible for managing the unwinding markers. */
1159 static void
1160 record_temporary_equivalences (edge e,
1161 class const_and_copies *const_and_copies,
1162 class avail_exprs_stack *avail_exprs_stack,
1163 bitmap blocks_on_stack)
1165 int i;
1166 class edge_info *edge_info = (class edge_info *) e->aux;
1168 /* If we have info associated with this edge, record it into
1169 our equivalence tables. */
1170 if (edge_info)
1172 cond_equivalence *eq;
1173 /* If we have 0 = COND or 1 = COND equivalences, record them
1174 into our expression hash tables. */
1175 for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
1176 avail_exprs_stack->record_cond (eq);
1178 edge_info::equiv_pair *seq;
1179 for (i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
1181 tree lhs = seq->first;
1182 if (!lhs || TREE_CODE (lhs) != SSA_NAME)
1183 continue;
1185 /* Record the simple NAME = VALUE equivalence. */
1186 tree rhs = seq->second;
1188 /* If this is a SSA_NAME = SSA_NAME equivalence and one operand is
1189 cheaper to compute than the other, then set up the equivalence
1190 such that we replace the expensive one with the cheap one.
1192 If they are the same cost to compute, then do not record
1193 anything. */
1194 if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME)
1196 gimple *rhs_def = SSA_NAME_DEF_STMT (rhs);
1197 int rhs_cost = estimate_num_insns (rhs_def, &eni_size_weights);
1199 gimple *lhs_def = SSA_NAME_DEF_STMT (lhs);
1200 int lhs_cost = estimate_num_insns (lhs_def, &eni_size_weights);
1202 if (rhs_cost > lhs_cost)
1203 record_equality (rhs, lhs, const_and_copies);
1204 else if (rhs_cost < lhs_cost)
1205 record_equality (lhs, rhs, const_and_copies);
1207 else
1208 record_equality (lhs, rhs, const_and_copies);
1211 /* Any equivalence found for LHS may result in additional
1212 equivalences for other uses of LHS that we have already
1213 processed. */
1214 back_propagate_equivalences (lhs, e, const_and_copies,
1215 blocks_on_stack);
1220 /* PHI nodes can create equivalences too.
1222 Ignoring any alternatives which are the same as the result, if
1223 all the alternatives are equal, then the PHI node creates an
1224 equivalence. */
1226 static void
1227 record_equivalences_from_phis (basic_block bb)
1229 gphi_iterator gsi;
1231 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
1233 gphi *phi = gsi.phi ();
1235 /* We might eliminate the PHI, so advance GSI now. */
1236 gsi_next (&gsi);
1238 tree lhs = gimple_phi_result (phi);
1239 tree rhs = NULL;
1240 size_t i;
1242 for (i = 0; i < gimple_phi_num_args (phi); i++)
1244 tree t = gimple_phi_arg_def (phi, i);
1246 /* Ignore alternatives which are the same as our LHS. Since
1247 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1248 can simply compare pointers. */
1249 if (lhs == t)
1250 continue;
1252 /* If the associated edge is not marked as executable, then it
1253 can be ignored. */
1254 if ((gimple_phi_arg_edge (phi, i)->flags & EDGE_EXECUTABLE) == 0)
1255 continue;
1257 t = dom_valueize (t);
1259 /* If T is an SSA_NAME and its associated edge is a backedge,
1260 then quit as we cannot utilize this equivalence. */
1261 if (TREE_CODE (t) == SSA_NAME
1262 && (gimple_phi_arg_edge (phi, i)->flags & EDGE_DFS_BACK))
1263 break;
1265 /* If we have not processed an alternative yet, then set
1266 RHS to this alternative. */
1267 if (rhs == NULL)
1268 rhs = t;
1269 /* If we have processed an alternative (stored in RHS), then
1270 see if it is equal to this one. If it isn't, then stop
1271 the search. */
1272 else if (! operand_equal_for_phi_arg_p (rhs, t))
1273 break;
1276 /* If we had no interesting alternatives, then all the RHS alternatives
1277 must have been the same as LHS. */
1278 if (!rhs)
1279 rhs = lhs;
1281 /* If we managed to iterate through each PHI alternative without
1282 breaking out of the loop, then we have a PHI which may create
1283 a useful equivalence. We do not need to record unwind data for
1284 this, since this is a true assignment and not an equivalence
1285 inferred from a comparison. All uses of this ssa name are dominated
1286 by this assignment, so unwinding just costs time and space. */
1287 if (i == gimple_phi_num_args (phi))
1289 if (may_propagate_copy (lhs, rhs))
1290 set_ssa_name_value (lhs, rhs);
1291 else if (virtual_operand_p (lhs))
1293 gimple *use_stmt;
1294 imm_use_iterator iter;
1295 use_operand_p use_p;
1296 /* For virtual operands we have to propagate into all uses as
1297 otherwise we will create overlapping life-ranges. */
1298 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
1299 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1300 SET_USE (use_p, rhs);
1301 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
1302 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
1303 gimple_stmt_iterator tmp_gsi = gsi_for_stmt (phi);
1304 remove_phi_node (&tmp_gsi, true);
1310 /* Return true if all uses of NAME are dominated by STMT or feed STMT
1311 via a chain of single immediate uses. */
1313 static bool
1314 all_uses_feed_or_dominated_by_stmt (tree name, gimple *stmt)
1316 use_operand_p use_p, use2_p;
1317 imm_use_iterator iter;
1318 basic_block stmt_bb = gimple_bb (stmt);
1320 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
1322 gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
1323 if (use_stmt == stmt
1324 || is_gimple_debug (use_stmt)
1325 || (gimple_bb (use_stmt) != stmt_bb
1326 && dominated_by_p (CDI_DOMINATORS,
