1 /* Predictive commoning.
2 Copyright (C) 2005-2022 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
31 Let us demonstrate what is done on an example:
33 for (i = 0; i < 100; i++)
35 a[i+2] = a[i] + a[i+1];
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
67 In our example, we get the following chains (the chain for c is invalid).
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
93 e[i] + f[i+1] + e[i+1] + f[i]
95 can be reassociated as
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
99 and we can combine the chains for e and f into one chain.
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 up to RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
140 In our case, F = 2 and the (main loop of the) result is
142 for (i = 0; i < ...; i += 2)
159 Apart from predictive commoning on Load-Load and Store-Load chains, we
160 also support Store-Store chains -- stores killed by other store can be
161 eliminated. Given below example:
163 for (i = 0; i < n; i++)
169 It can be replaced with:
173 for (i = 0; i < n; i++)
183 If the loop runs more than 1 iterations, it can be further simplified into:
185 for (i = 0; i < n; i++)
192 The interesting part is this can be viewed either as general store motion
193 or general dead store elimination in either intra/inter-iterations way.
195 With trivial effort, we also support load inside Store-Store chains if the
196 load is dominated by a store statement in the same iteration of loop. You
197 can see this as a restricted Store-Mixed-Load-Store chain.
199 TODO: For now, we don't support store-store chains in multi-exit loops. We
200 force to not unroll in case of store-store chain even if other chains might
203 Predictive commoning can be generalized for arbitrary computations (not
204 just memory loads), and also nontrivial transfer functions (e.g., replacing
205 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
209 #include "coretypes.h"
215 #include "tree-pass.h"
217 #include "gimple-pretty-print.h"
219 #include "fold-const.h"
222 #include "gimplify.h"
223 #include "gimple-iterator.h"
224 #include "gimplify-me.h"
225 #include "tree-ssa-loop-ivopts.h"
226 #include "tree-ssa-loop-manip.h"
227 #include "tree-ssa-loop-niter.h"
228 #include "tree-ssa-loop.h"
229 #include "tree-into-ssa.h"
230 #include "tree-dfa.h"
231 #include "tree-ssa.h"
232 #include "tree-data-ref.h"
233 #include "tree-scalar-evolution.h"
234 #include "tree-affine.h"
235 #include "builtins.h"
238 /* The maximum number of iterations between the considered memory
241 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
243 /* Data references (or phi nodes that carry data reference values across
249 /* The reference itself. */
250 struct data_reference
*ref
;
252 /* The statement in that the reference appears. */
255 /* In case that STMT is a phi node, this field is set to the SSA name
256 defined by it in replace_phis_by_defined_names (in order to avoid
257 pointing to phi node that got reallocated in the meantime). */
258 tree name_defined_by_phi
;
260 /* Distance of the reference from the root of the chain (in number of
261 iterations of the loop). */
264 /* Number of iterations offset from the first reference in the component. */
267 /* Number of the reference in a component, in dominance ordering. */
270 /* True if the memory reference is always accessed when the loop is
272 unsigned always_accessed
: 1;
276 /* Type of the chain of the references. */
280 /* The addresses of the references in the chain are constant. */
283 /* There are only loads in the chain. */
286 /* Root of the chain is store, the rest are loads. */
289 /* There are only stores in the chain. */
292 /* A combination of two chains. */
296 /* Chains of data references. */
300 chain (chain_type t
) : type (t
), op (ERROR_MARK
), rslt_type (NULL_TREE
),
301 ch1 (NULL
), ch2 (NULL
), length (0), init_seq (NULL
), fini_seq (NULL
),
302 has_max_use_after (false), all_always_accessed (false), combined (false),
303 inv_store_elimination (false) {}
305 /* Type of the chain. */
306 enum chain_type type
;
308 /* For combination chains, the operator and the two chains that are
309 combined, and the type of the result. */
312 struct chain
*ch1
, *ch2
;
314 /* The references in the chain. */
317 /* The maximum distance of the reference in the chain from the root. */
320 /* The variables used to copy the value throughout iterations. */
323 /* Initializers for the variables. */
324 auto_vec
<tree
> inits
;
326 /* Finalizers for the eliminated stores. */
327 auto_vec
<tree
> finis
;
329 /* gimple stmts intializing the initial variables of the chain. */
332 /* gimple stmts finalizing the eliminated stores of the chain. */
335 /* True if there is a use of a variable with the maximal distance
336 that comes after the root in the loop. */
337 unsigned has_max_use_after
: 1;
339 /* True if all the memory references in the chain are always accessed. */
340 unsigned all_always_accessed
: 1;
342 /* True if this chain was combined together with some other chain. */
343 unsigned combined
: 1;
345 /* True if this is store elimination chain and eliminated stores store
346 loop invariant value into memory. */
347 unsigned inv_store_elimination
: 1;
351 /* Describes the knowledge about the step of the memory references in
356 /* The step is zero. */
359 /* The step is nonzero. */
362 /* The step may or may not be nonzero. */
366 /* Components of the data dependence graph. */
370 component (bool es
) : comp_step (RS_ANY
), eliminate_store_p (es
),
373 /* The references in the component. */
376 /* What we know about the step of the references in the component. */
377 enum ref_step_type comp_step
;
379 /* True if all references in component are stores and we try to do
380 intra/inter loop iteration dead store elimination. */
381 bool eliminate_store_p
;
383 /* Next component in the list. */
384 struct component
*next
;
387 /* A class to encapsulate the global states used for predictive
388 commoning work on top of one given LOOP. */
393 pcom_worker (loop_p l
) : m_loop (l
), m_cache (NULL
) {}
397 free_data_refs (m_datarefs
);
398 free_dependence_relations (m_dependences
);
399 free_affine_expand_cache (&m_cache
);
403 pcom_worker (const pcom_worker
&) = delete;
404 pcom_worker
&operator= (const pcom_worker
&) = delete;
406 /* Performs predictive commoning. */
407 unsigned tree_predictive_commoning_loop (bool allow_unroll_p
);
409 /* Perform the predictive commoning optimization for chains, make this
410 public for being called in callback execute_pred_commoning_cbck. */
411 void execute_pred_commoning (bitmap tmp_vars
);
414 /* The pointer to the given loop. */
417 /* All data references. */
418 auto_vec
<data_reference_p
, 10> m_datarefs
;
420 /* All data dependences. */
421 auto_vec
<ddr_p
, 10> m_dependences
;
424 auto_vec
<chain_p
> m_chains
;
426 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
427 auto_bitmap m_looparound_phis
;
429 typedef hash_map
<tree
, name_expansion
*> tree_expand_map_t
;
430 /* Cache used by tree_to_aff_combination_expand. */
431 tree_expand_map_t
*m_cache
;
433 /* Splits dependence graph to components. */
434 struct component
*split_data_refs_to_components ();
436 /* Check the conditions on references inside each of components COMPS,
437 and remove the unsuitable components from the list. */
438 struct component
*filter_suitable_components (struct component
*comps
);
440 /* Find roots of the values and determine distances in components COMPS,
441 and separates the references to chains. */
442 void determine_roots (struct component
*comps
);
444 /* Prepare initializers for chains, and free chains that cannot
445 be used because the initializers might trap. */
446 void prepare_initializers ();
448 /* Generates finalizer memory reference for chains. Returns true if
449 finalizer code generation for chains breaks loop closed ssa form. */
450 bool prepare_finalizers ();
452 /* Try to combine the chains. */
453 void try_combine_chains ();
456 void release_chains ();
458 /* Frees a chain CHAIN. */
459 void release_chain (chain_p chain
);
461 /* Prepare initializers for CHAIN. Returns false if this is impossible
462 because one of these initializers may trap, true otherwise. */
463 bool prepare_initializers_chain (chain_p chain
);
465 /* Generates finalizer memory references for CHAIN. Returns true
466 if finalizer code for CHAIN can be generated, otherwise false. */
467 bool prepare_finalizers_chain (chain_p chain
);
469 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
470 void aff_combination_dr_offset (struct data_reference
*dr
, aff_tree
*offset
);
472 /* Determines number of iterations of the innermost enclosing loop before
473 B refers to exactly the same location as A and stores it to OFF. */
474 bool determine_offset (struct data_reference
*a
, struct data_reference
*b
,
475 poly_widest_int
*off
);
477 /* Returns true if the component COMP satisfies the conditions
478 described in 2) at the beginning of this file. */
479 bool suitable_component_p (struct component
*comp
);
481 /* Returns true if REF is a valid initializer for ROOT with given
482 DISTANCE (in iterations of the innermost enclosing loop). */
483 bool valid_initializer_p (struct data_reference
*ref
, unsigned distance
,
484 struct data_reference
*root
);
486 /* Finds looparound phi node of loop that copies the value of REF. */
487 gphi
*find_looparound_phi (dref ref
, dref root
);
489 /* Find roots of the values and determine distances in the component
490 COMP. The references are redistributed into chains. */
491 void determine_roots_comp (struct component
*comp
);
493 /* For references in CHAIN that are copied around the loop, add the
494 results of such copies to the chain. */
495 void add_looparound_copies (chain_p chain
);
497 /* Returns the single statement in that NAME is used, excepting
498 the looparound phi nodes contained in one of the chains. */
499 gimple
*single_nonlooparound_use (tree name
);
501 /* Remove statement STMT, as well as the chain of assignments in that
503 void remove_stmt (gimple
*stmt
);
505 /* Perform the predictive commoning optimization for a chain CHAIN. */
506 void execute_pred_commoning_chain (chain_p chain
, bitmap tmp_vars
);
508 /* Returns the modify statement that uses NAME. */
509 gimple
*find_use_stmt (tree
*name
);
511 /* If the operation used in STMT is associative and commutative, go
512 through the tree of the same operations and returns its root. */
513 gimple
*find_associative_operation_root (gimple
*stmt
, unsigned *distance
);
515 /* Returns the common statement in that NAME1 and NAME2 have a use. */
516 gimple
*find_common_use_stmt (tree
*name1
, tree
*name2
);
518 /* Checks whether R1 and R2 are combined together using CODE, with the
519 result in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order
520 R2 CODE R1 if it is true. */
521 bool combinable_refs_p (dref r1
, dref r2
, enum tree_code
*code
, bool *swap
,
524 /* Reassociates the expression in that NAME1 and NAME2 are used so that
525 they are combined in a single statement, and returns this statement. */
526 gimple
*reassociate_to_the_same_stmt (tree name1
, tree name2
);
