1 /* Scalar evolution detector.
2 Copyright (C) 2003-2022 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
24 This pass analyzes the evolution of scalar variables in loop
25 structures. The algorithm is based on the SSA representation,
26 and on the loop hierarchy tree. This algorithm is not based on
27 the notion of versions of a variable, as it was the case for the
28 previous implementations of the scalar evolution algorithm, but
29 it assumes that each defined name is unique.
31 The notation used in this file is called "chains of recurrences",
32 and has been proposed by Eugene Zima, Robert Van Engelen, and
33 others for describing induction variables in programs. For example
34 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
35 when entering in the loop_1 and has a step 2 in this loop, in other
36 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
37 this chain of recurrence (or chrec [shrek]) can contain the name of
38 other variables, in which case they are called parametric chrecs.
39 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
40 is the value of "a". In most of the cases these parametric chrecs
41 are fully instantiated before their use because symbolic names can
42 hide some difficult cases such as self-references described later
43 (see the Fibonacci example).
45 A short sketch of the algorithm is:
47 Given a scalar variable to be analyzed, follow the SSA edge to
50 - When the definition is a GIMPLE_ASSIGN: if the right hand side
51 (RHS) of the definition cannot be statically analyzed, the answer
52 of the analyzer is: "don't know".
53 Otherwise, for all the variables that are not yet analyzed in the
54 RHS, try to determine their evolution, and finally try to
55 evaluate the operation of the RHS that gives the evolution
56 function of the analyzed variable.
58 - When the definition is a condition-phi-node: determine the
59 evolution function for all the branches of the phi node, and
60 finally merge these evolutions (see chrec_merge).
62 - When the definition is a loop-phi-node: determine its initial
63 condition, that is the SSA edge defined in an outer loop, and
64 keep it symbolic. Then determine the SSA edges that are defined
65 in the body of the loop. Follow the inner edges until ending on
66 another loop-phi-node of the same analyzed loop. If the reached
67 loop-phi-node is not the starting loop-phi-node, then we keep
68 this definition under a symbolic form. If the reached
69 loop-phi-node is the same as the starting one, then we compute a
70 symbolic stride on the return path. The result is then the
71 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
75 Example 1: Illustration of the basic algorithm.
81 | if (c > 10) exit_loop
84 Suppose that we want to know the number of iterations of the
85 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
86 ask the scalar evolution analyzer two questions: what's the
87 scalar evolution (scev) of "c", and what's the scev of "10". For
88 "10" the answer is "10" since it is a scalar constant. For the
89 scalar variable "c", it follows the SSA edge to its definition,
90 "c = b + 1", and then asks again what's the scev of "b".
91 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
92 c)", where the initial condition is "a", and the inner loop edge
93 is "c". The initial condition is kept under a symbolic form (it
94 may be the case that the copy constant propagation has done its
95 work and we end with the constant "3" as one of the edges of the
96 loop-phi-node). The update edge is followed to the end of the
97 loop, and until reaching again the starting loop-phi-node: b -> c
98 -> b. At this point we have drawn a path from "b" to "b" from
99 which we compute the stride in the loop: in this example it is
100 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
101 that the scev for "b" is known, it is possible to compute the
102 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
103 determine the number of iterations in the loop_1, we have to
104 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
105 more analysis the scev {4, +, 1}_1, or in other words, this is
106 the function "f (x) = x + 4", where x is the iteration count of
107 the loop_1. Now we have to solve the inequality "x + 4 > 10",
108 and take the smallest iteration number for which the loop is
109 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
110 there are 8 iterations. In terms of loop normalization, we have
111 created a variable that is implicitly defined, "x" or just "_1",
112 and all the other analyzed scalars of the loop are defined in
113 function of this variable:
119 or in terms of a C program:
122 | for (x = 0; x <= 7; x++)
128 Example 2a: Illustration of the algorithm on nested loops.
139 For analyzing the scalar evolution of "a", the algorithm follows
140 the SSA edge into the loop's body: "a -> b". "b" is an inner
141 loop-phi-node, and its analysis as in Example 1, gives:
146 Following the SSA edge for the initial condition, we end on "c = a
147 + 2", and then on the starting loop-phi-node "a". From this point,
148 the loop stride is computed: back on "c = a + 2" we get a "+2" in
149 the loop_1, then on the loop-phi-node "b" we compute the overall
150 effect of the inner loop that is "b = c + 30", and we get a "+30"
151 in the loop_1. That means that the overall stride in loop_1 is
152 equal to "+32", and the result is:
157 Example 2b: Multivariate chains of recurrences.
170 Analyzing the access function of array A with
171 instantiate_parameters (loop_1, "j + k"), we obtain the
172 instantiation and the analysis of the scalar variables "j" and "k"
173 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
174 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
175 {0, +, 1}_1. To obtain the evolution function in loop_3 and
176 instantiate the scalar variables up to loop_1, one has to use:
177 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
178 The result of this call is {{0, +, 1}_1, +, 1}_2.
180 Example 3: Higher degree polynomials.
194 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
195 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
197 Example 4: Lucas, Fibonacci, or mixers in general.
209 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
210 following semantics: during the first iteration of the loop_1, the
211 variable contains the value 1, and then it contains the value "c".
212 Note that this syntax is close to the syntax of the loop-phi-node:
213 "a -> (1, c)_1" vs. "a = phi (1, c)".
215 The symbolic chrec representation contains all the semantics of the
216 original code. What is more difficult is to use this information.
218 Example 5: Flip-flops, or exchangers.
230 Based on these symbolic chrecs, it is possible to refine this
231 information into the more precise PERIODIC_CHRECs:
236 This transformation is not yet implemented.
240 You can find a more detailed description of the algorithm in:
241 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
243 this is a preliminary report and some of the details of the
244 algorithm have changed. I'm working on a research report that
245 updates the description of the algorithms to reflect the design
246 choices used in this implementation.
248 A set of slides show a high level overview of the algorithm and run
249 an example through the scalar evolution analyzer:
250 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
252 The slides that I have presented at the GCC Summit'04 are available
253 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
258 #include "coretypes.h"
262 #include "optabs-query.h"
266 #include "gimple-pretty-print.h"
267 #include "fold-const.h"
268 #include "gimplify.h"
269 #include "gimple-iterator.h"
270 #include "gimplify-me.h"
271 #include "tree-cfg.h"
272 #include "tree-ssa-loop-ivopts.h"
273 #include "tree-ssa-loop-manip.h"
274 #include "tree-ssa-loop-niter.h"
275 #include "tree-ssa-loop.h"
276 #include "tree-ssa.h"
278 #include "tree-chrec.h"
279 #include "tree-affine.h"
280 #include "tree-scalar-evolution.h"
281 #include "dumpfile.h"
282 #include "tree-ssa-propagate.h"
283 #include "gimple-fold.h"
284 #include "tree-into-ssa.h"
285 #include "builtins.h"
286 #include "case-cfn-macros.h"
288 static tree
analyze_scalar_evolution_1 (class loop
*, tree
);
289 static tree
analyze_scalar_evolution_for_address_of (class loop
*loop
,
292 /* The cached information about an SSA name with version NAME_VERSION,
293 claiming that below basic block with index INSTANTIATED_BELOW, the
294 value of the SSA name can be expressed as CHREC. */
296 struct GTY((for_user
)) scev_info_str
{
297 unsigned int name_version
;
298 int instantiated_below
;
302 /* Counters for the scev database. */
303 static unsigned nb_set_scev
= 0;
304 static unsigned nb_get_scev
= 0;
306 struct scev_info_hasher
: ggc_ptr_hash
<scev_info_str
>
308 static hashval_t
hash (scev_info_str
*i
);
309 static bool equal (const scev_info_str
*a
, const scev_info_str
*b
);
312 static GTY (()) hash_table
<scev_info_hasher
> *scalar_evolution_info
;
315 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
317 static inline struct scev_info_str
*
318 new_scev_info_str (basic_block instantiated_below
, tree var
)
320 struct scev_info_str
*res
;
322 res
= ggc_alloc
<scev_info_str
> ();
323 res
->name_version
= SSA_NAME_VERSION (var
);
324 res
->chrec
= chrec_not_analyzed_yet
;
325 res
->instantiated_below
= instantiated_below
->index
;
330 /* Computes a hash function for database element ELT. */
333 scev_info_hasher::hash (scev_info_str
*elt
)
335 return elt
->name_version
^ elt
->instantiated_below
;
338 /* Compares database elements E1 and E2. */
341 scev_info_hasher::equal (const scev_info_str
*elt1
, const scev_info_str
*elt2
)
343 return (elt1
->name_version
== elt2
->name_version
344 && elt1
->instantiated_below
== elt2
->instantiated_below
);
347 /* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
348 A first query on VAR returns chrec_not_analyzed_yet. */
351 find_var_scev_info (basic_block instantiated_below
, tree var
)
353 struct scev_info_str
*res
;
354 struct scev_info_str tmp
;
356 tmp
.name_version
= SSA_NAME_VERSION (var
);
357 tmp
.instantiated_below
= instantiated_below
->index
;
358 scev_info_str
**slot
= scalar_evolution_info
->find_slot (&tmp
, INSERT
);
361 *slot
= new_scev_info_str (instantiated_below
, var
);
368 /* Hashtable helpers for a temporary hash-table used when
369 analyzing a scalar evolution, instantiating a CHREC or
372 class instantiate_cache_type
376 vec
<scev_info_str
> entries
;
378 instantiate_cache_type () : map (NULL
), entries (vNULL
) {}
379 ~instantiate_cache_type ();
380 tree
get (unsigned slot
) { return entries
[slot
].chrec
; }
381 void set (unsigned slot
, tree chrec
) { entries
[slot
].chrec
= chrec
; }
384 instantiate_cache_type::~instantiate_cache_type ()
393 /* Cache to avoid infinite recursion when instantiating an SSA name.
394 Live during the outermost analyze_scalar_evolution, instantiate_scev
395 or resolve_mixers call. */
396 static instantiate_cache_type
*global_cache
;
399 /* Return true when PHI is a loop-phi-node. */
402 loop_phi_node_p (gimple
*phi
)
404 /* The implementation of this function is based on the following
405 property: "all the loop-phi-nodes of a loop are contained in the
406 loop's header basic block". */
408 return loop_containing_stmt (phi
)->header
== gimple_bb (phi
);
411 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
412 In general, in the case of multivariate evolutions we want to get
413 the evolution in different loops. LOOP specifies the level for
414 which to get the evolution.
418 | for (j = 0; j < 100; j++)
420 | for (k = 0; k < 100; k++)
422 | i = k + j; - Here the value of i is a function of j, k.
424 | ... = i - Here the value of i is a function of j.
426 | ... = i - Here the value of i is a scalar.
432 | i_1 = phi (i_0, i_2)
436 This loop has the same effect as:
437 LOOP_1 has the same effect as:
441 The overall effect of the loop, "i_0 + 20" in the previous example,
442 is obtained by passing in the parameters: LOOP = 1,
443 EVOLUTION_FN = {i_0, +, 2}_1.
447 compute_overall_effect_of_inner_loop (class loop
*loop
, tree evolution_fn
)
451 if (evolution_fn
== chrec_dont_know
)
452 return chrec_dont_know
;
454 else if (TREE_CODE (evolution_fn
) == POLYNOMIAL_CHREC
)
456 class loop
*inner_loop
= get_chrec_loop (evolution_fn
);
458 if (inner_loop
== loop
459 || flow_loop_nested_p (loop
, inner_loop
))
461 tree nb_iter
= number_of_latch_executions (inner_loop
);
463 if (nb_iter
== chrec_dont_know
)
464 return chrec_dont_know
;
469 /* evolution_fn is the evolution function in LOOP. Get
470 its value in the nb_iter-th iteration. */
471 res
= chrec_apply (inner_loop
->num
, evolution_fn
, nb_iter
);
473 if (chrec_contains_symbols_defined_in_loop (res
, loop
->num
))
474 res
= instantiate_parameters (loop
, res
);
476 /* Continue the computation until ending on a parent of LOOP. */
477 return compute_overall_effect_of_inner_loop (loop
, res
);
484 /* If the evolution function is an invariant, there is nothing to do. */
485 else if (no_evolution_in_loop_p (evolution_fn
, loop
->num
, &val
) && val
)
489 return chrec_dont_know
;
492 /* Associate CHREC to SCALAR. */
495 set_scalar_evolution (basic_block instantiated_below
, tree scalar
, tree chrec
)
499 if (TREE_CODE (scalar
) != SSA_NAME
)
502 scalar_info
= find_var_scev_info (instantiated_below
, scalar
);
506 if (dump_flags
& TDF_SCEV
)
508 fprintf (dump_file
, "(set_scalar_evolution \n");
509 fprintf (dump_file
, " instantiated_below = %d \n",
510 instantiated_below
->index
);
511 fprintf (dump_file
, " (scalar = ");
512 print_generic_expr (dump_file
, scalar
);
513 fprintf (dump_file
, ")\n (scalar_evolution = ");
514 print_generic_expr (dump_file
, chrec
);
515 fprintf (dump_file
, "))\n");
517 if (dump_flags
& TDF_STATS
)
521 *scalar_info
= chrec
;
524 /* Retrieve the chrec associated to SCALAR instantiated below
525 INSTANTIATED_BELOW block. */
528 get_scalar_evolution (basic_block instantiated_below
, tree scalar
)
534 if (dump_flags
& TDF_SCEV
)
536 fprintf (dump_file
, "(get_scalar_evolution \n");
537 fprintf (dump_file
, " (scalar = ");
538 print_generic_expr (dump_file
, scalar
);
539 fprintf (dump_file
, ")\n");
541 if (dump_flags
& TDF_STATS
)
545 if (VECTOR_TYPE_P (TREE_TYPE (scalar
))
546 || TREE_CODE (TREE_TYPE (scalar
)) == COMPLEX_TYPE
)
547 /* For chrec_dont_know we keep the symbolic form. */
550 switch (TREE_CODE (scalar
))
553 if (SSA_NAME_IS_DEFAULT_DEF (scalar
))
556 res
= *find_var_scev_info (instantiated_below
, scalar
);
566 res
= chrec_not_analyzed_yet
;
570 if (dump_file
&& (dump_flags
& TDF_SCEV
))
572 fprintf (dump_file
, " (scalar_evolution = ");
573 print_generic_expr (dump_file
, res
);
574 fprintf (dump_file
, "))\n");
580 /* Helper function for add_to_evolution. Returns the evolution
581 function for an assignment of the form "a = b + c", where "a" and
582 "b" are on the strongly connected component. CHREC_BEFORE is the
583 information that we already have collected up to this point.