1327 gimple_bb (use_stmt), stmt_bb)))
1328 continue;
1329 while (use_stmt != stmt
1330 && is_gimple_assign (use_stmt)
1331 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
1332 && single_imm_use (gimple_assign_lhs (use_stmt),
1333 &use2_p, &use_stmt2))
1334 use_stmt = use_stmt2;
1335 if (use_stmt != stmt)
1336 return false;
1338 return true;
1341 /* Set global ranges that can be determined from the C->M edge:
1343 <bb C>:
1345 if (something)
1346 goto <bb N>;
1347 else
1348 goto <bb M>;
1349 <bb N>:
1350 __builtin_unreachable ();
1351 <bb M>:
1354 void
1355 dom_opt_dom_walker::set_global_ranges_from_unreachable_edges (basic_block bb)
1357 edge pred_e = single_pred_edge_ignoring_loop_edges (bb, false);
1358 if (!pred_e)
1359 return;
1361 gimple *stmt = last_stmt (pred_e->src);
1362 if (!stmt
1363 || gimple_code (stmt) != GIMPLE_COND
1364 || !assert_unreachable_fallthru_edge_p (pred_e))
1365 return;
1367 tree name;
1368 gori_compute &gori = m_ranger->gori ();
1369 FOR_EACH_GORI_EXPORT_NAME (gori, pred_e->src, name)
1370 if (all_uses_feed_or_dominated_by_stmt (name, stmt))
1372 Value_Range r (TREE_TYPE (name));
1374 if (m_ranger->range_on_edge (r, pred_e, name)
1375 && !r.varying_p ()
1376 && !r.undefined_p ())
1378 set_range_info (name, r);
1379 maybe_set_nonzero_bits (pred_e, name);
1384 /* Record any equivalences created by the incoming edge to BB into
1385 CONST_AND_COPIES and AVAIL_EXPRS_STACK. If BB has more than one
1386 incoming edge, then no equivalence is created. */
1388 static void
1389 record_equivalences_from_incoming_edge (basic_block bb,
1390 class const_and_copies *const_and_copies,
1391 class avail_exprs_stack *avail_exprs_stack,
1392 bitmap blocks_on_stack)
1394 edge e;
1395 basic_block parent;
1397 /* If our parent block ended with a control statement, then we may be
1398 able to record some equivalences based on which outgoing edge from
1399 the parent was followed. */
1400 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1402 e = single_pred_edge_ignoring_loop_edges (bb, true);
1404 /* If we had a single incoming edge from our parent block, then enter
1405 any data associated with the edge into our tables. */
1406 if (e && e->src == parent)
1407 record_temporary_equivalences (e, const_and_copies, avail_exprs_stack,
1408 blocks_on_stack);
1411 /* Dump statistics for the hash table HTAB. */
1413 static void
1414 htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab)
1416 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1417 (long) htab.size (),
1418 (long) htab.elements (),
1419 htab.collisions ());
1422 /* Dump SSA statistics on FILE. */
1424 static void
1425 dump_dominator_optimization_stats (FILE *file,
1426 hash_table<expr_elt_hasher> *avail_exprs)
1428 fprintf (file, "Total number of statements: %6ld\n\n",
1429 opt_stats.num_stmts);
1430 fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
1431 opt_stats.num_exprs_considered);
1433 fprintf (file, "\nHash table statistics:\n");
1435 fprintf (file, " avail_exprs: ");
1436 htab_statistics (file, *avail_exprs);
1440 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1441 This constrains the cases in which we may treat this as assignment. */
1443 static void
1444 record_equality (tree x, tree y, class const_and_copies *const_and_copies)
1446 tree prev_x = NULL, prev_y = NULL;
1448 if (tree_swap_operands_p (x, y))
1449 std::swap (x, y);
1451 /* Most of the time tree_swap_operands_p does what we want. But there
1452 are cases where we know one operand is better for copy propagation than
1453 the other. Given no other code cares about ordering of equality
1454 comparison operators for that purpose, we just handle the special cases
1455 here. */
1456 if (TREE_CODE (x) == SSA_NAME && TREE_CODE (y) == SSA_NAME)
1458 /* If one operand is a single use operand, then make it
1459 X. This will preserve its single use properly and if this
1460 conditional is eliminated, the computation of X can be
1461 eliminated as well. */
1462 if (has_single_use (y) && ! has_single_use (x))
1463 std::swap (x, y);
1465 if (TREE_CODE (x) == SSA_NAME)
1466 prev_x = SSA_NAME_VALUE (x);
1467 if (TREE_CODE (y) == SSA_NAME)
1468 prev_y = SSA_NAME_VALUE (y);
1470 /* If one of the previous values is invariant, or invariant in more loops
1471 (by depth), then use that.
1472 Otherwise it doesn't matter which value we choose, just so
1473 long as we canonicalize on one value. */
1474 if (is_gimple_min_invariant (y))
1476 else if (is_gimple_min_invariant (x))
1477 prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1478 else if (prev_x && is_gimple_min_invariant (prev_x))
1479 x = y, y = prev_x, prev_x = prev_y;
1480 else if (prev_y)
1481 y = prev_y;
1483 /* After the swapping, we must have one SSA_NAME. */
1484 if (TREE_CODE (x) != SSA_NAME)
1485 return;
1487 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1488 variable compared against zero. If we're honoring signed zeros,
1489 then we cannot record this value unless we know that the value is
1490 nonzero. */
1491 if (HONOR_SIGNED_ZEROS (x)
1492 && (TREE_CODE (y) != REAL_CST
1493 || real_equal (&dconst0, &TREE_REAL_CST (y))))
1494 return;
1496 const_and_copies->record_const_or_copy (x, y, prev_x);
1499 /* Returns true when STMT is a simple iv increment. It detects the
1500 following situation:
1502 i_1 = phi (..., i_k)
1503 [...]
1504 i_j = i_{j-1} for each j : 2 <= j <= k-1
1505 [...]