528 /* Returns the statement that combines references R1 and R2. */
529 gimple
*stmt_combining_refs (dref r1
, dref r2
);
531 /* Tries to combine chains CH1 and CH2 together. */
532 chain_p
combine_chains (chain_p ch1
, chain_p ch2
);
535 /* Dumps data reference REF to FILE. */
537 extern void dump_dref (FILE *, dref
);
539 dump_dref (FILE *file
, dref ref
)
544 print_generic_expr (file
, DR_REF (ref
->ref
), TDF_SLIM
);
545 fprintf (file
, " (id %u%s)\n", ref
->pos
,
546 DR_IS_READ (ref
->ref
) ? "" : ", write");
548 fprintf (file
, " offset ");
549 print_decs (ref
->offset
, file
);
550 fprintf (file
, "\n");
552 fprintf (file
, " distance %u\n", ref
->distance
);
556 if (gimple_code (ref
->stmt
) == GIMPLE_PHI
)
557 fprintf (file
, " looparound ref\n");
559 fprintf (file
, " combination ref\n");
560 fprintf (file
, " in statement ");
561 print_gimple_stmt (file
, ref
->stmt
, 0, TDF_SLIM
);
562 fprintf (file
, "\n");
563 fprintf (file
, " distance %u\n", ref
->distance
);
568 /* Dumps CHAIN to FILE. */
570 extern void dump_chain (FILE *, chain_p
);
572 dump_chain (FILE *file
, chain_p chain
)
575 const char *chain_type
;
582 chain_type
= "Load motion";
586 chain_type
= "Loads-only";
590 chain_type
= "Store-loads";
594 chain_type
= "Store-stores";
598 chain_type
= "Combination";
605 fprintf (file
, "%s chain %p%s\n", chain_type
, (void *) chain
,
606 chain
->combined
? " (combined)" : "");
607 if (chain
->type
!= CT_INVARIANT
)
608 fprintf (file
, " max distance %u%s\n", chain
->length
,
609 chain
->has_max_use_after
? "" : ", may reuse first");
611 if (chain
->type
== CT_COMBINATION
)
613 fprintf (file
, " equal to %p %s %p in type ",
614 (void *) chain
->ch1
, op_symbol_code (chain
->op
),
615 (void *) chain
->ch2
);
616 print_generic_expr (file
, chain
->rslt_type
, TDF_SLIM
);
617 fprintf (file
, "\n");
620 if (chain
->vars
.exists ())
622 fprintf (file
, " vars");
623 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
626 print_generic_expr (file
, var
, TDF_SLIM
);
628 fprintf (file
, "\n");
631 if (chain
->inits
.exists ())
633 fprintf (file
, " inits");
634 FOR_EACH_VEC_ELT (chain
->inits
, i
, var
)
637 print_generic_expr (file
, var
, TDF_SLIM
);
639 fprintf (file
, "\n");
642 fprintf (file
, " references:\n");
643 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
646 fprintf (file
, "\n");
649 /* Dumps CHAINS to FILE. */
652 dump_chains (FILE *file
, const vec
<chain_p
> &chains
)
657 FOR_EACH_VEC_ELT (chains
, i
, chain
)
658 dump_chain (file
, chain
);
661 /* Dumps COMP to FILE. */
663 extern void dump_component (FILE *, struct component
*);
665 dump_component (FILE *file
, struct component
*comp
)
670 fprintf (file
, "Component%s:\n",
671 comp
->comp_step
== RS_INVARIANT
? " (invariant)" : "");
672 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
674 fprintf (file
, "\n");
677 /* Dumps COMPS to FILE. */
679 extern void dump_components (FILE *, struct component
*);
681 dump_components (FILE *file
, struct component
*comps
)
683 struct component
*comp
;
685 for (comp
= comps
; comp
; comp
= comp
->next
)
686 dump_component (file
, comp
);
689 /* Frees a chain CHAIN. */
692 pcom_worker::release_chain (chain_p chain
)
700 FOR_EACH_VEC_ELT (chain
->refs
, i
, ref
)
704 gimple_seq_discard (chain
->init_seq
);
707 gimple_seq_discard (chain
->fini_seq
);
715 pcom_worker::release_chains ()
720 FOR_EACH_VEC_ELT (m_chains
, i
, chain
)
721 release_chain (chain
);
724 /* Frees list of components COMPS. */
727 release_components (struct component
*comps
)
729 struct component
*act
, *next
;
731 for (act
= comps
; act
; act
= next
)
738 /* Finds a root of tree given by FATHERS containing A, and performs path
742 component_of (vec
<unsigned> &fathers
, unsigned a
)
746 for (root
= a
; root
!= fathers
[root
]; root
= fathers
[root
])
749 for (; a
!= root
; a
= n
)
758 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
759 components, A and B are components to merge. */
762 merge_comps (vec
<unsigned> &fathers
, vec
<unsigned> &sizes
,
763 unsigned a
, unsigned b
)
765 unsigned ca
= component_of (fathers
, a
);
766 unsigned cb
= component_of (fathers
, b
);
771 if (sizes
[ca
] < sizes
[cb
])
773 sizes
[cb
] += sizes
[ca
];
778 sizes
[ca
] += sizes
[cb
];
783 /* Returns true if A is a reference that is suitable for predictive commoning
784 in the innermost loop that contains it. REF_STEP is set according to the
785 step of the reference A. */
788 suitable_reference_p (struct data_reference
*a
, enum ref_step_type
*ref_step
)
790 tree ref
= DR_REF (a
), step
= DR_STEP (a
);
793 || TREE_THIS_VOLATILE (ref
)
794 || !is_gimple_reg_type (TREE_TYPE (ref
))
795 || tree_could_throw_p (ref
))
798 if (integer_zerop (step
))
799 *ref_step
= RS_INVARIANT
;
800 else if (integer_nonzerop (step
))
801 *ref_step
= RS_NONZERO
;
808 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
811 pcom_worker::aff_combination_dr_offset (struct data_reference
*dr
,
814 tree type
= TREE_TYPE (DR_OFFSET (dr
));
817 tree_to_aff_combination_expand (DR_OFFSET (dr
), type
, offset
, &m_cache
);
818 aff_combination_const (&delta
, type
, wi::to_poly_widest (DR_INIT (dr
)));
819 aff_combination_add (offset
, &delta
);
822 /* Determines number of iterations of the innermost enclosing loop before B
823 refers to exactly the same location as A and stores it to OFF. If A and
824 B do not have the same step, they never meet, or anything else fails,
825 returns false, otherwise returns true. Both A and B are assumed to
826 satisfy suitable_reference_p. */
829 pcom_worker::determine_offset (struct data_reference
*a
,
830 struct data_reference
*b
, poly_widest_int
*off
)
832 aff_tree diff
, baseb
, step
;
835 /* Check that both the references access the location in the same type. */
836 typea
= TREE_TYPE (DR_REF (a
));
837 typeb
= TREE_TYPE (DR_REF (b
));
838 if (!useless_type_conversion_p (typeb
, typea
))
841 /* Check whether the base address and the step of both references is the
843 if (!operand_equal_p (DR_STEP (a
), DR_STEP (b
), 0)
844 || !operand_equal_p (DR_BASE_ADDRESS (a
), DR_BASE_ADDRESS (b
), 0))
847 if (integer_zerop (DR_STEP (a
)))
849 /* If the references have loop invariant address, check that they access
850 exactly the same location. */
852 return (operand_equal_p (DR_OFFSET (a
), DR_OFFSET (b
), 0)
853 && operand_equal_p (DR_INIT (a
), DR_INIT (b
), 0));
856 /* Compare the offsets of the addresses, and check whether the difference
857 is a multiple of step. */
858 aff_combination_dr_offset (a
, &diff
);
859 aff_combination_dr_offset (b
, &baseb
);
860 aff_combination_scale (&baseb
, -1);
861 aff_combination_add (&diff
, &baseb
);
863 tree_to_aff_combination_expand (DR_STEP (a
), TREE_TYPE (DR_STEP (a
)),
865 return aff_combination_constant_multiple_p (&diff
, &step
, off
);
868 /* Returns the last basic block in LOOP for that we are sure that
869 it is executed whenever the loop is entered. */
872 last_always_executed_block (class loop
*loop
)
875 auto_vec
<edge
> exits
= get_loop_exit_edges (loop
);
877 basic_block last
= loop
->latch
;
879 FOR_EACH_VEC_ELT (exits
, i
, ex
)
880 last
= nearest_common_dominator (CDI_DOMINATORS
, last
, ex
->src
);
885 /* Splits dependence graph on DATAREFS described by DEPENDENCES to
889 pcom_worker::split_data_refs_to_components ()
891 unsigned i
, n
= m_datarefs
.length ();
892 unsigned ca
, ia
, ib
, bad
;
893 struct data_reference
*dr
, *dra
, *drb
;
894 struct data_dependence_relation
*ddr
;
895 struct component
*comp_list
= NULL
, *comp
;
897 /* Don't do store elimination if loop has multiple exit edges. */
898 bool eliminate_store_p
= single_exit (m_loop
) != NULL
;
899 basic_block last_always_executed
= last_always_executed_block (m_loop
);
900 auto_bitmap no_store_store_comps
;
901 auto_vec
<unsigned> comp_father (n
+ 1);
902 auto_vec
<unsigned> comp_size (n
+ 1);
903 comp_father
.quick_grow (n
+ 1);
904 comp_size
.quick_grow (n
+ 1);
906 FOR_EACH_VEC_ELT (m_datarefs
, i
, dr
)
909 /* A fake reference for call or asm_expr that may clobber memory;
912 /* predcom pass isn't prepared to handle calls with data references. */
913 if (is_gimple_call (DR_STMT (dr
)))
915 dr
->aux
= (void *) (size_t) i
;
920 /* A component reserved for the "bad" data references. */
924 FOR_EACH_VEC_ELT (m_datarefs
, i
, dr
)
926 enum ref_step_type dummy
;
928 if (!suitable_reference_p (dr
, &dummy
))
930 ia
= (unsigned) (size_t) dr
->aux
;
931 merge_comps (comp_father
, comp_size
, n
, ia
);
935 FOR_EACH_VEC_ELT (m_dependences
, i
, ddr
)
937 poly_widest_int dummy_off
;
939 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
945 /* Don't do store elimination if there is any unknown dependence for
946 any store data reference. */
947 if ((DR_IS_WRITE (dra
) || DR_IS_WRITE (drb
))
948 && (DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
949 || DDR_NUM_DIST_VECTS (ddr
) == 0))
950 eliminate_store_p
= false;
952 ia
= component_of (comp_father
, (unsigned) (size_t) dra
->aux
);
953 ib
= component_of (comp_father
, (unsigned) (size_t) drb
->aux
);
957 bad
= component_of (comp_father
, n
);
959 /* If both A and B are reads, we may ignore unsuitable dependences. */
960 if (DR_IS_READ (dra
) && DR_IS_READ (drb
))
962 if (ia
== bad
|| ib
== bad
963 || !determine_offset (dra
, drb
, &dummy_off
))
966 /* If A is read and B write or vice versa and there is unsuitable
967 dependence, instead of merging both components into a component
968 that will certainly not pass suitable_component_p, just put the
969 read into bad component, perhaps at least the write together with
970 all the other data refs in it's component will be optimizable. */
971 else if (DR_IS_READ (dra
) && ib
!= bad
)
975 bitmap_set_bit (no_store_store_comps
, ib
);
978 else if (!determine_offset (dra
, drb
, &dummy_off
))
980 bitmap_set_bit (no_store_store_comps
, ib
);
981 merge_comps (comp_father
, comp_size
, bad
, ia
);
985 else if (DR_IS_READ (drb
) && ia
!= bad
)
989 bitmap_set_bit (no_store_store_comps
, ia
);
992 else if (!determine_offset (dra
, drb
, &dummy_off
))
994 bitmap_set_bit (no_store_store_comps
, ia
);
995 merge_comps (comp_father
, comp_size
, bad
, ib
);
999 else if (DR_IS_WRITE (dra
) && DR_IS_WRITE (drb
)
1000 && ia
!= bad
&& ib
!= bad
1001 && !determine_offset (dra
, drb
, &dummy_off
))
1003 merge_comps (comp_father
, comp_size
, bad
, ia
);
1004 merge_comps (comp_father
, comp_size
, bad
, ib
);
1008 merge_comps (comp_father
, comp_size
, ia
, ib
);
1011 if (eliminate_store_p
)
1013 tree niters
= number_of_latch_executions (m_loop
);
1015 /* Don't do store elimination if niters info is unknown because stores
1016 in the last iteration can't be eliminated and we need to recover it
1018 eliminate_store_p
= (niters
!= NULL_TREE
&& niters
!= chrec_dont_know
);
1021 auto_vec
<struct component
*> comps
;
1022 comps
.safe_grow_cleared (n
, true);
1023 bad
= component_of (comp_father
, n
);
1024 FOR_EACH_VEC_ELT (m_datarefs
, i
, dr
)
1026 ia
= (unsigned) (size_t) dr
->aux
;
1027 ca
= component_of (comp_father
, ia
);
1034 comp
= new component (eliminate_store_p
);
1035 comp
->refs
.reserve_exact (comp_size
[ca
]);
1039 dataref
= XCNEW (class dref_d
);
1041 dataref
->stmt
= DR_STMT (dr
);
1042 dataref
->offset
= 0;
1043 dataref