584 TO_ADD is the evolution of "c".
586 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
587 evolution the expression TO_ADD, otherwise construct an evolution
588 part for this loop. */
591 add_to_evolution_1 (unsigned loop_nb
, tree chrec_before
, tree to_add
,
594 tree type
, left
, right
;
595 class loop
*loop
= get_loop (cfun
, loop_nb
), *chloop
;
597 switch (TREE_CODE (chrec_before
))
599 case POLYNOMIAL_CHREC
:
600 chloop
= get_chrec_loop (chrec_before
);
602 || flow_loop_nested_p (chloop
, loop
))
606 type
= chrec_type (chrec_before
);
608 /* When there is no evolution part in this loop, build it. */
613 right
= SCALAR_FLOAT_TYPE_P (type
)
614 ? build_real (type
, dconst0
)
615 : build_int_cst (type
, 0);
619 var
= CHREC_VARIABLE (chrec_before
);
620 left
= CHREC_LEFT (chrec_before
);
621 right
= CHREC_RIGHT (chrec_before
);
624 to_add
= chrec_convert (type
, to_add
, at_stmt
);
625 right
= chrec_convert_rhs (type
, right
, at_stmt
);
626 right
= chrec_fold_plus (chrec_type (right
), right
, to_add
);
627 return build_polynomial_chrec (var
, left
, right
);
631 gcc_assert (flow_loop_nested_p (loop
, chloop
));
633 /* Search the evolution in LOOP_NB. */
634 left
= add_to_evolution_1 (loop_nb
, CHREC_LEFT (chrec_before
),
636 right
= CHREC_RIGHT (chrec_before
);
637 right
= chrec_convert_rhs (chrec_type (left
), right
, at_stmt
);
638 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before
),
643 /* These nodes do not depend on a loop. */
644 if (chrec_before
== chrec_dont_know
)
645 return chrec_dont_know
;
648 right
= chrec_convert_rhs (chrec_type (left
), to_add
, at_stmt
);
649 return build_polynomial_chrec (loop_nb
, left
, right
);
653 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
656 Description (provided for completeness, for those who read code in
657 a plane, and for my poor 62 bytes brain that would have forgotten
658 all this in the next two or three months):
660 The algorithm of translation of programs from the SSA representation
661 into the chrecs syntax is based on a pattern matching. After having
662 reconstructed the overall tree expression for a loop, there are only
663 two cases that can arise:
665 1. a = loop-phi (init, a + expr)
666 2. a = loop-phi (init, expr)
668 where EXPR is either a scalar constant with respect to the analyzed
669 loop (this is a degree 0 polynomial), or an expression containing
670 other loop-phi definitions (these are higher degree polynomials).
677 | a = phi (init, a + 5)
684 | a = phi (inita, 2 * b + 3)
685 | b = phi (initb, b + 1)
688 For the first case, the semantics of the SSA representation is:
690 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
692 that is, there is a loop index "x" that determines the scalar value
693 of the variable during the loop execution. During the first
694 iteration, the value is that of the initial condition INIT, while
695 during the subsequent iterations, it is the sum of the initial
696 condition with the sum of all the values of EXPR from the initial
697 iteration to the before last considered iteration.
699 For the second case, the semantics of the SSA program is:
701 | a (x) = init, if x = 0;
702 | expr (x - 1), otherwise.
704 The second case corresponds to the PEELED_CHREC, whose syntax is
705 close to the syntax of a loop-phi-node:
707 | phi (init, expr) vs. (init, expr)_x
709 The proof of the translation algorithm for the first case is a
710 proof by structural induction based on the degree of EXPR.
713 When EXPR is a constant with respect to the analyzed loop, or in
714 other words when EXPR is a polynomial of degree 0, the evolution of
715 the variable A in the loop is an affine function with an initial
716 condition INIT, and a step EXPR. In order to show this, we start
717 from the semantics of the SSA representation:
719 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
721 and since "expr (j)" is a constant with respect to "j",
723 f (x) = init + x * expr
725 Finally, based on the semantics of the pure sum chrecs, by
726 identification we get the corresponding chrecs syntax:
728 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
729 f (x) -> {init, +, expr}_x
732 Suppose that EXPR is a polynomial of degree N with respect to the
733 analyzed loop_x for which we have already determined that it is
734 written under the chrecs syntax:
736 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
738 We start from the semantics of the SSA program:
740 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
742 | f (x) = init + \sum_{j = 0}^{x - 1}
743 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
745 | f (x) = init + \sum_{j = 0}^{x - 1}
746 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
748 | f (x) = init + \sum_{k = 0}^{n - 1}
749 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
751 | f (x) = init + \sum_{k = 0}^{n - 1}
752 | (b_k * \binom{x}{k + 1})
754 | f (x) = init + b_0 * \binom{x}{1} + ...
755 | + b_{n-1} * \binom{x}{n}
757 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
758 | + b_{n-1} * \binom{x}{n}
761 And finally from the definition of the chrecs syntax, we identify:
762 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
764 This shows the mechanism that stands behind the add_to_evolution
765 function. An important point is that the use of symbolic
766 parameters avoids the need of an analysis schedule.
773 | a = phi (inita, a + 2 + b)
774 | b = phi (initb, b + 1)
777 When analyzing "a", the algorithm keeps "b" symbolically:
779 | a -> {inita, +, 2 + b}_1
781 Then, after instantiation, the analyzer ends on the evolution:
783 | a -> {inita, +, 2 + initb, +, 1}_1
788 add_to_evolution (unsigned loop_nb
, tree chrec_before
, enum tree_code code
,
789 tree to_add
, gimple
*at_stmt
)
791 tree type
= chrec_type (to_add
);
792 tree res
= NULL_TREE
;
794 if (to_add
== NULL_TREE
)
797 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
798 instantiated at this point. */
799 if (TREE_CODE (to_add
) == POLYNOMIAL_CHREC
)
800 /* This should not happen. */
801 return chrec_dont_know
;
803 if (dump_file
&& (dump_flags
& TDF_SCEV
))
805 fprintf (dump_file
, "(add_to_evolution \n");
806 fprintf (dump_file
, " (loop_nb = %d)\n", loop_nb
);
807 fprintf (dump_file
, " (chrec_before = ");
808 print_generic_expr (dump_file
, chrec_before
);
809 fprintf (dump_file
, ")\n (to_add = ");
810 print_generic_expr (dump_file
, to_add
);
811 fprintf (dump_file
, ")\n");
814 if (code
== MINUS_EXPR
)
815 to_add
= chrec_fold_multiply (type
, to_add
, SCALAR_FLOAT_TYPE_P (type
)
816 ? build_real (type
, dconstm1
)
817 : build_int_cst_type (type
, -1));
819 res
= add_to_evolution_1 (loop_nb
, chrec_before
, to_add
, at_stmt
);
821 if (dump_file
&& (dump_flags
& TDF_SCEV
))
823 fprintf (dump_file
, " (res = ");
824 print_generic_expr (dump_file
, res
);
825 fprintf (dump_file
, "))\n");
833 /* This section selects the loops that will be good candidates for the
834 scalar evolution analysis. For the moment, greedily select all the
835 loop nests we could analyze. */
837 /* For a loop with a single exit edge, return the COND_EXPR that
838 guards the exit edge. If the expression is too difficult to
839 analyze, then give up. */
842 get_loop_exit_condition (const class loop
*loop
)
845 edge exit_edge
= single_exit (loop
);
847 if (dump_file
&& (dump_flags
& TDF_SCEV
))
848 fprintf (dump_file
, "(get_loop_exit_condition \n ");
854 stmt
= last_stmt (exit_edge
->src
);
855 if (gcond
*cond_stmt
= safe_dyn_cast
<gcond
*> (stmt
))
859 if (dump_file
&& (dump_flags
& TDF_SCEV
))
861 print_gimple_stmt (dump_file
, res
, 0);
862 fprintf (dump_file
, ")\n");
869 /* Depth first search algorithm. */
878 static t_bool
follow_ssa_edge_expr (class loop
*loop
, gimple
*, tree
, gphi
*,
881 /* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
882 Return true if the strongly connected component has been found. */
885 follow_ssa_edge_binary (class loop
*loop
, gimple
*at_stmt
,
886 tree type
, tree rhs0
, enum tree_code code
, tree rhs1
,
887 gphi
*halting_phi
, tree
*evolution_of_loop
,
890 t_bool res
= t_false
;
895 case POINTER_PLUS_EXPR
:
897 if (TREE_CODE (rhs0
) == SSA_NAME
)
899 if (TREE_CODE (rhs1
) == SSA_NAME
)
901 /* Match an assignment under the form:
904 /* We want only assignments of form "name + name" contribute to
905 LIMIT, as the other cases do not necessarily contribute to
906 the complexity of the expression. */
909 evol
= *evolution_of_loop
;
910 evol
= add_to_evolution
912 chrec_convert (type
, evol
, at_stmt
),
913 code
, rhs1
, at_stmt
);
914 res
= follow_ssa_edge_expr
915 (loop
, at_stmt
, rhs0
, halting_phi
, &evol
, limit
);
917 *evolution_of_loop
= evol
;
918 else if (res
== t_false
)
920 *evolution_of_loop
= add_to_evolution
922 chrec_convert (type
, *evolution_of_loop
, at_stmt
),
923 code
, rhs0
, at_stmt
);
924 res
= follow_ssa_edge_expr
925 (loop
, at_stmt
, rhs1
, halting_phi
,
926 evolution_of_loop
, limit
);
931 gcc_unreachable (); /* Handled in caller. */
934 else if (TREE_CODE (rhs1
) == SSA_NAME
)
936 /* Match an assignment under the form:
938 *evolution_of_loop
= add_to_evolution
939 (loop
->num
, chrec_convert (type
, *evolution_of_loop
,
941 code
, rhs0
, at_stmt
);
942 res
= follow_ssa_edge_expr
943 (loop
, at_stmt
, rhs1
, halting_phi
,
944 evolution_of_loop
, limit
);
948 /* Otherwise, match an assignment under the form:
950 /* And there is nothing to do. */
955 /* This case is under the form "opnd0 = rhs0 - rhs1". */
956 if (TREE_CODE (rhs0
) == SSA_NAME
)
957 gcc_unreachable (); /* Handled in caller. */
959 /* Otherwise, match an assignment under the form:
961 /* And there is nothing to do. */
972 /* Checks whether the I-th argument of a PHI comes from a backedge. */
975 backedge_phi_arg_p (gphi
*phi
, int i
)
977 const_edge e
= gimple_phi_arg_edge (phi
, i
);
979 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
980 about updating it anywhere, and this should work as well most of the
982 if (e
->flags
& EDGE_IRREDUCIBLE_LOOP
)
988 /* Helper function for one branch of the condition-phi-node. Return
989 true if the strongly connected component has been found following
993 follow_ssa_edge_in_condition_phi_branch (int i
,
997 tree
*evolution_of_branch
,
998 tree init_cond
, int limit
)
1000 tree branch
= PHI_ARG_DEF (condition_phi
, i
);
1001 *evolution_of_branch
= chrec_dont_know
;
1003 /* Do not follow back edges (they must belong to an irreducible loop, which
1004 we really do not want to worry about). */
1005 if (backedge_phi_arg_p (condition_phi
, i
))
1008 if (TREE_CODE (branch
) == SSA_NAME
)
1010 *evolution_of_branch
= init_cond
;
1011 return follow_ssa_edge_expr (loop
, condition_phi
, branch
, halting_phi
,
1012 evolution_of_branch
, limit
);
1015 /* This case occurs when one of the condition branches sets
1016 the variable to a constant: i.e. a phi-node like
1017 "a_2 = PHI <a_7(5), 2(6)>;".
1019 FIXME: This case have to be refined correctly:
1020 in some cases it is possible to say something better than
1021 chrec_dont_know, for example using a wrap-around notation. */
1025 /* This function merges the branches of a condition-phi-node in a
1029 follow_ssa_edge_in_condition_phi (class loop
*loop
,
1030 gphi
*condition_phi
,
1032 tree
*evolution_of_loop
, int limit
)
1035 tree init
= *evolution_of_loop
;
1036 tree evolution_of_branch
;
1037 t_bool res
= follow_ssa_edge_in_condition_phi_branch (0, loop
, condition_phi
,
1039 &evolution_of_branch
,
1041 if (res
== t_false
|| res
== t_dont_know
)
1044 *evolution_of_loop
= evolution_of_branch
;
1046 n
= gimple_phi_num_args (condition_phi
);
1047 for (i
= 1; i
< n
; i
++)
1049 /* Quickly give up when the evolution of one of the branches is
1051 if (*evolution_of_loop
== chrec_dont_know
)
1054 /* Increase the limit by the PHI argument number to avoid exponential
1055 time and memory complexity. */
1056 res
= follow_ssa_edge_in_condition_phi_branch (i
, loop
, condition_phi
,
1058 &evolution_of_branch
,
1060 if (res
== t_false
|| res
== t_dont_know
)
1063 *evolution_of_loop
= chrec_merge (*evolution_of_loop
,
1064 evolution_of_branch
);
1070 /* Follow an SSA edge in an inner loop. It computes the overall
1071 effect of the loop, and following the symbolic initial conditions,
1072 it follows the edges in the parent loop. The inner loop is
1073 considered as a single statement. */
1076 follow_ssa_edge_inner_loop_phi (class loop
*outer_loop
,
1077 gphi
*loop_phi_node
,
1079 tree
*evolution_of_loop
, int limit
)
1081 class loop
*loop
= loop_containing_stmt (loop_phi_node
);
1082 tree ev
= analyze_scalar_evolution (loop
, PHI_RESULT (loop_phi_node
));
1084 /* Sometimes, the inner loop is too difficult to analyze, and the
1085 result of the analysis is a symbolic parameter. */
1086 if (ev
== PHI_RESULT (loop_phi_node
))
1088 t_bool res
= t_false
;
1089 int i
, n
= gimple_phi_num_args (loop_phi_node
);
1091 for (i
= 0; i
< n
; i
++)
1093 tree arg
= PHI_ARG_DEF (loop_phi_node
, i
);
1096 /* Follow the edges that exit the inner loop. */
1097 bb
= gimple_phi_arg_edge (loop_phi_node
, i
)->src
;
1098 if (!flow_bb_inside_loop_p (loop
, bb
))
1099 res
= follow_ssa_edge_expr (outer_loop
, loop_phi_node
,
1101 evolution_of_loop
, limit
);
1106 /* If the path crosses this loop-phi, give up. */
1108 *evolution_of_loop
= chrec_dont_know
;
1113 /* Otherwise, compute the overall effect of the inner loop. */
1114 ev
= compute_overall_effect_of_inner_loop (loop
, ev
);
1115 return follow_ssa_edge_expr (outer_loop
, loop_phi_node
, ev
, halting_phi
,
1116 evolution_of_loop
, limit
);
1119 /* Follow the ssa edge into the expression EXPR.