1506 i_k = i_{k-1} +/- ... */
1508 bool
1509 simple_iv_increment_p (gimple *stmt)
1511 enum tree_code code;
1512 tree lhs, preinc;
1513 gimple *phi;
1514 size_t i;
1516 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1517 return false;
1519 lhs = gimple_assign_lhs (stmt);
1520 if (TREE_CODE (lhs) != SSA_NAME)
1521 return false;
1523 code = gimple_assign_rhs_code (stmt);
1524 if (code != PLUS_EXPR
1525 && code != MINUS_EXPR
1526 && code != POINTER_PLUS_EXPR)
1527 return false;
1529 preinc = gimple_assign_rhs1 (stmt);
1530 if (TREE_CODE (preinc) != SSA_NAME)
1531 return false;
1533 phi = SSA_NAME_DEF_STMT (preinc);
1534 while (gimple_code (phi) != GIMPLE_PHI)
1536 /* Follow trivial copies, but not the DEF used in a back edge,
1537 so that we don't prevent coalescing. */
1538 if (!gimple_assign_ssa_name_copy_p (phi))
1539 return false;
1540 preinc = gimple_assign_rhs1 (phi);
1541 phi = SSA_NAME_DEF_STMT (preinc);
1544 for (i = 0; i < gimple_phi_num_args (phi); i++)
1545 if (gimple_phi_arg_def (phi, i) == lhs)
1546 return true;
1548 return false;
1551 /* Propagate know values from SSA_NAME_VALUE into the PHI nodes of the
1552 successors of BB. */
1554 static void
1555 cprop_into_successor_phis (basic_block bb,
1556 class const_and_copies *const_and_copies)
1558 edge e;
1559 edge_iterator ei;
1561 FOR_EACH_EDGE (e, ei, bb->succs)
1563 int indx;
1564 gphi_iterator gsi;
1566 /* If this is an abnormal edge, then we do not want to copy propagate
1567 into the PHI alternative associated with this edge. */
1568 if (e->flags & EDGE_ABNORMAL)
1569 continue;
1571 gsi = gsi_start_phis (e->dest);
1572 if (gsi_end_p (gsi))
1573 continue;
1575 /* We may have an equivalence associated with this edge. While
1576 we cannot propagate it into non-dominated blocks, we can
1577 propagate them into PHIs in non-dominated blocks. */
1579 /* Push the unwind marker so we can reset the const and copies
1580 table back to its original state after processing this edge. */
1581 const_and_copies->push_marker ();
1583 /* Extract and record any simple NAME = VALUE equivalences.
1585 Don't bother with [01] = COND equivalences, they're not useful
1586 here. */
1587 class edge_info *edge_info = (class edge_info *) e->aux;
1589 if (edge_info)
1591 edge_info::equiv_pair *seq;
1592 for (int i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
1594 tree lhs = seq->first;
1595 tree rhs = seq->second;
1597 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1598 const_and_copies->record_const_or_copy (lhs, rhs);
1603 indx = e->dest_idx;
1604 for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
1606 tree new_val;
1607 use_operand_p orig_p;
1608 tree orig_val;
1609 gphi *phi = gsi.phi ();
1611 /* The alternative may be associated with a constant, so verify
1612 it is an SSA_NAME before doing anything with it. */
1613 orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
1614 orig_val = get_use_from_ptr (orig_p);
1615 if (TREE_CODE (orig_val) != SSA_NAME)
1616 continue;
1618 /* If we have *ORIG_P in our constant/copy table, then replace
1619 ORIG_P with its value in our constant/copy table. */
1620 new_val = SSA_NAME_VALUE (orig_val);
1621 if (new_val
1622 && new_val != orig_val
1623 && may_propagate_copy (orig_val, new_val))
1624 propagate_value (orig_p, new_val);
1627 const_and_copies->pop_to_marker ();
1631 edge
1632 dom_opt_dom_walker::before_dom_children (basic_block bb)
1634 gimple_stmt_iterator gsi;
1636 if (dump_file && (dump_flags & TDF_DETAILS))
1637 fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
1639 /* Push a marker on the stacks of local information so that we know how
1640 far to unwind when we finalize this block. */
1641 m_avail_exprs_stack->push_marker ();
1642 m_const_and_copies->push_marker ();
1643 bitmap_set_bit (m_state->get_blocks_on_stack (), bb->index);
1645 record_equivalences_from_incoming_edge (bb, m_const_and_copies,
1646 m_avail_exprs_stack,
1647 m_state->get_blocks_on_stack ());
1648 set_global_ranges_from_unreachable_edges (bb);
1650 /* PHI nodes can create equivalences too. */
1651 record_equivalences_from_phis (bb);
1653 /* Create equivalences from redundant PHIs. PHIs are only truly
1654 redundant when they exist in the same block, so push another
1655 marker and unwind right afterwards. */
1656 m_avail_exprs_stack->push_marker ();
1657 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1658 eliminate_redundant_computations (&gsi, m_const_and_copies,
1659 m_avail_exprs_stack);
1660 m_avail_exprs_stack->pop_to_marker ();
1662 edge taken_edge = NULL;
1663 /* Initialize visited flag ahead of us, it has undefined state on
1664 pass entry. */
1665 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1666 gimple_set_visited (gsi_stmt (gsi), false);
1667 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1669 /* Do not optimize a stmt twice, substitution might end up with
1670 _3 = _3 which is not valid. */
1671 if (gimple_visited_p (gsi_stmt (gsi)))
1673 gsi_next (&gsi);
1674 continue;
1677 bool removed_p = false;
1678 taken_edge = this->optimize_stmt (bb, &gsi, &removed_p);
1679 if (!removed_p)
1680 gimple_set_visited (gsi_stmt (gsi), true);
1682 /* Go back and visit stmts inserted by folding after substituting
1683 into the stmt at gsi. */
1684 if (gsi_end_p (gsi))
1686 gcc_checking_assert (removed_p);
1687 gsi = gsi_last_bb (bb);
1688 while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)))
1689 gsi_prev (&gsi);
1691 else
1695 gsi_prev (&gsi);
1697 while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)));
1699 if (gsi_end_p (gsi))
1700 gsi = gsi_start_bb (bb);
1701 else
1702 gsi_next (&gsi);
1705 /* Now prepare to process dominated blocks. */
1706 record_edge_info (bb);
1707 cprop_into_successor_phis (bb, m_const_and_copies);
1708 if (taken_edge && !dbg_cnt (dom_unreachable_edges))
1709 return NULL;
1711 return taken_edge;
1714 /* We have finished processing the dominator children of BB, perform
1715 any finalization actions in preparation for leaving this node in
1716 the dominator tree. */
1718 void
1719 dom_opt_dom_walker::after_dom_children (basic_block bb)
1721 m_threader->thread_outgoing_edges (bb);
1722 bitmap_clear_bit (m_state->get_blocks_on_stack (), bb->index);
1723 m_avail_exprs_stack->pop_to_marker ();
1724 m_const_and_copies->pop_to_marker ();
1727 /* Search for redundant computations in STMT. If any are found, then
1728 replace them with the variable holding the result of the computation.