->distance
= 0;
1045 dataref
->always_accessed
1046 = dominated_by_p (CDI_DOMINATORS
, last_always_executed
,
1047 gimple_bb (dataref
->stmt
));
1048 dataref
->pos
= comp
->refs
.length ();
1049 comp
->refs
.quick_push (dataref
);
1052 if (eliminate_store_p
)
1055 EXECUTE_IF_SET_IN_BITMAP (no_store_store_comps
, 0, ia
, bi
)
1057 ca
= component_of (comp_father
, ia
);
1059 comps
[ca
]->eliminate_store_p
= false;
1063 for (i
= 0; i
< n
; i
++)
1068 comp
->next
= comp_list
;
1075 /* Returns true if the component COMP satisfies the conditions
1076 described in 2) at the beginning of this file. */
1079 pcom_worker::suitable_component_p (struct component
*comp
)
1083 basic_block ba
, bp
= m_loop
->header
;
1084 bool ok
, has_write
= false;
1086 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
1088 ba
= gimple_bb (a
->stmt
);
1090 if (!just_once_each_iteration_p (m_loop
, ba
))
1093 gcc_assert (dominated_by_p (CDI_DOMINATORS
, ba
, bp
));
1096 if (DR_IS_WRITE (a
->ref
))
1100 first
= comp
->refs
[0];
1101 ok
= suitable_reference_p (first
->ref
, &comp
->comp_step
);
1105 for (i
= 1; comp
->refs
.iterate (i
, &a
); i
++)
1107 /* Polynomial offsets are no use, since we need to know the
1108 gap between iteration numbers at compile time. */
1109 poly_widest_int offset
;
1110 if (!determine_offset (first
->ref
, a
->ref
, &offset
)
1111 || !offset
.is_constant (&a
->offset
))
1114 enum ref_step_type a_step
;
1115 gcc_checking_assert (suitable_reference_p (a
->ref
, &a_step
)
1116 && a_step
== comp
->comp_step
);
1119 /* If there is a write inside the component, we must know whether the
1120 step is nonzero or not -- we would not otherwise be able to recognize
1121 whether the value accessed by reads comes from the OFFSET-th iteration
1122 or the previous one. */
1123 if (has_write
&& comp
->comp_step
== RS_ANY
)
1129 /* Check the conditions on references inside each of components COMPS,
1130 and remove the unsuitable components from the list. The new list
1131 of components is returned. The conditions are described in 2) at
1132 the beginning of this file. */
1135 pcom_worker::filter_suitable_components (struct component
*comps
)
1137 struct component
**comp
, *act
;
1139 for (comp
= &comps
; *comp
; )
1142 if (suitable_component_p (act
))
1150 FOR_EACH_VEC_ELT (act
->refs
, i
, ref
)
1159 /* Compares two drefs A and B by their offset and position. Callback for
1163 order_drefs (const void *a
, const void *b
)
1165 const dref
*const da
= (const dref
*) a
;
1166 const dref
*const db
= (const dref
*) b
;
1167 int offcmp
= wi::cmps ((*da
)->offset
, (*db
)->offset
);
1172 return (*da
)->pos
- (*db
)->pos
;
1175 /* Compares two drefs A and B by their position. Callback for qsort. */
1178 order_drefs_by_pos (const void *a
, const void *b
)
1180 const dref
*const da
= (const dref
*) a
;
1181 const dref
*const db
= (const dref
*) b
;
1183 return (*da
)->pos
- (*db
)->pos
;
1186 /* Returns root of the CHAIN. */
1189 get_chain_root (chain_p chain
)
1191 return chain
->refs
[0];
1194 /* Given CHAIN, returns the last write ref at DISTANCE, or NULL if it doesn't
1198 get_chain_last_write_at (chain_p chain
, unsigned distance
)
1200 for (unsigned i
= chain
->refs
.length (); i
> 0; i
--)
1201 if (DR_IS_WRITE (chain
->refs
[i
- 1]->ref
)
1202 && distance
== chain
->refs
[i
- 1]->distance
)
1203 return chain
->refs
[i
- 1];
1208 /* Given CHAIN, returns the last write ref with the same distance before load
1209 at index LOAD_IDX, or NULL if it doesn't exist. */
1212 get_chain_last_write_before_load (chain_p chain
, unsigned load_idx
)
1214 gcc_assert (load_idx
< chain
->refs
.length ());
1216 unsigned distance
= chain
->refs
[load_idx
]->distance
;
1218 for (unsigned i
= load_idx
; i
> 0; i
--)
1219 if (DR_IS_WRITE (chain
->refs
[i
- 1]->ref
)
1220 && distance
== chain
->refs
[i
- 1]->distance
)
1221 return chain
->refs
[i
- 1];
1226 /* Adds REF to the chain CHAIN. */
1229 add_ref_to_chain (chain_p chain
, dref ref
)
1231 dref root
= get_chain_root (chain
);
1233 gcc_assert (wi::les_p (root
->offset
, ref
->offset
));
1234 widest_int dist
= ref
->offset
- root
->offset
;
1235 gcc_assert (wi::fits_uhwi_p (dist
));
1237 chain
->refs
.safe_push (ref
);
1239 ref
->distance
= dist
.to_uhwi ();
1241 if (ref
->distance
>= chain
->length
)
1243 chain
->length
= ref
->distance
;
1244 chain
->has_max_use_after
= false;
1247 /* Promote this chain to CT_STORE_STORE if it has multiple stores. */
1248 if (DR_IS_WRITE (ref
->ref
))
1249 chain
->type
= CT_STORE_STORE
;
1251 /* Don't set the flag for store-store chain since there is no use. */
1252 if (chain
->type
!= CT_STORE_STORE
1253 && ref
->distance
== chain
->length
1254 && ref
->pos
> root
->pos
)
1255 chain
->has_max_use_after
= true;
1257 chain
->all_always_accessed
&= ref
->always_accessed
;
1260 /* Returns the chain for invariant component COMP. */
1263 make_invariant_chain (struct component
*comp
)
1265 chain_p chain
= new struct chain (CT_INVARIANT
);
1269 chain
->all_always_accessed
= true;
1271 FOR_EACH_VEC_ELT (comp
->refs
, i
, ref
)
1273 chain
->refs
.safe_push (ref
);
1274 chain
->all_always_accessed
&= ref
->always_accessed
;
1277 chain
->inits
= vNULL
;
1278 chain
->finis
= vNULL
;
1283 /* Make a new chain of type TYPE rooted at REF. */
1286 make_rooted_chain (dref ref
, enum chain_type type
)
1288 chain_p chain
= new struct chain (type
);
1290 chain
->refs
.safe_push (ref
);
1291 chain
->all_always_accessed
= ref
->always_accessed
;
1294 chain
->inits
= vNULL
;
1295 chain
->finis
= vNULL
;
1300 /* Returns true if CHAIN is not trivial. */
1303 nontrivial_chain_p (chain_p chain
)
1305 return chain
!= NULL
&& chain
->refs
.length () > 1;
1308 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1312 name_for_ref (dref ref
)
1316 if (is_gimple_assign (ref
->stmt
))
1318 if (!ref
->ref
|| DR_IS_READ (ref
->ref
))
1319 name
= gimple_assign_lhs (ref
->stmt
);
1321 name
= gimple_assign_rhs1 (ref
->stmt
);
1324 name
= PHI_RESULT (ref
->stmt
);
1326 return (TREE_CODE (name
) == SSA_NAME
? name
: NULL_TREE
);
1329 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1330 iterations of the innermost enclosing loop). */
1333 pcom_worker::valid_initializer_p (struct data_reference
*ref
, unsigned distance
,
1334 struct data_reference
*root
)
1336 aff_tree diff
, base
, step
;
1337 poly_widest_int off
;
1339 /* Both REF and ROOT must be accessing the same object. */
1340 if (!operand_equal_p (DR_BASE_ADDRESS (ref
), DR_BASE_ADDRESS (root
), 0))
1343 /* The initializer is defined outside of loop, hence its address must be
1344 invariant inside the loop. */
1345 gcc_assert (integer_zerop (DR_STEP (ref
)));
1347 /* If the address of the reference is invariant, initializer must access
1348 exactly the same location. */
1349 if (integer_zerop (DR_STEP (root
)))
1350 return (operand_equal_p (DR_OFFSET (ref
), DR_OFFSET (root
), 0)
1351 && operand_equal_p (DR_INIT (ref
), DR_INIT (root
), 0));
1353 /* Verify that this index of REF is equal to the root's index at
1354 -DISTANCE-th iteration. */
1355 aff_combination_dr_offset (root
, &diff
);
1356 aff_combination_dr_offset (ref
, &base
);
1357 aff_combination_scale (&base
, -1);
1358 aff_combination_add (&diff
, &base
);
1360 tree_to_aff_combination_expand (DR_STEP (root
), TREE_TYPE (DR_STEP (root
)),
1362 if (!aff_combination_constant_multiple_p (&diff
, &step
, &off
))
1365 if (maybe_ne (off
, distance
))
1371 /* Finds looparound phi node of loop that copies the value of REF, and if its
1372 initial value is correct (equal to initial value of REF shifted by one
1373 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1374 is the root of the current chain. */
1377 pcom_worker::find_looparound_phi (dref ref
, dref root
)
1379 tree name
, init
, init_ref
;
1381 edge latch
= loop_latch_edge (m_loop
);
1382 struct data_reference init_dr
;
1385 if (is_gimple_assign (ref
->stmt
))
1387 if (DR_IS_READ (ref
->ref
))
1388 name
= gimple_assign_lhs (ref
->stmt
);
1390 name
= gimple_assign_rhs1 (ref
->stmt
);
1393 name
= PHI_RESULT (ref
->stmt
);
1397 tree entry_vuse
= NULL_TREE
;
1399 for (psi
= gsi_start_phis (m_loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1401 gphi
*p
= psi
.phi ();
1402 if (PHI_ARG_DEF_FROM_EDGE (p
, latch
) == name
)
1404 else if (virtual_operand_p (gimple_phi_result (p
)))
1405 entry_vuse
= PHI_ARG_DEF_FROM_EDGE (p
, loop_preheader_edge (m_loop
));
1406 if (phi
&& entry_vuse
)
1409 if (!phi
|| !entry_vuse
)
1412 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (m_loop
));
1413 if (TREE_CODE (init
) != SSA_NAME
)
1415 init_stmt
= SSA_NAME_DEF_STMT (init
);
1416 if (gimple_code (init_stmt
) != GIMPLE_ASSIGN
)
1418 gcc_assert (gimple_assign_lhs (init_stmt
) == init
);
1420 init_ref
= gimple_assign_rhs1 (init_stmt
);
1421 if (!REFERENCE_CLASS_P (init_ref
)
1422 && !DECL_P (init_ref
))
1425 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1426 loop enclosing PHI). */
1427 memset (&init_dr
, 0, sizeof (struct data_reference
));
1428 DR_REF (&init_dr
) = init_ref
;
1429 DR_STMT (&init_dr
) = phi
;
1430 if (!dr_analyze_innermost (&DR_INNERMOST (&init_dr
), init_ref
, m_loop
,
1434 if (!valid_initializer_p (&init_dr
, ref
->distance
+ 1, root
->ref
))
1437 /* Make sure nothing clobbers the location we re-use the initial value
1439 if (entry_vuse
!= gimple_vuse (init_stmt
))
1442 ao_ref_init (&ref
, init_ref
);
1443 unsigned limit
= param_sccvn_max_alias_queries_per_access
;
1444 tree vdef
= entry_vuse
;
1447 gimple
*def
= SSA_NAME_DEF_STMT (vdef
);
1448 if (limit
-- == 0 || gimple_code (def
) == GIMPLE_PHI
)
1450 if (stmt_may_clobber_ref_p_1 (def
, &ref
))
1451 /* When the stmt is an assign to init_ref we could in theory
1452 use its RHS for the initial value of the looparound PHI
1453 we replace in prepare_initializers_chain, but we have
1454 no convenient place to store this info at the moment. */
1456 vdef
= gimple_vuse (def
);
1458 while (vdef
!= gimple_vuse (init_stmt
));
1464 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1467 insert_looparound_copy (chain_p chain
, dref ref
, gphi
*phi
)
1469 dref nw
= XCNEW (class dref_d
), aref
;
1473 nw
->distance
= ref
->distance
+ 1;
1474 nw
->always_accessed
= 1;
1476 FOR_EACH_VEC_ELT (chain
->refs
, i
, aref
)
1477 if (aref
->distance
>= nw
->distance
)
1479 chain
->refs
.safe_insert (i
, nw
);
1481 if (nw
->distance
> chain
->length
)
1483 chain
->length
= nw
->distance
;
1484 chain
->has_max_use_after
= false;
1488 /* For references in CHAIN that are copied around the loop (created previously
1489 by PRE, or by user), add the results of such copies to the chain. This
1490 enables us to remove the copies by unrolling, and may need less registers
1491 (also, it may allow us to combine chains together). */
1494 pcom_worker::add_looparound_copies (chain_p chain
)
1497 dref ref
, root
= get_chain_root (chain
);
1500 if (chain
->type
== CT_STORE_STORE
)
1503 FOR_EACH_VEC_ELT (chain
->refs
, i
, ref
)
1505 phi
= find_looparound_phi (ref
, root
);
1509 bitmap_set_bit (m_looparound_phis
, SSA_NAME_VERSION (PHI_RESULT (phi
)));
1510 insert_looparound_copy (chain
, ref
, phi
);
1514 /* Find roots of the values and determine distances in the component COMP.