1120 Return true if the strongly connected component has been found. */
1123 follow_ssa_edge_expr (class loop
*loop
, gimple
*at_stmt
, tree expr
,
1124 gphi
*halting_phi
, tree
*evolution_of_loop
,
1127 enum tree_code code
;
1128 tree type
, rhs0
, rhs1
= NULL_TREE
;
1130 /* The EXPR is one of the following cases:
1134 - a POINTER_PLUS_EXPR,
1137 - other cases are not yet handled. */
1139 /* For SSA_NAME look at the definition statement, handling
1140 PHI nodes and otherwise expand appropriately for the expression
1143 if (TREE_CODE (expr
) == SSA_NAME
)
1145 gimple
*def
= SSA_NAME_DEF_STMT (expr
);
1147 if (gimple_nop_p (def
))
1150 /* Give up if the path is longer than the MAX that we allow. */
1151 if (limit
> param_scev_max_expr_complexity
)
1153 *evolution_of_loop
= chrec_dont_know
;
1157 if (gphi
*phi
= dyn_cast
<gphi
*>(def
))
1159 if (!loop_phi_node_p (phi
))
1160 /* DEF is a condition-phi-node. Follow the branches, and
1161 record their evolutions. Finally, merge the collected
1162 information and set the approximation to the main
1164 return follow_ssa_edge_in_condition_phi
1165 (loop
, phi
, halting_phi
, evolution_of_loop
, limit
);
1167 /* When the analyzed phi is the halting_phi, the
1168 depth-first search is over: we have found a path from
1169 the halting_phi to itself in the loop. */
1170 if (phi
== halting_phi
)
1173 /* Otherwise, the evolution of the HALTING_PHI depends
1174 on the evolution of another loop-phi-node, i.e. the
1175 evolution function is a higher degree polynomial. */
1176 class loop
*def_loop
= loop_containing_stmt (def
);
1177 if (def_loop
== loop
)
1181 if (flow_loop_nested_p (loop
, def_loop
))
1182 return follow_ssa_edge_inner_loop_phi
1183 (loop
, phi
, halting_phi
, evolution_of_loop
,
1190 /* At this level of abstraction, the program is just a set
1191 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
1192 other def to be handled. */
1193 if (!is_gimple_assign (def
))
1196 code
= gimple_assign_rhs_code (def
);
1197 switch (get_gimple_rhs_class (code
))
1199 case GIMPLE_BINARY_RHS
:
1200 rhs0
= gimple_assign_rhs1 (def
);
1201 rhs1
= gimple_assign_rhs2 (def
);
1203 case GIMPLE_UNARY_RHS
:
1204 case GIMPLE_SINGLE_RHS
:
1205 rhs0
= gimple_assign_rhs1 (def
);
1210 type
= TREE_TYPE (gimple_assign_lhs (def
));
1215 code
= TREE_CODE (expr
);
1216 type
= TREE_TYPE (expr
);
1220 rhs0
= TREE_OPERAND (expr
, 0);
1222 case POINTER_PLUS_EXPR
:
1225 rhs0
= TREE_OPERAND (expr
, 0);
1226 rhs1
= TREE_OPERAND (expr
, 1);
1237 /* This assignment is under the form "a_1 = (cast) rhs. */
1238 t_bool res
= follow_ssa_edge_expr (loop
, at_stmt
, rhs0
, halting_phi
,
1239 evolution_of_loop
, limit
);
1240 *evolution_of_loop
= chrec_convert (type
, *evolution_of_loop
, at_stmt
);
1245 /* This assignment is under the form "a_1 = 7". */
1250 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
1251 if (TREE_CODE (TREE_OPERAND (rhs0
, 0)) != MEM_REF
)
1253 tree mem
= TREE_OPERAND (rhs0
, 0);
1254 rhs0
= TREE_OPERAND (mem
, 0);
1255 rhs1
= TREE_OPERAND (mem
, 1);
1256 code
= POINTER_PLUS_EXPR
;
1259 case POINTER_PLUS_EXPR
:
1262 /* This case is under the form "rhs0 +- rhs1". */
1263 STRIP_USELESS_TYPE_CONVERSION (rhs0
);
1264 STRIP_USELESS_TYPE_CONVERSION (rhs1
);
1265 if (TREE_CODE (rhs0
) == SSA_NAME
1266 && (TREE_CODE (rhs1
) != SSA_NAME
|| code
== MINUS_EXPR
))
1268 /* Match an assignment under the form:
1270 Use tail-recursion for the simple case. */
1271 *evolution_of_loop
= add_to_evolution
1272 (loop
->num
, chrec_convert (type
, *evolution_of_loop
,
1274 code
, rhs1
, at_stmt
);
1278 /* Else search for the SCC in both rhs0 and rhs1. */
1279 return follow_ssa_edge_binary (loop
, at_stmt
, type
, rhs0
, code
, rhs1
,
1280 halting_phi
, evolution_of_loop
, limit
);
1283 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1284 It must be handled as a copy assignment of the form a_1 = a_2. */
1285 expr
= ASSERT_EXPR_VAR (rhs0
);
1294 /* Simplify PEELED_CHREC represented by (init_cond, arg) in LOOP.
1295 Handle below case and return the corresponding POLYNOMIAL_CHREC:
1297 # i_17 = PHI <i_13(5), 0(3)>
1298 # _20 = PHI <_5(5), start_4(D)(3)>
1301 _5 = start_4(D) + i_13;
1303 Though variable _20 appears as a PEELED_CHREC in the form of
1304 (start_4, _5)_LOOP, it's a POLYNOMIAL_CHREC like {start_4, 1}_LOOP.
1309 simplify_peeled_chrec (class loop
*loop
, tree arg
, tree init_cond
)
1311 aff_tree aff1
, aff2
;
1312 tree ev
, left
, right
, type
, step_val
;
1313 hash_map
<tree
, name_expansion
*> *peeled_chrec_map
= NULL
;
1315 ev
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, arg
));
1316 if (ev
== NULL_TREE
|| TREE_CODE (ev
) != POLYNOMIAL_CHREC
)
1317 return chrec_dont_know
;
1319 left
= CHREC_LEFT (ev
);
1320 right
= CHREC_RIGHT (ev
);
1321 type
= TREE_TYPE (left
);
1322 step_val
= chrec_fold_plus (type
, init_cond
, right
);
1324 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1325 if "left" equals to "init + right". */
1326 if (operand_equal_p (left
, step_val
, 0))
1328 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1329 fprintf (dump_file
, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1331 return build_polynomial_chrec (loop
->num
, init_cond
, right
);
1334 /* The affine code only deals with pointer and integer types. */
1335 if (!POINTER_TYPE_P (type
)
1336 && !INTEGRAL_TYPE_P (type
))
1337 return chrec_dont_know
;
1339 /* Try harder to check if they are equal. */
1340 tree_to_aff_combination_expand (left
, type
, &aff1
, &peeled_chrec_map
);
1341 tree_to_aff_combination_expand (step_val
, type
, &aff2
, &peeled_chrec_map
);
1342 free_affine_expand_cache (&peeled_chrec_map
);
1343 aff_combination_scale (&aff2
, -1);
1344 aff_combination_add (&aff1
, &aff2
);
1346 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1347 if "left" equals to "init + right". */
1348 if (aff_combination_zero_p (&aff1
))
1350 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1351 fprintf (dump_file
, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1353 return build_polynomial_chrec (loop
->num
, init_cond
, right
);
1355 return chrec_dont_know
;
1358 /* Given a LOOP_PHI_NODE, this function determines the evolution
1359 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1362 analyze_evolution_in_loop (gphi
*loop_phi_node
,
1365 int i
, n
= gimple_phi_num_args (loop_phi_node
);
1366 tree evolution_function
= chrec_not_analyzed_yet
;
1367 class loop
*loop
= loop_containing_stmt (loop_phi_node
);
1369 static bool simplify_peeled_chrec_p
= true;
1371 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1373 fprintf (dump_file
, "(analyze_evolution_in_loop \n");
1374 fprintf (dump_file
, " (loop_phi_node = ");
1375 print_gimple_stmt (dump_file
, loop_phi_node
, 0);
1376 fprintf (dump_file
, ")\n");
1379 for (i
= 0; i
< n
; i
++)
1381 tree arg
= PHI_ARG_DEF (loop_phi_node
, i
);
1385 /* Select the edges that enter the loop body. */
1386 bb
= gimple_phi_arg_edge (loop_phi_node
, i
)->src
;
1387 if (!flow_bb_inside_loop_p (loop
, bb
))
1390 if (TREE_CODE (arg
) == SSA_NAME
)
1394 /* Pass in the initial condition to the follow edge function. */
1396 res
= follow_ssa_edge_expr (loop
, loop_phi_node
, arg
,
1397 loop_phi_node
, &ev_fn
, 0);
1399 /* If ev_fn has no evolution in the inner loop, and the
1400 init_cond is not equal to ev_fn, then we have an
1401 ambiguity between two possible values, as we cannot know
1402 the number of iterations at this point. */
1403 if (TREE_CODE (ev_fn
) != POLYNOMIAL_CHREC
1404 && no_evolution_in_loop_p (ev_fn
, loop
->num
, &val
) && val
1405 && !operand_equal_p (init_cond
, ev_fn
, 0))
1406 ev_fn
= chrec_dont_know
;
1411 /* When it is impossible to go back on the same
1412 loop_phi_node by following the ssa edges, the
1413 evolution is represented by a peeled chrec, i.e. the
1414 first iteration, EV_FN has the value INIT_COND, then
1415 all the other iterations it has the value of ARG.
1416 For the moment, PEELED_CHREC nodes are not built. */
1419 ev_fn
= chrec_dont_know
;
1420 /* Try to recognize POLYNOMIAL_CHREC which appears in
1421 the form of PEELED_CHREC, but guard the process with
1422 a bool variable to keep the analyzer from infinite
1423 recurrence for real PEELED_RECs. */
1424 if (simplify_peeled_chrec_p
&& TREE_CODE (arg
) == SSA_NAME
)
1426 simplify_peeled_chrec_p
= false;
1427 ev_fn
= simplify_peeled_chrec (loop
, arg
, init_cond
);
1428 simplify_peeled_chrec_p
= true;
1432 /* When there are multiple back edges of the loop (which in fact never
1433 happens currently, but nevertheless), merge their evolutions. */
1434 evolution_function
= chrec_merge (evolution_function
, ev_fn
);
1436 if (evolution_function
== chrec_dont_know
)
1440 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1442 fprintf (dump_file
, " (evolution_function = ");
1443 print_generic_expr (dump_file
, evolution_function
);
1444 fprintf (dump_file
, "))\n");
1447 return evolution_function
;
1450 /* Looks to see if VAR is a copy of a constant (via straightforward assignments
1451 or degenerate phi's). If so, returns the constant; else, returns VAR. */
1454 follow_copies_to_constant (tree var
)
1457 while (TREE_CODE (res
) == SSA_NAME
1458 /* We face not updated SSA form in multiple places and this walk
1459 may end up in sibling loops so we have to guard it. */
1460 && !name_registered_for_update_p (res
))
1462 gimple
*def
= SSA_NAME_DEF_STMT (res
);
1463 if (gphi
*phi
= dyn_cast
<gphi
*> (def
))
1465 if (tree rhs
= degenerate_phi_result (phi
))
1470 else if (gimple_assign_single_p (def
))
1471 /* Will exit loop if not an SSA_NAME. */
1472 res
= gimple_assign_rhs1 (def
);
1476 if (CONSTANT_CLASS_P (res
))
1481 /* Given a loop-phi-node, return the initial conditions of the
1482 variable on entry of the loop. When the CCP has propagated
1483 constants into the loop-phi-node, the initial condition is
1484 instantiated, otherwise the initial condition is kept symbolic.