1730 If safe, record this expression into AVAIL_EXPRS_STACK and
1731 CONST_AND_COPIES. */
1733 static void
1734 eliminate_redundant_computations (gimple_stmt_iterator* gsi,
1735 class const_and_copies *const_and_copies,
1736 class avail_exprs_stack *avail_exprs_stack)
1738 tree expr_type;
1739 tree cached_lhs;
1740 tree def;
1741 bool insert = true;
1742 bool assigns_var_p = false;
1744 gimple *stmt = gsi_stmt (*gsi);
1746 if (gimple_code (stmt) == GIMPLE_PHI)
1747 def = gimple_phi_result (stmt);
1748 else
1749 def = gimple_get_lhs (stmt);
1751 /* Certain expressions on the RHS can be optimized away, but cannot
1752 themselves be entered into the hash tables. */
1753 if (! def
1754 || TREE_CODE (def) != SSA_NAME
1755 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
1756 || gimple_vdef (stmt)
1757 /* Do not record equivalences for increments of ivs. This would create
1758 overlapping live ranges for a very questionable gain. */
1759 || simple_iv_increment_p (stmt))
1760 insert = false;
1762 /* Check if the expression has been computed before. */
1763 cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, insert, true);
1765 opt_stats.num_exprs_considered++;
1767 /* Get the type of the expression we are trying to optimize. */
1768 if (is_gimple_assign (stmt))
1770 expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
1771 assigns_var_p = true;
1773 else if (gimple_code (stmt) == GIMPLE_COND)
1774 expr_type = boolean_type_node;
1775 else if (is_gimple_call (stmt))
1777 gcc_assert (gimple_call_lhs (stmt));
1778 expr_type = TREE_TYPE (gimple_call_lhs (stmt));
1779 assigns_var_p = true;
1781 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
1782 expr_type = TREE_TYPE (gimple_switch_index (swtch_stmt));
1783 else if (gimple_code (stmt) == GIMPLE_PHI)
1784 /* We can't propagate into a phi, so the logic below doesn't apply.
1785 Instead record an equivalence between the cached LHS and the
1786 PHI result of this statement, provided they are in the same block.
1787 This should be sufficient to kill the redundant phi. */
1789 if (def && cached_lhs)
1790 const_and_copies->record_const_or_copy (def, cached_lhs);
1791 return;
1793 else
1794 gcc_unreachable ();
1796 if (!cached_lhs)
1797 return;
1799 /* It is safe to ignore types here since we have already done
1800 type checking in the hashing and equality routines. In fact
1801 type checking here merely gets in the way of constant
1802 propagation. Also, make sure that it is safe to propagate
1803 CACHED_LHS into the expression in STMT. */
1804 if ((TREE_CODE (cached_lhs) != SSA_NAME
1805 && (assigns_var_p
1806 || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
1807 || may_propagate_copy_into_stmt (stmt, cached_lhs))
1809 gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
1810 || is_gimple_min_invariant (cached_lhs));
1812 if (dump_file && (dump_flags & TDF_DETAILS))
1814 fprintf (dump_file, " Replaced redundant expr '");
1815 print_gimple_expr (dump_file, stmt, 0, dump_flags);
1816 fprintf (dump_file, "' with '");
1817 print_generic_expr (dump_file, cached_lhs, dump_flags);
1818 fprintf (dump_file, "'\n");
1821 opt_stats.num_re++;
1823 if (assigns_var_p
1824 && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
1825 cached_lhs = fold_convert (expr_type, cached_lhs);
1827 propagate_tree_value_into_stmt (gsi, cached_lhs);
1829 /* Since it is always necessary to mark the result as modified,
1830 perhaps we should move this into propagate_tree_value_into_stmt
1831 itself. */
1832 gimple_set_modified (gsi_stmt (*gsi), true);
1836 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
1837 the available expressions table or the const_and_copies table.