1515 The references are redistributed into chains. */
1518 pcom_worker::determine_roots_comp (struct component
*comp
)
1522 chain_p chain
= NULL
;
1523 widest_int last_ofs
= 0;
1524 enum chain_type type
;
1526 /* Invariants are handled specially. */
1527 if (comp
->comp_step
== RS_INVARIANT
)
1529 chain
= make_invariant_chain (comp
);
1530 m_chains
.safe_push (chain
);
1534 /* Trivial component. */
1535 if (comp
->refs
.length () <= 1)
1537 if (comp
->refs
.length () == 1)
1539 free (comp
->refs
[0]);
1540 comp
->refs
.truncate (0);
1545 comp
->refs
.qsort (order_drefs
);
1547 /* For Store-Store chain, we only support load if it is dominated by a
1548 store statement in the same iteration of loop. */
1549 if (comp
->eliminate_store_p
)
1550 for (a
= NULL
, i
= 0; i
< comp
->refs
.length (); i
++)
1552 if (DR_IS_WRITE (comp
->refs
[i
]->ref
))
1554 else if (a
== NULL
|| a
->offset
!= comp
->refs
[i
]->offset
)
1556 /* If there is load that is not dominated by a store in the
1557 same iteration of loop, clear the flag so no Store-Store
1558 chain is generated for this component. */
1559 comp
->eliminate_store_p
= false;
1564 /* Determine roots and create chains for components. */
1565 FOR_EACH_VEC_ELT (comp
->refs
, i
, a
)
1568 || (chain
->type
== CT_LOAD
&& DR_IS_WRITE (a
->ref
))
1569 || (!comp
->eliminate_store_p
&& DR_IS_WRITE (a
->ref
))
1570 || wi::leu_p (MAX_DISTANCE
, a
->offset
- last_ofs
))
1572 if (nontrivial_chain_p (chain
))
1574 add_looparound_copies (chain
);
1575 m_chains
.safe_push (chain
);
1578 release_chain (chain
);
1580 /* Determine type of the chain. If the root reference is a load,
1581 this can only be a CT_LOAD chain; other chains are intialized
1582 to CT_STORE_LOAD and might be promoted to CT_STORE_STORE when
1583 new reference is added. */
1584 type
= DR_IS_READ (a
->ref
) ? CT_LOAD
: CT_STORE_LOAD
;
1585 chain
= make_rooted_chain (a
, type
);
1586 last_ofs
= a
->offset
;
1590 add_ref_to_chain (chain
, a
);
1593 if (nontrivial_chain_p (chain
))
1595 add_looparound_copies (chain
);
1596 m_chains
.safe_push (chain
);
1599 release_chain (chain
);
1602 /* Find roots of the values and determine distances in components COMPS, and
1603 separates the references to chains. */
1606 pcom_worker::determine_roots (struct component
*comps
)
1608 struct component
*comp
;
1610 for (comp
= comps
; comp
; comp
= comp
->next
)
1611 determine_roots_comp (comp
);
1614 /* Replace the reference in statement STMT with temporary variable
1615 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1616 the reference in the statement. IN_LHS is true if the reference
1617 is in the lhs of STMT, false if it is in rhs. */
1620 replace_ref_with (gimple
*stmt
, tree new_tree
, bool set
, bool in_lhs
)
1624 gimple_stmt_iterator bsi
, psi
;
1626 if (gimple_code (stmt
) == GIMPLE_PHI
)
1628 gcc_assert (!in_lhs
&& !set
);
1630 val
= PHI_RESULT (stmt
);
1631 bsi
= gsi_after_labels (gimple_bb (stmt
));
1632 psi
= gsi_for_stmt (stmt
);
1633 remove_phi_node (&psi
, false);
1635 /* Turn the phi node into GIMPLE_ASSIGN. */
1636 new_stmt
= gimple_build_assign (val
, new_tree
);
1637 gsi_insert_before (&bsi
, new_stmt
, GSI_NEW_STMT
);
1641 /* Since the reference is of gimple_reg type, it should only
1642 appear as lhs or rhs of modify statement. */
1643 gcc_assert (is_gimple_assign (stmt
));
1645 bsi
= gsi_for_stmt (stmt
);
1647 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1650 gcc_assert (!in_lhs
);
1651 gimple_assign_set_rhs_from_tree (&bsi
, new_tree
);
1652 stmt
= gsi_stmt (bsi
);
1659 /* We have statement
1663 If OLD is a memory reference, then VAL is gimple_val, and we transform
1669 Otherwise, we are replacing a combination chain,
1670 VAL is the expression that performs the combination, and OLD is an
1671 SSA name. In this case, we transform the assignment to
1678 val
= gimple_assign_lhs (stmt
);
1679 if (TREE_CODE (val
) != SSA_NAME
)
1681 val
= gimple_assign_rhs1 (stmt
);
1682 gcc_assert (gimple_assign_single_p (stmt
));
1683 if (TREE_CLOBBER_P (val
))
1684 val
= get_or_create_ssa_default_def (cfun
, SSA_NAME_VAR (new_tree
));
1686 gcc_assert (gimple_assign_copy_p (stmt
));
1698 val
= gimple_assign_lhs (stmt
);
1701 new_stmt
= gimple_build_assign (new_tree
, unshare_expr (val
));
1702 gsi_insert_after (&bsi
, new_stmt
, GSI_NEW_STMT
);
1705 /* Returns a memory reference to DR in the (NITERS + ITER)-th iteration
1706 of the loop it was analyzed in. Append init stmts to STMTS. */
1709 ref_at_iteration (data_reference_p dr
, int iter
,
1710 gimple_seq
*stmts
, tree niters
= NULL_TREE
)
1712 tree off
= DR_OFFSET (dr
);
1713 tree coff
= DR_INIT (dr
);
1714 tree ref
= DR_REF (dr
);
1715 enum tree_code ref_code
= ERROR_MARK
;
1716 tree ref_type
= NULL_TREE
;
1717 tree ref_op1
= NULL_TREE
;
1718 tree ref_op2
= NULL_TREE
;
1723 new_offset
= size_binop (MULT_EXPR
, DR_STEP (dr
), ssize_int (iter
));
1724 if (TREE_CODE (new_offset
) == INTEGER_CST
)
1725 coff
= size_binop (PLUS_EXPR
, coff
, new_offset
);
1727 off
= size_binop (PLUS_EXPR
, off
, new_offset
);
1730 if (niters
!= NULL_TREE
)
1732 niters
= fold_convert (ssizetype
, niters
);
1733 new_offset
= size_binop (MULT_EXPR
, DR_STEP (dr
), niters
);
1734 if (TREE_CODE (niters
) == INTEGER_CST
)
1735 coff
= size_binop (PLUS_EXPR
, coff
, new_offset
);
1737 off
= size_binop (PLUS_EXPR
, off
, new_offset
);
1740 /* While data-ref analysis punts on bit offsets it still handles
1741 bitfield accesses at byte boundaries. Cope with that. Note that
1742 if the bitfield object also starts at a byte-boundary we can simply
1743 replicate the COMPONENT_REF, but we have to subtract the component's
1744 byte-offset from the MEM_REF address first.
1745 Otherwise we simply build a BIT_FIELD_REF knowing that the bits
1746 start at offset zero. */
1747 if (TREE_CODE (ref
) == COMPONENT_REF
1748 && DECL_BIT_FIELD (TREE_OPERAND (ref
, 1)))
1750 unsigned HOST_WIDE_INT boff
;
1751 tree field
= TREE_OPERAND (ref
, 1);
1752 tree offset
= component_ref_field_offset (ref
);
1753 ref_type
= TREE_TYPE (ref
);
1754 boff
= tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
));
1755 /* This can occur in Ada. See the comment in get_bit_range. */
1756 if (boff
% BITS_PER_UNIT
!= 0
1757 || !tree_fits_uhwi_p (offset
))
1759 ref_code
= BIT_FIELD_REF
;
1760 ref_op1
= DECL_SIZE (field
);
1761 ref_op2
= bitsize_zero_node
;
1765 boff
>>= LOG2_BITS_PER_UNIT
;
1766 boff
+= tree_to_uhwi (offset
);
1767 coff
= size_binop (MINUS_EXPR
, coff
, ssize_int (boff
));
1768 ref_code
= COMPONENT_REF
;
1770 ref_op2
= TREE_OPERAND (ref
, 2);
1771 ref
= TREE_OPERAND (ref
, 0);
1774 /* We may not associate the constant offset across the pointer plus
1775 expression because that might form a pointer to before the object
1776 then. But for some cases we can retain that to allow tree_could_trap_p
1777 to return false - see gcc.dg/tree-ssa/predcom-1.c */
1778 tree addr
, alias_ptr
;
1779 if (integer_zerop (off
))
1781 alias_ptr
= fold_convert (reference_alias_ptr_type (ref
), coff
);
1782 addr
= DR_BASE_ADDRESS (dr
);
1786 alias_ptr
= build_zero_cst (reference_alias_ptr_type (ref
));
1787 off
= size_binop (PLUS_EXPR
, off
, coff
);
1788 addr
= fold_build_pointer_plus (DR_BASE_ADDRESS (dr
), off
);
1790 addr
= force_gimple_operand_1 (unshare_expr (addr
), stmts
,
1791 is_gimple_mem_ref_addr
, NULL_TREE
);
1792 tree type
= build_aligned_type (TREE_TYPE (ref
),
1793 get_object_alignment (ref
));
1794 ref
= build2 (MEM_REF
, type
, addr
, alias_ptr
);
1796 ref
= build3 (ref_code
, ref_type
, ref
, ref_op1
, ref_op2
);
1800 /* Get the initialization expression for the INDEX-th temporary variable
1804 get_init_expr (chain_p chain
, unsigned index
)
1806 if (chain
->type
== CT_COMBINATION
)
1808 tree e1
= get_init_expr (chain
->ch1
, index
);
1809 tree e2
= get_init_expr (chain
->ch2
, index
);
1811 return fold_build2 (chain
->op
, chain
->rslt_type
, e1
, e2
);
1814 return chain
->inits
[index
];
1817 /* Returns a new temporary variable used for the I-th variable carrying
1818 value of REF. The variable's uid is marked in TMP_VARS. */
1821 predcom_tmp_var (tree ref
, unsigned i
, bitmap tmp_vars
)
1823 tree type
= TREE_TYPE (ref
);
1824 /* We never access the components of the temporary variable in predictive
1826 tree var
= create_tmp_reg (type
, get_lsm_tmp_name (ref
, i
));
1827 bitmap_set_bit (tmp_vars
, DECL_UID (var
));
1831 /* Creates the variables for CHAIN, as well as phi nodes for them and
1832 initialization on entry to LOOP. Uids of the newly created
1833 temporary variables are marked in TMP_VARS. */
1836 initialize_root_vars (class loop
*loop
, chain_p chain
, bitmap tmp_vars
)
1839 unsigned n
= chain
->length
;
1840 dref root
= get_chain_root (chain
);
1841 bool reuse_first
= !chain
->has_max_use_after
;
1842 tree ref
, init
, var
, next
;
1845 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
1847 /* If N == 0, then all the references are within the single iteration. And
1848 since this is an nonempty chain, reuse_first cannot be true. */
1849 gcc_assert (n
> 0 || !reuse_first
);
1851 chain
->vars
.create (n
+ 1);
1853 if (chain
->type
== CT_COMBINATION
)
1854 ref
= gimple_assign_lhs (root
->stmt
);
1856 ref
= DR_REF (root
->ref
);
1858 for (i
= 0; i
< n
+ (reuse_first
? 0 : 1); i
++)
1860 var
= predcom_tmp_var (ref
, i
, tmp_vars
);
1861 chain
->vars
.quick_push (var
);
1864 chain
->vars
.quick_push (chain
->vars
[0]);
1866 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
1867 chain
->vars
[i
] = make_ssa_name (var
);
1869 for (i
= 0; i
< n
; i
++)
1871 var
= chain
->vars
[i
];
1872 next
= chain
->vars
[i
+ 1];
1873 init
= get_init_expr (chain
, i
);
1875 init
= force_gimple_operand (init
, &stmts
, true, NULL_TREE
);
1877 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
1879 phi
= create_phi_node (var
, loop
->header
);
1880 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
1881 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
1885 /* For inter-iteration store elimination CHAIN in LOOP, returns true if
1886 all stores to be eliminated store loop invariant values into memory.