1485 This analyzer does not analyze the evolution outside the current
1486 loop, and leaves this task to the on-demand tree reconstructor. */
1489 analyze_initial_condition (gphi
*loop_phi_node
)
1492 tree init_cond
= chrec_not_analyzed_yet
;
1493 class loop
*loop
= loop_containing_stmt (loop_phi_node
);
1495 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1497 fprintf (dump_file
, "(analyze_initial_condition \n");
1498 fprintf (dump_file
, " (loop_phi_node = \n");
1499 print_gimple_stmt (dump_file
, loop_phi_node
, 0);
1500 fprintf (dump_file
, ")\n");
1503 n
= gimple_phi_num_args (loop_phi_node
);
1504 for (i
= 0; i
< n
; i
++)
1506 tree branch
= PHI_ARG_DEF (loop_phi_node
, i
);
1507 basic_block bb
= gimple_phi_arg_edge (loop_phi_node
, i
)->src
;
1509 /* When the branch is oriented to the loop's body, it does
1510 not contribute to the initial condition. */
1511 if (flow_bb_inside_loop_p (loop
, bb
))
1514 if (init_cond
== chrec_not_analyzed_yet
)
1520 if (TREE_CODE (branch
) == SSA_NAME
)
1522 init_cond
= chrec_dont_know
;
1526 init_cond
= chrec_merge (init_cond
, branch
);
1529 /* Ooops -- a loop without an entry??? */
1530 if (init_cond
== chrec_not_analyzed_yet
)
1531 init_cond
= chrec_dont_know
;
1533 /* We may not have fully constant propagated IL. Handle degenerate PHIs here
1534 to not miss important early loop unrollings. */
1535 init_cond
= follow_copies_to_constant (init_cond
);
1537 if (dump_file
&& (dump_flags
& TDF_SCEV
))
1539 fprintf (dump_file
, " (init_cond = ");
1540 print_generic_expr (dump_file
, init_cond
);
1541 fprintf (dump_file
, "))\n");
1547 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1550 interpret_loop_phi (class loop
*loop
, gphi
*loop_phi_node
)
1553 class loop
*phi_loop
= loop_containing_stmt (loop_phi_node
);
1556 gcc_assert (phi_loop
== loop
);
1558 /* Otherwise really interpret the loop phi. */
1559 init_cond
= analyze_initial_condition (loop_phi_node
);
1560 res
= analyze_evolution_in_loop (loop_phi_node
, init_cond
);
1562 /* Verify we maintained the correct initial condition throughout
1563 possible conversions in the SSA chain. */
1564 if (res
!= chrec_dont_know
)
1566 tree new_init
= res
;
1567 if (CONVERT_EXPR_P (res
)
1568 && TREE_CODE (TREE_OPERAND (res
, 0)) == POLYNOMIAL_CHREC
)
1569 new_init
= fold_convert (TREE_TYPE (res
),
1570 CHREC_LEFT (TREE_OPERAND (res
, 0)));
1571 else if (TREE_CODE (res
) == POLYNOMIAL_CHREC
)
1572 new_init
= CHREC_LEFT (res
);
1573 STRIP_USELESS_TYPE_CONVERSION (new_init
);
1574 if (TREE_CODE (new_init
) == POLYNOMIAL_CHREC
1575 || !operand_equal_p (init_cond
, new_init
, 0))
1576 return chrec_dont_know
;
1582 /* This function merges the branches of a condition-phi-node,
1583 contained in the outermost loop, and whose arguments are already
1587 interpret_condition_phi (class loop
*loop
, gphi
*condition_phi
)
1589 int i
, n
= gimple_phi_num_args (condition_phi
);
1590 tree res
= chrec_not_analyzed_yet
;
1592 for (i
= 0; i
< n
; i
++)
1596 if (backedge_phi_arg_p (condition_phi
, i
))
1598 res
= chrec_dont_know
;
1602 branch_chrec
= analyze_scalar_evolution
1603 (loop
, PHI_ARG_DEF (condition_phi
, i
));
1605 res
= chrec_merge (res
, branch_chrec
);
1606 if (res
== chrec_dont_know
)
1613 /* Interpret the operation RHS1 OP RHS2. If we didn't
1614 analyze this node before, follow the definitions until ending
1615 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
1616 return path, this function propagates evolutions (ala constant copy
1617 propagation). OPND1 is not a GIMPLE expression because we could
1618 analyze the effect of an inner loop: see interpret_loop_phi. */
1621 interpret_rhs_expr (class loop
*loop
, gimple
*at_stmt
,
1622 tree type
, tree rhs1
, enum tree_code code
, tree rhs2
)
1624 tree res
, chrec1
, chrec2
, ctype
;
1627 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
)
1629 if (is_gimple_min_invariant (rhs1
))
1630 return chrec_convert (type
, rhs1
, at_stmt
);
1632 if (code
== SSA_NAME
)
1633 return chrec_convert (type
, analyze_scalar_evolution (loop
, rhs1
),
1636 if (code
== ASSERT_EXPR
)
1638 rhs1
= ASSERT_EXPR_VAR (rhs1
);
1639 return chrec_convert (type
, analyze_scalar_evolution (loop
, rhs1
),
1647 if (TREE_CODE (TREE_OPERAND (rhs1
, 0)) == MEM_REF
1648 || handled_component_p (TREE_OPERAND (rhs1
, 0)))
1651 poly_int64 bitsize
, bitpos
;
1652 int unsignedp
, reversep
;
1658 base
= get_inner_reference (TREE_OPERAND (rhs1
, 0),
1659 &bitsize
, &bitpos
, &offset
, &mode
,
1660 &unsignedp
, &reversep
, &volatilep
);
1662 if (TREE_CODE (base
) == MEM_REF
)
1664 rhs2
= TREE_OPERAND (base
, 1);
1665 rhs1
= TREE_OPERAND (base
, 0);
1667 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1668 chrec2
= analyze_scalar_evolution (loop
, rhs2
);
1669 chrec1
= chrec_convert (type
, chrec1
, at_stmt
);
1670 chrec2
= chrec_convert (TREE_TYPE (rhs2
), chrec2
, at_stmt
);
1671 chrec1
= instantiate_parameters (loop
, chrec1
);
1672 chrec2
= instantiate_parameters (loop
, chrec2
);
1673 res
= chrec_fold_plus (type
, chrec1
, chrec2
);
1677 chrec1
= analyze_scalar_evolution_for_address_of (loop
, base
);
1678 chrec1
= chrec_convert (type
, chrec1
, at_stmt
);
1682 if (offset
!= NULL_TREE
)
1684 chrec2
= analyze_scalar_evolution (loop
, offset
);
1685 chrec2
= chrec_convert (TREE_TYPE (offset
), chrec2
, at_stmt
);
1686 chrec2
= instantiate_parameters (loop
, chrec2
);
1687 res
= chrec_fold_plus (type
, res
, chrec2
);
1690 if (maybe_ne (bitpos
, 0))
1692 unitpos
= size_int (exact_div (bitpos
, BITS_PER_UNIT
));
1693 chrec3
= analyze_scalar_evolution (loop
, unitpos
);
1694 chrec3
= chrec_convert (TREE_TYPE (unitpos
), chrec3
, at_stmt
);
1695 chrec3
= instantiate_parameters (loop
, chrec3
);
1696 res
= chrec_fold_plus (type
, res
, chrec3
);
1700 res
= chrec_dont_know
;
1703 case POINTER_PLUS_EXPR
:
1704 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1705 chrec2
= analyze_scalar_evolution (loop
, rhs2
);
1706 chrec1
= chrec_convert (type
, chrec1
, at_stmt
);
1707 chrec2
= chrec_convert (TREE_TYPE (rhs2
), chrec2
, at_stmt
);
1708 chrec1
= instantiate_parameters (loop
, chrec1
);
1709 chrec2
= instantiate_parameters (loop
, chrec2
);
1710 res
= chrec_fold_plus (type
, chrec1
, chrec2
);
1714 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1715 chrec2
= analyze_scalar_evolution (loop
, rhs2
);
1717 /* When the stmt is conditionally executed re-write the CHREC
1718 into a form that has well-defined behavior on overflow. */
1720 && INTEGRAL_TYPE_P (type
)
1721 && ! TYPE_OVERFLOW_WRAPS (type
)
1722 && ! dominated_by_p (CDI_DOMINATORS
, loop
->latch
,
1723 gimple_bb (at_stmt
)))
1724 ctype
= unsigned_type_for (type
);
1725 chrec1
= chrec_convert (ctype
, chrec1
, at_stmt
);
1726 chrec2
= chrec_convert (ctype
, chrec2
, at_stmt
);
1727 chrec1
= instantiate_parameters (loop
, chrec1
);
1728 chrec2
= instantiate_parameters (loop
, chrec2
);
1729 res
= chrec_fold_plus (ctype
, chrec1
, chrec2
);
1731 res
= chrec_convert (type
, res
, at_stmt
);
1735 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1736 chrec2
= analyze_scalar_evolution (loop
, rhs2
);
1738 /* When the stmt is conditionally executed re-write the CHREC
1739 into a form that has well-defined behavior on overflow. */
1741 && INTEGRAL_TYPE_P (type
)
1742 && ! TYPE_OVERFLOW_WRAPS (type
)
1743 && ! dominated_by_p (CDI_DOMINATORS
,
1744 loop
->latch
, gimple_bb (at_stmt
)))
1745 ctype
= unsigned_type_for (type
);
1746 chrec1
= chrec_convert (ctype
, chrec1
, at_stmt
);
1747 chrec2
= chrec_convert (ctype
, chrec2
, at_stmt
);
1748 chrec1
= instantiate_parameters (loop
, chrec1
);
1749 chrec2
= instantiate_parameters (loop
, chrec2
);
1750 res
= chrec_fold_minus (ctype
, chrec1
, chrec2
);
1752 res
= chrec_convert (type
, res
, at_stmt
);
1756 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1758 /* When the stmt is conditionally executed re-write the CHREC
1759 into a form that has well-defined behavior on overflow. */
1761 && INTEGRAL_TYPE_P (type
)
1762 && ! TYPE_OVERFLOW_WRAPS (type
)
1763 && ! dominated_by_p (CDI_DOMINATORS
,
1764 loop
->latch
, gimple_bb (at_stmt
)))
1765 ctype
= unsigned_type_for (type
);
1766 chrec1
= chrec_convert (ctype
, chrec1
, at_stmt
);
1767 /* TYPE may be integer, real or complex, so use fold_convert. */
1768 chrec1
= instantiate_parameters (loop
, chrec1
);
1769 res
= chrec_fold_multiply (ctype
, chrec1
,
1770 fold_convert (ctype
, integer_minus_one_node
));
1772 res
= chrec_convert (type
, res
, at_stmt
);
1776 /* Handle ~X as -1 - X. */
1777 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1778 chrec1
= chrec_convert (type
, chrec1
, at_stmt
);
1779 chrec1
= instantiate_parameters (loop
, chrec1
);
1780 res
= chrec_fold_minus (type
,
1781 fold_convert (type
, integer_minus_one_node
),
1786 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1787 chrec2
= analyze_scalar_evolution (loop
, rhs2
);
1789 /* When the stmt is conditionally executed re-write the CHREC
1790 into a form that has well-defined behavior on overflow. */
1792 && INTEGRAL_TYPE_P (type
)
1793 && ! TYPE_OVERFLOW_WRAPS (type
)
1794 && ! dominated_by_p (CDI_DOMINATORS
,
1795 loop
->latch
, gimple_bb (at_stmt
)))
1796 ctype
= unsigned_type_for (type
);
1797 chrec1
= chrec_convert (ctype
, chrec1
, at_stmt
);
1798 chrec2
= chrec_convert (ctype
, chrec2
, at_stmt
);
1799 chrec1
= instantiate_parameters (loop
, chrec1
);
1800 chrec2
= instantiate_parameters (loop
, chrec2
);
1801 res
= chrec_fold_multiply (ctype
, chrec1
, chrec2
);
1803 res
= chrec_convert (type
, res
, at_stmt
);
1808 /* Handle A<<B as A * (1<<B). */
1809 tree uns
= unsigned_type_for (type
);
1810 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1811 chrec2
= analyze_scalar_evolution (loop
, rhs2
);
1812 chrec1
= chrec_convert (uns
, chrec1
, at_stmt
);
1813 chrec1
= instantiate_parameters (loop
, chrec1
);
1814 chrec2
= instantiate_parameters (loop
, chrec2
);
1816 tree one
= build_int_cst (uns
, 1);
1817 chrec2
= fold_build2 (LSHIFT_EXPR
, uns
, one
, chrec2
);
1818 res
= chrec_fold_multiply (uns
, chrec1
, chrec2
);
1819 res
= chrec_convert (type
, res
, at_stmt
);
1824 /* In case we have a truncation of a widened operation that in
1825 the truncated type has undefined overflow behavior analyze
1826 the operation done in an unsigned type of the same precision
1827 as the final truncation. We cannot derive a scalar evolution
1828 for the widened operation but for the truncated result. */
1829 if (TREE_CODE (type
) == INTEGER_TYPE
1830 && TREE_CODE (TREE_TYPE (rhs1
)) == INTEGER_TYPE
1831 && TYPE_PRECISION (type
) < TYPE_PRECISION (TREE_TYPE (rhs1
))
1832 && TYPE_OVERFLOW_UNDEFINED (type
)
1833 && TREE_CODE (rhs1
) == SSA_NAME
1834 && (def
= SSA_NAME_DEF_STMT (rhs1
))
1835 && is_gimple_assign (def
)
1836 && TREE_CODE_CLASS (gimple_assign_rhs_code (def
)) == tcc_binary
1837 && TREE_CODE (gimple_assign_rhs2 (def
)) == INTEGER_CST
)
1839 tree utype
= unsigned_type_for (type
);
1840 chrec1
= interpret_rhs_expr (loop
, at_stmt
, utype
,
1841 gimple_assign_rhs1 (def
),
1842 gimple_assign_rhs_code (def
),
1843 gimple_assign_rhs2 (def
));
1846 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1847 res
= chrec_convert (type
, chrec1
, at_stmt
, true, rhs1
);
1851 /* Given int variable A, handle A&0xffff as (int)(unsigned short)A.
1852 If A is SCEV and its value is in the range of representable set
1853 of type unsigned short, the result expression is a (no-overflow)
1855 res
= chrec_dont_know
;
1856 if (tree_fits_uhwi_p (rhs2
))
1859 unsigned HOST_WIDE_INT val
= tree_to_uhwi (rhs2
);
1862 /* Skip if value of rhs2 wraps in unsigned HOST_WIDE_INT or
1863 it's not the maximum value of a smaller type than rhs1. */
1865 && (precision
= exact_log2 (val
)) > 0
1866 && (unsigned) precision
< TYPE_PRECISION (TREE_TYPE (rhs1
)))
1868 tree utype
= build_nonstandard_integer_type (precision
, 1);
1870 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (TREE_TYPE (rhs1
)))
1872 chrec1
= analyze_scalar_evolution (loop
, rhs1
);
1873 chrec1
= chrec_convert (utype
, chrec1
, at_stmt
);
1874 res
= chrec_convert (TREE_TYPE (rhs1
), chrec1
, at_stmt
);
1881 res
= chrec_dont_know
;
1888 /* Interpret the expression EXPR. */
1891 interpret_expr (class loop
*loop
, gimple
*at_stmt
, tree expr
)
1893 enum tree_code code
;
1894 tree type
= TREE_TYPE (expr
), op0
, op1
;
1896 if (automatically_generated_chrec_p (expr
))
1899 if (TREE_CODE (expr
) == POLYNOMIAL_CHREC
1900 || TREE_CODE (expr
) == CALL_EXPR
1901 || get_gimple_rhs_class (TREE_CODE (expr
)) == GIMPLE_TERNARY_RHS
)
1902 return chrec_dont_know
;
1904 extract_ops_from_tree (expr
, &code
, &op0
, &op1
);
1906 return interpret_rhs_expr (loop
, at_stmt
, type
,
1910 /* Interpret the rhs of the assignment STMT. */
1913 interpret_gimple_assign (class loop
*loop
, gimple
*stmt
)
1915 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
1916 enum tree_code code
= gimple_assign_rhs_code (stmt
);
1918 return interpret_rhs_expr (loop
, stmt
, type
,
1919 gimple_assign_rhs1 (stmt
), code
,
1920 gimple_assign_rhs2 (stmt
));
1925 /* This section contains all the entry points:
1926 - number_of_iterations_in_loop,
1927 - analyze_scalar_evolution,
1928 - instantiate_parameters.