1838 Detect and record those equivalences into AVAIL_EXPRS_STACK.
1840 We handle only very simple copy equivalences here. The heavy
1841 lifing is done by eliminate_redundant_computations. */
1843 static void
1844 record_equivalences_from_stmt (gimple *stmt, int may_optimize_p,
1845 class avail_exprs_stack *avail_exprs_stack)
1847 tree lhs;
1848 enum tree_code lhs_code;
1850 gcc_assert (is_gimple_assign (stmt));
1852 lhs = gimple_assign_lhs (stmt);
1853 lhs_code = TREE_CODE (lhs);
1855 if (lhs_code == SSA_NAME
1856 && gimple_assign_single_p (stmt))
1858 tree rhs = gimple_assign_rhs1 (stmt);
1860 /* If the RHS of the assignment is a constant or another variable that
1861 may be propagated, register it in the CONST_AND_COPIES table. We
1862 do not need to record unwind data for this, since this is a true
1863 assignment and not an equivalence inferred from a comparison. All
1864 uses of this ssa name are dominated by this assignment, so unwinding
1865 just costs time and space. */
1866 if (may_optimize_p
1867 && (TREE_CODE (rhs) == SSA_NAME
1868 || is_gimple_min_invariant (rhs)))
1870 rhs = dom_valueize (rhs);
1872 if (dump_file && (dump_flags & TDF_DETAILS))
1874 fprintf (dump_file, "==== ASGN ");
1875 print_generic_expr (dump_file, lhs);
1876 fprintf (dump_file, " = ");
1877 print_generic_expr (dump_file, rhs);
1878 fprintf (dump_file, "\n");
1881 set_ssa_name_value (lhs, rhs);
1885 /* Make sure we can propagate &x + CST. */
1886 if (lhs_code == SSA_NAME
1887 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
1888 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR
1889 && TREE_CODE (gimple_assign_rhs2 (stmt)) == INTEGER_CST)
1891 tree op0 = gimple_assign_rhs1 (stmt);
1892 tree op1 = gimple_assign_rhs2 (stmt);
1893 tree new_rhs
1894 = build1 (ADDR_EXPR, TREE_TYPE (op0),
1895 fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (op0)),
1896 unshare_expr (op0), fold_convert (ptr_type_node,
1897 op1)));
1898 if (dump_file && (dump_flags & TDF_DETAILS))
1900 fprintf (dump_file, "==== ASGN ");
1901 print_generic_expr (dump_file, lhs);
1902 fprintf (dump_file, " = ");
1903 print_generic_expr (dump_file, new_rhs);
1904 fprintf (dump_file, "\n");
1907 set_ssa_name_value (lhs, new_rhs);
1910 /* A memory store, even an aliased store, creates a useful
1911 equivalence. By exchanging the LHS and RHS, creating suitable
1912 vops and recording the result in the available expression table,
1913 we may be able to expose more redundant loads. */
1914 if (!gimple_has_volatile_ops (stmt)
1915 && gimple_references_memory_p (stmt)
1916 && gimple_assign_single_p (stmt)
1917 && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
1918 || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
1919 && !is_gimple_reg (lhs))
1921 tree rhs = gimple_assign_rhs1 (stmt);
1922 gassign *new_stmt;
1924 /* Build a new statement with the RHS and LHS exchanged. */
1925 if (TREE_CODE (rhs) == SSA_NAME)
1927 /* NOTE tuples. The call to gimple_build_assign below replaced
1928 a call to build_gimple_modify_stmt, which did not set the
1929 SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so
1930 may cause an SSA validation failure, as the LHS may be a
1931 default-initialized name and should have no definition. I'm
1932 a bit dubious of this, as the artificial statement that we
1933 generate here may in fact be ill-formed, but it is simply
1934 used as an internal device in this pass, and never becomes
1935 part of the CFG. */
1936 gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
1937 new_stmt = gimple_build_assign (rhs, lhs);
1938 SSA_NAME_DEF_STMT (rhs) = defstmt;
1940 else
1941 new_stmt = gimple_build_assign (rhs, lhs);
1943 gimple_set_vuse (new_stmt, gimple_vdef (stmt));
1945 /* Finally enter the statement into the available expression
1946 table. */
1947 avail_exprs_stack->lookup_avail_expr (new_stmt, true, true);
1951 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
1952 CONST_AND_COPIES. */
1954 static void
1955 cprop_operand (gimple *stmt, use_operand_p op_p, range_query *query)
1957 tree val;
1958 tree op = USE_FROM_PTR (op_p);
1960 /* If the operand has a known constant value or it is known to be a
1961 copy of some other variable, use the value or copy stored in
1962 CONST_AND_COPIES. */
1963 val = SSA_NAME_VALUE (op);
1964 if (!val)
1966 Value_Range r (TREE_TYPE (op));
1967 tree single;
1968 if (query->range_of_expr (r, op, stmt) && r.singleton_p (&single))
1969 val = single;
1972 if (val && val != op)
1974 /* Do not replace hard register operands in asm statements. */
1975 if (gimple_code (stmt) == GIMPLE_ASM
1976 && !may_propagate_copy_into_asm (op))
1977 return;
1979 /* Certain operands are not allowed to be copy propagated due
1980 to their interaction with exception handling and some GCC
1981 extensions. */
1982 if (!may_propagate_copy (op, val))
1983 return;
1985 /* Do not propagate copies into BIVs.
1986 See PR23821 and PR62217 for how this can disturb IV and
1987 number of iteration analysis. */
1988 if (TREE_CODE (val) != INTEGER_CST)
1990 gimple *def = SSA_NAME_DEF_STMT (op);
1991 if (gimple_code (def) == GIMPLE_PHI
1992 && gimple_bb (def)->loop_father->header == gimple_bb (def))
1993 return;
1996 /* Dump details. */
1997 if (dump_file && (dump_flags & TDF_DETAILS))
1999 fprintf (dump_file, " Replaced '");
2000 print_generic_expr (dump_file, op, dump_flags);
2001 fprintf (dump_file, "' with %s '",
2002 (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
2003 print_generic_expr (dump_file, val, dump_flags);
2004 fprintf (dump_file, "'\n");
2007 if (TREE_CODE (val) != SSA_NAME)
2008 opt_stats.num_const_prop++;
2009 else
2010 opt_stats.num_copy_prop++;
2012 propagate_value (op_p, val);
2014 /* And note that we modified this statement. This is now
2015 safe, even if we changed virtual operands since we will
2016 rescan the statement and rewrite its operands again. */
2017 gimple_set_modified (stmt, true);
2021 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
2022 known value for that SSA_NAME (or NULL if no value is known).