1887 In this case, we can use these invariant values directly after LOOP. */
1890 is_inv_store_elimination_chain (class loop
*loop
, chain_p chain
)
1892 if (chain
->length
== 0 || chain
->type
!= CT_STORE_STORE
)
1895 gcc_assert (!chain
->has_max_use_after
);
1897 /* If loop iterates for unknown times or fewer times than chain->length,
1898 we still need to setup root variable and propagate it with PHI node. */
1899 tree niters
= number_of_latch_executions (loop
);
1900 if (TREE_CODE (niters
) != INTEGER_CST
1901 || wi::leu_p (wi::to_wide (niters
), chain
->length
))
1904 /* Check stores in chain for elimination if they only store loop invariant
1906 for (unsigned i
= 0; i
< chain
->length
; i
++)
1908 dref a
= get_chain_last_write_at (chain
, i
);
1912 gimple
*def_stmt
, *stmt
= a
->stmt
;
1913 if (!gimple_assign_single_p (stmt
))
1916 tree val
= gimple_assign_rhs1 (stmt
);
1917 if (TREE_CLOBBER_P (val
))
1920 if (CONSTANT_CLASS_P (val
))
1923 if (TREE_CODE (val
) != SSA_NAME
)
1926 def_stmt
= SSA_NAME_DEF_STMT (val
);
1927 if (gimple_nop_p (def_stmt
))
1930 if (flow_bb_inside_loop_p (loop
, gimple_bb (def_stmt
)))
1936 /* Creates root variables for store elimination CHAIN in which stores for
1937 elimination only store loop invariant values. In this case, we neither
1938 need to load root variables before loop nor propagate it with PHI nodes. */
1941 initialize_root_vars_store_elim_1 (chain_p chain
)
1944 unsigned i
, n
= chain
->length
;
1946 chain
->vars
.create (n
);
1947 chain
->vars
.safe_grow_cleared (n
, true);
1949 /* Initialize root value for eliminated stores at each distance. */
1950 for (i
= 0; i
< n
; i
++)
1952 dref a
= get_chain_last_write_at (chain
, i
);
1956 var
= gimple_assign_rhs1 (a
->stmt
);
1957 chain
->vars
[a
->distance
] = var
;
1960 /* We don't propagate values with PHI nodes, so manually propagate value
1961 to bubble positions. */
1962 var
= chain
->vars
[0];
1963 for (i
= 1; i
< n
; i
++)
1965 if (chain
->vars
[i
] != NULL_TREE
)
1967 var
= chain
->vars
[i
];
1970 chain
->vars
[i
] = var
;
1973 /* Revert the vector. */
1974 for (i
= 0; i
< n
/ 2; i
++)
1975 std::swap (chain
->vars
[i
], chain
->vars
[n
- i
- 1]);
1978 /* Creates root variables for store elimination CHAIN in which stores for
1979 elimination store loop variant values. In this case, we may need to
1980 load root variables before LOOP and propagate it with PHI nodes. Uids
1981 of the newly created root variables are marked in TMP_VARS. */
1984 initialize_root_vars_store_elim_2 (class loop
*loop
,
1985 chain_p chain
, bitmap tmp_vars
)
1987 unsigned i
, n
= chain
->length
;
1988 tree ref
, init
, var
, next
, val
, phi_result
;
1992 chain
->vars
.create (n
);
1994 ref
= DR_REF (get_chain_root (chain
)->ref
);
1995 for (i
= 0; i
< n
; i
++)
1997 var
= predcom_tmp_var (ref
, i
, tmp_vars
);
1998 chain
->vars
.quick_push (var
);
2001 FOR_EACH_VEC_ELT (chain
->vars
, i
, var
)
2002 chain
->vars
[i
] = make_ssa_name (var
);
2004 /* Root values are either rhs operand of stores to be eliminated, or
2005 loaded from memory before loop. */
2006 auto_vec
<tree
> vtemps
;
2007 vtemps
.safe_grow_cleared (n
, true);
2008 for (i
= 0; i
< n
; i
++)
2010 init
= get_init_expr (chain
, i
);
2011 if (init
== NULL_TREE
)
2013 /* Root value is rhs operand of the store to be eliminated if
2014 it isn't loaded from memory before loop. */
2015 dref a
= get_chain_last_write_at (chain
, i
);
2016 val
= gimple_assign_rhs1 (a
->stmt
);
2017 if (TREE_CLOBBER_P (val
))
2019 val
= get_or_create_ssa_default_def (cfun
, SSA_NAME_VAR (var
));
2020 gimple_assign_set_rhs1 (a
->stmt
, val
);
2023 vtemps
[n
- i
- 1] = val
;
2027 edge latch
= loop_latch_edge (loop
);
2028 edge entry
= loop_preheader_edge (loop
);
2030 /* Root value is loaded from memory before loop, we also need
2031 to add PHI nodes to propagate the value across iterations. */
2032 init
= force_gimple_operand (init
, &stmts
, true, NULL_TREE
);
2034 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
2036 next
= chain
->vars
[n
- i
];
2037 phi_result
= copy_ssa_name (next
);
2038 gphi
*phi
= create_phi_node (phi_result
, loop
->header
);
2039 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
2040 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
2041 vtemps
[n
- i
- 1] = phi_result
;
2045 /* Find the insertion position. */
2046 dref last
= get_chain_root (chain
);
2047 for (i
= 0; i
< chain
->refs
.length (); i
++)
2049 if (chain
->refs
[i
]->pos
> last
->pos
)
2050 last
= chain
->refs
[i
];
2053 gimple_stmt_iterator gsi
= gsi_for_stmt (last
->stmt
);
2055 /* Insert statements copying root value to root variable. */
2056 for (i
= 0; i
< n
; i
++)
2058 var
= chain
->vars
[i
];
2060 stmt
= gimple_build_assign (var
, val
);
2061 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
2065 /* Generates stores for CHAIN's eliminated stores in LOOP's last
2066 (CHAIN->length - 1) iterations. */
2069 finalize_eliminated_stores (class loop
*loop
, chain_p chain
)
2071 unsigned i
, n
= chain
->length
;
2073 for (i
= 0; i
< n
; i
++)
2075 tree var
= chain
->vars
[i
];
2076 tree fini
= chain
->finis
[n
- i
- 1];
2077 gimple
*stmt
= gimple_build_assign (fini
, var
);
2079 gimple_seq_add_stmt_without_update (&chain
->fini_seq
, stmt
);
2082 if (chain
->fini_seq
)
2084 gsi_insert_seq_on_edge_immediate (single_exit (loop
), chain
->fini_seq
);
2085 chain
->fini_seq
= NULL
;
2089 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
2090 initialization on entry to LOOP if necessary. The ssa name for the variable
2091 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
2092 around the loop is created. Uid of the newly created temporary variable
2093 is marked in TMP_VARS. INITS is the list containing the (single)
2097 initialize_root_vars_lm (class loop
*loop
, dref root
, bool written
,
2098 vec
<tree
> *vars
, const vec
<tree
> &inits
,
2102 tree ref
= DR_REF (root
->ref
), init
, var
, next
;
2105 edge entry
= loop_preheader_edge (loop
), latch
= loop_latch_edge (loop
);
2107 /* Find the initializer for the variable, and check that it cannot
2111 vars
->create (written
? 2 : 1);
2112 var
= predcom_tmp_var (ref
, 0, tmp_vars
);
2113 vars
->quick_push (var
);
2115 vars
->quick_push ((*vars
)[0]);
2117 FOR_EACH_VEC_ELT (*vars
, i
, var
)
2118 (*vars
)[i
] = make_ssa_name (var
);
2122 init
= force_gimple_operand (init
, &stmts
, written
, NULL_TREE
);
2124 gsi_insert_seq_on_edge_immediate (entry
, stmts
);
2129 phi
= create_phi_node (var
, loop
->header
);
2130 add_phi_arg (phi
, init
, entry
, UNKNOWN_LOCATION
);
2131 add_phi_arg (phi
, next
, latch
, UNKNOWN_LOCATION
);
2135 gassign
*init_stmt
= gimple_build_assign (var
, init
);
2136 gsi_insert_on_edge_immediate (entry
, init_stmt
);
2141 /* Execute load motion for references in chain CHAIN. Uids of the newly
2142 created temporary variables are marked in TMP_VARS. */
2145 execute_load_motion (class loop
*loop
, chain_p chain
, bitmap tmp_vars
)
2147 auto_vec
<tree
> vars
;
2149 unsigned n_writes
= 0, ridx
, i
;
2152 gcc_assert (chain
->type
== CT_INVARIANT
);
2153 gcc_assert (!chain
->combined
);
2154 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
2155 if (DR_IS_WRITE (a
->ref
))
2158 /* If there are no reads in the loop, there is nothing to do. */
2159 if (n_writes
== chain
->refs
.length ())
2162 initialize_root_vars_lm (loop
, get_chain_root (chain
), n_writes
> 0,
2163 &vars
, chain
->inits
, tmp_vars
);
2166 FOR_EACH_VEC_ELT (chain
->refs
, i
, a
)
2168 bool is_read
= DR_IS_READ (a
->ref
);
2170 if (DR_IS_WRITE (a
->ref
))
2176 var
= make_ssa_name (SSA_NAME_VAR (var
));
2183 replace_ref_with (a
->stmt
, vars
[ridx
],
2184 !is_read
, !is_read
);
2188 /* Returns the single statement in that NAME is used, excepting
2189 the looparound phi nodes contained in one of the chains. If there is no
2190 such statement, or more statements, NULL is returned. */
2193 pcom_worker::single_nonlooparound_use (tree name
)
2196 imm_use_iterator it
;
2197 gimple
*stmt
, *ret
= NULL
;
2199 FOR_EACH_IMM_USE_FAST (use
, it
, name
)
2201 stmt
= USE_STMT (use
);
2203 if (gimple_code (stmt
) == GIMPLE_PHI
)
2205 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
2206 could not be processed anyway, so just fail for them. */
2207 if (bitmap_bit_p (m_looparound_phis
,
2208 SSA_NAME_VERSION (PHI_RESULT (stmt
))))
2213 else if (is_gimple_debug (stmt
))
2215 else if (ret
!= NULL
)
2224 /* Remove statement STMT, as well as the chain of assignments in that it is
2228 pcom_worker::remove_stmt (gimple
*stmt
)
2232 gimple_stmt_iterator psi
;
2234 if (gimple_code (stmt
) == GIMPLE_PHI
)
2236 name
= PHI_RESULT (stmt
);
2237 next
= single_nonlooparound_use (name
);
2238 reset_debug_uses (stmt
);
2239 psi
= gsi_for_stmt (stmt
);
2240 remove_phi_node (&psi
, true);
2243 || !gimple_assign_ssa_name_copy_p (next
)
2244 || gimple_assign_rhs1 (next
) != name
)
2252 gimple_stmt_iterator bsi
;
2254 bsi
= gsi_for_stmt (stmt
);
2256 name
= gimple_assign_lhs (stmt
);
2257 if (TREE_CODE (name
) == SSA_NAME
)
2259 next
= single_nonlooparound_use (name
);
2260 reset_debug_uses (stmt
);
2264 /* This is a store to be eliminated. */
2265 gcc_assert (gimple_vdef (stmt
) != NULL
);
2269 unlink_stmt_vdef (stmt
);
2270 gsi_remove (&bsi
, true);
2271 release_defs (stmt
);
2274 || !gimple_assign_ssa_name_copy_p (next
)
2275 || gimple_assign_rhs1 (next
) != name
)
2282 /* Perform the predictive commoning optimization for a chain CHAIN.