1931 /* Helper recursive function. */
1934 analyze_scalar_evolution_1 (class loop
*loop
, tree var
)
1938 class loop
*def_loop
;
1941 if (TREE_CODE (var
) != SSA_NAME
)
1942 return interpret_expr (loop
, NULL
, var
);
1944 def
= SSA_NAME_DEF_STMT (var
);
1945 bb
= gimple_bb (def
);
1946 def_loop
= bb
->loop_father
;
1948 if (!flow_bb_inside_loop_p (loop
, bb
))
1950 /* Keep symbolic form, but look through obvious copies for constants. */
1951 res
= follow_copies_to_constant (var
);
1955 if (loop
!= def_loop
)
1957 res
= analyze_scalar_evolution_1 (def_loop
, var
);
1958 class loop
*loop_to_skip
= superloop_at_depth (def_loop
,
1959 loop_depth (loop
) + 1);
1960 res
= compute_overall_effect_of_inner_loop (loop_to_skip
, res
);
1961 if (chrec_contains_symbols_defined_in_loop (res
, loop
->num
))
1962 res
= analyze_scalar_evolution_1 (loop
, res
);
1966 switch (gimple_code (def
))
1969 res
= interpret_gimple_assign (loop
, def
);
1973 if (loop_phi_node_p (def
))
1974 res
= interpret_loop_phi (loop
, as_a
<gphi
*> (def
));
1976 res
= interpret_condition_phi (loop
, as_a
<gphi
*> (def
));
1980 res
= chrec_dont_know
;
1986 /* Keep the symbolic form. */
1987 if (res
== chrec_dont_know
)
1990 if (loop
== def_loop
)
1991 set_scalar_evolution (block_before_loop (loop
), var
, res
);
1996 /* Analyzes and returns the scalar evolution of the ssa_name VAR in
1997 LOOP. LOOP is the loop in which the variable is used.
1999 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
2000 pointer to the statement that uses this variable, in order to
2001 determine the evolution function of the variable, use the following
2004 loop_p loop = loop_containing_stmt (stmt);
2005 tree chrec_with_symbols = analyze_scalar_evolution (loop, var);
2006 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
2010 analyze_scalar_evolution (class loop
*loop
, tree var
)
2014 /* ??? Fix callers. */
2018 if (dump_file
&& (dump_flags
& TDF_SCEV
))
2020 fprintf (dump_file
, "(analyze_scalar_evolution \n");
2021 fprintf (dump_file
, " (loop_nb = %d)\n", loop
->num
);
2022 fprintf (dump_file
, " (scalar = ");
2023 print_generic_expr (dump_file
, var
);
2024 fprintf (dump_file
, ")\n");
2027 res
= get_scalar_evolution (block_before_loop (loop
), var
);
2028 if (res
== chrec_not_analyzed_yet
)
2030 /* We'll recurse into instantiate_scev, avoid tearing down the
2031 instantiate cache repeatedly and keep it live from here. */
2035 global_cache
= new instantiate_cache_type
;
2038 res
= analyze_scalar_evolution_1 (loop
, var
);
2041 delete global_cache
;
2042 global_cache
= NULL
;
2046 if (dump_file
&& (dump_flags
& TDF_SCEV
))
2047 fprintf (dump_file
, ")\n");
2052 /* Analyzes and returns the scalar evolution of VAR address in LOOP. */
2055 analyze_scalar_evolution_for_address_of (class loop
*loop
, tree var
)
2057 return analyze_scalar_evolution (loop
, build_fold_addr_expr (var
));
2060 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
2061 WRTO_LOOP (which should be a superloop of USE_LOOP)
2063 FOLDED_CASTS is set to true if resolve_mixers used
2064 chrec_convert_aggressive (TODO -- not really, we are way too conservative
2065 at the moment in order to keep things simple).
2067 To illustrate the meaning of USE_LOOP and WRTO_LOOP, consider the following
2070 for (i = 0; i < 100; i++) -- loop 1
2072 for (j = 0; j < 100; j++) -- loop 2
2079 for (t = 0; t < 100; t++) -- loop 3
2086 Both k1 and k2 are invariants in loop3, thus
2087 analyze_scalar_evolution_in_loop (loop3, loop3, k1) = k1
2088 analyze_scalar_evolution_in_loop (loop3, loop3, k2) = k2
2090 As they are invariant, it does not matter whether we consider their
2091 usage in loop 3 or loop 2, hence
2092 analyze_scalar_evolution_in_loop (loop2, loop3, k1) =
2093 analyze_scalar_evolution_in_loop (loop2, loop2, k1) = i
2094 analyze_scalar_evolution_in_loop (loop2, loop3, k2) =
2095 analyze_scalar_evolution_in_loop (loop2, loop2, k2) = [0,+,1]_2
2097 Similarly for their evolutions with respect to loop 1. The values of K2
2098 in the use in loop 2 vary independently on loop 1, thus we cannot express
2099 the evolution with respect to loop 1:
2100 analyze_scalar_evolution_in_loop (loop1, loop3, k1) =
2101 analyze_scalar_evolution_in_loop (loop1, loop2, k1) = [0,+,1]_1
2102 analyze_scalar_evolution_in_loop (loop1, loop3, k2) =
2103 analyze_scalar_evolution_in_loop (loop1, loop2, k2) = dont_know
2105 The value of k2 in the use in loop 1 is known, though:
2106 analyze_scalar_evolution_in_loop (loop1, loop1, k1) = [0,+,1]_1
2107 analyze_scalar_evolution_in_loop (loop1, loop1, k2) = 100
2111 analyze_scalar_evolution_in_loop (class loop
*wrto_loop
, class loop
*use_loop
,
2112 tree version
, bool *folded_casts
)
2115 tree ev
= version
, tmp
;
2117 /* We cannot just do
2119 tmp = analyze_scalar_evolution (use_loop, version);
2120 ev = resolve_mixers (wrto_loop, tmp, folded_casts);
2122 as resolve_mixers would query the scalar evolution with respect to
2123 wrto_loop. For example, in the situation described in the function
2124 comment, suppose that wrto_loop = loop1, use_loop = loop3 and
2127 analyze_scalar_evolution (use_loop, version) = k2
2129 and resolve_mixers (loop1, k2, folded_casts) finds that the value of
2130 k2 in loop 1 is 100, which is a wrong result, since we are interested
2131 in the value in loop 3.
2133 Instead, we need to proceed from use_loop to wrto_loop loop by loop,
2134 each time checking that there is no evolution in the inner loop. */
2137 *folded_casts
= false;
2140 tmp
= analyze_scalar_evolution (use_loop
, ev
);
2141 ev
= resolve_mixers (use_loop
, tmp
, folded_casts
);
2143 if (use_loop
== wrto_loop
)
2146 /* If the value of the use changes in the inner loop, we cannot express
2147 its value in the outer loop (we might try to return interval chrec,
2148 but we do not have a user for it anyway) */
2149 if (!no_evolution_in_loop_p (ev
, use_loop
->num
, &val
)
2151 return chrec_dont_know
;
2153 use_loop
= loop_outer (use_loop
);
2158 /* Computes a hash function for database element ELT. */
2160 static inline hashval_t
2161 hash_idx_scev_info (const void *elt_
)
2163 unsigned idx
= ((size_t) elt_
) - 2;
2164 return scev_info_hasher::hash (&global_cache
->entries
[idx
]);
2167 /* Compares database elements E1 and E2. */
2170 eq_idx_scev_info (const void *e1
, const void *e2
)
2172 unsigned idx1
= ((size_t) e1
) - 2;
2173 return scev_info_hasher::equal (&global_cache
->entries
[idx1
],
2174 (const scev_info_str
*) e2
);
2177 /* Returns from CACHE the slot number of the cached chrec for NAME. */
2180 get_instantiated_value_entry (instantiate_cache_type
&cache
,
2181 tree name
, edge instantiate_below
)
2185 cache
.map
= htab_create (10, hash_idx_scev_info
, eq_idx_scev_info
, NULL
);
2186 cache
.entries
.create (10);
2190 e
.name_version
= SSA_NAME_VERSION (name
);
2191 e
.instantiated_below
= instantiate_below
->dest
->index
;
2192 void **slot
= htab_find_slot_with_hash (cache
.map
, &e
,
2193 scev_info_hasher::hash (&e
), INSERT
);
2196 e
.chrec
= chrec_not_analyzed_yet
;
2197 *slot
= (void *)(size_t)(cache
.entries
.length () + 2);
2198 cache
.entries
.safe_push (e
);
2201 return ((size_t)*slot
) - 2;
2205 /* Return the closed_loop_phi node for VAR. If there is none, return
2209 loop_closed_phi_def (tree var
)
2216 if (var
== NULL_TREE
2217 || TREE_CODE (var
) != SSA_NAME
)
2220 loop
= loop_containing_stmt (SSA_NAME_DEF_STMT (var
));
2221 exit
= single_exit (loop
);
2225 for (psi
= gsi_start_phis (exit
->dest
); !gsi_end_p (psi
); gsi_next (&psi
))
2228 if (PHI_ARG_DEF_FROM_EDGE (phi
, exit
) == var
)
2229 return PHI_RESULT (phi
);
2235 static tree
instantiate_scev_r (edge
, class loop
*, class loop
*,
2238 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2239 and EVOLUTION_LOOP, that were left under a symbolic form.
2241 CHREC is an SSA_NAME to be instantiated.
2243 CACHE is the cache of already instantiated values.
2245 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2246 conversions that may wrap in signed/pointer type are folded, as long
2247 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2248 then we don't do such fold.
2250 SIZE_EXPR is used for computing the size of the expression to be
2251 instantiated, and to stop if it exceeds some limit. */
2254 instantiate_scev_name (edge instantiate_below
,
2255 class loop
*evolution_loop
, class loop
*inner_loop
,
2257 bool *fold_conversions
,
2261 class loop
*def_loop
;
2262 basic_block def_bb
= gimple_bb (SSA_NAME_DEF_STMT (chrec
));
2264 /* A parameter, nothing to do. */
2266 || !dominated_by_p (CDI_DOMINATORS
, def_bb
, instantiate_below
->dest
))
2269 /* We cache the value of instantiated variable to avoid exponential
2270 time complexity due to reevaluations. We also store the convenient
2271 value in the cache in order to prevent infinite recursion -- we do
2272 not want to instantiate the SSA_NAME if it is in a mixer
2273 structure. This is used for avoiding the instantiation of
2274 recursively defined functions, such as:
2276 | a_2 -> {0, +, 1, +, a_2}_1 */
2278 unsigned si
= get_instantiated_value_entry (*global_cache
,
2279 chrec
, instantiate_below
);
2280 if (global_cache
->get (si
) != chrec_not_analyzed_yet
)
2281 return global_cache
->get (si
);
2283 /* On recursion return chrec_dont_know. */
2284 global_cache
->set (si
, chrec_dont_know
);
2286 def_loop
= find_common_loop (evolution_loop
, def_bb
->loop_father
);
2288 if (! dominated_by_p (CDI_DOMINATORS
,
2289 def_loop
->header
, instantiate_below
->dest
))
2291 gimple
*def
= SSA_NAME_DEF_STMT (chrec
);
2292 if (gassign
*ass
= dyn_cast
<gassign
*> (def
))
2294 switch (gimple_assign_rhs_class (ass
))
2296 case GIMPLE_UNARY_RHS
:
2298 tree op0
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2299 inner_loop
, gimple_assign_rhs1 (ass
),
2300 fold_conversions
, size_expr
);
2301 if (op0
== chrec_dont_know
)
2302 return chrec_dont_know
;
2303 res
= fold_build1 (gimple_assign_rhs_code (ass
),
2304 TREE_TYPE (chrec
), op0
);
2307 case GIMPLE_BINARY_RHS
:
2309 tree op0
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2310 inner_loop
, gimple_assign_rhs1 (ass
),
2311 fold_conversions
, size_expr
);
2312 if (op0
== chrec_dont_know
)
2313 return chrec_dont_know
;
2314 tree op1
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2315 inner_loop
, gimple_assign_rhs2 (ass
),
2316 fold_conversions
, size_expr
);
2317 if (op1
== chrec_dont_know
)
2318 return chrec_dont_know
;
2319 res
= fold_build2 (gimple_assign_rhs_code (ass
),
2320 TREE_TYPE (chrec
), op0
, op1
);
2324 res
= chrec_dont_know
;
2328 res
= chrec_dont_know
;
2329 global_cache
->set (si
, res
);
2333 /* If the analysis yields a parametric chrec, instantiate the
2335 res
= analyze_scalar_evolution (def_loop
, chrec
);
2337 /* Don't instantiate default definitions. */
2338 if (TREE_CODE (res
) == SSA_NAME
2339 && SSA_NAME_IS_DEFAULT_DEF (res
))
2342 /* Don't instantiate loop-closed-ssa phi nodes. */
2343 else if (TREE_CODE (res
) == SSA_NAME
2344 && loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res
)))
2345 > loop_depth (def_loop
))
2348 res
= loop_closed_phi_def (chrec
);
2352 /* When there is no loop_closed_phi_def, it means that the
2353 variable is not used after the loop: try to still compute the
2354 value of the variable when exiting the loop. */
2355 if (res
== NULL_TREE
)
2357 loop_p loop
= loop_containing_stmt (SSA_NAME_DEF_STMT (chrec
));
2358 res
= analyze_scalar_evolution (loop
, chrec
);
2359 res
= compute_overall_effect_of_inner_loop (loop
, res
);
2360 res
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2362 fold_conversions
, size_expr
);
2364 else if (dominated_by_p (CDI_DOMINATORS
,
2365 gimple_bb (SSA_NAME_DEF_STMT (res
)),
2366 instantiate_below
->dest
))
2367 res
= chrec_dont_know
;
2370 else if (res
!= chrec_dont_know
)
2373 && def_bb
->loop_father
!= inner_loop
2374 && !flow_loop_nested_p (def_bb
->loop_father
, inner_loop
))
2375 /* ??? We could try to compute the overall effect of the loop here. */
2376 res
= chrec_dont_know
;
2378 res
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2380 fold_conversions
, size_expr
);
2383 /* Store the correct value to the cache. */
2384 global_cache
->set (si
, res
);
2388 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2389 and EVOLUTION_LOOP, that were left under a symbolic form.
2391 CHREC is a polynomial chain of recurrence to be instantiated.
2393 CACHE is the cache of already instantiated values.
2395 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2396 conversions that may wrap in signed/pointer type are folded, as long
2397 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2398 then we don't do such fold.
2400 SIZE_EXPR is used for computing the size of the expression to be
2401 instantiated, and to stop if it exceeds some limit. */
2404 instantiate_scev_poly (edge instantiate_below
,
2405 class loop
*evolution_loop
, class loop
*,
2406 tree chrec
, bool *fold_conversions
, int size_expr
)
2409 tree op0
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2410 get_chrec_loop (chrec
),
2411 CHREC_LEFT (chrec
), fold_conversions
,
2413 if (op0
== chrec_dont_know
)
2414 return chrec_dont_know
;
2416 op1
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2417 get_chrec_loop (chrec
),
2418 CHREC_RIGHT (chrec
), fold_conversions
,
2420 if (op1
== chrec_dont_know
)
2421 return chrec_dont_know
;
2423 if (CHREC_LEFT (chrec
) != op0
2424 || CHREC_RIGHT (chrec
) != op1
)
2426 op1
= chrec_convert_rhs (chrec_type (op0
), op1
, NULL
);
2427 chrec
= build_polynomial_chrec (CHREC_VARIABLE (chrec
), op0
, op1
);
2433 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2434 and EVOLUTION_LOOP, that were left under a symbolic form.
2436 "C0 CODE C1" is a binary expression of type TYPE to be instantiated.
2438 CACHE is the cache of already instantiated values.
2440 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2441 conversions that may wrap in signed/pointer type are folded, as long
2442 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2443 then we don't do such fold.
2445 SIZE_EXPR is used for computing the size of the expression to be
2446 instantiated, and to stop if it exceeds some limit. */
2449 instantiate_scev_binary (edge instantiate_below
,
2450 class loop
*evolution_loop
, class loop
*inner_loop
,
2451 tree chrec
, enum tree_code code
,
2452 tree type
, tree c0
, tree c1
,
2453 bool *fold_conversions
, int size_expr
)
2456 tree op0
= instantiate_scev_r (instantiate_below
, evolution_loop
, inner_loop
,
2457 c0
, fold_conversions
, size_expr
);
2458 if (op0
== chrec_dont_know
)
2459 return chrec_dont_know
;
2461 /* While we eventually compute the same op1 if c0 == c1 the process
2462 of doing this is expensive so the following short-cut prevents
2463 exponential compile-time behavior. */
2466 op1
= instantiate_scev_r (instantiate_below
, evolution_loop
, inner_loop
,
2467 c1
, fold_conversions
, size_expr
);
2468 if (op1
== chrec_dont_know
)
2469 return chrec_dont_know
;
2477 op0
= chrec_convert (type
, op0
, NULL
);
2478 op1
= chrec_convert_rhs (type
, op1
, NULL
);
2482 case POINTER_PLUS_EXPR
:
2484 return chrec_fold_plus (type
, op0
, op1
);
2487 return chrec_fold_minus (type
, op0
, op1
);
2490 return chrec_fold_multiply (type
, op0
, op1
);
2497 return chrec
? chrec
: fold_build2 (code
, type
, c0
, c1
);
2500 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2501 and EVOLUTION_LOOP, that were left under a symbolic form.