2024 Propagate values from CONST_AND_COPIES into the uses, vuses and
2025 vdef_ops of STMT. */
2027 static void
2028 cprop_into_stmt (gimple *stmt, range_query *query)
2030 use_operand_p op_p;
2031 ssa_op_iter iter;
2032 tree last_copy_propagated_op = NULL;
2034 FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
2036 tree old_op = USE_FROM_PTR (op_p);
2038 /* If we have A = B and B = A in the copy propagation tables
2039 (due to an equality comparison), avoid substituting B for A
2040 then A for B in the trivially discovered cases. This allows
2041 optimization of statements were A and B appear as input
2042 operands. */
2043 if (old_op != last_copy_propagated_op)
2045 cprop_operand (stmt, op_p, query);
2047 tree new_op = USE_FROM_PTR (op_p);
2048 if (new_op != old_op && TREE_CODE (new_op) == SSA_NAME)
2049 last_copy_propagated_op = new_op;
2054 /* If STMT contains a relational test, try to convert it into an
2055 equality test if there is only a single value which can ever
2056 make the test true.
2058 For example, if the expression hash table contains:
2060 TRUE = (i <= 1)
2062 And we have a test within statement of i >= 1, then we can safely
2063 rewrite the test as i == 1 since there only a single value where
2064 the test is true.
2066 This is similar to code in VRP. */
2068 void
2069 dom_opt_dom_walker::test_for_singularity (gimple *stmt,
2070 avail_exprs_stack *avail_exprs_stack)
2072 /* We want to support gimple conditionals as well as assignments
2073 where the RHS contains a conditional. */
2074 if (is_gimple_assign (stmt) || gimple_code (stmt) == GIMPLE_COND)
2076 enum tree_code code = ERROR_MARK;
2077 tree lhs, rhs;
2079 /* Extract the condition of interest from both forms we support. */
2080 if (is_gimple_assign (stmt))
2082 code = gimple_assign_rhs_code (stmt);
2083 lhs = gimple_assign_rhs1 (stmt);
2084 rhs = gimple_assign_rhs2 (stmt);
2086 else if (gimple_code (stmt) == GIMPLE_COND)
2088 code = gimple_cond_code (as_a <gcond *> (stmt));
2089 lhs = gimple_cond_lhs (as_a <gcond *> (stmt));
2090 rhs = gimple_cond_rhs (as_a <gcond *> (stmt));
2093 /* We're looking for a relational test using LE/GE. Also note we can
2094 canonicalize LT/GT tests against constants into LE/GT tests. */
2095 if (code == LE_EXPR || code == GE_EXPR
2096 || ((code == LT_EXPR || code == GT_EXPR)
2097 && TREE_CODE (rhs) == INTEGER_CST))
2099 /* For LT_EXPR and GT_EXPR, canonicalize to LE_EXPR and GE_EXPR. */
2100 if (code == LT_EXPR)
2101 rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (rhs),
2102 rhs, build_int_cst (TREE_TYPE (rhs), 1));
2104 if (code == GT_EXPR)
2105 rhs = fold_build2 (PLUS_EXPR, TREE_TYPE (rhs),
2106 rhs, build_int_cst (TREE_TYPE (rhs), 1));
2108 /* Determine the code we want to check for in the hash table. */
2109 enum tree_code test_code;
2110 if (code == GE_EXPR || code == GT_EXPR)
2111 test_code = LE_EXPR;
2112 else
2113 test_code = GE_EXPR;
2115 /* Update the dummy statement so we can query the hash tables. */
2116 gimple_cond_set_code (m_dummy_cond, test_code);
2117 gimple_cond_set_lhs (m_dummy_cond, lhs);
2118 gimple_cond_set_rhs (m_dummy_cond, rhs);
2119 tree cached_lhs
2120 = avail_exprs_stack->lookup_avail_expr (m_dummy_cond,
2121 false, false);
2123 /* If the lookup returned 1 (true), then the expression we
2124 queried was in the hash table. As a result there is only
2125 one value that makes the original conditional true. Update
2126 STMT accordingly. */
2127 if (cached_lhs && integer_onep (cached_lhs))
2129 if (is_gimple_assign (stmt))
2131 gimple_assign_set_rhs_code (stmt, EQ_EXPR);
2132 gimple_assign_set_rhs2 (stmt, rhs);
2133 gimple_set_modified (stmt, true);
2135 else
2137 gimple_set_modified (stmt, true);
2138 gimple_cond_set_code (as_a <gcond *> (stmt), EQ_EXPR);
2139 gimple_cond_set_rhs (as_a <gcond *> (stmt), rhs);
2140 gimple_set_modified (stmt, true);
2147 /* If STMT is a comparison of two uniform vectors reduce it to a comparison
2148 of scalar objects, otherwise leave STMT unchanged. */
2150 static void
2151 reduce_vector_comparison_to_scalar_comparison (gimple *stmt)
2153 if (gimple_code (stmt) == GIMPLE_COND)
2155 tree lhs = gimple_cond_lhs (stmt);
2156 tree rhs = gimple_cond_rhs (stmt);
2158 /* We may have a vector comparison where both arms are uniform
2159 vectors. If so, we can simplify the vector comparison down
2160 to a scalar comparison. */
2161 if (TREE_CODE (TREE_TYPE (lhs)) == VECTOR_TYPE
2162 && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE)
2164 /* If either operand is an SSA_NAME, then look back to its
2165 defining statement to try and get at a suitable source. */
2166 if (TREE_CODE (rhs) == SSA_NAME)
2168 gimple *def_stmt = SSA_NAME_DEF_STMT (rhs);
2169 if (gimple_assign_single_p (def_stmt))
2170 rhs = gimple_assign_rhs1 (def_stmt);
2173 if (TREE_CODE (lhs) == SSA_NAME)
2175 gimple *def_stmt = SSA_NAME_DEF_STMT (lhs);
2176 if (gimple_assign_single_p (def_stmt))
2177 lhs = gimple_assign_rhs1 (def_stmt);
2180 /* Now see if they are both uniform vectors and if so replace
2181 the vector comparison with a scalar comparison. */
2182 tree rhs_elem = rhs ? uniform_vector_p (rhs) : NULL_TREE;
2183 tree lhs_elem = lhs ? uniform_vector_p (lhs) : NULL_TREE;
2184 if (rhs_elem && lhs_elem)