2283 Uids of the newly created temporary variables are marked in TMP_VARS.*/
2286 pcom_worker::execute_pred_commoning_chain (chain_p chain
,
2294 if (chain
->combined
)
2296 /* For combined chains, just remove the statements that are used to
2297 compute the values of the expression (except for the root one).
2298 We delay this until after all chains are processed. */
2300 else if (chain
->type
== CT_STORE_STORE
)
2302 if (chain
->length
> 0)
2304 if (chain
->inv_store_elimination
)
2306 /* If dead stores in this chain only store loop invariant
2307 values, we can simply record the invariant value and use
2308 it directly after loop. */
2309 initialize_root_vars_store_elim_1 (chain
);
2313 /* If dead stores in this chain store loop variant values,
2314 we need to set up the variables by loading from memory
2315 before loop and propagating it with PHI nodes. */
2316 initialize_root_vars_store_elim_2 (m_loop
, chain
, tmp_vars
);
2319 /* For inter-iteration store elimination chain, stores at each
2320 distance in loop's last (chain->length - 1) iterations can't
2321 be eliminated, because there is no following killing store.
2322 We need to generate these stores after loop. */
2323 finalize_eliminated_stores (m_loop
, chain
);
2326 bool last_store_p
= true;
2327 for (i
= chain
->refs
.length (); i
> 0; i
--)
2329 a
= chain
->refs
[i
- 1];
2330 /* Preserve the last store of the chain. Eliminate other stores
2331 which are killed by the last one. */
2332 if (DR_IS_WRITE (a
->ref
))
2335 last_store_p
= false;
2337 remove_stmt (a
->stmt
);
2342 /* Any load in Store-Store chain must be dominated by a previous
2343 store, we replace the load reference with rhs of the store. */
2344 dref b
= get_chain_last_write_before_load (chain
, i
- 1);
2345 gcc_assert (b
!= NULL
);
2346 var
= gimple_assign_rhs1 (b
->stmt
);
2347 replace_ref_with (a
->stmt
, var
, false, false);
2352 /* For non-combined chains, set up the variables that hold its value. */
2353 initialize_root_vars (m_loop
, chain
, tmp_vars
);
2354 a
= get_chain_root (chain
);
2355 in_lhs
= (chain
->type
== CT_STORE_LOAD
2356 || chain
->type
== CT_COMBINATION
);
2357 replace_ref_with (a
->stmt
, chain
->vars
[chain
->length
], true, in_lhs
);
2359 /* Replace the uses of the original references by these variables. */
2360 for (i
= 1; chain
->refs
.iterate (i
, &a
); i
++)
2362 var
= chain
->vars
[chain
->length
- a
->distance
];
2363 replace_ref_with (a
->stmt
, var
, false, false);
2368 /* Determines the unroll factor necessary to remove as many temporary variable
2369 copies as possible. CHAINS is the list of chains that will be
2373 determine_unroll_factor (const vec
<chain_p
> &chains
)
2376 unsigned factor
= 1, af
, nfactor
, i
;
2377 unsigned max
= param_max_unroll_times
;
2379 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2381 if (chain
->type
== CT_INVARIANT
)
2383 /* For now we can't handle unrolling when eliminating stores. */
2384 else if (chain
->type
== CT_STORE_STORE
)
2387 if (chain
->combined
)
2389 /* For combined chains, we can't handle unrolling if we replace
2393 for (j
= 1; chain
->refs
.iterate (j
, &a
); j
++)
2394 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
2399 /* The best unroll factor for this chain is equal to the number of
2400 temporary variables that we create for it. */
2402 if (chain
->has_max_use_after
)
2405 nfactor
= factor
* af
/ gcd (factor
, af
);
2413 /* Perform the predictive commoning optimization for chains.
2414 Uids of the newly created temporary variables are marked in TMP_VARS. */
2417 pcom_worker::execute_pred_commoning (bitmap tmp_vars
)
2422 FOR_EACH_VEC_ELT (m_chains
, i
, chain
)
2424 if (chain
->type
== CT_INVARIANT
)
2425 execute_load_motion (m_loop
, chain
, tmp_vars
);
2427 execute_pred_commoning_chain (chain
, tmp_vars
);
2430 FOR_EACH_VEC_ELT (m_chains
, i
, chain
)
2432 if (chain
->type
== CT_INVARIANT
)
2434 else if (chain
->combined
)
2436 /* For combined chains, just remove the statements that are used to
2437 compute the values of the expression (except for the root one). */
2440 for (j
= 1; chain
->refs
.iterate (j
, &a
); j
++)
2441 remove_stmt (a
->stmt
);
2446 /* For each reference in CHAINS, if its defining statement is
2447 phi node, record the ssa name that is defined by it. */
2450 replace_phis_by_defined_names (vec
<chain_p
> &chains
)
2456 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2457 FOR_EACH_VEC_ELT (chain
->refs
, j
, a
)
2459 if (gimple_code (a
->stmt
) == GIMPLE_PHI
)
2461 a
->name_defined_by_phi
= PHI_RESULT (a
->stmt
);
2467 /* For each reference in CHAINS, if name_defined_by_phi is not
2468 NULL, use it to set the stmt field. */
2471 replace_names_by_phis (vec
<chain_p
> chains
)
2477 FOR_EACH_VEC_ELT (chains
, i
, chain
)
2478 FOR_EACH_VEC_ELT (chain
->refs
, j
, a
)
2479 if (a
->stmt
== NULL
)
2481 a
->stmt
= SSA_NAME_DEF_STMT (a
->name_defined_by_phi
);
2482 gcc_assert (gimple_code (a
->stmt
) == GIMPLE_PHI
);
2483 a
->name_defined_by_phi
= NULL_TREE
;
2487 /* Wrapper over execute_pred_commoning, to pass it as a callback
2488 to tree_transform_and_unroll_loop. */
2492 vec
<chain_p
> chains
;
2494 pcom_worker
*worker
;
2498 execute_pred_commoning_cbck (class loop
*loop ATTRIBUTE_UNUSED
, void *data
)
2500 struct epcc_data
*const dta
= (struct epcc_data
*) data
;
2501 pcom_worker
*worker
= dta
->worker
;
2503 /* Restore phi nodes that were replaced by ssa names before
2504 tree_transform_and_unroll_loop (see detailed description in
2505 tree_predictive_commoning_loop). */
2506 replace_names_by_phis (dta
->chains
);
2507 worker
->execute_pred_commoning (dta
->tmp_vars
);
2510 /* Base NAME and all the names in the chain of phi nodes that use it
2511 on variable VAR. The phi nodes are recognized by being in the copies of
2512 the header of the LOOP. */
2515 base_names_in_chain_on (class loop
*loop
, tree name
, tree var
)
2518 imm_use_iterator iter
;
2520 replace_ssa_name_symbol (name
, var
);
2525 FOR_EACH_IMM_USE_STMT (stmt
, iter
, name
)
2527 if (gimple_code (stmt
) == GIMPLE_PHI
2528 && flow_bb_inside_loop_p (loop
, gimple_bb (stmt
)))
2537 name
= PHI_RESULT (phi
);
2538 replace_ssa_name_symbol (name
, var
);
2542 /* Given an unrolled LOOP after predictive commoning, remove the
2543 register copies arising from phi nodes by changing the base
2544 variables of SSA names. TMP_VARS is the set of the temporary variables
2545 for those we want to perform this. */
2548 eliminate_temp_copies (class loop
*loop
, bitmap tmp_vars
)
2553 tree name
, use
, var
;
2556 e
= loop_latch_edge (loop
);
2557 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
2560 name
= PHI_RESULT (phi
);
2561 var
= SSA_NAME_VAR (name
);
2562 if (!var
|| !bitmap_bit_p (tmp_vars
, DECL_UID (var
)))
2564 use
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
2565 gcc_assert (TREE_CODE (use
) == SSA_NAME
);
2567 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
2568 stmt
= SSA_NAME_DEF_STMT (use
);
2569 while (gimple_code (stmt
) == GIMPLE_PHI
2570 /* In case we could not unroll the loop enough to eliminate
2571 all copies, we may reach the loop header before the defining
2572 statement (in that case, some register copies will be present
2573 in loop latch in the final code, corresponding to the newly
2574 created looparound phi nodes). */
2575 && gimple_bb (stmt
) != loop
->header
)
2577 gcc_assert (single_pred_p (gimple_bb (stmt
)));
2578 use
= PHI_ARG_DEF (stmt
, 0);
2579 stmt
= SSA_NAME_DEF_STMT (use
);
2582 base_names_in_chain_on (loop
, use
, var
);
2586 /* Returns true if CHAIN is suitable to be combined. */
2589 chain_can_be_combined_p (chain_p chain
)
2591 return (!chain
->combined
2592 && (chain
->type
== CT_LOAD
|| chain
->type
== CT_COMBINATION
));
2595 /* Returns the modify statement that uses NAME. Skips over assignment
2596 statements, NAME is replaced with the actual name used in the returned
2600 pcom_worker::find_use_stmt (tree
*name
)
2605 /* Skip over assignments. */
2608 stmt
= single_nonlooparound_use (*name
);
2612 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
2615 lhs
= gimple_assign_lhs (stmt
);
2616 if (TREE_CODE (lhs
) != SSA_NAME
)
2619 if (gimple_assign_copy_p (stmt
))
2621 rhs
= gimple_assign_rhs1 (stmt
);
2627 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
2628 == GIMPLE_BINARY_RHS
)
2635 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2638 may_reassociate_p (tree type
, enum tree_code code
)
2640 if (FLOAT_TYPE_P (type
)
2641 && !flag_unsafe_math_optimizations
)
2644 return (commutative_tree_code (code
)
2645 && associative_tree_code (code
));
2648 /* If the operation used in STMT is associative and commutative, go through the
2649 tree of the same operations and returns its root. Distance to the root
2650 is stored in DISTANCE. */
2653 pcom_worker::find_associative_operation_root (gimple