2503 "CHREC" that stands for a convert expression "(TYPE) OP" is to be
2506 CACHE is the cache of already instantiated values.
2508 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2509 conversions that may wrap in signed/pointer type are folded, as long
2510 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2511 then we don't do such fold.
2513 SIZE_EXPR is used for computing the size of the expression to be
2514 instantiated, and to stop if it exceeds some limit. */
2517 instantiate_scev_convert (edge instantiate_below
,
2518 class loop
*evolution_loop
, class loop
*inner_loop
,
2519 tree chrec
, tree type
, tree op
,
2520 bool *fold_conversions
, int size_expr
)
2522 tree op0
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2524 fold_conversions
, size_expr
);
2526 if (op0
== chrec_dont_know
)
2527 return chrec_dont_know
;
2529 if (fold_conversions
)
2531 tree tmp
= chrec_convert_aggressive (type
, op0
, fold_conversions
);
2535 /* If we used chrec_convert_aggressive, we can no longer assume that
2536 signed chrecs do not overflow, as chrec_convert does, so avoid
2537 calling it in that case. */
2538 if (*fold_conversions
)
2540 if (chrec
&& op0
== op
)
2543 return fold_convert (type
, op0
);
2547 return chrec_convert (type
, op0
, NULL
);
2550 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2551 and EVOLUTION_LOOP, that were left under a symbolic form.
2553 CHREC is a BIT_NOT_EXPR or a NEGATE_EXPR expression to be instantiated.
2554 Handle ~X as -1 - X.
2555 Handle -X as -1 * X.
2557 CACHE is the cache of already instantiated values.
2559 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2560 conversions that may wrap in signed/pointer type are folded, as long
2561 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2562 then we don't do such fold.
2564 SIZE_EXPR is used for computing the size of the expression to be
2565 instantiated, and to stop if it exceeds some limit. */
2568 instantiate_scev_not (edge instantiate_below
,
2569 class loop
*evolution_loop
, class loop
*inner_loop
,
2571 enum tree_code code
, tree type
, tree op
,
2572 bool *fold_conversions
, int size_expr
)
2574 tree op0
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2576 fold_conversions
, size_expr
);
2578 if (op0
== chrec_dont_know
)
2579 return chrec_dont_know
;
2583 op0
= chrec_convert (type
, op0
, NULL
);
2588 return chrec_fold_minus
2589 (type
, fold_convert (type
, integer_minus_one_node
), op0
);
2592 return chrec_fold_multiply
2593 (type
, fold_convert (type
, integer_minus_one_node
), op0
);
2600 return chrec
? chrec
: fold_build1 (code
, type
, op0
);
2603 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2604 and EVOLUTION_LOOP, that were left under a symbolic form.
2606 CHREC is the scalar evolution to instantiate.
2608 CACHE is the cache of already instantiated values.
2610 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2611 conversions that may wrap in signed/pointer type are folded, as long
2612 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2613 then we don't do such fold.
2615 SIZE_EXPR is used for computing the size of the expression to be
2616 instantiated, and to stop if it exceeds some limit. */
2619 instantiate_scev_r (edge instantiate_below
,
2620 class loop
*evolution_loop
, class loop
*inner_loop
,
2622 bool *fold_conversions
, int size_expr
)
2624 /* Give up if the expression is larger than the MAX that we allow. */
2625 if (size_expr
++ > param_scev_max_expr_size
)
2626 return chrec_dont_know
;
2628 if (chrec
== NULL_TREE
2629 || automatically_generated_chrec_p (chrec
)
2630 || is_gimple_min_invariant (chrec
))
2633 switch (TREE_CODE (chrec
))
2636 return instantiate_scev_name (instantiate_below
, evolution_loop
,
2638 fold_conversions
, size_expr
);
2640 case POLYNOMIAL_CHREC
:
2641 return instantiate_scev_poly (instantiate_below
, evolution_loop
,
2643 fold_conversions
, size_expr
);
2645 case POINTER_PLUS_EXPR
:
2649 return instantiate_scev_binary (instantiate_below
, evolution_loop
,
2651 TREE_CODE (chrec
), chrec_type (chrec
),
2652 TREE_OPERAND (chrec
, 0),
2653 TREE_OPERAND (chrec
, 1),
2654 fold_conversions
, size_expr
);
2657 return instantiate_scev_convert (instantiate_below
, evolution_loop
,
2659 TREE_TYPE (chrec
), TREE_OPERAND (chrec
, 0),
2660 fold_conversions
, size_expr
);
2664 return instantiate_scev_not (instantiate_below
, evolution_loop
,
2666 TREE_CODE (chrec
), TREE_TYPE (chrec
),
2667 TREE_OPERAND (chrec
, 0),
2668 fold_conversions
, size_expr
);
2671 if (is_gimple_min_invariant (chrec
))
2674 case SCEV_NOT_KNOWN
:
2675 return chrec_dont_know
;
2681 if (CONSTANT_CLASS_P (chrec
))
2683 return chrec_dont_know
;
2687 /* Analyze all the parameters of the chrec that were left under a
2688 symbolic form. INSTANTIATE_BELOW is the basic block that stops the
2689 recursive instantiation of parameters: a parameter is a variable
2690 that is defined in a basic block that dominates INSTANTIATE_BELOW or
2691 a function parameter. */
2694 instantiate_scev (edge instantiate_below
, class loop
*evolution_loop
,
2699 if (dump_file
&& (dump_flags
& TDF_SCEV
))
2701 fprintf (dump_file
, "(instantiate_scev \n");
2702 fprintf (dump_file
, " (instantiate_below = %d -> %d)\n",
2703 instantiate_below
->src
->index
, instantiate_below
->dest
->index
);
2705 fprintf (dump_file
, " (evolution_loop = %d)\n", evolution_loop
->num
);
2706 fprintf (dump_file
, " (chrec = ");
2707 print_generic_expr (dump_file
, chrec
);
2708 fprintf (dump_file
, ")\n");
2714 global_cache
= new instantiate_cache_type
;
2718 res
= instantiate_scev_r (instantiate_below
, evolution_loop
,
2719 NULL
, chrec
, NULL
, 0);
2723 delete global_cache
;
2724 global_cache
= NULL
;
2727 if (dump_file
&& (dump_flags
& TDF_SCEV
))
2729 fprintf (dump_file
, " (res = ");
2730 print_generic_expr (dump_file
, res
);
2731 fprintf (dump_file
, "))\n");
2737 /* Similar to instantiate_parameters, but does not introduce the
2738 evolutions in outer loops for LOOP invariants in CHREC, and does not
2739 care about causing overflows, as long as they do not affect value
2740 of an expression. */
2743 resolve_mixers (class loop
*loop
, tree chrec
, bool *folded_casts
)
2746 bool fold_conversions
= false;
2749 global_cache
= new instantiate_cache_type
;
2753 tree ret
= instantiate_scev_r (loop_preheader_edge (loop
), loop
, NULL
,
2754 chrec
, &fold_conversions
, 0);
2756 if (folded_casts
&& !*folded_casts
)
2757 *folded_casts
= fold_conversions
;
2761 delete global_cache
;
2762 global_cache
= NULL
;
2768 /* Entry point for the analysis of the number of iterations pass.
2769 This function tries to safely approximate the number of iterations
2770 the loop will run. When this property is not decidable at compile
2771 time, the result is chrec_dont_know. Otherwise the result is a
2772 scalar or a symbolic parameter. When the number of iterations may
2773 be equal to zero and the property cannot be determined at compile
2774 time, the result is a COND_EXPR that represents in a symbolic form
2775 the conditions under which the number of iterations is not zero.
2777 Example of analysis: suppose that the loop has an exit condition:
2779 "if (b > 49) goto end_loop;"
2781 and that in a previous analysis we have determined that the
2782 variable 'b' has an evolution function:
2784 "EF = {23, +, 5}_2".
2786 When we evaluate the function at the point 5, i.e. the value of the
2787 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2788 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2789 the loop body has been executed 6 times. */
2792 number_of_latch_executions (class loop
*loop
)
2795 class tree_niter_desc niter_desc
;
2799 /* Determine whether the number of iterations in loop has already
2801 res
= loop
->nb_iterations
;
2805 may_be_zero
= NULL_TREE
;
2807 if (dump_file
&& (dump_flags
& TDF_SCEV
))
2808 fprintf (dump_file
, "(number_of_iterations_in_loop = \n");
2810 res
= chrec_dont_know
;
2811 exit
= single_exit (loop
);
2813 if (exit
&& number_of_iterations_exit (loop
, exit
, &niter_desc
, false))
2815 may_be_zero
= niter_desc
.may_be_zero
;
2816 res
= niter_desc
.niter
;
2819 if (res
== chrec_dont_know
2821 || integer_zerop (may_be_zero
))
2823 else if (integer_nonzerop (may_be_zero
))
2824 res
= build_int_cst (TREE_TYPE (res
), 0);
2826 else if (COMPARISON_CLASS_P (may_be_zero
))
2827 res
= fold_build3 (COND_EXPR
, TREE_TYPE (res
), may_be_zero
,
2828 build_int_cst (TREE_TYPE (res
), 0), res
);
2830 res
= chrec_dont_know
;
2832 if (dump_file
&& (dump_flags
& TDF_SCEV
))
2834 fprintf (dump_file
, " (set_nb_iterations_in_loop = ");
2835 print_generic_expr (dump_file
, res
);
2836 fprintf (dump_file
, "))\n");
2839 loop
->nb_iterations
= res
;
2844 /* Counters for the stats. */
2850 unsigned nb_affine_multivar
;
2851 unsigned nb_higher_poly
;
2852 unsigned nb_chrec_dont_know
;
2853 unsigned nb_undetermined
;
2856 /* Reset the counters. */
2859 reset_chrecs_counters (struct chrec_stats
*stats
)
2861 stats
->nb_chrecs
= 0;
2862 stats
->nb_affine
= 0;
2863 stats
->nb_affine_multivar
= 0;
2864 stats
->nb_higher_poly
= 0;
2865 stats
->nb_chrec_dont_know
= 0;
2866 stats
->nb_undetermined
= 0;
2869 /* Dump the contents of a CHREC_STATS structure. */
2872 dump_chrecs_stats (FILE *file
, struct chrec_stats
*stats
)
2874 fprintf (file
, "\n(\n");
2875 fprintf (file
, "-----------------------------------------\n");
2876 fprintf (file
, "%d\taffine univariate chrecs\n", stats
->nb_affine
);
2877 fprintf (file
, "%d\taffine multivariate chrecs\n", stats
->nb_affine_multivar
);
2878 fprintf (file
, "%d\tdegree greater than 2 polynomials\n",
2879 stats
->nb_higher_poly
);
2880 fprintf (file
, "%d\tchrec_dont_know chrecs\n", stats
->nb_chrec_dont_know
);
2881 fprintf (file
, "-----------------------------------------\n");
2882 fprintf (file
, "%d\ttotal chrecs\n", stats
->nb_chrecs
);
2883 fprintf (file
, "%d\twith undetermined coefficients\n",
2884 stats
->nb_undetermined
);
2885 fprintf (file
, "-----------------------------------------\n");
2886 fprintf (file
, "%d\tchrecs in the scev database\n",
2887 (int) scalar_evolution_info
->elements ());
2888 fprintf (file
, "%d\tsets in the scev database\n", nb_set_scev
);
2889 fprintf (file
, "%d\tgets in the scev database\n", nb_get_scev
);
2890 fprintf (file
, "-----------------------------------------\n");
2891 fprintf (file
, ")\n\n");
2894 /* Gather statistics about CHREC. */
2897 gather_chrec_stats (tree chrec
, struct chrec_stats
*stats
)
2899 if (dump_file
&& (dump_flags
& TDF_STATS
))
2901 fprintf (dump_file
, "(classify_chrec ");
2902 print_generic_expr (dump_file
, chrec
);
2903 fprintf (dump_file
, "\n");
2908 if (chrec
== NULL_TREE
)
2910 stats
->nb_undetermined
++;
2914 switch (TREE_CODE (chrec
))
2916 case POLYNOMIAL_CHREC
:
2917 if (evolution_function_is_affine_p (chrec
))
2919 if (dump_file
&& (dump_flags
& TDF_STATS
))
2920 fprintf (dump_file
, " affine_univariate\n");
2923 else if (evolution_function_is_affine_multivariate_p (chrec
, 0))
2925 if (dump_file
&& (dump_flags
& TDF_STATS
))
2926 fprintf (dump_file
, " affine_multivariate\n");
2927 stats
->nb_affine_multivar
++;
2931 if (dump_file
&& (dump_flags
& TDF_STATS
))
2932 fprintf (dump_file
, " higher_degree_polynomial\n");
2933 stats
->nb_higher_poly
++;
2942 if (chrec_contains_undetermined (chrec
))
2944 if (dump_file
&& (dump_flags
& TDF_STATS
))
2945 fprintf (dump_file
, " undetermined\n");
2946 stats
->nb_undetermined
++;
2949 if (dump_file
&& (dump_flags
& TDF_STATS
))
2950 fprintf (dump_file
, ")\n");
2953 /* Classify the chrecs of the whole database. */
2956 gather_stats_on_scev_database (void)
2958 struct chrec_stats stats
;
2963 reset_chrecs_counters (&stats
);
2965 hash_table
<scev_info_hasher
>::iterator iter
;
2967 FOR_EACH_HASH_TABLE_ELEMENT (*scalar_evolution_info
, elt
, scev_info_str
*,
2969 gather_chrec_stats (elt
->chrec
, &stats
);
2971 dump_chrecs_stats (dump_file
, &stats
);
2975 /* Initialize the analysis of scalar evolutions for LOOPS. */
2978 scev_initialize (void)
2980 gcc_assert (! scev_initialized_p ()
2981 && loops_state_satisfies_p (cfun
, LOOPS_NORMAL
));
2983 scalar_evolution_info
= hash_table
<scev_info_hasher
>::create_ggc (100);
2985 for (auto loop
: loops_list (cfun
, 0))
2986 loop
->nb_iterations
= NULL_TREE
;
2989 /* Return true if SCEV is initialized. */
2992 scev_initialized_p (void)
2994 return scalar_evolution_info
!= NULL
;
2997 /* Cleans up the information cached by the scalar evolutions analysis
2998 in the hash table. */
3001 scev_reset_htab (void)
3003 if (!scalar_evolution_info
)
3006 scalar_evolution_info
->empty ();
3009 /* Cleans up the information cached by the scalar evolutions analysis
3010 in the hash table and in the loop->nb_iterations. */
3017 for (auto loop
: loops_list (cfun
, 0))
3018 loop
->nb_iterations
= NULL_TREE
;
3021 /* Return true if the IV calculation in TYPE can overflow based on the knowledge
3022 of the upper bound on the number of iterations of LOOP, the BASE and STEP
3025 We do not use information whether TYPE can overflow so it is safe to
3026 use this test even for derived IVs not computed every iteration or
3027 hypotetical IVs to be inserted into code. */
3030 iv_can_overflow_p (class loop
*loop
, tree type
, tree base
, tree step
)
3033 wide_int base_min
, base_max
, step_min
, step_max
, type_min
, type_max
;
3034 signop sgn
= TYPE_SIGN (type
);
3037 if (integer_zerop (step
))
3040 if (!INTEGRAL_TYPE_P (TREE_TYPE (base
))
3041 || !get_range_query (cfun
)->range_of_expr (r
, base
)
3042 || r
.kind () != VR_RANGE
)
3045 base_min
= r
.lower_bound ();
3046 base_max
= r
.upper_bound ();
3048 if (!INTEGRAL_TYPE_P (TREE_TYPE (step
))
3049 || !get_range_query (cfun
)->range_of_expr (r
, step
)
3050 || r
.kind () != VR_RANGE
)
3053 step_min
= r
.lower_bound ();
3054 step_max
= r
.upper_bound ();
3056 if (!get_max_loop_iterations (loop
, &nit
))
3059 type_min
= wi::min_value (type
);
3060 type_max
= wi::max_value (type
);
3062 /* Just sanity check that we don't see values out of the range of the type.