2186 if (dump_file && dump_flags & TDF_DETAILS)
2188 fprintf (dump_file, "Reducing vector comparison: ");
2189 print_gimple_stmt (dump_file, stmt, 0);
2192 gimple_cond_set_rhs (as_a <gcond *>(stmt), rhs_elem);
2193 gimple_cond_set_lhs (as_a <gcond *>(stmt), lhs_elem);
2194 gimple_set_modified (stmt, true);
2196 if (dump_file && dump_flags & TDF_DETAILS)
2198 fprintf (dump_file, "To scalar equivalent: ");
2199 print_gimple_stmt (dump_file, stmt, 0);
2200 fprintf (dump_file, "\n");
2207 /* If possible, rewrite the conditional as TRUE or FALSE, and return
2208 the taken edge. Otherwise, return NULL. */
2210 edge
2211 dom_opt_dom_walker::fold_cond (gcond *cond)
2213 simplify_using_ranges simplify (m_ranger);
2214 if (simplify.fold_cond (cond))
2216 basic_block bb = gimple_bb (cond);
2217 if (gimple_cond_true_p (cond))
2218 return find_taken_edge (bb, boolean_true_node);
2219 if (gimple_cond_false_p (cond))
2220 return find_taken_edge (bb, boolean_false_node);
2222 return NULL;
2225 /* Optimize the statement in block BB pointed to by iterator SI.
2227 We try to perform some simplistic global redundancy elimination and
2228 constant propagation:
2230 1- To detect global redundancy, we keep track of expressions that have
2231 been computed in this block and its dominators. If we find that the
2232 same expression is computed more than once, we eliminate repeated
2233 computations by using the target of the first one.
2235 2- Constant values and copy assignments. This is used to do very
2236 simplistic constant and copy propagation. When a constant or copy
2237 assignment is found, we map the value on the RHS of the assignment to
2238 the variable in the LHS in the CONST_AND_COPIES table.
2240 3- Very simple redundant store elimination is performed.
2242 4- We can simplify a condition to a constant or from a relational
2243 condition to an equality condition. */
2245 edge
2246 dom_opt_dom_walker::optimize_stmt (basic_block bb, gimple_stmt_iterator *si,
2247 bool *removed_p)
2249 gimple *stmt, *old_stmt;
2250 bool may_optimize_p;
2251 bool modified_p = false;
2252 bool was_noreturn;
2253 edge retval = NULL;
2255 old_stmt = stmt = gsi_stmt (*si);
2256 was_noreturn = is_gimple_call (stmt) && gimple_call_noreturn_p (stmt);
2258 if (dump_file && (dump_flags & TDF_DETAILS))
2260 fprintf (dump_file, "Optimizing statement ");
2261 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2264 /* STMT may be a comparison of uniform vectors that we can simplify
2265 down to a comparison of scalars. Do that transformation first
2266 so that all the scalar optimizations from here onward apply. */
2267 reduce_vector_comparison_to_scalar_comparison (stmt);
2269 update_stmt_if_modified (stmt);
2270 opt_stats.num_stmts++;
2272 /* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */
2273 cprop_into_stmt (stmt, m_ranger);
2275 /* If the statement has been modified with constant replacements,
2276 fold its RHS before checking for redundant computations. */
2277 if (gimple_modified_p (stmt))
2279 tree rhs = NULL;
2281 /* Try to fold the statement making sure that STMT is kept
2282 up to date. */
2283 if (fold_stmt (si))
2285 stmt = gsi_stmt (*si);
2286 gimple_set_modified (stmt, true);
2288 if (dump_file && (dump_flags & TDF_DETAILS))
2290 fprintf (dump_file, " Folded to: ");
2291 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2295 /* We only need to consider cases that can yield a gimple operand. */
2296 if (gimple_assign_single_p (stmt))
2297 rhs = gimple_assign_rhs1 (stmt);
2298 else if (gimple_code (stmt) == GIMPLE_GOTO)
2299 rhs = gimple_goto_dest (stmt);
2300 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2301 /* This should never be an ADDR_EXPR. */
2302 rhs = gimple_switch_index (swtch_stmt);
2304 if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
2305 recompute_tree_invariant_for_addr_expr (rhs);
2307 /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
2308 even if fold_stmt updated the stmt already and thus cleared
2309 gimple_modified_p flag on it. */
2310 modified_p = true;
2313 /* Check for redundant computations. Do this optimization only
2314 for assignments that have no volatile ops and conditionals. */
2315 may_optimize_p = (!gimple_has_side_effects (stmt)
2316 && (is_gimple_assign (stmt)
2317 || (is_gimple_call (stmt)
2318 && gimple_call_lhs (stmt) != NULL_TREE)
2319 || gimple_code (stmt) == GIMPLE_COND
2320 || gimple_code (stmt) == GIMPLE_SWITCH));
2322 if (may_optimize_p)
2324 if (gimple_code (stmt) == GIMPLE_CALL)
2326 /* Resolve __builtin_constant_p. If it hasn't been
2327 folded to integer_one_node by now, it's fairly
2328 certain that the value simply isn't constant. */
2329 tree callee = gimple_call_fndecl (stmt);
2330 if (callee
2331 && fndecl_built_in_p (callee, BUILT_IN_CONSTANT_P))
2333 propagate_tree_value_into_stmt (si, integer_zero_node);
2334 stmt = gsi_stmt (*si);
2338 if (gimple_code (stmt) == GIMPLE_COND)
2340 tree lhs = gimple_cond_lhs (stmt);
2341 tree rhs = gimple_cond_rhs (stmt);
2343 /* If the LHS has a range [0..1] and the RHS has a range ~[0..1],
2344 then this conditional is computable at compile time. We can just
2345 shove either 0 or 1 into the LHS, mark the statement as modified
2346 and all the right things will just happen below.