*stmt
, unsigned *distance
)
2657 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2658 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2661 if (!may_reassociate_p (type
, code
))
2666 lhs
= gimple_assign_lhs (stmt
);
2667 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
2669 next
= find_use_stmt (&lhs
);
2671 || gimple_assign_rhs_code (next
) != code
)
2683 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2684 is no such statement, returns NULL_TREE. In case the operation used on
2685 NAME1 and NAME2 is associative and commutative, returns the root of the
2686 tree formed by this operation instead of the statement that uses NAME1 or
2690 pcom_worker::find_common_use_stmt (tree
*name1
, tree
*name2
)
2692 gimple
*stmt1
, *stmt2
;
2694 stmt1
= find_use_stmt (name1
);
2698 stmt2
= find_use_stmt (name2
);
2705 stmt1
= find_associative_operation_root (stmt1
, NULL
);
2708 stmt2
= find_associative_operation_root (stmt2
, NULL
);
2712 return (stmt1
== stmt2
? stmt1
: NULL
);
2715 /* Checks whether R1 and R2 are combined together using CODE, with the result
2716 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2717 if it is true. If CODE is ERROR_MARK, set these values instead. */
2720 pcom_worker::combinable_refs_p (dref r1
, dref r2
,
2721 enum tree_code
*code
, bool *swap
, tree
*rslt_type
)
2723 enum tree_code acode
;
2729 name1
= name_for_ref (r1
);
2730 name2
= name_for_ref (r2
);
2731 gcc_assert (name1
!= NULL_TREE
&& name2
!= NULL_TREE
);
2733 stmt
= find_common_use_stmt (&name1
, &name2
);
2736 /* A simple post-dominance check - make sure the combination
2737 is executed under the same condition as the references. */
2738 || (gimple_bb (stmt
) != gimple_bb (r1
->stmt
)
2739 && gimple_bb (stmt
) != gimple_bb (r2
->stmt
)))
2742 acode
= gimple_assign_rhs_code (stmt
);
2743 aswap
= (!commutative_tree_code (acode
)
2744 && gimple_assign_rhs1 (stmt
) != name1
);
2745 atype
= TREE_TYPE (gimple_assign_lhs (stmt
));
2747 if (*code
== ERROR_MARK
)
2755 return (*code
== acode
2757 && *rslt_type
== atype
);
2760 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2761 an assignment of the remaining operand. */
2764 remove_name_from_operation (gimple
*stmt
, tree op
)
2767 gimple_stmt_iterator si
;
2769 gcc_assert (is_gimple_assign (stmt
));
2771 if (gimple_assign_rhs1 (stmt
) == op
)
2772 other_op
= gimple_assign_rhs2 (stmt
);
2774 other_op
= gimple_assign_rhs1 (stmt
);
2776 si
= gsi_for_stmt (stmt
);
2777 gimple_assign_set_rhs_from_tree (&si
, other_op
);
2779 /* We should not have reallocated STMT. */
2780 gcc_assert (gsi_stmt (si
) == stmt
);
2785 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2786 are combined in a single statement, and returns this statement. */
2789 pcom_worker::reassociate_to_the_same_stmt (tree name1
, tree name2
)
2791 gimple
*stmt1
, *stmt2
, *root1
, *root2
, *s1
, *s2
;
2792 gassign
*new_stmt
, *tmp_stmt
;
2793 tree new_name
, tmp_name
, var
, r1
, r2
;
2794 unsigned dist1
, dist2
;
2795 enum tree_code code
;
2796 tree type
= TREE_TYPE (name1
);
2797 gimple_stmt_iterator bsi
;
2799 stmt1
= find_use_stmt (&name1
);
2800 stmt2
= find_use_stmt (&name2
);
2801 root1
= find_associative_operation_root (stmt1
, &dist1
);
2802 root2
= find_associative_operation_root (stmt2
, &dist2
);
2803 code
= gimple_assign_rhs_code (stmt1
);
2805 gcc_assert (root1
&& root2
&& root1
== root2
2806 && code
== gimple_assign_rhs_code (stmt2
));
2808 /* Find the root of the nearest expression in that both NAME1 and NAME2
2815 while (dist1
> dist2
)
2817 s1
= find_use_stmt (&r1
);
2818 r1
= gimple_assign_lhs (s1
);
2821 while (dist2
> dist1
)
2823 s2
= find_use_stmt (&r2
);
2824 r2
= gimple_assign_lhs (s2
);
2830 s1
= find_use_stmt (&r1
);
2831 r1
= gimple_assign_lhs (s1
);
2832 s2
= find_use_stmt (&r2
);
2833 r2
= gimple_assign_lhs (s2
);
2836 /* Remove NAME1 and NAME2 from the statements in that they are used
2838 remove_name_from_operation (stmt1
, name1
);
2839 remove_name_from_operation (stmt2
, name2
);
2841 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2842 combine it with the rhs of S1. */
2843 var
= create_tmp_reg (type
, "predreastmp");
2844 new_name
= make_ssa_name (var
);
2845 new_stmt
= gimple_build_assign (new_name
, code
, name1
, name2
);
2847 var
= create_tmp_reg (type
, "predreastmp");
2848 tmp_name
= make_ssa_name (var
);
2850 /* Rhs of S1 may now be either a binary expression with operation
2851 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2852 so that name1 or name2 was removed from it). */
2853 tmp_stmt
= gimple_build_assign (tmp_name
, gimple_assign_rhs_code (s1
),
2854 gimple_assign_rhs1 (s1
),
2855 gimple_assign_rhs2 (s1
));
2857 bsi
= gsi_for_stmt (s1
);
2858 gimple_assign_set_rhs_with_ops (&bsi
, code
, new_name
, tmp_name
);
2859 s1
= gsi_stmt (bsi
);
2862 gsi_insert_before (&bsi
, new_stmt
, GSI_SAME_STMT
);
2863 gsi_insert_before (&bsi
, tmp_stmt
, GSI_SAME_STMT
);
2868 /* Returns the statement that combines references R1 and R2. In case R1
2869 and R2 are not used in the same statement, but they are used with an
2870 associative and commutative operation in the same expression, reassociate
2871 the expression so that they are used in the same statement. */
2874 pcom_worker::stmt_combining_refs (dref r1
, dref r2
)
2876 gimple
*stmt1
, *stmt2
;
2877 tree name1
= name_for_ref (r1
);
2878 tree name2
= name_for_ref (r2
);
2880 stmt1
= find_use_stmt (&name1
);
2881 stmt2
= find_use_stmt (&name2
);
2885 return reassociate_to_the_same_stmt (name1
, name2
);
2888 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2889 description of the new chain is returned, otherwise we return NULL. */
2892 pcom_worker::combine_chains (chain_p ch1
, chain_p ch2
)
2895 enum tree_code op
= ERROR_MARK
;
2899 tree rslt_type
= NULL_TREE
;
2903 if (ch1
->length
!= ch2
->length
)
2906 if (ch1
->refs
.length () != ch2
->refs
.length ())
2909 for (i
= 0; (ch1
->refs
.iterate (i
, &r1
)
2910 && ch2
->refs
.iterate (i
, &r2
)); i
++)
2912 if (r1
->distance
!= r2
->distance
)
2915 if (!combinable_refs_p (r1
, r2
, &op
, &swap
, &rslt_type
))
2920 std::swap (ch1
, ch2
);
2922 new_chain
= new struct chain (CT_COMBINATION
);
2924 new_chain
->ch1
= ch1
;
2925 new_chain
->ch2
= ch2
;
2926 new_chain
->rslt_type
= rslt_type
;
2927 new_chain
->length
= ch1
->length
;
2929 for (i
= 0; (ch1
->refs
.iterate (i
, &r1
)
2930 && ch2
->refs
.iterate (i
, &r2
)); i
++)
2932 nw
= XCNEW (class dref_d
);
2933 nw
->stmt
= stmt_combining_refs (r1
, r2
);
2934 nw
->distance
= r1
->distance
;
2936 new_chain
->refs
.safe_push (nw
);
2939 ch1
->combined
= true;
2940 ch2
->combined
= true;
2944 /* Recursively update position information of all offspring chains to ROOT
2945 chain's position information. */
2948 update_pos_for_combined_chains (chain_p root
)
2950 chain_p ch1
= root
->ch1
, ch2
= root
->ch2
;
2951 dref ref
, ref1
, ref2
;
2952 for (unsigned j
= 0; (root
->refs
.iterate (j
, &ref
)
2953 && ch1
->refs
.iterate (j
, &ref1
)
2954 && ch2
->refs
.iterate (j
, &ref2
)); ++j
)
2955 ref1
->pos
= ref2
->pos
= ref
->pos
;
2957 if (ch1
->type
== CT_COMBINATION
)
2958 update_pos_for_combined_chains (ch1
);
2959 if (ch2
->type
== CT_COMBINATION
)
2960 update_pos_for_combined_chains (ch2
);
2963 /* Returns true if statement S1 dominates statement S2. */
2966 pcom_stmt_dominates_stmt_p (gimple
*s1
, gimple
*s2
)
2968 basic_block bb1
= gimple_bb (s1
), bb2
= gimple_bb (s2
);
2970 if (!bb1
|| s1
== s2
)
2974 return gimple_uid (s1
) < gimple_uid (s2
);
2976 return dominated_by_p (CDI_DOMINATORS
, bb2
, bb1
);
2979 /* Try to combine the chains. */
2982 pcom_worker::try_combine_chains ()
2985 chain_p ch1
, ch2
, cch
;
2986 auto_vec
<chain_p
> worklist
;
2987 bool combined_p
= false;
2989 FOR_EACH_VEC_ELT (m_chains
, i
, ch1
)
2990 if (chain_can_be_combined_p (ch1
))
2991 worklist
.safe_push (ch1
);
2993 while (!worklist
.is_empty ())
2995 ch1
= worklist
.pop ();
2996 if (!chain_can_be_combined_p (ch1
))
2999 FOR_EACH_VEC_ELT (m_chains
, j
, ch2
)
3001 if (!chain_can_be_combined_p (ch2
))
3004 cch
= combine_chains (ch1
, ch2
);
3007 worklist
.safe_push (cch
);
3008 m_chains
.safe_push (cch
);
3017 /* Setup UID for all statements in dominance order. */
3018 basic_block
*bbs
= get_loop_body_in_dom_order (m_loop
);
3019 renumber_gimple_stmt_uids_in_blocks (bbs
, m_loop
->num_nodes
);
3022 /* Re-association in combined chains may generate statements different to
3023 order of references of the original chain. We need to keep references
3024 of combined chain in dominance order so that all uses will be inserted
3025 after definitions. Note:
3026 A) This is necessary for all combined chains.
3027 B) This is only necessary for ZERO distance references because other
3028 references inherit value from loop carried PHIs.