3063 In this case the arithmetics bellow would overflow. */
3064 gcc_checking_assert (wi::ge_p (base_min
, type_min
, sgn
)
3065 && wi::le_p (base_max
, type_max
, sgn
));
3067 /* Account the possible increment in the last ieration. */
3068 wi::overflow_type overflow
= wi::OVF_NONE
;
3069 nit
= wi::add (nit
, 1, SIGNED
, &overflow
);
3073 /* NIT is typeless and can exceed the precision of the type. In this case
3074 overflow is always possible, because we know STEP is non-zero. */
3075 if (wi::min_precision (nit
, UNSIGNED
) > TYPE_PRECISION (type
))
3077 wide_int nit2
= wide_int::from (nit
, TYPE_PRECISION (type
), UNSIGNED
);
3079 /* If step can be positive, check that nit*step <= type_max-base.
3080 This can be done by unsigned arithmetic and we only need to watch overflow
3081 in the multiplication. The right hand side can always be represented in
3083 if (sgn
== UNSIGNED
|| !wi::neg_p (step_max
))
3085 wi::overflow_type overflow
= wi::OVF_NONE
;
3086 if (wi::gtu_p (wi::mul (step_max
, nit2
, UNSIGNED
, &overflow
),
3087 type_max
- base_max
)
3091 /* If step can be negative, check that nit*(-step) <= base_min-type_min. */
3092 if (sgn
== SIGNED
&& wi::neg_p (step_min
))
3094 wi::overflow_type overflow
, overflow2
;
3095 overflow
= overflow2
= wi::OVF_NONE
;
3096 if (wi::gtu_p (wi::mul (wi::neg (step_min
, &overflow2
),
3097 nit2
, UNSIGNED
, &overflow
),
3098 base_min
- type_min
)
3099 || overflow
|| overflow2
)
3106 /* Given EV with form of "(type) {inner_base, inner_step}_loop", this
3107 function tries to derive condition under which it can be simplified
3108 into "{(type)inner_base, (type)inner_step}_loop". The condition is
3109 the maximum number that inner iv can iterate. */
3112 derive_simple_iv_with_niters (tree ev
, tree
*niters
)
3114 if (!CONVERT_EXPR_P (ev
))
3117 tree inner_ev
= TREE_OPERAND (ev
, 0);
3118 if (TREE_CODE (inner_ev
) != POLYNOMIAL_CHREC
)
3121 tree init
= CHREC_LEFT (inner_ev
);
3122 tree step
= CHREC_RIGHT (inner_ev
);
3123 if (TREE_CODE (init
) != INTEGER_CST
3124 || TREE_CODE (step
) != INTEGER_CST
|| integer_zerop (step
))
3127 tree type
= TREE_TYPE (ev
);
3128 tree inner_type
= TREE_TYPE (inner_ev
);
3129 if (TYPE_PRECISION (inner_type
) >= TYPE_PRECISION (type
))
3132 /* Type conversion in "(type) {inner_base, inner_step}_loop" can be
3133 folded only if inner iv won't overflow. We compute the maximum
3134 number the inner iv can iterate before overflowing and return the
3135 simplified affine iv. */
3137 init
= fold_convert (type
, init
);
3138 step
= fold_convert (type
, step
);
3139 ev
= build_polynomial_chrec (CHREC_VARIABLE (inner_ev
), init
, step
);
3140 if (tree_int_cst_sign_bit (step
))
3142 tree bound
= lower_bound_in_type (inner_type
, inner_type
);
3143 delta
= fold_build2 (MINUS_EXPR
, type
, init
, fold_convert (type
, bound
));
3144 step
= fold_build1 (NEGATE_EXPR
, type
, step
);
3148 tree bound
= upper_bound_in_type (inner_type
, inner_type
);
3149 delta
= fold_build2 (MINUS_EXPR
, type
, fold_convert (type
, bound
), init
);
3151 *niters
= fold_build2 (FLOOR_DIV_EXPR
, type
, delta
, step
);
3155 /* Checks whether use of OP in USE_LOOP behaves as a simple affine iv with
3156 respect to WRTO_LOOP and returns its base and step in IV if possible
3157 (see analyze_scalar_evolution_in_loop for more details on USE_LOOP
3158 and WRTO_LOOP). If ALLOW_NONCONSTANT_STEP is true, we want step to be
3159 invariant in LOOP. Otherwise we require it to be an integer constant.
3161 IV->no_overflow is set to true if we are sure the iv cannot overflow (e.g.
3162 because it is computed in signed arithmetics). Consequently, adding an
3165 for (i = IV->base; ; i += IV->step)
3167 is only safe if IV->no_overflow is false, or TYPE_OVERFLOW_UNDEFINED is
3168 false for the type of the induction variable, or you can prove that i does
3169 not wrap by some other argument. Otherwise, this might introduce undefined
3173 for (; ; i = (type) ((unsigned type) i + (unsigned type) iv->step))
3175 must be used instead.
3177 When IV_NITERS is not NULL, this function also checks case in which OP
3178 is a conversion of an inner simple iv of below form:
3180 (outer_type){inner_base, inner_step}_loop.
3182 If type of inner iv has smaller precision than outer_type, it can't be
3183 folded into {(outer_type)inner_base, (outer_type)inner_step}_loop because
3184 the inner iv could overflow/wrap. In this case, we derive a condition
3185 under which the inner iv won't overflow/wrap and do the simplification.
3186 The derived condition normally is the maximum number the inner iv can
3187 iterate, and will be stored in IV_NITERS. This is useful in loop niter
3188 analysis, to derive break conditions when a loop must terminate, when is
3192 simple_iv_with_niters (class loop
*wrto_loop
, class loop
*use_loop
,
3193 tree op
, affine_iv
*iv
, tree
*iv_niters
,
3194 bool allow_nonconstant_step
)
3196 enum tree_code code
;
3197 tree type
, ev
, base
, e
;
3201 iv
->base
= NULL_TREE
;
3202 iv
->step
= NULL_TREE
;
3203 iv
->no_overflow
= false;
3205 type
= TREE_TYPE (op
);
3206 if (!POINTER_TYPE_P (type
)
3207 && !INTEGRAL_TYPE_P (type
))
3210 ev
= analyze_scalar_evolution_in_loop (wrto_loop
, use_loop
, op
,
3212 if (chrec_contains_undetermined (ev
)
3213 || chrec_contains_symbols_defined_in_loop (ev
, wrto_loop
->num
))
3216 if (tree_does_not_contain_chrecs (ev
))
3219 iv
->step
= build_int_cst (TREE_TYPE (ev
), 0);
3220 iv
->no_overflow
= true;
3224 /* If we can derive valid scalar evolution with assumptions. */
3225 if (iv_niters
&& TREE_CODE (ev
) != POLYNOMIAL_CHREC
)
3226 ev
= derive_simple_iv_with_niters (ev
, iv_niters
);
3228 if (TREE_CODE (ev
) != POLYNOMIAL_CHREC
)
3231 if (CHREC_VARIABLE (ev
) != (unsigned) wrto_loop
->num
)
3234 iv
->step
= CHREC_RIGHT (ev
);
3235 if ((!allow_nonconstant_step
&& TREE_CODE (iv
->step
) != INTEGER_CST
)
3236 || tree_contains_chrecs (iv
->step
, NULL
))
3239 iv
->base
= CHREC_LEFT (ev
);
3240 if (tree_contains_chrecs (iv
->base
, NULL
))
3243 iv
->no_overflow
= !folded_casts
&& nowrap_type_p (type
);
3245 if (!iv
->no_overflow
3246 && !iv_can_overflow_p (wrto_loop
, type
, iv
->base
, iv
->step
))
3247 iv
->no_overflow
= true;
3249 /* Try to simplify iv base:
3251 (signed T) ((unsigned T)base + step) ;; TREE_TYPE (base) == signed T
3252 == (signed T)(unsigned T)base + step
3255 If we can prove operation (base + step) doesn't overflow or underflow.
3256 Specifically, we try to prove below conditions are satisfied:
3258 base <= UPPER_BOUND (type) - step ;;step > 0
3259 base >= LOWER_BOUND (type) - step ;;step < 0
3261 This is done by proving the reverse conditions are false using loop's
3264 The is necessary to make loop niter, or iv overflow analysis easier
3267 int foo (int *a, signed char s, signed char l)
3270 for (i = s; i < l; i++)
3275 Note variable I is firstly converted to type unsigned char, incremented,
3276 then converted back to type signed char. */
3278 if (wrto_loop
->num
!= use_loop
->num
)
3281 if (!CONVERT_EXPR_P (iv
->base
) || TREE_CODE (iv
->step
) != INTEGER_CST
)
3284 type
= TREE_TYPE (iv
->base
);
3285 e
= TREE_OPERAND (iv
->base
, 0);
3286 if (TREE_CODE (e
) != PLUS_EXPR
3287 || TREE_CODE (TREE_OPERAND (e
, 1)) != INTEGER_CST
3288 || !tree_int_cst_equal (iv
->step
,
3289 fold_convert (type
, TREE_OPERAND (e
, 1))))
3291 e
= TREE_OPERAND (e
, 0);
3292 if (!CONVERT_EXPR_P (e
))
3294 base
= TREE_OPERAND (e
, 0);
3295 if (!useless_type_conversion_p (type
, TREE_TYPE (base
)))
3298 if (tree_int_cst_sign_bit (iv
->step
))
3301 extreme
= wi::min_value (type
);
3306 extreme
= wi::max_value (type
);
3308 wi::overflow_type overflow
= wi::OVF_NONE
;
3309 extreme
= wi::sub (extreme
, wi::to_wide (iv
->step
),
3310 TYPE_SIGN (type
), &overflow
);
3313 e
= fold_build2 (code
, boolean_type_node
, base
,
3314 wide_int_to_tree (type
, extreme
));
3315 e
= simplify_using_initial_conditions (use_loop
, e
);
3316 if (!integer_zerop (e
))
3319 if (POINTER_TYPE_P (TREE_TYPE (base
)))
3320 code
= POINTER_PLUS_EXPR
;
3324 iv
->base
= fold_build2 (code
, TREE_TYPE (base
), base
, iv
->step
);
3328 /* Like simple_iv_with_niters, but return TRUE when OP behaves as a simple
3329 affine iv unconditionally. */
3332 simple_iv (class loop
*wrto_loop
, class loop
*use_loop
, tree op
,
3333 affine_iv
*iv
, bool allow_nonconstant_step
)
3335 return simple_iv_with_niters (wrto_loop
, use_loop
, op
, iv
,
3336 NULL
, allow_nonconstant_step
);
3339 /* Finalize the scalar evolution analysis. */
3342 scev_finalize (void)
3344 if (!scalar_evolution_info
)
3346 scalar_evolution_info
->empty ();
3347 scalar_evolution_info
= NULL
;
3348 free_numbers_of_iterations_estimates (cfun
);
3351 /* Returns true if the expression EXPR is considered to be too expensive
3352 for scev_const_prop. */
3355 expression_expensive_p (tree expr
, hash_map
<tree
, uint64_t> &cache
,
3358 enum tree_code code
;
3360 if (is_gimple_val (expr
))
3363 code
= TREE_CODE (expr
);
3364 if (code
== TRUNC_DIV_EXPR
3365 || code
== CEIL_DIV_EXPR
3366 || code
== FLOOR_DIV_EXPR
3367 || code
== ROUND_DIV_EXPR
3368 || code
== TRUNC_MOD_EXPR
3369 || code
== CEIL_MOD_EXPR
3370 || code
== FLOOR_MOD_EXPR
3371 || code
== ROUND_MOD_EXPR
3372 || code
== EXACT_DIV_EXPR
)
3374 /* Division by power of two is usually cheap, so we allow it.