2348 Note this would apply to any case where LHS has a range
2349 narrower than its type implies and RHS is outside that
2350 narrower range. Future work. */
2351 if (TREE_CODE (lhs) == SSA_NAME
2352 && ssa_name_has_boolean_range (lhs)
2353 && TREE_CODE (rhs) == INTEGER_CST
2354 && ! (integer_zerop (rhs) || integer_onep (rhs)))
2356 gimple_cond_set_lhs (as_a <gcond *> (stmt),
2357 fold_convert (TREE_TYPE (lhs),
2358 integer_zero_node));
2359 gimple_set_modified (stmt, true);
2361 else if (TREE_CODE (lhs) == SSA_NAME)
2363 /* Exploiting EVRP data is not yet fully integrated into DOM
2364 but we need to do something for this case to avoid regressing
2365 udr4.f90 and new1.C which have unexecutable blocks with
2366 undefined behavior that get diagnosed if they're left in the
2367 IL because we've attached range information to new
2368 SSA_NAMES. */
2369 update_stmt_if_modified (stmt);
2370 edge taken_edge = fold_cond (as_a <gcond *> (stmt));
2371 if (taken_edge)
2373 gimple_set_modified (stmt, true);
2374 update_stmt (stmt);
2375 cfg_altered = true;
2376 return taken_edge;
2381 update_stmt_if_modified (stmt);
2382 eliminate_redundant_computations (si, m_const_and_copies,
2383 m_avail_exprs_stack);
2384 stmt = gsi_stmt (*si);
2386 /* Perform simple redundant store elimination. */
2387 if (gimple_assign_single_p (stmt)
2388 && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
2390 tree lhs = gimple_assign_lhs (stmt);
2391 tree rhs = gimple_assign_rhs1 (stmt);
2392 tree cached_lhs;
2393 gassign *new_stmt;
2394 rhs = dom_valueize (rhs);
2395 /* Build a new statement with the RHS and LHS exchanged. */
2396 if (TREE_CODE (rhs) == SSA_NAME)
2398 gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
2399 new_stmt = gimple_build_assign (rhs, lhs);
2400 SSA_NAME_DEF_STMT (rhs) = defstmt;
2402 else
2403 new_stmt = gimple_build_assign (rhs, lhs);
2404 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2405 expr_hash_elt *elt = NULL;
2406 cached_lhs = m_avail_exprs_stack->lookup_avail_expr (new_stmt, false,
2407 false, &elt);
2408 if (cached_lhs
2409 && operand_equal_p (rhs, cached_lhs, 0)
2410 && refs_same_for_tbaa_p (elt->expr ()->kind == EXPR_SINGLE
2411 ? elt->expr ()->ops.single.rhs
2412 : NULL_TREE, lhs))
2414 basic_block bb = gimple_bb (stmt);
2415 unlink_stmt_vdef (stmt);
2416 if (gsi_remove (si, true))
2418 bitmap_set_bit (need_eh_cleanup, bb->index);
2419 if (dump_file && (dump_flags & TDF_DETAILS))
2420 fprintf (dump_file, " Flagged to clear EH edges.\n");
2422 release_defs (stmt);
2423 *removed_p = true;
2424 return retval;
2428 /* If this statement was not redundant, we may still be able to simplify
2429 it, which may in turn allow other part of DOM or other passes to do
2430 a better job. */
2431 test_for_singularity (stmt, m_avail_exprs_stack);
2434 /* Record any additional equivalences created by this statement. */
2435 if (is_gimple_assign (stmt))
2436 record_equivalences_from_stmt (stmt, may_optimize_p, m_avail_exprs_stack);
2438 /* If STMT is a COND_EXPR or SWITCH_EXPR and it was modified, then we may
2439 know where it goes. */
2440 if (gimple_modified_p (stmt) || modified_p)
2442 tree val = NULL;
2444 if (gimple_code (stmt) == GIMPLE_COND)
2445 val = fold_binary_loc (gimple_location (stmt),
2446 gimple_cond_code (stmt), boolean_type_node,
2447 gimple_cond_lhs (stmt),
2448 gimple_cond_rhs (stmt));
2449 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2450 val = gimple_switch_index (swtch_stmt);
2452 if (val && TREE_CODE (val) == INTEGER_CST)
2454 retval = find_taken_edge (bb, val);
2455 if (retval)
2457 /* Fix the condition to be either true or false. */
2458 if (gimple_code (stmt) == GIMPLE_COND)
2460 if (integer_zerop (val))
2461 gimple_cond_make_false (as_a <gcond *> (stmt));
2462 else if (integer_onep (val))
2463 gimple_cond_make_true (as_a <gcond *> (stmt));
2464 else
2465 gcc_unreachable ();
2467 gimple_set_modified (stmt, true);
2470 /* Further simplifications may be possible. */
2471 cfg_altered = true;
2475 update_stmt_if_modified (stmt);
2477 /* If we simplified a statement in such a way as to be shown that it
2478 cannot trap, update the eh information and the cfg to match. */
2479 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
2481 bitmap_set_bit (need_eh_cleanup, bb->index);
2482 if (dump_file && (dump_flags & TDF_DETAILS))
2483 fprintf (dump_file, " Flagged to clear EH edges.\n");
2486 if (!was_noreturn
2487 && is_gimple_call (stmt) && gimple_call_noreturn_p (stmt))
2488 need_noreturn_fixup.safe_push (stmt);
2490 return retval;