3030 We first update position information for all combined chains. */
3032 for (i
= 0; m_chains
.iterate (i
, &ch1
); ++i
)
3034 if (ch1
->type
!= CT_COMBINATION
|| ch1
->combined
)
3037 for (j
= 0; ch1
->refs
.iterate (j
, &ref
); ++j
)
3038 ref
->pos
= gimple_uid (ref
->stmt
);
3040 update_pos_for_combined_chains (ch1
);
3042 /* Then sort references according to newly updated position information. */
3043 for (i
= 0; m_chains
.iterate (i
, &ch1
); ++i
)
3045 if (ch1
->type
!= CT_COMBINATION
&& !ch1
->combined
)
3048 /* Find the first reference with non-ZERO distance. */
3049 if (ch1
->length
== 0)
3050 j
= ch1
->refs
.length();
3053 for (j
= 0; ch1
->refs
.iterate (j
, &ref
); ++j
)
3054 if (ref
->distance
!= 0)
3058 /* Sort all ZERO distance references by position. */
3059 qsort (&ch1
->refs
[0], j
, sizeof (ch1
->refs
[0]), order_drefs_by_pos
);
3064 /* For ZERO length chain, has_max_use_after must be true since root
3065 combined stmt must dominates others. */
3066 if (ch1
->length
== 0)
3068 ch1
->has_max_use_after
= true;
3071 /* Check if there is use at max distance after root for combined chains
3072 and set flag accordingly. */
3073 ch1
->has_max_use_after
= false;
3074 gimple
*root_stmt
= get_chain_root (ch1
)->stmt
;
3075 for (j
= 1; ch1
->refs
.iterate (j
, &ref
); ++j
)
3077 if (ref
->distance
== ch1
->length
3078 && !pcom_stmt_dominates_stmt_p (ref
->stmt
, root_stmt
))
3080 ch1
->has_max_use_after
= true;
3087 /* Prepare initializers for store elimination CHAIN in LOOP. Returns false
3088 if this is impossible because one of these initializers may trap, true
3092 prepare_initializers_chain_store_elim (class loop
*loop
, chain_p chain
)
3094 unsigned i
, n
= chain
->length
;
3096 /* For now we can't eliminate stores if some of them are conditional
3098 if (!chain
->all_always_accessed
)
3101 /* Nothing to intialize for intra-iteration store elimination. */
3102 if (n
== 0 && chain
->type
== CT_STORE_STORE
)
3105 /* For store elimination chain, there is nothing to initialize if stores
3106 to be eliminated only store loop invariant values into memory. */
3107 if (chain
->type
== CT_STORE_STORE
3108 && is_inv_store_elimination_chain (loop
, chain
))
3110 chain
->inv_store_elimination
= true;
3114 chain
->inits
.create (n
);
3115 chain
->inits
.safe_grow_cleared (n
, true);
3117 /* For store eliminatin chain like below:
3119 for (i = 0; i < len; i++)
3126 store to a[i + 1] is missed in loop body, it acts like bubbles. The
3127 content of a[i + 1] remain the same if the loop iterates fewer times
3128 than chain->length. We need to set up root variables for such stores
3129 by loading from memory before loop. Note we only need to load bubble
3130 elements because loop body is guaranteed to be executed at least once
3131 after loop's preheader edge. */
3132 auto_vec
<bool> bubbles
;
3133 bubbles
.safe_grow_cleared (n
+ 1, true);
3134 for (i
= 0; i
< chain
->refs
.length (); i
++)
3135 bubbles
[chain
->refs
[i
]->distance
] = true;
3137 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
3138 for (i
= 0; i
< n
; i
++)
3143 gimple_seq stmts
= NULL
;
3145 tree init
= ref_at_iteration (dr
, (int) 0 - i
, &stmts
);
3147 gimple_seq_add_seq_without_update (&chain
->init_seq
, stmts
);
3149 chain
->inits
[i
] = init
;
3155 /* Prepare initializers for CHAIN. Returns false if this is impossible
3156 because one of these initializers may trap, true otherwise. */
3159 pcom_worker::prepare_initializers_chain (chain_p chain
)
3161 unsigned i
, n
= (chain
->type
== CT_INVARIANT
) ? 1 : chain
->length
;
3162 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
3165 edge entry
= loop_preheader_edge (m_loop
);
3167 if (chain
->type
== CT_STORE_STORE
)
3168 return prepare_initializers_chain_store_elim (m_loop
, chain
);
3170 /* Find the initializers for the variables, and check that they cannot
3172 chain
->inits
.create (n
);
3173 for (i
= 0; i
< n
; i
++)
3174 chain
->inits
.quick_push (NULL_TREE
);
3176 /* If we have replaced some looparound phi nodes, use their initializers
3177 instead of creating our own. */
3178 FOR_EACH_VEC_ELT (chain
->refs
, i
, laref
)
3180 if (gimple_code (laref
->stmt
) != GIMPLE_PHI
)
3183 gcc_assert (laref
->distance
> 0);
3184 chain
->inits
[n
- laref
->distance
]
3185 = PHI_ARG_DEF_FROM_EDGE (laref
->stmt
, entry
);
3188 for (i
= 0; i
< n
; i
++)
3190 gimple_seq stmts
= NULL
;
3192 if (chain
->inits
[i
] != NULL_TREE
)
3195 init
= ref_at_iteration (dr
, (int) i
- n
, &stmts
);
3196 if (!chain
->all_always_accessed
&& tree_could_trap_p (init
))
3198 gimple_seq_discard (stmts
);
3203 gimple_seq_add_seq_without_update (&chain
->init_seq
, stmts
);
3205 chain
->inits
[i
] = init
;
3211 /* Prepare initializers for chains, and free chains that cannot
3212 be used because the initializers might trap. */
3215 pcom_worker::prepare_initializers ()
3220 for (i
= 0; i
< m_chains
.length (); )
3222 chain
= m_chains
[i
];
3223 if (prepare_initializers_chain (chain
))
3227 release_chain (chain
);
3228 m_chains
.unordered_remove (i
);
3233 /* Generates finalizer memory references for CHAIN. Returns true
3234 if finalizer code for CHAIN can be generated, otherwise false. */
3237 pcom_worker::prepare_finalizers_chain (chain_p chain
)
3239 unsigned i
, n
= chain
->length
;
3240 struct data_reference
*dr
= get_chain_root (chain
)->ref
;
3241 tree fini
, niters
= number_of_latch_executions (m_loop
);
3243 /* For now we can't eliminate stores if some of them are conditional
3245 if (!chain
->all_always_accessed
)
3248 chain
->finis
.create (n
);
3249 for (i
= 0; i
< n
; i
++)
3250 chain
->finis
.quick_push (NULL_TREE
);
3252 /* We never use looparound phi node for store elimination chains. */
3254 /* Find the finalizers for the variables, and check that they cannot
3256 for (i
= 0; i
< n
; i
++)
3258 gimple_seq stmts
= NULL
;
3259 gcc_assert (chain
->finis
[i
] == NULL_TREE
);
3261 if (TREE_CODE (niters
) != INTEGER_CST
&& TREE_CODE (niters
) != SSA_NAME
)
3263 niters
= unshare_expr (niters
);
3264 niters
= force_gimple_operand (niters
, &stmts
, true, NULL
);
3267 gimple_seq_add_seq_without_update (&chain
->fini_seq
, stmts
);
3271 fini
= ref_at_iteration (dr
, (int) 0 - i
, &stmts
, niters
);
3273 gimple_seq_add_seq_without_update (&chain
->fini_seq
, stmts
);
3275 chain
->finis
[i
] = fini
;
3281 /* Generates finalizer memory reference for chains. Returns true if
3282 finalizer code generation for chains breaks loop closed ssa form. */
3285 pcom_worker::prepare_finalizers ()
3289 bool loop_closed_ssa
= false;
3291 for (i
= 0; i
< m_chains
.length ();)
3293 chain
= m_chains
[i
];
3295 /* Finalizer is only necessary for inter-iteration store elimination
3297 if (chain
->length
== 0 || chain
->type
!= CT_STORE_STORE
)
3303 if (prepare_finalizers_chain (chain
))
3306 /* Be conservative, assume loop closed ssa form is corrupted
3307 by store-store chain. Though it's not always the case if
3308 eliminated stores only store loop invariant values into
3310 loop_closed_ssa
= true;
3314 release_chain (chain
);
3315 m_chains
.unordered_remove (i
);
3318 return loop_closed_ssa
;
3321 /* Insert all initializing gimple stmts into LOOP's entry edge. */
3324 insert_init_seqs (class loop
*loop
, vec
<chain_p
> &chains
)
3327 edge entry
= loop_preheader_edge (loop
);
3329 for (i
= 0; i
< chains
.length (); ++i
)
3330 if (chains
[i
]->init_seq
)
3332 gsi_insert_seq_on_edge_immediate (entry
, chains
[i
]->init_seq
);
3333 chains
[i
]->init_seq
= NULL
;
3337 /* Performs predictive commoning for LOOP. Sets bit 1<<1 of return value
3338 if LOOP was unrolled; Sets bit 1<<2 of return value if loop closed ssa
3339 form was corrupted. Non-zero return value indicates some changes were
3340 applied to this loop. */
3343 pcom_worker::tree_predictive_commoning_loop (bool allow_unroll_p
)
3345 struct component
*components
;
3346 unsigned unroll_factor
= 0;
3347 class tree_niter_desc desc
;
3348 bool unroll
= false, loop_closed_ssa
= false;
3350 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3351 fprintf (dump_file
, "Processing loop %d\n", m_loop
->num
);
3353 /* Nothing for predicitive commoning if loop only iterates 1 time. */
3354 if (get_max_loop_iterations_int (m_loop
) == 0)
3356 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3357 fprintf (dump_file
, "Loop iterates only 1 time, nothing to do.\n");
3362 /* Find the data references and split them into components according to their
3363 dependence relations. */
3364 auto_vec
<loop_p
, 3> loop_nest
;
3365 if (!compute_data_dependences_for_loop (m_loop
, true, &loop_nest
, &m_datarefs
,
3368 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3369 fprintf (dump_file
, "Cannot analyze data dependencies\n");
3373 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3374 dump_data_dependence_relations (dump_file
, m_dependences
);
3376 components
= split_data_refs_to_components ();
3378 loop_nest
.release ();
3382 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3384 fprintf (dump_file
, "Initial state:\n\n");
3385 dump_components (dump_file
, components
);
3388 /* Find the suitable components and split them into chains. */
3389 components
= filter_suitable_components (components
);
3391 auto_bitmap tmp_vars
;
3392 determine_roots (components
);
3393 release_components (components
);
3395 if (!m_chains
.exists ())
3397 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3399 "Predictive commoning failed: no suitable chains\n");
3403 prepare_initializers ();
3404 loop_closed_ssa
= prepare_finalizers ();
3406 /* Try to combine the chains that are always worked with together. */
3407 try_combine_chains ();
3409 insert_init_seqs (m_loop
, m_chains
);
3411 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3413 fprintf (dump_file
, "Before commoning:\n\n");
3414 dump_chains (dump_file
, m_chains
);
3418 /* Determine the unroll factor, and if the loop should be unrolled, ensure
3419 that its number of iterations is divisible by the factor. */
3420 unroll_factor
= determine_unroll_factor (m_chains
);
3422 if (unroll_factor
> 1)
3423 unroll
= can_unroll_loop_p (m_loop
, unroll_factor
, &desc
);
3425 /* Execute the predictive commoning transformations, and possibly unroll the
3429 struct epcc_data dta
;
3431 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3432 fprintf (dump_file
, "Unrolling %u times.\n", unroll_factor
);
3434 dta
.tmp_vars
= tmp_vars
;
3435 dta
.chains
= m_chains
.to_vec_legacy ();
3438 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
3439 execute_pred_commoning_cbck is called may cause phi nodes to be
3440 reallocated, which is a problem since CHAINS may point to these
3441 statements. To fix this, we store the ssa names defined by the
3442 phi nodes here instead of the phi nodes themselves, and restore
3443 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
3444 replace_phis_by_defined_names (m_chains
);
3446 tree_transform_and_unroll_loop (m_loop
, unroll_factor
, &desc
,
3447 execute_pred_commoning_cbck
, &dta
);
3448 eliminate_temp_copies (m_loop
, tmp_vars
);
3452 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3454 "Executing predictive commoning without unrolling.\n");
3455 execute_pred_commoning (tmp_vars
);
3458 return (unroll
? 2 : 1) | (loop_closed_ssa
? 4 : 1);
3461 /* Runs predictive commoning. */
3464 tree_predictive_commoning (bool allow_unroll_p
)
3466 unsigned ret
= 0, changed
= 0;
3468 initialize_original_copy_tables ();
3469 for (auto loop
: loops_list (cfun
, LI_ONLY_INNERMOST
))
3470 if (optimize_loop_for_speed_p (loop
))
3472 pcom_worker
w(loop
);
3473 changed
|= w
.tree_predictive_commoning_loop (allow_unroll_p
);
3475 free_original_copy_tables ();
3479 ret
= TODO_update_ssa_only_virtuals
;
3481 /* Some loop(s) got unrolled. */
3486 /* Need to fix up loop closed SSA. */
3488 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
3490 ret
|= TODO_cleanup_cfg
;
3497 /* Predictive commoning Pass. */
3500 run_tree_predictive_commoning (struct function
*fun
, bool allow_unroll_p
)
3502 if (number_of_loops (fun
) <= 1)
3505 return tree_predictive_commoning (allow_unroll_p
);
3510 const pass_data pass_data_predcom
=
3512 GIMPLE_PASS
, /* type */
3514 OPTGROUP_LOOP
, /* optinfo_flags */
3515 TV_PREDCOM
, /* tv_id */
3516 PROP_cfg
, /* properties_required */
3517 0, /* properties_provided */
3518 0, /* properties_destroyed */
3519 0, /* todo_flags_start */
3520 0, /* todo_flags_finish */
3523 class pass_predcom
: public gimple_opt_pass
3526 pass_predcom (gcc::context
*ctxt
)
3527 : gimple_opt_pass (pass_data_predcom
, ctxt
)
3530 /* opt_pass methods: */
3532 gate (function
*) final override
3534 if (flag_predictive_commoning
!= 0)
3536 /* Loop vectorization enables predictive commoning implicitly
3537 only if predictive commoning isn't set explicitly, and it
3538 doesn't allow unrolling. */
3539 if (flag_tree_loop_vectorize
3540 && !OPTION_SET_P (flag_predictive_commoning
))
3547 execute (function
*fun
) final override
3549 bool allow_unroll_p
= flag_predictive_commoning
!= 0;
3550 return run_tree_predictive_commoning (fun
, allow_unroll_p
);
3553 }; // class pass_predcom
3558 make_pass_predcom (gcc::context
*ctxt
)
3560 return new pass_predcom (ctxt
);