3375 Forbid anything else. */
3376 if (!integer_pow2p (TREE_OPERAND (expr
, 1)))
3381 uint64_t &local_cost
= cache
.get_or_insert (expr
, &visited_p
);
3384 uint64_t tem
= cost
+ local_cost
;
3392 uint64_t op_cost
= 0;
3393 if (code
== CALL_EXPR
)
3396 call_expr_arg_iterator iter
;
3397 /* Even though is_inexpensive_builtin might say true, we will get a
3398 library call for popcount when backend does not have an instruction
3399 to do so. We consider this to be expensive and generate
3400 __builtin_popcount only when backend defines it. */
3401 combined_fn cfn
= get_call_combined_fn (expr
);
3405 /* Check if opcode for popcount is available in the mode required. */
3406 if (optab_handler (popcount_optab
,
3407 TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (expr
, 0))))
3408 == CODE_FOR_nothing
)
3411 mode
= TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (expr
, 0)));
3412 scalar_int_mode int_mode
;
3414 /* If the mode is of 2 * UNITS_PER_WORD size, we can handle
3415 double-word popcount by emitting two single-word popcount
3417 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
3418 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
3419 && (optab_handler (popcount_optab
, word_mode
)
3420 != CODE_FOR_nothing
))
3428 || !is_inexpensive_builtin (get_callee_fndecl (expr
)))
3433 FOR_EACH_CALL_EXPR_ARG (arg
, iter
, expr
)
3434 if (expression_expensive_p (arg
, cache
, op_cost
))
3436 *cache
.get (expr
) += op_cost
;
3437 cost
+= op_cost
+ 1;
3441 if (code
== COND_EXPR
)
3443 if (expression_expensive_p (TREE_OPERAND (expr
, 0), cache
, op_cost
)
3444 || (EXPR_P (TREE_OPERAND (expr
, 1))
3445 && EXPR_P (TREE_OPERAND (expr
, 2)))
3446 /* If either branch has side effects or could trap. */
3447 || TREE_SIDE_EFFECTS (TREE_OPERAND (expr
, 1))
3448 || generic_expr_could_trap_p (TREE_OPERAND (expr
, 1))
3449 || TREE_SIDE_EFFECTS (TREE_OPERAND (expr
, 0))
3450 || generic_expr_could_trap_p (TREE_OPERAND (expr
, 0))
3451 || expression_expensive_p (TREE_OPERAND (expr
, 1),
3453 || expression_expensive_p (TREE_OPERAND (expr
, 2),
3456 *cache
.get (expr
) += op_cost
;
3457 cost
+= op_cost
+ 1;
3461 switch (TREE_CODE_CLASS (code
))
3464 case tcc_comparison
:
3465 if (expression_expensive_p (TREE_OPERAND (expr
, 1), cache
, op_cost
))
3470 if (expression_expensive_p (TREE_OPERAND (expr
, 0), cache
, op_cost
))
3472 *cache
.get (expr
) += op_cost
;
3473 cost
+= op_cost
+ 1;
3482 expression_expensive_p (tree expr
)
3484 hash_map
<tree
, uint64_t> cache
;
3485 uint64_t expanded_size
= 0;
3486 return (expression_expensive_p (expr
, cache
, expanded_size
)
3487 || expanded_size
> cache
.elements ());
3490 /* Match.pd function to match bitwise inductive expression.
3494 tmp_9 = _3 & tmp_12; */
3495 extern bool gimple_bitwise_induction_p (tree
, tree
*, tree (*)(tree
));
3497 /* Return the inductive expression of bitwise operation if possible,
3498 otherwise returns DEF. */
3500 analyze_and_compute_bitwise_induction_effect (class loop
* loop
,
3502 unsigned HOST_WIDE_INT niter
)
3504 tree match_op
[3],inv
, bitwise_scev
;
3505 tree type
= TREE_TYPE (phidef
);
3506 gphi
* header_phi
= NULL
;
3508 /* Match things like op2(MATCH_OP[2]), op1(MATCH_OP[1]), phidef(PHIDEF)
3510 op2 = PHI <phidef, inv>
3514 phidef = op1 & op2; */
3515 if (!gimple_bitwise_induction_p (phidef
, &match_op
[0], NULL
)
3516 || TREE_CODE (match_op
[2]) != SSA_NAME
3517 || !(header_phi
= dyn_cast
<gphi
*> (SSA_NAME_DEF_STMT (match_op
[2])))
3518 || gimple_phi_num_args (header_phi
) != 2)
3521 if (PHI_ARG_DEF_FROM_EDGE (header_phi
, loop_latch_edge (loop
)) != phidef
)
3524 bitwise_scev
= analyze_scalar_evolution (loop
, match_op
[1]);
3525 bitwise_scev
= instantiate_parameters (loop
, bitwise_scev
);
3527 /* Make sure bits is in range of type precision. */
3528 if (TREE_CODE (bitwise_scev
) != POLYNOMIAL_CHREC
3529 || !INTEGRAL_TYPE_P (TREE_TYPE (bitwise_scev
))
3530 || !tree_fits_uhwi_p (CHREC_LEFT (bitwise_scev
))
3531 || tree_to_uhwi (CHREC_LEFT (bitwise_scev
)) >= TYPE_PRECISION (type
)
3532 || !tree_fits_shwi_p (CHREC_RIGHT (bitwise_scev
)))
3537 INDUCTION_BIT_CLEAR
,
3540 INDUCTION_BIT_RESET
,
3545 enum bit_op_kind induction_kind
;
3546 enum tree_code code1
3547 = gimple_assign_rhs_code (SSA_NAME_DEF_STMT (phidef
));
3548 enum tree_code code2
3549 = gimple_assign_rhs_code (SSA_NAME_DEF_STMT (match_op
[0]));
3551 /* BIT_CLEAR: A &= ~(1 << bit)
3552 BIT_RESET: A ^= (1 << bit).
3553 BIT_IOR: A |= (1 << bit)
3554 BIT_ZERO: A &= (1 << bit)
3555 BIT_ALL: A |= ~(1 << bit)
3556 BIT_XOR: A ^= ~(1 << bit).
3557 bit is induction variable. */
3561 induction_kind
= code2
== BIT_NOT_EXPR
3562 ? INDUCTION_BIT_CLEAR
3566 induction_kind
= code2
== BIT_NOT_EXPR
3568 : INDUCTION_BIT_IOR
;
3571 induction_kind
= code2
== BIT_NOT_EXPR
3573 : INDUCTION_BIT_RESET
;
3575 /* A ^ ~(1 << bit) is equal to ~(A ^ (1 << bit)). */
3577 gcc_assert (code2
== BIT_XOR_EXPR
);
3578 induction_kind
= INDUCTION_BIT_XOR
;
3584 if (induction_kind
== INDUCTION_ZERO
)
3585 return build_zero_cst (type
);
3586 if (induction_kind
== INDUCTION_ALL
)
3587 return build_all_ones_cst (type
);
3589 wide_int bits
= wi::zero (TYPE_PRECISION (type
));
3590 HOST_WIDE_INT bit_start
= tree_to_shwi (CHREC_LEFT (bitwise_scev
));
3591 HOST_WIDE_INT step
= tree_to_shwi (CHREC_RIGHT (bitwise_scev
));
3592 HOST_WIDE_INT bit_final
= bit_start
+ step
* niter
;
3594 /* bit_start, bit_final in range of [0,TYPE_PRECISION)
3595 implies all bits are set in range. */
3596 if (bit_final
>= TYPE_PRECISION (type
)
3600 /* Loop tripcount should be niter + 1. */
3601 for (unsigned i
= 0; i
!= niter
+ 1; i
++)
3603 bits
= wi::set_bit (bits
, bit_start
);
3607 bool inverted
= false;
3608 switch (induction_kind
)
3610 case INDUCTION_BIT_CLEAR
:
3611 code1
= BIT_AND_EXPR
;
3614 case INDUCTION_BIT_IOR
:
3615 code1
= BIT_IOR_EXPR
;
3617 case INDUCTION_BIT_RESET
:
3618 code1
= BIT_XOR_EXPR
;
3620 /* A ^= ~(1 << bit) is special, when loop tripcount is even,
3621 it's equal to A ^= bits, else A ^= ~bits. */
3622 case INDUCTION_BIT_XOR
:
3623 code1
= BIT_XOR_EXPR
;
3632 bits
= wi::bit_not (bits
);
3634 inv
= PHI_ARG_DEF_FROM_EDGE (header_phi
, loop_preheader_edge (loop
));
3635 return fold_build2 (code1
, type
, inv
, wide_int_to_tree (type
, bits
));
3638 /* Match.pd function to match bitop with invariant expression
3641 extern bool gimple_bitop_with_inv_p (tree
, tree
*, tree (*)(tree
));
3643 /* Return the inductive expression of bitop with invariant if possible,
3644 otherwise returns DEF. */
3646 analyze_and_compute_bitop_with_inv_effect (class loop
* loop
, tree phidef
,
3649 tree match_op
[2],inv
;
3650 tree type
= TREE_TYPE (phidef
);
3651 gphi
* header_phi
= NULL
;
3652 enum tree_code code
;
3653 /* match thing like op0 (match[0]), op1 (match[1]), phidef (PHIDEF)
3655 op1 = PHI <phidef, inv>
3657 if op0 is an invariant, it could change to
3658 phidef = op0 & inv. */
3660 def
= SSA_NAME_DEF_STMT (phidef
);
3661 if (!(is_gimple_assign (def
)
3662 && ((code
= gimple_assign_rhs_code (def
)), true)
3663 && (code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
3664 || code
== BIT_XOR_EXPR
)))
3667 match_op
[0] = gimple_assign_rhs1 (def
);
3668 match_op
[1] = gimple_assign_rhs2 (def
);
3670 if (TREE_CODE (match_op
[1]) != SSA_NAME
3671 || !expr_invariant_in_loop_p (loop
, match_op
[0])
3672 || !(header_phi
= dyn_cast
<gphi
*> (SSA_NAME_DEF_STMT (match_op
[1])))
3673 || gimple_phi_num_args (header_phi
) != 2)
3676 if (PHI_ARG_DEF_FROM_EDGE (header_phi
, loop_latch_edge (loop
)) != phidef
)
3679 enum tree_code code1
3680 = gimple_assign_rhs_code (def
);
3682 if (code1
== BIT_XOR_EXPR
)
3684 if (!tree_fits_uhwi_p (niter
))
3686 unsigned HOST_WIDE_INT niter_num
;
3687 niter_num
= tree_to_uhwi (niter
);
3688 if (niter_num
% 2 != 0)
3689 match_op
[0] = build_zero_cst (type
);
3692 inv
= PHI_ARG_DEF_FROM_EDGE (header_phi
, loop_preheader_edge (loop
));
3693 return fold_build2 (code1
, type
, inv
, match_op
[0]);
3696 /* Do final value replacement for LOOP, return true if we did anything. */
3699 final_value_replacement_loop (class loop
*loop
)
3701 /* If we do not know exact number of iterations of the loop, we cannot
3702 replace the final value. */
3703 edge exit
= single_exit (loop
);
3707 tree niter
= number_of_latch_executions (loop
);
3708 if (niter
== chrec_dont_know
)
3711 /* Ensure that it is possible to insert new statements somewhere. */
3712 if (!single_pred_p (exit
->dest
))
3713 split_loop_exit_edge (exit
);
3715 /* Set stmt insertion pointer. All stmts are inserted before this point. */
3716 gimple_stmt_iterator gsi
= gsi_after_labels (exit
->dest
);
3719 = superloop_at_depth (loop
,
3720 loop_depth (exit
->dest
->loop_father
) + 1);
3724 for (psi
= gsi_start_phis (exit
->dest
); !gsi_end_p (psi
); )
3726 gphi
*phi
= psi
.phi ();
3727 tree rslt
= PHI_RESULT (phi
);
3728 tree phidef
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
3730 if (virtual_operand_p (def
))
3736 if (!POINTER_TYPE_P (TREE_TYPE (def
))
3737 && !INTEGRAL_TYPE_P (TREE_TYPE (def
)))
3744 def
= analyze_scalar_evolution_in_loop (ex_loop
, loop
, def
,
3747 tree bitinv_def
, bit_def
;
3748 unsigned HOST_WIDE_INT niter_num
;
3750 if (def
!= chrec_dont_know
)
3751 def
= compute_overall_effect_of_inner_loop (ex_loop
, def
);
3753 /* Handle bitop with invariant induction expression.
3756 for (int i =0 ;i < 32; i++)
3758 if bit2 is an invariant in loop which could simple to
3760 else if ((bitinv_def
3761 = analyze_and_compute_bitop_with_inv_effect (loop
,
3765 /* Handle bitwise induction expression.
3768 for (int i = 0; i != 64; i+=3)
3771 RES can't be analyzed out by SCEV because it is not polynomially
3772 expressible, but in fact final value of RES can be replaced by
3773 RES & CONSTANT where CONSTANT all ones with bit {0,3,6,9,... ,63}
3774 being cleared, similar for BIT_IOR_EXPR/BIT_XOR_EXPR. */
3775 else if (tree_fits_uhwi_p (niter
)
3776 && (niter_num
= tree_to_uhwi (niter
)) != 0
3777 && niter_num
< TYPE_PRECISION (TREE_TYPE (phidef
))
3779 = analyze_and_compute_bitwise_induction_effect (loop
,
3784 if (!tree_does_not_contain_chrecs (def
)
3785 || chrec_contains_symbols_defined_in_loop (def
, ex_loop
->num
)
3786 /* Moving the computation from the loop may prolong life range
3787 of some ssa names, which may cause problems if they appear
3788 on abnormal edges. */
3789 || contains_abnormal_ssa_name_p (def
)
3790 /* Do not emit expensive expressions. The rationale is that
3791 when someone writes a code like
3793 while (n > 45) n -= 45;
3795 he probably knows that n is not large, and does not want it
3796 to be turned into n %= 45. */
3797 || expression_expensive_p (def
))
3799 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3801 fprintf (dump_file
, "not replacing:\n ");
3802 print_gimple_stmt (dump_file
, phi
, 0);
3803 fprintf (dump_file
, "\n");
3809 /* Eliminate the PHI node and replace it by a computation outside
3813 fprintf (dump_file
, "\nfinal value replacement:\n ");
3814 print_gimple_stmt (dump_file
, phi
, 0);
3815 fprintf (dump_file
, " with expr: ");
3816 print_generic_expr (dump_file
, def
);
3819 def
= unshare_expr (def
);
3820 remove_phi_node (&psi
, false);
3822 /* If def's type has undefined overflow and there were folded
3823 casts, rewrite all stmts added for def into arithmetics
3824 with defined overflow behavior. */
3825 if (folded_casts
&& ANY_INTEGRAL_TYPE_P (TREE_TYPE (def
))
3826 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (def
)))
3829 gimple_stmt_iterator gsi2
;
3830 def
= force_gimple_operand (def
, &stmts
, true, NULL_TREE
);
3831 gsi2
= gsi_start (stmts
);
3832 while (!gsi_end_p (gsi2
))
3834 gimple
*stmt
= gsi_stmt (gsi2
);
3835 gimple_stmt_iterator gsi3
= gsi2
;
3837 gsi_remove (&gsi3
, false);
3838 if (is_gimple_assign (stmt
)
3839 && arith_code_with_undefined_signed_overflow
3840 (gimple_assign_rhs_code (stmt
)))
3841 gsi_insert_seq_before (&gsi
,
3842 rewrite_to_defined_overflow (stmt
),
3845 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
3849 def
= force_gimple_operand_gsi (&gsi
, def
, false, NULL_TREE
,
3850 true, GSI_SAME_STMT
);
3852 gassign
*ass
= gimple_build_assign (rslt
, def
);
3853 gimple_set_location (ass
,
3854 gimple_phi_arg_location (phi
, exit
->dest_idx
));
3855 gsi_insert_before (&gsi
, ass
, GSI_SAME_STMT
);
3858 fprintf (dump_file
, "\n final stmt:\n ");
3859 print_gimple_stmt (dump_file
, ass
, 0);
3860 fprintf (dump_file
, "\n");
3867 #include "gt-tree-scalar-evolution.h"